
Planning When Goals Change:

A Moving Target Search Approach

Damien Pellier1, Humbert Fiorino1, and Marc Métivier2

1 Laboratoire d’Informatique de Grenoble
110 avenue de la Chimie BP 38053 Grenoble

2 Université Paris Descartes
45, rue des St Pères, 75006 Paris

Abstract. Devising intelligent robots or agents that interact with hu-
mans is a major challenge for artificial intelligence. In such contexts,
agents must constantly adapt their decisions according to human ac-
tivities and modify their goals. In this paper, we tackle this problem
by introducing a novel planning approach, called Moving Goal Planning
(MGP), to adapt plans to goal evolutions. This planning algorithm draws
inspiration from Moving Target Search (MTS) algorithms. In order to
limit the number of search iterations and to improve its efficiency, MGP
delays as much as possible triggering new searches when the goal changes
over time. To this purpose, MGP uses two strategies: Open Check (OC)
that checks if the new goal is still in the current search tree and Plan
Follow (PF) that estimates whether executing actions of the current plan
brings MGP closer to the new goal. Moreover, MGP uses a parsimonious
strategy to update incrementally the search tree at each new search that
reduces the number of calls to the heuristic function and speeds up the
search. Finally, we show evaluation results that demonstrate the effec-
tiveness of our approach.

1 Introduction

Service robots performing simple domestic tasks begin to enter our daily lives.
Still, many breakthroughs must be made in navigation, perception and sensors,
energy management, mechatronics etc. But whatever the progresses made in
these areas, one prominent issue is robot usability and their ability to adapt
their decisions according to human activities. In such contexts, robots must
constantly cope with events that modify their goals and disrupt their plans.

In order to tackle this problem, we propose in this paper a new planning al-
gorithm that interleaves on-line planning and execution, called MGP (Moving
Goal Planning) and built on the MTS (Moving Target Search) search strat-
egy. MTS algorithms are search algorithms designed for path-finding and for
real-time moving targets (an agent, ”the hunter”, follows a moving target, ”the
prey”) interleaving path-finding toward the prey and hunter displacements. MTS
algorithms are based on heuristic search (distance calculation) and, to our knowl-
edge, have not been used for task planning. Thus, we propose to capitalize on

Y. Demazeau et al. (Eds.): PAAMS 2014, LNAI 8473, pp. 231–243, 2014.
c© Springer International Publishing Switzerland 2014



232 D. Pellier, H. Fiorino, and M. Métivier

recent advances in these two areas to devise a new and efficient planning algo-
rithm able to adapt its plan when its goal changes over time as a new approach
for continual planning [1].

The rest of the paper is organized as follows: Section 2 gives the state of
the art; Section 3 formally introduces the moving goal planning problem and
describes our algorithm; Section 4 presents the algorithms evaluation; Section 5
concludes and proposes possible avenues for future extensions.

2 Related Work

In task planning, the design of agents evolving in dynamic environments and
able to adapt the execution of their current plan to goal changes is mainly
studied in two different ways: rebuilding a plan from scratch or repairing it so
that it can be executed in the new context. Although in theory both approaches
are equally expensive in the worst case [2], experimental results show that plan
repair is more efficient than replanning from scratch [3]. Preserving plan stability
is another argument in favor of the plan repair strategy [4].

In path-finding, the agent’s adaptation to dynamic environments is also a
challenging issue especially in computer games to solve the Moving Target Search
(MTS) with respect to real-time responses, large-scale search spaces and limited
computation resources. In essence, a MTS algorithm interleaves path-finding and
action execution for a ”hunter” agent chasing a moving target – the ”prey” – over
a large map or grid. Since the pioneering works of Ishida [5], MTS approaches
fall into two categories according to the strategy used to reuse the information
collected in past searches.

The first strategy consists in using a heuristic to guide the search and learn
shortest path distances between pairs of locations on a map. At each search,
the heuristic is more informative and the search is sped up. The original MTS
algorithm was an adaptation of the Learning Real-Time A* algorithm (LRTA*)
[6] for a moving target. This approach was shown to be complete in turns based
settings when the target periodically skips moves but it is subject to heuristic
depressions and lost of information when the target moves [7]. Currently, the
state-of-the-art algorithms with this first strategy are variants of the AA* algo-
rithm [8]: MTAA* [9] and GAA* [10]. All these algorithms must use admissible
heuristics to ensure their soundness and completeness.

The second strategy consists in reusing incrementally the search tree between
two successive searches. The first algorithms based on this strategy are D* [11]
and its successors. These algorithms were devised for replanning in unknown or
changing environments and are both based on backward chaining. They perform
correctly when the environment does not change much during the search. Oth-
erwise, their performances are bypassed by simple successive calls to A* every
time the target moves [10]. As for FRA* [12], changes in the environment are not
taken into account but it performs properly when the target moves over time.
FRA* is based on the A* forward search. Every time the target moves, FRA*
adapts quickly the search tree and recalls A* on the new search tree. FRA* is
currently the most efficient MTS algorithm. However, the adaption of the search



Planning When Goals Change 233

tree is widely dependent on the grid representation of the environment. In order
to apply FRA* on more generic environments, a variant called GFRA* [13] (Gen-
eralized Fringe-Retrieving A*) has been recently proposed. Contrary to FRA*,
GFRA* uses arbitrary graphs, including the state lattices used for Unmanned
Ground Vehicles navigation. Finally, Sun at al. [14] proposes an algorithm called
I-ARA*, which is the first incremental anytime search algorithm for moving tar-
get search. I-ARA* operates like repeated ARA* [15], except that it also uses
incremental search as used in GFRA* to speed up the search by adapting the
tree search and by reusing the information from the previous search.

To summarize, algorithms based on heuristic guidance (the first strategy) are
more appropriate for environment changes rather than goal changes. On the
other hand, algorithms based on incremental search (the second strategy) are
efficient with goal changes but operate with less generic environments. Among
them, GFRA* seems the more interesting to use for task planning mainly for two
reasons: (1) it is based on a heuristic forward search as the most powerful state-
of-the-art planners and (2) it can work with non-admissible heuristic function
as it is often the case in task planning.

3 Moving Goal Planning

3.1 Problem Formulation

We address sequential planning in the propositional STRIPS framework [16]. All
sets are finite. A state s is a set of logical propositions. An action a is a tuple
a = (pre(a), add(a), del(a)) where pre(a) are the action’s preconditions, add(a)
and del(a) are its positive and negative effects. The state s′ is reached from s
by applying an action a according to the transition function γ: s′ = γ(s, a) =
(s− del(a)) ∪ add(a) if pre(a) ⊆ s, undefined otherwise.

The application of a sequence of actions π = 〈a1, . . . , an〉 to a state s is
recursively defined as γ(s, 〈a1, . . . , an〉) = γ(γ(s, a1), 〈a2, . . . , an〉). A Moving-
Goal Pursuit problem is a tuple (A, st, gt): at a given timestamp t, an agent is in
a state st; gt is its current goal (st and gt are sets of propositions) and A is the
set of actions that it can perform. It executes actions in order to reach its goal
and the goal can change at any time. The agent has no information on how the
goal changes over time. A plan is a sequence of actions πt = 〈a1, . . . , an〉 (ai ∈ A)
such that the goal gt ⊆ γ(st, πt) and gt is reachable if such a plan exists. A goal
state is a state s such that gt ⊆ s. At a given time t, a Moving-Goal Pursuit
problem is solved if gt ⊆ st: the agent has reached its goal.

3.2 Algorithm

TheMGP pseudocode is given in Algo. 1. MGP takes as input a Moving Goal Pur-
suit problem (A, s0, g0). The variables g and s denote respectively the current goal
and the current state set initially to g0 and s0 (i is the search iteration counter).

MGP iterates a search procedure (line 2) as long as the current goal has not
been reached. The Search procedure is detailed in section 3.3. This procedure



234 D. Pellier, H. Fiorino, and M. Métivier

builds a search tree whose nodes are states and edges are actions. The search
procedure fails if the current goal has not been reached and MGP fails (line 3).
This is the case when the planning problem is unsolvable. Otherwise MGP post-
pones as much as possible triggering a new search and expansion of the search
tree (while-loop line 4) and it extracts a plan from the search tree (lines 5).
The while-loop ends when the goal evolves out of the search tree, i.e., none of
the nodes is a goal state (procedure OpenCheck), or when the goal significantly
changes (procedure PlanFollow). These two procedures are detailed in section 3.3.

As long as the goal is reachable with the extracted plan or does not signif-
icantly change, MGP executes the actions of this plan and update its current
state (line 7). The goal changes are provided by the procedure UpdateGoal (line 8).
Then, if MGP reaches its current goal, it returns success (line 9). Otherwise,
MGP reduces its search tree to the subtree whose root is the current state s
(DeleteStatesOutOfTree, line 10). If the new goal is in this subtree and a new
search can be postponed, MGP extracts a new plan and executes its actions to
reach the new goal. Otherwise, MGP updates the heuristic values of the search
tree nodes according to the new goal (line 11) (UpdateSearchTree procedure de-
tailed in the next section) and finally increments its search iteration counter
(line 12) and expands its search tree (line 3).

Algorithm 1. MGP(A, s0, g0)

1 s ← s0, g ← g0, i ← 1
2 while g �⊆ s do
3 if Search(A, s, g, i) fails then return Failure
4 while OpenCheck(g) and PlanFollow(s, g) do
5 Extract a solution plan π from the search tree
6 while (g �⊆ s and g ⊆ γ(s, π)) or (PlanFollow(s, g) and π �= ∅) do
7 a ← get and remove the first action of π, execute a, s ← γ(s, a)
8 g ← UpdateGoal(g) ;; simulate goals change

9 if g ⊆ s then return Success
10 DeleteStatesOutOfTree(s)

11 UpdateSearchTree(s, g, i)
12 i ← i+ 1

3.3 Implementation

In this section, we describe the MGP implementation. The search tree is repre-
sented by two lists denoted OPEN and CLOSED: the OPEN list contains the
pending states of the search and the CLOSED list contains the explored states.

Weighted A* as Search Strategy. Contrary to GFRA* that uses A* as basic
search algorithm, MGP uses the Weighted-A* search strategy. This variant of
A* overestimates the cost of the heuristic value according to a ratio w. The
evaluation function f(s) for a state s is f(s) = g(s)+w× h(s) where g(s) is the



Planning When Goals Change 235

cost to reach s from the initial state s0 and h(s) the estimated cost from s to the
goal g. The greater w, the greater is the weight of the heuristic in the guidance
of the search. Usually, using Weighted A* with an informative and admissible
heuristic speeds up the search but breaks up the optimality of the solution plans.
This approach is relevant because it is more important to find quickly a good
solution than to find an optimal solution that will become outdated after a goal
change. We show that using Weighted-A* instead of A* significantly improves
the MGP performances (see section 4). Moreover, Weighted-A* does not impair
the soundness and the completeness of MGP. The Weighted-A* algorithm used
in our approach is a modified version of the classical algorithm. It takes as input
a search problem (A, s, g), a ratio w and the search iteration counter i. For each
state, it maintains three values: the g-value and the h-value of the state, and
the parent pointer parent(s) that points to the parent state of s in the search
tree. At the first procedure call, the OPEN and CLOSED lists hold the initial
state of the search problem such as g(s) = 0 and h(s) = H(s, g) where H is the
heuristic function that estimates the cost from the initial state s to the goal g.

Search Delaying Strategies. In order to limit the number of search iterations
and to speed up the algorithm performances, MGP delays as much as possible
starting new searches when the goal changes. MGP uses two novel and different
strategies.

Open Check (OC). MGP checks if the new goal is still in the search tree. In
that case, a new plan can be extracted in the current search tree. Contrary
to GFRA* that only checks the states in the CLOSED list, MGP also checks
the pending states in the OPEN list. This checkout avoids useless searches
and readjustments of the search tree.

Plan Follow (PF). MGP estimates whether executing the actions of the cur-
rent plan brings it closer to the new goal. Each time the goal changes and
before starting a new search, MGP evaluates if the new goal is close to
the previous one and determines if the current plan can still be used. This
test is based on the heuristic function and the computation of an inequal-
ity between the current state s, the previous goal p and the new goal g:
H(s, g) × c > H(s, p) +H(p, g) where c is called the delay ratio. MGP fol-
lows the current plan while the inequality is true, i.e., until it estimates that
a straightforward plan from the current state s to the new goal g is bet-
ter than achieving the previous goal and then finding a new plan from the
previous goal to the new goal. Values of c > 1 allow us to adjust the delay
before a new search. As searches are expensive, delaying them speeds up the
algorithm but alters plan quality (see section 4).

Incremental Updates of the Search Tree. MGP incrementally updates the search
tree at each new search (see Algo. 1 line 14). Contrary to GFRA* that updates
the heuristic value of all the states of the search tree with respect to the new
goal, MGP uses a parsimonious strategy to reduce the number of calls to the
heuristic function. To this purpose, MGP clears the OPEN list, adds the current
state and updates its h-value by calling the heuristic function H . To indicate



236 D. Pellier, H. Fiorino, and M. Métivier

(a) Percentage of success with re-
spect to the goal change ratio.

(b) Search time with respect to the
goal change ratio.

(c) Plan length with respect to the
goal change ratio.

Fig. 1. Global analysis of Blockworld problem 20

that the heuristic value of the current state is up-to-date, MGP sets its iteration
value to the MGP iteration counter. During the search, each time a state in the
CLOSED list is encountered with an iteration value smaller than the iteration
counter, it is added into the OPEN list and its h-value is updated. This strategy
has two advantages: (1) it reduces the number of states generated by reusing the
states in the CLOSED list during a search and (2) it reduces significantly the
time needed to update the heuristic values by limiting the updates to the states
explored during the new search.

4 Experiments and Evaluation

The objective of these experiments is to evaluate the performances of MGP with
respect to the different search delaying strategies: Open Check (OC) and Plan
Follow (PF). MGP is compared with the state-of-the-art algorithm GFRA* and
the naive approach Successive A* (SA*) that consists in calling A* each time
the goal changes. The benchmarks used for the evaluation are taken from the
International Planning Competition (IPC). We use the non-admissible heuristic
function of FF [17] to drive the search. We evaluate six algorithms: Successive
A* (SA*), GFRA*, MGP without search delaying strategy (MGP), MGP with
Open Check (MGP+OC), MGP with Plan Follow (MGP+PF) and MGP with
both strategies (MGP+OC+PF).



Planning When Goals Change 237

4.1 Simulation of the Goal Changes

Classically, MTS algorithms assume that the moving target, the ”prey”, always
follows the shortest path from its current position to a randomly selected and
unblocked position. Each time the prey reaches this position, a new position is
randomly selected and so on. Every n moves, the prey remains idle, allowing
the ”hunter” to catch it. As this approach is not transposable to task planning,
we change the goal by randomly applying an action to the current goal state.
This process is repeated many times to make the goal more difficult to reach.
The new goal is always reachable from the current goal, but it is not guaranteed
that MGP will reach it since it may evolve so quickly that MGP cannot reach
it. This simulation of goal changes is more challenging than the one classically
used to compare MTS algorithms: in our experiments, the goal does not change
as a function of the executed actions but in a real time manner as a function of
the time needed to find a solution plan. Thus, the more an algorithm takes time
to find a solution, the more the goal evolves and becomes difficult to reach. To
parametrize the goal evolution, a counter t is incremented every time a state is
explored during the Weighted-A* search and every time the heuristic function
is called to update a state h-value. These two procedures are the most time
consuming. The number n of actions applied to the goal state is computed as
follows: n = (t − tp)/gr where tp denotes the previous value of the counter t
and gr the goal change ratio. Hence, gr allows us to adjust the swiftness of goal
changes: small goal ratios mean fast goal changes and high goal ratios slow goal
changes.

4.2 Experiment Framework

Each algorithm was tested 100 times on a planning problem with a given goal
change ratio. Each test was conducted on an Intel Xeon 4 Core (2.0Ghz) with a
maximum of 4 Gbytes of memory and was allocated a CPU time of 60 seconds.

In a first stage, the algorithms are tested with the IPC-2 Blockworld bench-
mark in order to measure their respective performances with respect to the goal
change ratio. In a second stage, we have tested the impact of the delay ratio
and of the heuristic weight in the performances of the best algorithm observed
at the first stage. In a third stage, we have tested the algorithms on a large set
of planning domains and problems.

The performances presented are: (1) the success percentage, i.e., the number
of times the algorithm succeed to reach the goal, (2) the search time and (3) the
plan length.

4.3 Algorithms Comparisons on Blockworld

In this section, we present a comparison of the six algorithms SA*, GFRA*,
MGP, MGP+OC, MGP+PF and MGP+OC+PF on the IPC-2 Blockworld P20
with respect to the goal change ratio and we give an overview of their respective
performances on Blockworld domain. The delay ratio is arbitrary set to 1.6



238 D. Pellier, H. Fiorino, and M. Métivier

(a) Percentage of success with re-
spect to the problems.

(b) Search time with respect to the
problems.

(c) Plan length with respect to the
problems.

Fig. 2. Global analysis of Blockworld domain

for MGP+PF and MGP+OC+PF and the heuristic weight is set to 1 for all
algorithms. Both parameteres are studied section 4.4.

Study in the Blockworld P20. Figures 1(a), 1(b), 1(c) show the results obtained
in terms of percentage of success, search time and plan length. Regarding the
percentage of success, the best algorithm is MGP+OC+PF. Even with a goal
change ratio gr = 1, MGP+OC+PF has a success rate above 95%. The other
search delaying strategies are less efficient but obtain more than 80% of success.
The naive approach SA* needs a goal change ratio 5 times bigger to obtain the
same percentage of success. GFRA* does not reach this percentage of success
even with a goal change ratio 30 times bigger. Finally, GFRA* is outclassed by
the other algorithms. In terms of search time, the best algorithm is MGP+OC.
Then, we have MGP+OC+PF, MGP+PF and MGP. Finally, we have SA* and
far away GFRA*. MGP+OC is very efficient with Blockworld P20. Indeed, the
new goal is often contained in the open list of A*. Moreover, OC+PF enhances
significatively the naive version of MGP wrt search time but not plan length.
This can be explained by the optimistic behaviour of the PF variants of MGP:
when they make bad choices, the cost to pay is higher. In terms of plan length,
MGP and its variants produce longer plans than SA* and GFRA*. Two reasons
explain this difference. First, the OC strategy checks if the new goal was already
explored and then extracts directly a new plan from the search tree. This cannot
guarantee that the extracted plan is the shortest because the search tree was not
built for this goal. Second, the PF strategy, as shown by the figure 2(c), tends to
increase plan length. However, plan length narrows with the increase of the goal



Planning When Goals Change 239

change ratio and it is largely compensated by better search times and percentages
of success.

Overview of the Blockworld Domain. Figures 2(a), 2(b) and 2(c) show respec-
tively the results obtained in terms of percentages of success, search time and
plan length for all the problems of the blockworld benchmark. The problems
are ordered with respect to their complexity. In these experiments, the goal
change ratio is set to 5 to convert a large range of problems. The other pa-
rameters are unchanged: each experiment is repeated 100 times and 60 seconds
is allocated for each experiment. In terms of percentage of success, the results
are identical to Blockworld P20. GFRA* is widely outclassed. Its percentage of
success decreases to 20% from P16. Then, we have SA* which reaches 40% of
success at P21. Then, we have the variants of MGP. Their percentages of success
starts decreasing between the P22 and P23. Even if the results are comparable,
MGP+OC+PF performs better (90% of success) on P23 than MGP+PF (80%
of success), MGP+OC (70% of success) and MGP (50% of success). These re-
sults are similar on search time. Different variants of MGP outperform SA* and
GFRA* with search time less than 5 seconds. Here again, as for the problem
P20, MGP+OC performs slightly better. Finally, in terms of plan length, the
results on the other problems of Blockworld confirm the results on P20. SA* and
GFRA* plans are shorter than for the MGP variants.

4.4 Impact of the Delay Ratio and the Heuristic

In this section, we evaluate the impact of the delay ratio and the heuristic weight
on MGP+OC+PF which is the most efficient variant of MGP. On all tests, we
use the same problem (blockworld P20). Since MGP+OC+PF have a success
rate that is always close to 100%, we only present search time and plan length
results in this section.

Impact of the Delay Ratio. Figure 3(a) and 3(b) show respectively the search
time and the plan length wrt. the goal change ratio. We can make three observa-
tions. First, we see that the delay ratio significantly increases the performances.
For instance, MGP+OC+PF with a delay ratio of 2 is 6 times quicker than with
a delay ratio of 0 when the goal change ratio gr = 1. Second, search time and
plan length converge quickly on the same values with respect to the increase of
the goal change ratio. With gr ≥ 4, the delay ratio has no impact on the search
time and the plan length. Third, increasing the delay ratio augments the plan
length and reduces the search time. Consequently, the delay ratio must be a
tradeoff between the plan length and the search time.

Impact of the Heuristic Weight. Figures 4 shows respectively search time and
plan length wrt. the heuristic weight of MGP+OC+PF. The heuristic weight w
significantly increases the performances (MGP+OC+PF is 4 times quicker with
w = 2.0 than with w = 1.0 for a goal change ratio gr = 1). In addition, the
impact of w on the plan length is not significant: whatever the heuristic weight,
plan lengths are close for a given goal change ratio.



240 D. Pellier, H. Fiorino, and M. Métivier

(a) Search time with respect to the
delay & goal change ratios.

(b) Plan length with respect to the
delay & goal change ratios.

Fig. 3. Delay ratio impact in Blockworld P20

(a) Time – MGP+OC+PF (b) Plan length – MGP+OC+PF

Fig. 4. Heuristic weight impact in Blockworld P20

Table 1. Comparison of search time

Problem SA* GFRA* MGP OC PF OC+PF

airport p16 3,38 0,91 0,20 0,18 0,17 0,12
airport p19 - 13,48 0,40 0,36 0,37 0,21
depot p03 8,12 - 2,40 1,28 1,67 0,78
depot p07 - - 7,41 6,42 1,73 1,13
driverlog p03 0,03 0,02 0,33 0,22 0,18 0,17
driverlog p06 13,57 - 4,32 5,50 5,53 4,35
elevator p30 24,85 23,69 29,32 3,23 2,22 1,46
elevator p35 23,04 - - 44,60 35,31 20,80
freecell p20 10,94 - - 4,72 6,20 3,65
freecell p26 48,76 - 56,61 26,70 32,12 24,20
openstack p06 55,58 55,80 55,20 54,03 48,69 36,30
openstack p07 54,55 57,51 57,35 50,33 46,13 43,32
pipeworld p04 0,50 17,73 1,68 0,49 0,55 0,48
pipeworld p08 - - 18,02 13,89 13,70 12,51
pathway p02 15,60 9,52 6,92 3,53 2,83 1,74
pathway p04 - - - - 8,05 4,39
rover p03 23,35 14,17 3,72 2,85 2,15 1,87
rover p07 - - - 23,51 - 22,54
satellite p03 - 17,26 9,36 3,67 4,56 3,18
satellite p06 - - - - - 8,97

4.5 Performance Overview

In this section, we give an overview of the algorithms’ performances on different
IPC domains: table 1 shows the search time, table 2 shows the percentage of
success and table 3 presents the plan length. Each algorithm has been run 100
times to obtain statistically relevant results. Each experiment was allocated a
CPU time of 60 seconds. The delay ratio was set to 1.6 and the goal change ratio
to 100. The experimentation was carried out on all problems of each domain and
tables 1, 2 and 3 are parts of our results. The problems were chosen to show the



Planning When Goals Change 241

Table 2. Comparison of percentage of success

Problem SA* GFRA* MGP OC PF OC+PF

airport p16 97 100 100 100 100 100
airport p19 - 72 81 100 100 100
depot p03 10 - 99 30 60 100
depot p07 - - 33 12 14 88
driverlog p03 100 100 100 100 100 100
driverlog p06 1 - 1 56 88 98
elevator p30 69 99 91 100 100 100
elevator p35 1 - - 19 5 55
freecell p20 39 - - 99 100 100
freecell p26 56 - 1 100 100 100
openstack p06 77 48 62 70 96 99
openstack p07 44 15 21 100 99 99
pipeworld p04 99 7 99 99 98 100
pipeworld p08 - - 48 70 60 76
pathway p02 100 100 100 100 100 100
pathway p04 - - - - 22 48
rover p03 48 8 99 99 94 99
rover p07 - - - 32 - 52
satellite p03 - 1 4 16 15 52
satellite p06 - - - - - 28

Table 3. Comparison of plan length

Problem SA* GFRA* MGP OC PF OC+PF

airport p16 80,98 80,98 79,15 81,25 80,81 81,12
airport p19 - 91,98 90,12 91,52 90,62 91,14
depot p03 20,80 - 21,73 21,67 25,18 22,83
depot p07 - - 25,24 23,08 26,00 24,74
driverlog p03 7,30 4,14 8,42 11,57 12,57 9,57
driverlog p06 12,00 - 14,00 15,00 11,23 16,91
elevator p30 29,20 27,88 27,33 28,42 27,74 28,80
elevator p35 34,00 - - 33,05 32,20 32,18
freecell p20 29,97 - - 29,99 29,99 29,99
freecell p26 37,02 - 38,00 37,01 37,01 37,01
openstack p06 50,41 51,13 51,28 50,68 50,06 50,54
openstack p07 51,12 52,14 50,76 51,25 50,72 51,02
pipeworld p04 3,21 11,86 7,61 9,19 10,20 8,12
pipeworld p08 - - 18,21 21,09 19,76 21,02
pathway p02 27,18 26,39 26,27 26,93 37,02 40,76
pathway p04 - - - - 34,92 35,12
rover p03 44,53 44,73 44,40 44,54 44,66 44,24
rover p07 - - - 43,20 - 43,50
satellite p03 - 42,00 26,00 24,69 32,12 25,80
satellite p06 - - - - - 26,00

performances’ decrease of the algorithms as observed in Blockworld between the
problems 15 and 24.

In terms of search time, MGP+OC+PF is broadly quicker than the other
algorithms. Moreover, MGP+OC+PF outclasses MGP with one search delaying
strategy (either OC or PF) as well as SA* and GFRA*. Likewise, MGP+OC+PF
outclasses the other algorithms in terms of percentage of success. However, MGP
sometimes fails on problems solved by SA* (Elevator P35 and Freecell P26) even
if MGP is broadly better than SA* and GFRA*. Finally, in terms of plan length,
all algorithms find plans with close lengths.

To summarize the evaluation, OC and PF increase the performances of MGP,
which performs better than SA* or GFRA*. The combination of OC+PF strate-
gies give better results than MGP with one search delaying strategy. The results
obtained on different domains and problems confirm that MGP+OC+PF is the
best algorithm and GFRA* is outdistanced because it updates the heuristic value
of all states of the search tree at each incremental search.



242 D. Pellier, H. Fiorino, and M. Métivier

5 Conclusion

In this paper, we have proposed a novel approach to planning, called MGP,
which considers plan adaptation to constantly changing goals as a process pur-
suing ”moving” goals. MGP is based on an incremental Weighted-A* search and
interleaves planning and execution when the goal changes over time. In order to
limit the number of search iterations and to improve its efficiency, MGP delays as
much as possible starting new searches when the goal changes. To this purpose,
MGP uses two search delaying strategies: Open Check (OC) that checks if the
new goal is still in the search tree and Plan Follow (PF) that estimates whether
executing the actions of the current plan brings MGP closer to the new goal.
Moreover, MGP uses a parsimonious strategy based on an incremental update
of the search tree at each new search in order to reduce the expensive calls to
the heuristic function.

We have experimentally shown that MGP outperforms the naive approach
SA* and the state-of-the-art approach GFRA*. We have shown that the com-
bination of the search delaying strategies OC+PF gives better performances
than one search delaying strategy. Moreover, the delay ratio of the Plan Follow
(PF) strategy must be a tradeoff between plan length and search time while the
heuristic weight in the WA* search enhances the search time.

We are currently pursuing two concurrent lines of work: (1) generating goal
changes based on domain-dependent strategies and real-world applications and
(2) extending our approach to real-time planning where search and execution
are time bound.

References

1. Pellier, D., Fiorino, H., Métivier, M.: A new approach for continual planning. In:
AAMAS, pp. 1115–1116 (2013)

2. Nebel, B., Koehler, J.: Plan reuse versus plan generation: A theoretical and em-
pirical analysis. Artificial Intelligence 76, 427–454 (1995)

3. van der Krogt, R., de Weerdt, M.: Plan repair as an extension of planning. In:
ICAPS, pp. 161–170 (2005)

4. Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: Replanning versus plan
repair. In: ICAPS, pp. 212–221 (2006)

5. Ishida, T., Korf, R.: Moving target search. In: IJCAI, pp. 204–210 (1991)
6. Korf, R.: Real-Time Heuristic Search. Artificial Intelligence 42(2-3), 189–211 (1990)
7. Melax, S.: New approaches to moving target search. In: AAAI Falls Symp. Game

Planning Learn., pp. 30–38 (1993)
8. Koenig, S., Likhachev, M.: Adaptive A*. In: AAMAS, pp. 1311–1312 (2005)
9. Koenig, S., Likhachev, M., Sun, X.: Speeding up moving target search. In: AAMAS

(2007)
10. Sun, X., Koenig, S., Yeoh, W.: Generalized adaptive A*. In: AAMAS, pp. 469–476

(2008)
11. Stenz, A.: The focused D* algorithm for real-time replanning. In: IJCAI, pp. 1642–

1659 (1995)
12. Sun, X., Yeoh, W., Koenig, S.: Efficient incremental search for moving target

search. In: IJCAI, pp. 615–620 (2009)



Planning When Goals Change 243

13. Sun, X., Yeoh, W., Koenig, S.: Generalized Fringe-Retrieving A*: Faster Moving
Target Search on State Lattices. In: AAMAS, pp. 1081–1088 (2010)

14. Sun, X., Yeoh, W., Uras, T., Koenig, S.: Incremental ARA*: An Incremental Any-
time Search Algorithm for Moving Target Search. In: ICAPS (2012)

15. Likhachev, M., Gordon, M., Thrun, S.: ARA*: Anytime a* with provable bounds
on sub-optimality. In: NIPS (2003)

16. Finke, R., Nilsson, N.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 3-4(2), 189–208 (1971)

17. Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation Through
Heuristic Search. JAIR 14(1), 253–302 (2001)


	Planning When Goals Change:A Moving Target Search Approach
	1 Introduction
	2 Related Work
	3 Moving Goal Planning
	3.1 Problem Formulation
	3.2 Algorithm
	3.3 Implementation

	4 Experiments and Evaluation
	4.1 Simulation of the Goal Changes
	4.2 Experiment Framework
	4.3 Algorithms Comparisons on Blockworld
	4.4 Impact of the Delay Ratio and the Heuristic
	4.5 Performance Overview

	5 Conclusion
	References




