
The Triangle Splitting Method

for Biobjective Mixed Integer Programming

Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh

School of Mathematical and Physical Sciences,
The University of Newcastle, NSW 2308, Australia

{Natashia.Boland,Martin.Savelsbergh}@newcastle.edu.au,
Hadi.Charkhgard@uon.edu.au

Abstract. We present the first criterion space search algorithm, the
triangle splitting method, for finding the efficient frontier of a biobjective
mixed integer program. The algorithm is relatively easy to implement
and converges quickly to the complete set of nondominated points. A
computational study demonstrates the efficacy of the triangle splitting
method.

Keywords: biobjective mixed integer program, triangle splitting method,
efficient frontier.

1 Introduction

Multiobjective optimization, one of the earliest fields of study in operations re-
search, has been experiencing a resurgence of interest in the last decade. This
is due, in part, to the ever increasing adoption of optimization-based decision
support tools in industry. Since most real-world problems involve multiple, of-
ten conflicting, goals, the want for multiobjective optimization decision support
tools is not surprising. The development of effective, and relatively easy to use,
evolutionary algorithms for multiobjective optimization is another contributing
factor. Finally, the availability of cheap computing power has played a role.
Solving multiobjective optimization problems is highly computationally inten-
sive (more so than solving single-objective optimization problems) and thus the
availability of cheap computing power has acted as an enabler.

Exact algorithms for multiobjective optimization can be divided into solution
space search algorithms, i.e., methods that search in the space of feasible so-
lutions, and criterion space search algorithms, i.e., methods that search in the
space of objective function values. It has long been argued (see for example [3])
that criterion space search algorithms have advantages over solution space search
algorithms and are likely to be more successful. Our motivation for focusing on
criterion space search algorithms is that we want to exploit the power of commer-
cial (single-objective) integer programming solvers. Several extremely powerful
commercial integer programming solvers exist, e.g., the IBM ILOG CPLEX Op-
timizer, the FICO Xpress Optimizer, and the Gurobi Optimizer, and criterion
space search algorithms can take full advantage of their features. Embedding

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 162–173, 2014.
c© Springer International Publishing Switzerland 2014

The Triangle Splitting Method for Biobjective Mixed Integer Programming 163

a commercial integer programming solver in any algorithm has the additional
advantage that enhancements made to the commercial solver immediately result
in improved performance of the algorithm in which it is embedded.

In this study, we focus on biobjective mixed integer programs (BOMIPs).
Computing the efficient frontier of a BOMIP is challenging because of two rea-
sons. First, the existence of unsupported nondominated points, i.e., nondomi-
nated points that cannot be obtained by optimizing a convex combination of the
objective functions. Secondly, the existence of continuous parts in the efficient
frontier, i.e., parts where all points of a line segment are nondominated. Figure
1 shows an example of a nondominated frontier of a BOMIP. Observe that this
nondominated frontier contains isolated points as well as closed, half open, and
open line segments.

There are only a few studies that present algorithms for finding the efficient
frontier of a BOMIP (several of these algorithmswere later shown to be incomplete
or incorrect). All these algorithms are solution space search algorithms and are
based on the following observation (which is made more precise in Section 2). If
SI is the projection of the set of feasible solutions to a BOMIP on to the space
of the integer variables, then fixing the integer variables to the values of s for any
s ∈ SI changes the BOMIP to a biobjective linear program (BOLP). Furthermore,
if YN (s) for s ∈ SI denotes the nondominated frontier of the resulting BOLP,
then the nondominated frontier of the BOMIP is the set of nondominated points
in

⋃
s∈SI

YN (s). This observation suggests a natural algorithm for computing the
nondominated frontier: enumerate the solutions in SI , for each of these solutions
find the nondominated frontier of the associated BOLP, take the union of these
nondominated frontiers, and, finally, eliminate any dominated points from this set.

Unfortunately, this natural algorithm has a number of drawbacks in practice:

– The set
⋃

s∈SI
YN (s) can become prohibitively large, which implies that

storing and maintaining this set of points may require an excessive amount
of memory;

1

2

Fig. 1. Example of a nondominated frontier of a BOMIP

164 N. Boland, H. Charkhgard, and M. Savelsbergh

– Eliminating dominated points from the set
⋃

s∈SI
YN (s) can become pro-

hibitively time-consuming; and
– The nondominated frontier is only available upon completion, i.e., during the

course of the algorithm the set of points maintained contains both dominated
and nondominated points.

Most of the research on algorithms for BOMIPs has focused on addressing
the first two drawbacks, either by developing specialized data structures and
methods for efficiently storing and maintaining the set

⋃
s∈SI

YN (s), or by cur-
tailing the enumeration of s ∈ SI , i.e., by recognizing or determining that for a
given s ∈ SI all the points in YN (s) will (eventually) be eliminated. The third
drawback, unfortunately, is an inherent feature of this algorithm and cannot be
avoided.

We have developed a completely different algorithm, the triangle splitting
algorithm, which does not suffer from any of these drawbacks. To the best of our
knowledge, it is the first criterion space search algorithm for finding the efficient
frontier of a BOMIP. The algorithm recursively explores smaller and smaller
rectangles and right triangles that may contain as yet unknown nondominated
points. The triangle splitting algorithm has the following advantages:

– It is a criterion space search method that relies on a small number of ideas
and techniques, which makes it both easy to understand and easy to imple-
ment.

– It has minimal requirements in terms of information storage.
– It maintains at any time during its execution a set of points which are guar-

anteed to be part of the nondominated frontier.
– It relies on solving single objective mixed integer programs (MIPs) and ben-

efits automatically from any advances in single objective MIP solvers.

A computational study demonstrates the efficacy of the triangle splitting al-
gorithm. Its performance is as good or better than the best known algorithm
for BOMIPs [2] and it can handle instance sizes that far exceed the size that
solution space algorithms can handle.

In the remainder of this extended abstract, we describe the basic version of
the algorithm. In Section 2, we give preliminaries, and in Section 3, we introduce
the triangle splitting method and present computational results.

2 Preliminaries

A multiobjective mixed integer programming problem (MOMIP) can be stated
as follows

min
x∈X

z(x) := {z1(x), ..., zp(x)},
where X ⊆ Z

n × R
m is defined by a set of linear constraints and represents

the feasible set in the decision space and the image Y of X under vector-valued
function z = {z1, ..., zp} represents the feasible set in the criterion space, i.e.,
Y := z(X) := {y ∈ R

p : y = z(x) for some x ∈ X}. We will sometimes use

The Triangle Splitting Method for Biobjective Mixed Integer Programming 165

x = (xI , xC), for x ∈ X , to distinguish the integer and continuous variables in
a feasible solution. For convenience, we also use the notation R

p
≥ := {y ∈ R

p :

y ≥ 0} for the nonnegative orthant of Rp, and R
p
> := {y ∈ R

p : y > 0} for the
positive orthant of Rp.

Definition 1. A feasible solution x′ ∈ X is called efficient or Pareto optimal,
if there is no other x ∈ X such that zk(x) ≤ zk(x

′) for k = 1, ..., p and z(x) �=
z(x′). If x′ is efficient, then z(x′) is called a nondominated point. The set of
all efficient solutions x′ ∈ X is denoted by XE. The set of all nondominated
points y′ = z(x′) ∈ Y for some x′ ∈ XE is denoted by YN and referred to as the
nondominated frontier or the efficient frontier.

Definition 2. Let x′ ∈ XE. If there is a λ ∈ R
n+m
> such that x′ is an optimal

solution to minx∈X λT z(x), then x′ is called a supported efficient solution and
y = z(x′) is called a supported nondominated point.

Definition 3. Let Ye be the set of extreme points of Conv(Y). A point y ∈ Y
is called an extreme supported nondominated point if y ∈ Ye ∩ YN .

Theorem 1. For a multiobjective linear program (MOLP), we have that Y is
closed and convex if X is closed.

Corollary 1. For a MOLP, the nondominated points in YN are supported and
connected, i.e., between any pair of nondominated points there exists a sequence
of nondominated points with the property that all points on the line segment
between consecutive points in the sequence are also nondominated.

Let XI = projI(X), where projI(X) := {x ∈ Z
n : there exists a xC ∈ R

m such
that (x, xC) ∈ X}, and for x̄ ∈ XI let YN (x̄) denote the nondominated frontier
of the MOLP defined by

min
(xI ,xC)∈X :xI=x̄

z(x) := {z1(x), ..., zp(x)}.

Finally, let the function ND : Rp → R
p be one that takes a set of points P in

the criterion space and removes any point p ∈ P that is dominated by any other
point p′ ∈ P . We have the following theorem (see for example Gardenghi et al.
[4]).

Theorem 2. The nondominated frontier YN = ND(
⋃

x̄∈XI
YN (x̄)).

Theorem 2 forms the basis of most solution space search algorithms for MOMIPs.
These algorithms essentially enumerate XI , compute YN (x̄) for all x̄ ∈ XI , form
the union of the resulting nondominated frontiers, and eliminate any dominated
points, i.e., set YN = ND(

⋃
x̄∈XI

YN (x̄)).

The first “branch-and-bound” algorithm for solving multiobjective mixed 0-1
integer programs was proposed by Mavrotas and Diakoulaki [6]. The enumeration
algorithm ensures that at the leaf nodes of the search tree, the values of the 0-
1 variables are fixed at either zero or one. The algorithm maintains a list of

166 N. Boland, H. Charkhgard, and M. Savelsbergh

potential nondominated points, which is updated at each leaf node of the search
tree, i.e., potential nondominated points are added to the list and dominated
points are removed from the list. In a follow-up paper, Mavrotas and Diakoulaki
[7] show that their initial scheme for updating the list was incomplete in the
sense that some dominated points might erroneously remain in the list. They
propose an a posteriori filtering method to remedy the situation. Vincent et al.
[8] show another deficiency of the branch-and-bound algorithm of Mavrotas and
Diakoulaki, namely that it may not identify all nondominated points, i.e., some
nondominated points are missed. They show that this issue can be corrected for
biobjective mixed 0-1 integer programs. More recently, Belotti et al. [2] propose
a different branch-and-bound algorithm to compute the nondominated frontier
of a biobjective mixed integer program. It more closely resembles the traditional
branch-and-bound for single objective mixed integer programs, in the sense that
bounding strategies are employed to fathom nodes during the search.

Next, we introduce concepts and notation that will facilitate the presentation
and discussion of the triangle splitting method. For the remainder of the paper,
we restrict ourselves to BOMIPs. Let z1 = (z11 , z

1
2) and z2 = (z21 , z

2
2) be two

points in the criterion space with z11 � z21 and z22 � z12 . We denote with R(z1, z2)
the rectangle in the criterion space defined by the points z1 and z2. Furthermore,
we denote with T (z1, z2) the right triangle in the criterion space defined by the
points z1, (z21 , z

1
2), and z2. Finally, we denote with H(z1, z2) the line segment

in the criterion space defined by the points z1 and z2, i.e., the hypotenuse of
triangle T (z1, z2).

A point z̄ in criterion space corresponding to a solution with smallest value
for z2(x) among all solutions with smallest value for z1(x) among all feasible
solutions with objective function values in T (z1, z2), if one exists, can be found
by solving two mixed integer programs in sequence, namely

z̄1 = min
x∈X

z1(x)

subject to z(x) ∈ T (z1, z2),

followed by

z̄2 = min
x∈X

z2(x)

subject to z(x) ∈ T (z1, z2) and z1(x) ≤ z̄1.

As this is an operation that will be performed frequently in our criterion space
search algorithm, we introduce the following notation to represent the process:

z̄ = lexmin
x∈X

{z1(x), z2(x) : z(x) ∈ T (z1, z2)}.

Finding a point z̄ in criterion space corresponding to a solution with smallest
value for z1(x) among all solutions with smallest value for z2(x) among all feasible

The Triangle Splitting Method for Biobjective Mixed Integer Programming 167

solutions with objective function values in T (z1, z2), if one exists, can be done
similarly, and we introduce the following notation to represent that process:

z̄ = lexmin
x∈X

{z2(x), z1(x) : z(x) ∈ T (z1, z2)}.

It is often convenient to assume that the points of the efficient frontier are
listed in order of nondecreasing value of the first objective function. In that case,
the first and last point of the efficient frontier can be found by solving

zT := lexmin
x∈X

{z1(x), z2(x) : z(x) ∈ R((−∞,∞), (−∞,∞))}.

and

zB := lexmin
x∈X

{z2(x), z1(x) : z(x) ∈ R((−∞,∞), (−∞,∞))},

respectively (where the feasible region is defined by a rectangle instead of a
triangle).

The next propositions and their corollaries provide the basis for the development
of the triangle splitting method.

Proposition 1. Let z1 and z2 be two points in the criterion space with z22 < z12
and let v be such that z22 < v < z12. If {(z−R

2
>)∩YN : z ∈ H(z1, z2)} = ∅, then

lexminx∈X{z1(x), z2(x) : z2(x) ≤ v, z(x) ∈ T (z1, z2)} returns a nondominated
point if it has a solution.

Corollary 2. Let z1 and z2 be two points in the criterion space with z22 < z12
and let v be such that z22 < v < z12. If {(z − R

2
>) ∩ YN : z ∈ H(z1, z2)} = ∅ and

z2 ∈ YN , then z̄1 = lexminx∈X {z1(x), z2(x) : z2(x) ≤ v, z(x) ∈ T (z1, z2)} ∈
YN . Furthermore, if z̄1 = z2, then z2 is the only nondominated point in T (z1, z2)
with z2(x) ≤ v.

Proposition 2. Let z1 and z2 be two points in the criterion space with z11 < z21
and let v be such that z11 < v < z21. If {(z−R

2
>)∩YN : z ∈ H(z1, z2)} = ∅, then

lexminx∈X{z2(x), z1(x) : z1(x) ≤ v, z(x) ∈ T (z1, z2)} returns a nondominated
point if it has a solution.

Corollary 3. Let z1 and z2 be two points in the criterion space with z11 < z21
and let v be such that z11 < v < z21. If {(z − R

2
>) ∩ YN : z ∈ H(z1, z2)} = ∅ and

z1 ∈ YN , then z̄2 = lexminx∈X {z2(x), z1(x) : z1(x) ≤ v, z(x) ∈ T (z1, z2)} ∈
YN . Furthermore, if z̄2 = z1, then z1 is the only nondominated point in T (z1, z2)
with z1(x) ≤ v.

Theorem 3. Let z1 and z2 be two nondominated points in the criterion space.
If {(z − R

2
>) ∩ YN : z ∈ H(z1, z2)} = ∅ and there exists an x ∈ XI and x1

C

and x2
C ∈ R

m such that (x, x1
C), (x, x

2
C) ∈ X , z1((x, x

1
C)) ≤ z11, z2((x, x

1
C)) ≤ z12,

z1((x, x
2
C)) ≤ z21 , and z2((x, x

2
C)) ≤ z22 , then H(z1, z2) ⊂ YN .

168 N. Boland, H. Charkhgard, and M. Savelsbergh

Theorem 3 implies that for a triangle T (z1, z2) such that {(z − R
2
>) ∩ YN :

z ∈ H(z1, z2)} = ∅, the following line detection mixed integer program (MIP)
establishes whether H(z1, z2) ⊂ YN :

max z1((xI , x
2
C))

subject to

z1((xI , x
1
C)) ≤ z11

z2((xI , x
1
C)) ≤ z12

λ1z1((xI , x
2
C)) + λ2z2((xI , x

2
C)) = λ1z

1
1 + λ2z

1
2

(xI , x
1
C) ∈ X , (xI , x

2
C) ∈ X

where λ1 = z12 − z22 and λ2 = z21 − z11 . The constraint λ1z1((xI , x
2
C)) +

λ2z2((xI , x
2
C)) = λ1z

1
1 + λ2z

1
2 expresses that the ratio of the horizontal distance

and the vertical distance is the same as
z2
1−z1

1

z1
2−z2

2
, which implies that the point is

on the imaginary line connecting z1 and z2. Note that if the optimal value is
greater than or equal to z21 , then z1 and z2 satisfy the conditions of Theorem 3.

Determining whether the points on the hypotenuse of a triangle are all non-
dominated, i.e., whether the hypotenuse of the triangle is part of the nondomi-
nated frontier, is a core component of the triangle splitting algorithm. Another
core component of the triangle splitting method is the weighted sum method
[1]. The weighted sum method is used to find all locally extreme supported non-
dominated points in a rectangle defined by two nondominated points z1 and z2.
The weighted sum method uses the following optimization problem to search for
extreme supported nondominated points in rectangle R(z1, z2):

z∗ = min
x∈X

λ1z1(x) + λ2z2(x)

subject to z(x) ∈ R(z1, z2)

with λ1 = z12 − z22 and λ2 = z21 − z11 , i.e., the objective function is parallel to the
line that connects z1 and z2 in the criterion space. Figure 2 shows an example
with z1 = zT and z2 = zB. It is easy to see that the optimum point z∗ is an as
yet unknown locally supported nondominated point if λ1z

∗
1+λ2z

∗
2 < λ1z

1
1+λ2z

1
2 .

That is, the optimization either returns a new locally supported nondominated
point z∗ or a convex combination of z1 and z2. When an as yet unknown lo-
cally supported nondominated point z∗ is returned, the method is applied re-
cursively to search R(z1, z∗) and R(z∗, z2) for additional as yet unknown locally
supported nondominated points. Note that the set of locally supported nondom-
inated points returned by the weighted sum method is guaranteed to include all
locally extreme supported nondominated points (but it may also include locally
supported nondominated points that are not extreme).

The Triangle Splitting Method for Biobjective Mixed Integer Programming 169

Not obtained nondominated points Obtained nondominated points

Next nondominated point Objective function

Fig. 2. Searching for a nondominated point using the weighted sum optimization
problem

3 The Triangle Splitting Method

The triangle splitting method maintains a priority queue with rectangles and
triangles, each of which still has to be explored, i.e., may still contain as yet
unknown nondominated points. Each element of the priority queue is character-
ized by two nondominated points z1 and z2, a shape, rectangle or triangle,
and a splitting direction, horizontal or vertical . The algorithm also main-
tains an ordered list of nondominated points, which is updated after finding a
new nondominated point or after detecting that all points on the hypotenuse
of a triangle are nondominated. The nondominated points are maintained in
order of nondecreasing value of their first objective value. In addition to the
nondominated point itself, there is an indicator that specifies whether the non-
dominated point is connected to the next nondominated point in the list (in-
dicator value 1) or not (indicator value 0), i.e., whether all points on the line
segment defined by the two nondominated points are also nondominated. The
list is initialized with (zT , 0) and (zB, 0). The priority queue is initialized with
(zT , zB, rectangle ,horizontal).

Next, we discuss how rectangles and triangles are explored. A rectangle is ex-
plored by applying the weighted sum method to find locally extreme supported
nondominated points and divide the rectangle into one or more triangles. The lo-
cally supported nondominated points are added to the list of nondominated points
and the triangles are added to the priority queue (with the same splitting direc-
tion). See Figure 3 for an example of the exploration of a rectangle. Exploring a tri-
angle T (z1, z2) starts by determining whether all the points on the hypotenuse of
the triangle are nondominated. (Note that by construction, there are no nondom-
inated points “below” the hypotenuse, i.e., {(z−R

2
>)∩YN : z ∈ H(z1, z2)} = ∅.)

If so, the list of nondominated points is updated accordingly, i.e., element (z1, 0)
is changed to (z1, 1). (Note that z1 and z2 appear consecutively in the list of non-
dominated points). Otherwise, the triangle will be split into two rectangles, either

by splitting the triangle horizontally at
z1
2+z2

2

2 or by splitting the triangle vertically

at
z1
1+z2

1

2 , which will then be added to the priority queue unless they cannot contain
as yet unknown nondominated points.

170 N. Boland, H. Charkhgard, and M. Savelsbergh

1

2

Fig. 3. The triangles determined by the exploration of initial rectangle R(zT , zB) for
the BOMIP that gives rise to the nondominated frontier of Figure 1

More specifically, when splitting triangle T (z1, z2) horizontally at height
z1
2+z2

2

2 ,
we start by computing

z̄1 = lexmin
x∈X

{z1(x), z2(x) : z2(x) ≤ z12 + z22
2

, z(x) ∈ T (z1, z2)}.

If z̄12 =
z1
2+z2

2

2 , i.e., if the resulting point is on the cut, then we set z̄2 = z̄1. If
not, then we compute

z̄2 = lexmin
x∈X

{z2(x), z1(x) : z1(x) ≤ z̄11 , z(x) ∈ T (z1, z2)}.

By construction of z̄1 and z̄2, all as yet unknown nondominated points in triangle
T (z1, z2) must be in rectangles R(z1, z̄2) and R(z̄1, z2). Note that when z̄2 = z1,
rectangle R(z1, z̄2) consists of a single nondominated point and does not need
to be explored further (and, similarly, when z̄1 = z2 rectangle R(z̄1, z2) consists
of a single nondominated point and does not need to be explored further). The

two situations that can occur during horizontal splitting at height
z1
2+z2

2

2 are
illustrated in Figures 4 and 5. Note that if z̄1 is on the cut, then it is easy
to see that z̄2 = z̄1 and we do not need to compute z̄2. (In this case, z̄1 = z̄2

is almost surely on a line segment of the nondominated frontier.) Splitting a

triangle vertically at height
z1
1+z2

1

2 proceeds analogously.

1

2

Parts of nondominated frontier Cut line 1

2

Parts of nondominated frontier Cut line

Fig. 4. Horizontal splitting of triangle T (z1, z2) when z̄1 is on the cut

The Triangle Splitting Method for Biobjective Mixed Integer Programming 171

1

2

Parts of nondominated frontier Cut line 1

2

Parts of nondominated frontier Cut line

1

2

Parts of nondominated frontier Cut line

Fig. 5. Horizontal splitting of triangle T (z1, z2) when z̄1 is not on the cut

The splitting direction plays an important role in the triangle splitting method.
Recall that a nondominated frontier may contain horizontal and vertical discon-
tinuities or gaps. If the same splitting direction is used throughout the algorithm,
finding these gaps can be unnecessarily time-consuming or even impossible.

Figure 6 shows the progression of the triangle splitting method for a nondom-
inated frontier with a horizontal gap when only horizontal cutting is employed
to split triangles. In this situation, the triangle splitting methods continuous to
split the continuous segment of the nondominated frontier until the area of the
remaining rectangles is less than a pre-specified tolerance. To avoid these situ-
ations, an alternating splitting direction strategy is employed, i.e., the splitting

1

Obtained nondominated points Potential regions Cut line

2 3

4 5

Fig. 6. A horizontal gap may not be detected when splitting horizontally only

172 N. Boland, H. Charkhgard, and M. Savelsbergh

1

Obtained nondominated points Potential regions Cut line

2 3

4 5

Fig. 7. A horizontal gap is easily detected using alternating splitting directions

direction for newly generated rectangles is set to the opposite of the direction
that was used to create these rectangles. Figure 7 shows the progression of the
triangle splitting method for the same nondominated frontier when an alternat-
ing splitting direction strategy is employed. We see that the horizontal gap is
detected easily.

Thus, rectangles are added to the priority queue with the opposite splitting
direction.

To investigate the efficacy of the triangle splitting method, we used the class
of biobjective 0-1 mixed integer programs introduced by Mavrotas et al. [6].
This class has been used in all previous computational studies of algorithms for
BOMIPs. We generated five sets of instances for our computational study, each
consisting of five instances and identified by the number of constraints m in the
instance, i.e., S20, S40, S80, S160, and S320. The number of variables is equal
to the number of constraints, and half of the variables are binary and half of
the variables are continuous. The sets S160 and S320 contain instances that are
much larger than any instances solved in previous studies. For example, Vincent
et al. [8] solve instances of up to size 70 and Belotti et al. [2] solve instances up
to size 80. The average solution time for the instances in each set is shown in
Table 1. We observe that the triangle splitting algorithm is able to solve large
instances in a relatively short amount of time. Even the largest instances (in Set
S320) are solved in little over an hour.

Table 1. Runtime of the triangle splitting method

Set S20 S40 S80 S160 S320

Time (secs.) 0.60 2.76 29.08 274.54 3852.63

The Triangle Splitting Method for Biobjective Mixed Integer Programming 173

References

1. Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Management
Science 27, 73–78 (1979)

2. Belotti, P., Soylu, B., Wiecek, M.M.: A branch-and-bound algorithm for biobjective
mixed-integer programs,
http://www.optimization-online.org/DB_HTML/2013/01/3719.html

3. Benson, H.P., Sun, E.: A weight set decomposition algorithm for finding all efficient
extreme points in the outcome set of multiple objective linear program. European
Journal of Operational Research 139, 26–41 (2002)

4. Gardenghi, M., Gómez, T., Miguel, F., Wiecek, M.M.: Algebra of efficient sets
for multiobjective complex systems. Journal of Optimization Theory and Appli-
cations 149, 385–410 (2011)

5. Isermann, H.: The enumeration of the set of all efficient solutions for a linear multiple
objective program. Operational Research Quarterly 28(3), 711–725 (1977)

6. Mavrotas, G., Diakoulaki, D.: A branch and bound algorithm for mixed
zero-one multiple objective linear programming. European Journal of Operational
Research 107, 530–541 (1998)

7. Mavrotas, G., Diakoulaki, D.: Multi-criteria branch and bound: A vector maxi-
mization algorithm for mixed 0-1 multiple objective linear programming. Applied
Mathematics and Computation 171, 53–71 (2005)

8. Vincent, T., Seipp, F., Ruzika, S., Przybylski, A., Gandibleux, X.: Multiple objective
branch and bound for mixed 0-1 linear programming: Corrections and improvements
for biobjective case. Computers & Operations Research 40(1), 498–509 (2013)

http://www.optimization-online.org/DB_HTML/2013/01/3719.html

	The Triangle Splitting Methodfor Biobjective Mixed Integer Programming
	1 Introduction
	2 Preliminaries
	3 The Triangle Splitting Method
	References

