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Abstract. Many anonymous communication networks (ACNs) rely on
routing traffic through a sequence of proxy nodes to obfuscate the orig-
inator of the traffic. Without an accountability mechanism, exit proxy
nodes may become embroiled in a criminal investigation if originators
commit criminal actions through the ACN. We present BACKREF, a
generic mechanism for ACNs that provides practical repudiation for the
proxy nodes by tracing back the selected outbound traffic to the predeces-
sor node (but not in the forward direction) through a cryptographically
verifiable chain. It also provides an option for full (or partial) traceabil-
ity back to the entry node or even to the corresponding originator when
all intermediate nodes are cooperating. Moreover, to maintain a good
balance between anonymity and accountability, the protocol incorpo-
rates whitelist directories at exit proxy nodes. BACKREF offers improved
deployability over the related work, and introduces a novel concept of
pseudonymous signatures that may be of independent interest.

We exemplify the utility of BACKREF by integrating it into the onion
routing (OR) protocol, and examine its deployability by considering sev-
eral system-level aspects. We also present the security definitions for
the BACKREF system (namely, anonymity, backward traceability, no for-
ward traceability, and no false accusation) and conduct a formal security
analysis of the OR protocol with BACKREF using ProVerif, an automated
cryptographic protocol verifier, establishing the aforementioned security
properties against a strong adversarial model.

Keywords: anonymity, malicious users, accountability, repudiation,
traceability, formal verification.

1 Introduction

Anonymous communication networks (ACNs) are designed to hide the originator
of each message within a larger set of users. In some systems, like DC-Nets [1] and
Dissent [2], the message emerges from aggregating all participants’ messages. In
other systems, like onion routing [3], mix networks [4], and peer-to-peer anony-
mous communication networks [5], messages are routed through volunteer nodes
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that act as privacy-preserving proxies for the users’ messages. We call this latter
class proxy-based ACNs and concentrate on it henceforth.

Proxy-based ACNs provide a powerful service to their users, and correspond-
ingly they have been the most successful ACNs so far [6,7]. However the nature
of the properties of the technology can sometimes be harmful for the nodes serv-
ing as proxies. If a network user’s online communication results in a criminal
investigation or a cause of action, the last entity to forward the traffic may be-
come embroiled in the proceedings [8,9], whether as the suspect/defendant or as
a third party with evidence. While repudiation in the form of a partial or full
traceability has never been a component of any widely-deployed ACN, it may
become the case that new anonymity networks, or a changing political climate,
initiate an interest in providing a verifiable trace to users who misuse anonymity
networks according to laws or terms of service.

While several proposals [10,11,12,13,14,15,16] have been made to tackle or at
least to mitigate this problem under the umbrella term of accountable anonymity,
as we discuss in the next section some of them are broken, while others are not
scalable enough for deploying in low latency ACNs.

Our Contributions. In this work, we design BACKREF, a novel practical re-
pudiation mechanism for anonymous communication, which has advantages in
terms of deployability and efficiency over the literature. To assist in the design of
BACKREF, we propose a concept of pseudonymous signatures (§3), which employ
pseudonyms (or half Diffie-Hellman exponents) as temporary public keys (and
corresponding temporary secrets) employed or employable in almost all ACNs
for signing messages. These pseudonym signatures are used to create a verifi-
able pseudonym-linkability mechanism where any proxy node within the route
or path, when required, can verifiably reveal its predecessor node in time-bound
manner. We use this property to design a novel repudiation mechanism (§4),
which allows each proxy node, in cooperation with the network, to issue a crypto-
graphic guarantee that a selected traffic flow can be traced back to its originator
(i.e., predecessor node) while maintaining the eventual forward secrecy of the
system. Unlike the related work, which largely relies on group signatures and/or
anonymous credentials, BACKREF avoids the logistical difficulties of organizing
users into groups and arranging a shared group key, and does not require ac-
cess to a trusted party to issue credentials. While BACKREF is applicable to all
proxy-based ACNs, we illustrate its utility by applying it to the onion routing
(OR) protocol. We observe that it introduces a small computational overhead
and does not affect the performance of the underlying OR protocol (§5). BACK-
REF also includes a whitelisting option; i.e., if an exit node considers traceability
to one or more web-services unnecessary, then it can include those services in a
whitelist directory such that accesses to those are not logged.

We formally define the important security properties of the BACKREF net-
work (§6). In particular, we formalize anonymity and no forward traceability
as observational equivalence relations, and backward traceability and no false
accusation as trace properties. We conduct a formal security analysis of BACK-
REF using ProVerif, an automated cryptographic protocol verifier, establishing
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the aforementioned security and privacy properties against a strong adversarial
model. We believe both the definitions and the security analysis are of indepen-
dent interest, since they are the first for the OR protocol.

2 Background and Related Work

Anonymous communication networks (ACNs) aim at protecting personally iden-
tifiable information (PII), in particular the network addresses of the communi-
cating parties by hiding correlation between input and output messages at one or
more network entities. For this purpose, the ACN protocols employ techniques
such as using a series of intermediate routers and layered encryptions to obfus-
cate the source of a communication, and adding fake traffic to make the ‘real’
communication difficult to extract.

Anonymous Communication Protocols. Single-hop proxy servers, which
relay traffic flows, enable a simple form of anonymous communication. However
anonymity in this case requires, at a minimum, that the proxy is trustworthy and
not compromised, and this approach does not protect the anonymity of senders
if the adversary inspects traffic through the proxy [17]. Even with the use of
encryption between the sender and proxy server, timing attacks can be used to
correlate flows.

Starting with Chaum [4], several ACN technologies have been developed in
the last thirty years to provide stronger anonymity not dependent on a single
entity [6,3,7,2,1,18,19,20,21]. Among these, mix networks [4,7] and onion rout-
ing [6] have arguably been most successful. Both offer user anonymity, relation-
ship anonymity and unlinkability [22], but they obtain these properties through
differing assumptions and techniques.

An onion routing (OR) infrastructure involves a set of routers (or OR nodes)
that relay traffic, a directory service providing status information for OR nodes,
and wusers. Users benefit from anonymous access by constructing a circuit—a
small ordered subset of OR nodes—and routing traffic through it sequentially.
The crucial property for anonymity is that an OR node within the built circuit
is not able to identify any portion of the circuit other than its predecessor and
successor. The user sends messages (to the first OR node in the circuit) in a
form of an onion—a data structure multiply encrypted by symmetric session
keys (one encryption layer per node in the circuit). The symmetric keys are ne-
gotiated during an initial circuit construction phase. This is followed by a second
phase of low latency communication (opening and closing streams) through the
constructed circuit for the session duration. An OR network does not aim at
providing anonymity and unlinkability against a global passive observer, which
in theory can analyze end-to-end traffic flow. Instead, it assumes an adversary
that adaptively compromises a small fraction of OR nodes and controls a small
fraction of the network.

A mix network achieves anonymity by relaying messages through a path of
mix nodes (or mixes) in a latency-tolerant manner. The user encrypts a message
to be partially decrypted by each mix along the path. Mixes accept a batch
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of encrypted messages, which are partially decrypted, randomly permuted, and
forwarded. Unlike onion routing, an observer is unable to correlate incoming and
outgoing messages at the mix; thus, mix networks provide anonymity against a
powerful global passive adversary. In fact, as long as a single mix in the user’s
path remains uncompromised, the message will maintain some anonymity.

Accountable Anonymity Mechanisms. The literature has examined several
approaches for adding accountability to ACN technologies, allowing misbehaving
users to be selectively traced [10,11,12], exit nodes to deny originating traffic it
forwards [13,14], misbehaving users to be banned [15,16], and misbehaving par-
ticipants to be discovered [2,23,24]. All of these approaches either require users
to obtain credentials or do not extend to interactive, low-latency, internet-scale
ACNs. A number also partition users into subgroups, which reduces anonymity
and requires a group manager. BACKREF does not require credentials, sub-
groups, and is compatible with low-latency ACNs like onion routing, adding
minimal overhead.

Kopsell et al. [10] propose traceability through threshold group signatures. A
user logs into the system to join a group, signs messages with a group signature,
and a group manager is empowered to revoke anonymity. The system also in-
troduces an external proxy to inspect all outbound traffic for correct signatures
and protocol compliance. The inspector has been criticized for centralizing traffic
flows, which enables DOS, censorship, and increases observability [25].

Von Ahn et al. [11] also use group signatures as the basis for a general trans-
formation for traceability in ACNs and illustrate it with DC networks. Users are
required to register as members of a group capable of sending messages through
the network. Our solution can be viewed as a follow-up to this paper, with a con-
centration on deployability: we do not require users to be organized into groups
or introduce new entities, and we concentrate on onion routing.

Diaz and Preneel [12] achieve traceability through issuing anonymous creden-
tials to users and utilizing a traitor tracing scheme to revoke anonymity. It is
tailored to high-latency mix networks and requires a trusted authority to issue
credentials—both impede deployability. Danezis and Sassaman [25] demonstrate
a bypass attack on this and the Kopsell et al. scheme [10]. The attack is based
on the protocols’ assumption that there can be no leakage of information from
inside the channel to the world unless it passes through the verification step.
Our protocol does not rely on such a strong assumption, namely any exit node
(or any node who leaks the information) with enabled BACKREF can always
activate the repudiation mechanism and shift liability to its predecessor node.

Short of revoking the anonymity of misbehaving users, techniques have been
proposed to at least allow exit nodes to deny originating the traffic. Golle [13]
and Clark et al. [14] pursue this goal, with the former being specific to high-
latency mix networks and the latter requiring anonymous credentials. Tor offers
a service called ExoneraTor [26] that provides a record of which nodes were
online at a given time, but it does not explicitly prove that a given traffic
flow originated from Tor. Other techniques, such as Nymble [15] and its suc-
cessors (see a survey [16]), enable users to be banned. However these systems
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inherently require some form of credential or pseudonym infrastructure for the
users, and also require web-servers to verify user requests. Finally, Dissent [2]
and its successors [23,24] presents an interesting approach for accountable anony-
mous communication for DC Nets [1], however even when highly optimized [23],
DC Nets are not competitive for internet-scale application.

3 Design Overview

In this section we describe our threat model and system goals, and present our
key idea and design rationale.

3.1 Threat Model and System Goals

We consider the same threat model as the underlying ACN in which we wish to
incorporate the BACKREF mechanism. Our active adversary A aims at breaking
some anonymity property by determining the ultimate source and/or destination
of a communication stream or breaking unlinkability by linking two communi-
cation streams of the same user. We assume that some, but not all, of the nodes
in the path of the communication stream are compromised by the adversary A,
who knows all their secret values, and is able to fully control their functionalities.
For high latency ACNs like mix networks, we assume that the adversary can also
observe all traffic in the network, as well as intercept and inject arbitrary mes-
sages, while for low latency ACNs like onion routing, we assume the adversary
can observe, intercept, and inject traffic in some parts of the network.

While maintaining the anonymity and unlinkability properties of an ACN, we
wish to achieve the following goals when incorporating BACKREF in the ACN:

Repudiation: For a communication stream flowing through a node, the node
operator should be able to prove that the stream is coming from another
predecessor node or user.

Backward traceability: Starting from an exit node of a path (or circuit), it
should be possible to trace the source of a communication stream back to the
entry node when all nodes in the path verifiably reveal their predecessors.

No forward traceability: For a compromised node, it should not be possible
for the adversary A to use BACKREF to verifiably trace its successor in any
completed anonymous communication session through it.

No false accusation: It should not be possible for a compromised node to
corrupt the BACKREF mechanism to trace a communication stream:

1. to a path different from the path employed for the stream, and
2. to a node other than its predecessor in the path.

Non-goals. We expect our accountability notion to be reactive in nature. We
do not aim at proactive accountability and do not try to stop an illegal activity
in an ACN in a proactive manner, as we believe perfect black-listing of web
urls and content to be an infeasible task. Moreover, some nodes may choose
not to follow the BACKREF mechanism locally (e.g., they may not maintain



Accountability in Anonymous Communication Networks 385

P Sl Ty

3
Operatol Criminal
Activity

Fig. 1. Backward Traceability Verification

or share the required evidence logs), and full backward traceability cannot be
ensured in those situations; nevertheless, the cooperating nodes can still prove
their innocence in a verifiable manner.

Due to its reactive nature, our repudiation mechanism inherently requires
evidence logs containing verifiable routing information. Encrypting these logs
and regularly rotating the corresponding keys can provide us eventual forward
secrecy [27]. However, we cannot aim for immediate forward secrecy due to the
inherently eventual forward secret nature of the encryption mechanism.

3.2 Design Rationale and Key Idea

Fig. 1 presents a general expected architecture to achieve the above mentioned
goals. It is clear the network level logs and the currently cryptographic mecha-
nism in the ACNs cannot be used for verifiably backward traceability purpose
as they cannot stop false accusations (or traceability) by compromised nodes: a
compromised node can tamper with its logs to intermix two different ACN paths
as there is no cryptographic association between different parts of an ACN path.
We observe that almost all OR protocols [19,27,28,29,30,31] (except TAP) and
mix network protocols [32,33,34,20,7,21] employ (or can employ!) an element of
a cyclic group of prime order satisfying some (version of) Diffie-Hellman assump-
tion as an authentication challenges or randomization element per node in the
path. In particular, it can be represented as X = ¢g*, where g is a generator of a
cyclic group G of prime order p with the security parameter x and x €g Z, is a
random secret value known only to the user. This element is used by each node
on the path to derive a secret that is shared with the user and is used to extract
a set of (session) keys for encryption and integrity protection. In the anonymity
literature, these authentication challenges X are known as user pseudonyms.
The key idea of our BACKREF mechanism is to use these pseudonyms X = ¢
and the corresponding secret keys x as signing key pairs to sign pseudonym’s
for successor nodes at entry and middle nodes, and to sign the communication
stream headers at the exit nodes. Signatures that use (x,¢*) as the signing
key pair are referred to as pseudonym signatures. As pseudonyms are generated
independently for every single node, and the corresponding secret exponents are
random elements of Z,, they do not reveal the user’s identity. Moreover, it also
is not possible to link two or more pseudonyms to a single identity. Therefore,

! Although some these have been defined using RSA encryptions, as discussed in [20]
they can be modified to work in the discrete logarithm (DL) setting.
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pseudonym signatures become particularly useful in our BACKREF mechanism,
where users utilize them to sign messages without being identified by the verifier.

We can employ a CMA-secure [35] signature scheme against a computation-
ally bounded adversary (with the security parameter ) such that, along with
the usual existential unforgeability, the resultant pseudonym signature scheme
satisfies the following property:

Unconditional Signer Anonymity: Theadversary cannot determine a signer’s
identity, even if it is allowed to obtain signatures on an unbounded number of
messages of its choice.

We use such temporary signing key pairs (or pseudonym signatures) to sign
consecutively employed pseudonyms in an ACN path and the web communica-
tion requests leaving the ACN path. Pseudonym signatures provide linkability
between the employed pseudonyms and the communicated message on an ACN
path. However, these pseudonyms are not sufficient to link the node employed
in the ACN path: for a pseudonym received by a node, its predecessor node can
always deny sending the pseudonym in the first place. We solve this problem
by introducing endorsement signatures: We assume that every node signs the
pseudonym while sending it to the successor so that it cannot plausibly deny
this transfer during backward tracing.

3.3 Scope of Solution

To understand the scope of BACKREF, first consider traceability in the context
of the simplest ACN: a single-hop proxy. Any traceability mechanism from the
literature implicitly assumes a solution to the problem of how users can be traced
through a simple proxy. We dub this the ‘last mile’ problem. The proxy can keep
logs, but this requires a trusted proxy. Alternatively the ISP could observe and
log relevant details about traffic to the proxy, requiring trust in the ISP. The
solution more typically used in the literature is to assume individual users have
digital credentials or signing keys—essentially some form of PKI is in place to
certify the keys of individual users. [10,11,12,13,14]

None of these last mile solutions are particularly attractive. The assumption
of a PKI provides the best distribution of trust but short-term deployment ap-
pears infeasible. We believe the involvement of ISPs is the most readily deploy-
able. Such a solution involves an ISP with a packet attestation mechanism [36)
which acts as a trusted party capable of proving the existence of a particular
communication. We discuss the packet attestation mechanism further in §5.

For selected traffic flows, BACKREF provides traceability to the entrance node.
This is effectively equivalent to reducing the strong anonymity of a distributed
cryptographic ACN to the weak anonymity of a single hop proxy. For full trace-
ability, we then must address the ‘last mile’ problem: tracing the flow back to
the individual sender. Thus BACKREF is not a full traceability mechanism, but
rather an essential component that can be composed with any systems solution
to the last mile problem. While we later discuss a solution that involves ISPs, we
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emphasize that BACKREF itself is concentrated on, arguably, the more difficult
problem of offering ensured traceability within the ACN.

4 Repudiation (or Traceability)

In this section, we present our BACKREF repudiation scheme. For ease of ex-
position, we include our scheme in an OR protocol instead of including it in
the generic ACN protocol. Nevertheless, our scheme is applicable to almost all
ACNs mentioned in §3.2. We start our discussion with a brief overview of the OR
protocol in the Tor notions [37]. We then discuss the protocol flow for BACKREF
and describe our cryptographic components.

4.1 The OR Protocol: Overview

The OR protocol is defined in two phases: circuit construction and streams relay.

OR Circuit Construction. The circuit construction phase involves the user
onion proxy (OP) randomly selecting a short circuit of (e.g., 3) OR nodes, and
negotiating a session key with each selected OR node using one-way authenti-
cated key exchange (1W-AKE) [31] such as the ntor protocol. When a user wants
to create a circuit with an OR node Ny, she runs the Initiate procedure of the
ntor protocol to generate and send an authentication challenge to N;. Node N;
then runs the respond procedure and returns the authentication response. Fi-
nally, the user uses the ComputeKey procedure of ntor along with the response
to authenticate N7 and to compute a session key with it. To extend the circuit
further, the user sends an extend request to N7 specifying the address of the next
node Ny and a new ntor authentication challenge for N5. The process continues
until the user exchanges the key with the exit node Nj.

Relaying Streams. Once a circuit (denoted as (U <> Ny <> Ny <> N3)) has
been constructed through N7, Ny and N3, the user-client U routes traffic through
the circuit using onion-wrapping WrOn and onion-unwrapping UnwrOn proce-
dures. WrOn creates a layered encryption of a payload (plaintext or onion) given
an ordered list of (three) session keys. UnwrOn removes one or more layers of
encryptions from an onion to output a plaintext or an onion given an input onion
and a ordered list of one or more session keys. To reduce latency, many of the
user’s communication streams employ the same circuit [6].

The structure and components of communication streams may vary with the
network protocol. For ease of exposition, we assume the OR network uses TCP-
based communication in the same way as Tor, but our schemes can easily be
adapted for other types of communication streams.

In Tor, the communication between the user’s TCP-based application and
her Tor proxy takes place via SOCKS. To open a communication stream (i.e.,
to start a TCP connection to some web server and port), the user proxy sends
a relay begin cell (or packet) over the circuit to the exit node N3. When Nj
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receives the TCP request, it makes a standard TCP handshake with the web
server. Once the connection is established, N3 responds to the user with a relay
connected cell. The user then forwards all TCP stream requests for the server
as relay data cells to the circuit. (See [6,37] for a detailed explanation.)

4.2 The BackRef Protocol Flow

Consider a user U who wishes to construct an OR circuit (U <+ Ny <> N2 <> N3),
and use it to send communication stream m. BACKREF adds the repudiation
mechanism as a layer on the top of the existing OR protocol. We assume that
every OR node possesses a signing (private) key for which the corresponding
verification (public) key is publicly available through the OR directory service.

The corresponding OR protocol with the BACKREF scheme works according
to the following five steps:

1. Circuit Construction with an Entry Node: The user U creates a circuit
with the entry node N7 using the ntor protocol. If the user is an OR node, then
it endorses its pseudonym X; by signing it with its public key and sending the
signature along with X;.

However, if the user U is not an OR node, it cannot endorse the pseudonym
X1 as no public-key infrastructure (PKI) or credential system is available to him.
We solve this systems problem by entrusting the ISP with a packet attestation
mechanism [36] such that the ISP can prove that a pseudonym was sent by U
to N1. We discuss the packet attestation mechanism in §5.

2. Circuit Extension: To extend a circuit to Na, U generates a new pseudonym
X5 of an ntor instance, signs X and the current timestamp with the secret
value x; associated with X7, and sends an extend request to N7 along with the
identifier for Na, {Xo||tsz, }oy, and a timestamp ts,,. Notice that the extension
request is encrypted by a symmetric session key negotiated between U and N;.

Upon receiving a message, N7 decrypts and verifies {XQH‘DSJ;Q}UXI using the
previously received pseudonym X; and timestamp. We call this verification
pseudonyms linkability verification. If the signature is valid, it creates an evi-
dence record as discussed in Step 4, signs X» using its private key to generate
{X2[[ts2}o,,, and sends a circuit create request to the node No with { Xo[ts2},,, -

Node Nz, upon receiving a circuit creation request along with {Xs|[ts2},,,
verifies the signature. Upon a successful verification, it replies to N7 with an ntor
authentication response for the OR key agreement and generates the OR session
key for its session with (unknown) user U. N; sends the authentication response
back to U using their OR session, who then computes the session key with N,
and continues to build its circuit to N3 in a similar fashion.

Notice that we carefully avoid any conceptual modification of the OR circuit
construction protocol; the above signature generation and verification steps are
the only adjustments that BACKREF makes to this protocol.

3. Stream Verification: Once a circuit (U <> N1 > Ny <> N3) has been es-
tablished, the user U can utilize it to send her web stream requests. To open a
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TCP connection, the user sends a relay begin cell to the exit node N3 through
the circuit. The user U includes a pseudonym signature (or stream request sig-
nature) on the cell contents signed with the secret exponent x5 of X3. The user
also includes a timestamp in her stream request. When the relay cell reaches the
exit node N3, the exit node verifies the pseudonym signature with X3. Once the
verification is successful and the timestamp is current, N3 creates the evidence
log (Step 4) and proceeds with the TCP handshake to the destination server.
The relay stream request is discarded otherwise.

This stream verification helps N3 to prove linkability between its handshakes
with the destination server and the pseudonym X3 it has received from Ns.
When a whitelist directory exists, the exit node first consults the directory and
if the request (i.e., web stream request) is whitelisted, the exit node just forwards
it to the destination server. In such a case, the exit node does not require any
signature verification and also does not create an evidence log. We further discuss
the server whitelisting in §4.4.

4. Log Generation: After every successful pseudonym linkability or stream
verification, the evidence record is created. A pseudonym linkability verification
evidence record associates linkability between two pseudonyms X; and X;i1
and an endorsement signature on X;, while a stream verification evidence record
associates a stream verification with an endorsement signature on X3 for Nj.

5. Repudiation or Traceability: The verifier contacts the exit node N3
with the request information (e.g., IP address, port number, and timestamp)
for a malicious stream coming out of the exit node N3. The operator of N3 can
determine a record using the stream request information. This evidence record
verifiably reveals the identity of the middle node N.

As an optional next step, using the evidence records, it is possible for Ny to
verifiably reveal the identity of its predecessor Ni. Then, the last mile of a full
traceability is to reach from Nj to the user U in a verifiable manner using the
record on N; and the request information on the ISP [36]. When the user U is
an OR node a record at N; is sufficient and the last mile problem does not exist.

4.3 Cryptographic Details

BLS Signatures. For pseudonym and endorsement signatures, we use the short
signature scheme of Boneh, Lynn and Shacham (BLS) [38]. Consider two Gap
co-Diffie-Hellman groups (or co-GDH group) G; and G2 and a multiplicative
cyclic group Gr, all of the same prime order p, associated by a bilinear map [39]
e: Gy x Gy — GT.

Let g1, g2, and gp be generators for G1, G2, and G respectively and let a
full-domain hash function H : {0,1}" — G;. The BLS signature scheme [3§]
comprises following three algorithms:

Key Generation: Choose random sk €r Z;, and compute pk = g5F. The private
key is sk, and the public key is pk.

Signing: Given a private key pk € Z,, and a message m € {0,1}*, compute
h = H(m) € G, and signature o = h** where o € G;.
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Verification: Given a public key pk € G, message m € {0,1}*, and signature
o € Gy, compute h = H(m) € Gy and verify that (g2, pk, h,o) is a valid
co-Diffie-Hellman tuple.

We choose the BLS signature scheme due to the shorter size of their signatures;
however, if signing and verification efficiency is more important, we can choose

faster signature schemes such as [40].

Circuit Extension. To extend the circuit (U <+ Ny) to the next hop Ny, the
user U chooses =2 €r Z, and generates a pseudonym Xy = ¢52, where g2 € Go.
U then signs the pseudonym X, and the current timestamp? value ts,, with
pseudonym X5 as public key to obtain a signature ox, = H(Xs||tss,)**. Upon
receiving the signed pseudonym {XthSM}UX1 along with the timestamp tsg,,
the node N; checks if the timestamp is current and verifies it as follows:

)
e(H(Xol[tsz,), X1) = e(0x,,92)

Pseudonym Endorsement. After successful verification, N7 creates an en-
dorsement signature o1 = H(Xs||ts2)*** for pseudonym X5 and current times-
tamp tso using its signing key sk; and sends it along with X5 and tsy to Ns.

The node N5 then follows the pseudonym endorsement step. Upon receiving
the signed pseudonym {Xo||ts2},,, N2 verifies it as follows:

?
e(H(Xz||ts2), k1) = e(01, g2).
On a successful verification, Ny continues with the OR protocol.

Stream Verification. To generate a stream request signature, the user signs
the stream request (i.e., selected contents of the relay begin cell) using the
pseudonym X3 = g5° where z3 is the secret corresponding to Xs. For contents
of the relay cell m = {address||port||ts;,, }, the stream request signature oy, is
defined as ox, = H(m)". The user sends the signature along with the relay
cell and the current timestamp ts,  to the exit node through the already-built
circuit.

Once the signed stream request reaches N3, it verifies the signature as follows:

e(H(m), X3) = e(0x,, g2).

Upon a successful verification, the exit node N3 proceeds with the TCP hand-
shake. A verified request allows the node to link X3 and the request.

Note that when the destination server ensures an authenticated end-to-end
connection with the user, stream verification of the stream request (relay begin)
suffices; otherwise, the user should sign and the exit node should verify each
relay data cell to avoid any content modification attack by the exit node.

Log Generation. After every successful pseudonym or stream verification, an
evidence record is added to the evidence log. The evidence records differ with
nodes’ positions within a circuit, and we define two types of evidence logs.

2 Here, in presence of evidence records, we require only coarse-grained timestamps
(e.g., dd/mm/yyyy:hh) for replay prevention. Moreover, in the low-latency ACNs,
we avoid fine-grained timestamps as they may lead to (offline) traffic-analysis attacks.
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Ezit node log: For every successful stream verification, an evidence record is
added to the evidence log at the exit node. A single evidence record con-
sists of the signature on X3 (i.e., {X3||ts3}+, ), and the stream request H(m)
coupled by the pseudonym signature {m},,, and the timestamp ts,,.

Middle and entry node log: The middle and entry node evidence record com-
prises two pseudonyms X;, X; 1, and a timestamp value ts;,,, coupled with
the appropriate signatures and the IP address of N;_;. The pseudonym X;
is coupled with an endorsement signature {X;|[ts;},  from node N;_1, and
the pseudonym X1 is coupled by a pseudonym signature { X 1|[tsz+1},, -
When the user is not an OR node and does not posse a verifiable signatufe
key pair, the corresponding record at N consists of a signed pseudonym
{X2|[ts2, }UX1 , pseudonym X7, timestamp value ts,,, and the IP of the user.

Repudiation or Traceability. Given the server logs of a stream request, an
evidence record corresponding to the stream request can be obtained. In the first
step, it is checked whether the timestamp matches the stream request under ob-
servation. In the next step, the association between the stream request and the
pseudonym of the exit node X3 is verified using the pseudonym signature. Then,
the association of the pseudonym X3 and Ny is checked using the pseudonym
endorsement signature. Given the pseudonym X3 and a timestamp ts;, , the
backward traceability verification at node Ns is carried out as follows:

1. Do alookup in the evidence log to locate the signed pseudonym { Xs||ts,, }UX2
and the timestamp ts;,, where X3 is the lookup index.

2. Compare the timestamps (ts;,, and ts;,) under observation and prove the
linkability between X and X3 by verifying the signature {X3Htsx3}axz.

3. If verification succeeds, reveal the IP address of the node Ny who has for-
warded X3 and verify {Xo||ts2},, with pk.

The above three steps can be used repeatedly to reach the entry node. How-
ever, they cannot be used to verifiably reach the user if we do not assume any
public key and credential infrastructure for the users. Instead, our protocol relies
on the ISP between user U and Nj to use packet attestation [36] to prove that
the pseudonym X; was sent from U to NVj.

4.4 Exit Node Whitelisting Policies

To provide a good balance between anonymity and accountability, we include a
whitelisting option for exit nodes. This option allows a user to avoid the complete
verification and logging mechanisms if her destination is in the whitelist directory
of her exit node. In particular, we categorize the destinations into two groups:

Whitelisted Destinations: For several destinations such as educational .edu
websites, an exit node may find traceability to be unnecessary. The exit node
includes such destinations in a whitelist directory such that, for these destina-
tions, it does not require any endorsement and pseudonym signatures. Traffic
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sent to these whitelisted destinations through the circuit remains anonymous in
the current ACNs sense as the sender does not have to employ BACKREF. In
that case, to protect malicious user’s access, such destinations may use end-to-
end blacklisting systems such as Nymble [15] and its successors [16].

Non-listed Destinations: For destinations that are not listed in the exit-node
whitelist directory, the user has to use BACKREF while building the circuit to
it; otherwise, the exit node will drop her requests to the non-listed destinations.

We emphasize that BACKREF is not an “all-or-nothing” design alternative:
it allows an ACN to conveniently disable the complete verification and logging
mechanisms for some pre-selected destinations. In particular, an exit node with
“Sorry, it is an anonymity network, no logs” opinion can still whitelist the whole
Internet, while others employ BACKREF for non-whitelisted sites. The use of
BackRef is transparent, and users can choose if they wish to use a BackRef node
for their circuits.

5 Systems Aspects and Discussion

Communication Overhead. Communication overhead for BACKREF is min-
imal: every circuit creation, circuit extension, and stream request carries a 32
byte BLS signature and additional 4 byte timestamp.

Computation Overhead. In a system with BACKREF, every node has to
verify a signature and generate another. Using the pairing-based cryptography
(PBC) library, a BLS signature generation takes less than 1ms while a verification
requires nearly 3ms for 128-bit security on a commodity PC with an Intel i5
quad-core processor with 3.3 GHz and 8 GB RAM. Signing and verification time
(and correspondingly system load) can be further reduced using faster signature
schemes (e.g., [40]).

Log Storage. BACKREF requires nodes to maintain logs of cryptographic
information for potential use by law enforcement. These logs are not innocuous,
and the implications of publicly disclosing a record need to be considered. The
specificity of the logs should be carefully designed to balance minimal disclosure
of side-information (such as specific timings) while allowing flows to be uniquely
identified. It must also be possible to reconstruct the logged data from the types
of information available to law enforcement. The simplest entry would contain
the destination IP, source (exit node) IP, a coarse timestamp, as well as the
signature. Logs should be maintained for a pre-defined period and then erased.

No single party can hold the logs without entrusting this entity with the
anonymity of all users. The OR nodes can retain the logs themselves. This,
however, would require law enforcement to acquire the logs from every such
node and consequently involve the nodes in the investigation—a scenario that
may not be desirable. Furthermore, traceability exposes nodes of all types, not
just exit nodes, to investigation. We are aware of a number of entities who
deliberately run middle nodes in Tor to avoid this exposure. An alternative is to
publish encrypted logs, where a distributed set of trustees share a decryption key
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and act as a liaison to law enforcement, while holding each other accountable by
refusing to decrypt logs of users who have not violated the traceability policy.
Such an entity acts in a similar fashion to the group manager schemes based on
group signatures [11].

Non-cooperating Nodes. Given the geographic diversity of the ACNs, it
is always possible that some proxy nodes will cooperate with the BACKREF
mechanism, while others will not. The repudiation property of BACKREF ensures
that a cooperating node can always at least correctly shift liability to a non-
cooperating node. Moreover, such a cooperating node may also reactively decide
to block any future communication from the non-cooperating node as a policy.

Venturing the Last Mile. In the scenarios where full traceability is required,
we need a mechanism for solving the last mile problem addressed in the previous
sections. BACKREF does not introduce any PKI for the users, therefore our
protocol has to rely on some trust mechanism to prove the linkability between
the IP address of the user and the entry node pseudonym. For this purpose,
we consider an ISP with a packet attestation mechanism [36] to be a proper
solution that adds a small overhead for the existing ISP infrastructure and at
the same time does not harm any of the properties provided by the ACN. In
some countries there is an obligation for the ISPs to retain data that identify the
user. In other countries the ISPs are not obligated by law, but it is nevertheless
common practice. The protocol is designed in a way that the ISP has to attest
only to the ClientKeyFExrchange message (this message is a part of the TLS
establishing procedure, and also is public and not encrypted message) which is
used to establish the initial TLS communication. This message does not reveal
any sensitive information related to the identity of the user. By its design, we
reuse this message as a pseudonym for the entry OR node.

6 Security Analysis

We conduct a formal security analysis of BACKREF. We model our protocol from
84 (in a restricted form) in the applied pi calculus [41] and verify its important
properties, i.e., anonymity, backward traceability, no forward traceability, and no
false accusation with ProVerif [42], a state-of-the-art automated theorem prover
that provides security guarantees for an unbounded number of protocol sessions.

We model backward traceability and no false accusation as trace properties,
and anonymity and no forward traceability as observational equivalence rela-
tions. The employed ProVerf scripts as well as an extended version of the paper
are available online [43],[44].

Basic Model. We model the OR protocol in the applied pi calculus to use cir-
cuits of length three (i.e., one user and three nodes); the extension to additional
nodes is straightforward. To prove different security properties we upgrade the
model to use additional processes and events. To solve the last mile problem, our
model involves an honest ISP which can prove the existence of a communication
channel between the user and the entry node. This channel is modeled as pri-
vate, preventing any ISP log forgeries. The cryptographic log collection model
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is designed in a decentralized way such that nodes retain the logs themselves in
a table that is inaccessible to the adversary.

We model the flow of the pseudonyms and the onion, together with the
corresponding verification. However, we do not model the underlying, crypto-
graphically verified 1W-AKE ntor [31] protocol, and assume that the session
key between the user and the selected OR process is exchanged securely. The
attacker is a standard Dolev-Yao active adversary with full control over the pub-
lic channels: It learns everything ever send on the network, and can create and
insert messages on the public channels. It also controls network scheduling.

Backward Traceability. The goal of our protocol is to trace the source of the
communication stream starting from an exit node. We verify that the property of
backward traceability arrives from the correctness of the (backward) verification
mechanism. The correctness property can be formalized in ProVerif as follows:

TraceUser(IP) = (LookupI SP(X1,IP) = (Reveal Pred(IP)) =
(RevealPred(ipN1)) = (Reveal Pred(ipN2)) A CheckSig A LookupN3(m))),

where the notation A = B denotes the requirement that the event A must
be preceded by a event B. In our protocol, the property says that the user U
is traced if all nodes in the circuit verifiably trace their predecessors and the
ISP solves the last mile problem. The traceability protocol P starts with the
event LookupN3(m) which means that for a given message m (stream request)
the verifier consults the log, and if such a request exists, it checks the signa-
ture CheckSig. Finally, when all conditions are fulfilled, the verifier reveals the
identity of the predecessor node Reveal Pred(ipN2). This completes the nested
correspondence (CheckSig A LookupN3(m) A Reveal Pred(ipN2)) which verifi-
ably traces V5. In a similar fashion, the verifier traces N1 and U.

To solve the last mile problem, after the identity of U is revealed the verifier
lookup into the evidence table of the ISP (LookupISP) to prove the connection
between the identity of the user I P and the pseudonym of the entry node Xj.
If such a record exists, the event TraceU ser(IP) is executed.

Theorem: The trace property defined in equation (1) holds true for all possible
executions of process P.

Proof. Automatically proven by ProVerif. O

No False Accusation. There are two aspects associated with false accusations:

1. It should not be possible for a malicious node N4 to trace a communication

stream to an OR node N¢ other than to its predecessor in the corresponding

circuit. Informally, to break this property, N4 has to be obtain a signature of

N¢ on a particular pseudonym associated with the circuit. This requires N4

to forge a signature for N, which is not possible due to the unforgeability
property of the signature scheme.

2. It should not be possible for a malicious node N4 to trace a communication

stream to a circuit C; other than the circuit Cs employed for the commu-

nication stream. Consider a scenario where two concurrent circuits (Cy and
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Fig. 2. No False Accusation adversarial model

C5), established by two different users U; and Us, pass through a malicious
node N 4. Suppose that N4 collaborates with Us; who is misbehaving and
has used the OR network for criminal activities. To help U, by falsely ac-
cusing a different predecessor, N4 must forge two signatures: To link two
pseudonyms X7,_; and Xo; from circuits C; and C5 respectively, N4 has to
forge the pseudonym signature on Xs; with X7,_; as a public key, or he has
to know the temporal signing key pair for the predecessor in Cf.

Intuitively, the first case is ruled out by the unforgeability property of the
signature scheme. We model the later case as a trace property. Here, even when
N4 collaborates with Us, it cannot forge the signed pseudonym received from
its predecessor. The property remains intact as long as one of the nodes on C
and the packet attesting ISP [36] remain uncompromised. In the absence of a
PKI or credential system for users, the last condition is unavoidable.

We formalize and verify the latter case of the property in an adversarial model
where the attacker has compromised one user (U; or Us). Figure 2 provide a
graphical representation of the protocol P. We upgrade the basic model involving
additional user U; who sends additional message msy. As mentioned before, to
simulate the packet attesting mechanism [36] we involve a honest ISP between
the user and the entry node. The ISP only collects data that identifies the user
(IP address of the user) and the pseudonym for the entry node (X7), which is
send in plain-text. The adversary does not have access to the log stored by the
ISP. We want to verify that for all protocol executions the request m; cannot be
associated with any user U; other than the originator. To formalize the property
in ProVerif, we model security-related protocol events with logical predicates.
The event CorrISP defines the point of the protocol where the ISP is corrupted.
In absence of support for timestamp in ProVerif, we model timestamp values ts
for circuits as fresh nonces. The property can be formalized as follows:

Accuse(IP,m) = CorrISP. (2)

It says that if a user with address IP is falsely accused for a message m, i.e.
Accuse(IP,m), then indeed the ISP has to be corrupted.
Theorem: The trace property defined in equation (2) holds true for all possible
executions of process P.

Proof. Automatically proven by ProVerif. O
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Anonymity. We use observational equivalence to formalize privacy related
properties such as in [45], [46]. We model anonymity as an equivalence rela-
tion between two processes that are replicated an unbounded number of times
and execute in parallel. In the first process P, users U; and Us send two messages
my and mgy, respectively. While in the second process Q the two messages are
swapped. If the two defined processes are observationally equivalent (P ~ Q),
then we say that the attacker cannot distinguish between mi and ms i.e. cannot
learn which message is sent by which user. In our scenario we assume that the
attacker can compromise some fraction of the OR nodes, but not all of them.
Figure 3 provides a graphical representation of the anonymity game where the
exit node N3 is honest. The game works as follows:

1. U7 and U, create an onion data structure O; and Os, respectively, intended
for N3 and send via previously built circuits Cy (Uy ¢ Ny > Na +> N3) and Cy
(Uz < N7 <> N3 <+ N3). Nodes communicate between each other through public
channels. 2. Two of the intermediate nodes are corrupted and the attacker has
full control over them. The intermediate compromised nodes (in our case Ny and
N3) remove one layer of encryption from O; and Oz and send the onion to the
exit node N3. 3. After receiving these two onions from the users U; and Us and
possibly other onions from compromised users, the exit OR node N3 removes
the last layer of the encryption and publishes the message on a public channel.

Note that the ISP does not affect the anonymity game and only acts as a
proxy between the users and the outside world. For the verification, we assume
that U; and U, are honest and they follow the protocol. Nevertheless, the action
of any compromised user and honest users can be interleaved in any order.

Theorem: The observational equivalence relation P ~ @ holds true.

Proof. Automatically proven by ProVerif. O

No Forward Traceability. The evidence log of the backward traceability
protocol in BACKREF does not store any information (i.e., IP addresses) that can
identify or verifiably reveal the identity of a node’s successor. The log contains
only the pseudonym for the successor node which does not reveal anything about
the identity of the node.

We formalize this property as an observational equivalence relation between
two distinct processes and verify that an adversary cannot distinguish them.
Figure 4 provides a graphical representation of the game. To prove the observa-
tional equivalence, we model a scenario with concurrent circuit executions.
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In this game, the adversary can corrupt parties and extract their secrets only
after the message transmission over the circuit has completed. For this game,
our model involves an additional middle node and user Us. Two users U; and
Us send two different messages m; and mo via two circuits. We verify that it
is impossible for an attacker to deduce any meaningful information about the
successor node for a particular request. Our game works as follows: 1. Uy and U,
start the protocol and construct two different circuits, C1 (U < N1 <> N <> N3)
and C3(U < N1 <+ NJ < N3) respectively, with adequate values (1,22, z3) for
a circuit Cy and (24, 24, z%) for Cy. 2. Uy and Us create an onion data structure
01 and O and send to the exit node N3 via previously built circuits C; and Cs.
Nodes communicate with each other through public channels. 3. After receiving
the two onions from the users and possibly other onions from compromised users,
N3 removes the last layer of the encryption and publishes the messages on a
public channel. 4. After protocol completion, the entry node Nj is compromised
and the adversary obtains the evidence log.

In the first process P, U; sends m; and Us sends mg, while the process @ is
reversed process P. For the no forward traceability verification, we assume that
all other parties in the protocol remain honest, except the compromised N;. For
example, if two neighbor nodes are compromised, the no forward traceability
can be easily broken by activating the backward traceability mechanism.

Theorem: The observational equivalence relation P ~ @ holds true.

Proof. Automatically proven by ProVerif. O

Finally, to the best of our knowledge, our formal analysis is the first ProVerif-
based analysis of the OR protocol; it can be of independent interest towards
formalizing and verifying other properties of the OR protocol.

7 Conclusion

We presented BACKREF, an accountability mechanism for ACNs that provides
practical repudiation for the proxy nodes, allowing selected outbound traffic
flows to be traced back to the predecessor node. It also provides a full trace-
ability option when all intermediate nodes are cooperating. While traceability
mechanisms have been proposed in the past, BACKREF is the first that is both
compatible with low-latency, interactive applications (such as anonymous web
browsing) and does not require group managers or credential issuers. BACKREF
is provably secure, requires little overhead, and can be adapted to a wide range of
anonymity systems. We also analyzed some important systems issues (namely,
white-listing, log storage, non-cooperating nodes, and the last mile problem)
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with any reactively accountable ACN, and presented plausible options towards
deploying BACKREF in practice.
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