
Practical Applications of the Web-Based Agent

Platform ‘Eve’

Ludo Stellingwerff, Jos de Jong, and Giovanni E. Pazienza

Almende BV,
Westerstraat 50, Rotterdam 3016 DJ,

The Netherlands
{ludo,jos,giovanni}@almende.org

Abstract. The existing approaches to build multi-agent systems fail at
addressing the challenges posed by the current technology, where ubiq-
uitous interconnected electronic devices are no more passive machines
operated by humans but rather active computational components coop-
erating with humans. In order to tackle this problem, we have created
a novel open-source web-based agent platform called ‘Eve’ that features
some specific characteristics (e.g., platform and language independence,
openness) that make it particularly suitable to be deployed in real-life ap-
plications. In this paper, we discuss the main features of Eve and present
several use cases in which it has been successfully applied.

Keywords: agent platforms, multiagent systems, interoperability.

1 Introduction

Nowadays, both humans and software applications can be considered as entities
with some degree of autonomy that interact with each other and with the envi-
ronment without need of centralized coordination. In this framework, devices are
modelled as agents that mimic some of the characteristics of human beings: they
are autonomous (i.e., capable of taking decisions), intelligent (i.e., capable of
adapt their behaviour on the basis of available data), and social (i.e., capable of
communicating with humans as well as other agents). Therefore, the fundamental
tool to handle (and profit from) such a complex yet promising scenario is to build
an effective multi-agent system (MAS) [11] tailored for this novel technological
context. A MAS is usually developed on an agent platform, which is usually cho-
sen among the several dozens already available on the market (a good yet not
recent overview can be found in [13]). Nevertheless, the great majority of them
– usually Java based – consist of a closed and controlled environment (operating
system or simulation environment) where agents can live and interact with each
other. In general, these platforms suffer from connected to the scalability and
to the robustness, mainly because of the presence of central directory services
(which require memory to be stored) and to the amount of manual setup to add
new agents, especially when the platform runs in a heterogeneous environment.

Y. Demazeau et al. (Eds.): PAAMS 2014, LNAI 8473, pp. 268–278, 2014.
c© Springer International Publishing Switzerland 2014



Practical Applications of Eve 269

In order to overcome these problems, we propose ‘Eve’ [8] that is an agent plat-
form specifically thought to be deployed on a diverse distributed environment.
Eve is inspired by the principles of human-agent collectives described CHAP [17]
and in ORCHID [15], in which agents (both human and software) collaborate
in a seamless and effective way. Eve has been the key component of several suc-
cessful applications, especially in the fields of emergency management, smart
grids, energy consumption optimisation, and coordination of complex tasks. In
this paper, we also discuss several of these practical use cases, emphasising that
they are just a few of those in which such innovative agent platform may find
application.

The paper is structured as follows: in Sec. 2, we describe the architecture and
the main features of Eve; in Sec. 3, we illustrate a few practical examples in
which Eve has already found application; in Sec. 4, we draw the conclusions of
our work.

2 Summary of the Main Features of Eve

2.1 Conceptual Architecture

From the architectural overview of Eve shown in Fig. 2, it is possible to catch
a glimpse of its main features. It should be evident that Eve can be deployed
on a number of different devices (smartphones, servers, local PCs, etc.) hosting
different environments (JavaScript, Android, C++, etc.), all connected to the
internet via the JSON-RPC protocol.

Thanks to this approach, Eve has some distinctive characteristics. First of all,
Eve is platform independent since agents can live on any device: smartphones,
robots, servers or, more generically, in the cloud. Second, Eve is language in-
dependent1 because it dictates only the communication protocol (JSON-RPC)
which works over existing transport layers (HTTP, XMPP) and a simple API, as
described in and Table I. Third, Eve is an open agent platform: each agent has
its own public2 URLs and hence existing Eve-systems can be easily connected to
the others. Furthermore, non-Eve systems can be connected to the Eve platform
by making its API available via an Eve agent acting as a wrapper.

The architecture of Eve leads to further advantages among which is worth to
emphasize the following ones:

Scalability: Eve is fully web-based and hence, from a practical point of view,
there is no upper bound to the number of new agents that can be added to the
system without degrading its performances.

Robustness : the state persistency in Eve is offloaded from the agents to the
environment (i.e., the states of the agents are distributed), which makes Eve

1 Currently, there are two mature implementations of Eve (one in Java and the other
in JavaScript) whereas a third one (in Python) is in an embryonic stage.

2 Authorization mechanisms have already been implemented, in case the application
needs them.



270 L. Stellingwerff, J. de Jong, and G.E. Pazienza

insensitive to server/device failures. Although the network transport layer can
contain single points of failure, Eve itself is a distributed agent platform, with
no single point of failure by design.

Massive parallelization of the workload of an agent : agents can be multiplexed
(i.e., multiple instances of the same agent sharing the same state can exist at
once). Traditional agent platforms have 1 thread per agent; in contrast, Eve al-
locates up to n threads (where n has virtually no upper bound) when the agent
is heavily loaded and no thread at all when the agent is idle. This approach has
the additional advantage of reducing resource consumption for idle agents.

Seamless migration: In Eve, there is no difference in accessing local or remote
agents, as agents are fully location agnostic. This feature allows seamless migra-
tion of agents between run-time environments.

Fig. 1. Conceptual architecture of the Eve, showing that it can be deployed in a het-
erogeneous environment where different devices are connected to the internet via the
JSON-RPC protocol

Eve is a fully decentralized system: there is neither central coordination nor
centrally-stored list of all available agents. Interactions among agents are asyn-
chronous and request-driven: agents get to know each other via the so-called
shared services (e.g., acting in the same calendar or registering at the same
locations service). Eve agents communicate via regular HTTP POST requests
or via XMPP messages through the JSON-RPC protocol, which is a simple
protocol using JSON (JavaScript Object Notation) to format requests and
responses.



Practical Applications of Eve 271

2.2 What Is an Eve Agent?

Defining what exactly an agent is has been a long-standing issue. However, there
is a general agreement over the basic capabilities that an agent needs, as proposed
in [19]:

– Autonomy: agents should be able to perform the majority of their problem-
solving tasks without the direct intervention of humans or other agents, and
they should have a degree of control over their own actions and their own
internal state.

– Social ability : agents should be able to interact, when they deem appropri-
ate, with other software agents and humans in order to complete their own
problem solving and to help others with their activities where appropriate.

– Responsiveness : agents should perceive their environment (which may be the
physical world, a user, a collection of agents, the Internet, etc.) and respond
in a timely fashion to changes which occur in it.

– Proactiveness : agents should not simply act in response to their environment,
they should be able to exhibit opportunistic, goal-directed behaviour and
take the initiative where appropriate.

This description fits very well to the way in which Eve agents have been de-
vised; in particular, an Eve agent consists of: i) code containing the agents logic,
which allows an agent to perform its tasks, take initiatives, learn, react, coop-
erate, negotiate, etc.; ii) communication facilities allowing the agent to interact
with other agents (currently over HTTP and XMPP); iii) clock, enabling the
agent to schedule tasks for itself; iv) memory, a place where the agent can store
its state and history.

All Eve agents have a set of standard methods available, described in detail
in Table 1. In particular, we have created methods to retrieve the agent id
(getId), type (getType), version (getVersion), and description (getDescription).
Also, there is a method to get all URLs of an agent (getURLs), and to subscribe
(onSubscribe) or unsubscribe (onUnsubscribe) from the agent events.

2.3 Short Notes about FIPA Compliancy

Eve has been conceived to allow developers easy access to agent concepts – such
as time autonomy and direct interagent communication – and its architecture
relies in large part on existing technologies and infrastructures. These choices
have led us to a pragmatic approach concerning the a priori compliancy to FIPA
specifications. As a result, Eve is not fully FIPA compliant by design.

A through discussion of the motivations behind this choice is beyond the
scopes of this paper. However, we would like to emphasise that the last version of
FIPA specifications is from 2000 (revised in 2002) [2], and that in some cases they
do not align with the modern netcentric approach of agent systems. For instance,
FIPA specifications mandates hat an agent system defines a directory facilitator;
Eve goes beyond this concept, letting agents know each other via shared services,
thus avoiding the need for a global registry of agents. Also, it is the underlying



272 L. Stellingwerff, J. de Jong, and G.E. Pazienza

Table 1. Set of standard methods available to all Eve agents

Method Description

getId Retrieve the agent id. In Eve, an agent may have multiple URLs
but only one id. The agent id is not globally unique, since agents
running on different platforms may have the same id.

getType Retrieve the agent type, which is typically the class name of the
agent.

getVersion Retrieve the agent version number.

getDescription Retrieve a description of the agent functionality.

getURLs Retrieve an array with the agent URLs. An agent can have mul-
tiple URLs for different transport services, such as HTTP and
XMPP.

getMethods Retrieve a list with all available methods.

onSubscribe Subscribe to an event of this agent; the provided callback URL
and method will be invoked when the event is triggered.

onUnsubscribe Unsubscribe from one of this agent events.

assumption of FIPA that agent- systems should form a common global ontology
and a common API using a globally accepted language. This strict coupling (at
specification level) may even limit the interoperability between agent-systems
and complicate the development. In our experience, it is more effective favour
loose coupling between agents and bridge systems by injecting ontology-mapping
translation agents, using ad hoc (but well documented) languages.

There is some evidence [1] that FIPA has a roadmap for introducing several
compliance levels: from minimal-FIPA compliance level, which represents the
lowest requirements, up to a full-FIPA compliance level, which comprises all
current mandatory parts of normative specifications. This process is still ongoing,
but our belief is that Eve will have an intermediate-FIPA compliance level.

2.4 On the Comparison with Related Approach

Nowadays, there are numerous widely-employed agent platforms, such as
JADE [7], AgentScape [16], and A-globe [18], only to mention a few. Performing
a throughout comparison between Eve and all of them is out of the scopes of
this paper, which is rather focused on the practical applications of Eve. How-
ever, it is worth to mention that a fair comparison of Eve with existing agent
platforms is difficult to make, mainly for two reasons. First, the core concepts
of Eve are different from those of traditional agent platforms: Eve is fully web-
based and lacks of any ‘centralised’ feature, and its main strengths are in the
fact of beings platform-independent and easily deployable, which are difficult to
translate into numbers. Second, there is very little literature about the compar-
ison of multi-agent systems: some recent works (e.g., [9]) makes some original
proposal – based on some classical works [12] – which is though not applicable
to Eve because Eve has been built to operate in different context; [10] proposes



Practical Applications of Eve 273

yet another approach, which though focuses on a very particular aspect possibly
missing the overall evaluation. Curiously, some concrete effort to define common
criteria to evaluate different systems was made in the past (see [14]) but the
current technological framework condemns to early obsoleteness any effort of
this sort.

Still, in the near future we plan to publish an ad-hoc paper dedicated to this
issue which may help to define at least some preliminary metrics to evaluate the
performances of Eve.

3 Examples of Practical Applications of Eve

Eve has already been used in several commercial and research projects covering
different scientific fields. In the following, we describe a four existing practical
applications of Eve, even though more are expected to be implemented in the
near future. What we report here is a summary of the work carried out; more
details and demos can be found on the Eve website [6].

3.1 Autonomous (Re)scheduling of Appointments

In the last two decades, there has been a major shift towards calendaring software
to keep track of events and (re)schedule appointments. Especially when several
people are involved, these tasks can be a tedious time-consuming burden as,
in general, different calendaring softwares do not interact seamlessly with each
other. As a consequence, people waste a considerable amount of time scheduling
rather than doing.

In order to tackle this issue, Eve has been successfully used to build an agent-
based scheduling system, whose conceptual architecture is shown in Fig. 2. It is
composed of four kinds of agents:

– personal agents, which are the virtual counterpart of each user, and hence
they represent the users’ preference and learn autonomously the user pref-
erences (e.g., working shifts) based on the past meetings;

– meeting agents, which negotiate and schedule the appointments based on the
information coming from all other agents;

– context agents, which have access to the users’ calendar by communicating
with the servers (Gmail, Exchange, etc.) and to other context data – such
as traffic conditions and weather – that may influence the behaviour of the
users.

– location agents, which are a special kind of context agents whose sole task
is connecting to location services and calculate travel times between user
locations.

Whenever needed, a meeting agent negotiates with the personal agents of
all participants as well as with other existing meeting agents in order to find
the most convenient time slot and location for the meeting, and reschedule it
when the circumstances change. This process is totally transparent to the user,



274 L. Stellingwerff, J. de Jong, and G.E. Pazienza

Fig. 2. Conceptual architecture of the Eve-based autonomous scheduling multiagent
system

who may – but is not required to – interact with his own personal agent via
smartphone apps, web interfaces, instant-messaging (e.g., chat), and standard
telephone through Interactive Voice Response. Therefore, as a result of the ap-
plication of Eve, the slow and cumbersome communication between humans, or
between a human and his calendaring software, can be substituted (or at least
facilitated) by the fast and seamless communication between software agents.

Eve is specifically suited to this application for a number of reasons: first, it
is language- and environment- independent and hence Eve agents can be easily
developed for the different OS hosted on the personal devices; second, the fact
that Eve is fully decentralised allows this system to rely on a very limited amount
of messages, as devices (better to say, personal agents) can autonomously take
peer-to-peer actions, without communication to a central unit; third, Eve agents
are lightweight, and thus particularly fit to devices which may have limited
memory and processing power.

3.2 Emergency Management

Natural disasters and accidents do not take into account municipal or national
borders; in fact, in case of a large-scale incident, such as a terrorist attack or
a major fire, different agencies from different regions or even countries have to
work together and it is often very difficult, because of incompatible systems,
organizational structures and protocols. This is the main motivation behind the
BRIDGE [4] project, whose main goal is to develop a platform to provide techni-
cal support for multi-agency collaboration in large-scale emergency relief efforts,
taking care of their (IT) systems, people, and protocols. In this framework, agent



Practical Applications of Eve 275

technology is very useful to solve communication and collaboration problems, es-
pecially because a multi-agent system can make sure that the right information
is passed to the right agencies and that the relevant experts are involved. There-
fore, a passive communication infrastructure can be transformed into an active
system that can initiate connections.

In the BRIDGE project, Eve is used to model and support the various emer-
gency response resources involved: different software agents are used to represent
interests of different parties, and thus quickly negotiate and collaborate. Also,
the software agents are mainly meant to perform rapid, repetitive tasks, such as
quick communication or aggregation of data whereas people are involved when
difficult tasks must be executed or decisions made. Through negotiation between
Eve agents, ad hoc groups of resources are formed to handle tasks. The agents
also obtain, aggregate and interpret sensor data, which is then communicated to
field commanders and to other agents, thus providing situational awareness. The
Eve agents are run on a cloud platform and on mobile smartphones, whereas the
communication between the Eve agents and other components of the BRIDGE
platform is done through the EDXL-RM protocol.

There are at least two key aspects of Eve emphasised in this application: first,
the fact that being language- and platform- independent Eve can act as a middle-
ware among devices of different nature; second, the fact that the combination of
local and cloud counterparts of Eve agents makes the system particularly robust
to infrastructural failures (which are critical in emergency managing situations)
as well as to the fact that portables devices can be switched off or out of battery
(which would allow the ‘cloud’ agents to be still active anyway).

3.3 Energy-Efficient Data Centres

Renewable energy sources – such as wind, water and solar energy – are not
predictable and hence power suppliers can therefore not guarantee a completely
‘green’ energy supply during peak hours. In case of high demand, they are forced
to rely on dirty energy produced by diesel-fuelled generators, or they have to
transport energy from faraway sources. In the case of data centers, it would be
ideal to estimate their power needs in order to allow power suppliers can better
anticipate future energy demands. This is the rationale behind the All4Green
project [3], which brings together relevant stakeholders to create a ‘sustainable
ICT ecosystem’ for the datacenter sector. By enabling datacenters, power sup-
pliers and end-users to communicate their expected supply and demand, ICT
resources can be better allocated to provide requested services, while saving
energy and reducing greenhouse gas emissions.

In the All4Green project, Eve is used to negotiate the most efficient energy
balance between energy providers and large- scale energy users, specifically data
centers. The context of this negotiation process is given in the form of GreenSLA
contracts, which offer a template for energy profiles of data centers. By commu-
nicating the expected energy profiles, the energy providers provide a goal for the
Eve agents to work towards. Also, Eve has a communication middleware role: the
toolset has offered an in-place replacement of a Springframe work SOAP stack,



276 L. Stellingwerff, J. de Jong, and G.E. Pazienza

still adhering and actively enforcing the (Java Interface) contract between the
communicating partners; this is achieved through the proxy-agent generation of
Eve. The way in which Eve has been used in this project also shows that Eve
can work properly in a strict Java EE infrastructure.

Similarly as before, the role ofEveas a communicationmiddleware is emphasised
in this application; also, the fact that Eve agents are proactive and are able to carry
out autonomously even complex negotiation tasks is particularly critical too.

3.4 Dynamic Management of Smart Grids

The energy market suffers from structural inertia: in theory, energy prices should
follow a standard supply-and-demand-mechanism; in practice, the market is not
able to adapt to the rapid changes in supply and demand of energy. One of the
reasons behind this mechanism is that the current energy grid is still based on
a centralized and inflexible management of supply and demand of energy, but
the modern energy market is becoming much more dynamic. The current grid is
not prepared for a distributed energy market, in which individual households
cause energy supply peaks by generating their own solar power on a sunny
day. Managing this scenario by applying an Internet-of-Things-approach is the
motivation of the INERTIA project [5], which that aims to model and use
the energy flexibility of terniary buildings to lower peak electricity demand. At
each building, INERTIA will support the building manager with making optimal
decisions and taking limited control of Distributed Energy Resources (DERs).
Many of such buildings will be connected with a hub, where energy flexibility
can be pooled and traded with energy providers (or other consumers).

Within INERTIA, Eve is used as an integration platform for the software
that will run at each building. This is achieved by wrapping numerous pieces of
existing and new software within Eve agents, elegantly separating the means of
communication from the functionality within the agents. As the different soft-
ware components are written in different languages, the fact that Eve is language
independent can ease development. As some of the software components imple-
ments cross-cutting concerns, the Eve based architecture also performs a function
similar to aspect-oriented programming: it facilitates loose coupling between the
agents implementing the cross-cutting concern and the rest of INERTIA. More-
over, agents that consist of small bits of logic such as a learning algorithm can
be instantiated as often as required effortlessly.

Besides Eve as an architectural solution, Eve agents are also used to represent
and interact with the physical reality: users, DERs, and spaces (which can contain
multiple users and DERs). Such an agent representation will allow the end users
to acquire a complete breakdown of the aggregated energy use and flexibility to
the level of individual consumers and DERs, helping analysis and improvement
of energy performance. One of the key benefits of using Eve agents is their ability
to migrate: agents representing humans can associate with different space agent to
represent moving from one room to another and migrate to a whole new server to
represent moving from one office building to the next (e.g., when changing jobs).



Practical Applications of Eve 277

Finally, ongoing development of Eve implementations are expected to allow the
user interfaces of the agents to be conveniently dynamic and modular.

This application relies on all aspects of Eve emphasised in the previous three
applications: its role as a middleware among different platforms; the fact that it
is language-independent and lightweight, which then makes it particularly suited
to be deployed in an heterogeneous Internet-of-Things approach; its robustness,
which is particularly critical when managing electric grids.

4 Conclusion

In this paper, we have introduced the main characteristics of Eve, a novel agent
platform that has been explicitly devised to be applied in the current technolog-
ical framework composed of a multitude of devices based on different platforms
and programming languages, and described a few successful practical applica-
tions of it.

Eve is intrinsically platform- and language- independent and it can be con-
sidered as one of the precursors of a new generation of agent platforms, which
will be drastically different from (and hence difficult to compare to) the current
ones. Among the other features, we want to emphasize that Eve is a fully decen-
tralized open agent platform: agents have their own public URLs but there is no
centrally- stored list of all available agents. These characteristics make Eve very
scalable (one could claim that the system is as scalable as the web itself) and
robust. As future developments of Eve, we plan to extend the number of working
implementations beyond the current ones, which are in Java and JavaScript.

Currently, Eve has been applied to several areas, including emergency man-
agement, smart grids, energy-efficient data centers, and context interpretation.
In each of them, Eve has proved to be an effective solution to problems that
otherwise would have been hard to solve, especially those connected to the in-
teroperability of heterogeneous devices. Among the new applications on which
we are currently working, we can mention a new system to capture and interpret
non-conformity events in a large manufacturing company where Eve will be used
as the infrastructure for an Internet of Things approach.

Acknowledgement. This research has been partially funded by the Euro-
pean Union Seventh Framework Programme under grant agreements no. 261817
(BRIDGE project), no. 288674 (All4Green project), and no. 105543 (INERTIA
project). The authors are grateful to Andries Stam, Rick van Krevelen, Remco
Tukker, and Janny Remakers for their support writing this paper.

References

1. Minimal FIPA and FIPA compliance levels work plan (2001),
http://www.fipa.org/docs/wps/f-wp-00018/f-wp-00018.html

2. FIPA specifications (2002), http://www.fipa.org/specifications/
3. All4Green project (2012), http://www.all4green-project.eu/

http://www.fipa.org/docs/wps/f-wp-00018/f-wp-00018.html
http://www.fipa.org/specifications/
http://www.all4green-project.eu/


278 L. Stellingwerff, J. de Jong, and G.E. Pazienza

4. Bridging resources and agencies in large-scale emergency management, BRIDGE
project (2012), http://www.bridgeproject.eu/en

5. INERTIA project (2013), http://www.inertia-project.eu/
6. Eve - a web-based agent platform (2014), http://eve.almende.com/
7. Bellifemine, F., Poggi, A., Rimassa, G.: Jade: a fipa2000 compliant agent devel-

opment environment. In: Proceedings of the Fifth International Conference on
Autonomous Agents, pp. 216–217. ACM (2001)

8. de Jong, J., Stellingwerff, L., Pazienza, G.E.: Eve: a novel open-source web-based
agent platform. In: 2013 IEEE International Conference on Systems, Man and
Cybernetics. IEEE (2013)

9. Di Bitonto, P., Laterza, M., Roselli, T., Rossano, V.: Evaluation of multi-agent sys-
tems: Proposal and validation of a metric plan. In: Nguyen, N.T. (ed.) Transactions
on CCI VII. LNCS, vol. 7270, pp. 198–221. Springer, Heidelberg (2012)

10. Ben Hmida, F., Lejouad Chaari, W., Tagina, M.: Performance evaluation of mul-
tiagent systems: Communication criterion. In: Nguyen, N.T., Jo, G.-S., Howlett,
R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS (LNAI), vol. 4953, pp. 773–782.
Springer, Heidelberg (2008)

11. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and
development. Autonomous Agents and Multi-agent Systems 1(1), 7–38 (1998)

12. Kusek, K.J.G.J.M.: A performance analysis of multi-agent systems. International
Transactions on Systems Science and Applications 1(4) (2006)

13. Leszczyna, R.: Evaluation of agent platforms. European Commission, Joint Re-
search Centre, Institute for the Protection and Security of the Citizen, Ispra, Italy,
Tech. Rep. (2004)

14. Occello, M., Guessoum, Z., Boissier, O., et al.: Un essai de définition de critères
pour l étude comparative de plates-formes multi-agents. Technique et Science In-
formatiques (TSI) 21(4) (2002)

15. U. of Southampton. The ORCHID project. (2014), http://www.orchid.ac.uk/
16. Overeinder, B.J., Brazier, F.M.T.: Scalable middleware environment for agent-

based internet applications. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds.)
PARA 2004. LNCS, vol. 3732, pp. 675–679. Springer, Heidelberg (2006)

17. Serban, R., Guo, H., Salden, A.: Common hybrid agent platform–sustaining the
collective. In: 2012 13th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel & Distributed Computing (SNPD),
pp. 420–427. IEEE (2012)

18. Šǐslák, D., Rollo, M., Pěchouček, M.: A-globe: Agent platform with inaccessibility
and mobility support. In: Klusch, M., Ossowski, S., Kashyap, V., Unland, R. (eds.)
CIA 2004. LNCS (LNAI), vol. 3191, pp. 199–214. Springer, Heidelberg (2004)

19. Wooldridge, M., Jennings, N.R.: et al. Intelligent agents: Theory and practice.
Knowledge Engineering Review 10(2), 115–152 (1995)

http://www.bridgeproject.eu/en
http://www.inertia-project.eu/
http://eve.almende.com/
http://www.orchid.ac.uk/

	Practical Applications of the Web-Based AgentPlatform ‘Eve’
	1 Introduction
	2 Summary of the Main Features of Eve
	2.1 Conceptual Architecture
	2.2 What Is an Eve Agent?
	2.3 Short Notes about FIPA Compliancy
	2.4 On the Comparison with Related Approach

	3 Examples of Practical Applications of Eve
	3.1 Autonomous (Re)scheduling of Appointments
	3.2 Emergency Management
	3.3 Energy-Efficient Data Centres
	3.4 Dynamic Management of Smart Grids

	4 Conclusion
	References




