
Verifiable Multi-server Private Information

Retrieval

Liang Feng Zhang and Reihaneh Safavi-Naini

Institute for Security, Privacy and Information Assurance
Department of Computer Science

University of Calgary

Abstract. Private information retrieval (PIR) allows a client to retrieve
any block xi from a database x = x1 · · ·xn (stored on a server) such that
i remains hidden from the server. PIR schemes with unconditional pri-
vacy and sublinear (in n) communication complexity can be constructed
assuming multiple honest-but-curious servers. This assumption however
cannot be guaranteed in many real life scenarios such as using cloud
servers. There are also extra properties such as efficient update of the
database. In this paper, we consider a verifiable multi-server PIR (VPIR)
model where the servers may be malicious and provide fraudulent an-
swers. We construct an unconditionally t-private and computationally
secure k-server VPIR scheme with communication complexity compara-
ble to the best t-private k-server PIR scheme in the honest-but-curious
server model. Our scheme supports efficient update of the database, iden-
tification of the cheating servers, tolerance of slightly corrupted answers,
and multiple database outsourcing.

1 Introduction

Private information retrieval (PIR) allows a client to retrieve any block xi from
a database x = x1 · · ·xn (stored on a server) such that i remains hidden from
the server. The main efficiency measure of a PIR scheme is its communication
complexity and defined to be the total number of bits communicated for retriev-
ing a single bit of x. In a trivial PIR scheme, the client simply downloads x.
Although perfectly private, this solution has a prohibitive communication com-
plexity ≥ n. Chor et al. [5] showed that the trivial solution is optimal in terms of
communication complexity if there is only one server and perfect privacy is re-
quired. Non-trivial PIR schemes with communication complexity < n have been
constructed in information-theoretic (multi-server) setting [5,2,17] and computa-
tional (single-server) setting [13]. The former setting still provides privacy even
if the server spends unrestricted computational resources to recover i once xi

has been collected. Let 1 ≤ t < k. A k-server PIR scheme is said to be t-private
if no collusion of up to t servers can learn any information about i. The most
efficient t-private PIR scheme [17] with t > 1 has communication complexity
O(n1/�(2k−1)/t�) in the honest-but-curious server model.

The PIR servers’ computation complexity can be measured by the total num-
ber of database blocks read by the servers and is lower bounded by n in any

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 62–79, 2014.
c© Springer International Publishing Switzerland 2014

Verifiable Multi-server Private Information Retrieval 63

PIR schemes [3,1]. Advances in cloud computing makes it possible [14,6,12] to
implement multi-server PIR using cloud servers such that the high computation
complexity can be offloaded to the powerful clouds. However, the outsourcing
requires a stronger adversary model as the clouds may provide incorrect answers
due to malicious behaviors or accidental failures. In this paper, we strengthen
the honest-but-curious server model of the existing multi-server PIR schemes
[5,2,17] to provide security against malicious servers. We require that the client
should be able to identify the malicious servers. This is very important as an
unidentified malicious server can result in system failure without concern about
its reputation. In practice, very few databases stay unchanged over time. Thus,
we also would like our PIR scheme to have extra properties such as efficiently
updating the outsourced database and catering for multiple databases. In a triv-
ial malicious server PIR scheme the database owner may sign each block xi of
the database using any signature scheme and then send the “extended database”
of (block, signature) to the clouds; the client can use any PIR scheme to retrieve
xi along with its signature from the “extended database” and then verify. How-
ever, this solution becomes insecure after the first database update as the server
can always use old (block, signature) pairs without being detected. To improve
this trivial solution, the database owner may consider x1, . . . , xn as leaves of a
Merkle tree and publish the root of this tree for verification. To access one block,
in this case one leaf of the tree, the client runs a multi-server PIR scheme once
for each layer of the tree, obtains the required block and the siblings of all nodes
on the path from the leaf to the root and verifies the result against the root
of the tree. This solution provides basic update but with higher cost; and more
importantly, it does not allow identification of cheating clouds; it treats each
database individually with no saving when multiple databases are outsourced.

1.1 Our Contributions

In this paper, we consider verifiable multi-server PIR schemes that support effi-
cient update, cheater identification and multiple database delegations.

VPIR Model. We introduce a verifiable multi-sever PIR (VPIR) model (see
Figure 1) that consists of a database owner D, a client C and k clouds S1, . . . ,Sk.
Let λ be a security parameter. D has a database x = x1 · · ·xn ∈ F

n
p , where

n is a polynomial of λ and p is a λ-bit prime. The client C has an index
i ∈ [n] and wants to learn xi from the clouds, without revealing i. In a VPIR
scheme Γ = (KeyGen, Setup,Query,Answer,Challenge,Respond,Verify,Update),
D is responsible to set up the system and update x. To set up the system,
D runs a key generation algorithm (pk, sk) ← KeyGen(1λ, n) and a setup algo-
rithm vkx ← Setup(pk, sk, x). It publishes (pk, vkx) and gives x to every cloud.
To update the database from x to x′, D runs an update algorithm vkx′ ←
Update(pk, sk, vkx, x

′), publishes vkx′ and then instructs each cloud to change
x to x′. To retrieve xi, the client runs a query algorithm (Q1, . . . , Qk, aux) ←
Query(pk, i) and sends a query Qj to Sj for every j ∈ [k]. The cloud Sj runs
an answer algorithm Aj ← Answer(pk, x,Qj) and replies with Aj . To verify Aj ,
the client runs a challenge algorithm (I1, . . . , Ik) ← Challenge(pk) to produce

64 L.F. Zhang and R. Safavi-Naini

a challenge Ij for every cloud Sj and the cloud Sj must respond with a proof
σj ← Respond(pk, x,Qj , Ij) vouching for the correctness of Aj . At last, if the k
answers A1, . . . , Ak are all correct, then the client can run an extract algorithm
Extract(pk, vkx, {(Aj , Ij , σj) : j ∈ [k]}, aux) to compute xi. The running time of
all algorithms must be polynomial in λ.

C

i

xi
···

Aj

σj

x D

publish pk, vkx

S1

Sj

Sk

Qj

Ij

···

x

x

x

Fig. 1. Verifiable multi-server PIR

We define privacy (information theoretic) and verifiability (computational) of
the system in line with the privacy in PIR and the security in VC. The defi-
nition is justified because the privacy attacker has unlimited time to break the
system, while verifiability of the clouds’ answers should be provided without de-
lay. The clouds’ answers are verified individually and so the cheating clouds can
be identified. The public key pk can be used for outsourcing multiple databases.
In fact it can be computed and published once by a third party and used by
many database owners. The algorithm Update only requires the difference be-
tween x′ and x and the algorithm Extract only requires a small portion of pk.
Throughout the paper, the size |w| of any string w is defined to be the number
of λ-bit blocks it contains.

VPIR Constructions. We propose a basic construction Γ0 and a main con-
struction Γ1 of VPIR schemes. The basic construction is obtained by adding
verifiability [15] to the best t-private PIR scheme [17]. As a main drawback, the
communication complexity of Γ0 squares that of the underlying PIR scheme [17].
The main construction reduces this cost to be comparable to [17]. Let t < k and
d = �(2k − 1)/t�. Let m > 0 be such that

�m
d

� ≥ n. The main construction Γ1

has the following properties.

Privacy. The scheme Γ1 achieves unconditional t-privacy in the sense that any
collusion of up to t clouds learns no information about the client’s index i, even
if they have unlimited computing power.

Security. No cloud Sj can deceive the client into accepting an incorrect answer
Āj with a forged proof σ̄j , except with negligible probability. In particular, the
client can identify any cheating cloud by verifying that cloud’s answer. The
security is based on the (m+ d− 1)-SBDH assumption (see Definition 2).

Communication. Each block of our database x has λ bits and so the communica-
tion complexity of our VPIR schemes is the number of λ-bit blocks communicated

Verifiable Multi-server Private Information Retrieval 65

by the client. To retrieve a block xi, the client sends a query Qj of size O(m) to
each cloud Sj and receives an answer Aj of size O(m). It also sends Sj a challenge
Ij of sizeO(logm) and receives a proof σj of sizeO(λm). Thus, the communication
complexity of Γ1 is O(λm) = O(λn1/�(2k−1)/t�).
Computation. (1) Client: The computation ofQ1, . . . , Qk consists of evaluating
m univariate polynomials of degree ≤ t over Fp. The verification of each answer
Aj consists of checking λ equations, where each equation requires ≤ 2m bilinear
paring computations. The extraction of xi from A1, . . . , Ak consists of interpo-
lating and evaluating a univariate polynomial of degree ≤ 2k − 1. The client’s
computation is dominated by O(m) pairing computations. (2) Cloud: The com-
putation of Aj consists of evaluating a polynomial Px(z, y) (see equation (2))
at O(m) points. The computation of σj consists of decomposing Px (see Lemma
1) and computing O(m) bilinear group elements and O(m) field elements. We
show that the response time of each cloud in Γ1 can be significantly reduced by
distributing the PIR server computation to its numerous computing units.

Storage. Cloud: In Γ1, each cloud stores a copy of x. Client: The client uses
(vkx, aux) and O(m) elements of pk for verification and reconstruction. For each
retrieval, the client also temporarily stores k triples {(Aj , Ij , σj) : j ∈ [k]} of
total size O(λm).

Update. To change one block of x, say xi to x′
i, D needs to compute vkx′ for

x′ = x1 · · ·xi−1x
′
ixi+1 · · ·xn using d + 1 multiplications in a bilinear group of

order p, and then instructs each cloud to change xi to x′
i. Note that d is a

constant. Hence, the update complexity is O(1). The update is verifiable in the
sense that any cloud that does not change x accordingly will be detected as
cheating in the future executions of Γ1.

Additional Properties. The construction Γ1 also provides two additional
properties. Error Tolerance: Each cloud’s answer in Γ1 is a codeword under a
Reed-Solomon code. We show how to modify Γ1 such that slight corruptions of
each cloud’s answer can be tolerated. Multiple Database Delegation: The system
public key pk has size (2d+ 2+ o(1))n and can be used by any database owner
to delegate their database. For each database x, a short (one group element)
public verification key vkx will be published. Updating the database x is done
by updating this short key.

1.2 Related Work

PIR with Malicious Servers. Constructing PIR schemes that are secure in a
malicious server model is well-motivated and has been put forth by Beimel [1].
The GMW compiler [10] allows one to compile any PIR scheme in the honest-
but-curious server model into a PIR scheme in the malicious server model. How-
ever, its communication complexity is higher than the trivial PIR scheme and
thus much higher than Γ1. The robust multi-server PIR schemes that tolerate a
limited number of malicious servers have been studied in [4,9,7]. The communi-
cation complexities of all these schemes are much higher than Γ1. Furthermore,
if all the answering servers in these schemes collude with each other, then the

66 L.F. Zhang and R. Safavi-Naini

client may be deceived into computing an incorrect value of xi. In contrast, the
client in Γ1 will reject and not be deceived. More importantly, the PIR schemes
of [4,9,7] do not support update, while the database owner in Γ1 can efficiently
and verifiably update its outsourced database x.

Outsourced PIR. The practicality of outsourcing PIR has been demonstrated
by [14,6,12]. Mayberry et al. [14] presented a MapReduce-based outsourced
single-server PIR scheme called “PIRMAP” which is more than one order of
magnitude faster than the trivial PIR scheme. Devet [6] developed paralleliza-
tion techniques that significantly reduce each cloud’s response time by distribut-
ing the delegated PIR server computation among its numerous computing units.
Huang et al. [12] combined certain multi-server PIR with oblivious RAM to ob-
tain outsourced PIR schemes where the access patterns of the database owner
and all clients are hidden from the clouds. None of the schemes [14,6,12] consider
malicious clouds.

C

i

xi

···

aj

x
D

S1

Sj

Sk

qj

···

x

x

x

C

α

F (α)

a, σ

F D

publish pk, vkF

Sα, cα

F

Fig. 2. Private information retrieval and public verifiable computation

1.3 Building Blocks and Our Techniques

Woodruff-Yekhanin PIR Scheme. Let t, k > 0 be integers such that 1 ≤ t <
k. A t-private k-server PIR scheme (see Figure 2) involves a database owner D, a
client C and k servers S1, . . . ,Sk, where D has a database x = x1 · · ·xn ∈ F

n
p and

C wants to learn xi. The D does not directly communicate with the client but
gives x to each server. To privately retrieve xi, the client computes a query qj
to each server Sj and receives an answer aj in return. The queries are computed
such that any t of them give no information about i; the k answers allow the
client to recover xi. Let d = �(2k−1)/t� and m = O(n1/d) be such that

�m
d

� ≥ n.
Let IndEnc : [n] → F

m
p be a 1-to-1 index encoding that maps any index i ∈ [n]

to a 0-1 vector of Hamming weight d. Let

Fx(z) = PolyEnc0(x) �
n�

j=1

xj

�

�:IndEnc(j)�=1

z� (1)

be a polynomial encoding of x of total degree ≤ d in z = (z1, . . . , zm) such that
Fx(IndEnc(i)) = xi for every i ∈ [n]. Woodruff and Yekhanin [17] constructed
a PIR scheme Πwy where the client simply computes Fx(z) at its private input
IndEnc(i) with the servers. The client computes k queries q1, . . . , qk as k shares of

Verifiable Multi-server Private Information Retrieval 67

IndEnc(i) under Shamir’s t-private threshold secret sharing scheme; each server
Sj answers with aj = (Fx(qj),

∂Fx
∂z1

|qj , . . . , ∂Fx
∂zm

|qj); from a1, . . . , ak the client can
interpolate a univariate polynomial of degree < 2k whose evaluation at 0 gives
xi. In Πwy the client sends m field elements (i.e., qj ∈ F

m
p) to each server and

receivesm+1 field elements (i.e., aj). Its communication complexity is k(2m+1).

Papamanthou et al. PVC Schemes. Papamanthou et al. [15] introduced
a publicly verifiable computation (PVC) model (see Figure 2) that involves a
function owner D, a cloud S and a client C, where D has a function F ∈ F and
C wants to learn F (α). The function owner computes (pk, vkF), makes them
public and then gives F to the cloud; the client gives α and a challenge cα to
the cloud; the cloud computes a = F (α) and a proof σ using (pk, F); at last, the
client can verify a using (pk, vkF , σ). Let F ⊆ Fp[z] be the set of polynomials
of total degree ≤ d in z = (z1, . . . , zm). Papamanthou et al. [15] constructed a
scheme Π0 (Section B.1, eprint version of [15]) which allows the client to verify
the result F (α) from S for any (F, α) ∈ F × F

m
p and a scheme Π1 (Corollary 1,

eprint version of [15]) that allows the client to verify the result ∂F
∂z�

��
α
from S for

any ((F, �), α) ∈ (F × [m]) × F
m
p . In both schemes, the client sends a challenge

cα of size m− 1 to the cloud and receives a proof of size O(m).

Our Constructions. Our basic VPIR construction Γ0 is a composition of Πwy,
Π0 and Π1. In Γ0, each cloud Sj performs the computation of the jth server
in Πwy. The computation of aj by Sj involves one evaluation and m differenti-
ations of the polynomial Fx(z) at qj . We simply enforce the integrity of these
computations using Π0 and Π1, respectively.

In Γ0, the client sends a challenge of sizem−1 to Sj and receives a proof of size
O(m) from Sj for every component of aj . Thus, the communication complexity of
Γ0 is k(m+1) ·O(m) = O(m2) and squares that of Πwy. Our main construction
Γ1 reduces it to O(λm) by limiting the proof size of each cloud. To do so, a
natural idea is using probabilistic verification: for every j ∈ [k], the client verifies
only λ random components of aj . If the cloud Sj has tampered with a constant
fraction (say δ) of aj, then Sj will be detected with overwhelming probability
1 − (1 − δ)λ. However, a clever Sj may tamper with only one component of aj
and deceive the client with non-negligible probability (1 − 1

m+1)
λ. To thwart

this attack, we encode aj using an error-correcting code C : Fm+1
p → F

M
p such

that Sj must change a constant fraction of Aj = C(aj) in order to change aj ,
where M = O(m+ 1). Otherwise, the client can decode aj from Aj . We take C
to be the Reed-Solomon code that encodes any message w = w0 · · ·wm ∈ F

m+1
p

as C(w) = (fw(γ1), . . . , fw(γM)), where fw(y) = w0 + w1y + · · · + wmym and
γ1, . . . , γM ∈ Fp are distinct. Let

Px(z, y) = PolyEnc1(x) � Fx(z) +
m�

�=1

∂Fx(z)

∂z�
y�, (2)

where Fx(z) = PolyEnc0(x). Then Aj = C(aj) = (Px(qj , γ1), . . . , Px(qj , γM)).
The client in Γ1 learns Aj from Sj and then randomly verifies λ components
of Aj . If Sj tampers with a constant fraction of Aj , then it will be detected;
otherwise, the client can recover aj . The client can use Π0 to verifiably compute

68 L.F. Zhang and R. Safavi-Naini

the (m+1)-variate polynomial Px of total degree ≤ m+d− 1. But that requires
a public key of size

� 2m+d
m+d−1

�
= exp(O(n)). We develop a new PVC scheme Π2

for Px which requires a public key of size (2d + 2 + o(1))n. In Π2, the client
sends a challenge of size m to the cloud and receives a proof of size O(m). Thus,
the λ proofs required by our client have total size O(λm). Our client must send
the M challenges for computing Aj , and then ask for the λ proofs only after
Aj has been received; otherwise the cloud will know which λ components of
Aj will be verified and then break the security by changing other components.
However, we observe that these challenges can be chosen such that they are
equal to each other without compromising the security. That is, the client can
send one common challenge of size O(m) for the M computations. Enforcing the
integrity of computing Px using Π2 with probabilistic verification and common
challenge gives us a VPIR scheme of communication complexity O(λm).

2 Preliminaries

2.1 Our Model

We denote any negligible function in λ by neg(λ) and any polynomial function
in λ by poly(λ). Our VPIR model (see Figure 1) involves a database owner D,
a client C and k clouds S1, . . . ,Sk, where D has a database x = x1 · · ·xn ∈ F

n
p

and the client C wants to privately retrieve xi.

Definition 1. A k-server VPIR scheme is a tuple Γ = (KeyGen, Setup,Query,
Answer,Challenge,Respond,Extract,Update) of eight algorithms, where

– (pk, sk) ← KeyGen(1λ, n) is a key generation algorithm which takes as input
(λ, n) and outputs a public key pk and a secret key sk;

– vkx ← Setup(pk, sk, x) is a setup algorithm which takes as input (pk, sk) and
any database x ∈ F

n
p and outputs a public verification key vkx;

– (Q1, . . . , Qk, aux) ← Query(pk, i) is a query algorithm which takes as input
pk and any index i ∈ [n] and outputs k queries Q1, . . . , Qk along with some
auxiliary information aux;

– Aj ← Answer(pk, x,Qj) is an answer algorithm which computes an answer
Aj from (pk, x,Qj);

– (I1, . . . , Ik) ← Challenge(pk) is a challenge algorithm that generates k chal-
lenges I1, . . . , Ik for the clouds;

– σj ← Respond(pk, x,Qj , Ij) is a respond algorithm which takes as input
(pk, x,Qj , Ij) and outputs a proof σj vouching for the correctness of Aj;

– {xi,⊥} ← Extract(pk, vkx, {(Aj , Ij , σj) : j ∈ [k]}, aux) is an extract algo-
rithm that reconstructs xi or outputs ⊥ (to indicate failure);

– vkx′ ← Update(pk, sk, vkx, x
′) is an update algorithm which generates a new

public verification key vkx′ from (pk, sk, vkx) and the new database x′.

The database owner D is responsible to set up the system and update x. To set
up the system, D runs KeyGen and Setup to compute (pk, sk) and vkx, publishes
(pk, vkx) and gives x to every cloud. To update the database from x to x′, D

Verifiable Multi-server Private Information Retrieval 69

runs Update to compute vkx′ , publishes vkx′ and then instructs each cloud to
change x to x′. To retrieve xi, C runs Query to compute (Q1, . . . , Qk, aux) and
sends a query Qj to the cloud Sj for every j ∈ [k]. The cloud Sj runs Compute,
computes and replies with Aj . To verify these answers, the client runs Challenge
to generate k challenges (I1, . . . , Ik). Each cloud Sj generates a proof σj using
Respond. At last, the client can run Extract to verify the k answers A1, . . . , Ak

and then compute xi if all answers are correct.

Correctness. The scheme Γ is said to be correct if the extract algorithm al-
ways outputs the correct value of xi when all k clouds are honest. Formally, let
(pk, sk) ← KeyGen(1λ, n). Let x(0) ∈ F

n
p and vkx(0) = Setup(pk, sk, x(0)). For u =

1, . . . , U(= poly(λ)), let vkx(u) ← Update(pk, sk, vkx(u−1) , x(u)). Π is correct if for
any u ∈ {0, 1, . . . , U}, any i ∈ [n], any (Q1, Q2, . . . , Qk, aux) ← Query(pk, i) and
any (I1, . . . , Ik) ← Challenge(pk), it holds that Extract(pk, vkx(u) , {(Aj , Ij , σj) :

j∈ [k]}), aux)=x
(u)
i , where Aj=Answer(pk, x(u), Qj) and σj = Respond(pk, x(u),

Qj, Ij) for every j ∈ [k].

t-Privacy. The scheme Γ is said to be (unconditionally) t-private if no collusion
of up to t servers can learn any information about i. Formally, Γ is (uncondi-
tionally) t-private if for any k, n, any i1, i2 ∈ [n] and any set T ⊆ [k] of size
|T | ≤ t, the distributions of QueryT (pk, i1) and QueryT (pk, i2) are identical,
where QueryT denotes concatenation of j-th outputs of Query for j ∈ T .

Security. The scheme Γ is said to be secure if no probabilistic polynomial time
(PPT) adversary can deceive the client into reconstructing an incorrect value
of xi. Formally, Γ is secure if no PPT adversary A can win with non-negligible
probability in the following security game:

1. The challenger picks (pk, sk) ← KeyGen(1λ, n) and then gives pk to A.
2. A picks a database x(0) ∈ F

n
p and makes a query Setup(pk, sk, x(0)) to the chal-

lenger. The challenger returns vkx(0) . For u = 1, . . . , U(= poly(λ)), A makes a
query Update(pk, sk, vkx(u−1) , x

(u)). The challenger returns vkx(u) every time.
3. A picks u ∈ {0, 1, . . . , U}, i ∈ [n] and then gives (u, i) to the challenger. The

challenger gives k queries (Q1, . . . , Qk) to A and stores a string aux. A returns k
answers (Ā1, Ā2, . . . , Āk). The challenger then gives k challenges (I1, . . . , Ik) to
A and receives k proofs (σ̄1, σ̄2, . . . , σ̄k) in return.

4. A wins if Extract(pk, vkx(u) , {(Āj , Ij , σ̄j) : j ∈ [k]}, aux) /∈ {x(u)
i ,⊥}.

In our security game, A cannot deceive the client into computing an incorrect

value of x
(u)
i even if it can freely choose and update the database x. Thus, a VPIR

scheme secure under our definition above not only allows the client to verifiably
retrieve any block from the database, but also allows D to verifiably update its
outsourced database without compromising the security. The query, answer and
communication complexities of Γ are defined to be QCΓ = max{|Qj | + |Ij |},
ACΓ = max{|Aj |+ |σj |} and CCΓ =

�k
j=1(|Qj |+ |Ij |+ |Aj |+ |σj |), respectively.

70 L.F. Zhang and R. Safavi-Naini

2.2 Woodruff-Yekhanin PIR Scheme

Let 1 ≤ t < k and d = �(2k − 1)/t�. Let m = O(n1/d) be such that
�m
d

� ≥ n.
Let β1, . . . , βk ∈ F

∗
p be distinct. Let IndEnc : [n] → F

m
p be the 1-to-1 index

encoding that maps any index i ∈ [n] as a 0-1 vector of Hamming weight d. Let
Fx(z) be the polynomial encoding of any database x ∈ F

n
p (see (1)) such that

Fx(IndEnc(i)) = xi for every i ∈ [n]. Woodruff and Yekhanin’s t-private k-server
PIR scheme is a triple Πwy = (Query,Answer,Extract) of algorithms, where

– (q1, . . . , qk, aux) ← Query(i) is a query algorithm that picks v1, . . . , vt ← F
m
p ;

computes a query qj = IndEnc(i) + βjv1 + · · ·+ βt
jvt for every j ∈ [k] and an

auxiliary information aux = {v1, . . . , vt}.
– aj ← Answer(x, qj) is an answer algorithm that computes aj,0 = Fx(qj) and

aj,� =
∂Fx

∂z�

��
qj

for every � ∈ [m] and outputs aj = (aj,0, aj,1, . . . , aj,m).

– Extract(a1, . . . , ak, aux) is an extract algorithm that interpolates a polyno-
mial f(y) = Fx(IndEnc(i) + yv1 + · · ·+ ytvt) and outputs f(0) = xi.

The algorithm Query will be run by the client to generate k queries and aux; the
algorithm Answer will be run by each server to compute an answer; the algorithm
Extract will be run by the client to recover xi. In Πwy, the k queries q1, . . . , qk are
k shares of IndEnc(i) under Shamir’s t-private threshold secret sharing scheme.
Thus, no t or less servers can learn any information about i and thus the t-privacy
follows. The communication complexity of Πwy is k(2m+ 1) = O(m).

2.3 Papamanthou et al. PVC Schemes

Papamanthou et al.’s PVC scheme [15] (see Figure 2) is a tuple Π = (KeyGen,
Setup,Challenge,Compute,Verify,Update) of six algorithms, where

– (pk, sk) ← KeyGen(1λ,F) is a key generation algorithm that takes as input
λ and a function family F and outputs a public key pk and a secret key sk;

– vkF ← Setup(pk, sk, F) is a setup algorithm that computes a public verifi-
cation key vkF for any F ∈ F with the knowledge of (pk, sk);

– cα ← Challenge(pk, α) is a challenge algorithm that produces a challenge cα
for any α in the domain of F ;

– (a, σ) ← Compute(pk, F, α, cα) computes a = F (α) along with a proof σ;
– {F (α),⊥} ← Π.Verify(pk, vkF , α, cα, a, σ) is a verification algorithm that

checks if a is indeed equal to F (α);
– vkF ′ ← Update(pk, sk, vkF , F

′) is an update algorithm that computes a
public verification key vkF ′ based on (pk, sk, vkF) and the changes of the
new function F ′ with respect to F .

In a PVC scheme, D is responsible to set up the system and update F . To set
up the system, D runs the first two algorithms to compute (pk, sk) and vkF . It
publishes (pk, vkF) and gives F to the cloud. To update the function from F
to F ′, D runs Update to compute vkF ′ , publishes vkF ′ and instructs the cloud
S to change F to F ′. To compute F (α), the client C runs Challenge and picks

Verifiable Multi-server Private Information Retrieval 71

a challenge cα to the cloud. The cloud runs Compute and replies with (a, σ).
At last, the client runs Verify to check if a is indeed equal to F (α). The query,
answer and communication complexities ofΠ are defined to be |α|+ |cα|, |a|+ |σ|
and |α| + |cα|+ |a|+ |σ|, respectively. Let F = {ze11 · · · zemm : e1 + · · ·+ em ≤ d}
and F = span(F) ⊆ Fp[z]. Papamanthou et al. [15] constructed a PVC scheme
Π0 and a PVC scheme Π1 for computing the evaluations and differentiations of
any F ∈ F . In both schemes, the client sends a challenge of size m − 1 to the
cloud and receives a proof of size O(m) in return. We also observe that the Verify
in both schemes uses at most m+ d− 2 out of the

�m+d
d

�
components of pk.

2.4 Bilinear Maps and Assumptions

Let G be a generator which takes λ as input and outputs a bilinear map instance
(p,G,GT , e, g), where G = 〈g〉 and GT are cyclic groups of prime order p; and
e : G×G → GT is a non-degenerate bilinear map such that e(ga, gb) = e(g, g)ab

for any a, b ∈ Fp and e(g, g) is a generator of GT .

Definition 2. (d-SBDH) Let Λ = (p,G,GT , e, g) ← G(1λ). Let d = poly(λ). We
say that the bilinear d-strong Diffie-Hellman assumption holds if for any PPT

algorithm A, Pr[s ← F
∗
p : A(Λ, g, gs, . . . , gs

d

) = (θ, e(g, g)1/(s+θ))] < neg(λ),
where θ ∈ F

∗
p \ {−s}.

3 Our Constructions

In this section we first present our basic construction Γ0 as a composition of
Πwy, Π0 and Π1. We then improve Γ0 to our main construction Γ1 whose com-
munication complexity is comparable to the PIR of [17].

3.1 Basic Construction

In Πwy the PIR servers’ computations consist of evaluating and differentiating
the polynomial Fx(z) = PolyEnc0(x) at k points q1, . . . , qk which are k shares of
IndEnc(i) under Shamir’s t-private threshold secret sharing scheme. In Γ0 (see
Fig. 3), the k clouds S1, . . . ,Sk perform these computations on behalf of the
PIR servers. For every j ∈ [k], the client runs Π0 with Sj to compute aj,0 and
runs Π1 with Sj to compute aj,� for every � ∈ [m].

Correctness, Privacy and Security. The correctness of Γ0 follows from that
of Πwy, Π0 and Π1. The only information about i that the clouds can learn is
from the k points q1, . . . , qk which are k shares of IndEnc(i) under Shamir’s t-
private threshold secret sharing scheme. Thus, no collusion of up to t clouds can
learn any information about IndEnc(i), i.e., Γ0 achieves unconditional t-privacy.
In Γ0, the client runs k(m+1) independent Π0 and Π1 instances with the clouds.
If any cloud can break one of the instances, then we can simulate that cloud to
break the d-SBDH assumption as in the security proofs of Π0 and Π1 (see [15]
for the proofs). Hence, Γ0 is secure under the d-SBDH assumption.

Theorem 1. Γ0 is an unconditionally t-private and computationally secureVPIR
scheme. Its security is based on the d-SBDH assumption.

72 L.F. Zhang and R. Safavi-Naini

KeyGen(1λ, n): Output (pk, sk) ← Π0.KeyGen(1
λ, span(F)), where sk = τ ∈ F

m
p .

Setup(pk, sk, x): Output vkx ← Π0.Setup(pk, sk, Fx).

Query(pk, i): Compute (q1, . . . , qk, aux
′) ← Πwy.Query(i). For every j ∈ [k] and � ∈

{0, 1, . . . ,m}, compute cj,� ← Π.Challenge(pk, qj), where Π = Π0 if � = 0 and
Π = Π1 otherwise. Output Qj = (qj , cj,0, cj,1, . . . , cj,m) for all j ∈ [k] and aux =
(aux′, {cj,� : j ∈ [k], 0 ≤ � ≤ m}).
Answer(pk, x,Qj): Compute (aj,�, σj,�) ← Π.Compute(pk,Fx, qj , cj,�), where Π = Π0

if � = 0 and Π = Π1 if � ∈ [m]. Output Aj(= aj) = (aj,0, aj,1, . . . , aj,m).

Challenge(pk): For every j ∈ [k], set Ij = {0, 1, . . . ,m}. Output (I1, . . . , Ik).

Respond(pk, x,Qj , Ij): Output σj = {σj,� : � ∈ Ij}.
Extract(pk, vkx, {(Aj , Ij , σj) : j ∈ [k]}, aux): Compute bj,� = Π.Verify(pk, vkx, qj , cj,�,
aj,�, σj,�), for every j ∈ [k] and � ∈ Ij . where Π = Π0 if � = 0 and Π = Π1 otherwise.
If all bj,�’s are 1, output xi = Πwy.Extract(A1, . . . , Ak, aux

′). Otherwise, output ⊥.

Update(pk, sk, vkx, x
′): Output vkx′ ← Π0.Update(pk, sk, vkx,PolyEnc0(x

′)).
Fig. 3. The scheme Γ0

Complexity. The database owner D runs Π0.KeyGen and Π0.Setup to set up
the system. Both algorithms are executed once and take time O(n). D may also
run Π0.Update to update x. To change one component of x, D needs to multiply
vkx with one element from {gh(τ) : h(z) ∈ F} (see [15]). Therefore, the update
complexity is O(1). The client C computes and sends Qj and Ij to the cloud Sj

for every j ∈ [k]. It receives Aj and σj . Therefore, QCΓ0 = max{|Qj| + |Ij |} =
O(m2), ACΓ0 = max{|Aj |+ |σj|} = O(m2) and CCΓ0 = O(m2). For verification,
the client uses aux (|aux| = O(m2)) and m + d − 2 = O(m) components of pk.
Each cloud stores x, runs Π0.Compute once and Π1.Compute m times.

Variant. In Γ0, the client communicates four messages Qj, Aj , Ij and σj with
every cloud Sj in two rounds. Note that Ij is always equal to {0, 1, . . . ,m}. We
can merge the four messages and obtain a two-message version of Γ0: the client
simply sends Qj to each cloud Sj and Sj replies with (Aj , σj). Thus, our basic
construction can be made into one round.

3.2 Main Construction

In this section, we reach Γ1 using a series of modifications to Γ0. For every
j ∈ [k], the client in Γ0 sends a queryQj = (qj , cj,0, cj,1, . . . , cj,m) and a challenge
Ij = {0, 1, . . . ,m} to Sj , where qj ∈ F

m
p , cj,0, cj,1, . . . , cj,m ∈ (F∗

p)
m−1. Clearly,

|Qj |+ |Ij | contributes O(m2) to CCΓ0 . If we use a common challenge cj,0 = cj,1 =
· · · = cj,m = cj ∈ (F∗

p)
m−1 in Γ0, then |Qj|+ |Ij | would be reduced to O(m) for

every j ∈ [k] and thus
�k

j=1(|Qj |+ |Ij |) will be reduced to O(m). We shall see

that this modification will not compromise the security of Γ0. We denote by Γ ′
0

this modified version of Γ0.
In Γ ′

0, each cloud Sj answers with aj = (aj,0, aj,1, . . . , aj,m) and responds with
σj = (σj,0, σj,1, . . . , σj,m), which contributes |aj |+|σj | = O(m)+O(m2) = O(m2)
to CCΓ ′

0
. If we can modify Γ ′

0 such that only O(λ) components of σj are needed

Verifiable Multi-server Private Information Retrieval 73

to verify aj , then we would reduce CCΓ ′
0
to O(λm). A natural idea is performing

probabilistic verification: instead of requesting the σj from Sj , the client requests
λ random components of σj , say {σj,� : � ∈ Ij}, where Ij ⊆ {0, 1, . . . ,m} is a
random λ-subset; the client accepts aj only if (aj,�, σj,�) verifies for every � ∈ Ij .
More precisely, Γ ′

0.Challenge will simply output k independent random λ-subsets
I1. . . . , Ik ⊆ {0, 1, . . . ,m}. We denote by Γ ′′

0 this modified version of Γ ′
0. Note

that the modification should not compromise the security of Γ ′′
0 . If a constant

fraction (say δ) of the elements of aj have been tampered with by Sj , then
except with negligible probability (1− δ)λ at least one element of {aj,� : � ∈ Ij}
happens to be tampered with and therefore Sj will be detected. However, a
clever Sj may tamper with only one element of aj . This will allow Sj to deceive
the client C into accepting aj with non-negligible probability (1− 1

m+1)
λ. Then

k such malicious clouds would be able to deceive the client into accepting their
answers a1, . . . , ak with non-negligible probability as λ = o(m) and k = O(1).
Whenever this occurs, the client will compute a wrong value of xi from those
answers, i.e., the security of Γ ′′

0 is compromised.
In order to thwart this attack, we ask the cloud Sj to return an encoding

Aj of aj under an error-correcting code C : Fm+1
p → F

M
p , such that Sj must

change a constant fraction of Aj in order to change even one component of aj .
Furthermore, the client turns to verify Aj . Let C be an [M,m + 1, d′]p linear
code with constant expansion ρ = M/(m+1) and error rate δ = (d′ − 1)/(2M),
then Γ ′′

0 can be further modified as below: the cloud Sj answers with Aj =
(Aj,1, . . . , Aj,M) = C(aj) instead of aj ; the client gives a random λ-subset Ij ⊆
[M] to Sj and Sj returns the proofs for {Aj,� : � ∈ Ij}; the client then verifies Aj,�

for every � ∈ Ij ; it accepts and decodes Aj to aj only if all the verifications are
successful. Let Γ ′′′

0 be this modified version of Γ ′′
0 . If such an idea of modifying

Γ ′′
0 can be realized, then each cloud Sj can deceive the client into accepting

āj
= aj only if it tampers with > δM components of Aj but {Aj,� : � ∈ Ij}
are not tampered with. Clearly, this event occurs with probability ≤ (1 − δ)λ,
which is negligible. On the other hand, if Sj only tampers with < δ fraction of
Aj , then the client can correctly decode aj from Aj .

A remaining problem is how to chooseC such that the idea can be realized, i.e.,
enable the verifiable computation of Aj . We take C to be an [M,m+1,M −m]p
Reed-Solomon code with constant expansion ρ = M/(m + 1) and error rate
δ = 1

2 − 1
2ρ . Under this choice each cloud Sj answers with Aj = C(aj) =

(faj (γ1), faj (γ2), . . . , faj (γM)), where faj(y) = aj,0 + aj,1y + · · · + aj,mym and

γ1, . . . , γM ∈ Fp are distinct. Recall that aj,0 = Fx(qj) and aj,� = ∂Fx

∂z�

��
qj

for

every � ∈ [m]. Let Px(z, y) = PolyEnc1(x). Then faj (γ�) = Px(qj , γ�) for every
� ∈ [M], where (qj , γ�) ∈ F

m+1
p . Thus, computing Aj is equivalent to evaluating

Px at M points (qj , γ1), . . . , (qj , γM). The PVC scheme Π0 can compute m-
variate polynomials of total degree ≤ m + d − 1 which in particular include
Px. However, that requires a public key of size

� 2m+d
m+d−1

�
which is exponential in

n ≤ �md
�
as m = ω(1) and d = O(1). Below we construct a new PVC scheme Π2

for evaluating Px. Enforcing the integrity of computing Px using Π2 with the
common challenge and the probabilistic verification techniques gives us Γ1.

74 L.F. Zhang and R. Safavi-Naini

Let P0 be the set of all monomials ze11 · · · zemm with e1, . . . , em ∈ {0, 1} and
e1 + · · · + em = d. Let P1 be the set of all monomials yu · ze11 · · · zemm with
u ∈ [m], e1, . . . , em ∈ {0, 1} and e1 + · · ·+ em = d− 1. Then

Px ∈ P = span(P0 ∪ P1).

For every i ∈ [m−1], let Bi be the set of monomials zeii · · · zemm with ei+2, . . . , em ∈
{0, 1} and ei + · · · + em ≤ d − 1; let Di be the set of monomials yuzeii · · · zemm
with u ∈ [m], ei+2, . . . , em ∈ {0, 1} and ei + · · · + em ≤ d − 2. Let Bm =
{yuzvm : 0 ≤ u+ v ≤ d− 1} and Dm = {yuzvm : 0 ≤ v ≤ d−2, u+v ≤ m+d−2}.
We have the following technical lemma.

Lemma 1. Let P (z, y) ∈ P , α=(α1, . . . , αm+1) ∈ F
m+1
p and r = (r1, . . . , rm) ∈

(F∗
p)

m. Then there exist Φ1(z, y) ∈ span(B1∪D1), . . . , Φm(z, y) ∈ span(Bm∪Dm)

and φ0, . . . , φm+d−2 ∈ Fp such that P (z, y)− P (α) =
�m

i=1(ri(zi − αi) + zi+1 −
αi+1)Φi+(y−αm+1)

�m+d−2
j=0 φjy

j . Furthermore,
�m

i=1 |Bi| ≤ (1+O(m−1))
�m
d

�

and
�m

i=1 |Di| ≤ (d+O(m−2))
�m
d

�
.

We defer the proof of Lemma 1 to the full version. Let P = P0∪P1∪∪m
i=1(Bi∪Di).

Below is the scheme Π2 for verifiably evaluating the polynomials in P .

KeyGen(1λ,P): Pick Λ = (p,G,GT , e, g) ← G(1λ) and τ = (τ1, τ2, . . . , τm+1) ←
F
m+1
p . Output sk = τ and pk = (Λ,M), where M = {gh(τ) : h(z, y) ∈ P}.

Setup(pk, sk, P): Compute and output vkP = gP (τ).

Challenge(pk): Pick r = (r1, . . . , rm) ← (F∗
p)

m and output c = r.

Compute(pk,P, α, c): Compute Φ1(z, y), . . . , Φm(z, y) and φ0, . . . , φm+d−2 such that
the decomposition of P (z, y) − P (α) in Lemma 1 holds. Compute wi = gΦi(τ) for
every i ∈ [m]. Output a = P (α) and σ = (w1, . . . , wm, φ0, . . . , φm+d−2).

Verify(pk, vkP , α, c, a, σ): If e(vkP · g−a, g) =
�m

i=1
e
�
gri(τi−αi)+τi+1−αi+1 , wi

	
·

�m+d−2

j=0
e
�
gτm+1−αm+1 , g

φjτ
j
m+1

�
, output 1; otherwise, output 0.

Update(pk, sk, vkP , P
′): Compute P ′(z, y) − P (z, y), say it is equal to ηh(z, y) for

η ∈ Fp and h(z, y) ∈ P. Output vkP ′ = vkP · (gh(τ))η.

Lemma 1 shows that Φ1, . . . , Φm, z1, . . . , zm, y, y2, . . . , ym+d−2 and P (z, y) all
belong to span(P). Thus the cloud can use pk to compute σ. On the other hand,

the 2m+ d− 2 components pk′ = (gτ1 , . . . , gτm , gτm+1, . . . , gτ
m+d−2
m+1) of pk suffice

for executing Π2.Verify. It is a trivial generalization of the security proof in [15]
to show Π2 is secure under the (m+ d− 1)-SBDH assumption.

Theorem 2. Π2 is a secure PVC scheme for evaluating the polynomials in P
with CCΠ2 = O(m). Its security is based on the (m+ d− 1)-SBDH assumption.

Due to Lemma 1, we have |P| ≤ (2d+2+o(1))n. Thus, Π2 only requires a public
key of size (2d+ 2 + o(1))n.

The Main Construction (Γ1). Recall that the polynomial encoding Px belongs
to P = span(P0 ∪ P1). Our main construction Γ1 is described as below.

Verifiable Multi-server Private Information Retrieval 75

KeyGen(1λ, n): Output (pk, sk) ← Π2.KeyGen(1
λ,P), where sk = τ ∈ (F∗

p)
m.

Setup(pk, sk, x): Output vkx ← Π2.Setup(pk, sk, Px).

Query(pk, i): Compute (q1, . . . , qk, aux
′) ← Πwy.Query(i). For every j ∈ [k], com-

pute cj ← Π2.Challenge(pk). Output Qj = (qj , cj) for every j ∈ [k] and aux =
(aux′, c1, . . . , ck).

Answer(pk, x,Qj): For every � ∈ [M], compute (Aj,�, σj,�) ← Π2.Compute(pk, Px,
Qj,�, cj), where Qj,� = (qj , γ�). Output Aj = (Aj,1, Aj,2, . . . , Aj,M).

Challenge(pk): Output k independent random λ-subsets I1, . . . , Ik ⊆ [M].

Respond(pk, x,Qj , Ij): Output σj = {σj,� : � ∈ Ij}.
Extract(pk, vkx, {(Aj , Ij , σj) : j ∈ [k]}, aux): Compute bj,� = Π2.Verify(pk, vkx, Qj,�,
cj , Aj,�, σj,�) for every j ∈ [k] and � ∈ Ij . If all bj,�’s are 1, then decode Aj to
aj = (aj,0, aj,1, . . . , aj,m) for every j ∈ [k], where aj,0 = Fx(qj) and aj,� =

∂Fx
∂z�

��
qj

for

every � ∈ [m]; and output xi ← Πwy.Extract(a1, . . . , ak, aux
′). Otherwise, output ⊥.

Update(pk, sk, vkx, x
′): Suppose that x′ is not different from x except that x′

i �= xi.
Suppose that the components of IndEnc(i) are all 0 except those labeled by i1, . . . , id ∈
[m]. Then Fx′(z) = Fx(z)+(x′

i−xi)π, where π =
�d

j=1
zij . It follows that Px′(z, y) =

Px(z, y) + (x′
i − xi)π(1 +

�d

j=1
z−1
ij

yij). The algorithm outputs vkx′ = gPx′(τ) =

vkx · gΔ, where Δ = (x′
i − xi) · τi1 · · · τid(1 +

�d

j=1
τ−1
ij

τ
ij
m+1).

Fig. 4. The scheme Γ1

Correctness, Privacy and Security. The correctness of Γ1 follows from that
of Πwy and Π2. The unconditional t-privacy of Γ1 follows from a similar argu-
ment as in Γ0. In Γ1, any malicious cloud Sj that tries to deceive the client into
computing an incorrect result must change at least δ = 1/2− 1/(2ρ) fraction of
its answer Aj . The client in Γ1 verifies λ random components of Aj . Therefore,
Sj will be detected with overwhelming probability ≥ 1− (1− δ)λ.

Theorem 3. Γ1 is an unconditionally t-private and computationally secureVPIR
scheme. Its security is based on the the (m+ d− 1)-SBDH assumption.

Proof. Suppose there is an adversary A that breaks the security of Γ1 with non-
negligible probability ε. We construct a simulator that simulates A and breaks
the (m+d−1)-SBDH assumption. The SBDH challenger picks a random bilinear
map instance Λ = (p,G,GT , e, g) ← G(1λ) and a random field element s ← F

∗
p.

Given Λ and (g, gs, . . . , gs
m+d−1

), the simulator proceeds as below:

1. The simulator needs to mimic Γ1.KeyGen and gives a public key pk to A.
To do so, the simulator implicitly sets τ� = μ�s + ν� for every � ∈ [m + 1],
where μ� and ν� are uniformly chosen from Fp; Clearly, the simulator does
not know the secret key τ = (τ1, . . . , τm+1) ∈ F

m+1
p but can compute the

public key M = {gh(τ) : h(z, y) ∈ P}. In fact, each monomial h(z, y) ∈ P has
total degree ≤ m+ d− 1. Thus, h(τ) is a polynomial of degree ≤ m+ d− 1
in s whose coefficients are known to the simulator. Thus, the simulator can

compute gh(τ) as it knows g, gs, . . . , gs
m+d−1

; At the end, the simulator picks
k random field elements θ1, . . . , θk ← Fp and gives pk = (Λ,M) to A.

76 L.F. Zhang and R. Safavi-Naini

2. Given pk, A picks x(0) ∈ F
n
p and makes a query Γ1.Setup(pk, sk, x

(0)) to

the simulator. The simulator replies with vkx(0) = gP0(τ), where P0(z, y) =
PolyEnc1(x

(0)). For every u = 1, 2, . . . , U(= poly(λ)), A makes a query
Γ1.Update(pk, sk, vkx(u−1) , x(u)) to the simulator. The simulator replies with
vkx(u) = gPu(τ), where Pu(z, y) = PolyEnc1(x

(u)) and gPu(τ) can be com-
puted by the simulator although it does not know sk = τ .

3. The adversary A picks u ∈ {1, . . . , U}, i ∈ [n] and gives (u, i) to the simula-
tor. The simulator runs Πwy.Query(i) and picks k points q1, . . . , qk ∈ F

m
p

along with a string aux′. Furthermore, the simulator needs to choose a
challenge cj ∈ (F∗

p)
m, define Qj = (qj , cj) for every j ∈ [k] and aux =

(aux′, c1, . . . , ck). Note that the adversary may control some of the clouds.
For every j ∈ [k], the challenge cj must be chosen in a way such that the
cloud Sj can be successfully simulated in order to break the SBDH instance
if it is corrupted by A and provides incorrect answers. Therefore, the sim-
ulator will not pick the challenge cj using the Π2.Challenge as the client in
Γ1 has done. Instead, for every j ∈ [k], it will guess an index �j ∈ [M] such
that the cloud Sj will provide an incorrect answer Aj,�j . For notational con-
venience, for every j ∈ [k], we denote Qj,� = (qj , γ�j) = (αj,1, . . . , αj,m+1).
The simulator will carefully compute cj = (rj,1, . . . , rj,m) ∈ (F∗

p)
m such that

rj,�(τ� − αj,�) + τ�+1 − αj,�+1 = sj,�(s+ θj) (3)

for every � ∈ [m]. Note that the simulator had set τ� = μ�s + ν� for every
� ∈ [m+ 1]. It is easy to verify that (3) will hold for any s ∈ Fp when

rj,� =−θjμ�+1 + αj,�+1 − ν�+1

θjμ� + αj,� − ν�
and sj,� =

αj,�μ�+1 − μ�+1αj,�+1 + μ�ν�+1 − μ�+1ν�
θjμ� + αj,� − ν�

for every � ∈ [m]. The simulator defines Qj = (qj , cj) for every j ∈ [k],
aux = (aux′, c1, . . . , ck) and then gives (Q1, . . . , Qk) to A. Note that cj is
uniform over (F∗

p)
m due to the choices of {μ�, ν� : � ∈ [m+ 1]}.

4. A answers with (Ā1, . . . , Āk), where Āj = (Āj,1, . . . , Āj,M) for every j ∈ [k].
5. For every j ∈ [k], the simulator picks a random (λ − 1)-subset I ′j ⊆ [M]

such that �j /∈ I ′j and then set Ij = I ′j ∪ {�j}. It then gives (I1, . . . , Ik) to A.
Clearly, the distribution of (I1, . . . , Ik) is identical to the distribution of those
sets generated by Γ1.Challenge. Therefore, A cannot distinguish between the
simulation and the real execution of Γ1.

6. A responds with (σ̄1, . . . , σ̄k), where σ̄j = {σ̄j,� : � ∈ Ij} for every j ∈ [k].

To deceive the client into computing an incorrect value of xi, at least one of the
k answers Ā1, . . . , Āk, say Āj , should have Hamming distance > Mδ with the
correct answer Aj = (Aj,1, . . . , Aj,M), where Aj,� = Π2.Compute(pk, Pu, Qj,�, cj)
for every � ∈ [M]. Otherwise, the client would be able to correct the errors and
then compute the correct value of xi using Πwy.Extract. Furthermore, the forged
answers Ā1, . . . , Āk should not be rejected. Equivalently, all of the forged pairs
{(Āj,�, σ̄j,�) : j ∈ [k], � ∈ Ij} should pass the client’s verification, i.e.,

Π2.Verify(pk, vkx(u) , Qj,�, cj , Āj,�, σ̄j,�) = 1 (4)

Verifiable Multi-server Private Information Retrieval 77

for every j ∈ [k] and � ∈ Ij because otherwise the client will reject. Let E be
the event that (1) at least one of the forged answers Ā1, . . . , Āk has Hamming
distance > Mδ; and (2) the forged answers Ā1, . . . , Āk are not rejected, i.e.,
(4) holds for every j ∈ [k] and � ∈ Ij . Due to our assumption, Pr[E] ≥ ε. For
notational convenience, we suppose that the Hamming distance between Āj∗

and Aj∗ is > Mδ, where j∗ ∈ [k]. Let L = {� ∈ [M] : Āj∗,�
= Aj∗,�} ⊆ [M]
be the set of indices where Āj∗ and Aj∗ do not agree with each other. Then
|L| > Mδ. Let G be the event that Ij∗ ∩ L = ∅ and let ¬G be the event that
Ij∗ ∩ L
= ∅. Since the indices in Ij∗ are chosen uniformly and independently,
Pr[G] = (1 − |L|/M)λ ≤ (1 − δ)λ, which is negligible. It follows that Pr[E] =
Pr[E|G] Pr[G] + Pr[E|¬G] Pr[¬G] ≤ (1 − δ)λ + Pr[E|¬G] Pr[¬G]. Recall that
Pr[E] ≥ ε. We have Pr[(¬G)∧E] = Pr[E|¬G] Pr[¬G] ≥ ε−(1−δ)λ � ε1, which is
non-negligible. In other words, the event (¬G)∧E that Ij∗∩L
= ∅ and the forged
answers Ā1, . . . , Āk are accepted must occur with probability ≥ ε1. Recall that
the indices �1, . . . , �k ∈ [M] have been uniformly chosen by the simulator at step
3 of the simulation. Let F be the event that �j∗ ∈ L. Note that �j∗ is not different
from the other indices in Ij∗ since cj∗ is uniform over (F∗

p)
m and thus gives no

information on �j∗ . Thus, we have that Pr[F|¬G ∧E] ≥ 1/|Ij∗ | ≥ 1/λ. When F
and (¬G) ∧ E occur simultaneously, A can be simulated by a simulator in the
security game of theΠ2 instance for computing Āj∗,�j∗ . Using that simulator, the
simulator in the security game of Γ1 can eventually break the (m+d−1)-SBDH
instance. Note that Pr[F∧(¬G)∧E] = Pr[F|¬G∧E] Pr[(¬G)∧E] ≥ ε1/λ, which
is non-negligible. Recall the security proof for Π2. By simulating an adversary
that breaks the security of Π2 with probability ε1/λ, one can break a random
(m+d−1)-SBDH instance with probability ≥ λ−1ε1(1−(m+d−1)/p), which is
non-negligible. Therefore, the simulator in the security game of Γ1 can eventually
break the random (m + d − 1)-SBDH instance with non-negligible probability.
Therefore, Γ1 must be secure under the (m+ d− 1)-SBDH assumption. �
Complexity. The database owner D runs Π2.KeyGen and Π2.Setup once. The
running time of Π2.KeyGen is dominated by the computation of M = {gh(τ) :
h(z, y) ∈ P} in Π2 that requires (2d + 2 + o(1))n = O(n) exponentiations. The
algorithm Π2.Setup computes one exponentiation gPx(τ). D also runs Π0.Update
to update x. To change one component of x, D needs to multiply vkx with
d+1 elements from M, i.e., the update complexity is d+1 = O(1). The client C
computes and sends Qj , Ij to Sj and receives Aj , σj from Sj for every j ∈ [k]. We
have that QCΓ0 = max{|Qj |+ |Ij |} = O(m), ACΓ0 = max{|Aj|+ |σj |} = O(λm)

and CCΓ0 =
�k

j=1(|Qj |+ |Ij |+ |Aj |+ |σj |) = O(λm). For each verification, the

client uses aux and 2m + d − 2 elements pk′ of pk, where |aux| = O(m). Each
cloud stores x and runs Π2.Compute M times.

Response Time. A computationally powerful cloud may employ hundreds of
thousands of computing units. For example, the Amazon Elastic Compute Cloud
(EC2) was employing more than 158000 computing units until May 2013. May-
berry et al. [14] and Devet [6] suggested to outsource the PIR servers’ computa-
tion to the clouds. Each cloud can distribute the PIR server computation to its
computing units and then combine the results of these units. This parallelization

78 L.F. Zhang and R. Safavi-Naini

technique can effectively reduce the response time of each cloud. It is trivial to see
the computation of each cloud in Γ1 only involves polynomial decompositions,
polynomial valuations and exponentiations. All of them can be distributed to
multiple computing units. Thus, each cloud can significantly reduce the response
time using the parallelization techniques.

Error Tolerance. In Γ1, the client verifies Aj by checking a random λ-subset
of the components of Aj for every j ∈ [k]. If any one of the λk verifications is
unsuccessful, then the client rejects; otherwise, it decodes every Aj to aj and
then reconstructs xi from a1, . . . , ak. Note that if a very small constant fraction
of aj has been corrupted, the client will reject with overwhelming probability.
For example, the answer Aj will be rejected with overwhelming probability even
if 2δ/3 fraction of Aj have been corrupted, where δ = 1

2− 1
2ρ and ρ = M/(m+1).

Recall that Aj = C(aj) is a Reed-Solomon encoding that can tolerate δ fraction
of corruptions. We say that Aj is slightly corrupted if a constant δ′ ≤ 2δ/3
fraction of Aj have been corrupted. The client’s verification is so severe that
a slightly corrupted Aj will be rejected as well while the corruptions can be
efficiently corrected. As a result, the client must execute the scheme Γ1 again
to retrieve xi, which incurs efficiency loss. In particular, if the corruptions were
introduced by the infrastructure failures, then rerunning Γ1 is unlikely to be
useful. In this case we can extend (modify) Γ1 such that the client will not reject
Aj except the event E : |{� ∈ Ij : bj,� = 0}| ≥ 3δ|Ij |/4 occurs. Suppose δ′

fraction of {Aj,� : � ∈ Ij} have been corrupted. If δ′ ≤ 2δ/3, then the client will
not reject and efficiently reconstruct aj except with probability exp(−O(λ)) as E
occurs with probability exp(−O(λ)); if δ′ > δ, then E will occur with probability
1−exp(−O(λ)) and thus the client will reject Aj with overwhelming probability.

Multiple Database Delegation. It is an interesting observation that none
of the algorithms in Γ1 actually takes sk as input. As a result, a trusted third
party rather than each database owner can run the algorithm KeyGen and then
publish pk such that any database owners, clouds and clients can freely use Γ1.
Therefore, Γ1 actually allows multiple database delegation.

Variant. In Γ1 the client must communicate with each cloud Sj in two rounds.
In the first round, it sends a queryQj = (qj , cj) and receives an answer Aj ; in the
second round, it sends a challenge Ij and receives a response σj . This two-round
communication is essential as sending Ij along with Qj in the first round would
reveal which components of Aj will be verified, and thus enable a cheating cloud
to break the security of Γ1. To get a one-round scheme, the client can consider the
M proofs for the M components of Aj as a database and use a single-server PIR
[11] with constant communication rate in the honest-but-curious server model
to privately retrieve the λ proofs it requires.

4 Conclusions
In this paper, we formally defined verifiable multi-server PIR schemes and con-
structed an unconditionally t-private and computationally secure VPIR scheme
based on the best t-private PIR scheme of Woodruff et al. [17] in the honest-
but-curious server model and a new PVC scheme for multivariate polynomial

Verifiable Multi-server Private Information Retrieval 79

evaluation. Our scheme has communication complexity O(λn1/�(2k−1)/t�) which
is comparable to [17]. Constructing VPIR schemes in the single server setting
seems difficult because the known VC with input privacy rely on FHE.

Acknowledgement. This research is in part supported by Alberta Innovates
Technology Futures.

References

1. Beimel, A.: Private Information Retrieval: A Primer (2008) (manuscript)
2. Beimel, A., Ishai, Y., Kushilevitz, E.: General Constructions for Information-

Theoretic Private Information Retrieval. J. Comput. Syst. Sci. 71(2), 213–247
(2005)

3. Beimel, A., Ishai, Y., Malkin, T.: Reducing the Servers’ Computation in Private
Information Retrieval: PIR with Preprocessing. J. Cryptol. 17(2), 125–151 (2004)

4. Beimel, A., Stahl, Y.: Robust Information-Theoretic Private Information Retrieval.
J. Cryptol. 20(3), 295–321 (2007)

5. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.
In: FOCS, pp. 41–50 (1995)

6. Devet, C.: Evaluating Private Information Retrieval on the Cloud. Technical Re-
port (2013), http://cacr.uwaterloo.ca/techreports/2013/cacr2013-05.pdf

7. Devet, C., Goldberg, I., Heninger, N.: Optimally Robust Private Information Re-
trieval. In: USENIX Security Symposium (2012)

8. Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

9. Goldberg, I.: Improving the Robustness of Private Information Retrieval. In: IEEE
Symposium on Security and Privacy, pp. 131–148 (2007)

10. Goldreich, O., Micali, S., Widgerson, A.: How to Play any Mental Game-A Com-
pleteness Theorem for Protocols with Honest Majority. In: STOC, pp. 218–229.
ACM (1987)

11. Groth, J., Kiayias, A., Lipmaa, H.: Multi-query Computationally-Private Informa-
tion Retrieval with Constant Communication Rate. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010)

12. Huang, Y., Goldberg, I.: Outsourced Private Information Retrieval. In: Workshop
on Privacy in the Electronic Society, pp. 119–130. ACM (2013)

13. Kushilevitz, E., Ostrovsky, R.: Replication Is Not Needed: Single Database,
Computationally-Private Information Retrieval. In: FOCS, pp. 364–373 (1997)

14. Mayberry, T., Blass, E., Chan, A.: PIRMAP: Efficient Private Information Re-
trieval for MapReduce. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859,
pp. 371–385. Springer, Heidelberg (2013)

15. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of Correct Computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013), http://eprint.iacr.org/2011/587.pdf

16. Sion, R., Carbunar, B.: On the Computational Practicality of Private Information
Retrieval. In: NDSS 2007 (2007)

17. Woodruff, D.P., Yekhanin, S.: A Geometric Approach to Information-Theoretic
Private Information Retrieval. SIAM J. Comp. 37(4), 1046–1056 (2007)

http://cacr.uwaterloo.ca/techreports/2013/cacr2013-05.pdf
http://eprint.iacr.org/2011/587.pdf

	Verifiable Multi-server Private Information
Retrieval

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Building Blocks and Our Techniques

	2 Preliminaries
	2.1 Our Model
	2.2 Woodruff-Yekhanin PIR Scheme
	2.3 Papamanthou et al. PVC Schemes
	2.4 Bilinear Maps and Assumptions

	3 Our Constructions
	3.1 Basic Construction
	3.2 Main Construction

	4 Conclusions
	References

