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Preface

This volume contains the 34 extended abstracts presented at IPCO 2014, the
17th Conference on Integer Programming and Combinatorial Optimization, held
June 23-25, 2014, in Bonn, Germany.

The IPCO conference is under the auspices of the Mathematical Optimization
Society. It is held every year, except for those in which the International Sympo-
sium on Mathematical Programming takes place. The conference is a forum for
researchers and practitioners working on various aspects of integer programming
and combinatorial optimization. The aim is to present recent developments in
theory, computation, and applications in these areas. Traditionally, IPCO con-
sists of three days of non-parallel sessions, with no invited talks. More informa-
tion on IPCO and its history can be found at www.mathopt.org/?nav=ipco.

This year, there were 143 submissions, two of which were withdrawn before
the review process started. Each reviewed submission was reviewed by at least
three Program Committee members, often with the help of external reviewers.
The Program Committee met in Aussois in January 2014 and, after thorough
discussions, selected 34 papers to be presented at IPCO 2014 and included in
this volume. The record number of submissions, their high quality, and the more
or less constant number of papers that can be accepted made this IPCO even
more competitive than previous editions, with an acceptance rate of less than
25%.

We would like to thank:

– All authors who submitted extended abstracts to IPCO; it is a pleasure to see
how active all areas of integer programming and combinatorial optimization
are

– The members of the Program Committee, who graciously gave their time
and energy

– The external reviewers, whose expertise was instrumental in guiding our
decisions

– The EasyChair developers for their excellent platform making many things
so much easier

– Springer for their efficient cooperation in producing this volume
– The members of the Organizing Committee and all people in Bonn who

helped to make this conference possible
– The speakers of the summer school preceding IPCO: Gérard Cornuéjols,

András Frank, Thomas Rothvoß, and David Shmoys
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– The Mathematical Optimization Society and in particular the members of
its IPCO Steering Committee: Andreas Schulz, Andrea Lodi, and David
Williamson, for their help and advice.

March 2014 Jon Lee
Jens Vygen
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Tunçel, Levent
Uetz, Marc
Van Vyve, Mathieu
Végh, László
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The Cycling Property for the Clutter

of Odd st-Walks

Ahmad Abdi and Bertrand Guenin

Department of Combinatorics and Optimization, University of Waterloo
{a3abdi,bguenin}@uwaterloo.ca

Abstract. A binary clutter is cycling if its packing and covering linear
program have integral optimal solutions for all eulerian edge capacities.
We prove that the clutter of odd st-walks of a signed graph is cycling
if and only if it does not contain as a minor the clutter of odd circuits
of K5 nor the clutter of lines of the Fano matroid. Corollaries of this
result include, of many, the characterization for weakly bipartite signed
graphs [5], packing two-commodity paths [7,10], packing T -joins with
small |T |, a new result on covering odd circuits of a signed graph, as
well as a new result on covering odd circuits and odd T -joins of a signed
graft.

1 Introduction

A clutter C is a finite collection of sets, over some finite ground set E(C), with
the property that no set in C is contained in, or is equal to, another set of C.
This terminology was first coined by Edmonds and Fulkerson [2]. A cover B is
a subset of E(C) such that B ∩ C �= ∅, for all C ∈ C. The blocker b(C) is the
clutter of the minimal covers. It is well known that b(b(C)) = C ([8,2]). A clutter
is binary if, for any C1, C2, C3 ∈ C, their symmetric difference C1 � C2 � C3

contains, or is equal to, a set of C. Equivalently, a clutter is binary if, for every
C ∈ C and B ∈ b(C), |C ∩B| is odd ([8]). It is therefore immediate that a clutter
is binary if and only if its blocker is.

Let C be a clutter and e ∈ E(C). The contraction C/e and deletion C \ e are
clutters on the ground set E(C)−{e} where C/e is the collection of minimal sets
in {C−{e} : C ∈ C} and C \e := {C : e /∈ C ∈ C}. Observe that b(C/e) = b(C)\e
and b(C \ e) = b(C)/e. Contractions and deletions can be performed sequentially
and the result does not depend on the order. A clutter obtained from C by a
sequence of deletions Ed and a sequence of contractions Ec (Ed ∩ Ec = ∅) is
called a minor of C and is denoted C \ Ed/Ec.

Given edge-capacities w ∈ Z
E(C)
+ consider the linear program

(P )

⎧⎨⎩
min

∑
(wexe : e ∈ E(C))

s.t. x(C) ≥ 1, C ∈ C
xe ≥ 0, e ∈ E(C),

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 1–12, 2014.
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2 A. Abdi and B. Guenin

and its dual

(D)

⎧⎨⎩
max

∑
(yC : C ∈ C)

s.t.
∑

(yC : e ∈ C ∈ C) ≤ we, e ∈ E(C)
yC ≥ 0, C ∈ C.

A clutter is said to be ideal if, for every edge-capacities w ∈ Z
E(C)
+ , (P ) has an

optimal solution that is integral. A beautiful result of Lehman [9] states that a

clutter is ideal if and only if its blocker is. Edge-capacities w ∈ Z
E(C)
+ are said

to be eulerian if, for every B and B′ in b(C), w(B) and w(B′) have the same
parity. Seymour [13] calls a binary clutter cycling if, for every eulerian edge-

capacities w ∈ Z
E(C)
+ , (P ) and (D) both have optimal solutions that are integral.

It can be readily checked that if a clutter is cycling (or ideal) then so are all
its minors ([13,14]). Therefore, one can characterize the class of cycling clutters
by excluding minor-minimal clutters that are not in this class. In this paper, we
will only focus on binary clutters.
O5 is the clutter of the odd circuits of K5. Let L7 be the clutter of the lines

of the Fano matroid, i.e. E(L7) = {1, 2, 3, 4, 5, 6, 7} and

L7 := {{1, 2, 7}, {3, 4, 7}, {5, 6, 7}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}.

Let P10 be the collection of the postman sets of the Petersen graph, i.e. sets of
edges which induce a subgraph whose odd degree vertices are the (odd degree)
vertices of the Petersen graph. Observe that the four clutters O5, b(O5),L7,P10

are binary, and moreover, it can be readily checked that none of these clutters
is cycling. Hence, if a binary clutter is cycling then it cannot have any of these
clutters as a minor. The following excluded minor characterization is predicted.

Conjecture 1 (Cycling Conjecture). A binary clutter is cycling if, and only
if, it has none of the following minors: O5, b(O5),L7,P10.

The Cycling Conjecture, as stated, can be found in Schrijver [12]. However, this
conjecture was first proposed by Seymour [13] and then modified by A.M.H.
Gerards and B. Guenin. It is worth mentioning that this conjecture contains
the four color theorem [15]. None of our results in this paper have any apparent
bearings on this theorem.

Consider a finite graph G, where parallel edges and loops are allowed. A cycle
of G is the edge set of a subgraph of G where every vertex has even degree. A
circuit of G is a minimal cycle, and a path is a circuit minus an edge. We define
an st-path as follows: if s �= t then it is a path where s and t are the degree one
vertices of the path; otherwise, when s = t then it is just the singleton vertex
s. Let Σ be a subset of its edges. The pair (G,Σ) is called a signed graph. We
say a subset S of the edges is odd (resp. even) in (G,Σ) if |S ∩Σ| is odd (resp.
even). Let s, t be vertices of G. We call a subset of the edges of (G,Σ) an odd
st-walk if it is either an odd st-path, or it is the union of an even st-path P and
an odd circuit C where P and C share at most one vertex. Observe that when
s = t then an odd st-walk is simply an odd circuit. It is easy to see that clutters
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of odd st-walks are closed under taking minors. As is shown in [6] the clutter of
odd st-walks is binary, and it does not have a minor isomorphic to b(O5) or P10.
In this paper, we verify the Cycling Conjecture for this class of binary clutters:

Theorem 2. A clutter of odd st-walks is cycling if, and only if, it has no O5

and no L7 minor.

2 Restating Theorem 2

One can view Theorem 2 as a packing and covering result. We need the following
definition: two edges of a signed graph are parallel if they have the same end-
vertices as well as the same sign. Now let (G = (V,E), Σ) be a signed graph
without any parallel edges, and choose s, t ∈ V . Let C be the clutter of the odd
st-walks, over the ground set E, and choose edge-capacities w ∈ ZE

+. An odd
st-walk cover of (G,Σ) is simply a cover for C. When there is no ambiguity, we
refer to an odd st-walk cover as just a cover.

Proposition 3 (Guenin [6]). If a subset of the edges is a minimal cover then
it is either an st-bond (a minimal st-cut) or it is of the form Σ � C, where C
is a cut with s and t on the same shore.

The minimal covers of the latter form above are called signatures. Notice that if
Σ′ is a signature, then (G,Σ) and (G,Σ′) have the same clutter of odd st-walks.

Reset (G,Σ) as follows: replace each edge e of (G,Σ) with we parallel edges.
The packing number ν(G,Σ) of (G,Σ) is the maximum number of pairwise
(edge-)disjoint odd st-walks. A dual parameter to the packing number is the
covering number τ(G,Σ), which records the minimum size of a cover of (G,Σ).
Consider a packing of ν(G,Σ) pairwise disjoint odd st-walk and a cover of size
τ(G,Σ). As the cover intersects every odd st-walk in the packing, it follows that
τ(G,Σ) ≥ ν(G,Σ). A natural question arises: when does equality hold? Theorem
2 gives sufficient conditions for a signed graph to satisfy τ(G,Σ) = ν(G,Σ). To
elaborate, observe that τ(G,Σ) is the value of (P ) and ν(G,Σ) is the value of
(D). For w to be eulerian is to say that every two minimal covers of (G,Σ) have
the same parity. Therefore, Proposition 3 implies the following.

Remark 4. Edge-capacities w = 1 are eulerian if, and only if,

(i) s = t and the degree of every vertex is even, or
(ii) s �= t, deg(s)− |Σ| and the degree of every vertex in V − {s, t} are even.

We call such signed graphs st-eulerian.
Just like how we defined minor operations for clutters, we now define minor

operations for signed graphs. Let e ∈ E. Then the minor operations for C corre-
spond to the following minor operations for (G,Σ): (1) delete e: replace (G,Σ)
by (G \ e,Σ − {e}), (2) contract e: replace (G,Σ) by (G/e,Σ′), where Σ′ is a
signature of (G,Σ) that does not use the edge e. Observe that vertices s and
t move to wherever the edge contractions take them, and if s and t are ever
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identified then we say s = t. A signed graph (H,Γ ) is a minor of (G,Σ) if it is
isomorphic to a signed graph obtained from (G,Σ) by a sequence of edge dele-
tions, edge contractions, and possibly deletion of isolated vertices and switching
s and t. Note that if (H,Γ ) is a minor of (G,Σ), then the clutter of odd st-walks
of (H,Γ ) is a minor of the clutter of odd st-walks of (G,Σ).

The two special clutters O5 and L7 that appear in Theorem 2 have the follow-
ing representations:O5 is the clutter of odd st-walks of K̃5 := (K5, E(K5)) where
s = t is one of the five vertices, and L7 is the clutter of odd st-walks of the signed
graph F7 with s �= t, as shown in Figure 1. Observe that τ(K̃5) = 4 > 2 = ν(K̃5)
and τ(F7) = 3 > 1 = ν(F7). We can now restate Theorem 2 as follows, and in
fact, we will prove this restatement instead of the original one:

s t

Fig. 1. Signed graph F7: a representation of L7. Bold edges are odd.

Theorem 5. Let (G,Σ) be a signed graph with s, t ∈ V (G). If (G,Σ) is an st-

eulerian signed graph that does not contain K̃5 or F7 as a minor then τ(G,Σ) =
ν(G,Σ).

3 Extensions of Theorem 2

Let (G = (V,E), Σ) be a signed graph with s, t ∈ V . Suppose (G,Σ) is an st-

eulerian signed graph that does not contain K̃5 or F7 as a minor. If s �= t let τst
be the size of a minimum st-bond, otherwise let τst := τ(G,Σ). Observe that
τst ≥ τ(G,Σ) as every st-bond is also a cover. Add τst − τ(G,Σ) odd loops to

(G,Σ) to obtain another st-eulerian signed graph (G′, Σ′). Since neither K̃5 nor

F7 contain an odd loop, it follows that (G′, Σ′) also does not contain K̃5 or F7

as a minor. Observe that τ(G′, Σ′) = τ(G,Σ) + (τst − τ(G,Σ)) = τst and so
by Theorem 2, one can find a packing of τst pairwise disjoint odd st-walks in
(G′, Σ′). In (G,Σ) this packing corresponds to a collection of τst pairwise disjoint
elements, τ(G,Σ) of which are odd st-walks and the remaining elements are even
st-paths. Therefore, we get the following equivalent, and sharper, formulation of
Theorem 5.

Theorem 6. Let (G,Σ) be a signed graph with s, t ∈ V (G). Suppose that (G,Σ)

is an st-eulerian signed graph that does not contain K̃5 or F7 as a minor. Then
there exists a collection of τst(G,Σ) pairwise (edge-)disjoint elements, τ(G,Σ)
of which are odd st-walks and the remaining elements are even st-paths.



The Cycling Property for the Clutter of Odd st-Walks 5

We can obtain a counterpart to Theorem 6 as follows: let τΣ be the size of a mini-
mum signature. Observe that τΣ ≥ τ(G,Σ) and that τ(G,Σ) = min{τst, τΣ}. In
contrast to above, this time we add τΣ − τ(G,Σ) even edges between s and t to
(G,Σ) to obtain another st-eulerian signed graph (G′, Σ′). Notice, however, that

we can no longer guarantee that (G′, Σ′) contains no K̃5 or F7 minor. Observe

that this is true if, and only if, (G,Σ) does not contain K̃5, K̃5

0
, K̃5

1
, K̃5

2
, K̃5

3

or F−
7 as a minor, where

(i) for i ∈ {0, 1, 2, 3}, K̃5

i
is the signed graph obtained from splitting a vertex,

and its incident edges, of K̃5 into two vertices s, t, where s has degree i
and t has degree 4− i, and

(ii) F−
7 is the signed graph obtained from F7 by deleting the edge between s

and t.

Note that if we add an even edge to any of these signed graphs, then a K̃5 or
an F7 appears as a minor. It can be readily checked that if (G,Σ) does not

contain any of these five signed graphs as a minor, then (G′, Σ′) contains no K̃5

or F7 minor. Observe now that τ(G′, Σ′) = τ(G,Σ) + (τΣ − τ(G,Σ)) = τΣ and
so by Theorem 2, one can find a packing of τΣ pairwise disjoint odd st-walks
in (G′, Σ′). In (G,Σ) this packing corresponds to a collection of τΣ pairwise
disjoint elements, τ(G,Σ) of which are odd st-walks and the remaining elements
are odd circuits. Thus, the following counterpart to Theorem 6 is obtained.

Theorem 7. Let (G,Σ) be a signed graph with s, t ∈ V (G). Suppose that (G,Σ)

is an st-eulerian signed graph that does not contain K̃5, K̃5

0
, K̃5

1
, K̃5

2
, K̃5

3
or

F−
7 as a minor. Then in (G,Σ) there exists a collection of τΣ(G,Σ) pairwise

(edge-)disjoint elements, τ(G,Σ) of which are odd st-walks and the remaining
elements are odd circuits.

4 Applications of Theorem 2

In this section, we discuss some applications of Theorem 2. Observe that a cycling
clutter is also ideal. As a corollary, we get the following theorem:

Corollary 8 (Guenin [6]). A clutter of odd st-walks is ideal if, and only if, it
has no O5 and no L7 minor.

When s = t an odd st-walk is just an odd circuit. A signed graph is said to
be weakly bipartite if the clutter of its odd circuits is ideal. The clutter of odd
circuits does not contain an L7 minor [6]. Hence, we get the following two results
as corollaries of Theorem 2:

Corollary 9 (Guenin [5]). A signed graph is weakly bipartite if, and only if,

it has no K̃5 minor.

Corollary 10 (Geelen and Guenin [3]). A clutter of odd circuits is cycling
if, and only if, it has no O5 minor.
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Observe that 2w is eulerian for any w ∈ Z
E(G)
+ . As a result, the following result

follows as a corollary of Theorem 2:

Theorem 11. Suppose that C is a clutter of odd st-walks without an O5 or an

L7 minor. Then, for any edge-capacities w ∈ Z
E(G)
+ , the linear program (P ) has

an optimal solution that is integral and its dual (D) has an optimal solution that
is half-integral.

To obtain more applications of Theorem 2, we will turn to its restatement The-
orem 5, and naturally try to find nice classes of signed graphs without a K̃5 or
an F7 minor.

4.1 Signed Graphs without K̃5 and F7 Minor

Let (G,Σ) be a signed graph with s, t ∈ V . Observe that if s = t then (G,Σ)

has no F7 minor, and there are many classes of such signed graphs without a K̃5

minor. For instance, whenever G is planar or |Σ| = 2, (G,Σ) does not contain

a K̃5 minor. Other classes of such signed graphs can be found in [4,3]. In this
section, we focus only on signed graphs (G,Σ) with distinct s, t ∈ V .

A blocking vertex is a vertex v whose deletion removes all the odd cycles, and
a blocking pair is a pair of vertices {u, v} whose deletion removes all the odd
cycles.

Remark 12. The following classes of signed graphs with s �= t do not contain
K̃5 or F7 as a minor:

(1) signed graphs with a blocking vertex,
(2) signed graphs where {s, t} is a blocking pair,
(3) plane signed graphs with at most two odd faces,
(4) signed graphs that have an even face embedding on the projective plane, and

s and t are connected with an odd edge,
(5) signed graphs where every odd st-walk is connected, and
(6) plane signed graphs with a blocking pair {u, v} where s, u, t, v appear on a

facial cycle in this cyclic order.

Observe that class (5) contains (2) and (4). We will apply Theorem 5 to the
first three classes, and in the first two cases, we obtain two well-known results.
However, the third class will yield a new and interesting result on packing odd
circuit covers. Notice that one can even apply Theorem 6 to these classes.

Observe further that the signed graphs in (1) and (2) do not contain K̃5

0
, K̃5

1
,

K̃5

2
, K̃5

3
or F−

7 as a minor either, so one may even consider applying Theorem
7 to these classes. We leave it to the reader to find out what Theorems 6 and 7
applied to these classes imply.
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4.2 Class (1): Packing T -joins with |T | = 4

Let H be a graph with vertex set W , and choose an even vertex subset T . A
T -join of H is an edge subset whose odd degree vertices are (all) the vertices in
T . A T -cut of H is an edge subset of the form δ(U) where U ⊆ W and |U ∩ T |
is odd. Observe that the blocker of the clutter of minimal T -joins is the clutter
of minimal T -cuts.

We are now ready to prove the following result as a corollary of Theorem 2.
However, it should be noted that this result (for T of size at most 8, in fact) is
relatively easy to prove from first principles, as is shown in [1].

Corollary 13 (Cohen and Lucchesi [1]). Let H be a graph and choose a
vertex subset T of size 4. Suppose that every vertex of H not in T has even
degree and that all the vertices in T have degrees of the same parity. Then the
maximum number of pairwise (edge-) disjoint T -joins is equal to the minimum
size of a T -cut.

Proof. Suppose that T = {s, t, s′, t′}. Identify s′ and t′ to obtain G, and let
Σ = δH(s′). Then the signed graph (G,Σ) contains a blocking vertex s′t′, and
so it belongs to class (i). By Remark 4, (G,Σ) is st-eulerian. Theorem 2 then
implies that τ(G,Σ) = ν(G,Σ). However, observe that an odd st-walk of (G,Σ)
is a T -join of H , and a T -join in H contains an odd st-walk of (G,Σ). Hence,
τ(G,Σ) = ν(G,Σ) implies that the maximum number of pairwise disjoint T -
joins is equal to the minimum size of a T -cut. 
�

4.3 Class (2): Packing Two-commodity Paths

Corollary 14 (Hu [7], Rothschild and Whinston [10]). Let H be a graph
and choose two pairs (s1, t1) and (s2, t2) of vertices, where s1 �= t1, s2 �= t2, all
of s1, t1, s2, t2 have the same parity, and all the other vertices have even degree.
Then the maximum number of pairwise (edge-)disjoint paths, that are between si
and ti for some i = 1, 2, is equal to the minimum size of an edge subset whose
deletion removes all s1t1- and s2t2-paths.

Proof. Identify s1 and s2, as well as t1 and t2 to obtain G, and let Σ = δH(s1)�
δH(t2). Let s := s1s2 ∈ V (G) and t := t1t2 ∈ V (G). Then the signed graph
(G,Σ) has {s, t} as a blocking pair, and so it belongs to class (2). Again by
Remark 4 (G,Σ) is st-eulerian. Therefore, by Theorem 2 we get that τ(G,Σ) =
ν(G,Σ). However, observe that an odd st-walk of (G,Σ) is an siti-path of H ,
for some i = 1, 2, and such a path in H contains an odd st-walk of (G,Σ). Thus,
τ(G,Σ) = ν(G,Σ) proves the corollary. 
�

4.4 Class (3): Packing Odd Circuit Covers

Theorem 15. Let (H,Σ) be a plane signed graph with exactly two odd faces
and choose distinct g, h ∈ V (H). Let (G,Σ) be the signed graph obtained from
identifying g and h in H, and suppose that every two odd circuits of (G,Σ) have
the same size parity. Then in (G,Σ) the maximum number of pairwise disjoint
odd circuit covers is equal to the size of a minimum odd circuit.
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(Here an odd circuit cover is simply a cover for the clutter of odd circuits.) As
the reader may be wondering, what is the rationale behind the rather strange
construction of (G,Σ) above? Interestingly, the clutter of minimal odd circuit
covers is binary, and so the Cycling Conjecture predicts an excluded minor char-
acterization for when this clutter is cycling. As we did with the clutter of odd
st-walks, one can restate the Cycling Conjecture for the clutter of odd circuit
covers as follows:

(?) for signed graphs (G,Σ) without a K̃5 minor such that every two odd
circuits have the same parity, the maximum number of pairwise disjoint
odd circuit covers is equal to the minimum size of an odd circuit. (?)

The construction in the statement of Theorem 15 yields a signed graph (G,Σ)

that has no K̃5 minor, and Theorem 15 verifies the restatement above for these
classes of signed graphs.

Proof. LetH∗ be the plane dual ofH , and let P be an odd gh-path in (H,Σ). Let
s and t be the two odd faces of (H,Σ). Consider the plane signed graph (H∗, P );
note that this signed graph has precisely two odd faces, namely g and h, and so it
belongs to (3). In particular, (H∗, P ) contains no K̃5 and F7 minor. Since every
two odd circuits of (G,Σ) have the same parity, it follows from Remark 4 that
(H∗, P ) is st-eulerian. So Theorem 2 applies and we have τ(H∗, P ) = ν(H∗, P ).

We claim that an odd cycle of (G,Σ) is an odd st-walk cover of (H∗, P ), and
vice-versa. Let L be an odd cycle of (G,Σ). If L is an odd cycle of (H,Σ) then L
separates the two odd faces s and t, and so it is an st-cut in (H∗, P ). Otherwise,
L is an odd gh-path and so L� P is an even cycle of (H,Σ). However, an even
cycle in (H,Σ) is a cut in (H∗, P ) having s and t on the same shore. Hence, L is
of the form P�δ(U) where s, t ∈ U ⊆ V (H∗). Therefore, in either cases, L is an
odd st-walk cover of (H∗, P ). Similarly, one can show that an odd st-walk cover
of (H∗, P ) is an odd cycle of (G,Σ). Therefore, since b(b(C)) = C for any clutter
C, it follows that an odd circuit cover of (G,Σ) is an odd st-walk of (H∗, P ),
and vice-versa.

Hence, τ(H∗, P ) is the minimum size of an odd circuit of (G,Σ), and ν(H∗, P )
is the maximum number of pairwise disjoint odd circuit covers of (G,Σ). Since
τ(H∗, P ) = ν(H∗, P ), the result follows. 
�

4.5 Clutter of Odd Circuits and Odd T -joins

Here, we provide yet another application of Theorem 2. This result generalizes
Theorem 15. Let (G = (V,E), Σ) be a signed graph, and let T ⊆ V be a subset of
even size. We call the triple (G,Σ, T ) a signed graft. Let C be the clutter over the
ground set E that consists of odd circuits and minimal odd T -joins of (G,Σ, T ).
This minor-closed class of clutters is fairly large. For instance, if T = ∅ then C
is the clutter of odd circuits, and if Σ is a T -cut then C is the clutter of T -joins.
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Remark 16. C is a binary clutter.

Proof. Take any three elements C1, C2, C3 of C. If an even number of C1, C2, C3

are odd circuits, then C1 � C2 � C3 is an odd T -join and so it contains an
element of C. Otherwise, an odd number of C1, C2, C3 are odd circuits, and so
C1 � C2 � C3 is an odd cycle and so it contains an element of C. Since this is
true for all C1, C2, C3 in C, it follows from definition that C is binary. 
�

Remark 17. Minimal covers of C are of the form Σ� δ(U), where U ⊆ V and
|U ∩ T | is even.

Proof. Let B be a minimal cover of C. Then B intersects every odd circuit of
(G,Σ), and so B � Σ = δ(U) for some U ⊆ V . The preceding remark showed
C is binary, and so B intersects every odd T -join in an odd number of edges, so
|U ∩ T | must be even. 
�

Fig. 2. Signed graft F̃7, where all edges are odd and filled-in vertices are in T . For this
signed graft, the clutter of odd circuits and minimal odd T -joins isomorphic to L7.

Theorem 18. Let (G,Σ, T ) be a plane signed graft with exactly two odd faces

that has no minor isomorphic to F̃7, depicted in Figure 2. Let C be the clutter
of odd circuits and minimal odd T -joins, and suppose that every two elements
of C have the same size parity. Then the maximum of pairwise disjoint minimal
covers of C is equal to the minimum size of an element of C.

Proof. The proof is similar to the proof of Theorem 15. Let G∗ be the plane dual
of G, and let P be an odd T -join in (G,Σ, T ). Let s and t be the two odd faces

of (G,Σ, T ). Since (G,Σ, T ) has no minor isomorphic to F̃7, it follows that the

signed graph (G∗, P ) contains no F7 minor, and since it is planar, it has no K̃5

minor either. Since every two elements of C have the same parity, it follows that
(G∗, P ) is st-eulerian. Hence, by Theorem 5, τ(G∗, P ) = ν(G∗, P ).
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We claim that C is the clutter of odd st-walk covers of (G∗, P ), and vice-
versa. Let C ∈ C. If C is an odd circuit of (G,Σ, T ), then C is an st-cut of G∗.
Otherwise, C is an odd T -join and so C � P is an even cycle of (G,Σ). Thus,
C = P � δ(U) for some U ⊆ V (G∗)− {s, t}, i.e. C is a signature of (G∗, P ).

Hence, τ(G∗, P ) is the minimum size of an element of C, and ν(G∗, P ) is the
maximum number of pairwise disjoint covers of C. Since τ(G∗, P ) = ν(G∗, P ),
the result follows. 
�

Let us explain how this result implies Theorem 15. In the context of Theorem 15,
let T = {g, h}. Observe that (H,Σ, T ) is a plane signed graft with exactly two

odd faces, and it has no minor isomorphic to F̃7 (for |T | = 2). However, the
clutter of odd circuits and minimal odd T -joins of (H,Σ, T ) is isomorphic to the
clutter of odd circuits of (G,Σ). It is now easily seen that Theorem 18 implies
Theorem 15.

5 Overview of the Proof of Theorem 2

A complete proof will appear in the full version. In this section, however, we
provide an overview of our proof of Theorem 5, which is equivalent to Theorem 2.
The proof follows a routine strategy. We start with an st-eulerian signed graph
(G,Σ) that does not pack, i.e. τ(G,Σ) > ν(G,Σ), and we will look for either of

the obstructions K̃5, F7 as a minor.
We say that a signed graph (H,Γ ) is a weighted minor of (G,Σ) if (H,Γ )

minus some parallel edges is a minor of (G,Σ). (Two edges are parallel if they

have the same end vertices as well as the same parity.) Observe that if K̃5 or F7

appears as a weighted minor of (G,Σ), then it is also present as a minor since

neither of K̃5, F7 contain parallel edges.
Among all st-eulerian non-packing weighted minors of (G,Σ), we pick one

(G′, Σ′) with smallest τ(G′, Σ′), smallest |V (G′)| and largest |E(G′)|, in this
order of priority. Such a non-packing weighted minor exists. Indeed, if an edge
has sufficiently many parallel edges, then it may be contracted while keeping
(G′, Σ′) non-packing and τ(G′, Σ′) unchanged. Reset (G,Σ) := (G′, Σ′) and
let τ := τ(G,Σ), ν := ν(G,Σ). By identifying a vertex of each (connected)
component with s, if necessary, we may assume that G is connected. (Notice

that neither of the obstructions K̃5, F7 has a cut-vertex.)

Remark 19. There do not exist τ − 1 pairwise disjoint odd st-walks in (G,Σ).

Proof. Suppose otherwise. Remove some τ − 1 pairwise disjoint odd st-walks in
(G,Σ). Observe that what is left is an odd {s, t}-join because |Σ|, deg(s), deg(t)
and τ all have the same parity and all vertices other than s, t have even degree.
Hence, since every odd {s, t}-join contains an odd st-walk, one can actually find
τ pairwise disjoint odd st-walks in (G,Σ), contradicting the fact that (G,Σ) is
non-packing. 
�
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Let B be a cover of (G,Σ) of size τ . Choose an edge Ω as follows. If s = t then let
Ω ∈ E−B, and since label s is irrelevant to our problem in this case, we may as
well assume Ω ∈ δ(s). Otherwise, when s �= t, let Ω ∈ (δ(s) ∪ δ(t))−B. Indeed,
if such an edge does not exist, then δ(s) ∪ δ(t) is contained in the minimum
cover B, implying that δ(s) ∪ δ(t) = δ(s) = δ(t), but this cannot be the case
as G is connected and non-packing. Again, we may assume that Ω is incident
to s. Let s′ be the other end-vertex of Ω. Add two parallel edges Ω1, Ω2 to Ω
to obtain (K,Γ ); this st-eulerian signed graph must pack since τ(K,Γ ) = τ as
B is also a minimum cover for (K,Γ ), V (K) = V (G) but |E(K)| > |E(G)|.
Hence, (K,Γ ) contains a collection {L1, L2, . . . , Lτ} of pairwise disjoint odd
st-walks. Observe that all of Ω,Ω1 and Ω2 must be used by the odd st-walks
in {L1, L2, . . . , Lτ}, say by L1, L2, L3, since otherwise one finds at least τ − 1
disjoint odd st-walks in (G,Σ), which is not the case by the preceding remark.
As a result, the sequence (L1, L2, L3, . . . , Lτ ) corresponds to an Ω-packing of
odd st-walks in (G,Σ), described as follows:

(i) L1, . . . , Lτ are odd st-walks in (G,Σ),
(ii) Ω ∈ L1 ∩ L2 ∩ L3 and Ω /∈ L4 ∪ · · · ∪ Lτ , and
(iii) (Lj − {Ω} : 1 ≤ j ≤ τ) are pairwise disjoint subsets of edges.

We fix an Ω-packing (L1, L2, L3, . . . , Lτ ) having a minimum number of edges in
their union.

We call T a transversal of a collection of sets if T picks exactly one element
from each of the sets. For an odd st-walk L, we say that a minimal cover B is a
mate of L if |B − L| = τ − 3.

Lemma 20. Let L be an odd st-walk such that (G,Σ)\L contains at least τ −3
pairwise disjoint odd st-walks collected in L. Then L has a mate B, and B − L
is a transversal of L.
Proof. The signed graph (G,Σ)\L packs as it is st-eulerian and τ((G,Σ)\L) < τ .
Let B′ be one of its minimum covers. By our assumption, τ((G,Σ) \L) ≥ τ − 3.
Since both (G,Σ) and (G,Σ) \ L are st-eulerian, it follows that τ((G,Σ) \ L)
and τ have different parities, and so τ((G,Σ) \ L) is either τ − 3 or τ − 1.
However, observe that the latter is not possible due to Remark 19 and the fact
that (G,Σ) \ L packs. As a result |B′| = τ((G,Σ) \ L) = τ − 3. It is now clear
that B′ ∪ L contains a mate for L, and that B′ is a transversal of L. 
�
Observe that if L ⊆ L1 ∪ L2 ∪ L3 or L ∈ {L4, . . . , Lτ}, then (G,Σ) \ L does
contain at least τ − 3 pairwise disjoint odd st-walks. Thus, the preceding lemma
guarantees the existence of a mate for any such odd st-walk. Vaguely speaking,
mates are used as means to build connectivity, with appropriate signing, between
the odd st-walks.

Let us call an odd st-walk L simple if it is an odd st-path P ; otherwise when
L is the union of an odd circuit C and an even st-path P , we call L a non-
simple odd st-walk. By our definition then, when s = t all the odd st-walks are
non-simple. For each 1 ≤ i ≤ τ , either Li is a simple odd st-walk Pi, or it is a
non-simple odd st-walk Ci ∪ Pi, where Ci is an odd circuit and Pi is an even
st-path.
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Lemma 21. One of the following holds:

(i) L1, L2 and L3 are simple,
(ii) at least one of L1, L2, L3 is non-simple, and whenever Lk is non-simple for

some 1 ≤ k ≤ 3, then Ω ∈ Ck,
(iii) at least two of L1, L2, L3 are non-simple, and Ω ∈ P1 ∩ P2 ∩ P3.

We analyze each of the three cases separately, and the techniques used to tackle
each case are different. A major difference between our proof and the ones for
Corollaries 8, 9 and 10 (see [6,5,11,3]) is in where an obsruction is looked for.
In any of the aforementioned proofs, only the first three sets of the Ω-packing
assisted in finding an obstruction. For our proof, however, this is no longer the
case; some of the odd st-walks in L4, . . . , Lτ , as well as their mates, help us in
finding either of the obstructions. This concludes our overview of the proof of
Theorem 5.
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Abstract. We show that there are simplex pivoting rules for which it
is PSPACE-complete to tell if a particular basis will appear on the al-
gorithm’s path. Such rules cannot be the basis of a strongly polynomial
algorithm, unless P = PSPACE. We conjecture that the same can be
shown for most known variants of the simplex method. However, we also
point out that Dantzig’s shadow vertex algorithm has a polynomial path
problem. Finally, we discuss in the same context randomized pivoting
rules.
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1 Introduction

Linear programming was famously solved in the late 1940s by Dantzig’s sim-
plex method [8]; however, many variants of the simplex method were eventually
proved to have exponential worst-case performance [21], while, around the same
time, Karp’s 1972 paper on NP-completeness [18] mentions linear programming
as a rare problem in NP which resists classification as either NP-complete or
polynomial-time solvable. Khachiyan’s ellipsoid algorithm [20] resolved positively
this open question in 1979, but was broadly perceived as a poor competitor to
the simplex method. Not long after that, Karmarkar’s interior point algorithm
[19] provided a practically viable polynomial alternative to the simplex method.
However, there was still a sense of dissatisfaction in the community: The num-
ber of iterations of both the ellipsoid algorithm and the interior point method
depend not just on the dimensions of the problem (the number of variables d
and the number of inequalities n) but also on the number of bits needed to rep-
resent the numbers in the input; such algorithms are sometimes called “weakly
polynomial”.

A strongly polynomial algorithm for linear programming (or any problem
whose input is an array of integers) is one that is a polynomial-time algorithm in
the ordinary sense (always stops within a number of steps that is polynomial in
the total number of bits in the input), but it also takes a number of elementary
arithmetic operations that is polynomial in the dimension of the input array.
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Strongly polynomial algorithms exist for many network-related special cases of
linear programming, as was first shown in [11]. This was extended by Tardos
[30] who established the existence of such an algorithm for “combinatorial” lin-
ear programs, that is, linear programs whose constraint matrix is 0-1 (or, more
generally, contains integers that are at most exponentially large in the dimen-
sions). However, no strongly polynomial algorithm is known for general linear
programming.

The following summarizes one of the most important open problems in opti-
mization and the theory of algorithms and complexity:

Conjecture 1. There is a strongly polynomial algorithm for linear programming.

One particularly attractive direction for a positive answer for this conjecture is
the search for polynomial variants of the simplex method. It would be wonderful
to discover a pivoting rule for the simplex method which (unlike all known
such methods) always finds the optimum after a number of iterations that is
polynomial in d and n. Hence the following is an interesting speculation:

Conjecture 2. There is a pivoting rule for the simplex method that terminates
after a number of iterations that is, in expectation, polynomial in d and n.

In relation to Conjecture 2, clever randomized pivoting rules of a particular re-
cursive sort were discovered rather recently, with worst-case number of iterations
that has a subexponential dependence on d [16,23]. Other recent results related
to Conjecture 1 can be found in [6,34].

In the next section we formalize the concept of a pivoting rule: A method for
jumping from one basic solution to an adjacent one that (1) is strongly polynomial
per iteration; (2) is guaranteed to increase a potential function at each step; and
(3) is guaranteed to always terminate at the optimum (or certify infeasibility or
unboundedness). We also give several examples of such rules. It is important to
note that in our definition we allow pivoting rules to jump to infeasible bases in
order to include pivoting rules other than of the primal type. Also, our original
definition in Section 2 restricts pivoting rules to be deterministic; we discuss the
important subject of randomized rules in Section 5.

Recently there has been a glimmer of hope that some stronger forms of the
two conjectures could be disproved, after the disproof of the Hirsch Conjecture
[27]. The Hirsch conjecture [9] posited that the diameter of a d-dimensional
polytope with n facets is at most n − d, the largest known lower bound. The
best known upper bound for this diameter is the quasi-polynomial bounds of [17].
But even a super-polynomial lower bound would only falsify the conjectures for
primal pivoting rules (ones going through only feasible bases, i.e., vertices of
the polytope), but not for the many other kinds of pivoting rules (see the next
section). Furthermore, it is now clear that the techniques involved in the disproof
of the Hirsch conjecture are incapable of establishing a nonlinear lower bound on
the diameter of polytopes, and it is widely believed that there is a polynomial
upper bound on the diameter of polytopes.
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In this paper we contemplate whether the concepts and methods of complexity
theory can be applied productively to illuminate the problem of strongly poly-
nomial algorithms for linear programming and Conjecture 1. We show a result
suggesting that PSPACE-completeness may be relevant.

In particular, we propose to classify deterministic pivoting rules by the com-
plexity of the following problem, which we call the path problem of a pivoting
rule: Given a linear program and a basic solution, will this latter one appear on
the pivot rule’s path? Recall that PSPACE is the class of problems solvable in
polynomial memory. This class contains NP, and it is strongly believed to con-
tain it strictly. The path problem of a pivoting rule is clearly in PSPACE,
because it can be solved by following the (possibly exponentially long) path of
the rule, reusing space; if it is PSPACE-complete, then the pivoting rule cannot
be polynomial (unless, of course, P = PSPACE).

But it is not a priori clear that there are pivoting rules for which the path
problem is PSPACE-complete. We show (Theorem 1) that they do exist; unfor-
tunately, we prove this not for one of the many classical pivoting rules, but for a
new, explicitly constructed — and fairly unnatural — one. We conjecture that
the same result holds for essentially all known deterministic pivoting rules; such
a proof looks quite challenging; obviously, in such a proof much more will need
to be encoded in the linear program (which, in the present proof, is of logarith-
mic complexity and isomorphic to {0, 1}n). However, we do exhibit (Theorem
2) a pivoting rule whose path problem is in P: It is Dantzig’s well-known self-
dual simplex [9] (also known as shadow vertex algorithm), which is known to be
exponential in the worst case [24], but has been used in several sophisticated
algorithmic upper bounds for linear programming, such as average-case analysis
and smoothness [5,28,2,1,33,29]. We briefly discuss the apparent connection be-
tween the average-case performance of a pivoting rule and the complexity of its
path problem.

The motivation for our approach came from recent results establishing that it
is PSPACE-complete to compute the final result of certain well known algorithms
for finding fix points and equilibria [13]. However, the proof techniques used here
are completely different from those in [13].

2 Definitions

Consider an algorithm whose input is an array of n integers. The algorithm is
called strongly polynomial if

– it is polynomial-time as a Turing machine, and
– if one assumes that all elementary arithmetic operations have cost one, the

worst-case complexity of the algorithm is bounded by a polynomial in n, and
is therefore independent of the size of the input integers.

In linear programming one seeks to maximize cTx subject to Ax = b, x ≥ 0,
where A is m×n. An m×m nonsingular submatrix B of A is a basis. A feasible
basis B is one for which the system BxB = b (where by xB we denote vector x
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restricted to the coordinates that correspond to B) has a nonnegative solution;
in this case, xB is called a basic feasible solution. Basic feasible solutions are
important because they render linear programming a combinatorial problem, in
that the optimum, if it exists, occurs at one of them. We say that two bases are
adjacent if they differ in only one column.

There are many versions of linear programming (with inequality constraints,
minimization, unrestricted in sign variables, etc.) but they are all known to be
easily interreducible. We shall feel free to express linear programs in the most
convenient of these.

We shall assume that the linear programs under consideration are non-
degenerate (no two bases result in the same basic solution). Detecting this con-
dition is nontrivial (NP-hard, as it turns out). However, there are several reasons
why this very convenient assumption is inconsequential. First, a random pertur-
bation of a linear program (obtained, say, by adding a random small vector to
b) is non-degenerate with probability one. And second, simplex-like algorithms
can typically be modified to essentially perform (deterministic versions of) this
perturbation on-line, thus dealing with degeneracy.

We next define a class of algorithms for linear programming that are variants
of the simplex method, what we call pivoting rules. To start, we recall from linear
programming theory three important kinds of bases B, called terminal bases:

– optimality: B−1b ≥ 0, cT − cTBB
−1A ≤ 0. B is the optimal feasible basis of

the linear program.
– unboundedness: B−1Aj ≤ 0, cj − cTBB

−1Aj > 0 for some column Aj of A.
This implies that the linear program is unbounded if feasible.

– infeasibility: (B−1)iA ≥ 0, (B−1)ib < 0 for some row (B−1)i of B−1. This
means the linear program is infeasible.

Notice that, given a basis, it can be decided in strongly polynomial time whether
it is terminal (and of which kind).

Definition 1. A pivoting rule R is a strongly polynomial algorithm which, given
a linear program (A, b, c):

– produces an initial basis B0;
– given in addition a basis B that is not terminal, it produces an adjacent basis

nR(B) such that φR(nR(B)) > φR(B), where φR is a potential function.

The path of pivoting rule R for the linear program (A, b, c) is the sequence of
bases (B0, nR(B0), n

2
R(B0), . . . , , n

k
R(B0)), ending at a terminal basis, produced

by R.

Obviously, any pivoting rule constitutes a correct algorithm for linear program-
ming, since it will terminate (by monotonicity and finiteness), and can only
terminate at a terminal basis. Notice that pivoting rules may pass through in-
feasible basic solutions (for example, they can start with one). Incidentally, the
inclusion of infeasible bases implies that such rules operate not on the linear
program’s polytope, but on its linear arrangement. Since the latter has diameter
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O(mn), even the existence of polytopes with super-polynomial diameter will not
rule out strongly polynomial pivoting rules.

There are many known deterministic pivoting rules (ties are broken lexico-
graphically, say):

1. Dantzig’s rule (steepest descent). In this rule (as well as in all other
primal rules that follow), given a feasible basis B we first calculate, for each
index j not in the basis the objective increase gradient cBj = cj − cTBB

−1Aj .

Define J(B) = {j : cBj > 0}. Dantzig’s rule selects the j ∈ J(B) with largest

cBj and brings it in the basis. By non-degeneracy (if not a terminal basis),
this completely determines the next basis. As with all primal pivoting rules,
the potential function φR is the objective.

2. Steepest edge rule. Instead of the maximum cBj , select the largest
cBj

||B−1Aj || .

3. Greatest improvement rule. We bring in the index that results in the
largest increment of the objective.

4. Bland’s rule. Select the smallest j ∈ J(B).
For all these rules, however, we have not specified the original basis B0. This
is obviously a problem, since all these rules are primal and need feasible
bases, and a feasible basis may not be a priori available. Primal pivoting
rules such as these are best applied not on the original m×n linear program
(A, b, c), but to a simple m× 2n variant called “the big M version,” defined
as (A|−A), b, (c|−M, . . . ,−M), where M is a large number (M can either be
handled symbolically, or be given an appropriate value computed in strongly
polynomial time). It is trivial now to find an initial feasible basis. In fact,
the pivoting rule running on the new linear program can be thought of as a
slightly modified pivoting rule acting on the original linear program (when
j ∈ J(B), Aj is negated, and cj is replaced by −M).

5. Shadow vertex rule. Here B0 is any basis. Given B0, we construct two
vectors c0 and b0 such that B0 is a feasible basis, and also a dual feasible
basis, of the relaxed linear program max cT0 x subject to Ax = b0, x ≥ 0. Now
consider the line segment between these two linear programs, with right-hand
side and objective λb + (1 − λ)b0 and λc + (1 − λ)c0, respectively. Moving
on this line segment from λ = 0, we have both primal-feasible and dual-
feasible (and hence optimal) solutions. At some point, one of the two will
become infeasible (and only one, by non-degeneracy). We find a new basic
solution by exchanging variables as dictated by the violation, and continue.
The potential function is the current λ. When λ = 1 we are at the optimum.

6. Criss-cross rules. A class of pivoting rules outside our framework, whose
first variant appeared in [35], goes from one (possibly infeasible) basis to the
other and convergence to a terminal basis is proved through a combinatorial
argument that does not involve an explicit potential function. However, cer-
tain such rules (such as the criss-cross pivoting rule suggested in [32]) have
been shown ([12]) to possess a monotone potential function, and so they can
be expressed within our framework.

7. Dual pivoting rules. Naturally, any of the primal pivoting rules can work
on the dual.



18 I. Adler, C. Papadimitriou, and A. Rubinstein

8. Primal-dual pivoting rule. This classical algorithm [10] is an important
tool for developing simplex-inspired combinatorial algorithms for a broad
set of network problems, acting as a reduction from weighted to unweighted
combinatorial problems. It does not conform to our framework, because it
involves an inner loop solving a full-fledged linear program.

9. Pivoting rules with state. Finally, also outside our framework are pivoting
rules relying on data other than A, b, c, and B, for example a pivoting rule
relying on statistics of the history of pivoting such as selecting to include
the index which has in the past been selected least frequently.

10. Randomized pivoting rules. There are several proposed randomized piv-
oting rules. The ambition here is that the rule’s expected path length is
polynomial. The simplest one [9] is to pick a random index in J(B). An-
other important class of randomized rules are the random facet rules used
in the proofs of subexponential diameter bounds [16,17,23]. We discuss ran-
domized pivoting rules in Section 5.

A pivoting rule is strongly polynomial if for any linear program the length
of the path is bounded above by a polynomial in m and n. All pivoting rules
within our framework mentioned above are known not to be strongly polynomial,
in that for each one of them there is an explicit family of linear programs with
non-polynomial path length, see [3] for a unifying survey.

Explicit constructions are one way of ruling out pivoting rules. But is there a
complexity-theoretic way? Our interest was sparked by the story of a well-known
pivoting rule for a problem other than linear programming: The Lemke-Howson
algorithm for two-player Nash equilibrium, discovered in the 1960s [22]. The first
explicit construction was obtained decades later [31] and was extremely compli-
cated. More recently, it was established that the problem of finding the Nash
equilibrium discovered by the Lemke-Howson algorithm is PSPACE-complete
[13] (and thus the algorithm cannot be polynomial, as long as P �= PSPACE).
Remarkably, the PSPACE-completeness proof was much simpler than the ex-
plicit construction. We are led to the main definition of this paper:

Definition 2. The path problem associated with a pivoting rule R is the fol-
lowing: Given a linear program and a basis B, does B appear on the path of R
for this linear program?

A pivoting rule is called intractable if its path problem is PSPACE-complete. A
pivoting rule is tractable if its path problem can be solved in strongly polynomial
time.

The reason why this concept may be useful in understanding the complexity of
linear programming is the following straightforward result:

Proposition 1. If an intractable pivoting rule is strongly polynomial, then
PSPACE = P.

But are there examples of these two categories? This is the subject of the next
two sections.
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3 An Intractable Pivoting Rule

This section is devoted to the proof of the following theorem.

Theorem 1. There is an intractable pivoting rule R.

The PSPACE-completeness reduction is based on the Klee-Minty construction,
the original explicit exponential example for a variant of the simplex method
[21], which we recall next.

The d-dimensional Klee-Minty cube is the following linear program:

max x1

0 ≤ xd ≤ 1

εxi+1 ≤ xi ≤ 1− εxi+1, i = 1, . . . , d− 1

xi ≥ 0, i = 1, . . . , d

The feasible region of this linear program is a distorted d-hypercube (it ob-
viously describes precisely the d-hypercube when ε = 0): A polytope whose
vertices are within a radius of ε from those of a hypercube, and are therefore in
one-to-one correspondence with the elements of {0, 1}d. Thus the feasible bases
will also be represented as bit strings in {0, 1}d. The objective function has a
minimum at 0d (a string of d 0’s) and a maximum at 10d−1.

Let us now recall a well-known order on {0, 1}d called Gray code and denoted
Gd. G1 is simply the order (0, 1). Inductively, the Gray code Gi+1 is (0Gi, 1G

R
i ),

by which we mean, the sequence Gi with each bit string preceded by a 0, followed
by the reverse of the order Gi, this time with each bit string preceded by 1. If
0 ≤ k < 2d, we denote by Gd[k] the k-th bit string in Gd.

Gd is a bijection between {0, 1, . . . , 2d−1} and {0, 1}d, and therefore we can de-
fine the successor function Sd : {0, 1}d → {0, 1}d as follows: Sd(x) = Gd[G

−1
d (x)+

1]. The following is straightforward:

Lemma 1. Sd can be computed in polynomial time.

Consider a vertex of the Klee-Minty cube of dimension d — equivalently, a bit
string (b1, . . . , bd) ∈ {0, 1}d. This vertex has d adjacent vertices, each obtained by
flipping one of the bi’s. We call the i-th coordinate increasing at this vertex if the
objective increases by flipping bi. The following are known important properties
of the Klee-Minty cube:

Lemma 2. (a) The i-th coordinate is increasing if and only if
∑i

j=1 bj is even.
(b) Therefore the sequence of the vertices sorted in increasing objective is pre-

cisely Gd.

We next describe the starting PSPACE-complete problem (see e.g., [25] for def-
initions regarding PSPACE and Boolean circuits).Suppose that we are given a
Boolean circuit C with n input bits and n output bits, such that for all inputs x,
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x and C(x) always differ in one bit.The path of C is the sequence (xi, i = 0, . . .),
where x0 = 0n and xi+1 = C(xi). Consider now this problem: C-path: Given
C and xC ∈ {0, 1}n, is xC on the path of C? It is obviously in PSPACE (one
need only try the first 2n bit strings in the path of C, reusing space; if xC is
not reached by that time, we are in a loop and xC will never be reached). The
following is straightforward:

Lemma 3. There is a family of circuits C of size polynomial in the number of
inputs and of polynomial complexity such that C-path is PSPACE-complete.

The reduction proceeds as follows: Given an input xC ∈ {0, 1}n, we shall con-
struct a linear program and a basis B̂ such that B̂ lies on the path of rule R (yet
to be described) if and only if xC lies on the path of C. The linear program is
the Klee-Minty cube of dimension 2n. The last (least significant) n coordinates
of the cube will serve to encode the current bit string on the path of C, while
the first n coordinates will maintain a counter in Gray code. We denote the
last string of the Gray code, 10n−1, by xG. The sought basis B̂ is taken to be
B̂ = xGxC .

Next we describe the pivoting rule R. In fact, it suffices to define R only on
Klee-Minty cubes of even dimension — on any other linear program, R can be
any pivoting rule, say steepest descent. First, the initial basis of R is B0 = 02n.
Second, here is the description of how R modifies the current basis B (which,
since the linear program is the Klee-Minty cube of dimension 2n is represented
by a bit string of length 2n):

Pivoting Rule R on basis B:

1. If B = 102n−1, this is a terminal basis and we are done. Otherwise, let
B = (B1, B2), each a string of length n.

2. If B2 = xC then R(B) = (Sn(B1), B2).
3. Otherwise, if B1 = xG then R(B) = (B1, Sn(B2)).
4. Otherwise, construct the circuit with n inputs in the family C.
5. Compute C(B2); suppose that B2 and C(B2) differ in the i-th place (by

assumption, they only differ in one).
6. If the n+ i-th coordinate of B is increasing, then R(B) = (B1, C(B2)).
7. Otherwise, R(B) = (Sn(B1), B2).

To explain the workings of R, the first n bits are a counter, and the last n
bits encode the current bit string on the path of C from 0n. If either the first n
bits are xG or the last n bits are xC , then R just counts up in the other counter
(Steps 2 and 3). Otherwise, (Steps 4 and 5), C(B2) is computed. The intention
now is to update the last n bits to be C(B2). If the flipped coordinate happens
to be increasing in B, then this is done immediately (Step 6). But if it is not,
then we do the following maneuver: We increment the B1 counter by flipping
the bit in B1 that leads to the next string in the Gray code (Step 7). This way,
in the next invocation of the pivot rule the flipped bit will be increasing (by
Lemma 2(a)).
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To show that R is a pivoting rule, it remains to show that it is strongly
polynomial, and that there is a potential function φR such that the pivot step of
R is always monotonically increasing. The former is immediate. For the latter,
φR(B) is the value of the objective x1 in the basic feasible solution represented
by B. It is easy to see by inspection of Steps 2, 3, 6, and 7 that in each of these
four cases φR(R(B)) > φR(B).

Finally, we must show that B̂ is on the path of R if and only if xC is on the
path of C. If xC is on the path of C then eventually B2 will be xC , after at most
2n− 1 steps, and from then on Step 2 will be executed to increment the counter
B1. This counter must go through B̂ just before arriving at the terminal basis.
If xC is not on the path of C then the path of C will cycle until eventually Step
7 will be executed for a 2n-th time (it can be easily checked that the cycling of
the path of C does not avoid Step 7), at which point B1 = xG. From then on B̂
cannot be reached. This completes the proof of Theorem 1. 
�

4 A Tractable Pivoting Rule

The pivoting rule we proved intractable is not a natural one. We conjecture
that essentially all the pivoting rules described in the last section are intractable
(even though proving such a result seems to us challenging). However, here we
point out that there is a natural, classical pivoting rule that is tractable:

Theorem 2. The shadow vertex pivoting rule is tractable.

Proof. Given a linear program (A, b, c), let B0 be the initial basis, and let b0
and c0 be the corresponding initial values of the primal and dual right-hand-side
vectors. Given a basis B, we claim that the following is a necessary and sufficient
condition that B lies on the path of shadow vertex:

There is a real number λ ∈ [0, 1] such that (1 − λ)B−1b0 + λB−1b ≥ 0
and (1 − λ)(cT0 − (c0)

T
BB

−1A) + λ(cT − cTBB
−1A) ≤ 0.

In proof, any basis on the path has a non-empty interval of λ’s for which
these inequalities hold. And if for a given basis B this condition is satisfied,
then the inequalities are satisfied for a subinterval of [0, 1]. If we assume, for
contradiction, that B is not on the path of shadow vertex, then we can run the
shadow vertex pivoting rule forward and backward from B, and eventually arrive
from a different path to the beginning and end, contradicting non-degeneracy.
As the condition is a system of 2n linear inequalities with one unknown, this
completes the proof. 
�

There is an interesting story here, connecting tractability of pivoting rules and
the saga of the average-case analysis of the simplex method. During the early
1980s, and in the wake of the ellipsoid algorithm, average analysis of the simplex
method (under some reasonable distribution of linear programs) was an impor-
tant and timely open question, and indeed there was a flurry of work on that
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problem [5,28,2,1,33]. It was noticed early by researchers working on this problem
that one obstacle in analyzing the average complexity of various versions of the
simplex method was a complete inability to predict the path of pivoting rules —
that is, the apparent intractability of the path problem we are studying here. And
this makes sense: If one cannot characterize well the circumstances under which
a vertex will appear on the path, it is difficult to deduce the average performance
of the algorithm by adding expectations over all vertices. Once Borgwardt [5]
and Smale [28] had the idea of using the shadow vertex pivoting rule in this
context, further progress ensued [2,1,33].

5 Randomized Pivoting Rules

Many pivoting rules are explicitly randomized, aiming at good expected perfor-
mance. Our definition can easily be extended to include randomization: In the
definition of a pivoting rule, R(B) is not a single adjacent basis, but a distri-
bution on the set of adjacent bases (naturally, this set is polynomially small).
Any basis B′ in the support of R(B) must satisfy φR(B

′) > φR(B). Obviously,
deterministic pivoting rules are a special case, and therefore Theorems 1 and 2
trivially apply here too.

What is slightly nontrivial is to define what “intractable” means in this case.
That is, what is the “path problem” for a randomized pivoting rule R? We
believe that the right answer is the following “promise” problem:

Definition 3. Fix a polynomial p and a function f : Z2 → [0, 1− 1
p(m,n) ]. The

(f, p)-path problem associated with a randomized pivoting rule R is the following:
Given an m×n linear program and a feasible basis B, distinguish between these
two cases: B appears in the execution of R with probability (a) at most f(m,n);
and (b) at least f(m,n) + 1

p(m,n) .

The analog of Proposition 1 is now:

Proposition 2. If a randomized pivoting rule R is strongly polynomial in ex-
pectation, then the (f, p)-path problem of rule R is in BPP, for all f and p.

Recall that BPP is the class of all problems that can be solved by randomized
algorithms, possibly with a small probability or error, see Chapter 10 in [25].

6 Discussion

Pivoting rules constitute a rich and interesting class of algorithmic objects, and
here we focused on one important attribute: whether or not the path problem
of a pivoting rule is tractable. We have pointed out that there is an intractable
pivoting rule, whereas a well-known classical pivoting rule is tractable. The most
important problem we are leaving open is to exhibit a natural intractable pivot-
ing rule. For example, establishing the following would be an important advance:
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Conjecture 3. Steepest descent is intractable.

This looks quite challenging. Obviously, in such a proof much more will need to
be encoded in the linear program (which, in the present proof, was of logarithmic
complexity). The ultimate goal is a generic intractability proof that works for
a large class of pivoting rules, thus delimiting the possibilities for a strongly
polynomial algorithm. For example: Are all primal pivoting rules (the ones using
only feasible bases) intractable?

There are pivoting rules beyond linear programming, usually associated with
the linear complementarity problem (LCP, see [7]). They generally do not have a
potential function, and termination is proved (when it is proved) by combinato-
rial arguments. Lemke’s algorithm is a well-known general pivoting rule, known
to terminate with a solution (or with a certification that no solution exists) in
several special cases. It is known to be intractable in general [13], but it can be
shown to be tractable when the matrix is positive definite. We conjecture that
it is intractable when the matrix is positive semidefinite.
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Abstract. We investigate the bicriteria global minimum cut problem
where each edge is evaluated by two nonnegative cost functions. The
parametric complexity of such a problem is the number of linear seg-
ments in the parametric curve when we take all convex combinations of
the criteria. We prove that the parametric complexity of the global mini-
mum cut problem is O(|V |3). As a consequence, we show that the number
of non-dominated points is O(|V |7) and give the first strongly polyno-
mial time algorithm to compute these points. These results improve on
significantly the super-polynomial bound on the parametric complexity
given by Mulmuley [11], and the pseudo-polynomial time algorithm of
Armon and Zwick [1] to solve this bicriteria problem. We extend some
of these results to arbitrary cost functions and more than two criteria,
and to global minimum cuts in hypergraphs.

1 Introduction

We consider the multicriteria version of the global minimum cut problem in
undirected graphs. This problem is extensively studied in combinatorial opti-
mization since many practical problems in, e.g., communications and electrical
networks, contain it as a subproblem [1]. Let G = (V,E) be an undirected graph,
and c1, . . . , ck : E → R+ be k nonnegative cost functions, or criteria, defined
on its edges. A cut C of G is a subset C ⊆ V such that ∅ �= C �= V , and it
contains the set of edges δ(C) with exactly one end in C. The cost of cut C
w.r.t. criterion j is cj(C) ≡ cj(δ(C)). We would like a cut that simultaneously
minimizes all criteria, but such a solution usually does not exist.

Therefore, we focus on Pareto optimal solutions, i.e., solutions that cannot be
improved upon in any criterion without degrading another criterion. Each cut C
is associated with its criteria vector (or point) y(C) = (c1(C), . . . , ck(C)) in the
criteria space Rk. Let Y = {y(C) : ∅ �= C ⊂ V } be the set of all criteria points
associated with cuts (note that different cuts might give rise to the same criteria
point). Given points y(C), y(C′) ∈ Y , y(C′) dominates y(C) if y(C′)i � y(C)i,
for all i = 1, . . . , k, and y(C′)j < y(C)j for at least one j. If there exists no
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y(C′) ∈ Y that dominates y(C), then y(C) is non-dominated. Let YND be the
set of non-dominated points in Y .

A vector of multipliers μ ∈ Rk forms a convex combination if μ ≥ 0 and∑k
i=1 μi = 1; the set of all such multipliers is the simplex Sk. Given y(C′) ∈ YND,

if there exists μ ∈ Sk such that C′ ∈ argminC{
∑k

i=1 μic
i(C) : ∅ �= C ⊂ V } then

y(C ′) is called a Supported Non-Dominated (SND) point. The non-dominated
points that are not SND points are called Unsupported Non-Dominated (UND)
points. By “solving” a multicriteria discrete optimization problem we mean gen-
erating all SND and UND points.

The computation of SND points is related to the field of parametric optimiza-
tion. The function f : Sk → R defined by f(μ) = minC{

∑k
i=1 μic

i(C) : ∅ �= C ⊂
V } is piecewise linear and concave; the facets of its graph correspond to SND
points [3]. The parametric complexity of a multicriteria problem is the maximum
number of facets. Our main interest here is to study the parametric complexity
of global minimum cut, mainly for the case where k = 2.

A natural subproblem of parametric minimum cut is solving single-criterion
(ordinary) minimum cut, e.g., for some fixed value of μ. The fastest deterministic
algorithms for this problem run in O(|E| · |V | + |V |2 log |V |) time (Nagamochi
and Ibaraki [13] and Stoer and Wagner [19]). The fastest randomized algorithm
runs in O(|E| log3 |V |) time (Karger [7]). These algorithms are faster than mini-
mum s–t-cut algorithms that are based on network flows. See [14] for a detailed
treatment of graph connectivity problems.

The multicriteria versions of several combinatorial optimization problems has
been extensively studied (see Ehrgott [3]). These problems are often intractable
in the sense that the cardinality of the set of (supported) non-dominated points
grows exponentially in the input size. Furthermore, it is often hard even to verify
if a given point is non-dominated. Multicriteria global minimum cut is an excep-
tion to the above intractability results. Indeed, Armon and Zwick [1] show that
the decision version of the global multicriteria problem can be solved in polyno-
mial time. The proof relies on the fact that the single-criterion global minimum
cut problem has at most a strongly polynomial number of near-optimal solu-
tions. More precisely, given α � 1, a cut is called α-approximate if its cost is less
than α times the minimum. Karger and Stein [8] show that there are O(|V |2α)
α-approximate cuts, and they give a randomized algorithm for finding them
in Õ(|V |2α) time. Nagamochi et al. [16] give a deterministic algorithm to find
them in O(|E||V |2α) time, and they prove that there are O(|V |2) 4

3 -approximate
cuts. Henzinger and Williamson [4] improve on this result by proving that there
are O(|V |2) 3

2 -approximate cuts; they also show that 3
2 is the largest possible

approximation factor α for which there exist O(|V |2) α-approximate cuts.
For multicriteria global minimum cut, Armon and Zwick [1] used the result of

[8] to give a pseudo-polynomial time algorithm to compute all the non-dominated
points. Carstensen [2] shows that the parametric complexity of the s–t minimum
cut problem is exponential for one parameter. Mulmuley [11] gives a simpler
proof of this result, and studies the parametric complexity of the global minimum
cut problem for k = 2. He considers the case where i) cost functions c1 and
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c2 may be negative, ii) the parametric edge costs are positive and iii) the bit
size of the values of c1 and c2 are at most a polynomial in |V |. And he shows
in Theorem 3.10 that the parametric complexity is polynomial in this case.
However, if iii) is relaxed, the proof of his theorem implies that the parametric
complexity is O(|V |19 log |V | logCmax), where Cmax is the maximum cost over
all edges. This is surprising since the parametric function f is the minimum of
the parametric functions of O(|V |) minimum s–t cut problems (by fixing s and
letting t vary over the other nodes), each of which could have an exponential
number of breakpoints.

In this paper we give a much smaller, strongly polynomial upper bound on the
parametric complexity of minimum cut, which leads to a strongly polynomial
time algorithm for parametric global minimum cut, and hence a strongly polyno-
mial time algorithm for the multicriteria version. In Section 2 we study in detail
the bicriteria case, k = 2. In Section 3 we consider extensions, including arbitrary
cost functions and more than two criteria, and global cuts in hypergraphs.

2 Complexity and Algorithms for k = 2

2.1 Parametric Complexity of the Global Min Cut Problem

We are given a graph G = (V,E), and two nonnegative cost functions c1, c2 :
E → R+. For μ ∈ [0, 1], define the parametric cost function cμ = μc1+(1−μ)c2.
Let S(G) denote the set of cuts which are optimal solutions for some μ ∈ [0, 1].
Our main result is a O(|V |3) upper bound on S(G). For every cut X ∈ S(G),
let I(G,X) denote the largest sub-interval of [0, 1] such that X is optimal for all
μ ∈ I(G,X).

Theorem 1 Assume that μc1(X) + (1 − μ)c2(X) > 0 for every X ∈ S(G) and
μ ∈ I(G,X). Then the parametric complexity of the global min cut problem is
O(|V |3).

The proof of Theorem 1 is non-constructive and relies on the following def-
initions. Let H = (W,F ) denote a graph (which may be a subgraph of G);
c1, c2 : F → R+ two nonnegative edge cost functions; and X a cut in H .

If lines μc1(X) + (1 − μ)c2(X) and μc1(F )
|W | + (1−μ)c2(F )

|W | intersect in [0, 1], let

INT (H,X) ∈ [0, 1] denote their intersection point. For optimal X ∈ S(H), let
I ′(H,X) ⊆ I(H,X) be a maximal subinterval satisfying

μc1(F )

|W | +
(1− μ)c2(F )

|W | � μc1(X) + (1− μ)c2(X), for every μ ∈ I ′(H,X). (1)

Note that I ′(H,X) might be empty. Let S�(H) denote the set of optimal solu-
tions satisfying (1); S�(H) might also be empty.
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The set of solutions S(H) \ S�(H) can be partitioned into three subsets:

1. S<1 (H) = {X ∈ S(H) \ S�(H): I(H,X) ⊆ [0, INT(H,X)]},
2. S<2 (H) = {X ∈ S(H) \ S�(H): I(H,X) ⊆ [INT(H,X), 1]},
3. S<3 (H) = {X ∈ S(H) \ S�(H): function μc1(X) + (1 − μ)c2(X) is below

μc1(F )
|W | + (1−μ)c2(F )

|W | in [0, 1]}.

Figure 1 depicts an example of function f having six facets associated to

optimal solutions S(H) = {X1, . . . , X6}. Parametric function μc1(F )
|W | + (1−μ)c2(F )

|W |
intersects the facets of f corresponding to X2 and X4. For X4, for instance, we
have I(H,X4) = [μ1, μ3], INT (H,X4) = μ2, and I ′(H,X4) = [μ1, μ2]. However,
for X3 we have I(H,X3) = I ′(H,X3). Here we have, S�(H) = {X2, X3, X4},
S<1 (H) = {X1}, S<2 (H) = {X5, X6} and S<3 (H) = ∅.

μ

μc1 + (1 − μ)c2

X1

X2

X3
X4

X5

X6

0 1μ1 μ2 μ3

μc1(F )
|W | + (1−μ)c2(F )

|W |

Fig. 1. Functions f(μ) and μc1(F )
|W | + (1−μ)c2(F )

|W |

The proof of Theorem 1 uses the following lemma, whose proof is omitted.

Lemma 1 |S�(H)| = O(|W |2).
Proof. (of Theorem 1)

It suffices by Lemma 1 to give an upper bound on the cardinality of S<1 (G)∪
S<2 (G)∪S<3 (G). We focus on S0 = S<2 (G)∪S<3 (G) and show that its cardinality
is O(|V 3|). Set S<1 (G) can be handled similarly. Assume that we have an oracle
O that computes S(H) for any graph H .

In what follows we proceed in two steps in order to show that |S0| � O(|V |3).
We will show that there exist two subsets S and S ′ such that S0 ⊆ S ∪ S ′, and
O(|S|) � |V |3 and O(|S ′|) � |V |. This is a consequence of Algorithms 1 and 2
given below.

Figure 2 depicts the behavior of Algorithm 1. In each iteration r of this al-
gorithm, an edge with large c1-cost is contracted. Let Gr = (Vr, Er) denote the
resulting graph obtained at iteration r. Note that the loops that arise by the
contractions are kept in Gr. The idea is to have |Er| = |Er−1|− 1, and to ensure
that c1(Er) is not too small in comparison with c1(Er−1).
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Consider the first iteration of the repeat loop. We will show next that once
an edge is contracted in Step 4, S0 is partitioned into S�(G1), S<1 (G1) and
S<2 (G1) ∪ S<3 (G1). By Lemma 1, we know that |S�(G1)| � O(|V1|2). We will
show that the cardinality of S<1 (G1) ∩ S0 is also O(|V1|2).

Lemma 1

Lemma 1

Lemma 1

Claim 1

Claim 1

Claim 1

G0 = G

G1

Gr∗−1

Gr∗

S0 = S<
2 (G0) ∪ S<

3 (G0)

S1 = (S<
2 (G1) ∪ S<

3 (G1)) ∩ S0S�(G1) ∩ S0

O(|V1|2)
S<
1 (G1) ∩ S0

O(|V1|2)

S2 = (S<
2 (G2) ∪ S<

3 (G2)) ∩ S1S�(G2) ∩ S1

O(|V2|2)
S<
1 (G2) ∩ S1

O(|V2|2)

Sr∗−1 = (S<
2 (Gr∗−1) ∪ S<

3 (Gr∗−1)) ∩ Sr∗−2

S�(Gr∗ ) ∩ Sr∗−1

O(|Vr∗ |2)
S′ = (S<

2 (Gr∗ ) ∪ S<
3 (Gr∗ )) ∩ Sr∗−1 S<

1 (Gr∗ ) ∩ Sr∗−1

O(|Vr∗ |2)

G2

Fig. 2. The behavior of Algorithm 1

An upper bound on the cardinality of the remaining set S1 = (S<2 (G1) ∪
S<3 (G1)) ∩ S0 will be computed recursively. The algorithm keeps contracting
edges until either the residual graph only contains two nodes or the cost c1(e)

of every non-loop edge e is not in
[
c1(Er)
|Vr | , c

1(Er)
2

]
. Let r∗ denote the number

of iterations of Algorithm 1. The algorithm returns the cardinality of the set
S = (S0 ∩ (S�(G1) ∪ S<1 (G1))) ∪ · · · ∪ (Sr∗−1 ∩ (S�(Gr∗) ∪ S<1 (Gr∗))). If the
last graph Gr∗ contains more than two nodes, then additional work needs to
be done in order to give an upper bound on the cardinality of the set S ′ =
(S<2 (Gr∗) ∪ S<3 (Gr∗)) ∩ Sr∗−1.

The following claim establishes a relation between S0 and intermediate sets
S(Gr), S<1 (Gr), S<2 (Gr) and S<3 (Gr) generated by the algorithm (proof omitted).

Claim 1. For iteration r, we have

S0 ⊆ (Sr−1 ∩ (S<2 (Gr) ∪ S<3 (Gr))) ∪ (∪rl=1(Sl−1 ∩ (S�(Gl) ∪ S<1 (Gl)))), (2)

and

|S0| � |Sr−1 ∩ (S<2 (Gr) ∪ S<3 (Gr))|+O(r|V |2). (3)
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Algorithm 1.

1: let E0 ← E, V0 ← V , G0 ← G, r ← 0, S ← ∅, S0 ← S<
2 (G0) ∪ S<

3 (G0), test ←
true

2: repeat

3: if there exists a non-loop edge e = (u, v) ∈ Er such that c1(Er)
|Vr | � c1(e) � c1(Er)

2

then
4: contract e
5: r ← r + 1
6: denote by Gr = (Vr, Er) the resulting graph such that Vr = (Vr−1 \ {u, v}) ∪

{w} where w is the node obtained by merging u and v, and Er = Er−1 \ {e}
(the loops are kept)

7: apply oracle O for Gr and compute S(Gr)
8: denote by Sr = (S<

2 (Gr) ∪ S<
3 (Gr)) ∩ Sr−1

9: S ← S
⋃
((S�(Gr) ∪ S<

1 (Gr)) ∩ Sr−1)
10: else
11: test ← false
12: end if
13: until |Vr| = 2 or test = false
14: Output: |S|

Observe that, in general, the bound given in (3) is not tight since sets Sr−1 ∩
(S�(Gr) ∪ S<1 (Gr)) might not be disjoint.

At the end of Algorithm 1, three cases may happen. First, if Gr∗ contains
only two nodes, then by Claim 1, we have |S0| � |S| + 1 � O(|V |3). Next,
if c1(e) < c1(Er∗ )

|Vr∗ | for all non-loop edge e ∈ Er∗ , then the problem reduces to

computing an upper bound for |S ′|. Here we can show that |S ′| � |Vr∗ |
2 . Finally,

if both previous cases do not hold, then there exist a non-loop edge ē ∈ Er∗ such

that c1(ē) > c1(Er∗)
2 and c1(e) < c1(Er∗ )

|Vr∗ | for all non-loop edges e ∈ Er∗ \ {ē}.
This case can be handled in a similar way as the previous one. Therefore, we
only focus in the rest of the proof on the second case.

Algorithm 2. (Gr∗)

1: E′
0 ← Er∗ , V

′
0 ← Vr∗ , G

′
0 ← Gr∗ , r ← 0,

2: while |V ′
r | > 2 do

3: choose an edge e = (u, v) ∈ E′
r with probability c1(e)

c1(E′
r)

4: if e is not a loop then
5: contract e and remove it from the residual graph
6: r ← r + 1
7: denote by G′

r = (V ′
r , E

′
r) the graph such that V ′

r = (V ′
r−1 \{u, v})∪{w} where

w is a node obtained from merging u and v, and E′
r = E′

r−1 \ {e} (the loops
are kept)

8: end if
9: end while
10: return the unique cut
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For this purpose, it is sufficient to show that |S<2 (Gr∗)∪S<3 (Gr∗)| � |Vr∗ |
2 . This

is done using Algorithm 2 based on probabilistic arguments similar to Karger’s
algorithm [6].

Algorithm 2 has as input graphGr∗ provided by Algorithm 1. In each iteration
r, the current graph is denoted by G′

r = (V ′
r , E

′
r) and the algorithm randomly

chooses an edge e with probability c1(e)
c1(E′

r)
. If e is a non-loop edge, then it is

contracted. This process continues until the last graph only contains two nodes.
Then the algorithm returns the unique cut in this graph. By hypothesis, μc1(X)+
(1 − μ)c2(X) > 0 for every X ∈ S(G) and μ ∈ I(G,X). Thus c1(E′

r) > 0
for r � Vr∗−2 and the probability of edge selection is always defined. As in
Algorithm 1, loops resulting from contractions are not removed from residual
graphs. However, by contrast to [6,7], Algorithm 2 has a pseudo-polynomial
expected running time.

Claim 2. Algorithm 2 has a pseudo-polynomial expected running time.

Proof. Given an integer r ∈ {1, . . . , |Vr∗ | − 2}, let Nr denote a random variable
defining the number of iterations of the while loop separating two consecutive
contraction operations, say the rth and r + 1st, and let N be a random variable
defining the total number of iterations of the algorithm. We have E(N) = |Vr∗ |−
2 +

∑|Vr∗ |−2
l=1 E(Nl). Let Ēr denote the set of loops in the current graph G′

r.

Nr is a geometric random variable with parameter pr =

∑
e∈E′

r\Ēr
c1(e)

c1(E′
r)

. Thus

E(Nr) =
1
pr

� c1(E′
r) � c1(E) and E(N) � (|Vr∗ | − 2)(1 + c1(E)). �

Claim 3. Algorithm 2 returns any solution in S<2 (Gr∗) ∪ S<3 (Gr∗) with proba-
bility at least 2

|Vr∗ | .

Proof. Consider any solution X ∈ S<2 (Gr∗) ∪ S<3 (Gr∗). Algorithm 2 returns X
only if none of its edges has been contracted. Therefore, no error occurs if a
loop is selected. In the rest of the proof, we only focus on iterations of the while
loop where a non-loop edge is chosen. Suppose that r edges not in X have been
contracted through the algorithm. Since loops are not removed, |E′

r| = |E′
r−1|−1.

The probability that an edge from X is selected in the r + 1th contraction

operation is c1(X)
c1(E′

r)
� c1(E′

0)
|V ′

0 |c1(E′
r)
. Since c1(e) <

c1(E′
0)

|V ′
0 |

for every non-loop edge

e ∈ E′
0, it follows that c

1(E′
r) � c1(E′

0)(1 − r
|V ′

0 |
). Therefore, the probability for

error is at most 1
|V ′

0 |−r , and the probability that no edge of X is chosen after the

r+1th contraction operation is at least
|V ′

0 |−r−1
|V ′

0 |−r . Hence, the probability that no

edge from X is never chosen (after |V ′
0 | − 2 contraction operations) is at least

|V ′
0 |−1
|V ′

0 |
· |V

′
0 |−2

|V ′
0 |−1 ·

|V ′
0 |−3

|V ′
0 |−2 · · ·

2
3 = 2

|V ′
0 |

= 2
|Vr∗ | . �

Since the probability that a cut in S<2 (Gr∗)∪S<3 (Gr∗) survives all the contraction
operations is at least 2

|Vr∗ | , and that no two cuts can survive simultaneously, it

follows that |S<2 (Gr∗) ∪ S<3 (Gr∗)| � |Vr∗ |
2 . Therefore, |S0| � O(|V |3).

Using a similar argument, we can also show that |S<1 (G)| is O(|V |3), and the
proof is complete. 
�
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As a consequence of Theorem 1, we will show that the number of non-
dominated points is also strongly polynomial.

Corollary 1 The number of SND and UND points of the global minimum cut
problem are O(|V |5) and O(|V |7), respectively.

Proof. As it is proved in [6,8], the number of optimal solutions of the global
minimum cut problem is O(|V |2). Thus, the bound on the number of SND points
follows from combining this result and Theorem 1.

Now consider two SND points X1, X2. Suppose that they are optimal for some
μ = μ1. Let X3 be a UND point dominated by a convex combination of X1 and
X2. W.l.o.g., suppose that c1(X1) < c1(X2) and c2(X2) < c2(X1). We then have
c1(X3) < c1(X2) and c2(X3) < c2(X1). Therefore,

μ1c
1(X3) + (1 − μ1)c

2(X3) < μ1c
1(X2) + (1− μ1)c

2(X1)

� μ1c
1(X2) + (1− μ1)c

2(X2) + μ1c
1(X1)+

(1− μ1)c
2(X1).

Thus, X3 is a 2-approximate solution for μ = μ1. The bound on the number
of UND points follows from [6] and Theorem 1. 
�

2.2 Efficient Algorithms for f and the Non-dominated Points Set

We are in the single-parameter case (k = 2; the full paper shows how to ex-
tend these algorithms for k > 2), and we want to compute f for all μ ∈ [0, 1].
Our strongly polynomial algorithm is based on the Discrete Newton Algorithm
[10,18]. For a fixed μ1 ∈ [0, 1], using a cactus representation of minimum cuts [15]
we compute optimal cuts X∗

+(μ1) and X∗
−(μ1) at μ1 such that X∗

+(μ1) (X
∗
−(μ1))

is the optimal cut X whose line μ1c
1(X)+ (1−μ1)c

2(X) has the largest (small-
est) slope among all optimal cuts at μ1. Let Steepest

+(μ1) and Steepest−(μ1) be
the lines associated with X∗

+(μ1) and X∗
−(μ1). Consider Algorithm 3.

Algorithm 3. Discrete Newton method

1: L ← {[0, 1]}, B ← ∅
2: while L �= ∅ do
3: choose an interval [μ1, μ2] ∈ L and compute Steepest−(μ1) and Steepest+(μ2)
4: compute μ3 ∈ [μ1, μ2] corresponding to the intersection of Steepest−(μ1) and

Steepest+(μ2)
5: if minC{μ3c

1(C) + (1 − μ3)c
2(C) : ∅ �= C �= V } = μ3c

1(X∗
−(μ1)) + (1 −

μ3)c
2(X∗

−(μ1)) = μ3c
1(X∗

+(μ2)) + (1− μ3)c
2(X∗

+(μ2)) then
6: L ← L \ {[μ1, μ2]} and B ← B ∪ {μ3}
7: else
8: L ← L \ {[μ1, μ2]} ∪ {[μ1, μ3] , [μ3, μ2]}
9: end if
10: end while
11: Return B
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Algorithm 3 manages a list L of unexplored intervals containing at least
one breakpoint and a list B of breakpoints. In each iteration the algorithm
chooses an interval [μ1, μ2] ∈ L and computes μ3 as the intersection of the
lines Steepest−(μ1) and Steepest+(μ2). It is clear that these lines are part of the
function f . If the condition in Step 5 holds, then μ3 is the unique breakpoint in
[μ1, μ2] and so we can fathom [μ1, μ2] and add μ3 to B. Otherwise, [μ1, μ3] and
[μ3, μ2], each contains at least one breakpoint, and [μ1, μ2] is replaced by them.
Using this, we obtain the following.

Proposition 1 Algorithm 3 has O(|E||V |4 + |V |5 log |V |) running time.

Proof. For any facet of function f , Algorithm 3 computes a global minimum cut
and finds a cactus representation for at most three values: the two extremities and
an intermediate value. Therefore, the total number of iterations is at most twice
the number of facets. A cactus representation can be obtained in time O(|E||V |+
|V |2 log |V |) [15] and a global minimum cut can be computed in the same time
complexity [13]. Therefore, the time complexity follows by Theorem 1. 
�

Since the time required to compute UND points dominates that of SND points,
we have:

Proposition 2 The time required to compute all the non-dominated points of
the global minimum cut problem is O(|E||V |7).

Proof. Computing all the 2-approximate solutions can be performed in time
O(|E||V |4) [16]. The result follows by combining this and Theorem 1. 
�

3 Extensions

3.1 Parametric Complexity with More Than Two Criteria
and Arbitrary Cost Functions

First, suppose we are given a graph G = (V,E), and two cost functions c1, c2 :
E → R. Here we allow some cost components to be negative. For μ ∈ R define the
parametric edge costs fμ(e) = μc1e+ c2e. We suppose that there exists an interval
[α, β] where all fμ(e) are positive. Here Lemma 1 and Step 3 of Algorithm 2 are
no longer applicable and thus, Theorem 1 does hold in this case. Using ideas
in [11] and avoiding unnecessary subdivisions of the interval [α, β], we obtain
a strongly polynomial bound. The next result is also non-constructive (proof
omitted).

Theorem 2 Assume that the parametric edge costs fμ(e) are positive for all
μ ∈ [α, β]. The parametric complexity of the global min cut problem is O(|E|2|V |2
log |V |).

It is natural to wonder if Theorem 3 could be extended to a constant number
of parameters at least equal to two. More precisely, we are given k � 3 cost
functions c1, . . . , ck : E → R. For μ = (μ1, μ2) ∈ Rk−1, define the parametric
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edge costs fμ(e) =
∑k−1

i=1 μic
i
e+ cke for e ∈ E. Assume that there exists an hyper-

rectangle I = [α1, β1] × · · · × [αk−1, βk−1] such that fμ(e) are positive for all
μ ∈ I and e ∈ E. The next result shows that the parametric complexity is again
strongly polynomial in this case (proof omitted).

Theorem 3 Assume that the parametric edge costs fμ(e) are positive for all μ ∈
I. Then the parametric complexity of the global min cut problem is O(|E|k|V |2
logk−1 |V |).

3.2 Hypergraphs

We consider finite hypergraphs H = (V,E), where V is a finite set of nodes and
each edge e ∈ E is a subset of V . Hypergraph H is rank -ρ if every edge in H
has cardinality at most ρ (e.g., a graph is a rank-ρ hypergraph for every ρ ≥ 2).

A cut C in H = (V,E) is any nontrivial node subset, i.e., satisfying ∅ �= C ⊂
V . Let Δ(C) = {e ∈ E : e ∩ C �= ∅ �= e \ C} denote the set of edges crossed by
the cut C. Given nonnegative edge costs c(e) ≥ 0 (e ∈ E), let c(F ) =

∑
e∈F c(e)

be the total cost of all edges in subset F ⊆ E, and let c(C) ≡ c(Δ(C)) denote
the total cost of all the edges crossed by the cut C ⊂ V . Further define c(H) =
minC{c(C) : ∅ �= C ⊂ V } as the minimum cost of a cut in H . There exist
polynomial time algorithms for finding a minimum cost cut in a hypergraph,
see [9,12,17].

The technique used to derive an upper bound on the parametric complexity
can be generalized to hypergraphs. In order to extend Lemma 1 to hypergraphs,
we now bound the number of approximate cuts in hypergraphs.

Theorem 4 For any fixed integer ρ ≥ 2 and scalar α ≥ 1, and rank-ρ hyper-
graph H = (V,E) with nonnegative edge costs c and positive minimum cut cost,

the number of cuts C with cost c(C) ≤ α c(H) is O
(
|V |B(ρ,α)

)
where

B(ρ, α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if ρ ≤ 3 and α < 3

2 ;

2α if ρ ≤ 3 and α ≥ 3
2 ;

ρ
2 + 2

3 if ρ ≥ 4 and α < 3
2 ;(

ρ
2 + 2

3

)
α otherwise, i.e., if ρ ≥ 4 and α ≥ 3

2 .

Proof. W.l.o.g., assume that every edge e ∈ E has cardinality |e| ≥ 2 (since edges
e with |e| ≤ 1 are not crossed by any cut). We prove the result by approximating
the minimum cut problem in hypergraph H = (V,E) with edge costs c by the
minimum cut problem in the complete graph K(V ) = (V,EK(V )) with edge
costs c′, whereby each edge e ∈ E is replaced by a clique on the nodes in e,
where each edge in the clique has cost ce/(|e| − 1), i.e., by letting

c′i,j =
∑

e∈E:{i,j}⊆e

ce
|e| − 1

for all {i, j} ∈ EK(V ).

In particular, every cardinality-2 edge e = {i, j} ∈ E contributes its full cost ce
to c′i,j , and thus to the cost c′(C) of every cut C in K(V ) that crosses it. Note
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also that every cardinality-3 edge e ∈ E that is crossed by cut C has two of its
nodes on one side of the cut and the other node on the other side, and thus also
contributes its exact cost 2(ce/2) = ce to c′(C). Therefore (as it is well known,
e.g., Ihler et al. [5]), when ρ ≤ 3 this transformation is exact, i.e., c′(C) = c(C)
for every cut C. The first two cases in the definition of B(ρ, α) then follow from
Henzinger and Williamson [4] and Karger and Stein [8], respectively.

Now assume that ρ ≥ 4. A cut C that crosses an edge e ∈ E with cardinality
|e| ≥ 4 crosses at least |e| − 1 edges in the clique K(e) (when exactly one node
of e is on one side of the cut), and at most |e|2/4 such edges (when half the
nodes of e are on either side). Thus every edge e ∈ E crossed by C contributes

at least ce and at most (|e|2/4) ce
|e|−1 ≤

ρ2/4
ρ−1 ce to the cost c′(C). Therefore,

c(C) ≤ c′(C) ≤ ρ2/4

ρ− 1
c(C) =

(
ρ

4
+

1

4

(
1 +

1

ρ− 1

))
c(C) ≤ β(ρ) c(C),

where β(ρ) = ρ
4 + 1

3 and the last inequality follows from ρ ≥ 4. Let C′ denote
a minimum cut for (K(V ), c′). If C is an α-optimal cut for (H, c), i.e., c(C) ≤
α c(H), we have

c′(C) ≤ β(ρ) c(C) ≤ β(ρ)α c(H) ≤ β(ρ)α c(C ′) ≤ β(ρ)α c′(C′),

implying that C is a
(
β(ρ)α

)
-optimal cut for (K(V ), c′). Then the last two cases

in the definition of B(ρ, α) again follow from Henzinger and Williamson [4] and
Karger and Stein [8], respectively. 
�

Theorem 5 For any fixed scalar ρ ≥ 2, let H = (V,E) be a rank-ρ hypergraph
with nonnegative edge costs c and c1, c2 : E → R+ two nonnegative cost functions
defined on its edges. Assume that the edge costs fμ(e) = μc1e + (1− μ)c2e, for all
e ∈ E, are functions of a parameter 0 � μ � 1, and μc1(X)+(1−μ)c2(X) > 0 for
any X ∈ S(G) and μ ∈ I(G,X). The parametric complexity of global minimum

cut is O
(
|V |B(ρ, 32 )+1

)
.

Proof. The proof is an adaptation of that of Theorem 1 to hypergraphs. By
Theorem 4 and Lemma 1, we have S�(H) � O

(
|V |B(ρ, 32 )

)
. Now one can extend

Algorithm 1 to hypergraphs, by contracting hyperedges instead of edges, and
obtain that (2) holds in this case and (3) extends to

|S0| � |Sr−1 ∩ (S<2 (Gr) ∪ S<3 (Gr))|+O(r|V |B(ρ, 32 )). (4)

Similarly, still three cases have to be considered. If Gr∗ contains only two

nodes, then by (4) we have |S0| � O(|V |B(ρ, 32 )+1). If c1(e) < c1(Er∗ )
|Vr∗ | for all e ∈

Er∗ , then the problem reduces to computing an upper bound for |S ′|. Algorithm 2

and Claims 2-3 apply in this case and yield |S ′| � |Vr∗ |
2 . Therefore by (4), we have

|S0| � O(|V |B(ρ, 32 )+1). Finally, the case where there exists a non-loop hyperedge

ē ∈ Er∗ such that c1(ē) > c1(Er∗)
2 (and c1(e) < c1(Er∗ )

|Vr∗ | for all non-loop hyperedge

e ∈ Er∗ \ {ē}) can be handled in a similar way as the previous one. Therefore,
the result follows. 
�
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Abstract. In this paper we study a generalization of the classical fea-
sibility problem in integer linear programming, where an ILP needs to
have a prescribed number of solutions to be considered solved.

We first provide a generalization of the famous Doignon-Bell-Scarf
theorem: Given an integer k, we prove that there exists a constant c(k, n),
depending only on the dimension n and k, such that if a polyhedron {x :
Ax ≤ b} contains exactly k integer solutions, then there exists a subset
of the rows of cardinality no more than c(k, n), defining a polyhedron
that contains exactly the same k integer solutions.

The second contribution of the article presents a structure theory that
characterizes precisely the set Sg≥k(A) of all vectors b such that the prob-
lem Ax = b, x ≥ 0, x ∈ Zn, has at least k-solutions. We demonstrate that
this set is finitely generated, a union of translated copies of a semigroup
which can be computed explicitly via Hilbert bases computation. Similar
results can be derived for those right-hand-side vectors that have exactly
k solutions or fewer than k solutions.

Finally we show that, when n, k are fixed natural numbers, one can
compute in polynomial time an encoding of Sg≥k(A) as a generating
function, using a short sum of rational functions. As a consequence, one
can identify all right-hand-side vectors that have exactly k solutions (sim-
ilarly for at least k or less than k solutions). Under the same assumptions
we prove that the k-Frobenius number can be computed in polynomial
time.

1 Introduction

Given a matrix A ∈ Zd×n and a vector b ∈ Zd, the classical integer linear
feasibility problem asks whether the system IPA(=, b)

Ax = b, x ≥ 0, x ∈ Zn , (1)

has a solution or not. There is of course a slightly more general form IPA(≤, b)
of the problem above

Ax ≤ b, x ∈ Zn . (2)

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 37–51, 2014.
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We refer to these two problems as IPA(b), unless specifying which of (1) or (2)
is necessary.

For a given integer k there are three natural variations of the feasibility prob-
lem that in some intuitive sense measure the strength of IPA(b) “being feasible”:

– Are there at least k distinct solutions for IPA(b)? If yes, we say that the
problem is ≥ k-feasible.

– Are there exactly k distinct solutions for IPA(b)? If yes, we say that the
problem is = k-feasible.

– Are there less than k distinct solutions for IPA(b)? If yes, we say that the
problem is < k-feasible.

We call these three problems, the fundamental problems of k-feasibility in in-
teger linear programs. In this paper we investigate the question of, given a matrix
A, determining for which right-hand-side vectors b are the problems IPA(b) = k-
feasible,≥ k-feasible, or< k-feasible. In what follows we say that b is = k-feasible
(respectively, ≥ k-feasible, < k-feasible) if the corresponding integer program is.

Clearly the classical feasibility problem is just the problem of deciding whether
IPA(b) is ≥ 1-feasible. This indicates directly that all these problems are NP-
hard in complexity. Recently Eisenbrand and Hänhle [18] showed that the related
problem of finding the right-hand-side vector b that maximizes the number of
lattice points solutions, when b is restricted to take values in a polyhedron, is
NP-hard. The theory of k-feasibility is actually quite useful in applications where
for some reason a given number of solutions k needs to be achieved to consider
the problem solved or situations where one cannot allow too many solutions.
Naturally this “weighted version” of the k-feasibility problem has some interest-
ing applications in combinatorics, statistics, and number theory: Consider first
the widely popular recreational puzzle sudoku, each instance can be thought of
as an integer linear program where the hints provided in some of the entries are
the given right-hand-sides of the problem. Of course in that case newspapers
wish to give readers a puzzle where the solution is unique (k = 1). It is not dif-
ficult to see that this is a special case of a 3-dimensional transportation problem
that is, the question to decide whether the set of integer feasible solutions of the
r × s× t-transportation problem⎧⎨⎩x ∈ Zrst :

r∑
i=1

xijk = ujk,

s∑
j=1

xijk = vik,

t∑
k=1

xijk = wij , xijk ≥ 0

⎫⎬⎭
has a unique solution given right-hand sides u, v, w. Another application of k-
feasibility appears in statistics, concretely in application in the data security
problem of multi-way contingency tables, because when the number of solutions
is small, e.g. unique, the margins of the statistical table may disclose personal
information which is illegal [16]. Consider next the k-Frobenius problem. Let a be
a positive integral n-dimensional primitive vector, i.e., a = (a1, . . . , an)

T ∈ Zn
>0

with gcd(a1, . . . , an) = 1. For a positive integer k the k-Frobenius number Fk(a)
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is the largest number which cannot be represented in at least k different ways
as a non-negative integral combination of the ai’s. Thus, putting A = aT ,

Fk(a) = max{b ∈ Z : IPA(b) is < k feasible}.

When k = 1 this has been studied by a large number of authors and both
the structure and algorithmic properties are well-understood. Computing F1(a)
when n is not fixed is an NP-hard problem (Ramirez Alfonsin [26]). On the other
hand, for any fixed n the classical Frobenius number can be found in polynomial
time by sophisticated deep algorithms due to Kannan [22] and Barvinok and
Woods [6]. The general problem of finding F1(a) has been traditionally referred
to as the Frobenius problem. There is a rich literature on the various aspects of
this question. For a comprehensive and extensive survey we refer the reader to
the book of Ramirez Alfonsin [27]. More recently a k-feasibility generalization of
the Frobenius number was introduced and studied by Beck and Robins [8]. They
give formulas for n = 2 of the k-Frobenius number, but for general n and k only
bounds on the k-Frobenius number Fk(a) are available (see [3],[4] and [19]).

Finally, other areas in which polyhedra with fixed number of (interior) lattice
points play a role are algebraic and discrete geometry. Indeed, there has been a lot
of work, going back to classical results of Minkowski and van der Corput, to show
that the volume of a lattice polytope P with k = card(Zn∩intP ) ≥ 1 is bounded
above by a constant that only depends in n and k (see e.g., [23,24]). Similarly,
the supremum of the possible number of points of Zn in a lattice polytope in Rn

containing precisely n points of Zd in its interior, can be bounded by a constant
that only depends in n and k. Such results play an important role in the theory
of toric varieties and the structure of lattice polyhedra (see e.g., [20] and the
references therein).

Our Results

This paper has three main contributions to the study of k-feasibility:

1. One of the most famous results in the theory of integer programming is
the theorem of Doignon [17] (later reproved by Bell and Scarf [7,29]). This
theorem has played an interesting role in many papers, including Clarkson’s
probabilistic algorithm for integer linear programming [11]:

Theorem [Doignon 1973 ] Let A be a d× n matrix and b a vector of Rd. If
the problem IPA(≤, b) is infeasible, then there is a subset S of the rows of
A of cardinality no more than 2n, with the property that the smaller integer
program IPS(≤, b) is also infeasible.

Our first contribution is to prove a = k-feasibility version of Doignon’s the-
orem:

Theorem 1. Given n, k two non-negative integers there exists a universal
constant c(k, n) depending only on k and n such that for any d× n integral
matrix A, and d-vector b if IPA(≤, b) has exactly k integral solutions, then
there is a subset S of the rows of A of cardinality no more than c(k, n), with
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the property that the smaller integer program IPS(≤, b) has exactly the same
k solutions as IPA(≤, b).

We will use this theorem later on in some applications. Our technique to
prove this theorem is quite close to the proof of Doignon in [28] with some
twists. In addition our initial estimation of the constant c(k, n) appears to
be loose, thus in the extended journal version of this paper we will include
better estimations in low dimension. It should be remarked that the ≥ k
version of the problem is not interesting.

2. Second, we prove a structural result that implies that the set of b’s that
provide a ≥ k-feasible IPA(b) is finitely generated.

Let Sg≥k(A) (respectively Sg=k(A) and Sg<k(A)) be the set of right-hand
side vectors b ∈ cone(A) ∩ Zd, where cone(A) is the cone generated by the
columns of A, that make IPA(b) ≥ k-feasible (respectively = k-feasible,
< k-feasible). Note that Sg(A) := Sg≥1(A) is the semigroup generated by
the column vectors of the matrix A.

The first structural result of this paper gives an algebraic description of
the sets Sg≥k(A) and Sg<k(A). Let e1, . . . , en be the standard basis vectors in
Zn
≥0. We define the coordinate subspace of Zn

≥0 of dimension r ≥ 1 determined
by ei1 , . . . , eir with i1 < · · · < ir as the set {ei1z1 + · · · + eirzr : zj ∈
Z≥0 for 1 ≤ j ≤ r}. By the 0-dimensional coordinate subspace of Zn

≥0 we
understand the origin 0 ∈ Zn

≥0.

Theorem 2. (i) There exists a monomial ideal I(A) ⊂ Q[x1, . . . , xn] such
that

Sg≥k(A) = {Aλ : λ ∈ E(A)} , (3)

where E(A) is the set of exponents of monomials of I(A).
(ii) The set Sg<k(A) can be written as a finite union of translates of the sets
{Aλ : λ ∈ S}, where S is a coordinate subspace of Zn

≥0.

By the Gordan-Dickson lemma, the ideal I(A) is finitely generated, so that
Sg≥k(A) is a finite union of translated copies of a semigroup. The proof of
Theorem 2 relies on some basic facts on lattice points when we think of them
as generators of monomial ideals. The basic tool is a characterization of the
complement of a monomial ideal (see [12]). Some of the arguments are of
interest for the study of affine semigroups and toric varieties [9,31].

Our results extend the decomposition theorem of Hemmecke, Takemura
and Yoshida [21] for k = 1. They investigated the semigroup Sg(A) and
the vectors that are not in the semigroup but still lie within cone(A). Note
even when there exists a real nonnegative solution for Ax = b, there may
not exist an integral nonnegative solution. Those authors studied Qsat =
cone(A)∩lattice(A), where lattice(A) is the lattice generated by the columns
of A. They called H = Qsat\Sg(A) the set of holes of Sg(A) (in the context of
numeric semigroups and the Frobenius number, holes have also been called
gaps, see [25]) The set of holes H may be finite or infinite, but their main
result is to give a finite description of the holes as a finitely-generated set.
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Our Theorem 2 was inspired by theirs. For us the holes of [21] are just a
special case for k = 1. We can generalize this notion to consider k-holes,
namely those right hand-sides b for which Ax = b has less than k non-
negative integer solutions.

In the last part of the article we show how to make “effective” the decom-
position theorem above via Hilbert bases computations.

3. Third, for n and k fixed integer numbers, our first algorithmic result estab-
lishes a way to compute all the ≥ k-feasible vectors b’s, not explicitly one
by one, but rather the ≥ k-feasible b’s are encoded as a generating function,∑

≥k−feasible t
b.

Theorem 3. Let A ∈ Zd×n. Assuming that n and k are fixed, there is a
polynomial time algorithm to compute a short sum of rational function G(t)
which efficiently represents the formal sum

∑
≥k−feasible t

b. Moreover, from
the algebraic formula, one can perform the following tasks in polynomial
time:

(a) Count the number of ≥ k-feasible vectors (if finite).

(b) Extract the lexicographic-smallest b, ≥ k-feasible vector.

(c) Find the ≥ k-feasible vector b that maximizes the dot product cT b.

(d) Similar generating function descriptions, with same computational prop-
erties, hold for the sets of b which are = k-feasible or < k-feasible.

(e) Identical results hold for problems in the inequality form IPA(≤, b).

Let us explain a bit the philosophy of such theorem for those not familiar with
this point of view: In 1993 A. Barvinok [5] gave an algorithm for counting the
lattice points inside a polyhedron P in polynomial time when the dimension
of P is a constant. The input of the algorithm is the inequality description
of P , the output is a polynomial-size formula for the multivariate generating
function of all lattice points in P , namely f(P ) =

∑
a∈P∩Zn xa where xa is an

abbreviation of xa1
1 xa2

2 . . . xan
n . Hence, a long polynomial with exponentially

many monomials is encoded as a much shorter sum of rational functions of
the form

f(P ) =
∑
i∈I

± xui

(1− xc1,i)(1 − xc2,i) . . . (1 − xcn−d,i)
. (4)

Later on Barvinok and Woods [6] developed a set of powerful manipulation
rules for using these short rational functions in Boolean constructions on
various sets of lattice points, as well as a way to recover the lattice points
inside the linear projection of a convex polytope. It is very interesting that
to prove the last item of the theorem we will use Theorem 1. In this paper we
apply Barvinok’s theory to prove Theorem 3. From the results of Barvinok [5]
for fixed n, but not necessarily fixed k, one can decide whether a particular b
is k-feasible in polynomial time, but more strongly, as a corollary of Theorem
3, one can find more for knapsack problems.
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Corollary 1. Consider the knapsack problem aTx = b associated with a =
(a1, . . . , an)

T ∈ Zn
>0 with gcd(a1, . . . , an) = 1. For a fixed positive integer k

and fixed n the k-Frobenius number can be computed in polynomial time.

The paper is organized as follows. The first three sections propose proofs for the
three main theorems, namely Section 2 gives a proof of Theorem 1, Section 3
gives a proof of Theorem 2, and Section 4 gives a proof of Theorem 3 (which
in particular uses our version of Doignon-Bell-Scarf). In Section 5, we propose a
more practical way to compute k-holes than what follows from Theorem 3, but
without the computational complexity guarantees of Theorem 3.

2 A Generalization of Doignon-Bell-Scarf’s theorem

In this section we will prove Theorem 1. The constant c(n, k) we provide is 2k2n,
but we will present improvements of this constant in the journal version of this
paper.
[Proof of Theorem 1] The proof proceeds by contradiction. Consider a system of
m linear inequalities,

a1x ≤ β1, . . . , amx ≤ βm, x ∈ Rn . (5)

Suppose (5) has exactly k integral solutions and m ≥ 2k2n + 1. Suppose this
system is a counterexample to Theorem 1 with c(k, n) = 2k2n + 1. That is, if
we delete any of the constraints in (5), the remaining system has at least k + 1
integral solutions.

Thus there exist integral vectors x1, . . . , xm such that xj violates ajx ≤ βj

but satisfies all other inequalities in (5). Consider the set of lattice points

H = conv{x1, . . . , xm} ∩ Zn . (6)

Consider the set Γ ⊂ Rm of the vectors (γ1, . . . , γm) such that

γj ≥ min{ajz|z ∈ H, ajz > βj} (7)

and

the system a1x < γ1, . . . , amx < γm has exactly k integral solutions in H. (8)

The set Γ is nonempty as we can take the equality in (7). Next, Condition
(8), together with the lower bounds on the γi, implies that any integral solution
of the system (5) remains feasible for the system a1x < γ1, . . . , amx < γm for
γ ∈ Γ . Thus, for all γ ∈ Γ , a1x < γ1, . . . , amx < γm share exactly the same k
integral solutions as (5).

Observe also that the set Γ is bounded, because if not γj for some j grows
arbitrarily large, but then there exist z in H that satisfies a1z < γ1, . . . , amz <
γm which would be an additional integral feasible point and contradict Condition
(8).
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Claim 1. There is a point (ν1, . . . , νm) ∈ Γ such that

for each j = 1, . . . ,m there exists yj ∈ H so that ajyj = νj and aiyj < νi (i �= j) .
(9)

Proof of Claim: To see this, take any point (ν1, . . . , νm) ∈ Γ and suppose that
for some j this property does not hold. Consider

ν′j = sup{ν : (ν1, . . . , νj−1, ν, νj+1, . . . , νm) ∈ Γ} . (10)

The supremum in (10) is finite as the set Γ is bounded. Observe that there should
exist yj ∈ H with ajyj = ν′j and aiyj < νi(i �= j). Otherwise (ν1, . . . , νj−1, ν

′
j +

ε, νj+1, . . . , νm) ∈ Γ for sufficiently small ε > 0 as H is a finite set. Next, if
(ν1, . . . , νj−1, ν

′
j , νj+1, . . . , νm) /∈ Γ then, by (8) and (10), for any δ > 0 there

should exist a point z ∈ H such that ν′j − δ ≤ ajz < ν′j = ajyj. This is
impossible as H is finite. Consequently, (ν1, . . . , νj−1, ν

′
j , νj+1, . . . , νm) ∈ Γ and

we can replace νj by ν′j . After at most m such replacements we will construct a
point satisfying (9).

The property of the set {y1, . . . , ym} expressed by (9) is very important and
as we will use it several times later, we formally name it.

Definition 1. Let X be a finite subset of Zn. We say that X satisfies the sup-
port hyperplane property if for every y ∈ X, there exists a hyperplane fTx ≤ g
such that fT y = g and fT z < g for every z ∈ X, z �= y. Furthermore, we say
that the inequality fTx ≤ g fulfills the support hyperplane property for y.

Observe that the support hyperplane property is equivalent to saying that all
members of X are vertices of conv(X). We will need the following two interme-
diate results.

Claim 2. Consider a set X ⊆ Zn with |X | ≥ 2n + 1 that satisfies the support
hyperplane property, i.e. such that for every member yi ∈ X , there exists a
hyperplane fT

i x ≤ gi such that fT
i yi = gi and fT

i yj < gi for j �= i. Then there
exists an integral point z ∈ Zn that satisfies fT

i z < gi for all i = 1, . . . , |X |.

Proof of Claim: Since |X | ≥ 2n + 1, by the pigeonhole principle there exist
yi1 , yi2 ∈ X with yi1 �= yi2 and yi1 ≡ yi2( mod 2) (that is all entries of yi1 − yi2
are even). Therefore z = 1

2 (yi1 + yi2) ∈ Zn. Obviously fT
i z < gi for all i =

1, . . . , |X |.

Claim 3. Consider a finite set X ⊆ Zn that satisfies the support hyperplane
property. Consider z ∈ conv(X) ∩ Zn. There exists a subset X̄ ⊆ X with |X̄ | ≥
� |X|

2 � such that X̄ ∪ {z} satisfies the support hyperplane property.

Proof of Claim: There exists a hyperplane f̄Tx = ḡ such that f̄T z = ḡ and
the equality does not hold for any other member of X . We can split the other
members of X into two sets X< = X ∩ {x ∈ Rn | f̄Tx < ḡ} and X> = X ∩ {x ∈
Rn | f̄Tx > ḡ}. Since the two sets are disjoint, one of them has cardinality

at least � |X|
2 �. The result follows since for every x ∈ X that lies in X< (resp.
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X>), the inequality fulfilling the support hyperplane property still fulfills the
hyperplane property in X< (resp. X>). The inequality f̄Tx ≤ ḡ (resp. f̄Tx ≥ ḡ)
fulfills the support hyperplane property for z.

We will now construct k + 1 sets Si, i = 0, . . . , k by induction. Throughout,
the sets that are constructed have the following property.
Inductive Property. Si has 2

k−i2n+1 integral points and satisfies the support
hyperplane property.

We start with S0 = {y1, . . . , ym}. Observe that the inductive property is
true for S0. If the property is true for i − 1, and i ≤ k, then the assumptions
of the second claim are satisfied, and there exists an integral point zi−1 from
which we can apply the third claim and obtain a subset S̄i−1 ⊆ Si−1 such that
Si = S̄i−1 ∪ {zi−1} satisfies the support hyperplane property which implies that
the inductive property is satisfied.

Following the construction, zi satisfies aTj zj < νj for all j as it is obtained
as a convex combination of points y1, . . . , ym with at least two points having a
positive multiplier in the combination. Furthermore, we must have zi �= zj for
i < j. Indeed, if zi ∈ Sj, by construction there exists a hyperplane that separates
them and they are clearly different if zi �∈ Sj .

This is now a contradiction since we have constructed k+1 different integral
points z0, . . . , zk satisfying (8).

3 Proof of Theorem 2

For f ∈ cone(A) ∩ Zd define

Lk
A,f = {λ ∈ Zn

≥0 : IPA(f +Aλ) is ≥ k feasible} ,

so that Sg≥k(A) = {Aλ : λ ∈ Lk
A,0}. Consider the monomial ideal

I(A) = 〈xλ : λ ∈ Lk
A,0〉 .

To see that (3) is satisfied it is enough to check that for any λ0 ∈ Lk
A,0 the

inclusion λ0 + Zn
≥0 ⊂ Lk

A,0 holds. We will prove the following more general

statement. For any f ∈ cone(A) ∩ Zd and λ0 ∈ Lk
A,f we have the inclusion

λ0 + Zn
≥0 ⊂ Lk

A,f . (11)

Let λ0 ∈ Lk
A,f , so that there exist k distinct vectors λ1, . . . , λk ∈ Zn

≥0 with

f +Aλ0 = Aλ1 = · · · = Aλk .

Take any vector μ ∈ Zn
≥0 and set ν = λ0 + μ. Then, clearly, we have

f +Aν = A(λ1 + μ) = · · · = A(λk−1 + μ) ,

where all vectors λ1+μ, . . . , λk+μ ∈ Zn
≥0 are distinct. Consequently, IPA(f+Aν)

is ≥ k feasible and, thus, ν ∈ Lk
A,f . Hence (11) holds and we have proved the

first claim of Theorem 2.
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Let us now prove the second claim. Recall that the elements of the set Sg<k(A)
are also called k-holes. A k-hole f is called fundamental if there is no other k-hole
h ∈ Sg<k(A) such that f − h ∈ Sg≥1(A).

Lemma 1. The set of fundamental k-holes is a subset of the zonotope

P = {Aλ : λ ∈ [0, 1)n} .

Proof. Let f ∈ Sg<k(A) be a fundamental hole. We can write

f = Aλ , λ ∈ Qn
≥0 .

Suppose f /∈ P . Then for some j we must have λj ≥ 1. Thus, denoting by Aj

the jth column vector of A, the element f ′ = f −Aj is a k-hole as any k distinct
solutions for IPA(f

′) would correspond to k distinct solutions for IPA(f). Thus
we get a contradiction with our choice of f as a fundamental k-hole. This implies
λj < 1 for all j and, consequently, f ∈ P . The lemma is proved.

Lemma 1 shows, in particular, that the number of fundamental k-holes is
finite. Furthermore, any k-hole can be represented as f + Aλ for some funda-
mental hole f and λ ∈ Zn

≥0. Let us fix a fundamental k-hole f and consider the

monomial ideal IkA,f ⊂ Q[x1, . . . , xn] defined as

IkA,f = 〈xλ : λ ∈ Lk
A,f〉 .

Then, in view of (11), f +Aλ is not a k-hole if and only if xλ ∈ IkA,f .

Thus we need to write down the set C(IkA,f ) of exponents of standard mono-

mials for the ideal IkA,f . Any such exponent λ ∈ C(IkA,f ) corresponds to the
k-hole f +Aλ.

By Theorem 3 in Chapter 9 of [12], the set C(IkA,f ) can be written as a
finite union of translates of coordinate subspaces of Zn

≥0. Since the number of
fundamental k-holes is finite, the second claim of Theorem 2 is proved.

4 Proof of Theorem 3

We use the technics of rational generating functions developed by Barvinok and
Woods in [5,6]. We wish to prove a representation theorem of a set of lattice
points as a sum

∑
≥k−feasible t

b. Recall that A is an integral d × n matrix and
k is a constant. For a subset of indices I ⊂ {1, 2, . . . , n} we can define the
polyhedron (note Xi denotes an n-dimensional vector):

QI(A, k)=
{
(X1,X2, . . . , Xk) : AX1 = AX2 = · · · = AXk, Xi = Xj for i, j ∈ I and Xi ≥ 0

}
.

Clearly if I = ∅, then

Q∅(A,k) =
{
(X1, X2, . . . , Xk) : AX1 = AX2 = AX3 = · · · = AXk and Xi ≥ 0

}
.
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In other words Q∅(A, k) contains precisely k-tuples of n-vectors (possibly re-
peated) that give the same right-hand-side vector. More generally QI(A, k) con-
tains as lattice points the vectors b such that b = AXj for Xj j = 1 . . . k integer
non-negative vectors, but with exactly |I| of the vectors Xj being identical.

Using Barvinok’s algorithm in [5], we can compute in polynomial time the
generating function of the lattice points in the polyhedron QI(A, k) which lives
in fixed dimension kn. The resulting expression is the sum over all lattice points
in a rational polytope QI(A, k).

f(QI(A, k)) =
∑{

za1
1 za2

2 . . . zak

k : (a1, a2, . . . , ak) ∈ QI(A, k) ∩ Znk
}

Next we will apply Boolean operations on generating functions f(QI(A, k))
in such a way that we are only left with the k-tuples of distinct non-negative
vectors which satisfy Aai = b. We can do this by the following result:

Lemma 2 ( Corollary 3.7 in [6]). Let us fix l (the number of sets Si ⊂ Zd)
and r (the number of binomials in each fraction of the generating function f(Si)).
Then there exists an s = s(l, r) and a polynomial time algorithm, which, for any
l (finite) sets of lattice points S1, . . . , Sl ⊂ Zd given by their generating func-
tions f(Si) and a set S ⊂ Zn defined as a Boolean combination of S1, . . . , Sm,
computes f(S) in the form

f(S) =
∑
i∈I

γi
xui

(1− xvi1) · · · (1− xvis)
,

where γi ∈ Q, ui, vij ∈ Zn and vij �= 0 for all i, j.

Now we can compute in polynomial time (because k is fixed) the following
Boolean expression with 2k summands

D(A, k) = Q∅(A, k)−∪|I|=2QI(A, k)+∪|I|=3QI(A, k)−· · ·−(−1)k∪|I|=kQI(A, k).

Note that this is essentially the inclusion-exclusion principle applied to sets
of lattice points, where each set is represented by a generating function (in
rational function form). The new generating function f(D(A, k)) when expanded
into monomials za1

1 za2
2 . . . zak

k has only those where ai �= aj . Namely, this is
precisely the set of all k-tuples of distinct vectors in Zn

≥0 that give the same
value Aa1 = Aa2 = . . . Aak.

Finally another key subroutine introduced by Barvinok and Woods is the
following Projection Theorem. In both Lemmas 2 and 3, the dimension n is
assumed to be fixed.

Lemma 3 (Theorem 1.7 in [6]). Assume the dimension n is a fixed constant.
Consider a rational polytope P ⊂ Rn and a linear map T : Zn → Zk. There
is a polynomial time algorithm which computes a short representation of the
generating function f

(
T (P ∩ Zn), x

)
.
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In this case we apply a very simple linear map (X1, X2, . . . , Xk) → AX1,
by multiplication with A. This yields of course for each k-tuple (which
has Xi �= Xj) the corresponding right-hand side vector b = AX1 that
has at least k-distinct solutions. The final expression will look like f =∑

b∈Q:with at least k-representations t
b. Which is the desired short rational

function which efficiently represents the sum
∑

≥k−feasible t
b. This proves the

main result in the body of the paper for ≥ k-feasible. Because if one knows a de-
scription for Sg≥k(A) and Sg≥k+1(A) one knows Sg=k(A) = Sg≥k(A)\Sg≥k+1(A)
and Sg<k(A) = Sg(A)\Sg≥k(A), the Boolean properties of generating functions
in Lemma 2 give the theorem in all three cases.

Now we move to prove Parts (a) to (d) of the theorem.

Part (a) If we have a generating function representation of∑
≥k−feasible

tb,

it has the form

f(t) =
∑
i∈I

αi
tpi

(1− tai1) · · · (1− taik)
.

Note that by specializing at t = (1, . . . , 1), we can count how many b’s
are ≥ k-feasible (when finite). Remark the substitution is not immedi-
ate since t = (1, . . . , 1) is a pole of each fraction in the representation
of f . This problem is solvable because it has been shown by Barvi-
nok and Woods that this computation can be handled efficiently (see
Theorem 2.6 in [6] for details) and will prove Part (a).

Part (b) This item is a direct corollary of the following extraction lemma.

Lemma 4 (Lemma 8 in [14] or Theorem 7.5.2 in [15]). Assume the
dimension n is fixed. Let S ⊂ Zn

+ be nonempty and finite set of lattice points.
Suppose the polynomial f(S; z) =

∑
β∈S zβ is represented as a short rational

function and let c be a cost vector. We can extract the (unique) lexicographic
largest leading monomial from the set {xα : α · c = M, α ∈ S}, where
M := max{α · c : α ∈ S}, in polynomial time.

Part (c) Barvinok and Woods developed a way to do monomial substitutions
(not just ti = 1 as we used in Part (a)), where the variable ti in
the current series, is replaced by a new monomial za1

1 za2
2 · · · zar

r . Note
that the rational generating function f =

∑
b∈Q∩Zd bb can give the

evaluations of the b’s for a given objective function c ∈ Zd. If we
make the substitution ti = zci , the above equation yields a univariate
rational function in z:

f(z) =
∑
i∈I

Ei
zc·ui∏d

j=1(1− zc·vij)
. (12)
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Moreover f(z) =
∑

b∈Q∩Zd zc·b. Thus we just need to find the (lexi-
cographically) largest monomial in the sum in polynomial time. But
this follows from Part (b).

Part (d) The reason the same generating function descriptions exist also for
the sets those b which are = k-feasible, ≥ k-feasible, or < k-feasible is
because the sets can be obtained from the set we computed above as
Boolean operations (intersection, unions, complements). Indeed using
Barvinok Woods theory about such Boolean expressions, and the fact
that Sg≥k+1(A) \ Sg≥k(A) = Sg=k(A) and that Sg<k(A) = Sg≥k(A) \
Sg=k(A) the results follow.

Part (e) To prove this result we will use our generalization of Doignon-Bell-
Scarf’s theorem. Any problem of the form Ax ≤ b can be transferred
to a problem of the form Ax+Is = b by adding slack variables s. Then
such a system is in the shape of the main part of Theorem 3 except we
need a fixed number of rows. To see this is possible, by Theorem 1, if
Ax ≤ b has k-solutions then, the same solutions appear in a subsystem
ASx ≤ b with no more than a constant c(n, k) rows. Thus when we add
slacks we will only add a constant number of slacks, only n + c(k, n)
many of them. Of course we do not know which rows form the system
but there are only

(
d

c(k,n)

)
possibilities for subsystems ASx + Is = b

(each subsystem has a fixed number of columns now, thus it can be
solved in polynomial time). Therefore, we can also decide for which
b’s the polyhedron has k points Ax ≤ b in polynomial time (again
encoded in a rational function format).

To conclude we see how to compute the k-Frobenius number efficiently. We
may see now that Corollary 1 follows directly from what we achieved in Theorem
3 and the Boolean operation Lemma of Barvinok and Woods. Indeed, from
Theorem 3 we have a rational function representation of the k-feasible b for
the Knapsack problem f(t) =

∑
i∈I Ei

tc·ui
∏d

j=1(1−tc·vij ) =
∑

b∈Q∩Zd, k−feasible t
c·b.

Clearly the k-Frobenius number is simply the largest (lexicographic) b, such that
tb is not in f(t), it is in its complement. Then, for the complement S = Z+ \ S,
we compute the generating function f(S;x) = (1 − t)−1 − f(t) and then we
compute the largest such tb in the complement using Lemma 4.

5 Computing k-Holes via Hilbert Bases

In contrast to the implicit representation via rational generating functions that
we saw in Section 4, we now present an algorithm to compute an explicit repre-
sentation of Sg≥k(A), even for an infinite case. Such an explicit representation
need not be of polynomial size in the input size of A, but will allow us to present
some concrete computations and results for Knapsack problems in the extended
version of this paper.

In this section we combine the results of Hemmecke et al. [21] with our tech-
niques to computing the elements of Sg<k(A). In view of the proof of Theorem 2
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(ii), it is enough to compute all fundamental k-holes and then for each fundamen-
tal k-hole f compute the standard monomials of the ideal IkA,f . In view of Lemma
1, all fundamental k-holes are located in a zonotope P = {Aλ : λ ∈ [0, 1)n}.
Thus, with a straightforward generalization of the approach proposed in Hem-
mecke et al. [21], the fundamental k-holes the can be computed by using a Hilbert
basis of the cone cone(A). In the special case k = 1 Hemmecke et al. [21] obtained
the following result.

Theorem 4. There exists an algorithm that computes for an integral matrix A a
finite explicit representation for the set H of holes of the semigroup Q generated
by the columns of A. The algorithm computes (finitely many) vectors hi ∈ Zd

and monoids Mi, each given by a finite set of generators in Zd, i ∈ I, such that

H =
⋃
i∈I

({hi}+Mi) .

Here Mi could be trivial, that is, Mi = {0}.
Let f be a fundamental k-hole. Recall that the monomial ideal IkA,f ⊂

Q[x1, . . . , xn] is defined as

IkA,f = 〈xλ : λ ∈ Lk
A,f〉

and f +Aλ is not a k-hole if and only if xλ ∈ IkA,f .
Thus we need to compute the exponents of standard monomials for the ideal

IkA,f . Any such exponent λ ∈ Zn
≥0 corresponds to the k-hole f +Aλ.

The exponents of standard monomials can be computed explicitly from a set
of generators of the ideal. Hence, it is enough to find the generators of IkA,f . Let

us fix an ordering≺ in Zn
≥0. The minimal generators for the ideal IkA,f correspond

to the ≺-minimal elements of the set

Lk
A,f = {λ ∈ Zn

≥0 : ∃ distinct μ1, . . . , μk ∈ Zn
≥0 such that

f +Aλ = Aμ1 = · · · = Aμk} .

For computational purposes it is enough to compute a set of vectors of Lk
A,f

that contains all the ≺-minimal elements. We will proceed as follows. Let K be a
complete graph with the vertex set V = {1, 2, . . . , k}. By a weighted orientation
H of K we will understand a weighted directed graph H = (V,E) such that
any two vertices of H are connected by a directed edge e ∈ E with a weight
w(e) ∈ {1, . . . , n}. Let S be set of all weighted orientations of K.

For each H ∈ S we construct the following two auxiliary sets: the set

LH = {λ ∈ Zn
≥0 : ∃μ1, . . . , μk ∈ Zn

≥0 such that f +Aλ = Aμ1 = · · · = Aμk

and (μi)w(e) ≤ (μj)w(e) − 1 for each e = (i, j) ∈ E }

and the set

MH = {(λ, μ1, . . . , μk) ∈ Z
(k+1)n
≥0 : f +Aλ = Aμ1 = · · · = Aμk

and (μi)w(e) ≤ (μj)w(e) − 1 for each e = (i, j) ∈ E} .
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Then, in particular, Lk
A,f =

⋃
H∈S LH , where the union is taken over all orien-

tations in H ∈ S.
We will need the following result.

Lemma 5. Let λ0 be a ≺-minimal element of LH . Then there exists a ≺-
minimal element of MH of the form (λ0, μ̂1, . . . , μ̂k) .

Let λ0 be a ≺-minimal element of LH . Suppose on contrary, for every
(μ1, . . . , μk) ∈ Zkn

≥0 the vector (λ0, μ1, . . . , μk) is not a ≺-minimal element of
MH . Let (μ̂1, . . . , μ̂k) be a ≺-minimal element of the set

MH |λ=λ0 = {(μ1, . . . , μk) ∈ Zkn
≥0 : f +Aλ0 = Aμ1 = · · · = Aμk

and (μi)w(e) ≤ (μj)w(e) − 1 for each e = (i, j) ∈ E} .

By the assumption, there exists a vector (λ′, μ′
1, . . . , μ

′
k) ∈ MH such that

(λ′, μ′
1, . . . , μ

′
k) ≺ (λ0, μ̂1, . . . , μ̂k) and (λ′, μ′

1, . . . , μ
′
k) �= (λ0, μ̂1, . . . , μ̂k). If

λ′ �= λ0 we get a contradiction to the ≺-minimality of λ0 in LH . On the other
hand, if λ′ = λ0 we get a contradiction to the ≺-minimality of (μ̂1, . . . , μ̂k) in
MH |λ=λ0 .

In view of Lemma 5, to compute a generating set for Lk
A,f it is now enough

to compute the set of all minimal elements for MH , H ∈ S and remove the last
kn components from each of them.
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Abstract. We consider the capacitated k-center problem. In this prob-
lem we are given a finite set of locations in a metric space and each
location has an associated non-negative integer capacity. The goal is to
choose (open) k locations (called centers) and assign each location to an
open center to minimize the maximum, over all locations, of the distance
of the location to its assigned center. The number of locations assigned to
a center cannot exceed the center’s capacity. The uncapacitated k-center
problem has a simple tight 2-approximation from the 80’s. In contrast,
the first constant factor approximation for the capacitated problem was
obtained only recently by Cygan, Hajiaghayi and Khuller who gave an
intricate LP-rounding algorithm that achieves an approximation guaran-
tee in the hundreds. In this paper we give a simple algorithm with a clean
analysis and prove an approximation guarantee of 9. It uses the standard
LP relaxation and comes close to settling the integrality gap (after neces-
sary preprocessing), which is narrowed down to either 7, 8 or 9. The algo-
rithm proceeds by first reducing to special tree instances, and then uses
our best-possible algorithm to solve such instances. Our concept of tree
instances is versatile and applies to natural variants of the capacitated
k-center problem for which we also obtain improved algorithms. Finally,
we give evidence to show that more powerful preprocessing could lead to
better algorithms, by giving an approximation algorithm that beats the
integrality gap for instances where all non-zero capacities are the same.

Keywords: approximation algorithms, capacitated network location
problems, capacitated k-center problem, LP-rounding algorithms.

1 Introduction

Network location problems form a large and important class of problems in
discrete and combinatorial optimization. Many of these problems can be phrased
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in terms of choosing centers or facilities to best serve a given set of clients,
typically under the assumption that the locations for the facilities and clients lie
in a metric space. One can imagine several objective functions to measure the
quality of service. Perhaps the most natural and well-studied ones are “social
welfare”, where we wish to minimize the average distance from a client to its
assigned center, and “fairness”, in which we wish to minimize the maximum
distance from a client to its assigned center. Note that, once we have selected
the centers, both of these objectives are minimized by assigning each client to its
closest center. An inherent drawback of this strategy, however, is that it is unable
to deal with centers of (different) capacities that limit the number of clients
they can serve, which is a constraint present in typical applications. Capacity
constraints in location problems pose difficult algorithmic challenges from both
a theoretical and empirical point of view and our understanding continues to
evolve despite a long history of work.

For uncapacitated network location problems, several beautiful algorithmic
techniques, such as LP-rounding [5], primal-dual framework [14] and local
search [16,4] have been used to obtain a fine-grained understanding of the ap-
proximability of the well-known variants: k-center, k-median, and facility loca-
tion1. Already in the 80’s, Gonzales [9] and Hochbaum & Shmoys [12] developed
tight 2-approximation algorithms for the k-center problem. For facility location,
the current best approximation algorithm is due to Li [18]. He combined an
algorithm by Byrka [3] and an algorithm by Jain, Mahdian, and Saberi [13] to
achieve an approximation guarantee of 1.488. This is nearly tight, as it is hard to
approximate the problem within a factor of 1.463 [10]. The gap is slightly larger
for k-median: a recent LP rounding [19] achieves an approximation guarantee
of 1 +

√
3 ≈ 2.732 improving upon a local search algorithm by Arya et al. [1];

and it is NP-hard to do better than 1+ 2/e ≈ 1.736 [13]. Although the different
problems have algorithms with different approximation guarantees, they share
many techniques, and improvements have often come hand in hand. In partic-
ular, most of the above progress relies on standard linear programming (LP)
relaxations.

In contrast to the uncapacitated versions, the standard LP relaxations for the
capacitated problems have unbounded integrality gaps and this is one reason for
the coarser understanding we have. Apart from special cases, such as uniform
capacities [15], soft capacities (a center can be opened several times) [21,15,14],
and other variants [17,7], the only known constant factor approximation algo-
rithm until recently, was for facility location. In a sequence of works, including
Korupolu, Plaxton & Rajaraman [16], Pál, Tardos & Wexler [20], Chudak &
Williamson [6], and Zhang, Chen & Ye[23] increasingly enhanced local search
algorithms culminated in an approximation guarantee of 5 due to Bansal, Garg,
and Gupta [2]. These methods are elegant but specialized to facility location and

1 Recall that in k-center and k-median, we wish to select k centers so as to minimize
the fairness and social welfare, respectively; facility location is similar to k-median
but instead of having a constraint k on the number of centers to open, each center
has an opening cost.
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are not LP-based. In fact, finding a relaxation-based algorithm for capacitated
facility location with a constant approximation guarantee remains a major open
problem (see e.g. “Problem 5” of the ten open problems from the recent book
by Williamson and Shmoys [22]). One of the motivations for finding algorithms
based on relaxations is that the methods are often flexible and the developed
techniques transfer to different settings, as has indeed been the case in the study
of uncapacitated location problems.

In the quest to obtain a better understanding and more general (relaxation
based) techniques for capacitated network location problems, it is natural to
start with the capacitated k-center problem. Indeed, even though we have a
good understanding of uncapacitated location problems in general, the uncapac-
itated k-center problem stands out, with an extremely simple greedy algorithm
that gives a tight analysis of the LP relaxation. Our failure to understand the
capacitated k-center problem is therefore solely due to the lack of techniques for
analyzing capacity constraints. An important recent development in this line of
research is due to Cygan, Hajiaghayi, and Khuller [8], who obtain the first con-
stant factor approximation for the capacitated k-center problem. Their algorithm
works by preprocessing the instance to overcome the unbounded integrality gap
of the natural LP relaxation, followed by an intricate rounding procedure. The
approximation factor is not computed explicitly, but is estimated to be roughly
in the hundreds. This however, is still quite far off from the integrality gap lower
bound of 7 (after preprocessing) [8] and the inapproximability results which rule
out a factor better than 3 (see e.g. [8] for a simple proof).

In this paper, we develop novel techniques to further close the gap in our un-
derstanding of capacitated location problems. In particular, we present a simple
algorithm for the capacitated k-center problem with a clean analysis that allows
us to prove an approximation guarantee of 9. Our result is based on the standard
LP relaxation and it almost settles its integrality gap (after the preprocessing of
Cygan et al. [8]): it is either 7, 8 or 9 (both the integrality gap and approximation
ratio can only take integral values; this is because the worst instances can easily
be seen to be ones defined by the shortest-path metric on an unweighted graph).
Due to the simplicity of our analyses, we hope that some of the ideas could be
applied to other location problems, such as capacitated k-median, for which no
constant factor approximation algorithms are known.

Main result and outline of algorithmic approach. Our main result is the following.

Theorem 1. There exists a 9-approximation algorithm for the capacitated k-
center problem.

The algorithm guesses the optimal solution value τ and considers an unweighted
graph G≤τ on the given set of vertices where two vertices are adjacent if and
only if their distance is at most τ : the edges in this graph represent the assign-
ments that are “admissible” with respect to τ . This graph can be assumed to
be connected (see [8]). The algorithm then solves a natural and standard LP
on G≤τ . This determines if it is possible to (fractionally) open k vertices while
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assigning every vertex to a center that is adjacent in G≤τ . If this LP is infeasible,
we know that the optimum is larger than τ ; otherwise, our algorithm will open
k centers and find an assignment of every vertex to an open center that is within
a distance of 9 in G≤τ , and moreover the assignment respects the capacities of
open centers. This leads to a 9-approximation algorithm.

The LP solution specifies a set of opening variables that indicate the fraction
to which each vertex is to be opened. Our algorithm rounds these opening vari-
ables by “transferring” openings between vertices to make them integral. Since
we do not create any new opening, our rounding will naturally open at most
k centers; however, the challenge is to ensure that there exists a small-distance
assignment of the vertices to open centers. If, for example, the opening of a
vertex v is transferred to another vertex that is far away, the clients that were
originally assigned to v may be unable to find an available center nearby. For
another example, if the opening of a high-capacity vertex gets transferred to a
low-capacity one, the low-capacity vertex may fail to provide sufficient capacity
to cover the vertices in the neighborhood. Thus, we need to ensure that our
rounding algorithm transfers openings only in small vicinity, and that “locally
available capacity” of the graph does not decrease. (Definition 3 formalizes this
concept as a distance-r transfer.)

We reduce the rounding problem to the special case of tree instances, and
present a best-possible algorithm that rounds such instances. A tree instance
is given by a set of opening variables defined on a rooted tree, where every
non-leaf node has an opening variable of 1. Tree instances are generalizations of
caterpillars used by Cygan et al. [8], which can be considered as tree instances
whose non-leaf nodes form a path and have certain degree bounds. Suppose we
have a tree instance where the capacities are uniform and there are exactly two
leaves u and v each of which is opened by 1/2, whereas every other vertex is
opened by 1. If u and v are distant, this may appear problematic at a glance
as we cannot transfer the opening of one to the other. However, there exists a
(unique) path u,w1, . . . , wm, v in the tree, and we can transfer the opening of
1/2 in a “chain” along this path: from u to w1, from w1 to w2, . . ., from wm to
v. This idea can in fact be carried through to give an algorithm for capacitated
k-center when all capacities are equal.

Unfortunately, this chain of transfers causes a problem when the capacities
are given arbitrarily: suppose in the previous example that u and v have very
high capacities compared to the others. Then we will not be able to transfer
the opening of u to w1, since the open centers around u may not be able to
provide sufficient capacity to cover the vertices that were originally assigned to
u. However, from another angle, w1 (or any other non-leaf vertex) is “wasting”
the budget, since it opens a center while contributing relatively small capacity to
the graph. This provides us some “slack” in the budget that we can utilize: in this
particular example, by transferring an opening of 1/2 from w1 to u, and the other
1/2 from w1 to v in a chain, we can successfully round the given instance thanks
to the decision of closing w1 which had originally had its opening variable equal
to one. This strategy of closing a fully open center is quite powerful, yet we need
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to ensure that its capacity can be accomodated by nearby centers if we want to
close it. Thus, the viability of such a strategy tends to depend on several factors,
including how its capacity compares to vertices in the neighborhood, which of
these vertices are to be opened, and so on – all decisions which could depend on
more and more distant vertices.

In contrast, our algorithm departs from previous works by using a simple
local strategy that does not depend on distant vertices and applies to every
non-leaf node. The reason our strategy works locally is that the decision of
closing fully open centers is determined using solutions to subinstances, which
are solved recursively. This key idea significantly eases the analysis and leads to
our algorithm for tree instances that is the best possible. The simplicity of our
analysis also helps us more carefully analyze the approximation ratio and extend
our techniques to related problems. Section 4 formally presents our algorithm
to round a tree instance; the full version of this extended abstract presents its
extensions to two related problems: the capacitated k-supplier problem and the
budgeted opening problem with uniform capacity.

Finally, we reduce the given problem to a tree instance by constructing a tree
on a subset of vertices that are chosen as “candidates” to be opened. Non-leaf
nodes will be carefully chosen, in order to yield a 9-approximation algorithm.
Two adjacent vertices in the constructed tree instance will not necessarily be
adjacent in the original graph, but will be in close proximity; hence, if the tree
instance can be rounded using short transfers of openings, the original instance
can also be rounded using only slightly longer transfers.

Additional results and future directions. We also explore future directions to-
wards a better understanding of the problem. Recall that our algorithm pro-
ceeds in three steps: firstly, we preprocess the given instance as done by Cygan
et al. [8]; secondly, we reduce the problem to a tree instance; lastly, we solve
this tree instance. Given that our tree rounding algorithm is best-possible, it is
natural to seek to improve the first two steps. The preprocessing step of Cygan
et al. allows us to bring down the integrality gap from unbounded to 9; however,
the integrality gap after the basic preprocessing is known to be at least 7 [8],
which is larger than the best known inapproximability result that rules out a
better factor than 3. The instance showing the integrality gap of 7 (and also that
of the inapproximability result) has a special structure that every capacity is ei-
ther 0 or L for some constant L. In order to understand the potential of stronger
preprocessing methods, we investigate this {0, L}-case and show that additional
preprocessing and a sophisticated rounding gives a 6-approximation algorithm
(see the full paper).The interesting fact is that we obtain an approximation ratio
which surpasses the integrality gap lower bound of 7 after basic preprocessing.
This raises the natural open question: could there be preprocessing steps which
bring the approximation ratio down to 3? We could also ask: do lift-and-project
methods (applied to a potentially different formulation) automatically capture
these preprocessing steps? We believe that understanding these questions would
also shed light on approximating capacitated versions of other problems such as
facility location and k-median.
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2 Preliminaries

Given an integer k and a metric distance/cost c : V × V → R+ on V with a
capacity function L : V → Z≥0, the capacitated k-center problem is to choose
k vertices to open, along with an assignment of every vertex to an open cen-
ter which minimizes the longest distance between a vertex and the center it is
assigned to while honoring the capacity constraints: i.e., no open center v is
assigned more vertices than its capacity L(v).

For an undirected graph G = (V,E), dG(u, v) denotes the distance between
u, v ∈ V ; NG[u] denotes the set of vertices in the closed neighborhood of u,
which includes u itself: i.e., NG[u] := {v | (u, v) ∈ E} ∪ {u}. For U ⊆ V ,
dG(v, U) denotes the distance from v to U : dG(v, U) := minu∈U dG(v, u). NG[U ]
is a shorthand for ∪u∈UNG[u]. When the graph of interest G is clear from the
context, we will use d and N [·] instead of dG and NG[·], respectively. Let OPT
denote the optimal solution value.

Reduction to an unweighted problem using the standard LP relaxation. Our algo-
rithm begins with determining a lower bound τ∗ on the optimal solution value:
it makes a guess τ at OPT, and tries to decide if τ < OPT. We simplify this
problem by considering an unweighted graph that represents which assignments
are “admissible”. Let G≤τ = (V,E≤τ ) be the unweighted graph on V (with loops
on every vertex) where two vertices are adjacent if and only if their distance is
at most τ : E≤τ := {(u, v) | c(u, v) ≤ τ}. Note that a feasible solution of value
τ assigns every vertex to a center that is adjacent in G≤τ , and conversely, if a
solution assigns every vertex to a center that is adjacent in G≤τ , its value is no
greater than τ . For an unweighted graph G = (V,E), the standard LP relaxation
LPk(G) is the following feasibility LP that fractionally verifies whether there
exists a solution that assigns every vertex to an open center that is adjacent
in G: ∑

u∈V

yu = k;

xuv ≤ yu, ∀u, v ∈ V ;∑
v:(u,v)∈E

xuv ≤ L(u) · yu, ∀u ∈ V ;∑
u:(u,v)∈E

xuv = 1, ∀v ∈ V ;

0 ≤ x, y ≤ 1.

xuv is called an assignment variable; yu is called the opening variable of u.
However, the integrality gap of this LP, defined as the maximum ratio OPT

τ
where LPk(G≤τ ) is feasible, is unbounded; hence this LP cannot in general
estimate OPT very well. We use the approach of Cygan et al. [8] to address
this issue: consider the connected components of G≤τ ; if τ ≥ OPT, a vertex
can be assigned only to the vertices in the same connected component. For each
connected component Gi of G≤τ , the algorithm decides the minimum integer
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ki for which LPki(Gi) is feasible; if
∑

i ki > k, this certifies that there exists
no solution of value τ or better (τ < OPT). Now let τ∗ be the smallest τ for
which the algorithm fails to certify that τ < OPT; since the algorithm has to
fail to provide a certificate for τ = OPT, we have τ∗ ≤ OPT. The algorithm
then separately solves the subproblems given by the connected components of
G≤τ∗ : given a connected graph G for which LPk(G) is feasible, our algorithm
finds a set of k vertices to open, with an assignment of every vertex to an open
center that is within the distance of nine. Note that dG≤τ∗ (u, v) ≤ 9 implies
c(u, v) ≤ 9τ∗ ≤ 9 ·OPT from the triangle inequality.

Lemma 2 (Cygan et al. [8]). Suppose there exists an algorithm that, given a
connected graph G, capacity L, and k for which LPk(G) is feasible, computes a
set of k vertices to open and an assignment of every vertex u to an open center
v such that d(u, v) ≤ ρ and the capacity constraints are satisfied. Then we can
obtain a ρ-approximation algorithm for the capacitated k-center problem.

3 Distance-r Transfers and Tree Instances

Distance-r transfers. The discussion in Section 2 reduces the task of designing an
approximation algorithm for the capacitated k-center problem to that of using
a solution (x, y) to LPk(G) in order to select k centers so that each vertex in
the connected graph G is assigned to a center in a nearby neighborhood. Simple
algebraic manipulations show that, for any U ⊆ V , the LP solution satisfies
|U | =

∑
u∈U

∑
w:(w,u)∈E xwu ≤

∑
w∈N [U ] L(w) · yw; note that, if the opening

variables y are integral, this exactly corresponds to Hall’s condition [11] and
hence we can assign every vertex to an adjacent center. However, the LP solution
may open each center only by a small fractional amount; in order to obtain an
integral solution, it is therefore natural to try to aggregate fractional openings
of nearby vertices. As different centers have varying capacities, one difficulty of
this approach is that the rounding also needs to ensure that the aggregation does
not decrease the available capacity. Consider a center u of capacity L(u) that
is open with fraction yu; we can view it as a center with the fractional capacity
of L(u) · yu, because in a sense this is the maximum number (as a fraction)
of vertices this center serves according to the LP. Our rounding procedure will
open k centers, while ensuring that we can transfer the fractional capacity of
each u to one or more of the open centers that are close by (and the performance
guarantee is determined by how close these centers are). The following definition
formalizes the notion of a distance-r transfer:

Definition 3. Given a graph G = (V,E) with a capacity function L : V → Z≥0

and y ∈ RV
+, a vector y′ ∈ RV

+ is a distance-r transfer of (G,L, y) if

(3a):
∑

v∈V y′v =
∑

v∈V yv and
(3b):

∑
v:d(v,U)≤r L(v)y

′
v ≥

∑
u∈U L(u)yu for all U ⊆ V .

If y′ is the characteristic vector of S ⊆ V , we say S is a distance-r transfer of
(G,L, y).
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The given conditions say that a transfer should not change the total number
of open centers, while ensuring that the total fractional capacity in each small
neighborhood does not decrease as a result of this transfer. We also remark that
multiple transfers can be composed: if y′ is a distance-r transfer of (G,L, y) and
y′′ is a distance-r′ transfer of (G,L, y′) then y′′ is a distance-(r + r′) transfer of
(G,L, y).

Lemma 4. For a graph G = (V,E) with a capacity function L : V → Z≥0,
let (x, y) be a feasible solution to LPk(G). If S ⊆ V is a distance-r transfer of
(G,L, y), then every vertex v ∈ V can be assigned to a center s ∈ S such that
dG(v, s) ≤ r + 1, while ensuring no center is assigned more vertices than its
capacity. Moreover, |S| = k, and this assignment can be found in polynomial
time.

Proof. Consider the natural bipartite matching problem between V and the
multiset of open centers that are duplicated to their capacities: i.e, each center
s ∈ S appears in the multiset with multiplicity L(s). Every vertex v in V is
connected to every copy of each center s ∈ S such that d(v, s) ≤ r + 1. Observe
that a matching of cardinality |V | naturally defines an assignment that satisfies
the desired properties. We shall now show that there exists such a matching by
verifying Hall’s condition, i.e., that for all U ⊆ V , |U | ≤

∑
s∈S:dG(s,U)≤r+1 L(s).

As was observed earlier, we have |U | ≤
∑

w:dG(w,U)≤1L(w) · yw; from Condi-

tion (3b), |U | ≤
∑

w:dG(w,U)≤1L(w)·yw ≤
∑

s∈S:dG(s,U)≤r+1L(s). This matching

can be found in polynomial time, and |S| = k follows from Condition (3a). 
�

Tree instances. As was discussed earlier, we solve the general problem via re-
duction to tree instances.

Definition 5. A tree instance is defined as a tuple (T, L, y), where T = (V,E)
is a rooted tree with the capacity function L : V → Z≥0, and opening variables
y ∈ (0, 1]V satisfy that

∑
v∈V yv is an integer and yv = 1 for every non-leaf node

v ∈ V .

Our reduction uses the standard clustering technique (see e.g. [15]) to partition
the given graph into clusters that form a tree with adjacent clusters being close.
Then by aggregating the opening within each cluster, we find a distance-2 trans-
fer of the original LP solution, where each cluster now contains at least one fully
open vertex. Using these vertices as non-leaf nodes, we transform the tree of
clusters into a tree instance. As the adjacent clusters in the tree of clusters were
close, it turns out that a distance-r transfer on the tree instance we constructed
can be expressed as a distance-5r transfer on the original graph; composing these
two transfers gives an integral distance-(5r+2) transfer. In fact, through a care-
ful choice of non-leaf nodes, we can show that the approximation ratio can be
further refined to be 3r+ 3. The complete presentation of this reduction can be
found in the full version of this extended abstract.

Lemma 6. Suppose there exists a polynomial-time algorithm that finds an in-
tegral distance-r transfer of a tree instance. Then there exists a (3r+3)-approx-
imation algorithm for the capacitated k-center problem.
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4 Algorithm for Tree Instances

In this section we prove the following.

Lemma 7. There is a polynomial time algorithm that finds an integral distance-
2 transfer of a given tree instance (T, L, y).

We remark that it is easy to see that some tree-instances do not admit an integral
distance-1 transfer and the above lemma is therefore the best possible. One
example is the following: the instance consists of a root with six children, where
each child is opened with a fraction 2/3, and all vertices have the same capacity;
it is easy to see that any integral solution needs to transfer fractional capacity
from one leaf to another (i.e., of distance 2). We now present the algorithm along
with the arguments of its correctness.

The algorithm builds up the solution by recursively solving smaller tree in-
stances. The base case is simple: if |T | ≤ 1 then simply open the vertex in V (T )
if any. By the integrality of

∑
v∈V (T ) yv this is clearly a distance-2 transfer (ac-

tually a distance-0 transfer). Let us now consider the more interesting case when
|T | ≥ 2; then there exists a node r of which every child is a leaf. Let v1, . . . , v	 be
the children of r, in the non-increasing order of capacity: L(v1) ≥ · · · ≥ L(v	).

Let Tr denote the subtree rooted at r and Y :=
∑	

i=1 yvi . The algorithm con-
siders two separate cases depending on whether Y is an integer.

Let us start with the simpler case when Y is an integer: the algorithm selects
the set Sr consisting of the Y +1 vertices of highest capacity in Tr. As every pair
of nodes in Tr are within a distance of 2, Sr is a distance-2 transfer of the tree
instance induced by Tr. The algorithm then solves the tree instance induced by
T̄ := T \Tr to obtain a distance-2 transfer S̄ of size

∑
v∈T yv − Y − 1. It follows

that S := Sr ∪ S̄ is a distance-2 transfer of (T, L, y).
We now consider the final more interesting case when Y is not an integer. In

this case, we cannot consider Tr and T \ Tr as two separate instances because
the y-values suggest to either open �Y � + 1 or �Y � + 1 centers in Tr: a choice
that depends on the selected centers in T \Tr. As at least �Y �+1 of the vertices
in Tr will be selected as centers in either case, the algorithm will commit itself
to open the �Y � + 1 vertices in Tr of highest capacity. Let Scommit denote that
set and note that it equals {v1, . . . , v�Y , r} or {v1, . . . , v�Y , v�Y +1} dependent
on which node of r and v�Y +1 has the higher capacity (v�Y +1 is well defined
since we have that the number of children � is at least �Y � from y ≤ 1). By the
selection of Scommit, we have∑

u∈V (Tr)

yuL(u) ≤
∑

s∈Scommit

L(s) + ȳpL̄(p), (1)

where ȳp = Y − �Y � and L̄(p) = min[L(r), L(v�Y +1)]. In other words, if the
algorithm on the one hand chooses to only open the �Y �+1 centers Scommit in Tr,
then an additional fractional capacity ȳpL̄(p) needs to be transferred from Tr to
an open center in T \Tr. On the other hand, if the algorithm chooses to open all
the centers �Y �+ 1 in Scommit ∪ {v�Y +1, r} then those centers can accomodate
all the fractional capacity in Tr together with (1− ȳp)L̄(p) additional capacity.
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Fig. 1. (a) The construction of T̄ from T with the subtree Tr rooted at r with children
v1 and v2; the grey vertices are those selected in potential solutions to T̄ and T ,
respectively. (b) The bipartite graph and the induced subgraphs Ḡ and Gr that are
used in the proof of Claim 8.

We defer this decision to be based on the solution of the smaller tree instance
(T̄ , L̄, ȳ) obtained from (T, L, y) as follows (see also Figure 1a): replace Tr by
the vertex p that represents the deferred decision and let ȳ, L̄ be the natural
restrictions of y, L on T \Tr with ȳp = Y −�Y � and L̄(p) = min[L(r), L(v�Y +1)].
The algorithm then recursively solves this smaller instance to obtain a distance-
2 transfer S̄ of (T̄ , L̄, ȳ). From S̄ it constructs the solution S to the original
problem instance by first replacing p (if p is in S̄) by the vertex v�Y +1 or r that
was not chosen to be in Scommit, and then adding Scommit to the set.

We complete the proof of Lemma 7 by arguing that S is a distance-2 transfer
of the original tree instance (T, L, y). Note that, as |S̄| =

∑
v∈T̄ ȳv =

∑
v∈T yv−

1−�Y �, we have |S| = |S̄|+ |Scommit| =
∑

v∈V yv as required. It remains to verify
Condition (3b) of Definition 3:

Claim 8. We have
∑
u∈U

yuL(u) ≤
∑

s∈S:d(s,U)≤2

L(s) for all U ⊆ V (T ).

Proof. Consider the bipartite graph G with left-hand-side V (T ), right-hand-side
S, and an edge between v ∈ V (T ) and s ∈ S if d(s, v) ≤ 2. For simplicity,
we slightly abuse notation and think of V (T ) and S as disjoint sets. Moreover,
let N(U) denote the (open) neighbors of a subset U of vertices in this graph:
N(U) := {v | ∃u ∈ U dG(u, v) = 1}. Let w : V (T ) ∪ S → R be weights on the
vertices defined by

w(v) =

{
yvL(v) if v ∈ V (T )

L(v) if v ∈ S
.

With this notation, we can reformulate the condition of the claim as∑
u∈U

w(u) ≤
∑

s∈N(U)

w(s) for all U ⊆ V (T ). (2)

To prove this, we shall prove a slightly stronger statement by verifying the con-
dition separately on two biparite graphs Gr and Ḡ that correspond to Tr and
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T̄ , respectively. We obtain Gr and Ḡ from G as follows (see also Figure 1b).
First, add a vertex p to the left-hand-side by making a copy of r ∈ T and
set w(p) = ȳpL̄(p) and update w(r) = yrL(r) − ȳpL̄(p) = L(r) − ȳpL̄(p) ≥ 0.
Similarly, if p ∈ S̄ then add a copy p of r ∈ S and set w(p) = L̄(p) and up-
date w(r) = L(r) − L̄(p) ≥ 0. Note that after these operations the vertices of
both the left-hand-side and the right-hand-side can naturally be partitioned into
those that correspond to vertices in Tr and those that correspond to vertices in
T̄ . Graphs Gr and Ḡ are the subgraphs induced by these two partitions.

Let us first verify that (2) holds for Ḡ. By construction, we have that the
total weight w(U) of a subset U of V (T̄ ) is equal to

∑
u∈U ȳuL̄(u) and the total

weight w(N(U)) of its neighborhood in Ḡ equals
∑

s∈S̄:d(s,U)≤2 L̄(s). Hence, (2)

holds since S̄ is a distance-2 transfer of (T̄ , L̄, ȳ).
We conclude the proof of the claim by verifying (2) for Gr. As both the left-

hand-side and right-hand-side of Gr correspond to vertices in Tr that all are
within distance 2 of each other, we have that Gr is a complete bipartite graph.
The total weight of the left-hand-side is by construction

∑
u∈Tr

yuL(u)− ȳpL̄(p)

and the total weight of the right-hand-side is
∑

s∈Tr∩S L(s) − L̄(p)1p∈S̄ which
equals

∑
s∈Scommit

L(s). The claim now follows from (1), i.e., that
∑

u∈Tr
yuL(u)−

ȳpL̄(p) ≤
∑

s∈Scommit
L(s). 
�

The above claim completed the analysis of the algorithm for finding an integral
distance-2 transfer of a given tree instance and Lemma 7 follows.

5 Extensions to Other Problems and Future Directions

Our techniques can be extended to obtain approximation algorithms for other
problems. The full version of this extended abstract discusses two problems to
which our techniques readily apply; we see this as further evidence that the
simplicity of our approach helps in designing better algorithms also for other
location problems.

As our 9-approximation algorithm comes close to settling the integrality gap,
it is natural to ask if our techniques can be used to obtain a tight result. Re-
call that our framework consists of first reducing the general problem to tree
instances and then solving such instances. Since our algorithm for tree instances
is the best possible, any potential improvement must come from the reduction,
and we raise this as an open problem.

Finally, as the {0, L}-case suggests, our preliminary results on additional pre-
processing indicate that further investigation is necessary to understand if these
techniques can help bring down the integrality gap to the tight factor of 3. More
generally, we believe that it is important not only for capacitated k-center but
also for other problems, such as facility location and k-median, to understand
the power of lift-and-project methods (applied to potentially different formu-
lations). For example, do they automatically capture these preprocessing steps
and lead to stronger formulations?
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Abstract. We consider the semi-continuous knapsack problem with generalized
upper bound constraints on binary variables. We prove that generalized flow cover
inequalities are valid in this setting. We also prove that, under mild assumptions,
they are facet-defining inequalities for the full problem. We then focus on simul-
taneous lifting of pairs of variables. The associated lifting problem naturally in-
duce multidimensional lifting functions, and we prove that a simple relaxation, in
a restricted domain, is a superadditive function. We also prove that in many cases
this approximation is actually the optimal lifting function. We then analyze the
separation problem, which we separate in two phases: first, find a seed inequality,
where we evaluate both exact and heuristic methods; secondly, since the lifting is
simultaneous, our class of lifted inequalities might contain an exponential num-
ber of them. We choose a strategy of maximizing resulting violation. Finally, we
test this class of inequalities on instances arising from electricity planning prob-
lems. Our test show that the proposed class of inequalities are strong in the sense
that adding a few of these inequalities, they close, on average, 57.70% percent of
the root integrality gap, and close 97.70% of the relative gap, while adding very
few cuts.

Keywords: Knapsack problem, sequence independent multidimensional lifting,
generalized upper bounds.

1 Introduction

Binary knapsack programs are a common model for choosing between discrete alter-
natives. If the choice is continuous but limited, we can see the model as the classical
single-node capacitated network design model [10], if the choice is semi-continuous,
then we must consider mixed-binary knapsack programs; this problem is known as the
semi-continuous knapsack problem (SCKP). If, in addition, we have that binary vari-
ables are partitioned in sets such that we can choose at most one of them from any
given set, we have what we call a semi-continuous knapsack problem with generalized
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upper bound constraints (SCKPGUB). This kind of models are common for represent-
ing (possibly non-linear) functions (with only one GUB constraint), or when we are
looking at the combined non-linear output of several machines (which is the case on
production scheduling problems, as is the case in electricity generation, among many
others). In this setting, sequential lifting is too limited, in the sense that whenever we
have a constraint y ≤ x for x ∈ {0, 1} and y ∈ [0, 1], lifting must be done first on the
integer variable and then on the continuous variable, which precludes finding some facet
defining inequalities for the complete problem; thus, simultaneous lifting is essential in
this setting.

In this paper we use generalized flow cover inequalities [12] (GFC), show that they
are valid in our setting, and in many cases induce facets on faces of the original problem.
We then propose a valid sequence-independent multidimensional lifting scheme, to ob-
tain valid inequalities for SCKPGUB; we show that superadditivity on a restricted set
of feasible right hand sides, and show that this condition is enough to obtain sequence-
independent lifting. We also provide sufficient conditions for this lifting to be maximal.

The paper is organized as follows: Section 2 cover some of the known facts on semi-
continuous knapsack problems, including some known valid inequalities, and some ba-
sic results for the semi-continuous knapsack problem with GUB constraints. Section 3
deals with multidimensional lifting for SCKPGUB, specifically on how to obtain valid
sequence-independent lifting functions for them. It also proposes simple algorithms for
solving the separation problem; both for the seed inequality, and for selecting maxi-
mally violated lifted inequalities. Section 4 present experiments designed to show that
the proposed heuristic separation provide good results, and that the lifting step is crucial.
Instances are randomly generated and are derived from electricity generation problems.
Finally, Section 5 presents our conclusions and further questions on this topic.

2 Definitions and Basic Polyhedral Results

2.1 The Problem

To simplify notation we will write a · b(A) to represent
∑

(aibi : i ∈ A), a(A) to rep-
resent

∑
(ai : i ∈ A) and [n] to represent {1, . . . , n}. We consider the semi continuous

knapsack problem with generalized upper bound constraints, given by

XG =

⎧⎪⎪⎨⎪⎪⎩
(x, y) ∈ {{0, 1} × [0, 1]}M :

(a · x+m · y) (M) ≤ b
yk ≤ xk ∀k ∈M

x(Mg) ≤ 1 ∀g ∈ G

⎫⎪⎪⎬⎪⎪⎭ , (1)

where G is the set of GUB constraints, M = {(gi, ji)}ni=1, Mg = {(g′, j′) ∈M : g′ =
g}. Note that akxk + mkyk is a model for a semi-continuous variable with values in
{0} ∪ [ak, ak + mk]. The first constraint is the semi-continuous knapsack constraint,
the second constraint ensure semi-continuity, and the last constraint imposes the gener-
alized upper bound condition among disjoint sets of binary variables.
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2.2 Literature Review

Many special cases of this structure have been studied before. For example, the classical
binary knapsack problem was studied by Balas and Jeroslow [3] in a theoretical work
where canonical cuts on the unit hypercube were introduced. Based on this work, in
1975, Wolsey [15] and Balas [2] presented facet defining inequalities for the KP using
for the first time the notion of cover. In 1978, Balas and Zemel [4] extend previous
work, applying lifting procedures to valid inequalities obtained from minimal covers. In
1980, Padberg [11] present (1, k)-configurations as a generalization of minimal covers
inequalities. Inclusion of GUB constraint in KP (KPGUB), was studied by Johnson and
Padberg [8]; they also shown how to transform a general instance of the problem in one
with non-negative coefficients only. In [14], Wolsey defined some valid inequalities for
the KPGUB, and proved that they are facet defining under certain conditions. Sherali
and Lee [13], apply sequential and simultaneous lifting to valid inequalities for KPGUB
deduced from minimal covers.

Another special case is when ak = 0 and |Mg| = 1. This case is called single
node flow sets (SNFS) and their study has been extended from work of Gu et al. [6]
from lifting procedures applied to this set. In 2007, Louveaux and Wolsey [9] give an
interesting survey of strong valid inequalities for knapsack and single node flow sets.

As can be seen, application of lifting procedures is a fundamental part of cut genera-
tion techniques for many specific sets. In 1977, Wolsey [16] presented the first work on
this area where the concept of superadditivity was used. In 2000, Gu et al. [7] general-
ized it and defined sequence independent lifting of general mixed integer programs. In
2004, Atamtürk [1] gave similar results.

All these works can be seen as one-dimensional lifting, since they consider the per-
turbation of one constraint only. For multidimensional lifting, applications are scarce,
being the work of Zeng and Richard [18,19,17] the most interesting. They defined a
general framework to derive multidimensional superadditive lifting functions and ap-
plied it to the precedence constrained knapsack problem and to the single node flow set.
They show that the traditional concept of superadditivity used by Gu et al. [7], can be
restricted depending of the problem in which it is applied. We provide a simple proof
of this result in the context of SCKPGUB.

2.3 Polyhedral Results

Basic Results for SCKPGUB. From this point onward we will assume that ā :=
max{ak : k ∈M} < b. With this in place, Proposition 1 follows.

Proposition 1. 1. XG is full dimensional.
2. Inequality yk ≥ 0 is facet-defining for XG, ∀k ∈M .
3. If ak +mk ≤ b, inequality yk ≤ xk is facet-defining for XG, ∀k ∈M .
4. If ag := max

g′ �=g,j∈Ng′
{ag′j} + min

j∈Ng

{agj} < b, then x(Ng) ≤ 1 is facet defining for

XG, for g ∈ G.
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Generalized Flow Cover Inequalities for SCKP. Consider the set

X =

⎧⎨⎩
(x, y) ∈ {0, 1}n × [0, 1]n+ :

(a · x+m · y) (N) ≤ b
yj ≤ xj ∀j ∈ N

⎫⎬⎭ . (2)

Van Roy and Wolsey [12] studied (a generalization of) this polyhedron, and proposed a
family of valid inequalities which they called generalized flow cover inequalities (GFC).
In our setting, this family of inequalities can be stated as follows:

Given X as defined in (2), a pair (C,CU ) with C ⊂ N , CU ⊂ C, satisfying Γ :=
a(C) +m(CU )− b > 0 and mCU > 0, is called a generalized cover. Defining ξj = aj

for j ∈ C \ CU , ξj = aj +mj for j ∈ Cu, and γj = min
{
1,

ξj
Γ

}
; then

γ · x(C) +
(m
Γ
· (y − x)

)
(CU ) ≤ γ(C)− 1, (3)

is valid for X .
The following theorem give sufficient conditions for (3) to be facet-defining for X .

Theorem 1. Let (C,CU ) be a generalized flow cover, satisfying
∑

j∈CU :ξj>Γ

mj > Γ .

Then inequality (3), is facet-defining for Xo := X ∩ {xi = 0, ∀i /∈ C}.

Note that X is a face of XG, where we choose at most one element from every GUB
constraint to be active; from this, the previous theorem give simple conditions for having
facet-defining inequalities for this face of XG. Moreover, since X can also be seen as a
relaxation of XG, we have that (3) also define valid inequalities for XG.

3 Multidimensional Lifting for SCKPGUB

3.1 Valid Lifting Functions

As was noted before, given a generalized flow cover C,CU in XG satisfying |C ∩
{(g, j) : j ∈ Ng}| ≤ 1, ∀g ∈ G, then (3) is valid for XG, and if m(C+

U ) > Γ ,
where C+

U = {k ∈ CU : ak + mk > Γ}, then (3) it is a facet-defining inequality
for XG ∩ {xi = 0, ∀i /∈ C}. Following Gu et. al [7], we consider the problem of
sequentially lifting pairs of variables1 (xk, yk), k /∈ C to obtain

γ · x(C) +
(m
Γ
(y − x)

)
(CU ) + (α · x+ β · y) (Cc) ≤ γ(C)− 1. (4)

If we index pairs {ki}n−|C|
i=1 = {(gi, ji)}n−|C|

i=1 = M \C, and assume that the first i− 1
pair of variables have been lifted, the i-th lifting functions can be written as

hki(z,v) = max αkixki + βkiyki

s.t. akixki +mkiyki = z

xki = vgi

0 ≤ yki ≤ xki

xki ∈ {0, 1}, (5)

1 And then, simultaneously lift them.
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and the functions fki(z,v) are given by

fki(z,v) = min γ · (1− x)(C) −
(m
Γ
(y − x)

)
(CU )− (α · x+ β · y) (Ki)− 1

s.t. (a · x+m · y) (C ∪Ki) ≤ b− z

x
(
Mg ∩

(
C ∪Ki

))
≤ 1− vg, ∀g ∈ G

0 ≤ yk ≤ xk, xk ∈ {0, 1} ∀k ∈ C ∪Ki, (6)

where Ki = {k1, . . . , ki−1}, z ∈ [0, b] and v has the dimension of the right hand sides
of XG for GUB constraints and for simple bounds on binary variables, and is defined
as vk′ = δk′,ki for k ∈ M and vg′ = δg′,gi for g ∈ G, where δa,b = 1 if a = b
and zero otherwise, i.e. v = (eki , egi). We are interested in finding αki , βki that ensure
that hki(z, uv) ≤ fki(z, uv) for all (z, u) ∈ {(0, 0)} ∪ {([aki , aki + mki ], 1)} and
v = {(eki , egi)}. This implies that we are not interested in hki , fki for all possible
(z,v) ∈ R× {0, 1}G∪M , but only on the true domain of feasible points of XG.

Although the lifting is multidimensional, at every step, there are only two degrees of
freedom in the functions, namely z and u ∈ {0, 1}. The analysis for hki is easy, for the
case where mki > 0, the optimal value for hki(z,v) is

hki(z,v) =

{
0 u = 0, z = 0

α̃+ β̃z u = 1, aki ≤ z ≤ aki +mki

where α̃ = αki −
aki

mki
βki and β̃ = 1

mki
βki .

For the case where mki = 0, the optimal value of the function is

hki(z,v) =

{
0 u = 0, z = 0
α̃ u = 1, z = aki

where α̃ = αki and β̃ = βki = 0. α̃, β̃ are called normalized lifting coefficients.
To study fki we start with a simple case in the following propositions:

Proposition 2. Let D = {(g, j) ∈ M \ C : ∃(g, j′) ∈ C, ξgj′ ≥ Γ, agj + mgj ≤
ξgj′ − Γ}. Then, for all k ∈ D, the maximal lifting coefficients (αk, βk) are (0, 0).

Proof. Since lifting functions are decreasing in the order, assume that the first elements
to lift from the seed inequality are from D. Let k be an element in D. It is known
that fk(z,v) ≥ 0 and monotone non-decreasing function, and that f(0,0) = 0. This
implies that is enough to find a feasible point for z = ak + mk with objective value
equal to zero to prove our result. Let ko ∈ C satisfying ξko > Γ and ak + mk ≤
ξko − Γ , then, setting (x, y) = (1C − eko ,1C − eko), we have that fk(z,v) ≤ 0 for
z ∈ [ak, ak +mk],v = (ek, egk). �

Proposition 3. If k ∈ M \ (C ∪ D), then for every optimal solution of the problem
fk(z, v), it is always possible to find an optimal solution x∗, y∗ satisfying y∗k = 0 for
k ∈ CL and x∗

k = y∗k = 0 for k ∈ D .

These two propositions allow us to work assuming that D = ∅ and that m(CL) = 0.
Given v ∈ {0, 1}G, and defining Cv = {(g, j) ∈ C : vg = 1}, then, we can re-write
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the first lifting function f(z1,v) as

f1(z,v) = γ(C)− 1−max
(
γ · x+

m

Γ
· (y − x)

)
(C \ Cv)

s.t. (ξ · x+m · y) (C \ Cv) ≤ b− z

0 ≤ yk ≤ xk, xk ∈ {0, 1} ∀k ∈ C \ Cv . (7)

In general, f1(z,v) is a complex function; however, in many common cases2 f1(z,v)
is equivalent to (or is bounded from below by) the function obtained from the following
relaxation3:

f̃(z,v) = γ(Cv)− 1+ min x(C+ \ Cv) +
s

Γ
s.t. ξ · x(C+ \ Cv) + s ≥ z + Γ − ξ(Cv)

0 ≤ s, xk ∈ {0, 1}, ∀k ∈ C+ \ Cv, (8)

where C+ = {k ∈ C : ξk > Γ}. In this form it is easy to prove the following results:

Proposition 4. By renaming C+ \ Cv = [rv] while ensuring that ξvh ≥ ξvh+1, defining
Λv
h = ξ(Cv) + ξv([h − 1]), and defining H(z) = 0 if z ≤ 0 and H(z) = 1 if z > 0,

then

f̃(z,v) = γ(Cv)− 1 +
s∗

Γ
+
∑

(H (z − s∗ − Λv
h + Γ ) : h ∈ [rv ]) , (9)

where s∗ = (z − Λv
rv+1

+ Γ )I(z ≥ Λv
rv+1
− Γ ) +

rv∑
h=1

(z − Λv
h) I(0 ≤ z − Λv

h ≤ Γ ),

moreover, the optimal solution for x is given by x∗
h = H(z− s∗−Λv

h +Γ ), ∀h ∈ [rv ].

Theorem 2. The function f̃(z,v) is superadditive for (z,v) ∈ [0,+∞)× {0, 1}G.

Corollary 1. If, for each pair of variables (xk, yk), where k = (g, j), we choose the
lifting coefficients (αk, βk) such that hk(z, u) ≤ f̃(z, ueg) for (z, u) ∈ {([ak, ak +
mk], 1), (0, 0)}, then the lifting process is sequence independent.

3.2 Algorithmic Separation

The previous results show that we can use f̃(z,v) to find valid (and in many cases
optimal) lifting coefficients for generalized flow cover inequalities (where, for each
GUB, at most one binary variable is in the cover) to obtain strong inequalities for XG.

In this section we deal with the separation problem of such lifted inequalities. More
precisely, given x∗ a fractional solution in the LP relaxation of (1), try to find a violated
lifted constraint. We address this problem in two stages; first, we show how to lift a can-
didate inequality, then we propose an heuristic to identify a candidate seed inequality.
Finally, we keep inequalities that are violated.

2 A simple sufficient condition is that the mk ≥ Γ for the two smallest ξk coefficients in C
3 This relaxation is obtained by relaxing integrality of x /∈ C+, discarding yi ≤ xi, aggregating

all continuous variables into s, and complementing remaining integer variables.
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Lifting GUB-Constrained Flow-Cover Inequalities. Although closed form expres-
sions for f̃(z,v) are possible; it is important to note that given for each pair of lifted
variablesk ∈M\C and its range [ak, ak+mk], there are several maximal pairs of coeffi-
cients αk, βk satisfying hk(z, xk) ≤ f̃(z, xkeg(k)). This implies that the number of pos-
sible lifted inequalities derived by this method can be exponential; and a proper method
to choose which (set of) inequalities to use is crucial, and should depend on the frac-
tional values of the current fractional point x∗, y∗. Fortunately, a complete description of
all pairs of maximal lifting coefficients can be obtained using Algorithm 1, whose com-
plexity is O(|C|).In our implementation we choose (α∗, β∗) ∈ argmax{x∗

kα + y∗kβ :
(α, β) ∈ H}, where H is the set of maximal lifting coefficients.

Algorithm 1. Finding lower envelope of f̃(·,v).
Require: Breakpoints of f̃(·, v), B = {zi}mi=1 where zi ≤ zi+1 and |B| ≥ 2. Interval [a, b],

actual range for z (we assume z1 ≤ a ≤ b ≤ zn).
Ensure: H = {α̃j , β̃j}, pairs of (normalized) maximal lifting coefficients.
1: B[a,b] ← {a} ∪ {zi ∈ B : a < zi < b} ∪ {b} (ordered set)
2: n ← |B[a,b]|, H ← ∅, kl ← 1, kr ←− 2
3: if n = 1 then
4: return {(f̃(a,v), 0)}
5: loop
6: zl ← B[a,b][kl], fl ← f̃(zl,v), zr ← B[a,b][kr], fr ← f̃(zr,v)

7: β̃ ← fr−fl
zr−zl

,α̃ ← fl − β̃zl
8: if kr + 1 > n then
9: return H ∪ {(α̃, β̃)}

10: z2r ← B[a,b][kr + 1], f2r ← f̃(z2r,v)

11: if α̃+ β̃z2r ≤ f2r then
12: kl ← kr , H ← H ∪ {(α̃, β̃)}
13: kr ← kr + 1

Algorithm 2. Heuristic to find a GFC.
Require: Fractional point (x∗, y∗).
Ensure: (C,CU ), generalized flow cover.
1: C ← ∅, CU ← ∅
2: for g = 1 to G do
3: z∗g ←

∑
k∈Mg

(akx
∗
k +mky

∗
k)

4: Select k̄g from argmin{k ∈ Mg : min{(ak − z∗g)+, (z
∗
g − ak −mk)+}}

5: if z∗g > 0 then
6: C ← C ∪ {k̄g}
7: if |z∗g − ak̄g

| > |z∗g − ak̄g
−mk̄g

| then
8: CU ← CU ∪ {k̄g}
9: Apply 1-OPT trying to maximize

∑
k∈C γk (x

∗
k − 1)

10: return (C,CU )
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Finding Generalized Flow Cover Inequalities in Proper Faces of XG. It is known
that finding maximally violated cover inequalities is alreadyNP-hard [6]; and although
it is possible to formulate the separation problem of generalized flow cover inequalities
as an IP, we propose Algorithm 24.

4 Numerical Experiments

4.1 Instances

To evaluate the performance of the inequalities presented in this paper, we consider
a set of 3, 000 random instances inspired by the unit commitment problem. Further-
more we assume that the GUB structure and semi-continuous variables are already
identified. In these instances |G| ∈ {5, 10, 20, 40, 80}, and the number of elements in
each GUB constraint where randomly chosen as |Mg| ∼ {U [2, 8],U [7, 13],U [17, 23]}.
aj ∼ U [10, 150],mj ∼ U [20, 300], ∀j ∈ M . b ∼ U [0.25, 0.95]bmax, where bmax =
is the maximum value of the left hand side of the knapsack constraint. The cost coeffi-
cients were chosen as cxk ∼ 2, 500ak − U [370, 1000]− U [15, 50]ak, cyk ∼ 2, 500mk −
U [15, 50]mk, ∀k ∈M , to represent typical cost functions in unit commitment instances.
To evaluate the effect of cases with mk = 0, half of the instances include GUB con-
straints where mk = 0 for 40% of the elements in each GUB constraint.

4.2 Quality Measures

We use performance profiles (see [5]) on two quality measures: closed root gap (CG)
and closed relative gap (CRG) which we define as

CG = 100× zLPn − zLPo

zMIP − zLPo

, CRG = 100× zLPn

zMIP
,

where zMIP is the optimal objective value of the mixed integer problem, zLPo is the
optimal objective value of the original linear relaxation and zLPn is the optimal objec-
tive value of the final LP relaxation (after several rounds of cuts). Note that for all our
instances zLPo < zMIP , and that zMIP > 0; thus, we are never dividing by zero. Also,
CRG can be seen as what a user will see as the reported gap when using any of the
commercial MIP solvers out there (which might be more interesting for practitioners);
while CG can be interpreted as the actual improvement in the lower bound due to the
given method (which is a proxy on how much we improve the polyhedral representation
of the given set for the given objective function).

We do not report running times as the separation process is very quick in all in-
stances and the number of calls of the separation heuristic is always less than fourteen.
Moreover, we do not evaluate branch and bound performance, because our instances are
exactly instances of a single XG problem, and are always very easy to solve; whereas
actual unit commitment problems can have anywhere between 24 to 336 such sub-
structures, in addition to of other side constraints. This is why we chose to leave this
study for a future work.

4 This heuristic is a simple extension of other heuristics to find maximally violated cover in-
equalities
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4.3 The Experiments

The General Cutting Scheme: In each and every case, we apply the cutting scheme
described in Algorithm 3.

Algorithm 3. General cutting scheme.

Require: LP 0, initial LP relaxation of XG.
Ensure: Z, cut generation scheme optimal values.
1: k ← 0, Z ← ∅
2: loop
3: Solve current relaxation LP k .
4: Obtain optimal value z∗k and candidate solution (x∗

k, y
∗
k).

5: Z ← Z ∪ {z∗k}
6: if x∗

k ∈ {0, 1}M then
7: return Z
8: From (x∗

k, y
∗
k) and using Algorithm 2, find base GFC inequality satisfying Γ ≥ 0.1 (it

must be not violated).
9: Lift seed inequality, expressed as in (4), while maximizing resulting violation vk.

10: if Γvk ≥ 0.1 then
11: k ← k + 1
12: Add lifted seed inequality to LP k.
13: else
14: return Z

This scheme can be seen as a basic cutting loop at the root node. We will evaluate
the following variations of this scheme:

IP : exact separation of seed inequality and no lifting.
IP+Lift : same as before, but we perform step 9.
Heu : construction heuristic for seed inequality, no lifting.
Heu+1-opt : same as before, but perform 1-opt optimization of seed inequality.
Heu+1-opt+Lift : same as before, but followed by our lifting step.
Heu+Lift : construction heuristic for finding seed inequality, and we perform step 9.

Effectiveness of the Separation Heuristic. Figure 1 shows the performance profile
for CG and for CRG on 600 instances with five GUB constraints, where we can solve
the IP-separation of the base GFC inequality (top), and shows the performance profile
for CG and CRG on all 3, 000 instances (bottom)5. Table 1 has a summary of these
results.

It is clear that, measured either by CRG or by CG, Heu+1-opt performs very close
to the IP separation of the base heuristic on the set of small instances; while maintaining
its edge over the basic heuristic on all instances. This, plus the fact that the exact sep-
aration is far too costly on running time, justify using the proposed method; however,
this is not an exhaustive evaluation, and any practical implementation should deal on
this matter in much more detail.

5 In our case, each point (x, y) of the plotted curves mean that for the worst x% of the instances,
the given method closes at most y% of absolute root integrality gap (left), and that the method
finished with a lower bound of y% of the actual integer optimal solution value or less (right).
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Fig. 1. Left: CG performance profile; Right: CRG performance profile; Top: Instances with
|G| = 5; Bottom: All instances

Table 1. Summary results of experiments of average CG, CRG and number of cuts, for both,
small and all instances for all algorithm variations

Average CG Average CRG Average Ncuts

All |G|=5 All |G|=5 All |G|=5
-Lift +Lift -Lift +Lift -Lift +Lift -Lift +Lift -Lift +Lift -Lift +Lift

Heu 15.81 29.63 21.70 35.70 95.01 95.53 82.78 84.56 0.31 1.31 0.31 1.16
Heu+1opt 39.47 57.70 53.73 73.46 96.58 97.70 88.38 92.36 1.64 2.08 1.81 2.14
IP – – 55.81 74.13 – – 89.13 93.11 – – 3.17 3.36

Robustness of the Results: Another question to ask, is how robust are the results
on the size of the instances. To answer this, we categorize our instances according to
the number of GUB constraints (|G|) and on the number of elements in each GUB
constraint (|Mg|), and see the average CG and CRG for Heu+1-opt+Lift. Figure 2
represent a graphical representation of how the average CR and CRG vary depending
on these two criteria. Although it is expected that CG performance deteriorate as we
increase both the number of GUB constraints and the number of elements in each GUB,
is surprising that this tendency is reversed for CRG. This might be due to the special
cost structure used in these instances; but, if true on a larger scale, it can be beneficial
that the final relative integrality gap decreases on larger instances.

The Effect of Lifting: As was noted in Section 3, our seed inequality is already valid
for XG; so a natural question is how much we gain by doing the lifting process. Again,
Table 1 is clear on this respect. If we measure CG, the effect ranges between 15% to
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20% of more closed root gap; and between 0.5% to 4% of extra CRG; which is very
impressive. Moreover, if we look at the number of instances where we could not add
any cut; in all the variations of our cutting scheme where lifting was performance, at
most in two instances we could not find any cut; while for variations without lifting, we
could not find cuts for 2,167 instances for Heu, and 174 instances for Heu+1-opt. All
this shows a strong impact of lifting.
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Fig. 2. Left: average CG on categorized instances; Right: average CRG on categorized instances

Number of Added Cuts: A common problem with cutting schemes is that they may
require too many cutting rounds to achieve the reported quality. Surprisingly enough,
in our experiments, we add, on average 2.14 cuts on all instances; for 92.2% of our
instances we add up to three cuts; for 99.33% of our instances we add up to six cuts;
and at most 14 cuts in the worst case.

5 Final Comments

In this paper we study sequence-independent multidimensional lifting of generalized
flow cover inequalities to obtain strong inequalities for the so-called semi continuous
knapsack problem with GUB constraints. We also prove that, under mild assumptions,
the starting inequality is facet-defining on a face of our polyhedron. Also, under sim-
ple assumptions, we show that the sequence-independent lifting function is indeed the
optimal (maximal) lifting function; which together with the previous result, allow us
to obtain high-dimensional facets. Unlike one-dimensional lifting, in our setting, our
supper additive lifting function define a large class of valid inequalities. This introduce
the problem of selecting the inequality to be added.

In our computational study, we choose the inequality to be added by maximizing re-
sulting violation. We use a set of 3, 000 randomly generated instances of different sizes
to conduct our experiments. Our experiments show that, although the separation prob-
lem is NP-hard, by using simple heuristics and our superadditive lifting, it is possible
to close, on average, 57.70% root integrality gap, and 97.70% relative gap.

Finally, there are still many open questions: first, can we take advantage of GUB-
partitioned binary variables in other classical polyhedral sets to find tighter valid in-
equalities? Secondly, in our setting, could we extend our analysis for the case where
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ak might be negative? This is an important question in our application, but is also rele-
vant in other applications. Thirdly, Is it possible to efficiently detect the basic GUB and
semi-continuous structure in general problems? probably not, but even if we are given
the GUB constraints, can we use the proposed methodology in general problems? Other
relevant questions are also how to select the seed inequality; or should we be looking
at using (at the same time) several seed inequalities that could better complement each
other when we add them to the current LP relaxation? We feel that all these questions
are relevant points for the practical use of the proposed inequalities, and we hope to
tackle them soon.
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Abstract. We study the uniqueness of minimal liftings of cut gener-
ating functions obtained from maximal lattice-free polytopes. We prove
a basic invariance property of unique minimal liftings for general max-
imal lattice-free polytopes. This generalizes a previous result by Basu,
Cornuéjols and Köppe [3] for simplicial maximal lattice-free polytopes,
thus completely settling this fundamental question about lifting. We also
extend results from [3] for minimal liftings in maximal lattice-free sim-
plices to more general polytopes. These nontrivial generalizations require
the use of deep theorems from discrete geometry and geometry of num-
bers, such as the Venkov-Alexandrov-McMullen theorem on translative
tilings, and McMullen’s characterization of zonotopes.

1 Introduction

Overview and Motivation. The idea of cut generating functions has emerged
as a major theme in recent research on cutting planes for mixed-integer linear
programming. The main object of study is the following family of mixed-integer
sets:

Xf (R,P ) = {(s, y) ∈ Rk
+ × Z	

+ : f +Rs+ Py ∈ Zn},
where f ∈ Rn, and R ∈ Rn×k, P ∈ Rn×	. We denote the columns of matrices R
and P by ri, i = 1, . . . , k and pj, j = 1, . . . , � respectively. For a fixed f ∈ Rn\Zn,
a cut generating pair (ψ, π) for f is a pair of functions ψ, π : Rn → R such

that
∑k

i=1 ψ(r
i)si +

∑	
j=1 π(p

j)yj ≥ 1 is a valid inequality (cutting plane) for
Xf (R,P ), for all matrices R and P . This model and the idea of cut generating
pairs arose in the work of Gomory and Johnson from the 70s. We refer the reader
to [5] and [6] for surveys of the intense research activity this area has seen in the
last 5-6 years.

A very important class of cut generating pairs is obtained using the gauge
function of maximal lattice-free polytopes in Rn. These are convex polytopes
B ⊆ Rn such that int(B) ∩ Zn = ∅ and B is inclusion-wise maximal with this
property. Given a maximal lattice-free polytope B such that f ∈ int(B), one
can express B = {x ∈ Rn : ai · (x − f) ≤ 1 ∀i ∈ I}. One then obtains a cut
generating pair for f by setting ψ(r) = maxi∈I a

i ·r for all r ∈ Rn (this is known
as the gauge of B−f), and using any π such that (ψ, π) is a cut generating pair.
One commonly used π is defined by π(r) = minw∈Zn ψ(r + w) for all r ∈ Rn. It
can be shown that (ψ, π) thus defined forms a valid cut generating pair.

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 76–87, 2014.
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Given a particular maximal lattice-free polytope B with f ∈ int(B), it is
generally possible to find many different functions π such that (ψ, π) is a cut
generating pair for f , when ψ is fixed to be the gauge of B − f . The different
possible π’s are called liftings and the strongest cutting planes are obtained from
minimal liftings, i.e., π such that for every lifting π′, the inequality π′ ≤ π implies
π′ = π.

Closed-form formulas for cut generating pairs (ψ, π) are highly desirable for
computational purposes. This is the main motivation for considering the special
class of cut generating pairs obtained from the gauge of maximal lattice-free
polytopes and their liftings. The gauge is given by the very simple formula
ψ(r) = maxi∈I a

i · r, and the hope is that simple formulas can be found for
its minimal liftings as well. In this regard, the following results are particularly
useful. Dey and Wolsey established the following theorem in [7] for n = 2.

Theorem 1. (Theorems 5 and 6 in [4], Theorem 4 in [2].) Let ψ be the gauge of
B − f , where B is a maximal lattice-free polytope and f ∈ int(B). There exists
a compact subset R′(f,B) ⊆ Rn such that R′(f,B) has nonempty interior, and
for every minimal lifting π, π(r) = ψ(r) if and only if r ∈ R′(f,B). Moreover,
for all minimal liftings π, π(r) = π(r + w) for every w ∈ Zn, r ∈ Rn.

This theorem shows that for a “fat” periodic region R′(f,B) + Zn, we have a
closed-form formula for all minimal liftings (using the formula for ψ). In particu-
lar, when all the columns of the matrix P are in R′(f,B)+Zn, we can efficiently

find the cutting plane
∑k

i=1 ψ(r
i)si +

∑	
j=1 π(p

j)yj ≥ 1 from B. Moreover, the
above theorem shows that if R′(f,B) + Zn = Rn, then there is a unique min-
imal lifting π. The following theorem from [2] establishes the necessity of this
condition.

Theorem 2. (Theorem 5 in [2].) Let ψ be the gauge of B − f , where B is
a maximal lattice-free polytope and f ∈ int(B). Then ψ has a unique minimal
lifting if and only if R′(f,B)+Zn = Rn. (R′(f,B) is the region from Theorem 1)

The above theorems provide a geometric perspective on sequence independent
lifting and monoidal strengthening that started with the work of Balas and
Jeroslow [1]. In this context, characterizing pairs f,B with unique minimal lift-
ings becomes an important question in the cut generating function approach to
cutting planes. Recent work and related literature can be found in [2–4, 6–8].

Our Contributions. We will denote the convex hull, affine hull, interior and
relative interior of a set X using conv(X), aff(X), int(X) and relint(X) respec-
tively. We call an n-dimensional polytope S in Rn a spindle if S = (b1 + C1) ∩
(b2 + C2) is the intersection of two translated polyhedral cones b1 + C1 and
b2 + C2, such that the apex b1 ∈ int(b2 + C2) and the apex b2 ∈ int(b1 + C1).

Let B be a maximal lattice-free polytope in Rn and let f ∈ int(B). By Fct(B)
we denote the set of all facets of B. With each F and f we associate the set
PF (f) := conv({f} ∪ F ). With each F and each z ∈ F ∩ Zn we associate the
spindle SF,z(f) := PF (f) ∩ (z + f − PF (f)). Furthermore, we define RF (f) :=
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z∈F∩Zn SF,z(f), the union of all spindles arising from the facet F , and the

lifting region R(f,B) :=
⋃

F∈Fct(B) RF (f) associated with the point f .

One of the main results in [2] was to establish that R(f,B) − f is precisely
the region R′(f,B) described in Theorem 1. In light of Theorem 2, we say B has
the unique-lifting property with respect to f if R(f,B)+Zn = Rn, and B has the
multiple-lifting property with respect to f if R(f,B) + Zn �= Rn. We summarize
our main contributions in this paper.

(i) A natural question arises: is it possible that B has the unique-lifting prop-
erty with respect to one f1 ∈ int(B), and has the multiple-lifting property
with respect to another f2 ∈ int(B)? This question was investigated in [3]
and the main result was to establish that this cannot happen when B is a
simplicial polytope. We prove this for general maximal lattice-free polytopes
without the simpliciality assumption:

Theorem 3. (Unique-lifting invariance theorem.) Let B be any maximal
lattice-free polytope. For all f1, f2 ∈ int(B), B has the unique-lifting property
with respect to f1 if and only if B has the unique-lifting property with respect
to f2.

In view of this result, we can speak about the unique-lifting property of B,
without reference to any f ∈ int(B).

(ii) To prove Theorem 3, we first show that the volume ofR(f,B)/Zn (the region
R(f,B) sent onto the torus Rn/Zn) is an affine function of f (Theorem 4).
This is also an extension of the corresponding theorem from [3] for simplicial
B. Besides handling the general case, our proof is also significantly shorter
and more elegant. We develop a tool for computing volumes on the torus,
which enables us to circumvent a complicated inclusion-exclusion argument
from [3] (see pages 349-350 in [3]). We view this volume computation tool
as an important technical contribution of this paper.

(iii) A major contribution of [3] was to characterize the unique-lifting property
for a special class of simplices. We generalize all the results from [3] to a
broader class of polytopes, called pyramids in Sections 3 and 5 (see Re-
mark 1 and Theorems 5 and 11). For our generalizations, we build tools in
Section 4 that invoke non-trivial theorems from the geometry of numbers
and discrete geometry, such as the Venkov-Alexandrov-McMullen theorem
for translative tilings in Rn, McMullen’s characterizations of polytopes with
centrally symmetric faces [10] and the combinatorial structure of zonotopes.

(iv) Our techniques give an iterative procedure to construct new families of
polytopes with the unique-lifting property in every dimension n ∈ N. This
vastly expands the known list of polytopes with the unique-lifting property.
See Remarks 1, 2 and 3.

2 Invariance Theorem on the Uniqueness of Lifting

We consider the torus Tn = Rn/Zn, equipped with the natural Haar measure
that assigns volume 1 to Rn/Zn. It is clear that a compact set X ⊆ Rn covers
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Rn by lattice translations, i.e., X + Zn = Rn, if and only if volTn(X/Zn) = 1,
where volTn(X/Zn) denotes the volume of X/Zn in Tn.

Theorem 3 will follow as a direct consequence of the following result.

Theorem 4. The function f → volTn(R(f,B)/Zn), acting from int(B) to R, is
the restriction of an affine function.

When B is clear from context, we write R(f) instead of R(f,B).

Lemma 1. Let F1, F2 ∈ Fct(B) and let zi ∈ relint(Fi) ∩ Zn for i ∈ {1, 2}.
Suppose x1 ∈ int(SF1,z1(f)) and x2 ∈ int(SF2,z2(f)) be such that x1 − x2 ∈ Zn.
Then F1 = F2 and the point x1 − x2 lies in the linear subspace parallel to the
hyperplane aff(F1) = aff(F2). Thus, x1 − x2 ∈ aff(F1 − F1).

Proof. For i ∈ {1, 2}, if f , xi and zi do not lie on a common line, we introduce the
two-dimensional affine space Ai := aff{f, xi, zi}. Otherwise choose Ai to be any
two-dimensional affine space containing f , xi and zi. The set Ti := PFi(f) ∩ Ai

is a triangle, whose one vertex is f . We denote the other two vertices by ai
and bi. Observe that ai, bi are on the boundary of facet Fi such that the open
interval (ai, bi) ⊆ relint(Fi). Since zi lies on the line segment connecting ai, bi
and zi ∈ relint(Fi), there exists 0 < λi < 1 such that zi = λiai+(1−λi)bi. Since
xi ∈ int(SFi,zi(f)), there exist 0 < μi, αi, βi < 1 such that xi = μif +αiai+βibi
and μi+αi+βi = 1. Also observe that xi ∈ relint(Ti ∩ (zi + f −Ti)). Therefore,
αi < λi and βi < 1− λi.

Consider first the case μ1 ≥ μ2. In this case, we consider the integral point
z2 + x1 − x2 ∈ Zn:

z2 + x1 − x2 = λ2a2 + (1− λ2)b2 + μ1f + α1a1 + β1b1 − μ2f − α2a2 − β2b2
= (μ1 − μ2)f + (λ2 − α2)a2 + (1− λ2 − β2)b2 + α1a1 + β1b1.

Since (μ1 − μ2) + (λ2 − α2) + (1 − λ2 − β2) + α1 + β1 = 1, and each of
the terms in the sum are nonnegative, z2 + x1 − x2 is a convex combination
of points in B. Since B has no point from Zn in its interior, and f ∈ int(B),
the coefficient of f in the above expression must be 0. Thus, μ1 = μ2. So,
z2+x1−x2 = (λ2−α2)a2+(1−λ2−β2)b2+α1a1+β1b1, where all coefficients are
strictly positive. Since (ai, bi) ⊆ relint(Fi), if F1 �= F2, then z2+x1−x2 ∈ int(B)
leading to a contradiction to the fact that B is lattice-free. Thus, F1 = F2.
μ1 = μ2 implies that x1 − x2 ∈ aff(F1 − F1).

The case μ1 ≤ μ2 is similar with the same analysis performed on z1+x2−x1.

An analytical formula for volume on the torus. Let R be a compact subset of Rn.
Analytically we can represent R by its indicator function 1R (which is defined to
be equal to 1 on R and equal to 0 outside R). So, the volume of R in Rn is just
the integral

∫
Rn 1R(x) d x. Of course,

∫
Rn 1R(x) is in general not an appropriate

expression for volTn(R/Zn) because in this integral we overcount those points
x ∈ R for which there exists another point y ∈ R with x− y ∈ Zn, i.e., x− y is
a point in (R−R) ∩ Zn. Now, the function

cR :=
∑

z∈(R−R)∩Zn

1R−z (1)
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is precisely the function which describes whether or not we do overcounting and
also how much overcounting we actually do. It can be checked that

cR(x) = | {y ∈ R : x ≡ y (modZn)} | = |(R− x) ∩ Zn| = |R ∩ (x+ Zn)|.

Since Zn is discrete and R is compact, |cR(x)| is a finite natural number for all
x ∈ R. If cR(x) = 1 for some x ∈ R, then there is no overcounting. If cR(x) > 1,
then there is an overcounting and the number shows how much overcounting
has been done for the particular point. To remove the effect of overcounting, we
need to divide by cR(x). Thus, we have

Lemma 2. Let R ⊆ Rn be a compact set with nonempty interior. Then

volTn(R/Zn) =

∫
R

dx

cR(x)
. (2)

That is, for every t ∈ R/Zn, each element of Xt := {x ∈ R : x ≡ t (modZn)}
is counted with the weight 1/|Xt| and by this t ∈ R/Zn is counted exactly once
(no overcounting!).

We first observe the following property of the function cR.

Lemma 3. Let F ∈ Fct(B) and let R = RF (f). Let T be an invertible affine
linear map, i.e., Tx = Lx + t for some invertible linear map L : Rn → Rn

and t ∈ Rn. Suppose L leaves the linear subspace parallel to F unchanged, i.e.,
Lz = z for all z ∈ aff(F − F ). Then for all y ∈ Rn,

cTR(Ty) ≥ cR(y).

Proof. For any z ∈ aff(F − F ) and any y ∈ Rn, 1TR−z(Ty) = 1 ⇔ Ty ∈
TR− z ⇔ y ∈ R− L−1z ⇔ y ∈ R− z ⇔ 1R−z(y) = 1. Therefore,

1TR−z(Ty) = 1R−z(y). (3)

Also, by Lemma 1, the set (R − R) ∩ Zn is contained aff(F − F ). Thus,
(R−R) ∩ Zn ⊆ (TR− TR) ∩ Zn. Therefore,

cTR(Ty) =
∑

z∈(TR−TR)∩Zn 1TR−z(Ty)

≥
∑

z∈(R−R)∩Zn 1TR−z(Ty) We are dropping nonnegative terms

=
∑

z∈(R−R)∩Zn 1R−z(y) Using (3)

= cR(y).

An easy technical lemma:

Lemma 4. Let g : D → R be a function defined on a subset D ⊆ Rn. Let
M : D → R be an affine linear map from D to R that is not identically 0, i.e.,
there exists a ∈ Rn, b ∈ R such that Mx = a · x+ b for all x ∈ D. Further,

g(x)Mx′ = g(x′)Mx

for all x, x′ ∈ D. Then g is an affine linear map on D.



On the Unique-Lifting Property 81

Proof. Fix x0 ∈ D such that Mx0 �= 0. Then for any x ∈ D, g(x) = g(x0)
Mx0

Mx.
Since M is affine, this shows that g is affine.

We finally give the proof of Theorem 4.

Proof (Proof of Theorem 4). First we observe that

volTn(R(f)/Zn) =
∑

F∈Fct(B)

volTn(RF (f)/Z
n)

because for two distinct facets F and F ′, int(RF (f)) and int(RF ′(f)) do not
intersect modulo Zn by Lemma 1. Therefore, it suffices to show that for a fixed
F , volTn(RF (f)/Z

n) is an affine function in f . Consider f, f ′ ∈ int(B). Fix
v1, . . . , vn ∈ F that are affinely independent. Let A be the matrix formed by
the columns v1 − f, . . . , vn − f and A′ be the matrix formed by the columns
v1 − f ′, . . . , vn − f ′. Let L = A−1A′ and let t = −Lf + f ′. Then the invertible
affine linear map T ′ : Rn → Rn defined by T ′x = Lx + t maps vi to vi for all
i = 1, . . . , n, and f to f ′. Thus, T ′RF (f) = RF (f

′). Moreover, L (therefore L−1)
leaves aff(F −F ) unchanged. Note that the Jacobian of T ′ is given by | det(L)|.
Applying Lemma 3 with R = RF (f) and T = T ′, and again with R = RF (f

′)
and T = T ′−1, we get cT ′RF (f)(T

′y) = cRF (f)(y) for all y ∈ Rn. Then,

volTn(RF (f
′)/Zn) = volTn(T ′RF (f)/Z

n)
=
∫
T ′RF (f)

d x
cT ′RF (f)(x)

=
∫
RF (f)

| det(L)| d y
cT ′RF (f)(T

′y)

=
∫
RF (f)

| det(L)| d y
cRF (f)(y)

= | det(L)|
∫
RF (f)

d y
cRF (f)(y)

= | det(L)| volTn(RF (f)/Z
n),

where the second and last equalities follow from Lemma 2, the third equality

follows from the change of variable y := T ′−1x. Since | det(L)| = | det(A′)|
| det(A)| , we

have
volTn(RF (f

′)/Zn)| det(A)| = volTn(RF (f)/Z
n)| det(A′)|. (4)

Finally, observe that det(A) is equal to the determinant of the (n+1)× (n+1)
matrix whose first n rows are formed by the column vectors v1, . . . , vn, f and the
last row is the row vector of all 1’s. Similarly, det(A′) is given by the determinant
of the (n+1)×(n+1) matrix whose first n rows are formed by the column vectors
v1, . . . , vn, f

′ and the last row is the row vector of all 1’s. Hence, there exists a
affine linear map M : Rn → R such that det(A) = Mf and det(A′) = Mf ′.
Thus, (4) and Lemma 4 combine to show that volTn(RF (f)/Z

n) is an affine
function of f ∈ int(B).

Theorem 4 implies the following.

Corollary 1. Let B be a maximal lattice-free polytope in Rn. Then the set { f ∈
B : voln(R(f)/Zn) = 1 } is a face of B.
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Proof. Since voln(R(f)/Zn) is always at most 1, the value 1 is a maximum value
for the function voln(R(f)/Zn). By Theorem 4, optimizing this function over B
is a linear program and hence the optimal set is a face of B.

Proof (Proof of Theorem 3). Corollary 1 implies Theorem 3. Indeed, if the set
{ f ∈ B : voln(R(f)/Zn) = 1 } is B, then R(f) + Zn = Rn for all f ∈ B and for
all f ∈ int(B), B has the unique-lifting property with respect to f . Otherwise,
R(f) + Zn �= Rn for all f ∈ int(B) and for all f ∈ int(B), B has the multiple-
lifting property with respect to f .

3 Unique Lifting in Pyramids

The Construction. We study an iterative procedure for creating higher di-
mensional maximal lattice-free polytopes. Let n ≥ 1. Consider any polytope
B ⊆ Rn+1 such that B ⊆ {x ∈ Rn+1 : xn+1 = 0}, and a point v0 ∈ Rn+1 such
that v0n+1 > 0. Let C(B, v0) be the cone formed with B − v0 as base. We define

Pyr(B, v0) = (C(B, v0) + v0) ∩ {x ∈ Rn+1 : xn+1 ≥ −1}.

Informally speaking, we put a translated cone through v0 with B as the base
and “cut it off” by the hyperplane {x ∈ Rn+1 : xn+1 = −1}, to create the
pyramid Pyr(B, v0) (see page 9, Ziegler [13] for a related construction). We will
use the terminology that Pyr(B, v0) is a pyramid over B. The facet of Pyr(B, v0)
induced by {x ∈ Rn+1 : xn+1 ≥ −1} will be called the base of Pyr(B, v0). v0 will
be called the apex of Pyr(B, v0).

Lifting Properties for Pyramids. We say Pyr(B, v0) is 2-partitionable if the
integer hull of Pyr(B, v0) is contained in {x ∈ Rn+1 : −1 ≤ xn+1 ≤ 0}. We show
that if B is a maximal lattice-free body with the multiple-lifting property, then
Pyr(B, v0) is also a body with multiple-lifting for any v0 such that Pyr(B, v0)
is a 2-partitionable maximal lattice-free pyramid.

Proposition 2. Let B ⊆ {x ∈ Rn+1 : xn+1 = 0} be a maximal lattice-free
polytope (when viewed as an n-dimensional polytope in Rn), and v0 ∈ Rn+1

such that Pyr(B, v0) is a 2-partitionable maximal lattice-free polytope.
If B is a body with the multiple-lifting property, then Pyr(B) is a body with

the multiple-lifting property.

Proof. Since B is a body with multiple-lifting, there exists a vertex v of B such
that the lifting region R(v) satisfies volTn(R(v)/Zn) < 1. Consider the edge of
Pyr(B, v0) passing through v0 and v and let v̂ be the vertex of this edge that lies
on the base of Pyr(B, v0). The lifting region R(v̂) for Pyr(B, v0) is a cylinder over
R(v) of height 1. Thus, volTn+1(R(v̂)/Zn+1) < 1 and therefore, by Theorem 4,
Pyr(B, v0) is a body with multiple-lifting.

We now show that the unique-lifting property is preserved under the pyramid
operation with a special property. This will give us a tool to iteratively construct
bodies with unique-lifting in every dimension n ∈ N.
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Proposition 3. Let B ⊆ {x ∈ Rn+1 : xn+1 = 0} be a maximal lattice-free
polytope (when viewed as an n-dimensional polytope in Rn), and v0 ∈ Rn+1

such that Pyr(B, v0) is a maximal lattice-free polytope. Suppose further that the
base F0 of Pyr(B, v0) contains an integer translate of B.

If B is a body with unique-lifting, then Pyr(B, v0) is a body with unique-lifting.

Proof. For all the vertices v̂ of Pyr(B, v0) on F0, the lifting region R(v̂) for
Pyr(B, v0) contains a cylinder of height 1 over the lifting R(v) for B with respect
to the vertex v that lies on the edge connecting v0 and v̂. (R(v̂) might contain
other spindles that come from integer points in Pyr(B, v0) that are not in B,
but this can only help with the unique-lifting property.)

So we need to look at the vertex v0. Let S be the set of integer points in
B∩Zn+1. By our hypothesis, after a unimodular transformation, we can assume
that S − en+1 ⊆ B − en+1 ⊆ F0, where en+1 = (0, 0, . . . , 0, 1) ∈ Rn+1 is the
standard unit vector perpendicular to F0. Let v̄ be the projection of v0 onto
the hyperplane {x ∈ Rn+1 : xn+1 = 0}. Since B − en+1 ⊆ F0, we have v̄ ∈ B.
Let R(v̄) be the lifting region in B with respect to v̄ (when B is viewed as an
n-dimensional polytope in Rn).

We show that for every point x̄ ∈ R(v̄), there is an interval of height 1 over x̄
that is contained in R(v0) in Pyr(B, v0). By Lemma 1, this will suffice to show
that volTn+1(R(v0)/Zn+1) = 1 since volTn(R(v̄)/Zn) = 1 because B is a body
with the unique-lifting property.

Let B, when viewed as embedded in Rn, be described by {x ∈ Rn : ai · x ≤
bi i ∈ I} where I is the index set for the facets. Then Pyr(B, v0) can be described
by {(x, xn+1) ∈ Rn+1 : ai · x+ δixn+1 ≤ bi ∀i ∈ I, xn+1 ≥ −1}. B− en+1 ⊆ F0

implies that δi ≥ 0 for all i ∈ I.
Consider x̄ ∈ R(v̄). Let F be the facet of B and z̄ ∈ F ∩ Zn+1 such that

x̄ ∈ SF,z̄(v̄) (defined with respect to B). Let z0 = z̄−en+1 ∈ F0. Now SF0,z0(v0)
is given by

ai · x+ δixn+1 ≤ bi ∀i ∈ I
−ai · x− δixn+1 ≤ −ai · z̄ + δi ∀i ∈ I.

(5)

Let j ∈ I be such that F is given by aj · x ≤ bj . We now show that the

following two points x1 = (x̄,
bj−aj ·x̄

δj ) and x2 = (x̄,
bj−aj ·x̄

δj − 1) are both in
SF0,z0(v0). Since SF0,z0(v0) is convex, this will imply that the entire segment of
height 1 connecting x1, x2 lies inside SF0,z0(v0) ⊆ R(v0).

Observe that ai · v̄ + δiv0n+1 = bi for all i ∈ I and therefore

bi − ai · v̄
δi

= v0n+1 ∀i ∈ I. (6)

Since x̄ ∈ R(v̄), there exists a ∈ F such that x̄ = μv̄ + (1 − μ)a for some
0 ≤ μ ≤ 1. We now check the first set of inequalities in (5) for x1. For any i ∈ I,
the following inequalities are true.
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ai · x̄+ δi(
bj−aj ·x̄

δj ) = ai · (μv̄ + (1− μ)a) + δi(
bj−aj ·(μv̄+(1−μ)a)

δj )

= μ(ai · v̄) + (1− μ)(ai · a) + δi(
μbj−μ(aj ·v̄)

δj )
(because aj · a = bj since a ∈ F )

= μ(ai · v̄) + (1− μ)(ai · a) + μδi( bi−ai·v̄
δi ) using (6)

= μ(ai · v̄) + (1− μ)(ai · a) + μ(bi − ai · v̄)
≤ bi since ai · a ≤ bi because a ∈ B.

Since the last coordinate of x2 is less than the last coordinate of x1 and δi ≥ 0
for all i ∈ I, we see that the first set of inequalities in (5) are also satisfied for
x2.

We now check the second set of inequalities in (5) for x2. Consider v̄, z̄ and x̄
and consider the two dimensional affine hyperplane A passing through all these
3 points. The set T := A ∩ PF (v̄) is a triangle with v̄ as one vertex and the
other two vertices a and b lying on F . This is the same construction that was
used in the proof of Lemma 1. Since z̄ lies on the line segment connecting a, b,
there exists 0 ≤ λ ≤ 1 such that z̄ = λa + (1 − λ)b. Since x̄ ∈ T , there exist
0 ≤ μ, α, β ≤ 1 such that x̄ = μv̄ + αa + βb and μ + α + β = 1. Also observe
that x̄ ∈ T ∩ (z̄ + v̄ − T ). Therefore, α ≤ λ and β ≤ 1 − λ. Now we do the
computations. For any i ∈ I,

−ai · x̄ − δi(
bj−aj ·x̄

δj
− 1) = −ai · (μv̄ + αa + βb) − δi(

bj−aj ·(μv̄+αa+βb)

δj
) + δi

= μ(−ai · v̄) + α(−ai · a) + β(−ai · b) − δi(
μbj−μ(aj ·v̄)

δj
) + δi

(because aj · a = aj · b = bj since a, b ∈ F )

= μ(−ai · v̄) + α(−ai · a) + β(−ai · b) − μδi(
bi−ai·v̄

δi
) + δi

( using (6))

= α(−ai · a) + β(−ai · b) − μbi + δi

= −ai · z̄ + ai · (λa + (1 − λ)b) + α(−ai · a) + β(−ai · b) − μbi + δi

= −ai · z̄ + (λ − α)(ai · a) + (1 − λ − β)(ai · b) − μbi + δi

≤ −ai · z̄ + (λ − α)bi + (1 − λ − β)bi − μbi + δi

(since α ≤ λ, β ≤ 1 − λ, ai · a ≤ bi and ai · b ≤ bi because a, b ∈ B)

= −ai · z̄ + δi.

Finally since x1 has a higher value for the last coordinate than x2 and δi ≥ 0,
x1 satisfies the second set of constraints in (5) also.

Remark 1. Propositions 2 and 3 provide strict generalizations of all the results
on 2-partitionable simplices from Section 4 in [3]. Furthermore, we can use these
propositions to iteratively construct bodies in every dimension n ∈ N with or
without the unique-lifting property. See Remarks 2 and 3.

Axis-Parallel Simplices. We use Proposition 3 to show that a certain class of
simplices has unique-lifting. Let a = (a1, . . . , an) be an n-tuple of positive reals
such that 1

a1
+ . . . + 1

an
= 1. Then S(a) := conv{0, a1e1, a2e2, . . . , anen} is a

maximal lattice-free simplex (where e1, . . . , en form the standard basis for Rn).
The following theorem is a generalization of results in [3, 4], where it was proved
for the special case when ai = n for all i = 1, . . . , n.
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Theorem 5. S(a) is a body with unique-lifting for any n-tuple a = (a1, . . . , an)
such that 1

a1
+ . . .+ 1

an
= 1.

Proof. Observe that B = S(a) ∩ {x ∈ Rn : xi = 1} can be expressed as S(a′) ⊆
Rn−1, where a′ = (a′1, . . . , a

′
n−1) is an n − 1-tuple where a′i = ai − ai

an
for i =

1, . . . , n− 1. Thus, we can use induction to prove the theorem. The case n = 1 is
trivial, since S(a) is simply an interval of length 1 and is easily seen to be a body
with unique-lifting. For the induction step, we observe that S(a) is a pyramid
over B = S(a)∩ {x ∈ Rn : xi = 1} with base S(a) ∩ {x ∈ Rn : xi = 0}, and B is
an integer translate of S(a′): B = S(a′) + en. Further, the base contains S(a′)
and thus contains an integer translate of B. By the induction hypothesis, S(a′)
is a body with unique-lifting. Therefore, so is B and by Proposition 3, S(a) is a
body with unique-lifting.

Remark 2. We can iteratively build pyramids over S(a) to get more general
simplices with the unique-lifting property by repeatedly applying Proposition 3.
We simply need to make sure that the base of the pyramid Pyr(S(a), v0) we
create contains an integer translate of S(a).

4 Spindles That Translatively Tile Rn

In this section, we build some tools from discrete geometry and geometry of
numbers. We will apply these tools to gain further insight into pyramids with
the unique-lifting property in Section 5.

For any full dimensional polytope P ⊆ Rn, a ridge is a face of dimension n−2.
Let P ⊆ Rn be a centrally symmetric full dimensional polytope with centrally
symmetric facets. Let G be any ridge of P . The belt corresponding to G is the
set of all facets which contain a translate of G or −G. Observe that every full
dimensional centrally symmetric polytope P with centrally symmetric facets has
belts of even size greater than or equal to 4.

A zonotope is a polytope given by a finite set of vectors V = {v1, . . . , vk} ⊆ Rn

in the following way:

Z(V ) = {λ1v
1 + . . .+ λkv

k : −1 ≤ λi ≤ 1 ∀i = 1, . . . , k}.

We begin with a technical lemma about the combinatorial structure of zono-
topes in Rn. We omit the proof from this extended abstract.

Lemma 5. Let Z be a full dimensional zonotope in Rn such that every belt of
Z is of size 4. Then Z is the image of the n-dimensional hypercube under an
invertible affine transformation.

Theorem 6. (McMullen [11]) Let S ⊆ Rn be a full-dimensional centrally sym-
metric spindle with centrally symmetric facets. Then S is the image of the n-
dimensional hypercube under an invertible affine transformation.
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Proof. Let a and −a be the apexes of the spindle S. Consider any belt of S.
Since S is centrally symmetric, each belt is even length, i.e., of length k where
k is an even natural number. Now there are k/2 facets F1, . . . , Fk/2 involved in
this belt that are incident on a (and the remaining k/2 facets are incident on
−a). Let G be the n− 2 dimensional ridge that defines this belt. We project S
onto the 2 dimensional space perpendicular to G to get a polygon P . The facets
F1, . . . , Fk/2 are all projected onto edges of the polygon. Moreover, observe that
a is projected onto all these edges. This implies that k/2 ≤ 2, otherwise, we have
three edges of a polygon incident on the same point in R2. Thus, k ≤ 4.

Since every belt has length 4, each n − 2 ridge in S is centrally symmetric.
Therefore, by a theorem of McMullen [10], S is a zonotope. Since S is a zonotope
whose belts are length 4, by Lemma 5, S is the image of the n-dimensional
hypercube under an invertible affine transformation.

Theorem 6 was communicated to us by Peter McMullen via personal email. We
include a complete proof here as the result does not appear explicitly in the
literature. The above proof is based on a proof sketch by Prof. McMullen.

We say that a set S ⊆ Rn translatively tiles Rn if Rn is the union of trans-
lates of S whose interiors are disjoint. We now state the celebrated Venkov-
Alexandrov-McMullen theorem on translative tilings.

Theorem 7. [Venkov-Alexandrov-McMullen (see Theorem 32.2 in [12])] Let P
be a compact convex set with non-empty interior that translatively tiles Rn. Then
(i) P is a centrally symmetric polytope, (ii) All facets of P are centrally sym-
metric, and (iii) every belt of P is either length 4 or 6.

Theorem 8. Let S ⊆ Rn be a full-dimensional spindle that translatively tiles
space. Then S is the image of the n-dimensional hypercube under an invertible
affine transformation.

Proof. Follows from the Venkov-Alexadrov-McMullen theorem (Theorem 7) and
Theorem 6.

5 Maximal Lattice-Free Pyramids with Exactly One
Integer Point in the Relative Interior of the Base

Theorem 9. Let P ⊆ Rn be a maximal lattice-free pyramid, such that its base
contains exactly one integer point in its relative interior. If P is a body with
unique-lifting, then P is a simplex.

The proof of Theorem 9 is a simple application of Theorem 8, by considering
the lifting region when f is the apex of P , in which case it is a spindle which
transitively tiles space. The details are omitted from this extended abstract.

Remark 3. Using Propositions 2 and 3, one can construct pyramids that are
not simplices in arbitrarily high dimensions with (or without) the unique-lifting
property. For example, start with B ⊆ R2 as a quadrilateral with (or without)
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unique-lifting (see [7]) and construct Pyr(B, v0) ⊆ R3; iterate this procedure to
get higher dimensional pyramids. The base of such pyramids with unique-lifting
will have multiple integer points in its relative interior by Theorem 9.

We recall the following theorem proved in [3].

Theorem 10. Let Δ be a maximal lattice-free simplex in Rn (n ≥ 2) such that
each facet of Δ has exactly one integer point in its relative interior. Then Δ has
the unique-lifting property if and only if Δ is an affine unimodular transformation
of conv{0, ne1, . . . , nen}.

We can now generalize this result to pyramids.

Theorem 11. Let P be a maximal lattice-free pyramid in Rn (n ≥ 2) such that
every facet of P contains exactly one integer point in its relative interior. P has
the unique-lifting property if and only if P is an affine unimodular transformation
of conv{0, ne1, . . . , nen}.

Proof. Sufficiency follows from Theorem 5. If P has the unique-lifting property,
by Theorem 9, P is a simplex. The result then follows from Theorem 10.
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Abstract. We study the maximum node-weighted induced bipartite
subgraph problem in planar graphs with maximum degree three. We
show that this is polynomially solvable. It was shown in [6] that it is
NP-complete if the maximum degree is four. We extend these ideas to
the problem of balancing signed graphs.

We also consider maximum weighted induced acyclic subgraphs of
planar directed graphs. If the maximum degree is three, it is easily shown
that this is polynomially solvable. We show that for planar graphs with
maximum degree four the same problem is NP-complete.

Keywords: Maximum induced bipartite subgraph, balancing signed
graphs, maximum induced acyclic subgraph, polynomial algorithm,
NP-completeness.

1 Introduction

Given an undirected graph G = (V,E), a graph H = (W,F ) is said to be
induced if W ⊆ V and F is the set of edges in E having both endnodes in
W . If every node u has a non-negative weight w(u), the Maximum Weighted
Induced Bipartite Subgraph Problem (MWBSP) consists of finding an induced
bipartite subgraph with maximum total weight. In this paper we show that for
planar graphs with degree at most three, this problem is polynomially solvable.
We extend this procedure to balancing signed graphs. For planar graphs with
degree at most four, it was shown in [6] that this is NP-Complete. This problem
was studied in [6], and its connection to via-minimization of integrated circuits
and printed circuit boards was discussed. Later in [10] the application to via-
minimization and to DNA sequencing has been investigated. The polyhedral
approach to this problem has been studied in [2], [3] and [10]. An approximation
algorithm for general graphs was given in [16], and an approximation algorithm
for planar graphs was presented in [17].

For a directed graph G = (V,A) and induced subgraph is defined in a similar
way. If every node u has a non-negative weight w(u), the Maximum Weighted
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Induced Acyclic Subgraph Problem (MWASP) consists of finding and induced
acyclic subgraph of maximum total weight. If a node-set induces an acyclic
subgraph, its complement is called a Directed Feedback Vertex Set (DFVS). The
DFVS problem is an NP-complete problem that appeared in the first list of
NP-complete problems in Karp’s seminal paper [19]. It has applications in areas
such as operating systems [27], database systems [14], and circuit testing [20]. It
was shown that it is NP-Complete for planar directed graphs with in-degree and
out-degree at most three, see [15]. A polyhedral approach has been presented in
[11], see also [2] and [3]. An approximation algorithm for general directed graphs
was given in [8], and for planar directed graphs an approximation algorithm was
given in [17]. See [9] for a survey on Feedback Set problems. Here we point out
that it is easy to see that for planar graphs with maximum degree three, it is
polynomially solvable, then we show that it is NP-complete for planar graphs
with in-degree and out-degree at most two, i.e., maximum degree four.

This paper is organized as follows. In Section 2 we present some definitions
and recall some classic results that will be used in the sequel. In Section 3 we
study maximum weighted induced bipartite subgraphs. In Section 4 we deal with
balancing signed graphs. Section 5 is devoted to maximum weighted induced
acyclic subgraphs of directed graphs.

2 Preliminaries

In this section we give some definitions and present some classic results to be
used in the following sections.

If G = (V,E) is an undirected graph, the degree of a node is the number of
edges incident to it. We denote by Δ(G) the maximum among all node degrees
of a graph G. If S is a node-set set we denote by δ(S) the set of edges with
exactly one endnode in S. We use δ(v) instead of δ({v}). If e is an edge with
endnodes u and v, we also use uv to denote the edge e. If F ⊆ E, the graph
H = (V, F ) is called a spanning subgraph of G.

For a cycle C, its incidence vector xC is defined by xC(e) = 1 if e ∈ C, and
xC(e) = 0 otherwise, for each edge e ∈ E. The cycle space is obtained by taking
sums (mod 2) of incidence vectors of cycles. An element of this space is the
incidence vector of a spanning subgraph so that every node has even degree. A
cycle basis is a basis of this vector space. For a planar graph, its faces minus one,
form a cycle basis.

If D = (V,A) is a directed graph, the in-degree (out-degree) of a node is the
number of arcs entering (leaving) it. The degree of a node is its in-degree plus
its out-degree. Also we denote by Δ(D) the maximum of all node degrees of a
directed graph D. For a node set S we use δ+(S) to denote the set {(u, v) |u ∈
S, v /∈ S}. We use δ−(S) to denote δ+(V \ S).

Now we review two classic results in combinatorial optimization.
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2.1 The Chinese Postman Problem and Minimum T -joins

Given an undirected connected graph G = (V,E) with nonnegative edge weights
w(e) for each edge e, this problem consists of finding a tour of minimum weight,
so that every edge is visited at least once. Edmonds & Johnson [7] gave a poly-
nomial algorithm for this. One has to find an edge-set of minimum weight that
should be visited twice. This can be formulated as follows.

minimize
∑
e∈E

w(e)x(e) (1)

∑
e∈δ(v)

x(e) ≡
{
1 (mod 2) if v ∈ T ,
0 (mod 2) if v ∈ V \ T , (2)

x(e) ∈ {0, 1} for all e ∈ E. (3)

Here T denotes the set of nodes of odd degree. A solution of this corresponds
to a set of paths matching the nodes in T . For this Edmonds & Johnson gave a
combinatorial algorithm that solves the following linear program.

minimize
∑
e∈E

w(e)x(e) (4)∑
e∈δ(S)

x(e) ≥ 1 for each node-set S with |S ∩ T | odd, (5)

x(e) ≥ 0 for all e ∈ E. (6)

Their algorithm shows that this linear program always has an optimal solution
that is integer valued.

If T is an arbitrary set of nodes with |T | even, the same results hold, and
this is called the Minimum T -join problem, see [26]. We are going to use this in
Section 3.

Let n = |V |. If G is a complete graph, this problem can be solved in O(n3)
time, see [12]. If the graph is planar, one can use the planar separator theorem
of [22] to solve this in O(n3/2 logn), see [1].

2.2 The Luchessi-Younger Theorem

Let G = (V,A) be a directed graph. An arc-set C is called a directed cut if there
is a node set U ⊂ V such that C = δ−(U) and δ+(U) = ∅. Suppose that each
arc a has a non-negative weight w(a). Lucchesi & Younger [23] proved that the
linear program below always has an optimal solution that is integer valued.

minimize
∑
a∈A

w(a)x(a) (7)∑
a∈C

x(a) ≥ 1 for every directed cut C, (8)

x(a) ≥ 0 for all e ∈ A. (9)
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Lucchesi [24] gave an O(n5 logn) algorithm for this. Later Gabow [13] gave
an O(n2m) algorithm. Here n = |V | and m = |A|.

3 Maximum Weighted Induced Bipartite Subgraphs

In this section we assume that the graph G = (V,E) is planar, with Δ(G) = 3,
and with a non-negative weight w(u) for each node u ∈ V . We have to find an
induced bipartite subgraph of maximum total weight.

For the case when all node weights are equal to one, i.e., the maximum car-
dinality version, it was shown in [6] that there a node-set of cardinality k or
less whose deletion leaves a bipartite induced subgraph if and only if there is
an edge-set of cardinality k or less whose deletion leaves a bipartite spanning
subgraph. This shows that the cardinality case reduces to finding a maximum
cardinality cut in the same graph; that can be done in polynomial time, see [18].
For general non-negative weights this transformation is not valid, so this case
has to be treated in a different way.

This problem is equivalent to look for a node-set of minimum weight that
should be deleted to leave a bipartite graph. This can be formulated as the
following linear integer program.

minimize
∑
u∈V

w(u)x(u) (10)∑
u∈C

x(u) ≥ 1, for each odd cycle C, (11)

x(u) ∈ {0, 1}, for all u ∈ V. (12)

Consider the linear programming relaxation obtained by replacing (12) by
x(u) ≥ 0, for all u ∈ V . Suppose for instance that G is the graph K4, and
that all weights are equal to one. If we set all variables equal to 1/3, we have
a solution of value 4/3. On the other hand the optimal value of (10)-(12) is 2.
This shows that this linear programming relaxation is not integral. At the end
of this section we present a linear programming formulation (17)-(19), that gives
the value of a minimum weight node-set to be deleted. This can be seen as an
extended formulation, since we have three variables for each node.

We assume that G is connected, otherwise each connected component is
treated independently. Starting from G, we create a signed graph G′ = (V ′, E′),
where each edge is labeled as positive or negative as follows.

– If a node u has degree one, let uv be the edge incident to u. Since the node
u will appear in every maximum weighted induced bipartite subgraph, we
remove the node u and the edge uv. We repeat this until every node has
degree at least two.

– For each node u of degree two, let uv1 and uv2 be the edges incident to u.
We split the node u into u1 and u2. We create the following edges.
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• u1u2, with weight w(u) and labeled positive. This edge is called artificial.
• u1v1, labeled negative.
• u2v2, labeled negative.

– For each node u of degree three, let uv1, uv2, uv3 be the edges incident to
u. We split u into u1, u2, u3 and we create the following edges.
• The edges u1u2, u2u3, and u3u1, all with weight w(u)/2 and labeled
positive. These edges are called artificial.
• The edges u1v1, u2v2, u3v3, all labeled negative.

A similar transformation has been used for minimizing the number of vias
in an integrated circuit, see [25], [5].

Notice that the graph G′ is also planar. This construction is illustrated in
Figure 1.
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Fig. 1. Construction of the graph G′. Negative edges appear with thick lines. Positives
edges with thin lines.

We need the following lemma.

Lemma 1. Finding a maximum weighted induced bipartite subgraph of G is
equivalent to give the labels ”a” and ”b” to the nodes of G′ in such a way that:

(1) The endnodes of each negative edge have different labels.
(2) The total weight of the positive edges whose endnodes have different labels,

is minimum.

Proof. First assume that U ⊆ V induces a bipartite subgraph of G with maximum
weight. Let U1 and U2 be the bipartition of U . We give the label ′′a′′ to each
node in G′ associated with a node in U1, and the label ′′b′′ to every node in G′

associated with a node in U2. Then for each negative edge that has only one
labeled endnode, we give the opposite label to the other endnode. Finally for each
negative edge whose endnodes have no label, we give arbitrarily opposite labels to
the endnodes.

Let Ū = V \ U , and w(Ū) the total weight of the nodes in Ū .
Let λ be the sum of the weights of the positive edges whose endnodes have

different label. Since all nodes of G′ associated with a node in U have the same
label, we have λ ≤ w(Ū ).
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Let λ̂ be the weight of an optimal labeling satisfying (1) and (2). We have

λ̂ ≤ λ. Let S be the set of nodes of G whose associated nodes in G′ have the
same label. Clearly S induces a bipartite subgraph. Let S̄ = V \ S and w(S̄) the

total weight of the nodes in S̄. We have w(S̄) = λ̂, and

w(Ū ) ≤ w(S̄) = λ̂ ≤ λ ≤ w(Ū ).

Now we have to give an algorithm that finds a labeling of G′ satisfying (1)
and (2) of Lemma 1. For that we need one more definition.

Definition 1. For a signed graph, and a labeling of the nodes, we say that an
edge e is violated if:

– e is positive and its endnodes have different labels, or
– e is negative and its endnodes have the same label.

Lemma 2. If a cycle contains and odd (resp. even) number of negative edges,
then for any labeling it has an odd (resp. even) number of violated edges.

Proof. Consider a cycle with an odd number of negative edges. Start by giving
the label ′′a′′ to all nodes, then there is an odd number of violated edges. Now
if we change the label of a node, either the number of violated edges increases
by two, or decreases by two, or remains the same. Then if we keep changing the
node-labels the number of violated edges is always odd.

The proof for the other case is similar

Now we have to prove the converse.

Lemma 3. Consider a signed graph and a set of edges marked as violated, so
that for each cycle, if it has an odd (resp. even) number of negative edges then
there is an odd (resp.even) number of violated edges. Then there is a set of
node-labels according to Definition 1

Proof. Start with a spanning tree T , pick any node and give it the label ′′a′′, then
extend the labels through T according to Definition 1.

Then pick an edge e /∈ T , we have to see that the labels of its endnodes satisfy
Definition 1. Let C be the cycle obtained when adding e to T .

Consider the case when C has an odd number of negative edges. Assume that
e is positive and marked as violated. We should show that its endnodes have
different labels, so assume the opposite. Based on the labels e is not violated.
But C \ e contains an even number of edges marked as violated, this contradicts
Lemma 2. The proof for all other cases is similar.

These two lemmas show that it is equivalent to work with the node labels, or
with sets of violated edges satisfying the parity conditions of Lemma 2. From
now on we use the second alternative. We associate to each edge e a variable
x(e) that should take the value 1 if e is violated and 0 otherwise. Then x should
satisfy for each cycle C, the following.∑

e∈C

x(e) ≡
{
1 (mod 2) if C has an odd number of negative edges,

0 (mod 2) if C has an even number of negative edges.
(13)
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Here we have an exponential number of equations over GF (2), but we only need
a maximal set that is linearly independent. Thus it is enough to impose equations
(13) for the cycles in a cycle basis of G′.

Since G′ is a planar graph, we can use the set of faces as a cycle basis. Let F
be the set of faces of G′, let P be the set of positive edges in G′, A the set of
artificial edges, and N the set of negative edges in G′. Here A coincides with P ,
in the next section it might not be the case. For each artificial edge e in G′, let
λ(e) be the weight of it. Our problem can be formulated as below.

minimize
∑
e∈A

λ(e)x(e) (14)

∑
e∈C∩A

x(e) ≡
{
1 (mod 2) if C ∈ F and |C ∩ N| is odd,
0 (mod 2) if C ∈ F and |C ∩ N| is even,

(15)

x(e) ∈ {0, 1} for all e ∈ A. (16)

Notice that only variables associated with artificial edges have been included
in problem (14)-(16). This is because edges associated with the original edges
of G, should not be violated. If we work with the dual graph of G′, problem
(14)-(16) can be solved as a minimum T -join problem, see Section 2. The use of
T -joins in the dual graph appears in [26], see also [18], [4].

In Figure 2 we show an example of a graph G and its associated graph G′. If
we look at an optimal solution of (14)-(16) in the dual graph, we obtain a set
of paths matching pairs of faces that have an odd number of negative edges. We
illustrate this in Figure 3, for every violated edge we draw a perpendicular dashed
line. This corresponds to an edge of the dual graph. Also we draw a square on
each face having an odd number of negative edges. Also in Figure 3 we show the
induced bipartite subgraph obtained after removing the nodes associated with
the violated edges. It is a simple matter to see that there is an even number of
faces with an odd number of negative edges as shown below.

Lemma 4. A signed planar graph has an even number of faces containing an
odd number of negative edges.

Proof. Start with all edges labeled positive. Pick one positive edge and change its
label to negative. Then exactly two faces have an odd number of negative edges.
After that, when we change any other label from positive to negative, either
the number of faces with an odd number of negative edges increases by two, or
decreases by two, or remains the same.

Using planar duality, and the results of Edmonds & Johnson [7], we can see that
problem (14)-(16) is equivalent to the linear program below. This is an extended
formulation since for each of the nodes in the original graph we might have more
than one variable.
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Fig. 2. An example of the graphs G and G′. The numbers near the nodes are their
weights. In G′ the numbers near the positive edges are their weights.
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Fig. 3. A solution. The violated edges are crossed with a dashed line. We also show
the corresponding induced bipartite subgraph of the original graph.

minimize
∑
e∈A

λ(e)x(e) (17)∑
e∈C∩A

x(e) ≥ 1 for each cycle C with |C ∩ N| odd, (18)

x(e) ≥ 0 for all e ∈ A. (19)

Now we state the main result of this section.

Theorem 2. The problem of finding a maximum weighted induced bipartite sub-
graph of a planar graph G, with Δ(G) = 3, can be solved in O(n3/2 logn) time.

4 Balancing Signed Graphs

A signed graph is called balanced if we can give the labels ”a” and ”b” to the
nodes so that if and edge is positive, its endnodes have the same label; and if
an edge is negative, its endnodes have different labels. Here we discuss how to
apply the ideas of Section 3 for finding a maximum balanced subgraph.
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4.1 The Node Deletion Case

Here we assume that G = (V,E) is a signed planar graph with non-negative
weights w(v), for each node v ∈ V , and with Δ(G) = 3. We are looking for a
balanced induced subgraph of maximum total weight.

We use a construction similar to the one in Section 3. The edges of the graph
G′ that are not artificial, keep the same labels as their associated edges in G.
Then we have to solve (14)-(16) as described in Section 3. Thus we can state the
following.

Theorem 3. The problem of finding a maximum weighted balanced induced sub-
graph of a planar graph G, with Δ(G) = 3, can be solved in O(n3/2 logn) time.

4.2 The Edge Deletion Case

Assume that G = (V,E) is a signed planar graph with non-negative weights w(e)
for each edge e ∈ E. In this case we have no restriction on the node-degrees.
Here we are looking for an edge set S of minimum weight so that H = (V,E \S)
is balanced. Notice that if all edges are labeled negative, this is equivalent to the
max-cut problem in a planar graph, that can be solved in polynomial time cf.
[18].

We use the same reasoning as in Section 3, to formulate this as below.

minimize
∑
e∈E

w(e)x(e)

∑
e∈C

x(e) ≡
{
1 (mod 2) if C is a cycle with an odd number of negative edges,

0 (mod 2) if C is a cycle with an even number of negative edges,

x(e) ∈ {0, 1} for each edge e ∈ E.

As before, this can be solved as a minimum T -join problem in the dual graph.
Thus we have the following.

Theorem 4. The problem of finding a maximum weighted balanced spanning
subgraph of a planar graph, can be solved in O(n3/2 logn) time.

5 Maximum Directed Induced Acyclic Subgraphs

Consider a planar directed graph G = (V,A), with node-weights λ(v) ≥ 0, for
each node v ∈ V . We study the problem of finding a node set S of maximum
weight that induces an acyclic subgraph. The complement of S is a directed
feedback set. This problem is also known as the Directed Feedback Vertex Set
Problem.

One can try a technique similar to the one in Section 3, splitting nodes,
adding extra arcs keeping planarity, and using planar duality. We discuss here
the limitations of this technique.
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Consider the following simple transformation. Split each node v into v1 and
v2, add the arc (v1, v2), replace every arc (u, v) with (u, v1), and every arc (v, w)
with (v2, w). Let G′ be this new graph. If G′ is planar, we work with the dual
graph as follows. Let D be the dual graph of G′ regardless of the orientations of
the arcs. Then for each arc a of G′ let a⊥ be the corresponding edge of the dual
graph, we give an orientation to a⊥, so that the pair (a, a⊥) forms a positively

oriented basis of IR2. Let
→
D be the directed graph obtained with this orientation.

Notice that directed cuts in
→
D correspond to directed cycles ofG′. Thus it follows

from the Theorem of Lucchesi & Younger [23], that the following linear program
has an optimal solution that is integer valued, moreover, this can be solved in
polynomial time.

minimize
∑
v∈V

λ(v)x(v) (20)

∑
v∈C

x(v) ≥ 1 for each directed cycle C, (21)

x(v) ≥ 0 for all v ∈ V. (22)

To see this one should start with problem (7)-(9), associated with the graph
→
D. Then all variables associated with the original arcs are set to zero, and one
obtains (20)-(22).

In particular, this transformation works when the degree of every node is at
most three. Thus we have the following.

Theorem 5. A maximum weighted induced acyclic subgraph of a planar directed
graph D, with Δ(D) = 3, can be found in O(n3) time.

The following theorem shows the limits of this transformation.

Theorem 6. The minimum feedback vertex set problem is NP-Complete for pla-
nar directed graphs D, with Δ(D) = 4, and with in-degree and out-degree at most
two.

Proof. We use a construction similar to the one used in [6] for induced bipartite
subgraphs. We start with the following NP-complete problem, see [21].

Planar 3-Satisfiability (P3SAT)
Instance: A set U = {vi | 1 ≤ i ≤ n} of n boolean variables and a set C =
{cj | 1 ≤ j ≤ m} of m clauses over U such that each clause contains exactly three
variables or their complements. Furthermore, the following graph is planar:

GC = (VC , EC), where

VC = {cj | 1 ≤ j ≤ m} ∪ {vi | 1 ≤ i ≤ n}, and

EC = {cjvi | vi ∈ cj or v̄i ∈ cj} ∪ {vivi+1 | 1 ≤ i ≤ n− 1} ∪ {vnv1}.

Question: Is there a truth assignment for U such that each clause in C is true?
Given a planar embedding of GC we build a planar directed graph G = (V,A)

as follows.
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– Each node vi associated with a variable is replaced by a subgraph called vari-
able component. Its nodes are {aij,1, . . . , aij,8}, for 1 ≤ j ≤ m. The arcs are:

• (aij,k, a
i
j,k+1), for 1 ≤ k ≤ 7, for 1 ≤ j ≤ m.

• (aij,8, a
i
j+1,1), for 1 ≤ j ≤ m, with aim+1,1 = ai1,1.

• (aij,k+2, a
i
j,k), for k = 1, 3, 5, (aij+1,1, a

i
j,7); for 1 ≤ j ≤ m, with aim+1,1 =

ai1,1.

See Figure 4. There are 4m triangles, a directed cycle C1 with 8m nodes
and a directed cycle C2 with 4m nodes. The embedding is done so that C1 is
oriented clockwise, and C2 is oriented counter-clockwise.

– Each node cj associated with a clause is replaced by three nodes c1j , c
2
j , and

c3j . Assume that vi1 , vi2 and vi3 are the three variables (or their comple-
ment) that appear in cj. Assume that they appear in clockwise order in the
embedding of GC . For each variable vik we have two cases:
• If vik appears in cj, we add the arcs (ckj , a

ik
j,2) and (aikj,4, c

k−1
j ), with c0j =

c3j .

• If v̄ik appears in cj, we add the arcs (ckj , a
ik
j,4) and (aikj,6, c

k−1
j ), with c0j =

c3j .

See Figure 5. These arcs are included in only one directed cycle Dj called a
clause cycle.

a1,2

a1,3 a1,5
a2,1

a2,2

a1,4

a1,7

a1,8a1,6

a1,1

Fig. 4. Subgraph associated with a variable vi, for m = 4. The index i is not shown.

For a variable vi consider it associated component. We need the following
observations.

− A node can cover at most two triangles, and since there are 4m triangles,
a node-set covering all triangles has cardinality at least 2m. The triangles
can be covered with the nodes {aij,3, aij,7} for 1 ≤ j ≤ m, or {aij,1, aij,5} for

1 ≤ j ≤ m. Denote by Si
1 the first set and by Si

2 the second set. We have
|Si

1| = |Si
2| = 2m. Also any other cycle included in this component is covered

by these two sets.
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cj

vi1

vi2
vi3

c1j

c2j

c3j

vi1

vi2vi3

Fig. 5. Nodes and arcs associated with a clause cj . In this example cj contains vi1 , vi2
and v̄i3 .

− Consider now any other set S of nodes covering all the triangles. Assume
that S contains p nodes of degree two. Each of them covers exactly one
triangle, so there are 4m− p triangles that should be covered with nodes of
degree four. Since each of these nodes covers two triangles, we need at least
2m− p/2 nodes of degree four. This shows that |S| ≥ 2m+ p/2.

− Consider now a node-set T containing only nodes of degree four and covering
all triangles. If |T | = 2m, each node should cover two distinct triangles, this
can only happen if T = Si

1 or T = Si
2. It follows that 2mn is a lower bound

for the size of a minimum feedback set in G.

Suppose now that there is an assignment of values to the variables so that
each clause is true. If a variable vi is set to true, we pick the set Si

1; otherwise
vi is set to false and we pick Si

2. Thus we obtain a node set F of size 2mn that
covers every directed cycle contained in each variable component. Now consider
a clause cycle Dj corresponding to a clause cj. Since at least one of the variables
included in cj is set to true, this cycle is covered.

On the other hand if there is a feedback set S of size 2mn, its restriction to
the subgraph associated with a variable vi is either the set Si

1 or Si
2. In the first

case we set vi to true, and in the second case we set vi to false. Since each clause
cycle is covered, then each clause is set to true.

Acknowledgements. We are grateful to the referees for helping us to improve
the presentation.
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n-Step Cycle Inequalities: Facets for Continuous
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Abstract. In this paper, we introduce a generalization of the well-
known continuous mixing set (which we refer to as the continuous n-
mixing set) Qm,n := {(y, v, s) ∈

(
Z× Zn−1

+

)m×Rm+1
+ :

∑n
t=1 αty

i
t+ vi+

s ≥ βi, i = 1, . . . ,m}. This set is closely related to the feasible set of the
multi-module capacitated lot-sizing (MML) problem with(out) backlog-
ging. For each n′ ∈ {1, . . . , n}, we develop a class of valid inequalities
for this set, referred to as the n′-step cycle inequalities, and show that
they are facet-defining for conv(Qm,n) in many cases. We also present a
compact extended formulation for Qm,n and an exact separation algo-
rithm for the n′-step cycle inequalities. We then use these inequalities to
generate valid inequalities for the MML problem with(out) backlogging.
Our computational results show that our cuts are very effective in solving
the MML instances with backlogging, resulting in substantial reduction
in the integrality gap, number of nodes, and total solution time.

Keywords: n-step cycle inequalities, n-step MIR, continuous n-mixing,
multi-module capacitated lot-sizing with backlogging.

1 Introduction

Polyhedral study of the mixed integer “base” sets which constitute well-
structured relaxations of important mixed integer programming (MIP) prob-
lems is a promising approach in developing strong cutting planes for these MIP
problems. This is because oftentimes one can develop procedures in which the
valid inequalities (or facets) developed for the base set are used to generate
valid inequalities (or facets) for the original MIPs (see [1, 5–7, 11, 15] for a few
examples among many others).

One mixed integer base set studied for this purpose is the continuous mixing
set

Q := {(y, v, s) ∈ Zm × Rm+1
+ : yi + vi + s ≥ βi, i = 1, . . . ,m},

where βi ∈ R, i = 1, . . . ,m [14]. This set is a generalization of the well-studied
mixing set {(y, s) ∈ Zm × R+ : yi + s ≥ βi, i = 1, . . . ,m} [6], which itself is a
multi-constraint generalization of the base set {(y, s) ∈ Z×R+ : y+ s ≥ β} that

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 102–113, 2014.
c© Springer International Publishing Switzerland 2014
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Number of constraints in the base polyhedron  
  

Number of 
integer variables 
in each 
constraint of  
the base 
polyhedron  
 

 

  

 

  

MIR [8,15] 
(Nemhauser and Wolsey, 1990; 

Wolsey, 1998) 

-step MIR [7]                  
(Kianfar and Fathi, 2009) 

Mixed MIR [6]  
(Günlük and Pochet, 2001) 

Mixed -step MIR [11]  
(Sanjeevi and Kianfar, 2012) 

Continuous mixing [14]    
(Van Vyve, 2005) 

Continuous -mixing    
(This Paper) 

Fig. 1. Generalizations of Mixed Integer Rounding (MIR)

leads to the well-known mixed integer rounding (MIR) inequality (page 127 of
[15]). In all these base sets each constraint has only one integer variable. Fig. 1
presents a summary of the relationship between these base sets and other base
sets of interest in this paper. The set Q arises as a substructure in relaxations of
problems such as lot-sizing (production planning) with backlogging and lot-sizing
with stochastic demand. Van Vyve [14] introduced the so-called cycle inequalities
for this set and showed that these inequalities along with bound constraints are
sufficient to describe the convex hulls of this set. The MIR inequalities (called
1-step MIR inequalities in this paper) of Nemhauser and Wolsey [8, 15] and the
mixed (1-step) MIR inequalities of Günlük and Pochet [6] are special cases of
the cycle inequalities for Q (Fig. 1).

In another direction (Fig. 1), Kianfar and Fathi [7] generalized the 1-step MIR
inequalities [8] and developed the n-step MIR inequalities for the mixed integer
knapsack set by studying the base set

Q1,n
0 =

{
(y, s) ∈ Z× Zn−1

+ × R+ :

n∑
t=1

αtyt + s ≥ β
}
,

where αt ∈ R+\{0}, t = 1, . . . , n and β ∈ R. Note that this base set has a
single constraint and n integer variables in this constraint. The n-step MIR
inequalities are valid and facet-defining for the base set Q1,n

0 if αt’s and β satisfy
the so-called n-step MIR conditions (see conditions (4) in Section 2). However,
n-step MIR inequalities can also be generated for a mixed integer constraint with
no conditions imposed on the coefficients. In that case, the external parameters
used in generating the inequality are picked such that they satisfy the n-step
MIR conditions (see [7] for more details). The n-step MIR inequalities are facet-
defining for the mixed integer knapsack set in many cases [2, 7]. The Gomory
mixed integer cut [10] and the 2-step MIR inequalities [5] are the special cases
of n-step MIR inequalities, corresponding to n = 1, 2, respectively.

Recently, Sanjeevi and Kianfar [11] showed that the procedure proposed by
Günlük and Pochet [6] to mix 1-step MIR inequalities can be generalized and
used to mix the n-step MIR inequalities [7] (Fig. 1). As a result, they developed
the mixed n-step MIR inequalities for a generalization of the mixing set called
the n-mixing set, i.e.

Qm,n
0 =

{
(y, s) ∈ (Z× Zn−1

+ )m × R+ :
∑n

t=1
αty

i
t + s ≥ βi, i = 1, . . . ,m

}
,
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where αt ∈ R+ \ {0}, t = 1, . . . , n, βi ∈ R, i = 1, . . . ,m. Note that this is
a multi-constraint base set with n integer variables in each constraint and a
continuous variable which is common among all constraints. The mixed n-step
MIR inequalities are valid if αt and βi satisfy the n-step MIR conditions in the
mixed rows. These inequalities are also facet-defining for the convex hull of Qm,n

0

under certain conditions. Sanjeevi and Kianfar [11] also generalized the lot-sizing
problem with constant batches [9] (where the capacity in each period can be some
integer multiple of a single capacity module with a given size) and introduced
the multi-module capacitated lot-sizing (MML) problem. In this generalization,
the production capacity in each period can be the summation of some integer
multiples of several capacity modules of different sizes. They showed that the
mixed n-step MIR inequalities can be used to generate valid inequalities for
the MML problem without backlogging (which we denote by MML-WB). These
inequalities generalize the (k, l, S, I) inequalities which were introduced for the
lot-sizing problem with constant batches by Pochet and Wolsey [9].

In this paper, we generalize the concepts of continuous mixing [14] and mixed
n-step MIR [11] by introducing a more general base set referred to as the con-
tinuous n-mixing set which we define as

Qm,n :=
{
(y, v, s) ∈ (Z×Zn−1

+ )m×Rm+1
+ :

∑n

t=1
αty

i
t+vi+s ≥ βi, i = 1, . . . ,m

}
,

where αt > 0, t = 1, . . . , n and βi ∈ R, i = 1, . . . ,m (see Fig. 1). Note that
this set has multiple (m) constraints with multiple (n) integer variables in each
constraint; but it is more general than the n-mixing set because in addition to
the common continuous variable s, each constraint has a continuous variable
vi of its own. The continuous mixing set Q is the special case of Qm,n, where
n = 1 and α1 = 1, and the n-mixing set of Sanjeevi and Kianfar [11] is the
projection of Qm,n ∩ {v = 0} on (y, s). The continuous n-mixing set arises as a
substructure in relaxations of MML-WB and MML with backlogging (MML-B).
For each n′ ∈ {1, . . . , n}, we develop a class of valid inequalities for Qm,n which
we refer to as n′-step cycle inequalities (Section 3), and obtain conditions under
which these inequalities are facet-defining for conv(Qm,n) (Section 4). Note that
the n-step MIR inequalities [7] and the mixed n-step MIR inequalities [11] are
special cases of the n-step cycle inequalities. In Section 5, we introduce a compact
extended formulation for Qm,n and an efficient exact separation algorithm to
separate over the set of all n′-step cycle inequalities for set Qm,n. Then, in
Section 6, we use these inequalities to generate valid inequalities for the MML-
WB and MML-B. Our computational results in Section 7 on applying 2-step
cycle inequalities using our separation algorithm show that our cuts are very
effective in solving MML-B with two capacity modules (n = 2) resulting in
considerable reduction in the integrality gap (87.7% in average), the number of
nodes (9.9 times in average). Also, the total time (which also includes the cut
generation time) taken to solve an instance is in average 4.2 times smaller than
the time taken by CPLEX with default settings (except for very easy instances).
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2 Necessary Background

In this section, we briefly review the cycle inequalities for the continuous mixing
set [14] and the n-step MIR inequalities [7] to the extent required as background
for the results in this paper.

Van Vyve [14] generated the cycle inequalities for the continuous mixing set
Q as follows: Define β0 := 0, fi := βi − �βi� , i ∈ {0, . . . ,m}, and without loss
of generality assume that fi−1 ≤ fi, i = 1, . . . ,m. Let G := (V,A) be a directed
graph, where V := {0, 1, . . . ,m} and A := {(i, j) : i, j ∈ V, fi �= fj}. Note that G
is a complete graph except for the arcs (i, j) where fi = fj. An arc (i, j) ∈ A is
called a forward arc if i < j and a backward arc if i > j. To each arc (i, j) ∈ A,
associate a linear function ψij(y, v, s) defined as

ψij(y, v, s) :=

{
s+ vi + (fi − fj + 1)(yi − �βi�)− fj if (i, j) is a forward arc,

vi + (fi − fj)(y
i − �βi�) if (i, j) is a backward arc,

where v0 = y0 = 0.

Theorem 1 ([14]). Given an elementary cycle C = (VC , AC) in the graph G,
the inequality ∑

(i,j)∈AC

ψij(y, v, s) ≥ 0, (1)

referred to as the cycle inequality, is valid for Q. 
�

In [14], the validity of the cycle inequality (1) was proved indirectly through the
following extended formulation for Q:

Qδ =
{
(y, v, s, δ) ∈ Rm × Rm

+ × R+ × Rm+1 :

ψij(y, v, s) ≥ δi − δj for all (i, j) ∈ A,

yi + vi + s ≥ βi, i = 1, . . . ,m
}
.

Note that the set of all original inequalities, all cycle inequalities, along with
the bound constraints v, s ≥ 0, define Projy,v,s(Q

δ). Van Vyve [14] showed that
conv(Q) = Projy,v,s(Q

δ), which proves Theorem 1. Furthermore, he showed
that the separation over conv(Q) can be performed in O(m3) time by finding a
negative weight cycle in G. Similar results were presented for the relaxation of
Q to the case where s ∈ R.

In another direction, Kianfar and Fathi [7] developed the n-step MIR in-
equalities (a generalization of MIR inequalities [8, 15]) for the set Q1,n

0 . Note
that Q1,n

0 = Projy,s
(
Q1,n ∩ {v = 0}

)
. The n-step MIR inequality for this set is

β(n)
n∑

t=1

n∏
l=t+1

⌈
β(l−1)

αl

⌉
yt + s ≥ β(n)

n∏
l=1

⌈
β(l−1)

αl

⌉
, (2)
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where the recursive remainders β(t) are defined as

β(t) := β(t−1) − αt

⌊
β(t−1)/αt

⌋
, t = 1, . . . , n, (3)

and β(0) := β (note that 0 ≤ β(t) < αt for t = 1, . . . , n). By definition if a > b,

then
∑b

a(.) = 0 and
∏b

a(.) = 1. For inequality (2) to be non-trivial, we assume
that β(t−1)/αt /∈ Z, t = 1, . . . , n. Kianfar and Fathi [7] showed that the n-step
MIR inequality (2) is valid and facet-defining for the convex hull of Q1,n

0 if the
so-called n-step MIR conditions, i.e.

αt

⌈
β(t−1)/αt

⌉
≤ αt−1, t = 2, . . . , n, (4)

hold. As mentioned in Section 1, they also used inequalities (2) to generate n-step
MIR inequalities for single-constraint mixed integer sets with no conditions on
the coefficients. Later, Atamtürk and Kianfar [2] showed that those inequalities
also have facet-defining properties in several cases (refer to [2, 7] for more details).

3 n-Step Cycle Inequalities for Continuous n-Mixing Set

In this section, we unify the concepts of continuous mixing [14] and n-step MIR
[7] by studying the continuous n-mixing set

Qm,n :=
{
(y, v, s) ∈ (Z×Zn−1

+ )m×Rm+1
+ :

∑n

t=1
αty

i
t+vi+s ≥ βi, i = 1, . . . ,m

}
introduced in Section 1. Qm,n is a generalization of both the continuous mixing
set Q and the n-mixing set Qm,n

0 . We will show that for each n′ ∈ {1, . . . , n},
there exist a family of valid inequalities for Qm,n, which we refer to as the n′-
step cycle inequalities. In proving the validity of these inequalities, Theorem 1
will become necessary. As mentioned before, Van Vyve [14] proved Theorem
1 indirectly by defining the extended formulation Qδ and showing that every
extreme point (ray) of the set Q has a counterpart in Qδ (see [14] for details).
We have developed a direct proof for Theorem 1, which only uses the original
inequalities and the cycle structure. We believe this proof can be insightful in
further pursuit of research in this area. Here, we present an alternative form of
Theorem 1 and provide the brief sketch of our proof:

Lemma 1. Let C = (VC , AC) be a directed Hamiltonian cycle over q nodes,
where VC = {1, . . . , q}, AC := {(1, i2), (i2, i3), . . . , (iq, 1)}, and i2, . . . , iq ∈ {2,
. . . , q} are distinct. Let σ ∈ R, α ∈ R+, and to each node i ∈ {1, . . . , q} assign
the values ωi ∈ R+, κi ∈ Z, and γi ∈ R+ such that γi < α, i = 1, . . . , q, and
γi−1 < γi, i = 2, . . . , q. If

σ + ωi + ακi ≥ γi i = 1, . . . , q, (5)

then the cycle inequality∑
(i,j)∈F

(σ + ωi − γj + (γi − γj + α) κi) +
∑

(i,j)∈B

(ωi + (γi − γj)κi) ≥ 0, (6)
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is valid, where F and B are the sets of forward and backward arcs in AC , re-
spectively (i.e. F = {(i, j) ∈ AC : i < j} and B = {(i, j) ∈ AC : i > j}).

Sketch of Proof. For p ∈ {1, . . . , q}, let Ap be the arcs in the path from 1 to ip+1

in C, i.e. Ap := {(1, i2), (i2, i3), . . . , (ip, ip+1)} (we define iq+1 := 1). Denote the
set of forward and backward arcs in Ap by Fp and Bp, respectively (note that if
p′ < p, then Ap′ ⊂ Ap, Fp′ ⊆ Fp, and Bp′ ⊆ Bp). Also, let T (.) be an operator
that, when applied on an arc set, returns the set of tail nodes of the arcs in that
arc set. Define the index gp ∈ {i1, . . . , ip} recursively as follows: g1 := 1, and

gp :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gp−1 if ip ∈ T (Fp), gp−1 ∈ T (Fp−1), κgp−1 ≥ κip ,

ip if ip ∈ T (Fp), gp−1 ∈ T (Fp−1), κgp−1 < κip ,

gp−1 if ip ∈ T (Fp), gp−1 ∈ T (Bp−1), κgp−1 > κip ,

ip if ip ∈ T (Fp), gp−1 ∈ T (Bp−1), κgp−1 ≤ κip ,

gp−1 if ip ∈ T (Bp), gp−1 ∈ T (Bp−1), κgp−1 ≤ κip ,

ip if ip ∈ T (Bp), gp−1 ∈ T (Bp−1), κgp−1 > κip ,

gp−1 if ip ∈ T (Bp), gp−1 ∈ T (Fp−1), κgp−1 < κip ,

ip if ip ∈ T (Bp), gp−1 ∈ T (Fp−1), κgp−1 ≥ κip ,

for p = 2, . . . , q and for p = 1, . . . , q, define

Δp :=

{
γgp − γip+1 if gp ∈ T (Bp),

0 if gp ∈ T (Fp).

In proving this theorem, we first show that the inequality∑
(i,j)∈Fp

(γi − (γi − γj + α)κi) +
∑

(i,j)∈Bp

(γi − γj) (1− κi)

≤ (|Fp| − 1)σ +
∑

i∈T (Ap)\{gp}
ωi −

(
γ1 − γip+1 + α

)
κgp + γ1 +Δp,

(7)

is valid for p = 1, . . . , q. Then we show that for p = q, inequality (7) becomes
inequality (6) which completes the proof. 
�

Now given n′ ∈ {1, . . . , n}, we develop the n′-step cycle inequalities for Qm,n

as follows: Without loss of generality, we assume β
(n′)
i−1 ≤ β

(n′)
i , i = 2, . . . ,m,

where β
(n′)
i is defined as (3). Also define β0 := 0. Now similar to the graph

defined for the cycle inequalities (see Section 2), here we define a directed graph

Gn′ = (V,A), where V := {0, 1, . . . ,m} and A := {(i, j) : i, j ∈ V, β
(n′)
i �= β

(n′)
j }.

Gn′ is a complete graph except for the arcs (i, j) where β
(n′)
i = β

(n′)
j . Here to

each arc (i, j) ∈ A, we associate the linear function ψn′
ij (y, v, s) defined as

ψn′
ij (y, v, s) :=

⎧⎪⎪⎨⎪⎪⎩
s+ vi +

n∑
t=n′+1

αty
i
t + β

(n′)
ij

(
1− φn′

i (yi)
)
− β

(n′)
j if i < j,

vi +
n∑

t=n′+1

αty
i
t +

(
β
(n′)
i − β

(n′)
j

)(
1− φn′

i (yi)
)

if i > j,
(8)
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where β
(n′)
ij := β

(n′)
i − β

(n′)
j + αn′ for all (i, j) ∈ A, i < j, the functions φn′

i (yi),
i = 1, . . . ,m, are defined as

φn′
i (yi) :=

n′∏
l=1

⌈
β
(l−1)
i

αl

⌉
−

n′∑
t=1

n′∏
l=t+1

⌈
β
(l−1)
i

αl

⌉
yit, (9)

and by definition, v0 := 0, y0 := 0, and φn′
0 (y0) := 1. We can show that each

elementary cycle of graph Gn′ corresponds to a valid inequality for the set Qm,n,
which we refer to as the n′-step cycle inequality.

Theorem 2. Given n′ ∈ {1, . . . , n} and an elementary cycle C = (VC , AC) of
graph Gn′ , the n′-step cycle inequality∑

(i,j)∈AC

ψn′
ij (y, v, s) ≥ 0 (10)

is valid for Qm,n if the n′-step MIR conditions for i ∈ VC , i.e.

αt

⌈
β
(t−1)
i /αt

⌉
≤ αt−1, t = 2, . . . , n′, i ∈ VC , (11)

hold. 
�

Remark: For the special case where the parameters α1, . . . , αn′ are divisible,
i.e. αt|αt−1, t = 2, . . . , n′, the n′-step MIR conditions are automatically satisfied
no matter what the value of βi is.

Special Cases: The n-step MIR inequalities of Kianfar and Fathi [7] and the
mixed n-step MIR inequalities of Sanjeevi and Kianfar [11] are special cases of
the n-step cycle inequalities.

4 Facet-Defining n-Step Cycle Inequalities

In this section, we show that for any n′ ∈ {1, . . . , n}, the n′-step cycle inequalities
define facets for conv(Qm,n) under certain conditions. For i, j ∈ {1, . . . ,m} such
that β

(n′)
i > β

(n′)
j , we define β

(n′,n′)
ij := β

(n′)
i − β

(n′)
j and β

(n′,t)
ij := β

(n′,t−1)
ij −

αt

⌊
β
(n′,t−1)
ij /αt

⌋
, t = n′ + 1, . . . , n.

Theorem 3. For n′ ∈ {1, . . . , n}, the n′-step cycle inequality (10) for an ele-
mentary cycle C = (VC , AC) of graph Gn′ is facet-defining for conv(Qm,n) if (in
addition to the n′-step MIR conditions (11)) the following conditions hold

(a)
⌊
β
(d−1)
k /αd

⌋
≥ 1, d = 2, . . . , n, for all (k, l) ∈ F ,

(b) β
(n′)
l −β(n′)

k ≥ max
{
αd−1−αd

⌈
β
(d−1)
k /αd

⌉
, d = 2, . . . , n′

}
for all (k, l) ∈ F ,

(c)
⌊
β
(n′,d−1)
kl /αd

⌋
≥ 1, d = n′ + 1, . . . , n, for all (k, l) ∈ B. 
�
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Theorem 4. For n′ ∈ {1, . . . , n}, the n′-step cycle inequality (10) for an ele-
mentary cycle C = (VC , AC) of graph Gn′ is facet-defining for conv(Qm,n) if (in
addition to the n′-step MIR conditions (11)) the following conditions hold

(a) T (F ) = {0},

(b)
⌊
β
(n′,d−1)
kl /αd

⌋
≥ 1, d = n′ + 1, . . . , n, for all (k, l) ∈ B. 
�

Remark: There will be no condition (c) in Theorem 3 and no condition (b) in
Theorem 4 for the case of n′ = n.

Example 1. Consider a continuous 2-mixing set with 3 rows Q3,2 = {(y1, y2, y3,
v, s) ∈ (Z×Z1

+)
3 ×R3

+ ×R+ : 31y11 +10y12 + v1 + s ≥ 89, 31y21 +10y22 + v2 + s ≥
59, 31y31 + 10y32 + v3 + s ≥ 29}. Therefore α = (α1, α2) = (31, 10), β1 = 89,

β2 = 59, β3 = 29, and we have β
(1)
1 = 27, β

(2)
1 = 7, β

(1)
2 = 28, β

(2)
2 = 8,

β
(1)
3 = 29, and β

(2)
3 = 9. Note that

⌈
β
(1)
1 /α2

⌉
=
⌈
β
(1)
2 /α2

⌉
=
⌈
β
(1)
3 /α2

⌉
= 3 and

β
(2)
1 < β

(2)
2 < β

(2)
3 . Now, consider a complete directed graph G2 = (V,A), where

V = {0, . . . , 3}. The linear function ψ2
ij(y, v, s) associated with each arc (i, j) ∈ A

is defined by (8) where n′ = 2 and φ2
i (y

i) =
⌈
β
(1)
i /α2

⌉
�βi/α1�−

⌈
β
(1)
i /α2

⌉
yi1−yi2,

for i = 1, . . . , 3. The 2-step MIR conditions (11) are satisfied. Therefore, the 2-
step cycle inequalities corresponding to the cycles in graph G2 are valid for Q3,2.
For n′ = 2, the additional conditions required in Theorem 3 are also satisfied, i.e.

(a)
⌊
β
(1)
k /α2

⌋
= 2 ≥ 1, for k ∈ {1, 2, 3}, (b) β(2)

l − β
(2)
k ≥ 1 = α1 − α2

⌈
β
(1)
k /α2

⌉
for all (k, l) ∈ A, 1 ≤ k < l ≤ 3, and there is no condition (c) for n′ = n = 2.
Therefore, the 2-step cycle inequality (10) corresponding to each cycle C =
(VC , AC) in graph G2, where VC ⊆ {1, 2, 3}, defines a facet for conv(Q3,2).
Moreover, based on Theorem 4, the 2-step cycle inequality (10) corresponding
to each cycle C = (VC , AC) in graph G2, where T (F ) = {0}, also defines a facet
for conv(Q3,2) because there is no condition (b) for n′ = n = 2. 
�

5 Extended Formulation and Separation Algorithm

Theorem 5. The following linear program is a compact extended formulation
for Qm,n, if conditions (11) hold.

ψn′
ij (y, v, s) ≥ δn

′
i − δn

′
j for all (i, j) ∈ A, n′ ∈ {1, . . . , n}∑n

t=1αty
i
t + vi + s ≥ βi, i = 1, . . . ,m

y ∈ (R× Rn−1
+ )m, v ∈ Rm

+ , s ∈ R+, δ ∈ Rn(m+1). 
�

Separation Algorithm. Given a point (ŷ, v̂, ŝ) and n′ ∈ {1, . . . , n}, it is possi-
ble to solve the exact separation problem over all the n′-step cycle inequalities
for the set Qm,n. The goal is to find an n′-step cycle inequality (10) that is vio-
lated by (ŷ, v̂, ŝ), if any. This can be done by detecting a negative weight cycle
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(if any) in the directed graph Gn′ = (V,A) with weights ψn′
ij (ŷ, v̂, ŝ) for each arc

(i, j) ∈ A. This means that the most negative cycle in Gn′ (if it exists) corre-
sponds to the n′-step cycle inequality that is most violated by (ŷ, v̂, ŝ). However,
the problem of finding the most negative cycle in a graph is strongly NP-hard
[12]. A method proposed by Cherkassy and Goldberg [3] (which is a combination
of the cycle detection strategy of Tarjan [13] and the Bellman-Ford-Moore’s la-
beling algorithm [4]), denoted by BFCT, is one of the fastest known algorithms
to detect a negative cycle. BFCT terminates when it finds the first negative cy-
cle; however, there may be cycles with smaller weight in the graph which would
lead to stronger inequalities. Therefore, we devised a modified version of BFCT,
denoted by MBFCT, which does not stop after finding the first negative cycle
and continues the search for other negative cycles (if any) until a certain ter-
mination condition is satisfied. Out of all the cycles found by MBFCT, the one
with the most negative weight is used to generate the n′-step cycle inequality
(10) that separates (ŷ, v̂, ŝ) with the largest violation among all generated cycles.

6 Cuts for Multi-Module Capacitated Lot-Sizing Problem

In this section, we use n-step cycle inequalities to develop cutting planes for
MML-(W)B problem. We define MML-B as follows. Let P := {1, . . . ,m} be
the set of time periods and {α1, . . . , αn} be the set of sizes of the n available
capacity modules. The setup cost per module of size αt, t = 1, . . . , n in period p
is denoted by f t

p. Given the demand, the production per unit cost, the inventory
per unit cost, and the per unit shortage (backlog) cost in period p, denoted by
dp, cp, hp, and bp, respectively, the MML-B problem can be formulated as:

min
∑
p∈P

cpxp +
∑
p∈P

hpsp +
∑
p∈P

bprp +
∑
p∈P

n∑
t=1

f t
pz

t
p (12)

sp−1 − rp−1 + xp = dp + sp − rp, p ∈ P (13)

xp ≤
n∑

t=1

αtz
t
p, p ∈ P (14)

(z, x, r, s) ∈ Zm×n
+ × Rm

+ × Rm+1
+ × Rm+1

+ (15)

where xp is the production in period p, sp and rp are the inventory and backlog,
respectively, at the end of period p, s0 = rm = 0, and ztp is the number of capacity

modules of size αt, t = 1, . . . , n, used in period p. Let XMML−B denote the set
of feasible solutions to constraints (13)-(15). Note that every valid inequality for
XMML−B also gives a valid inequality for the set of feasible solutions to the
MML-WB problem which is the projection of XMML−B ∩ {r = 0} on (z, x, s).

In order to generate valid inequalities for XMML−B, we consider periods
k, . . . , l, for any k, l ∈ P where k < l. Let S ⊆ {k, . . . , l} such that k ∈ S.
For i ∈ S, let Si := S ∩ {k, . . . , i}, mi = min{p : p ∈ S\Si} with mi = l + 1

if S\Si = ∅, and bi =
∑mi−1

p=k dp. Now, by adding equalities (13) from period
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k to period mi − 1, relaxing xp, p ∈ Si, to its upper bound based on (14) and
dropping rk−1, smi−1(≥ 0), we get the following valid inequality:

sk−1 + rmi−1 +
∑

p∈{k,...,mi−1}\Si

xp +

n∑
t=1

αt

∑
p∈Si

ztp ≥ bi. (16)

Notice that inequality (16) is of the same form as the defining inequalities of the
continuous n-mixing setQm,n where s = sk−1, vi = rmi−1+

∑
p∈{k,...,mi−1}\Si

xp,

yit =
∑

p∈Si
ztp, and βi = bi (notice that s, vi ∈ R+, y

i
t ∈ Z+, t = 1, . . . , n). There-

fore we can form a set of base inequalities consisting of inequalities (16) for all i ∈
S such that the n-step MIR conditions, i.e. αt

⌈
b
(t−1)
i /αt

⌉
≤ αt−1, t = 2, . . . , n,

hold. We construct a directed graph for these base inequalities in the same fash-
ion as we did for the continuous n-mixing set Qm,n in Section 3. The n-step
cycle inequalities corresponding to each elementary cycle C in this graph will be
valid for XMML−B. We refer to these inequalities as the n-step (k, l, S, C) cycle
inequalities. The same procedure also provides a new class of valid inequalities
for MML-WB which subsume the valid inequalities generated using the mixed
n-step MIR inequalities [11] for MML-WB.

Note that a procedure similar to what was presented above for n can also be
used to develop n′-step (k, l, S, C) cycle inequalities for MML-(W)B problem for
any n′ ∈ {1, . . . , n} in general.

7 Computational Results

In this section, we computationally evaluate the effectiveness of the n-step cycle
inequalities for the MML-B problem using our separation algorithm (discussed
in Section 5). We chose n = 2 for our experiments in this paper and refer
to the MML-B problem with two capacity modules (n = 2) as 2ML-B. We
created random 2ML-B instances with 60 time periods, i.e. P = {1, . . . , 60}, and
varying cost and capacity characteristics. The demand dp, production cost cp,
and holding cost hp in each period were drawn from integer uniform[10 , 190 ],
integer uniform[81 , 119 ], and real uniform[1 , 19 ], respectively. For each instance
of 2ML-B, the backlog cost bp in each period equals hp plus a real number drawn
from uniform[1 , 10 ]. We used three sets of capacity modules α = (α1, α2): (70,
34), (100, 35), and (180, 80). Two sets of setup costs (f1

p , f
2
p ), p ∈ P were used for

these modules: (1000, 600), leading to easy instances, and (5000, 2600), leading
to hard instances. Note that some of the instance generation ideas we used here
are inspired by the ideas used in [11] for 2ML without backlogging.

For each 2ML-B instance, we first solved the problem (defined by (12)-(15)
for n = 2) without adding any of our own cuts using CPLEX 11.0 with its
default settings (2ML-B-DEF). In a separate run, we used our cut generation
algorithm to add 2-step (k, l, S, C) cycle inequalities to the problem at the root
node. This algorithm calls our separation algorithm for several choices of (k, l, S)
to generate 2-step (k, l, S, C) cycle inequalities that are violated by the LP relax-
ation optimal solution, which is updated after adding each cut. Note that each
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Table 1. Results of computational experiments on 2ML-B instances (each entry in
this table corresponds to the average for 10 instances)

Instance 2ML-B-DEF 2ML-B-CUTS

(f1
p , f

2
p ) (α1, α2) TDef Nodes Cuts TCut TOpt TTotal Nodes Gap%

(1000, 600) (70,34) 0.34 582 109 4.06 0.18 4.24 197 91.54
(100, 35) 0.31 691 91 2.89 0.10 2.99 116 88.23
(180, 80) 0.13 277 125 3.68 0.03 3.71 23 92.52

(5000, 2600) (70,34) 1133.81 5271562 86 4.88 135.73 140.61 274503 83.20
(100, 35) 11.54 31909 81 3.71 6.13 9.84 12065 83.27
(180, 80) 28.66 117942 101 4.63 3.76 8.39 6986 87.43

choice of (k, l, S) provides one set of base inequalities (16) (where n = 2) and
we solve an exact separation problem over the set of all 2-step (k, l, S, C) cycle
inequalities corresponding to the base inequalities which satisfy the n-step MIR
conditions (discussed in Section 6). We then removed the inactive cuts and used
CPLEX 11.0 with its default settings to solve the problem (2ML-B-CUTS). We
implemented our codes in Microsoft Visual C++ 2010.

The results of our computational experiments are shown in Table 1. Each row
of this table reports the average results for 10 instances of the corresponding
category. We report the percentage of the integrality gap closed by our cuts,
i.e. Gap% = 100× (zcut − zlp)/(zmip − zlp), where zlp, zcut , and zmip are the
optimal objective values of the LP relaxation without our cuts, LP relaxation
with our cuts, and MIP, respectively. We also report the number of active 2-step
(k, l, S, C) cycle cuts added at the root node (Cuts), the number of branch-
and-bound nodes (Nodes), and the time (in seconds) to solve 2ML-B-DEF to
optimality (TDef ), the time (in seconds) to generate 2-step (k, l, S, C) cycle cuts
(TCut), and the time (in seconds) to solve 2ML-B-CUTS to optimality (excluding
the cut generation time) (TOpt ). The total time to solve 2ML-B-CUTS including
the cut generation time is also reported (TTotal = TCut + TOpt).

Comparing the time to optimize the problem before and after adding the
cuts (i.e. TOpt vs. TDef ), we see significant improvement obtained by adding
the cuts in both easy instances (on average 3.1 times) and hard instances (on
average 6 times). There is also a substantial reduction in the number of branch-
and-bound nodes (on average 6.9 times for easy instances and 12.9 times for
hard instances). The percentage of integrality gap closed by our cuts is between
83.1% and 92.5% (the average is 87.7%). These results show the strength of 2-
step (k, l, S, C) cycle inequalities. Also, observe that for the hard instances, the
cut generation time (TCut) is negligible compared to (TDef ). This combined with
the highly improved optimization time after adding the cuts has resulted in a
total solution time (TTotal ) which is on average 4.2 times smaller than the total
time to solve 2ML-B-DEF (TDef ). The collection of these observations show that
the 2-step (k, l, S, C) cycle inequalities are very effective in solving the 2ML-B
problems.
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8 Concluding Remarks

We unified the concepts of the continuous mixing and the n-step MIR by de-
veloping a class of valid inequalities (n-step cycle inequalities) for continuous
n-mixing set (a generalization of the continuous mixing set and the n-mixing
set) where the coefficients satisfy the n-step MIR conditions. We provided the
facet-defining properties of the n′-step cycle inequalities, n′ ∈ {1, . . . , n}, for the
continuous n-mixing set. We also presented a compact extended formulation for
the continuous n-mixing set and an exact separation algorithm over the set of
all n′-step cycle inequalities, n′ ∈ {1, . . . , n}. We showed that these inequalities
can be used to generate cuts for the multi-module capacitated lot-sizing prob-
lems with(out) backlogging. Our computational results showed that the n-step
cycle inequalities and our separation algorithm are very effective in solving these
problems.
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Abstract. The input to the stochastic orienteering problem [14] consists
of a budget B and metric (V, d) where each vertex v ∈ V has a job with a
deterministic reward and a random processing time (drawn from a known
distribution). The processing times are independent across vertices. The
goal is to obtain a non-anticipatory policy (originating from a given root
vertex) to run jobs at different vertices, that maximizes expected reward,
subject to the total distance traveled plus processing times being at
most B. An adaptive policy is one that can choose the next vertex to
visit based on observed random instantiations. Whereas, a non-adaptive
policy is just given by a fixed ordering of vertices. The adaptivity gap is
the worst-case ratio of the expected rewards of the optimal adaptive and
non-adaptive policies.

We prove an Ω
(
(log logB)1/2

)
lower bound on the adaptivity gap

of stochastic orienteering. This provides a negative answer to the O(1)-
adaptivity gap conjectured in [14], and comes close to the O(log logB)
upper bound proved there. This result holds even on a line metric.

We also show anO(log logB) upper bound on the adaptivity gap for the
correlated stochastic orienteering problem, where the reward of each job is
random and possibly correlated to its processing time. Using this, we ob-
tain an improved quasi-polynomial time min{log n, logB}·Õ(log2 logB)-
approximation algorithm for correlated stochastic orienteering.

1 Introduction

In the orienteering problem [11], we are given a metric (V, d) with a starting
vertex ρ ∈ V and a budget B on length. The objective is to compute a path
originating from ρ having length at most B, that maximizes the number of
vertices visited. This is a basic vehicle routing problem (VRP) that arises as a
subroutine in algorithms for a number of more complex variants, such as VRP
with time-windows, discounted reward TSP and distance constrained VRP.

The stochastic variants of orienteering and related problems such as traveling
salesperson and vehicle routing have also been extensively studied. In particular,
several dozen variants have been considered depending on which parameters are
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stochastic, the choice of the objective function, the probability distributions, and
optimization models such as a priori optimization, stochastic optimization with
recourse, probabilistic settings and so on. For more details we refer to a recent
survey [18] and references therein.

Here, we consider the following stochastic version of the orienteering problem
defined by [14]. Each vertex has a job with a deterministic reward and random
processing time (also referred to as size); these processing times are independent
across vertices. The processing times model the random delays encountered at
the node, say due to long queues or activities such as filling out a form, before
the reward can be collected. The distances in the metric correspond to travel
times between vertices, which are deterministic. The goal is to compute a policy,
which describes a path originating from the root ρ that visits vertices and runs
the respective jobs, so as to maximize the total expected reward subject to the
total time (for travel plus processing) being at most B. Stochastic orienteering
also generalizes the well-studied stochastic knapsack problem [9,5,4] (when all
distances are zero). We also consider a further generalization, where the reward
at each vertex is also random and possibly correlated to its processing time.

A feasible solution (policy) for the stochastic orienteering problem is repre-
sented by a decision tree, where nodes encode the “state” of the solution (pre-
viously visited vertices and the residual budget), and branches denote random
instantiations. Such solutions are called adaptive policies, to emphasize the fact
that their actions may depend on previously observed random outcomes. Often,
adaptive policies can be very complex and hard to reason about. For example,
even for the stochastic knapsack problem an optimal adaptive strategy may have
exponential size (and several related problems are PSPACE-hard) [9].

Thus a natural approach for designing algorithms in the stochastic setting is
to: (i) restrict the solution space to the simpler class of non adaptive policies
(eg. in our stochastic orienteering setting, such a policy is described by a fixed
permutation to visit vertices in, until the budget B is exhausted), and (ii) design
an efficient algorithm to find a (close to) optimum non-adaptive policy.

While non-adaptive policies are often easier to optimize over, the drawback is
that they could be much worse than the optimum adaptive policy. Thus, a key
issue is to bound the adaptivity gap, introduced by [9] in their seminal paper,
which is the worst-case ratio (over all problem instances) of the optimal adaptive
value to the optimal non-adaptive value.

In recent years, increasingly sophisticated techniques have been developed
for designing good non-adaptive policies and for proving small adaptivity
gaps [9,12,8,2,13,14]. For stochastic orienteering, [14] gave an O(log logB) bound
on the adaptivity gap, using an elegant probabilistic argument (previous ap-
proaches only gave a Θ(logB) bound). More precisely, they considered certain
O(logB) correlated probabilistic events and used martingale tails bounds on
suitably defined stopping times to bound the probability that none of these
events happen. In fact, [14] conjectured that the adaptivity gap for stochastic
orienteering was O(1), suggesting that the O(log logB) factor was an artifact of
their analysis.
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1.1 Our Results and Techniques

Adaptivity Gap for Stochastic Orienteering. Our main result is:

Theorem 1. The adaptivity gap of stochastic orienteering is Ω
(
(log logB)1/2

)
,

even on a line metric.

This answers negatively the O(1)-adaptivity gap conjectured in [14], and comes
close to the O(log logB) upper bound proved there. To the best of our knowledge,
this gives the first non-trivial ω(1) adaptivity gap for a natural problem.

The lower bound proceeds in three steps and is based on a somewhat intricate
construction. We begin with a basic instance described by a directed binary tree
of height log logB that essentially represents the optimal adaptive policy. Each
processing time is a Bernoulli random variable: it is either zero, in which case
the optimal policy goes to its left child, or a carefully set positive value, in which
case the optimal policy goes to its right child. The edge distances and processing
times are chosen so that when a non-zero size instantiates, it is always possible
to take a right edge, while the left edges can only be taken a few times. On the
other hand, if the non-adaptive policy chooses a path with mostly right edges,
then it cannot collect too much reward.

In the first step of the proof, we show that any non-adaptive policy in this di-
rected tree has an Ω((log logB)1/2) adaptivity gap. The main technical difficulty
here is to show that every fixed path (which may possibly skip vertices, and gain
advantage over the adaptive policy) either runs out of budget B or collects low
expected reward. In the second step, we drop the directions on the edges and
show that the adaptivity gap continues to hold (up to constant factors). The
optimum adaptive policy that we compare against remains the same as in the
directed case, and the key issue here is to show that the non-adaptive policy
cannot gain too much by backtracking along the edges. To this end, we use some
properties of the distances on edges in our instance. In the final step, we embed
the undirected tree onto a line at the expense of losing another O(1) factor in
the adaptivity gap. The problem here is that pairs of nodes that are far apart
on the tree may be very close on the line. To get around this, we exploit the
asymmetry of the tree distances and some other structural properties to show
that this has limited effect.

Correlated StochasticOrienteering.Next, we consider the correlated stochas-
tic orienteering problem, where the reward at each vertex is also random and pos-
sibly correlated with its processing time (the distributions are still independent
across vertices). In this setting, we prove the following.

Theorem 2. The adaptivity gap of correlated stochastic orienteering is O(log logB).

This improves upon the O(logB)-factor adaptivity gap that is implicit in [14],
and matches the adaptivity gap upper bound known for uncorrelated stochastic
orienteering. The proof makes use of a martingale concentration inequality [19]
(as [14] did for the uncorrelated problem), but dealing with the reward-size cor-
relations requires a different definition of the stopping time. For the uncorrelated
case, the stopping time [14] used a single “truncation threshold” (equal to B mi-
nus the travel time) to compare the instantiated sizes and their expectation. In



On the Adaptivity Gap of Stochastic Orienteering 117

the correlated setting, we use logB different truncation thresholds (all powers
of 2), irrespective of the travel time, to determine the stopping criteria.

Algorithm for Correlated Stochastic Orienteering. Using some structural
properties in the proof of the adaptivity gap upper bound above, we obtain an
improved quasi-polynomial time algorithm for correlated stochastic orienteering.
(A quasi-polynomial time algorithm is one that runs in 2log

c N time on inputs of
size N , where c is some constant.)

Theorem 3. There is an O
(
α · log2 logB/ log log logB

)
-approximation algo-

rithm for correlated stochastic orienteering, running in time (n+ logB)O(logB).
Here α ≤ min{O(logn), O(logB)} denotes the best approximation ratio for the
orienteering with deadlines problem.

The orienteering with deadlines problem is defined formally in Section 1.3. Previ-
ously, [14] gave a polynomial time O(α · logB)-approximation algorithm for cor-
related stochastic orienteering. They also showed that this problem is at least as
hard to approximate as the deadline orienteering problem, i.e. an Ω(α)-hardness
of approximation (this result also holds for quasi-polynomial time algorithms).
Our algorithm improves the approximation ratio to O(α · log2 logB), but at
the expense of quasi-polynomial running time. We note that the running time in
Theorem 3 is quasi-polynomial for general inputs where probability distributions
are described explicitly, since the input size is n ·B. If probability distributions
are specified implicitly, the runtime is quasi-polynomial only for B ≤ 2poly(logn).

As a corollary of Theorem 3, we obtain a polynomial-time bicriteria approxi-

mation algorithm, that for any fixed ε > 0, computes an O
(

log(1/ε)·log2 log(1/ε)
log log log(1/ε)

)
-

approximate solution, which violates the budget B by a 1 + ε factor.
The algorithm in Theorem 3 is based on finding an approximate non-adaptive

policy, and losing an O(log logB)-factor by Theorem 2. There are three main
steps in the algorithm: (i) we enumerate over logB many “portal” vertices (suit-
ably defined) on the optimal policy; (ii) using these portal vertices, we approxi-
mately solve a configuration LP relaxation for paths between portal vertices; (iii)
we randomly round the LP solution. The quasi-polynomial time is only due to
the enumeration. In formulating and solving the configuration LP relaxation, we
also use some ideas from the earlier O(α · logB)-approximation algorithm [14].
Solving the configuration LP requires an algorithm for deadline orienteering (as
the dual separation oracle), and incurs an α-factor loss in the approximation
ratio. This configuration LP is a “packing linear program”, for which we can use
fast combinatorial algorithms [16,10]. The final rounding step uses randomized
rounding with alteration, and loses an extra O( log logB

log log logB ) factor.

1.2 Related Work

The deterministic orienteering problem was introduced by Golden et al. [11]. It
has several applications, and many exact approaches and heuristics have been
applied to this problem, see eg. the survey [17]. The first constant-factor approx-
imation algorithm was due to Blum et al. [6]. The approximation ratio has been
improved [1,7] to the current best 2 + ε.
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Dean et al. [9] were the first to consider stochastic packing problems in this
adaptive optimization framework: they obtained a constant-factor approxima-
tion algorithm and adaptivity gap for the stochastic knapsack problem (where
items have random sizes). The approximation ratio has subsequently been im-
proved to 2+ε, due to [5,4]. The stochastic orienteering problem [14] is a common
generalization of both deterministic orienteering and stochastic knapsack.

Gupta et al. [13] studied a generalization of the stochastic knapsack problem,
to the setting where the reward and size of each item may be correlated, and gave
an O(1)-approximation algorithm and adaptivity gap for this problem. Recently,
Ma [15] improved the approximation ratio to 2 + ε.

The correlated stochastic orienteering problem was studied in [14], where the
authors obtained an O(log n · logB)-approximation algorithm and an O(logB)
adaptivity gap. They also showed the problem to be at least as hard to approx-
imate as the deadline orienteering problem, for which the best approximation
ratio known is O(log n) [1].

A related problem to stochastic orienteering was considered by Guha and
Munagala [12] in the context of the multi-armed bandit problem. As observed
in [14], the approach in [12] yields an O(1)-approximation algorithm (and adap-
tivity gap) for the variant of stochastic orienteering with two separate budgets
for the travel and processing times. In contrast, our result shows that stochastic
orienteering (with a single budget) has super-constant adaptivity gap.

1.3 Problem Definition

An instance of stochastic orienteering (StocOrient) consists of a metric space
(V, d) with vertex-set |V | = n and symmetric integer distances d : V × V → Z+

(satisfying the triangle inequality) that represent travel times. Each vertex v ∈ V
is associated with a stochastic job, with a deterministic reward rv ≥ 0 and a ran-
dom processing time (also called size) Sv ∈ Z+ distributed according to a known
probability distribution. The processing times are independent across vertices.
We are also given a starting “root” vertex ρ ∈ V , and a budget B ∈ Z+ on the
total time available. A solution (policy) must start from ρ, and visit a sequence
of vertices (possibly adaptively). Each job is executed non-preemptively, and the
solution knows the precise processing time only upon completion of the job. The
objective is to maximize the expected reward from jobs that are completed be-
fore the horizon B; note that there is no reward for partially completing a job.
The approximation ratio of an algorithm is the ratio of the expected reward of
an optimal policy to that of the algorithm’s policy.

We assume that all times (travel and processing) are integer valued and lie
in {0, 1, · · · , B}. In the correlated stochastic orienteering problem (CorrOrient),
the job sizes and rewards are both random, and correlated with each other.
The distributions across different vertices are still independent. For each vertex
v ∈ V , we use Sv and Rv to denote its random size and reward, respectively.
We assume an explicit representation of the distribution of each job v ∈ V : for
each s ∈ {0, 1, · · · , B}, job v has size Sv = s and reward rv(s) with probability
Pr[Sv = s] = πv(s). Note that the input size is nB.
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An adaptive policy is a decision tree where each node is labeled by a job/vertex
of V , with the outgoing arcs from a node labeled by u corresponding to the
possible sizes in the support of Su. A non-adaptive policy is simply given by a
path P starting at ρ: we just traverse this path, processing the jobs that we
encounter, until the total (random) size of the jobs plus the distance traveled
reaches B. A randomized non-adaptive policy may pick a path P at random
from some distribution before it knows any of the size instantiations, and then
follows this path as above. Note that in a non-adaptive policy, the order in which
jobs are processed is independent of their processing time instantiations.

In our algorithm for CorrOrient, we use the deadline orienteering problem
as a subroutine. The input to this problem is a metric (U, d) denoting travel
times, a reward and deadline at each vertex, start (s) and end (t) vertices, and
length bound D. The objective is to compute an s− t path of length at most D
that maximizes the reward from vertices visited before their deadlines. The best
approximation ratio for this problem is α = min{O(log n), O(logB)} [1,7].

1.4 Organization

Due to space limitations in the main body, we only describe the lower bound
on the adaptivity gap in the directed tree case. We note that the O(log logB)
upper bound [14] holds even for directed metrics. The other results can be found
in the full version of the paper [3].

2 Lower Bound on the Adaptivity Gap

Here we describe our lower bound instance which shows that the adaptivity gap is
Ω(
√
log logB) even for an undirected line metric. The proof and the description

of the instance is divided into three steps. First we describe an instance where the
underlying graph is a directed complete binary tree, and prove the lower bound
for it. The directedness ensures that all policies follow a path from root to the leaf
(possibly with some nodes skipped) without any backtracking. Second, we show
that the directed assumption can be removed at the expense of an additional
O(1) factor in the adaptivity gap. In particular this means that the nodes on
the tree can be visited in any order starting from the root. Finally, we “embed”
the undirected tree into a line metric, and show that the adaptivity gap stays
the same up to a constant factor.

2.1 Directed Binary Tree

Let L ≥ 2 be an integer and p := 1/
√
L. We define a complete binary tree T

of height L with root ρ. All the edges are directed from the root towards the
leaves. The level �(v) of any node v is the number of nodes on the shortest path
from v to any leaf. So all the leaves are at level one and the root ρ is at level
L. We refer to the two children of each internal node as the left and right child,
respectively. Each node v of the tree has a job with some deterministic reward rv
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and a random size Sv. Each random variable Sv is Bernoulli, taking value zero
with probability 1−p and some positive value sv with the remaining probability

p. The budget for the instance is B = 22
L+1

.
To complete the description of the instance, we need to define the values of

the rewards rv, the job sizes Sv, and the distances d(u, v) on edges e = (u, v).

Defining Rewards. For any node v, let τ(v) denote the number of right-
branches taken on the path from the root to v. We define the reward of each
node v to be rv := (1− p)τ(v).

Defining Sizes. Let e (x) := 2x for any x ∈ R. The size at the root, sρ :=

e
(
2L
)
= 22

L

. The rest of the sizes are defined recursively. For any non-root node
v at level �(v) with u denoting its parent, the size is:

sv :=

{
su · e

(
2	(v)

)
if v is the right child of u

su · e
(
−2	(v)

)
if v is the left child of u

In other words, for a node v at level �, consider the path from ρ to v, P =
(ρ = uL, uL−1, . . . , u	+1, u	 = v) . Let k =

∑	
j=L(−1)i(uj)2j where i(uj) = 1

if uj is the left child of its parent uj+1, and 0 otherwise (we assume i(ρ) = 0).
Then sv = e (k).

Observe that for a node v, each node u in its left (resp. right) subtree has
su < sv (resp. su > sv).

It remains to define distances on the edges. This will be done in an indirect
way, and it is instructive to first consider the adaptive policy that we will work
with. In particular, the distances will be defined in such a way that the adaptive
policy can always continue till it reaches a leaf node.

Adaptive policy A. Consider the policy A that goes left at node u whenever
it observes size zero at u, and goes right otherwise.

Clearly, the residual budget b(v) at node v under A will satisfy the following:

b(ρ) = B = e
(
2L+1

)
= 22

L+1

, and

b(v) :=

{
b(u)− su − d(u, v) if v is the right child of u
b(u)− d(u, v) if v is the left child of u

Defining Distances. We define the distances so that the residual budgets b(·)
under A satisfy the following: b(ρ) = B, and for any node v with parent u,

b(v) :=

{
b(u)− su if v is the right child of u
su if v is the left child of u

This implies the following lengths on edges. For any node v with parent u,

d(u, v) :=

{
0 if v is the right child of u
b(u)− su = b(u)− b(v) if v is the left child of u

In Claim 2 below we will show that the distances are non-negative, and hence
well-defined. Figure 1 gives a pictorial view of the instance.
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ρ

0

22
L
, 1

22
L+2L−1

, (1− p)

22
L+2L−1+2L−2

, (1− p)2

22
L−2L−1

, 1

22
L+2L−1−2L−2

, (1− p)

22
L+2L−1+2L−2−2L−3

, (1− p)2

0
22L+1 − 22L

22L+1 − 22L − 21.5·2L

The sizes sv and rewards rv are shown next to the nodes.

The distances are shown (in bold) on the edges.

Fig. 1. The binary tree T

Claim 1. If a node w is a left child of its parent, then b(w) = sw · e
(
2	(w)

)
.

Proof. Let u be the parent of w. By definition of sizes, sw = su · e
(
−2	(w)

)
. As

b(w) = su by the definition of residual budgets, the claim follows. 
�

Claim 2. For any node u, we have 3·su ≤ b(u). This implies that all the residual
budgets and distances are non-negative.

Proof. Let w denote the lowest level node on the path from ρ to u that is the
left child of its parent (if u is the left child of its parent, then w = u); if there
is no such node, set w = ρ. Note that by Claim 1 and the definition of sρ and
b(ρ), in either case it holds that b(w) = sw · e

(
2	(w)

)
.

Let π denote the path from w to u (including w but not u; so π = ∅ if
w = u). Since π contains only right-branches, b(u) = b(w)−

∑
y∈π sy and hence

b(u) ≥ b(w) − 3
∑

y∈π sy. Thus to prove 3 · su ≤ b(u) it suffices to show 3(su +∑
y∈π sy) ≤ b(w). For brevity, let s := sw and � = �(w). By definition of sizes,

su +
∑
y∈π

sy ≤
	∑

i=1

s · e
(
2	−1 + 2	−2 + · · · 2i

)
= s ·

	∑
i=1

e
(
2	 − 2i

)
≤ s · e

(
2	
)
·
∑
i≥1

4−i ≤ 1

3
· s · e

(
2	
)

=
b(w)

3
,

as desired. Here the right hand side of the first inequality is simply the total size
of nodes in the w to leaf path using all right branches. The inequality in the
second line follows as e

(
−2i

)
= 2−2i ≤ 2−2i = 4−i for all i ≥ 1.
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Thus we always have 3 · su ≤ b(u).
As b(v) = b(u) − su if v is the right child of u, or b(v) = su otherwise, this

implies that all the residual-budgets are non-negative.
Similarly, as d(u, v) is either 0 or b(u)− su (and hence at least 2/3b(u)), this

implies that all edge lengths are non-negative. 
�

This claim shows that the above instance is well defined, and that A is a feasible
adaptive policy that always continues for L steps until it reaches a leaf. Next,
we show that A obtains large expected reward.

Lemma 1. The expected reward of policy A is Ω(L).

Proof. Notice that A accrues reward as follows: it keeps getting reward 1 (and
going left) until the first positive size instantiation, then it goes right for a single
step and keeps going left and getting reward (1 − p) till the next positive size
instantiation and so on. This continues for a total of L steps. In particular, at
any time t it collects reward (1−p)i, if exactly i nodes have positive sizes among
the t nodes seen.

Let Xi denote the Bernoulli random variable that is 1 if the ith node in A has a
positive size instantiation, and 0 otherwise. So E[Xi] = p, and E[X1+. . .+XL] =
Lp =

√
L. By Markov’s inequality, the probability that more than 2

√
L nodes

in A have positive sizes is at most half. Hence, with probability at least 1
2 the

reward collected in the last node of A is at least (1 − p)2
√
L. That is, the total

expected reward of A is at least 1
2 · L · (1− p)2

√
L ≈ L/2 · e−2 = Ω(L). 
�

2.2 Bounding Directed Non-adaptive Policies

We now show that any non-adaptive policy N that is constrained to visit vertices
according to the partial order given by the tree T gets reward O(

√
L). Notice

that these correspond precisely to non-adaptive policies on the directed tree T .
The key property we need from the size construction is the following.

Lemma 2. For any node v, the total size instantiation observed under A before
v is strictly less than sv.

Proof. Consider the path π from the root to v, and let k1 < k2 < · · · < kt denote
the levels at which π “turns left”. That is, for each i, the node ui at level ki
in path π satisfies (a) ui is the right child of its parent, and (b) π contains the
left child of ui if it goes below level ki. (If v is the right child of its parent then
u1 = v and k1 = �(v).) Let si denote the size of ui, the level ki node in π. Also,
set kt+1 = L corresponding to the root. Below we use [t] := {1, 2, · · · , t}.

Observe that a positive size instantiation is seen inA only along right branches.
So for any i ∈ [t], the total size instantiation seen in π between levels ki and
ki+1 is at most:

si ·
[
e
(
−2ki

)
+ e

(
−2ki − 2ki+1

)
+ e

(
−2ki − 2ki+1 − 2ki+2

)
· · ·

]
≤ si · e

(
−2ki

)
· (1 + 1/2 + 1/4 + · · · ) ≤ 2 si · e

(
−2ki

)
(1)
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ρ

ut

u2

u1

v

Level
kt+1 = L

kt

k2

k1

Path π from ρ to v, with “left turning” nodes u1, · · · , ut.
The thick lines denote right-branches (where positive sizes are seen).

Fig. 2. The path π in proof of Lemma 2

Now, note that for any i ∈ [t], the sizes si+1 and si are related as follows:

si+1 ≤ si · e
(
−2ki + 2ki+1 + 2ki+2 + · · ·+ 2ki+1−1

)
= si · e

(
−2ki − 2ki+1 + 2ki+1

)
≤ si

4
· e

(
−2ki + 2ki+1

)
(2)

The first inequality uses the fact that the path from ui+1 to ui is a sequence of (at
least one) left-branches followed by a sequence of (at least one) right-branches:
so si/si+1 is minimized for the path with a sequence of left branches followed
by a single right branch (at level ki).

Using (2), we obtain inductively that:

si+1 ·e
(
−2ki+1

)
≤ 1

4
·si ·e

(
−2ki

)
≤ 1

4i
·s1 ·e

(
−2k1

)
, ∀i ∈ [t]. (3)

Using (1) and (3), the total size instantiation seen in π (this does not include
the size at v) is at most:

t∑
i=1

2 si · e
(
−2ki

)
≤ 2

t∑
i=1

1

4i−1
· s1 · e

(
−2k1

)
< 4 s1 · e

(
−2k1

)
. (4)

Finally, observe that the size at the level k1 node is

s1 ≤ sv · e
(
2k1−1 + 2k1−2 + · · ·+ 21

)
= sv · e

(
2k1 − 2

)
,

since k1 is the lowest level at which π turns left (i.e. π keeps going left below
level k1 until v). Together with (4), it follows that the total size instantiation
seen before v is strictly less than

4 s1 · e
(
−2k1

)
≤ 4 e

(
−2k1

)
· sv · e

(
2k1 − 2

)
= 4 e (−2) sv = sv.

This completes the proof of Lemma 2. 
�
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We now show that any non-adaptive policy on the directed tree T achieves
reward O(

√
L). Note that any such solution N is just a root-leaf path in T that

skips some subset of vertices. A node v in N is an L-branching node if the path
N goes left after v. R-branching nodes are defined similarly.

Claim 3. The total reward from R-branching nodes is at most
√
L.

Proof. As the reward of a node decreases by a factor of (1−p) upon taking a right

branch, the total reward of such nodes is at most
∑L

i=0(1 − p)i ≤ 1
p =
√
L. 
�

Claim 4. N can not get any reward after two L-branching nodes instantiate to
positive sizes.

Proof. For any node v in tree T , let Ad(v) (resp. As(v)) denote the distance
traveled (resp. size instantiated) in the adaptive policy A until v; here As(v)
does not include the size of v. Observe that Lemma 2 implies that As(v) < sv
for all nodes v.

In the non-adaptive solution N , let u and v be any two L-branching nodes
that instantiate to positive sizes su and sv; say u appears before v. Under this
outcome, we will show that N exhausts its budget after v. Note that the distance
traveled to node v in N is exactly Ad(v), the same as that under A. So the total
distance plus size in N is at least Ad(v) + sv + su, which (as we show next) is
more than the budget B.

By definition of the residual budgets, b(v) = B − Ad(v) − As(v). Moreover,
the residual budget b(u′) at the left child u′ of u equals su. Since the residual
budgets are non-increasing down the tree T , we have B−Ad(v)−As(v) = b(v) ≤
b(u′) = su, i.e. Ad(v) ≥ B−As(v)− su. Hence, the total distance plus size in N
is at least

Ad(v) + sv + su ≥ B −As(v) + sv > B,

where the last inequality follows from Lemma 2. So N can not obtain reward
from any node after v. 
�

Combining the above two claims, we obtain:

Claim 5. The expected reward of any directed non-adaptive policy is at most
3
√
L.

Proof. Using Claim 4, the expected reward from L-branching nodes is at most
the expected number of L-branching nodes until two positive sizes instantiate, i.e.
at most 2

p = 2
√
L. Claim 3 implies that the expected reward from R-branching

nodes is at most
√
L. Adding the two types of rewards, we obtain the claim. 
�

This proves an Ω(
√
log logB) adaptivity gap on directed metrics. As noted ear-

lier, the O(log logB) upper bound [14] also holds for directed metrics.
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Abstract. Given any two sets of independent non-negative random vari-
ables and a non-decreasing concave utility function, we identify sufficient
conditions under which the expected utility of sum of these two sets of
variables is (almost) equal. We use this result to design a polynomial-
time approximation scheme (PTAS) for utility maximization in a variety
of risk-averse settings where the risk is modeled by a concave utility func-
tion. In particular, we obtain a PTAS for the asset allocation problem
for a risk-averse investor as well as the risk-averse portfolio allocation
problem.

1 Introduction

Given an arbitrary non-decreasing concave function U : R+ → R+ (with
U(0) = 0) and two sets of independent non-negative random variables X =
{X1, X2, . . . , Xn} and X′ = {X ′

1, X
′
2, . . . , X

′
m}, we consider the following ques-

tion: what similarity between X and X′ suffices to ensure that E [U(
∑

i Xi)] ≈
E [U(

∑
iX

′
i)]? This question is naturallymotivated by the problem of utility max-

imization in a risk-averse setting when the risk is modeled by a concave utility
function [1,14]. As a concrete example, consider the asset allocation problem faced
by a risk averse investor. The investor has a set of assets to choose fromwhere each
asset is associated with a cost. The investor has a prior on the future value of each
asset; the future value of each asset is independent and the investor would like
to buy a subset of assets (subject to his budget constraint) that maximizes the
expected utility of his total future wealth. As the reader might notice, this prob-
lem is equivalent to the stochastic knapsack problem with random profits. While
the stochastic knapsack problem with random profits has previously been studied
with an objective to maximize the probability of achieving a certain target wealth
(see e.g. [4,9,15,16]), these results does not translate to any guarantees when the
utility function is concave. Our main result is a utility equivalence theorem that
identifies sufficient conditions to ensure that E [U(

∑
i Xi)] ≈ E [U(

∑
iX

′
i)]. Us-

ing this theorem, we design polynomial-time approximation schemes to solve a
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variety of concave utility maximization problems including the stochastic knap-
sack problem and a general portfolio allocation problem.

A work that is similar in flavor to our results is the recent work of Li and Desh-
pande [13] that addressed utility maximization for an arbitrary utility function
in presence of general combinatorial feasibility constraints. A key component of
their approach is to represent the utility function using a sum of exponential
functions. They give an additive ε-approximation to the optimal utility (for the
given instance) assuming that the utility function is always bounded from above
by 1. This gives a (multiplicative) PTAS only when the optimal expected utility
is within a constant factor (or some function of ε) of the maximum possible util-
ity in any realization for an allocation. While this approach is useful for settings
where the objective is to minimize (or maximize) the probability of hitting a
certain target, it does not yield useful guarantees when the utility function is
an arbitrary monotone concave function, as is the case for the asset allocation
problem for a risk-averse investor.

Our Result: Our main result is a utility equivalence theorem (Theorem 1) that
identifies a set of sufficient conditions under which any two sets of independent
random variables have similar utility. Informally speaking, we show that the
possible values realized by the variables can be partitioned into three regions,
small, large and huge, and for approximate utility equivalence (within a (1 ± ε)
factor for some given ε > 0), it suffices that the two sets match in

(a) the total support for each large value,
(b) the total expectation from small values,
(c) the total expected utility from huge values, and
(d) the set of random variables that have significant support in the large value

region.
Given an instance of the utility maximization problem, the values of the above

four properties in an optimal solution defines its features. The utility equivalence
theorem allows us to conclude that the number of distinct features of interest is
polynomially bounded (in the size of the ground set of elements). One can then
guess the features of the variables in an optimal solution, and find a feasible
solution that is required to match the optimal set of variables only on these
features. Whenever it is possible to find a feasible solution with matching fea-
tures in polynomial time, this approach then allows us to obtain a PTAS for
the underlying optimization problem. We use this approach to obtain PTAS
results for many important applications, that include the asset allocation prob-
lem for a risk-averse investor [4,9,15,16], risk-averse portfolio allocation problem
[8,12,11,5,10], and the stochastic spanning tree problem [7,6].

In order to find a solution that matches the optimal solution on the feature set,
similar to the approach used by Li and Deshpande [13], we establish a reduction
from utility maximization to the feasibility of a deterministic profit problem;
whenever the latter problem permits an exact pseudo-polynomial time algorithm,
there exists a PTAS for the utility maximization problem. Our reduction yields
a PTAS for monotone concave utility functions that was not possible to obtain
using the earlier approach. We refer the reader to Section 4 for details.
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In a recent work, Bhalgat et al [3] identified a set of conditions under which
the expected utility of an independent set of variablesX′ lower bounds (to within
a factor of (1 − 1/e)) the expected utility of a correlated set of variable X. We
note important differences between these two works:
a) Our result is about utility equivalence ((1 ± ε)-approximation), whereas [3]
establishes an approximate lower bound of (1− 1/e), and
b) To establish utility equivalence, we require random variables in both sets to
be independent; in comparison [3], an independent set of random variables is
used to approximate an arbitrarily correlated set of random variables.

Organization: We provide basic definitions and prove useful properties of con-
cave functions in Section 2. We establish the utility equivalence theorem in Sec-
tion 3 and illustrate its applications in Section 4.

2 Preliminaries

We note, the results in this paper (structural properties of random variables as
well as algorithmic results) easily extend to a setting where each random variable
is associated with a continuous distribution on its value and we are given an
oracle to draw samples from this distribution. For expositional simplicity, we
assume that distributions are discrete.

For notational conciseness, given any set X = {X1, X2, . . . , Xn} of random
variables, we use U(X) to denote U(

∑
iXi). We next define a useful operation

on a pair of random variables and establish its properties.

Merging and Splitting of Random Variables: Let X = {X1, X2, . . . , Xn}
be a set of independent non-negative random variables. For any two variables
Xi, Xj in X such that Pr [Xi �= 0] + Pr [Xj �= 0] ≤ 1, the merge operation on
the variables Xi, Xj replaces them by a new variable Y such that, for each
value p > 0, Pr [Y = p] = Pr [Xi = p] + Pr [Xj = p], and Y is independent of
variables in X\{Xi, Xj}. The next lemma shows that the merge operation can
only increase expected utility; its proof is deferred to the full version of the
paper.

Lemma 1. Let X = {X1, X2, . . . , Xn} be a set of independent non-negative
random variables, and let Y be the variable formed by merging X1, X2 ∈ X.
Then

E [U(X)] ≤ E [U((X \ {X1, X2}) ∪ {Y })]

Splitting: We will later define a converse operation, called the splitting operation,
where we split a random variable into a set of independent random variables.
The precise definition is tailored to our needs in Section 3.

Stochastic Dominance: Given two non-negative distributions D1 and D2, we
sayD1 stochastically dominates D2, denoted by D1 � D2, if ∀a ≥ 0,PrX�D1(X ≥
a) ≥ PrX�D2(X ≥ a). We note below an important (folklore) property of con-
cave functions in the following lemma.
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Lemma 2. Let U be a non-decreasing concave function, and let X,Y1, Y2 be
independent non-negative random variables such that Yi is distributed according
to Di, i ∈ {1, 2}. If D1 � D2, then
(a) EX,Y1�D1 [U(X + Y1)−U(Y1)] ≤ EX,Y2�D2 [U(X + Y2)−U(Y2)], and
(b) EX,Y1�D1 [U(X + Y1)−U(X))] ≥ EX,Y2�D2 [U(X + Y2)−U(X)]

3 The Utility Equivalence Theorem

In this section, we state and prove the utility equivalence theorem for any two
sets of independent non-negative random variables X = {X1, X2, . . . , Xn} and
X′ = {X ′

1, X
′
2, . . . , X

′
n} (see Theorem 1 for the exact conditions required for

utility equivalence). The power of this theorem lies in the fact that it shows that
as long as X and X′ agree only on a coarse footprint of attributes, E [U(X)] and
E [U(X′)] are comparable.

In the rest of the section, we will use OPT to denote E [U(X)]. Let P be the
set of values realized by the random variables in X, and let ε > 0 be the accuracy
parameter. For each value pj ∈ P , let qj =

∑
iPr [Xi = pj ], i.e. qj denotes the

total support for value pj in set X. To define our notion of a coarse footprint
of X, we start by partitioning P into three sets of values Phg (huge values), Plg

(large values) and Psm (small values) as follows:
(a) pj ∈ Phg if pj ≥ U−1(OPT/ε).
(b) Let p∗ be the largest element of P such that either

∑
pj /∈Phg,pj≥p∗ qj ≥ 1/ε4

or p∗ = U−1(ε4OPT). Then, pj ∈ Plg if pj ≥ p∗ and pj /∈ Phg. Note that expected
number of large value realizations is O( 1

ε4 ). Note, once OPT and X are specified,
p∗ is uniquely defined.

(c) pj is in Psm otherwise.

Informally speaking, we will exploit the following properties of this parti-
tioning: huge values occur occasionally (and the rest of the realization can be
ignored in such scenarios), small values occur with high support and hence admit
concentration bounds, and the total support for large values is bounded.

Discretization of Large Values: With a small loss in the utility, we can reduce
the number of distinct large values to be considered to poly(1/ε). Specifically,
we will assume that large values come only from the set U−1(ε5tOPT) where t
is an integer between 0 and 1

ε6 . Any large value not in this set can be rounded
down to the nearest large value – the loss in utility due to this discretization is
at most ε5OPT per realization of a large value. By concavity, the total loss in
expected utility due to this discretization is at most ε5OPT times the expected
number of large value realizations. Since there are O( 1

ε4 ) large value realizations
in expectation, the expected loss in the utility due to discretization is O(εOPT).
Next, we split the set of random variables based on their support for large values.

Essential and Optimal Random Variables: We classify the set of random
variables inX into two sets, based on their support for large values:Xi is essential
if for some large (discertized) value pj, Pr (Xi = pj) ≥ ε7, and it is optional
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otherwise. As the total support over all large values is bounded by 1/ε4, we get
the following property:

Observation 1. The number of essential random variables is at most 1/ε11.

We are now ready to state the utility equivalence theorem.

Theorem 1. Fix an ε > 0. Given any two sets of independent non-negative
random variables, X = {X1, X2, · · · , Xn} and X′ = {X ′

1, X
′
2, · · · , X ′

m}, and
any non-decreasing concave function U : R+ → R+, if X and X′ satisfy the
following set of properties:

(a) X and X′ have the same set of essential random variables,
(b) for each pj ∈ Plg,

∑
iPr [Xi = pj ] =

∑
i Pr [X ′

i = pj ],
(c)

∑
i,pj∈Psm

pj ×Pr [Xi = pj ] =
∑

i,pj∈Psm
pj ×Pr [X ′

i = pj ], and

(d)
∑

i,pj∈Phg
U(pj)×Pr [Xi = pj ] =

∑
i,pj∈Phg

U(pj)×Pr [X ′
i = pj ],

then E [U(X′)] ∈ (1±O(ε)) (E [U(X)]).

In the rest of the section, we prove Theorem 1. We define a set of indepen-
dent random variables, Xlg = {X lg

1 , X
lg

2 , . . . , X
lg
n } where for each i, pj ∈ Plg,

Pr (Xi = pj) = Pr (X lg

i = pj) and X lg

i is 0 otherwise; i.e. X lg

i corresponds to
the marginal distributions of Xi in the large value region. Further, let R =

E
[∑

i,pj∈Psm
pj ×Pr [Xi = pj ]

]
and H =

∑
i,pj∈Phg

U(pj)×Pr [Xi = pj].

We now show that E [U(X)] can be approximately expressed in terms of
R,H and

∑
iX

lg

i , essentially linearizing the contribution of small values and
huge values.

Theorem 2. E [U(X)] ∈ (1 ±O(ε)) (E [U (R+
∑

iX
lg

i )] +H).

Proof. For each variable Xi, define variable X lg+sm

i that has same distribution
as Xi in the small and the large value regions; and it has 0 support in the huge
value region; X lg+sm

i s are independent. Using concavity and monotonicity of U,
we get,

E [U(X)] ≤ E
[
U(

∑
i X

lg+sm

i )
]
+
∑

i,pj∈Phg
Pr [Xi = pj]×U(pj)

We next consider an experiment to lower bound the value of E [U(X)]. Arrange
variables in order X1 through Xn. For each 1 ≤ i ≤ n, let Ei be an event that
some variable in X1 through Xi has realized to a huge value. Clearly, Pr [Ei] ≤ ε
for each i. We measure the utility of first huge realization, if any. It is lower
bounded by,∑

i,pj∈Phg
Pr [Xi = pj ]×U(pj)× (1−Pr [Ei−1]) ≥ (1 − ε)H

Next, we lower bound the utility from large and small value realizations; we mea-
sure their contribution only in the event of En. We note, for any given variable
Xi, the information that it does not realize to a huge value, only increases its
probability for other (small and large) values. Thus, the utility from small and
large value realizations can be lower bounded by

(1 −Pr [En])×E
[
U(

∑
i X

lg+sm

i )
]
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This establishes

E [U(X)] ∈ (1±O(ε))
(
E
[
U(

∑
i X

lg+sm

i )
]
+
∑

i,pj∈Phg
Pr [Xi = pj]×U(pj)

)
It remains to separate the small value realizations; there are two cases to con-
sider. If U(R) ≤ εE [U(X)], then it can be ignored with only εE [U(X)] loss
in the utility. Otherwise, using Chernoff bounds, the total realized value of
small values is (1 ± ε)R w.h.p. (1 − ε). However, this does not immediately
yield the required bound. To establish the required bound, we compare the val-
ues of U(

∑
i X

lg+sm

i ) and U(R +
∑

i X
lg

i ) in each realization using a coupling
argument. In a realization of Xlg+sm, let E′

i be an event in which the sum of
small value realizations of variables in Xlg+sm

−i sum to at least (1− ε)R. Clearly,
Pr [E′

i] ≥ 1− ε. We note,
(a) X lg+sm

i is independent of E′
i, and

(b) Conditioned on E′
i = TRUE, the distribution of X lg+sm

i , treating small val-
ues as 0, is same as the distribution of X lg

i .
Thus, we get

E
[
U(

∑
iX

lg+sm

i )
]
≥ (1 − ε)×E [U ((1 − ε)R+

∑
i[X

lg

i |E′
i])]

The right hand side is minimized when E′
is are perfectly correlated; in which

case we get,

E
[
U(

∑
i X

lg+sm

i )
]
≥ (1− ε)× (1− ε)E [U (R+

∑
iX

lg

i )]

The same coupling argument can also be used to establish the upper bound.
This completes the proof of the theorem.

Thus it suffices to bound the value of E [U (R+
∑

iX
lg

i )] where R is an arbitrary
positive constant corresponding to the total expected value from small values and
Xlg = {X lg

1 , X
lg

2 , . . . , X
lg
n } are independent. We next define an operation split on

variables in Xlg.

Split: In this step, we replace each optional variable X lg

i by a set of independent
random variables {Zijk|pj ∈ Plg, 1 ≤ l ≤ � → ∞}, such that, for each j, k,

Pr (Zijk = pj) =
Pr(Xlg

i =pj)
	 and it is 0 otherwise. In Lemmas 3 and 4, we

establish that the split operation can be performed on optional random variables
in Xlg simultaneously without loosing the expected utility by much.

Lemma 3. Let X lg

i be any optional random variable and let Y be any non-
negative random variable independent of X lg

i . Consider a set of independent
variables {Zijk|1 ≤ k ≤ � → ∞, pj ∈ Plg} that are generated by the split op-
eration on X lg

i . Then we have

(a) E [U (Y +X lg

i )]−E[U(Y )] ≥ E
[
U
(
Y +

∑
j,k Zijk

)]
−E[U(Y )]

(b) E [U (Y +X lg

i )]−E[U(Y )] ≤ (1+O(ε))
(
E
[
U
(
Y +

∑
j,k Zijk

)]
−E[U(Y )]

)
Proof. It suffices to establish the lemma for each realization R of Y . Let Eij

be an event in which at least one variable in set {Zijk|1 ≤ k ≤ �} realizes to a
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non-zero value (which is always pj). Next, we establish an important property
of these events.

Observation 2

Pr
[
Eij ∩j′ �=j Eij′

]
≥ (1−O(ε))Pr (X lg

i = pj) and

Pr
[
Eij ∩j′ �=j Eij′

]
≤ Pr (X lg

i = pj)

Proof. We first compute the value of Pr[Eij ]. Trivially, Pr[Eij ] ≤ Pr (X lg

i = pj).
Further,

Pr[Eij ] = �×
(
1− Pr(Xlg

i =pj)
	

)	

× Pr(Xlg
i =pj)
	

using Pr (X lg

i = pj) ≤ ε7, �→∞ and for small ε

≥ (1− 2ε7)× �× Pr(Xlg
i =pj)
	

= (1− 2ε7)Pr (X lg

i = pj)

Further, for each pj′ ∈ Plg,

Pr[Eij′ ] ≥ 1−Pr (X lg

i = pj′) ≥ 1− ε7

Using union bound,

Pr[∩j′ �=jEij′ ] ≥ 1− ε7 × 1
ε6 = 1− ε

The lemma follows, as Eij is independent of ∩j′ �=jEij′ .

We now prove,

E
[
U
(
R +

∑
j,k Zijk

)]
−U(R) ≥ (1 − ε)E [U (R+X lg

i )]−U(R)

Using Observation 2, we get

E
[
U

(
R +

∑
j,k Zijk

)]
−U(R) ≥

∑
j (U(R + pj)−U(R))×Pr

[
Eij ∩j′ �=j Eij′

]
≥ (1−O(ε)) (U(R + pj)−U(R))Pr

(
X lg

i = pj
)

= (1−O(ε))E
[
U

(
R +X lg

i

)
−U(R)

]
It remains to prove

E
[
U
(
R+

∑
j,k Zijk

)]
−U(R) ≤ E [U (R+X lg

i )]−U(R)

This follows as X lg

i can be seen as merged from {Zijk|pj ∈ Plg, 1 ≤ k ≤ �} and
using Lemma 1. This completes the proof.

The proof of Lemma 3 in fact establishes a stronger property: for each optional
random variable X lg

i , define a set of random variables {Tij |pj ∈ Plg}; Tij = pj if[
Eij ∩j′ �=j Eij′

]
= true, and 0 otherwise.
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Corollary 1. Let X lg

i be any optional random variable and let Y be any non-
negative random variable independent of X lg

i . Consider another set of indepen-
dent variables {Zijk|1 ≤ k ≤ � → ∞, pj ∈ Plg} that are generated by the split
operation on X lg

i . Then we have
(a) Y +X lg

i � Y +
∑

j Tij,

(b) E [U (Y +X lg

i )]−E[U(Y )] ≥ E
[
U
(
Y +

∑
j Tij

)]
−E[U(Y )],

(c) E [U (Y +X lg

i )]−E[U(Y )] ≤ (1+O(ε))
(
E
[
U
(
Y +

∑
j Tij

)]
−E[U(Y )]

)
.

We now simultaneously split the set of all optimal random variables. Let S1

and S2 be the set of essential and optional random variables in Xlg respectively.
Define a random variable Y = R+

∑
i∈S1

X lg

i . Note, each random variable X lg

i ∈
S2 is independent of Y . We next establish that all optional random variables can
be simultaneously split without significantly affecting the expected utility.

Lemma 4. (a) E
[
U
(
Y +

∑
i∈S2

X lg

i

)]
≤ (1+O(ε))E

[
U
(
Y +

∑
i∈S2,j,k

Zijk

)]
,

and
(b) E

[
U
(
Y +

∑
i∈S2

X lg

i

)]
≥ E

[
U
(
Y +

∑
i∈S2,j,k

Zijk

)]
.

Proof. For expositional simplicity, we drop S2 from the summation sign. For the
remainder of proof,

∑
i always refers to

∑
i∈S2

. We will first show that

E [U (Y +
∑

i X
lg

i )] ≤ (1 +O(ε))E
[
U
(
Y +

∑
i,j Tij

)]
which implies, (using monotonicity of U, and as

∑
k Zijk ≥ Tij per realization)

E [U (Y +
∑

iX
lg

i )] ≤ (1 +O(ε))E
[
U
(
Y +

∑
i,j,k Zijk

)]
Define a random variable XSUMi = Y +

∑
i′≤iX

lg

i′ , and TSUMi = Y +
∑

i′≤i,j Ti′j .
Using induction on Corollary 1, we get that, for each i, XSUMi stochastically
dominates TSUMi. We note,

E [U (Y +
∑

i X
lg

i )] = E [U(Y ) + (
∑

i U(X lg

i + XSUMi−1)−U(XSUMi−1))]
Using Corollary 1

≤ (1 +O(ε))E
[
U(Y ) +

(∑
iU(

∑
j Tij + XSUMi−1)−U(XSUMi−1)

)]
Using stochastic dominance of XSUMi−1 over TSUMi−1

≤ (1 +O(ε))E
[
U(Y ) +

(∑
iU(

∑
j Tij + TSUMi−1)−U(TSUMi−1)

)]
= (1 +O(ε))E

[
U
(
Y +

∑
i,j Tij

)]
It remains to establish that,

E [U (Y +
∑

i X
lg

i )] ≥ E
[
U
(
Y +

∑
i,j,k Zijk

)]
This follows from Lemma 1, as each X lg

i can be seen as merged from {Zijk|1 ≤
k ≤ �}. This completes the proof.

Theorem 1 follows as both E [U(X)] and E [U(X′)] can be approximated within
(1 ± ε) factor by the sum of same set of random variables. This completes the
proof.
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4 Applications to Stochastic Optimization Problems

We now illustrate how Theorem 1 can be used to to design a polynomial-time
approximation scheme (PTAS) for concave utility maximization in a variety of
stochastic optimization settings. We illustrate this in an abstract setting first,
and then derive as a corollary a PTAS result for several stochastic optimization
problems including stochastic knapsack with random profits and the stochastic
spanning tree problem. We then show another interesting application, namely
the problem of portfolio allocation for a risk-averse investor which cannot be
directly captured in our abstract framework. However, we show that a PTAS
can still be designed using a direct application of Theorem 1.

4.1 Framework for Concave Utility Maximization

An Abstract Utility Maximization Problem: We are given a set E =
{e1, e2, . . . , en} of n elements; each element ei ∈ E is associated with a random
non-negative profit Xi that is drawn from a distribution Di, independently of
profit of other elements. Let F ⊆ 2E be the set of feasible subsets of E. We are
given an arbitrary non-decreasing concave utility function U : R+ → R+ with
U(0) = 0. The objective is to find a feasible set with maximum utility, i.e.

MaxS∈FE
[
U(

∑
ei∈S,Xi�Di

Xi)
]

We use RAND(E,F,U,D) to refer to the above concave utility maximization prob-
lem, where D = {D1, D2, ...,Dn} is the set of profit distributions for elements in
E. We now relate this stochastic utility maximization problem to a deterministic
feasibility problem with an identical space of feasible subsets.

A Deterministic Feasibility Problem: As above, we are given a set E =
{e1, e2, . . . , en} of n elements. However, each element ei ∈ E is now associated
with a deterministic profit pi, and we are given a target value T . The goal is to
solve the following feasibility problem:

Does ∃S ∈ F such that
∑

ei∈S pi = T ?

We use DET(E,F,P , T ) to refer to the above feasibility problem, where P =
{p1, p2, ..., pn} is the set of profit values associate with elements in E. The fol-
lowing theorem summarizes our result:

Theorem 3. If there is an algorithm that solves the problem DET(E,F,P , T )
with running time polynomial in n and the value of the profit target T , then there
is a polynomial-time approximation scheme for the problem RAND(E,F,U,D).

Proof. Let Xi be the random variable corresponding to profit from element ei.
Let A be an optimal feasible set, and let OPT be its expected utility. We can
assume w.l.o.g. that the value OPT is known to within a factor of (1 ± ε/n).
This can be done by a simple enumeration scheme that does not rely on any
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knowledge of the space of feasible subsets F: Let ei ∈ A be such that U(Xi) =
maxej∈S E [U(Xj)]. Then we know that OPT is guaranteed to be in the range
E [U(Xi)] and n × E [U(Xi)]. We can try all choices of element Xi (and the
ranges induced by them); within each range, it suffice to guess the value of the
OPT within an additive error of ε

nE [U(Xi)].
We define A’s feature set as
(a) the total support qj for each large value pj , i.e.

∑
ei∈APr [Xi = pj ],

(b) the expectation from small values R, i.e.
∑

ei∈A,pj∈Psm
pj ×Pr [Xi = pj ],

(c) the utility from huge values H :
∑

ei∈A,pj∈Phg
U(pj)×Pr [Xi = pj ], and

(d) the set of essential items corresponding to essential random variables.

We now guess A’s feature set; we refer to each guess as a configuration. A careful
reader will notice that the boundary between small and large values (p∗) is also
dependent upon set A: however, it does not need to be explicitly guessed. Each
configuration implicitly defines a small-large boundary. Given the optimal (but
unknown) set A, there exists a configuration that matches the optimal set, hence
the implicit definition of small-large boundary in the configuration also matches
the small-large boundary for set A.

We next bound the total number of distinct configurations:

(a) For each pj ∈ Plg, the value of qj is guessed to the nearest multiple of
ε9/n. The total error over all value buckets is less than ε2/n, and so the loss in
the utility due to rounding of the probability masses is bounded (εOPT)/n.

(b) R is guessed to the nearest multiple of U−1 ((εOPT)/n).
(c) H is guessed to the nearest multiple of (εOPT)/n.
(d) There are at most 1/ε11 essential random variables (by Observation 1);

they are guessed explicitly from the set E.

Observation 3. The number of distinct configurations is bounded by npoly(1/ε).

Similarly, we define a feature set for each element ei ∈ E by considering the
distribution associated with it:

(a) its support for each large value pj ∈ Plg,
(b) its expectation from small values:

∑
pj∈Psm

pj ×Pr [Xi = pj],

(c) its expected utility from huge values:
∑

pj∈Phg
U(pj)×Pr [Xi = pj ], and

(d) a {0,1} value that indicates whether it is a member of the (guessed) set
of essential random variables.

We discretize the feature set of each element in the same manner as we discretized
the feature set of the optimal solution.

We next use the technique developed in [13] where the entire feature set of
an element (as well as the guessed optimal allocation) is represented using an
integer and each feature takes the position of a specific digit; the value of this
digit indicates the value of the corresponding feature. For any feature of type
(a), (b) or (c), we use the discretized value. For the feature (d), the value for an
element is either 1 (when it is an essential random variable) or 0 (otherwise);
this value for the guessed optimal allocation is the number of essential random
variables.
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Given any set and any feature, it is easy to see that, if we add up the feature’s
value over all members of the set, then it matches the corresponding value for
the entire set. We then choose as the base of the integral representation any
integer that is at least n + 1 times the maximum value of an element for any
feature. The maximum value of this integer is bounded by npoly(1/ε). Let INTi
and INTA be the integral representations of element ei and the optimal set A

respectively. We next invoke the pseudo-polynomial time algorithm for solving
the feasibility for the deterministic version as follows. We assign a profit of INTi
to element ei, and ask,

Does ∃S ⊆ F such that
∑

ei∈S INTi = INTA

This completes the proof of the Theorem 3.

Next, we list two important stochastic combinatorial optimization problems for
which a PTAS is implied using this reduction. We note, the earlier works on these
problems (stochastic knapsack with random profits [4,9,15,16] and stochastic
spanning tree problem [7,6]) have primarily focussed on the value-at-risk objec-
tive, i.e. either maximizing (or minimizing) the probability of crossing a given
threshold value, and no prior results were known (to the best of our knowledge)
for monotone utility functions.

Stochastic Knapsack with Random Profits: As discussed in Section 1, this
problem models the asset allocation problem faced by a risk averse investor.
For the knapsack problem, dynamic programming can be used to check whether
there exists a set that has profit exactly equal to the target value.

Stochastic Spanning Tree: In this problem, the objective is to pick up a
spanning tree with maximum (or similarly minimum) expected utility. It can be
checked in pseudo-polynomial time (using techniques in [2]) whether there is a
spanning tree with given weight.

Risk Averse Portfolio Allocation Problem: This problem is similar to the
stochastic knapsack problem with random profits; we note the differences. Each
item corresponds to an investment option and an arbitrary nonnegative amount
of money can be invested in each investment option. The investor has a total
budget of B dollars. Let λi be the his investment in option i. The rate of return
(per unit investment) of option i is drawn from distribution Di, independent of
other options. The investor’s objective is to maximize the expected utility of
his future wealth; i.e. E∀i,Xi�Di (U(

∑
i λi ×Xi)). While this problem has been

extensively studied in the literature [8,12,11,5,10], no approximation schemes are
known for this problem.

Theorem 3 cannot be applied directly here to get a polynomial time imple-
mentation as the ground element set is of unbounded size. However an explicit
dynamic program can be designed using a direct application of Theorem 1. We
guess the feature set of the optimal portfolio allocation along with investments
(and their corresponding values) corresponding to essential random variables.
The feasibility of each configuration can be checked using a dynamic program as
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follows: A(i, B′, sm, {qj |pj ∈ Psm}, hg) indicates whether there is a feasible allo-
cation that uses investments i through n, invests at most B′ dollars, and has (i)
sm as the total expected value in the small region, (ii) hg as the expected utility
in the huge value region, and (iii) has a support of qj for pj ∈ Plg. The state
space of the dynamic program is npoly(1/ε), since the value for each parameter
needs only to be stored in the increments of ε/n2 (relative to the maximum value
for this parameter).

Note that a direct application of this approach may violate the budget con-
straint; and the final solution may use a budget up to (1+ ε/n)B. This is easy to
fix: simply scale down the allocation to each investment (by a common factor)
so that the total investment satisfies the budget constraint. Using concavity of
U, this will reduce the expected utility only by εOPT/n. Finally, we emphasize
that the running time of the algorithm is polynomial in n and logB.
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Abstract. In routing games, agents pick routes through a network to
minimize their own delay. A primary concern for the network designer
in routing games is the average agent delay at equilibrium. A number of
methods to control this average delay have received substantial attention,
including network tolls, Stackelberg routing, and edge removal.

A related approach with arguably greater practical relevance is that
of making investments in improvements to the edges of the network, so
that, for a given investment budget, the average delay at equilibrium in
the improved network is minimized. This problem has received consid-
erable attention in the literature on transportation research. We study
a model for this problem introduced in transportation research litera-
ture, and present both hardness results and algorithms that obtain tight
performance guarantees.

– In general graphs, we show that a simple algorithm obtains a
4/3-approximation for affine delay functions and an O(p/ log p)-
approximation for polynomial delay functions of degree p. For affine
delays, we show that it is NP-hard to improve upon the 4/3 approx-
imation.

– Motivated by the practical relevance of the problem, we consider re-
stricted topologies to obtain better bounds. In series-parallel graphs,
we show that the problem is still NP-hard. However, we show that
there is an FPTAS in this case.

– Finally, for graphs consisting of parallel paths, we show that an op-
timal allocation can be obtained in polynomial time.

1 Introduction

Routing games are widely used to model and analyze networks where traffic
is routed by multiple users, who typically pick their route to minimize their
delay [22]. Routing games capture the uncoordinated nature of traffic routing. A
prominent concern in the study of these games is the overall social cost, which is
usually taken to be the average delay suffered by the players at equilibrium. It is
well known that equilibria are generally suboptimal in terms of social cost. The
ratio of the average delay of the worst equilibrium routing to the optimal routing
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that minimizes the average delay is called the price of anarchy; tight bounds on
the price of anarchy are well-studied and are known for various classes of delay
functions [18, Chapter 18].

However, the notion of price of anarchy assumes a fixed network. In reality,
of course, networks change, and such changes may intentionally be implemented
by the network designer to improve quality of service. This raises the question
of how to identify cost-effective network improvements. Our work addresses this
fundamental design problem. Specifically, given a budget for improving the net-
work, how should the designer allocate the budget among edges of the network
to minimize the average delay at equilibrium in the resulting, improved network?
This crucial question arises frequently in network planning and expansion, and
yet seems to have received no attention in the algorithmic game theory literature.
This is surprising considering the attention given to other methods of improving
equilibria, e.g., edge tolls and Stackelberg routing.

Our model of network improvement is adopted from a widely studied problem
in transportation research [27] called the Continuous Network Design Problem
(CNDP) [1]. In this model, each edge in the network has a delay function that
gives the delay on the edge as a function of the traffic carried by the edge. Specif-
ically, the delay function on each edge consists of a free-flow term (a constant),
plus a congestion term that is the ratio of the traffic on the edge to the conduc-
tance of the edge, raised to a fixed power. The cost to the network designer of
increasing the conductance of an edge by one unit is an edge-specific constant.
Our objective is to select an allocation of the improvement budget to the edges
that minimizes the social cost of equilibria in the improved network.

The continuous network design problem, along with the discrete network de-
sign problem that deals with the creation (rather than improvement) of edges,
has been referred to as “one of the most difficult and challenging problems facing
transport” [27]. The CNDP is generally formulated as a mathematical program
with the budget allocated to each edge and the traffic at equilibrium as variables.
Since the traffic is constrained to be at equilibrium, such a formulation is also
called a Mathematical Program with Equilibrium Constraints (MPEC). Further,
since the traffic at equilibrium is itself obtained as a solution to a optimization
problem, this is also a bilevel optimization problem. Both bilevel optimization
problems and MPECs have a number of other applications and have been studied
independent of the CNDP as well (e.g., [6]).

Owing both to the rich structure of the problem and its practical relevance,
the CNDP has received considerable attention in transportation research. Be-
cause of the nonconvexity and the complex nature of the constraints, the bulk
of the literature focuses on heuristics, and proposed algorithms are evaluated by
performance on test data rather than formal analysis. Many of these algorithms
are surveyed in [27]. More recent papers give algorithms that obtain global op-
tima [15,16,25], but make no guarantees on the quality of solutions that can be
obtained in polynomial time.

In this paper, we consider a model with fixed demands, separable polynomial
delay functions on the edges and constant improvement costs. This particular
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model, and further restrictions of it, have been the focus of considerable atten-
tion, e.g., [10,12,17], and is frequently used for test instances. The model captures
many of the essential characteristics of the more general problems, such as the
bilevel and nonconvex nature of the problem and the equilibrium constraints.
Our work gives the first algorithmic results with proven output quality and run-
time for the network improvement problem.

Our Contributions. We first focus on general graphs, and show that an algo-
rithm that relaxes equilibrium constraints on the flow gives an approximation
guarantee that is tight for linear delays.

– We show that for general networks with multiple sources and sinks and poly-
nomial delays, the algorithm described gives an O(p/ log p)-approximation
to the optimal allocation, where p is the maximum degree of the polynomial
delay functions. If p = 1, this gives a 4/3-approximation algorithm.

– We show that the approximation ratio for linear delays is tight, even for the
single-commodity case: by a reduction similar to that used by Roughgar-
den [23], we show that it is NP-hard to obtain an approximation ratio better
than 4/3.

The hardness of approximation crucially depends on the generality of the
network topology. The practical relevance of the network improvement problem
then motivates us to consider restricted topologies of networks. We first con-
sider series-parallel graphs and give tight approximation guarantees for single-
commodity instances.

– We show that obtaining the optimal allocation even in instances with affine
delays on series-dipole graphs, a very limited subset of series-parallel graphs,
is NP-hard.

– However, in series-parallel networks with polynomial delays, we can obtain
a nearly-optimal allocation in polynomial time, i.e., we give an FPTAS1.

Finally, we give efficient exact optimization algorithms for even more restricted
instances: parallel s-t paths with linear delays. Even this is a non-convex opti-
mization problem, but we nevertheless show that first-order conditions are suffi-
cient for optimality. However, due to the nonconvexity, gradient descent methods
may not converge in poly-time. We use the structure of the first-order conditions
to give a poly-time algorithm to find Opt. (And an even simpler algorithm when
each path is a single edge.) Note that finding the optimal Stackelberg routing is
NP-hard even in parallel links [21].

Our work thus presents a fairly comprehensive set of approximation guar-
antees for network improvement. Both the lower bounds and approximation
guarantees we obtain are tight for the topologies we consider. Our results thus
complement the work in transportation research on the problem, by formalizing
the (existing) intuition that the problem is hard, and giving tight approximation
algorithms for restricted instances.

1 A fully polynomial-time approximation scheme (FPTAS) is a sequence of algorithms
{Aε} so that, for any ε > 0, Aε runs in time polynomial in the input and 1/ε and
outputs a solution that is at most a (1 + ε) factor worse than the optimal solution.



Network Improvement for Equilibrium Routing 141

2 Related Work

Routing games as a model of traffic on roads were introduced by Wardrop in
1952 [26]. The equilibrium in these games is thus known as Wardrop equilibrium.
Beckmann et al. [3] showed that equilibria in routing games are obtained as
the solution to a strictly convex optimization problem if all delay functions are
increasing, thus establishing the existence and uniqueness of equilibria. The price
of anarchy— the ratio of the social cost at the worst equilibrium to the minimum
social cost — was introduced by Papadimitriou [19] as a formal measure of
inefficiency. For routing games with the social cost given by the average delay,
the price of anarchy is known to be 4/3 for linear delays [24], and Θ(p/ log p) for
delay functions that are polynomials of degree p [20].

Significant research has gone into the use of tolls to improve the efficiency of
routing games. Tolls to induce any minimal routing including the routing of min-
imum total delay can be obtained as the solution to a linear program [3,8,13,28].
Another method studied for improving the efficiency of routing is Stackelberg
routing, which assumes that a fraction of the traffic is centrally controlled and
is routed to improve efficiency. Obtaining the optimal Stackelberg routing is
NP-hard even in parallel links [21], although a fully-polynomial time approxi-
mation scheme is known for this case [14]. Roughgarden [23] studies the problem
of removing edges from a network to minimize the delay at equilibrium in the
resulting network. The problem is strongly NP-hard, and there is no algorithm
with an approximation ratio better than n/2 for general delay functions.

The importance of the network improvement problem has caused it to receive
significant attention in transportation research, where the version we are consid-
ering is known as the continuous network design problem. Early research focused
on heuristics that did not give any guarantees about the quality of the solution
obtained. These results are surveyed in [27].

More recent work in the transportation literature has also tried to obtain al-
gorithms that obtain global minima for the continuous network design problem.
Early approaches include the use of simulated annealing [10] and genetic algo-
rithms [30]. Li et al. [15] reduce the problem to a sequence of mathematical
programs with concave objectives and convex constraints, and show that the
accumulation point of the sequence of solutions is a global optimum. If the se-
quence is terminated early, they show weak bounds on the quality of the solution
that are consequential only under strong assumptions on the delay function and
agents’ demands. Wang and Lo [25] reformulate the problem as a mixed integer
linear program (MILP) by replacing the equilibrium constraints by constraints
containing binary variables for each path, and using a number of linear segments
to approximate the delay functions. This approach was further developed by Lu-
athep et al. [16] who replaced the possibly exponentially many path variables by
edge variables and gave a cutting constraint algorithm for the resulting MILP.
The last two methods converge to a global optimum of the linearized approxi-
mation in finite time, but require solving a MILP with a possibly exponential
number of variables and constraints.
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A variant of the problem where the initial conductance of every edge in the
network is zero, and the budget is part of the objective rather than a hard
constraint, is studied by Marcotte [17] and, independent of our work, by Gairing
et al. [11]. Unlike the work cited earlier, these papers give provable guarantees
on the performance of polynomial-time algorithms. Marcotte gives an algorithm
that is a 2-approximation for monomial delay functions and a 5/4-approximation
for linear delay functions. Gairing et al. present an algorithm that improves
upon these upper bounds, give an optimal polynomial-time algorithm for single-
commodity instances, and show that the problem is APX-hard in general. In
our problem, the budget is a hard constraint, and edges may have arbitrary
initial capacities. Our problem is demonstrably harder than this variant: e.g., in
contrast to the polynomial-time algorithm for single-commodity instances given
by Gairing et al. [11], we show that in our problem no approximation better
than 4/3 is possible even in single-commodity instances.

3 Notation and Preliminaries

G = (V,E) is a directed graph with |E| = m and |V | = n. If G is a two-terminal
graph, then it has two special vertices s and t called the source and the sink,
collectively called terminals. A u-v path p = ((v0, v1), (v1, v2), . . . , (vk−1, vk)) is
a sequence of edges with v0 = u, vk = v and edges (vi, vi+1) ∈ E. In a two-
terminal graph, each edge is on an s-t path. We use P to denote the set of all
s-t paths. Given vertices s′, t′ in graph G, vector (fe)e∈E is an s′-t′ flow of value
d if: ∑

(u,w)∈E

fuw −
∑

(w,u)∈E

fwu = 0, ∀u ∈ V \ {s′, t′}

∑
(s,w)∈E

fsw −
∑

(w,s)∈E

fws = d

fe ≥ 0, ∀e ∈ E .

We use |f | to denote the value of flow f . A path decomposition of an s′-t′

flow f is a set of flows {fp} along s′-t′ paths p that satisfies fe =
∑

p:e∈p fp,
∀e. A path decomposition for flow f so that fp > 0 for at most m paths can be
obtained in polynomial time [2]. Without reference to a path decomposition, we
use fp > 0 to indicate that fe > 0 for all e ∈ p.

Each edge e ∈ E has an increasing delay function le(x) that gives the delay
on the edge as a function of the flow on the edge. For flow f and path p, lp(f) :=∑

e∈p le(fe) is the delay on path p. Further, fele(fe) is the total delay on edge
e, and the total delay of flow f is

∑
e∈E fele(fe).

Routing games. A routing game is a tuple Γ = (G, l,K) where G is a directed
graph, l is a vector of delay functions on edges, and K = {si, ti, di}i∈I is a set of
triples where di is the total traffic routed by players of commodity i from si to ti.
Each player of commodity i in a routing game controls infinitesimal traffic and
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picks an si-ti path p on which to route her flow, as her strategy. The strategies
induce a flow f i. Let f =

∑
i f

i, then the delay of a player that selects path p
as her strategy is lp(f). In the single-commodity case, |I| = 1. We say a flow f
is a valid flow for routing game Γ if f =

∑
i∈I f

i where each f i is an si-ti flow
of value di.

At equilibrium in a routing game, each player minimizes her delay, subject to
the strategies of the other players. This is also called a Wardrop equilibrium.

Definition 1. A set of flows {f i}i∈I where f i is an si-ti flow of value di is a
Wardrop equilibrium if for all i ∈ I, for any si-ti paths p, q such that f i

p > 0,
lp(f) ≤ lq(f).

The equilibrium flow, i.e., the collection of flows {f i}i∈I that form a Wardrop
equilibrium, is also the solution to the following mathematical program:

min
∑
e∈E

∫ fe

0

le(x) dx, s.t. f =
∑

i∈I f
i and f i is an si-ti flow of value di .

Since the delay functions are increasing, the program has a strictly convex ob-
jective with linear constraints, and hence the first-order conditions are necessary
and sufficient for optimality. Further, because of strict convexity, the equilib-
rium flow is unique. Definition 1 then corresponds to the first-order conditions
for optimality of the convex program. By Definition 1, each si-ti path p with
f i
p > 0 has the same delay at equilibrium. Let Li be this common path delay.

Then the total delay
∑

e fele(fe) =
∑

i di L
i, where f =

∑
i∈I f

i and {f i}i∈I is
the equilibrium flow. The average delay is

∑
i di L

i/
∑

i di.

Network Improvement. In the network improvement problem, we are given a
routing game Γ , where the delay function on each edge e is of the form le(x) =
(x/ce)

ne + be. We call ce the conductance, 1/ce the resistance, and be the length
of edge e. We assume ce ≥ 0 and ne > 0, and hence the delay is an increasing
function of the flow on the edge. The delay function on an edge is affine if ne = 1.
Each edge has a marginal cost of improvement, μe. Upon spending βe to improve
edge e, the conductance of the edge increases to ce + μeβe. For a given budget
B, a valid allocation is a vector β = (βe)e∈E so that

∑
e βe ≤ B and βe ≥ 0

for each e ∈ E. The objective is to determine a valid allocation of the budget
B to the edges to minimize the average delay obtained at equilibrium with the
modified delay functions le(x, βe) = (x/(ce + μeβe))

ne + be. Delay functions are
affine if ne = 1 on all edges.

Let β = (βe)e∈E be the vector of edge allocations. Since the flow at equilibrium
is unique, for any β, the average delay at equilibrium is unique. L(β) is this
unique average delay as a function of the edge allocations. When considering
a flow f other than the equilibrium flow, we use L(f, β) to denote the average
delay of flow f with the modified delay functions. We will also have occasion
to allocate budget to units other than edges, e.g., paths, and will slightly abuse
notation to express the average delay in terms of these units.
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Our problem corresponds to the following (non-linear, possibly non-convex)
optimization problem:

min
β

L(β), s.t.
∑
e

βe ≤ B, βe ≥ 0 ∀e ∈ E . (1)

We use β∗ to denote an optimal solution for this problem, and define L∗ :=
L(β∗). As is common in nonlinear optimization, instead of an exact solution we
will obtain a solution that is within a specified additive tolerance of ε of the
exact solution, i.e., a valid allocation β̂ so that L(β̂)− ε ≤ L(β∗). An algorithm
is polynomial-time if it obtains such a solution in time polynomial in the input
size and log(1/ε). Since the problem has linear constraints, the first-order con-
ditions are necessary for optimality (e.g., [29]). By the first-order conditions for
optimality, for any edges e and e′,

βe > 0⇒ ∂L(β)

∂βe
≤ ∂L(β)

∂βe′
. (2)

For any edge e and allocation β, define ce(β) = ce + μeβe. For a path p,
bp =

∑
e∈p be is the length of path p. For affine delay functions, define cp(β) =

1/
∑

e∈p
1

ce(β)
as the conductance of path p, and the resistance of path p as the

reciprocal of the conductance: rp(β) = 1/cp(β). For k ∈ Z+, [k] := {1, 2, . . . , k}.
All missing proofs appear in the full version of the paper [4].

4 General Graphs

We present upper bounds for a classical approach introduced in [7,17], and show
that it gives a good approximation for the general network improvement prob-
lem: with multiple commodities, in general graphs, and with polynomial delay
functions. This approach relaxes the equilibrium constraints on the flow and
solves the resulting convex program. The analysis relies on an unusual applica-
tion of the well-known price of anarchy bounds for routing games [20,24].

Theorem 2. There is a polynomial-time algorithm that gives a 4/3-
approximation for the network improvement problem with affine delay functions,
and an O(p/ log p)-approximation if all delay functions have degree at most p.

The upper bounds in the theorem are tight for affine delays, even for single-
commodity routing games. To show this, we give a reduction from the problem of
2-Directed Disjoint Paths, which is known to be NP-complete [9]. Our reduction
is similar to that given by [23] for the problem of removing edges from a network
to improve the total delay at equilibrium in the resulting network.

Theorem 3. It is NP-hard to obtain an approximation ratio better than 4/3
even in single-commodity instances of network improvement with affine delays.
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5 Series-Parallel Graphs

5.1 NP-Hardness for Series-Dipole Graphs

We show that even in fairly simple series-dipole networks, with affine delay func-
tions, the network improvement problem is NP-hard. Series-dipole graphs are a
special case of series-parallel graphs, and consist of a series of dipole graphs—
subgraphs consisting of parallel edges. In fact, we show that even when each
dipole consists of just two edges, computing the optimal allocation is NP-hard.

Theorem 4. The network improvement problem in series-dipole graphs with
two edges in each dipole and affine delay functions is weakly NP-hard.

In the proof in the full version [4], we show a reduction from the Partition
problem. An instance of Partition consists of n items, each with value vi and∑

i∈[n] vi = 2V . The problem is to select a subset S of the items so that∑
i∈S vi = V . In our reduction, there is a dipole for each item. Let Li(x) be

the delay at equilibrium across the terminals of dipole i for an optimal alloca-
tion of x to the edges of dipole i. The crucial part of our reduction is to construct
dipoles where the sum Li(x) + x is minimized at exactly two points (Figure 1).
These points intuitively correspond to the inclusion and exclusion of item i in
set S. Further, the reduction must ensure that (i) the difference in the alloca-
tion between these two points is exactly vi, and (ii) the difference in the delay
at equilibrium between these two points is exactly vi. The construction of such
dipoles with just affine delays draws upon structural properties of dipoles.

5.2 An FPTAS for Series-Parallel Graphs

For single-commodity instances of network improvement in series-parallel net-
works with polynomial delays, we show in this section that we can obtain near-
optimal algorithms that run in polynomial time, i.e., we obtain an FPTAS. The
standard approach for an FPTAS is to discretize the space of possible solutions,
and use an efficient algorithm such as dynamic programming to find the optimal
solution in this discretized space. In our problem, this approach encounters a

Li(x)

Li(αi)

Li(αi)− vi

αi αi + vi
x

Fig. 1. The Li(x) curve has slope −1 at exactly two points, x = αi and x = αi + vi,
and hence Li(x) + x is minimized at exactly these points
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number of difficulties. Firstly, since the equilibrium flow varies as the allocation
to edges changes, it is not sufficient to discretize the space of allocations. We
need to discretize the space of flows as well, and consider both flows and allo-
cations as variables in our optimization problem. Secondly, we cannot use the
total delay as our minimization objective. Since both the flow and allocation are
variables in our optimization problem, minimizing the total delay can only yield
an O(p/ log p)-approximation as obtained earlier. To obtain a better approxima-
tion, we will minimize a different objective. Thirdly, since we need multiplicative
guarantees, on edges where the optimal allocation β∗

e is small the standard dis-
cretization will be insufficient. We handle this last case in the full version, and
discuss how we solve the first two problems here.

We first discuss our objective. Instead of the total delay, our objective will
be to find the allocation and flow that minimize the maximum delay on paths
with positive flow. There are two reasons why this is a good objective. Firstly,
for single-commodity equilibrium flows, this is exactly the average delay, since
at equilibrium any path with positive flow has the same delay. Lemma 5 shows
the second reason why this is a good objective: in series-parallel graphs, the
equilibrium flow minimizes this value. The lemma holds only for series-parallel
graphs, and the standard examples of inefficiency in the Braess graphs show that
the lemma does not hold in general.

Lemma 5. Let f be the equilibrium flow in routing game Γ on series-parallel graph
G, and g be any s-t flow of value d. Then maxp:fp>0 lp(f) ≤ maxp:gp>0 lp(g).

As usual, β∗ is the optimal allocation for the network improvement instance,
and f∗ and L∗ are the equilibrium flow and average delay for allocation β∗.
We now construct discretized spaces Fε and Aε of possible flows and allocations
respectively. Define ν := maxe ne as the maximum exponent of the delay function
on any edge. Given a parameter ε > 0, λ := ε2/m2 is our unit of discretization,
where as before m = |E|. For clarity of presentation, we assume that 1/λ is
integral. Further, as mentioned earlier, we assume that β∗

e ≥ λB/ε on every
edge, and remove this assumption in the full version. For any subgraph H of G
and k ∈ Z+, define Aε(H, k) as the set of all valid allocations of budget kBλ to
edges in H , so that the allocation to each edge is either 0 or an integral multiple
of Bλ. Similarly, define Fε(H, k) as the set of all valid sH -tH flows on the edges
ofH of value kdλ, so that the flow on every edge in H is either zero or an integral
multiple of dλ. We now show that optimizing over flows and allocations in the
discretized space gives a good approximation to the optimal delay.

Lemma 6. In time O(m3/ε2), we can obtain flow f̂ ∈ Fε(G, 1/λ) and allocation

β̂ ∈ Aε(G, 1/λ) that satisfy

max
p:f̂p>0

∑
e∈p

le(f̂e, β̂e) ≤ (1 + ε)νL∗/(1− ε)ν .

Here, we only prove the existence of f̂ and β̂. The algorithm to obtain f̂ and
β̂ uses dynamic programming and takes advantage of the recursive construction
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of series-parallel graphs, and we leave this to the full version. For the existence,
we first show there exist f̂ and β̂ that are near f∗ and β∗ on every edge.

Claim 7. There exists flow f̂ ∈ Fε(G, 1/λ) that satisfies f̂e ≤ (1 + ε)f∗
e for all

e ∈ E, and allocation β̂ ∈ Aε(G, 1/λ) that satisfies β̂e ≥ β∗
e (1− ε).

Proof. For allocation β̂, round β∗
e down to the nearest multiple of λB to obtain

β̂e, and on an abitrary edge e1, allocate β̂e1 = B−
∑

e�=e1
β̂e. Since the allocation

to every other edge is an integral multiple of Bλ, so is the allocation to edge e1.
Allocation β̂ is obviously a valid allocation of budget B, and thus β̂ ∈ Aε(G, 1/λ).

Further, on every edge, β̂e ≥ β∗
e−Bλ ≥ β∗

e−εβ∗
e = β∗

e (1−ε), where the inequality
is since by assumption β∗

e ≥ Bλ/ε.

For f̂ , let {f∗
p}p∈P be a flow decomposition of f∗ with at most m paths in

P with f∗
p > 0. There is a path q with f∗

q ≥ mdλ/ε in this decomposition. For

p �= q, round f∗
p down to the nearest multiple of dλ to obtain f̂p. Assign the

remaining flow d−
∑

p�=q f̂p to path q. The flow on every edge is then an integral

multiple of dλ, and f̂ is a flow of value v. Hence f̂ ∈ Fε(G, 1/λ). Further, for

p �= q, f̂p ≤ f∗
p . For path q, f̂q ≤ f∗

q +mdλ ≤ f∗
q + εf∗

q = (1 + ε)f∗
q . Hence for

every edge, f̂e ≤ (1 + ε)f∗
e . 
�

For flow f̂ and allocation β̂ obtained in Claim 7, if f̂e > 0, then f∗
e > 0. Hence

for path p with f̂e > 0 for all e ∈ p, by Claim 7 and since the delay functions
are polynomials of degree at most ν,

∑
e∈p

le(f̂e, β̂e) ≤
(
1 + ε

1− ε

)ν ∑
e∈p

le(f
∗
e , β

∗
e ) =

(
1 + ε

1− ε

)ν

L∗ .

The proof of the lemma follows immediately. 
�
Note that the flow f̂ obtained is not an equilibrium flow for the allocation

β̂, but by Lemma 5 it must be close to an equilibrium flow. We now show the
existence of an FPTAS for series-parallel graphs.

Theorem 8. For any ε′ > 0, for single-commodity network improvement in
series-parallel graphs there is a (1+ ε′)-approximate algorithm that runs in time
polynomial in 1/ε′, ν, and the size of the input, where ν is the maximum degree
of any delay function.

Proof. Let ε > 0 be a parameter we fix later. Let f̂ and β̂ be the flow and
allocation from Lemma 6, and f be the equilibrium flow for allocation β̂. By
Lemma 6 and 5,

L(f, β̂) = max
p:fp>0

∑
e∈p

le(fe, β̂e) ≤ max
p:f̂p>0

∑
e∈p

le(f̂e, β̂e) ≤ (1 + ε)νL∗/(1− ε)ν .

The theorem is satisfied by choosing ε = ε′/6ν. 
�
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6 Parallel Paths

If G is an s-t path, then the delay at equilibrium L(β) is a convex function. Thus,
obtaining the optimal allocation requires minimizing a convex function subject
to linear constraints, which is polynomial-time solvable by, e.g., interior-point
methods [5].

When G consists of parallel paths between s and t, L(β) may not be a convex
function of β. We prove however that in the single-commodity case, with all delay
functions affine, the first-order conditions for optimality are sufficient. Hence, any
solution that satisfies the first-order optimality conditions is a global minimum.
The nonconvexity however implies that algorithms based on gradient descent
may not converge in polynomial time. Instead, we give an algorithm that solves
a particular convex relaxation within a binary search framework to obtain the
optimal allocation in polynomial time.

Theorem 9. There is a polynomial-time algorithm for single-commodity net-
work improvement in graphs consisting of parallel s-t paths with affine delay
functions.

Further, if each s-t path is a single edge, we prove that there is an optimal solution
where the entire budget is spent on a single edge. This characterization yields
a simple optimal algorithm for the case of parallel edges — try all edges, and
allocate the entire budget to the edge for which the delay obtained is minimum.
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Abstract. An undirected graph G = (V,E) is stable if its inessential
vertices (those that are exposed by at least one maximum matching) form
a stable set. We call a set of edges F ⊆ E a stabilizer if its removal from G
yields a stable graph. In this paper we study the following natural edge-
deletion question: given a graph G = (V,E), can we find a minimum-
cardinality stabilizer?

Stable graphs play an important role in cooperative game theory. In
the classic matching game introduced by Shapley and Shubik [19] we are
given an undirected graph G = (V,E) where vertices represent players,
and we define the value of each subset S ⊆ V as the cardinality of a
maximum matching in the subgraph induced by S. The core of such a
game contains all fair allocations of the value of V among the players,
and is well-known to be non-empty iff graph G is stable. The stabilizer
problem addresses the question of how to modify the graph to ensure
that the core is non-empty.

We show that this problem is vertex-cover hard. We then prove that
there is a minimum-cardinality stabilizer that avoids some maximum
matching of G. We use this insight to give efficient approximation algo-
rithms for sparse graphs and for regular graphs.

1 Introduction

Given an undirected graph G = (V,E), a subset of edges M ⊆ E is a matching
if every vertex v ∈ V is incident to at most one edge in M . Dually, a subset of
vertices U ⊆ V is called vertex cover if every edge has at least one endpoint in
U . The corresponding optimization problems of finding a matching and vertex
cover of largest and smallest size, respectively, have a rich history in the field of
Combinatorial Optimization. Relaxing canonical integer programming formula-
tions for these problems yields the following primal-dual pair of linear programs:

νf (G) := max{1Tx : x(δ(v)) ≤ 1 ∀v ∈ V, x ≥ 0} (P)
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where δ(v) denotes the set of edges incident to v, and

τf (G) := min{1T y : yu + yv ≥ 1 ∀uv ∈ E, y ≥ 0}. (D)

We will henceforth refer to feasible solutions of (P) and (D) as fractional match-
ings and vertex covers, respectively. An application of duality theory easily yields

ν(G) ≤ νf (G) = τf (G) ≤ τ(G)

where ν(G) and τ(G) denote the size of a maximum matching and a minimum
vertex cover, respectively.

In this paper, we study graphs G with the property ν(G) = τf (G). We denote
the family of graphs satisfying this property to be stable graphs. Stable graphs
subsume the well-studied class of König-Egerváry (KEG) graphs (e.g., see [20,
13, 14, 15]) for which ν(G) = τ(G). Stable graphs arise quite naturally in the
study of cooperative matching games introduced by Shapley and Shubik in their
seminal paper [19]. An instance of this game is associated with an undirected
graph G = (V,E) where vertices represent players. We define the value of each
subset S ⊆ V as the cardinality of a maximum matching in the subgraph G[S]
induced by S, and the core of the game consists of all stable allocations of total
value ν(G) among the vertices in V in which no coalition of vertices has an
incentive to deviate. This is formally defined as

core(G) :=

{
y ∈ �V

+ :
∑
v∈S

yv ≥ ν(G[S]) ∀S ⊆ V,
∑
v∈V

yv = ν(G)

}
.

It is well-known (e.g., see [8]) that core(G) is non-empty iff G is stable.
Matching games in turn are closely related to network bargaining, a natural,

recent generalization of Nash’s famous bargaining solution [16] to networks due
to Kleinberg and Tardos [11]. Here, we are given an undirected graph G = (V,E)
whose vertices correspond to players, and whose edges correspond to potential
unit-value deals between the incident players. Each player is allowed to engage
in at most one deal with one of its neighbors. Hence, a permissible outcome is
naturally associated with a matching M among the vertices of G, as well as an
allocation y ∈ �V

+ of |M | among M ’s endpoints. Kleinberg and Tardos define an
allocation to be stable if yu + yv ≥ 1 for all uv ∈ E. The authors further define
an outside option αu for each vertex u ∈ V as

αu := max{1− yv : uv ∈ δ(u) \M},

and say that an outcome (M, y) is balanced if for every edge uv ∈M , the surplus
1 − αu − αv is split evenly among u and v. The main result in [11] is that an
instance of network bargaining has a stable outcome iff it has a balanced one.
One now realizes (see also [5]) that a stable outcome exists iff the core of the
underlying matching game instance is non-empty and hence iff G is stable.

In this paper, we focus on unstable instances of the matching game, where the
core is empty. Our motivating goal is to establish strategies for stabilizing such
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instances in the least intrusive way; i.e., we would like to alter the input graph
in few places and ideally maintain the value of the grand coalition formed by the
set of vertices V in the process. The following natural edge-deletion stabilizer
problem formalizes this: given a graph G = (V,E), find the smallest edge set
F ⊆ E such that the subgraph G \ F := (V,E \ F ) is stable.

Stable graphs form a proper superclass of KEGs which in turn form a su-
perclass of bipartite graphs. Readers familiar with the literature of bipartite
graphs would immediately recognize that the stabilizer problem closely resem-
bles the optimization problems of deleting the minimum number of edges to
convert a given graph into a KEG or a bipartite graph, both of which have been
well-studied in the literature (e.g., see [1, 15]). The investigation of structural
properties of unstable graphs has a long history (e.g., see [21, 3, 17]), but there
are few algorithmic results on how to convert an unstable graph to a stable
graph. Biró et al. [6] recently studied the minimum stabilizer problem in the
weighted setting, where maximum-weight matchings are considered instead of
maximum-cardinality matchings. The authors showed that the problem is NP-
hard in this case, and leave the complexity of the question in the unweighted
setting open.

1.1 Our Results

We first show that removing a minimum stabilizer from a given graph G does
not reduce the cardinality of the maximum matching. Hence the value of the
grand coalition of the associated matching game remains the same.

Theorem 1. For every minimum stabilizer F , we have ν(G \ F ) = ν(G).

The proof of this theorem is algorithmic: given any stabilizer F , we can efficiently
find a maximum matching M in G and a stabilizer F ′ such that F ′ ⊆ F and
M ∩ F ′ = ∅. The last equality implies that M is still a maximum matching in
G \ F ′. The result motivates the following intermediate M -stabilizer problem:
given a maximum matching M , find a minimum-cardinality stabilizer FM that
is disjoint from M . In the network bargaining setting, this question asks how to
convert a specific maximum matching into one with a stable allocation through
minimal edge deletions in the underlying network. Biró et al. [6] previously
showed that this problem is NP-hard. We strengthen the hardness result and
complement it with a tight algorithmic counterpart.

Theorem 2. The M -stabilizer problem is NP-hard, and no efficient (2 − ε)-
approximation algorithm exists for any ε > 0 assuming the Unique Games
Conjecture [10]. Furthermore, the M -stabilizer problem admits an efficient 2-
approximation algorithm.

The hardness proof employs an approximation preserving reduction from vertex
cover. The approximation algorithm uses linear programming, and one shows
that a suitable linear programming relaxation for the problem has a half-integral
optimal solution. Turning to the stabilizer problem, we first extend the hardness



Finding Small Stabilizers for Unstable Graphs 153

result obtained forM -stabilizers answering the open question in [6]. Interestingly,
our hardness result holds for factor-critical graphs (see next subsection for the
definition).

Theorem 3. The stabilizer problem is NP-hard. Furthermore, no efficient (2−
ε)-approximation algorithm exists for any ε > 0 assuming the Unique Games
Conjecture [10].

Theorems 1 and 2 suggest that the crux of the hardness of the stabilizer prob-
lem lies in finding the right maximum matching that survives the removal of
a minimum stabilizer. Once such a matching is found one could indeed simply
apply our 2-approximation for the M -stabilizer problem. However, not every
maximum matching survives the removal of a minimum stabilizer. In fact, for
two different maximum matchings M and M ′, the cardinality of FM and FM ′

can differ by a factor of Ω(|V |) even on a planar factor-critical graph [7]. In
Section 3.1, we present an approximation algorithm whose approximation factor
depends on the sparsity of the graph. We say that a graph G = (V,E) is ω-sparse
if |E(S)| ≤ ω |S| for all vertex subsets S ⊆ V .

Theorem 4. There exists an efficient O(ω)-approximation algorithm for the
stabilizer problem, where ω is the sparsity of the input graph.

We note that the above result implies a constant factor approximation algorithm
for graphs with constant sparsity, e.g., planar graphs. We do not know whether a
constant factor approximation algorithm can be developed for arbitrary graphs.
However, we give a 2-approximation algorithm for regular graphs (graphs where
all vertex degrees are equal). In the network bargaining setting, this gives a
2-approximation algorithm to stabilize networks in which every player has the
same number of potential deals to make.

Theorem 5. There exists an efficient 2-approximation algorithm for the stabi-
lizer problem in regular graphs.

The analysis of our algorithm combines some classic results about matchings
and vertex covers such as the structure of basic solutions of (P) and (D) and the
Edmonds-Gallai decomposition.

The proof of Theorem 1 is presented in Section 2, and that of Theorems 4
and 5 are presented in Section 3. The proofs of Theorems 2 and 3 are deferred
to the full version of the paper [7].

1.2 Related Work

The problem of removing vertices or edges from a graph in order to attain a cer-
tain graph property is natural, and thus not surprisingly, its variants have been
studied extensively. Much of the work on deletion problems addresses mono-
tone graph properties (e.g., see [22, 2]) that are invariant under edge-removal
or vertex-removal. Crucially, graph stability is not a monotone property as one



154 A. Bock et al.

easily verifies: the triangle is not stable, and adding a single pendant edge to one
of its vertices yields a stable graph.

Our work is closely related to that of Mishra et al. [15] on vertex-removal and
edge-removal problems to attain the König-Egerváry graph property. Similar
to stability, KEG is not a monotone property. Mishra et al. showed that it
is NP-hard to approximate the corresponding edge-deletion problem to within
a factor of 2.88. Assuming the Unique Games Conjecture, no constant-factor
approximation may exist for the problem. We note that the reductions used in
[15] will likely not be helpful for proving hardness for the stabilizer problem as
the graphs constructed in the reduction are stable. On the positive side, the
authors show that, for a given graph G = (V,E) one can efficiently find a KEG
(and hence stable) subgraph with at least 3|E|/5 edges.

The recent paper by Könemann et al. [12] addressed the related, NP-hard
problem of finding a minimum-cardinality blocking set in an input graph G =
(V,E). Here one wants to find a set of edges F ⊆ E such that G \ F has a
fractional vertex cover of size at most ν(G). Importantly, the resulting graph
G\F is not required to be stable; indeed, the cardinality of a minimum blocking
set can differ from the cardinality of a minimum stabilizer by a factor of Ω(|V |).

1.3 Preliminaries

Given an undirected graph G and a matching M in G, a path is called M -
alternating if it alternates edges from M and those from E \M . An odd cycle
of length 2k + 1 in which exactly k edges are in M is called an M -blossom. An
M -flower is an even M -alternating path from an exposed vertex to a vertex
u such that there exists a blossom through u. For a subset of vertices S ⊆ V ,
we use E(S) to denote the set of edges in the graph induced by S and G[S] to
denote the subgraph induced by S. A graph G = (V,E) is called factor-critical
if for all v ∈ V , G[V \ {v}] has a perfect matching; i.e., a matching that does
not expose any vertex. A vertex v is called inessential for G if there exists a
maximum matching M that exposes v, and essential otherwise. In this paper,
we will also use the following characterization of stable graphs.

Theorem 6 ([11]). The following are equivalent: (i) G is stable, (ii) The set
of inessential vertices of G forms a stable set, (iii) G contains no M -flower for
any maximum matching M . Moreover, if G is not stable, then G contains an
M -flower for every maximum matching M .

Given a graph G, the Edmonds-Gallai decomposition is a partition of its vertex
set into three parts B(G), C(G), D(G), where B(G) is the set of inessential
vertices, the set C(G) consists of the neighbors of B(G) and D(G) = V \(B(G)∪
C(G)). We list several standard but useful properties.

Theorem 7 ([18]). Given a graph G, the Edmonds-Gallai decomposition of the
graph B(G), C(G), D(G) can be computed in polynomial time. Further, we have
the following properties.
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1. Each component of G[B(G)] is factor-critical.
2. Every maximum matching M in G exposes at most one vertex in each com-

ponent K of G[B(G)].
3. If U is a non-trivial factor-critical component in G[B(G)] (i.e., a factor-

critical component with more than one vertex), then ν(G \ E(U)) < ν(G).

The following proposition is a consequence of the Edmonds-Gallai decompo-
sition theorem, which follows from classic results by Balas [3] and Pulleyblank
[17]. We include its proof in the full version of this paper [7].

Proposition 1. Let M be a maximum matching in G that also matches the
maximum possible number of isolated vertices in G[B(G)]. Let k be the number
of non-trivial factor-critical components with at least one vertex exposed by M .
Then k = 2(νf (G)− ν(G)).

2 Maximum Matchings and Minimum Stabilizers

We first show that the deletion of any minimum stabilizer does not alter the
cardinality of the maximum matching.

Proof (of Theorem 1). Let F be a minimum stabilizer. Find a maximum match-
ing M in G such that |M ∩ F | is minimum. Suppose |M ∩ F | �= 0.

Consider G′ := G \ (F \M), the graph obtained by removing all the edges of
F \M from G. Clearly M is still a maximum matching in G′. However, since F
is minimum, G′ is not stable. By Theorem 6, this implies that there exists an
M -flower in G′ starting at an M -exposed vertex w.

Suppose the M -flower contains an edge uv ∈ F . Then, uv ∈ M , since all
other edges from F have been removed in G′. Therefore, we can find an even M -
alternating path P from w to either u or v. Switching along the edges of this path,
we obtain another maximummatchingM ′ = MΔP inG with |F∩M ′| < |F∩M |,
a contradiction.

It follows that the M -flower does not contain any edge from F , and therefore
the M -flower also exists in G \ F . However, since G \ F is stable, this implies
that M \ F is not a maximum matching in G \ F . Apply Edmonds’ maximum
matching algorithm on the graph G \ F initialized with the matching M \ F ,
and construct an M \ F -alternating tree starting with the exposed vertex w.
There are two possibilities: either we find an augmenting path P or a frustrated
tree rooted at w. In the first case, the path P starts with w and ends with a
M \ F -exposed vertex, say w′. However, such a path cannot exist in G because
M is a maximum matching, and therefore w′ must have been incident to an edge
f ∈ M ∩ F . Also, note that the path P is in G \ F . Hence, P + f is an even
M -alternating path in G containing exactly one edge in M ∩F . Switching along
the edges of this path, we obtain another maximum matching M ′ = MΔP in G
with |F ∩M ′| < |F ∩M |, a contradiction.

The only remaining possibility is that we find a frustrated tree T rooted at w.
Let G[T ] = (VT , ET ) be the graph induced by all vertices in the frustrated tree T
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(after expanding pseudonodes). In this case, M ∩ET is a maximum matching in
G[T ], and the M -flower is contained in ET . However, if we continue Edmonds’
algorithm, it would remove the vertices of the frustrated tree, and continue
running in the resulting subgraph to find a maximum matching. Therefore it
ends by computing a maximum matching M∗ in G\F with M∗∩ET = M ∩ET .
Therefore, we have a M∗-flower in G \ F , again a contradiction. 
�

We remark here that the above proof is algorithmic, therefore given a stabilizer
F , we can find in polynomial time a maximum matching M in G and another
stabilizer F ′ ⊆ F such that M ∩F ′ = ∅. The first step of computing a maximum
matching M in G with minimum intersection with F can be done by assigning
a cost of one to the edges in F , zero to the rest of the edges, and computing a
min-cost matching in G of cardinality ν(G).

We next prove a lower bound on the cardinality of a stabilizer.

Theorem 8. For every minimum stabilizer F , we have |F | ≥ 2(νf (G)− ν(G)).

Proof. Let B(G), C(G), D(G) denote the Edmonds-Gallai decomposition and
let M be a maximum matching in G that also matches the maximum possible
number of isolated vertices in G[B(G)]. Let U1, . . . , Uk denote the non-trivial
components in G[B(G)] with at least one vertex exposed by M . Let F be a
minimum stabilizer and H = G\F . For each component U1, . . . , Uk, at least one
vertex vi ∈ Ui becomes essential in H . Suppose not, then all vertices of some Ui

are inessential in H . This implies that F contains all edges in G[Ui]. Thus, by
Theorem 7, we have that ν(H) < ν(G), a contradiction to Theorem 1.

Pick a maximum matching N in H . Then, N will cover all these vertices
v1, . . . , vk that are essential in H . Since G[Ui] is factor-critical and M matches
all but one vertex in Ui using edges in G[Ui], we may assume without loss of
generality, that M misses all these vertices. The graph MΔN is a disjoint union
of even cycles and even paths since |M | = |N | = ν(G). Consider the k disjoint
paths starting at the vertices v1, . . . , vk in MΔN . We observe that at least one of
the M edges in each of these paths should belong to F , otherwise we can obtain a
maximum matching in H that exposes the starting vertex vi, thus contradicting
vi �∈ B(H). Hence |F | ≥ k. The result follows by Proposition 1. 
�

3 Finding Small Stabilizers

In this section, we return to the problem of finding small stabilizers. The fol-
lowing two sections present algorithms for the problem in sparse, and regular
graphs, respectively.

3.1 An O(ω)-approximation Algorithm for Sparse Graphs

Before proving Theorem 4, we state and prove the following lemma that is the
main ingredient of our algorithm.
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Lemma 1. Let G be a graph with νf (G) > ν(G). There exists an efficient algo-
rithm to find a set of edges L with |L| = O(ω), such that

(i) ν(G \ L) = ν(G),
(ii) νf (G \ L) ≤ νf (G)− 1

2 .

In other words, Lemma 1 shows that we can find a small subset of edges to remove
from G without decreasing the size of the maximum matching but reducing the
size of the minimum fractional vertex cover. The proof of Lemma 1 will use two
classic results on the structure of fractional and integral matchings.

Theorem 9. [4] Every basic feasible solution to (P) has components equal to 0, 1
or 1

2 , and the edges with half integral components induce vertex disjoint cycles.

Theorem 10. [3, 21] Let x̂ be a maximum fractional matching in a graph G
having half integral fractional components for a minimum number of odd cycles
C1, . . . , Cq. Let M̂ := {e ∈ E : x̂e = 1} and Mi be a maximum matching in Ci.

Then M = M̂ ∪M1 ∪ · · · ∪Mq is a maximum matching in G. Moreover, such x̂
and M can be found in time polynomial in the number of vertices.

We are now ready to prove Lemma 1.

Proof (Proof of Lemma 1). Consider x̂ and M as in Theorem 10 for the graph
G. By duality theory, there exists a fractional vertex cover y with 1T y = 1T x̂
satisfying complementary slackness conditions with x̂. Moreover, we can always
find such a vector y with half integral components (e.g., see [9]). We will give an
efficient algorithm to find a vertex u with the following properties:

(a) yu = 1
2 ,

(b) Lu := {uw : yw = 1
2} satisfies ν(G \ Lu) = ν(G) and |Lu| ≤ 4ω.

First, let us argue that (a) + (b) implies the result. Assume we can find such
a vertex u. The only non-trivial conclusion that needs to be verified is that
νf (G\Lu) ≤ νf (G)−1/2. Consider the vector y′ defined as y′v = yv for all v �= u
and y′u = 0 otherwise. Then y′ is a fractional vertex cover for G \ Lu (vertex u
cannot be adjacent to vertices with y-value zero because y is a fractional vertex
cover for G).

Now let us prove that a vertex u satisfying (a) + (b) can be found efficiently.
Consider an arbitrary cycle in x̂, e.g., C1. Since x̂e > 0 for every edge e = uv in
C1, it follows that the vertex cover constraint is tight (i.e., yu + yv = 1 holds)
for all edges in C1, and therefore yv = 1

2 for all vertices in C1.
Set H := C1, and mark all vertices in C1. Note that C1 is an odd cycle,

therefore if we remove any subset of edges incident to one marked vertex in
H , then we do not decrease the size of a maximum integral matching in the
resulting graph. Repeat the following process, which will maintain a collection
of four invariants for the graph H : (i) Every vertex in H has y-value 1

2 , (ii)
removing any subset of edges incident to one marked vertex of H does not
decrease the size of a maximum matching, (iii) from any marked vertex, there
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is an even-length M -alternating path to a vertex in C1, (iv) at least half of the
vertices of H are marked. All properties clearly hold initially when H consists
of C1 only.

1. If there is a marked vertex in H with |Lu| ≤ 4ω, then u satisfies properties
(a) and (b). STOP.

2. Otherwise, consider an arbitrary marked vertex u in H that is adjacent to a
vertex w /∈ H with yw = 1

2 . Such a w must be matched in M as otherwise, we
could obtain an M -augmenting path in G by concatenating wu, the even-
length M -alternating path from u to C1 guaranteed by property (iii) and
an appropriate even-length M -alternating path along C1 to the M -exposed
vertex on C1.

3. Let z be the vertex matched to w byM . By complementary slackness, yz = 1
2 .

Add w and z to H and mark z. Go to 1.

It is straightforward to verify that properties (i)–(iv) continue to hold through-
out the execution of the above process. Thus, it only remains to show that we
can always find a vertex w as specified in Step 2 above; i.e., if all marked vertices
u have |Lu| > 4ω, then there exists a marked vertex in H that is adjacent to a
vertex w /∈ H with yw = 1/2. Suppose not. Consider the subgraph G[H ] induced
by the vertices in H . This subgraph has the property that the degree of every
marked vertex u in G[H ] is at least |Lu| > 4ω. However, by (iv), the number
of marked vertices is more than half the total number of vertices in G[H ]. This
contradicts the ω-sparsity of V (H) in G. Finally, it is easy to see that the above
process runs in polynomial time. 
�

With this Lemma at hand, we are now ready to prove our main theorem. We
will use the following algorithm:

Algorithm 1.
INITIALIZE G′ = G.
FOR i = 1, . . . , 2(νf(G) − ν(G)):

1. Let L be the set of edges returned by the algorithm in Lemma 1 when its
input is the current graph G′.

2. Set G′ ← G′ \ L.
3. If G′ is stable, STOP.

Proof (Proof of Theorem 4)
Let G be an unstable graph. We use Algorithm 1. We will now prove that (a)

whenever the above algorithm stops, the current graph G′ is stable, and (b) the
total number of edges removed during the complete execution of the algorithm
is O(ω) · |F ∗|, where F ∗ is a minimum stabilizer. Clearly (a) + (b) implies the
result.

First, let us argue about stability. If the algorithm stops in step (iii) for some
iteration i < 2(νf (G)−ν(G)), this is clear. So we may assume that the algorithm
stops after performing all 2(νf(G) − ν(G)) iterations. The graph G′ output at
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this point has νf (G
′) ≤ νf (G) − 1

2 (2(νf (G) − ν(G))) = ν(G) = ν(G′). This
is because, by Lemma 1, in each iteration the size of a minimum fractional
vertex cover decreases by at least 1

2 while the size of the maximum matching is
maintained. Hence, by definition of stability, G′ is stable.

By Lemma 1, in each iteration we remove O(ω) edges and the total number of
iterations is at most 2(νf (G) − ν(G)). The bound on the approximation factor
follows from Theorem 8. The running time bound also follows since the number of
applications of the algorithm in Lemma 1 is at most 2(νf(G)−ν(G)) ≤ |F ∗| ≤ |E|
times. 
�

We end the section with an observation about our algorithm that will be useful
for our approximation results on regular graphs.

Proposition 2. The stabilizer output by Algorithm 1 has size at most 2(νf(G)−
ν(G)) ·Δ(G), where Δ(G) is the maximum degree of a vertex in G.

Proof. In each iteration of the algorithm, we remove a subset of edges incident to
some vertex. Therefore we remove at mostΔ(G) edges in each iteration. Further,
the number of iterations is at most 2(νf (G)− ν(G)). 
�

3.2 A 2-approximation Algorithm for Regular Graphs

In this section, we give a 2-approximation algorithm for solving the stabilizer
problem in regular graphs.

Proof. (Proof of Theorem 5) We use Algorithm 1. Consider a d-regular graph
G, i.e., a graph where every vertex has degree d. Let k := 2(νf (G) − ν(G)). By
Proposition 2, the size of F output by the algorithm is at most kd. We complete
the proof by showing that every stabilizer in G is of size at least kd/2.

Consider the Edmonds-Gallai decomposition ofG, namely B(G), C(G), D(G).
Let S denote the isolated vertices in G[B]. Consider a maximum matching M
in G that also matches the maximum possible number of vertices in S. By
Proposition 1, the number of non-trivial factor-critical components in G[B(G)]
with at least one vertex exposed by M is equal to k.

Let Su denote the vertices in S that are exposed by M . We first observe that
the size ν(G) of the maximum matching in G is (|V | − k− |Su|)/2. Consider the
following primal and dual linear programs.

min
∑
e∈E

ze (P)

yu + yv + zuv ≥ 1 ∀ uv ∈ E∑
u∈V

yu = ν(G)

y, z ≥ 0

max
∑
e∈E

αe − γν(G) (D)

α(δ(u)) ≤ γ ∀ u ∈ V

0 ≤ α ≤ 1
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By setting z to be the indicator vector of the minimum stabilizer, we can
obtain y such that (y, z) is a feasible solution to the primal program. This is
because, if z is the indicator vector of a stabilizer in G, then by definition there
exists a fractional vertex cover y in G \ Support(z) with size equal to ν(G \
Support(z)). We also know by Theorem 1 that for every minimum stabilizer F ,
ν(G \ F ) = ν(G).

Thus, the primal program is a relaxation of the stabilizer problem. Conse-
quently, the objective value of any feasible solution to the dual program is a
lower bound on the size of a minimum stabilizer. We will provide a dual feasible
solution with objective value at least kd/2.

Consider the dual solution (γ = d, αe = 1 ∀ e ∈ E). Since the graph is
d-regular we have that α(δ(u)) = d. Thus, all dual constraints are satisfied and
hence, it is a dual feasible solution. The objective value is∑

e∈E

αe − γν(G) =
d|V |
2
− d

(
|V | − k − |Su|

2

)
= d

(
k + |Su|

2

)
≥ kd

2
.


�

Concluding Remarks. We conclude the paper with a remark about the linear
program (P). If we add the integrality constraints on the z variables, we obtain
an integer program (IP) and it follows by our result that the integrality gap of
the resulting IP is at most 2 for d-regular graphs. Könemann et al. [12] proved
a Θ(n)-bound on the integrality gap of the IP for general graphs. However,
the resulting IP is not a formulation for our minimum stabilizer problem, since
the integral optimum solution of the IP could be Ω(n) away from the size of
a minimum stabilizer for arbitrary graphs (not necessarily regular). In order to
obtain a formulation for our stabilizer problem, we could introduce additional
variables x and impose the existence of a matching in G \ Support(z) of size
ν(G):

min
∑
e∈E

ze

yu + yv + zuv ≥ 1 ∀ uv ∈ E,∑
u∈V

yu = ν(G),

x(δ(v)) ≤ 1 ∀ v ∈ V,
∑
e∈E

xe = ν(G), x(E[S]) ≤ |S| − 1

2
∀ S ⊆ V, |S| odd,

xe + ze ≤ 1 ∀ e ∈ E,

x, y, z ≥ 0, x, z integral.

However, we can show a lower bound of Ω(n) on the integrality gap of the
above formulation. We refer the reader to the full version of the paper [7] for the
example that exhibits the integrality gap.
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Abstract. We present the first criterion space search algorithm, the
triangle splitting method, for finding the efficient frontier of a biobjective
mixed integer program. The algorithm is relatively easy to implement
and converges quickly to the complete set of nondominated points. A
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1 Introduction

Multiobjective optimization, one of the earliest fields of study in operations re-
search, has been experiencing a resurgence of interest in the last decade. This
is due, in part, to the ever increasing adoption of optimization-based decision
support tools in industry. Since most real-world problems involve multiple, of-
ten conflicting, goals, the want for multiobjective optimization decision support
tools is not surprising. The development of effective, and relatively easy to use,
evolutionary algorithms for multiobjective optimization is another contributing
factor. Finally, the availability of cheap computing power has played a role.
Solving multiobjective optimization problems is highly computationally inten-
sive (more so than solving single-objective optimization problems) and thus the
availability of cheap computing power has acted as an enabler.

Exact algorithms for multiobjective optimization can be divided into solution
space search algorithms, i.e., methods that search in the space of feasible so-
lutions, and criterion space search algorithms, i.e., methods that search in the
space of objective function values. It has long been argued (see for example [3])
that criterion space search algorithms have advantages over solution space search
algorithms and are likely to be more successful. Our motivation for focusing on
criterion space search algorithms is that we want to exploit the power of commer-
cial (single-objective) integer programming solvers. Several extremely powerful
commercial integer programming solvers exist, e.g., the IBM ILOG CPLEX Op-
timizer, the FICO Xpress Optimizer, and the Gurobi Optimizer, and criterion
space search algorithms can take full advantage of their features. Embedding
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a commercial integer programming solver in any algorithm has the additional
advantage that enhancements made to the commercial solver immediately result
in improved performance of the algorithm in which it is embedded.

In this study, we focus on biobjective mixed integer programs (BOMIPs).
Computing the efficient frontier of a BOMIP is challenging because of two rea-
sons. First, the existence of unsupported nondominated points, i.e., nondomi-
nated points that cannot be obtained by optimizing a convex combination of the
objective functions. Secondly, the existence of continuous parts in the efficient
frontier, i.e., parts where all points of a line segment are nondominated. Figure
1 shows an example of a nondominated frontier of a BOMIP. Observe that this
nondominated frontier contains isolated points as well as closed, half open, and
open line segments.

There are only a few studies that present algorithms for finding the efficient
frontier of a BOMIP (several of these algorithmswere later shown to be incomplete
or incorrect). All these algorithms are solution space search algorithms and are
based on the following observation (which is made more precise in Section 2). If
SI is the projection of the set of feasible solutions to a BOMIP on to the space
of the integer variables, then fixing the integer variables to the values of s for any
s ∈ SI changes the BOMIP to a biobjective linear program (BOLP). Furthermore,
if YN (s) for s ∈ SI denotes the nondominated frontier of the resulting BOLP,
then the nondominated frontier of the BOMIP is the set of nondominated points
in
⋃

s∈SI
YN (s). This observation suggests a natural algorithm for computing the

nondominated frontier: enumerate the solutions in SI , for each of these solutions
find the nondominated frontier of the associated BOLP, take the union of these
nondominated frontiers, and, finally, eliminate any dominated points from this set.

Unfortunately, this natural algorithm has a number of drawbacks in practice:

– The set
⋃

s∈SI
YN (s) can become prohibitively large, which implies that

storing and maintaining this set of points may require an excessive amount
of memory;

1

2  

Fig. 1. Example of a nondominated frontier of a BOMIP



164 N. Boland, H. Charkhgard, and M. Savelsbergh

– Eliminating dominated points from the set
⋃

s∈SI
YN (s) can become pro-

hibitively time-consuming; and
– The nondominated frontier is only available upon completion, i.e., during the

course of the algorithm the set of points maintained contains both dominated
and nondominated points.

Most of the research on algorithms for BOMIPs has focused on addressing
the first two drawbacks, either by developing specialized data structures and
methods for efficiently storing and maintaining the set

⋃
s∈SI

YN (s), or by cur-
tailing the enumeration of s ∈ SI , i.e., by recognizing or determining that for a
given s ∈ SI all the points in YN (s) will (eventually) be eliminated. The third
drawback, unfortunately, is an inherent feature of this algorithm and cannot be
avoided.

We have developed a completely different algorithm, the triangle splitting
algorithm, which does not suffer from any of these drawbacks. To the best of our
knowledge, it is the first criterion space search algorithm for finding the efficient
frontier of a BOMIP. The algorithm recursively explores smaller and smaller
rectangles and right triangles that may contain as yet unknown nondominated
points. The triangle splitting algorithm has the following advantages:

– It is a criterion space search method that relies on a small number of ideas
and techniques, which makes it both easy to understand and easy to imple-
ment.

– It has minimal requirements in terms of information storage.
– It maintains at any time during its execution a set of points which are guar-

anteed to be part of the nondominated frontier.
– It relies on solving single objective mixed integer programs (MIPs) and ben-

efits automatically from any advances in single objective MIP solvers.

A computational study demonstrates the efficacy of the triangle splitting al-
gorithm. Its performance is as good or better than the best known algorithm
for BOMIPs [2] and it can handle instance sizes that far exceed the size that
solution space algorithms can handle.

In the remainder of this extended abstract, we describe the basic version of
the algorithm. In Section 2, we give preliminaries, and in Section 3, we introduce
the triangle splitting method and present computational results.

2 Preliminaries

A multiobjective mixed integer programming problem (MOMIP) can be stated
as follows

min
x∈X

z(x) := {z1(x), ..., zp(x)},

where X ⊆ Zn × Rm is defined by a set of linear constraints and represents
the feasible set in the decision space and the image Y of X under vector-valued
function z = {z1, ..., zp} represents the feasible set in the criterion space, i.e.,
Y := z(X ) := {y ∈ Rp : y = z(x) for some x ∈ X}. We will sometimes use
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x = (xI , xC), for x ∈ X , to distinguish the integer and continuous variables in
a feasible solution. For convenience, we also use the notation R

p
≥ := {y ∈ Rp :

y ≥ 0} for the nonnegative orthant of Rp, and R
p
> := {y ∈ Rp : y > 0} for the

positive orthant of Rp.

Definition 1. A feasible solution x′ ∈ X is called efficient or Pareto optimal,
if there is no other x ∈ X such that zk(x) ≤ zk(x

′) for k = 1, ..., p and z(x) �=
z(x′). If x′ is efficient, then z(x′) is called a nondominated point. The set of
all efficient solutions x′ ∈ X is denoted by XE. The set of all nondominated
points y′ = z(x′) ∈ Y for some x′ ∈ XE is denoted by YN and referred to as the
nondominated frontier or the efficient frontier.

Definition 2. Let x′ ∈ XE. If there is a λ ∈ Rn+m
> such that x′ is an optimal

solution to minx∈X λT z(x), then x′ is called a supported efficient solution and
y = z(x′) is called a supported nondominated point.

Definition 3. Let Ye be the set of extreme points of Conv(Y). A point y ∈ Y
is called an extreme supported nondominated point if y ∈ Ye ∩ YN .

Theorem 1. For a multiobjective linear program (MOLP), we have that Y is
closed and convex if X is closed.

Corollary 1. For a MOLP, the nondominated points in YN are supported and
connected, i.e., between any pair of nondominated points there exists a sequence
of nondominated points with the property that all points on the line segment
between consecutive points in the sequence are also nondominated.

Let XI = projI(X ), where projI(X ) := {x ∈ Zn : there exists a xC ∈ Rm such
that (x, xC) ∈ X}, and for x̄ ∈ XI let YN (x̄) denote the nondominated frontier
of the MOLP defined by

min
(xI ,xC)∈X :xI=x̄

z(x) := {z1(x), ..., zp(x)}.

Finally, let the function ND : Rp → Rp be one that takes a set of points P in
the criterion space and removes any point p ∈ P that is dominated by any other
point p′ ∈ P . We have the following theorem (see for example Gardenghi et al.
[4]).

Theorem 2. The nondominated frontier YN = ND(
⋃

x̄∈XI
YN (x̄)).

Theorem 2 forms the basis of most solution space search algorithms for MOMIPs.
These algorithms essentially enumerate XI , compute YN (x̄) for all x̄ ∈ XI , form
the union of the resulting nondominated frontiers, and eliminate any dominated
points, i.e., set YN = ND(

⋃
x̄∈XI

YN (x̄)).

The first “branch-and-bound” algorithm for solving multiobjective mixed 0-1
integer programs was proposed by Mavrotas and Diakoulaki [6]. The enumeration
algorithm ensures that at the leaf nodes of the search tree, the values of the 0-
1 variables are fixed at either zero or one. The algorithm maintains a list of
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potential nondominated points, which is updated at each leaf node of the search
tree, i.e., potential nondominated points are added to the list and dominated
points are removed from the list. In a follow-up paper, Mavrotas and Diakoulaki
[7] show that their initial scheme for updating the list was incomplete in the
sense that some dominated points might erroneously remain in the list. They
propose an a posteriori filtering method to remedy the situation. Vincent et al.
[8] show another deficiency of the branch-and-bound algorithm of Mavrotas and
Diakoulaki, namely that it may not identify all nondominated points, i.e., some
nondominated points are missed. They show that this issue can be corrected for
biobjective mixed 0-1 integer programs. More recently, Belotti et al. [2] propose
a different branch-and-bound algorithm to compute the nondominated frontier
of a biobjective mixed integer program. It more closely resembles the traditional
branch-and-bound for single objective mixed integer programs, in the sense that
bounding strategies are employed to fathom nodes during the search.

Next, we introduce concepts and notation that will facilitate the presentation
and discussion of the triangle splitting method. For the remainder of the paper,
we restrict ourselves to BOMIPs. Let z1 = (z11 , z

1
2) and z2 = (z21 , z

2
2) be two

points in the criterion space with z11 � z21 and z22 � z12 . We denote with R(z1, z2)
the rectangle in the criterion space defined by the points z1 and z2. Furthermore,
we denote with T (z1, z2) the right triangle in the criterion space defined by the
points z1, (z21 , z

1
2), and z2. Finally, we denote with H(z1, z2) the line segment

in the criterion space defined by the points z1 and z2, i.e., the hypotenuse of
triangle T (z1, z2).

A point z̄ in criterion space corresponding to a solution with smallest value
for z2(x) among all solutions with smallest value for z1(x) among all feasible
solutions with objective function values in T (z1, z2), if one exists, can be found
by solving two mixed integer programs in sequence, namely

z̄1 = min
x∈X

z1(x)

subject to z(x) ∈ T (z1, z2),

followed by

z̄2 = min
x∈X

z2(x)

subject to z(x) ∈ T (z1, z2) and z1(x) ≤ z̄1.

As this is an operation that will be performed frequently in our criterion space
search algorithm, we introduce the following notation to represent the process:

z̄ = lexmin
x∈X

{z1(x), z2(x) : z(x) ∈ T (z1, z2)}.

Finding a point z̄ in criterion space corresponding to a solution with smallest
value for z1(x) among all solutions with smallest value for z2(x) among all feasible
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solutions with objective function values in T (z1, z2), if one exists, can be done
similarly, and we introduce the following notation to represent that process:

z̄ = lexmin
x∈X

{z2(x), z1(x) : z(x) ∈ T (z1, z2)}.

It is often convenient to assume that the points of the efficient frontier are
listed in order of nondecreasing value of the first objective function. In that case,
the first and last point of the efficient frontier can be found by solving

zT := lexmin
x∈X

{z1(x), z2(x) : z(x) ∈ R((−∞,∞), (−∞,∞))}.

and

zB := lexmin
x∈X

{z2(x), z1(x) : z(x) ∈ R((−∞,∞), (−∞,∞))},

respectively (where the feasible region is defined by a rectangle instead of a
triangle).

The next propositions and their corollaries provide the basis for the development
of the triangle splitting method.

Proposition 1. Let z1 and z2 be two points in the criterion space with z22 < z12
and let v be such that z22 < v < z12. If {(z−R2

>)∩YN : z ∈ H(z1, z2)} = ∅, then
lexminx∈X{z1(x), z2(x) : z2(x) ≤ v, z(x) ∈ T (z1, z2)} returns a nondominated
point if it has a solution.

Corollary 2. Let z1 and z2 be two points in the criterion space with z22 < z12
and let v be such that z22 < v < z12. If {(z − R2

>) ∩ YN : z ∈ H(z1, z2)} = ∅ and
z2 ∈ YN , then z̄1 = lexminx∈X {z1(x), z2(x) : z2(x) ≤ v, z(x) ∈ T (z1, z2)} ∈
YN . Furthermore, if z̄1 = z2, then z2 is the only nondominated point in T (z1, z2)
with z2(x) ≤ v.

Proposition 2. Let z1 and z2 be two points in the criterion space with z11 < z21
and let v be such that z11 < v < z21. If {(z−R2

>)∩YN : z ∈ H(z1, z2)} = ∅, then
lexminx∈X{z2(x), z1(x) : z1(x) ≤ v, z(x) ∈ T (z1, z2)} returns a nondominated
point if it has a solution.

Corollary 3. Let z1 and z2 be two points in the criterion space with z11 < z21
and let v be such that z11 < v < z21. If {(z − R2

>) ∩ YN : z ∈ H(z1, z2)} = ∅ and
z1 ∈ YN , then z̄2 = lexminx∈X {z2(x), z1(x) : z1(x) ≤ v, z(x) ∈ T (z1, z2)} ∈
YN . Furthermore, if z̄2 = z1, then z1 is the only nondominated point in T (z1, z2)
with z1(x) ≤ v.

Theorem 3. Let z1 and z2 be two nondominated points in the criterion space.
If {(z − R2

>) ∩ YN : z ∈ H(z1, z2)} = ∅ and there exists an x ∈ XI and x1
C

and x2
C ∈ Rm such that (x, x1

C), (x, x
2
C) ∈ X , z1((x, x1

C)) ≤ z11, z2((x, x
1
C )) ≤ z12,

z1((x, x
2
C)) ≤ z21 , and z2((x, x

2
C)) ≤ z22 , then H(z1, z2) ⊂ YN .
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Theorem 3 implies that for a triangle T (z1, z2) such that {(z − R2
>) ∩ YN :

z ∈ H(z1, z2)} = ∅, the following line detection mixed integer program (MIP)
establishes whether H(z1, z2) ⊂ YN :

max z1((xI , x
2
C))

subject to

z1((xI , x
1
C)) ≤ z11

z2((xI , x
1
C)) ≤ z12

λ1z1((xI , x
2
C)) + λ2z2((xI , x

2
C)) = λ1z

1
1 + λ2z

1
2

(xI , x
1
C) ∈ X , (xI , x

2
C) ∈ X

where λ1 = z12 − z22 and λ2 = z21 − z11 . The constraint λ1z1((xI , x
2
C)) +

λ2z2((xI , x
2
C)) = λ1z

1
1 + λ2z

1
2 expresses that the ratio of the horizontal distance

and the vertical distance is the same as
z2
1−z1

1

z1
2−z2

2
, which implies that the point is

on the imaginary line connecting z1 and z2. Note that if the optimal value is
greater than or equal to z21 , then z1 and z2 satisfy the conditions of Theorem 3.

Determining whether the points on the hypotenuse of a triangle are all non-
dominated, i.e., whether the hypotenuse of the triangle is part of the nondomi-
nated frontier, is a core component of the triangle splitting algorithm. Another
core component of the triangle splitting method is the weighted sum method
[1]. The weighted sum method is used to find all locally extreme supported non-
dominated points in a rectangle defined by two nondominated points z1 and z2.
The weighted sum method uses the following optimization problem to search for
extreme supported nondominated points in rectangle R(z1, z2):

z∗ = min
x∈X

λ1z1(x) + λ2z2(x)

subject to z(x) ∈ R(z1, z2)

with λ1 = z12 − z22 and λ2 = z21 − z11 , i.e., the objective function is parallel to the
line that connects z1 and z2 in the criterion space. Figure 2 shows an example
with z1 = zT and z2 = zB. It is easy to see that the optimum point z∗ is an as
yet unknown locally supported nondominated point if λ1z

∗
1+λ2z

∗
2 < λ1z

1
1+λ2z

1
2 .

That is, the optimization either returns a new locally supported nondominated
point z∗ or a convex combination of z1 and z2. When an as yet unknown lo-
cally supported nondominated point z∗ is returned, the method is applied re-
cursively to search R(z1, z∗) and R(z∗, z2) for additional as yet unknown locally
supported nondominated points. Note that the set of locally supported nondom-
inated points returned by the weighted sum method is guaranteed to include all
locally extreme supported nondominated points (but it may also include locally
supported nondominated points that are not extreme).
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Not obtained nondominated points Obtained nondominated points

Next nondominated point Objective function

 

 

Fig. 2. Searching for a nondominated point using the weighted sum optimization
problem

3 The Triangle Splitting Method

The triangle splitting method maintains a priority queue with rectangles and
triangles, each of which still has to be explored, i.e., may still contain as yet
unknown nondominated points. Each element of the priority queue is character-
ized by two nondominated points z1 and z2, a shape, rectangle or triangle,
and a splitting direction, horizontal or vertical . The algorithm also main-
tains an ordered list of nondominated points, which is updated after finding a
new nondominated point or after detecting that all points on the hypotenuse
of a triangle are nondominated. The nondominated points are maintained in
order of nondecreasing value of their first objective value. In addition to the
nondominated point itself, there is an indicator that specifies whether the non-
dominated point is connected to the next nondominated point in the list (in-
dicator value 1) or not (indicator value 0), i.e., whether all points on the line
segment defined by the two nondominated points are also nondominated. The
list is initialized with (zT , 0) and (zB, 0). The priority queue is initialized with
(zT , zB, rectangle ,horizontal).

Next, we discuss how rectangles and triangles are explored. A rectangle is ex-
plored by applying the weighted sum method to find locally extreme supported
nondominated points and divide the rectangle into one or more triangles. The lo-
cally supported nondominated points are added to the list of nondominated points
and the triangles are added to the priority queue (with the same splitting direc-
tion). See Figure 3 for an example of the exploration of a rectangle. Exploring a tri-
angle T (z1, z2) starts by determining whether all the points on the hypotenuse of
the triangle are nondominated. (Note that by construction, there are no nondom-
inated points “below” the hypotenuse, i.e., {(z−R2

>)∩YN : z ∈ H(z1, z2)} = ∅.)
If so, the list of nondominated points is updated accordingly, i.e., element (z1, 0)
is changed to (z1, 1). (Note that z1 and z2 appear consecutively in the list of non-
dominated points). Otherwise, the triangle will be split into two rectangles, either

by splitting the triangle horizontally at
z1
2+z2

2

2 or by splitting the triangle vertically

at
z1
1+z2

1

2 , which will then be added to the priority queue unless they cannot contain
as yet unknown nondominated points.
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1  

2  

 

 

Fig. 3. The triangles determined by the exploration of initial rectangle R(zT , zB) for
the BOMIP that gives rise to the nondominated frontier of Figure 1

More specifically, when splitting triangle T (z1, z2) horizontally at height
z1
2+z2

2

2 ,
we start by computing

z̄1 = lexmin
x∈X

{z1(x), z2(x) : z2(x) ≤
z12 + z22

2
, z(x) ∈ T (z1, z2)}.

If z̄12 =
z1
2+z2

2

2 , i.e., if the resulting point is on the cut, then we set z̄2 = z̄1. If
not, then we compute

z̄2 = lexmin
x∈X

{z2(x), z1(x) : z1(x) ≤ z̄11 , z(x) ∈ T (z1, z2)}.

By construction of z̄1 and z̄2, all as yet unknown nondominated points in triangle
T (z1, z2) must be in rectangles R(z1, z̄2) and R(z̄1, z2). Note that when z̄2 = z1,
rectangle R(z1, z̄2) consists of a single nondominated point and does not need
to be explored further (and, similarly, when z̄1 = z2 rectangle R(z̄1, z2) consists
of a single nondominated point and does not need to be explored further). The

two situations that can occur during horizontal splitting at height
z1
2+z2

2

2 are
illustrated in Figures 4 and 5. Note that if z̄1 is on the cut, then it is easy
to see that z̄2 = z̄1 and we do not need to compute z̄2. (In this case, z̄1 = z̄2

is almost surely on a line segment of the nondominated frontier.) Splitting a

triangle vertically at height
z1
1+z2

1

2 proceeds analogously.

1

2

Parts of nondominated frontier Cut line 1

2

Parts of nondominated frontier Cut line

Fig. 4. Horizontal splitting of triangle T (z1, z2) when z̄1 is on the cut
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1

2

Parts of nondominated frontier Cut line 1

2

Parts of nondominated frontier Cut line

1

2

Parts of nondominated frontier Cut line

Fig. 5. Horizontal splitting of triangle T (z1, z2) when z̄1 is not on the cut

The splitting direction plays an important role in the triangle splitting method.
Recall that a nondominated frontier may contain horizontal and vertical discon-
tinuities or gaps. If the same splitting direction is used throughout the algorithm,
finding these gaps can be unnecessarily time-consuming or even impossible.

Figure 6 shows the progression of the triangle splitting method for a nondom-
inated frontier with a horizontal gap when only horizontal cutting is employed
to split triangles. In this situation, the triangle splitting methods continuous to
split the continuous segment of the nondominated frontier until the area of the
remaining rectangles is less than a pre-specified tolerance. To avoid these situ-
ations, an alternating splitting direction strategy is employed, i.e., the splitting

1

Obtained nondominated points Potential regions Cut line

2 3

4 5

Fig. 6. A horizontal gap may not be detected when splitting horizontally only
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1

Obtained nondominated points Potential regions Cut line

2 3

4 5

Fig. 7. A horizontal gap is easily detected using alternating splitting directions

direction for newly generated rectangles is set to the opposite of the direction
that was used to create these rectangles. Figure 7 shows the progression of the
triangle splitting method for the same nondominated frontier when an alternat-
ing splitting direction strategy is employed. We see that the horizontal gap is
detected easily.

Thus, rectangles are added to the priority queue with the opposite splitting
direction.

To investigate the efficacy of the triangle splitting method, we used the class
of biobjective 0-1 mixed integer programs introduced by Mavrotas et al. [6].
This class has been used in all previous computational studies of algorithms for
BOMIPs. We generated five sets of instances for our computational study, each
consisting of five instances and identified by the number of constraints m in the
instance, i.e., S20, S40, S80, S160, and S320. The number of variables is equal
to the number of constraints, and half of the variables are binary and half of
the variables are continuous. The sets S160 and S320 contain instances that are
much larger than any instances solved in previous studies. For example, Vincent
et al. [8] solve instances of up to size 70 and Belotti et al. [2] solve instances up
to size 80. The average solution time for the instances in each set is shown in
Table 1. We observe that the triangle splitting algorithm is able to solve large
instances in a relatively short amount of time. Even the largest instances (in Set
S320) are solved in little over an hour.

Table 1. Runtime of the triangle splitting method

Set S20 S40 S80 S160 S320

Time (secs.) 0.60 2.76 29.08 274.54 3852.63
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Abstract. For a mixed integer linear program where all integer vari-
ables are bounded, we study a reformulation introduced by Roy that
maps general integer variables to a collection of binary variables. We
study theoretical properties and empirical strength of rank-2 simple split
cuts of the reformulation. We show that for a pure integer problem with
two integer variables, these cuts are sufficient to obtain the integer hull
of the problem, but that this does not generalize to problems in higher
dimensions. We also give an algorithm to compute an approximation of
the rank-2 simple split cut closure. We report empirical results on 22
benchmark instances showing that the bounds obtained compare favor-
ably with those obtained with other approximate methods to compute
the split closure or lattice-free cut closure. It gives a better bound than
the split closure on 6 instances while it is weaker on 9 instances, for an
average gap closed 3.8% smaller than the one for the split closure.

Keywords: Split cuts, closure, binarization.

1 Introduction

Cut generation is an essential part of any Branch-and-Cut software solving
mixed-integer linear programs (MILPs). Many cut families and related cut gen-
eration algorithms have been developed such as Gomory Mixed-Integer (GMI)
cuts [16], split cuts [9], lift-and-project cuts [3], and intersection cuts from lattice-
free sets (ILF) [2,10]. Theoretical comparisons show that GMI cuts are a proper
subset of split cuts which, in turn are a subset of ILF cuts. Generating GMI
cuts is very fast, while generating split cuts or ILF cuts fast enough to pro-
vide a significant improvement over GMI cuts when solving an instance is quite
challenging.

It is known [5] that the split closure (i.e., adding all split cuts to the linear
relaxation of the problem) of usual benchmark instances often gives a tight re-
laxation of the feasible set. Using a cutting plane approach, most of this strength
can be obtained in a reasonable time [6,14]. Iterating these procedures, one can
get higher rank cuts and stronger relaxations. However, split cuts are not enough
to generate the integer hull for all MILPs [9]. In this paper, we investigate an
indirect way to generate stronger cuts introduced by Roy [20], lifting the linear
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relaxation of the problem to a higher space and generating simple rank-2 split
cuts, where simple means that the disjunctions used are of the form xj ≤ b − 1
or xj ≥ b. Using simple disjunctions makes the generation of the cuts easier,
but could potentially lead to cuts much weaker than rank-2 split cuts. We show,
however, that the lifting used before generating the cuts gives cuts stronger than
simple rank-2 split cuts in the original space. In particular, for pure integer in-
stances with two variables, we show that the proposed cuts give the convex hull
of the feasible set, a feat not matched by rank-2 simple split cuts in the original
space. Empirical results show that the bounds obtained on 22 MIPLIB3 [7] and
MIPLIB2003 [1] compare favorably with those obtained with other approximate
methods to compute the split closure or ILF closure.

2 Binarization, t-Splits, and t-Simple Splits

We consider mixed integer linear programs of the form:

max c�x

s.t.

Ax ≤ b,

0 ≤ xj ≤ uj, for j = 1, 2, . . . , p

x ∈ Z
p
+ × Rn−p,

(MILP)

where A is an m × n rational matrix of full row rank, c ∈ Qn and b ∈ Qm and
uj ∈ Z+ is finite for all j = 1, 2, . . . , p. We denote by P the linear relaxation
of (MILP) obtained by replacing the constraints xj ∈ Z+ by xj ∈ R+ for j =
1, 2, . . . , p and by PI the convex hull of the feasible set of (MILP).

The definition of (MILP) is quite general, the only actual restriction being
that the projection of P onto the space of the integer variables is bounded.

A cut for (MILP) is an inequality valid for PI but not for P . In this paper,
we propose a cut generation procedure based on binarization of general integer
variables and disjunctive cuts using simple disjunctions.

The full binary reformulation of (MILP), introduced by Roy [20], is ob-
tained by adding to (MILP), for each j = 1, . . . , p, a set of uj binary variables
z1j , . . . , zuj ,j and the following ordering constraints.

xj =

uj∑
i=1

zij (1)

zij ≥ zi+1,j i = 1, . . . , uj − 1 (2)

zij ∈ {0, 1} i = 1, . . . , uj . (3)

We denote by B(P )I the full binary reformulation of (MILP) and by B(P ) the
continuous relaxation of the latter. The distinctive feature of this reformulation
is the presence of the ordering constraints (2). Alternative binary reformulations
are discussed in [19,20]. The results in [19] indicate that trying to solve directly
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the reformulated problem using these alternative reformulations is likely to re-
sult in higher computational time. This is why Roy proposes the full binary
reformulation to generate cuts that can easily be expressed in the space of the
variables x [20]. The results of Roy indicate that combining the full binary re-
formulation and lift-and-project cuts can lead to significantly better cuts than
those obtained using the binary reformulations of [19]. In this paper, we inves-
tigate the theoretical and empirical strengths of this reformulation when using
simple split disjunctions of rank 1 or 2 to generate cuts.

2

4

2 4

x2

x1

(a) Split −x1 + 2x2 ≤ 2 or
−x1 + 2x2 ≥ 3

2

4

2 4

x2

x1

(b) Simple split x1 ≤ 2 or
x1 ≥ 3

2

4

2 4

x2

x1

(c) 2-simple split formed by
the simple split x1 ≤ 2 or
x1 ≥ 3 and the simple split
x2 ≤ 1 or x2 ≥ 2

Fig. 1. Points not satisfying the split or 2-simple split are shaded

An illustration of the following definitions is provided in Figure 1. A split for
(MILP) is a disjunction of the form aTx ≤ b−1 or aTx ≥ b for a nonzero a ∈ Zn

with aj = 0 for j = p + 1, . . . , n and b ∈ Z. A simple split for (MILP) is a
disjunction of the form xj ≤ b− 1 or xj ≥ b for some b ∈ Z and some 1 ≤ j ≤ p.
Notice that if xj is a binary variable, a simple split on xj is the disjunction
xj ∈ {0, 1}. For any integer t ≥ 1, a t-split (resp. t-simple split) for (MILP) is
the intersection of t splits (resp. t simple splits) for (MILP). (The term t-branch
split has been used previously [17] in place of t-split, but since we are using this
term often in the sequel, we prefer the short hand.) Note that a 1-split is just a
split.

For a t-split (resp. t-simple split) S for (MILP), let PS be the set of points
in P satisfying all splits in S. Observe that as PI ⊆ PS , all valid inequalities
for conv(PS) are valid for PI . As B(P ) is of the form (MILP), the definitions of
split, simple splits, and related inequalities given above apply.

The t-simple split closure ofP (resp. B(P )), denoted by Sit(P ) (resp. Sit(B(P ))),
is the polyhedron obtained as the intersection of conv(PS) (resp. conv(B(P )S)) for
all possible t-simple splitsS for (MILP) (resp. B(P )I). The projection of Sit(B(P ))
onto the space of the x variables is denoted by pSit(B(P )). As we assume that all
integer variables are bounded in (MILP), the number of possible t-simple splits is
finite and thus all three sets are obviously polyhedra. A valid inequality for St(P )
(resp. Sit(P )) is a t-split (resp. t-simple split) cut for (MILP). A valid inequality
for pSit(B(P )) is a projected t-simple split cut for (MILP).
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Notice that the definition of split cut depends on P as well as on which
variables are constrained to be integer in the corresponding (MILP). For ease of
notation, we will talk of split inequalities for P leaving out the dependence on
integer variables. This should not create any confusion, as the integer variables
are defined in (MILP) or its binarization and never change.

In Section 3, we will show that pSit(B(P )) ⊆ Sit(P ) and that this inclusion is
sometimes strict, meaning that binarization allows us to generate stronger cuts
than t-simple split inequalities for P .

We can use the closure operators iteratively, defining various rank-k closure of
a polyhedron for any positive integer k. For example, the rank-k t-split closure
of P , denoted by Skt (P ), is defined recursively by Skt (P ) = St(S

k−1
t (P )) with

S1t (P ) = St(P ). The rank-k t-simple split closure of P (or B(P )), denoted by
Sikt (P ) (or Sikt (B(P ))) is defined similarly.

Note that in the remainder of the paper, for the various notations defined
above, we omit the superscript k or the subscript t when its value is 1.

In this paper, we focus on B(P ), its rank-2 simple split closure Si2(B(P )), and
its 2-simple split closure Si2(B(P )). We first show in Section 3 that the rank-
2 simple split closure of B(P ) is never weaker than its 2-simple split closure.
In the computational experiments of Section 4, we thus use Si2(B(P )), but we
show in Section 3 that the projection of Si2(B(P )) on the x-variables is PI for an
(MILP) when n = p = 2, i.e., with only two integer variables. This result cannot
be generalized for problems in three dimensions (either pure or mixed-integer). In
Section 4, we compare the lower bounds obtained using rank-2 projected simple
split inequalities on problems from MIPLIB3 and MIPLIB2003 with published
bounds obtained using split or lattice-free set inequalities.

3 Relations between Closures and Pure Case in R2

We start by the trivial observation that the t-(simple) split closure contains the
(t+ 1)-(simple) split closure.

Lemma 1. For t ≥ 1, we have St+1(P ) ⊆ St(P ) and Sit+1(P ) ⊆ Sit(P ).

It is possible to show that, when n = p = 2, then S2(P ) = S2(P ) = PI , but
there are instances for which S(P ) �= PI . An example of the latter is when P
is the square with corners (0.8, 2.5), (2.5, 0.8), (4.2, 2.5), and (2.5, 4.2). It is of
course easy to construct examples where Sit(P ) �= PI and Sit(P ) �= PI for any
fixed integer t ≥ 1, such as when P is the triangle with vertices (0, 0), (1, 0), and
(t+ 0.5, t+ 0.3).

The next lemma shows that the projection of the t-simple split closure of
B(P ) on the x-variables is not weaker than the t-simple split closure of P .

Lemma 2. For t ≥ 1, we have pSit(B(P )) ⊆ Sit(P ).

The main result of Section 3 is that pSi2(B(P )) = PI for any (MILP) with
n = p = 2, showing that the inclusion given in Lemma 2 is sometimes strict.
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Lemma 3. Let S be a t-simple disjunction for B(P ). Then there exists a t-
simple disjunction S′ using only simple disjunctions on some zij variables such
that B(P )S′ ⊆ B(P )S.

Lemma 3 shows that any t-simple split cut for B(P ) can be obtained using t-
simple splits on the z variables only. As a result, when we use simple splits for
B(P ) in the remainder of the paper, we only discuss simple splits on the binary
variables zij and ignore those on the xj variables.

Let us now turn to the comparison between rank-t simple split closure and t-
simple split closure for B(P ). Dash et al. [12] have shown that, in general, 2-split
closure and rank-2 split closure are incomparable. However, for simple t-splits
involving only binary variables, we have the following.

Lemma 4. Any t-simple split inequality obtained using only simple splits on
binary variables can be generated as a rank-t simple split inequalities.

Putting lemmas 3 and 4 together, we get the following.

Corollary 1. For B(P ), any t-simple split inequality is a rank-t simple split
inequality, i.e., Sit(B(P )) ⊆ Sit(B(P )).

There are cases where the inclusion given in Corollary 1 is strict. In the remainder
of this section, we consider the case where P is a polytope in R2 and both
variables are integer. The main result of this paper is the following.

Theorem 1. Let P = {x ∈ R2 | Ax ≤ b, 0 ≤ xj ≤ uj for j = 1, 2} be the linear
relaxation of a problem of the form (MILP) with n = p = 2. Then the projection
of the 2-simple split closure of B(P ) is PI , i.e. pSi2(B(P )) = PI .

As mentioned above, rank-2 split inequalities or 2-split inequalities are necessary
to obtain PI when n = p = 2. Theorem 1 shows that, for (MILP) with n = p = 2,
projected 2-simple split inequalities for P are as strong as rank-2 split inequalities
as well as 2-simple split inequalities for P and they are stronger than rank-k
simple split inequalities for P , for any k ≥ 1; this is interesting, as 2-simple
split disjunctions for B(P ) are in finite number and much easier to generate
than general split inequalities for P . Note that Chen et al. [8] show that in the
general case n ≥ p ≥ 1, there exists a finite value for t such that Sit(P ) = PI ,
but this bound depends on P itself (a trivial upper bound on t is

∏p
j=1 uj , but

their analysis is a little bit stronger than that).
Unfortunately, generalizations of Theorem 1 to R3 cannot be obtained. It is

possible to construct examples where pSip(B(P )) �= PI when P ⊆ R3 and p = 2
or p = 3.

4 Computational Experiments

In this section, we propose a new recursive procedure to optimize over Si2(B(P ))
as well as a practical construction of partial binary reformulations for prob-
lems with integer variables that can take large values. Finally, we present a
series of experiments using these two procedures on problems from MIPLIB3 and
MIPLIB2003 having general integer variables.
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4.1 Closure Optimization Algorithms

The procedures we use to optimize over simple split closures are based on the
algorithm for optimizing over Si(P ) given in [6]. The algorithms described in
this section can be used to compute rank-1 or rank-2 simple split closures of
any MILP, but to keep notation and exposition as simple as possible, we focus
on our specific formulation and task, namely computing the rank-2 simple split
closure of B(P ), using disjunctions on binary variables zij only.

To simplify the presentation, let Q be the MILP obtained by a binary refor-
mulation of (MILP). The reformulation might be either the full reformulation
described in Section 2 or the partial one we describe in Section 4.2. We assume
that all variables in Q are renamed, such that the binary variables zij of the
reformulation are now variables xj for j = 1, 2, . . . , q. For any index j = 1, . . . , q,
we denote by Qj the polyhedron Qj = conv{x ∈ Q | xj ∈ {0, 1}} . Following

the notation introduced in Section 2, for k ≥ 1 we denote by Sik(Q) the rank-k
simple split closure of Q. Lemma 3 shows that Sik(Q) can be obtained using
only simple splits on variables xj for j = 1, 2, . . . , q.

Rank-1 simple-split closure optimization. To optimize over Si(Q), we use a simple
cutting plane algorithm. At each iteration, let x be the optimal solution over
the current approximation of Si(Q). The feasibility of x for Si(Q) is verified by
solving, for each j = 1, . . . , q with 0 < xj < 1, the LP described in [6]:

max yj

s.t.

Ax+ b(xj − 1) ≤ Ay ≤ bxj

0 ≤ y ≤ x,

y ∈ Rn.

(MLPj)

If the optimal solution y to (MLPj) has yj = xj , then x ∈ Qj; otherwise, a cut
separating x from Qj can be generated using the dual solution of (MLPj) as
shown in Lemma 1 in [6].

Rank-2 simple-split closure optimization. The procedure for optimizing over
Si2(Q) consists in a recursive application of the algorithm for optimizing over
Si(Q) described above. Suppose that we have a complete linear description of
Si(Q) as {x ∈ Rn

+ : Ax ≤ b, Dx ≤ d}. Then, optimizing over Si2(Q) can be
achieved by taking into consideration the cuts Dx ≤ d in the separation prob-
lem (MLPj) and using the algorithm of the previous paragraph. Of course, the
main roadblock for this approach is obtaining the complete description of Si(Q).
This can, however, be sidestepped by using a cut generation procedure within
the solution of the separation problem (MLPj). The aim of this secondary cut
generation step is to find the rank-1 inequalities that are useful to generate a
rank-2 cut cutting x, if one exists.

First, we optimize over Si(Q). Let x be the optimal point in Si(Q). Then, for
all j = 1, . . . , q such that xj �∈ {0, 1}, there exist xj,1 and xj,0 ∈ Q such that
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x = xj x
j,1+(1−xj) x

j,0, with xj,1
j = 1 and xj,0

j = 0. Note that these points can

be obtained from the solution y of (MLPj), namely xj,1 = y
xj

and xj,0 = x−y
1−xj

.

To try to cut x, we use a generalization of (MLPj):

max yj

s.t.

Ax+ b(xj − 1) ≤ Ay ≤ bxj

D1x+ d1(xj − 1) ≤ D1y ≤ d1 xj

0 ≤ y ≤ x,

y ∈ Rn ,

(MLP 2
j (D

1, d1))

where the D1x ≤ d1 are rank-1 cuts that may possibly be combined to cut x.
The pseudo-code of the algorithm is given below.

Algorithm 1. Separation of x from Si2(Q)

0. Initialization.

Let x be a point in Si(Q), and D̃1x ≤ d̃1 be a partial linear description of
Si(Q).
Let D1x ≤ d1 be an empty system.

1. For each j ∈ {1, 2, . . . , q} with xj fractional, repeat steps 2.-5.
2. Solution of rank-2 separator

Let y be an optimal solution of (MLP 2
j (D

1, d1))
3. Generate a cut?

If yj < 1, a cut can be generated from the dual solution of (MLP 2
j (D

1, d1)).
STOP.

Otherwise let x1 = y
xj

and x0 = x−y
1−xj

.

4. Find existing rank-1 cuts

If there is a cut in D̃1x ≤ d̃1 not satisfied by x1 or x0, add it to D1x ≤ d1.
Go to 1.

5 Find new rank-1 cuts
For all fractional components j′ of x1 (resp. x0), solve (MLPj′) to separate x1

(resp. x0) from Si(Q). If violated rank-1 cuts are found, add them to D1x ≤ d1.
Go to 1. Otherwise, x ∈ Si2(Q), STOP

The following lemma shows the correctness of the algorithm.

Lemma 5. If Algorithm 1 terminates without generating a cut then x ∈ Si2(Q).

In Section 4.3, we use the separation procedures presented here both to separate
rank-2 cuts for the original instances with general integers and their binary refor-
mulations. Extending the procedure to general integer variables can be obtained
using bound translations to get 0 ≤ xj ≤ 1 for j = 1, . . . , p.

Finally, note that monoidal strengthening [4] can be used on all cuts found by
the separation algorithms. Each strengthened cut dominates its non-strengthened
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counterpart. The resulting cuts are not simple split cuts anymore but split cuts.
Therefore, the algorithms no longer compute Si(Q) or Si2(Q), but an approxima-
tion of S(Q) or S2(Q).

4.2 Partial Binary Reformulation

The full binary reformulation presented in Section 2 is unattractive in practice
when some of the upper bounds uj are large. We thus devised a practical bina-
rization scheme, using at most K binary variables for each integer variable in
(MILP), where K ≥ 1 is a parameter of the method.

For each variable xj of (MILP) with j ∈ {1, 2, . . . , p}, either (i) K ≥ uj and
we use the full binary reformulation for variable xj using uj binary variables and
corresponding inequalities (1)-(3); or (ii) K < uj , and we use a partial binary
reformulation by adding to the problem K binary variables, z1j , . . . , zK,j, and
two general integer variables z−j , z

+
j . More precisely, we define

M1 = min {max{0, �xj� −K/2}, uj −K}
M2 = max {min{uj, �xj�+K/2}, K} .

and use the following constraints

xj = z−j + z+j +
K∑
i=1

zij

zij ≥ zi+1,j for i = 1, . . . ,K − 1

M1 ≥ z−j ≥M1 z1,j

(uj −M2)zKj ≥ z+j

zij ∈ {0, 1} for i = 1, . . . ,K

z−j , z
+
j ∈ Z+ .

4.3 Results

The closure optimization algorithms are implemented in C++. The implemen-
tation uses Cplex 12.4 in its default settings to solve all linear programs. The
closure optimization algorithms are generic in that they work indifferently on
(MILP) or on instances reformulated using a binary reformulation.

The tolerances of the algorithm are set as follows. Let the fractionally of xj

be fj := |xj − �xj + 0.5�|. We try to generate a cut using the simple split on
xj if fj < 10−2. Whenever a separation problem (MLPj) or (MLP 2

j (D
1, d1))

is solved, a cut is generated only if the optimal value of the problem is smaller
than xj−10−2. A generated inequality is considered as cutting x if the violation
of x scaled by the norm of the left hand side of the cut is larger than 10−5. A
maximum time of 10,800 CPU seconds for the whole execution is used.

We consider the 22 instances from MIPLIB3 and MIPLIB2003 having general
integer variables. All instances are preprocessed in order to find tight bounds for
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the integer variables by minimizing and maximizing the value of each general
integer variables over the continuous relaxation. After this tightening, all integer
variables have finite upper and lower bounds on the considered instances.

In order to assess the additional strength of binary formulations, we com-
pare the fraction of the gap closed by optimizing over Si(P ), Si(Q), Si2(P ) and
Si2(Q) . We also compare the strength of the bounds obtained when monoidal
strengthening is used on all cuts.

To generate the partial binary formulations Q, we use the procedure described
in Section 4.2 with parameter K = 10. Only one partial binary formulation is
constructed for each instance. Since our goal is to assess the additional gap that
can be closed by using a binary formulation, we choose as the reference point for
constructing the partial binary formulation an approximation x′ of the optimal
solution over Si(P ) on the original instance. The time taken to compute x′ is
included in the reported computation time and is at most half of the maximum
time allocated to solve an instance. Note that when optimizing over Si(Q) or
Si2(Q), we only generate cuts using simple splits on binary variables, ignoring
the integrality of the variables z+j and z−j .

Table 1 presents the percent gap closed by optimizing over Si(P ), Si(Q),
Si2(P ), and Si2(Q). For each instance and each closure, we report the percent
gap closed by optimizing over the closure with respect to the gap between the
optimal solution and LP relaxation values. We also report in the columns labeled
Si2/Si the percent gap closed by Si2 of the gap remaining for Si. Whenever the
optimal value over a closure could not be computed within the time limit, we
put a “>” sign in front of the corresponding number.

In the discussion of the results, by abuse of language, we simply refer to
the name of each closure to refer to the result obtained by optimizing over it.
There are 3 instances for which we can not compute Si(P ) within the time
limit. For these, we cannot report values for the improvement obtained by the
other closures. There are 5 additional instances for which we can not compute
Si2(P ) exactly and 8 more on which we can not compute Si2(Q). Even with
these incomplete results, we see that Si(Q) and Si2(Q) close more gap than their
counterparts Si(P ) and Si2(P ). Another interesting finding is that the gap closed
by Si2 with respect to Si is very significant: Si2(P ) closes on average 40.8% of
the gap remaining for Si(P ). Moreover, the effect of binarization does not seem
to fade with increasing rank. On average, Si2(Q) closes 2.8% more fraction gap
over Si(Q) than Si2(P ) over Si(P ).

Table 2 gives the gap closed when monoidal strengthening is applied on all

cuts. We denote by Si* and Si*
2
the methods where strengthening is applied.

Note that for this experiment, contrary to what is done for Table 1, we generate
cuts using simple splits on the variables z−j and z+j . For reference, we also include
in this table the gap closed by alternate approximations of the split closure from
the literature: The approximation of the split closure found in [14,15] (we report
the best value among the 6 methods proposed in the paper), the procedure
for separating 2 dimensional lattice free cuts proposed in [18] (we report only
the results for exact separation reported in Table 2 of [18]), the procedure for
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Table 1. Gap closed when optimizing over Si, Si2 for the original formulation and the
partial binary reformulation

P Q

name Si Si2 Si2/Si Si Si2 Si2/Si

arki001 20.0 27.9 9.9 24.5 > 37.2 > 16.8
bell3a 64.6 68.7 11.7 64.6 68.7 11.7
bell5 86.2 89.8 25.7 87.5 92.9 43.3
blend2 26.8 35.5 11.9 26.8 35.5 12.0
flugpl 12.5 14.9 2.7 14.5 23.9 11.1
gen 68.7 87.7 60.6 68.7 87.6 60.4
gesa2 58.0 76.1 43.2 59.6 > 78.8 > 47.5
gesa2 o 59.4 76.7 42.5 61.0 > 78.9 > 46.0
gesa3 78.9 99.2 96.0 88.1 > 99.5 > 95.4
gesa3 o 81.6 99.3 96.3 89.4 > 99.6 > 95.9
gt2 92.4 99.6 95.3 92.4 > 99.6 > 95.3
momentum2 > 48.8 > 48.8 > — > 48.8 > 48.8 > —
msc98-ip > 42.3 > 42.3 > — > 42.3 > 42.3 > —
mzzv11 > 77.0 > 77.0 > — > 76.0 > 76.0 > —
mzzv42z 84.2 > 93.3 > 57.4 85.0 > 91.1 > 40.7
noswot 0.0 0.0 0.0 0.0 0.0 0.0
qnet1 93.9 > 96.9 > 48.6 93.0 > 97.1 > 58.3
qnet1 o 87.0 > 98.2 > 86.2 86.5 > 98.1 > 86.2
roll3000 14.7 > 31.1 > 19.3 14.9 > 33.3 > 21.6
rout 27.2 > 45.1 > 24.7 27.2 > 45.1 > 24.6
timtab1 27.1 42.8 21.6 30.2 > 55.5 > 36.2
timtab2 20.8 38.0 21.7 22.6 > 41.6 > 24.5

Average 53.3 63.1 40.8 54.7 65.1 43.6

generating 2-split cuts (Table 1 in [13]), and finally in the column labeled “split”
the best known approximation of the split closure taken from [5,11,14,15].

The use of monoidal strengthening results in fewer instances where compu-
tations can not be completed within the time limit. The results are similar to
those of Table 1 but with larger gaps closed by all methods and larger differences
between gap closed using P or Q. The difference between Si*(P ) and Si*(Q) is

now 3.2% on average while the difference between Si*
2
(P ) and Si*

2
(Q) is 5.4%

on average. On average, Si*
2
(Q) closes 7% more fraction gap over Si*(Q) than

Si*
2
(P ) over Si*(P ).

Comparing with results from the literature, we first observe that the approxi-

mation of Si*
2
(Q) is always stronger than those obtained in [18] or [13]. Second,

while our approximation of Si*
2
(Q) is not as strong as the best known values

for the split closure on average, there are 6 instances on which it gives a better
bound. There are 7 instances on which the values are identical (either no gap
is closed or the problem is solved), and on the remaining 9 instances the split
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Table 2. Gap closed when optimizing over Si*, Si*
2
(i.e, using monoidal strengthening)

for the original formulation and the partial binary reformulation. Problems for which
the final point was within the integrality tolerance are marked with a star. For each
instance, the value of the largest gap closed is in bold.

P Q

name Si* Si*
2
Si*

2
/Si* Si* Si*

2
Si*

2
/Si* [14] [18] [13] split

arki001 33.3 51.9 27.9 44.8 > 64.9 > 36.5 43.7 55.1 83.1
bell3a 64.6 68.7 11.7 68.3 72.3 12.4 69.1 59.0 67.2 99.6
bell5 86.5 95.4 66.1 90.2 99.4 94.0 90.7 91.2 17.8 92.9
blend2 28.6 37.8 12.9 28.6 38.5 13.9 23.1 28.2 21.6 46.5
flugpl 12.5 16.3 4.3 18.0 ∗100 100 98.5 44.5 14.1 100
gen 83.0 100 100 91.6 ∗100 100 96.5 79.1 100
gesa2 61.7 86.1 63.7 64.5 > 89.1 > 69.2 80.8 65.0 99.7
gesa2 o 67.7 88.6 64.8 70.5 > 91.0 > 69.3 81.9 45.8 63.2 100
gesa3 93.6 99.7 94.8 96.6 100 100 95.9 51.3 83.0 95.8
gesa3 o 93.8 99.7 95.5 97.2 100 100 95.7 59.6 85.3 95.2
gt2 94.4 100 99.3 94.4 > 100 > 99.6 98.7 58.3 77.1 98.4
momentum2 48.4 48.4 0.0 48.4 > 48.7 > 0.5 48.3 — — 48.3
msc98-ip > 50.0 > 50.0 > — > 50.0 > 50.0 > — 54.4 — — 54.4
mzzv11 99.9 > 100 > 100 100 ∗100 100 99.9 — — 100
mzzv42z 100 100 — ∗100 ∗100 — 100 — — 100
noswot 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
qnet1 94.4 100 99.8 97.5 ∗ 100 100 99.6 7.2 29.4 100
qnet1 o 88.2 100 99.7 89.1 ∗ 100 99.5 100 26.5 36.5 100
roll3000 54.8 > 65.8 > 24.4 55.3 > 66.7 > 25.6 92.1 — — 92.1
rout 51.9 > 72.2 > 42.2 52.8 > 72.2 > 41.0 50.8 1.4 4.0 70.7
timtab1 49.6 > 72.0 > 44.5 63.0 > 74.2 > 30.3 81.8 — — 81.8
timtab2 43.0 > 54.4 > 20.0 48.6 > 58.4 > 19.1 72.7 — — 72.7

Average 63.6 73.0 53.6 66.8 78.4 60.6 76.1 82.2

closure gives a better bound (for 7 out of these 9 instances the computation over

Si*
2
(Q) could not be completed within the set time limit).

Acknowledgments. F. Margot was supported by ONR grant N00014-12-10032
and did part of this work while visiting the Ecole Polytechnique Fédérale de
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Abstract. In this paper we study the NP-hard problem of finding a
minimum size 2-edge-connected spanning subgraph (henceforth 2EC) in
cubic and subcubic multigraphs. We present a new 5

4
-approximation al-

gorithm for 2EC for subcubic bridgeless graphs, improving upon the
current best approximation ratio of 5

4
+ ε. Our algorithm involves an

elegant new method based on circulations which we feel has potential to
be more broadly applied. We also study the closely related integrality
gap problem, i.e. the worst case ratio between the integer linear program
for 2EC and its linear programming relaxation, both theoretically and
computationally. We show this gap is at most 9

8
for all subcubic bridge-

less graphs with up to 16 nodes. Moreover, we present a family of graphs
that demonstrate the integrality gap is at least 8

7
, even when restricted

to subcubic bridgeless graphs. This represents an improvement over the
previous best known bound of 9

8
.

Keywords: minimum 2-edge-connected subgraph problem, approxima-
tion algorithm, circulations, integrality gap, subcubic graphs.

1 Introduction

Given an unweighted bridgeless multigraph G = (V,E), |V | = n, the minimum
size 2-edge-connected spanning subgraph problem (henceforth 2EC) consists of
finding a 2-edge-connected spanning subgraphH of G with the minimum number
of edges. Note that a 2-edge-connected graph G = (V,E) is one that remains
connected after the removal of any edge. An edge whose removal disconnects a
graph into two components is called a bridge. In a solution for 2EC, multiple
copies of an edge e ∈ E are not allowed (and also not necessary).

The problem 2EC is one of the most extensively studied problems in network
design. It relates to the optimal design of a network that can survive the loss of
a link, and thus has many real world applications. However, it is known to be
NP-hard and also MAX SNP-hard even for subcubic graphs [1], where a graph
is cubic if every node has degree 3, and subcubic if every node has degree at
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most 3. Thus research has focused on finding good approximation algorithms.
Unfortunately, finding improved approximation algorithms seems to be difficult
for the more general weighted version of 2EC where, as with the closely re-
lated travelling salesman problem (TSP), the best known approximation ratio
for metric weights has remained at 3

2 [2] without any improvement for over 30
years.

Given the difficulty of this problem, people have turned to the study of approx-
imation algorithms for special cases, which has proven to be a more successful
approach for 2EC than studying its more general weighted form. In such studies,
not only improved results were obtained but also new innovative methods which
may lead to more general results.

In this paper we focus on the simplest form of 2EC that still remains NP-hard,
i.e. 2EC for subcubic graphs. In Section 2 we describe the framework for a new
innovative method for designing approximation algorithms for 2EC based on
circulations. Similar types of circulations were used in [3] in the approximation
of graph TSP, however the goal was quite different in that context. In fact, to
the best of our knowledge, circulations have not previously been used in the
way we describe to approximate 2EC. We demonstrate the usefulness of our
method by using it to develop a new 5

4 -approximation algorithm for 2EC on
bridgeless subcubic graphs. This algorithm improves upon the previous best
approximation ratio of 5

4 + ε given by Csaba, Karpinski and Krysta [1] for 2EC
on such graphs. We feel this algorithm not only provides a modest improvement
in the approximation ratio, but also, and perhaps more importantly, provides an
improvement in the simplicity and elegance of the method and proof.

A related approach for finding approximated 2EC solutions is to study the
integrality gap α2EC , which is the worst case ratio between the optimal value
for 2EC and the optimal value for its linear programming (henceforth LP) relax-
ation [2]. As a critical topic throughout this paper, we study α2EC intensively.
There are two main reasons this is useful. First, the integrality gap itself serves
as an indicator of the quality of the lower bound given by the LP relaxation. This
is important for methods, such as branch and bound and approximation, that
depend on good lower bounds for their success. Secondly, an algorithmic proof
for α2EC = k yields a k-approximation algorithm for 2EC [2]. In this paper, we
give an upper bound on the value of α2EC on bridgeless cubic graphs with an
algorithmic proof, while lower bounds on the integrality gap of 2EC are investi-
gated through computational studies. We show that the integrality gap of 2EC
is strictly less than 5

4 for bridgeless cubic graphs, improving on the previous best
known bound of 5

4 + ε [1]. We also conduct a computational study by design-
ing a program that calculates α2EC exactly for all simple graphs G ∈ G, where
G contains all test cases in three categories: (1) General bridgeless graphs for
3 ≤ n ≤ 10; (2) Cubic bridgeless graphs for 6 ≤ n ≤ 16; (3) Subcubic bridgeless
graphs for 3 ≤ n ≤ 16. Using the knowledge gained through the data analysis
for the computational study, we obtain a family of subcubic bridgeless graphs G
which shows α2EC ≥ 8

7 asymptotically, which improves upon the previous best
lower bound of 9

8 [4].
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1.1 Literature Review on 2EC

Constant factor approximation algorithms for 2EC have been intensively studied.
In 1994, Khuller and Vishkin [5] found a 3

2 -approximation, which was improved
by Cheriyan, Sebő and Szigeti [6] to 17

12 . The ratio was later improved to 4
3 in

2000 by Vempala and Vetta [7]. One year later, Krysta and Kumar [8] improved
the approximation ratio to 4

3 − ε where ε = 1
1344 . Recently, Sebő and Vygen [4]

designed a simpler and more elegant 4
3 -approximation algorithm for 2EC.

In the meantime, research on 2EC has also been conducted for special classes
of graphs, especially on cubic bridgeless graphs, on which 2EC still remains
NP-hard. In 2001, along with their (43 − ε)-approximation algorithm for 2EC on
general graphs, Krysta and Kumar [8] also presented an approximation algorithm
for 2EC on cubic graphs with the approximation ratio of 21

16 + ε. One year later,
Csaba, Karpinski and Krysta [1] designed a ( 54 + ε)-approximation algorithm
for 2EC on subcubic graphs. In 2004, Huh [9] presented an algorithm yielding a
5
4 -approximation on cubic 3-edge-connected graphs. A more recent improvement
came from Boyd, Iwata and Takazawa [10] with a 6

5 -approximation algorithm
for 2EC on cubic 3-edge-connected graphs.

Concerning the integrality gap α2EC of 2EC, Csaba, Karpinski and Krysta
[1] proved that for maximum degree 3 graphs, the integrality gap of the LP
relaxation for 2EC is at most 5

4 + ε for any fixed ε > 0. It was also stated
in [1] that the best known lower bound on α2EC is 10

9 for maximum degree 3
graphs (and thus subcubic graphs). In 2013, Boyd, Iwata and Takazawa [10]
show α2EC ≤ 6

5 for 3-edge-connected cubic graphs. Around the same time, Sebő
and Vygen [4] proved that 9

8 ≤ α2EC ≤ 4
3 in general.

1.2 Notation and Background

For the purpose of this paper, any graph G = (V,E) is considered to be a
multigraph without loops. We use n to denote |V |. Denoted by ILP (G), the
integer linear program of 2EC for a given graph G = (V,E) is given below. Note
that for any S ⊂ V , δ(S) is the set of edges with one end in S and the other end
not in S, and for any F ⊆ E, we use the notation x(F ) to denote

∑
e∈F xe.

Minimize
∑

e∈E xe (1)

subject to x(δ(S)) ≥ 2 for all ∅ ⊂ S ⊂ V, (2)

0 ≤ xe ≤ 1 for all e ∈ E, (3)

xe integer for all e ∈ E. (4)

By relaxing the integrality constraints (4) of ILP (G), the LP relaxation
of ILP (G), denoted by LP (G), is obtained. We use the notation OPT (G)
and OPTLP (G) to denote the optimal objective value for ILP (G) and LP (G)
respectively.
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2 Using Circulations to Obtain 2-Edge-Connected
Spanning Subgraphs

In this section we outline a new method for finding approximation algorithms for
2EC which is based on circulations and depth first search (DFS) trees. Similar
ideas were used in [3] for approximation for graph TSP, but not in the same way
or for the same purpose as they are used here. To the best of our knowledge,
these ideas represent a new framework for 2EC approximation.

Given a digraphD = (V,A), f ∈ RA is called a circulation forD if f(δin(v)) =
f(δout(v)) for all v ∈ V . For an arc e ∈ A, fe is called the flow of e. Given arc
demands d ∈ RA and arc capacities u ∈ RA, a circulation is called feasible if
de ≤ fe ≤ ue for all e ∈ A. The support graph of a circulation f is the subgraph
Df = (V,Af ), where Af is the set of arcs a in A for which fa > 0. Finally, given
arc costs c ∈ RA, the minimum cost circulation problem is as follows:

minimize cf

subject to f(δin(v)) = f(δout(v)) for all v ∈ V,

de ≤ fe ≤ ue for all e ∈ A.

The following is well known for circulations ([11], also see [12]).

Theorem 1. Given a minimum cost circulation problem for which d and u are
integer-valued and for which there exists a feasible circulation f , there exists an
optimal circulation f∗ which is integer-valued and can be found in polynomial
time.

Given a 2-edge-connected graph G = (V,E), we now define a minimum cost
circulation problem P (G) based on G. To begin, giveG an orientation by growing
a spanning tree from an arbitrary root r ∈ V using DFS. Call the edges in the
tree tree edges and the rest of the edges in E back edges. Let the directed graph
D = (V,A) be the orientation of G obtained in the usual way using the DFS tree,
i.e. by directing all the tree edges away from r and all the back edges towards
r. Let A = T ∪ B where T is the set of directed tree edges and B is the set of
directed back edges. Note that the arc set T forms a spanning arborescence of
D, and that the edges uv of G are in one to one correspondence with the arcs
(u, v) of D, a fact that we exploit by referring to edges and arcs interchangeably.

Define the minimum cost circulation problem P (G) as follows:

de =

{
1 for e ∈ T

0 otherwise,
ce =

{
1 for e ∈ B

0 otherwise,
ue =

{
1 for e ∈ B

∞ otherwise.

Let f be any feasible circulation for P (G). By Theorem 1, there exists an
integer feasible circulation f∗ of cost at most cf . The support graph Df∗ =
(V,Af∗) of f∗ will consist of the edges of T plus the edges of e ∈ B with f∗

e = 1.
Thus |Af∗ | ≤ (n − 1) + cf. Moreover, the corresponding edges in G form a
2-edge-connected spanning subgraph of G.

Given the circulation problem P (G) and a lower bound β for OPTLP (G), the
above suggests the following scheme for finding a k-approximation for 2EC:



190 S. Boyd, Y. Fu, and Y. Sun

(1) Find a feasible (perhaps fractional) circulation f for P (G) such that (n −
1) + cf ≤ kβ.

(2) Find an optimal integer circulation f∗ for P (G). The support graph of f∗

provides a 2-edge-connected spanning subgraph H = (V, J) of G with |J | ≤
(n − 1) + cf∗ ≤ (n − 1) + cf ≤ kβ. Since β ≤ OPTLP (G) ≤ OPT (G), we
have a k-approximation algorithm.

Next we provide a very useful lower bound for OPTLP (G) to be used in
the above framework. Given any 2-edge-connected graph G = (V,E), we let F
represent the set of edges in G which are in 2-edge cuts. We can use F to obtain
a lower bound on OPTLP (G) (and thus on OPT (G) for 2EC) as follows.

Lemma 1. We have the following lower bound for OPT (G) :

OPTLP (G) ≥ 1

2

∑
v∈V

max(2, |δ(v) ∩ F |).

Proof. Let x′ be any feasible solution for 2ECLP . For any edge in F we must
have x′

e = 1, thus for any node v ∈ V, x′(δ(v)) ≥ max(2, |δ(v) ∩ F |).
The result follows. 
�

3 A 5
4
-Approximation Algorithm

In this section we use the ideas presented in the previous section to provide a
5
4 -approximation algorithm for 2EC for subcubic bridgeless multigraphs and also
show that α2EC < 5

4 for such graphs. We begin with some preliminaries.
Given a graph G = (V,E), a cut δ(S) for S ⊂ V is called proper if 2 ≤ |S| ≤

n − 2. For S ⊂ V , let S = V \ S, and let G ↓ S be the graph obtained by
shrinking S into a single pseudonode vs.

For the remainder of this section, let G = (V,E) be a subcubic bridgeless
2-edge-connected multigraph, and as before let F be the set of edges in E which
are in 2-edge cuts. Let V = V2 ∪ V3, where Vi is the set of nodes in V of degree
i, i = 2, 3. We consider the number of edges in F incident with each node in
V3, which partitions V3 into four sets which we denote by V3Fi(G) = {v ∈ V3 :
|F ∩ δ(v)| = i} for i = 0, 1, 2, 3. Note that by Lemma 1 we have

OPTLP (G) ≥ n+
|V3F3(G)|

2
. (5)

We now construct the minimum cost circulation problem P (G) as described
in Section 2, using the same notation. Recall T is the set of tree edges formed
by the DFS and B is the set of back edges. For each edge e ∈ T , let δTe ⊂ B be
the set of back edges in the unique cut in D for which e is the only tree edge in
the cut. Each edge b in δTe forms a unique directed cycle Cb in T ∪ {b} which
contains tree edge e. Let f ∈ RA be the circulation for P (G) obtained by setting
the flow to 1

2 around each cycle Cb for b ∈ B \ F and to 1 around each cycle
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Cb for b ∈ B ∩ F , and then summing these cycle flows. More specifically, f is
defined as follows:

fa =

⎧⎪⎨⎪⎩
1
2 for a ∈ B \ F,
1 for a ∈ B ∩ F,∑

(fb : b ∈ δTa) for a ∈ T.

Lemma 2. The circulation f is a feasible circulation for P (G) and has cost

cf = n−|V2|
4 + |B∩F |

2 + 1
2 .

Proof. Since every tree edge not in F must be in the cycle Ce for at least 2
back edges, f is clearly a feasible circulation for P (G). Moreover, since ca = 0

for a ∈ T and ca = 1 for a ∈ B, cf = 1
2 |B \ F | + |B ∩ F | = |B|

2 + |B∩F |
2 .

Since |E| = 1
2 (2|V2| + 3|V3|), and n = |V2| + |V3|, we have |B| = |E| − |T | =

|E| − (n− 1) = n−|V2|
2 + 1 and the result follows. 
�

We now describe our recursive approximation algorithm, which is based on the
ideas from Section 2 along with a careful specification of how we grow the DFS
tree. Note that we assume |V3| �= 0, as otherwise the problem is trivial.

Algorithm Approx 5 4
Input: A bridgeless subcubic graph G = (V,E).
Output: A 2-edge-connected spanning subgraph H = (V, J) of G.

Grow a DFS tree T in G starting at any node r ∈ V3. We grow the DFS tree
according to the following two rules: Rule 1 If we have a choice for the next
edge to add to the tree, we always add one in F , if possible. Rule 2 If we have
more than one choice of F edge to add, we add one that goes to a degree 2 node,
if possible.

Case (a): {Base Case} For all e = (u, v) ∈ B ∩ F we have u ∈ V2.
Construct the minimum cost circulation problem P (G) using the
DFS tree T above, and find the optimal solution f∗ for P (G) which
is integer-valued. Let J be the edges in G corresponding to the edges
of the support graph of f∗. Return graph H = (V, J).

Case (b): {Recursive Step} There is an edge e = (u, v) ∈ B ∩ F with u ∈ V3.
In this case we will show that e is in a proper 2-edge cut δ(S) =
{e, e′} in G. Apply Algorithm Approx 5 4 recursively to G ↓ S
and G ↓ S to obtain graphs H ′ = (V ′, J ′) and H ′′ = (V ′′, J ′′)
respectively. Combine these graphs into a graph H = (V, J) by
removing the pseudonodes vS and vS and adding the edges e and
e′. Return graph H = (V, J).

Theorem 2. The graph H = (V, J) from Algorithm Approx 5 4 is a 2-edge-

connected spanning subgraph of G such that |J | ≤ 5
4n+

|V3F3 (G)|
2 − 1

2 .
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Fig. 1. The configuration of nodes u, v, w and z

Proof
In the digraph D = (V,A) resulting from the DFS, consider any back arc e =
(u, v) ∈ B ∩ F , i.e. e is in a 2-edge cut in G. Since v has a back arc directed
into it, it cannot be a leaf of the DFS tree, thus there exists a tree edge (v, w)
directed out of v. If v �= r there is also a tree edge (z, v) directed into v and
v has degree 3, so no other arcs are incident with it. If v = r, r was chosen to
have degree 3 thus there is another arc zv incident with v. This arc must be in
B, because if it was in T it would form a cut edge in G. (See Figure 1). Finally,
we cannot have u = w as this would imply the pair of multi-edges uv form a
2-edge cut in G, since this would then be the only 2-edge cut in which e can be
contained. However, this can only occur when n = 2 and |V3| = 0, which is not
the case here.

First we show that v ∈ V3F2 (G) or v ∈ V3F3 (G). Clearly v /∈ V3F0(G) as
uv ∈ F . Moreover, when we grow from v in the DFS, we would have had a
choice to grow along vw or vu. So by our construction Rule 1, we must have
vw ∈ F also, and thus v ∈ V3F2(G) or v ∈ V3F3(G). Note that this implies that if
v = r and the other edge zv in B incident with r is also in F , then r ∈ V3F3(G).

Case (a): For all e = (u, v) ∈ B ∩ F, u ∈ V2.
We begin by proving the following claim.

Claim 1: |V2| ≥ 2(|B ∩ F | − t), where t = 1 if r ∈ V3F3(G) and 0 otherwise.
Proof of Claim 1. For any edge e = (u, v) ∈ B ∩ F consider node w. When we
grow from node v in the DFS we had a choice of two F edges to grow along
next, namely vw and vu. We chose vw, which means by Rule 2 of our DFS
construction that node w ∈ V2. So for each edge e ∈ B ∩ F , we have u ∈ V2 and
w ∈ V2. If we can show that all of these u′s and w′s are distinct from each other
whenever r /∈ V3F3(G), the claim is proved.

Since w is on the unique cycle formed by e with the DFS tree and u �= w,
there must be a tree edge leaving w. So w cannot be the tail of any back arc.
Thus the w′s are distinct from the u′s. The w′s are also distinct from each other
if r /∈ V3F3(G), as there is only one unique back arc into node v. Finally, it is
clear the u′s are distinct from each other since any degree 2 node is the tail of
at most one back arc. The claim follows. 
�
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Now consider the cost of our feasible circulation f . By Lemma 2 and Claim 1
we have

cf =
n− |V2|

4
+
|B ∩ F |

2
+

1

2
≤ n

4
− 2(|B ∩ F | − t)

4
+
|B ∩ F |

2
+

1

2
. (6)

Moreover, by using |V3F3 (G)| ≥ t and simplifying (6) we have

cf ≤ n

4
+
|V3F3 (G)|

2
+

1

2
. (7)

By Theorem 1 we know the optimal circulation f∗ from the algorithm will have
cost at most cf , thus by (7) it follows that

|J | ≤ (n− 1) +
n

4
+
|V3F3 (G)|

2
+

1

2
=

5

4
n+
|V3F3(G)|

2
− 1

2

as required. This completes Case (a).

Case (b): For some e = (u, v) ∈ B ∩ F, u ∈ V3.
To begin we show that there exists a proper 2-edge cut in G.

Since uv ∈ F , it must be in a 2-edge cut in G with another edge e′. If
e′ = vw, then this would imply zv is a bridge in G, contradicting the fact that
G is bridgeless. Thus e′ �= vw.

Let S be the set of nodes defining the 2-edge cut {uv, e′} (i.e. δ(S) = {uv, e′})
such that u ∈ S, and let Ce be the unique cycle formed by e = (u, v) and T .
Clearly (v, w) ∈ Ce. Since vw cannot be in δ(S), we have w /∈ S, v /∈ S. Thus
δ(S) crosses Ce in an edge of T , and e′ ∈ (T ∩Ce) \ {(v, w)}. Moreover, all back
edges from nodes in S have both ends contained inside S.

Finally, consider node u. Since u ∈ V3, there must be another edge qu incident
with u with q ∈ S. Thus δ(S) is a proper 2-edge cut in G.

Now consider the proper 2-edge cut δ(S) = {e, e′}. Both G ↓ S and G ↓ S are
also subcubic 2-edge connected graphs with fewer nodes than G, thus we can
apply Algorithm 5 4 recursively to them to obtain 2-edge connected spanning
subgraphs H ′ = (V ′, J ′) and H ′′ = (V ′′, J ′′) respectively such that

|J ′| ≤ 5|V ′|
4

+
|V3F3(G ↓ S)|

2
− 1

2
and |J ′′| ≤ 5|V ′′|

4
+
|V3F3(G ↓ S)|

2
− 1

2
.

Now consider the graph H = (V, J) for G we obtain by removing vS from H ′,
vS from H ′′ and adding the edges e and e′. Graph H is a 2-edge connected
spanning subgraph of G. Moreover, n = |V ′| + |V ′′| − 2, |J | = |J ′| + |J ′′| − 2,
and |V3F3(G)| = |V3F3(G ↓ S)| + |V3F3(G ↓ S)|. Hence |J | = |J ′| + |J ′′| − 2 ≤
5
4 (n+ 2) +

|V3F3(G)|
2 − 1− 2 = 5

4n+
|V3F3(G)|

2 − 1
2 . 
�

Using (5) and Theorem 1, we have the following corollaries to Theorem 2:

Corollary 1. Algorithm 5 4 is a 5
4 -approximation algorithm for 2EC for sub-

cubic bridgeless graphs.
Corollary 2. The integrality gap α2EC is less than 5

4 for subcubic bridgeless
graphs.
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4 Computational Study on the Integrality Gap of 2EC

In this section we report on a computational study where we investigate the
worst-case ratio between ILP (G) and LP (G) for graphs with a small number
of nodes, thus obtains a lower bound on α2EC for those types of graphs. Here
we give a brief summary of the methods used and results obtained. For more
details, see [13].

4.1 Methodology

It is known that the computational complexity for solving ILP (G) is NP-hard.
However, it is practically possible to solve ILP (G) in reasonable time for graphs
G of small size. Therefore the graphs in this experimental study were limited to
the following three sets:

– General simple graphs G =
⋃10

k=3 Gk, where Gk denotes the set of all non-
isomorphic 2-edge-connected simple graphs with k nodes;

– Cubic simple graphs C =
⋃16

k=6 Ck, where Ck denotes the set of all non-
isomorphic 2-edge-connected cubic simple graphs with k nodes; and

– Subcubic simple graphs S =
⋃16

k=3 Sk, where Sk denotes the set of all non-
isomorphic 2-edge-connected subcubic simple graphs with k nodes.

With the purpose to find out more about the lower bound for the integrality
gap α2EC of the LP relaxation for 2EC, we calculated the ratio, denoted by α(G),
between the optimal objective value OPT (G) and OPTLP (G) for all graphs
G ∈ G, G ∈ C and G ∈ S. Denote the complete set of all graphs studied in this
experiment as G = G∪C∪S, the maximum ratio α(G) among all G ∈ G provides
a lower bound for the value of α2EC for graphs of that type.

By using the nauty package (Version 2.4), developed by Brendan D. McKay
[14], we were able to obtain all non-isomorphic connected graphs of a certain
category (i.e. general, cubic, subcubic), and then eliminate all the graphs with
bridges. We then formulated ILP (G) and LP (G) for each graph in our set.
Finally we used GurobiTM Optimizer (Version 5.0) to obtain solutions to ILP (G)
and LP (G) for each G.

The program designed for our experiments was developed using the C pro-
gramming language, on a 64-bit system running Mircosoft R©Windows 7 Profes-
sional, with a Lenovo R©Thinkpad X201 laptop equipped with Intel R©CoreTMi5
M480 @ 2.67GHz, and 4.00 GB installed memory (RAM).

4.2 Analysis of Results

Facing a large amount of data, it became difficult for us to analyze all results
with the limited resources. For example, the number of all non-isomorphic 2-
edge-connected graphs on 10 nodes is 9,804,368, and it took the program ap-
proximately 11 days to finish the experiment process for all graphs G ∈ G10.
In order to learn more about the lower bound for the value of α2EC in general



A 5
4
-Approximation for Subcubic 2EC Using Circulations 195

and the upper bound for particular classes and sizes of graphs, more attention
was given to the data that resulted in a higher ratio between OPT (G) and
OPTLP (G). Figure 2 demonstrates the trend in the changes of the maximum
ratios between OPT (G) and OPTLP (G) for G ∈ Gk, G ∈ Ck and G ∈ Sk. Ta-
ble 1 gives a summary of the maximum value of the ratio between OPT (G) and
OPTLP (G) for graphs in each of the three categories.

Fig. 2. Experimental result data analysis

Table 1. Summary of the experimental study

Graph Category Max α(G) Corresponding |V (G)|
Gk (3 ≤ k ≤ 10) 10/9 9

Ck (6 ≤ k ≤ 16) 11/10 10

Sk (3 ≤ k ≤ 16) 9/8 16

Let α(Gk), α(Ck) and α(Sk) denote the maximum ratios between OPT (G)
and OPTLP (G) for G ∈ Gk, G ∈ Ck and G ∈ Sk respectively. It is noted from
Figure 2 that our result on α(S16) reached the highest value we obtained (i.e.
9
8 ) with only 16 nodes, which was the previous best known lower bound on the
integrality gap of the LP relaxation for 2EC [4]. In addition, it is noted that for
each value of k (3 ≤ k ≤ 10), the set of graphs with k nodes that gave the worst
ratio among all graphs with the same size always included subcubic graphs. This
supports the idea that subcubic graphs are most likely to give α2EC in general.

5 New Lower Bounds for the Integrality Gap for 2EC

In this section we discuss a family of subcubic graphs which asymptotically
give a ratio of 8

7 for OPT (G) and OPTLP (G), thus improving on the previous
best known lower bound for α2EC of 9

8 [4]. In our computational study, we
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:

:

(a) 9-pattern gadget .

(b) Graph G9 .

(c) Graph G3  .  .N

Fig. 3. Illustrations for the family GN
t

were able to find a pattern which gives relatively high ratio between OPT (G)
and OPTLP (G). Inspired by this finding, we designed the following family of
graphs by continuously replacing all degree 2 nodes with the 9-pattern gadget
shown in Figure 3(a), starting from G9 (shown in Figure 3(b)). The family of
graphs generated from the above operation is referred to as FN . Executing the
replacement for t times gives us the graph GN

t ∈ FN (t ≥ 0). Figure 3(c) shows
the graph GN

3 ∈ FN , which was obtained by repeating the replacement three
times. The following theorem is proved through a series of calculations (see [13]).

Theorem 3. For the family of graphs FN , the following hold :

lim
t→∞

OPT (GN
t )

|V (GN
t )| =

8

7
, lim

t→∞

OPT (GN
t )

OPTLP (GN
t )

=
8

7
.

From the above discussion, Corollary 3 naturally follows from Theorem 3.

Corollary 3. The integrality gap α2EC for 2EC is at least 8
7 , even when re-

stricted to subcubic bridgeless graphs.
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Abstract. We propose a novel approach to computing lower bounds for
box-constrained mixed-integer polynomial minimization problems. In-
stead of considering convex relaxations, as in most common approaches,
we determine a separable underestimator of the polynomial objective
function, which can then be minimized easily over the feasible set even
without relaxing integrality. The main feature of our approach is the fast
computation of a good separable underestimator; this is achieved by com-
puting tight underestimators monomialwise after an appropriate shifting
of the entire polynomial. If the total degree of the polynomial objective
function is bounded, it suffices to consider finitely many monomials, the
optimal underestimators can then be computed offline and hardcoded.
For the quartic case, we determine all optimal monomial underestimators
analytically.

In the case of pure integer problems, we perform an extensive ex-
perimental evaluation of our approach. It turns out that the proposed
branch-and-bound algorithm clearly outperforms all standard software
for mixed-integer optimization when variable domains contain more than
two values, while still being competitive in the binary case. Compared to
approaches based on linearization, our algorithm suffers significantly less
from large numbers of monomials. It could minimize complete random
polynomials on ten variables with domain {−10, ..., 10} in less than a
minute on average, while no other approach was able to solve any such
instance within one hour of running time.

1 Introduction

In the last decade, mixed-integer non-linear programming (MINLP) has increas-
ingly moved into the focus of the mathematical optimization community. Such
problems are usually very hard both from a theoretical and practical point of
view. Often this is true even in the linear case due to the integrality constraints,
but non-linearities render such problems even harder, in particular when these
non-linearities are non-convex. The standard way of dealing with non-convex
problems is to consider convex relaxations, often combined with linearization.
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The feasible set is thus replaced by a larger convex set and the objective func-
tion is underestimated by a convex function. For an overview of the standard
methods for MINLP, see [1, 2, 3, 4].

In this paper, we restrict ourselves to box-constrained problems and follow
a different approach: we consider separable non-convex underestimators of the
objective function instead of convex ones. In [5], this idea has been applied to
quadratic combinatorial optimization problems. Here, we consider a very differ-
ent class of problems, namely the minimization of polynomials subject to box
and integrality constraints. More formally, let l, u ∈ Rn with l ≤ u and consider
the box [l, u] :=

∏n
i=1[li, ui]. Moreover, let f =

∑
α∈A cαx

α be an arbitrary poly-
nomial of total degree d ∈ N and I ⊆ {1, . . . , n}. We aim at solving the problem

min f(x)
s.t. x ∈ [l, u]

xi ∈ Z ∀i ∈ I ,
(1)

where we may assume li, ui ∈ Z for all i ∈ I.
This problem is already NP-hard in the quadratic case, both when all vari-

ables are binary and when all variables are continuous. Various types of convex
relaxations and reformulations have been proposed for the quadratic case in the
literature. The resulting convex problems may be linear [6], semidefinite [7, 8]
or other types of tractable problems [9, 10]. However, for the case of general
polynomials, few specific approaches exist. In the binary case, the problem is
usually linearized by adding new variables for all appearing monomials; it is
also possible to reduce the polynomial problem to a quadratic one [11, 12]. For
the general integer case, a binary expansion may be applied in order to reduce
the problem to a binary one, but in practice this approach suffers from a large
number of variables and disadvantageous numerical properties.

In the general integer (or mixed-integer) context, the most common approach
found in optimization software is a combination of convex underestimators and
bound tightening techniques. The convex underestimators are derived from the
building blocks of the objective function. In our approach, we use a similar idea,
computing underestimators monomialwise. However, as we are aiming at separa-
ble underestimators, our approach differs significantly from the convexification
approach: on the one hand, using convex functions one can generally expect
to obtain tighter underestimators than using separable functions. On the other
hand, a separable underestimator can be minimized very quickly, even taking the
integrality constraints into account. Our experimental results show that our ap-
proach significantly outperforms standard software for mixed-integer non-linear
optimization such as BARON [13], Couenne [14], and SCIP [15].

Our method also compares favorably to GloptiPoly [16], which represents an
important class of approaches to continuous polynomial optimization based on
hierarchies of semidefinite programming relaxations; see, e.g., [17, 18, 19]. These
approaches do not allow explicit integrality constraints, but a discrete variable
domain can be modeled by a polynomial equation. The main drawback is the long
running time needed to solve the resulting semidefinite programs. However, in
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our approach we can use tools such as GloptiPoly to compute optimal separable
underestimators for each monomial offline, assuming that the maximal degree d
is fixed. The separable underestimator of f is then determined as the sum of
these monomialwise underestimators.

The basic ideas of our approach are explained in more detail in Section 2. In
Section 3, we discuss some features of our branch-and-bound algorithm. Finally,
we report results of an extensive experimental evaluation in Section 4.

2 Separable Underestimators for Polynomials

Our objective is to underestimate a general multivariate polynomial f : Rn → R

of degree d := deg f by a separable polynomial g(x) =
∑n

i=1 gi(xi), where all
functions gi : R→ R are univariate polynomials of degree at most d̄. The degree d̄
depends on the degree of the original polynomial f . In order to ensure that
a feasible separable underestimator exists, we need that d̄ ≥ d if d is even
and d̄ ≥ d+ 1 if d is odd. On the other hand, as we will see, a small degree d̄ is
preferable in our approach. In our algorithm, we thus set d̄ := 2

⌈
1
2d
⌉
.

Since we aim at using separable underestimators in order to derive lower
bounds for Problem (1), we need to answer the following two questions: how can
a good separable underestimator be computed, and how can it be minimized?
We start with a discussion of the latter question.

2.1 Minimizing a Separable Polynomial

The first observation needed for the minimization of the underestimator g is

Lemma 1

min g(x)
s.t. x ∈ [l, u]

xi ∈ Z ∀i ∈ I
=

n∑
i=1

⎧⎪⎨⎪⎩
min gi(x)

s.t. xi ∈ [li, ui]

xi ∈ Z if i ∈ I .

This result is easy to verify. It means that we can minimize g by solving n uni-
variate minimization problems involving the gi, where the problem is a discrete
problem if i ∈ I and a continuous problem otherwise. We would like to point
out here that we never relax any integrality constraint in our approach, instead
the two cases i ∈ I and i �∈ I are solved in a slightly different way.

In the case of a continuous variable (i �∈ I), the minimizer of gi over [li, ui]
must either be on the boundary or it must satisfy the first order condition
g′i(x) = 0. As g′i is a polynomial of degree at most d̄ − 1, it has at most d̄ − 1
real zeroes, which can be computed by closed formulae if d̄ ≤ 5 and numerically
otherwise. In summary, we obtain a set of at most d̄+1 candidates for the desired
minimizer. We can thus find a minimizer of gi by enumerating these candidates.
In the case i ∈ I, it is easy to see that an integer minimizer of gi over [li, ui]
must be a continuous minimizer of gi rounded up or down. We can thus apply
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the same approach as in the continuous case, round up and down all continuous
candidates, and end up with at most 2d̄ many candidates. For an illustration,
see Figure 1. In all cases, we thus obtain a minimizer x∗

i for gi, such that x∗ is
a mixed-integer minimizer of g by Lemma 1.
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Fig. 1. A univariate polynomial of degree five, its stationary points (circles), and the
candidates for being integer optimizers (squares)

2.2 Computing Tight Separable Underestimators

The best possible separable underestimator would be one that yields the tightest
lower bound on f , i.e., a solution of

max min
x∈[l,u]

xi∈Z for i∈I

g(x)

s.t. g(x) ≤ f(x) ∀x ∈ [l, u]
g separable polynomial of degree at most d̄.

However, aiming for an optimal underestimator in this sense is too ambitious,
as even deciding whether g = 0 is a feasible solution would require deciding non-
negativity of f , which is well-known to be an intractable problem for general f .

Our strategy to deal with this difficulty is to split up the polynomial into its
monomials and to replace each monomial by an optimal separable underestima-
tor. The result will not be an optimal underestimator of the entire polynomial,
but hopefully still yield tight lower bounds. However, since we add up different
underestimators, it is not appropriate anymore to maximize the minimum of the
underestimator on the feasible region. Instead, we now search for an underesti-
mator that is as close to f as possible on average, on the feasible region [l, u].
This leads to the following problem formulation:

max
∫
[l,u]g(x) dx

s.t. g(x) ≤ f(x) ∀x ∈ [l, u]
g separable polynomial of degree at most d̄.

(P)
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Note that the variables in this optimization problem are the coefficients of the
univariate polynomials gi. Collecting the constant terms of all gi in a separate
variable c0, we can write

g(x) =

n∑
i=1

d̄∑
j=1

cijx
j
i + c0

so that (P) contains nd̄ + 1 variables, namely the coefficients cij and c0. The
objective function is linear in these variables, as

∫
[l,u]

g(x) dx =

n∑
i=1

d̄∑
j=1

cij

∫
[l,u]

xj
i dx+ c0

∫
[l,u]

1 dx .

Hence Problem (P) can be modeled as a linear optimization problem over the
cone of non-negative polynomials, using that f is a constant in this context. In
particular, one can consider the dual problem, which can be calculated as

min
∫
f dμ

s.t.
∫
xj
i dμ =

∫
[l,u]

xj
i dx for i = 1, . . . , n, j = 1, . . . , d̄∫

1 dμ =
∫
[l,u] 1 dx

μ Borel-measure with support on [l, u].

(D)

First observe that Problem (P) is always feasible: as f is continuous, its mini-
mum m over [l, u] exists and we can choose the constant function g(x) := m as
separable underestimator of f . In order to find a better solution to Problem (P),
we first translate the problem such that the origin becomes the center of the
feasible region. More formally, we consider the shifted polynomial f̄ defined by
f̄(x) := f(x+t), where ti :=

1
2 (li+ui) for all i = 1, . . . , n. The new polynomial f̄

has the same degree as f , but not the same monomials in general, as one may
obtain all submonomials of the given monomials of f . In the next step, we solve
Problem (P) separately for each monomial, as mentioned above, over the feasible
set [l− t, u− t]. The corresponding monomial underestimators are summed up to
obtain a separable underestimator ḡ of f̄ over [l− t, u− t], which is then turned
into a separable underestimator g of f over [l, u] by defining g(x) := ḡ(x− t).

As l − t = −(u − t) by definition of t, we may thus assume that the feasible
set in Problem (P) is symmetric with respect to the origin, i.e., that l = −u. If f
is a monomial, we can further normalize by scaling the feasible box:

Lemma 2. Let u > 0 and let
∑n

i=1

∑d̄
j=1 cijx

j
i+c0 be an optimal solution to (P)

over the box [−1, 1]n for a monomial f . Then f(u) ·
(∑n

i=1

∑d̄
j=1

cij

uj
i

xj
i + c0

)
is

an optimal solution to (P) over [−u, u].

Clearly, if ui = 0 for some i, the corresponding variable xi can be eliminated,
hence the above lemma can still be applied in this case.
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This approach shows why we need to integrate over the entire box [l, u] in the
objective function of Problem (P) instead of restricting ourselves to the set of all
mixed-integer feasible solutions: otherwise, the scaling would produce a problem
that still depends on the given bounds l and u.

In summary, we need to solve Problem (P) only for monomials over [−1, 1]d̄ in
our approach. This implies that, as soon as we fix any bound on the degree of f
and hence on d̄, we end up with a finite set of problems of type (P) that have
to be solved: for each possible monomial xα with |α| ≤ d̄, we need to solve (P)
for both f(x) := xα and f(x) := −xα over [−1, 1]d̄.

In particular, we do not solve Problem (P) in each node of the enumeration
tree, but we solve it offline for the finitely many cases under consideration and
hardcode the results. At runtime, it suffices to replace each monomial in f̄ by
its optimal underestimator. No optimization algorithm is required here, the al-
gorithm only needs to shift and scale. From a theoretical point of view, the com-
putation of the given underestimators thus takes constant time if d̄ is bounded.
From a practical point of view and for large d̄, it might however be preferable to
replace the constraint g(x) ≤ f(x) by requiring that f − g be an sos-polynomial.
Problem (P) then becomes tractable and the resulting underestimators will still
be feasible and hopefully tight.

Of course, one may also try to solve Problem (P) analytically. For showing
optimality, one may use the dual problem (D) and the following lemma:

Lemma 3 (Complementary Slackness). Let g be feasible for (P) and let μ
be feasible for (D). If

∫
(f − g) dμ = 0, then g is optimal for (P).

This approach can be used to show the results stated in the following section.

2.3 Optimal Quartic Underestimators

In the following, we determine all optimal underestimators according to (P) for
monomials of degree at most four; for the proofs, we refer to the full version of
this paper [20]. All proofs make use of Lemma 3, where a corresponding feasible
solution for the dual problem (D) is constructed explicitly.

Up to symmetry, 12 monomials have to be considered, where the cases of
positive and negative coefficients have to be distinguished. Out of the resulting
24 cases, namely the monomials ±xk

1 (for k = 0, . . . , 4), ±x1x2, ±x2
1x2, ±x1x2x3,

±x3
1x2, ±x2

1x
2
2, ±x2

1x2x3, and ±x1x2x3x4, the first ten are already separable and
hence trivial. A further nine cases are covered by the following result.

Theorem 1. Let α ∈ Nn
0 such that d :=

∑n
i=1 αi is even and d ≤ 4. Assume

that at least one αi is odd, or that c ≤ 0. Then an optimal solution of (P) for
f(x) := cxα over [−1, 1]n is

g(x) := −|c|
d

n∑
i=1

αix
d
i .

From our proof given in [20], it follows that these optimal underestimators are
independent of the domain [−u, u], as f−g turns out to be globally non-negative.
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Moreover, these underestimators remain optimal for any d̄ ≥ d. Next, we consider
the only remaining even degree case for d̄ ≤ 4.

Theorem 2. Let c ≥ 0. Then an optimal solution of (P) for f(x) := cx2
1x

2
2

over [−1, 1]n for d̄ = 4 is

g(x) = − 1
2x

4
1 +

2
3x

2
1 − 1

2x
4
2 +

2
3x

2
2 − 2

9 .

See Fig. 2 for an illustration. In this case, the proof again shows optimality
independently of the domain, but not of the degree d̄. In fact, when allowing
degree d̄ = 6, a better underestimator can be computed.
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Fig. 2. Optimal separable underestimators of degree d̄ ≤ 4 for f(x) = x2
1x

2
2 (left) and

f(x) = x2
1x2 (right)

The following results complete the quartic case.

Theorem 3. An optimal solution of (P) for f(x) := cx1x2x3 over [−1, 1]n is

g(x) = − |c|
6

(√
5
3 (x

4
1 + x4

2 + x4
3) +

√
3
5 (x

2
1 + x2

2 + x2
3)
)
.

Theorem 4. An optimal solution of (P) for f(x) := cx2
1x2 over [−1, 1]n has

the form

g(x) = |c|c14x4
1 + |c|c12x2

1 + |c|c24x4
2 + cc23x

3
2 + |c|c22x2

2 + cc21x2 + |c|c0

with
c14 ≈ −0.820950196623141 c24 ≈ +0.052169786129554
c12 ≈ +0.472574632153429 c23 ≈ +0.057375067121109

c22 ≈ −0.311590671084123
c0 ≈ −0.070759806839502 c21 ≈ +0.272799782607049 .

Unlike in all other quartic cases, the optimal local underestimator in Theorem 4
is not valid globally, but requires x2 ∈ [−1, 1]. See Fig. 2 again.
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3 Branch-and-Bound Algorithm

The computation of lower bounds based on separable underestimators as de-
vised in Section 2 can be embedded into a branch-and-bound framework in a
straightforward way. Branching can be realized by splitting up the domain of a
variable. This leads to improved lower bounds in two ways: on a smaller feasi-
ble box, one may obtain a tighter separable underestimator, moreover, even the
same underestimator can lead to tighter bounds on smaller feasible sets.

In our implementation, we use the following simple branching rule: we always
choose a variable xi with maximal ui − li, i.e., with largest domain. Then we
produce two subproblems by splitting up the domain in the middle. Experiments
with other branching strategies did not lead to any improvements so far; this is
left as future work. The same is true for the enumeration scheme. Currently, we
use a straightforward depth first strategy.

As we do not relax integrality when minimizing the separable underestimator,
the resulting minimizer is always a feasible solution for our original problem (1).
In particular, we obtain an upper bound on (1) in every node of the enumeration
tree. We do not apply any further primal heuristics.

4 Experimental Results

In this section, we evaluate the performance of the proposed branch-and-bound
algorithm on pure integer instances with polynomials f of degree d = 4. We
generated different sets of random instances by using the following parameters:

– The number of variables is n ∈ {10, 15, 20, 25, 30, 35, 40}.
– For the bounds on the variables we consider

– [li, ui] = [−10, 10] for all i = 1, . . . , n.
– [li, ui] = [−1, 1] for all i = 1, . . . , n (ternary instances).
– [li, ui] = [0, 1] for all i = 1, . . . , n (binary instances).

– The polynomial f either consists of m monomials with m being a multiple
of n, or of all possible monomials of degree ≤ 4. We will call the latter
instances complete.

The coefficients of each monomial were chosen uniformly at random from [−1, 1].
For generating a single monomial, we randomly selected four integer values
from {0, 1, . . . , n}, where repetitions were allowed, so as to obtain the variables
that are present in the monomial. The value 0 represents that no variable was
chosen, thus allowing the monomial to have a degree strictly smaller than 4. In
the complete case, a random coefficient is generated for each possible monomial
of degree ≤ 4. For each possible combination of parameters, we generated 10
different instances.

We implemented the proposed branch-and-bound scheme, which we will call
PolyOpt, in C++. All experiments were run on a cluster of 64-bit Intel(R)
Xeon(R) CPU E5-2670 0 processors running at 2.60GHz with 20480 KB cache.
We compared PolyOpt with three solvers for general non-convex mixed integer
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programming problems, namely BARON [13], Couenne [14, 21], and SCIP [15],
with a simple complete enumeration method, and with GloptiPoly [16], a solver
for continuous polynomial optimization. For the latter, we modeled the inte-
grality requirement on the variables as a polynomial constraint, as GloptiPoly
developers suggested. We used modeling languages to formulate our problems
and solve them through the MINLP solvers. More precisely, we used the GAMS
interface [22] for BARON and the AMPL interface [23] for Couenne and SCIP.
A time limit of one CPU hour was set for all the methods.

The results are presented in Tables 1–3. Each table is organized as follows. The
first and the second column represent the number of variables n and of monomials
m, respectively. The next columns correspond to the different methods that are
compared, i.e., enumeration, SCIP, Couenne, BARON, GloptiPoly, and PolyOpt.
Each entry states the average CPU time needed to solve a single instance to
global optimality. In parenthesis we report the number of solved instances, out
of 10 candidates. Note that the time for unsolved instances is not taken into
account when computing the average. The entry *** means that none of the
instances was solved within the time limit. The first block in each table contains
the results for complete instances.

Table 1 shows the results for instances with variables in [−10, 10]. PolyOpt
performs best in terms of number of solved instances. As expected, the complete
enumeration cannot solve any of the instances. Also GloptiPoly cannot solve
any instance; the integrality requirement has to be modeled by a high-degree
polynomial, making the approach inefficient from a practical point of view. SCIP,
Couenne, and BARON can solve 38, 23, and 32 instances out of 210 instances,
respectively. PolyOpt can solve 90 instances and, in particular, it performs much
better that the other methods on denser instances. Already instances with 20
variables and 60 monomials or 25 variables and 50 monomials turn out to be
very challenging for all the other approaches. Focusing on the complete instances,
PolyOpt is the only method that can solve instances on 10 variables. For instance
classes not shown in the table, all tested methods failed to solve a single instance
(n = 20 withm ≥ 180, n = 25 withm ≥ 100, and complete instances for n ≥ 15).

Table 1. Results for bounds [−10, 10]

n m enum scip couenne baron gloptipoly polyopt

10 1001 *** *** *** *** *** 33.7 (10)
20 20 *** 0.7 (10) 0.4 (10) 1.4 (10) *** 9.6 (10)
20 40 *** 305.6 (10) 730.2 ( 3) 396.0 ( 9) *** 97.3 (10)
20 60 *** 3585.7 ( 1) *** *** *** 362.0 (10)
20 80 *** *** *** *** *** 900.8 (10)
20 100 *** *** *** *** *** 2066.4 ( 9)
20 120 *** *** *** *** *** 2126.8 ( 6)
20 140 *** *** *** *** *** 2718.8 ( 2)
20 160 *** *** *** *** *** 2827.3 ( 1)
25 25 *** 3.0 (10) 1.0 (10) 7.5 (10) *** 27.2 (10)
25 50 *** 1552.8 ( 7) 880.9 ( 1) 1662.2 ( 3) *** 813.4 (10)
25 75 *** *** *** *** *** 2292.7 ( 2)
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In Table 2 we show the results for instances with variables in [−1, 1]. This is the
simplest integer case beyond binary variables; our objective was to understand
whether the good performance of PolyOpt shown in Table 1 depends on the
large range of feasible integer values. This is not the case: PolyOpt shows the
best performance also for ternary instances. It solves all complete instances with
n ≤ 15 and all other instances with n ≤ 20. For n = 25 it is still able to solve
83 out of 100 instances. Both the complete enumeration and GloptiPoly solve
all complete instances for n ≤ 15 and some sparse instances with n = 20. The
MINLP solvers cannot solve as many instances as PolyOpt and, even for the
instances that they could solve, in general the CPU time needed is larger than
the one needed by PolyOpt, the only exception being the very sparse instances.
The table, thus, confirms the superiority of PolyOpt also for general integer
instances with small variable domains.

Table 2. Results for bounds [−1, 1]

n m enum scip couenne baron gloptipoly polyopt

10 1001 3.2 (10) *** 125.2 ( 8) 612.8 (10) 2.6 (10) 1.1 (10)
15 3876 3000.9 (10) *** *** *** 139.58 (10) 357.04 (10)
20 20 3220.6 ( 8) 0.6 (10) 0.3 (10) 0.6 (10) 2412.7 ( 7) 0.6 (10)
20 40 *** 12.9 (10) 4.9 (10) 28.5 (10) 2814.1 (10) 4.4 (10)
20 60 *** 104.9 (10) 34.6 (10) 207.1 (10) 2915.8 ( 7) 13.8 (10)
20 80 *** 411.8 (10) 136.5 (10) 628.4 (10) 2915.7 ( 5) 28.7 (10)
20 100 *** 1080.7 (10) 127.8 (10) 1568.8 (10) 3110.7 ( 4) 42.0 (10)
20 120 *** 2048.9 ( 8) 259.6 (10) 2645.7 ( 7) 3141.2 ( 6) 51.3 (10)
20 140 *** 2580.0 ( 1) 331.0 (10) 1486.4 ( 3) 2849.9 ( 7) 67.9 (10)
20 160 *** *** 366.7 (10) 2499.3 ( 1) 2952.5 ( 9) 79.8 (10)
20 180 *** *** 973.2 (10) *** 2998.7 ( 7) 116.3 (10)
20 200 *** *** 1216.0 (10) *** 3041.2 ( 6) 120.6 (10)
25 25 *** 1.1 (10) 0.6 (10) 1.7 (10) *** 4.2 (10)
25 50 *** 67.8 (10) 37.3 (10) 290.2 (10) *** 51.1 (10)
25 75 *** 853.5 (10) 525.7 (10) 2256.7 ( 8) *** 274.0 (10)
25 100 *** 2154.9 ( 4) 913.8 (10) 3009.9 ( 1) *** 605.9 (10)
25 125 *** *** 1016.1 ( 9) *** *** 948.3 (10)
25 150 *** *** 1957.9 ( 6) *** *** 1211.7 (10)
25 175 *** *** 2639.3 ( 1) *** *** 2132.8 (10)
25 200 *** *** *** *** *** 2792.5 ( 9)
25 225 *** *** *** *** *** 2857.6 ( 7)
25 250 *** *** *** *** *** 3224.3 ( 1)

Note that the optimal solutions of almost 75% of the instances solved by
PolyOpt as reported in Tables 1–2 are attained at a vertex of the feasible box,
i.e., none of the variables assumes a value different from both the lower and the
upper bound. We are currently studying alternative ways to generate random
instances with optimal solutions lying in the interior of the feasible box, e.g., by
adding a quadratic regularization term to the objective function. However, first
experiments show that this does not change the general picture obtained from
the above results.

Finally we show the results for binary instances in Table 3. PolyOpt still out-
performs the other methods on the complete instances, though for n ≥ 30 none of
the methods can solve any of the instances. Concerning the sparse instances, we
report only the case n = 40, as for smaller instances PolyOpt, SCIP, and Couenne
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solve all the problems and show comparable CPU times (while BARON, the com-
plete enumeration, and GloptiPoly results are worse). For n = 40, it turns out
that PolyOpt cannot solve all instances, while SCIP and Couenne can. The latter
approaches also need less CPU time for all classes of sparse instances. This can
be explained by the fact that SCIP and Couenne have several features tailored
for the binary case, such as specific heuristics and cuts. On the contrary, in Poly-
Opt we implemented just one special feature: we exploit the fact that xe

i = xi

for all e ∈ N in the binary case. Thus, we substitute each xe
i with xi, potentially

obtaining monomials of lower degree.

Table 3. Results for bounds [0, 1]

n m enum scip couenne baron gloptipoly polyopt

10 1001 0.0 (10) 8.8 (10) 16.9 (10) 26.9 (10) 2.4 (10) 0.1 (10)
15 3876 5.0 (10) 264.5 (10) 448.2 (10) *** 123.0 (10) 1.4 (10)
20 10626 480.4 (10) *** *** *** 2551.2 (10) 99.5 (10)
25 23751 *** *** *** *** *** 1488.3 ( 7)
40 40 *** 0.1 (10) 0.0 (10) 0.6 (10) *** 65.3 ( 9)
40 80 *** 0.8 (10) 1.1 (10) 11.2 (10) *** 94.3 (10)
40 120 *** 4.0 (10) 6.3 (10) 289.9 (10) *** 637.9 (10)
40 160 *** 7.1 (10) 11.4 (10) 1073.6 (10) *** 569.8 ( 9)
40 200 *** 12.7 (10) 23.0 (10) 1832.6 ( 7) *** 798.3 (10)
40 240 *** 21.3 (10) 40.8 (10) 3019.7 ( 2) *** 790.3 ( 8)
40 280 *** 46.3 (10) 91.9 (10) *** *** 1185.6 ( 7)
40 320 *** 88.1 (10) 175.5 (10) *** *** 1212.9 ( 5)
40 360 *** 117.6 (10) 212.6 (10) *** *** 1692.9 ( 9)
40 400 *** 234.0 (10) 381.7 (10) *** *** 2140.3 ( 7)

In conclusion, PolyOpt shows a very satisfactory performance on general in-
teger instances, especially in the dense case, while being competitive on binary
instances. It is left as future work to evaluate its performance for mixed-integer
instances and for polynomials of higher degree.

An important open question is how to extend our approach to problems hav-
ing non-trivial constraints. An obvious idea would be to apply Lagrangian re-
laxation. In the case of linear constraints, the additional term in the objective
function would be separable and hence not deteriorate the quality of the under-
estimators, but the additional task of optimizing the Lagrangian multipliers has
to be addressed in an appropriate way. This is also left as future work.
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Abstract. We study the problem of finding a maximum matching in a
graph given by an input stream listing its edges in some arbitrary order,
where the quantity to be maximized is given by a monotone submod-
ular function on subsets of edges. This problem, which we call maxi-
mum submodular-function matching (MSM), is a natural generalization
of maximum weight matching (MWM). We give two incomparable algo-
rithms for this problem with space usage falling in the semi-streaming
range—they store only O(n) edges, using O(n log n) working memory—
that achieve approximation ratios of 7.75 in a single pass and (3 + ε)
in O(ε−3) passes respectively. The operations of these algorithms mimic
those of known MWM algorithms. We identify a general framework that
allows this kind of adaptation to a broader setting of constrained sub-
modular maximization.

Note. A full version of this extended abstract [1] can be found online
at the following URL: http://arxiv.org/abs/1309.2038.

1 Introduction

The explosion of data—in particular graph data—over the past decade has mo-
tivated a number of researchers to revisit several algorithmic problems on graphs
with a view towards designing space efficient algorithms that process their in-
puts in streaming fashion, i.e., via sequential access alone, though perhaps in
multiple passes. In particular, a series of recent works [2–7] have studied the
maximum cardinality matching (MCM) problem and its natural generalization,
the maximum weight matching (MWM) problem, on graph streams.

We study a further generalization of MWM: the maximum submodular-func-
tion matching (MSM) problem, which does not seem to have been studied in pre-
vious work. However, there has been plenty of work on general (non-streaming)
algorithms for submodular maximization under constraints more general than
matchings; see Section 1.2. Our techniques too lead to results for a wider class
of constraints, including hypermatchings and intersection of matroids.

A submodular function on a ground set X is defined to be a function f : 2X →
R that satisfies f(X ∪ {x}) − f(X) � f(Y ∪ {x}) − f(Y ), for all Y ⊆ X ⊂ X
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and x ∈ X \ X ; f is monotone if f(Y ) � f(X) whenever Y ⊆ X ⊆ X and
proper if f(∅) = 0. An instance of MSM consists of a graph G = (V,E) on vertex
set V = [n] := {1, 2, . . . , n} and a non-negative monotone proper submodular
function f whose ground set is E, i.e., f : 2E → R+. The goal is to output a
matching M∗ ⊆ E that maximizes f(M∗); we shall refer to such a matching as
an f -MSM of G. For a real number α � 1, an α-approximate f -MSM of G is a
matching M ⊆ E such that f(M) � α−1f(M∗).

Our concern is with graph streams: the input graph is described by a stream of
edges {u, v}, with u, v ∈ [n]. We assume that the number of vertices, n, is known
in advance and that each edge in E appears exactly once in the stream. The
order of edge arrivals is arbitrary, possibly adversarial. We seek algorithms for
MSM that use only quasi-linear working memory—i.e., O(n(log n)O(1)) bits of
storage, with O(n log n) being the holy grail—and process each edge very quickly,
ideally in O(1) time. Algorithms with such guarantees have come to be known as
semi-streaming algorithms [2]. Notice that Ω(n logn) bits are necessary simply
to store a matching that saturates Ω(n) vertices. To handle general f , we make
the standard assumption that f is presented by a value oracle.

1.1 Our Results

We give two incomparable semi-streaming approximation algorithms for the
MSM problem on graph streams, formally stated in the two theorems below.
For brevity, “submodular f ,” means a non-negative monotone proper submod-
ular function f , presented by a value oracle.

Theorem 1. For every submodular f , there is a one-pass semi-streaming al-
gorithm that outputs a 7.75-approximate f -MSM of an n-vertex input graph,
storing at most O(n) edges at all times.

Theorem 2. For every submodular f , and every constant ε > 0, there is a
multi-pass semi-streaming algorithm that makes O(ε−3) passes over an n-vertex
graph stream and outputs a (3 + ε)-approximate f -MSM of the graph. This al-
gorithm stores only a matching in the input graph at all times; in particular it
stores only O(n) edges.

Perhaps more important than these specific approximation ratios is the technique
behind these results. We identify a general framework for matching algorithms in
graph streams. We show that whenever an MWM algorithm fits this framework,
it can be adapted to the broader setting of MSM. The two theorems above
then follow by revisiting two recent MWM algorithms—those of Zelke [4] and
McGregor [3] respectively—and showing that they fit our framework.

To adapt an MWM algorithm, we need to assign a weight w(e) to each edge
e we encounter: using w(e) = f({e}) is too näıve to be useful, but we show that
w(e) := f(I∪{e})−f(I) works, where I is our “current solution.” For multi-pass
algorithms, this choice causes weights to change from one pass to another; with
appropriate analysis we can prove a good approximation ratio.
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Our framework is not deeply wedded to matchings: it is general enough to
capture set maximization problems constrained to abstract “independent sets,”
for a very general notion of independence. We obtain results for maximization
over intersection of p matroids and MWM and f -MSM algorithms for matchings
in hypergraphs, given a bound p on the size of hyperedges (in both cases, p is
a constant). Here, we have a maximum-submodular problem (MSIS, say—the
“IS” stands for “independent set”), and a maximum-weight problem (MWIS,
say) where the submodular function is modular. The results are summarized
below. We comment on the proofs briefly in Section 5.

Theorem 3. For every submodular f , the MWIS and f -MSIS problems, with in-
dependent sets being given either by a hypermatching constraint in p-hypergraphs
or by the intersection of p matroids, there are near-linear-space streaming algo-
rithms giving the following approximation ratios.

Problem type MWIS MSIS

One pass: p-hypergraphs; p matroids 2(p+
√

p(p− 1))− 1 4p

O(ε−3 log p) passes: p-hypergraphs; p partition matroids p+ ε p+ 1 + ε

The one-pass MWIS result for matroids was already known from the work of
Badanidiyuru Varadaraja [8]; the remaining results in Theorem 3 are novel.

We can strengthen some of our results by considering the curvature curv(f) of
the submodular function f , defined asmin{c : ∀A ⊆ E ∀ e ∈ E\A, we have f(A∪
{e}) − f(A) � (1 − c)f({e})}. This measures how far f is from being modular:
curv(f) ∈ [0, 1] and curv(f) = 0 iff f is modular. Our next result, whose proof
we omit in this extended abstract, gives approximation ratios for f -MSM and f -
MSIS that gradually improve to those for Zelke’s MWM algorithm and Badani-
diyuru Varadaraja’s MWIS algorithm as curv(f)→ 0.

Theorem 4. For every submodular f , the approximation ratios for f -MSM
in Theorem 1 and the one-pass approximation ratio for f -MSIS in Theorem 3 can
be improved to min{7.75, 5.585/(1− curv(f))} and min{4p, (2(p+

√
p(p− 1))−

1)/(1− curv(f))} respectively.

1.2 Context and Related Work

We place Theorems 1 and 2 in context. As noted before, our work is the first
to consider the MSM problem. For MWM, the one-pass semi-streaming algo-
rithms of Feigenbaum et al. [2], McGregor [3], Zelke [4], and Epstein et al. [5]
achieved approximation ratios of 6, 5.828, 5.585, and 4.911 respectively; all of
these algorithms except the last fit our aforementioned framework. McGregor’s
algorithm extends to give a ratio of (2+ ε) in O(ε−3) passes. Very recently, Ahn
and Guha [9] gave a (1 + ε) approximation with multiple passes, using a very
different algorithm that falls outside our framework.

For a more detailed summary of streaming MCM and MWM algorithms,
please see Ahn and Guha [9] or the full version of this paper [1].
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Besides streaming algorithms, another useful viewpoint is to consider f -MSM
as the problem of maximizing the submodular function f(S) subject to S being
a matching. This makes MSM an instance of constrained submodular maxi-
mization, which is a heavily-studied topic in optimization. Matroids form an
important class of constraints. One can consider more general “independence
systems,” such as the intersection of p different matroids on the same ground set
E (called a p-intersection system) or, even more generally, a p-system, wherein

∀A ⊆ E :
max{|S| : S ⊆ A, S maximally independent}
min{|S| : S ⊆ A, S maximally independent} � p .

This last generalization captures the constraint of S being a matching: matchings
form a 2-system. All of these classes of problems were studied in the seminal work
of Fisher, Nemhauser and Wolsey [10, 11]. More recently, Calinescu et al. [12]
gave a polynomial time (e/(e − 1))-approximation algorithm for maximizing f
subject to a matroid constraint. Lee et al. [13,14] considered maximization over p-
intersection systems and gave a local search algorithm with ratio p+ε, improving
upon p + 1 [11], known for the more general p-systems. Recently, Feldman et
al. [15] gave a local-search-based (p+ε)-approximation for “p-exchange systems,”
which captures matchings (with p = 2). Therefore they improved—after a span
of over 30 years—the best known approximation ratio for f -MSM from 3 [11] to
2 + ε. We invite the reader to compare with our Theorem 2.

Very recently, and concurrent with our work, Badanidiyuru and Vondrák [16]
gave a (p+1+ε)-approximation algorithm for submodular maximization over a p-
system that can be thought of as using O(ε−2 log2(m/ε)) passes, where m = |E|.
Our result in Theorem 3 uses fewer passes (for constant ε), but handles a smaller
class of constraints than p-systems.

Feldman et al. [15] and Badanidiyuru and Vondrák [16] give detailed sum-
maries of results on constrained submodular maximization.

1.3 Motivation and Significance of Our Results

Our study of MSM is inspired in part by its applicability to the Word Align-
ment Problem (WAP) from computational linguistics, as studied in Lin and
Bilmes [17]. We also submit that MSM considered as a data streaming problem
is a novel and pleasing marriage of several important theoretical ideas: submod-
ularity, data streaming, matching theory, and matroids.

In applications such as big data analytics, a good solution obtained quickly
may be preferred over a theoretically stronger guarantee given by a slower al-
gorithm. Our algorithms in this work should be seen in this light: they are
significant because they are faster algorithms with slightly worse approximation
ratios than best known offline algorithms. Moreover, they are able to handle
input presented in streaming fashion, a clear advantage when handling big data.
The classic greedy or local-search strategies are unsuitable for streamed input.
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2 Preliminaries

We start by making our model of computation precise. The input is an n-vertex
graph stream, defined as a sequence σ = 〈e1, e2, . . . , em〉 of distinct edges, where
each ei = (ui, vi) ∈ [n] × [n] and ui < vi. We put V = [n], E = {e1, . . . , em},
and G = (V,E). The submodular function f : 2E → R+, which is part of the
problem specification, is given by an entity external to the stream, called the
value oracle for f , or the f -oracle. A data stream algorithm, after reading each
edge from the input stream, is allowed to make an arbitrary number of calls to
the f -oracle, sending a subset S ⊆ E and getting f(S) in return. (In fact the
algorithms we design here make only O(1) such calls on average.) The algorithm
is charged for the space required to describe S. It is deemed to fail or abort if
it ever tries to obtain f(S) with S �⊆ E; this prevents it from “cheating” and
learning about E indirectly from oracle calls.

We cannot solve MSM exactly: the very special case MCM cannot be approxi-
mated any better than e/(e−1) in the semi-streaming setting [7]. As shown in the
full paper [1], even the non-streaming version does not admit a polynomial-time
approximation better than e/(e− 1).

2.1 A Framework for Streaming MSM and MSIS Algorithms

We proceed to describe a generic streaming algorithm for f -MSM, which defines
the framework alluded to in Section 1.1. In fact, as noted towards the end of Sec-
tion 1.1, our framework applies to the much more general problem of f -MSIS
(Maximum Submodular Independent Set), an instance of which is given by a
submodular f : 2E → R+ and a collection I ⊆ 2E of independent sets such that
∅ ∈ I. We put m := |E| and n := maxI∈I |I|. We assume that independence (i.e.,
membership in I) can be tested easily; we require no other structural property
of I. For the special case of MSM, I is the collection of matchings in a graph
with edge set E.

The generic algorithm for f -MSIS starts with a given independent set P (pos-
sibly empty) and then proceeds to make one pass over the input stream σ, at-
tempting to end up with an improved independent set I by the end of the pass.
The algorithm processes the elements in E in a pretend stream order that con-
sists of an arbitrary permutation of the elements in P , followed by the elements
in E \ P in the same order as σ. Throughout, the algorithm maintains a “cur-
rent solution” I ∈ I, a set S ⊆ E of “shadow elements” (this term is borrowed
from Zelke [4]), and a weight w(e) for each element e it has processed. The in-
tuition behind shadow elements is to have more scope to improve the current
solution. The algorithm bases its decisions on a parameter γ > 0, which we even-
tually tune to optimize our approximation ratio. For a set A ⊆ E, we denote
w(A) :=

∑
e∈A w(e). An augmenting pair for a set I ∈ I is a pair of sets (A, J)

such that J ⊆ I and (I \ J) ∪ A ∈ I. For e ∈ E, define A+ e to be A ∪ {e}.
Notice that Process-Element maintains the invariant that w(e) is defined

for all e ∈ I ∪ S. Therefore, Line 8 does not access an element weight before
defining it. The algorithm need only remember the weights of elements in I ∪
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Algorithm 1. Generic One-Pass Independent Set Improvement Alg. for f -MSIS

1: function Improve-Solution(σ, P, γ)
2: I ← ∅, S ← ∅
3: foreach e ∈ P in some arbitrary order do w(e) ← f(I + e)− f(I), I ← I + e
4: foreach e ∈ σ \ P in the order given by σ do Process-Element(e, I, S)
5: return I

6: procedure Process-Element(e, I, S) � Note: Assigns w(e), modifies I and S.
7: w(e) ← f(I ∪ S + e)− f(I ∪ S)
8: (A,J) ← a well-chosen augmenting pair for I with A ⊆ I ∪ S + e and w(A) �

(1 + γ)w(J)
9: S ← a well-chosen subset of (S \ A) ∪ J
10: I ← (I \ J) ∪A � Augment independent set I using A.

S. Therefore, the space usage of the algorithm is bounded by O((|P | + |I| +
|S|) logm) = O((n+ |S|) logm), since P and I are independent sets.

To instantiate this generic algorithm, one must specify the precise logic used
in Lines 8 and 9. If the algorithm is for MWIS rather than MSIS, then w(e)
values are already given and assignments to those values (see Lines 3 and 7)
should be ignored.

Definition 5. We say that an MWIS algorithm is compliant if each pass instan-
tiates Algorithm 1 in the above sense, i.e., it starts with some solution P ∈ I
computed in the previous pass and calls Improve-Solution(σ, P, γ). The pa-
rameter γ need not be the same for all passes.

Definition 6. For a submodular f , we define an f -extension of a compliant
MWIS algorithm A to be Algorithm 1, with the logic used in Lines 8 to 9 being
borrowed from A, and with values of the parameter γ possibly differing from
those used by A.
Lemma 7 (Modular to submodular). Let A be a one-pass compliant MWIS
algorithm that computes a Cγ-approximate MWIS when run with parameter γ.
Then, for every non-negative monotone proper submodular f , its f -extension
with parameter γ computes a (Cγ + 1 + 1/γ)-approximate f -MSIS.

3 A One-Pass Solution via Compliant Algorithms

Consider the f -extension with parameter γ of a particular one-pass compliant
algorithm. Let I denote its output and I∗ be an f -MSIS. Let Ie, Se denote the
contents of the variables I, S in Algorithm 1 just before element e is processed.
Let K = (

⋃
e∈E Ie)\ I denote the set of elements that were added to the current

solution at some point but were killed and did not make it to the final output.
Then

⋃
e∈E Se ⊆ I ∪K, because an element can become a shadow element only

when it was removed from the current solution at some point (see Line 9 of
Algorithm 1). Hence ⋃

e∈E(Ie ∪ Se) ⊆ I ∪K . (1)
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Lemma 8. For an f -extension of a compliant algorithm, w(K) � w(I)/γ.

Proof. Let Ae, Je be the sets A, J chosen at Line 8 when processing e. Each
augmentation by Ae (Line 10) increases the weight of the current solution by
w(Ae)− w(Je) � γw(Je). Hence, w(I)/γ �

∑
e∈E w(Je).

The set
⋃

e∈E Je consists of elements that were removed from the current
solution at some point. Thus, it includes K (the inclusion may be proper:K does
not contain elements that were removed from the current solution, reinserted,
and eventually ended up in I). Therefore, w(K) � w

(⋃
e∈E Je

)
�
∑

e∈E w(Je) �
w(I)/γ .

Lemma 9. For an f -extension of a compliant algorithm, we have w(I) � f(I).

Proof. Let eI1, e
I
2, . . . , e

I
s be an enumeration of I in order of processing, where

s = |I|. The logic of Algorithm 1 ensures that an element once removed from
the shadow set can never return to the current solution (though elements can
move between the two arbitrarily). Thus, I ∩ (IeIi ∪ SeIi

) = {eI1, eI2, . . . , eIi−1}.
Since I ∩ (IeIi ∪ SeIi

) ⊆ (IeIi ∪ SeIi
) and f is submodular, we have

f({eI1, eI2, . . . , eIi })−f({eI1, eI2, . . . , eIi−1}) � f(IeIi ∪SeIi
+eIi )−f(IeIi∪SeIi

)= w(eIi ) .

Summing this over i ∈ [s] gives f(I) = f(I)− f(∅) �
∑s

i=1 w(e
I
i ) = w(I).

Lemma 10. For an f -extension of a compliant algorithm, we have f(I∗) �
(1/γ + 1)f(I) + w(I∗).

Proof. Let eB1 , . . . , e
B
b be an enumeration of B := I ∪K in order of processing.

The set Bi := {eB1 , . . . , eBi−1} consists of elements inserted into the current solu-
tion before eBi was processed. Meanwhile IeBi ∪SeBi

is the subset of these elements

that were not removed from S before eBi was processed. Thus, Bi ⊇ IeBi ∪SeBi
for

all i ∈ [b]. By submodularity of f , f({eB1 , eB2 , . . . , eBi })− f({eB1 , eB2 , . . . , eBi−1}) �
f(IeBi ∪ SeBi

+ eBi ) − f(IeBi ∪ SeBi
) = w(eBi ) . Summing this over i ∈ [b] gives

f(B) = f(B)− f(∅) � w(B). Thus, we have

f(I ∪K) � w(I ∪K) = w(I) + w(K) � f(I) + w(I)/γ = (1/γ + 1)f(I) , (2)

where the last two inequalities use Lemma 9 and Lemma 8 respectively.
Now we bound f(I∗). Let I∗ \ (I ∪K) = {eI∗

1 , eI
∗

2 , . . . , eI
∗

t }; this enumeration
is in arbitrary order. Put D0 = I ∪K, Di = I ∪K ∪{eI∗

1 , . . . , eI
∗

i } for i ∈ [t]. By
Equation (1), Di−1 ⊇ I ∪K ⊇ IeI∗i

∪ SeI
∗

i
. Appealing to submodularity again,

f(Di)− f(Di−1) � f(IeI∗i ∪ SeI
∗

i
+ eI

∗
i )− f(IeI∗i ∪ SeI

∗
i
) = w(eI

∗
i ) .

Summing this over i ∈ [t] gives f(Dt) − f(D0) � w(I∗ \ (I ∪ K)) � w(I∗).
In other words, f(I ∪K ∪ I∗) − f(I ∪ K) � w(I∗). By monotonicity of f and
Equation (2), we have

f(I∗) � f(I ∪K ∪ I∗) � f(I ∪K) + w(I∗) � (1/γ + 1)f(I) + w(I∗) . (3)
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Proof (Lemma 7). Since the compliant algorithm A outputs a Cγ-approximate
MWIS, it satisfies w(I∗) � Cγw(I) for any weight assignment; in particular,
the weights assigned by its f -extension. Using Theorem 10 and Theorem 9, we
conclude that f(I∗) � (Cγ + 1 + 1/γ)f(I).

Proof (Theorem 1). Recall that an “independent set” is just a matching in the
setting of MWM and MSM. Zelke’s algorithm [4] chooses the augmenting pair
(A, J) as follows: A is chosen from an O(1)-sized “neighborhood” of the edge e
being processed, and J is set to be M � A: the set of edges in M that share a
vertex with some edge in A. At most two shadow edges are stored per edge in
the current matching, thus |S| = O(n) and a space bound of O(n logn) bits.

Zelke’s algorithm is compliant with Cγ = 2(1 + γ) + (1/γ + 1) − γ/(1 + γ)2

[4, Theorem 3]. By Lemma 7, its f -extension yields an approximation ratio of
2(1 + γ)2/γ − γ/(1 + γ)2, which attains a minimum value of 7.75 at γ = 1. This
proves the theorem.

4 A Multi-pass MSM Algorithm

In this section we prove Theorem 2. For this we first review McGregor’s multi-
pass MWM algorithm [3], which is compliant. Our algorithm is simply its f -
extension, as explained in Section 2.1.

To describeMcGregor’s algorithmwith respect to our framework (Algorithm1),
we need only explain the two choices we make inside Process-Edge. We always
setS = ∅ in Line 9. In Line 8, we choose the augmenting pair (A, J) so thatA = {e}
if possible, and A = ∅ otherwise, and J = M � A. Recall that M � A denotes the
set of edges in matching M that share a vertex with some edge in set A. This de-
scribes a single pass. The overall algorithm starts with an empty matching and
repeatedly invokes Improve-Matching with γ = 1/

√
2 for the first pass and

γ = 2ε/3 for the remaining passes. It stops when the multiplicative improvement
made in a pass drops below a certain well-chosen rational function of γ. McGregor
analyzes this algorithm to show that it makes at most O(ε−3) passes and termi-
nates with a (2 + 2ε)-approximate MWM.

In our f -extension, we use γ = 1 for the first pass and γ = ε/3 for the re-
maining passes. We lay out the logic of the resulting f -MSM algorithm explicitly
in Algorithm 2. The function Improve-Matching is exactly as in Algorithm 1
except that it calls Process-Edge(e,M), since S is never used.

Let M i denote the matching M computed by Algorithm 2 at the end of its
ith pass over σ. When an edge e is added to M in Line 12, we say that e is
born and that it kills the (at most two) edges in M � {e}. Notice that during
pass i > 1, thanks to the pretend stream order in which edges are processed
(cf. the discussion at the start of Section 2.1), initially all edges in M i−1 are
born without killing anybody.1 For the rest of the pass these edges are never
considered for addition to M .

1 This subtlety appears to have been missed in McGregor’s analysis [3] and it creates
a gap in his argument. Using a pretend stream order as we do fixes that gap.
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Algorithm 2. Multi-Pass Algorithm for f -MSM

1: function Multi-Pass-MSM(σ)
2: M ← Improve-Matching(σ, ∅, 1) � Obtains 8-approximate f -MSM.
3: γ ← ε/3, κ ← γ3/(2 + 3γ + γ2 − γ3)
4: repeat
5: wprev ← f(M)
6: M ← Improve-Matching(σ,M, γ)
7: until w(M)/wprev � 1 + κ
8: return M

9: procedure Process-Edge(e,M) � Compare with Algorithm 1.
10: w(e) ← f(M + e)− f(M)
11: if w(e) � (1 + γ)w(M � {e}) then
12: M ← M \ (M � {e}) + e

Let Ki denote the set of edges killed during pass i (some of them may be born
during a subsequent pass). Then M i∪Ki is exactly the set of edges born in pass
i. These edges can be made the nodes of a collection of disjoint rooted killing
trees2 where the parent of a killed edge e is the edge e′ that killed it. The set
of roots of these killing trees is precisely M i. Let T i(e) denote the set of strict
descendants of e ∈M i in its killing tree. Then Ki =

⋃
e∈Mi T i(e).

Let Bi = M i∩M i−1 denote the set of edges that pass i retains in the matching
from the previous pass. By the preceding discussion, it follows that T i(e) = ∅
for all e ∈ Bi.

4.1 Analysis

We now analyze Algorithm 2. As before, let M∗ denote an optimal solution to
the f -MSM instance. The first pass of the algorithm is McGregor’s [3] compliant
algorithm with Cγ = 1/γ+3+2γ. Applying Lemma 7 and using γ = 1, we get:

Lemma 11. We have f(M1) � f(M∗)/8.

Define τ to be the number of passes made by Algorithm 2. Let wi(e) denote
the weight assigned to edge e in Line 10 during the ith pass. For the rest of
this section, γ denotes the parameter value used by passes 2 through τ , and
κ denotes the corresponding value assigned at Line 3. To analyze the result of
those passes, we first borrow three results—stated in the next three lemmas—
from McGregor’s analysis [3, Lemma 3 and Theorem 3], which in turn borrows
from the Feigenbaum et al. analysis [2, Theorem 2].

Lemma 12. For all i ∈ [2, τ ] and all e ∈M i, we have wi(T
i(e)) � wi(e)/γ.

Proof. Directly analogous to Lemma 8.

Lemma 13. We have wτ (B
τ )/wτ (M

τ ) � (γ − κ)/(γ + γκ).

2 Feigenbaum et al. [2] and McGregor [3] used the evocative term “trail of the dead.”
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Proof (sketch). The logic in Lines 11 to 12 ensures that, for all i ∈ [2, τ ], we
have wi(M

i \Bi) � (1 + γ)wi(M
i−1 \Bi). In particular, this holds at i = τ .

During the initial phase of pass i � 2, the setM ismonotonically built up from
∅ to M i−1 according to a pretend stream order and weights are assigned to edges
inM i−1 according to Line 10. Because of this monotonicity, summing the weights
of these edges causes the f terms to telescope, giving wi(M

i−1) = f(M i−1).
So the stopping criterion in Line 7 ensures that wτ (M

τ )/wτ (M
τ−1) � 1 + κ.

Combining this with the inequality in the last paragraph (at i = τ) yields the
lemma after some straightforward algebra.

Lemma 14. We have wi(M
∗) � (1+γ)

∑
e∈Mi(wi(T

i(e))+2wi(e)), ∀i ∈ [2, τ ].

Proof (remarks only). This lemma has a rather creative proof, wherein the
weights of edges in M∗ are charged to edges in M i ∪Ki using a careful charge
transfer scheme. This scheme is described in McGregor’s analysis [3] and also in
the full version of our paper.

We may now analyze Algorithm 2, thereby proving Theorem 2.

Proof (Theorem 2, sketch). Due to lack of space we prove only the approximation
ratio. We note that bounding the number of passes does require some care.
As noted earlier, T i(e) = ∅ for all e ∈ Bi and Ki =

⋃
e∈Mi T i(e). Therefore,

Kτ =
⋃

e∈Mτ\Bτ T τ (e), which gives

wτ (K
τ ) =

∑
e∈Mτ\Bτ

wτ (T
τ (e)) �

∑
e∈Mτ\Bτ

wτ (e)

γ
=

wτ (M
τ )− wτ (B

τ )

γ
, (4)

where the inequality follows from Lemma 12. Using Equation (4) and relating
the first and third terms in Equation (2), we get

f(M τ ∪Kτ ) � wτ (M
τ ) +

wτ (M
τ )− wτ (B

τ )

γ
=

(
1 +

1

γ

)
wτ (M

τ )− 1

γ
wτ (B

τ ) .

(5)
Using Lemma 14, we now get

wτ (M
∗) � (1 + γ)

∑
e∈Mτ (wτ (T

τ (e)) + 2wτ (e))

= (1 + γ)
[(∑

e∈Mτ\Bτ wτ (T
τ (e))

)
+ 2wτ (M

τ )
]

∵
⋃

e∈Bτ T τ (e) = ∅

� (1 + γ)
[(∑

e∈Mτ\Bτ
wτ (e)

γ

)
+ 2wτ (M

τ )
]

by Lemma 12

= (1/γ + 1)(wτ (M
τ )− wτ (B

τ )) + (2 + 2γ)wτ (M
τ )

= (1/γ + 3 + 2γ)wτ (M
τ )− (1 + 1/γ)wτ (B

τ ) .

By using Equation (3), we have f(M∗) � f(M τ ∪ Kτ ) + wτ (M
∗). So adding

Equation (5) and above inequality, we get
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f(M∗) � wτ (M
τ ) [1 + 1/γ + 1/γ + 3 + 2γ]− wτ (B

τ ) [1 + 2/γ]

�
[
4 +

2

γ
+ 2γ −

(
1 +

2

γ

)
γ − κ

γ + γκ

]
wτ (M

τ ) by Lemma 13

= (3 + 3γ)wτ (M
τ ) substituting κ

� (3 + ε)f(M τ ) by Lemma 9

and this shows that Algorithm 2 computes a (3 + ε)-approximate f -MSM.

5 Generalizations: Multiple Matroids, Hypergraphs

In the previous two sections, we have given most of the details of the proofs
of our results for MSM (Theorems 1 and 2). We close with some brief remarks
on Theorem 3 which generalizes our results to maximization over (one or more)
matroids and to MSM in p-hypergraphs. Detailed algorithms and proofs appear
in the full version of the paper.

Given p matroids M1 = (E, I1), . . . ,Mp = (E, Ip) over a common ground
set E, and a submodular f : 2E → R+, we consider the problem of finding
argmaxI∈I1∩···∩Ip

f(I), in the streaming model, where elements of E arrive in the
stream and membership in each independence system Ii is given by a correspond-
ing oracle. Badanidiyuru Varadaraja [8] gave a one-pass (2(p+

√
p(p− 1))− 1)-

approximation algorithm for this problem when f is modular. His algorithm is
compliant. Hence, by Lemma 7, we get an approximation ratio of 4p when f is
submodular (by setting γ = 1). Our algorithm uses O(n(logm)O(1)) memory,
where m := |E| and n := maxI∈I1∩···∩Ip |I|.

In the multipass setting, we are unable to extend Badanidiyuru Varadaraja’s
charging scheme (cf. our remarks following Lemma 14) to argue that his algo-
rithm can be used in Line 6 of Algorithm 2. But we can give a simpler charging
scheme for partition matroids. We get the approximation ratios p+ε and p+1+ε
for the modular and submodular cases, respectively, by setting γ = ε/(p + 1)
for both cases, and κ = γ3/((p − 1)(1 + γ)2 − γ3) for the modular case and
κ = γ3/(p+(2p− 1)γ+(p− 1)γ2−γ3) for the submodular case, in Algorithm 2.

A hypergraph where every hyperedge contains at most p vertices is called a
p-hypergraph. A matching is a pairwise disjoint subset of hyperedges. Most of
the work required to derive the results claimed in Theorem 3 for hypergraphs
goes towards appropriately generalizing Lemma 14 by designing a generalized
charging scheme. Again, details appear in the full version of the paper.
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Abstract. We study the approximability of the All-or-Nothing mul-
ticommodity flow problem in directed graphs with symmetric demand
pairs (SymANF). The input consists of a directed graph G = (V, E) and
a collection of (unordered) pairs of nodes M = {s1t1, s2t2, . . . , sktk}. A
subset M′ of the pairs is routable if there is a feasible multicommodity
flow in G such that, for each pair siti ∈ M′, the amount of flow from si
to ti is at least one and the amount of flow from ti to si is at least one.
The goal is to find a maximum cardinality subset of the given pairs that
can be routed. Our main result is a poly-logarithmic approximation with
constant congestion for SymANF. We obtain this result by extending the
well-linked decomposition framework of [6] to the directed graph setting
with symmetric demand pairs. We point out the importance of studying
routing problems in this setting and the relevance of our result to future
work.

1 Introduction

We consider some fundamental maximum throughput routing problems in di-
rected graphs. In this setting, we are given a capacitated directed graph G =
(V,E) with n nodes and m edges. We are also given source-destination pairs of
nodes (s1, t1), (s2, t2), . . . , (sk, tk). The goal is to select a largest subset of the
pairs that are simultaneously routable subject to the capacities; a set of pairs is
routable if there is a multicommodity flow for the pairs satisfying certain con-
straints that vary from problem to problem (e.g., integrality, unsplittability, edge
or node capacities). Two well-studied optimization problems in this context are
the Maximum Edge Disjoint Paths (MEDP) and the All-or-Nothing Flow (ANF)
problem. In MEDP, a set of pairs is routable if the pairs can be connected using
edge-disjoint paths. In ANF, a set of pairs is routable if there is a feasible mul-
ticommodity flow that fractionally routes one unit of flow from si to ti for each
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routed pair (si, ti). ANF, introduced in [9,5], can be seen as a relaxed version of
MEDP where the flow for the routed pairs is not required to be integral.

MEDP and ANF are both NP-hard and their approximability has attracted
substantial attention. Over the last decade, several non-trivial results on both
upper bounds and lower bounds have led to a much better understanding of these
problems. At a high level, one can summarize this progress as follows. MEDP
and ANF admit poly-logarithmic approximation in undirected graphs if one allows
constant congestion1; in fact, a congestion of 2 is sufficient for MEDP [11] and for
ANF no extra congestion is needed [5]. Moreover, both problems are hard to to

approximate to within a factor of Ω(log
1−ε
c+1 n) for any constant congestion c ≥ 1

[1]; the hardness is under the assumption that NP �⊆ ZPTIME(npolylog(n)).
In sharp contrast, in directed graphs both problems are hard to approximate to
within a polynomial factor for any constant congestion c ≥ 1; the hardness factor
is nΩ(1/c) [10]. The upper bounds and lower bounds on the approximability are
closely related to corresponding integrality gap bounds on a multicommodity
flow relaxation for these problems.

In this paper, we initiate the study of maximum throughput routing prob-
lems in directed graphs in the setting where the demand pairs are symmetric.
Informally, in a symmetric demand pair instance, the input pairs are unordered
and a pair siti is routed only if both the ordered pairs (si, ti) and (ti, si) are
routed. In particular, we focus our attention on the SymANF problem. The input
consists of a directed graph G = (V,E) and a collection of (unordered) pairs of
nodes M = {s1t1, s2t2, . . . , sktk}. A subset M′ of the pairs is routable if there
is a feasible multicommodity flow in G such that, for each pair siti ∈ M′, the
amount of flow from si to ti is one unit and the amount of flow from ti to si
is one unit2. We will assume without loss of generality that G has only node-
capacities; this allows us to relate to, and use ideas from, (directed) treewidth.
The goal is to find a maximum cardinality subset of the given pairs that can be
routed. Our main result is the following theorem that gives a poly-logarithmic
approximation with constant congestion for SymANF.

Theorem 1. There is a polynomial time algorithm that, given any instance of
the SymANF problem in directed graphs, it routes Ω(OPT/ log2 k) pairs with con-
stant node congestion, where OPT is the value of an optimal fractional solution
for the instance.

1 A routing has congestion c if it violates the capacities by a factor of at most c.
2 There are alternative ways to define routability that captures symmetry. One option
is to require a flow of 1/2 unit in each direction which is compatible with a total
of one unit of flow entering and leaving each terminal. Another option is to require
that for any orientation of the demand pairs, there is a feasible multicommodity for
the pairs with one unit for each pair in the direction given by the orientation. For
simplicity we require one unit of flow in each direction which results in a factor of 2
loss in the congestion when compared to other models.
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The congestion that we guarantee is 64. We believe that the congestion can be
improved, but we have not attempted to optimize the constant. Our algorithm
uses a natural LP relaxation for the problem as a starting point and we also
show a poly-logarithmic upper bound on the integrality gap of the relaxation.
Some simple and natural extensions such as handling capacitated graphs and
pairs with demand values can be handled via known techniques and we do not
address them in this version.

We observe that, via existing results on the hardness of ANF in undirected
graphs with congestion [1], one can conclude that SymANF with congestion c

is hard to approximate to within a factor of logΩ(1/c) n for any fixed c unless
NP ⊆ ZPTIME

(
npolylogn

)
.

A strong motivation for this work, in addition to understanding the com-
plexity of routing problems in directed graphs, is the connection between struc-
tural graph theory and routing problems. Recent results on routing have led to
progress in graph theory via the connection to treewidth [3,4]. Routing in di-
rected graphs with symmetric demands is, in a similar vein, related to the notion
of directed treewidth [12,13]. We defer a detailed discussion of this relationship,
other connections, and related work to a longer version of this paper.

1.1 Overview of the Algorithm and Technical Contributions

Let (G,M) be an instance of SymANF. Let T be the set of all nodes that par-
ticipate in the pairs of M; we refer to the nodes in T as the terminals. Our
algorithm for SymANF in directed graphs follows the framework of Chekuri,
Khanna, and Shepherd [5,6] for the ANF problem in undirected graphs. In a
nutshell, the framework decomposes an arbitrary instance of ANF into several
instances that are flow-well-linked. The set of terminals T = {s1, t1, . . . , sk, tk} is
flow-well-linked if any matching on the terminals is routable. This is essentially
equivalent (modulo a factor of 2 in congestion) to saying that the G admits a
symmetric product multicommodity flow where the weight on each terminal is
1 and is 0 on every non-terminal. If the terminals are flow-well-linked, we can
route all the input pairs. Thus the heart of the matter is showing that an arbi-
trary instance can be decomposed into well-linked instances without losing too
much flow.

The decomposition has two main components. The first step is a weaker de-
composition in which we take a fractional solution to a natural multicommodity
flow based LP (described in Section 2.1) and use it to decompose the instance
into instances that are only fractionally flow-well-linked. More precisely, there
is a weight function π : T → [0, 1] and the terminals are flow-well-linked with
respect to these weights; if all terminals have weight 1 then they are flow-well-
linked. The second step is a clustering step in which we take a fractionally
flow-well-linked instance and we identify a large subset of the pairs such that
their endpoints are flow-well-linked. In this paper, we show how to implement
these two steps for the SymANF problem in directed graphs. In the first step,
we extend the approach of [6] to our setting; we defer this extension to a longer
version of this paper. We note that the approximation factor that we lose in the
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decomposition is proportional to the flow-cut gap; for symmetric instances, the
flow-cut gap is only polylog(k).

The second step poses several technical difficulties in directed graphs and it
is our main technical contribution. We briefly highlight some of the difficulties
involved in the clustering step, and we refer the reader to Section 4 for an
outline of our approach. Chekuri, Khanna, and Shepherd [6] gave a simple
clustering technique for edge-capacitated undirected graphs. Roughly speaking,
the approach is to take a spanning tree and to partition it into edge-disjoint
subtrees where each subtree gathers roughly a unit weight from π. These subtrees
are then used to find the desired flow-well-linked subset of pairs/terminals; one
terminal is picked from each subtree. The clustering step is more involved in
node-capacitated undirected graphs. The spanning tree approach, combined with
some preprocessing to reduce the degree, gives a clustering for node-capacitated
graphs with slightly weaker parameters [6]. In [7], the authors gave a stronger
clustering for the node-capacitated setting; this approach is more involved than
the spanning tree clustering and it exploits a connection between well-linked
sets and treewidth; recent work [4] obtains a stronger result but requires more
involved ideas. In directed graphs, there is no simple clustering process akin to
using a spanning tree (or even an arborescence). Instead, our approach exploits
the connection between well-linked sets and directed treewidth. However, the
main challenge is to make this algorithmic. We also mention that, in addition
to finding a large flow-well-linked set Y from a fractionally flow-well-linked set
X , we also need to ensure that Y contains a large enough matching from the
original set of pairs. For this purpose, we rely on a flow augmentation tool
developed in [8]. These difficulties are also the reason why we are only able to
obtain a constant congestion for SymANF while ANF admits a poly-logarithmic
ratio with congestion 1 in edge-capacitated graphs [5] and with congestion (1+ε)
in node-capacitated graphs [6].

Organization: Section 2 introduces the main definitions and technical tools
that we use, and it describes the approximation algorithm for SymANF. Section 3
and Section 4 outline the well-linked decomposition and clustering technique for
directed graphs with symmetric demand pairs that underlie the algorithm.

2 Approximation Algorithm for SymANF

2.1 Preliminaries and Setup

In the following, we work with an instance (G,M) of the SymANF problem,
where G = (V,E) is a directed graph andM = {s1t1, . . . , sktk} is a collection of
node pairs. We refer to the nodes participating in the pairs ofM as terminals,
and we use T to denote the set of all terminals. We assume that the pairs M
form a perfect matching on T and each terminal is a leaf in G, i.e., each terminal
is connected to a single neighbor using an edge in each direction. One can reduce
an arbitrary instance to an instance that satisfies these assumptions as follows.
If a node v participates in several pairs, we make a copy of v for each of the pairs
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it participates in, and attach the copy v′ to v using an edge in each direction;
finally we replace v by v′ in the pair. Similarly, if a terminal is not a leaf, we
make a copy of the terminal, we attach the copy to the original node as a leaf,
and we replace the terminal by its copy in the pairs that contain it. Note that,
if a set of pairs was routable in the original instance, then it is routable in the
new instance with congestion at most 2.

LP Relaxation: We consider a natural multicommodity flow relaxation for the
SymANF problem. For each ordered pair (u, v) of nodes of G, let P(u, v) be
the set of all paths in G from u to v. Since M forms a matching on T , for all
i �= j, the sets P(si, ti), P(ti, si), P(sj , tj), and P(tj , sj) are pairwise disjoint.

Let P =
⋃k

i=1(P(si, ti) ∪ P(ti, si)). For each path p ∈ P , we have a variable
f(p) that is equal to the amount of flow on p. For each unordered pair siti ∈M
we have a variable xi to indicate whether to route the pair or not. The LP
relaxation ensures the symmetry constraint: there is a flow from si to ti of value
xi and a flow from ti to si of value xi. Recall that we will be working with the
node-capacitated problem and each node has unit capacity.

(symANF-LP)

max

k∑
i=1

xi

s.t.
∑

p∈P(si,ti)

f(p) ≥ xi 1 ≤ i ≤ k

∑
p∈P(ti,si)

f(p) ≥ xi 1 ≤ i ≤ k

∑
p: v∈p

f(p) ≤ 1 v ∈ V (G)

xi ≤ 1 1 ≤ i ≤ k

f(p) ≥ 0 p ∈ P

The dual of the symANF-LP relaxation has polynomially many variables and ex-
ponentially many constraints. The separation oracle for the dual is the shortest
path problem. Thus we can solve the relaxation in polynomial time. Alterna-
tively, we can write an equivalent LP relaxation that is polynomial sized.

Multicommodity Flows and Node Separators: Let G = (V,E, cap) be
a directed node-capacitated graph with node capacities given by cap. A mul-
ticommodity flow instance in G is a demand vector d that assigns a demand
value d(u, v) ∈ R+ to each ordered pair (u, v) of nodes of G. The instance is
symmetric if d(u, v) = d(v, u) for all pairs (u, v). The instance is a product mul-
ticommodity flow instance if d(u, v) = w(u)w(v), where w : V → R+ is a weight
function on the nodes of G. Note that a product multicommodity flow instance
is symmetric. In the following, we only consider symmetric multicommodity flow
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instances. The instance is routable if there is a feasible flow that routes d(u, v)
units of flow from u to v for each pair (u, v). The maximum concurrent flow for
d is the maximum value λ ≥ 0 such that λd is routable. The demand separated
by a set C ⊆ V of nodes, denoted by demd(C), is the total demand of all of the
unordered pairs uv such that u and v are not in the same strongly connected
component of G − C. A sparsest node separator is a set C for which the ratio
cap(C)/demd(C) is minimized. The flow-cut gap in G is the maximum value,
over all symmetric instances d in G, of the ratio between the minimum sparsity
of a node separator and the maximum concurrent flow. A node separation in G
is a partition (A,B,C) of the nodes of G such that there is no edge of G from
A to B (note that there can be an edge of G from B to A).

Well-Linked Sets: There are two notions of well-linkedness that have been used
for routing problems in undirected graphs [6]; one is based on a flow requirement
and the other is based on a cut requirement. In the following, we define directed
versions of these two notions and we show some basic properties of these notions.

Flow-well-linked sets: Let G be a directed graph with unit capacities on the
nodes. We define a fractional version of flow-well-linkedness as follows. Let π :
X → [0, 1] be a weight function on X . Let d be the following demand vector:
d(u, v) = π(u)π(v)/π(X) for each ordered pair (u, v) of nodes in X . The set X
is π-flow-well-linked in G iff d is routable in G. For a scalar c ∈ [0, 1] we say
that X is c-flow-well-linked if X is π-flow-well-linked, where π(v) = c for each
vertex v ∈ X .

Cut-well-linked sets: A set X ⊆ V is cut-well-linked in G iff, for any two
disjoint subsets Y and Z of X of equal size, there are |Y | node-disjoint paths
from Y to Z in G. Recall that a node is a leaf in G if it is connected to a single
neighbor using an edge in each direction. If the nodes of X are leaves in G, an
equivalent definition is the following. The setX is cut-well-linked iff, for any node
separation (A,B,C) satisfyingX∩C = ∅, we have |C| ≥ min {|X ∩ A|, |X ∩B|}.
We define a fractional version of cut-well-linkedness as follows. Let X be a set
of nodes of G and let π : X → [0, 1] be a weight function on X . Suppose that
all the nodes in X are leaves of G. The set X is π-cut-well-linked in G if,
for any node separation (A,B,C), we have |C| ≥ min {π(A), π(B)}. Note that,
since the nodes in X are leaves, it suffices to check this condition for separations
(A,B,C) for which π(C) = 0. Now consider a set X that contains nodes that are
not leaves. For each node x ∈ X , we add a new node x′ and connect x′ to x using
two edges, one in each direction. Let X ′ be the set of new nodes, let G′ be the
resulting graph, and let π′ : X ′ → [0, 1] be the weight function π′(x′) = π(x) for
each node x ∈ X . The set X is π-cut-well-linked in G iff X ′ is π′-cut-well-linked
in G′.

Well-Linked Decomposition: The following theorem is an extension to di-
rected graphs of the well-linked decomposition technique introduced by [6] for
routing problems in undirected graphs. The proof follows the outline of the
approach in [6] and it is deferred to a longer version of this paper. The decom-
position algorithm is given in Section 3.
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Theorem 2. Let OPT be the value of a solution to the symANF-LP relaxation
for a given instance (G,M) of SymANF. Let α = α(G) ≥ 1 be an upper bound
on the worst case flow-cut gap for product multicommodity flows in G. There is
a partition of G into node-disjoint induced subgraphs G1, G2, . . . , G	 and weight
functions πi : V (Gi)→ R+ with the following properties. LetMi be the induced
pairs ofM in Gi and let Xi be the endpoints of the pairs in Mi. We have

(a) πi(u) = πi(v) for each pair uv ∈Mi.
(b) Xi is πi-flow-well-linked in Gi.

(c)
∑	

i=1 πi(Xi) = Ω(OPT/(α logOPT)) = Ω(OPT/ log2 k).

Moreover, such a partition is computable in polynomial time if there is a polyno-
mial time algorithm for computing a node separator with sparsity at most α(G)
times the maximum concurrent flow.

From Fractional Well-Linked Sets to Well-Linked Sets: We give an out-
line of the proof of the following theorem in Section 4.

Theorem 3. Let X be a π-flow-well-linked set in G and let M be a perfect
matching on X such that π(u) = π(v) for each pair uv ∈ M. There is a matching
M′ ⊆ M on a set X ′ ⊆ X such that X ′ is 1/32-flow-well-linked in G and
|M′| = 2|X ′| = Ω(π(X)). Moreover, given X and M, we can construct X ′ and
M′ in polynomial time.

Routing a Flow-Well-Linked Instance: Finally, we observe that, if an in-
stance of SymANF is c-flow-well-linked for some c ≤ 1, then we can route all of
the pairs with congestion at most 2/c.

Proposition 1. Let (G,M) be an instance of SymANF and let X be the set of
all vertices that participate in the pairs ofM. If X is c-flow-well-linked for some
c ≤ 1, then we can route all of the pairs ofM with congestion at most 2/c.

2.2 The Approximation Algorithm for SymANF

In this section, we describe our algorithm for SymANF. Let (G,M) be an instance
of SymANF. The algorithm is the following.

(1) Solve the relaxation symANF-LP to get an optimal fractional solution (x, f)
for the instance (G,M).

(2) Use thewell-linkeddecomposition (Theorem2) to get a collection (G1,M1, π1),
. . . , (G	,M	, π	) of disjoint instances and weight functions.

(3) For each instance (Gi,Mi, πi) in the decomposition, use the clustering tech-
nique (Theorem 3) to get an instance (Gi,M′

i).
(4) For each instance (Gi,M′

i), route all of the pairs ofM′
i inGi (Proposition 1).

Output the union of these routings.

Thenumber ofpairs routedby thealgorithm is
∑	

i=1 |M′
i| =

∑	
i=1 Ω(π(V (Mi)))=

Ω(OPT/ log2 k). Since each instance (Gi,M′
i) is 1/32-flow-well-linked, the routing

in Gi has congestion at most 64. Since the instances are node disjoint, the conges-
tion of the final routing is at most 64. This completes the proof of Theorem 1.
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Decomposition Algorithm

Input: Strongly connected subgraph H .
Output: Node-disjoint subgraphs H1,H2, . . . ,H� with associated weight functions
π1, π2, . . . , π�, where each Hi is a node-induced subgraph of H .

(1) Suppose that 0 < w(H) ≤ α log OPT. Let π(u) = w(u;H)/(8α log OPT) for each
node u ∈ V (H). Stop and output H and π.

(2) Suppose thatw(H) > α log OPT. Let d be the following demand vector: d(u, v) =
w(u;H)w(v;H)/w(H) for each ordered pair (u, v) of nodes in H . Let λ be the
maximum concurrent flow for d.
(a) If λ ≥ 1/(8α log OPT), stop the recursive procedure. Let π(u) =

w(u;H)/(8α log OPT) for each node u ∈ V (H). Output H and π.
(b) Otherwise find a node separation (A,B,C) such that |C| ≤

min
{∑

a∈A w(a;H),
∑

b∈B w(b;H)
}
/(4 log OPT). Recursively decompose

each strongly connected component of H − C. Output the decompositions
of the strongly connected components.

Fig. 1. Well-linked decomposition algorithm

3 Well-Linked Decomposition

In this section, we give the decomposition algorithm guaranteed by Theorem 2.
We follow the notation and the approach introduced in [6] for edge and node-
capacitated multicommodity flow problems in undirected graphs.

Let (x, f) be a solution to the symANF-LP with value OPT =
∑k

i=1 xi. The
flow f is a symmetric multicommodity flow; as before, we view f as a path-based
flow. Let H be a node-induced subgraph of G. For each ordered pair (u, v) of
nodes in H , let γ(u, v;H) be the total amount of f -flow on paths p from u to
v that are completely contained in H . For each unordered pair uv of nodes in
H , let γ′(u, v;H) = γ′(v, u;H) = min {γ(u, v;H), γ(v, u;H)}. For each node u
in H , let w(u;H) =

∑
v∈V (H) γ

′(u, v;H). Let w(H) =
∑

u∈V (H) w(u;H).
The algorithm is given in Figure 1. We apply the algorithm to each strongly

connected component of G in order to get a decomposition of G into node-
induced disjoint subgraphs G1, G2, . . . , G	 with associated weight functions π1,
π2, . . . , π	. The resulting decomposition satisfies the conditions of Theorem 2,
and we defer the proof to a longer version of this paper.

4 From Fractional Well-Linked Sets to Well-Linked Sets

In this section, we prove Theorem 3. We prove the theorem in two steps. In the
first step, we show that there exists a set Y of cardinality Ω(π(X)) such that Y
is Ω(1)-flow-well-linked. Additionally, the set Y can send flow to X and receive
flow from X . In the second step, we use Y to select a matchingM′ ⊆M of size
Ω(|Y |). Before we give details of this procedure we first give an intuitive (and
non-constructive) argument that motivates the approach. This is partly inspired
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by the work in [7] and differs from the low-degree spanning tree based clustering
that has been the main approach in the undirected case. The reader can skip
the following paragraph and go straight to the technical proof.

Intuitive Argument: Suppose G has a set X that is π-well-linked. One can
show that the directed treewidth3 of G is within a constant factor of the largest
well-linked set in G. One can adapt a similar argument to show that the di-
rected treewidth of G is Ω(π(X)) where X is π-cut-well-linked. Applying ap-
proximate duality again implies that there is a well-linked set Z in G such that
|Z| = Ω(π(X)). Since Z’s existence was shown, essentially, via the π-cut-well-
linkedness of X , it is intuitive that there is such a Z that is reachable from X
in the following sense. There is a flow from X to Z where each node in Z re-
ceives one unit of flow and each node v in X sends π(v) units of flow. Similarly
there is a flow from Z to X . From this property and the fact that X is π-flow-
linked, one can argue that Z is Ω(1)-flow-well-linked. We then have to identify
a subset X ′ ⊂ X that is flow-well-linked. Moreover, for the SymANF problem
we need to ensure that for the initial matching M on X there is a sufficiently
large sub-matching of M induced on X ′. These latter arguments require an in-
cremental flow-augmentation technique from [8]. The main technical challenge is
to efficiently find a Z reachable from X as described above. Surprisingly, we are
able to show that a simply greedy iterative approach based on the intuition of
the existence argument, with a careful argument, works to give the desired set
Z modulo constant congestion. We believe that this is a useful technical build-
ing block for further work in this area. Now we give an outline of the formal
argument.

First Step: Finding a Large Well-Linked Set. In the first step, we find a
set Y with the following properties:

Theorem 4. Let G be a directed graph. Let X be a set of nodes of G and let
π : X → (0, 1] be a weight function on X. Suppose that X is π-flow-well-linked
in G. There is a polynomial time algorithm that constructs a set Y ⊆ V (G) with
the following properties. We have

(P1) |Y | = �π(X)/8�.
(P2) Y is 1/4-flow-well-linked in G.

Additionally, for any subset X ′ ⊆ X such that π(X ′) ≤ π(X)/15, we have

(Q1) There is a single commodity flow in G from X ′ to Y such that each node
x ∈ X ′ sends π(x)/64 units of flow and each node in Y receives at most
one unit of flow.

(Q2) There is a single commodity flow in G from Y to X ′ such that each node
x ∈ X ′ receives π(x)/64 units of flow and each node in Y sends at most
one unit of flow.

3 We refer the reader to [12] for the definition of directed treewidth.
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The main ingredient in the proof of Theorem 4 is the following lemma. The
lemma shows that, if we have a set X that is π-flow-well-linked, then there
exists a set Y of size Ω(π(X)) such that Y is Ω(1)-flow-well-linked. The main
idea behind the lemma is the following. If X is π-cut-well-linked and Z is a
node separator of size less than π(X)/4, there is a unique strongly connected
component β(Z) of G−Z whose π-weight is more than half the weight of X . The
main insight is that, if we consider the set Y of size �π(X)/4� for which |Y ∪β(Y )|
is minimum, this gives us the desired set. This gives us a non-constructive proof
of the existence of such a set Y , and we show that a simple iterative procedure
will construct such a set in polynomial time.

Lemma 1. Let G be a directed graph. Let X be a set of nodes of G and let
π : X → (0, 1] be a weight function on X. Suppose that X is π-cut-well-linked in
G. There is a polynomial time algorithm that constructs a set Y ⊆ V (G) with
the following properties. We have

(R1) |Y | = �π(X)/4�.
(R2) There is a single commodity flow in G from X to Y such that each node

x ∈ X sends at most π(x) units of flow and each node in Y receives one
unit of flow.

(R3) There is a single commodity flow in G from Y to X such that each node
in Y sends one unit of flow and each node x ∈ X receives at most π(x)
units of flow.

Now we are ready to sketch the proof of Theorem 4.

Proof of Theorem 4: Since X is π-flow-well-linked in G, the set X is (π/2)-
cut-well-linked in G. By Lemma 1, there is a set Y with the following properties.
• |Y | = �π(X)/8�.
• There is a single commodity flow f1 in G from X to Y such that each node
x ∈ X sends at most π(x)/2 units of flow and each node in Y receives one
unit of flow.
• There is a single commodity flow f2 in G from Y to X such that each node
in Y sends one unit of flow and each node x ∈ X receives at most π(x)/2
units of flow.

One can verify that the properties above imply that Y is 1/4-flow-well-linked,
and thus Y satisfies the conditions (P1) and (P2) in the theorem statement.

Consider a set X ′ ⊆ X such that π(X ′) ≤ π(X)/15. We can verify that X ′

and Y satisfy conditions (Q1) and (Q2) as follows. Let X1 ⊆ X be the set of all
nodes x ∈ X such that x sends at least π(x)/32 units of flow in f1. Let X2 ⊆ X
be the set of all nodes x ∈ X such that x receives at least π(x)/32 units of
flow in f2. It is straightforward to show that π(X1) ≥ π(X)/15 and π(X2) ≥
π(X)/15. Therefore π(X ′) ≤ π(X1) and π(X ′) ≤ π(X2). Consider the following
multicommodity flow instance d: d(x′, x) = π(x′)π(x)/(32π(X1)) for each pair
(x′, x) ∈ X ′×X1, d(x, x

′) = π(x)π(x′)/(32π(X2)) for each pair (x, x′) ∈ X2×X ′,
and d(· ) is zero for all other pairs. Since d(a, b) ≤ π(a)π(b)/π(X) for all pairs
of nodes (a, b), there is a feasible flow g that routes d. The flow g satisfies the
following properties:
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• Each node x ∈ X1 receives π(x)π(X ′)/(32π(X1)) ≤ π(x)/32 units of flow.
• Each node x ∈ X2 sends π(x)π(X ′)/(32π(X2)) ≤ π(x)/32 units of flow.
• Each node x′ ∈ X ′ sends and receives π(x′)/32 units of flow.

By combining the flows f1 and g, we get a congestion two flow from X ′ to Y in
which each node in Y receives at most one unit of flow and each node x′ ∈ X ′

sends π(x′)/32 units of flow. Similarly, by combining the flows f2 and g, we get
a congestion two flow from Y to X ′ in which each node in Y sends at most one
unit of flow and each node x′ ∈ X ′ receives π(x′)/32 units of flow. We scale
down these flows by a factor of two to get feasible flows. �

Second Step: Finding a Matching. Let Y be the set guaranteed by Theo-
rem 4. Using Y , we select a matchingM′ ⊆M as follows. Using a flow augmen-
tation technique from [8], we can identify a large matching whose terminals can
send one unit of flow to Y and receive one unit of flow from Y . More precisely,
we have the following lemma.

Lemma 2. There is a matching M′ ⊆ M with the following properties. Let
X ′

1 be a set of nodes containing exactly one node from each pair in M′, and let
X ′

2 = V (M′)−X ′
1 be the partners of the nodes in X ′

1. We have

(C1) |M′| = Ω(|Y |).
(C2) There is a feasible single-commodity flow in G in which each node in X ′

1

sends one unit of flow to Y .
(C3) There is a feasible single-commodity flow in G in which each node in X ′

1

receives one unit of flow from Y .
(C4) There is a feasible single-commodity flow in G in which each node in X ′

2

sends one unit of flow to Y .
(C5) There is a feasible single-commodity flow in G in which each node in X ′

2

receives one unit of flow from Y .

Let M′ be the set of pairs guaranteed by Lemma 2 and let X ′ be the set of
terminals participating in the pairs of M′. In order to complete the proof of
Theorem 3, it suffices to verify that X ′ is 1/32-flow-well-linked. Note that the
properties (C2)−(C5) gives us the following flows: a congestion two flow from X ′

to Y in which each node in X ′ sends one unit of flow and each node in Y receives
at most two units of flow, and a congestion two flow from Y to X ′ in which each
node in Y sends at most two units of flow and each node in X ′ receives one unit
of flow. We scale these flows by a factor of 8 to ensure that each node in Y sends
and receives at most 1/4 units of flow. Using these flows and the fact that Y is
1/4-flow-well-linked, one can verify that X ′ is 1/32-flow-well-linked.
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Abstract. The reverse split rank of an integral polytope P is defined as
the supremum of the split ranks of all rational polyhedra whose integer
hull is P . Already in R3 there exist polytopes with infinite reverse split
rank. We give a geometric characterization of the integral polytopes in
Rn with infinite reverse split rank.

1 Introduction

The problem of finding or approximating the integer hull of a rational poly-
hedron is crucial in Integer Programming (see, e.g., [16,21]). In this paper we
consider one of the most well-known procedures used for this purpose: the split
inequalities.

Given an integral polyhedron P ⊆ Rn, a relaxation of P is a rational poly-
hedron Q ⊆ Rn such that P ∩ Zn = Q ∩ Zn, i.e., conv(Q ∩ Zn) = P (where
“conv” denotes the convex hull operator). A split S ⊆ Rn is a set of the form
S = {x ∈ Rn : β ≤ ax ≤ β+1} for some primitive vector a ∈ Zn (i.e., an integer
vector whose entries have greatest common divisor equal to 1) and some integer
number β. Note that a split does not contain any integer point in its interior
intS. Therefore, if Q is a rational polyhedron and S is a split, then the set
conv(Q \ intS) contains the same integer points as Q. The split closure SC(Q)
of Q is defined as

SC(Q) =
⋂

S split

conv(Q \ intS).

A shown in [9], if Q is a rational polyhedron, its split closure SC(Q) is a rational
polyhedron containing the same integer points as Q. For k ∈ N, the k-th split
closure of Q is SCk(Q) = SC(SCk−1(Q)), with SC0(Q) = Q. If Q is a rational
polyhedron, then there is an integer k such that SCk(Q) = conv(Q ∩ Zn) (see
[9]); the minimum k for which this happens is called the split rank of Q, and we
denote it by s(Q).
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While the split rank of all rational polytopes in R2 is bounded by a constant,
there is no bound for the split rank of all rational polytopes in R3. Further-
more, even if the set of integer points in Q is fixed, there might be no constant
bounding the split rank of Q. For instance, let P ⊆ R3 be the convex hull
of the points (0, 0, 0), (2, 0, 0) and (0, 2, 0). For every t ≥ 0, the polyhedron
Qt = conv(P, (1/2, 1/2, t)) is a relaxation of P . As shown in [7], s(Qt)→ +∞ as
t→ +∞.

In this paper we aim at understanding which polytopes admit relaxations with
arbitrarily high split rank. For this purpose, given an integral polytope P , we
define the reverse split rank of P , denoted s∗(P ), as the supremum of the split
ranks of all relaxations of P :

s∗(P ) = sup{s(Q) : Q is a relaxation of P}.

Note that the polytope P given in the above example satisfies s∗(P ) = +∞.
Our main result is now stated. Given a subset K ⊆ Rn, we denote by intK

its interior and by relintK its relative interior. We say that K is (relatively)
lattice-free if there are no integer points in its (relative) interior. (See, e.g., [18].)

Theorem 1. Let P ⊆ Rn be an integral polytope. Then s∗(P ) = +∞ if and
only if there exist a nonempty face F of P and a nonzero rational linear subspace
L ⊆ Rn such that

(i) P + L is relatively lattice-free,
(ii) F + L is relatively lattice-free,
(iii) relint(F + L) is not contained in the interior of any split.

Note that for the polytope P given in the example above, conditions (i)–(iii)
are satisfied by taking F = P and L equal to the line generated by the vector
(0, 0, 1).

The analogous concept of reverse Chvátal–Gomory (CG) rank of an integral
polyhedron P was introduced in [6]. We recall that an inequality cx ≤ �δ� is
a CG inequality for a polyhedron Q ⊆ Rn if c is an integer vector and cx ≤ δ
is valid for Q. Alternatively, a CG inequality is a split inequality in which the
split S = {x ∈ Rn : β ≤ ax ≤ β + 1} is such that one of the half-spaces
{x ∈ Rn : ax ≤ β} and {x ∈ Rn : ax ≥ β + 1} does not intersect Q. The CG
closure, the CG rank r(Q), and the reverse CG rank r∗(Q) of Q are defined as
for the split inequalities. (The CG rank of a rational polyhedron was proved to
be finite in [20].) In [6] the following characterization was proved (here we state
the result for polytopes).

Theorem 2 ([6]). Let P ⊆ Rn be a nonempty integral polytope. Then r∗(P ) =
+∞ if and only if there exists a one-dimensional rational linear subspace L such
that P + L is relatively lattice-free.

Since every CG inequality is a split inequality, we have s(Q) ≤ r(Q) for every
rational polyhedron Q, and s∗(P ) ≤ r∗(P ) for every integral polyhedron P .
This explains why the conditions of Theorem 1 are a strengthening of those of
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Theorem 2. Indeed, there are examples of integral polytopes with finite reverse
split rank but infinite reverse CG rank: e.g., the polytope defined as the convex
hull of points (0, 0) and (0, 1) in R2 (see [6]).

The comparison between Theorem 1 and Theorem 2 suggests that there is
some “gap” between the CG rank and the split rank. This is not surprising, as
the literature already offers results in this direction. For instance, if we consider
a rational polytope contained in the cube [0, 1]n, it is known that its split rank is
at most n [2], while its CG rank can be as high as n2 (see [19]; weaker results were
previously given in [12,17]). Some more details about the differences between the
statements of Theorem 1 and Theorem 2 will be given at the end of the paper.

We remark that, despite the similarity between the statements of Theorem 1
and Theorem 2, the proof of the former result (which we give here) needs more
sophisticated tools and is more involved.

The rest of the paper is organized as follows. In Sect. 2 we recall some known
facts, and also present a result which, beside being used in the proof of Theo-
rem 1, seems to be of its own interest (Lemma 6). The sufficiency of conditions
(i)–(iii) of Theorem 1 is proved in Sect. 3, while the necessity of the conditions
is shown in Sect. 4. We conclude with some observations in Sect. 5.

2 Basic Facts

In this section we introduce some notation and present some basic facts that will
be used in the proof of Theorem 1. We refer the reader to a textbook, e.g. [21],
for standard preliminaries that do not appear here.

Given a point x ∈ Rn and a number r > 0, we denote by B(x, r) the closed
ball of radius r centered at x. We write aff P to indicate the affine hull of a
polyhedron P ⊆ Rn and linP to denote its lineality space. The angle between
two vectors v, w ∈ Rn is denoted by φ(v, w). Given linear subspaces L1, . . . , Lk

of Rn, we indicate with 〈L1, . . . , Lk〉 the linear subspace of Rn generated by the
union of L1, . . . , Lk. (With little abuse, if L is a subspace of Rn and v ∈ Rn, we
write 〈L, v〉 instead of 〈L, 〈v〉〉.) Finally, L⊥ is the orthogonal complement of a
linear subspace L ⊆ Rn.

2.1 Unimodular Transformations

A unimodular transformation u : Rn → Rn maps a point x ∈ Rn to u(x) =
Ux+v, where U is an n×n unimodular matrix (i.e., a square integer matrix with
|det(U)| = 1) and v ∈ Zn. It is well-known (see e.g. [21]) that U is a unimodular
matrix if and only if so is U−1. Furthermore, a unimodular transformation is a
bijection of both Rn and Zn. It follows that if Q ⊆ Rn is a rational polyhedron
and u : Rn → Rn is a unimodular transformation, then the split rank of Q
coincides with the split rank of u(Q).

The following basic fact will prove useful: if L ⊆ Rn is a rational linear
subspace of dimension d, then there exists a unimodular transformation that
maps L to the hyperplane {x ∈ Rn : xd+1 = · · · = xn = 0}; in other words, L is
equivalent to Rd up to a unimodular transformation.
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2.2 Some Properties of Chvátal and Split Rank

We will use the following result (see [1, Lemma 10]) and its easy corollary.

Lemma 3. For every n ∈ N there exists a number θ(n) such that the following
holds: for every rational polyhedron Q ⊆ Rn and every c ∈ Zn and δ, δ′ ∈ R

with δ′ ≥ δ such that cx ≤ δ is valid for conv(Q ∩ Zn) and cx ≤ δ′ is valid
for Q, the inequality cx ≤ δ is valid for the p-th CG closure of Q, where p =
(�δ′� − �δ�)θ(n) + 1.

Corollary 4. Given an integral polytope P ⊆ Rn and a bounded set B contain-
ing P , there exists an integer N such that r(Q) ≤ N for all relaxations Q of P
contained in B.

We also need the following lemma.

Lemma 5. Let Q ⊆ Rn be a rational polyhedron contained in a split S, where
S = {x ∈ Rn : β ≤ ax ≤ β + 1}. Let Q0 (resp., Q1) be the face of Q induced by
the inequality ax ≥ β (resp., ax ≤ β + 1). Then s(Q) ≤ max{s(Q0), s(Q1)}+ 1.

Proof. For i = 0, 1, since Qi is a face of Q, we have SC(Qi) = SC(Q) ∩Qi (see
[9]). Then, for k = max{s(Q0), s(Q1)}, both SCk(Q)∩Q0 and SCk(Q)∩Q1 are
integral polyhedra. It follows that after another application of the split closure
(actually, the split S is sufficient) we obtain an integral polyhedron. 
�

2.3 Compactness

The proof of Theorem 1 exploits the notion of compactness and sequential com-
pactness, which we recall here. A subset K of a topological space is compact if
every collection of open sets coveringK contains a finite subcollection which still
covers K. It is well-known that a subset of Rn is compact (with respect to the
usual topology of Rn) if and only if it is closed and bounded. For a normed space
(such as Rn) the notion of compactness coincides with that of sequential com-
pactness: a set K is sequentially compact if every sequence (xi)i∈N of elements
of K admits a subsequence that converges to an element of K.

2.4 On Integer Points around Linear Subspaces

A result given in [4], based on Dirichlet’s lemma (see, e.g., [21]), shows that for
each line passing through the origin there are integer points arbitrarily close to
the line and arbitrarily far from the origin. We give here a strengthening of that
result, showing that for every line passing through the origin the integer points
that are “very close” to the line are not too far from each other. Furthermore,
this result is presented in a more general version, valid for every linear subspace.
This result will be used in the proof of Theorem 1, but we find it interesting in
its own right. The proof can be found in the journal version of the paper.

Lemma 6. Let L ⊆ Rn be a linear subspace and fix δ > 0. Then there exists
R > 0 such that, for every x ∈ L, there is an integer point y satisfying ‖y−x‖ ≤
R and dist(y, L) ≤ δ.
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3 Proof of Sufficiency

In this section we prove that if F and L satisfying conditions (i)–(iii) of Theo-
rem 1 exist, then P has infinite reverse split rank.

By hypothesis, F and P are nonempty. Since L is a rational subspace, it
admits a basis v1, . . . , vk ∈ Zn. Fix x̄ ∈ relintF , and for λ ≥ 0 define

Qλ
F = conv(F, x̄ ± λv1, . . . , x̄± λvk),

Qλ
P = conv(P, x̄ ± λv1, . . . , x̄± λvk).

Clearly Qλ
F ⊆ Qλ

P for every λ ≥ 0. As x̄ ∈ relintF and F + L is relatively
lattice-free, it follows that Qλ

F is a relaxation of F for every λ ≥ 0. It can be
checked that, since also P + L is relatively lattice-free, Qλ

P is a relaxation of P
for every λ ≥ 0.

Let r > 0 be the radius of the largest ball in aff F centered at x̄ and contained
in F , and let R > 0 be the length of the longest segment passing through x̄ and
contained in F . We will show below that, for each λ ≥ 0, SC(Qλ

F ) contains the
two points x̄±min{(λ− 1), r

2Rλ}vi for every i = 1, . . . , k. As Qλ
F ⊆ Qλ

P , we have
SC(Qλ

F ) ⊆ SC(Qλ
P ). As λ was chosen arbitrarily, this implies that s(Qλ

P )→ +∞
as λ→ +∞, hence s∗(P ) = +∞.

It remains to prove that SC(Qλ
F ) contains the two points x̄ ± min{(λ −

1), r
2Rλ}vi for every i = 1, . . . , k. To do so, we prove that for every split S,

the set conv(Qλ
F \ intS) contains the two points x̄± (λ− 1)vi or the two points

x̄ ± r
2Rλvi, for every i = 1, . . . , k. To simplify notation, for fixed S and λ we

define T = conv(Qλ
F \ intS), omitting the dependence on S and λ.

Case 1. Let S be a split such that there exists a vector v̄ ∈ {v1, . . . , vk} not in
linS. In this case we show that T contains the point x̄ + (λ − 1)vi for every
i = 1, . . . , k. Symmetrically, T will also contain the point x̄− (λ− 1)vi for every
i = 1, . . . , k.

Let i ∈ {1, . . . , k} be such that vi /∈ linS. As vi ∈ Zn, it is easy to check that
intS can contain at most one of the points x̄ + λvi and x̄ + (λ − 1)vi. Thus T
contains the point x̄+ λvi or the point x̄ + (λ − 1)vi. As x̄ ∈ F , it follows that
T must contain x̄+ (λ− 1)vi.

Now let j ∈ {1, . . . , k} be such that vj ∈ linS. If x̄+ (λ− 1)vj /∈ intS we are
done, thus assume that x̄ + (λ − 1)vj ∈ intS. Since the three points x̄ + λvj ,
x̄ ± λv̄ are in Qλ

F , also are their convex combinations x̄ + (λ − 1)vj ± v̄. As
v̄ ∈ Zn, v̄ /∈ linS, and x̄+ (λ− 1)vj ∈ intS, it is easy to check that both points
x̄ + (λ − 1)vj ± v̄ are not in intS, and therefore are in T . Therefore also their
convex combination x̄+ (λ− 1)vj is in T .

Case 2. Let S be a split such that vi ∈ linS for every i = 1, . . . , k. In this case we
show that T contains the point x̄+ r

2Rλvi for every i = 1, . . . , k. Symmetrically,
T will also contain the point x̄− r

2Rλvi for every i = 1, . . . , k.
Let ṽ ∈ {v1, . . . , vk}. If x̄ + λṽ /∈ intS, then the statement follows trivially,

as x̄ ∈ F . Thus we now assume that x̄ + λṽ ∈ intS, which implies that also
x̄ ∈ intS.
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Since, by (iii), relint(F +L) is not contained in intS and F ∩ intS �= ∅, F +L
is not contained in S. As vi ∈ linS for every i = 1, . . . , k, this implies that F
is not contained in S. Therefore wlog ax ≥ β is not valid for F , where a ∈ Zn,
β ∈ Z are such that S = {x ∈ Rn : β ≤ ax ≤ β + 1}. Since F is integral, there
exists an integer point w of F that satisfies ax < β, thus aw ≤ β − 1. Let w′

be the point defined as the intersection of the boundary of S with the segment
with endpoints w and x̄. (See Fig. 1.)

S

ax = β

ax = β + 1

F

w

w′

w′′

x̄

≤ R

≥ r

Fig. 1. Illustration of Case 2

We show that Qλ
F contains the point w′ + λ

2 ṽ. Since aw ≤ β − 1, we have
aw′ = β. As β < ax̄ < β + 1, it follows that the convex hull of points w and
x̄+ λṽ contains a point w′ + λ′ṽ, with λ′ ≥ λ

2 . Thus the point w′ + λ
2 ṽ is in Qλ

F .

Note that w′ + λ
2 ṽ ∈ T . We finally show that T contains the point x̄+ r

2Rλṽ.
Let w′′ be the point different from w that belongs to the intersection of the
boundary of F with the line passing through w and x̄. The segment [x̄, w′′] is
contained in F , thus the distance between x̄ and w′′ is at least r. The segment
[w′, w′′] is contained in F and contains x̄, thus the distance between w′ and w′′

is at most R. Therefore the convex hull of points w′′ and w′ + λ
2 ṽ contains a

point x̄+ λ′′ṽ, with λ′′ ≥ r
2Rλ. Thus T contains the point x̄+ r

2Rλṽ.

4 Proof of Necessity

In this section we prove that if an integral polytope P has infinite reverse split
rank, then F and L satisfying conditions (i)–(iii) of Theorem 1 exist. We remark
that if P = ∅ then its reverse split rank is finite, as this is the case even for the
reverse CG rank (see [8,6]). Therefore in this section we assume that P �= ∅.

In order to prove the necessity of conditions (i)–(iii), we need to extend the
notion of relaxation and reverse split rank to rational polyhedra. Indeed, when
dealing with a non-full-dimensional integral polytope P in Sect. 4.7, we will ap-
proximate P with a non-integral full-dimensional polytope containing the same
integer points as P .
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Given a rational polyhedron P ⊆ Rn, we call relaxation of P a rational poly-
hedron Q ⊆ Rn such that P ⊆ Q and P ∩ Zn = Q ∩ Zn. The reverse split rank
of a rational polyhedron P is defined as follows:

s∗(P ) = sup{s(Q) : Q is a relaxation of P}.

In the following we prove that if a nonempty rational polyhedron has infinite
reverse split rank, then F and L satisfying conditions (i)–(iii) of Theorem 1 exist.

4.1 Outline of the Proof

Given a full-dimensional rational polytope P ⊆ Rn with s∗(P ) = +∞, we prove
conditions (i)–(iii) of Theorem 1 under the assumption that the result holds for
all (possibly non-full-dimensional) rational polytopes in Rn−1. (The case of a
non-full-dimensional polytope in Rn will be treated in Sect. 4.7.) Note that the
theorem holds for n = 1, as in this case s∗(P ) is always finite.

So let P ⊆ Rn be a full-dimensional rational polytope with s∗(P ) = +∞.
We now give a procedure that returns F and L satisfying the conditions of the
theorem. We justify it and prove its correctness in the rest of this section. We
remark that at this stage the linear subspace returned by the procedure might be
non-rational, but we will show at the end of this section how to choose a rational
subspace. Also, we point out that the procedure below is not an “executable
algorithm”, but only a theoretical proof of the existence of F and L as required.

1. Fix a point x̄ ∈ intP ; choose a sequence (Qi)i∈N of relaxations of P such
that supi s(Qi) = +∞; initialize k = 1, L0 = {0}, and S = P .

2. Choose a sequence of points (xi)i∈N such that xi ∈ Qi for every i ∈ N

and supi dist(xi, S) = +∞; let wi be the projection of xi − x̄ onto L⊥
k−1;

define v̄ as the limit of some subsequence of the sequence
(

wi

‖wi‖

)
i∈N

(and

assume wlog that this subsequence coincides with the original sequence);
define Lk = 〈Lk−1, v̄〉.

3. If P +Lk is not contained in any split, then return F = P and L = Lk, and
stop; otherwise, let S be a split such that P +Lk ⊆ S, where S = {x ∈ Rn :
β ≤ ax ≤ β + 1}.

4. If there exists M ∈ R such that Qi ⊆ {x ∈ Rn : β −M ≤ ax ≤ β +M} for
every i ∈ N, then choose j ∈ {0, 1} such that P j := P ∩{x ∈ Rn : ax = β+j}
has infinite reverse split rank (when viewed as a polytope in the affine space
H = {x ∈ Rn : ax = β+ j}); since H is a rational subspace and we assumed
that the result holds in dimension n − 1, there exist F and L satisfying
conditions (i)–(iii) of the theorem with respect to the space H ; return F and
L, and stop. Otherwise, if no M as above exists, set k ← k + 1 and go to 2.

In order to prove the correctness of the above procedure, we will show the
following:
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(a) in step 2, a sequence (xi)i∈N and a vector v̄ as required can be found;
(b) the procedure terminates (either in step 3 or step 4);
(c) if the procedure terminates in step 4, then there exists j ∈ {0, 1} such that

P j has infinite reverse split rank, and the output is correct;
(d) if the procedure terminates in step 3, then the output is correct.

4.2 Proof of (a)

We prove that at every execution of step 2 a sequence (xi)i∈N and a vector v̄ as
required can be found.

Consider first the iteration k = 1; in this case, S = P . Since supi s(Qi) =
+∞, we also have supi r(Qi) = +∞. By Corollary 4, there is no bounded set
containing every Qi for i ∈ N. Then there is a sequence of points (xi)i∈N such
that xi ∈ Qi for every i ∈ N and supi dist(xi, P ) = +∞. Define vi = xi−x̄

‖xi−x̄‖
for i ∈ N. Since every vi belongs to the unit sphere, which is a compact set,
the sequence (vi)i∈N has a subsequence converging to some unit-norm vector v̄.
Wlog, we assume that this subsequence coincides with the original sequence.

Assume now that we are at the k-th iteration (k ≥ 2). Then the algorithm has
determined a split S ⊆ Rn such that P+Lk−1 ⊆ S = {x ∈ Rn : β ≤ ax ≤ β+1}.
Furthermore, we know that there is no M ∈ R such that Qi ⊆ {x ∈ Rn :
β −M ≤ ax ≤ β + M} for every i ∈ N. This implies that there is a sequence
of points (xi)i∈N such that xi ∈ Qi for i ∈ N and supi dist(xi, S) = +∞. For
i ∈ N, let wi be the projection of the vector xi − x̄ onto the space L⊥

k−1. Note
that supi ‖wi‖ = +∞. Since the elements of the sequence (wi)i∈N belong to the
intersection of L⊥

k−1 with the unit sphere, and this intersection gives a compact
set, there is a subsequence converging to some unit-norm vector belonging to
L⊥
k−1, which we call v̄. We assume wlog that this subsequence coincides with the

original sequence.

4.3 Proof of (b)

In order to show that the procedure terminates after a finite number of iterations,
it is sufficient to observe that at every iteration in step 2 we select a vector
v̄ ∈ L⊥

k−1, thus the dimension of Lk = 〈Lk−1, v̄〉 is k. In particular, the procedure
terminates after at most n iterations, as for k = n no split S can be found in
step 3.

4.4 Proof of (c)

We now prove that if the procedure terminates in step 4, then there exists
j ∈ {0, 1} such that P j has infinite reverse split rank (when viewed as a polytope
in the affine space {x ∈ Rn : ax = β + j}), and the output is correct.

Since Qi ⊆ {x ∈ Rn : β −M ≤ ax ≤ β +M} for every i ∈ N, by Lemma 3
there exists a number N such that, for each i ∈ N, N iterations of the CG closure
operator (hence, also of the split closure operator) applied to Qi are sufficient
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to obtain a relaxation of P contained in S. For i ∈ N, let Q̃i be the relaxation
of P obtained this way. Then we have supi s(Q̃i) = +∞.

Recall that P 0 and P 1 are the faces of P induced by equations ax = β and
ax = β + 1, respectively. Similarly, for i ∈ N, let Q̃0

i and Q̃1
i be the faces of

Q̃i induced by equations ax = β and ax = β + 1, respectively. Since Q̃i ⊆ S,
by Lemma 5 we have s(Q̃i) ≤ max{s(Q̃0

i ), s(Q̃
1
i )} + 1. Then there exists j ∈

{0, 1} such that supi s(Q̃
j
i ) = +∞. Since every relaxation Q̃j

i is contained in the
affine space H = {x ∈ Rn : ax = β + j}, we have s∗(P j) = +∞ with respect
to the ambient space H (which is equivalent to Rn−1 under some unimodular
transformation). LetH∗ be the translation ofH passing through the origin. Since
H is a rational space of dimension n − 1, by induction there exist a nonempty
face F of P j and a nonzero linear subspace L ⊆ H∗ satisfying conditions (i)–(iii)
for P j : specifically, P j+L is relatively lattice-free, F+L is relatively lattice-free,
and relint(F +L) is not contained in the interior of any (n−1)–dimensional split
in the affine space H .

We show that F and L satisfy conditions (i)–(iii) for P , too. First, note that
F is a nonempty face of P and L is a nonzero linear subspace of Rn. To show (i),
observe that L ⊆ H∗ = linS; since P ⊆ S, then P +L ⊆ S; thus P +L is lattice-
free. Condition (ii) is clearly satisfied. To prove (iii), assume by contradiction
that there is an n-dimensional split T such that relint(F + L) ⊆ intT . Then
linT �= linS. This implies that T ∩H is contained in some (n− 1)–dimensional
split U living in H . But then, with respect to the ambient space H , we would
have relint(F + L) ⊆ intU , a contradiction.

4.5 Proof of (d)

We now prove that if the procedure terminates in step 3, then the output is
correct. Note that it is sufficient to prove that P + Lk is lattice-free at every
iteration of the algorithm.

The subspace L1 is constructed following the same procedure as in the proof
of Theorem 2 given in [6, Section 3.2]. Therefore, with the same arguments as
in [6], one proves that P + L1 is lattice-free.

We now assume k ∈ {2, . . . , n}; see Figs. 2 and 3 to follow the proof. Recall
that Lk = 〈Lk−1, v̄〉 and v̄ ∈ L⊥

k−1. Suppose by contradiction that there is an
integer point z̄ ∈ int(P +Lk) = intP +Lk. Then there exists a vector u ∈ Lk−1

such that z0 := z̄ + u ∈ intP + 〈v̄〉. Let x0 ∈ intP be such that x0 = z0 − dv̄,
where wlog we can assume d > 0. Note that since ‖v̄‖ = 1, d = ‖z0 − x0‖. Let
r > 0 be such that B(x0, r) ⊆ P . Furthermore, denote by π : Rn → L⊥

k−1 the

orthogonal projection onto L⊥
k−1.

Recall that there is a split S such that P + Lk−1 ⊆ S (step 3 of the previous
iteration). Define H = linS and H0 = z0+H . We can assume wlog that H0 does
not intersect P : if this is not the case, we can choose a different integer point
z̄ ∈ int(P + Lk) so that this condition is satisfied. Let w denote the unit-norm
vector which is orthogonal to H and forms an acute angle with v̄ (recall that
v̄ /∈ H , thus v̄ and w̄ cannot be orthogonal). We define α = φ(v̄, π(w)); note that
0 ≤ α < π/2.
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We need the following two claims, whose proof we defer to the journal version
of the paper.

Claim 7. For every δ > 0 there exists M > 0 such that the following holds: for
every x ∈ Lk−1 and for every y1, . . . , yk−1 satisfying yt ∈ x+Lt and dist(yt, x+
Lt−1) ≥M for t = 1, . . . , k− 1, one has dist(conv(x, y1, . . . , yk−1), H ∩Zn) ≤ δ.

Claim 8. For every x ∈ intP , M ′ > 0 and ε > 0, there exist an index i ∈ N

and points y1, . . . , yk satisfying yt ∈ Qi ∩ (x0 + Lt), dist(yt, x+ Lt−1) ≥M ′ for
t = 1, . . . , k, and φ(π(yk − x0), v̄) ≤ ε.

By Claim 7 with δ = r/8, we obtain M > 0 such that the condition of the
claim is satisfied. Define M ′ = max{2M, 2d}. By Claim 8, there exists i ∈ N

and points y1, . . . , yk satisfying yt ∈ Qi ∩ (x0 +Lt) and dist(yt, x0 +Lt−1) ≥M ′

for t = 1, . . . , k. Furthermore, again because of Claim 8, we can enforce the
condition

β := φ(π(yk − x0), v̄) ≤ arctan
(
tanα+

r

8d

)
− α (1)

(see Fig. 3). Note that the value on the right-hand-side of (1) is nonnegative, as
0 ≤ α < π/2.

For ρ > 0, define B′(ρ) = B(0, ρ) ∩ L⊥
k−1 ∩H . For t = 1, . . . , k − 1, let ỹt be

the midpoint of the segment [x0, yt]. Note that

Qi ⊇ conv (B(x0, r) ∪ {y1, . . . , yk−1})
⊇ C := conv (x0 +B′(r/2), ỹ1 +B′(r/2), . . . , ỹk−1 +B′(r/2)) .

Let x′ be the unique point in [x0, yk] ∩ H0, and, for i = 1, . . . , k − 1, let y′t
be the unique point in [ỹt, yk] ∩ H0. Since dist(yk, x0 + Lk−1) ≥ M ′ ≥ 2d ≥
2 dist(x0 + Lk−1, x

′ + Lk−1),

conv(C, yk)∩H0 ⊇ C′ := conv(x′+B′(r/4), y′1+B′(r/4), . . . , y′k+B′(r/4)). (2)

Moreover, as B(x0, r) ⊆ P ⊆ Qi and B(ỹt, r/2) ⊆ Qi for t = 1, . . . , k − 1, we
have

B(x′, r/2) ⊆ Qi and B(y′t, r/4) ⊆ Qi for t = 1, . . . , k − 1. (3)

Let x′′ be the projection of x′ onto the space z0 + Lk−1. We claim that

‖x′′ − x′‖ = ‖π(x′′ − x′)‖ ≤ d tan(α+ β)− d tanα ≤ r/8

(see again Fig. 3). The equality holds because x′′ − x′ ∈ L⊥
k−1 by construction;

the first inequality describes the worst case (which is the one depicted in the
figure), i.e., when ‖π(x′′ − x′)‖ is as large as possible; the last bound follows
from (1).

Now define y′′1 , . . . , y
′′
k−1 as the orthogonal projections of y

′
1, . . . , y

′
k−1 onto z0+

Lk−1 = z̄+Lk−1. Note that y
′′
1 , . . . , y

′′
k−1 are obtained by translating y′1, . . . , y

′
k−1

by vector x′′ − x′. By the definition of C′ given in (2), y′′1 , . . . , y
′′
k−1 still belong
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to C′. One verifies that y′′t ∈ x′′ + Lt and dist(y′′t , x
′′ + Lt−1) ≥ M ′/2 ≥ M for

t = 1, . . . , k− 1. Since z̄+Lk−1 is a translation of Lk−1 by an integer vector, by
the choice of M given by Claim 7 there is an integer point p ∈ z̄ +H = H0 at
distance at most δ = r/8 from the set conv(x′′, y′′1 , . . . , y

′′
k−1).

We claim that p ∈ Qi. To see this, first observe that

dist(p, conv(x′, y′1, . . . , y
′
k−1)) ≤ dist(p, conv(x′′, y′′1 , . . . , y

′′
k−1)) + ‖x′′ − x′‖

≤ r

8
+

r

8
=

r

4
.

(4)

Now from (3) we obtain that conv(x′, y′1, . . . , y
′
k−1) + B(0, r/4) ⊆ Qi and thus,

by (4), p ∈ Qi. This is a contradiction, as p is an integer point in Qi \P (p does
not belong to P because p ∈ H0 and H0 ∩ P = ∅ by assumption).

x0
+
H

�

x0

�

yt

r

�

ỹt

C

H0

v̄
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u

�
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�

�

C′

�

�

x′
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t
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t

z̄+Lk−1

d

v̄

Fig. 2. Illustration of the proof of (d)

4.6 Rationality of L

As mentioned above, our procedure might return a non-rational linear subspace
L. Note that this cannot be the case if the procedure terminates in step 4, as
in this case the rationality of L follows from the fact that we assumed that the
theorem holds in Rn−1. Therefore we now assume that the procedure terminates
in step 3, and show that we can replace L with a suitable nonzero rational linear
subspace L̃ and still have conditions (i)–(iii) fulfilled.
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�

�

� �

x0 + 〈v̄〉

w

yk

x0

x′ H0 ∩ (x0 + L⊥
k−1)

α β

z0, x
′′

d

Fig. 3. Illustration of the proof of (d). The space x0+L⊥
k−1 is represented. Underlined

symbols indicate points that do not necessarily belong to x0 + L⊥
k−1; in other words,

their orthogonal projection onto x0 + L⊥
k−1 is represented.

We use a result in [4, Theorem 2] (see also [15]), which states that a maximal
lattice-free convex set in Rn is either an irrational hyperplane or a polyhedron
P̃ + L̃, where P̃ is a polytope and L̃ is a rational linear subspace. Since P +L is
lattice-free, it is contained in a maximal lattice-free convex set. Since it is full-
dimensional, it is not contained in an irrational hyperplane. Then P ⊆ P̃ + L̃,
with P̃ , L̃ as above. Moreover, L̃ �= {0}, as it contains L. Since we are assuming
that the procedure terminates in step 3 (thus F = P ), conditions (i)–(iii) are
satisfied if L is replaced with L̃.

4.7 The Non-full-Dimensional Case

The proof of the necessity of Theorem 1 given above covers the case of a full-
dimensional rational polytope P ⊆ Rn, assuming the result true both for full-
dimensional and non-full-dimensional rational polytopes in Rn−1. We now deal
with the case of a non-full-dimensional polytope in Rn. For this purpose, we
will take a non-full-dimensional polytope P and make it full-dimensional by
“growing” it along directions orthogonal to its affine hull. This will be done in
such a way that no integer point is added to P . The idea is then to use the proof
of the full-dimensional case given above. (We remark that even if we start from
an integral polytope P , the new polytope that we construct will not be integral.
This is why at the beginning of Sect. 4 we extended the notion of reverse split
rank to rational polyhedra.)

Note that if PI is the convex hull of integer points in a rational polytope P ,
it is not true (in general) that s∗(PI) = +∞ implies s∗(P ) = +∞. However, the
key fact underlying our approach is the following:

Given a non-full-dimensional rational polytope P with s∗(P ) = +∞,
it is possible to “enlarge” P and obtain a full-dimensional polytope P ′

containing the same integer points as P , in such a way that s∗(P ′) =
+∞.
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Now, let P be a d–dimensional rational polytope P , where d < n. Assume
that s∗(P ) = +∞. By applying a suitable unimodular transformation, we can
assume that aff P = Rd × {0}n−d.

Given a rational basis {bd+1, . . . , bn} of the subspace aff(P )⊥ = {0}d×Rn−d,
a rational point x̄ ∈ relintP , and a rational number ε > 0, we define P (x̄, ε) =
conv(P, x̄ + εbd+1, . . . , x̄ + εbn); we do not write explicitly the dependence on
vectors bd+1, . . . , bn, as these vectors will be soon fixed. Note that P (x̄, ε) is a
full-dimensional rational polytope.

We now give a procedure to find F and L as required. Recall that we are
assuming by induction that the theorem is true for both full-dimensional and
non-full-dimensional rational polytopes in Rn−1.

1. Fix a rational point x̄ ∈ relintP ; choose a rational basis {bd+1, . . . , bn} of
aff(P )⊥, a rational number ε > 0, and a sequence of rational polyhedra
(Qi)i∈N such that:

(i) P (x̄, ε) has the same integer points as P ,

(ii) Qi is a relaxation of P (x̄, ε) (and thus of P ) for every i ∈ N,

(iii) supi s(Qi) = +∞;

initialize k = 1, L0 = {0}, and S = P (x̄, ε).

2. Construct a sequence of points (xi)i∈N such that xi ∈ Qi for every i ∈ N

and supi dist(xi, S) = +∞; let wi be the projection of xi − x̄ onto L⊥
k−1;

define v̄ as the limit of some subsequence of the sequence
(

wi

‖wi‖

)
i∈N

(and

assume that this subsequence coincides with the original sequence); define
Lk = 〈Lk−1, v̄〉.

3. If, for every strictly positive rational number ε′ ≤ ε, P (x̄, ε′) + Lk is not
contained in any split, then choose a rational subspace L ⊇ Lk such that
P (x̄, ε) + L is lattice-free, return F = P and L, and stop; otherwise, let
S = {x ∈ Rn : β ≤ ax ≤ β + 1} be a split such that P (x̄, ε′) + Lk ⊆ S for
some strictly positive rational number ε′ ≤ ε, and update ε← ε′.

4. If there exists M ∈ R such that Qi ⊆ {x ∈ Rn : β −M ≤ ax ≤ β +M} for
every i ∈ N, then choose j ∈ {0, 1} such that P j := P ∩{x ∈ Rn : ax = β+j}
has infinite reverse split rank (when viewed as a polytope in the affine space
{x ∈ Rn : ax = β + j}), then F and L exist by induction; return F and L,
and stop. Otherwise, set k ← k + 1, and go to 2.

The following facts, which we prove in the journal version of the paper, imply
the correctness of the procedure:

– in step 1, a basis {bd+1, . . . , bn}, a number ε, and a sequence (Qi)i∈N satis-
fying (i)–(iii) do exist;

– if we stop in step 3, then F and L are correctly determined;

– if the condition of step 4 is true, then there exists j ∈ {0, 1} such that P j

has infinite reverse split rank (when viewed as a polytope in the affine space
{x ∈ Rn : ax = β + j}).
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5 Concluding Remarks

As illustrated in the introduction, Theorem 1 has strong similarities with Theo-
rem 2, which characterizes the integral polyhedra with infinite reverse CG rank.
One of the differences between the two statements is that in Theorem 2 L is a
one-dimensional subspace. It can be shown that L cannot be assumed to have
dimension one in Theorem 1 (see the journal version of the paper).

Moreover, one notices that in order to determine whether a polytope has
infinite reverse split rank, all faces need to be considered, while this is not the
case for the reverse CG rank (F = P is the only interesting face in that case). We
now show that this “complication” is necessary. Let P ⊆ R4 be defined as the
convex hull of points (0, 0, 0, 0), (1, 0, 0, 0), (1, 2, 0, 0), and (1, 0, 2, 0). If F is the
face of P induced by equation x1 = 1 and L = 〈(0, 0, 0, 1)〉, then the conditions
of the theorem are satisfied, and thus s∗(P ) = +∞. However, the conditions are
not satisfied if we choose F = P and the same L, as relint(P +L) is contained in
the interior of the split {x ∈ R4 : 0 ≤ x1 ≤ 1}. Indeed one can verify that there
is no nonzero subspace L′ such that the conditions are satisfied with F = P .

In the context of mixed-integer programming, a result of Del Pia [10] implies
necessary and sufficient conditions for an inequality to have finite split rank for
a given polyhedron (see also [5,11]). His result seems to have some similarities
with the conditions of Theorem 1. This is why we believe that the notion of
finite reverse split rank in the pure integer case and that of finite split rank in
the mixed-integer case are related to each other. This is the object of current
research.
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5. Basu, A., Cornuéjols, G., Margot, F.: Intersection cuts with infinite split rank.
Mathematics of Operations Research 37, 21–40 (2012)

6. Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y., Grappe, R.: Reverse Chvátal–
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Abstract. We study a natural generalization of the problem of mini-
mizing makespan on unrelated machines in which jobs may be split into
parts. The different parts of a job can be (simultaneously) processed
on different machines, but each part requires a setup time before it can
be processed. First we show that a natural adaptation of the seminal
approximation algorithm for unrelated machine scheduling [11] yields
a 3-approximation algorithm, equal to the integrality gap of the corre-
sponding LP relaxation. Through a stronger LP relaxation, obtained by
applying a lift-and-project procedure, we are able to improve both the
integrality gap and the implied approximation factor to 1 + φ, where
φ ≈ 1.618 is the golden ratio. This ratio decreases to 2 in the restricted
assignment setting, matching the result for the classic version. Interest-
ingly, we show that our problem cannot be approximated within a factor
better than e

e−1
≈ 1.582 (unless P = NP). This provides some evidence

that it is harder than the classic version, which is only known to be inap-
proximable within a factor 1.5− ε. Since our 1 + φ bound remains tight
when considering the seemingly stronger machine configuration LP, we
propose a new job based configuration LP that has an infinite number of
variables, one for each possible way a job may be split and processed on
the machines. Using convex duality we show that this infinite LP has a
finite representation and can be solved in polynomial time to any accu-
racy, rendering it a promising relaxation for obtaining better algorithms.

1 Introduction

The unrelated machine scheduling problem, R||Cmax in the three-field notation
of [8], has attracted significant attention within the scientific community. The
problem is to find a schedule of jobs with machine-dependent processing times
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that minimizes the makespan, i.e., the maximum machine load. In [11] a polyno-
mial time linear programming based rounding algorithm was shown to give an
approximation guarantee of 2, and a lower bound of 3/2 on the approximation
ratio of any polynomial time algorithm was shown, assuming P �= NP .

A natural generalization of this problem is to allow jobs to be split and pro-
cessed on multiple machines simultaneously, where in addition a setup has to per-
formed on every machine processing the job. This generalized scheduling problem
finds applications in production planning, e.g., in textile and semiconductor in-
dustries [18,10], and disaster relief operations [21]. Formally, we are given a set
of m machines M and a set of n jobs J with processing times pij ∈ Z+ and
setup times sij ∈ Z+ for every i ∈ M and j ∈ J . A schedule corresponds to a
vector x ∈ [0, 1]M×J , where xij denotes the fraction of job j that is assigned to
machine i, satisfying

∑
i∈M xij = 1 for all j ∈ J . If job j is processed (partially)

on machine i then a setup of length sij has to be performed on the machine.
During the setup of a job, the machine is occupied and thus no other job can
be processed nor be set up. This results in the definition of load of machine
i ∈M as

∑
j:xij>0(xijpij + sij). The objective is to minimize the makespan, the

maximum load of the schedule. We denote this problem by R|split,setup|Cmax.
Note that by setting pij = 0 and interpreting the setup times sij as processing
requirements we obtain R||Cmax.

Related Work. Reducing the approximability gap for R||Cmax is a prominent
open question [23]. Since the seminal work by Lenstra et al. [11] there has been
a considerable amount of effort leading to partial solutions to this question. In
the restricted assignment problem, the processing times are of the form pij ∈
{pj,∞} for all i, j ∈ J . A special case of this setting, in which each job can
only be assigned to two machines, was considered by Ebenlendr et al. [6]. They
note that while the lower bound of 3/2 still holds, a 7/4-approximation can be
obtained. Svensson [19] shows that the general restricted assignment problem is
approximable within a factor of 33/17 + ε ≈ 1.9412 + ε, breaking the barrier
of 2. This algorithm is based on a machine configuration linear programming
relaxation where each variable indicates the subset of jobs assigned to a given
machine. On the other hand, this relaxation has an integrality gap of 2 for general
unrelated machines [22]. Configuration LPs have also been studied extensively
for the max-min version of the problem [22,3,7,9,2,14].

Most work concerned with scheduling splittable jobs focuses on heuristics.
Theoretical results on the subject are not only scarce, but also restricted to the
special case of identical machines. In particular, Xing and Zhang [24] describe a
(1.75−1/m)-approximation for makespan minimization, that was later improved
to 5/3 by Chen et al. [4]. The objective of minimizing the sum of completion
times is studied by Schalekamp et al. [16], who gave a polynomial time algorithm
in the case of 2 machines, and a 2.781-approximation algorithm for arbitrary m.
This was later improved to 2 + ε in [5], even in the presence of weights.

Another setting that comes close to job splitting is preemptive scheduling with
setup times [17,12,15], which does not allow simultaneous processing of parts of
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the same job. We also refer to the survey [1] and references therein for results
on other scheduling problems with setup costs.

Our Contribution. Due to the novelty of the considered problem, our aim is
to advance the understanding of its approximability, in particular in comparison
to R||Cmax. We first study the integrality gap of a natural generalization of the
LP relaxation by Lenstra et al. [11] to our setting and notice that their rounding
technique does not work in our case. This is because it might assign a job with
very large processing time to a single machine, while the optimal solution splits
this job. On the other hand, assigning jobs by only following the fractional
solution given by the LP might incur a large number of setups (belonging to
different jobs) to a single machine. We get around these two extreme cases by
adapting the technique from [11] so as to only round variables exceeding a certain
threshold while guaranteeing that only one additional setup time is required per
machine. This yields a 3-approximation algorithm presented in § 2. Additionally,
we show that the integrality gap of this LP is exactly 3, and therefore our
algorithm is best possible for this LP.

In § 3 we improve the approximation ratio by tightening our LP relaxation
with a lift-and-project approach.We refine our previous analysis by balancing the
rounding threshold, resulting in a (1+φ)-approximation, where φ ≈ 1.618 is the
golden ratio. Surprisingly, we can show that this number is best possible for this
LP; even for the seemingly stronger machine configuration LP mentioned above.
This suggests that considerably different techniques are necessary to match the
2-approximation algorithm for R||Cmax. Indeed, we also show in § 5 that it is
NP-hard to approximate within a factor e

e−1 ≈ 1.582, a larger lower bound
than the 3/2 hardness result known for R||Cmax. For the restricted assignment
case, where sij ∈ {sj,∞} and pij ∈ {pj,∞}, we obtain a 2-approximation
algorithm, matching the 2-approximation of [11] in § 4. We remark that the
solutions produced by all our algorithms have the property that at most one
split job is processed on each machine. This property may be desirable in practice
since in manufacturing systems setups require labor causing additional expenses.

As the integrality gaps of all mentioned relaxations are no better than 1 + φ,
we propose a novel job based configuration LP relaxation in § 6 that has the
potential to lead to better guarantees. Instead of considering machine configu-
rations that assign jobs to machines, we introduce job configurations, describing
the assignment of a particular job to the machines. The resulting LP cuts away
worst-case solutions of the other LPs considered in this paper, rendering it a
promising candidate for obtaining better approximation ratios. While the job
configuration LP has an infinite set of variables, we show that we can restrict a
priori to a finite subset. Applying discretization techniques we can approximately
solve the LP within a factor of (1 + ε) by separation over the dual constraints.
Finally, we study the projection of this polytope to the assignment space and
derive an explicit set of inequalities that defines this polytope. An interesting
open problem is to determine the integrality gap of the job configuration LP.
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2 A 3-Approximation Algorithm

Our 3-approximation algorithm is based on a generalization of the LP by Lenstra,
Shmoys, and Tardos [11]. Let C∗ be a guess on the optimal makespan. Consider
the following feasibility LP, whose variable xij denotes the fraction of job j
assigned to machine i. Notice that the LP is a relaxation, since it allows the
setups to be performed fractionally.

[LST] :
∑
i∈M

xij = 1 for all j ∈ J, (1)∑
j∈J

xij(pij + sij) ≤ C∗ for all i ∈M, (2)

xij = 0 for all i ∈M, j ∈ J : sij > C∗, (3)

xij ≥ 0 for all i ∈M, j ∈ J.

Let x be a feasible extreme solution. We define the bipartite graph G(x) =
(J ∪M,E(x)), where E(x) = {ij : 0 < xij}. Using the same arguments as in
[11], not repeated here, we can show the following property.

Lemma 1. For every extreme solution x of [LST], each connected component
of G(x) is a pseudotree; a tree plus at most one edge that creates a single cycle.

We show how to round an extreme solution x of [LST]. Let E+ = {ij ∈ E(x) :
xij > 1/2} and J+ = {j ∈ J : there exists i ∈M with ij ∈ E+}, i.e., those jobs
that the fractional solution x assigns to some machine by a factor of more than
1/2. In our rounding procedure each job j ∈ J+ is completely assigned to the
machine i ∈M if xij > 1/2. We now show how to assign the rest of the jobs.

Let us call G′(x) the subgraph of G(x) induced by (J ∪ M) \ J+. Notice
that every edge ij in G′(x) satisfies that 0 < xij ≤ 1/2. Also, since G′(x) is a
subgraph of G(x) every connected component of G′(x) is a pseudotree.

Definition 1. Given A ⊆ E(G′(x)), we say that a machine i ∈ M is A-
balanced, if there exists at most one job j ∈ J \ J+ such that ij ∈ A. We
say that a job j ∈ J \ J+ is A-processed if there is at most one machine i ∈M
such that ij /∈ A and xij > 0.

In what follows we seek to find a subset A ⊆ E(G′(x)) such that each job
j ∈ J \ J+ is A-processed and each machine is A-balanced. We will show that
this is enough for a 3-approximation, by assigning each job j ∈ J \J+ to machine
i by a fraction of at most 2xij for each ij ∈ A, and not assigning it anywhere
else. Since every job j ∈ J \J+ is A-processed and xij ≤ 1/2 for all i ∈M , job j
will be completely assigned. Also, since each machine is A-balanced, the load of
each machine i will be affected by at most the setup-time of one job j. This setup
time sij is at most C∗ by restriction (3). This and the fact that the processing
time of a job on each machine is at most doubled are the basic ingredients to
show the approximation factor of 3.



Strong LP Formulations for Scheduling Splittable Jobs 253

Construction of the Set A. In the following, we denote by (T, r) a rooted
tree T with root r. Consider a connected component T of G′(x). Since G′(x)
is a subgraph of G(x), Lemma 1 implies that T is a pseudotree. We denote by
C = j1i1j2i2 · · · j	i	j1 the only cycle of T (if it exists), which must be of even
length. (If such a cycle does not exist we choose any path in T from j1 to some i	.)
Here the jobs are J(C) = {j1, . . . , j	} and the machines are M(C) = {i1, . . . , i	}.
In the cycle, we define the matchingKC = {(jk, ik) : k ∈ {1, . . . , �}}. In the forest
T \KC , we denote by (Tu, u) the tree rooted in u, for every u ∈ M(C). Notice
that by deleting the matching, no two vertices in M(C) will be in the same
component of T \KC .

For every u ∈ M(C), directing the edges of (Tu, u) away from the root, we
obtain the directed tree of which each level consists either entirely of machine-
nodes or entirely of job-nodes. We delete all edges going out of machine nodes,
i.e. all edges entering job-nodes. The remaining edges we denote by Au. We
define A := KC ∪

⋃
u∈M(C) Au. We obtain the following to lemmas.

Lemma 2. Every job j ∈ J \ J+ is A-processed.

Lemma 3. Every machine i ∈M is A-balanced.

Given set A, we apply the following rounding algorithm that constructs a new
assignment x̃. The algorithm also outputs a binary vector ỹij ∈ {0, 1} which
indicates whether job j is (partially) assigned to machine i or not.

Algorithm 1. Rounding(x)

1: Construct the graphs G(x), G′(x), and the set A as above.
2: For all ij ∈ E+, x̃ij ← 1 and ỹij ← 1;

3: For all ij ∈ A, x̃ij ← xij∑
k:kj∈A xkj

and ỹij ← 1;

4: For all ij ∈ E \ (E+ ∪A), x̃ij ← 0 and ỹij ← 0.

Theorem 1. There exists a 3-approximation algorithm for R|split,setup|Cmax.

Proof. Our algorithm first finds the smallest value C∗ for which [LST] is feasible.
This can be easily done with a binary search procedure. For that value C∗,
let x be an extreme point of [LST], and consider the output x̃, ỹ of algorithm
Rounding(x). Clearly x̃, ỹ can be computed in polynomial time. We show that
the schedule that assigns a fraction x̃ij of job j to machine i has a makespan of
at most 3C∗. This implies the theorem since C∗ ≤ OPT.

First we show that x̃ ≥ 0 defines a valid assignment, i.e.,
∑

i∈M x̃ij = 1 for
all j. Indeed, this directly follows by the algorithm Rounding(x): If j ∈ J+, then
there exists a unique machine i ∈M with ij ∈ E+ and therefore j is completely
assigned to machine i. If j �∈ J+, then

∑
i∈M x̃ij = 1 by construction.

Now we show that the makespan of the solution is at most 3C∗. First notice
that for every ij ∈ E+ we have that 1 = x̃ij = ỹij ≤ 2xij , because ij ∈ E+
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implies that xij > 1/2. On the other hand, for every j ∈ J \ J+ we have that∑
k:kj∈A xkj ≥ 1/2, because at most one machine that processes j fractionally

is not considered in A. We conclude that x̃ ≤ 2x. Then for every i ∈M it holds
that ∑

j∈J

(x̃ijpij + ỹijsij) =
∑

j:ij∈E+

(x̃ijpij + ỹijsij) +
∑

j:ij∈A

(x̃ijpij + ỹijsij)

≤
∑

j:ij∈E+

2xij(pij + sij) +
∑

j:ij∈A

(2xijpij + sij)

≤ 2C∗ +
∑

j:ij∈A

sij .

Recall that machine i is A-balanced, and therefore there is at most one job j
with ij ∈ A. Also, ij ∈ A implies that ij ∈ E(x) = {ij : xij > 0}, and hence, by
(3), sij ≤ C∗. We conclude that

∑
j:ij∈A sij ≤ C∗, proving the theorem. 
�

We finish this section by noting that our analysis is tight. Specifically, it can be
shown that the gap between the LP solution and the optimum can be arbitrarily
close to 3.

Theorem 2. For any ε > 0, there exists an instance such that (3−ε)C∗ ≤ OPT,
where C∗ is the smallest number such that [LST] is feasible.

3 A (1 + φ)-Approximation Algorithm

In this section we refine the previous algorithm and improve the approximation
ratio. Since [LST] has a gap of 3, we strengthen it in order to obtain a stronger
LP. To this end notice that inequalities (2) in [LST] are the LP relaxation of the
following restrictions of the mixed integer linear program with binary variables
yij for machine i and job j:∑

j∈J

(xijpij + yijsij) ≤ C∗ for all i ∈M, (4)

xij ≤ yij for all i ∈M and j ∈ J. (5)

A stronger relaxation is obtained by applying a lift and project step [13] to
the first inequality. For some fixed choice ij multiplying both sides of the i-th
inequality (4) by the corresponding variable yij implies (by leaving out terms)

yijxijpij + y2ijsij ≤ yijC
∗.

In case C∗ − sij > 0, this inequality implies the valid linear inequality

xij
pij

C∗ − sij
≤ yij , (6)
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since every feasible integer solution has yijxij = xij and y2ij = yij . Note that,
in optimal solutions of the LP relaxation, yij attains the smallest value that

satisfies (5) and (6). We define αij = max
{
1,

pij

C∗−sij

}
if C∗ > sij , and αij = 1

otherwise, and substitute yij by αijxij to obtain the strengthened LP relaxation

[LSTstrong] :
∑
i∈M

xij = 1 for all j ∈ J, (7)∑
j∈J

xij(pij + αijsij) ≤ C∗ for all i ∈M, (8)

xij = 0 for all i ∈M, j ∈ J : sij > C∗, (9)

xij ≥ 0 for all i ∈M, j ∈ J.

Notice that this LP is at least as strong as [LST] since αij ≥ 1 and, therefore,
the C∗ values used in [LST] and [LSTstrong] might differ. Again binary search
allows us to find the minimum C∗ for which [LSTstrong] is feasible.

Let x be an extreme point solution of this LP. We use a rounding approach
similar to the one in the previous section. Proofs that are the same as in that
section will be skipped. Consider the graph G(x). As before, each connected
component of G(x) is a pseudotree, using the same arguments that justified
Lemma 1. Also, we define again a set of jobs J+ that the LP assigns to one
machine by a sufficiently large fraction. In the previous section this fraction was
1/2. Now we parameterize it by β ∈ (1/2, 1), to be chosen later. We define E+ =
{j ∈ E(x) : xij > β} and J+ = {j ∈ J : there exists i ∈M with ij ∈ E+}.

Consider the subgraph G′(x) of G(x) induced by the set of nodes (J∪M)\J+.
Let A be a set constructed as in the previous section. Then every machine is A-
balanced and every job is A-processed. Now we apply the algorithm Rounding(x)
of the last section to obtain a new assignment x̃, ỹ. We show that for β = φ− 1
this is a solution with makespan (1+φ)C∗, where φ = (1+

√
5)/2 ≈ 1.618 is the

golden ratio. We need the following technical lemma.

Lemma 4. Let β be a real number such that 1/2 < β < 1. Then

max
0≤μ≤1

{
μ+max

{
1

β
,
1− μ

1− β

}}
= max

{
1

1− β
, 1 +

1

β

}
.

Theorem 3. There exists a (1 + φ)-approximation algorithm for the problem
R|split,setup|Cmax.

Proof. Let x be an extreme point solution of [LSTstrong], and let x̃, ỹ be the
output of algorithm Rounding(x) described in § 2. The fact that x̃, ỹ correspond
to a feasible assignment follows from the same argument as in the proof of
Theorem 1. We now show that the makespan of this solution is at most (1+φ)C∗,
which implies the approximation factor.

For any edge ij ∈ E+, we have xij > β and hence 1 = x̃ij = ỹij ≤ 1/β · xij .
Additionally, for every j ∈ J \J+, we have again, by the choice of A, that it is A-
processed. Hence,

∑
k:kj /∈A xkj ≤ β, because at most one machine that processes
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j fractionally is not considered in A. Thus,
∑

k:kj∈A xkj ≥ 1− β, which implies
that x̃ij ≤ xij/(1− β). Hence, for machine i,∑
j∈J

(x̃ijpij + ỹijsij) =
∑

j:ij∈E+

(x̃ijpij + ỹijsij) +
∑

j:ij∈A

(x̃ijpij + ỹijsij)

≤ 1

β

∑
j:ij∈E+

xij(pij + sij) +
1

1− β

∑
j:ij∈A

xijpij +
∑

j:ij∈A

sij .

Since machine i is A-balanced, there exists at most one job j with ij ∈ A (if
there is no such job then i has load at most C∗/β). Let j(i) be that job, and
define μi = sij(i)/C

∗. Then notice that

xij(i)(pij(i) + αij(i)sij(i)) ≥ xij(i)pij(i)

(
1 +

sij(i)

C∗ − sij(i)

)
= xij(i)pij(i)

(
1 +

μi

1− μi

)
= xij(i)pij(i)

1

1− μi
.

Combining the last two inequalities we obtain that

∑
j∈J

(x̃ijpij + ỹijsij) ≤
1

β

∑
j:ij∈E+

xij(pij + sij) +
1

1− β
xij(i)pij(i) + sij(i)

≤ 1

β

∑
j:ij∈E+

xij(pij + sij) +
1− μi

1− β
xij(i)(pij(i) + αij(i)sij(i)) + μiC

∗

≤ max

{
1

β
,
1− μi

1− β

}∑
j∈J

xij(pij + αijsij) + μiC
∗

≤ C∗
(
μi +max

{
1

β
,
1− μi

1− β

})
.

Therefore, by the previous lemma we have that the load of each machine is at
most C∗ ·max{1/(1−β), 1+1/β}. The approximation factor is minimized when
1/(1− β) = 1 + 1/β, hence β = (−1 +

√
5)/2 = (1 +

√
5)/2− 1 = φ − 1. Thus,

the approximation ratio is 1 + 1/(φ− 1) = 1 + φ. 
�

We close this section by showing that 1 + φ is the best approximation ratio
achievable by [LSTstrong].

Theorem 4. For any ε > 0, there exists an instance such that C∗(1 + φ− ε) ≤
OPT, where C∗ is the smallest number such that [LSTstrong] is feasible.

Proof. Consider the instance depicted in Fig. 1. It consists of two disjoint sets of
jobs J and J ′. Each job j	 ∈ J forms a pair with its corresponding job j′	 ∈ J ′.
Each such pair is associated with a parent machine i	p such that both j	 and
j′	 can be processed on this machine with setup time si�pj� = si�pj′� = φ/2 and
pi�pj� = pi�pj′� = 0. Each job j of each pair is furthermore associated with a child

machine ic(j) such that sic(j)j = 0 and pic(j)j = φ+ 1. 
�
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jt

j1 j′1 jk j′k

i1p ikp

ic(j1) ic(j
′
1) ic(jk) ic(j

′
k)

· · ·

pij = 0
sij = 1

pij = 0

sij =
1

2
φ

pij = φ+ 1

sij = 0

Fig. 1. Example showing that [LSTstrong] has a gap of 1 + φ

4 A 2-Approximation Algorithm for Restricted
Assignment

We also consider the restricted assignment case, where for every j ∈ J there
are values pj and sj such that pij ∈ {pj,∞} and sij ∈ {sj,∞} for all i ∈ M .
For this setting we obtain an improved approximation ratio of 2, also based on
rounding the [LSTstrong] relaxation. After constructing the same graph G(x), we
distribute the processing requirement of each job to the machine corresponding
to its child nodes. Although this might increase the processing requirement of
a job on the child machines by more than a factor 2, we show that increasing
the load of these machines by C∗ suffices to completely process the job and its
setup.

Theorem 5. There exists a 2-approximation algorithm for scheduling splittable
jobs on unrelated machines under restricted assignment.

5 Hardness of Approximation

By reducing from Max k-Cover, we derive an inapproximability bound of
e/(e − 1) ≈ 1.582 for R|split,setup|Cmax, indicating that the problem might
indeed be harder from an approximation point of view compared to the classic
R||Cmax, for which 3/2 is the best known lower bound.

Theorem 6. For any ε > 0, there is no
(

e
e−1 − ε

)
-approximation algorithm for

R|split,setup|Cmax unless P = NP.

6 A Job Configuration LP

A basic tool of combinatorial optimization is to design stronger linear programs
based on certain configurations. These LPs often provide improved integrality
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gaps and thus lead to better approximation algorithms as long as they can be
solved efficiently and be appropriately rounded. In machine scheduling the most
widely used configuration LP uses as variables the possible configurations of jobs
in a given machine. These machine configuration LPs have been successfully
studied for the unrelated machine setting since the pioneering work of Bansal
and Sviridenko [3]. Recent progress in the area includes [19,6,22,20].

Unfortunately, while there is a natural extension of the concept of machine
configurations to R|split,setup|Cmax, this formulation surprisingly exhibits the
same integrality gap of 1 + φ as already observed for [LSTstrong]. Instead, we
introduce a new family of configuration LPs, which we call job configuration LPs.
A configuration f for a given job j specifies the fraction of j that is scheduled
on each machine. The configuration consists of two vectors xf ∈ [0, 1]M and

yf ∈ {0, 1}M such that
∑

i∈M xf
i = 1 and yfi = 1 if and only if xf

i > 0. On

machine i ∈M configuration f requires time tfi := pijx
f
i +sijy

f
i . Let Fj be the set

of configurations for job j with tfi ≤ C for all i ∈M . Then every feasible solution
to R|split,setup|Cmax with makespan C corresponds to an integer solution of

[CLP]:
∑
f∈Fj

λf = 1 for all j ∈ J,

∑
j∈J

∑
f∈Fj

λf t
f
i ≤ C for all i ∈M,

λf ≥ 0 for all f ∈
⋃
j∈J

Fj .

Note that this formulation has infinitely many variables. However, by investi-
gating the separation problem of the convex dual of [CLP], we can show that
we can restrict [CLP] without loss of generality to the finite subset of so-called
maximal configurations. A configuration f ∈ Fj is maximal, if there is at most

one machine i ∈M with 0 < xf
i < xmax

ij , where xmax
ij := (C − sij)/pij .

Theorem 7. [CLP] is feasible if and only if the restriction of [CLP] to maximal
configurations is feasible.

It can further be shown that after discretizing the configurations, the dual sep-
aration problem can be solved in polynomial time, implying that [CLP] can be
solved efficiently up to a factor (1+ ε). Henceforth, we will restrict Fj to the set
of maximal configurations for each job j ∈ J .

Projection of the Job Configuration LP. Observe that any convex combi-
nation of job configurations λ can be translated into a pair of vectors xλ, yλ ∈
[0, 1]M×J in the assignment space by setting

xλ
ij :=

∑
f∈Fj

λfx
f
i and yλij :=

∑
f∈Fj

λfy
f
i .
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We show that applying this projection to [CLP] leads to assignment vectors
described by the following set of inequalities:

[CLPproj] :
∑
j∈J

(pijxij + sijyij) ≤ C for all i ∈M, (10)

∑
i∈M

(βixij + γiyij) ≥M(j, β, γ) for all j ∈ J, β, γ ∈ RM , (11)

with M(j, β, γ) := min
{∑

i∈M (βix
f
i + γiy

f
i ) : f ∈ Fj

}
.

Theorem 8. If λ ∈ [CLP] then (xλ, yλ) ∈ [CLPproj]. Conversely, if (x, y) ∈
[CLPproj] then there exists λ ∈ [CLP] such that x = xλ and y = yλ.

We conclude by showing that already a very special class of [CLPproj]-inequalities
is sufficient to eliminate the gap in the worst-case instances of [LSTstrong]. For a

set of machines S ⊆M let L(j, S) :=
∑

i∈M\S max
{C−sij

pij
, 0
}
be the maximum

fraction of job j that can be processed within time C by the machines in M \S.
The following inequalities are satisfied by the vector x, y induced by any feasible
solution to R|split,setup|Cmax with makespan at most C.∑

i∈S′ xij

1− L(j, S ∪ S′)
+
∑
i∈S

yij ≥ 1 for all j ∈ J and S, S′ ⊆M with L(j, S∪S′) < 1.

Interestingly, these inequalities can be seen as a special case of inequalities (11)
by setting βi =

1
1−L(j,S∪S′) for i ∈ S′ and γi = 1 for i ∈ S. Furthermore, consider

the example instance given in the proof of Theorem 4 (cf. Fig. 1). If C < 1 + φ,
then L(j, {ip(j)}) = C/pic(j)j < 1 and therefore yip(j)j = 1 for all j ∈ J ∪ J ′

in any feasible solution to [CLPproj]. This immediately implies infeasibility of
[CLPproj] for C < 1 + φ. We also note that the exact same argument applies to
the worst-case instance of the machine configuration LP.
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Abstract. Sparse cutting-planes are often the ones used in mixed-integer
programing (MIP) solvers, since they help in solving the linear pro-
grams encountered during branch-&-bound more efficiently. However,
how well can we approximate the integer hull by just using sparse cutting-
planes? In order to understand this question better, given a polyope P
(e.g. the integer hull of a MIP), let Pk be its best approximation us-
ing cuts with at most k non-zero coefficients. We consider d(P,Pk) =
maxx∈Pk (miny∈P ‖x− y‖) as a measure of the quality of sparse cuts.

In our first result, we present general upper bounds on d(P,Pk) which
depend on the number of vertices in the polytope and exhibits three
phases as k increases. Our bounds imply that if P has polynomially many
vertices, using half sparsity already approximates it very well. Second,
we present a lower bound on d(P,Pk) for random polytopes that show
that the upper bounds are quite tight. Third, we show that for a class of
hard packing IPs, sparse cutting-planes do not approximate the integer
hull well. Finally, we show that using sparse cutting-planes in extended
formulations is at least as good as using them in the original polyhedron,
and give an example where the former is actually much better.

1 Introduction

Most successful mixed integer linear programming (MILP) solvers are based on
branch-&-bound and cutting-plane (cut) algorithms. Since MILPs belong to the
class of NP-hard problems, one does not expect the size of branch-&-bound tree
to be small (polynomial is size) for every instance. In the case where the branch-
&-bound tree is not small, a large number of linear programs must be solved.
It is well-known that dense cutting-planes are difficult for linear programming
solvers to handle. Therefore, most commercial MILPs solvers consider sparsity
of cuts as an important criterion for cutting-plane selection and use [4,1,7].

Surprisingly, very few studies have been conducted on the topic of sparse
cutting-planes. Apart from cutting-plane techniques that are based on generation
of cuts from single rows (which implicitly lead to sparse cuts if the underlying
row is sparse), to the best of our knowledge only the paper [2] explicitly discusses
methods to generate sparse cutting-planes.

The use of sparse cutting-planes may be viewed as a compromise between two
competing objectives. As discussed above, on the one hand, the use of sparse
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cutting-planes aids in solving the linear programs encountered in the branch-&-
bound tree faster. On the other hand, it is possible that ‘important’ facet-defining
or valid inequalities for the convex hull of the feasible solutions are dense and thus
without adding these cuts, one may not be able to attain significant integrality
gap closure. This may lead to a larger branch-&-bound tree and thus result in
the solution time to increase.

It is challenging to simultaneously study both the competing objectives in
relation to cutting-plane sparsity. Therefore, a first approach to understanding
usage of sparse cutting-planes is the following: If we are able to separate and
use valid inequalities with a given level of sparsity (as against completely dense
cuts), how much does this cost in terms of loss in closure of integrality gap?

Considered more abstractly, the problem reduces to a purely geometric ques-
tion: Given a polytope P (which represents the convex hull of feasible solutions
of a MILP), how well is P approximated by the use of sparse valid inequalities.
In this paper we will study polytopes contained in the [0, 1]n hypercube. This
is without loss of generality since one can always translate and scale a polytope
to be contained in the [0, 1]n hypercube.

1.1 Preliminaries

A cut ax ≤ b is called k-sparse if the vector a has at most k nonzero components.
Given a set P ⊆ Rn, define Pk as the best outer-approximation obtained from
k-sparse cuts, that is, it is the intersection of all k-sparse cuts valid for P.

For integers k and n, let [n] := {1, . . . , n} and let
(
[n]
k

)
be the set of all subsets

of [n] of cardinality k. Given a k-subset of indices I ⊆ [n], define RĪ = {x ∈ Rn :
xi = 0 for all i ∈ I}. An equivalent and handy definition of Pk is the following:

Pk =
⋂

I∈([n]
k )

(
P+ RĪ

)
. Thus, if P is a polytope, Pk is also a polytope.

1.2 Measure of Approximation

There are several natural measures to compare the quality of approximation
provided by Pk in relation to P. For example, one may consider objective value

ratio: maximum over all costs c of expression zc,k

zc , where zc,k is the value of
maximizing c over Pk, and zc is the same for P. We discard this ratio, since this
ratio can become infinity and not provide any useful information1. Similarly, we
may compare the volumes of P and Pk. However, this ratio is not useful if P is
not full-dimensional and Pk is.

In order to have a useful measure that is well-defined for all polytopes con-
tained in [0, 1]n, we consider the following distance measure:

d(P,Pk) := max
x∈Pk

(
min
y∈P
‖x− y‖

)
,

where ‖·‖ is the �2 norm. It is easily verified that there is a vertex of Pk attaining
the maximum above. Thus, alternatively the distance measure can be interpreted
as the Euclidean distance between P and the farthest vertex of Pk from P.
1 Take P = conv{(0, 0), (0, 1), (1, 1)} and compare with P1 wrt c = (1,−1).
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Observation 1 (d(P,Pk) is an upper bound ondepth of cut). Supposeαx ≤
β is a valid inequality for P where ‖α‖ = 1. Let the depth of this cut be the small-
est γ ≥ 0 such that αx ≤ β + γ is valid for Pk. It is straightforward to verify that
γ ≤ d(P,Pk). Therefore, the distance measure gives an upper bound on additive
error when optimizing a (normalized) linear function over P and Pk.

Observation 2 (Comparing d(P,Pk) to
√
n). Notice that the largest dis-

tance between any two points in the [0, 1]n hypercube is at most
√
n. Therefore

in the rest of the paper we will compare the value of d(P,Pk) to
√
n.

1.3 Some Examples

In order to build some intuition we begin with some examples in this section. Let
P := {x ∈ [0, 1]n : ax ≤ b} where a is a non-negative vector. It is straightforward

to verify that in this case, Pk := {x ∈ [0, 1]n : aIx ≤ b ∀I ∈
(
[n]
k

)
}, where

aIj := aj if j ∈ I and aIj = 0 otherwise.

Example 1: Consider the simplex P = {x ∈ [0, 1]n :
∑n

i=1 xi ≤ 1}. Using the
above observation, we have that Pk = conv{e1, e2, . . . , en, 1

k e}, where ej is the
unit vector in the direction of the jth coordinate and e is the all ones vector.

Therefore the distance measure between P and Pk is
√
n( 1k −

1
n ) ≈

√
n
k , attained

by the points 1
ne ∈ P and 1

k e ∈ Pk. This is quite nice because with k ≈
√
n

(which is pretty reasonably sparse) we get a constant distance. Observe also that
the rate of change of the distance measure follows a ‘single pattern’ - we call this
a single phase example. See Figure 1(a) for d(P,Pk) plotted against k (in blue)
and k · d(P,Pk) plotted against k (in green).
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Fig. 1. (a) Sparsity is good. (b) Sparsity is not so good. (c) Example with three phases.

Example 2: Consider the set P = {x ∈ [0, 1]n :
∑

i xi ≤ n
2 }. We have that

Pk := {x ∈ [0, 1]n :
∑

i∈I xi ≤ n
2 , ∀I ∈

(
[n]
k

)
}. Therefore, for all k ∈ {1, . . . , n/2}

we have Pk = [0, 1]n and hence d(P,Pk) =
√
n/2. Thus, we stay with distance

Ω(
√
n) (the worst possible for polytopes in [0, 1]n) even with Θ(n) sparsity. Also

observe that for k > n
2 , we have d(P,Pk) = n

√
n

2k −
√
n
2 . Clearly the rate of

change of the distance measure has two phases, first phase of k between 1 and
n
2 and the second phase of k between n

2 and n. See Figure 1(b) for the plot of
d(P,Pk) against k (in blue) and of k · d(P,Pk) against k (in green).
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Example 3: We present an experimental example in dimension n = 10. The
polytope P is now set as the convex hull of 150 binary points randomly selected
from the hyperplane {x ∈ R10 :

∑10
i=1 xi = 5}. We experimentally computed

lower bounds on d(P,Pk) which are plotted in Figure 1(c) as the blue line
(details appear in the full version of the paper). Notice that there are now three
phases, which are more discernible in the plot between the lower bound on
k · d(P,Pk) and k (in green).

The above examples serve to illustrate the fact that different polytopes, behave
very differently when we try and approximate them using sparse inequalities. We
note here that in all our additional experiments, albeit in small dimensions, we
have usually found at most three phases as in the previous examples.

2 Main Results

2.1 Upper Bounds

Surprisingly, it appears that the complicated behavior of d(P,Pk) as k changes
can be described to some extent in closed form. Our first result is nontrivial
upper bounds on d(P,Pk) for general polytopes. This is proven in Section 3.

Theorem 3 (Upper Bound on d(P,Pk)). Let n ≥ 2. Let P ⊆ [0, 1]n be the
convex hull of points {p1, . . . , pt}. Then

1. d(P,Pk) ≤ 4max
{

n1/4
√
k

√
8maxi∈[t] ‖pi‖

√
log 4tn, 8

√
n

3k log 4tn
}

2. d(P,Pk) ≤ 2
√
n
(
n
k − 1

)
.

Since maxi∈{1,...,t} ||pi|| ≤
√
n and the first upper bound yields nontrivial values

only when k ≥ 8 log 4tn, a simpler (although weaker) expression for the first

upper bound is 4
√
n√
k

√
log 4tn. We make two observations based on Theorem 3.

Consider polytopes with ‘few’ vertices, say nq vertices for some constant q.
Suppose we decide to use cutting-planes with half sparsity (i.e. k = n

2 ), a reason-
able assumption in practice. Then plugging in these values, it is easily verified
that d(P,Pk) ≤ 4

√
2
√
(q + 1) logn ≈ c

√
logn for a constant c, which is a sig-

nificantly small quantity in comparison to
√
n. In other words, if the number of

vertices is small, independent of the location of the vertices, using half sparsity
cutting-planes allows us to approximate the integer hull very well. We believe
that as the number of vertices increase, the structure of the polytope becomes
more important in determining d(P,Pk) and Theorem 3 only captures the worst-
case scenario. Overall, Theorem 3 presents a theoretical justification for the use
of sparse cutting-planes in many cases.

Theorem 3 supports the existence of three phases in the behavior of d(P,Pk)
as k varies: (Small k) When k ≤ 16 log 4tn the (simplified) upper bounds are
larger than

√
n, indicating that ‘no progress’ is made in approximating the shape

of P (this is seen Examples 2 and 3). (Medium k) When 16 log 4tn ≤ k �
n−
√
n log 4tn the first upper bound in Theorem 3 dominates. (Large k) When

k 	 n −
√
n log 4tn the upper bound 2

√
n
(
n
k − 1

)
dominates. In particular, in

this phase, k ·d(P,Pk) ≤ 2n3/2−2
√
nk, i.e., the upper bound times k is a linear

function of k. All the examples in Section 1 illustrate this behaviour.
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2.2 Lower Bounds

How good is the quality of the upper bound presented in Theorem 3? Let us
first consider the second upper bound in Theorem 3. Then observe that for the
second example in Section 1, this upper bound is tight up to a constant factor
for k between the values of n

2 and n.
We study lower bounds on d(P,Pk) for random polytopes in Section 4 that

show that the first upper bound in Theorem 3 is also quite tight.

Theorem 4. Let X1, X2, . . . , Xt be independent uniformly random points in
{0, 1}n, and letP = conv(X1, X2, . . . , Xt). Then for t and k satisfying (2k2 logn+
2)2 ≤ t ≤ en we have with probability at least 1/4

d(P,Pk) ≥ min

{√
n√
k

√
log(t/2)

78
√
logn

,

√
n

8

}(
1

2
− 1

k3/2

)
− 3

√
log t.

Let us compare this lower bound with the simpler expression 4
√
n√
k

√
log tn for

the first part of the upper bound of Theorem 3. We focus on the case where
the minimum in the lower bound is acheived by the first term. Then comparing

the leading term
√

n
k

√
log t

2·78
√
logn

in the lower bound with the upper bound, we see

that these quantities match up to a factor of 624

√
log(tn)

√
log n√

log t
, showing that for

many 0/1 polytopes the first upper bound of Theorem 3 is quite tight. We also
remark that the in order to simplify the exposition we did not try to optimize
constants and lower order terms in our bounds.

The main technical tool for proving this lower bound is a new anticoncentra-
tion result for linear combinations aX , where the Xi’s are independent Bernoulli
random variables. The main difference from standard anticoncentration results
is that the latter focus on variation around the standard deviation; in this case,
standard tools such as the Berry-Esseen Theorem or the Paley-Zygmund In-
equality can be used to obtain constant-probability anticoncentration. However,
we need to control the behavior of aX much further from its standard deviation,
where we cannot hope to get constant-probability anticoncentration.

Lemma 1. Let X1, X2, . . . , Xn be independent random variables with Xi taking
value 0 with probability 1/2 and value 1 with probability 1/2. Then for every

a ∈ [−1, 1]n and α ∈ [0,
√
n
8 ],

Pr

(
aX ≥ E[aX ] +

α

2
√
n

(
1− 1

n2

)
‖a‖1 −

1

2n2

)
≥
(
e−50α2

− e−100α2
)60 log n

.

2.3 Hard Packing Integer Programs

We also study well-known, randomly generated, hard packing integer program
instances (see for instance [5]). Given parameters n,m,M ∈ N, the convex hull

of the packing IP is given by P = conv({x ∈ {0, 1}n : Ajx ≤
∑

i A
j
i

2 , ∀j ∈ [m]}),
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where the Aj
i ’s are chosen independently and uniformly in the set {0, 1, . . . ,M}.

Let (n,m,M)-PIP denote the distribution over the generated P’s.
The following result shows the limitation of sparse cuts for these instances.

Theorem 5. Consider n,m,M ∈ N such that n ≥ 50 and 8 log 8n ≤ m ≤ n.
Let P be sampled from the distribution (n,m,M)-PIP. Then with probability at

least 1/2, d(P,Pk) ≥
√
n
2

(
2

max{α,1} (1− ε)2 − (1 + ε′)
)
, where c = k/n and

1

α
=

M

2(M + 1)

[
n− 2

√
n log 8m

c((2− c)n+ 1) + 2
√
10cnm

]
, ε =

24

√
log 4n2m√

n
, ε′=

3
√
log 8n√

m− 2
√
log 8n

.

Notice that when m is sufficiently large, and n reasonably larger than m, we
have ε and ε′ approximately 0, and the above bound reduces to approximately√

n
2

((
M

M+1

)(
n

k(2−n/k)

)
− 1

)
≈

√
n
2

(
n

k(2−n/k) − 1
)
, which is within a constant

factor of the upper bound from Theorem 3. The poor behavior of sparse cuts
gives an indication for the hardness of these instances and suggests that denser
cuts should be explored in this case.

One interesting feature of this result is that it works directly with the IP
formulation, not relying on an explicit linear description of the convex hull.

2.4 Sparse Cutting-Planes and Extended Formulations

Let projx : Rn × Rm → Rn denote the projection operator onto the first n
coordinates. We say that a set Q ⊆ Rn × Rm is an extended formulation of
P ⊆ Rn if P = projx(Q).

As our final result we remark that using sparse cutting-planes in extended
formulations is at least as good as using them in the original polyhedron, and
sometime much better; proofs are provided in the full version of the paper.

Lemma 2. Consider a polyhedron P ⊆ Rn and an extended formulation Q ⊆
Rn × Rm for it. Then projx(Q

k) ⊆ (projx(Q))k = Pk.

Lemma 3. Consider n ∈ N and assume it is a power of 2. Then there is a
polytope P ⊆ Rn such that: 1) d(P,Pk) =

√
n/2 for all k ≤ n/2; 2) there is an

extended formulation Q ⊆ Rn × R2n−1 of P such that projx(Q
3) = P.

3 Upper Bound

In this section we prove Theorem 3. In fact we prove the same bound for poly-
topes in [−1, 1]n, which is a slightly stronger result. The following well-known
property is crucial for the constructions used in both parts of the theorem.

Observation 6 (Section 2.5.1 of [3]). Consider a compact convex set S ⊆
Rn. Let x̄ be a point outside S and let ȳ be the closest point to x̄ in S. Then
setting a = x̄− ȳ, the inequality ax ≤ aȳ is valid for S and cuts x̄ off.
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3.1 Proof of First Part of Theorem 3

Consider a polytope P = conv{p1, p2, . . . , pt} in [−1, 1]n. Define

λ∗ = max

{
n1/4

√
k

√
8max

i
‖pi‖

√
log 4tn,

8
√
n

3k
log 4tn

}
.

In order to show that d(P,Pk) is at most 4λ∗ we show that every point at
distance more than 4λ∗ from P is cut off by a valid inequality for Pk. Assume
until the end of this section that 4λ∗ is at most

√
n, otherwise the result is trivial;

in particular, this implies that the second term in the definition of λ∗ is at most√
n/4 and hence k ≥ 8 log 4tn.
So let u ∈ Rn be a point at distance more than 4λ∗ from P. Let v ∈ P be

the closest point in P to Pk. We can write u = v + λd for some vector d with
‖d‖2 = 1 and λ > 4λ∗. From Observation 6, inequality dx ≤ dv is valid for P, so
in particular dpi ≤ dv for all i ∈ [t]; in addition, it that this inequality cuts off
u: du = dv + λ > dv. The idea is to use this extra slack factor λ in the previous
equation to show we can ‘sparsify’ the inequality dx ≤ dv while maintaining
separation of P and u. It then suffices to prove the following lemma.

Lemma 4. There is a k-sparse vector d̃ ∈ Rn such that d̃pi ≤ d̃v + λ
2 for all

i ∈ [t], and d̃u > d̃v + λ
2 .

To prove the lemma we construct a random vector D̃ ∈ Rn which, with non-zero
probability, is k-sparse and satisfies the two other requirements of the lemma.
Let α = k

2
√
n
. Define D̃ as the random vector with independent coordinates,

where D̃i is defined as follows: if α|di| ≥ 1, then D̃i = di with probability 1; if
α|di| < 1, then D̃i takes value sign(di)/α with probability α|di| and takes value
0 with probability 1− α|di|. (For convenience we define sign(0) = 1.)

The next observation follows directly from the definition of D̃.

Observation 7. For every vector a ∈ Rn the following hold:
1. E[D̃a] = da
2. Var(D̃a) ≤ 1

α

∑
i∈[n] a

2
i |di|

3. |D̃iai − E[D̃iai]| ≤ |ai|
α .

Claim. With probability at least 1− 1/4n, D̃ is k-sparse.

Proof. Construct the vector a ∈ Rn as follows: if α|di| ≥ 1 then ai = 1/di, and
if α|di| < 1 then ai = α/sign(di). Notice that D̃a equals the number of non-zero
coordinates of D̃ and E[D̃a] ≤ α‖d‖1 ≤ k/2. Also, from Observation 7 we have

Var(D̃a) ≤ 1

α

∑
i∈[n]

a2i |di| ≤ α‖d‖1 ≤
k

2
.

Then using Bernstein’s inequality ([6], Appendix A.2) we obtain

Pr(D̃a ≥ k) ≤ exp

(
−min

{
k2

8k
,
3k

8

})
≤ 1

4n
,

where the last inequality uses our assumption that k ≥ 8 log 4tn. 
�
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We now show that property 1 required by Lemma 4 holds for D̃ with high
probability.

Claim. Pr(maxi∈[t][D̃(pi − v)− d(pi − v)] > 2λ∗) ≤ 1/4n.

Proof. Define the centered random variable Z = D̃ − d. To make the anal-
ysis cleaner, notice that maxi∈[t] Z(pi − v) ≤ 2maxi∈[t] |Zpi|; this is because
maxi∈[t] Z(pi − v) ≤ maxi∈[t] |Zpi| + |Zv|, and because for all a ∈ Rn we have
|av| ≤ maxp∈P |ap| = maxi∈[t] |api| (since v ∈ P).

Therefore our goal is to upper bound the probability that the process
maxi∈[t] |Zpi| is larger then λ∗. Fix i ∈ [t]. By Bernstein’s inequality,

Pr(|Zpi| ≥ λ∗) ≤ exp

(
−min

{
(λ∗)2

4Var(|Zpi|) ,
3λ∗

4M

})
, (1)

where M is an upper bound on maxj |Zjp
i
j |.

To bound the terms in the right-hand side, from Obersvation 7 we have

Var(Zpi) = Var(D̃pi) ≤ 1

α

∑
j

(pij)
2|dj | ≤

1

α

∑
j

pij |dj | ≤
1

α
‖pi‖‖d‖ = 1

α
‖pi‖,

where the second inequality follows from the fact pi ∈ [0, 1]n, and the third
inequality follows from the Cauchy-Schwarz inequality. Moreover, it is not diffi-
culty to see that for every random variable W , Var(|W |) ≤ Var(W ). Using the
first term in the definition of λ∗, we then have

(λ∗)2

Var(|Zpi|) ≥ 4 log 4tn.

In addition, for every coordinate j we have |Zjp
i
j| = |D̃jp

i
j − E[D̃jp

i
j]| ≤ 1/α,

where the inequality follows from Observation 7. Then we can set M = 1/α and
using the second term in the definition of λ∗ we get λ∗

M ≥
4
3 log 4tn. Therefore,

replacing these bounds in inequality (1) gives Pr(|Zpi| ≥ λ∗) ≤ 1
4tn .

Taking a union bound over all i ∈ [t] gives that Pr(maxi∈[t] |Zpi| ≥ λ∗) ≤
1/4n. This concludes the proof of the claim. 
�

Claim. Pr(D̃(u− v) ≤ λ/2) ≤ 1− 1/(2n− 1).

Proof. Recall u − v = λd, hence it is equivalent to bound Pr(D̃d ≤ 1/2). First,
E[D̃d] = dd = 1. Also, from Observation 7 we have D̃d ≤ |D̃d − dd| + |dd| ≤
1
α

∑
i |di| + 1 ≤ 2n

k + 1 ≤ n, where the last inequality uses the assumption
k ≥ 8 log 4tn. Then employing Markov’s inequality to the non-negative random
variable n− D̃d, we get Pr(D̃d ≤ 1/2) ≤ 1− 1

2n−1 . This concludes the proof. 
�

Proof of Lemma 4. Employ the previous three claims and union bound to find a
realization of D̃ that is k-sparse and satisfies requirements 1 and 2 of the lemma.

This concludes the proof of the first part of Theorem 3.



How Good Are Sparse Cutting-Planes? 269

Observation 8. Notice that in the above proof λ∗ is set by Claim 3.1, and need
to be essentially E[maxi∈[t](D̃−d)pi]. There is a vast literature on bounds on the
supremum of stochastic processes [6], and improved bounds for structured P’s
are possible (for instance, via the generic chaining method).

3.2 Proof of Second Part of Theorem 3

The main tool for proving this upper bound is the following lemma, which shows
that when P is ‘simple’, and we have a stronger control over the distance of a
point x̄ to P, then there is a k-sparse inequality that cuts x̄ off.

Lemma 5. Consider a hyperplane H = {x ∈ Rn : ax ≤ b} and let P = H ∩
[−1, 1]n. Let x̄ ∈ [−1, 1]n be such that d(x̄, H) > 2

√
n(nk − 1). Then x̄ /∈ Pk.

Proof. Assume without loss of generality that ‖a‖2 = 1. Let ȳ be the point in
H closes to x̄, and notice that x̄ = ȳ + λa where λ >

√
n(nk − 1).

For any set I ∈
(
[n]
k

)
, the inequality

∑
i∈I aixi ≤ b+

∑
i/∈I:ai≥0 ai−

∑
i/∈I:ai<0 ai

is valid for P; since it is k-sparse, it is also valid for Pk. Averaging out this
inequality over all I ∈

(
[n]
k

)
, we get that the following is valid for Pk:

k

n
ax ≤ b+

(
1− k

n

)⎛⎝ ∑
i:ai≥0

ai −
∑

i:ai<0

ai

⎞⎠ ≡ ax ≤ b+
(n
k
− 1

)
(b+ ‖a‖1) .

We claim that x̄ violates this inequality. First notice that ax̄ = aȳ+λ = b+λ >
b+ 2

√
n
(
n
k − 1

)
, hence it suffices to show b+ ‖a‖1 ≤ 2

√
n. Our assumption on

x̄ implies that P �= [−1, 1]n, and hence b < maxx∈[−1,1] ax = ‖a‖1; this gives
b+ ‖a‖1 ≤ 2‖a‖1 ≤ 2

√
n‖a‖2 = 2

√
n, thus concluding the proof. 
�

To prove the second part of Theorem 3 consider a point x̄ of distance greater
than 2

√
n(nk − 1) from P; we show x̄ /∈ Pk. Let ȳ be the closest point to x̄

in P. Let a = x̄ − ȳ. From Observation 6 we have that ax ≤ aȳ is valid for
P. Define H ′ = {x ∈ Rn : ax ≤ aȳ} and P′ = H ′ ∩ [−1, 1]n. Notice that
d(x̄, H ′) = d(x̄, ȳ) > 2

√
n(nk − 1). Then Lemma 5 guarantees that x̄ does not

belong to P′k. But P ⊆ P′, so by monotonicity of the k-sparse closure we have
Pk ⊆ P′k; this shows that x̄ /∈ Pk, thus concluding the proof.

4 Lower Bound

In this section we prove Theorem 4. The proof is based on the ‘bad’ polytope
of Example 2 and proceeds in two steps. First, for a random 0/1 polytope P
we show that with good probability the facets dx ≤ d0 for Pk have d0 being

large, namely d0 	
(

1
2 +

√
log t√
k

)∑
i di; therefore, with good probability the point

p̄ ≈ (12 +
√
log t√
k

)e belongs to Pk. In the second step, we show that with good
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probability the distance from p̄ to P is at least ≈
√

n
k

√
log t, by showing that

the inequality
∑

i xi � n
2 +
√
n is valid for P.

We nowproceedwith the proof.Consider the randomsetX = {X1, X2, . . . , Xt}
where the X i’s are independent uniform random points in {0, 1}n, and define the
random 0/1 polytope P = conv(X).

We say that a 0/1 polytope P is α-tough if for every facet dx ≤ d0 of Pk we

have d0 ≥
∑

i di

2 + α
2
√
k
(1− 1

k2 )‖d‖1−‖d‖∞/2k2. To get a handle on α-toughness

of random 0/1 polytopes, define D as the set of all integral vectors � ∈ Rn

that are k-sparse and satisfy ‖�‖∞ ≤ (k + 1)(k+1)/2. The following claim, shows
that all the facets of Pk come from the set D; it follows directly from applying
Corollary 26 in [8] to each term P+RĪ in the definition of Pk from Section 1.1.

Lemma 6. Let Q ⊆ Rn be a 0/1 polytope. Then there is a subset D′ ⊆ D such
that Qk = {x : dx ≤ maxy∈Pk dy, d ∈ D′}.

Now we can analyze the probability that P is α-tough.

Lemma 7. If 1 ≤ α2 ≤ min
{

log(t/2)
6000 log n ,

k
64

}
and k ≤ n − 1, then P is α-tough

with probability at least 1/2.

Proof. Let E be the event that for all d ∈ D we have maxi∈[t] dX
i ≥ 1

2

∑
j dj +

α
2
√
k
(1− 1

k2 )‖d‖1 − ‖d‖∞/2k2. Because of Lemma 6, whenever E holds we have

that P is α-tough and thus it suffices to show Pr(E) ≥ 1/2.
Fix d ∈ D. Since d is k-sparse, we can apply Lemma 1 to d/‖d‖∞ restricted

to the coordinates in its support to obtain that

Pr

(
dX i ≥

∑
i di
2

+
α

2
√
k

(
1− 1

k2

)
‖d‖1 −

‖d‖∞
2k2

)
≥
(
e−50α2 − e−100α2

)60 logn

≥ e−100α2·60 logn ≥ 1

t1/2
,

where the second inequality follows from our lower bound on α and the last
inequality follows from our upper bound on α. By independence of the X i’s,

Pr

(
max
i∈[t]

dX i <

∑
i di
2

+
α

2
√
k

(
1− 1

k2

)
‖d‖1−

‖d‖∞
2k2

)
≤
(
1− 1

t1/2

)t

≤ e−t1/2 ,

where the second inequality follows from the fact that (1 − x) ≤ e−x for all x.

Finally notice that |D| =
(
n
k

)
(k + 1)(k+1)2/2 and that, by our assumption on

the size of t and k ≤ n− 1, e−t1/2 ≤ (1/2)|D|. Therefore, taking a union bound
over all d ∈ D of the previous displayed inequality gives Pr(E) ≥ 1/2, concluding
the proof of the lemma. 
�

The next lemma takes care of the second step of the argument; its simple proof
is based on Bernstein’s and is deferred to the full version of the paper.

Lemma 8. With probability at least 3/4, the inequality
∑

j xj ≤ n
2 + 3

√
n log t

is valid for P.
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Lemma 9. Suppose that the polytope Q is α-tough for α ≥ 1 and that the
inequality

∑
i xi ≤ n

2 + 3
√
n log t is valid for Q. Then we have d(Q,Qk) ≥

√
n
(

α
2
√
k
− α

k2 − 3
√
log t√
n

)
.

Proof. We first show that the point q̄ = (12 + α
2
√
k
− α

k2 )e belongs to P. Let

dx ≤ d0 be facet for P. Then we have

dq̄ =

∑
i di
2

+ α

(
1

2
√
k
− 1

k2

)∑
i

di ≤
∑

i di
2

+ α

(
1

2
√
k
− 1

k2

)
‖d‖1

≤
∑

i di
2

+ α

(
1

2
√
k
− 1

2k2

)
‖d‖1 −

‖d‖∞
2k2

,

where the first inequality uses the fact that 1
2
√
k
− 1

k2 ≥ 0 and the second inequal-

ity uses α ≥ 1 and ‖d‖1 ≥ ‖d‖∞. Since Q is α-tough it follows that q̄ satisfies
dx ≤ d0; since this holds for all facets of Q, we have q̄ ∈ Q.

Now define the halfspace H = {x :
∑

i xi ≤ n
2 + 3

√
n log t}. By assumption

Q ⊆ H , and hence d(Q,Qk) ≥ d(H,Qk). But it is easy to see that the point

in H closest to q̄ is the point q̃ = (12 + 3
√
log t√
n

)e. This gives that d(Q,Qk) ≥

d(H,Qk) ≥ d(q̄, q̃) ≥
√
n
(

α
2
√
k
− α

k2 − 3
√
log t√
n

)
. This concludes the proof. 
�

We now conclude the proof of Theorem 4. Set ᾱ2 = min
{

log(t/2)
6000 logn ,

k
64

}
. Taking

union bound over Lemmas 7 and 8, with probability at least 1/4P is ᾱ-tough and
the inequality inequality

∑
i xi ≤ n

2 +3
√
n log t is valid for it. Then from Lemma

9 we get that with probability at least 1/4, d(P,Pk) ≥
√
n
(

ᾱ
2
√
k
− ᾱ

k2 − 3
√
log t√
n

)
, and the result follows by plugging in the value of ᾱ.

5 Hard Packing Integer Programs

In this section we prove Theorem 5; missing proof are presented in the full version
of the paper. With overload in notation, we use

(
[n]
k

)
to denote the set of vectors

in {0, 1}n with exactly k 1’s.
Let P be a random polytope sampled from the distribution (n,m,M)-PIP

and consider the corresponding random vectors Aj ’s. The idea of the proof is to
show that with constant probability P behaves like Example 2, by showing that
the cut

∑
i xi � n

2 is valid for it and that it approximately contains 0/1 points
with many 1’s.

We start with a couple of lemmas that are proved via Bernstein’s inequality.

Lemma 10. With probability at least 1 − 1
8 we have |

∑n
i=1 A

j
i − nM

2 | ≤
M
√
n log 8m for all j ∈ [m].

Lemma 11. With probability at least 1 − 1
4 the cut (1 − 2

√
log 8n√
m

)
∑

i xi ≤ n
2 +

√
n log 8√

m
is valid for P.
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The next lemma shows that with constant probability P almost contains all 0/1
points with many 1’s.

Lemma 12. With probability at least 1− 1
8 we have

Aj x̄ ≤ (M + 1)c(2n− cn+ 1)

2
+ (M + 1)

√
10cnm, ∀j ∈ [m], ∀x̄ ∈

(
[n]

cn

)
.

Lemma 13. Consider a 0/1 polytope Q = conv({x ∈ {0, 1}n : ajx ≤ bj , j =

1, 2, . . . ,m}) where n ≥ 20, m ≤ n, aji ∈ [0,M ] for all i, j, and bj ≥ nM
12 for all

i. Consider 1 < α ≤ 2
√
n and let x̄ ∈ {0, 1}n be such that for all j, ajx̄ ≤ αbj.

Then the point 1
α (1 − ε)2x̄ belongs to Q as long as

12
√

log 4n2m√
n

≤ ε ≤ 1
2 .

Proof of Theorem 5. Recall the definitions of α, ε, ε′, and c = k/n from the
statement of the theorem. Let E be the event that Lemmas 10, 11 and 12 hold;
notice that Pr(E) ≥ 1/2. For the rest of the proof we fix a P (and the associated
Aj ’s) where E holds and prove a lower bound on d(P,Pk).

Consider a set I ∈
(
[n]
cn

)
and let x̄ be the incidence vector of I (i.e. x̄i = 1 if

i ∈ I and x̄i = 0 if i /∈ I). Since the bounds from Lemmas 10 and 12 hold for
our P, straightforward calculations show that Aj x̄ ≤ α 1

2

∑
iA

j
i for all j ∈ [m].

Therefore, from Lemma 13 we have that the point 1
max{α,1} (1 − ε)2x̄ belongs

to P. This means that the point x̃ = 1
max{α,1} (1 − ε)2e belongs to P + RĪ (see

Section 1.1). Since this holds for every I ∈
(
[n]
cn

)
, we have x̃ ∈ Pk.

Let ỹ be the point in P closest to x̃. Let a = (1 − 2
√
log 8n√
m

) and b = n
2 +

√
n log 8m, so that the cut in Lemma 11 is given by aex ≤ b. From Cauchy-

Schwarz we have that d(x̃, ỹ) ≥ aex̃−aeỹ
‖ae‖ = ex̃√

n
− aeỹ

a
√
n
.

By definition of x̃ we have ex̃ = 1
max{α,1} (1 − ε)2n. From the fact the cut

aex ≤ b is valid for P and ỹ ∈ P, we have aeỹ ≤ b. Simple calculations show
that b

a
√
n
≤ n

2 (1+ ε′). Plugging these values in we get that d(P,Pk) = d(x̃, ỹ) ≥
√
n
2

(
2(1−ε)2

max{α,1} − (1 + ε′)
)
. Theorem 5 follows from the definition of α, ε and ε′.
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Abstract. A tour in a graph is a connected walk that visits every vertex at least
once, and returns to the starting vertex. Vishnoi (2012) proved that every con-
nected d-regular graph with n vertices has a tour of length at most (1 + o(1))n,
where the o(1) term (slowly) tends to 0 as d grows. His proof is based on van-der-
Warden’s conjecture (proved independently by Egorychev (1981) and by Falik-
man (1981)) regarding the permanent of doubly stochastic matrices. We provide
an exponential improvement in the rate of decrease of the o(1) term (thus increas-
ing the range of d for which the upper bound on the tour length is nontrivial). Our
proof does not use the van-der-Warden conjecture, and instead is related to the lin-
ear arboricity conjecture of Akiyama, Exoo and Harary (1981), or alternatively,
to a conjecture of Magnant and Martin (2009) regarding the path cover number
of regular graphs. More generally, for arbitrary connected graphs, our techniques
provide an upper bound on the minimum tour length, expressed as a function of
their maximum, average, and minimum degrees. Our bound is best possible up to
a term that tends to 0 as the minimum degree grows.

1 Introduction

A tour in a graph is a connected walk that starts at a vertex, visits every vertex of the
graph at least once, and returns to the starting vertex. The length of the tour is the
number of steps of the corresponding walk. Vishnoi [19] proved the following theorem.

Theorem 1. [19] Every n-vertex d-regular connected graph has a tour of length at

most
(
1 +

√
64

log d

)
n. Moreover, there is a randomized polynomial time algorithm that

with high probability finds such a tour.

The existential part of the proof of Theorem 1 is based on van-der-Warden’s conjecture
(proved independently by Egorychev [8] and by Falikman [9]) regarding the permanent
of doubly stochastic matrices. (See also Section 3 of [2] for related results.) The algo-
rithmic part is based on randomized algorithms for approximating the permanent [11].
We provide the following strengthening of Theorem 1.
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Theorem 2. Every n-vertex d-regular connected graph has a tour of length at most(
1 +O

(
1√
d

))
n. Moreover, there is a randomized polynomial time algorithm that

finds such a tour.

Our proof does not use the van-der-Warden conjecture, and instead works by construct-
ing a large linear forest. A linear forest is an acyclic subgraph where the degree of any
vertex is at most two. Equivalently, a linear forest is a vertex disjoint union of paths. We
prove the following theorem about existence of large linear forests in d-regular graphs.

Theorem 3. Everyn-vertexd-regular graph has a linear forest of size
(
1−O

(
1√
d

))
n,

and moreover, such a linear forest can be found in randomized polynomial time.

A linear forest with a large size given by Theorem 3 is useful for constructing a span-
ning tree with few odd-degree nodes: indeed, extending the forest to any spanning tree
introduces odd degree nodes of the same order as the number of components of the
forest. For an even cardinality set T of vertices, a T -join is a collection of edges which
has odd-degree exactly on vertices in T . Following Christofides’ algorithm [6], it then
suffices to construct a T -join on these few odd degree nodes. We show that, in a graph
whose minimum degree is large, there is always a small size T -join when |T | is small
in the following theorem.

Theorem 4. Let G(V,E) be an arbitrary connected graph with n vertices and mini-
mum degree δ, and let T ⊂ V be an arbitrary set of vertices of even cardinality. Then
there is a T -join with fewer than 2|T |+ 3n

δ+1 edges.

The above theorem then, along with Theorem 3, directly gives Theorem 2. We also
observe that Theorem 4 can be thought of as a generalization of the classical result [15],
up to additive constant terms, that every graph with minimum degree δ has diameter at
most 3n

δ+1 . This follows since when T = {u, v} then the smallest T -join is exactly the
shortest path between u and v.

We observe that certain unproved conjectures (specifically, the linear arboricity con-
jecture of [1], or alternatively, a conjecture of [13] regarding the path cover number
of regular graphs) would imply that every d-regular graph has a linear forest of size
(1 −O( 1d ))n and hence, a tour of length at most

(
1 +O

(
1
d

))
n. This bound would be

best possible up to the hidden constant in the O notation, as there are d-regular graphs
in which every tour is of length (1 +Ω( 1d ))n. For more details, see Section 4.

In contrast to the result of Vishnoi [19], our results extend naturally to nearly regular
graphs and we prove the following general theorem.

Theorem 5. Let G be a connected n-vertex graph with maximum degree Δ, average
degree d, and minimum degree δ. Then G has a tour of length at most(

1 +
Δ− d

Δ
+O

(
1√
Δ

)
+O

(
1

δ

))
n.

Moreover, there is a randomized polynomial time algorithm that finds such a tour.

Theorem 5 provides tours not much larger than n when Δ is close to d, and δ is fairly

large. The term Δ−d
Δ is best possible, but the error terms O

(
1√
Δ

)
+O

(
1
δ

)
can possibly

be improved. See more details in Section 3.1.
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1.1 Related Work

There has been extensive recent work on approximation algorithms for the graph-TSP
problem, which is the same as that of finding a minimum length tour of a given undi-
rected graph. While Christofides’ algorithm [6] gives a 3

2 approximation even for graph-
TSP, a small but constant improvement was presented by Oveis-Gharan et al. [17].
Mömke and Svensson [14] improved this significantly while further improvements by
Sebö and Vygen [18] have brought the current best approximation factor for graph-TSP
down to 7

5 . The methods of Mömke and Svensson [14] also give a 4
3 approximation

algorithm for minimum length tours in subcubic 2-connected graphs.
Another line of work has focused on graph theoretic methods to obtain improved

approximation factors: Boyd et al. [5] showed a 4
3 approximation for 2-connected cubic

graphs; Correa et al [7] gave an algorithm that finds a tour of length at most (43−
1

61236 )n
in n-node 2-connected cubic graphs, while Karp and Ravi [12] gave an algorithm that
finds a tour of length at most 9n

7 in cubic bipartite graphs. For general, d-regular
connected graphs, Vishnoi [19] gave an algorithm for finding tours of length at most
(1 + 8√

log d
)n.

2 Small T -joins in Regular Graphs

In this section we prove Theorem 4 which follows directly from the following
strengthening.

Theorem 6. Let G(V,E) be an arbitrary connected graph with n vertices and mini-
mum degree δ, and let T ⊆ V be an arbitrary set of vertices of even cardinality. Then
there is a T -join with fewer than 2|T |+ 3n

δ+1 − 2ν edges, where ν is the number of con-
nected components in the T -join. Moreover, such a T -join can be found in polynomial
time.

Proof. Given u, v ∈ V , let d(u, v) denote the number of edges along the shortest path
between u and v in G. Consider the following iterative procedure for constructing a
set S ⊂ V together with a set P of virtual edges, each of length 3. Initially, place an
arbitrary vertex v in S. Thereafter, in every iteration, consider an arbitrary vertex (say,
u) whose distance from S is exactly 3. If there is no such vertex the procedure ends.
Given such a vertex u, let w be an arbitrary vertex in S with d(w, u) = 3. Add u to S
and the virtual edge (w, u) to P . This completes the description of the iteration.

Observe that necessarily |S| ≤ n
δ+1 , because every vertex of S excludes all its neigh-

bors from being in S, and the neighborhoods of vertices in S are disjoint. Observe also
that the graph G′(S, P ) induced on S and the virtual edges is a tree.

Associate with every vertex v ∈ T \S the vertex u ∈ S that is closest to v (breaking
ties arbitrarily), and observe that d(u, v) ≤ 2 (due to the maximality of S). Add an
auxiliary edge (u, v) to P , with length d(u, v). Consider now the tree T ′ whose vertices
are T ∪ S, and whose edge set is P . The total number of virtual edges in T ′ is exactly
|S ∪ T | − 1, exactly |S| − 1 of these virtual edges have length 3, and the remaining
edges have length at most 2. Within T ′, find the unique T -join (where a tree edge is in
the T -join iff each of the two connected components that are formed by removing it has
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an odd number of vertices from T ). Let ν′ denote the number of connected components
(with respect to T ′) in this T -join. Then the number of virtual edges in the T -join is
exactly |S∪T |−ν′, and their total length is at most 3(|S|−1)+2|T \S|−2(ν′−1) <
3|S|+ 2|T | − 2ν′.

Now replace the virtual edges of the T -join by edges along the corresponding
shortest paths in G. The total number of edges needed is less than 3|S| + 2|T | − 2ν′.
In the process of replacing virtual edges by paths, the same edge of G might be in-
troduced multiple times. If so, any double occurrence of an edge is removed (as this
does not change the parity of degrees), so as to make the resulting T -join a simple
subgraph of G with no parallel edges. The removal of a set of edges parallel to each
other might add 1 to the number of connected components, but decreases the num-
ber of edges in the T -join by at least 2. Hence if the final number of connected com-
ponents in the T -join is ν, then the total number of edges in the T -join is less than
3|S|+ 2|T | − 2ν ≤ 2|T |+ 3n

δ+1 − 2ν, as desired.

We now prove the following corollary.

Corollary 1. Let G be a connected graph with n vertices and minimum degree δ, and
let F be a linear forest in G. Then given F , one can find in polynomial time a tour of G
of length smaller than 2n− |F |+ 5n

δ+1 .

Proof. Without loss of generality, assume that F is a maximal linear forest. This implies
that isolated vertices cannot be neighbors of each other or neighbors of endpoints of
paths, and endpoints of different paths cannot be neighbors of each other. The forest F
induces in G exactly n− |F | connected components, where a connected component is
either a path or an isolated vertex.

We first describe a process for adding edges from G to the forest so that it becomes
connected. In the process we may add the same edge more than once, and hence we
shall obtain a connected spanning multigraph. The governing consideration in deciding
which edges to add is that of keeping the number of odd degree vertices as small as
possible (in particular, all odd degree vertices will be of degree one). The rules for
adding edges are as follows:

1. If a component is an isolated vertex v, add an arbitrary edge incident to v (hence v
joins some other connected component), and double this edge. Hence the number
of connected components drops by one, the number of edges grows by two, and the
number of odd degree vertices does not change.

2. If there are two vertices u and v of degree one in different connected components
Cu and Cv with d(u, v) = 2 then connect them by a shortest path. Hence the
number of connected components drops by one, the number of edges grows by two,
and the number of odd degree vertices drops by two. Observe that the path between
u and v might go through another component C′, in which case the number of
connected components should have dropped by two. However, for uniformity of the
analysis (and without affecting its correctness) we shall count C′ as a component
distinct from the new component formed by Cu and Cv .

When none of the above two rules applies, let q denote the number of remaining
connected components (each of which has two vertices of degree one).
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The number of edges (including parallel edges) added by the above procedure is
exactly 2(n− |F | − q).

Observe that if we take one vertex of degree one from each remaining component,
no two such vertices share a neighbor (otherwise rule 2 above would apply). Hence
q ≤ n

δ+1 .
Let T denote the set of odd degree vertices that still remain, and note that |T | = 2q ≤

2n
δ+1 . Now find a T -join in G using Theorem 6. This T -join has less than 2|T |+ 3n

δ+1−2ν
edges, where ν denotes the number of connected components of the T -join.

The union of the q components and the T -join is an Eulerian subgraph of G with at
most ν connected components. It can be made connected (and kept Eulerian) by adding
ν− 1 pairs of parallel edges. Thereafter, an Eulerian cycle can serve as a tour of G. The
total number of edges (counting multiplicities) in this union is less than

|F |+ 2(n− |F | − q) + 4q +
3n

δ + 1
− 2ν + 2(ν − 1) < 2n− |F |+ 5n

δ + 1

proving the theorem.

3 Large Linear Forests and Fractional Arboricity

The fractional linear arboricity of a graph G is the minimum number of linear forests
needed to cover every edge where we are allowed to pick a linear forest fractionally.
Given Corollary 1, the proof of Theorem 2 would follow from a lower bound on the
size of the maximum linear forest in regular graphs. Indeed, we prove a stronger result

and show that fractional linear arboricity of any d-regular graph is at most d−O(
√
d)

2 .

Theorem 7. There exists a randomized algorithm that given a d-regular graph G =
(V,E) returns a linear forest F such that for each edge e ∈ E, the probability e ∈ F
is at least 2

d+O(
√
d)

. Thus the fractional arboricity of any d-regular graph is at most

d−O(
√
d)

2 .

Before we prove Theorem 7, we prove Theorem 3.

Proof (Proof of Theorem 3). Sample a random linear forest F as given by Theorem 7.
The expected size of the forest F is at least∑

e∈E

Pr[e ∈ F ] ≥ |E| · 2

d+O(
√
d)
≥ nd

2
· 2

d+O(
√
d)
≥
(
1−O

(
1√
d

))
n

as required.

We can now prove Theorem 2.

Proof (Proof of Theorem 2). Theorem 3 implies that every n-vertex d-regular graph has

a linear forest of size (1 − O(
√

1
d ))n, and moreover, such a linear forest can be found

in polynomial time. Plugging this value of |F | in Corollary 1 proves the theorem.
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Thus it remains to prove Theorem 7.

Proof (Proof of Theorem 7). We shall now describe an iterative algorithm for construct-
ing a random linear forest F . We shall assume for simplicity that n is a power of 2. This
assumption has negligible effect on our bounds.

In the beginning of iteration i for i = 1, 2, . . .we have a directed graphGi = (Vi, Ei)
where the maximum out/in-degree of every vertex is di where di & d

2i and there are no
parallel arcs (but there can be two anti-parallel arcs). The vertex set of Gi is obtained by
identifying vertices of G; thus each vertex of Vi corresponds to subset of vertices in V
and these subsets form a partition of V . We also maintain that edges included in F up
to iteration i− 1 have both their endpoints contracted to the same vertex in Vi. Indeed,
the edges of included so far in F within any subset corresponding to a vertex in Vi form
a path. For i = 1, we initialize G1 as follows. If d is even, we pick an Eulerian tour
traversing each edge of G exactly once and orient the edges by picking an orientation
of the tour and we set d1 = d

2 . If d is odd, we first add a perfect matching of auxiliary
edges to G. Observe that the multiplicity of any edge is at most two after adding the
matching. Now we pick an Eulerian orientation which traverses any two parallel edges
right after each other. Now consider the orientation of the edges as given by the Eulerian
tour. Clearly, there are no parallel arcs as any edge of multiplicity two is oriented as a
pair of anti-parallel arcs. In this case, we set d1 = d+1

2 .
In each iteration i, we do the following steps.

1. Pair the vertices of Gi in an arbitrary manner. Then form a directed bipartite graph
Di with bipartition Li ∪ Ri = Vi, where from each pair of vertices one vertex is
included in Li and the other in Ri, uniformly at random and independently for each
pair. Remove all arcs with both endpoints in Li or both endpoints in Ri to obtain a
directed bipartite graph.

2. Next, scan all vertices one by one, and if a vertex has current in- or out-degree
more than di+1 = �di

2 �, delete a uniformly random set of in- or out-edges until the
degree is exactly di+1. After this pass, all vertices have in- and out-degree at most
di+1 but some may have a strictly smaller degree.

3. Consider the bipartite graph formed by edges directed from Li to Ri. This bipartite
graph has maximum degree di+1. Add auxiliary edges between vertices of Li and
Ri of degree less than di+1 in an arbitrary manner (allowing also parallel edges),
until a regular bipartite multi-graph of degree di+1 is obtained.

4. Legally color the edges of this regular bipartite multi-graph with di+1 colors, thus
obtaining di+1 perfect matchings. Select uniformly at random one of the color
classes as the perfect matching Ni.

5. Let N ′
i denote the set of edges which go from Ri to Li and are anti-parallel to an

edge in Ni. Now do one of the following steps.
(a) Select N ′

i as matching Mi with probability 2
di+1

and end the algorithm.

(b) Otherwise, with probability 1− 2
di+1

, let Mi = Ni, and remove all arcs of N ′
i .

Remove all arcs that go from Li to Ri and unify the endpoints of Mi. Thus
in the contracted graph, we only retain edges that go from Ri to Li, and the
out/in-degree of each vertex is at most di+1. Observe that the contracted graph
is a simple graph, with no parallel edges and no self loops. This contracted
graph serves as Gi+1 for the next iteration i+ 1.
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If step 5(a) is never invoked, the algorithm ends after logn iterations, as by then the
whole graph is contracted to a single vertex. The final output F of the algorithm is the
union of all Mi, excluding all the auxiliary edges.

Proposition 1. The output of the algorithm is a linear forest.

Proof. Add to the output of the algorithm also all the auxiliary edges that were used in
order to extend the Mi matchings into perfect matchings. Considering the graph induced
on the edges of all Mi and the auxiliary edges, it can be verified by induction that every
vertex in iteration i corresponds to a directed path with exactly 2i vertices, where the
operation performed in iteration i matches such paths in pairs, and concatenates the two
members of a pair with a directed (original or auxiliary) edge. Hence with the auxiliary
edges the final output of the algorithm is a collection of vertex disjoint paths. Removing
the auxiliary edges leaves a vertex disjoint set of paths (some of which might be isolated
vertices), which by definition is a linear forest.

Lemma 1. For any i, an edge e is deleted in Step 2 with probability at most 8√
di+1

.

Proof. Let e = (u, v) be any arc e ∈ Gi. The probability that e ∈ E(Ri, Li) is at
least 1

4 (exactly 1
2 if u and v are paired and exactly 1

4 otherwise), and likewise for
e ∈ E(Li, Ri). Let us first condition on the event that either e ∈ E(Ri, Li) or e ∈
E(Li, Ri) and calculate the probability that e is deleted in Step (2) of iteration i. This
can happen if the out-degree of u or in-degree of v is more than di+1. Let us concentrate
on the event that e is deleted due to high out-degree at u. For each pair p = {w,w′}
of vertices in Gi, let Xp denote the indicator random variable for the event that either
(u,w) or (u,w′) is in E(Ri, Li). If u has out arcs to both w and w′, then Xp = 1
with probability one. If u has an out-arc to exactly one of w or w′, then Xp = 1
with probability 1

2 . Moreover, these random variables are independent since we make
decisions for each pair independently. Thus the out-degree of u is X =

∑
p Xp where

E[X ] ≤
∑

p E[Xp] ≤ di+1. Since X is a sum of {0, 1}-valued independent Bernoulli
random variables, standard Chernoff bounds imply that

Pr[degout(u) ≥ di+1 + c
√
di+1] ≤ e−

c2

3 .

Since we delete a random set of required number of edges at u, we obtain that

Pr[e is deleted due to high out-degree at u]

≤
∞∑
c=0

(c+ 1)
√
di+1

di + c
√
di+1

Pr[di+1 + c
√
di+1 ≤ degout(u) ≤ di+1 + (c+ 1)

√
di+1]

≤
∞∑
c=0

(c+ 1)
√
di+1

di + c
√
di+1

· e− c2

3 ≤ 1√
di+1

∞∑
c=0

(c+ 1) · e− c2

3 ≤ 4√
di+1

An identical bound holds for the event that e is deleted due to high in-degree at v.
Thus, from the union bound, it follows that

Pr[e is deleted in Step 2] ≤ 8√
di+1

.
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We now lower bound the probability that any e is included in F . We prove the following
lemma for the first T = log d

2 iterations. For this lemma, we assume that d is also a power
of two for ease of analysis. This assumption has a negligible effect on the bounds.

Lemma 2. For any 1 ≤ i ≤ T ,

Pr[e ∈ F |e ∈ Gi] ≥
1

di +
(
2

i
2+1 + 30(

√
2 + 1)

)√
di

Proof. The proof is by reverse induction on i. For i = T , we have 2T/2 = d1/4 and
dT = d

2T =
√
d. Thus we have that

1

dT +
(
2

T
2 +1 + 30(

√
2 + 1)

)√
dT

=
1

dT +
(
2
√
dT + 30(

√
2 + 1)

)√
dT
≤ 1

3dT
.

We will show that

Pr[e ∈ F |e ∈ GT ] ≥
1

3dT
≥ 1

dT +
(
2

T
2 +1 + 30(

√
2 + 1)

)√
dT

which will prove the base case.
The chance that e ∈ E(Li, Ri) is at least 1

4 . From Lemma 1, e is removed in Step
2 with probability at most 8√

dT+1

. Since, each color class is chosen with probability

1
dT+1

, we obtain that

Pr[e ∈ NT |e ∈ GT ] ≥
(
1

4
− 8√

dT+1

)
· 1

dT+1

But then it is included in MT with probability 1 − 2
dT+1

independent of the earlier
events. Thus

Pr[e ∈MT |e ∈ GT ] ≥
(
1

4
− 8√

dT+1

)
1

dT+1
·
(
1− 2

dT+1

)
≥ 1

6dT+1
=

1

3dT

for sufficiently large values of d. This proves the base case of the induction.
Now consider any i and let e ∈ Gi. Then e can be included in F in the following

three events. Firstly, if it is in E(Li, Ri), then it can included in Ni and then chosen in
Mi. Secondly, if it is in E(Ri, Li) and if one of the anti-parallel edges to it is chosen in
Ni then it is included in N ′

i and can be chosen in Mi. Lastly, if it is E(Ri, Li) but Mi is
chosen as Ni and it is not deleted in Step 5, it can be chosen in Gi+1. We will calculate
the probabilities of the first two events and apply induction to the last event to prove the
inductive hypothesis. We have the following inequalities. All events are conditioned on
the event that e ∈ Gi.

Pr[e ∈ F ] =Pr[e ∈ E(Li, Ri)] · Pr[e ∈ F |e ∈ E(Li, Ri)]

+ Pr[e ∈ E(Ri, Li)] · Pr[e ∈ Mi|e ∈ E(Ri, Li)]

+ Pr[e ∈ E(Ri, Li)] · Pr[e ∈ Gi+1|e ∈ E(Ri, Li)] · Pr[e ∈ F |e ∈ Gi+1]
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Now, we calculate each of terms.

Pr[e ∈ E(Li, Ri)] ≥
1

4

Pr[e ∈ F |e ∈ E(Li, Ri)] ≥
(
1− 8√

di+1

)
· 1

di+1
·
(
1− 2

di+1

)

Now Pr[e ∈ E(Ri, Li)] ≥ 1
4 . Conditioned on the event that e ∈ E(Ri, Li), let r be

the multiplicity of the anti-parallel arc to e in E(Li, Ri) after the addition of dummy
edges in Step 3. Then, one of these arcs in selected in Ni with probability r

di+1
.

Pr[e ∈Mi|e ∈ E(Ri, Li)] ≥
(
1− 8√

di+1

)
· r

di+1
· 2

di+1

In the last case, e is included in Gi+1 if one of the anti-parallel edges is not chosen in
Ni but we chose Mi = Ni.

Pr[e ∈ Gi+1|e ∈ E(Ri, Li)] ≥
(
1− 8√

di+1

)
·
(
1− r

di+1

)
·
(
1− 2

di+1

)

By induction, we have

Pr[e ∈ F |e ∈ Gi+1] ≥
1

di+1 + f(i+ 1)
√
di+1

where we let f(j) = 2j/2+1 + 30(
√
2 + 1) for any j for ease of notation.

Combining all the above inequalities, we obtain that

Pr[e ∈ F |e ∈ Gi] ≥1

4
·
(
1− 8√

di+1

)
· 1

di+1
·
(
1− 2

di+1

)
+

1

4
·
(
1− 8√

di+1

)
· r

di+1
· 2

di+1

+
1

4
·
(
1− 8√

di+1

)
·
(
1− r

di+1

)
·
(
1− 2

di+1

)
· 1

di+1 + f(i+ 1)
√

di+1

We first notice that the coefficient at r is always positive and hence the expression is
minimized when r = 0. Simplifying we get

Pr[e ∈ F |e ∈ Gi] ≥
1

4
·
(
1− 8√

di+1

)(
1− 2

di+1

)(
1

di+1
+

1

di+1 + f(i+ 1)
√
di+1

)
≥ 1

4
·
(
1− 10√

di+1

)(
1

di+1
+

1

di+1 + f(i+ 1)
√
di+1

)
≥ 1

4

(
1

di+1 + 30
√
di+1

+
1

di+1 + f(i+ 1)
√
di+1

)
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where the last inequality is true for large enough d. Using the fact that di+1 = di

2 and
simplifying the above expression further, a simple check shows that

Pr[e ∈ F |e ∈ Gi] ≥
1

2di + 60
√
2
√
di

+
1

2di + 2
√
2f(i+ 1)

√
di

≥ 1

di +
(
2

i
2+1 + 30(

√
2 + 1)

)√
di

This completes the proof of lemma by induction.

Using the fact d1 ≥ d
2 , we obtain that

Pr[e ∈ F ] = Pr[e ∈ F |e ∈ G1] ≥
1

d1 +
(
2

3
2 + 30(

√
2 + 1)

)√
d1
≥ 2

d+ 120
√
d

This completes the proof of Theorem 7.

3.1 Extensions to Nearly Regular Graphs

Here we prove Theorem 5.

Proof (Proof of Theorem 5). Let G be a connected graph of maximum degree Δ,
average degree d, and minimum degree δ. Simply replacing d by Δ in the proof of
Theorem 3 establishes that the fractional linear arboricity of G is Δ

2 + O(
√
Δ). As G

has dn/2 edges, this implies that it has at least one linear forest F with n( d
Δ −O( 1√

Δ
))

edges. Moreover, such a linear forest can be found in polynomial time by sampling
linear forests from the distribution generated by the algorithm appearing in the proof of
Theorem 3. Given such a linear forest, Corollary 1 finds a tour of length 2n − |F | +
O(nδ ) =

(
1 + Δ−d

Δ +O
(√

1
Δ

)
+O(1δ )

)
n, as specified in Theorem 5.

The term Δ−d
Δ in Theorem 5 is best possible, as shown by the following example. Let

G be a bipartite graph in which the larger side has Δn
Δ+δ vertices of degree δ, whereas the

smaller side has δn
Δ+δ vertices of degree Δ. As a tour must visit every vertex in the large

side, the length of the shortest tour is at least 2Δn
Δ+δ . The average degree is d = 2Δδ

Δ+δ ,
and a simple manipulation show that expressing the minimum tour length as a function
of d gives

(
1 + Δ−d

Δ

)
n, as desired.

The term O
(√

1
Δ

)
in Theorem 5 is carried over from Theorem 2, and possibly can

be replaced by O( 1
Δ). See the discussion in Section 4.

An interesting question is whether the term O(1δ ) can be replaced by O( 1d). If so,
the bound in Theorem 5 would become independent of δ. Our proof of Theorem 5 uses
Corollary 1, and there the term O(1δ ) cannot be replaced by O( 1d). Consider for example
a path of length (roughly) n/2 in which one endpoint is connected to a triangle and the
other to a clique of size n/2. This graph has a Hamiltonian path (and hence a linear
forest of size n−1), but the shortest tour is of length roughly 3n/2, despite the fact that
its average degree is very high, roughly n/4. However, the above graph does not show
that the term O(1δ ) cannot be replaced by O( 1d ) in Theorem 5, because for this graph
Δ−d
Δ & 1

2 .
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4 Some Conjectures

Linear arboricity of a graph G is a covering of all its edges by linear forests. The linear
arboricity conjecture of [1] states that every d-regular graph has a linear arboricity with
�d+1

2 � linear forests. If true, then one of these forests must be of size at least (1− 2
d+2 )n,

and Theorem 4 would then imply that every d-regular graph has a tour of length (1 +
O( 1d))n. The linear arboricity conjecture has been proved for small values of d, and is
known to be true up to low order terms for large values of d (see [3] or [4]). The known

upper bounds on the linear arboricity number translate to a (1 − O

((
log d
d

)1/3
)
n

lower bound on the sizes of linear forests, which is weaker than the bound that we
prove in Theorem 3.

The path cover number of a graph G is the minimum number of vertex disjoint
paths required to cover the vertices of G. Magnant and Martin [13] conjecture that the
path cover number of d-regular graphs is at most n

d+1 (and even smaller if the graph
is required to be connected). They prove the conjecture for all d ≤ 5. Observe that
every path cover is a linear forest, and that the size of the forest plus the respective
cover number is exactly n. Hence the path cover number conjecture, if true, could be
combined with our Corollary 1 to show that every d-regular graph has a tour of length
(1 +O( 1d ))n.

A minimum Hamiltonian completion of a graph is the minimum size set of edges
that, when added to the graph, makes it Hamiltonian [10]. The size of such a set is
exactly one more than the size of a minimum path cover of the graph.

An upper bound of (1 + O( 1d ))n on the shortest tour length is the best that one
can hope for, and likewise, a lower bound of (1 − Ω( 1d))n on the largest linear forest
would be best possible. This can be demonstrated by taking a d-regular tree of depth
� & logd n (the root node has d children whereas internal nodes have d − 1 children),
and converting it to a d-regular graph as follows (assume for simplicity that d is odd).
Add a single child to each leaf, connect this child to every sibling of its parent leaf
(by now original leaves have degree d), and add a matching on the set of newly added
children in which two such vertices can be matched if they are children of sibling leaves
(so now all vertices have degree d). In this d-regular graph, a path can contain at most
two vertices from the penultimate level of the tree (the parents of the leaves). It follows
that a path cover contains at least Ω(n/d) paths, implying the desired lower bound on
the length of a tour and upper bound on size of the linear forest.

Acknowledgements. Part of this work was done while the first two authors were visit-
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Abstract. We demonstrate that � rounds of the Sherali-Adams hierar-
chy and 2� rounds of the Lovász-Schrijver hierarchy suffice to reduce the
integrality gap of a natural LP relaxation for Directed Steiner Tree in
�-layered graphs from Ω(

√
k) to O(� · log k) where k is the number of ter-

minals. This is an improvement over Rothvoss’ result that 2� rounds of
the considerably stronger Lasserre SDP hierarchy reduce the integrality
gap of a similar formulation to O(� · log k).

We also observe that Directed Steiner Tree instances with 3 layers of
edges have only an O(log k) integrality gap in the standard LP relaxation,
complementing the known fact that the gap can be as large as Ω(

√
k) in

graphs with 4 layers.

1 Introduction

In the Directed Steiner Tree (DST) problem, we are given a directed graph
G = (V,E) with edge costs ce ≥ 0, e ∈ E. Furthermore, we are given a root
node r ∈ V and a collection of terminals X ⊆ V and the goal is to find the
cheapest collection of edges F ⊆ E such that there is an r − t path using only
edges in F for every terminal t ∈ X . The nodes in V − (X ∪ {r}) are called
Steiner nodes. Throughout (except in Section 2.1), we will let n = |V |, m = |E|,
and k = |X | and we let OPTG denote the optimum solution cost to the DST
instance in graph G.

If X ∪ {r} = V , then the problem is simply the minimum-cost arborescence
problem which can be solved efficiently. However, the general case is well-known
to be NP-hard. In fact, the problem can be seen to generalize the Group Steiner
Tree problem, which cannot be approximated within O(log2−ε(n)) for any con-
stant ε > 0 unless NP ⊆ DTIME(npolylog(n)) [7].
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Definition 1. Say that an instance G = (V,E) of DST with terminals X is
�-layered if V can be partitioned as V0, V1, . . . , V	 where V0 = {r}, V	 = X and
every edge uv ∈ E has u ∈ Vi and v ∈ Vi+1 for some 0 ≤ i < �.

For any DST instanceG and any integer � ≥ 1, Zelikovsky showed that there is an
�-layered DST instance H with at most � · n nodes such that OPTG ≤ OPTH ≤
�·k1/	 ·OPTG and that a DST solution inH naturally corresponds to a DST solu-
tion in G with the same cost [11,1]. Charikar et al. [2] exploit this fact and present
an O(�2k1/	 log k)-approximation1 with running time poly(n, k	) for any integer
� ≥ 1. In particular, this can be used to obtain an O(log3 k)-approximation in
quasi-polynomial time and for any constant ε > 0 a polynomial-time O(kε)-
approximation. Finding a polynomial-time polylogarithmic approximation is an
important open problem.

A natural linear programming (LP) relaxation for Directed Steiner Tree is
given by LP (P0).

min
∑
e∈E

cexe (P0)

s.t. x(δin(S)) ≥ 1 ∀ S ⊆ V − r, S ∩X �= ∅ (1)

xe ∈ [0, 1] ∀e ∈ E

Zosin and Khuller [12] demonstrated that the integrality gap of this relaxation
can, unfortunately, be as bad as Ω(

√
k), even in instances where G is a 4-layered

graph. Recently, Rothvoss [9] showed that 2� rounds of the Lasserre semidefinite
programming (SDP) hierarchy suffice to reduce the integrality gap of a similar
LP relaxation to only O(� · log k) in �-layered graphs. The LP he considers is an
extended formulation of (P0) with polynomially many constraints plus additional
constraints of the form x(δin(v)) ≤ 1 for each non-root node v.

A related problem that will appear frequently throughout this paper is the
Group Steiner Tree (GST) problem mentioned above. In this, we are given an
undirected graph with edge costs, a root node r, and a collection of subsets
X1, X2, . . . , Xk of nodes called terminal groups. The goal is to find the cheapest
subset of edges F such that for every group Xi, there is a path from r to some
node in Xi using only edges in F . Unlike DST, the integrality gap of the nat-
ural LP relaxation (GST-LP) (introduced in Section 3) is polylogarithmically
bounded.

Theorem 1 (Garg, Konjevod, and Ravi [4]). The integrality gap of LP
(GST-LP) is O(min{�, logn} · log k) in GST instances that have n nodes, k
terminal groups, and are trees with height � when rooted at r.

1 The algorithm in [2] is presented as an O(�k1/� log k)-approximation and relied on
an incorrect claim in [11]. A correction to this claim was made in [1] which gives the
stated DST approximation bound.
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Only the bound of O(log n log k) is explicitly shown in [4] but the bound O(� ·
log k) easily follows from their techniques2.

Hierarchies of convex programming relaxations, a.k.a. “lift-and-project” meth-
ods, have recently been used successfully in the design of approximation algo-
rithms. For the sake of space, we omit a general introduction to lift-and-project
procedure and will only include the specifics of the Sherali-Adams hierarchy
and Lovász-Schrijver LP hierarchy as needed to describe our result. For more
information, we direct the reader to an introduction and survey by Chlamtáč
and Tulsiani [3] and note that a more recent application of the Sherali-Adams
hieararchy by Gupta, Talwar and Witmer obtains a 2-approximation for the
non-uniform Sparsest Cut problem in graphs with bounded treewidth [5] .

1.1 Our Results and Techniques

Using the ellipsoid method, it is possible to design a separation oracle for the
�-th level lift of (P0) in the Sheral-Adams and Lovász-Schrijver hierarchies with
running time being polynomial in n and k	. However, we will start with a much
simpler LP relaxation with only polynomially many constraints.

min
∑
e∈E

cexe (P1)

s.t. x(δin(t)) ≥ 1 t ∈ X (2)

x(δin(v)) ≤ 1 ∀ v ∈ V − r (3)

x(δin(v)) ≥ xe ∀ v ∈ V − (X ∪ {r}), e ∈ δout(v) (4)

xe ∈ [0, 1] ∀e ∈ E

This is a relaxation in the sense that integer solutions corresponding to min-
imal DST solutions are feasible. That is, any minimal DST solution F is a
branching, so every node has indegree 1 in F which justifies the inclusion of
Constraints (3). Similarly, if some Steiner node v has no incoming edges in F
then, by minimality of F , v also has outdegree 0 which justifies Constraints (4).

Our main result is the following. The notation SAt(P) and LSt(P) (defined
properly in Section 2.1 and Section 2.2 respectively) refers to the t-th level lift
of polytope P ⊆ [0, 1]m in the Sherali-Adams hierarchy and Lovász-Schrijver
hierarchy respectively, which can be optimized over in time that is polynomial
in the size of LP (P1) and m	. Thus, we consider the following LPs.

min

{∑
e∈E

ce · y{e} : y ∈ SA	(P)
}

(SA-LP)

min

{∑
e∈E

ce · ye : y ∈ LS2	(P)
}

(LS-LP)

2 [4] groups nodes together in their analysis so that the tree has height h = O(log n).
They then prove the gap is O(h · log k). One could skip the grouping argument to
directly prove the O(� · log k) bound.
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where P is the polytope given by the constraints of the LP relaxation (P1).

Theorem 2. Then the integrality gap of LP (SA-LP) is O(� · log k) in �-layered
instances of DST.

Theorem 3. Then the integrality gap of LP (LS-LP) is O(� · log k) in �-layered
instances of DST.

Note that Theorems 2 and 3 are incomparable; fewer rounds are used in the
stronger Sherali-Adams hierarchy. For the sake of space, we will only present
the proof of Theorem 2 in this extended abstract. The proof of Theorem 3 is
deferred to the full version.

We can also find feasible DST solutions witnessing these integrality gap upper
bounds.

Theorem 4. Given oracle access to some fixed y ∈ LS2	(P) or y ∈ SA	(P), with
high probability we can find a Directed Steiner Tree solution in time O(poly(n)) of
cost at most O(� · log k) times the cost of y∗.

Rothvoss proved an analogous result for the Lasserre SDP hieararchy [9], but
his arguments relied on a particular decomposition theorem proven by Karlin,
Mathieu, and Nguyen [8]. This decomposition theorem does not hold in weaker
LP hierarchies.

The algorithm for rounding a point in SA	(P) lifted LP is quite different
from the algorithm for rounding a point in LS2	(P). At a high level, we prove
Theorem 2 by mapping a point y∗ in the Sherali-Adams lifted polytope into an
LP solution with the same cost as y∗ for a related Group Steiner Tree instance.
Using Theorem 1, we find a GST solution with cost O(� · log k) times the cost of
y∗ and this will naturally correspond to a DST solution in G. This construction
does not need to made explicit; one can emulate the GST rounding algorithm in
[4] in an expected O(poly(n)) steps given oracle access to y ∈ SA	(P).

However, these techniques do not seem to help in proving Theorem 3. We
prove Theorem 3 by employing a different algorithm to round LP (LS-LP).
Roughly speaking, we start from the terminals, then iteratively extend the paths
by adding edges in a bottom-up fashion guided by probabilities given by the LP.

As a warmup, we also obtain the following interesting bound that shows lift-
and-project techniques are not necessary for graphs having 3 layers.

Theorem 5. The integrality gap of LP (P0) is O(log k) in 3-layered graphs.

As with Theorem 2, this is obtained by mapping a point in LP (P0) to an LP
solution for the corresponding GST instance. However, the restriction to only 3
layers allows us to accomplish this without the use of hierarchies. In contrast,
the integrality gap of LP (P0) is Ω(

√
k) in some graphs with 4 layers [12].

The paper is organizes as follows. Section 2 describes the hierarchies and
introduces some additional notation. The proof of Theorem 5 is presented in
Section 3. The proof of Theorem 2 is outlined in Section 4. Finally, the rounding
algorithms for both hierarchies are described in Section 5.
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2 Preliminaries

2.1 The Sherali-Adams Hierarchy

Consider a polytope P ⊆ Rn specified by m linear constraints
∑n

i=1 Aj,i · xi ≥
bj, 1 ≤ j ≤ m. Suppose the “box constraints” 0 ≤ xi and xi ≤ 1 (equivalently,
−xi ≥ −1) appear among these constraints for each 1 ≤ i ≤ n.

For t ≥ 0, let Pt([n]) = {S ⊆ {1, . . . , n} : |S| ≤ t} denote the collection of
subsets of {1, . . . , n} of size at most t. We also let RPt([n]) denote Rα where
α = |Pt([n])| = nO(t). We index a vector y ∈ RPt([n]) by sets in Pt([n]). The
Sherali-Adams hieararchy (introduced in [10]) is described as follows.

Definition 2. SAt(P) is the set of vectors y ∈ RPt+1([n]) satisfying y∅ = 1 and∑
H⊆J

(−1)|H| ·
(

n∑
i=1

Aj,i · yI∪H∪{i} − bj · yI∪H

)
≥ 0 (5)

for each j = 1, . . . ,m and each pair of subsets of indices I, J ⊆ {1, . . . , n} having
|I|+ |J | ≤ t.

If P is described by m linear constraints over n variables, then SAt(P) has nO(t)

variables and nO(t)m constraints. So, we can solve the LP

min

{
n∑

i=1

ci · y{i} : y ∈ SA	(P)
}

with only poly(n	) overhead over the running time of solving min
{
cTx : x ∈ P

}
.

We only use some of the many well-known properties of the Sherali-Adams
hierarchy.

Lemma 1. Suppose y ∈ SAt(P) for some t ≥ 0. Then the following hold.

– For any A ∈ Pt([n]) such that yA > 0, let y′ ∈ RPt+1−|A|([n]) be defined by
y′I = yI∪A

yA
. Then y′ ∈ SAt−|A|(P).

– For any A ⊆ B ⊆ [n] with |B| ≤ t+ 1, we have yB ≤ yA.

Furthermore, P and the projection of SAt(P) to the singletons have the same
integral solutions.

In particular, the last statement implies that if P is an LP relaxation of a {0, 1}
integer program, then SAt(P) is also a relaxation for the same integer program
for any t ≥ 0.

2.2 The Lovász-Schrijver Hierarchy

Given a convex set P ⊆ [0, 1]n, we convert it to a cone in Rn+1 as follows.

cone(P) = {y = (λ, λx1, . . . , λxn) | λ ≥ 0, (x1, . . . , xn) ∈ P}

With a linear program given by constraints
∑n

i=1 Aj,i ·xi ≥ bj , 1 ≤ j ≤ m, this is
is accomplished by homogenizing the constraints with a new variable x0, yielding
the cone {x ∈ Rd+1 :

∑n
i=1 Aj,i · xi ≥ bj · x0, 1 ≤ j ≤ m and x0 ≥ 0}.
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Definition 3. For a cone K ⊆ Rd+1 we define the set N(K) (also a cone in
Rd+1) as follows: a vector y = (y0, . . . , yd) ∈ Rd+1 is in N(K) if and only if
there is a matrix Y ∈ R(d+1)×(d+1) such that

1. Y is symmetric
2. For every i ∈ {0, 1, . . . , d}, Y0,i = Yi,i = yi
3. Each row Yi is an element of K
4. Each vector Y0 − Yi is an element of K

The matrix Y is said to be a protection matrix for y ∈ N(K). For t ≥ 0 we
recursively define the cone N t(K) as N0(K) = K and N t(K) = N(N t−1(K).

Then we project the cone back to the desired space.

Definition 4. LSt(P) is the set of vectors y ∈ N t(cone(P)) with y0 = 1.

Lovász and Schrijver [13] showed that if we start from a LP relaxation of a 0-1
integer program with n variables, then LSn(P) is a tight relaxation in the sense
that the only feasible solutions are convex combinations of integral solutions.
In addition, if we start with a LP relaxation with poly(n) inequalities, we can
obtain an optimal solution over the set of solutions given by t levels of LS in
nO(t) time.

One key fact that is derived easily from Definition 3 is the following.

Lemma 2. If y = (1,x) ∈ LSt(P) with protection matrix Y , for any i ∈
{1, . . . , n} such that xi > 0 consider the vector y′ = 1

xi
Yi. Then y′ ∈ LSt−1(P)

with y′i = 1.

2.3 Notation

Suppose G is an �-layered instance of Directed Steiner Tree with root r, terminals
X , and layers {r} = V0, V1, . . . , V	 = X . We will assume every v ∈ V can be
reached by r. In particular, for every v ∈ V1 we have rv ∈ E.

Say a path in G is rooted if it begins at r. The notation 〈vj , vj+1, vj+2, . . . , vi〉
refers to a path in G that follows edges vjvj+1, vj+1vj+2, . . . , vi−1vi ∈ E in
succession. The subscript of a vertex in this notation will always indicate which
layer the node lies in. The notation 〈ej , ej+1, ej+2, . . . , ei〉 refers to a path in G
that follows edges ej , ej+1, . . . , ei ∈ E in succession. The subscript of an edge in
this notation will always indicate which layer the (directed) edge starts from.

For any node v ∈ V (G) we let

Q(v) = {〈r, v1, v2, . . . , vi〉 : vi = v}

and for any e ∈ E(G) we let

Q(e) = {〈r, v1, v2, . . . , vi〉 : vi−1vi = e}

denote all rooted paths ending at node v or ending with edge e, respectively.
More generally, for a vertex v and another vertex u or an edge e, we let Q(v, u)
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and Q(v, e) denote all paths starting at v and ending at u or ending with edge
e, respectively. We let Q(e, v) denote all paths starting with edge e and ending
at v. It will also sometimes be convenient to think of a path as a set of edges
{vjvj+1, . . . , vi−1vi}.

Definition 5. Suppose G = (V,E) is an �-layered instance of DST with root r
and k terminals X. Then we consider the Group Steiner Tree instance on a tree
T (G) with terminal groups Xt, t ∈ X defined as follows.

– The vertex set of T (G) consists of all rooted paths ∪v∈V Q(v) in G.
– For any rooted path P �= 〈r〉, we connect P to its maximal proper rooted

subpath and give this edge cost ce, where P ∈ Q(e). Denote this edge in
T (G) by m(P ).

– For each terminal t ∈ X, we let Xt = Q(t): the set of all r − t paths in G.

This construction is illustrated in Figure 1. We will not explicitly construct T (G)
in our rounding algorithm described in Section 5. It is simply a tool for analysis.

r

a b

c d e

x y z

r

a b

c d e d e

x y y z z y z z

Fig. 1. A 3-layered DST instance with terminals X = {x, y, z} (left) and the corre-
sponding GST instance T (G) (right). Each node in T (G) corresponds to a path P in
G and is labelled in the figure with the endpoint of P in G. A terminal group in T (G)
in the figure consists of all leaf nodes with a common label. A DST solution and its
corresponding GST solution are drawn with bold edges.

The following is immediate from the construction of T (G).

Lemma 3. Let |V | = n. The graph T (G) constructed from an �-layered Directed
Steiner Tree instance G is a tree with height � when rooted at 〈r〉. For every GST
solution in T (T ) there is a DST solution in G of no greater cost, and vice-versa.

3 Rounding for 3-Layered Graphs

We first demonstrate that the natural LP relaxation (P0) for Directed Steiner
Tree has an integrality gap of O(log k) in 3-layered graphs without using any lift-
and-project machinery. As mentioned earlier, this complements the observation
of Zosin and Khuller [12] that the integrality gap is Ω(

√
k) in some 4-layered

instances.
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We show this by directly embedding a solution to the Directed Steiner Tree
LP relaxation (P0) for some 3-layered instance G into a feasible LP solution to
the Group Steiner Tree LP (GST-LP) on instance T (G). The reason we can
do this with 3-layered instances is essentially due to the fact that for any edge
e = uv that either v ∈ X or |Q(e)| = 1 (Figure 1 also helps illustrate this). This
property does not hold in general for instances with at least 4 layers.

Consider a Group Steiner Tree instance H = (V,E) with root r, terminal
groups X1, X2, . . . , Xk ⊆ V , and edge costs ce, e ∈ E. The LP relaxation we
consider for Group Steiner Tree is the following.

min
∑
e∈E

ceze (GST-LP)

s.t. z(δ(S)) ≥ 1 ∀S ⊆ V − r,Xi ⊆ S for some group Xi (6)

z ≥ 0

Now we can prove Theorem 5.

Proof. Let G = (V,E) be a 3-layered instance of Directed Steiner Tree with
layers {r} = V0, V1, V2, V3 = X and T (G) the corresponding Group Steiner Tree
instance. Let x∗ be an optimal solution to LP (P0). Note that for edge uv ∈ E
with v �∈ X there is a unique rooted path in G ending with e (i.e. |Q(e)| = 1).

We construct a feasible solution z∗ to LP relaxation (GST-LP) for the Group
Steiner Tree instance T (G). For every edge e = uv of G where v �∈ X , set
z∗m(P ) := x∗

e where Q(e) = {P}. All that is left to set is the the z∗-value for the

leaf edges of T (G).
To do this, fix a terminal t ∈ X . By the max-flow/min-cut theorem and

Constraints (1), there is a flow f t sending 1 unit of flow from r to t satisfying
f t
e ≤ x∗

e for every edge e. Furthermore, for each e ∈ δin(t) we may assume that
x∗
e = f t

e, otherwise we could reduce x∗
e while maintaining feasibility. Consider

any path decomposition of f t and say that this decomposition places weight wt
P

on a path P ∈ Q(t). That is, f t
e =

∑
P∈Q(t):e∈P wt

P for every edge e ∈ G. Then

we set z∗m(P ) := wt
P for each P ∈ Q(t).

We claim that z∗ is a feasible solution for LP (GST-LP) with cost equal to∑
e∈E cex

∗
e . If so, then by Theorem 1, there is a Group Steiner Tree solution of

cost at most O(log k) times the cost of x∗. We conclude by using Lemma 3 to
note that there is then a Directed Steiner Tree solution of cost at most O(log k).

To see why z∗ is feasible, we prove for every group t that there is a flow
gt of value 1 from 〈r〉 to the nodes in Xt with gtm(P ) ≤ z∗m(P ) for every edge

m(P ), P of H . By the max-flow/min-cut theorem, this means every constraint
of (GST-LP) is satisfied by z∗. That such a flow exists essentially follows from
the path decomposition of the flow f t. Recall that a path decomposition of f t

placed weight wt
P on P ∈ Q(t). So, for each group Xt we define a flow gt in

T (G) by gtm(P ) =
∑

P∗∈Q(t):P⊆P∗ wt
P∗ .

Verifying that gt is one unit of r−Xt flow satisfying gt ≤ z∗ is straightforward;
the details are left to the full version. It is also easy to see that the total z∗-value
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for paths ending with a copy of an edge e in G is equal to x∗
e , so the x∗ and z∗

have the same cost.

4 Sherali-Adams Gap for �-Layered Graphs

Our basic approach for proving Theorem 2 is similar to our approach for Theorem
5. Let P denote the polytope defined by the constraints of LP (P1). We show how
to embed a point y∗ in the Sherali-Adams lift of LP (P1), namely SA	(P), for an
�-layered instanceG to a feasible solution to LP (GST-LP) for the corresponding
Group Steiner Tree instance T (G).

Describing the embedding is straightforward. For every edge m(P ) in T (G),
simply set z∗m(P ) := y∗P . The rest of our analysis shows that z∗ is feasible for

LP (GST-LP) for instance T (G) and the cost of z∗ in (GST-LP) is equal to∑
e∈E ce · y∗{e}.
Before delving into the proofs of these statements, we note a technical result

about the structure of Sherali-Adams solutions which will be very helpful.

Lemma 4. Suppose 0 ≤ i < j ≤ �. For any node v ∈ Vi, any edge e = uw with
w ∈ Vj , and any y ∈ SAj−i(P) we have

∑
P∈Q(v,e) yP ≤ y{e}. Furthermore, if

v = r then this bound holds with equality.

The proof is deferred to the full version of this paper. Note that |P | = j − i for
any P ∈ Q(v, e) so it is valid to index y ∈ SAj−i(P) with P in the sum.

4.1 Cost Analysis

The cost bound is an easy consequence of Lemma 4.

Lemma 5. The cost of z∗ in LP (GST-LP) is
∑

e∈E(G) ce · y∗{e}.
Proof ∑

m(P )∈E(T (G))

cm(P ) · z∗m(P ) =
∑

e∈E(G)

∑
P∈Q(e)

ce · z∗m(P )

=
∑

e∈E(G)

∑
P∈Q(e)

ce · y∗P =
∑

e∈E(G)

ce · y∗{e}

where the last equality is by Lemma 4 applied with v = r.

4.2 Feasibility

Similar to the proof of Theorem 5, for every group Xt we construct a one unit
of 〈r〉 − Xt flow gt in T (G) which satisfies the capacities given by z∗. Thus,
by the max-flow/min-cut theorem we have that z∗(δ(S)) ≥ 1 for every subset
S ⊆ V (T (G))− 〈r〉 such that Xt ⊆ S for some group Xt.

We now fix a terminal t ∈ X and describe the flow gt by giving a path
decomposition of the flow. For each P ∈ Q(t), we assign a weight of y∗P to the
〈r〉 − P path in T (X). So, the flow gtm(P ) crossing edge m(P ) in T (G) is just∑

P∗∈Q(t):P⊆P∗ y∗P∗ .
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Lemma 6. gt is one unit of 〈r〉 −Xt flow in T (G).

Proof. It is an 〈r〉−Xt flow because we constructed it from a path decomposition
using only paths in Q(t). Furthermore,

gt(δoutT (G)(〈r〉)) =
∑

P∗∈Q(t):〈r〉⊆P∗
y∗P∗ =

∑
P∈Q(t)

y∗P

=
∑

e∈δinG (t)

∑
P∈Q(e)

y∗P =
∑

e∈δinG (t)

y∗{e} = 1.

Here, the second last equality follows from Lemma 4. The last equality follows
from combining Constraint (2) with Constraint (3) for v = t.

All that is left is to prove that each flow gt for a terminal group Xt satisfies
the capacities given by z∗. The following lemma is the heart of this argument. A
similar result was proven in [9] which relied on the strong decomposition property
for the Lasserre hierarchy of Karlin, Mathieu, and Nguyen [8]. We emphasize that
our proof only uses properties of the Sherali-Adams LP hierarchy.

Lemma 7. For every rooted path P and every terminal group Xt, we have∑
P∗∈Q(t):P⊆P∗ y∗P∗ ≤ y∗P .

We can now easily verify that the capacity constraints are satisfied.

Corollary 1. For every terminal group Xt and every edge m(P ) of T (G),
gtm(P ) ≤ z∗m(P ).

Proof. By Lemma 7 gtm(P ) =
∑

P∗∈Q(t)
P⊆P∗

y∗P∗ ≤ y∗P = z∗m(P ).

The proof of Theorem 2 is now complete.

5 Rounding Algorithms

For the sake of space, we will present the algorithms without complete analysis
in this extended abstract.

5.1 Sherali-Adams Rounding Algorithm

We bounded the integrality gap of LP (SA-LP) by converting some y ∈ SA	(P)
to a feasible solution for LP (GST-LP) in T (G). However, this mapping does
not have to be explicitly constructed to round y. Instead, we emulate the GST
rounding algorithm in [4] by simply querying the yP variables as needed. Algo-
rithm 1 describes the main subroutine from [4] in our context.

As in [4], the expected cost of F is
∑

e∈E cey{e} and, for each terminal t ∈
X , the probability that F contains an r − t path is at least 1

	 . Iterating this
procedure sufficiently many times gives us a feasible DST solution with cost at
most O(� · log k) times the cost of y.
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Algorithm 1. Sherali-Adams Rounding Subroutine

1: S0 ← {〈r〉}
2: for j = 1, . . . , � do
3: Sj ← ∅
4: for each P ∈ Sj−1 do
5: for each e ∈ δout(v) where v is the endpoint of P do

6: Add 〈P, e〉 to Sj with probability
y∗
P∪{e}
y∗
P

7: F ← edges used by some path in S�

8: return F

In fact, it is easy to see that in one run of Algorithm 1 we have for any rooted
path P ending in layer i that Pr[P ∈ Si] = y∗P . This leads to an interesting
observation which, ultimately, means the expected running time of Algorithm 1
is polynomial in n.

Lemma 8. E
[∑	

i=0 |Si|
]
≤ n

5.2 Lovász-Schrijver Rounding Algorithm

We introduce a bit more notation to describe the rounding algorithm. We start
with some y ∈ LS2	(P) with corresponding protection matrix Y . For 0 < j ≤ �,
consider some path P = 〈vj , vj+1, . . . , v	〉 ending at some terminal v	 ∈ X . We
let yP denote a point in LS	+j(P) and Y P be a corresponding protection matrix,
which we define inductively.

If j = � (so P = 〈v	〉) then we simply let yP = y and Y P = Y . For j < �,
let yP be the point obtained by conditioning yP

′
on yP

′
vjvj+1

= 1 where P ′ =

〈vj+1, vj+2, . . . , v	〉. Then Y P is the protection matrix witnessing the inclusion

of row Y P ′
vjvj+1

in N 	+j+1(cone(P)) (scaled by 1
yP ′
e

to ensure Y P
0 = yP ). This

definition only makes sense if yP
′

e > 0 for every suffix 〈e, P ′〉 of P ; this will be
the case for every path P constructed in the algorithm.

The algorithm for rounding the Sherali-Adams relaxation does not does not
work for the Lovász-Schrijver hierarchy because a direct analogue of Lemma 4
fails to hold in this case. However, using the constraint that the indegree of every
node is at most 1, we are able to prove an analogue when we consider paths going
as edge to a particular terminal, instead of paths from the root to an edge. We
utilize this by building the tree in a “bottom-up” fashion in our algorithm.

Algorithm 2 contains the main subroutine for the Lovász-Schrijver rounding
procedure. As with the Sherali-Adams rounding procedure, we iterate Algorithm
2 until there is an r − t path for every terminal t in the union of the returned
sets of edges F .

As mentioned before, the proofs of Theorems 3 and 4 for this rounding pro-
cedure will appear in the full version.
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Algorithm 2. Lovász-Schrijver Rounding Subroutine

1: F ← ∅, C ← ∅
2: St ← ∅ for each t ∈ X
3: for t ∈ X do
4: for each e ∈ δin(t) do
5: Add 〈e〉 to St independently with probability ye.

6: for j = 1, . . . , l do
7: for each u− t path P of length j in St do
8: if u /∈ C then
9: for each e ∈ δin(u) do
10: Add 〈e, P 〉 to St with probability yP

e

11: Add edges in St to F , and the vertices covered by St to C

12: return F
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Abstract. We consider the problem of computing a large stable matching in a
bipartite graph G = (A∪B,E) where each vertex u ∈ A∪B ranks its neighbors
in an order of preference, perhaps involving ties. A matching M is said to be
stable if there is no edge (a, b) such that a is unmatched or prefers b to M(a) and
similarly, b is unmatched or prefers a to M(b). While a stable matching in G can
be easily computed in linear time by the Gale-Shapley algorithm, it is known that
computing a maximum size stable matching is APX-hard.

In this paper we consider the case when the preference lists of vertices in A
are strict while the preference lists of vertices in B may include ties. This case
is also APX-hard and the current best approximation ratio known here is 25/17
≈ 1.4706 which relies on solving an LP. We improve this ratio to 22/15 ≈ 1.4667
by a simple linear time algorithm.

We first compute a half-integral stable matching in {0, 0.5, 1}|E| and round it
to an integral stable matching M . The ratio |OPT|/|M | is bounded via a payment
scheme that charges other components in OPT⊕M to cover the costs of length-5
augmenting paths. There will be no length-3 augmenting paths here.

We also consider the following special case of two-sided ties, where every tie
length is 2. This case is known to be UGC-hard to approximate to within 4/3. We
show a 10/7 ≈ 1.4286 approximation algorithm here that runs in linear time.

1 Introduction

The stable marriage problem is a classical and well-studied matching problem in bipar-
tite graphs. The input here is a bipartite graph G = (A∪B,E) where every u ∈ A∪B
ranks its neighbors in an order of preference and ties are permitted in preference lists. It
is customary to refer to the vertices in A and B as men and women, respectively. Pref-
erence lists may be incomplete: that is, a vertex need not be adjacent to all the vertices
on the other side.

A matching is a set of edges, no two of which share an endpoint. An edge (a, b) is
said to be a blocking edge for a matching M if either a is unmatched or prefers b to
its partner in M , i.e., M(a), and similarly, b is unmatched or prefers a to its partner
M(b). A matching that admits no blocking edges is said to be stable. The problem of

� Part of this work was done while visiting the Max-Planck-Institut für Informatik, Saarbrücken
under the IMPECS program.

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 297–308, 2014.
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computing a stable matching in G is the stable marriage problem. A stable matching
always exists and can be computed in linear time by the well-known Gale-Shapley
algorithm [2].

Several real-world assignment problems can be modeled as the stable marriage prob-
lem; for instance, the problems of assigning residents to hospitals [4] or students to
schools [19]. The input instance could admit many stable matchings and the desired sta-
ble matching in most real-world applications is a maximum cardinality stable matching.
When preference lists are strict (no ties permitted), it is known that all stable matchings
in G have the same size and the set of vertices matched in every stable matching is the
same [3]. However when preference lists involve ties, stable matchings can vary in size.

Consider the following simple example, where A = {a1, a2} and B = {b1, b2} and
let the preference lists be as follows:

a1 : b1; a2 : b1, b2; b1 : {a1, a2}; and b2 : a2.

The preference list of a1 consists of just b1 while the preference list of a2 consists
of b1 followed by b2. The preference list of b1 consists of a1 and a2 tied as the top
choice while the preference list of b2 consists of the single vertex a2. There are 2 stable
matchings here: {(a2, b1)} and {(a1, b1), (a2, b2)}. Thus the sizes of stable matchings
in G could differ by a factor of 2 and it is easy to see that they cannot differ by a factor
more than 2 since every stable matching has to be a maximal matching. As stated earlier,
the desired matching here is a maximum size stable matching. However it is known that
computing such a matching is NP-hard [8,15].

Iwama et al. [9] showed a 15/8 = 1.875-approximation algorithm for this problem
using a local search technique. The next breakthrough was due to Király [11], who
introduced the simple and effective technique of “promotion” to break ties in a modifi-
cation of the Gale-Shapley algorithm. He improved the approximation ratio to 5/3 for
the general case and to 1.5 for one-sided ties, i.e., the preference lists of vertices in A
have to be strict while ties are permitted in the preference lists of vertices in B. McDer-
mid [16] then improved the approximation ratio for the general case also to 1.5. For the
case of one-sided ties, Iwama et al. [10] showed a 25/17 ≈ 1.4706-approximation.

On the inapproximability side, the strongest hardness results are due to Yanag-
isama [21] and Iwama et al. [9]. In [21], the general problem was shown to be NP-hard
to approximate to within 33/29 and UGC-hard to approximate to within 4/3; the case
of one-sided ties was considered in [9] and shown to be NP-hard to approximate to
within 21/19 and UGC-hard to approximate to within 5/4.

In this paper we focus mostly on the case of one-sided ties. The case of one-sided
ties occurs frequently in several real-world problems; for instance, in the Scottish Foun-
dation Allocation Scheme (SFAS), the preference lists of applicants have to be strictly
ordered while the preference lists of positions can admit ties [7]. Let OPT be a maxi-
mum size stable marriage in the given instance. We show the following result here.

Theorem 1. Let G = (A ∪ B,E) be a stable marriage instance where vertices in A
have strict preference lists while vertices in B are allowed to have ties in preference
lists. A stable matching M in G such that |OPT|/|M | ≤ 22/15 ≈ 1.4667 can be
computed in linear time.
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Techniques. Our algorithm constructs a half-integral stable matchings using a modi-
fied Gale-Shapley algorithm: each man can make two proposals and each woman can
accept two proposals. How the proposals are made by men and how women accept these
proposals forms the core part of our algorithms. In our algorithms, after the proposing
phase is over, we have a half-integral vector x, where xab = 1 (similarly, 1/2 or 0) if b
accepts 2 (respectively, 1 or 0) proposals from a. We then build a subgraph G′ of G by
retaining an edge e only if xe > 0. Our solution is a maximum cardinality matching in
G′ where every degree 2 vertex gets matched.

In the original Gale-Shapley algorithm, when two proposals are made to a woman
from men that are tied on her list, she is forced to make a blind choice since she has
no way of knowing which is a better proposal (i.e., it leads to a larger matching) to
accept. Our approach to deal with this issue is to let her accept both proposals. Since
neither proposer is fully accepted, each of them has to propose down his list further and
get another proposal accepted. Essentially, our strategy of letting men make multiple
proposals and letting women accept multiple proposals is a way of coping with their
lack of knowledge about the best decision at any point in time. Note that we limit the
number of proposals a man makes/a woman accepts to be 2 because we want the graph
G′ to have a simple structure. In our algorithms, every vertex in G′ has degree at most
2 and this allows us to bound our approximation guarantees.

We first show that there are no length-3 augmenting paths in M⊕OPT using the idea
of promotion introduced by Király [11] to break ties in favor of those vertices rejected
once by all their neighbors. This idea was also used by McDermid [16] and Iwama
et al. [10]. This idea essentially guarantees an approximation factor of 1.5 by eliminat-
ing all length-3 augmenting paths in M ⊕ OPT. In order to obtain an approximation
ratio < 1.5, we use a new combinatorial technique that makes components other than
augmenting paths of length-5 in M ⊕ OPT pay for augmenting paths of length-5.

Let R denote the set of augmenting paths of length-5 in M ⊕ OPT and let Q =
(M ⊕ OPT) \ R. Suppose q ∈ Q is an augmenting path on 2� + 3 ≥ 7 edges or an
alternating cycle/path on 2� edges or an alternating path on 2�− 1 edges (with � edges
of M ). In our algorithm for one-sided ties, q will be charged for ≤ 3� elements in R
and this will imply that |OPT|/|M | ≤ 22/15.

For the case of one-sided ties, to obtain an approximation guarantee < 1.5, the algo-
rithm by Iwama et al. [10] formulates the maximum cardinality stable matching prob-
lem as an integer program and solves its LP relaxation. This optimal LP-solution guides
women in accepting proposals and leads to a 25/17-approximation.

It was also shown in [10] that for two-sided ties, the integrality gap of a natural LP for
this problem (first used in [20]) is 1.5−Θ(1/n). As mentioned earlier, McDermid [16]
gave a 1.5-approximation algorithm here; Király [12] and Paluch [17] have shown linear
time algorithms for this ratio. A variation of the general problem was recently studied
by Askalidis et al. [1].

Since no approximation guarantee better than 1.5 is known for the general case of
two-sided ties while better approximation algorithms are known for the one-sided ties
case, as a first step we consider the following variant of two-sided ties where each tie
length is 2. This is a natural variant as there are several application domains where ties
are permitted but their length has to be small. We show the following result here.
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Theorem 2. Let G = (A ∪ B,E) be a stable marriage instance where vertices in
A ∪ B are allowed to have ties in preference lists, however each tie has length 2. A
stable matching M ′ in G such that |OPT|/|M ′| ≤ 10/7 ≈ 1.4286 can be computed in
linear time.

Currently, this is the only case with approximation ratio better than 1.5 for any special
case of the stable marriage problem where ties can occur on both sides of G. Interest-
ingly, in the hardness results shown in [21] and [9], it is assumed that each vertex has at
most one tie in its preference list, and such a tie is of length 2. Thus if the general case
really has higher inapproximability, say 1.5 as previously conjectured by Király [11],
then the reduction in the hardness proof needs to use longer ties.

We also note that the ratio of 10/7 we achieve in this special case coincides with the
ratio attained by Halldórsson et al. [5] for the case that ties only appear on women’s
side and each tie is of length 2.

The stable marriage problem is an extensively studied subject on which several
monographs [4,13,14,18] are available. The generalization of allowing ties in the prefer-
ence lists was first introduced by Irving [6]. There are several ways of defining stability
when ties are allowed in preference lists. The definition, as used in this paper, is Irving’s
“weak-stability.”

Due to the space limit, we only present our algorithm for one-sided ties in Section 2
and its analysis in Section 3. Some missing proofs, along with the algorithm for two-
sided ties where each tie has length 2, can be found in the full version.

2 Our Algorithm

Our algorithm produces a fractional matching x = (xe, e ∈ E) where each xe ∈
{0, 1/2, 1}. The algorithm is a modification of the Gale-Shapley algorithm in G =
(A ∪B,E). We first explain how men propose to women and then how women decide
(see Fig. 1).

How men propose. Every man a has two proposals p1a and p2a, where each proposal
pia (for i = 1, 2) goes to the women on a’s preference list in a round-robin manner.
Initially, the target of both proposals p1a and p2a is the first woman on a’s list. For any
i, at any point, if pia is rejected by the woman who is ranked k-th on a’s list (for any
k), then pia goes to the woman ranked (k + 1)-st on a’s list; in case the k-th woman is
already the last woman on a’s list, then the proposal pia is again made to the first woman
on a’s list.

A man has three possible levels in status: basic, 1-promoted, or 2-promoted. Every
man a starts out basic with rejection history ra = ∅. Let N(a) be the set of all women on
a’s list. When ra = N(a), then a becomes 1-promoted. Once he becomes 1-promoted,
ra is reset to the empty set. If ra = N(a) after a becomes 1-promoted, then a becomes
2-promoted and ra is reset once again to the empty set. After a becomes 2-promoted, if
ra = N(a), then a gives up.

To illustrate promotions, consider the following example: man a has only two women
b1 and b2 on his list. He starts as a basic man and makes his proposals p1a and p2a to b1.
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Suppose b1 rejects both. Then a makes both these proposals to b2. Suppose b2 accepts
p1a but rejects p2a. Then a becomes 1-promoted since ra = {b1, b2} now and ra is reset
to ∅. Note that for a to become 2-promoted, we need ra to become {b1, b2} once again.
Similarly, a 2-promoted man a gives up only when his rejection history ra becomes
{b1, b2} after he becomes 2-promoted.

– For every a ∈ A, t1a := t2a := 1; ra := ∅.
{ra is the rejection history of man a; tia is the rank of the next woman targeted by the proposal
pia.}
while some a ∈ A has his proposal pia (i is 1 or 2) not accepted by any woman and he has not
given up do

– a makes his proposal pia to the tia-th woman b on his list.
if b has at most two proposals now (incl. pia) then

– b accepts pia
else

– b rejects any of her “least desirable” (see Definition 1) proposals pja′

if tja′ = number of women on the list of a′ then
tja′ := 1 {the round-robin nature of proposing}

else
tja′ := tja′ + 1

end if
– ra′ := ra′ ∪ {b}
if ra′ = the entire set of neighbors of a′ then

if a′ is basic then
a′ becomes 1-promoted and ra′ := ∅

else if a′ is 1-promoted then
a′ becomes 2-promoted and ra′ := ∅

else if a′ is 2-promoted then
a′ gives up

end if
end if

end if
end while

Fig. 1. A description of proposals/disposals in our algorithm with one-sided ties

Our algorithm terminates when each a ∈ A satisfies one of the following conditions:
(1) both his proposals p1a and p2a are accepted, (2) he gives up. Note that when (2)
happens, the man a must be 2-promoted.

How women decide: A woman can accept up to two proposals. The two proposals can
be from the same man. When she currently has less than two proposals, she uncondi-
tionally accepts the new proposal. If she has already accepted two proposals and is faced
with a third one, then she rejects one of her “least desirable” proposals (see Definition 1
below).
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Definition 1. For a woman b, proposal pia is superior to pi
′
a′ if on b’s list:

(1) a ranks better than a′.
(2) a and a′ are tied; a is currently 2-promoted while a′ is currently 1-promoted or

basic.
(3) a and a′ are tied; a is currently 1-promoted while a′ is currently basic.
(4) a and a′ are tied and both are currently basic; moreover, woman b has already

rejected one proposal of a while so far she has not rejected any of the proposals of
a′.

Let pia be among the three proposals that a woman has and suppose it is not superior
to either of the other two proposals. Then pia is a least desirable proposal.

The reasoning behind the rules of a woman’s decision can be summarized as follows.

– Proposals from higher-ranking men should be preferred, as in the Gale-Shapley
algorithm.

– When a woman receives proposals from men who are tied in her list, she prefers
the man who has been promoted: a 1-promoted (similarly, 2-promoted) man having
been rejected by the entire set of women on his list once (resp. twice) should be
preferred, since he is more desperate and deserves to be given a chance.

– When two basic men of the same rank propose to a woman, she prefers the one who
has been rejected by her before. The intuition again is that he is more desperate—
though he has not been rejected by all women on his list yet (otherwise he would
have been 1-promoted).

It is easy to see that the algorithm in Fig. 1 runs in linear time. When it terminates,
for each edge (a, b) ∈ E, we set xab = 1 or 0.5 or 0 if the number of proposals that
woman b accepts from man a is 2 or 1 or 0, respectively. Let G′ = (A ∪ B,E′) be the
subgraph where an edge e ∈ E′ if and only if xe > 0. It is easy to see that in G′, the
maximum degree of any vertex is 2.

There is a maximum cardinality matching in G′ where all degree 2 vertices are
matched; moreover, such a matching can be computed in linear time. Let M be such a
matching. We first show that M is stable and then prove it is a 22/15 approximation.
Propositions 1 and 2 follow easily from our algorithm and lead to the stability of M .

Proposition 1. Let woman b reject proposal pia from man a. Then from this point till
the end of the algorithm, b has two proposals pi

′
a′ and pi

′′
a′′ from men a′ and a′′ (it is

possible that a′ = a′′) who rank at least as high as man a on b’s list. In particular, if a′

(similarly, a′′) is tied with man a on the list of b, then at the time a proposed to b:

1. if a is �-promoted (� is either 1 or 2), then man a′ (resp. a′′) has to be≥ �-promoted.
2. if a is basic and his other proposal is already rejected by b, then it has to be the case

that either a′ (resp. a′′) is not basic or b has already rejected his other proposal.

In the rest of the paper, unless we specifically state the time point, when we say a man
is basic/1-promoted/2-promoted, we mean his status when the algorithm terminates.
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Proposition 2. The following facts hold:

1. If a man (similarly, a woman) is unmatched in M , then he has at most one proposal
accepted by a woman (resp., she receives at most one proposal) during the entire
algorithm.

2. At the end of the algorithm, every man with less than two proposals accepted is
2-promoted. Furthermore, he must have been rejected by all women on his list as a
2-promoted man.

3. If woman b on the list of the man a is unmatched in M , then man a has to be basic
and he does not prefer b to the women who accepted his proposals.

3 Bounding the Size of M

Let OPT be an optimal stable matching. We now need to bound |OPT|/|M |. Whenever
we refer to an augmenting path in M ⊕ OPT, we mean the path is augmenting with
respect to M . Lemma 1 will be crucial in our analysis.

Lemma 1. Suppose (a, b) and (a′, b′) are in OPT where man a′ is not 2-promoted and
a′ prefers b to b′. If a is unmatched in M , then (a′, b) cannot be in G′.

Proof. We prove this lemma by contradiction. Suppose (a′, b) ∈ G′. If b prefers a′ to
a, then (a′, b) blocks OPT. On the other hand, if b prefers a to a′, then this contradicts
the fact that b rejected at least one proposal from a (by Proposition 2.1) while b has
a proposal from a′, who is ranked worse on b’s list, at the end of the algorithm since
(a′, b) ∈ G′.

So the only option possible is that a′ and a are tied on b’s list. Since a is unmatched
in M , it follows from (1)-(2) of Proposition 2 that a has been rejected by b as a 2-
promoted man. Since (a′, b) ∈ G′, Proposition 1 implies that a′ has to be 2-promoted.
This however contradicts the lemma statement that a′ is not 2-promoted. 
�

Corollary 1. There is no length-3 augmenting path M ⊕ OPT.

Proof. If such a path a− b − a′ − b′ exists (see Fig. 2), then (a′, b) ∈ G′ since it is in
M . As b′ is unmatched in M , a′ is basic and prefers b to b′ (by Proposition 2.3). This
contradicts Lemma 1. 
�
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Fig. 2. On the left we have a length-3 augmenting path and on the right we have the length-5
augmenting path ρi with respect to M in M ⊕ OPT
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Let R = {ρ1, . . . , ρt} denote the set of length-5 augmenting paths in M ⊕ OPT.
Lemma 2 lists properties of vertices in a length-5 augmenting path ρi (Fig. 2).

Lemma 2. If ρi = ai0 − bi0 − ai1 − bi1 − ai2 − bi2 is a length-5 augmenting path in
M ⊕ OPT, then

1. ai0 is 2-promoted and has been rejected by bi0 as a 2-promoted man.
2. ai1 is not 2-promoted and he prefers bi1 to bi0.
3. ai2 is basic and he prefers bi1 to bi2.
4. bi1 is indifferent between ai1 and ai2.
5. In G′, bi0 has degree 1 if and only if ai1 has degree 1.
6. In G′, bi1 has degree 1 if and only if ai2 has degree 1.

Recall that G′ is a subgraph of G and every vertex has degree at most 2 in G′. We
form a directed graph H from G′ as follows: first orient all edges in the graph G′

from A to B; then contract each edge of M ∩ ρi for i = 1, . . . , t. That is, if ρi =
ai0 − bi0 − ai1 − bi1 − ai2 − bi2, then in H , the edge (ai1, b

i
0) gets contracted into a single

node (call it xi) and similarly the edge (ai2, b
i
1) gets contracted into a single node (call

it yi) and this happens for all i = 1, . . . , t.
Note that (5)-(6) of Lemma 2 imply that degH(xi), degH(yi) ∈ {0, 2} for 1 ≤ i ≤ t,

where degH(v) = 2 means in H in-degree(v) = out-degree(v) = 1. The following
lemma rules out the possibility of certain arcs in H .

Lemma 3. For any 1 ≤ i, j ≤ t, there is no arc from yi to xj in H .

Proof. Suppose there is an arc in H from yi to xj for some 1 ≤ i, j,≤ t. That is, G′

contains the edge (ai2, b
j
0). Since the woman bi2 is unmatched, we use Proposition 2.3

to conclude that ai2 is basic and he prefers bj0 to bi2. This contradicts Lemma 1, by
substituting a = aj0, b = bj0, a′ = ai2, and b′ = bi2. 
�

We now define a “good path” in H . In H , let us refer to the x-nodes and y-nodes as red
and let the other vertices be called blue.

Definition 2. A directed path in H is good if its end vertices are blue while all its
intermediate vertices are red. Also, we assume there is at least one intermediate vertex
in such a path.

Lemma 3 implies that every good path looks as follows: a blue man, followed by some
x-nodes (possibly none), followed by some y-nodes (possibly none), and a blue woman.

For any y-node yi, if degH(yi) �= 0, using Lemma 3 we can conclude that yi is either
in a cycle of y-nodes or in a good path. In other words, there are only 3 possibilities in
H for each yi: (1) yi is an isolated node, (2) yi is in a cycle of y-nodes, (3) yi is in a
good path.

We next define a critical arc in H . We will use critical arcs to show that H has
enough good paths. Since the endpoints of a good path are vertices outside R, this
bounds |OPT|/|M |.
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Definition 3. Call an arc (xi, z) in H critical if either ai1 prefers z to bi1 or z = bi1.

In case z is a red node, let w be the woman in z – in Definition 3, we mean either
w = bi1 or ai1 prefers w to bi1. We show (via Lemma 4 and Claim 1) that every critical
arc is in a distinct good path. It follows from Lemma 4 that every good path has at most
one critical arc. Lemma 5 is the main technical lemma here. It shows there are enough
critical arcs in H .

Lemma 4. For any i, if (xi, z) is critical, then z is not an x-node, i.e., z �= xj for any j.

Proof. For any 1 ≤ i, j ≤ t, if a proposal of ai1 is accepted by a woman w that ai1
prefers to bi1, then we need to show that w cannot be bj0. Suppose w = bj0 for some j. In
the first place, j �= i since we know ai1 prefers bi1 to bi0 (by Lemma 2.2). We know ai1 is
not 2-promoted by Lemma 2.2. We now contradict Lemma 1, by substituting a = aj0,
b = bj0, a′ = ai1, and b′ = bi1. 
�

Claim 1. Every critical arc is in some good path and every pair of good paths is vertex-
disjoint.

Lemma 5. In the graph H , the following statements hold:

(1) If yi is an isolated node, then there exists a critical arc (xi, z) in H .
(2) If (yi, yj) is an arc, then there exists a critical arc (xi, z) or a critical arc (xj , z

′)
(or both).

Proof. We first show part (1) of this lemma. Suppose yi is an isolated node in H .
By parts (2) and (6) of Lemma 2, the woman bi1 accepts both proposals from ai2 and
she rejects ai1 at least once. Suppose bi1 rejects ai1 exactly once. This means that one
proposal of ai1 (other than the one accepted by bi0) has been accepted by a woman w
that ai1 prefers to bi1. That is, there is a critical arc (xi, z) in H .

So suppose bi1 rejects ai1 more than once. Then either ai1 has both of his proposals
rejected by bi1 while he was basic, or he was rejected by bi1 as a 1-promoted man. In both
cases we have a contradiction to Proposition 1 since bi1 has accepted both proposals
from ai2, who is basic and is tied with ai1.

We now show part (2) of this lemma. Suppose ai1 prefers bi1 to the women accepting
his proposals and aj1 prefers bj1 to the women accepting his proposals. Note that this
includes the possibility that both of ai1’s proposals are accepted by bi0 and the possibility
that both of aj1’s proposals are accepted by bj0. The first observation is that aj1 could not
have proposed to bj1 as a 1-promoted man, as it would contradict Proposition 1 otherwise
(recall aj2 is basic and aj1, a

j
2 are tied on the list of bj1). For the same reason, ai1 never

proposed to bi1 as a 1-promoted man.
Since we assumed that aj1 prefers bj1 to the women accepting his proposals and he

never proposed to bj1 as a 1-promoted man, it must be the case that both of his proposals
were rejected by bj1 when he was still basic. The edge (ai2, b

j
1) ∈ G′ since (yi, yj) is

in H . We now claim this implies ai2 is tied with aj1 on the list of bj1. If bj1 prefers ai2 to
aj1, then (ai2, b

j
1) blocks OPT, since Proposition 2.3 states that ai2 prefers bj1 to bi2. Now

suppose bj1 prefers aj1 to ai2. Since aj1 prefers bj1 to bj0 (by Lemma 2.2), he must have
been rejected by bj1 before he proposed to bj0, implying a contradiction to Proposition 1.
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We also know that aj1 is tied with aj2 on the list of bj1 (by Lemma 2.4) and that ai2
is basic. Since we know that both of aj1’s proposals were rejected by bj1, it has to be
the case that while bj1 accepted one proposal of ai2, she rejected his other proposal (by
Proposition 1.2). This other proposal of ai2 was at some point accepted by bi1. So it
follows that bj1 ranks higher than bi1 on the list of ai2, furthermore, bi1 never rejects a
proposal from ai2.

Since we assumed that ai1 prefers bi1 to the women accepting his proposals and he
never proposed to bi1 as a 1-promoted man, it follows that both of his proposals were
rejected by bi1 when he was basic. This, combined with the fact that bi1 never rejects a
proposal from ai2, contradicts Proposition 1.2. Thus either one proposal of ai1 has been
accepted by a woman w that is bi1 or better than bi1 in ai1’s list or one proposal of aj1 has
been accepted by a woman w′ that aj1 prefers to bj1. Hence there is a critical arc (xi, z)
or a critical arc (xj , z

′) in H . 
�

We define a function f : [t] → P , where P is the set of all good paths in H and
[t] = {1, . . . , t}. For any i ∈ [t], f(i) is defined as follows:

(1) Suppose yi is isolated. Then let f(i) = p, where p ∈ P contains the critical arc
(xi, z). We know there is such an arc in H by Lemma 5.1.

(2) Suppose yi belongs to a cycle C of y-nodes, so there is an arc (yi, yj) in C. We
know H has a critical arc (xi, z) or (xj , z

′) (by Lemma 5.2). Then let f(i) = p,
where p ∈ P contains such a critical arc.

(3) Suppose yi belongs to a good path p′. If yi is the last y-node in p′, then let f(i) = p′.
Otherwise there is an arc (yi, yj) in p′ and we know H has a critical arc (xi, z) or
(xj , z

′) (by Lemma 5.2). Then let f(yi) = p, where p ∈ P contains such a critical
arc.

For any p ∈ P , let cost(p) = the number of pre-images of p under f . We now show
a charging scheme that distributes cost(p), for each p ∈ P , among the vertices in G so
that the following properties hold. Let Q = (M ⊕ OPT) \R.

(I) Each v ∈ A∪B is assigned a charge of at most 1.5 and the sum of all vertex charges
is t.

(II) Every vertex that is assigned a positive charge must be matched in M and is in
some q ∈ Q. Moreover, if q ∈ Q is an augmenting path on 2�q +3 ≥ 7 edges, then
at most 2�q vertices in q will be assigned a positive charge.

Note that a vertex not assigned a positive charge has charge 0 by default.
Suppose there is such a charging scheme, we now show why this implies |OPT|/|M |

is at most 22/15. Let q ∈ Q be an alternating cycle/path on 2�q edges or an alternating
path on 2�q − 1 edges (with �q edges from M ) or an augmenting path on 2�q + 3 ≥ 7
edges. It follows from (I) and (II) that the total charge assigned to vertices in q is at
most 1.5(2�q) = 3�q, i.e., if the vertices in q are being charged for cq augmenting paths
of length-5 in M ⊕ OPT, then cq ≤ 3�q.

Since
∑

q∈Q cq = t, all the paths in R are paid for in this manner. So we have:

|OPT| =
∑
q∈Q

(|OPT ∩ q|+ 3cq) and |M | =
∑
q∈Q

(|M ∩ q|+ 2cq),
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because there are 3cq edges of OPT in the cq augmenting paths of length-5 covered by
q and 2cq edges of M in the cq augmenting paths of length-5 covered by q. Thus we
have:

|OPT|
|M | ≤ max

q∈Q

|OPT ∩ q|+ 3cq
|M ∩ q|+ 2cq

≤ max
lq≥2

10�q + 2

7�q + 1
≤ 22

15
.

We use (
∑

i si)/(
∑

i ti) ≤ maxi si/ti in the first inequality. The above ratio gets
maximized for any q ∈ Q by setting cq to its largest value of 3�q and letting q be an
augmenting path so that |OPT ∩ q| > |M ∩ q|.

This yields (�q +2+ 3 · 3�q)/(�q +1+ 2 · 3�q), where |q| = 2�q +3 ≥ 7. Note that
since augmenting paths in Q have length ≥ 7, this forces �q ≥ 2 in this ratio. Setting
�q = 2 maximizes the ratio (10�q + 2)/(7�q + 1). Thus our upper bound is 22/15.

Ensuring properties (I) and (II). We now show a charging scheme that defines a func-
tion charge : A ∪ B → [0, 1.5] such that

∑
u charge(u) =

∑
p∈P cost(p) = t, where

the sum is over all u ∈ A ∪ B. We start with charge(u) = 0 for all u ∈ A ∪ B. Our
task now is to reset charge values for some vertices so that properties (I) and (II) are
satisfied.

Each p ∈ P is one of the following three types: (1) type-1 path: this has no x-nodes,
(2) type-2 path: this has no y-nodes, and (3) type-3 path: this has both x-nodes and
y-nodes. The following lemma will be useful later in our analysis.

Lemma 6. For any p ∈ P and k = 1, 2, 3, if p is a type-k path, then cost(p) ≤ k.

Consider any p ∈ P . Though p was defined as a good path in H , we now consider p
as a path in the graph G′. Since each intermediate node of p is an edge of M , p is an
alternating path in G′. Let ap (man) and bp (woman) be the endpoints of the path p.

If both ap and bp are unmatched in M , then the path p becomes an augmenting path in
G′. Since M is a maximum cardinality matching in G′, there cannot be an augmenting
path with respect to M in G′; hence at least one of ap, bp has to be matched in M .

Case 1. Suppose both ap and bp are matched. If p is a type-1 path, then reset charge(bp)
= cost(p), i.e., the entire cost associated with p is assigned to the woman who is an
endpoint of p. If p is a type-k path for k = 2 or 3, then reset charge(ap) = charge(bp) =
cost(p)/2.

Case 2. Suppose exactly one of ap, bp is matched: call the matched vertex sp and the
unmatched vertex up. Construct the alternating path with respect to M in G′ with up as
the starting vertex. The vertex up has degree 1 since it is unmatched, also the maximum
degree of any vertex in G′ is 2. So there is only one such alternating path in G′. This
path continues till it encounters a degree 1 vertex, call it rp.

Note that rp has to be matched, otherwise there is an augmenting path in G′ between
up and rp. Since rp is reached via a matched edge on this path, both up and rp are
either in A or in B. In other words, exactly one of rp, sp (recall sp = {ap, bp} \ {up})
is a woman. If p is a type-1 path, then we reset charge(w) = cost(p), where w is the
woman in {rp, sp}. If p is a type-k path, where k = 2 or 3, then we reset charge(sp) =
charge(rp) = cost(p)/2. This concludes the description of our charging scheme.
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Abstract. We introduce the simple extension complexity of a polytope
P as the smallest number of facets of any simple (i.e., non-degenerate
in the sense of linear programming) polytope which can be projected
onto P . We devise a combinatorial method to establish lower bounds
on the simple extension complexity and show for several polytopes that
they have large simple extension complexities. These examples include
both the spanning tree and the perfect matching polytopes of complete
graphs, uncapacitated flow polytopes for non-trivially decomposable di-
rected acyclic graphs, and random 0/1-polytopes with vertex numbers
within a certain range. On our way to obtain the result on perfect match-
ing polytopes we improve on a result of Padberg and Rao’s on the adja-
cency structures of those polytopes.

1 Introduction

In combinatorial optimization, linear programming formulations are a standard
tool to gain structural insight, derive algorithms and to analyze computational
complexity. With respect to both structural and algorithmic aspects of linear
optimization over a polytope P can be replaced be linear optimization over any
(usually higher dimensional) polytope Q of which P can be obtained as the
image under a linear map (which we refer to as a projection). Such a polytope Q
(along with a suitable projection) is called an extension of P .

Defining the size of a polytope as its number of facets, the smallest size of
any extension of the polytope P is known as the extension complexity xc (P ) of
P . It has turned out in the past that for several important polytopes related to
combinatorial optimization problems the extension complexity is bounded poly-
nomially in the dimension. One of the most prominent examples is the spanning
tree polytope of the complete graph Kn on n nodes, which has extension com-
plexity O

(
n3
)
[9].

After Rothvoß [13] showed that there are 0/1-polytopes whose extension com-
plexities cannot be bounded polynomially in their dimensions, only very recently
Fiorini et al. [4] could prove that the extension complexities of some concrete
and important examples of polytopes like traveling salesman polytopes cannot
be bounded polynomially. Similar results have then also been deduced for sev-
eral other polytopes associated with NP-hard optimization problems, e.g., by
Avis and Tiwary [1] and Pokutta and van Vyve [12]. Very recently, Rothvoß [14]
showed that also the perfect matching polytope of the complete graph (with an

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 309–320, 2014.
c© Springer International Publishing Switzerland 2014
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even number of nodes) has exponential extension complexity, thus exhibiting
the first polytope with this property that is associated with a polynomial time
solvable optimization problem.

The first fundamental research with respect to understanding extension com-
plexities was Yannakakis’ seminal paper [16] of 1991. Observing that many of
the nice and small extensions that are known (e.g., the polynomial size extension
of the spanning tree polytope of Kn mentioned above) have the nice property of
being symmetric in a certain sense, he derived lower bounds on extensions with
that special property. In particular, he already proved that both perfect match-
ing polytopes as well as traveling salesman polytopes do not have polynomial
size symmetric extensions.

It turned out that requiring symmetry in principle actually can make a huge
difference for the minimal sizes of extensions (though nowadays we know that
this is not really true for traveling salesman and perfect matching polytopes). For
instance, Kaibel, Theis, and Pashkovich [8] showed that the polytope associated
with the matchings of size �logn� in Kn has polynomially bounded extension
complexity although it does not admit symmetric extensions of polynomial size.
Another example is provided by the permutahedron which has extension com-
plexity Θ (n logn) [7], while every symmetric extension of it has size Ω

(
n2
)
[11].

These examples show that imposing the restriction of symmetry may severely
influence the smallest possible sizes of extensions. In this paper, we investigate
another type of restrictions on extensions, namely the one arising from requiring
the extension to be a non-degenerate polytope. A d-dimensional polytope is
called simple if every vertex is contained in exactly d facets. We denote by sxc (P )
the simple extension complexity, i.e., the smallest size of any simple extension of
the polytope P .

Simplicity is both a property that is interesting from practical (primal non-
degeneracyof linear programs)aswell as from theoretical (large parts of the combi-
natorial/extremal theory of polytopes deal with simple polytopes) point of views.
And similarly to the restriction to symmetric extensions, there are also nice ex-
amples of simple extensions of certain polytopes relevant in optimization. For in-
stance, generalizing the well-known fact that the permutahedron is a zonotope,
Wolsey showed in the late 80’s (personal communication) that, for arbitrary pro-
cessing times, the completion time polytope for n jobs is a projection of anO

(
n2
)
-

dimensional cube. The main results of this paper show, however, that for several
polytopes relevant in optimization (among them both perfect matching polytopes
and spanning tree polytopes) insisting on simplicity causes exponential sizes of the
extensions.More precisely, we establish that for the following polytopes the simple
extension complexity equals their number of vertices (note that the number of ver-
tices of P is a trivial upper bound for sxc (P ), realized by the extension obtained
from writing P as the convex hull of its vertices):

– Perfect matching polytopes of complete graphs (Theorem 6)
– Uncapacitated flow polytopes of non-decomposable acyclic networks (Theo-

rem 4)
– (Certain) random 0/1-polytopes (Theorem 2)
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Furthermore, we prove that

– the spanning tree polytope of the complete graph with n nodes has simple
extension complexity at least Ω

(
2n−o(n)

)
(Theorem 3).

Using our techniques one can also prove that the extension complexity of hyper-
simplices is equal to their number of vertices as well.

Let us make a brief digression on the potential relevance of simple extensions
with respect to questions related to the diameter of a polytope, i.e., the maximal
distance (minimum number of edges on a path) between any pair of vertices in
the graph of the polytope. We denote by Δ(d,m) the maximal diameter of any
d-dimensional polytope with m facets. It is well-known that Δ(d,m) is attained
by simple polytopes. A necessary condition for a polynomial time variant of the
simplex-algorithm to exist is that Δ(d,m) is bounded by a polynomial in d and
m (thus by a polynomial in m). In fact, in 1957 Hirsch even conjectured (see [2])
that Δ(d,m) ≤ m − d holds, which has only rather recently been disproved
by Santos [15]. However, still it is even unknown whether Δ(d,m) ≤ 2m holds
true, and the question, whether Δ(d,m) is bounded polynomially (i.e., whether
the polynomial Hirsch-conjecture is true) is a major open problem in Discrete
Geometry.

In view of the fact that linear optimization over a polytope can be performed
by linear optimization over any of its extensions, a reasonable relaxed version of
that question might be to ask whether every d-dimensional polytope P with m
facets admits an extension whose size and diameter both are bounded polyno-
mially in m. Stating the relaxed question in this naive way, the answer clearly
is positive, as one may construct an extension by forming a pyramid over P
(after embedding P into Rdim(P )+1), which has diameter at most two. However,
in some accordance with the way the simplex algorithm works by pivoting be-
tween bases rather than only by proceeding along edges, it seems to make sense
to require the extension to be simple (which a pyramid, of course, in general is
not). But still, this is not yet a useful variation, since our result on flow poly-
topes mentioned above shows that there are polytopes that even do not admit
a polynomial size simple extension at all. Therefore, we propose to investigate
the following question, whose positive answer would be implied by establishing
the polynomial Hirsch-conjecture (as every polytope is an extension of itself).

Question 1. Does there exist a polynomial q such that every simple polytope P
with m facets has a simple extension Q with at most q(m) facets and diameter
at most q(m)?

The paper is structured as follows: We first devise some techniques to bound
the simple extension complexity of a polytope from below (Section 2). Then
we deduce our results on spanning tree polytopes (Section 3), flow polytopes
(Section 4), and perfect matching polytopes (Section 5). The core of the latter
part is a strengthening of a result of Padberg and Rao’s [10] on adjacencies in the
perfect matching polytope (Theorem 5), which may be of independent interest.
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2 Bounding Techniques

Let P ⊆ Rn be a polytope with N vertices. The faces of P form a graded lattice
L(P ), ordered by inclusion (see [17]).

Clearly, P is the set of all convex combinations of its vertices, immediately
providing an extended formulation of size N :

P = projx

{
(x, y) ∈ Rn × RV

+ : x =
∑
v∈V

yvv,
∑
v∈V

yv = 1

}

Here, projx(·) denotes the projection onto the space of x-variables and V is the
set of vertices of P . Note that this trivial extension is simple since the extension
is an (N − 1)-simplex.

An easy observation for extensions P = π(Q) is that the assignment F →
π−1(F )∩Q defines a map j which embeds L(P ) into L(Q), i.e., it is one-to-one
and preserves inclusion in both directions (see [3]). Note that this embedding
furthermore satisfies j(F ∩ F ′) = j(F ) ∩ j(F ′) for all faces F, F ′ of P (where
the nontrivial inclusion j(F )∩ j(F ′) ⊆ j(F ∩F ′) follows from π(j(F )∩ j(F ′)) ⊆
π(j(F ))∩π(j(F ′)) = F ∩F ′). We use the shorthand notation j(v) := j({v}) for
vertices v of P .

We consider the face-vertex non-incidence graph GN (P ) which is a bipartite
graph having the faces and the vertices of P as the node set and edges {F, v}
for all v /∈ F . Every facet f̂ of an extension induces two node sets of this graph
in the following way:

F(f̂) :=
{
F face of P : j(F ) ⊆ f̂

}
V(f̂) :=

{
v vertex of P : j(v) �⊆ f̂

} (1)

We call F(f̂) and V(f̂) the set of faces (resp. vertices) induced by the facet f̂
(with respect to the extension P = π(Q)). Typically, the extension and the facet

f̂ are fixed and we just write F (resp. V). It may happen that V(f̂) is equal to
the whole vertex set, e.g., if f̂ projects into the relative interior of P . If V(f̂) is
a proper subset of the vertex set we call facet f̂ proper w.r.t. the projection.

For each facet f̂ of an extension of P the face and vertex sets together in-
duce a biclique (i.e., complete bipartite subgraph) in GN (P ). It follows from
Yannakakis [16] that every edge in GN (P ) is covered by at least one of those
induced bicliques. We provide a brief combinatorial argument for this (in partic-
ular showing that we can restrict to proper facets) in the proof of the following
proposition.

Proposition 1. Let P = π(Q) be an extension.

Then the subgraph of GN (P ) induced by F(f̂) ∪̇ V(f̂) is a biclique for every

facet f̂ of Q. Furthermore, every edge {F, v} of GN (P ) is covered by at least one
of the bicliques induced by a proper facet.
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Proof. Let f̂ be one of the facets and assume that an edge {F, v} with F ∈ F(f̂)
and v ∈ V(f̂) is not present in GN (P ), i.e., v ∈ F . From v ∈ F we obtain

j(v) ⊆ j(F ) ⊆ f̂ , a contradiction to v ∈ V(f̂).
To prove the second statement, let {F, v} be any edge of GN (P ), i.e., v /∈ F .

Observe that the preimages G := j(F ) and g := j(v) are also not incident since
j is a lattice embedding. As G is the intersection of all facets of Q it is contained
in (the face-lattice of a polytope is coatomic), there must be at least one facet

f̂ containing G but not g (since otherwise g would be contained in G), yielding

F ∈ F(f̂) and v ∈ V(f̂).
If F �= ∅, any vertex w ∈ F satisfies j(w) ⊆ G ⊆ f̂ and hence f̂ is a proper

facet. If F = ∅, let w be any vertex of P distinct from v. The preimages j(v) and
j(w) clearly satisfy j(v) �⊆ j(w). Again, since the face-lattice of Q is coatomic,

there exists a facet f̂ with j(w) ⊆ f̂ but j(v) �⊆ f̂ . Hence, f̂ is a proper facet

and (since ∅ = F ⊆ f̂) F ∈ F(f̂) and v ∈ V(f̂) holds. 
�

Before moving on to simple extensions we mention two useful properties of the
induced sets. Both can be easily verified by examining the definitions of F and
V .

Lemma 1. Let F and V be the face and vertex sets induced by a facet of an
extension of P , respectively.

Then F is closed under taking subfaces and V = {v vertex of P : v /∈
⋃
F}.

For the remainder of this section we assume that the extension polytope Q is a
simple polytope and that F and V are face and vertex sets induced by a facet
of Q.

Theorem 1. Let F and V be the face and vertex sets induced by a facet of a
simple extension of P , respectively. Then

(a) all pairs (F, F ′) of faces of P with F ∩F ′ �= ∅ and F, F ′ /∈ F satisfy F ∩F ′ /∈
F ,

(b) the (inclusion-wise) maximal elements in F are facets of P ,
(c) and every vertex v /∈ V is contained in some facet F of P with F ∈ F .

Proof. Let f̂ be the facet of Q inducing F and V and F, F ′ two faces of P with
non-empty intersection. Since F∩F ′ �= ∅, we have j(F∩F ′) �= ∅, thus the interval
in L(Q) between j(F ∩ F ′) and Q is a Boolean lattice (because Q is simple).

Suppose F ∩F ′ ∈ F(f̂). Then f̂ is contained in that interval and it is a coatom,
hence it contains at least one of j(F ) and j(F ′) due to j(F )∩ j(F ′) = j(F ∩F ′).
But this implies j(F ) ∈ F or j(F ′) ∈ F , proving (a).

For (b), let F be an inclusion-wise maximal face in F but not a facet of P .
Then F is the intersection of two faces F1 and F2 of P properly containing F .
Due to the maximality of F , F1, F2 /∈ F but F1 ∩ F2 ∈ F , contradicting (a).

Statement (c) follows directly from (b) and Lemma 1. 
�

In order to use the Theorem 1 for deriving lower bounds on the sizes of simple
extensions of a polytope P , one needs to have good knowledge of parts of the face
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lattice of P . The part one usually knows most about is formed by the vertices
and edges of P . Therefore, we specialize Theorem 1 to these faces for later use.

Let G = (V,E) be a graph and denote by δ(W ) ⊆ E the cut-set of a node-set
W . Define the common neighbor operator Λ (·) by

Λ (W ) := W ∪ {v ∈ V : ∃ {u, v} , {v, w} ∈ δ(W ) : u �= w} . (2)

A set W ⊆ V is then a (proper) common neighbor closed (for short Λ-closed)
set if Λ (W ) = W (and W �= V ) holds. We call sets W with a minimum node
distance of at least 3 (i.e., the distance-2-neighborhood of a node w ∈W does not
contain another node w′ ∈ W ) isolated. Isolated node sets are clearly Λ-closed.
Note that singleton sets are isolated and hence proper Λ-closed. In particular,
the vertex sets induced by the facets of the trivial extension (see beginning of
Section 2) are the singleton sets.

Using this notion, we obtain the following corollary of Theorem 1.

Corollary 1. The vertex set V induced by a proper facet of a simple extension
of P is a proper Λ-closed set.

Proof. Theorem 1 implies that for every {u, v} , {v, w} of (distinct) adjacent
edges of P , we have

{u, v} , {v, w} /∈ F ⇒ {v} /∈ F .

Due to Lemma 1, V = {v vertex of P : v /∈
⋃
F}, where F is the face set induced

by the same facet. Hence, v /∈ V implies {u, v} ∈ F or {v, w} ∈ F , thus u /∈ V
or w /∈ V and we conclude that V is Λ-closed.

Furthermore, V is not equal to the whole vertex set of P since the given facet
is proper. 
�

We can obtain useful lower bounds from Theorem 1 and Corollary 1.

Corollary 2. The node set of a polytope P can be covered by sxc (P ) many
proper Λ-closed sets.

Lemma 2. Let P be a polytope and G its graph. If all proper Λ-closed sets in
G are isolated then the simple extension complexity of P is greater than the
maximum size of the neighborhood of any node of G.

Proof. Let w be a node maximizing the size of the neighborhood and let W be
the neighborhood of w. Since no isolated set can contain more than one node
from W ∪ {w}, Corollary 2 implies the claim. 
�

Using knowledge about random 0/1 polytopes, we can easily establish the fol-
lowing result.

Theorem 2. There is a constant σ > 0 such that a random d-dimensional 0/1-
polytope P with at most 2σd vertices asymptotically almost surely has a simple
extension complexity equal to its number of vertices.
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Proof. It is one of the main results in the thesis [6] that there is such a σ
ensuring that a random d-dimensional 0/1-polytope P with at most 2σd vertices
asymptotically almost surely has every pair of vertices adjacent. Since in this
situation the only proper Λ-closed sets are the singletons, Corollary 2 yields the
claim. 
�

3 Spanning Tree Polytope

In this section we bound the simple extension complexity of the spanning tree
polytope Pspt (Kn) of the complete graph Kn with n nodes.

Lemma 3. All proper Λ-closed sets in the graph of Pspt (Kn) are isolated.

Proof. Two vertices of Pspt (Kn) are adjacent if and only if the symmetric differ-
ence of the corresponding spanning trees consists of exactly two edges. Through-
out the proof, we will identify vertices with the corresponding spanning trees.

Suppose V is a proper Λ-closed set that is not isolated. Then there are span-
ning trees T1, T2 ∈ V and T3 /∈ V , such that T1 is adjacent to both T2 and T3,
but T2 and T3 are not adjacent.

T1 ∩ T2 is a forest with exactly two components having vertex sets X and Y .
Let e ∈ T1 and f ∈ T2 be the edges in T1∪T2 connecting X and Y , {g} = T1\T3,
and {h} = T3 \ T1. We have g �= e, since T2 \ T3 ⊆ T1 ∪ {e} \ T3 ⊆ {g, e} cannot
have cardinality one, because T2 and T3 are not adjacent.

Therefore, let w.l.o.g. g be an edge in T1[X ] and let X ′ and X ′′ be the com-
ponents of T1 \ {e} it connects such that X ′ ∩ e = ∅. Define F := T1 ∩ T2 ∩ T3

and observe T1 = F ∪ {e, g}, T2 = F ∪ {f, g}, and T3 = F ∪ {e, h}. There are
two possible cases for h:

Case 1: h connects Y with X ′ or X ′′.
Let T ′ := F ∪ {g, h} and observe that T ′ is a spanning tree since g connects

X ′ with X ′′ and h connects one of both with Y . Obviously, T ′ is adjacent to
T1, T2, and T3. Since T ′ is adjacent to T1 and T2, T

′ ∈ Λ (V) = V . Since T3 is
adjacent to T1, T

′ ∈ V , this in turn implies the contradiction T3 ∈ V .

Case 2: h connects X ′ with X ′′.
Let j be any edge connectingX ′ with Y (recall that we dealing with a complete

graph) and let T ′ := F ∪ {g, j} which is a spanning tree adjacent to T1 and T2

and hence T ′ ∈ Λ (W ) = W . Clearly, T ′′ := F ∪{e, j} is a spanning tree adjacent
to T1 and T ′ and hence T ′′ ∈ V . Finally, let T ′′′ := F ∪{h, j} be a third spanning
tree adjacent to T ′ and T ′′. Again, we have T ′′′ ∈ V due to Λ (V) = V .

Since T3 is adjacent to T1 and T ′′′, exploiting Λ (V) = V once more yields the
contradiction T3 ∈ V . 
�

Using this result we immediately get a lower bound of Ω
(
n3
)
for the simple

extension complexity of Pspt (Kn) since the maximum degree of its graph is of
that order. However, we can prove a much stronger result.
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Theorem 3. The simple extension complexity of the spanning tree polytope of
Kn is in Ω

(
2n−o(n)

)
.

Proof. Assume n ≥ 5 and let s, t be any two distinct nodes of Kn. Consider
certain subsets on the other nodes

W := {W ⊆ V \ {s, t} : |W | = �n/2�} .

Let k := �n/2�, fix some ordering of the nodes w1, w1, . . . , wk ∈ W for each
W ∈ W and define a specific tree T (W )

T (W ) := {{s, w1} , {wk, t}}
∪ {{wi, wi+1} : i ∈ [k − 1]}
∪ {{t, v} : v /∈ (W ∪ {s, t})}

.

We will now prove that for each simple extension of Pspt (Kn) every such T (W )
must be in a different induced vertex set.

Let W ∈ W be some set W with tree T (W ). Let F and V be the face and
vertex sets, respectively, induced by a proper facet of a simple extension such
that T (W ) is in V . Construct an adjacent tree T ′ as follows.

Choose some vertex y ∈ W and let x-y-z be a subpath of the s-t-path in
T (W ) in that order. Note that {x, y, z} ⊆W ∪{s, t}. Denote by a, b, c the edges
{x, y}, {x, z}, and {y, z}, respectively.

Let T ′ = T (W ) \ {a} ∪ {b}. Because T ′ is adjacent to T (W ), T ′ /∈ V by
Lemma 3. Hence, due to Lemma 1, there must be a facet F ∈ F defined by
x(E[U ]) ≤ |U | − 1 (with |U | ≥ 2) which contains T ′ but not T (W ). Hence, we
have |T (W )[U ]| < |U | − 1 and |T ′[U ]| = |U | − 1. This implies |T (W )∩ δ(U)| ≥ 2
and |T ′ ∩ δ(U)| = 1. Obviously, a ∈ δ(U) and b /∈ δ(U).

Then x, z ∈ U if and only if y /∈ U because a ∈ δ(U) and b /∈ δ(U). Hence,
c ∈ δ(U), i.e., T ∩ δ(U) = {c}. Due to |U | ≥ 2, this implies U = V \ {y}.

As this can be argued for any y ∈ W , we have that the facets defined by
V \ {y} are in F for all y ∈ W . Hence, V contains only trees T for which
|T ∩ δ(V \ {y})| = |T ∩ δ({y})| ≥ 2, i.e., no leaf of T is in W .

This shows that for distinct sets W,W ′ ∈ W , any vertex set V induced by a
proper facet of a simple extension that contains T (W ) containing T (W ) does
not contain T (W ′) because any vertex v ∈ W \W ′ is a leaf of T (W ′). Hence,
the number of simple bicliques is at least

|W| =
(
n− 2

�n/2�

)
∈ Ω

(
2n−o(n)

)
. 
�

4 Flow Polytopes for Acyclic Networks

Many extended formulations model the solutions to the original formulation
via a path in a specifically constructed directed acyclic graph. The size of the
construction then equals the number of arcs in that graph since the paths from
two fixed nodes s and t arise as vertices of the corresponding flow polytope
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whose facets correspond to nonnegativity constraints on arcs. Such a network
formulation can be easily decomposed into two independent formulations if a
node v exists such that every s-t-path traverses v. We are now interested in the
simple extension complexities of flow polytopes of s-t-networks that cannot be
decomposed in such a trivial way.

Let D = (V,A) be a directed acyclic graph with fixed source s ∈ V and sink
t ∈ V . By Ps,t (D) we denote the arc-sets of s-t-paths in D. For some path
P ∈ Ps,t (D) and nodes u, v ∈ V (P ), we denote by P |(u,v) the subpath of P
going from u to v.

We consider the flow polytope Ps-t-flow (D), i.e., the set of all s-t-flows in D of
value one. The facets of Ps-t-flow (D) correspond to the nonnegativity constraints
ya ≥ 0 for some a ∈ A. Clearly, the vertices correspond to Ps,t (D). A path
P ∈ Ps,t (D) is non-incident to a facet ya ≥ 0 if and only if a ∈ P . Two
paths P, P ′ ∈ Ps,t (D) are adjacent vertices of the polytope if and only if their
symmetric difference consists of two paths from x to y (x, y ∈ V , x �= y) without
common inner nodes (see [5]). Our main result in this section is the following:

Theorem 4. Let D = (V,A) be a directed acyclic graph with source s ∈ V and
sink t ∈ V such that for every node v ∈ V \ {s, t} there exists an s-t-path in D
which does not traverse v.

Then the simple extension complexity of Ps-t-flow (D) ⊆ RA
+ is equal to the

number of distinct s-t-paths |Ps,t (D) |.

Proof. Let F and V be the face and vertex sets induced by a proper facet of
a simple extension of Ps-t-flow (D), respectively. Assume for the sake of contra-
diction |V| ≥ 2. By Theorem 1 (b), the (inclusion-wise) maximal faces in F
are facets. Let ∅ �= B′ ⊆ A be the arc set corresponding to these facets. By
Lemma 1, V is the set of (characteristic vectors of) paths P ∈ Ps,t (D) satisfying
P ⊇ B′. Let B ⊆ A be the set of arcs common to all such paths and note that
B ⊇ B′ �= ∅.

By construction, for any path P ∈ V and any arc a ∈ P \ B, there is an
alternative path P ′ ∈ V with a /∈ P ′.

Let us fix one of the paths P ∈ V . Let, without loss of generality, (x′, x) ∈ B
be such that the arc of P leaving x (exists and) is not in B. If such an arc
does not exist, since B �= P , there must be an arc (x, x′) ∈ B such that the arc
of P entering x is not in B. In this case, revert the directions of all arcs in D
and exchange the roles of s and t and apply subsequent arguments to the new
network. Let y be the first node on P |(x,t) different from x and incident to some
arc in B or, if no such y exists, let y := t. Paths in V must leave x and enter y
but may differ inbetween. The set of traversed nodes is defined as

S := {v ∈ V \ {x, y} : ∃x-v-y-path in D} .

By construction, x /∈ {s, t} and by the assumptions of the Theorem there exists
a path P ′ ∈ Ps,t (D) which does not traverse x. Let s′ be the last node on P |(s,x)
that is traversed by P ′. Analogously, let t′ be the first node of V (P |(x,t)) ∪ S
that is traversed by P ′. Note that t′ �= x since t′ is traversed by P ′ but x is not.
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We now distinguish two cases for which we show that V is not Λ-closed yielding
a contradiction to Corollary 1:

Case 1: t′ ∈ S.
By definition of S there must be an x-t′-y-path W . Let (z, t′) ∈ W be the arc

of W entering t′. By definition of y, we conclude that (z, t′) /∈ B. Hence, there is
an alternative x-y-path W ′ �= W which does not use (z, t′). We choose W ′ such
that it uses as many arcs of W |(t′,y) as possible. Construct the following three
paths:

P1 := P |(s,x) ∪W ∪ P |(y,t)
P2 := P |(s,x) ∪W ′ ∪ P |(y,t)
P3 := P |(s,s′) ∪ P ′|(s′,t′) ∪W |(t′,y) ∪ P |(y,t)

By construction P1, P2 ∈ V but P3 /∈ V . P1 and P3 are adjacent in Ps-t-flow (D)
since they only differ in the disjoint paths from s′ to t′. Analogously, P2 and P3

are adjacent and thus, contradicting the fact that V is Λ-closed.

Case 2: t′ /∈ S.
Let W := P |(x,y) and let W ′ be a different x-y-path which must exist by

definition of y. Construct the following three paths:

P1 := P = P |(s,x) ∪W ∪ P |(y,t)
P2 := P |(s,x) ∪W ′ ∪ P |(y,t)
P3 := P |(s,s′) ∪ P ′|(s′,t′) ∪ P |(t′,t)

By construction P1, P2 ∈ V but P3 /∈ V since it does not use (x′, x) ∈ B. P1

and P3 as well as P2 and P3 are adjacent in Ps-t-flow (D) since they only differ
in the disjoint paths from s′ to t′. Again, this contradicts the fact that V is
Λ-closed. 
�

5 Perfect Matching Polytope

The matching polytope and the perfect matching polytope of a graph G = (V,E)
are defined as

Pmatch (G) := conv {χ(M) : M matching in G}
P perf
match (G) := conv {χ(M) : M perfect matching in G} ,

where χ(M) ∈ {0, 1}E is the characteristic vector of the set M ⊆ E, i.e.,
χ(M)e = 1 if and only if e ∈ M . We mainly consider the (perfect) matching

polytope of the complete graph with 2n nodes P perf
match (K2n). For the proof of

our main theorem here we need the following structural result on adjacency in
the perfect matching polytope.

Theorem 5. Let M1 and M2 be two adjacent perfect matchings and M3 a third
perfect matching in a complete graph. Then the three matchings are pairwise
adjacent or there exists a perfect matching M ′ adjacent to all three.
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This theorem strengthens a result of Padberg and Rao’s [10] stating that for
any two different non-adjacent perfect matchings in a complete graph there is a
third one adjacent to both. Since the proof of Theorem 5 is a bit more involved
we omit it in this extended abstract. Our main theorem of this section reads as
follows:

Theorem 6. The simple extension complexity of the perfect matching polytope

of K2n is equal to its number of vertices (2n)!
n!·2n .

Proof. Consider the polytope P perf
match (K2n) and suppose that V is a proper Λ-

closed set of vertices with |V| ≥ 2. Since the polytope’s graph is connected
there exists a matching M1 /∈ V adjacent to some matching M2 ∈ V . Let M3 ∈
V \ {M2}. As V is Λ-closed and M3 /∈ V , {M1,M2,M3} cannot be a triangle.
Hence, by Theorem 5 there exists a common neighbor matching M ′. Since M ′

is adjacent to M2 and M3, we conclude M
′ ∈ V . But now M1 /∈ V is adjacent to

the two matchings M2 and M ′ from V contradicting the fact that V is Λ-closed.
Hence all proper Λ-closed sets are singletons which implies the claim due to

Corollary 2. 
�

Since P perf
match (K2n) is a face of Pmatch (K2n) and simple extensions of polytopes

induce simple extensions of their faces we obtain the following corollary for the
latter polytope.

Corollary 3. The simple extension complexity of the matching polytope of K2n

is at least (2n)!
n!·2n .
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Lower Bounds on the Sizes of Integer Programs

without Additional Variables
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Abstract. For a given set X ⊆ Zd of integer points, we investigate the
smallest number of facets of any polyhedron whose set of integer points
is conv(X) ∩ Zd. This quantity, which we call the relaxation complexity
of X, corresponds to the smallest number of linear inequalities of any
integer program having X as the set of feasible solutions that does not
use auxiliary variables. We show that the use of auxiliary variables is
essential for constructing polynomial size integer programming formu-
lations in many relevant cases. In particular, we provide asymptotically
tight exponential lower bounds on the relaxation complexity of the inte-
ger points of several well-known combinatorial polytopes, including the
traveling salesman polytope and the spanning tree polytope.

Keywords: integer programming, relaxations, auxiliary variables, tsp.

1 Introduction

Let Kn = (Vn, En) be the undirected complete graph on n nodes and STSPn the
set of characteristic vectors of hamiltonian cycles in Kn. In order to solve the
traveling salesman problem, there are numerous integer programs of the form

max
{
〈c, x〉 : Ax +By ≤ b, x ∈ ZEn , y ∈ Zm

}
(1)

such that the optimal value of (1) is equal to max {〈c, x〉 : x ∈ STSPn} for all
edge weights c ∈ REn . In most of these formulations, the system Ax + By ≤ b
consists of polynomially (in n) many linear inequalities, see, e.g. [7] or [2]. Fur-
ther, some of them even do not need integrality constraints on the auxiliary
variables y. In contrast, a recent result on extended formulations (i.e., represen-
tations of polytopes as projections of other ones) due to Fiorini et al. [1] states
that if one drops the integrality constraints on both x and y, then such systems
must have exponentially many inequalities.

Interestingly, at a closer look, one notices that all such IP-formulations that con-
sist of polynomially many inequalities make use of auxiliary variables. The main
motivation for this paper was the question whether there is an IP-formulation of
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type (1) for solving the traveling salesman problem that does not use auxiliary
variables but also consists of only polynomially many inequalities.

For a set X ⊆ Zd, let us call a polyhedron R ⊆ Rd a relaxation for X if
R∩Zd = conv(X)∩Zd. Further, the smallest number of facets of any relaxation
for X will be called the relaxation complexity of X , or short: rc(X). With this
notation, the above question is equivalent to the question whether rc(STSPn) is
polynomial in n.

For most sets X ∈ {0, 1}d that are associated with known combinatorial
optimization problems it turns out that there are polynomial size IP-formulations
of type (1). Following Schrijver’s proof [11, Thm. 18.1] of the fact that integer
programming is NP-hard one finds that for any language L ⊆ {0, 1}∗ that is in
NP, there is a polynomial p such that for any k > 0 there is a system Ax+By ≤ b
of at most p(k) linear inequalities and m ≤ p(k) auxiliary variables with{

x ∈ {0, 1}k : x ∈ L
}
=
{
x ∈ {0, 1}k : ∃ y ∈ {0, 1}m Ax +By ≤ b

}
. (2)

Further, note that for many sets X ⊆ {0, 1}d of feasible points of famous prob-
lems like SAT, CLIQUE, CUT or MATCHING, we even do not need auxiliary
variables in order to give a polynomial size description as in (2), i.e., rc(X) is
polynomially bounded for such sets X . However, as we will show in this pa-
per, it turns out that this is not true for some other well-known combinatorial
problems, including variants of TSP, SPANNING TREE or T-JOIN.

Our paper consists of two main sections: In Section 2, we discuss basic proper-
ties of the number of facets of relaxations of a general set X ⊆ Zd. This includes
questions of whether irrational coordinates may help or whether it is a good idea
to only use facet-defining inequalities of conv(X) in order to construct small re-
laxations. Further, we introduce the concept of hiding sets, which turns out to
be a powerful technique to provide lower bounds on rc(X). In Section 3, we then
give exponential lower bounds on the sizes of relaxations for concrete structures
that occur in many practical IP-formulations. In particular, coming back to our
motivating question, we show that the asymptotic growth of rc(STSPn) is indeed
exponential in n. This shows that, for many problems, the benefit of projection,
i.e., the use of auxiliary variables, is essential when constructing polynomial size
IP-formulations.

Except for a paper of Jeroslow [4], the authors are not aware of any reference
that deals with a quantity that is similar to our notion of relaxation complexity
in a general context. In his paper, for a set X ⊆ {0, 1}d of binary vectors,
Jeroslow introduces the term index of X (short: ind(X)), which is defined as the
smallest number of inequalities needed to separate X from the remaining points
in {0, 1}d. As the main result, he shows that 2d−1 is an upper bound on ind(X),
which is attained by the set of binary vectors of length d that contain an even
number of ones. In Sections 2 and 3.3 we shall come back to this result. Further,
his idea of bounding the index of a set X ⊆ {0, 1}d from below, is related to our
approach of providing lower bounds on the relaxation complexity of general X
via hiding sets in Section 2.4.
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2 Basic Observations

There are sets X ⊆ Zd that do not admit any relaxation. Therefore, let us call
a set X ⊆ Zd to be polyhedral if its convex hull is a polyhedron. By definition,
we have that rc(X) is finite for such sets. Further, in this setting, it is easy to
see that any relaxation corresponds to a valid IP-formulation and vice versa:

Proposition 1. Let X ⊆ Zd be polyhedral and P ⊆ Rd a polyhedron. Then, P is
a relaxation for X if and only if sup

{
〈c, x〉 : x ∈ P ∩ Zd

}
= sup {〈c, x〉 : x ∈ X}

holds for all c ∈ Rd.

Clearly, any finite set of integer points is polyhedral. For a set X ⊆ {0, 1}d of
binary vectors, a polyhedron P is a relaxation for X if and only if P ∩ Zd = X .

As mentioned in the introduction, Jeroslow [4] showed that for any set X ⊆
{0, 1}d, one needs at most 2d−1 many linear inequalities in order to separate X
from {0, 1}d \ X . If now P ⊆ Rd is a polyhedron such that P ∩ {0, 1}d = X ,
then, in order to construct a relaxation forX , we need to additionally separate all
points Zd \ {0, 1}d from X . This can be done by intersecting P with a relaxation
for {0, 1}d. We conclude:

Proposition 2. Let X ⊆ {0, 1}d. Then rc(X) ≤ 2d−1 + rc({0, 1}d).

2.1 Relaxation Complexity of the Cube

Motivated by Proposition 2, we are interested in the relaxation complexity of
{0, 1}d. Since [0, 1]d = conv({0, 1}d), we obviously have that rc({0, 1}d) ≤ 2d.
However, it turns out (a proof will be given in a journal version of this paper)
that one can construct a relaxation of only d+ 1 facets:

Lemma 1. For d ≥ 1, we have

{0, 1}d =

{
x ∈ Zd : xk ≤ 1 +

d∑
i=k+1

2−ixi ∀ k ∈ [d], x1 +

d∑
i=2

2−ixi ≥ 0

}
.

To show that this construction is best possible, note that if a polyhedron that
contains {0, 1}d (and hence is d-dimensional) has less than d+ 1 facets, it must
be unbounded. In order to show that such a (possibly irrational) polyhedron
must contain infinitely many integer points (and hence cannot be a relaxation
of {0, 1}d), we make use of Minkowski’s theorem:

Theorem 1 (Minkowski [8]). Any convex set which is symmetric with respect
to the origin and with volume greater than 2d contains a non-zero integer point.

For ε > 0 let Bε :=
{
x ∈ Rd : ‖x‖ < ε

}
be the open ball with radius ε. As a

direct consequence of Minkowski’s theorem, the following corollary (again, its
proof will be given in a journal version) is useful for our argumentation.
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Corollary 1. Let c ∈ Rd \ {O}, λ0 ∈ R and ε > 0. Then

L(c, λ0, ε) :=
{
λc ∈ Rd : λ ≥ λ0

}
+Bε

contains infinitely many integer points.

Theorem 2. For d ≥ 1, we have that rc({0, 1}d) = d+ 1.

Proof. By Lemma 1, we already know that rc({0, 1}d) ≤ d+1. Suppose there is
a relaxation R ⊆ Rd for {0, 1}d with less than d+1 facets. As mentioned above,
since dim(R) ≥ dim({0, 1}d) = d, R has to be unbounded.

By induction over d ≥ 1, we will show that any unbounded polyhedron R ⊆ Rd

with {0, 1}d ⊆ R contains infinitely many integer points. Hence, it cannot be
a relaxation of {0, 1}d. Clearly, our claim is true for d = 1. For d ≥ 1, let
c ∈ Rd \ {O} be a direction such that x + λc ∈ R for any x ∈ R and λ ≥ 0.
Since {0, 1}d is invariant under affine maps that map a subset of coordinates xi

to 1− xi, we may assume that c ≥ O.
If c > O, then there is some λ0 > 0 such that λ0c ∈ int([0, 1]d). Thus, there

is some ε > 0 such that λ0c + Bε ⊆ [0, 1]d ⊆ R. By the definition of c and ε,
we thus obtained that L(c, λ0, ε) ⊆ R. By Corollary 1, it follows that L(c, λ0)
contains infinitely many integer points and so does R.

Otherwise, we may assume that cd = 0. Let Hd :=
{
x ∈ Rd : xd = 0

}
and

p : Hd → Rd−1 be the projection onto the first d − 1 coordinates. Then, the
polyhedron R̃ = p(R) is still unbounded and contains {0, 1}d−1 = p({0, 1}d). By
induction, R̃ contains infinitely many integer points and so does R. 
�

With Proposition 2 we thus obtain:

Corollary 2. Let X ⊆ {0, 1}d. Then rc(X) ≤ 2d−1 + d+ 1.

2.2 Limits of Facet-Defining Inequalities

Many known relaxations for sets X ⊆ Zd that are identified with feasible points
in combinatorial problems are defined by linear inequalities of which, preferably,
most of them are facet-defining for conv(X). Clearly, this has important practical
reasons since such formulations are tightest possible in some sense. However, if
one is interested in a relaxation that has as few number of facets as possible, it
is a severe restriction to only use facet-defining inequalities of conv(X): In the
previous section we have seen that rc({0, 1}d) = d+1 whereas by removing any of
the cube’s inequalities the remaining polyhedron gets unbounded. Nevertheless,
the restriction turns out to be not too hard:

Theorem 3. Let X ⊆ Zd be polyhedral and rcF (X) the smallest number of
facets of any relaxation for X whose facet-defining inequalities are also facet-
defining for conv(X). Then, rcF (X) ≤ dim(X) · rc(X).

Proof. By Carathéodory’s Theorem (in the affine hull of X), any facet-defining
inequality of a relaxationR forX can be replaced by dim(X) many facet-defining
inequalities of conv(X). The resulting polyhedron is still a relaxation for X . 
�
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2.3 Irrationality

Another question one might ask is whether it may help (in order to construct a
relaxation having few facets) to use irrational coordinates in the description of a
relaxation. Again, it turns out that one does not lose too much when restricting
to rational relaxations only:

Theorem 4. Let X ⊆ Zd be polyhedral with |X | < ∞ and rcQ(X) the smallest
number of facets of any rational relaxation for X. Then, rcQ(X) ≤ rc(X) +
dim(X) + 1.

Proof. Since X is finite, there exists a rational simplex Δ ⊆ Rd of dimension
dim(X) such that X ⊆ Δ. Let R be any relaxation of X having f facets and
set B := (Zd \ X) ∩Δ. Since B ∩ R = ∅ and |B| < ∞, we are able to slightly
perturb the facet-defining inequalities of R in order to obtain a polyhedron R̃
such that B ∩ R̃ = ∅ and R̃ is rational. Now R̃ ∩ Δ is still a relaxation for X ,
which is rational and has at most f +(dim(Δ)+ 1) = f +dim(X)+ 1 facets. 
�
However, we are not aware of any polyhedral set X where rc(X) < rcQ(X). In
fact, we even do not know if rc(Δd) < d + 1 = rcQ(Δd) holds, where Δd :=
{O, �1, . . . , �d}. Note that any rational relaxation of rc(Δd) has to be bounded
and thus, it has at least d+ 1 facets. (Otherwise it would contain a rational ray
and hence infinitely many integer points.)

2.4 Hiding Sets

In this section, we introduce a simple framework to provide lower bounds on the
relaxation complexity for polyhedral sets X ⊆ Zd.

Definition 1. Let X ⊆ Zd. A set H ⊆ aff(X)∩Zd \ conv(X) is called a hiding
set for X if for any two distinct points a, b ∈ H we have that conv{a, b} ∩
conv(X) �= ∅.
Proposition 3. Let X ⊆ Zd be polyhedral and H ⊆ aff(X) ∩ Zd \ X a hiding
set for X. Then, rc(X) ≥ |H |.
Proof. Let R ⊆ Rd be a relaxation for X . Since H ⊆ aff(X) ⊆ aff(R), any point
in H must be separated from X by a facet-defining inequality of R.

Suppose that a facet-defining inequality 〈α, x〉 ≤ β of R is violated by two
distinct points a, b ∈ H . Since H is a hiding set, there exists a point x ∈
conv{a, b} ∩ conv(X). Clearly, x does also violate 〈α, x〉 ≤ β which is a con-
tradiction since 〈α, x〉 ≤ β is valid for R ⊇ conv(X).

Thus, any facet-defining inequality of R is violated by at most one point in
H . Hence, R has at least |H | facets. 
�

3 Exponential Lower Bounds

In this section, we provide strong lower bounds on the relaxation complexities
of some interesting sets X . By dividing these sets into three classes, we try to
identify general structures that are hard to model in the context of relaxations.
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3.1 Connectivity and Acyclicity

In many IP-formulations for practical applications, the feasible solutions are sub-
graphs that are required to be connected or acyclic. Quite often in these cases,
there are polynomial size IP-formulations that use auxiliary variables. For in-
stance, for the spanning tree polytope there are even polynomial size extended
formulations [6] that can be adapted to also work for the connector polytope
CONNn (see below). In contrast, we give exponential lower bounds on the re-
laxation complexities of some important representatives of this structural class.

STSP and ATSP. A well-known relaxation for STSPn is the so-called subtour
relaxation {

x ∈ REn :
∑
e∈En

xe = n

x(δ(S)) ≥ 2 ∀ ∅ �= S � Vn

x(δ(v)) = 2 ∀ v ∈ Vn

x ≥ O
}
, (3)

which has exponentially (in n) many facets (whereKn = (Vn, En) is the complete
graph on n nodes). We will show that this formulation is asymptotically smallest
possible. In fact, we will also give an exponential lower bound for the directed
version ATSPn ⊆ {0, 1}An, which is the set of characteristic vectors of directed
hamiltonian cycles in the complete directed graph on n nodes whose arcs we will
denote by An.

Let n = 4N + 2 for some integer N and let us define the set

V := {vi, v′i : i ∈ [N + 1]} ∪ {wi, w
′
i : i ∈ [N ]}

consisting of 4N+2 distinct nodes. For a binary vector b ∈ {0, 1}N let us further
define the two node-disjoint directed cycles

Cb :=
{
(vN+1, v1)

}
∪

⋃
i:bi=0

{
(vi, wi), (wi, vi+1)

}
∪

⋃
i:bi=1

{
(vi, w

′
i), (w

′
i, vi+1)

}
C′

b :=
{
(v′N+1, v

′
1)
}
∪

⋃
i:bi=0

{
(v′i, w

′
i), (w

′
i, v

′
i+1)

}
∪

⋃
i:bi=1

{
(v′i, wi), (wi, v

′
i+1)

}
.

In this section, we will only consider graphs on these 4N +2 nodes. It is easy to
transfer all following observations to graphs on n nodes, where n �≡ 2 (mod 4), by
replacing arc (vN+1, v1) by a directed path including 1, 2 or 3 additional nodes.
Let us now consider the set

HN :=
{
χ(Cb ∪ C′

b) : b ∈ {0, 1}N
}
.

By identifying V with the nodes of the complete directed graph on 4N+2 nodes,
we clearly have that HN ∩ ATSP4N+2 = ∅.
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Lemma 2. HN is a hiding set for ATSP4N+2.

Proof. First, note that

HN ⊆ aff(ATSP4N+2) =
{
x ∈ RA : x(δin(v)) = x(δout(v)) = 1, ∀ v ∈ V

}
,

where A is the set of arcs in the complete directed graph on 4N + 2 nodes. Let
b(1), b(2) ∈ {0, 1}N be distinct. W.l.o.g. we may assume that there is an index

j ∈ [N ] such that b
(1)
j = 0 and b

(2)
j = 1. Let us now consider the following slight

modifications of Cb(1) ∪ C′
b(1)

and Cb(2) ∪C′
b(2)

:

T1 :=
(
Cb(1) ∪ C′

b(1) \
{
(vj , wj), (v

′
j , w

′
j)
})
∪

{
(vj , w

′
j), (v

′
j , wj)

}
T2 :=

(
Cb(2) ∪ C′

b(2) \
{
(vj , w

′
j), (v

′
j , wj)

})
∪

{
(vj , wj), (v

′
j , w

′
j)
}

We claim that both T1 and T2 are hamiltonian cycles: First note that Cb(1) ∪
C′

b(1)
\
{
(vj , wj), (v

′
j , w

′
j)
}
consists of two node-disjoint directed paths P1 from

wj to vj and P ′
1 from w′

j to v′j . Hence, T1 = P1 ∪P ′
1 ∪ ({vj , w′

j), (v
′
j , wj)} indeed

forms a hamiltonian cycle. The claim for T2 follows analogously.
By definition, we further have that

χ(T1) + χ(T2) = χ(Cb(1) ∪ C′
b(1))− χ({(vj , wj), (v

′
j , w

′
j))}+ χ({(vj , w′

j), (v
′
j , wj)})

+ χ(Cb(2) ∪ C′
b(2)) + χ({(vj , wj), (v

′
j , w

′
j))} − χ({(vj , w′

j), (v
′
j , wj)})

= χ(Cb(1) ∪ C′
b(1)) + χ(Cb(2) ∪ C′

b(2))

and hence,

1

2
(χ(Cb(1) ∪C′

b(1))+χ(Cb(2) ∪C′
b(2) )) =

1

2
(χ(T1)+χ(T2)) ∈ conv(ATSP4N+2). 
�

Theorem 5. The asymptotic growth of rc(ATSPn) and rc(STSPn) is 2θ(n).

Proof. Lemma 2 shows that HN is a hiding set for ATSPn. By replacing all
directed arcs with their undirected versions, the set HN yields a hiding set
for STSPn. By Proposition 3, we obtain a lower bound of |HN | = 2Ω(n) for
rc(ATSPn) and rc(STSPn). To complete the argumentation, note that (3) admits
a relaxation for STSPn having 2Θ(n) facets and that ATSPn has a relaxation of
similar size, which is a directed version of (3). 
�

Connected Sets. Let CONNn be the set of all characteristic vectors of edge
sets that form a connected subgraph in the complete graph on n nodes. The
polytope

{
x ∈ [0, 1]En : x(δ(S)) ≥ 1 ∀ ∅ �= S � Vn

}
is a relaxation for CONNn.

Thus, we have that rc(CONNn) ≤ O(2n).
For a lower bound, consider again the undirected version of our set HN . Since

each point in HN belongs to a node-disjoint union of two cycles, we have that
HN ∩ CONNn = ∅. Further, we know that for any a, b ∈ HN we have that

∅ �= conv{a, b} ∩ conv(STSPn) ⊆ conv{a, b} ∩ conv(CONNn)

and since HN ⊆ aff(CONNn) = REn , we see that HN is also a hiding set for
CONNn. We obtain:

Corollary 3. The asymptotic growth of rc(CONNn) is 2Θ(n).
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Branchings and Forests. Besides connectivity, we show that, in general, it
is also hard to force acyclicity in the context of relaxation. Let therefore ARBn

(SPTn) be the set of characteristic vectors of arborescences (spanning trees) in
the complete directed (undirected) graph.

Theorem 6. The asymptotic growth of rc(ARBn) and rc(SPTn) is 2θ(n).

Proof. First, note that both the arborescence polytope and the spanning tree
polytope (i.e., conv(ARBn) and conv(SPTn)) have O(2n) facets [10] and hence
we have an upper bound of O(2n) for both rc(ARBn) and rc(SPTn).

For a lower bound, let us modify the definition of C(b)′ by removing arc
(v′N+1, v

′
1). Then, C(b)∩C(b)′ is a node-disjoint union of a cycle and a path and

hence not an arborescence. By following the proof of Lemma 2 and removing arc
(v′N+1, v

′
1) from T1 and T2, we still have that

χ(C(b(1)) ∪ C(b(1))′) + χ(C(b(2)) ∪ C(b(2))′) = χ(T1) + χ(T2),

where T1 and T2 are spanning arborescences. (Actually, T1 and T2 are in fact
directed paths visiting each node.) Since aff(ARBn) = RAn , we therefore obtain
that the modified set HN is a hiding set for ARBn. By undirecting all arcs, HN

also yields a hiding set for SPTn.
Again, by Proposition 3, we deduce a lower bound of |HN | = 2Ω(n) for both

rc(ARBn) and rc(SPTn). 
�

Remark 1. Since in the proof of Theorem 6 T1 and T2 are rooted at node v′1, the
statements even hold if the sets ARBn and SPTn are restricted to characteristic
vectors of arborescences/trees rooted at a fixed node.

Let BRANCHn (FORESTSn) be the set of characteristic vectors of branchings
(forests) in the complete directed (undirected) graph.

Corollary 4. The asymptotic growth of rc(BRANCHn) and rc(FORESTSn) is
2θ(n).

Proof. The claim follows from Theorem 6 and the facts that

ARBn = BRANCHn ∩
{
x ∈ RAn :

∑
a∈RAn

xa = n− 1

}

SPTn = FORESTSn ∩
{
x ∈ REn :

∑
e∈REn

xe = n− 1

}
. 
�

3.2 Distinctness

Another common component of practical IP-formulations is the requirement of
distinctness of a certain set of vectors or variables. Here, we consider two general
cases in which we can also show that the benefit of auxiliary variables is essential.
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Binary All-Different. In the case of the binary all-different constraint, one
requires the distinctness of rows of a binary matrix with m rows and n columns.
The set of feasible points is therefore defined by

DIFFm,n :=
{
x ∈ {0, 1}m×n : x has pairwise distinct rows

}
.

As an example, in [5] the authors present IP-formulations to solve the coloring
problem in which they binary encode the color classes assigned to each node. As
a consequence, certain sets of encoding vectors have to be distinct.

By separating each possible pair of equal rows by one inequality, it is further
easy to give a relaxation for DIFFm,n that has at most

(
m
2

)
2n + 2mn facets. In

the case of m = 2, for instance, this bound turns out to be almost tight:

Theorem 7. For all n ≥ 1, we have that rc(DIFF2,n) ≥ 2n.

Proof. Let us consider the set

H2,n :=
{
(x, x)T ∈ {0, 1}2×n : x ∈ {0, 1}n

}
.

For x, y ∈ {0, 1}n distinct, we obviously have that

1

2

(
(x, x)T + (y, y)T

)
=

1

2

(
(x, y)T + (y, x)T

)
∈ conv(DIFF2,n).

Since H2,n ∩ DIFF2,n = ∅ and H2,n ⊆ aff(DIFF2,n) = R2×n, H2,n is a hiding set
for DIFF2,n and by Proposition 3 we obtain that rc(DIFF2,n) ≥ |H2,n| = 2n. 
�

Permutahedron. As a case in which one does not require the distinctness of
binary vectors but of a set of numbers let us consider the set

PERMn := {(π(1), . . . , π(n)) ∈ Zn : π ∈ Sn} ,

which is the vertex set of the permutahedron conv(PERMn). Rado [9] showed
that the permutahedron can be described via

conv(PERMn) = {x ∈ Rn :

n∑
i=1

xi =
n(n+ 1)

2∑
i∈S

xi ≥
|S|(|S|+ 1)

2
for all ∅ �= S ⊂ [n]

x ≥ O} (4)

and hence has O(2n) facets. Apart from that, it is a good example for a polytope
having many different, very compact extended formulations, see, e.g., [3]. In the
contrary, we show that the relaxation complexity of PERMn has exponential
growth in n:

Theorem 8. The asymptotic growth of rc(PERMn) is 2θ(n).
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Proof. Let m := �n2 �. For any set S ⊆ [n] with |S| = m select an integer vector
xS ∈ Zn with {xi : i ∈ S} = {1, . . . ,m− 1} and m − 1 occuring twice among
the xS

i (i ∈ S) and {xi : i ∈ [n] \ S} = {m+ 2, . . . , n} and m+ 2 occuring twice
among the xS

i (i ∈ [n] \ S). Such a vector is not contained in conv(PERMn) as∑
i∈S

xS
i = 1 + 2 + . . .+ (|S| − 2) + (|S| − 2) <

|S|(|S|+ 1)

2

On the other hand, note that this is the only constraint from (4) that is violated
by xS . In particular, xS ∈ aff(PERMn) holds.

Let S1, S2 ⊆ [n] with |S1| = |S2| = m be distinct. We will show that x :=
1
2 · (xS1 + xS2) ∈ conv(PERMn) holds. Since x satisifies all constraints that are

satisified by both xS1 and xS2 , it suffices to show that
∑

i∈T xi ≥ |T |(|T |+1)
2 holds

for T ∈ {S1, S2}. W.l.o.g. we may assume that T = S1 and obtain∑
i∈S1

xi =
1

2

∑
i∈S1

xS1

i +
1

2

∑
i∈S1

xS2

i

=
1

2

(
m(m+ 1)

2
− 1

)
+

1

2

∑
i∈S1

xS2

i

≥ 1

2

(
m(m+ 1)

2
− 1

)
+

1

2

(
m(m+ 1)

2
+ 2

)
=

m(m+ 1)

2
+

1

2
≥ |T |(|T |+ 1)

2
. 
�

Thus, the set H :=
{
xS : S ⊆ [n], |S| = m

}
is a hiding set for PERMn. Our

claim follows from Proposition 3 and the fact that |H | =
(

n
�n

2 
)
= 2θ(n). 
�

3.3 Parity

The final structural class we consider deals with the restriction that the number
of selected elements of a given set has a certain parity. Let us call a binary vector
a ∈ {0, 1}d even (odd) if the sum of its entries is even (odd). In [4] it is shown
that the number of inequalities needed to separate

EVENn := {x ∈ {0, 1}n : x is even}

from all other points in {0, 1}n is exactly 2n−1. This is done by showing that

ODDn := {x ∈ {0, 1}n : x is odd}

is a hiding set for EVENn (although the notion is different from ours). Hence,
with Corollary 2, we obtain:

Theorem 9. The asymptotic growth of rc(EVENn) is Θ(2n).
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T -joins As a well-known representative of this structural class let us consider
T -JOINSn, which is, for given T ⊆ Vn, defined as the set of characteristic vectors
of T -joins in the complete graph on n nodes. Let us recall that a T -join is a set
J ⊆ En of edges such that T is equal to the set of nodes of odd degree in the
graph (Vn, J). Note, that if a T -join exists, then |T | is even.
Theorem 10. Let n be even and T ⊆ Vn with |T | even. Then, rc(T -JOINSn) ≥
2

n
4 −1.

Proof. Since n is even and |T | is even, we may partition Vn into pairwise disjoint
sets T1, T2, U1, U2 with T = T1 ∪ T2, k = |T1| = |T2| and � = |U1| = |U2|. Let
M1, . . . ,Mk be pairwise edge-disjoint matchings of cardinality k that connect
nodes from T1 with nodes from T2. Analogously, let N1, . . . , N	 be pairwise edge-
disjoint matchings of cardinality � that connect nodes from U1 with nodes from
U2. For b ∈ {0, 1}k and c ∈ {0, 1}	 let

J(b, c) :=

( ⋃
i:bi=1

Mi

)
∪
( ⋃

j:cj=1

Nj

)
⊆ En.

By definition, J(b, c) is a T -join if and only if b is odd and c is even. Let b∗ ∈
{0, 1}k odd and c∗ ∈ {0, 1}	 even be arbitrarily chosen but fixed. Since ODDn

is a hiding set for EVENn and vice versa, it is now easy to see that both sets

H1 :=
{
J(b, c∗) : b ∈ {0, 1}k even

}
H2 :=

{
J(b∗, c) : c ∈ {0, 1}	 odd

}
,

are hiding sets for T -JOINSn. Our claim follows from Proposition 3 and the fact
that

max {|H1|, |H2|} = max
{
2k−1, 2	−1

}
= max

{
2

1
2 |T |−1, 2

1
2 (n−|T |)−1

}
≥ 2

1
2 ·

n
2 −1. 
�

4 Concluding Remarks

We at least asymptotically determined the relaxation complexities for several
examples arising from combinatorial optimization that we were interested in.
Turning towards the more basical questions, we found rc({0, 1}d) = d + 1. In
contrast to this, we do, however, not know the exact value of rc(Δd), where Δd is
the set of vertices of the standard d-simplex. As briefly discussed in Section 2.3, a
relaxation R for Δd with less than d+1 facets must be unbounded and (hence)
irrational. Unlike the case of {0, 1}d, there are indeed unbounded polyhedra
whose integer points are exactly the set of an integral d-simplex. As an example,
it is rather easy to see that the polyhedron

conv {O, �1, �2, �3, �1 + �3 + �4, �2 + �3 + �5}+ R · (0, 0, 0, 1,
√
2)T

has this property. Further, one also finds that the hiding set method does not
help in this case. In fact, any hiding set of Δd can be shown to have cardinality
of at most 3. Therefore, the simplex-example raises the question, whether there
are polyhedral sets X with rc(X) < rcQ(X) (see 2.3).
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Abstract. We study the Maximum Budgeted Allocation problem, i.e.,
the problem of selling a set of m indivisible goods to n players, each with
a separate budget, such that we maximize the collected revenue. Since the
natural assignment LP is known to have an integrality gap of 3

4
, which

matches the best known approximation algorithms, our main focus is to
improve our understanding of the stronger configuration LP relaxation.
In this direction, we prove that the integrality gap of the configuration
LP is strictly better than 3

4
, and provide corresponding polynomial time

roundings, in the following restrictions of the problem: (i) the Restricted
Budgeted Allocation problem, in which all the players have the same
budget and every item has the same value for any player it can be sold
to, and (ii) the graph MBA problem, in which an item can be assigned
to at most 2 players. Finally, we improve the best known upper bound
on the integrality gap for the general case from 5

6
to 2

√
2 − 2 ≈ 0.828

and also prove hardness of approximation results for both cases.

1 Introduction

Suppose there are multiple players, each with a budget, who want to pay to gain
access to some advertisement resources. On the other hand, the owner of these
resources wants to allocate them so as to maximize his total revenue, i.e., he
wishes to maximize the total amount of money the players pay. No player can
pay more than his budget so the task of the owner is to find an assignment of
resources to players that maximizes the total payment where each player pays
the minimum of his budget and his valuation of the items assigned to him.

The above problem is called Maximum Budgeted Allocation (MBA), and it
arises often in the context of advertisement allocation systems. Formally, a prob-
lem instance I can be defined as follows: there is a set of players A and a set of
items Q. Each player i has a budget Bi and each item j has a price pij ≤ Bi for
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player i (the assumption that pij ≤ Bi is without loss of generality, because no
player can spend more money than his budget). Our objective is to find disjoint
sets Si ⊆ Q for each player i, i.e., an indivisible assignment of items to players,
such that we maximize ∑

i∈A
min

⎧⎨⎩∑
j∈Si

pij , Bi

⎫⎬⎭ .

In this paper, we are interested in designing good algorithms for the MBA
problem and we shall focus on understanding the power of a strong convex
relaxation called the configuration LP. The general goal is to obtain a better un-
derstanding of basic allocation problems that have a wide range of applications.
In particular, the study of the configuration LP is motivated by the belief that a
deeper understanding of this type of relaxation can lead to better algorithms for
many allocation problems, including MBA, the Generalized Assignment prob-
lem, Unrelated Machine Scheduling, and Max-Min Fair Allocation.

As the Maximum Budgeted Allocation problem is known to be NP-hard
[10,12], we turn our attention to approximation algorithms. Recall that an r-
approximation algorithm is an efficient (polynomial time) algorithm that is guar-
anteed to return a solution within a factor r of the optimal value. The factor r
is referred to as the approximation ratio or guarantee.

Garg, Kumar and Pandit [10] obtained the first approximation algorithm for
MBA with a guarantee of 2

1+
√
5
. This was later improved to 1− 1

e by Andelman

and Mansour [1], who also showed that an approximation guarantee of 0.717
can be obtained in the case when all the budgets are equal. Subsequently, Azar,
Birnbaum, Karlin, and Mathieu [3] gave a 2

3 -approximation algorithm, which
Srinivasan [15] extended to give the current best approximation guarantee of 3

4 .
Concurrently, the same approximation guarantee was achieved by Chakrabarty
and Goel [5], who also proved that it is NP-hard to achieve an approximation
ratio better than 15

16 .
It is interesting to note that the progress on MBA has several points in com-

mon with other basic allocation problems. First, it is observed that when the
prices are relatively small compared to the budgets, then the problem becomes
substantially easier (e.g. [5,15]), analogous to how Unrelated Machine Scheduling
becomes easier when the largest processing time is small compared to the opti-
mal makespan. Second, the above mentioned 3/4-approximation algorithms give
a tight analysis of a standard LP relaxation, called the assignment LP, which
has been a successful tool for allocation problems ever since the breakthrough
work by Lenstra, Shmoys, and Tardos [13]. Indeed, we now have a complete
understanding of the strength of the assignment LP for all above mentioned
allocation problems. The strength of a relaxation is measured by its integral-
ity gap, which is the maximum ratio between the solution quality of the exact
integer programming formulation and of its relaxation.

A natural approach for obtaining better (approximation) algorithms for alloca-
tion problems are stronger relaxations than the assignment LP. Similarly to other
allocation problems, there is a strong belief that a strong convex relaxation called
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configuration LP gives strong guarantees for theMBA problem. Although we only
know that the integrality gap is no better than 5

6 [5], our current techniques fail to
prove that the configuration LP gives even marginally better guarantees for MBA
than the assignment LP. The goal of this paper is to increase our understanding
of the configuration LP and shed light on its strength.

Our contributions. To analyze the strength of the configuration LP compared to
the assignment LP, it is instructive to consider the tight integrality gap instance
for the assignment LP from [5] depicted in Figure 1. This instance satisfies several
structural properties: (i) at most two players have a positive price of an item,
(ii) every player has the same budget (also known as uniform budgets), (iii) the
price of an item j for a player is either pj or 0, i.e., pij ∈ {0, pj}.

Motivated by these observations and previous work on allocation problems, we
shall mainly concentrate on two special cases of MBA. The first case is obtained
by enforcing (i) in which at most two players have a positive price of an item.
We call it graph MBA, as an instance can naturally be represented by a graph
where items are edges, players are vertices and assigning an item corresponds to
orienting an edge. The same restriction, where it is often called Graph Balancing,
has led to several nice results for Unrelated Machine Scheduling [6] and Max-Min
Fair Allocation [17].

The second case is obtained by enforcing (ii) and (iii). That is, each item j
has a non-zero price, denoted by pj , for a subset of players, and the players have
uniform budgets. We call this case restricted MBA or the Restricted Budgeted Al-
location Problem as it closely resembles the Restricted Assignment Problem that
has been a popular special case of both Unrelated Machine Scheduling [16] and
Max-Min Fair Allocation [7,2,4]. It is understood that these two structural prop-
erties produce natural restrictions whose study helps increase our understanding
of the general problem [5,15], and specifically, instances displaying property (ii)
have been studied in [1].

Our main result proves that the configuration LP is indeed stronger than the
assignment LP for the considered problems.

Theorem 1. Restricted Budgeted Allocation and graph MBA have (3/4 + c)-
approximation algorithms that also bound the integrality gap of the configuration
LP, for some constant c > 0.

The result for graph MBA is inspired by the work by Feige and Vondrak [8]
on the generalized assignment problem and is presented in the full version of
this paper. The main idea is to first recover a 3/4-fraction of the configuration
LP solution by randomly (according to the LP solution) assigning items to the
players. The improvement over 3/4 is then obtained by further assigning some of
the items that were left unassigned by the random assignment to players whose
budgets were not already exceeded. The difficulty in the above approach lies
in analyzing the contribution of the items assigned in the second step over the
random assignment in the first step.

For restricted MBA, we need a different approach. Indeed, randomly assigning
items according to the configuration LP only recovers a (1 − 1/e)-fraction of
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xi1j1 =
1

2
xi2j1 =

1

2

xi1j2 = 1 xi2j3 = 1

pj1 = 2

Bi1 = 2 Bi2 = 2

pj2 = 1 pj3 = 1

Fig. 1. The solution x has value of 4. Any integral solution has a value of at most 3,
since one player will be assigned only one item of value 1.

the LP value when an item can be assigned to any number of players. Current
techniques only gain an additional small ε-fraction by assigning unassigned items
in the second step. This would lead to an approximation guarantee of (1−1/e+ε)
(matching the result in [8] for the Generalized Assignment Problem) which is
strictly less than the best known approximation guarantee of 3/4 for MBA. We
therefore take a different approach. We first observe that an existing algorithm,
described in Section 3, already gives a better guarantee than 3/4 for configuration
LP solutions that are not well-structured (see Definition 1). Informally, an LP
solution is well-structured if half the budgets of most players are assigned to
expensive items, which are defined as those items whose price is very close to
the budget. For the rounding of well-structured solutions in Section 4.2, the main
new idea is to first assign expensive/big items using random bipartite matching
and then assign the cheap/small items in the space left after the assignment
of expensive items. For this to work, it is not sufficient to assign the big items
in any way that preserves the marginals from the LP relaxation. Instead, a
key observation is that we can assign big items so that the probability that
two players i, i′ are both assigned big items is at most the probability that
i is assigned a big item times the probability that i′ is assigned a big item
(i.e., the events are negatively correlated). Using this we can show that we can
assign many of the small items even after assigning the big items leading to
the improved guarantee. We believe that this is an interesting use of bipartite
matchings for allocation problems as we are using the fact that the events that
vertices are matched can be made negatively correlated. Note that this is in
contrast to the events that edges are part of a random matching which are not
necessarily negatively correlated.

Finally, we complement our positive results by hardness results and integrality
gaps. For restricted MBA, we prove hardness of approximation that matches the
strongest results known for the general case. Specifically, we prove that it is
NP-hard to approximate restricted MBA within a factor 15/16. This shows that
some of the hardest known instances for the general problem are the ones we
study. We also improve the 5/6 integrality gap of the configuration LP for the
general case: we prove that it is not better than 2(

√
2−1). Both the NP-hardness

result and integrality gap are presented in the full version of this paper, along
with all omitted proofs from now on.
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2 Preliminaries

Assignment LP. The assignment LP for the MBA problem has a fractional
“indicator” variable xij for each player i ∈ A and each item j ∈ Q that indicates
whether item j is assigned to player i. Recall that the profit received from a
player i is the minimum of his budget Bi and the total value

∑
j∈Q xijpij of the

items assigned to i. In order to avoid taking the minimum for each player, we
impose that each player i is fractionally assigned items of total value at most his
budget Bi. Note that this is not a valid constraint for an integral solution but
it does not change the value of a fractional solution: we can always fractionally
decrease the assignment of an item without changing the objective value if the
total value of the fractional assignment exceeds the budget. To further simplify
the relaxation, we enforce that all items are fully assigned by adding a dummy
player � such that p	j = 0 for all j ∈ Q and B	 = 0. The assignment LP for
MBA is defined as follows:

max
∑

i∈A
∑

j∈Q xijpij
subject to

∑
j∈Q xijpij ≤ Bi ∀i ∈ A∑

i∈A xij = 1 ∀j ∈ Q
0 ≤ xij ≤ 1 ∀i ∈ A, ∀j ∈ Q

As discussed in the introduction, it is known that the integrality gap of the
assignment LP is exactly 3

4 ; therefore, in order to achieve a better approximation,
we employ a stronger relaxation called the configuration LP.

Configuration LP. The intuition behind the configuration LP comes from ob-
serving that, in an integral solution, the players are assigned disjoint sets, or
configurations, of items. The configuration LP will model this by having a frac-
tional “indicator” variable yiC for each player i and configuration C ⊆ Q, which
indicates whether or not C is the set of items assigned to player i in the solution.
The constraints of the configuration LP require that each player is assigned at
most one configuration and each item is assigned to at most one player. If we let

wi(C) = min
{∑

j∈C pij , Bi

}
denote the total value of the set C of items when

assigned to player i, the configuration LP can be formulated as follows:

max
∑

i∈A
∑

C⊆Q wi(C)yiC
subject to

∑
C⊆Q yiC ≤ 1 ∀i ∈ A∑

i∈A,C⊆Q:j∈C yiC ≤ 1 ∀j ∈ Q
yiC ≥ 0 ∀i ∈ A, ∀C ⊆ Q

We remark that even though the relaxation has exponentially many variables,
it can be solved approximately in a fairly standard way by designing an efficient
separation oracle for the dual which has polynomially many variables. We refer
the reader to [5] for more details.

The configuration LP is stronger than the assignment LP as it enforces a
stricter structure on the fractional solution. Indeed, every solution to the con-
figuration LP can be transformed into a solution of the assignment LP of at
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least the same value (see e.g. Lemma 2). However, the converse is not true; one
example is shown in Figure 1. More convincingly, our results show that the con-
figuration LP has a strictly better integrality gap than the assignment LP for
large natural classes of the MBA problem.

For a solution y to the configuration LP, we let Vali(y) =
∑

C wi(C)yiC be the
value of the fractional assignment to player i and let Val(y) =

∑
i Vali(y). Note

that Val(y) is equal to the objective value of the solution y. Abusing notation,
we also define Vali(x) =

∑
j xijpij for a solution x to the assignment LP. We

might also use ValI(y) and ValIi (y) to indicate we are considering instance I.

Random bipartite matching. As alluded to in the introduction, one of the key
ideas of our algorithm for the restricted case is to first assign expensive/big items
(of value close to the budgets) by picking a random bipartite matching so that
the events that vertices are matched are negatively correlated. The following
theorem uses the techniques developed by Gandhi, Khuller, Parthasarathy and
Srinivasan in their work on selecting random bipartite matchings with particular
properties [9]. Its proof is included in the full version of this paper.

Theorem 2. Consider a bipartite graph G = ((A,B), E) and an assignent
(xe)e∈E to edges so that the fractional degree

∑
u:uv∈E xuv of each vertex v is

at most 1. Then there is an efficient, randomized algorithm that generates a
(random) matching satisfying:

(P1): Marginal Distribution. For every vertex v ∈ A∪B, Pr[v is matched] =∑
u:uv∈E xuv.

(P2): Negative Correlation. For any S ⊆ A, Pr[
∧

v∈S(v is matched)] ≤∏
v∈S Pr[v is matched].

One should note that the events {edge e is in the matching} and {edge e′ is
in the matching} are not necessarily negatively correlated (if we preserve the
marginals). A crucial ingredient for our algorithm is therefore the idea that we
can concentrate on the event that a player has been assigned a big item without
regard to the specific item assigned.

3 General 3/4-Approximation Algorithm

In this section, we introduce an algorithm (inspired by [14]) to round assign-
ment LP solutions, and we then present an analysis showing that it is a 3/4-
approximation algorithm. In Section 4, we use this analysis to show that the
algorithm has a better approximation ratio than 3/4 in some cases.

First, we need the following definition for the algorithm. Let G = U ∪ V be a
bipartite graph. A complete matching for V is a matching that has exactly one
edge incident to every vertex in V .

Algorithm 1 first partitions x into buckets creating a new assignment x′, such
that the sum of x′ in each bucket is exactly 1 except possibly the last bucket of
each player. Some items are split into two buckets. The process for one player is
illustrated in Figure 2.
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Input : Solution x to the assignment LP, ordering oi of the items by prices for
player i

Output: Assignment x∗ of items to the players

foreach i ∈ A do
// Create buckets for player i, see Figure 2

ci ← �
∑

j xij�
Create ci buckets (i, 1), . . . , (i, ci)
Create x′

(i,·) from xi as in Figure 2

end
U ← {(i, k) | 1 ≤ k ≤ �

∑
j xij�}

V ← Q
Express x′ as a convex combination of complete matchings for V : x′ =

∑
i γimi

Return matching mi with probability γi

Algorithm 1. Bucket algorithm

1

x′

(i,1)1

2

x′

(i,1)2

3

x′

(i,1)3 x′

(i,2)3

4

x′

(i,2)4

5

x′

(i,2)5 x′

(i,3)5

Fig. 2. Illustration of bucket creation by Algorithm 1 for player i. Buckets are marked
by solid lines. The value xi3 is split into x′

(i,1)3 and x′
(i,2)3 and xi5 is split into x′

(i,2)5

and x′
(i,3)5. For the other items we have x′

(i,1)1 = xi1, x
′
(i,1)2 = xi2, x

′
(i,2)4 = xi4. Items

are ordered in non-decreasing order by their prices.

From the previous discussion, for every bucket b we have
∑

j x
′
bj ≤ 1. Also,∑

b∈U x′
bj = 1 for every item j, which is implied by

∑
i∈A xij = 1 for all j ∈ Q.

Hence x′ is inside the complete matching polytope for V = Q. Using an algo-
rithmic version of Carathéodory’s theorem (see e.g. Theorem 6.5.11 in [11]) we
can in polynomial time decompose x′ into a convex combination of polynomially
many complete matchings for V .

In the algorithm we use an ordering oi for player i such that pioih ≥ pioi,h+1
,

i.e. it is the descending order of items by their prices for player i. In particular
this implies that the algorithm does not use the prices, only the order of items.
Also note that Algorithm 1 could be made deterministic. Instead of picking a
random matching we can pick the best one.

Let Algi(x) be the expected price that player i pays. We know that Algi(x) ≤
Vali(x), since the probability of assigning j to i is xij , but we don’t have equality
in the expression, because some matchings might assign a price that is over the
budget for some players. In the following lemma we lower bound Algi(x).

Lemma 1. Let x be a solution to the assignment LP, i ∈ A and let α ≥ 1
be such that Vali(x) = Bi/α. Let a1 be the average price of items in the first
bucket b of player i, i.e. a1 =

∑
j x

′
bjpbj. Let r1 be the average price of items in
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b that have price more than αa1. Then

Algi(x) ≥ Vali(x)

(
1− r1

4Bi

)
.

In particular, since ri ≤ Bi, Algorithm 1 gives a 3/4-approximation.

4 Restricted Budget Allocation

In this section we consider the MBA problem with uniform budgets where the
prices are restricted to be of the form pij ∈ {pj, 0}. This is the so called restricted
maximum budgeted allocation. Our main result is the following.

Theorem 3. There is a (3/4 + c)-approximation algorithm for restricted MBA
for some constant c > 0.

Since the budgets are uniform, we can assume that each player has a budget
of 1 by scaling. We refer to pj as the price of item j. It will be convenient to
distinguish whether items have big or small prices. We denote the items with
big prices by B = {j : pj ≥ 1 − β} for some β, 1/3 ≥ β > 0, to be determined.
Let S denote the set of the remaining items (with small prices).

A key concept for proving Theorem 3 is that of well-structured solutions; it
allows us to use different techniques based on the structure of the solution to
the configuration LP. In short, a solution y is (ε, δ)-well-structured, if for at least
(1−ε)-fraction of players, roughly half of their configurations contain a big item.

Definition 1. A solution y to the configuration LP is (ε, δ)-well-structured if

Pr
i

⎡⎣∑
C⊆Q
|B ∩ C| · yi,C �∈

[
1− δ

2
,
1 + δ

2

]⎤⎦ ≤ ε,

where the probability is taken over a weighted distribution of players such that
player i is chosen with probability Vali(y)/Val(y).

We want to be able to switch from the configuration LP to the assignment LP
without changing the well-structuredness of the solution. The following lemma
shows that this is indeed possible.

Lemma 2. Let y be a well-structured solution to the configuration LP. Then
there exists a solution x to the assignment LP with Vali(x) = Vali(y) such that∑

C⊆Q
|B ∩ C| · yi,C ∈

[
1− δ

2
,
1 + δ

2

]
⇔

∑
j:j∈B

xij ∈
[
1− δ

2
,
1 + δ

2

]
for all i ∈ A. Furthermore, x can be produced from y in polynomial time.

In the next subsection in Lemma 5 we show that Algorithm 1 actually performs
better then 3/4 if the solution x to the assignment LP is produced from a non-
well-structured solution y as in Lemma 2. In subsection 4.2 in Lemma 6 we show
a new algorithm for well-structured solutions that also has an approximation
guarantee strictly better than 3/4. Finally, Lemma 5 and Lemma 6 immediately
imply our main result of this section, i.e., Theorem 3.
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4.1 Better Analysis for Non-well-Structured Solutions

We first show that Algorithm 1 performs well if not all players basically are fully
assigned (fractionally).

Lemma 3. Let ε′ > 0 be a small constant and consider player i such that

Vali(x) ≤ 1− ε′. Then Algi(x) ≥
3+ε′/5

4 Vali(x).

From the above, we can see that the difficult players to round are those that
have an almost full budget. In the following lemma, we show that such players
must have a very special fractional assignment in order to be difficult to round.

Lemma 4. Let δ > 0 be a small constant, choose β such that δ/4 ≤ β, and
consider a player i such that Vali(x) ≥ 1 − δ2/8 and

∑
j:j∈B xij �∈

[
1−δ
2 , 1+δ

2

]
.

Then Algi(x) ≥
3+δ2/64

4 Vali(x).

From Lemma 3 and Lemma 4 we have that as soon as a weighted ε-fraction
(weight of player i is Vali(y)) of the players satisfies the conditions of either
lemma, we get a better approximation guarantee than 3/4. Therefore, when a
solution y to the configuration LP is not (ε, δ)-well-structured, we use Lemma 2
to produce a solution x to the assignment LP for which an ε-fraction of players
satisfies either conditions of Lemma 3 or Lemma 4. Hence we have the following:

Lemma 5. Given a solution y to the configuration LP which is not (ε, δ)-well-
structured and β ≥ δ/4, we can in polynomial time find a solution with expected

value at least 3+εδ2/64
4 Val(y).

4.2 Algorithm for Well-Structured Solutions

Here, we devise a novel algorithm that gives an improved approximation guar-
antee for (ε, δ)-well-structured instances when ε and δ are small constants.

Lemma 6. Let 1−β be the threshold for the big items. Given a solution y to the
configuration LP that is (ε, δ)-well-structured, we can in (randomized) polynomial
time find a solution with expected value at least (1− δ)2(1− β − ε) · 2532Val(y).

To prove the above lemma we first give the algorithm and then its analysis.

Algorithm. The algorithm constructs a slightly modified version y′ of the optimal
solution y to the configuration LP. Solution y′ is obtained from y in three steps.

First, remove all players i with
∑

C⊆Q |B ∩ C|yi,C �∈
[
(1−δ)

2 , (1+δ)
2

]
. As y is (ε, δ)-

well-structured, this step decreases the value of the solution by at most εVal(y).
Second, change y as in the proof of Lemma 2(we refer the reader to the full

version of the paper) by getting rid of configurations with 2 big items without
losing any objective value. Then remove all small items from the configurations
containing big items. After this step, we have the property that big items are
alone in a configuration. We call such configurations big and the remaining
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ones small. Moreover, we have decreased the value by at most βVal(y) because
each big item has value at least 1− β and each configuration has value at most
1. In the third step, we scale down the fractional assignment of configurations
(if necessary), so as to ensure that

∑
C:C∩B=∅ y

′
i,C ≤ 1/2 for each player i ∈ A.

As remaining players are assigned big configurations with a total fraction at
least (1 − δ)/2 and therefore small configurations with a total fraction at most
(1 + δ)/2, this may decrease the value by a factor 1/(1 + δ) > 1− δ.

In summary, we have obtained a solution y′ for the configuration LP so that
each configuration either contains a single big item or only small items; for
each remaining player the configurations with big items constitute a fraction

in
[
(1−δ)

2 , (1+δ)
2

]
and small configurations constitute a fraction of at most 1/2.

Moreover, Val(y′) ≥ (1− β − ε)(1− δ)Val(y).
The algorithm now works by rounding y′ in two phases; in the first phase we

assign big items and in the second phase we assign small items.
The first phase works as follows. Let x′ be the solution to the assignment

LP from Lemma 2 applied on y′ and note that Val(x′) = Val(y′). Consider the
bipartite graph where we have a vertex ai for each player i ∈ A; a vertex bj for
each big item j ∈ B; and an edge of weight x′

ij between vertices ai and bj . Note
that a matching in this graph naturally corresponds to an assignment of big
items to players. We shall find our matching/assignment of big items by using
Theorem 2. Note that by the property of that theorem we have that (i) each
big item j is assigned with probability

∑
i x

′
ij and (ii) the probability that two

players i and i′ are assigned big items is negatively correlated, i.e., it is at most(∑
j∈B x′

ij

)
·
(∑

j∈B x′
i′j

)
. These two properties are crucial in the analysis of

our algorithm. It is therefore important that we assign the big items according
to a distribution that satisfies the properties of Theorem 2.

After assigning big items, in the second phase our algorithm assigns the small
items as follows. First, obtain an optimal solution x(2) to the assignment LP for
the small items together with the players that were not assigned a big item in
the first phase; these are the items that remain and the players for which the
budget is not saturated with value at least 1 − β. Then we obtain an integral
assignment (of the small items) of value at least 3

4Val(x
(2)) by using Algorithm 1.

Analysis. Let Aj be all the players i for which x′
ij > 0. Let x∗ denote the integral

assignment found by the algorithm. Note that the expected value of x∗ (over the
randomly chosen assignment of big items) is:

E[Val(x∗)] = E

⎡⎣∑
j∈B

∑
i∈Aj

x′
ijpj +

3

4
Val(x(2))

⎤⎦ =
∑
j∈B

∑
i∈Aj

x′
ijpj +

3

4
E[Val(x(2))].

We now analyze the second term, i.e., the expected optimal value of the assign-
ment LP where we are only considering the small items and the set of players
T ⊆ A that were not assigned big items in the first phase. Then a solution z
to the assignment LP can be obtained by scaling up the fractional assignments
of the small items assigned to players in T according to x′ by up to a factor
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of 2 while maintaining that an item is assigned at most once. In other words,

zij = min
[
1,
∑

i∈Aj∩T 2x′
ij

]
and z is a feasible solution to the assignment LP,

because we have
∑

j∈S x′
ijpj ≤ 1/2.

Thus we have that the expected value of the optimal solution to the as-
signment LP is by linearity of expectation at least ET [Val(x

(2))] ≥
∑

j∈S pj ·
ET

[
min

[
1,
∑

i∈Aj∩T 2x′
ij

]]
.

We continue by analyzing the expected fraction of a small item present in the
constructed solution to the assignment LP. In this lemma we use that the ran-
domly selected matching of big items has negative correlation. To see why this
is necessary, consider a small item j ∈ S and suppose that j is assigned to two
players A and B such that x′

Aj = x′
Bj = 1/2. As the instance is well-structured

both A and B are roughly assigned half a fraction of big items; for simplic-

ity assume it to be exactly 1/2. Note that in this case min
[
1,
∑

i∈Aj∩T 2x′
ij

]
is equal to 1 if not both A and B are assigned a big item and 0 otherwise.
Therefore, on the one hand, if the event that A is assigned a big item and the
event that B is assigned a big item were perfectly correlated then we would

have ET

[
min

[
1,
∑

i∈Aj∩T 2x′
ij

]]
= 1/2. On the other hand, if those events are

negatively correlated then ET

[
min

[
1,
∑

i∈Aj∩T 2x′
ij

]]
≥ 3/4, as in this case the

probability that both A and B are assigned big items is at most 1/4.

Lemma 7. For every j ∈ S, ET

[
min

[
1,
∑

i∈Aj∩T 2x′
ij

]]
≥ (1− δ)34

∑
i∈Aj

x′
ij .

Let us now see how Lemma 7 implies Lemma 6. We have that E[Val(x∗)] is equal
to∑
j∈B

∑
i∈Aj

x′
ijpj +

3

4
E[Val(x(2))] ≥

∑
j∈B

∑
i∈Aj

x′
ijpj + (1− δ)

(
3

4

)2 ∑
j∈S

∑
i∈Aj

x′
ijpj .

As
∑

j∈B x′
ij ≥ 1−δ

2 for every remaining player, we have

E[Val(x∗)]

Val(x′)
≥ (1− δ)

(
1

2
+

1

2

9

16

)
= (1 − δ)

25

32
.

Lemma 6 now follows since Val(x′) ≥ (1 − β − ε)(1 − δ)Val(y). We have proved
Lemmas 5 and 6, which in turn imply Theorem 3 and our analysis is concluded.

5 Conclusion and Future Directions

We showed that the integrality gap for configuration LP is strictly better than
3
4 for two interesting and natural restrictions of Maximum Budgeted Allocation:
restricted and graph MBA.

These results imply that the configuration LP is strictly better than the nat-
ural assignment LP and pose promising research directions. Specifically, our re-
sults on restricted MBA suggest that our limitations in rounding configuration
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LP solutions do not necessarily stem from the items being fractionally assigned
to many players, while our results on graph MBA suggest that they do not neces-
sarily stem from the items having non-uniform prices. Whether these limitations
can simultaneously be overcome is left as an interesting open problem.

Finally, it would be interesting to see whether the techniques presented, and
especially the exploitation of the big items structure, can be applied to other
allocation problems with similar structural features as MBA (e.g. GAP).
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Abstract. Balas introduced disjunctive cuts in the 1970s for mixed-
integer linear programs. Several recent papers have attempted to extend
this work to mixed-integer conic programs. In this paper we develop a
methodology to derive closed-form expressions for inequalities describ-
ing the convex hull of a two-term disjunction applied to the second-order
cone. Our approach is based on first characterizing the structure of un-
dominated valid linear inequalities for the disjunction and then using
conic duality to derive a family of convex, possibly nonlinear, valid in-
equalities that correspond to these linear inequalities. We identify and
study the cases where these valid inequalities can equivalently be ex-
pressed in conic quadratic form and where a single inequality from this
family is sufficient to describe the convex hull. Our results on two-term
disjunctions on the second-order cone generalize related results on split
cuts by Modaresi, Kılınç, and Vielma, and by Andersen and Jensen.

Keywords: Mixed-integer conic programming, second-order cone
programming, cutting planes, disjunctive cuts.

1 Introduction

A mixed-integer conic program is a problem of the form

sup{d�x : Ax = b, x ∈ K, xj ∈ Z ∀j ∈ J}

where K ⊂ Rn is a regular (full-dimensional, closed, convex, and pointed) cone,
A is an m × n real matrix of full row rank, d and b are real vectors of ap-
propriate dimensions, and J ⊆ {1, . . . , n}. Mixed-integer conic programming
(MICP) models arise naturally as robust versions of mixed-integer linear pro-
gramming (MILP) models in finance, management, and engineering [1]. MILP
is the special case of MICP where K is the nonnegative orthant, and it has
itself numerous applications. A successful approach to solving MILP problems
has been to first solve the continuous relaxation, then add cuts, and finally per-
form branch-and-bound using this strengthened formulation. A powerful way
of generating such cuts is to impose a valid disjunction on the continuous re-
laxation and to generate tight convex inequalities for the resulting disjunctive
set. Such inequalities are known as disjunctive cuts. Specifically, the integrality
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c© Springer International Publishing Switzerland 2014
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conditions on the variables xj , j ∈ J , imply linear two-term disjunctions of the
form π�x ≤ π0 ∨ π�x ≥ π0 + 1 where π0 ∈ Z, πj ∈ Z, j ∈ J , and πj = 0,
j �∈ J . Following this approach, the feasible region for MICP problems can be
relaxed to {x ∈ K : Ax = b, π�x ≤ π0 ∨ π�x ≥ π0 +1}. More general two-term
disjunctions arise in complementarity [2] and other non-convex optimization [3]
problems. Therefore, it is interesting to study relaxations of MICP problems of
the form

sup{d�x : x ∈ C1 ∪ C2} where

Ci := {x ∈ K : Ax = b, c�i x ≥ ci,0} for i ∈ {1, 2} (1)

and to derive strong valid inequalities for the convex hull conv(C1 ∪C2), or the
closed convex hull conv(C1 ∪ C2). When K is the nonnegative orthant, Bonami
et al. [4] characterize conv(C1 ∪ C2) by a finite set of linear inequalities. The
purpose of this paper is to provide closed-form expressions for convex inequalities
describing conv(C1∪C2) for other cones such as the second-order (Lorentz) cone
Kn

2 := {x ∈ Rn : ‖x̃‖2 ≤ xn} where x̃ := (x1, . . . , xn−1). We first review related
results from the literature.

Disjunctive cuts were introduced by Balas [5] for MILP in the early 1970s.
Chvátal-Gomory, lift-and-project, mixed-integer rounding (MIR), and split cuts
are all special types of disjunctive cuts. Recent efforts on extending the cut-
ting plane theory for MILP to the MICP setting include the work of Çezik and
Iyengar [6] for Chvatal-Gomory cuts, Stubbs and Mehrotra [7], Drewes [8], and
Bonami [9] for lift-and-project cuts, and Atamtürk and Narayanan [10] for MIR
cuts. Kılınç-Karzan [11] analyzed properties of minimal valid linear inequalities
for general conic sets with a disjunctive structure and showed that these are
sufficient to describe the closed convex hull. Such general sets from [11] include
two-term disjunctions on the cone K considered in this paper. Bienstock and
Michalka [12] studied the characterization and separation of valid linear inequal-
ities that convexify the epigraph of a convex, differentiable function restricted
to a non-convex domain. In the last few years, there has been growing interest
in developing closed-form expressions for convex inequalities that fully describe
the convex hull of a disjunctive conic set. Dadush et al. [13] and Andersen and
Jensen [14] derived split cuts for ellipsoids and the second-order cone, respec-
tively. Modaresi et al. [15] extended this work to essentially all cross-sections of
the second-order cone. Belotti et al. [16] identified a procedure for constructing
two-term disjunctive cuts under the assumptions that C1 ∩ C2 = ∅ and the sets
{x ∈ K : Ax = b, c�1 x = c1,0} and {x ∈ K : Ax = b, c�2 x = c2,0} are bounded.

In this paper we study general two-term disjunctions on conic sets and give
closed-form expressions for the tightest disjunctive cuts that can be obtained
from these disjunctions in a large class of instances. We focus on the case where
C1 and C2 in (1) above have an empty set of equations Ax = b. That is to say,
we consider

C1 := {x ∈ K : c�1 x ≥ c1,0} and C2 := {x ∈ K : c�2 x ≥ c2,0}. (2)
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We note, however, that our results can easily be extended to two-term disjunc-
tions on sets of the form {x ∈ Rn : Ax−b ∈ K} through the affine transformation
discussed in [14]. Our main contribution is to give an explicit outer description of
conv(C1 ∪C2) when K is the second-order cone. Similar results have previously
appeared in [14], [15], and [16]. Nevertheless, our work is set apart from [14]
and [15] by the fact that we study two-term disjunctions on the cone K in their
full generality and do not restrict our attention to split disjunctions, which are
defined by parallel hyperplanes. Furthermore, unlike [16], we do not assume that
C1 ∩ C2 = ∅ and the sets {x ∈ K : c�1 x = c1,0} and {x ∈ K : c�2 x = c2,0} are
bounded. In the absence of such assumptions, the resulting convex hulls turn out
to be significantly more complex in our general setting. We also stress that our
proof techniques originate from a conic duality perspective and are completely
different from what is employed in the aforementioned papers; in particular, we
believe that they are more transparent and intuitive.

The remainder of this paper is organized as follows. Section 2.1 introduces
our notation and basic assumptions. In Section 2.2 we characterize the structure
of undominated valid linear inequalities describing conv(C1 ∪ C2) when K is a
regular cone. In Section 3 we focus on the case where K is the second-order
cone. In Section 3.1 we state and prove our main result, Theorem 1. The proof
uses conic duality along with the characterization from Section 2.2 to derive a
family of convex, possibly nonlinear, valid inequalities (6) for conv(C1 ∪ C2).
In Sections 3.2 and 3.3, we identify and study the cases where these inequali-
ties can equivalently be expressed in conic quadratic form and where only one
inequality of the form (6) is sufficient to describe conv(C1 ∪ C2). Our results
imply in particular that a single conic valid inequality is always sufficient for
split disjunctions. Nevertheless, there are cases where it is not possible to obtain
conv(C1 ∪ C2) by a single inequality of the form (6). We illustrate these cases
with examples in Section 3.4.

2 Preliminaries

The main purpose of this section is to characterize the structure of undominated
valid linear inequalities for conv(C1 ∪C2) when K is a regular cone and C1 and
C2 are defined as in (2). First, we present our notation and assumptions.

2.1 Notation and Assumptions

Given a set S ⊆ Rn, we let spanS, intS, and bdS denote the linear span,
interior, and boundary of S, respectively. We use recS to refer to the recession
cone of a convex set S. The dual cone of a cone K ⊆ Rn is K∗ := {y ∈ Rn :
y�x ≥ 0 ∀x ∈ K}.

We can always scale the inequalities c�1 x ≥ c1,0 and c�2 x ≥ c2,0 defining the
disjunction so that their right-hand sides are 0 or ±1. Therefore, from now on
we assume that c1,0, c2,0 ∈ {0,±1}.
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When C1 ⊆ C2, we have conv(C1 ∪ C2) = C2. Similarly, when C1 ⊇ C2, we
have conv(C1 ∪C2) = C1. In the remainder we focus on the case where C1 �⊆ C2

and C1 �⊇ C2.

Assumption 1. C1 �⊆ C2 and C1 �⊇ C2.

We also need the following technical assumption in our analysis.

Assumption 2. C1 and C2 are strictly feasible sets.

It is not difficult to show that C := {x ∈ K : c�x ≥ c0} must be strictly
feasible when c0 = −1 or when c0 = +1 and C is nonempty. Therefore, we
need Assumption 2 to supplement Assumption 1 only when c1,0 = 0 or c2,0 = 0.
Assumptions 1 and 2 have the following implication.

Lemma 1. Suppose Assumptions 1 and 2 hold. Then the following system of
inequalities in the variable β is inconsistent:

β ≥ 0, βc1,0 ≥ c2,0, c2 − βc1 ∈ K∗.

Similarly, the following system of inequalities in the variable β is inconsistent:

β ≥ 0, βc2,0 ≥ c1,0, c1 − βc2 ∈ K∗.

2.2 Properties of Undominated Valid Linear Inequalities

A valid linear inequality μ�x ≥ μ0 for a strictly feasible set S ⊆ K is said to
dominate another valid linear inequality ν�x ≥ ν0 if it is not a positive multiple
of ν�x ≥ ν0 and implies ν�x ≥ ν0 together with the cone constraint x ∈ K. A
valid linear inequality μ�x ≥ μ0 for S ⊆ K is tight if infx{μ�x : x ∈ S} = μ0

and strongly tight if there exists x∗ ∈ S such that μ�x∗ = μ0.
Because C1 and C2 are strictly feasible sets by Assumption 2, conic duality

implies that a linear inequality μ�x ≥ μ0 is valid for conv(C1 ∪ C2) if and only
if there exist α1, α2, β1, β2 such that (μ, μ0, α1, α2, β1, β2) satisfies

μ = α1 + β1c1,

μ = α2 + β2c2,

β1c1,0 ≥ μ0, β2c2,0 ≥ μ0,

α1, α2 ∈ K∗, β1, β2 ∈ R+.

(3)

This system can be reduced slightly for undominated valid linear inequalities.

Proposition 1. Consider C1, C2 defined as in (2) with c1,0, c2,0 ∈ {0,±1}. Sup-
pose Assumptions 1 and 2 hold. Then, up to positive scaling, any undominated
valid linear inequality for conv(C1∪C2) has the form μ�x ≥ min{c1,0, c2,0} with
(μ, α1, α2, β1, β2) satisfying

μ = α1 + β1c1,

μ = α2 + β2c2,

min{β1c1,0, β2c2,0} = min{c1,0, c2,0},
α1, α2 ∈ bdK∗, β1, β2 ∈ R+ \ {0}.

(4)
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Remark 1. Under the assumptions of Proposition 1, in an undominated valid
linear inequality μ�x ≥ min{c1,0, c2,0}, we can assume that at least one of β1

and β2 is equal to 1 in (4) without any loss of generality. In particular,

(i) if c1,0 > c2,0, we can assume that β2 = 1, β1c1,0 ≥ c2,0, and β1c1 − c2 /∈
± intKn

2 holds,
(ii) if c1,0 = c2,0, we can assume that either β2 = 1, β1c1,0 ≥ c2,0, and β1c1 −

c2 /∈ ± intKn
2 or β1 = 1, β2c2,0 ≥ c1,0, and β2c2 − c1 /∈ ± intKn

2 holds.

3 Deriving the Disjunctive Cut

In this section we let K be the second-order cone Kn
2 := {x ∈ Rn : ‖x̃‖2 ≤ xn}

where x̃ := (x1, . . . , xn−1). As in the previous section, we consider C1, C2 defined
as in (2) with c1,0, c2,0 ∈ {0,±1} and suppose that Assumptions 1 and 2 hold.
We also assume without any loss of generality that c1,0 ≥ c2,0. Sets C1, C2 that
satisfy these conditions are said to satisfy the basic disjunctive setup.

3.1 A Convex Valid Inequality

Proposition 1 gives a nice characterization of the form of undominated linear
inequalities valid for conv(C1∪C2). In the following we use this characterization
and show that, for a given pair (β1, β2) satisfying the conditions of Remark 1,
one can group all of the corresponding linear inequalities into a single convex,
possibly nonlinear, inequality valid for conv(C1 ∪ C2). By Remark 1, without
any loss of generality, we focus on the case where β2 = 1 and β1 > 0 with
β1c1,0 ≥ c2,0 and β1c1 − c2 /∈ ± intKn

2 . By Lemma 1, β1c1 − c2 /∈ −Kn
2 . This

leaves us two distinct cases to consider: β1c1− c2 ∈ bdKn
2 and β1c1− c2 /∈ ±Kn

2 .

Remark 2. Let C1, C2 satisfy the basic disjunctive setup. For any β > 0 such
that βc1,0 ≥ c2,0 and βc1 − c2 ∈ bdKn

2 , the inequality

βc�1 x ≥ c2,0 (5)

is valid for conv(C1 ∪C2) and dominates all valid linear inequalities of the form
(4) with β1 = β and β2 = 1.

Theorem 1. Let C1, C2 satisfy the basic disjunctive setup. For any β > 0 such
that βc1,0 ≥ c2,0 and βc1 − c2 /∈ ±Kn

2 , the inequality

2c2,0 − (βc1 + c2)
�x ≤

√
((βc1 − c2)�x)

2
+N(β)

(
x2
n − ‖x̃‖

2
)

(6)

with
N(β) := ‖βc̃1 − c̃2‖22 − (βc1,n − c2,n)

2 (7)

is valid for conv(C1∪C2) and implies all valid linear inequalities of the form (4)
with β1 = β and β2 = 1.
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Proof. Consider the set of vectors μ ∈ Rn satisfying (4) with β1 = β and β2 = 1:

M(β, 1):= {μ ∈ Rn : ∃α1, α2 ∈ bdKn
2 s.t. μ = α1 + βc1 = α2 + c2} .

Because βc1 − c2 /∈ ±Kn
2 , Moreau’s decomposition theorem implies that there

exist μ∗, α∗
1 �= 0, α∗

2 �= 0 such that α∗
1 ⊥ α∗

2 and (μ∗, α∗
1, α

∗
2, β, 1) satisfies (4).

Hence, the setM(β, 1) is in fact nonempty. We can write

M(β, 1)={μ∈Rn : ‖μ̃−βc̃1‖2=μn−βc1,n, ‖μ̃− c̃2‖2=μn−c2,n}
={μ∈Rn : ‖μ̃− c̃2‖2=‖μ̃−βc̃1‖2+βc1,n−c2,n, ‖μ̃−βc̃1‖2=μn−βc1,n} .

After taking the squares of both sides of the first equation in M(β, 1), noting
βc1 − c2 /∈ −Kn

2 , and replacing the term ‖μ̃− βc̃1‖2 with μn − βc1,n, we arrive
at

M(β, 1)=

{
μ∈Rn : μ̃�(βc̃1− c̃2)−μn(βc1,n−c2,n)=

M

2
, ‖μ̃−βc̃1‖2=μn−βc1,n

}
where M := β2(‖c̃1‖22 − c21,n)− (‖c̃2‖22 − c22,n).

Note that x ∈ conv(C1 ∪ C2) implies

⇒ x ∈ Kn
2 and μ�x ≥ c2,0 ∀μ ∈ M(β, 1).

⇔ x ∈ Kn
2 and inf

μ

{
μ�x : μ ∈M(β, 1)

}
≥ c2,0.

Unfortunately, the optimization problem stated above is non-convex due to the
second equality constraint in M(β, 1). We show below that the natural convex
relaxation for this problem is tight. Indeed, consider the relaxation

inf
μ

{
μ�x : μ̃�(βc̃1 − c̃2)− μn(βc1,n − c2,n) =

M

2
, ‖μ̃− βc̃1‖2 ≤ μn − βc1,n

}
.

The feasible region of this relaxation is the intersection of a hyperplane with a
closed, convex cone shifted by the vector βc1. Any solution which is feasible to
the relaxation but not the original problem can be expressed as the limit of a
sequence of points obtained by taking convex combinations of solutions feasible
to the original problem. Because we are optimizing a linear function, this shows
that the relaxation is equivalent to the original problem. Thus, we have

x ∈ conv(C1 ∪ C2)⇒ x ∈ Kn
2 and

inf
μ

{
μ�x : μ̃�(βc̃1− c̃2)− μn(βc1,n−c2,n)=

M

2
, ‖μ̃−βc̃1‖2≤μn−βc1,n

}
≥c2,0

which is exactly the same as

x ∈ conv(C1 ∪C2)⇒ x ∈ Kn
2 and

inf
μ

{
μ�x : μ̃�(βc̃1− c̃2)− μn(βc1,n−c2,n)=

M

2
, μ− βc1∈Kn

2

}
≥c2,0. (8)
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The minimization problem in the last line above is feasible since μ∗, defined at
the beginning of the proof, is a feasible solution. Indeed, it is strictly feasible
since α∗

1+α∗
2 is a recession direction of the feasible region and belongs to intKn

2 .
Hence, its dual problem is solvable whenever it is feasible, strong duality applies,
and we can replace the problem in the last line with its dual without any loss of
generality.

Considering the definition of N(β) = ‖βc̃1 − c̃2‖22 − (βc1,n − c2,n)
2 and the

assumption that βc1 − c2 /∈ ±Kn
2 , we get N(β) > 0. Then

x ∈ conv(C1 ∪ C2)

⇒ x∈Kn
2 and max

ρ,τ

{
βc�1ρ+

M

2
τ : ρ+τ

(
βc̃1− c̃2

−βc1,n + c2,n

)
=x, ρ∈Kn

2

}
≥c2,0.

⇔ x∈Kn
2 and max

τ

{
βc�1x−

N(β)

2
τ : x+τ

(
−βc̃1+ c̃2

βc1,n − c2,n

)
∈ Kn

2

}
≥c2,0.

⇔ x ∈ Kn
2 and min{τ−, τ+}≤

2(βc�1 x− c2,0)

N(β)

where τ± :=
(βc1 − c2)

�x±
√
((βc1 − c2)�x)2 +N(β)(x2

n − ‖x̃‖
2
2)

N(β)
.

⇔ x ∈ Kn
2 and τ− ≤

2(βc�1 x− c2,0)

N(β)
.

⇔ x ∈ Kn
2 and N(β)τ− ≤ 2(βc�1 x− c2,0).

Rearranging the terms of the inequality in the last expression above yields (6).

�

The next observation follows directly from the proof of Theorem 1.

Remark 3. Under the assumptions of Proposition 1, the set of points that satisfy
(6) in Kn

2 is convex.

Proof. The inequality (6) is equivalent to (8) by construction. The left-hand
side of (8) is a concave function of x written as the pointwise infimum of linear
functions, while the right-hand side is a constant. 
�

By Proposition 1 and Remark 1, the family of inequalities given in Remark 2
and Theorem 1 is sufficient to describe conv(C1 ∪C2).

3.2 A Conic Quadratic Form

While having a convex valid inequality is nice in general, there are certain cases
where (6) can be expressed in conic quadratic form.

Proposition 2. Let C1, C2 satisfy the basic disjunctive setup. Let β > 0 be such
that βc1,0 ≥ c2,0 and βc1 − c2 /∈ ±Kn

2 , and suppose for N(β) given by (7) that

−2c2,0 + (βc1 + c2)
�x ≤

√
((βc1 − c2)�x)

2
+N(β)

(
x2
n − ‖x̃‖

2
)

(9)



352 F. Kılınç-Karzan and S. Yıldız

holds for all x ∈ conv(C1 ∪ C2). Then (6) can equivalently be written in conic
quadratic form as

N(β)x+ 2(c�2 x− c2,0)

(
βc̃1 − c̃2

−βc1,n + c2,n

)
∈ Kn

2 . (10)

Proposition 3. Let C1, C2 satisfy the basic disjunctive setup. Let β > 0 be such
that βc1,0 ≥ c2,0 and βc1 − c2 /∈ ±Kn

2 and suppose

{x ∈ Kn
2 : βc

�
1 x ≥ c2,0, c

�
2 x ≥ c2,0} = {x ∈ Kn

2 : βc
�
1 x = c2,0, c

�
2 x = c2,0}. (11)

Then (9) is satisfied by all x ∈ Kn
2 .

Condition (11) of Proposition 3, together with the results of Proposition 2 and
Theorem 1, identifies cases in which (6) can be expressed in conic quadratic form.
In a split disjunction on the cone Kn

2 , it is easy to see that C1 and C2 are both
nonempty and conv(C1∪C2) �= Kn

2 if and only if c1, c2 /∈ ±Kn
2 and c1,0 = c2,0 = 1.

Therefore, for a proper two-sided split disjunction, (11) is trivially satisfied with
β = 1 because C1 ∩ C2 = ∅.

3.3 When Does a Single Inequality Suffice?

In this section we give two conditions under which a single convex inequality of
the type derived in Theorem 1 describes conv(C1∪C2) completely, together with
the cone constraint x ∈ Kn

2 . The following results hold for any regular cone K.

Further Properties of Undominated Valid Linear Inequalities. In this
section we consider the disjunction c�1 x ≥ c1,0 ∨ c�2 x ≥ c2,0 on a regular cone K

and refine the results of Section 2.2 on the structure of undominated valid linear
inequalities.

The following lemma shows that the statement of Proposition 1 can be
strengthened substantially when c1 ∈ K∗ or c2 ∈ K∗.

Lemma 2. Let C1, C2 satisfy the basic disjunctive setup. Suppose c1 ∈ K∗ or
c2 ∈ K∗. Then, up to positive scaling, any undominated valid linear inequality for
conv(C1 ∪ C2) has the form μ�x ≥ c2,0 where μ satisfies (4) with β1 = β2 = 1.

When c1,0 = c2,0 ∈ {±1}, a similar result holds for undominated valid linear
inequalities that are tight on both C1 and C2.

Lemma 3. Let C1, C2 satisfy the basic disjunctive setup with c1,0 = c2,0 ∈
{±1}. Then, up to positive scaling, any undominated valid linear inequality for
conv(C1 ∪C2) that is tight on both C1 and C2 has the form μ�x ≥ c2,0 where μ
satisfies (4) with β1 = β2 = 1.

Next, we identify an important case where the family of tight inequalities spec-
ified in Lemma 3 is rich enough to describe conv(C1 ∪ C2) completely. The key
ingredient is the closedness of conv(C1 ∪ C2).
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Proposition 4. Let C1, C2 satisfy the basic disjunctive setup with c1,0 = c2,0.
Suppose conv(C1∪C2) is closed. Then undominated valid linear inequalities that
are strongly tight on both C1 and C2 are sufficient to describe conv(C1 ∪ C2),
together with the cone constraint x ∈ K.

The next result shows the necessity of the assumption c1,0 = c2,0 in the statement
of Proposition 4. When this is not the case, every undominated valid linear
inequality is tight on exactly one of the two sets C1 and C2.

Lemma 4. Let C1, C2 satisfy the basic disjunctive setup with c1,0 > c2,0. Then
every undominated valid linear inequality for conv(C1 ∪ C2) is tight on the set
C2 but not on C1.

Two Sufficient Conditions. By putting together the results of Section 3.3
and Theorem 1, we obtain the following.

Theorem 2. Let C1, C2 satisfy the basic disjunctive setup with c1 − c2 /∈ ±Kn
2 .

Then the inequality

2c2,0 − (c1 + c2)
�x ≤

√
((c1 − c2)�x)

2
+N

(
x2
n − ‖x̃‖

2
)

(12)

is valid for conv(C1 ∪C2) with N := ‖c̃1 − c̃2‖22 − (c1,n − c2,n)
2. Furthermore,

conv(C1 ∪ C2) = {x ∈ Kn
2 : x satisfies (12)}

when, in addition,

(i) c1 or c2 ∈ Kn
2 , or

(ii) c1,0 = c2,0 ∈ {±1} and undominated valid linear inequalities that are tight
on both C1 and C2 are sufficient to describe conv(C1 ∪ C2).

Proof. The validity of (12) follows from Theorem 1 by setting β = 1. Lemmas 2
and 3 show that we can limit ourselves to valid linear inequalities of the form (4)
with β1 = β2 = 1 to get a complete description of the closed convex hull. When
this is the case, the implication in (8) in the proof of Theorem 1 is actually an
equivalence. 
�

When c1,0 = c2,0 ∈ {0,±1}, Lemma 1 implies c1 − c2 /∈ Kn
2 . Suppose also that

(a) condition (i) or (ii) of Theorem 2 is satisfied, and
(b) C1 ∩ C2 ⊆ {x ∈ Rn : c�1 x = c1,0, c

�
2 x = c2,0}.

Statement (a) holds, for instance, in the case of split disjunctions because c1,0 =
c2,0 = 1 and conv(C1∪C2) is closed (see, e.g., [13, Lemma 2.3]). By Proposition 4,
undominated valid linear inequalities that are tight on both C1 and C2 are
sufficient to describe conv(C1 ∪ C2). Therefore, we can use Theorem 2 to say
that (12) describes conv(C1 ∪C2) completely, together with the cone constraint
x ∈ Kn

2 . Statement (b) simply means that the two sets C1 and C2 defined by
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the disjunction do not meet except at their boundaries. This also holds for split
disjunctions. By Proposition 3, (9) is satisfied by all x ∈ Kn

2 with β = 1. Taking
Proposition 2 into account, we conclude that in this case the corresponding conic
quadratic inequality given by (10) is sufficient to describe conv(C1 ∪C2). Thus,
Theorem 2 and Proposition 2, together with Proposition 3, cover the results of
[15] and [14] on split disjunctions on the cone Kn

2 and provide their corresponding
generalizations to other two-term disjunctions.

3.4 Two Examples

In this section our first example illustrates the use of Theorem 2. As Lemma 4
hints, there are cases where valid linear inequalities of the form (4) with β1 =
β2 = 1 may not be sufficient to describe conv(C1 ∪C2); we illustrate this in our
second example in this section.

Example Where a Single Inequality Suffices. Consider the cone K3
2 and

the disjunction x3 ≥ 1 ∨ x1 + x3 ≥ 1. Note that c1 = e3 ∈ K3
2 in this example.

Hence, we can use Theorem 2 to characterize the closed convex hull:

conv(C1 ∪ C2) =

{
x ∈ K3

2 : 2− (x1 + 2x3) ≤
√
x2
3 − x2

2

}
.

Figures 1(a) and (b) depict the disjunctive set C1∪C2 and the associated closed
convex hull, respectively. In order to give a better sense of the convexification
operation, we plot the points added to C1∪C2 to generate the closed convex hull
in Figure 1(c). Finally, we note that the inequality that we provide is intrinsically
related to the conic quadratic inequality of Proposition 2: The sets described by
the two inequalities coincide in the region conv(C1 ∪C2) \ (C1 ∪C2). We display
the corresponding cone for this example in Figure 1(d).

Example Where Multiple Inequalities Are Needed. Consider the cone
K3

2 and the disjunction −x2 ≥ 0 ∨ −x3 ≥ −1. For this example Theorem 1
implies that the family of convex inequalities

−2 + (βx2 + x3) ≤
√

(−βx2 + x3)2 + (β2 − 1)(x2
3 − ‖x̃‖

2
2) (13)

parameterized by β ∈ [1,∞) fully describes conv(C1 ∪ C2). Figures 2(a) and
(b) depict the disjunctive set C1 ∪ C2 and the associated closed convex hull,
respectively. Note that conv(C1 ∪ C2) has a flat surface which is described by
(13) with β = 1. The overall closed convex hull is given by

conv(C1 ∪C2) =
{
x ∈ K3

2 : x2 ≤ 1, 1 + |x1| − x3 ≤
√
1−max{0, x2}2

}
,

where both inequalities are convex (even when we ignore the constraint x ∈
K3

2). In fact, both inequalities describing conv(C1 ∪ C2) are conic quadratic
representable in a lifted space as expected.
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(a) C1 ∪ C2 (b) conv(C1 ∪ C2)

(c) conv(C1 ∪ C2) \ (C1 ∪ C2) (d) Underlying cone generating the
convex inequality

Fig. 1. Sets associated with the disjunction x3 ≥ 1 ∨ x1 + x3 ≥ 1 on K3
2

(a) C1 ∪ C2 (b) conv(C1 ∪ C2)

Fig. 2. Sets associated with the disjunction −x2 ≥ 0 ∨ −x3 ≥ −1 on K3
2



356 F. Kılınç-Karzan and S. Yıldız

References

1. Benson, H., Saglam, U.: Mixed-integer second-order cone programming: A survey.
Tutorials in Operations Research. In: INFORMS, Hanover, MD, pp. 13–36 (2013)
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4. Bonami, P., Conforti, M., Cornuéjols, G., Molinaro, M., Zambelli, G.: Cutting
planes from two-term disjunctions. Operations Research Letters 41, 442–444 (2013)

5. Balas, E.: Intersection cuts - a new type of cutting planes for integer programming.
Operations Research 19, 19–39 (1971)
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Abstract. In modern data centers and cloud computing systems, jobs
often require resources distributed across nodes providing a wide variety
of services. Motivated by this, we study the Coupled Placement problem,
in which we place jobs into computation and storage nodes with capac-
ity constraints, so as to optimize some costs or profits associated with
the placement. The coupled placement problem is a natural generaliza-
tion of the widely-studied generalized assignment problem (GAP), which
concerns the placement of jobs into single nodes providing one kind of
service. We also study a further generalization, the k-Sided Placement
problem, in which we place jobs into k-tuples of nodes, each node in a
tuple offering one of k services.

For both the coupled and k-sided placement problems, we consider
minimization and maximization versions. In the minimization versions
(MinCP and MinkSP), the goal is to achieve minimum placement cost,
while incurring a minimum blowup in the capacity of the individual
nodes. Our first main result is an algorithm for MinkSP that achieves
optimal cost while increasing capacities by at most a factor of k+1, also
yielding the first constant-factor approximation for MinCP. In the max-
imization versions (MaxCP and MaxkSP), the goal is to maximize the
total weight of the jobs that are placed under hard capacity constraints.
MaxkSP can be expressed as a k-column sparse integer program, and
can be approximated to within a factor of O(k) factor using randomized
rounding of a linear program relaxation. We consider alternative combi-
natorial algorithms that are much more efficient in practice. Our second
main result is a local search based combinatorial algorithm that yields a
15-approximation and O(k2)-approximation for MaxCP and MaxkSP
respectively.

1 Introduction

The data center has become one of the most important assets of a modern busi-
ness. Whether it is a private data center for exclusive use or a shared public cloud
data center, the size and scale of the data center continues to rise. As a company
grows, so too must its data center to accommodate growing computational, stor-
age and networking demand. However, the new components purchased for this
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expansion need not be the same as the components already in place. Over time,
the data center becomes quite heterogeneous [1]. This complicates the problem
of placing jobs within the data center so as to maximize performance.

Jobs often require resources of more than one type: for example, compute and
storage. Modern data centers typically separate computation from storage and
interconnect the two using a network of switches. As such, when placing a job
within a data center, we must decide which computation node and which storage
node will serve the job. If we pick nodes that are far apart, then communication
latency may become too prohibitive. On the other hand, nodes are capacitated,
so picking nodes close together may not always be possible.

Most prior work in data center resource management is focussed on placing
one type of resource at a time: e.g., placing storage requirements assuming job
compute location is fixed [2,3] or placing compute requirements assuming job
storage location is fixed [4,5]. One sided placement methods cannot suitably
take advantage of the proximities and heterogeneities that exist in modern data
centers. For example, a database analytics application requiring high throughput
between its compute and storage elements can benefit by being placed on a
storage node that has a nearby available compute node.

In this paper, we study Coupled Placement (CP), which is the problem of
placing jobs into computation and storage nodes with capacity constraints, so as
to optimize costs or profits associated with the placement. Coupled placement
was first addressed in [6] in a setting where we are required to place all jobs
and we wish to minimize the communication latency over all jobs. They show
that this problem, which we call MinCP, is NP-hard and investigate the per-
formance of heuristic solutions. Another natural formulation is where the goal
is to maximize the total number of jobs or revenue generated by the placement,
subject to capacity constraints. We refer to this problem as MaxCP. We also
study a generalization of Coupled Placement, the k-Sided Placement Problem
(kSP), which considers k ≥ 2 kinds of resources.

1.1 Problem Definition

In the coupled placement problem, we are given a bipartite graph G = (U, V,E)
where U is a set of compute nodes and V is a set of storage nodes. We have
capacity functions C : U → R and S : V → R for the compute and storage
nodes, respectively. We are also given a set T of jobs, each of which needs to be
allocated to one compute node and one storage node. Each job may prefer some
compute-storage node pairs more than others, and may also consume different
resources at different nodes. To capture these heterogeneities, we have for each
job j a function fj : E → R, a processing requirement pj : E → R and a
storage requirement sj : E → R. We note that without loss of generality, we
can assume that the capacities are unit, since we can scale the processing and
storage requirements of individual nodes accordingly.

We consider two versions of the coupled placement problems. For the
maximization version MaxCP, we view fj as a payment function. Our goal
is to select a subset A ⊆ T of jobs and an assignment σ : A → E such that all
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capacities are observed and our total profit
∑

j∈A fj(σ(j)) is maximized. For the
minimization version MinCP, we view fj as a cost function. Our goal is to find
an assignment σ : T → E such that all capacities are observed and our total
cost

∑
j∈A fj(σ(j)) is minimized.

A generalization of the coupled placement problem is k-sided placement (kSP),
in which we have k different sets of nodes, S1, . . . , Sk, each set of nodes providing
a distinct service. For each i, we have a capacity function Ci : Si →R that gives
the capacity of a node in Si to provide the ith service. We are given a set T
of jobs, each of which needs each kind of service; the exact resource needs may
depend on the particular k-tuple of nodes from

∏
i Si to which it is assigned.

That is, for each job j, we have a demand function dj :
∏

i Si → Rk. We also
have another function fj :

∏
i Si → R. As for coupled placement, we can as-

sume that the capacities are unit, since we can scale the demands of individual
nodes accordingly. Similar to coupled placement, we consider two versions of
kSP, MinkSP and MaxkSP.

1.2 Our Results

All of the variants of CP and kSP are NP-hard, so our focus is on approximation
algorithms. Our first set of results consist of the first non-trivial approximation
algorithms for MinCP and MinkSP. Under hard capacity constraints, it is easy
to see that it is NP-hard to achieve any bounded approximation ratio to cost
minimization. So we consider approximation algorithms that incur a blowup in
capacity. We say that an algorithm is α-approximate for the minimization version
if its cost is at most that of an optimal solution, while incurring a blowup factor
of at most α in the capacity of any node.

– We present a (k + 1)-approximation algorithm for MinkSP using iterative
rounding, yielding a 3-approximation for MinCP.

We next consider the maximization version. MaxkSP can be expressed as a
k-column sparse integer packing program (k-CSP). From this, it is immediate
that MaxkSP can be approximated to within an O(k) approximation factor
by applying randomized rounding to a linear programming relaxation [7]. An
Ω(k/ log k)-inapproximability result for k-set packing due to [8] implies the same
hardness result for MaxkSP. Our second main result is a simpler approximation
algorithm for MaxCP and MaxkSP based on local search.

– We present local search based approximation algorithms for MaxCP and
MaxkSP, obtaining 15- and O(k2)-approximations, respectively.

The local search result applies directly to a version where we can assign tasks
fractionally but only to a single pair of machines (this is like assigning a task
with lower priority and may have additional applications). We then describe a
simple rounding scheme to obtain an integral version. The rounding technique
involves establishing a one-to-one correspondence between fractional assignments
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and machines. This is much like the cycle-removing rounding for GAP; there is
a crucial difference, however, since coupled placements assign jobs to pairs of
machines.

1.3 Related Work

The coupled and k-sided placement problems are natural generalizations of the
Generalized Assignment Problem (GAP), which can be viewed as a 1-sided place-
ment problem. In GAP, which was first introduced by Shmoys and Tardos [9],
the goal is assign items of various sizes to bins of various capacities. A subset of
items is feasible for a bin if their total size is no more than the bin’s capacity.
If we are required to assign all items and minimize our cost (MinGAP), Shmoys
and Tardos [9] give an algorithm for computing an assignment that achieves op-
timal cost while doubling the capacities of each bin. A previous result by Lenstra
et al. [10] for scheduling on unrelated machines show it is NP-hard to achieve
optimal cost without incurring a capacity blowup of at least 3/2. On the other
hand, if we wish to maximize our profit and are allowed to leave items unassigned
(MaxGAP), Chekuri and Khanna [11] observe that the (1, 2)-approximation for
MinGAP implies a 2-approximation for MaxGAP. This can be improved to a
( e
e−1 )-approximation using LP-based techniques [12]. It is known that MaxGAP

is APX-hard [11], though no specific constant of hardness is shown.
On the experimental side, most prior work in data center resource manage-

ment focusses on placing one type of resource at a time: for example, placing
storage requirements assuming job compute location is fixed (file allocation prob-
lem [2], [13,14,3]) or placing compute requirements assuming job storage loca-
tion is fixed [4,5]. These in a sense are variants of GAP. The only prior work
on Coupled Placement is [6], where they show that MinCP is NP-hard and ex-
perimentally evaluate heuristics: in particular, a fast approach based on stable
marriage and knapsacks is shown to do well in practice, close to the LP optimal.

The MaxkSP problem is related to the recently studied hypermatching as-
signment problem (HAP) [15], and special cases, including k-set packing, and a
uniform version of the problem. A (k + 1+ ε)-approximation is given for HAP

in [15], where other variants of HAP are also studied. While the MaxkSP prob-
lem can be viewed as a variant of HAP, there are critical differences. For instance,
in MaxkSP, each task is assigned at most one tuple, while in the hypermatching
problem each client (or task) is assigned a subset of the hyperedges. Hence, the
MaxkSP andHAP problems are not directly comparable. The k-set packing can
be captured as a special case of MaxkSP, and hence the Ω(k/ log k)-hardness
due to [8] applies to MaxkSP as well.

2 The Minimization Version

Next, we consider the minimization version of the Coupled Placement problem,
MinCP. We write the following integer linear program for MinCP, where xtuv

is the indicator variable for the assignment of t to pair (u, v), u ∈ U , v ∈ V .



Coupled and k-Sided Placements 361

Minimize:
∑
t,u,v

xtuvft(u, v)

Subject to:
∑
u,v

xtuv ≥ 1, ∀t ∈ T,∑
t,v

pt(u, v)xtuv ≤ cu, ∀u ∈ U,∑
t,u

st(u, v)xtuv ≤ dv, ∀v ∈ V,

xtuv ∈ {0, 1}, ∀t ∈ T, u ∈ U, v ∈ V.

We refer the first set of constraints as satisfaction constraints, the second and
third set as capacity constraints (processing and storage). We consider the linear
relaxation of this program which replaces the integrality constraints above with
0 ≤ xtuv ≤ 1, ∀t ∈ T, u ∈ U, v ∈ V . Without loss of generality, we assume that
pt(u, v) ≤ cu and st(u, v) ≤ dv for all t, and (u, v); otherwise, we can set xtuv to
0 and eliminate such triples from the linear program.

2.1 A 3-Approximation Algorithm for MinCP

We now present algorithm IterRound, based on iterative rounding [16], which
achieves a 3-approximation for MinCP. We start with a basic algorithm that
achieves a 5-approximation by identifying tight constraints with a small number
of variables. Each iteration of this algorithm repeats the following round until
all variables have been rounded.

1 Extreme point: Compute an extreme point solution x to the current LP.
2 Eliminate variable or constraint: Execute one of these two steps. By
Lemma 3, one of these steps can always be executed if the LP is nonempty.

a Remove from the LP all variables xtuv that take the value 0 or 1 in x. If xtuv

is 1, then assign job t to the pair (u, v), remove the job t and its associated
variables from the LP, and reduce cu by pt(u, v) and dv by st(u, v).

b Remove from the LP any tight capacity constraint with at most 4 variables.

Fix an iteration of the algorithm, and an extreme point x. Let nt, nc, and ns de-
note the number of tight task satisfaction constraints, computation constraints,
and storage constraints, respectively, in x. Note that every task satisfaction con-
straint can be assumed to be tight, without loss of generality. Let N denote the
number of variables in the LP. Since x is an extreme point, if all variables in x
take values in (0, 1), then we have N = nt + nc + ns.

Lemma 1. If all variables in x take values in (0, 1), then nt ≤ N/2.

Proof. Since a variable only occurs once over all satisfaction constraints, if nt >
N/2, there exists a satisfaction constraint that has exactly one variable. But
then, this variable needs to take value 1, a contradiction.

Lemma 2. If nt ≤ N/2, then there exists a tight capacity constraint that has at
most 4 variables.
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Proof. If nt ≤ N/2, then ns + nc = N − nt ≥ N/2. Since each variable occurs
in at most one computation constraint and at most one storage constraint, the
total number of variable occurrences over all tight storage and computation
constraints is at most 2N , which is at most 4(ns+nc). This implies that at least
one of these tight capacity constraints has at most 4 variables.

Using Lemmas 1 and 2, we can argue that the above algorithm yields a 5-
approximation. Step 2a does not cause any increase in cost or capacity. Step 2b
removes a constraint, hence cannot increase cost; since the removed constraint
has at most 4 variables, the total demand allocated on the relevant node is at
most the demand of four tasks plus the capacity already used in earlier iterations.
Since each task demand is at most the capacity of the node, we obtain a 5-
approximation with respect to capacity.

Studying the proof of Lemma 2 more closely, one can separate the case nt <
N/2 from the nt = N/2; in the former case, one can, in fact, show that there
exists a tight capacity constraint with at most 3 variables. Together with a
careful consideration of the nt = N/2 case, one can improve the approximation
factor to 4. We now present an alternative selection of tight capacity constraint
that leads to a 3-approximation. One interesting aspect of this step is that the
constraint being selected may not have a small number of variables. We replace
step 2b by the following.

2b Remove from the LP any tight capacity constraint in which the number of
variables is at most two more than the sum of the values of the variables.

Lemma 3. If all variables in x take values in (0, 1), then there exists a tight
capacity constraint in which the number of variables is at most two more than
the sum of the values of the variables.

Proof. Since each variable occurs in at most two tight capacity constraints, the
total number of occurrences of all variables across the tight capacity constraints
is 2N − s for some nonnegative integer s. Since each satisfaction constraint is
tight, each variable appears in 2 capacity constraints, and each variable takes on
value less than 1, the sum of all the variables over the tight capacity constraints
is at least 2nt − s. Therefore, the sum, over all tight capacity constraints, of
the difference between the number of variables and their sum is at most 2(N −
nt). Since there are N − nt tight capacity constraints, for at least one of these
constraints, the difference between the number of variables and their sum is at
most 2.

Lemma 4. Let u be a node with a tight capacity constraint, in which the number
of variables is at most 2 more than the sum of the variables. Then, the sum of the
capacity requirements of the tasks partially assigned to u is a most the current
available capacity of u plus twice the capacity of u.

Proof. Let � be the number of variables in the constraint for u, and let the
associated tasks be numbered 1 through �. Let the demand of task j for the
capacity of node u be dj . Then, the capacity constraint for u is

∑
j djxj = ĉ(u),

where ĉ(u) is the available capacity of u in the current LP.
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We know that �−
∑

i xi ≤ 2. Since di ≤ C(u), the capacity of u:

∑
j

dj = ĉ(u) +

	∑
j=1

(1 − xj)dj ≤ ĉ(u) + (�−
m∑
j=	

xj)C(u) ≤ ĉ(u) + 2C(u).

Theorem 1. IterRound is a polynomial-time 3-approximation algorithm for
MinCP.

Proof. By Lemma 3, each iteration of the algorithm removes either a variable or a
constraint from the LP. Hence the algorithm is polynomial time. The elimination
of a variable that takes value 0 or 1 does not change the cost. The elimination
of a constraint can only decrease cost, so the final solution has cost no more
than the value achieved by the original LP. Finally, when a capacity constraint
is eliminated, by Lemma 4, we incur a blowup of at most 3 in capacity.

2.2 A (k + 1)-Approximation Algorithm for MinkSP

It is straightforward to generalize the the algorithm of the preceding section to
obtain a k + 1-approximation to MinkSP. We first set up the integer LP for
MinkSP. For a given element e ∈

∏
i Si, we use ei to denote the ith coordinate

of e. Let xte be the indicator variable that t is assigned to e ∈
∏

i Si.

Minimize:
∑
t,e

xteft(e)

Subject to:
∑
e

xte ≥ 1, ∀t ∈ T,∑
t,e:ei=u

(dt(e))ixte ≤ Ci(u), ∀1 ≤ i ≤ k, u ∈ U,

xte ∈ {0, 1}, ∀t ∈ T, e ∈ E

The algorithm, which we call IterRound(k), is identical to IterRound of
Section 2.1 except that step 2b is replaced by the following.

2b Remove from the LP any tight capacity constraint in which the number of
variables is at most k more than the sum of the values of the variables.

The claims and proofs are similar to the k = 2 case and are deferred to the
full paper. A natural question to ask is whether a linear approximation factor
for MinkSP is unavoidable for polynomial time algorithms. In the full paper,
we show that the MinkSP linear program has an integrality gap that grows
as Ω(log k/ log log k). Determining the best efficiently achievable approximation
factor for MinkSP is an open problem.

3 The Maximization Problems

We present approximation algorithms for the maximization versions of coupled
placement and k-sided placement problems. We first observe, in Section 3.1,
that these problems reduce to column sparse integer packing. We next present,
in Section 3.2, an alternative combinatorial approach based on local search.
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3.1 An LP-Based Approximation Algorithm

One can write a positive integer linear program for MaxCP. Let xtuv be the
indicator variable for assigning job t to (u, v), u ∈ U , v ∈ V .

Maximize:
∑
t,u,v

xtuvft(u, v)

Subject to:
∑
u,v

xtuv ≤ 1, ∀t ∈ T,∑
t,v

pt(u, v)xtuv ≤ cu, ∀u ∈ U,∑
t,u

st(u, v)xtuv ≤ dv, ∀v ∈ V,

xtuv ∈ {0, 1}, ∀t ∈ T, u ∈ U, v ∈ V.

Note that we can deal with capacities on u, v by scaling the pt(u, v) and st(u, v)
values appropriately. The above LP can be easily extended to MaxkSP (due to
space constraints, we defer the formulation to the full paper).

These linear programs are 3- and k-column sparse packing programs, respec-
tively, and can be approximated to within a factor of 15.74 and ek+o(k), respec-
tively using a clever randomized rounding approach. As mentioned in Section 1,
an Ω(k/ log k)-inapproximability result is known for MaxkSP.

3.2 Approximation Algorithms Based on Local Search

We now present a combinatorial approach for MaxkSP based on local search,
which is likely to be much more efficient than the above LP-based approximation
algorithm in practice. Before giving the details, we start with a few helpful
definitions. For any u ∈ U , Fu = Σt,vxtuvft(u, v). Similarly, for any v ∈ V , Fv =
Σt,uxtuvft(u, v). We set μ = 1

n maxt,u,v ft(u, v). It follows that the optimum
solution is at least nμ and at most n2μ.

The local search algorithm will maintain the following two invariants: (1) For
each t, there is at most one pair (u, v) for which xtuv > 0; (2) All the linear
program inequalities hold. It’s easy to set an initial state where the invariant
holds (all xtuv = 0). The local search algorithm proceeds in the following steps:

While ∃t, u, v : ft(u, v) > Fu
pt(u,v)

cu
+ Fv

st(u,v)
dv

+Σu′,v′xtu′v′ft(u
′, v′) + εμ:

1. Set xtuv = 1 and set xtu′v′ = 0 for all (u′, v′) �= (u, v).
2. While Σt,vpt(u, v)xtuv > cu, reduce xtuv for the job with minimum value of

cuft(u, v)/pt(u, v) such that xtuv > 0.
3. While Σu,vst(u, v)xtuv > dv, reduce xtuv for the job with minimum value of

dvft(u, v)/st(u, v) such that xtuv > 0

Lemma 5. The local search algorithm maintains the two stated invariants.

Proof. The first invariant is straightforward, because the only time we increase
an xtuv value we simultaneously set all other values for the same t to zero. The
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only time the linear program inequalities can be violated is immediately after
setting xtuv = 1. However, the two steps immediately after this operation will
reduce the values of other jobs so as to satisfy the inequalities (and this is done
without increasing any xtuv so no new constraint can be violated).

Theorem 2. The local search algorithm produces a 3+ ε approximate fractional
solution satisfying the invariants.

Proof. By Lemma 5, the local search algorithm always maintains the invariants.

When the algorithm terminates, we have for all t, u, v: ft(u, v) ≤ Fu
pt(u,v)

cu
+

Fv
st(u,v)

dv
+Σu′,v′xtu′v′ft(u

′, v′)εμ. We sum this over t, u, v representing the op-
timum integer assignments: OPT ≤ ΣuFu +ΣvFv +Σt,u,vxtuvft(u, v) + εOPT .
Each summation simplifies to the algorithm’s objective value, giving the result.

Theorem 3. The local search algorithm runs in polynomial time.

Proof. Setting xtuv = 1 and setting all other xtu′v′ = 0 adds the amount
ft(u, v) − Σu′v′xtu′v′ft(u

′, v′) to the objective. The next two steps of the al-
gorithm (making sure the LP inequalities hold) reduce the objective by at most

Fu
pt(u,v)

cu
+ Fv

st(u,v)
dv

. It follows that each iteration of the main loop increases
the solution value by at least εμ. By definition of μ, this can happen at most
n2/ε times. Each selection of (t, u, v) can be done in polynomial time (at worst,
by simply trying all tuples).

Rounding Phase: When the local search algorithm terminates, we have a frac-
tional solution with the guarantee from the first invariant. Note that we can
extend this to MaxkSP if we increase the approximation factor to k + 1 + ε.
The next phase of the algorithm is to round the fractional solution returned by
local search. Applying the randomized rounding approach of [7], we obtain an
O(k2)-approximation forMaxkSP, and a (47.22+ε)-approximation forMaxCP.
The preceding approach does not take advantage, however, of the properties of
the fractional solution returned by our local search algorithm. For MaxCP,
we present a different rounding scheme that exploits the local search invariants
satisfied by the fractional solution and obtains a 15 + ε approximation.

The main idea behind the rounding scheme is to obtain a one-to-one cor-
respondence between fractional assignments and machines. Essentially we view
the machines as nodes of a graph where the edges are the fractional assignments
(this is similar to the rounding for generalized assignment). If we have a cycle,
the idea is to shift the fractions around the cycle (i.e. increase one xtuv then
decrease some xt′vw and increase some xt′′wx and so forth). Applying this di-
rectly on a single cycle may violate some constraints; while we try to increase
and decrease the fractions in such a way that constraints hold, since each job has
different “size” on its two endpoints we may wind up violating the constraint∑

t,v xtuvpt(u, v) at a single node u. This prevents us from doing a simple cycle
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elimination as in generalized assignment. However, if we have two adjoining (or
connected) cycles the process can be made to work. The remaining case is a
single cycle, where we can assign each edge to one of its endpoints. Generalized
assignment rounding would now proceed to integrally assign each job to its cor-
responding machine; we cannot do this because each job requires two machines,
and each machine thus has multiple fractional assignments (all but one of which
“correspond” to some other machine).

Lemma 6. Given any fractional solution which satisfies the local search invari-
ants, we can produce an alternative fractional solution (also satisfying the local
search invariants and with equal or greater value). This new fractional solution
labels each job t with 0 < xtuv < 1, with either u or v, guaranteeing that each u
is labeled with at most one job.

Proof. Consider a graph where the nodes are machines, and we have an edge
(u, v) for any fractional assignment 0 < xtuv < 1. If any node has degree zero or
one, we remove that node and its assigned edge (if any), labeling the removed
edge with the node that removed it. We continue this process until all remaining
nodes have degree at least two. If there is a node of degree three, then there
must exist two (distinct but not necessarily edge-disjoint) cycles with a path
between them (possibly a path of length zero); since the graph is bipartite all
cycles are even in length. We can alternately increase and decrease the fractional
assignments of edges along a cycle such that the total load

∑
t,v pt(u, v)xtuv

changes only on a single node u where the path between cycles intersects this
cycle. We can do the same along the other cycle. We can then do the same thing
along the path, and equalize the changes (multiplicatively) such that there is no
overall change in load, but at least one edge has its fractional value changing.
If this process decreases the value, we can reverse it to increase the value. This
allows us to modify the fractional solution in a way that increases the number of
integral assignments without decreasing the value. After applying this repeatedly
(and repeating the node/edge removal process above where necessary), we are
left with a graph that consists only of node-disjoint cycles. Each of the remaining
edges will be labeled with one of its two endpoints (one to each). We thus have a
one-to-one labeling correspondence between fractional assignments and machines
(each fractional edge to one of its two assigned machines). Note however that
since each job is assigned to two machines and labeled with only one of the two,
this does not imply that each machine has only one fractional assignment.

Once this is done, we consider three possible solutions. One consists of all the
integral assignments. The second considers only those assignments which are
fractional and labeled with nodes u. For each node v, we select a subset of its
fractional assignments to make integrally, so as to maximize the value without
violating capacity of v. We cannot violate capacity of u because we select at most
one job for each such machine. The result has at least 1

2 the value of assignments
labeled with nodes u. For the third solution, we do the same but with the roles
of u, v reversed. We select the best of these three solutions; our choice obtains
at least 1

5 of the overall value.
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Theorem 4. For MaxCP, there exists a polynomial-time algorithm based on
local search that achieves a 15 + ε approximation for MaxCP.

Proof. The algorithm sketch contains most of the proof. We need to establish
that we can get at least 1

2 the fractional value on a single machine integrally. This
can be done by selecting jobs in decreasing order of density (ft(u, v)/pt(u, v))
until we overflow the capacity. Including the job that overflows capacity, this
must be better than the fractional solution. Thus we can select either everything
but the job that overflows capacity, or that job by itself.

We also need to establish the 1
5 value claim. If we were to select the integral

assignments with probability 1
5 and each of the other two solutions with proba-

bility 2
5 , we would get an expected 1

5 of the fractional solution. Deterministially
selecting the best of the three solutions can only be better than this.

4 Concluding Remarks

We introduce minimization and maximization versions of the k-sided placement,
a generalization of the generalized assignment problem (GAP). For the mini-
mization version, MinkSP, we present a k + 1 approximation using iterative
rounding, thus generalizing the 2-approximation result for the minimization ver-
sion of GAP. The best lower bound on inapproximability for MinkSP is a con-
stant factor, derived from GAP. Finding the best polynomial-time approximation
achievable for MinkSP is an interesting open problem. In the full paper, we show
that the particular linear program we use forMinkSP has an integrality gap that
grows as Ω(log k/ log log k).

The maximization version of k-sided placement, MaxkSP, can be approxi-
mated to within a factor of O(k) by applying randomized rounding to a k-column
sparse LP relaxation [7]. We present simpler combinatorial algorithms based on
local search for MaxkSP and MaxCP (MaxkSP with k = 2) that yield O(k2)
and 15 + ε approximations, respectively. Future research directions include de-
veloping combinatorial algorithms with better approximations and finding the
best polynomial-time approximations achievable for the two problems.

In the full paper, we also study an online version of MaxCP, in which tasks
arrive online and must be irrevocably assigned or rejected immediately upon
arrival. We extend the techniques of [17] to the case where the capacity require-
ment for a job is arbitrarily machine-dependent, and thereby achieve competitive
ratio logarithmic in the ratio of best to worst value-per-capacity density, under
necessary technical assumptions about the maximum job size.
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Abstract. We present an approximation algorithm for the minimum
bounded degree Steiner network problem that returns a Steiner network
of cost at most two times the optimal and the degree on each vertex v is
at most min{bv + 3rmax, 2bv + 2}, where rmax is the maximum connec-
tivity requirement and bv is the given degree bound on v. This unifies,
simplifies, and improves the previous results for this problem.

1 Introduction

In the minimum bounded degree Steiner network problem, we are given an undi-
rected graph G = (V,E), a cost ce on each edge e ∈ E, a degree bound bv on
each vertex v ∈ V , and a connectivity requirement ruv for each pair of vertices
u, v ∈ V . A subgraph H of G is called a Steiner network if there are at least
ruv edge-disjoint paths in H for all u, v ∈ V . The task of the minimum bounded
degree Steiner network problem is to find a Steiner network H with minimum
total cost such that dH(v) ≤ bv for each v ∈ V . This is a general problem of
interest to algorithm design, computer networks, graph theory, and operations
research.

It is NP-hard to determine whether there is a Steiner network satisfying all the
degree bounds, even if we do not consider the cost of the Steiner network, as the
Hamiltonian cycle problem is a special case. Thus, researchers focus on designing
bicriteria approximation algorithms for the problem that minimize both the total
cost and the degree violation. We say an algoithm is an (α, f(bv))-approximation
algorithm for the minimum bounded degree Steiner network problem if it returns
a Steiner network H of cost at most α · opt and dH(v) ≤ f(bv) for each v ∈ V ,
where opt is the cost of an optimal Steiner network that satisfies all the degree
bounds.

The first bicriteria approximation algorithm for this problem is a (2, 2bv +3)-
approximation algorithm by Lau, Naor, Salavatipour, and Singh [12], and it
was improved to (2, 2bv + 2) by Louis and Vishnoi [15]. There are also bicri-
teria approximation algorithms with additive violation on the degrees in terms
of the maximum connectivity requirement. Let rmax = maxu,v{ru,v}. Lau and
Singh [14] gave a (2, bv+6rmax+3)-approximation algorithm for the problem, and
a (2, bv+3)-approximation algorithm in the special case when rmax = 1. The spe-
cial case when rmax = 1 is known as the minimum bounded degree Steiner forest

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 369–380, 2014.
c© Springer International Publishing Switzerland 2014
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problem. In this paper, we present a (2,min{bv+3rmax, 2bv+2})-approximation
algorithm for the problem.

Theorem 1. There is a polynomial time algorithm for the minimum bounded
degree Steiner network problem that returns a Steiner network H of cost at most
2opt and degH(v) ≤ min{bv + 3rmax, 2bv + 2} for all v.

Theorem 1 improves the (2, bv + 6rmax + 3) result in [14] when rmax ≥ 2 and
recovers the (2, bv + 3) result in [14] for the minimum bounded degree Steiner
forest problem. Besides, it achieves the (2, 2bv +2) result in [15] simultaneously,
while previously there was no such guarantee1. Furthermore, both our algorithm
and its analysis are simpler2 as we will discuss in Section 2. We believe that
our result unifies what can be achieved using existing techniques. We show an
example where our algorithm fails to give a (2, bv +2)-approximation algorithm
for the minimum bounded degree Steiner forest problem in Section 3.2.

1.1 Related Work

Jain [9] introduced the iterative rounding method to give a 2-approximation
algorithm for the minimum Steiner network problem, improving on a line of
research that applied primal-dual methods to these problems. Later, the iterative
rounding method has been applied to obtain the best known approximation
algorithms for network design problems for element-connectivity [4,3], vertex-
connectivity [3,2], and directed edge-connectivity [7].

The iterative relaxation method was introduced in [12] to adapt Jain’s method
to degree bounded network design problems, which are well-studied especially
in the special case of spanning trees [6,8]. Later, this method has also been
applied to achieve the best known approximation algorithms for the degree
bounded network design problems, including spanning trees [17,1,11], Steiner
networks [12,14,15], directed edge-connectivity [12,1], element-connectivity and
vertex-connectivity [10,16,5]. See [13] for a survey on this approach.

2 Technical Overview

Since this work is tightly connected to previous work, we give a high level
overview to describe the previous work and highlight where the improvement
comes from.

2.1 Iterative Rounding and Relaxation

All the previous results on this problem are based on the iterative rounding
method introduced by Jain [9] for the minimum Steiner network problem. This

1 For instance, it was not known how to combine the results in [15,14] to obtain a
(2,min{bv + 6rmax + 3, 2bv + 2})-approximation algorithm for the problem.

2 In particular, the analysis of the (2, bv + 3) result is significantly simpler than that
in [14].
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method is based on analyzing the extreme point solutions to a linear program-
ming relaxation for the problem. Let us first formulate the linear programming
relaxation for the minimum bounded degree Steiner network problem. For a
subset S ⊆ V , we let δ(S) be the set of edges with one endpoint in S and one
endpoint in V − S in the graph and let d(S) := |δ(S)|. In the linear program,
there is one variable xe for each edge, where the intended value is one if this
edge is used in the solution and zero if this edge is not used. For a subset of
edges E′ ⊆ E, we write x(E′) =

∑
e∈E′ xe. For a subset of vertices S ⊆ V ,

we define f(S) := maxu∈S,v/∈S{ruv} to be the maximum requirement crossing
S. To satisfy the connectivity requirement, we should have x(δ(S)) ≥ f(S) for
each S ⊆ V . The following is a linear programming relaxation for the minimum
bounded degree Steiner network problem. It has exponentially many constraints,
but there is a polynomial time separation oracle to determine whether a solution
is feasible or not, and thus it can be solved in polynomial time by the ellipsoid
method.

(LP) minimize
∑
e∈E

cexe

subject to x(δ(S)) ≥ f(S) ∀S ⊂ V

x(δ(v)) ≤ bv ∀v ∈ V

xe ≥ 0 ∀e ∈ E

When there are no degree constraints, Jain [9] proved that there exists an
edge e with xe ≥ 1

2 in any extreme point solution to the above linear program.
We call such an edge a heavy edge. He used this to obtain an iterative rounding
algorithm for the minimum Steiner network problem, by repeatedly picking a
heavy edge and recomputing an optimal extreme point solution to the residual
problem. When there are degree constraints, Lau et.al. [12] showed that either
there is a heavy edge or there is a degree constrained vertex with at most four
nonzero edges incident to it. They then introduced an extra relaxation step to
remove the degree constrained vertex in the latter case, leading to a (2, 2bv +
3)-approximation algorithm for the minimum bounded degree Steiner network
problem.

Roughly speaking, all the later improvements are based on proving the exis-
tence of a heavy edge with additional properties. To improve the degree violation,
Louis and Vishnoi [15] proved that in any extreme point solution either there is
an edge of integral value (zero or one), or a vertex v with at most 2bv+2 edges in-
cident to it, or a heavy edge with no endpoint having a degree bound at most one.
They showed that using this iteratively would imply a (2, 2bv+2)-approximation
algorithm for the problem. Note that in the above algorithms, after we pick a
heavy edge, we need to decrease the degree bound by half in order to achieve
the guarantee on the degree violation, and thus they have to consider a slightly
more general problem where the degree bounds are half-integral and some subtle
issue arose as we will discuss later.

To obtain additive violation on the degree bounds, Lau and Singh [14] proved
that in any extreme point solution either there is an edge of integral value, or a ver-
tex vwith atmost four edges incident to it, or a heavy edge between two verticeswith
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degree bounds atmost 6rmax, where the last condition guarantees that the degree vi-
olation is bounded when we picked edges with value at least half. For the minimum
bounded degree Steiner forest problem, they proved that in any extreme point solu-
tion either there is an integral edge, or a vertex v with atmost bv+3 edges incident
to it, or a heavy edge with no degree constraint on its endpoints. They showed that
these would lead to a (2, bv + 6rmax + 3)-approximation algorithm for the Steiner
network problem and a (2, bv + 3)-approximation algorithm for the Steiner forest
problem. The algorithm for Steiner forest is simpler, as it just removes the degree
constraint on a vertexwhen it has atmost bv+3 edges, and does not need to update
the degree constraint to a half-integral value, as it only picks edges with value at
least half when both endpoints have no degree constraints.

Our algorithm is very similar to that for the Steiner forest problem in [14]
(see Algorithm 1). We prove that either there is an edge of integral value, or
there is a vertex with at most min{bv + 3rmax, 2bv + 2} edges incident to it, or
there is a heavy edge with no degree constraints on its endpoints. The resulting
algorithm is quite simple, in the first case we delete an edge when xe = 0 or
pick an edge when xe = 1, in the second case we remove the degree constraint
on that vertex, and in the final case we pick such a heavy edge. Note that we
only update the degree constraints when we pick an edge with xe = 1, and thus
we can maintain the invariant that the degree bounds are integral, and this will
simplify the analysis for the 2bv + 2 bound.

2.2 Analysis

To analyze the extreme point solutions, an uncrossing technique is used to show
that the extreme point solutions are defined by a set of constraints with a special
structure. A function f : 2V → R is skew supermodular if for anyX,Y ⊆ V either
f(X) + f(Y ) ≤ f(X ∪ Y ) + f(X ∩ Y ) or f(X) + f(Y ) ≤ f(X − Y ) + f(Y −X).
It is known that the function f defined by the connectivity requirements is a
skew supermodular function. For a set S ⊆ V , the corresponding constraint
x(δ(S)) ≥ f(S) defines a vector in R|E|: the vector has a one corresponding to
each edge e ∈ δ(S) and a zero otherwise. We call this vector the characteristic
vector of δ(S) and denote it by χδ(S). A family of sets L is laminar if X,Y ∈ L
implies that either X ∩ Y = ∅, or X ⊆ Y , or Y ⊆ X . Using the assumption
that f is skew supermodular, it follows from standard uncrossing technique that
any extreme point solution of (LP) is characterized by a laminar family of tight
constraints.

Lemma 1 ([12]). Suppose that the requirement function f of (LP) is skew su-
permodular. Let x be an extreme point solution of (LP) such that 0 < xe < 1 for
all edges e ∈ E. Then there exist a laminar family L of sets and set T ⊆ V such
that x is the unique solution to

{x(δ(S)) = f(S) | S ∈ L} ∪ {x(δ(v)) = bv | v ∈ T }

that satisfies the following properties:
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1. The characteristic vectors χδ(S) for S ∈ L and χδ(v) for v ∈ T are linearly
independent.

2. |E| = |L|+ |T |.

The structure of a laminar set family L can be seen as a forest in which nodes
correspond to sets in L and there is an edge from set R to set S if R is the
smallest set containing S. We call R the parent of S and S is a child of R. A set
without any parent is a root and a set without any child is a leaf. The subtree
rooted at a set S consists of S and all its descendants.

Lau et.al. [12], following Jain [9], used this forest structure in a counting
argument to prove that either there exists an edge with integral value, or a
vertex with degree at most four, or an edge with value at least 1

2 . First, each
edge is assigned two tokens, one to each endpoint, for a total of 2|E| tokens.
Assuming none of the conditions hold, i.e. 0 < xe < 1

2 for each edge and every
vertex is of degree at least five. Then, it can be shown that the tokens can be
redistributed such that each member of L and each vertex in T get at least
two tokens, and there are still some extra tokens left. This implies that there
are more than 2|L| + 2|T | tokens, contradicting property 2 of Lemma 1. The
redistribution is done inductively using the following lemma.

Lemma 2 ([12]). For any subtree of L rooted at node S, we can reassign tokens
collected from child nodes of S and endpoints owned by S such that each vertex
in T ∩S gets at least two tokens, each node in the subtree gets at least two tokens,
and the root S gets at least three tokens. Moreover, S gets exactly three tokens
only if coreq(S) = 1

2 , where coreq(S) :=
∑

e∈δ(S)(
1
2 − xe).

The proof in [12] is almost the same as Jain’s proof, but with the presence of
degree constraints. Note that each vertex with degree constraint gets at least
five tokens in the initial token assignment. Intuitively, we can think of each
degree constraint as a singleton set (a leaf set in the laminar family), and thus
having five tokens is more than enough for Jain’s proof to go through. And one
may think that it is already enough if every degree constraint gets at least four
tokens to satisfy the induction hypothesis in Lemma 2, and this would imply a
(2, 2bv+2)-approximation algorithm. Unfortunately, the subtle point here is that
the degree bounds are half-integral, but for Jain’s proof to work they need to
be integral. To overcome this problem, Louis and Vishnoi [15] needed to modify
the algorithm and the analysis to obtain a (2, 2bv +2)-approximation algorithm.

The new idea in the Steiner network algorithm in [14] is to only pick heavy
edges when both endpoints are of low degree. In the analysis, with the presence
of heavy edges that are not allowed to be picked (when some endpoint is of high
degree), there could be some sets S with d(S) = 2 and x(δ(S)) = 1, and thus
the counting argument as above would not work in the base case for those sets.
For the same induction hypothesis in Lemma 2 to work, a new rule is added to
the initial token assignment: if (w, v) is a heavy edge with bw ≥ 6rmax and v is
not degree constrained, then v gets two tokens from the edge (w, v) while w gets
none. The counting argument would work in the base case with this new rule,
but w may not receive any token for the induction step to work. The assumption
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bw ≥ 6rmax is used to ensure that w can get back the tokens in the induction step.
To illustrate this, consider a worst case scenario in Figure 1(a). In the figure,
there is a degree constrained vertex w where all its incident edges are heavy, and
we need to collect two tokens for w and four tokens for S. Each child contributes
only one token but “consumes” the degree bound of w by rmax. This is where
the assumption that bw ≥ 6rmax is used to guarantee that S has at least five
children, so that each can contribute at least one token for w and S (and use
some additional argument to collect one more token).

+1

+1
+1

+1

+1

wS

≈ rmax

≈ rmax

≈ rmax

≈ rmax

≈ rmax
≈ rmax

(a) For the algorithm in [14]

≈ rmax

+2 +2

wS

≈ rmax ≈ rmax

(b) For our algorithm

Fig. 1. Worst cases for counting arguments

In this paper, we slightly change the algorithm to remove any vertex with
degree at most min{bv + 3rmax, 2bv + 2}. We used the same initial token as-
signment rule as in [14] and the same induction hypothesis in Lemma 2 for the
counting argument. First, using a simple argument (see Lemma 6), we show that
any vertex with degree at least 2bv +3 can receive at least four tokens, and this
allows the induction to work and recovers the (2, 2bv + 2) result by Louis and
Vishnoi. As mentioned before, this is possible because our algorithm maintains
the invariant that all the degree bounds are integral.

Our improvement to bv +3rmax comes from the concept of the integrality gap
of the degree of a set S, defined as d(S) − x(δ(S)). To illustrate this, consider
the same scenario in Figure 1. In the new algorithm, the vertex w with degree
bound bw but having more than bw+3rmax edges incident to it has an integrality
gap of 3rmax on its degree. The main observation is that the heavy edges from
a child having only three tokens (one extra token) can only contribute 1

2 to the
integrality gap of w (see Lemma 7), while a child having at least four tokens
could contribute rmax to the integrality gap of w. This observation basically
allows us to rule out children with only three tokens in the worst case scenarios
of the counting argument, as it contributes one token but only consumes 1

2 of
the integrality gap. This allows us to assume that each child can contribute
two tokens instead of one token, and this reduces the degree violation from
6rmax to 3rmax (see Figure 1(b)), with some additional arguments. An additional
advantage of our algorithm is that we also avoid the additive term +3 in the
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previous algorithm [14]. The proof for rmax ≥ 2 is quite short (see Section 3.1).
The proof for rmax = 1 still has some case analysis (see the full version), but
is considerably shorter than that in [14], as a complicated induction hypothesis
was used in [14] that caused many more case analyses.

3 Algorithm and Analysis

In the following, let W be the set of vertices with degree constraints.

Algorithm 1. Minimum Bounded Degree Steiner Network

1 Initialization: H = (V, ∅),W ← V, f ′(S)← f(S) for all S ⊆ V .
2 while H is not a Steiner Network do

(a) Compute an optimal extreme point solution x to (LP) and remove
all edges e with xe = 0.
(b) For each vertex v ∈ W with degree at most
min{bv + 3rmax, 2bv + 2}, remove v from W .
(c) For each edge e = (u, v) with xe = 1, add e to H and remove e
from G, and decrease bu, bv by one.
(d) For each edge e = (u, v) with xe ≥ 1

2 and u, v /∈ W , add e to H
and remove e from G.
(e) For each S ⊂ V , set f ′(S)← f(S)− dH(S).

3 Return H .

Given that f is initially a skew supermodular function, it is known that f ′ in
any later iteration is still a skew supermodular function [9]. So, the residual LP in
any iteration is still in the original form and it has a polynomial time separation
oracle [9]. Assuming the algorithm always makes progress in each iteration, then
we can prove Theorem 1 by a standard inductive argument as in [12]. It remains
to prove the following lemma to complete the proof of Theorem 1.

Lemma 3. Let x be an extreme point solution to (LP) and W be the set of
vertices with degree constraints. Then at least one of the following is true.

1. There exists a vertex v ∈W with d(v) ≤ min{bv + 3rmax, 2bv + 2}.
2. There exists an edge e with xe = 0 or xe = 1.
3. There exists an edge e = (u, v) with xe ≥ 1

2 and u, v /∈ W .

We prove Lemma 3 by contradiction. Assuming none of the three conditions
holds, then we have

1. d(v) ≥ min{bv + 3rmax + 1, 2bv + 3} for v ∈W ,
2. 0 < xe < 1 for e ∈ E,
3. if xuv ≥ 1

2 then either u or v is in W .

We will use a token counting argument to derive a contradiction with Lemma 1.
Let L be the laminar family and T be the set of vertices with tight degree con-
straints as defined in Lemma 1. In the token counting argument, we first assign
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two tokens to each edge, for a total of 2|E| tokens. Then, using the assumptions
above, we show that these tokens can be redistributed such that each member
in L and each vertex in T gets at least two tokens and there are some tokens
left, but this contradicts with |E| = |L|+ |T | from Lemma 1.

Initial Token Assignment Rule. Each edge receives two tokens. If e = (u, v)
is a heavy edge with u ∈ W and v /∈ W , then v gets two tokens from e and u
gets no token. For every other edge e, each endpoint of e gets one token.

We will redistribute the tokens inductively using the forest structure of the
laminar family L. We need some definitions to state the induction hypothesis.
We say a vertex v is owned by a set S ∈ L if S is the smallest set in L that
contains v. Given an extreme point solution x, we say an edge e is a heavy edge
if xe ≥ 1/2, otherwise we say e is a light edge. Let δh(S) = {e ∈ δ(S), xe ≥ 1/2}
(δl(S) = {e ∈ δ(S), xe < 1/2}) be the set of heavy edges (light edges) in δ(S).
The corequirement of a set S is defined as

coreq(S) =
∑

e∈δh(S)

(1 − xe) +
∑

e∈δl(S)

(1/2− xe) = |δh(S)|+
|δl(S)|

2
− x(δ(S)).

We will prove the following lemma which shows that the tokens can be redis-
tributed to obtain a contradiction, proving Lemma 3.

Lemma 4. For any subtree of L rooted at node S, we can reassign tokens col-
lected from child nodes of S and endpoints owned by S such that each vertex in
T ∩ S gets at least two tokens, each node in the subtree gets at least two tokens,
and the root S gets at least three tokens. Moreover, S gets exactly three tokens
only if coreq(S) = 1

2 .

We focus on the case when S owns some vertices in T , and show that in such
case S can get at least four tokens. In the induction step, we assume that the
induction hypothesis holds for each child of S. We say a child of S is a rich child
if it gets at least four tokens, and say a child of S is a poor child if it gets exactly
three tokens. Note that a child only needs two tokens and thus has some excess
tokens, i.e., each rich child of S has at least two excess tokens and each poor
child of S has one excess token. The following lemma is the technical core of this
paper.

Lemma 5. Let S ∈ L. Suppose that the induction hypothesis in Lemma 4 holds
for each child of S and S owns k ≥ 1 vertices in T . Then the number of ex-
cess tokens from the child nodes of S, plus the number of tokens collected from
endpoints owned by S is at least 2k + 4.

Lemma 5 handles the cases when S owns some vertex in T , to guarantee that S
gets at least four tokens and each vertex in T owned by S gets two tokens for
the induction hypothesis. The remaining cases can be handled exactly as in the
proof in [14]. Please refer to the full version for the proof of Lemma 4 assuming
Lemma 5, which follows the proof in [14].
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We will prove Lemma 5 in the remainder of this paper. We present the proof
of Lemma 5 when rmax ≥ 2 in Section 3.1, which improves the result in [14]
about Steiner networks. Due to space limit, please refer to the full version for
the proof of Lemma 5 when rmax = 1, which recovers the result in [14] about
Steiner forest with a considerably simpler proof.

3.1 Proof of Lemma 5

Before we assume rmax ≥ 2, we prove two useful lemmas. The first lemma takes
care of those vertices w ∈ W with d(w) ≥ 2bw + 3.

Lemma 6. If d(w) ≥ 2bw + 3 for w ∈ W , then w receives at least four tokens
in the initial token assignment.

Proof. Assume there are h heavy edges incident and l light edges incident to
w. If l ≥ 4, then w receives at least four tokens in the initial token assignment.
Suppose to the contrary that l ≤ 3. Then h ≥ 2bw as d(w) = h + l ≥ 2bw + 3.
If h > 2bw, then x(δ(w)) ≥ h

2 > bw, contradicting that x is a feasible solution
to (LP). Otherwise, if h = 2bw, since each light edge has positive value, we have
x(δ(w)) > h

2 = bw, again contradicting that x is a feasible solution to (LP). 
�

Lemma 6 says that any vertex w ∈ W with d(w) ≥ 2bw + 3 gets at least four
tokens in the initial assignment. Together with the fact that bw is an integer,
then any w ∈ T with d(w) ≥ 2bw+3 is a singleton set {w} with x(δ(w)) integral
and has at least four tokens, and thus it behaves the same as a rich child in the
proof of Lemma 5. Henceforth, we can assume that bw +3rmax+1 < 2bw +3 for
each w ∈ W , and thus

bw > 3rmax − 2 and d(w) ≥ bw + 3rmax + 1 for w ∈ W. (1)

The second lemma takes care of the poor children using the concept of in-
tegrality gap of the degree of a set. For an edge e with 0 < xe < 1, let
ye = 1− xe ∈ (0, 1) be the integrality gap of e. For a subset of edges E′ ⊆ E, let
y(E′) :=

∑
e∈E′ ye.

Lemma 7. Suppose the induction hypothesis in Lemma 4 holds for each child
of S ∈ L. Let R ∈ L be a poor child of S. Then

y(δh(R)) ≤ 1

2
.

Proof. Note that

1

2
= coreq(R) =

∑
e∈δh(R)

(1− xe) +
∑

e∈δl(R)

(
1

2
− xe) =

∑
e∈δh(R)

ye +
∑

e∈δl(R)

(
1

2
− xe).

Since 1/2− xe > 0 for each light edge e, we have
∑

e∈δh(R) ye ≤ 1/2. 
�
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Let w1, . . . , wk be the vertices in T owned by S. The main idea in the proof
of Lemma 5 is to consider Y :=

∑k
i=1 y(δ(wi)). Since wi ∈ T , it follows from (1)

that y(δ(wi)) = d(wi)− x(δ(wi)) = d(wi)− bwi ≥ 3rmax + 1 and thus

Y ≥ (3rmax + 1)k.

By Lemma 7, the heavy edges from a poor child can only contribute very little
to this sum, and this will allow us to rule out the existence of a poor child in S.

Proof of Lemma 5 when rmax ≥ 2: First, we count the number of tokens
that S can collect. Consider the edges in F := ∪ki=1δ(wi). Let F2 ⊆ F be the
subset of edges of F with both endpoints in S, and F1 := F − F2 be the subset
of edges of F with exactly one endpoint in S. Note that each edge in F2 can
contribute two tokens to S, regardless of whether it is heavy or light. Let � be
the number of light edges in F1. Then each such edge can contribute one token
to S. Let γ be the number of rich children of S and ρ be the number of poor
children of S. By the induction hypothesis, the children can contribute at least
2γ + ρ tokens to S. Therefore, S can collect at least 2γ + ρ + � + 2|F2| tokens
from its children and the endpoints that it owns. If 2γ + ρ+ �+ 2|F2| ≥ 2k + 4,
then we are done. So we assume to the contrary that

2γ + ρ+ �+ 2|F2| ≤ 2k + 3. (2)

Next, we consider the contribution to Y . Each endpoint of an edge e can
contribute strictly less than one to Y , as ye = 1 − xe < 1 for each edge. So, the
edges in F2 and the light edges in F1 can contribute strictly less than 2|F2|+� to
Y . It remains to count the contribution from the heavy edges in F1. The heavy
edges from a rich child R can contribute at most rmax to Y , because each heavy
edge can contribute at most 1

2 to Y and |δh(R)| ≤ 2rmax as x(δ(R)) ≤ rmax.
The heavy edges from a poor child can contribute at most 1

2 to Y by Lemma 7.
Finally, the heavy edges in F1∩δh(S) can contribute at most rmax to Y , because
|δh(S)| ≤ 2rmax as x(δ(S)) ≤ rmax. These count all the contributions to Y .
Therefore, we must have

(3rmax + 1)k ≤ Y ≤ (γ + 1) · rmax +
1

2
ρ+ �+ 2|F2|. (3)

To satisfy (2) as an equality, we must have ρ+ �+2|F2| ≥ 1 since γ is an integer.
If �+2|F2| ≥ 1, then the second inequality in (3) is a strict inequality. Otherwise,
if ρ ≥ 1 or (2) is not an equality, by plugging in (2), we also have the following
strict inequality

(3rmax+1)k < (γ+1)·rmax+2k+3−2γ ⇐⇒ (3k−1)rmax < k+3+γ(rmax−2).
(4)

As γ ≤ k + 1 by (2) and assuming rmax ≥ 2, we have

(3k − 1)rmax < k + 3 + (k + 1)(rmax − 2) ⇐⇒ rmax(2k − 2) < 1− k,

which is impossible for k ≥ 1. This contradiction shows that (2) cannot hold,
and thus S can collect 2k + 4 tokens as claimed. 
�

The proof for rmax = 1 will be shown in the full version.



A Unified Algorithm for Degree Bounded Survivable Network Design 379

3.2 A Hard Example for the Algorithm

A natural question is that, for the minimum bounded degree Steiner forest prob-
lem, whether we can improve our algorithm further by only relaxing vertices with
degree at most bv + 2. This would imply a (2, bv + 2)-approximation algorithm
for the problem, matching the known integrality gap for this linear program [12].

In the example shown in Figure 2, some vertices have a degree bound equal
to two, but there are five edges incident to these vertices. This is an extreme
point solution to (LP) as the characteristic vectors are linearly independent. Our
algorithm will get stuck in this example, and it is not clear to us how to modify
the algorithm to deal with it. We believe that some new ideas are needed to
obtain a (2, bv + 2)-approximation algorithm for this problem.

Tight Connectivity Requirement

Light Edges with Value 1/12

Light Edges with Value 1/3

Light Edges with Value 1/6

Heavy Edges with Value 2/3

Vertices with Degree Bound bv = 2

Vertices without Degree Bound

Heavy Edges with Value 5/6

Fig. 2. A hard example
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Abstract. Fixed-parameter tractability analysis and scheduling are two
core domains of combinatorial optimization which led to deep under-
standing of many important algorithmic questions. However, even though
fixed-parameter algorithms are appealing for many reasons, no such al-
gorithms are known for many fundamental scheduling problems.

In this paper we present the first fixed-parameter algorithms for classi-
cal scheduling problems such as makespan minimization, scheduling with
job-dependent cost functions—one important example being weighted
flow time—and scheduling with rejection. To this end, we identify cru-
cial parameters that determine the problems’ complexity. In particular,
we manage to cope with the problem complexity stemming from nu-
meric input values, such as job processing times, which is usually a core
bottleneck in the design of fixed-parameter algorithms. We complement
our algorithms with W[1]-hardness results showing that for smaller sets
of parameters the respective problems do not allow FPT-algorithms. In
particular, our positive and negative results for scheduling with rejection
explore a research direction proposed by Dániel Marx.

1 Introduction

Scheduling and fixed-parameter tractability are two very well-studied research
areas. In scheduling, the usual setting is that one is given a set of machines and a
set of jobs with individual characteristics. The jobs need to be scheduled on the
machines according to some problem-specific constraints, such as release dates,
precedence constraints, or rules regarding preemption and migration. Typical
objectives are minimizing the global makespan, the weighted sum of completion
times of the jobs, or the total flow time. During the last decades of research
on scheduling, many important algorithmic questions have been settled. For
instance, for minimizing the makespan and the weighted sum of completion time
on identical machines, (1+ ε)-approximation algorithms (PTASs) are known for
almost all NP-hard settings [1,2].

However, the running time of these approximation schemes usually has a bad
dependence on ε, and in practise exact algorithms are often desired. These and
other considerations motivate to study which scheduling problems are fixed-
parameter tractable (FPT), which amounts to identifying instance-dependent
parameters k that allow for algorithms that find optimal solutions in time
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f(k) · nO(1) for instances of size n and some function f depending only on k.
Separating the dependence of k and n is often much more desirable than a run-
ning time of, e.g., O(nk), which becomes infeasible even for small k and large n.
The parameter k measures the complexity of a given instance and thus, problem
classification according to parameters yields an instance-depending measure of
problem hardness.

Despite the fundamental nature of scheduling problems, and the clear ad-
vantages of fixed-parameter algorithms, to the best of our knowledge no such
algorithms are known for the classical scheduling problems we study here. One
obstacle towards obtaining positive results appears to be that—in contrast to
most problems known to be fixed-parameter tractable—scheduling problems in-
volve many numerical input data (e.g., job processing times, release dates, job
weights), which alone render many problems NP-hard, thus ruling out fixed-
parameter algorithms. One contribution of this paper is that—for the funda-
mental problems studied here—choosing the number of distinct numeric values
or an upper bound on them as the parameter suffices to overcome this impedi-
ment. Note that this condition is much weaker than assuming the parameter to
be bounded by a constant (that can appear in the exponent of the run time).

1.1 Our Contributions

In this paper we present the first fixed-parameter algorithms for several fun-
damental scheduling problems. In Section 2 we study one of the most classical
scheduling problems, which is minimizing the makespan on an arbitrary number
of machines without preemption, i.e. the problem P ||Cmax. Assuming integral
input data, our parameter pmax defines an upper bound on the job processing
times appearing in an instance with n jobs. We first prove that for any num-
ber of machines, we can restrict ourselves to (optimal) solutions where jobs of
the same length are almost equally distributed among the machines, up to an
additive error term of ±f(pmax) jobs. This insight can be used as an indepen-
dent preprocessing routine which optimally assigns the majority of the jobs of
an instance (given that n + pmax). After this preparation, we show that the
remaining problem can be formulated as an integer program in fixed dimension,
yielding an overall running time bounded by f(pmax) ·nO(1). We note that with-
out a fixed parameter, the problem is strongly NP-hard. For the much more
general machine model of unrelated machines, we show that R||Cmax is fixed-
parameter tractable when choosing the number of machines and the number of
distinct processing times as parameters. We reduce this problem again to integer
programming in fixed dimension where our variables model how many jobs of
each size are scheduled on each machine. To ensure that an assignment of all
given jobs to these “slots” exists we argue via Hall’s Theorem and ensure that
for each subset of jobs there are enough usable slots. We remark that these prob-
lems are sufficiently complex so that we do not see a way of using the “number
of numbers” result by Fellows et al. [3]. Note that if the number of machines or
the number of processing times are constant, the problem is still NP-hard [4],
and thus no fixed-parameter algorithms can exist for those cases (if P �= NP).
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Then, in Section 3, we study scheduling with rejection. Each job j is specified
by a processing time pj , a weight wj , and a rejection cost ej (all jobs are released
at time zero). We want to reject a set J ′ of at most k jobs, and schedule all other
jobs on one machine to minimize

∑
j /∈J′ wjCj +

∑
j∈J′ ej . We identify three key

parameters: the number of distinct processing times, the number of distinct
weights, and the maximum number k of jobs to be rejected. We show that if
any two of the three values are taken as parameters, the problem becomes fixed-
parameter tractable. If k and either of the other two are parameters, then we
show that an optimal solution is characterized by one of sufficiently few possible
patterns of jobs to be rejected. Once we guessed the correct pattern, an actual
solution can be found by a dynamic program efficiently. If the number of distinct
processing times and lengths are parameters (but not k), we provide a careful
modeling of the problem as an integer program with convex objective function in
fixed dimension. To the best of our knowledge, this is the first time that convex
programming is used in fixed-parameter algorithms. We complement this result
by showing that if only the number of rejected jobs k is the fixed parameter,
then the problem becomes W[1]-hard, which prohibits the existence of a fixed-
parameter algorithm, unless FPT = W[1] (which would imply subexponential
time algorithms for many canonical NP-complete problems). Our results respond
to a question by Dániel Marx [5] for investigating the fixed-parameter tractability
of scheduling with rejection.

Finally, in Section 4 we turn our attention to the parametrized dual of the
latter problem: scheduling with rejection of at least n − s jobs (s being the
parameter). We reduce this to a much more general problem which can be cast
as the profit maximization version of the General Scheduling Problem (GSP) [6].
We need to select a subset J ′ of at most s jobs to schedule from a given set J , and
each scheduled job j yields a profit fj(Cj), depending on its completion time Cj .
Note that this function can be different for each job and might stem from a
difficult scheduling objective such as weighted flow time. Additionally, each job j
has a release date rj and a processing time pj . The goal is to schedule these jobs
on one machine to maximize

∑
j∈J′ fj(Cj). We study the preemptive as well as

the non-preemptive version of this problem. In its full generality, GSP is not
well understood. Despite that, we are able to give a fixed-parameter algorithm
if the number of distinct processing times is bounded by a parameter, as well as
the maximum cardinality of J ′. We complement our findings by showing that
for fewer parameters the problem is W[1]-hard or para-NP-hard, respectively,
see Table 1. Our contributions are summarized in Table 1.

Due to space constraints, proofs are deferred to the full version of this paper.

1.2 Related Work

Scheduling. One classical scheduling problem studied in this paper is to sched-
ule a set of jobs non-preemptively on a set of m identical machines, i.e., P ||Cmax.
Research for it dates back to the 1960s when Graham showed that the greedy list
scheduling algorithm yields a (2 − 1

m )-approximation and a 4/3-approximation
when the jobs are ordered non-decreasingly by length [7]. After a series of
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Table 1. Summary of our results. For a job j we denote by pj its processing time, by
wj its weight, by ej its rejection cost, by fj its cost function. and by Cj its completion
time in a computed schedule.

Problem Parameters Result

P ||Cmax maximum pj FPT

R||Cmax #distinct pj and #machines FPT

1||
∑

≤k ej +
∑

wjCj #rejected jobs k and #distinct pj FPT

1||
∑

≤k ej +
∑

wjCj #rejected jobs k and #distinct wj FPT

1||
∑

≤k ej +
∑

wjCj #distinct pj and #distinct wj FPT

1||
∑

≤k ej +
∑

wjCj #rejected jobs k W[1]-hard

1|rj , (pmtn)|max
∑

≤s fj(Cj) #selected jobs s and #distinct pj FPT

1|rj , (pmtn)|max
∑

≤s fj(Cj) #selected jobs s W[1]-hard

1|rj , (pmtn)|max
∑

≤s fj(Cj) #distinct pj (in fact ∀ pj ∈ {1, 3}) para-NP-hard

improvements [8,9,10,11], Hochbaum and Shmoys present a polynomial time
approximation scheme (PTAS), even if the number of machines is part of the
input [2]. On unrelated machines, the problem is NP-hard to approximate with a
better factor than 3/2 [12,4] and there is a 2-approximation algorithm [4] that ex-
tends to the generalized assignment problem [13]. For the restricted assignment
case, i.e., each job has a fixed processing time and a set of machines where one
can assign it to, Svensson [14] gives a polynomial time algorithm that estimates
the optimal makespan up to a factor of 33/17 + ε ≈ 1.9412 + ε.

For scheduling jobs with release dates preemptively on one machine, a vast
class of important objective functions is captured by the General Scheduling
Problem (GSP). In its full generality, Bansal and Pruhs [6] give a O(log lognP )-
approximation, where P is the maximum ratio of processing times. One particu-
larly important special case is the weighted flow time objective where previously
to Bansal and Pruhs [6] the best known approximation factors where O(log2 P ),
O(logW ), and O(log nP ) [15,16]; where W is the maximum ratios of job weights.
Also, a quasi-PTAS with running time nO(logP logW ) is known [17].

A generalization of classical scheduling problems is scheduling with rejection.
There, each job j is has additionally a rejection cost ej. The scheduler has the
freedom to reject job j and to pay a penalty of ej, in addition to some (ordinary)
objective function for the scheduled jobs. For one machine and the objective be-
ing to minimize the sum of weighted completion times, Engels et al. [18] give
an optimal pseudopolynomial dynamic program for the case that all jobs are re-
leased at time zero and show that the problem is weakly NP-hard. Sviridenko and
Wiese [19] give a PTAS for arbitrary release dates. For objective the makespan
minimization and given multiple machines, Hoogeveen et al. [20] give FPTASs
for almost all machine settings, and a 1.58-approximation for the APX-hard case
of an arbitrary number of unrelated machines (when allowing preemption).
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In high-multiplicity scheduling, one considers the setting where there are only
few different job types, with jobs of the same type appearing in large bulks; one
might consider the number of job types as a fixed parameter. We refer to the
survey Brauner et al. [21].

Fixed-Parameter Tractability. Until now, to the best of our knowledge, no
fixed-parameter algorithms for the classical scheduling problems studied in this
paper have been devised. In contrast, classical scheduling problems investigated
in the framework of parameterized complexity appear to be intractable; for ex-
ample, k-processor scheduling with precedence constraints is W[2]-hard [22] and
scheduling unit-length tasks with deadlines and precedence constraints and k
tardy tasks is W[1]-hard [23], for parameter k. Mere exemptions seem to be
an algorithm by Marx and Schlotter [24] for makespan minimization where k
jobs have processing time p ∈ N and all other jobs have processing time 1,
for combined parameter (k, p), as well as work of Alon et al. [25] who show that
makespan-minimization on m identical machines is fixed-parameter tractable pa-
rameterized by the optimal makespan. We also mention that Chu et al. [26] con-
sider the parameterized complexity of checking feasibility of a schedule (rather
than optimization). We remark that some scheduling-type problems can be ad-
dressed by choosing as parameter the “number of numbers”, as done by Fellows
et al. [3].

2 Minimizing the Makespan

We first consider the problem P ||Cmax, where a given a set J of n jobs (with
individual processing time pj and released at time zero) must be scheduled non-
preemptively on a set of m identical machines, as to minimize the makespan of
the schedule. We develop a fixed-parameter algorithm solving this problem in
time f(pmax) · nO(1), where pmax is the maximum processing time over all jobs.

In the sequel, we say that some job j is of type t if pj = t; we define
Jt := {j ∈ J | pj = t}. First, we prove that there is always an optimal solution
in which each machine has almost the same number of jobs of each type, up
to an additive error of ±f(pmax) for suitable function f . This allows us to fix
some jobs on the machines. For the remaining jobs, we show that each machine
receives at most 2f(pmax) jobs of each type; hence there are only (2f(pmax))

pmax

possible configurations for each machine. We solve the remaining problem with
an integer linear program in fixed dimension.

As a first step, for each type t, we assign
⌊
|Jt|
m

⌋
−f(pmax) jobs of type t to each

machine; let J0 ⊆ J be this set of jobs. This is justified by the next lemma, which
can be proven by starting with an arbitrary optimal schedule and exchanging
jobs carefully between machines until the claimed property holds.

Lemma 1. There is a function f : N → N with f(pmax) ≤ 2O(pmax·log pmax) for
all pmax ∈ N such that every instance of P ||Cmax admits an optimal solution
in which for each type t, each of the m machines schedules at least �|Jt|/m� −
f(pmax) and at most �|Jt|/m�+ f(pmax) jobs of type t.
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Denote by J ′ = J \ J0 be the set of yet unscheduled jobs. We ignore all other
jobs from now on. By Lemma 1, there is an optimal solution in which each
machine receives at most 2 · f(pmax) + 1 jobs from each type. Hence, there
are at most (2 · f(pmax) + 2)pmax ways how the schedule for each machine can
look like (up to permuting jobs of the same length). Therefore, the remaining
problem can be solved with the following integer program. Define a set C =
{0, . . . , 2 · f(pmax) + 1}pmax of at most (2 · f(pmax) + 2)pmax “configurations”,
where each configuration is a vector C ∈ C encoding the number of jobs from J ′

of each type assigned to a machine.
In any optimal solution for J ′, the makespan is in the range {�p(J ′)/m� ,

. . . , �p(J ′)/m�+ pmax}, where p(J ′) =
∑

j ∈ J ′pj , as pj ≤ pmax for each j. For
each value T in this range we try whether opt ≤ T , where opt denotes the mini-
mum makespan of the instance. So fix a value T . We allow only configurations
C = (c1, . . . , cpmax) which satisfy

∑pmax

i=1 ci · i ≤ T ; let C(T ) be the set of these
configurations. For each C ∈ C(T ), introduce a variable yC for the number of
machines with configuration C in the solution. (As the machines are identical,
only the number of machines following each configuration is important.)∑

C∈C(T )

yC ≤ m (1)

∑
C=(c1,...,cpmax)∈C(T )

yC · cp ≥ |J ′ ∩ Jp|, p = 0, . . . , pmax (2)

yC ∈ {0, . . . ,m}, C ∈ C(T ) (3)

Inequality (1) ensures that at most m machines are used, inequalities (2) ensure
that all jobs from each job type are scheduled. The whole integer program (1)–(3)
has at most (2 · f(pmax) + 2)pmax dimensions.

To determine feasibility of (1)–(3), we employ deep results about integer pro-
gramming in fixed dimension. As we will need it later, we cite here an algorithm
due to Heinz [27,28] that can even minimize over convex spaces described by
(quasi-)convex polynomials, rather than only over polytopes.

Theorem 1 ([27,28]). Let f, g1, . . . , gm ∈ Z[x1, . . . , xt] be quasi-convex poly-
nomials of degree at most d ≥ 2, whose coefficients have binary encoding length
at most �. There is an algorithm that in time m · �O(1) · dO(t) · 2O(t3) computes a
minimizer x� ∈ Zt of the following problem (4) or reports that no minimizer ex-
ists. If the algorithm outputs a minimizer x�, its binary encoding size is � ·dO(t).

min f(x1, . . . , xt), subject to gi(x1, . . . , xt) ≤ 0, i = 1, . . . ,m x ∈ Zt . (4)

The smallest value T for which (1)–(3) is feasible gives the optimal makespan and
together with the preprocessing routine of Lemma 1 yields an optimal schedule.

Theorem 2. There is a function f such that instances of P ||Cmax with n jobs
and m machines can be solved in time f(pmax) · (n+ logm)O(1).

Recall that without choosing a parameter, problem P ||Cmax is strongly NP-hard
(as it contains 3-Partition). When parameterizing P ||Cmax by the number p of
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distinct processing times, Lemma 1 is no longer true (details deferred to full ver-
sion of this paper). However, for constantly many processing times the problem
was recently shown to be polynomial time solvable for any constant p [29].

2.1 Bounded Number of Unrelated Machines

We study the problem Rm||Cmax where now the machines are unrelated, meaning
that a job can have different processing times on different machines. In particular,
it might be that a job cannot be processed on some machine at all, i.e., has infinite
processing time on that machine. We choose as parameters the number p of
distinct (finite) processing times and the number of machines m of the instance.

We model this problem as an integer program in fixed dimension. Denote by
q1, . . . , qp the distinct finite processing times in a given instance. For each com-
bination of a machine i and a finite processing time q	 we introduce a variable
yi,	 ∈ {0, . . . , n} that models how many jobs of processing time q	 are assigned
to i. Note that the number of these variables is bounded by m ·p. An assignment
to these variables can be understood as allocating yi,	 slots for jobs with pro-
cessing time q	 to machine i, without specifying what actual jobs are assigned
to these slots. Assigning the jobs to the slots can be understood as a bipartite
matching: introduce one vertex vj for each job j, one vertex ws,i for each slot s
on each machine i, and an edge {vj, ws,i} whenever job j has the same size on
machine i as slot s. According to Hall’s Theorem, there is a matching in which
each job is matched if and only if for each set of jobs J ′ ⊆ J there are at least |J ′|
slots to which at least one job in J ′ can be assigned. For one single set J ′ the
latter can be expressed by a linear constraint; however, the number of subsets J ′

is exponential. We overcome this as follows: We say that two jobs j, j′ are of the
same type if pi,j = pi,j′ for each machine i. Note that there are only (p̄ + 1)m

different types of jobs. As we will show, it suffices to add a constraint for sets of
jobs J ′ such that for each job type either all or none of the jobs of that type are
contained in J ′ (those sets „dominate“ all other sets). This gives rise to the fol-
lowing integer program. Denote by Z the set of all job types and for each z ∈ Z
denote by Jz ⊆ J the set of jobs of type z. For each set Z ′ ⊆ Z denote by Qi,Z′

the set of distinct finite processing times of jobs of types in Z ′ on machine i.
Using Theorem 1 we can solve the following IP:

min T s.t.
∑

	∈{1,...,p}
yi,	 · q	 ≤ T, i = 1, . . . ,m (5)

∑
z∈Z′
|Jz| ≤

∑
i

∑
	:q�∈Qi,Z′

yi,	 ∀ Z ′ ⊆ Z (6)

yi,	 ∈ {0, . . . , n} i = 1, . . . ,m, � = 1, . . . , p
(7)

T ≥ 0 (8)

Theorem 3. Instances of R||Cmax with m machines and n jobs
with p distinct finite processing times q1, ..., qp̄ can be solved in time
f(p,m) · (n+ logmax	 q	)

O(1) for a suitable function f .
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A natural question is the case when only the number of machines is a fixed pa-
rameter. Even if one requires the processing times to be polynomially bounded,
then already P ||Cmax is still W[1]-hard [30]. On the other hand, R||Cmax is NP-
hard if only processing times {1, 2,∞} are allowed [12,4]. This justifies to take
both m and p̄ as a parameters in the unrelated machine case.

3 Scheduling with Rejection
In this section we study scheduling with rejection to optimize the weighted sum of
completion time plus the total rejection cost, i.e, 1||

∑
≤k ej+

∑
wjCj . Formally,

we are given an integer k and a set J of n jobs, all released at time zero. Each
job j ∈ J is characterized by a processing time pj ∈ N, a weight wj ∈ N and
rejection cost ej ∈ N. The goal is to reject a set J ′ ⊆ J of at most k jobs and
to schedule all other jobs non-preemptively on a single machine, as to minimize∑

j∈J\J′ wjCj+
∑

j∈J′ ej where Cj denotes the completion time in the computed
schedule.

3.1 Number of Rejected Jobs and Processing Times or Weights

Denote by p ∈ N the number of distinct processing times in a given instance.
First, we assume that p and the maximum number k of rejected jobs are param-
eters. Thereafter, using a standard reduction, we will derive an algorithm for the
case that k and the number w of distinct weights are parameters.

Denote by q1, . . . , qp the distinct processing times in a given instance. For each
i ∈ {1, . . . , p}, we guess the number of jobs with processing time qi which are
rejected in an optimal solution. Each possible guess is characterized by a vector
v = {v1, . . . , vp̄} whose entries vi contain integers between 0 and k, and whose
total sum is at most k. There are at most (k + 1)p such vectors v, each one
prescribing that at most vi jobs of processing time pi can be rejected. We enu-
merate them all. One of these vectors must correspond to the optimal solution,
so the reader may assume that we know this vector v.

In the following, we will search for the optimal schedule that respects v, mean-
ing that for each i ∈ {1, . . . , p} at most vi jobs of processing time qi are rejected.
To find an optimal schedule respecting v, we use a dynamic program. Suppose
the jobs in J are labeled by 1, . . . , n by non-increasing Smith ratios wj/pj. Each
dynamic programming cell is characterized by a value n′ ∈ {0, . . . , n}, and a
vector v′ with p entries which is dominated by v, meaning that v′i ≤ vi for each
i ∈ {1, . . . , p}. For each pair (n′,v′) we have a cell C(n′,v′) modeling the fol-
lowing subproblem. Assume that for jobs in J ′ := {1, . . . , n′} we have already
decided whether we want to schedule them or not. For each processing time qi
denote by n′

i the number of jobs in J ′ with processing time qi. Assume that for
each type i, we have decided to reject vi − v′i jobs from J ′. Note that then the
total processing time of the scheduled jobs sums up to t :=

∑
i qi ·(n′

i−(vi−v′i)).
It remains to define a solution for the jobs in J ′′ := {n′ + 1, . . . , n} during time
interval [t,∞), such that for each type i we can reject up to v′i jobs. The problem
described by each cell C(n′,v′) can be solved in polynomial time, given one has
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already computed the values for each cell C(n′′,v′′) with n′′ > n′ (proof de-
ferred). The size of the dynamic programming table is bounded by n · (k + 1)p.
Since for 1||

∑
wjCj one can interchange weights and processing times and get

an equivalent instance [31, Theorem 3.1], we obtain the same result when there
are only p̄ distinct weights.

Theorem 4. For sets J of n jobs with p distinct processing times or weights,
the problem 1||

∑
≤k ej +

∑
wjCj is solvable in time O(n · (k + 1)p + n · logn).

We show next that when only the number k of rejected jobs is taken as parameter,
problem becomes W[1]-hard. (This requires that the numbers in the input can
be super-polynomially large. Note that for polynomially bounded processing
times the problem admits a polynomial time algorithm for arbitrary k [18].)
This justifies to define additionally the number of weights or processing times as
parameter. We remark that when jobs have non-trivial release dates, then even
for k = 0 the problem is NP-hard [32].

Theorem 5. The problem 1||
∑

≤k ej +
∑

wjCj is W[1]-hard if the parameter
is the number k of rejected jobs.

3.2 Number of Distinct Processing Times and Weights

We consider the number of distinct processing times and weights as parameters.
To this end, we say that two jobs j, j′ are of the same type if pj = pj′ and wj =
wj′ ; let τ be the number of types in an instance. Note, however, that jobs with the
same type might have different rejection costs, so we cannot bound the “number
of input numbers” like Fellows et al. [3]. Instead, we resort to convex integer
programming, which to the best of our knowledge is used here for the first time
in fixed-parameter algorithms. The running time of our algorithm will depend
only polynomially on k, the upper bound on the number of jobs we are allowed
to reject. For each type i, let w(i) be the weight and p(i) be the processing time
of jobs of type i. Assume that job types are numbered 1, . . . , τ such w(i)/p(i) ≥
w(i+1)/p(i+1) for each i ∈ {1, . . . , τ − 1}. Clearly, an optimal solution schedules
jobs ordered non-increasingly by Smith’s ratio without preemption.

The basis for our algorithm is a problem formulation as a convex integer
minimization problem with dimension at most 2τ . In an instance, for each i, we
let ni be the number of jobs of type i and introduce an integer variable xi ∈ N0

modeling how many jobs of type i we decide to schedule. We introduce the linear
constraint

∑τ
i=1(ni − xi) ≤ k, to ensure that at most k jobs are rejected.

The objective function is more involved. For each type i, scheduling the jobs
of type i costs

xi∑
	=1

w(i) · (� · p(i) +
∑
i′<i

xi′ · p(i
′)) = w(i) · xi ·

∑
i′<i

xi′ · p(i
′) + w(i) · p(i)

xi∑
	=1

�

= w(i) · xi ·
∑
i′<i

xi′ · p(i
′) + w(i) · p(i) · xi · (xi + 1)

2
=: si(x).
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Note that si(x) is a convex polynomial of degree 2 (being the sum of quadratic
polynomials with only positive coefficients). Observe that when scheduling xi

jobs of type i, it is optimal to reject the ni − xi jobs with lowest rejection cost
among all jobs of type i. Assume the jobs of each type i are labeled j

(i)
1 , . . . , j

(i)
ni

by non-decreasing rejection cost. For each s ∈ N let fi(s) :=
∑ni−s

	=1 e
j
(i)
�

. In
particular, to schedule xi jobs of type i we can select them such that we need to
pay fi(s) for rejecting the non-scheduled jobs (and this is an optimal decision).
The difficulty is that the function fi(s) is in general not expressible by a poly-
nomial whose degree is globally bounded (i.e., for each possible instance), which
prevents a direct application of Theorem 1.

However, in Lemma 2 we show that fi(s) is the maximum of ni linear poly-
nomials, allowing us to formulate a convex program and solve it by Theorem 1.

Lemma 2. For each type i there is a set of ni polynomials p
(1)
i , . . . , p

(ni)
i of

degree one such that fi(s) = max	 p
(	)
i (s) for each s ∈ {0, . . . , ni}.

Lemma 2 allows modeling the entire problem with the following convex program,
where for each type i, variable gi models the rejection cost for jobs of type i.

min

τ∑
i=1

gi + si(x) s.t.
τ∑

i=1

(ni − xi) ≤ k,

gi ≥ p
(	)
i (xi) ∀ i ∈ {1, . . . , τ} ∀ � ∈ {1, . . . , ni},g,x ∈ Zτ≥ 0 . (9)

Observe that (9) admits an optimal solution with gi = max	 p
(	)
i (xi) = fi(xi) for

each i. Thus, solving (9) yields an optimal solution to the overall instance.

Theorem 6. For sets of n jobs of τ types the problem 1||
∑

≤k ej +
∑

wjCj can
be solved in time (n+ log(maxj max{ej, pj , wj}))O(1) · 2O(τ3).

4 Profit Maximization for General Scheduling Problems

The parameterized dual problem of scheduling jobs with rejection is the problem
to reject at least n − s jobs (s being the parameter) to minimize the total cost
given by the rejection penalties plus the cost of the schedule. This is equivalent
to the following problem where here we allow even non-trivial release dates and
job dependent profit functions:

We are given a set J of n jobs, where each job j is characterized by a release
date rj , a processing time pj , and a non-increasing profit function fj(t). Let p
denote the number of distinct processing times pj in the instance. We want to
schedule a set J̄ ⊆ J of at most s jobs from J on a single machine. Our objective
is to maximize

∑
j∈J̄ fj(Cj), where Cj denotes the completion time of j in the

computed schedule. We call this problem the s-bounded General Profit Scheduling
Problem, or s-GPSP for short. Observe that this generic problem definition
allows to model profit functions that stem from difficult scheduling objectives
such as weighted flow time or weighted tardiness.
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Theorem 7. There is a deterministic algorithm that, given an instance of s-
GPSP with n jobs and p processing times, computes an optimal preemptive or
non-preemptive schedule in time 2O(s)sO(p)n4 logn.

When only the number s of scheduled jobs is chosen as parameter the problem
becomes W[1]-hard, as pointed out to us by an anonymous reviewer. The next
theorem assumes that numeric input values are allowed to be exponentially large.

Theorem 8. (Non-)preemptive s-GPSP is W[1]-hard for parameter s.

On the other hand, we prove that choosing only the number of distinct processing
times p̄ as a parameter is not enough, as we show the problem to be NP-hard even
if pj ∈ {1, 3} for all jobs j. The same holds for the related General Scheduling
Problem (GSP) [6]. While all processing times are either 1 or 3, in our reduction
we use cost functions whose values can be exponentially large.

Theorem 9. The General Profit Scheduling Problem (GPSP) and the General
Scheduling Problem (GSP) are (weakly) NP-hard, even if pj ∈ {1, 3} for each
job j. This holds in both the preemptive and non-preemptive setting.

Acknowledgment. We thank the IPCO reviewers, as well as an anonymous
reviewer of an earlier version for suggestions how to improve the algorithms in
Sect. 4 and to prove Theorem 8.
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Abstract. The best performing exact algorithms for the Capacitated Vehicle
Routing Problem are based on the combination of cut and column generation.
Some authors could obtain reduced duality gaps by also using a restricted num-
ber of cuts over the Master LP variables, stopping separation before the pricing
becomes prohibitively hard. This work introduces a technique for greatly decreas-
ing the impact on the pricing of the Subset Row Cuts, thus allowing much more
such cuts to be added. The newly proposed Branch-Cut-and-Price algorithm also
incorporates and combines for the first time (often in an improved way) several
elements found in previous works, like route enumeration and strong branching.
All the instances used for benchmarking exact algorithms, with up to 199 cus-
tomers, were solved to optimality. Moreover, some larger instances with up to
360 customers, only considered before by heuristic methods, were solved too.

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) can be defined as follows. The input
consists of a set of n + 1 points, a depot and n customers; an (n + 1) × (n + 1)
matrix [cij ] with the travel costs between every pair of points i and j; an n-dimensional
demand vector [di] giving the amount to be collected from customer i; and a vehicle
capacity Q. A solution is a set of routes, starting and ending at the depot, that visits
every customer exactly once. The only constraint on a route is that the sum of the
demands of its customers does not exceed the vehicle capacity Q. The objective is to
find a solution with minimum total cost. Many authors also assume that the number of
routes is fixed to an additional input number K . The CVRP is a widely studied problem,
being the most basic and prototypical VRP variant.

Fukasawa et al. [5] proposed a Branch-Cut-and-Price algorithm (BCP) that per-
formed significantly better than the branch-and-cut algorithms (like [9]) that were the
dominant approach for the problem. All of the most recent works proposing exact algo-
rithms for the CVRP are based on the combination of column and cut generation. They
are Baldacci, Christofides and Mingozzi [1], Pessoa et al. [11], Baldacci, Mingozzi and
Roberti [2], Contardo [4] and Røpke [16]. The BCP algorithm proposed in this work
contains elements from all those previous algorithms, usually enhanced and combined
with new elements:

– According to the classification proposed in [14], a cut is said to be robust when the
value of the dual variable associated to it can be translated into costs in the pricing
subproblem. Therefore, the structure and the size of that subproblem remain unal-
tered, regardless of the number of robust cuts added. On the other hand, non-robust

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 393–403, 2014.
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cuts, defined on the variables of the Master LP, are those that change the structure
and/or the size of the pricing subproblem, each additional cut makes it harder. Nev-
ertheless, it is known that non-robust cuts have a big potential for reducing duality
gaps. The most important original contribution of this work is the introduction of
the limited memory Subset Row Cuts (lm-SRCs). The traditional SRCs are non-
robust cuts known to be effective [8], [2], [4]. However, their practical use has been
restricted by their large impact on the pricing. The lm-SRCs are a weakening of
the SRCs. This weakening can be controlled and dynamically adjusted, making the
lm-SRCs as effective in improving the lower bounds as SRCs, but still much less
costly in the pricing.

– The underlying formulation used in the BCP has extended arc-load variables. This
allows a particularly effective fixing of variables by Lagrangean bounds (superior
to the fixing in [7]), with direct benefits on the pricing.

Other elements to be remarked in the proposed BCP are: (i) the columns in the BCP are
associated tong-routes [2]. The corresponding pricing subproblem is solved by a labeling
algorithm that must also consider the dual variables of the lm-SRCs. Its implementation
is quite critical for the overall BCP performance. After experiments with a number of
alternatives, the best performance was obtained by a bidirectional search that differs a
little from the proposed in [15] because the concatenation of the labels is not necessarily
performed at the half of the capacity. Completion bounds are also used for eliminating
labels. Anyway, the exact pricing algorithm is called just a few times per BCP node,
most of the iterations use effective heuristics. A column generation stabilization by dual
smoothing [12] may be also employed; (ii) like in [11], the BCP hybridizes branching
with the route enumeration technique introduced in [1]. Actually, inspired by [16], it
performs an aggressive strong branching, with up to n candidates (partially) evaluated
in the root node. The branching effort in each node depends on an estimate of the size
of the subtree rooted in that node. The branching mechanism also keeps the history of
candidate evaluations for helping on future decisions; (iii) as soon as the gap of a BCP
node is sufficiently small, the elementary routes that can be part of the optimal solution
can be enumerated into a large pool, as suggested in [4]. From that point, since the pricing
will be performed by inspection, all lm-SRCs may be immediately lifted to SRCs and
additional non-robust cuts, including cliques, may be separated; and (iv) the lm-SRCs
are still non-robust cuts. There are cases where several hundreds such cuts are being
normally handled by the pricing algorithm, and then, at some node deep in the tree, the
separation of a few dozen additional lm-SRCs makes this algorithm 100 times slower.
In this situation the BCP performs a rollback, the offending cuts are removed even if it
decreases the lower bound of the node.

Overall, we believe that this is one of the most sophisticated BCP algorithms ever
implemented. The techniques introduced in this work, including the lm-SRCs, can be
possibly applied on many other problems where BCP is currently applied, including
several VRP variants, parallel machine scheduling or network design.

2 Formulations

This work departs from an extended formulation for the Asymmetrical CVRP presented
in [11]. Let G = (V,A) be a complete directed graph where V = {0, . . . , n} is the
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vertex set, vertex 0 is the depot and V+ the customer set. A cost ca is associated with
each arc a = (i, j) ∈ A, symmetrical CVRP instances have symmetric costs, i.e.,
cij = cji. A positive integral demand di is associated to each customer i ∈ V+, d0 is
defined as 0. Let Q denote the vehicle capacity. We assume a fixed number K of routes.
Let GQ = (V,AQ) be a multigraph GQ = (V,AQ) where AQ contains arcs (i, j)q , for
all i ∈ V+, j ∈ V and for all q = di, . . . , Q, plus arcs (0, j)0, for all j ∈ V+. For any
set S ⊆ V , δ−(S) = {(i, j)q ∈ AQ : i ∈ V \ S, j ∈ S}, and δ+(S) is defined in a
similar way. For each (i, j)q ∈ AQ, a binary variable xq

ij indicates that some vehicle
goes from i to j carrying a load — the sum of the demands of vertex i and its preceding
vertices — of exact q units. The Arc-Load indexed Formulation is:

(ALF) min
∑

aq∈AQ

cax
q
a (1)

subject to ∑
aq∈δ+(i)

xq
a = 1, ∀i ∈ V+, (2)

∑
aq∈δ+(0)

xq
a = K, (3)

∑
aq−di∈δ−(i)

xq−di
a −

∑
aq∈δ+(i)

xq
a = 0, ∀i ∈ V+, q = di, . . . , Q,(4)

xq
a ≥ 0, ∀aq ∈ AQ, (5)

x integer. (6)

Equations (2) and (3) are customer and depot outdegree constraints. Balance equations
(4) state that if an arc with index q − di enters vertex i then an arc with index q must
leave i. This formulation can be viewed as defining an acyclic networkN = (VQ, AQ)
with a set of nodes VQ = {(i, q) : i ∈ V ; q = di, . . . , Q}. The set of arcs is also AQ,
but an arc (i, j)q ∈ AQ is interpreted as going from (i, q) to (j, q + di).

A q-route is a walk that starts at the depot, traverses a sequence of customers with
total demand at most Q, and returns to the depot [3]. Let Ω be the set of all q-routes.
For each r ∈ Ω define a non-negative variable λr and binary coefficients aijrq, for each
(i, j)q ∈ AQ, indicating whether (i, j) is traversed with load q in route r. Equations (4)
in ALF can be replaced by: ∑

r∈Ω

aijrqλr = xq
ij , ∀(i, j)q ∈ AQ. (7)

Substituting the x variables and relaxing the integrality, the Dantzig-Wolfe Master LP
is written as:

(DWM) min
∑
r∈Ω

⎛⎝ ∑
(i,j)q∈AQ

aijrqcij

⎞⎠λr (8)

subject to
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∑
r∈Ω

⎛⎝ ∑
(i,j)q∈δ+({i})

aijrq

⎞⎠λr = 1, ∀i ∈ V+, (9)

∑
r∈Ω

⎛⎝ ∑
(i,j)q∈δ+({0})

aijrq

⎞⎠λr = K, (10)

λr ≥ 0 ∀r ∈ Ω. (11)

A generic constraint l of format
∑

(i,j)q∈AQ
αlq
ijx

q
ij ≥ bl can also be included in the

DWM, using the variable substitution (7), as
∑

r∈Ω (
∑

(i,j)q∈AQ
αlq
ija

rq
ij )λr ≥ bl. Sup-

pose that, at a given instant, there are nR constraints over the x variables in the DWM,
including equalities (10) and (9). Constraint (10) has the dual variable π0, the constraint
in (9) corresponding to i ∈ V+ has the dual variable πi, and each additional constraint
l, n < l < nR, has the dual variable πl. The reduced cost of an arc (i, j)q is defined as:

c̄qij = cij −
nR−1∑
l=0

αlq
ijπl. (12)

The pricing subproblem for solving the DWM consists in finding a shortest path in N
from node (0, 0) to nodes (0, q), 1 ≤ q ≤ Q, with respect to the arc reduced costs
c̄qij . This can be done in O(n2Q) time. A significantly stronger linear relaxation would
be obtained if Ω was redefined as the set of elementary routes. On the other hand, the
pricing subproblem would become strongly NP-hard. While carefully designed labeling
algorithms are now capable of pricing elementary routes on most instances from the
literature with up to 199 customers [10], this is still too costly. A more recent alternative
for imposing partial elementarity, used in this work, are the ng-routes [2]. For each
customer i ∈ V+, let NG(i) ⊆ V+ be the ng-set of i, defining its neighborhood. This
may stand for the |NG(i)| (this cardinality is decided a priori) closest customers and
includes i itself. An ng-route allows multiple visits to a customer i, on the condition
that at least one costumer j such that i /∈ NG(j) is visited between successive visits.
From now on, Ω is redefined to be a set of ng-routes.

3 Cuts

Even if Ω only contains elementary routes, the bounds given by (9-11) are not good
enough to be the basis of efficient exact algorithms (gaps between 1% and 4% are
typical in the instances from the literature). The formulation must be reinforced with
additional cuts. Cuts for the undirected edge formulation can be included in the DWM
by using the transformation xij =

∑
(i,j)q∈AQ

xq
ij+

∑
(j,i)q∈AQ

xq
ji. Rounded Capacity

Cuts and Strengthened Combs are used in this work. Those cuts are robust, the effect of
their dual variables is captured in the arc-load reduced costs (12).

Jepsen et al. [8] introduced a family of inequalities defined over the route variables.
Let ari =

∑
(i,j)q∈AQ

aijrq be the number of times that vertex i appears in route r. Given
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1: function α(C, M , p, r)
2: coeff ← 0, state ← 0
3: for every vertex i ∈ r (in order) do
4: if i /∈ M then
5: state ← 0
6: else if i ∈ C then
7: state ← state+ p
8: if state ≥ 1 then
9: coeff ← coeff + 1, state ← state− 1

10: return coeff

a base set C ⊆ V+ and a multiplier p, 0 < p < 1, the following (C, p)-Subset Row Cut
(SRC)

∑
r∈Ω

⌊
p
∑
i∈C

ari

⌋
λr ≤ �p|C|� (13)

is valid, since it can be obtained by a Chvátal-Gomory rounding of the corresponding
constraints in (9). The definition of the limited memory (C,M, p)-Subset Row Cut (lm-
SRC) requires an additional set M , C ⊆M ⊆ V+. It can be written as:∑

r∈Ω

α(C,M, p, r)λr ≤ �p|C|� , (14)

where the coefficients α are computed by the following procedural function shown in
Algorithm 1:

When M = V+, the Function α will return �p
∑

i∈C ari � and the lm-SRC will be
identical to an SRC. On the other hand, when M is not equal to V , the lm-SRC may
be a weakening of its corresponding SRC. This happens because every time the route
r leaves M , the variable state in the function is set to zero, potentially decreasing
the returned coefficient. Function α indicates how the lm-SRCs should be taken into
account in the labeling algorithms used in the pricing. In fact, that procedural function is
executed along the algorithm. Each label should have an additional dimension for each
lm-SRC, storing their states in the corresponding partial paths. However, the coefficients
do not need to be stored in the labels. Instead, whenever a label extension causes the
increment of the coefficient of an lm-SRC, according to Functionα, the value of its dual
variable is immediately subtracted from the reduced cost of the new label. We remark
that the number of possible states of an lm-SRC depends on its p. For example, for
the frequent case where p = 1/2, the state can be only 0 or 1/2. Therefore, it can be
represented by a single bit.

The potential advantage of the lm-SRCs over classical SRCs is their much reduced
impact on the labeling algorithm, when |M | << |V+|. The reasons for that reduction
will be explained in Section 4. In order to obtain small memory sets, the separation of
lm-SRCs uses the following strategy. First, it identifies a violated (C, p)-SRC. Then, it
determines a minimal set M such that the lm-(C,M, p)-SRC has the same violation.
In practice, even on instances with hundreds of customers, those minimal sets seldom
have cardinality larger than 15.
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Given a base set C ⊆ V+, for each integer d, 1 ≤ d ≤ n, define a non-negative
integer variable ydC as the sum of all variables λr such that

∑
i∈C ari = d. Variables

with d > |C| can only be non-zero if Ω contains non-elementary routes. The interesting
SRCs, for sets C with cardinality up to 5, are the following:
• The cuts where |C| = 3 and p = 1/2 are called 3-Subset Row Cuts (3SRCs) and

can be expressed as y2C + y3C + 2y4C +2y5C + . . . ≤ 1. Although they are very effective
in improving the lower bounds, only a relatively small number of those cuts could be
separated in [2,4], in order to keep the pricing tractable. Baldacci et al. [2] also used
the Weak 3SRCs, a weakening of the 3SRCs where only the variables corresponding to
routes that use an edge (i, j) such that i, j ∈ C have coefficient 1. The Weak 3SRCs
are equivalent (when all routes are elementary) to lm-3SRCs with M = C.
• Taking |C| = 1 and p = 1/2, the 1-Subset Row Cuts (1SRCs) y2C + y3C + 2y4C +

. . . ≤ 0 are obtained. They are equivalent to the Strong Degree Cuts y1C ≥ 1 introduced
in [4], in the sense that both families forbid cycles over a vertex i (C = {i}). Contardo
also defined the weaker k-Cycle Elimination Cut that only forbid cycles over i of size k
or less. A lm-1SRC is a different kind of weakening, it forbids cycles over i contained
in the set M . Of course, all these cuts can only be useful when the Ω set contains
non-elementary routes.
• The cuts where |C| = 4 and p = 2/3 are 4SRCs, expressed as y2C + 2y3C + 2y4C +

3y5C + 4y6C + . . . ≤ 2.
• There are two interesting families of cuts with |C| = 5. Those with p = 1/3 will

be called 5,1SRCs, y3C + y4C + y5C + 2y6C . . . ≤ 1; whereas those with p = 1/2 are
5,2SRCs, having the format y2C + y3C + 2y4C + 2y5C + 3y6C . . . ≤ 2. The latter family
was already used in [4].

4 Pricing Algorithms

The forward dynamic programming labeling algorithm for the pricing problem rep-
resents a feasible path P = (0, . . . , i), i ∈ V , as a label L(P ) = (c̄(P ), v(P ) =
i, q(P ), Π(P ), S(P ), pred(P )) storing its reduced cost, end vertex, load, set of ver-
tices forbidden as extensions due to ng-sets, vector of states corresponding to the nS

lm-SRCs with non-zero dual variables in the current Master LP solution, and a pointer
to its predecessor label. Each (i, q) ∈ VQ defines a bucket F (i, q). A label L(P ) is
stored in bucket F (v(P ), q(P )). A label L(P1) dominates a label L(P2) if every feasi-
ble completion of P2 yields a route with reduced cost not smaller than the feasible route
obtained by applying the same completion into P1. Sufficient conditions for that are:

(i) v(P1) = v(P2), (ii) q(P1) = q(P2), (iii) Π(P1) ⊆ Π(P2), and

(iv) c̄(P1) ≤ c̄(P2) +
∑

1≤s≤nS :S(P1)[s]>S(P2)[s]

σs,

where σs < 0 is the dual variable associated to lm-SRC s. Remark that the presence
of cuts over the extended variables xq

a or even the fixing of some of those variables to
zero prevent (ii) to be strengthened to q(P1) ≤ q(P2). Only non-dominated labels are
kept in the buckets. The base set, multiplier and memory set of lm-SRC s is denoted by
C(s), p(s), and M(s), respectively. Consider NG(0) as {0}.
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1: procedure FORWARD LABELING

2: F (i, q) ← ∅, ∀(i, q) ∈ VQ

3: processed(i, q) ← false,∀(i, q) ∈ VQ

4: F (0, 0) ← {(0, 0, 0, ∅,0, nil)}
5: while there are unprocessed buckets do
6: Choose an unprocessed bucket F (i, q) with minimum q
7: for all (i, j)q ∈ AQ such that xq

(i,j) is not fixed to 0 do
8: for all L1 = (c̄1, i, q, Π1, S1, _) ∈ F (i, q) do
9: if j /∈ Π1 then

10: c̄2 ← c̄1 + c̄qij , S2 ← S1

11: for s := 1, . . . , nS do
12: if j /∈ M(s) then S2[s] ← 0
13: else if j ∈ C(s) then
14: S2[s] ← S2[s] + p(s)
15: if S2[s] ≥ 1 then c̄2 ← c̄2 − σs , S2[s] ← S2[s]− 1

16: L2 = (c̄2, j, q + dj , (Π1 ∩NG(j)) ∪ {j}, S2, pointer to L1)
17: insertLabel ← true
18: for all L ∈ F (j, q + dj) do
19: if L2 dominates L then delete L
20: else if L dominates L2 then insertLabel ← false, break
21: if insertLabel then
22: F (j, q + dj) ← F (j, q + dj) ∪ {L2}
23: processed(i, q) ← true

In the end of the Algorithm 2, each non-empty bucket F (0, q), 1 ≤ q ≤ Q, will
contain only one label, representing the minimum reduced cost route with load q.

Now, it is possible to explain why the lm-SRCs have a reduced impact in the pricing
when their memory sets are small. If there are no SRCs, the maximum number of non-
dominated labels in a bucket F (i, q) is bounded by 2|NG(i)|−1, as follows from dom-
inance conditions (iii) and (iv). If the cardinality of the ng-sets is small (we used 8 in
this work), the pricing is guaranteed to be reasonably fast (unless Q is very large). How-
ever, if a traditional SRCs is added, its dual variable may make condition (iv) weaker
in all buckets. As other SRCs are separated, this may quickly result in an exponential
proliferation of non-dominated labels. In practice, this severely limits the number of
SRCs that can be used. In contrast, a lm-SRC s with a small memory has much less
impact because it can only weaken the dominance in the buckets of M(s). In practice,
many more lm-SRCs can be separated before the exponential proliferation of labels is
observed.

The labeling algorithm can also be performed backwards. In that case, the initial-
izing labels are put in buckets B(0, q), 1 ≤ q ≤ Q, and the algorithm proceeds in a
reversed way, until the label corresponding to the route with minimum reduced cost
is found in bucket B(0, 0). The forward and backward variants of the labeling are
equivalent in terms of computational cost. However, as pointed in [15], when forward
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labeling is used, most of the computational effort is spent in buckets with larger values
of q, close to Q. This happens by combinatorial reasons, there are many more possible
paths converging into a bucket F (i, q) if q is larger. In a similar way, when backward
labeling is used, most of the computational effort is spent in buckets with smaller value
of q. Therefore, it may be advantageous to perform bidirectional search: use the forward
labeling for filling the buckets F (i, q) with q ≤ Q/2 and backward labeling for filling
the buckets B(i, q) with q > Q/2. The minimum reduced cost paths are obtained by an
additional concatenation step. In the bidirectional algorithm implemented in our BCP,
we realized that the number of labels in the backward part was usually larger (3 to 10
times more is typical) than in the forward part. This happens because the backward vari-
ant has more starting labels. Therefore, in order to improve the algorithm performance
by balancing both parts, the separation point is a value of q (dynamically determined) a
bit larger than Q/2.

The labeling algorithms are also employed in a key part of the BCP: the elimination
of variables by Lagrangean bounds. A full separated run of both forward and backward
labeling should be performed. The minimum reduced cost of a route passing by an arc
(i, j)q ∈ AQ, denoted by C̄q

ij , can be obtained by concatenating the labels in F (i, q)

from the forward run with the labels in B(j, q + dj) from the backward run. If C̄q
ij is

larger than the gap of the Lagrangean bound associated to the current dual solution with
respect to the best known integer solution (see [13]), then xq

i,j can be fixed to zero. A
similar procedure was also proposed in [7], but it is weaker because it only removes an
arc (i, j) ∈ A, if a single particular solution allows removing (i, j)q for all values of q.
On the other hand, as our BCP already works on the arc-load formulation, individual
arcs (i, j)q can be naturally removed. For instance, it is quite typical that, at a certain
point of the BCP, 95% of the arc-load variables were already fixed to zero, while the
fixing on arcs would not achieve 80%.

5 Combining Strong Branching and Route Enumeration

Baldacci et al. [1] introduced a route enumeration based approach in order to close
the duality gap after the root node. A route r ∈ Ω can only be part of a solution that
improves the best known upper bound if its reduced cost is smaller than the gap. The
enumeration of routes may be performed by a label setting algorithm, producing a set
partitioning problem that, if it is small enough, is given to a general MIP solver. To
better profit from the route enumeration, Contardo [4] proposed a different strategy.
Enumeration is performed even if it produces some few million routes, far too many
for a MIP solver. The routes are stored in a pool, and the algorithm proceeds with the
column and cut generation. However, the pricing starts to be done by inspection. As a
result, many non-robust cuts can now be separated without much impact in the pricing.
The improved lower bounds are used to reduce the pool size, fixing route variables by
reduced costs. Hopefully, the final set of routes will be small enough for yielding a
solvable set partitioning problem.

Our BCP uses a hybrid strategy. Enumeration (in Contardo style) is tried after solv-
ing each node. If a limit on the number of routes is reached, the enumeration is aborted
and the BCP proceeds by traditional branching. Of course, since deeper nodes will have
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smaller gaps, at some point the enumeration will work. The overall effect may be a sub-
stantially reduced enumeration tree. In order to maximize the branching effectiveness,
an aggressive strong branching is applied, as done in [16]. This branching can also be
performed after the enumeration. If the final set of routes is still too large for the MIP
solver, a branching is performed. Of course, the pricing will continue to be done by
inspection in both children nodes.

6 Computational Experiments

We report results over the standard classes of instances (A, B, E, F, M, and P) used for
testing exact methods for the CVRP. Since larger instances came into reach of the pro-
posed BCP, results are also reported over instances with up to 360 customers proposed
in Golden et al. [6] . Table 1 summarizes the performance of the new BCP, comparing
with the recent exact algorithms for the CVRP. As usual in the literature where similar
tables appear, classes E and M are grouped together. Columns Opt indicate the number
of instances solved to optimality. Columns Gap and Time are the average gap in the
root node and average time in seconds (the processors are indicated), computed only
over the solved instances. The labels FLL+06, BCM08, BMR11, Con12 and Rop12
refer to the algorithms proposed in [5], [1], [2], [4] and [16], respectively. Label BCP
refers to the newly proposed BCP. This new algorithm has a good performance and
could solve all those instances to optimality. On instance M-n200-k16, it showed that
the the previous best known solution was not optimal. We should remark that instances
F-n72-k4, P-n101-k4, and F-n135-k7 are still better solved by a branch-and-cut algo-
rithm, like [9]. As in [5], we have built a hybrid method that is able to automatically
switch to a branch-and-cut after severe problems with column generation convergence
are found. However, we prefer to report the results of the standard BCP, in order to
illustrate the power of the dual stabilization [12] in mitigating those problems.

Table 2 presents detailed information on the resolution of selected larger instances,
comparing different algorithms. Column IUB presents the initial upper bound used by
the method. Next columns give root node information: root lower bound obtained be-
fore enumeration (RLB1), the number of routes enumerated (if the method performs
it and if the enumeration succeeds), (ER1), the improved root node lower bound af-
ter route enumeration, obtained by adding additional non-robust cuts (if Contardo style
enumeration is performed) (RLB2), the number of remaining routes after that (ER2)
and the total root node computing time (RT(s)). The final lower bound, given by FLB,
which is in bold when optimal, the number of nodes in the search tree denoted by Nodes

Table 1. Comparison of recent CVRP algorithms on series A, B, E, F, M, and P

FLL+06 [5] BCM08 [2] BMR11 [2] Con12 [4] Rop12 [16] BCP
Class NP Opt Gap Time Opt Gap Time Opt Gap Time Opt Gap Time Opt Gap Time Opt Gap Time
A 22 22 0.81 1961 22 0.2 118 22 0.13 30 22 0.07 59 22 0.57 53 22 0.03 5.6
B 20 20 0.47 4763 20 0.16 417 20 0.06 67 20 0.05 89 20 0.25 208 20 0.04 6.2
E-M 12 9 1.19 126987 8 0.69 1025 9 0.49 303 10 0.3 2807 10 0.96 44295 12 0.19 3669
F 3 3 0.14 2398 2 0.11 164 2 0.06 3 3 0.25 2163 3 0.00 3679
P 24 24 0.76 2892 22 0.28 187 24 0.23 85 24 0.13 43 24 0.69 280 24 0.07 32.7
Total 81 78 72 77 78 79 81
Processor Pentium 4 2.4GHz Pentium 4 2.6GHz X7350 2.93GHz E5462 2.8GHz i7-2620M 2.7GHz i7-3960X 3.3GHz
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Table 2. Detailed results over hard instances

Instance Algorithm IUB RLB1 ER1 RLB2 ER2 RT(s) FLB Nodes TT(s)
M-n151-k12 BMR11 1015 1004.3 - 380 1004.3 1 380

Con12 1015 1008.9 4.0M 1012.5 13K 19041 1015 1 19699
Rop12 1015 1001.5 1015 5268 417146
BCP 1015 1011.7 59K 1012.8 8K 178 1015 1 212

M-n200-k16 BMR11 1256.6 - 319 1256.6 1 319
Con12 1278 1263.0 - - - 265589 1263.0 1 265589
Rop12 1278 1253.0 1258.2 106 7200
BCP 1278 1266.5 - - - 949 1274 97 39869

M-n200-k17 BMR11 1275 1258.7 - 436 1258.7 1 436
Con12 1275 1265.1 - - - 34351 1265.1 1 34351
Rop12 1276 1255.3 1261.4 144 7200
BCP 1275 1268.7 - - - 527 1275 15 3581

G17 (240) BCP 707.76 705.54 - - - 993 707.76 13 25203
G13 (252) BCP 857.19 851.97 - - - 21564 851.97 1 21564
G9 (255) BCP 579.71 576.88 - - - 9364 576.88 1 9364
G18 (300) BCP 995.13 993.42 - - - 1012 995.13 15 25690
G14 (320) BCP 1080.55 1076.03 - - - 6330 1076.03 1 6330
G10 (323) BCP 736.26 731.13 - - - 16021 731.13 1 16021
G19 (360) BCP 1365.60 1362.70 - - - 19759 1365.60 2117 448741

and the total computational time in seconds TT(s) complete the table columns. The per-
formance of the BCP over the larger instances shows the power of carefully aggregating
all the elements described in this paper. This allowed more than doubling the size of the
largest instance proved optimal to date.
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Abstract. A graph is called t-perfect if its stable set polytope is defined
by non-negativity, edge and odd-cycle inequalities. We show that it can
be decided in polynomial time whether a given claw-free graph is t-
perfect.
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1 Introduction

We treat t-perfect graphs, a class of graphs that is not only similar in name to
perfect graphs but also shares a number of their properties. One way to define
perfect graphs is via the stable set polytope: The convex hull of all characteristic
vectors of stable sets (sets of pairwise non-adjacent vertices). As shown indepen-
dently by Chvátal [6] and Padberg [19], a graph is perfect if and only if its stable
set polytope is determined by non-negativity and clique inequalities. In analogy,
Chvátal [6] proposed to study the class of graphs whose stable set polytope is
defined by non-negativity, edge and odd-cycle inequalities. These graphs became
to be known as t-perfect graphs. (We defer precise and more explicit definitions
to the next section.)

Two celebrated results on perfect graphs are the proof of the strong per-
fect graph conjecture by Chudnovsky, Robertson, Seymour and Thomas [5] and
the polynomial time algorithm of Chudnovsky, Cornuéjols, Liu, Seymour and
Vušković [4] that checks whether a given graph is perfect or not. Analogous
results for t-perfection seem desirable but out of reach. Restricted to claw-free
graphs, however, this changes. A characterisation of claw-free t-perfect graphs
in terms of forbidden substructures was recently proved by Bruhn and Stein [3].
In this work we present a recognition algorithm for t-perfect claw-free graphs.

Theorem 1. It can be decided in polynomial time whether a given claw-free
graph is t-perfect.

The class of t-perfect graphs seems rich and of non-trivial structure. Examples
include series-parallel graphs (Boulala and Uhry [1]) and bipartite or almost
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bipartite graphs. More classes were identified by Shepherd [24] and Gerards and
Shepherd [12]. In the latter paper the authors characterize the class of graphs
for which any subgraph is t-perfect. An attractive result on the algorithmic side
is the combinatorial polynomial-time algorithm of Eisenbrand, Funke, Garg and
Könemann [9] that solves the maximum stable set problem on t-perfect graphs.
Their algorithm, however, cannot be used to recognise t-perfect graphs.

There is also an, at least superficially, more stringent notion of t-perfection,
strong t-perfection: a graph is strongly t-perfect if the system consisting of non-
negativity, edge and odd-cycle inequalities is totally dual integral; see Schri-
jver [23, Vol. B, Ch. 68] where also some background on t-perfect graphs may be
found. Interestingly, there is no t-perfect graph known that fails to be strongly
t-perfect. In fact, for some classes these two notions are known to be equivalent,
and it remains an open problem whether there are t-perfect graphs that are not
strongly t-perfect (see Schrijver [22] and Bruhn and Stein [2]).

The graphs whose stable set polytope is given by non-negativity, clique and
odd-cycle inequalities are called h-perfect. The class of h-perfect graphs is a
natural superclass of both perfect as well as t-perfect graphs. The class has
been studied by Fonlupt and Uhry [11], Sbihi and Uhry [21], and Király and
Páp [16,17].

We briefly outline the strategy of our recognition algorithm. In Section 3 we
show how to recognise t-perfect line graphs. For this, we work in the underlying
source graph that gives rise to the line graph. In the source graph we need
to detect certain subgraphs called thetas : two vertices joined by three disjoint
paths. In the thetas that are of interest to us the linking paths have to respect
additional parity constraints.

The general algorithm for claw-free graphs is presented in Section 4 and relies
on a divide and conquer approach to split the input graph along small separators.
In this phase of the algorithm, we make extensive use of a procedure by van ’t
Hof, Kamiński and Paulusma [25] that detects induced paths of given parity in
claw-free graphs. The final pieces that cannot be split anymore turn out to be
essentially line graphs, which we already dealt with.

2 Claw-Free Graphs and t-Perfection

Note that we only consider simple undirected graphs. We refer to Diestel [8] for
general notation and definitions concerning graphs.

Let us recall the definition of a claw-free graph. The claw is the graph G =
(V,E) with V = {u, v1, v2, v3} and E = {uv1, uv2, uv3}, and we call u its centre.
A graph is called claw-free if it does not contain an induced subgraph that is
isomorphic to the claw. Claw-free graphs form a superclass of line graphs.
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In order to define t-perfection, we associate with every graph G = (V,E) a
polytope denoted TSTAB(G), the set of all vectors x ∈ RV satisfying

0 ≤ xv ≤ 1 for every vertex v ∈ V,

xu + xv ≤ 1 for every edge uv ∈ E, (1)∑
v∈V (C)

xv ≤ � 12 |V (C)|� for every odd cycle C in G.

The graph G is called t-perfect if TSTAB(G) coincides with the stable set poly-
tope of G (the convex hull of characteristic vectors of stable sets in RV ). An
alternative but equivalent definition is to say that G is t-perfect if and only if
TSTAB(G) is an integral polytope.

As observed by Gerards and Shepherd [12], the following operation called t-
contraction preserves t-perfection: Contraction of all edges incident with any ver-
tex v whose neighbourhoodN(v) is a stable set. We then say that a t-contraction
is performed at v. If G is claw-free, the t-contraction becomes particularly sim-
ple. Indeed, a t-contraction at v is only possible if v has degree ≤ 2; otherwise
v is the centre of a claw. If v has precisely two neighbours u and w then the
t-contraction simply identifies u, v, w to a single vertex.

To characterise the class of t-perfect graphs in terms of forbidden substruc-
tures, the concept of t-minors was introduced in [2]: A graph H is a t-minor of
a graph G if H can be obtained from G by a series of vertex deletions and/or
t-contractions. Note that the class of t-perfect graphs is closed under taking
t-minors.

We note an easy but useful observation [2]:

any t-minor of a claw-free graph is claw-free. (2)

It turns out that t-perfect claw-free graphs can be characterised in terms of
finitely many forbidden t-minors:

Theorem 2 (Bruhn and Stein [3]). A claw-free graph is t-perfect if and only
if it does not contain any of K4, W5, C

2
7 and C2

10 as a t-minor.

Here, K4 denotes the complete graph on four vertices, W5 is the 5-wheel, and
for n ∈ N we denote by C2

n the square of the cycle Cn on n vertices, see Figure 1.
More precisely, we define C2

n always on the vertex set v1, . . . , vn, so that vi and
vj are adjacent if and only if |i− j| ≤ 2, where we take the indices modulo n.

We often present our algorithms intermingled with parts of the corresponding
correctness proofs. To set the algorithm steps apart from the surrounding proofs
we write them as follows:

➀ The first line of an algorithm.

Finally, for two vertices u, v, a u–v-path is simply a path from u to v. Similarly,
if X,Y ⊆ V (G), then we mean by an X–Y -path a path from a vertex in X to
some vertex in Y so that no internal vertex belongs to X ∪ Y . In the case that
X = Y we simply speak of an X-path.
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Fig. 1. The forbidden t-minors

3 Line Graphs

We first solve the recognition problem for line graphs:

Lemma 1. It can be decided in polynomial time whether the line graph of a
given graph is t-perfect.

We develop the algorithm in the course of this section and the next. That the
algorithm is correct is based on the following characterisation of t-perfect line
graphs.

A skewed theta is a subgraph which is the union of three edge-disjoint paths
linking two vertices, called branch vertices, such that two paths have odd length
and one has even length. Note that a skewed theta does not have to be an induced
subgraph. (We should mentioned that skewed thetas in [3] were denoted C+

5 .)
We call a graph subcubic if its maximum degree is at most 3.

Lemma 2. [3] Let G be a graph. Then the line graph L(G) is t-perfect if and
only if G is subcubic and does not contain any skewed theta.

Checking for subdivisions of a certain graph can often be reduced to the well-
known k-Disjoint Paths problem: Given a number of k pairs of terminal ver-
tices, the task is to decide whether there are disjoint paths joining the paired
terminals. In our context, however, this is not sufficient as the paths linking the
branch vertices in a skewed theta are subject to parity constraints.

That this deep and seemingly hard problem, k-Disjoint Paths with Par-

ity Constraints, allows nevertheless a polynomial time algorithm has been
announced by Kawarabayashi, Reed and Wollan [15]. Another algorithm was
given in the PhD thesis of Huynh [14]. These are very impressive results in-
deed, and they draw on deep insights coming from the graph minor project of
Robertson and Seymour and its extension to matroids by Geelen, Gerards and
Whittle. For both algorithms, however, it seems doubtful whether they could be
implemented with a reasonable amount of work (or at all). We prefer therefore
to present a more elementary algorithm for Lemma 1 that does not rely on any
deep result and that is, in principle, implementable.

Given a bipartition P = (A,B) (where we allow A or B to be empty) of the
vertex set of a graph G, we call an edge P-even if its endvertices lie in distinct
partition classes of P ; otherwise the edge is P-odd. We observe that a cycle is
odd if and only if it contains an odd number of P-odd edges.
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The algorithm we present here to check for skewed thetas runs in two phases.
We start with any bipartition P . In the first phase, the algorithm tries to itera-
tively reduce the number of P-odd edges. If this is no longer possible we either
have found a skewed theta or we have arrived at a bipartition P ′ with at most
two P ′-odd edges. Then, in the second phase, we exploit that any skewed theta
has to contain at least one of the at most two P ′-odd edges. In that case, it
becomes possible to check directly for a skewed theta:

Lemma 3. Given a graph G and a bipartition P of V (G) so that at most two
edges are P-odd, it is possible to check in polynomial time whether G contains a
skewed theta.

Due to space limitations, the proof of Lemma 3 is deferred to the appendix. In
the remainder of this section, we show how to iteratively reduce the number of
P-odd edges. We start with two lemmas that give sufficient conditions for the
existence of a skewed theta.

Lemma 4. A 2-connected subcubic graph that contains two edge-disjoint odd
cycles contains a skewed theta.

Proof. Let C1 and C2 be two edge-disjoint odd cycles in G, which then are also
vertex-disjoint as the graph is assumed to be subcubic. Since G is 2-connected
there are two disjoint C1–C2-paths P1, P2. The endvertices of P1 and P2 subdi-
vide C2 into two subpaths, and one of these subpaths together with P1 and P2

yields an odd C1-path, and thus a skewed theta. 
�

For any bipartition P of G, define GP to be the (bipartite) subgraph on V (G)
together with all the P-even edges. We formulate a second set of conditions that
implies the presence of a skewed theta.

Let C be a cycle and let P and Q be two vertex-disjoint C-paths. Let p1, p2
be the endpoints of P and q1, q2 be the endpoints of Q. We say that P and Q
are crossing on C if p1, q1, p2, q2 appear in this order on C.

Lemma 5. Let G be a subcubic graph with a bipartition P. Let there be three
P-odd edges o1, o2, o3 and two vertex-disjoint trees T1, T2 ⊆ GP , each containing
an endvertex of each of o1, o2, o3.

Assume the trees are minimal subject to the above description. If GP contains
three edge-disjoint T1–T2-paths then G contains a skewed theta.

Proof. Throughout the proof, we assume that G does not contain a skewed theta.
Our aim is to show that GP does not contain three edge-disjoint T1–T2-paths.

For this, we first prove a sequence of more general claims. Let r1r2 and s1s2 be
two P-odd edges ofG such that there are two vertex-disjoint paths R1 = r1 . . . s1,
R2 = r2 . . . s2. Let C be the cycle r1R1s1s2R2r2r1.

We claim that

any two edge-disjoint R1–R2-paths P,Q are crossing on C. (3)
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If P and Q are not crossing then we can easily find two edge-disjoint cycles in
R1 ∪ R2 ∪ P ∪ Q, one through r1r2 and the other through s1s2. By Lemma 4,
however, this is impossible. Thus, P and Q are crossing.

Next, we show that

the endvertices of any two edge-disjoint R1–R2-paths P,Q in R1

lie in distinct partitions classes of P. (4)

Denote the endvertex of P in R1 by p1 and denote the one in R2 by p2; define
q1, q2 analogously for Q.

Suppose that p1 and q1 lie in the same partition class of P . Since G is subcubic,
P and Q are vertex-disjoint, and, by (3), crossing. Assume that p1 ∈ r1R1q1.
As p1 and q1 are contained in the same partition class, the path p1R1q1 has
even length. On the other hand, the following two paths have odd length:
p1Pp2R2s2s1R1q1 and q1Qq2R2r2r1R1p1. As, moreover, these three paths meet
only in p1 and q1 we have found a skewed theta; this proves (4).

From this follows that

G cannot contain three edge-disjoint R1–R2-paths. (5)

Indeed, by (4), the three endvertices of such paths in R1 would need to lie in
distinct partition classes, which is clearly impossible as P is a bipartition.

To complete the proof, suppose now that GP contains three edge-disjoint
T1–T2-paths P1, P2, P3. Denote by ti the unique vertex that separates all the
endvertices of o1, o2, o3 in Ti (unless Ti is a path this is the unique vertex of
degree 3 in Ti). Observe that ti subdivides Ti into three edge-disjoint paths
Si
1, S

i
2, S

i
3 (some of which might be trivial) so that Si

j contains the endvertex of
oj (for i = 1, 2 and j = 1, 2, 3).

Pick two distinct k, � ∈ {1, 2, 3} such that, for i = 1, 2, at least two paths of
P1, P2, P3 have an endvertex contained in Si

k ∪ Si
	 =: Ri. Let {m} = {1, 2, 3} \

{k, �}. Should now Pj have its endvertex p in S1
m − S1

k − S1
	 concatenate the

subpath pS1
mt1 with Pj , and proceed in a similar way in T2. In this way we turn

the edge-disjoint T1–T2-paths into edge-disjoint R1–R2-paths. Now, we obtain
the desired contradiction from (5). 
�

Next, we state a simple lemma that, however, is the key to reducing the number
of P-odd edges.

Lemma 6. Let G be a graph with a bipartition P. Given an edge-cut F of G that
contains more P-odd edges than P-even edges, one can compute a bipartition P ′

of G with less P ′-odd edges in polynomial time.

Proof. Let F = E(X,Y ) separate X ⊆ V (G) from Y ⊆ V (G) in G. Then put
P ′ := (A�X,B�X), and observe that every P-odd edge in F becomes P ′-even,
while the edges outside F do not change. 
�

Putting together the lemmas presented so far, we arrive at the following
procedure.
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Lemma 7. There is a polynomial-time algorithm that takes as input a 2-
connected subcubic graph G, a bipartition P and three P-odd edges o1, o2, o3.
The algorithm:

(a) either correctly decides that G contains a skewed theta;
(b) or computes an edge cut F that contains more P-odd edges than P-even

edges.

Proof. We describe the algorithm in the course of this lemma. We omit a detailed
discussion about the runtime complexity as the steps of the algorithm rely on
basic operations or reduce to solving min-cut/max-flow problems.

➀ If GP is not connected, choose a componentX of GP and return F = E(X,G−
X).

Since G is 2-connected, F contains at least two P-odd edges, which in particular
implies condition (b). Let us now assume that GP is connected.

➁ Compute a spanning tree T of GP and determine the fundamental cycles
Co1 , Co2 , Co3 of o1, o2, o3.

➂ If any two of Co1 , Co2 and Co3 are edge-disjoint, return “skewed theta”.

The return value in line 3© is justified by Lemma 4, which means that we may
assume the cycles Co1 , Co2 , Co3 to pairwise share an edge from now on.

➃ If there is an edge e shared by each of Co1 , Co2 , Co3 :
a. Let T1 and T2 be the two components of

⋃3
i=1 Coi − {e, o1, o2, o3}.

b. Delete leaves from T1 and T2 until T1 and T2 have the form of Lemma 5.
c. Compute a smallest cut F ′ = EGP (X,Y ) of GP that separates T1 from T2

d. If |F ′| ≥ 3, return “skewed theta”; otherwise return F = EG(X,Y ).

Note that, for i = 1, 2, 3, both components of Coi −{e, oi} contain an endvertex
of oi, so that, after pruning, T1 and T2 indeed conform with Lemma 5. Lemma 5
implies that G contains a skewed theta if |F ′| ≥ 3. Otherwise, F contains at
most two P-even edges and the three P-odd edges o1, o2, o3.

Considering line 4©, we may from now on assume that there is no common
edge of Co1 , Co2 , Co3 . Then

there is a unique cycle D in
⋃3

i=1 Coi that passes through each
of o1, o2, o3 and so that there is a path in GP between any two
of the components of D − {o1, o2, o3} that avoids the third.

(6)

Indeed, each Coi−oi is a subpath of T and families of subtrees of a tree are known
to have the Helly property, that is, if any two share a vertex then there is also
a common vertex to all. Let x be such a vertex. Now, assume that Co1 , Co2 , Co3

do not have a common edge. Note that, for any i �= j, Coi and Coj meet along
a path. It follows that Co1 ∪ Co2 ∪ Co3 decomposes into a cycle D that passes
through all of o1, o2, o3 and three internally disjoint x–D-paths that each end in
a different component of D − {o1, o2, o3}. The uniqueness of D can be derived

from the fact that
⋃3

i=1 Coi − {o1, o2, o3} is a tree. This proves (6).
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➄ Determine the cycle D in
⋃3

i=1 Coi that passes through o1, o2 and o3.

FindingD is easy, as this is done in the tree
⋃3

i=1 Coi−{o1, o2, o3}. (Alternatively,
we may argue that E(D) is exactly the set of those edges in

⋃3
i=1 Coi that

lie in only one of the cycles Coi .) Let S1, S2, S3 be the three components of
D − {o1, o2, o3}.

➅ Check whether there is a single edge e′ that separates S1 from S2 ∪ S3 in GP .
If yes, return EG(X,Y ), where X and Y are the two components of GP − e′.

Two of the edges o1, o2, o3 are in the cut EG(X,Y ), while the only P-even edge
in EG(X,Y ) is e′.

➆ Compute two edge-disjoint S1–(S2 ∪ S3)-paths P,Q in GP so that one ends in
S2 and the other in S3.

Let us explain how P and Q can be computed. First, we use a standard algorithm
to find two edge-disjoint S1–(S2∪S3)-paths P,Q in GP ; these exist by Menger’s
theorem and line 6©. If already one ends in S2 and the other in S3, we use these.
So, assume that P and Q both end in S2, say. By (6), we can find an S1–S3-path
R in GP − S2. If R is vertex-disjoint from P and Q, we replace Q by R. If not,
we follow R until we encounter for the last time a vertex of P ∪Q, where we see
R directed from S1 to S3. Let us say this last vertex q is in Q. Then, we replace
Q by QqR.

➇ If P and Q are not crossing on D then return “skewed theta”.
➈ Otherwise, choose an edge e′′ that separates the endvertices of P and Q in S1

and apply lines 4b–4d to the two components T1 and T2 of (D−{o1, o2, o3, e′′})∪
P ∪Q.

If P and Q are not crossing then D∪P ∪Q contains two disjoint odd cycles, and
thus G contains a skewed theta, by Lemma 4. If, on the other hand, P and Q
are crossing then each of the two components T1 and T2 as in line 9© is incident
with an endvertex of each of o1, o2, o3. 
�

We now prove that for line graphs t-perfection can be checked in polynomial-
time.

Proof (Proof of Lemma 1.). Let G be a given graph. If G has maximum degree
at least 4, its line graph L(G) is not t-perfect by Lemma 2. Otherwise, we apply
the algorithm below to the blocks of G to check whether G contains a skewed
theta. Clearly, any skewed theta is completely contained in a block of G.

➀ Set P := (V (G), ∅).
➁ While there are at least 2 distinct P-odd edges, do the following:

a. Run the algorithm of Lemma 7.
b. If the algorithm returns a cut F = EG(X,Y ) with more P-odd edges than
P-even edges, apply Lemma 6.
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➂ Apply Lemma 3 to decide whether G contains a skewed theta.

The algorithm runs in polynomial-time, as the number of P-odd edges decreases
in each iteration of the while loop.

Correctness holds as Lemma 2 guarantees that L(G) is t-perfect if and only
if G does not contain a skewed theta. 
�

4 Claw-Free Graphs

We now describe an algorithm that, given a claw-free graph G, decides in poly-
nomial time whether G is t-perfect or not. We present the algorithm in a number
of steps over the course of this section. First, we use that we can already decide
t-perfection for line graphs, and that we can detect whether a graph is a line
graph efficiently:

Theorem 3 (Roussopoulos [20]). It can be checked in linear time whether
a given graph is a line graph. Moreover, given a line graph G, a graph H with
L(H) = G can be found in linear time.

Thus, the first step in the algorithm becomes:

➀ Use Theorem 3 to check whether G is a line graph. If yes, compute H with
L(H) = G and apply the algorithm of Lemma 1 to H . If no, proceed to the
next line below.

Next, we observe that we can assume the input graph to be 2-connected. For
this, we say that a pair (G1, G2) of proper induced subgraphs of a graph G
is a separation of G, if G = G1 ∪ G2. The order of the separation is equal to
|V (G1 ∩G2)|.

The following lemma may be deduced directly from the definition of t-
perfection. We only apply it to claw-free graphs, where it becomes a simple
consequence of Theorem 2.

Lemma 8. Let (G1, G2) be a separation of a graph G so that G1∩G2 is complete.
Then G is t-perfect if and only if G1 and G2 are t-perfect.

➁ Determine the blocks of G, and apply the rest of the algorithm to each block
independently. Return “not t-perfect” if one of the blocks is not t-perfect; oth-
erwise return “t-perfect”.

Clearly, this step can be performed efficiently, and is, by Lemma 8, correct. Thus,
we may from now on assume G to be 2-connected. Moreover, it is easy to see
that G is not t-perfect, if it contains a vertex of degree at least 5. Indeed, as G is
claw-free, the neighbourhood of any vertex v of degree at least 5 always contains
either a triangle or an induced 5-cycle. In the former case, the graph contains a
K4 and in the latter case a 5-wheel as induced subgraph.

➂ If Δ(G) ≥ 5 or if G ∈ {C2
7 , C

2
10} return “not t-perfect”.
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➃ If G ∈ {C2
6 − v1v6, C

2
7 − v7, C

2
10 − v10} return “t-perfect”.

That the three graphs in line 4© are t-perfect is proved in [3]. (In fact, C2
7 and

C2
10 are minimally t-imperfect, that is, they are t-imperfect but every proper

t-minor is t-perfect. The graph C2
6 − v1v6 can be seen to be a t-minor of C2

10.)
The remainder of the algorithm is based on the following lemma.

Lemma 9 (Bruhn and Stein [3]). Let G be a 3-connected claw-free graph of
maximum degree at most 4. If G does not contain K4 as t-minor then one of the
following statements holds true:

(a) G is a line graph; or
(b) G ∈ {C2

6 − v1v6, C
2
7 − v7, C

2
10 − v10, C

2
7 , C

2
10}.

Thus, we may assume that the input graph G is 2-connected but not 3-
connected. That is, G has a separation of order 2.

➄ If G is 3-connected, return “not t-perfect”.
➅ Otherwise, find a separation (G1, G2) of G of order 2. Let u, v be the two

vertices in G1 ∩G2.

Line 5© is correct, as we had already excluded that G is a line graph, nor one of
the exceptional graphs in (b) of Lemma 9.

To continue, we use a result that allows us to reduce the t-perfection of G to
the t-perfection of the two sides of the separation. For this, we write Gi/u=v for
the graph obtained from Gi by identifying u and v.

Lemma 10. Let G be a 2-connected claw-free graph of maximum degree at
most 4. Assume (G1, G2) to be a separation of G with V (G1 ∩ G2) = {u, v}.
Then:

(i) If G1 and G2 each contain induced u–v-paths of both even and odd length,
then G is not t-perfect.

Otherwise G is t-perfect if and only if G̃1 and G̃2 are t-perfect, where

(ii) G̃1 = G1/u=v and G̃2 = G2 + uv, if G1 contains an odd induced u–v-path
but G2 does not;

(iii) G̃1 = G1 and G̃2 = G2, if neither of G1 and G2 contains an odd induced
u–v-path;

(iv) G̃1 = G1 + uv and G̃2 = G2/u=v, if G1 contains an even induced u–v-path
but G2 does not; and

(v) G̃1 = G1 and G̃2 = G2, if neither of G1 and G2 contains an even induced
u–v-path.

Due to space limitations, we defer the proof of Lemma 10 to the appendix.
We combine the lemma with the following algorithm:

Theorem 4 (van ’t Hof, Kamiński and Paulusma [25]). Given a claw-free
graph G and u, v ∈ V (G), it can be decided in polynomial time whether there is
an induced u–v-path of even (or of odd) length.
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With this, our algorithm continues as follows:

➆ Use Theorem 4 to determine the parities of induced u–v-paths in G1 and in G2.

➇ If G1 and G2 each contain induced u–v-paths of both even and odd length,
return “not t-perfect”.

➈ Otherwise, choose G̃1 and G̃2 as in Lemma 10, and apply line 1© to G̃1 and to
G̃2 independently. Return “t-perfect” if both are t-perfect, and “not t-perfect”
otherwise.

We can finally complete the proof of our main result, that t-perfection can be
checked for in polynomial time if the input is restricted to claw-free graphs.

Proof (Proof of Theorem 1). We have already seen that the algorithm described
in the course of this section is correct. Moreover, as each single line is executed
in polynomial time, we only need to bound the number of times each line is
executed. For this, observe that every time there is a branching in line 9©, the
graph G̃1 contains a vertex ofG that does not lie in G̃2 and vice versa. A standard
analysis of the recurrence yields that the number of iterations is bounded by
O(|V (G)|2).1 
�

5 Discussion

A key step for the recognition of claw-free t-perfect graphs is the insight that
the problem reduces to the detection of skewed prisms.

Skewed prisms are induced subgraphs. As Fellows, Kratochvil, Middendorf
and Pfeiffer [10] observed, searching for a certain substructure often becomes
substantially harder if one requires the substructure to be induced: finding the
largest matching can be done in polynomial time, but determining the size of
the largest induced matching is NP-complete.

In the same way, checking for a non-induced prism (and without any parity
constraints on the paths) reduces to verifying whether between any two trian-
gles there are three vertex-disjoint paths, which clearly can be done in polyno-
mial time. Checking whether a given graph contains an induced prism, however,
is NP-complete – this is a result of Maffray and Trotignon [18]. Interestingly,
this changes when the input graph is claw-free. Golovach, Paulusma and van
Leeuwen [13] describe a polynomial-time algorithm for the induced variant of
the k-Disjoint Paths Problem in claw-free graphs. By again considering any
pair of triangles in a claw-free graph, the algorithm may be used to detect prisms.
Unfortunately, or rather fortunately for the purpose of this article, this is not
enough to recognise t-perfection. For this, we need to detect skewed prisms. It
is not clear whether the algorithm of Golovach, Paulusma and van Leeuwen can
be extended to incorporate parity constraints.

1 See for example the book by Cormen et al. [7, Ch. I.4].
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