
Sakura: A Flexible Coding for Tree Hashing

Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1

1 STMicroelectronics
2 NXP Semiconductors

Abstract. We propose a flexible, fairly general, coding for tree hash
modes. The coding does not define a tree hash mode, but instead specifies
a way to format the message blocks and chaining values into inputs to
the underlying function for any topology, including sequential hashing.
The main benefit is to avoid input clashes between different tree growing
strategies, even before the hashing modes are defined, and to make the
SHA-3 standard tree-hashing ready.

Keywords: hash function, tree hashing, indifferentiability, SHA-3.

1 Introduction

A hashing mode can be seen as a recipe for computing digests over messages by
means of a number of calls to an underlying function. This underlying function
may be a fixed-input-length compression function, a permutation or even a hash
function in its own right. We use the term inner function and symbol f for the
underlying function and the term outer hash function and symbol F for the
function obtained by applying the hashing mode to the inner function.

The hashing mode splits the message into substrings that are assembled into
inputs for the inner function, possibly combined with one or more chaining values
and so-called frame bits. Such an input to f is called a node [6]. The chaining
values are the results of calls to f for other nodes.

Hashing modes serve two main purposes. The first is to build a variable-input-
length hash function from a fixed-input-length inner function and the second is
to build a tree hash function. In tree hashing, several parts of the message may be
processed simultaneously and parallel architectures can be used more efficiently
when hashing a single message than in sequential hashing [17,8,22,3,9,6].

The motivation for standardizing a tree hash mode, or to have a tree-hash-
ready SHA-3 standard, was discussed at various occasions during the SHA-3
competition on the NIST hash-forum mailing list [18]. A few candidates, like
MD6, SANDstorm and Skein, proposed built-in tree hash modes [21,23,10]. At
the Third SHA-3 Candidate Conference, Lucks, McGrew and Whiting motivated
why the SHA-3 standard should support parallelized tree hashing [15].

Different applications or use cases call for different approaches to tree hash-
ing and different tree topologies. For instance, some environments favor cutting
the input message in consecutive pieces and hashing these pieces independently,
while others favor to hash interleaved pieces of data, see, e.g., [11]. In his pre-
sentation at ESC 2013, Lucks suggested to use a n-ary tree with much potential

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 217–234, 2014.
c© Springer International Publishing Switzerland 2014

218 G. Bertoni et al.

parallelism and to let the implementation choose the most appropriate evalu-
ation strategy [14]. As another example, some applications require to keep the
intermediate hash values (e.g., to be able to re-compute the digest if only a part
of the input changes), whereas the mere exploitation of parallelism does not
require it.

Given all this diversity, it seems difficult to agree on a “one-size-fits-all” tree
hash mode. Instead, we take the different approach of allowing different tree hash
modes to co-exist. However, the co-existence of different modes on top of existing
(serial) hash functions calls for caution. While each individual hash mode can be
proven secure, the joint use of several modes can become insecure, in particular
due to the different coding conventions that could collide into equal inputs to
the inner function. This paper proposes a way to bring together different tree
hash modes in a secure way and follows ideas presented in [5, Slides 54-59].

We show that it is possible to define a tree hash coding, i.e., a way to format
the input to the inner function, that can cover a wide range of tree hash modes.
For a carefully designed tree hash coding, one can prove that the union of all
tree hash modes compatible with it is sound. By sound we mean that it does not
introduce any weaknesses on top of the risk of collisions in the inner function.
More precisely, a hashing mode is sound if the advantage of differentiating F
from a random oracle, assuming f has been randomly selected, is upper bound
by q2/2n+1, with q the number of queries to f and n the length of the chaining
values [1,16,7,6].

As a result, tree hash modes compatible with the defined coding can be pro-
gressively introduced while preserving their joint security. Also, as an additional
benefit, a tree hash mode following the coding convention is sound by construc-
tion, without the need of additional proofs.

For proving soundness, we use the results of [6], in which we specify a set
of conditions for a tree (or sequential) hashing mode to be sound. We assume
that to the choice of f is attached a security parameter, like the capacity in the
specific case of sponge functions or the security strength [19,2]. We consider this
security parameter to be specified together with f and to remain constant for
its entire use in a tree hash mode.

The remainder of this paper is structured as follows. In Section 2 we explain
the range of possibilities of our proposed sound tree hash coding and illustrate
it with some examples. In Section 3 we specify Sakura, the coding we propose,
while in Section 4 we define what it means for a hashing mode to be compatible
with Sakura and prove that any such tree hash mode is sound. In Section 5 we
give some examples of modes and in Section 6 we provide a concrete proposal in
the context of making the SHA-3 standard tree-hashing ready.

2 Functionality Supported by Sakura

We start by recalling the very general concept of node and tree of nodes. We
then capture the functionality of Sakura with trees of hops and how nodes and
hops relate to one another. Finally, some figures illustrate the concepts.

Sakura: A Flexible Coding for Tree Hashing 219

2.1 Modeling tree Hash Modes

We refer to [6, Section 2] for a detailed description of the model. We here give a
short summary.

A tree is a directed graph of nodes. Informally speaking, each node is hashed
with the inner function f and the output is given to its parent node as a chaining
value. The exception is for the final node (i.e., the root of the tree), which does
not have a parent, and the output of the outer hash function F (M) is the output
of f applied to this final node.

A tree hash mode T specifies a tree of nodes as a function of the input message
length |M | and some specific parameters A. In particular, it is up to the mode to
define how the tree scales as a function of |M |, how the message bits are spread
on the nodes, which nodes takes chaining values from which nodes, etc.

For a fixed |M | and A, a tree hashing mode specifies precisely how to format
the inputs to the inner function f with bits from the message, chaining values
and frame bits. The latter are constant bits for padding or domain separation.
The union of tree hash modes is defined in [6, Section 7.3]. The union Tunion
of k tree hashing modes Ti simply means that the user has a choice parameter
indicating the chosen mode i composed with the tree parameters Ai for the
particular mode i. With Tunion, the user can thus reach any node tree that
some Ti can produce.

2.2 From Generality to Functionality

The model of the tree using nodes is very general and allows modeling even the
most cumbersome tree hash mode, e.g., where a node inputs 2 chaining value
bits from child #4 then 7 message bits, etc. We now introduce some concepts
that restrict this general model to one that can be easily represented and yet is
sufficiently flexible to cover all practical cases we can think of.

We represent trees in terms of hops that model how message and chaining
values are distributed over nodes. Any tree of hops uniquely maps to a tree of
nodes, so they are still supported by the model mentioned above. However, not
all trees of nodes (such as the cumbersome example above) can be represented
in trees of hops.

In Sakura, any tree of hops is encoded into a tree of nodes. In other words,
the functionality supported by Sakura is exactly that of all possible trees of
hops that can be built. Sakura-compatible tree hash modes are not required to
generate all possible hop trees, but instead they can focus on the desired subset
of them. In the sequel, we define what the hops are and how they are encoded
into nodes.

2.3 Hops and Hop Trees

Unlike a node that may simultaneously contain message bits and chaining values,
there are two distinct types of hops: message hops that contain only message
bits and chaining hops that contain only chaining values.

220 G. Bertoni et al.

The hops form a tree, with the root of the tree called the final hop. Such a
hop tree determines the parallelism that can be exploited by processing multiple
message hops or chaining hops in parallel.

Each hop has a single outgoing edge. A message hop has no incoming edges.
The number of incoming edges of a chaining hop is called its degree d. The hops
at the other end of these edges are called the child hops of that chaining hop.
The edges to a hop are labeled with numbers 0 to d − 1 and the hop at the
end of edge 0 is called the first child hop. There is exactly one hop that has no
outgoing edge and we call it the final hop. There is exactly one path from each
hop to the final hop.

We define the position of a hop in a hop tree by an index, that specifies the
path to follow to reach this hop starting from the final hop. It consists of a
sequence of integers α = α0α1 . . . αn−1. Indexing is defined in a recursive way:

– The index of the final hop is the empty sequence, denoted ∗.
– The index of the i-th child of a hop with index α has index α||i− 1.

The length of this sequence specifies the distance of the specified hop to the final
hop and is called its height. The height of the hop tree is the maximum height
over all hops.

2.4 Interleaving the Input over Message Hops

In general, message bits are distributed onto message hops from the first to the
last child.

In streaming applications, one may wish to divide message substrings over
multiple hops as the message becomes available. For this purpose chaining hops
have an attribute called interleaving block size I that determines how this shall
be done. The principle is that a chaining hop distributes the message bits it
receives over its child hops. It hands the first I bits to its first child, the second
sequence of I bits to its second child and so on. After reaching the last of its
child hops, it returns to its first child and so on. When a receiving hop is also
a chaining hop, it will distribute the message bits over its child hops according
to its own interleaving block size. When this process ends is determined by the
hashing mode. For example, it can be when the end of the message is reached
or when the hops have reached some maximum size specified in the mode’s
parameters.

A mode that does not make use of message block interleaving can set the
interleaving block size of the chaining hops to a value that is larger than any
message that may be presented, and we say I = ∞.

The way message bits are distributed is formally captured by the GetMessage
function in Definition 1 below. For examples with block interleaving, please see
Sections 5.2 and 5.3.

2.5 Mapping Hops to Nodes

One can define hashing modes where the concepts of node and hop coincide
by imposing that each node contains exactly one hop. With kangaroo hopping

Sakura: A Flexible Coding for Tree Hashing 221

defined below, however, the first child hop is coded before its parent in the same
node.

In a mode without kangaroo hopping, the node tree is constructed from the
hop tree using the same topology. A node contains exactly one hop. The nodes
are constructed by putting message bits in nodes containing a message hop and
by putting chaining values in nodes containing a chaining hop.

The motivation for kangaroo hopping is the following. The length of (a node
mapped from) a chaining hop is the number of children multiplied by the length
of the chaining value. Compared to sequential hashing, this corresponds to an
overhead. Also, there is typically some additional computational overhead per
call to f . Kangaroo hopping reduces this overhead by putting multiple hops per
node in a way that does not jeopardize the potential parallelism expressed in the
hop tree. A chaining hop has an attribute that says whether kangaroo hopping
must be applied on it, and if so, the chaining hop is also called a kangaroo hop.
When encoding a kangaroo hop into a node, the node contains its first child
hop itself instead the chaining value (its f -image). For the other child hops it
contains the chaining values as usual. Hence, when evaluating F (M), instances
of f can process child hops in parallel and then the instance of f for the first
child continues processing the parent hop.

Kangaroo hopping can be applied in a recursive way, i.e., the first child hop
may also be a kangaroo hop. All in all, a node may contain a message hop
followed by zero, one or more chaining hops, or one or more chaining hops.
Kangaroo hopping reduces the number of nodes to the total number of hops
minus the number of kangaroo hops. It is easy to see that the number of nodes
can be reduced to the number of message hops, but not to less.

The result of applying f to the final node is the output of F . The last hop in
this node is the final hop. The result of applying f to an inner node is a chaining
value.

2.6 Illustrations

We illustrate these concepts with some examples in Figures 1, 2 and 3. These
figures depict hop trees with the following conventions. Message hops have sharp
corners, chaining hops have rounded corners. The final hop has a grey fill, the
others a white fill. An edge between child and parent has an arrow and enters
the parent from above if the chaining value obtained by applying f to the child
hop is in the parent hop. It has a short dash and enters the parent hop from the
left in the case of kangaroo hopping. Hops on the same horizontal line are in the
same node.

In Figure 1 there are in total 5 hops: 4 message hops M0 to M3 and one
chaining hop Z∗. The final node contains both the final hop Z∗ and M0 because
of kangaroo hopping. The total number of nodes is 4.

In Figure 2 there are in total 7 hops: 4 message hops M00, M01, M10, M11,
and three chaining hops Z0, Z1 and Z∗. The final node contains only the final
hop Z∗. The hops M00 and Z0 are in a single node. Similarly, M10 and Z1 are
in a single node. The total number of nodes is 5.

222 G. Bertoni et al.

Fig. 1. Example of a hop tree with application of kangaroo hopping. M0 and Z are in
the same node.

Fig. 2. Another example of a hop tree. M00 and Z0 are in the same node, as well as
M10 and Z1.

In Figure 3 there is only a single hop, that is at the same time a message hop
and the final hop. Clearly, there is only a single node containing this hop.

Fig. 3. Example of a hop tree with a single node

3 The Sakura Tree Coding

In this section we specify the Sakura tree coding. The goal of this coding is
to allow a tree hash mode to encode a hop tree into the input of f . From this
definition, it should be clear how the evaluation of F (M) must be processed.

Sakura: A Flexible Coding for Tree Hashing 223

For a Sakura-compatible tree hash mode to be sound, the individual parts
(e.g., message bits, chaining values) must be unambiguously recovered by parsing
the node tree. Of course, such a decoding never occurs in practice but must be
ensured for satisfying tree-decodability. The coding adds frame bits for tree-
decodability, as well as to ensure domain separation between inner nodes and
the final node.

The coding is based on a number of simple principles:

– Nodes, namely inputs to f , can be unambiguously decoded into hops from
the end. This is done by
• coding in a trailing frame bit whether it is a chaining hop or a message
hop;

• allowing at most a single message hop per node, and this at the begin-
ning;

• allowing the parsing of a chaining hop from the end.
– The parsing of a chaining hop from the end is made possible in the following

way:
• it is a series of chaining values followed by an interleaving block size;
• an interleaving block size consists of 2 bytes;
• at the end of the chaining values their number is appended in suffix-free
coding;

• the length of the chaining values is determined by the security strength
of f .

– We apply simple padding between the hops in a node, so as to allow the
alignment of these elements to byte boundaries, 64-bit word boundaries or
to any other desired boundaries. (This is up to the mode to define.)

– We apply simple padding at the end of inner nodes. Where appropriate, this
can be used by a mode to ensure that different sibling inner nodes have
the same length. This may simplify the implementation, e.g., if sibling inner
nodes are processed in parallel using SIMD instruction. (Again, this is up to
the mode to define.)

3.1 Formal Description of Sakura

We specify the Sakura tree coding in Figure 4 below. In our specification we
use the Augmented Backus-Naur Form (ABNF), which is used for describing
the syntax of programming languages or document formats [20]. (We refer to
the Wikipedia entries for ABNF.)

In short, an ABNF specification is a set of derivation rules, where a non-
terminal symbol is assigned a sequence of symbols or a choice of a set of sequences
of symbols, separated by |. Symbols that never appear on a left side are terminals.
Non-terminal symbols are enclosed between the pair 〈〉. In our case, the terminals
are either the frame bits ‘0’ and ‘1’, frame bits whose value is specified in the
text (FRAME BIT), bits coming from the message (MESSAGE BIT), bits
coming from chaining values (CHAINING BIT), or the empty string ‘’. The
expression n〈x〉 denotes a sequence of n elements of type 〈x〉. In the language of

224 G. Bertoni et al.

〈final node〉 ::= 〈node〉 ‘1’
〈inner node〉 ::= 〈node〉 〈padSimple〉 ‘0’
〈node〉 ::= 〈message hop〉 | 〈chaining hop〉 | 〈kangaroo hopping〉
〈kangaroo hopping〉 ::= 〈node〉 〈padSimple〉 〈chaining hop〉
〈message hop〉 ::= 〈message bit string〉 ‘1’
〈message bit string〉 ::= ‘’ | 〈message bit string〉 MESSAGE BIT

〈chaining hop〉 ::= nrCVs〈CV 〉 〈coded nrCVs〉 〈interleaving block size〉 ‘0’
〈CV 〉 ::= nCHAINING BIT

〈coded nrCVs〉 ::= 〈integer〉 〈length of integer〉
〈integer〉 ::= 〈frame byte string〉
〈frame byte string〉 ::= ‘’ | 〈frame byte string〉 8FRAME BIT

〈length of integer〉 ::= 8FRAME BIT

〈interleaving block size〉 ::= 〈mantissa〉 〈exponent〉
〈mantissa〉 ::= 8FRAME BIT

〈exponent〉 ::= 8FRAME BIT

〈padSimple〉 ::= ‘1’ | 〈padSimple〉 ‘0’

Fig. 4. Definition of Sakura tree hash coding

[6], the produced nodes compose a tree template, i.e., a tree with placeholders
for message bits and chaining values.

The production rules for 〈node〉 express which sequences of hops can be en-
coded in a node. E.g., if the node contains one message hop followed by two
chaining hops because of kangaroo hopping, 〈node〉 expands to 〈message hop〉
〈padSimple〉 〈chaining hop〉 〈padSimple〉 〈chaining hop〉.

The length of the chaining values 〈CV〉 is n bits, where n is a multiple of 8 to
ensure byte-alignment. If the function f has worst-case (or collision resistance)
security strength s [19], then we take n equal to s multiplied by two and rounded
to a multiple of 8, i.e., n = 8�s/4�. In the case of a sponge function with capacity
c, n = 8�c/8�, e.g., if c = 256 bits, then a 〈CV〉 consists of 32 bytes [2]. We assume
that the security strength of the inner function is known from the context.

When interpreted as an integer, a byte has the value

∑

0≤i<8

bi2
i, (1)

where the first bit in a byte has index 0 and the last 7.

Sakura: A Flexible Coding for Tree Hashing 225

The 〈coded nrCVs〉 codes the number of chaining values and is a positive
integer. It consists of two fields:

– 〈integer〉: a byte string that can be decoded to an integer using the function
OS2IP(X) specified in the RSA Labs standard PKCS#1[13],

– 〈length of integer〉: a single byte that codes the length (in bytes) of the
〈integer〉 field.

The interleaving block size codes an integer using a floating point represen-
tation. Its first byte is the mantissa m and its second byte is the exponent e.
The value of the interleaving block size I is then given by I = 2e(2m+ 1). The
largest possible value that the interleaving block size can have with this coding is
(29−1)2255, obtained by setting all bits in its coding to 1. In practice no message
will ever attain this length and we use it to denote that there is no interleaving.
This value will be denoted by I = ∞ in the remainder of this paper.

Within a node, the chaining bits must come from child nodes with increasing
indexes, starting from 0 at the beginning of the node, across all chaining hops of
the node. When kangaroo hopping is not used, the node indexing matches the
hop indexing, but not in general.

The encoding of the message bits in the tree should allow the reconstruction
of the message by applying GetMessage to the final hop according to following
definition. Note that reconstructing the message from the nodes is an opera-
tion that is relevant in proving soundness rather than something to be used in
practice.

Definition 1. GetMessage is defined by the following recursion:

– GetMessage(message hop) is the message hop’s message string
– GetMessage(chaining hop) = DeInterleave(L, I), where

• L is an ordered list obtained by calling GetMessage() on each child hop,
• I is the input chaining hop’s interleaving block size attribute, and
• DeInterleave(L, I) extracts the first I bits from L0, then the first I

bits from L1, . . . , up to the last item of list, then back to L0, and so
on, until all strings in L are empty. Extracting more bits than available
reduces to extracting all remaining bits.

Definition 2. A tree template is Sakura-compatible if its nodes are compliant
with the coding specified in Figure 4, if the number of 〈CV〉 and the block inter-
leaving size are coded as explained above, and if the chaining bits and message
bits are as defined above.

3.2 Illustrations

We apply the Sakura encoding to the examples depicted on Figures 1, 2 and 3.
In these examples, we use the following conventions. Bit values are written as 0 or
1, while sequences of 8 bits can be written in hexadecimal notation prefixed with
0x with numerical value following Eq. (1). Spaces are inserted only for reading

226 G. Bertoni et al.

purposes. If Mα is a message hop, we denote by Mα its message bits. Similarly,
if Zα is a chaining hop, we denote by {Iα} the encoding of its interleaving
block size. Then, CVβ is the chaining value resulting from the application of f
to the node with index β. Finally, 0∗ indicates a non-negative number of bits 0
determined by the tree hash mode, typically inserted for alignment purposes.

The example corresponding to Figure 1 is given in Table 1. In the final node,
〈node〉 expands to 〈message hop〉 〈padSimple〉 〈chaining hop〉, while in all other
nodes it simply expands to 〈message hop〉.

The example corresponding to Figure 2 is given in Table 2. In two inner nodes,
〈node〉 expands to 〈message hop〉 〈padSimple〉 〈chaining hop〉 and in two other
inner nodes, 〈node〉 expands to 〈message hop〉. In the final node, 〈node〉 simply
expands to 〈chaining hop〉.

For sequential hashing (Figure 3), this reduces to a single final node containing
M11, and the relationship between the inner and outer hash functions reduces to

F (M) = f(M ||11). (2)

Table 1. Encoding for the hop tree example depicted in Figure 1

Node index Encoding

2 M31 10∗ 0

1 M21 10∗ 0

0 M11 10∗ 0

∗ M01 10∗ CV0 CV1 CV2 0x03 0x01 {I∗}0 1

Table 2. Encoding for the hop tree example depicted in Figure 2

Node index Encoding

10 M111 10∗ 0

1 M101 10∗ CV10 0x01 0x01 {I1}0 10∗ 0

00 M011 10∗ 0

0 M001 10∗ CV00 0x01 0x01 {I0}0 10∗ 0

∗ CV0 CV1 0x02 0x01 {I∗}0 1

4 Sakura-Compatible Tree Hash Modes and Soundness

We define Sakura-compatible tree hash modes in the following way.

Definition 3. A tree hash mode is Sakura-compatible if it generates only
Sakura-compatible templates.

Sakura: A Flexible Coding for Tree Hashing 227

We will now prove that any Sakura-compatible tree hash mode, as well as
the union of any set of Sakura-compatible tree hash modes, is sound by proving
a number of lemmas.

We start by defining S as a tree hash mode that can generate all Sakura-
compatible templates. By construction, this mode is Sakura-compatible. Its
parameters A must describe the whole hop tree structure with each hop’s at-
tributes, plus the length of all message blocks and the number of zeroes inserted
by 〈padSimple〉. This mode is not meant to be used in practice but only in the
scope of this proof.

Lemma 1. Given a node instance produced by S (i.e., with Sakura coding)
and the knowledge of the security strength of f , one can recover indices of all
hops, the message strings of the message hops, the location and indices (relative
to the given node instance index) of the chaining values, and the interleaving
block size attributes of all chaining hops.

Proof. From the definition of Sakura in Figure 4, it is clear that a 〈node〉,
obtained after removing the trailing bit from a 〈final node〉 or 〈inner node〉 (and
in the latter case, also removing the 〈padSimple〉 padding), consists of a possible
〈message hop〉 followed by one or more 〈chaining hop〉s, with simple padding in
between. A 〈chaining hop〉 in turn consists of a sequence of 〈CV〉s followed by
an encoding of their number and a 〈interleaving block size〉.

Parsing a 〈node〉 can be done starting at the end. If the last bit is 1 it simply
consists of a single message hop. Otherwise, it ends with a chaining hop. In the
latter case, the last two bytes code the interleaving block size of the chaining
hop and the byte before that denotes the length of the field coding the number
of chaining values and allows localizing it. Decoding this field yields the number
of chaining values and together with their lengths uniquely determines their
positions in the node, including the start of the chaining hop in the node. This
allows continuing the parsing until reaching the beginning of the 〈node〉 or the
end of the 〈message hop〉 in the beginning of the 〈node〉.

The interleaving block size of a chaining hop can be computed from the coding
in 〈interleaving block size〉 at its end and the message string of the 〈message hop〉
(if any) can be obtained by removing the trailing bit 1.

The index of the last 〈chaining hop〉 is that of the 〈node〉. Whenever kangaroo
hopping is used, the index of a 〈chaining hop〉 or 〈message hop〉 is recursively
the index of the next 〈chaining hop〉 with 0 concatenated to it. This is in line
with the node indexing specified in Section 3.1.

The indices of the nodes corresponding with the 〈CV〉s in a 〈node〉 can be
obtained by appending to the last hop index 0 for the first CV, 1 for the second
and so on, throughout all the 〈chaining hop〉s of the node instance from beginning
to end. �	

To prove the soundess of S, we use the three conditions that are shown to be
sufficient in [6]. We now informally summarize them.

228 G. Bertoni et al.

– The mode must be tree-decodable. This means that the tree can be parsed to
retrieve the frame bits, message bits and chaining bits unambiguously. There
must be a decoding algorithmAdecode that can parse the tree progressively on
subtrees, starting from the final node only, and each time adding a new inner
node and pointing at the corresponding chaining value. Also, the process
must terminate by requiring that one can distinguish between complete and
compliant trees, subtrees that are compliant except for some missing nodes
(called final-subtree-compliant), and incompliant trees.

– The mode must be message-complete. This means that the message can be
reconstructed from the complete tree.

– The mode must be final-node separable. This essentially means that one can
tell the difference between final nodes and inner nodes.

Lemma 2. The tree hash mode S is tree-decodable.

Proof. First, there are no tree instances that are both compliant and final-
subtree-compliant. Lemma 1 proves that one can always unambiguously decode
chaining values and distinguish them from other kind of bits given only one node
instance. This means that a final subtree S is a proper final subtree iff there are
chaining values pointing to nodes missing in S.

Second, the algorithm Adecode can be defined as follows. Given a tree instance
S with index set J , it first recursively decodes tree node instances of S as in
the proof of Lemma 1. If at any point, the coding does not follow the grammar
defined in Figure 4 or when the string is too short to contain the number of
〈CV〉s coded in 〈coded nrCVs〉, it returns “incompliant”.

The algorithm Adecode then looks for nodes that have chaining values pointing
to nodes missing in S (i.e., whose index is not in J). If there no such chaining
values, return “compliant”. Otherwise, return “final-subtree-compliant” and the
index of such a missing node using a deterministic rule (e.g., the missing node
with the first index in lexicographical order).

The algorithm Adecode runs in linear time in the number of bits in the tree
instance, as can be seen in the proof of Lemma 1. �	
Lemma 3. The tree hash mode S is message-complete.

Proof. Given a compliant tree instance S, the algorithm Amessage can be de-
fined similarly to the GetMessage function in Definition 1. From Lemma 1, the
necessary hop attributes can be extracted from the tree instance.

Clearly, this algorithm runs in linear time in the number of bits in the tree
instance. �	
Lemma 4. The tree hash mode S is final-node separable.

Proof. Sakura enforces domain separation between final and inner nodes, as
the trailing bit of a final node is always 1 and that of an inner node is always 0.

�	
Theorem 1. Any Sakura-compatible tree hash mode, as well as the union of
any set of Sakura-compatible tree hash modes, is sound.

Sakura: A Flexible Coding for Tree Hashing 229

Proof. From the previous lemmas and [6, Theorem 1], it follows that S is sound.
The set ZT of tree templates that a Sakura-compatible tree hash mode T

produces is included in those produced by S, i.e., ZT ⊆ ZS . Therefore, T can be
implemented by running S as a sub-procedure, after encoding T ’s parameters
in the format that S accepts. This only restricts what an attacker can query, so
T is at least as secure as S.

When taking the union of two or more Sakura-compatible tree hash modes, if
the tree instances produced by each of the united modes are Sakura-compatible,
then so are the tree instances produced by the union. It follows that the union of
Sakura-compatible tree hash modes is Sakura-compatible and the argument
above carries over to the union. �	

5 Examples of Tree Hash Modes

In this section we give some examples of tree hash modes that can be realized
with the Sakura coding. In general, specifying a mode mainly comes down to
specifying how the tree grows as a function of the size of the input message.
These modes are parameterized and the value of the parameters must be known
at the time of hashing a message.

For fully specifying a tree hash mode compliant with Sakura, one has to
specify the number of hops and their indices, how the message bits are distributed
onto message hops, and for each chaining hop whether kangaroo hopping is
applied. In addition, the mode has to specify the length of the padding elements
as they appear in the grammar of Figure 4. For the padding between hops, this
can be derived from a simple strategy, such as always align on bytes, on 64-bit
boundaries or on the input block size (or rate) of the inner hash function f . If
desired, the mode can also specify how to use the padding at the end of inner
nodes to ensure that sibling nodes executed in parallel branches have the same
length.

In our examples, unless otherwise specified, the message is split into B-bit
blocks Mi, i.e.,

M = M0||M1|| . . . ||Mn−1,

with n = �|M |/B� and where the last block Mn−1 may be shorter than B bits.

5.1 Final Node Growing

With final node growing, the hop tree has fixed height 1 and the number of
leaves increases as a function of the input message length. There is only a single
chaining hop, namely the final hop. The indices of the message hops are integers
0 to n− 1 and the message string in message hop with index i is Mi, hence each
message hop has a fixed maximum size B. Interleaving is not applied, so the
interleaving block size in the final hop is I = ∞.

This mode can be useful to enable a large amount of potential parallelism,
namely up to n = �|M |/B� message hops can be processed in parallel if the

230 G. Bertoni et al.

corresponding message blocks are available at the same time. In practice, a
number p of independent processes Pj , j = 0, . . . , p − 1 can be set up, which
does not depend on the tree structure other than in the total number of message
hops. Each process Pj could take care of message hops with indices j + kp.

The drawback of this method is an extra cost proportional to the message
length, as n chaining values of length c must be processed in the final node. This
extra cost represents approximately a fraction c/B of the nominal work, which
can be made arbitrarily small by choosing B large enough.

This mode has two parameters:

– B, the maximum size of message string in message hops, and
– whether or not kangaroo hopping shall be applied in the final hop.

5.2 Leaf Interleaving

With leaf interleaving, the hop tree has a fixed topology, i.e., its height is 1 and it
has D message hops, with D a parameter. The size of the message hops depends
on the input message length. The message is distributed over the leaves as it
arrives in blocks of size B. The message hops have indices i ∈ {0, 1, . . . , D − 1}
and their message string is Mi||Mi+D|| . . . ||Mi+(si−1)D with si = �(n − i)/D�.
The interleaving block size in the final hop shall be set to I = B. If |M | < DB,
there are message hops with zero message bits. (Note that an alternate message
assignment procedure is proposed later in this section.)

This mode is useful if one wants to hash a message in up to D parallel threads.
The drawback is that D represents a limit in the potential parallelism, and this
value must be chosen beforehand.

This method has a fixed extra cost, independent of the message length, as the
final node has to process D chaining values.

This mode has three parameters:

– B, the interleaving block size,
– D, the number of message hops, and
– whether or not kangaroo hopping shall be applied in the final hop.

Ensuring Equal-Length Inner Nodes. In the implementation, it may be
interesting to ensure that all the D nodes processed simultaneously have equal
block length w.r.t. the inner function f . For the D (or D−1, if kangaroo hopping
is applied) inner nodes, this can be achieved by systematically adding bits with
value 0 in the 〈padSimple〉 padding of the 〈inner node〉 production rule. A simple
procedure consists in adding padding bits so as to match the length of the longest
inner node.

When kangaroo hopping is applied, the final node has the possibility to add
padding bits after the message hop, just before the chaining values of the D− 1
inner nodes are added, i.e., in the 〈padSimple〉 padding of the 〈kangaroo hopping〉
production rule. The processing of all D pieces of message can therefore be
aligned, even with kangaroo hopping.

Sakura: A Flexible Coding for Tree Hashing 231

Avoiding Systematic Block Alignment. Implementations can also be made
easier when the interleaving block size B is equal to, or a multiple of, the input
block size (or rate) r of the inner hash function f . This avoids re-shuffling of the
input message bytes, in particular for implementations that process less than D
nodes in parallel.

But there is a potential efficiency problem in this case if care is not taken in
the way the message bits are spread on the D message hops, in particular for
the last |M | mod DB bits. If the message bits are cyclically spread by blocks of
B bits onto the D message hops until exhaustion, message hops will very often
contain a whole number of r-bit blocks. After adding frame and padding bits, the
resulting nodes will systematically be just a few bits longer than a whole number
of r-bit blocks. This would be unfortunate, as the inner function f would need
to process an additional block containing only frame and padding bits and no
message payload, and this amounts to quite an extra fixed cost compared to just
processing the final hop. E.g., if B = r = 1024, D = 4 and the message length is
3208 (mod 4096), the last 3208 bits would be split as 1024+ 1024+ 1024+ 136,
causing 3 extra blocks to be absorbed without any payload.

To address this, the mode can simply spread the last |M | mod DB bits as
equally as possible (up to, say, bytes) onto the D hops. The mode remains
Sakura-compatible since the GetMessage function in Definition 1 simply con-
catenates the last blocks of each nodes, even if they have less than I = B bits.
Taking the same example as above, the last 3208 bits could instead be spread as
800+ 800+ 800+ 808 and avoid the 3 extra blocks mentioned above. Note that
this technique requires to know the end of the message DB bits in advance or
to have a buffer of DB bits.

Let us specify a possible alternate procedure, which we illustrate in the case
that the message and interleaving block sizes are byte-aligned, i.e., |M | and B
are multiples of 8. With m = |M |/8 and b = B/8, we concentrate on the last
m mod Db bytes. If m mod Db = 0, message hops all contain whole blocks, and
there is nothing to do. If m mod Db > 0, we proceed as follows.

– Let M ′ be the last m mod Db bytes of M .
– For i from 0 to D − 1:

• Move the first
⌊
m+i
D

⌋
remaining bytes from M ′ to the i-th message hop.

5.3 Macro- and Microscopic Leaf Interleaving

Different orders of magnitudes for the block interleaving size I can be useful
depending on the kind of parallelism that one wishes to exploit. At one end
of the spectrum is a single-instruction multiple-data (SIMD) unit of a modern
processor or core. Such a unit can naturally compute two (or more) instances
of the same primitive in parallel. For the processor or core to be able to fetch
data in one shot, it is interesting to process simultaneously data blocks that are
located close to one another. Suitable I values for addressing this are, e.g., 64
bits or the input block size (or rate) of f .

232 G. Bertoni et al.

At the other end of the spectrum is the case of independent processors, cores
or even machines that process different parts of the input in parallel. In contrast,
it is here important to avoid different processors or cores having to fetch the same
memory addresses, or to avoid copying identical blocks of data for two different
machines. Suitable I values for addressing this are in the order of kilobytes or
megabytes.

The two cases can coexist, for instance, if several cores are used to hash in
parallel and each core has a SIMD unit. A suitable tree structure is one with
height 2, as depicted in Figure 2. The subtrees rooted by Z0 and Z1 are handled
by different cores, whereas the leaves are processed together in the SIMD units.
The final hop Z∗ splits the message to hash into macroscopic blocks (large I),
while the intermediate chaining hops Z0 and Z1 further split the macroscopic
blocks into microscopic blocks suitable for the SIMD unit (small I).

The tree hash mode of Section 5.2 can be generalized to support such mixed
interleaving block sizes.

5.4 Binary Tree

With a binary tree, the tree topology evolves as a function of the input message
size. All chaining hops have degree 2, and the message strings in the message
hops have a fixed maximum size B. The height of the message hops depends on
the length of the message and the position of the message string of that message
hop in the message. Interleaving is not applied, so the interleaving block size in
all chaining hops is I = ∞.

This mode is useful if one wants to limit the effort to re-compute the hash
when only a small part of the message changes. This requires that the chaining
values are stored. Hence, in this application, kangaroo hopping is not interesting.

The hop tree can be defined in the following way. We first arrange the message
blocks Mi in a linear array to form the message hops. Each message hop can be
seen as a tree with height 0. Then we apply the following procedure iteratively:
combine the trees in pairs starting from 0 by adding a chaining hop and con-
necting the two root hops to it. If the number of trees is odd, the last tree is
just kept as such. Applying this �log2 n� times will reduce the number of trees
to a single one. The most recently added hop is the final hop. The indices of the
hops follow directly from the tree topology.

This mode has one parameter: B, the maximum size of message strings in the
message hops.

6 Application to Keccak and SHA-3

In the future, one may standardize tree hash modes. By adopting Sakura coding
from the start, any future Sakura-compatible tree hash mode using Keccak [4]
as inner function can be introduced while guaranteeing soundness of the union of
that new mode and any compatible tree hash mode(s) defined up to that point.
The sequential hash mode will then simply correspond with the single-hop case

Sakura: A Flexible Coding for Tree Hashing 233

of Figure 3. As shown in Eq. (2), this comes down to appending two bits to the
message before presenting to the inner function.

As NIST proposed to standardize both arbitrary output length instances
(SHAKE128 and SHAKE256) and SHA-2 drop-in replacement instances (SHA3-
224 to SHA3-512) with their traditional fixed output length [12], we think that it
would not make much sense to combine tree hashing with the latter. The reason
is that to carry over the full security of the underlying hash function, one has to
set the tree-level chaining value length n equal to the capacity c (or n equal to
twice the security strength in general). As for SHA3-n, NIST sets c = 2n, so one
would need to define some ad-hoc construction on top of it to get two output
blocks (like a mask generating function), and this would be absurd given that
SHA3-n is obtained by truncating Keccak’s output.

One may additionally require domain separation between SHA-3 and future
uses of Keccak, or even between different instances of SHA-3. For the SHA-3
instances that would foresee tree hashing, domain separation can be applied at
the level of the inner function f :

f(x) = Keccak[r, c](x||domain separation suffix).

If this additional domain separation is realized by appending sufficiently few
bits, there is no performance penalty for messages that consist of byte sequences
and rate values that are a multiple of 8. In particular, the multi-rate padding in
Keccak adds at least 2 bits and at most r bits. For byte sequences this becomes
at least 1 byte and at most r/8 bytes. So up to 6 bits can be appended to the
message without impacting these minimum and maximum values.

Acknowledgments. We would like to thank Stefan Lucks, Dan Bernstein and
the members of the NIST hash team for useful discussions.

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security 1993, pp. 62–73. ACM (1993)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008), http://sponge.noekeon.org/

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sufficient conditions for
sound tree hashing modes, Symmetric Cryptography. In: Handschuh, H., Lucks, S.,
Preneel, B., Rogaway, P. (eds.) Dagstuhl Seminar Proceedings, no. 09031, Dagstuhl,
Germany. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference
(January 2011), http://keccak.noekeon.org/

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak and the SHA3 stan-
dardization, presentation at NIST (February 2013),
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/

Keccak-slides-at-NIST.pdf

http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf

234 G. Bertoni et al.

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sufficient conditions for
sound tree and sequential hashing modes. International Journal of Information
Security (2013), http://dx.doi.org/10.1007/s10207-013-0220-y

7. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

8. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

9. Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of permutation-
based compression functions and tree-based modes of operation, with applica-
tions to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–121.
Springer, Heidelberg (2009)

10. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family, Submission to NIST (2008),
http://skein-hash.info/

11. Gueron, S.: A j-lanes tree hashing mode and j-lanes SHA-256. Journal of Infor-
mation Security 4, 4–11 (2013)

12. Kelsey, J.: Moving forward with SHA3, NIST hash forum (November 2013),
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/

kelsey-email-moving-forward-110113.pdf

13. RSA Laboratories, PKCS # 1 v2.2 RSA Cryptography Standard (2012)
14. Lucks, S.: Tree hashing: A simple generic tree hashing mode designed for SHA-2

and SHA-3, applicable to other hash functions, Early Symmetric Crypto (ESC)
(2013)

15. Lucks, S., McGrew, D., Whiting, D.: Batteries included: Features and modes for
next generation hash functions. In: The Third SHA-3 Candidate Conference (2012)

16. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

17. Merkle, R.C.: Secrecy, authentication, and public key systems, PhD thesis. UMI
Research Press (1982)

18. NIST, Mailing list on NIST’s cryptographic hash workshops and hash algorithm
competition, http://csrc.nist.gov/groups/ST/hash/email_list.html

19. Merkle, R.C.: NIST special publication 800-57, recommendation for key manage-
ment (March 2007) (revised)

20. Overell, P.: Augmented BNF for syntax specifications: ABNF, Internet Request
for Comments, RFC 5234 (January 2008)

21. Rivest, R., Agre, B., Bailey, D.V., Cheng, S., Crutchfield, C., Dodis, Y., Fleming,
K.E., Khan, A., Krishnamurthy, J., Lin, Y., Reyzin, L., Shen, E., Sukha, J., Suther-
land, D., Tromer, E., Yin, Y.L.: The MD6 hash function – a proposal to NIST for
SHA-3, Submission to NIST (2008), http://groups.csail.mit.edu/cis/md6/

22. Sarkar, P., Schellenberg, P.J.: A parallelizable design principle for crypto-
graphic hash functions, Cryptology ePrint Archive, Report 2002/031 (2002),
http://eprint.iacr.org/

23. Torgerson, M., Schroeppel, R., Draelos, T., Dautenhahn, N., Malone, S., Walker,
A., Collins, M., Orman, H.: The SANDstorm hash, Submission to NIST (2008),
http://www.sandia.gov/scada/documents/

SANDstorm Submission 2008 10 30.pdf

http://dx.doi.org/10.1007/s10207-013-0220-y
http://skein-hash.info/
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/kelsey-email-moving-forward-110113.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/kelsey-email-moving-forward-110113.pdf
http://csrc.nist.gov/groups/ST/hash/email_list.html
http://groups.csail.mit.edu/cis/md6/
http://eprint.iacr.org/
http://www.sandia.gov/scada/documents/SANDstorm_Submission_2008_10_30.pdf
http://www.sandia.gov/scada/documents/SANDstorm_Submission_2008_10_30.pdf

	Sakura: A Flexible Coding for Tree Hashing
	1 Introduction
	2 Functionality Supported by Sakura
	2.1 Modeling tree Hash Modes
	2.2 From Generality to Functionality
	2.3 Hops and Hop Trees
	2.4 Interleaving the Input over Message Hops
	2.5 Mapping Hops to Nodes
	2.6 Illustrations

	3 The Sakura Tree Coding
	3.1 Formal Description of Sakura
	3.2 Illustrations

	4 Sakura-Compatible Tree Hash Modes and Soundness
	5 Examples of Tree Hash Modes
	5.1 Final Node Growing
	5.2 Leaf Interleaving
	5.3 Macro- and Microscopic Leaf Interleaving
	5.4 Binary Tree

	6 Application to Keccak and SHA-3
	References

