
Ioana Boureanu
Philippe Owesarski
Serge Vaudenay (Eds.)

 123

LN
CS

 8
47

9

12th International Conference, ACNS 2014
Lausanne, Switzerland, June 10–13, 2014
Proceedings

Applied Cryptography
and Network Security

Lecture Notes in Computer Science 8479
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ioana Boureanu Philippe Owesarski
Serge Vaudenay (Eds.)

Applied Cryptography
and Network Security

12th International Conference, ACNS 2014
Lausanne, Switzerland, June 10-13, 2014
Proceedings

13

Volume Editors

Ioana Boureanu
Akamai EMEA
Addlestone, UK
E-mail: icboureanu@gmail.com

Philippe Owesarski
LAAS-CNRS, SARA
Toulouse, France
E-mail: owe@laas.fr

Serge Vaudenay
EPFL, IC LASEC
Lausanne, Switzerland
E-mail: serge.vaudenay@epfl.ch

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-07535-8 e-ISBN 978-3-319-07536-5
DOI 10.1007/978-3-319-07536-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014939351

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 12th International Conference on Applied Cryptography and Network Se-
curity (ACNS) was held during June 10–13, 2014 in Lausanne, Switzerland. It
was hosted by the Ecole Polytechnique Fédérale de Lausanne (EPFL).

The conference received 147 submissions. They went through a doubly-
anonymous review process and 33 papers were selected. We were helped by 41
Program Committee members and 156 external reviewers.

We were honored to host Phillip Rogaway and Nadia Heninger as invited
speakers.

This volume represents the revised version of the accepted papers along with
the abstract of the invited talks.

Following the ACNS tradition, the Program Committee selected a paper to
award. To be eligible, the paper had to be co-authored by one full time student
who presented the paper at the conference. This year, the Best Student Paper
Award was given to Annelie Heuser for her paper

“Detecting Hidden Leakages”

written in collaboration with Amir Moradi and Sylvain Guilley.
The submission and review process was done using the iChair Web-based

software system developed by Thomas Baignères and Matthieu Finiasz. They
provided us with great help by updating iChair to our needs.

We would like to thank the authors of all submitted papers. Moreover, we
are grateful to the members of the Program Committee and the external sub-
reviewers for their diligent work, as well as to the staff members of the Security
and Cryptography Laboratory (LASEC) of EPFL for their kind help in the orga-
nization of the event. We would also like to acknowledge the Steering Committee
for supporting us.

Finally, we heartily thank the following bodies, for their kind financial sup-
port: the Swiss National Science Foundation, the Hasler Foundation, the Federal
Office of Communications, the Center of Risk Analysis and Risk Governance
(CRAG) of EPFL, Baidu, and the Distributed Systems Laboratory (LSR) of
EPFL, headed by André Schiper. All financial risks were taken by LASEC at
EPFL.

April 2014 Ioana Boureanu
Philippe Owesarski

Serge Vaudenay

Organization

Program Committee

Frederik Armknecht University of Mannheim, Germany
Gildas Avoine INSA Rennes and UCL, France and Belgium
Marinho P. Barcellos Federal University of Rio Grande do Sul, Brasil
Alex Biryukov University of Luxembourg, Luxembourg
Christina Brzuska Tel-Aviv University, Israel
Anne Canteaut Inria Paris-Rocquencourt, France
Barbara Carminati University of Insubria, Italy
Isabelle Chrisment University of Lorraine, France
Véronique Cortier CNRS, France
Xuhua Ding Singapore Management University, Singapore
Jordi Forné Technical University of Catalonia, Spain
Peter Gutmann University of Auckland, New Zealand
Cătălin Hriţcu University of Pennsylvania and Inria

Paris-Rocquencourt, USA and France
Marc Joye Technicolor, France
Steve Kremer Inria, France
Kaoru Kurosawa Ibaraki University, Japan
Ralf Küsters University of Trier, Germany
Xuejia Lai Shanghai Jiao Tong University, China
Javier Lopez University of Malaga, Spain
Matteo Maffei Saarland University, Germany
Wojciech Mazurczyk Warsaw University of Technology, Poland
Ludovic Mé Supelec, France
Ilya Mironov Microsoft Research Silicon Valley, USA
Katerina Mitrokotsa Chalmers University of Technology, Sweden
Atsuko Miyaji JAIST, Japan
Svetla Nikova KU Leuven, Belgium
Miyako Ohkubo NICT, Japan
Kenny Paterson Royal Holloway, UK
Goutam Paul Indian Statistical Institute Kolkata, India
Christophe Petit UCL, Belgium
Carla Ràfols Ruhr University Bochum, Germany
Christian Rechberger DTU, Denmark
Reza Reyhanitabar EPFL, Switzerland
Mark Ryan University of Birmingham, UK
Rei Safavi-Naini University of Calgary, Canada
Jennifer Seberry University of Wollongong, Australia
Asia Slowinska Vrije Universiteit Amsterdam, The Netherlands

VIII Organization

Gilles Van Assche STMicroelectronics, Belgium
Michael Waidner Fraunhofer SIT & TU Darmstadt, Germany
Bogdan Warinschi University of Bristol, UK
Jianying Zhou Institute for Infocomm Research, Singapore

External Reviewers

Aysajan Abidin
Isaac Agudo
Ahmad Ahmadi
Martin Albrecht
Cristina Alcaraz
Mohsen Alimomeni
Hoda A. Alkhzaimi
Elena Andreeva
Radoniaina Andriatsimandefitra
Subhadeep Banik
David Bernhard
Rishiraj Bhattacharyya
Christophe Bidan
Olivier Blazy
Céline Blondeau
Alexandra Boldyreva
Özkan Boztaş
Krzysztof Cabaj
Eleonora Cagli
Angelo De Caro
Xavier Carpent
Anrin Chakraborti
Kaushik Chakraborty
Anupam Chattopadhyay
Jiageng Chen
Céline Chevalier
Thibault Cholez
Sherman S.M. Chow
Oana Ciobotaru
Cas Cremers
Joan Daemen
Gareth T. Davies
Antoine Delignat-Lavaud
Patrick Derbez
Xinshu Dong
Alexandre Duc
Xiwen Fang
Sebastian Faust
Florian Feldmann

Gerardo Fernandez
Daniel Fett
Nils Fleischhacker
Jun Furukawa
Yuichi Futa
David Galindo
Sébastien Gambs
Wei Gao
Pierrick Gaudry
Asadullah Ghalib
Benedikt Gierlichs
Zheng Gong
Vincent Grosso
Felix Günther
Siyao Guo
Jens Hermans
Geshi Huang
Jialin Huang
Mitsugu Iwamoto
Angela Jäschke
Jérémy Jean
Mahavir Jhawar
Han Jinguang
Saqib A. Kakvi
Aniket Kate
Dmitry Khovratovich
Stefan Kölbl
Junzuo Lai
Virginie Lallemand
Enrique Larraia
Liran Lerman
Gaëtan Leurent
Wei Li
Kaitai Liang
Benôıt Libert
Jia Liu
Joseph K. Liu
Zhe Liu
Yu Long

Organization IX

Atul Luykx
Vadim Lyubashevsky
Xianping Mao
Giorgia Azzurra Marson
Takahiro Matsuda
Matthijs Melissen
Bart Mennink
Marine Minier
Francisco Moyano
Imon Mukherjee
Shishir Nagaraja
Pablo Najera
Gregory Neven
Ana Nieto
David Nuñez
Kazumasa Omote
Cristina Onete
Mihai Ordean
Kim Pecina
Roel Peeters
Léo Paul Perrin
Joshua Phillips
Le Trieu Phong
David Pointcheval
Gordon Proctor
Ivan Pustogarov
Elizabeth Quaglia
Sasa Radomirovic
David Rebollo-Monedero
Manuel Reinert
Christian Reuter
Vincent Rijmen
Ruben Rios
Arnab Roy
Elzbieta Rzeszutko
Kai Samelin
Somitra Sanadhya
Pratik Sarkar
Santanu Sarkar

Alessandra Scafuro
Enrico Scapin
Guido Schmitz
Peter Scholl
Stefaan Seys
Ben Smyth
Chunhua Su
Koutarou Suzuki
Tsuyoshi Takagi
Keisuke Tanaka
Satoru Tanaka
Qiang Tang
Susan Thomson
Tyge Tiessen
Valérie Viet Triem Tong
Tomasz Truderung
Mathieu Turuani
Kerem Varici
Vesselin Velichkov
Srinivas Vivek Venkatesh
Frederik Vercauteren
Lei Wang
Pengwei Wang
Gaven Watson
Hoeteck Wee
Patrick Weiden
Jakob Wenzel
Hong Xu
Jia Xu
Rui Xu
Shota Yamada
Anjia Yang
Masaya Yasuda
Kazuki Yoneyama
Maki Yoshida
Tsz Hon Yuen
Jiangshan Yu
Liang Feng Zhang
Tongjie Zhang

Conference Chairs

Ioana Boureanu HEIG-VD, Switzerland
Philippe Owezarski CNRS, France
Serge Vaudenay EPFL, Switzerland

Invited Talks

How Not to Generate Random Numbers

Nadia Heninger

Department of Computer and Information Science,

University of Pennsylvania

Abstract. Randomness is essential to cryptography: cryptographic se-
curity depends on private keys that are unpredictable to an attacker.
But how good are the random number generators that are actually used
in practice? In this talk, I will discuss several large-scale surveys of cryp-
tographic deployments, including TLS, SSH, Bitcoin, and secure smart
cards, and show that random number generation flaws are surprisingly
widespread. We will see how many of the most commonly used public
key encryption and signature schemes can fail catastrophically if used
with faulty random number generators, and trace many of the random
number generation flaws we encountered to specific implementations and
vulnerable implementation patterns.

The Emergence of Authenticated Encryption

Phillip Rogaway

Dept. of Computer Science,

University of California, Davis, USA

Abstract. Although practical schemes for symmetric encryption (eg,
blockcipher modes) are one of the main “exports” of cryptography, for
years serious cryptographers mostly ignored this corner of our field. In
recent years this has dramatically changed: there has been a quiet revolu-
tion in our understanding of what definitions general-purpose symmetric
encryption schemes should meet and what algorithms should be employed
to satisfy them. On the definitional side we have come to recognize that
semantic security under a chosen-plaintext attack is too weak a notion
for a general-purpose scheme. Notions for authenticated encryption (AE),
which deliver both privacy and authenticity, have emerged as a stronger
alternative. On the algorithmic side, security practitioners have increas-
ingly abandoned classical modes like CBC, choosing AE schemes like
CCM and GCM in their place.

One reason for this evolution in definitions and schemes is recognition
of the fact that a scheme that delivers both privacy and authenticity
can be more efficient than the amalgamation of separate privacy and
authenticity techniques. Another reason for the change is the realization
that an encryption scheme that delivers more is less likely to be misused.

In this talk I’ll trace the history of AE, exploring why it emerged, how
it evolved, and what some new schemes have come to look like. We’ll
explore how the basic syntax of AE has changed, and how security no-
tions for AE continue to evolve, including the introduction of misuse-
resistance, online, and robust AE. I’ll look afresh at generic composition.
I’ll describe a new AE scheme that I recently co-developed, AEZ. Finally,
I’ll talk about the CAESAR competition for AE schemes, a contest that
has drawn a remarkable 57 round-1 submissions.

AE is rare topic insofar as cryptographic theory and practice have been
tightly linked; in particular, practice-oriented provable security has been
at the center of this area. The dialectic around AE between theory-
oriented and practice-oriented individuals has been unusually strong,
with the interaction resulting in better theory and better practice.

Keywords: Authenticated encryption, modes of operation, practice-
oriented provable security, symmetric encryption.

Table of Contents

Key Exchange

New Modular Compilers for Authenticated Key Exchange 1
Yong Li, Sven Schäge, Zheng Yang, Christoph Bader, and
Jörg Schwenk

Password-Based Authenticated Key Exchange without Centralized
Trusted Setup . 19

Kazuki Yoneyama

A Linear Algebra Attack to Group-Ring-Based Key Exchange
Protocols . 37

M. Kreuzer, A.D. Myasnikov, and A. Ushakov

Primitive Construction

Improved Constructions of PRFs Secure against Related-Key
Attacks . 44

Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

Verifiable Multi-server Private Information Retrieval 62
Liang Feng Zhang and Reihaneh Safavi-Naini

Certified Bitcoins . 80
Giuseppe Ateniese, Antonio Faonio, Bernardo Magri, and
Breno de Medeiros

Leakage Resilient Proofs of Ownership in Cloud Storage, Revisited 97
Jia Xu and Jianying Zhou

Private Message Transmission Using Disjoint Paths 116
Hadi Ahmadi and Reihaneh Safavi-Naini

Attacks (Public-Key Cryptography)

Partial Key Exposure Attacks on Takagi’s Variant of RSA 134
Zhangjie Huang, Lei Hu, Jun Xu, Liqiang Peng, and Yonghong Xie

New Partial Key Exposure Attacks on CRT-RSA with Large Public
Exponents . 151

Yao Lu, Rui Zhang, and Dongdai Lin

Bit-Flip Faults on Elliptic Curve Base Fields, Revisited 163
Taechan Kim and Mehdi Tibouchi

XVI Table of Contents

Hashing

All-but-One Dual Projective Hashing and Its Applications 181
Zongyang Zhang, Yu Chen, Sherman S.M. Chow, Goichiro Hanaoka,
Zhenfu Cao, and Yunlei Zhao

Distributed Smooth Projective Hashing and Its Application to
Two-Server Password Authenticated Key Exchange 199

Franziskus Kiefer and Mark Manulis

Sakura: A Flexible Coding for Tree Hashing . 217
Guido Bertoni, Joan Daemen, Michaël Peeters, and
Gilles Van Assche

Reset Indifferentiability from Weakened Random Oracle Salvages
One-Pass Hash Functions . 235

Yusuke Naito, Kazuki Yoneyama, and Kazuo Ohta

Cryptanalysis & Attacks (Symmetric Cryptography)

Memoryless Unbalanced Meet-in-the-Middle Attacks: Impossible
Results and Applications . 253

Yu Sasaki

On the (In)Equivalence of Impossible Differential and Zero-Correlation
Distinguishers for Feistel- and Skipjack-Type Ciphers 271

Céline Blondeau, Andrey Bogdanov, and Meiqin Wang

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool
Hash Function . 289

Bingke Ma, Bao Li, Ronglin Hao, and Xiaoqian Li

Differential Cryptanalysis and Linear Distinguisher of Full-Round
Zorro . 308

Yanfeng Wang, Wenling Wu, Zhiyuan Guo, and Xiaoli Yu

Detecting Hidden Leakages . 324
Amir Moradi, Sylvain Guilley, and Annelie Heuser

Network Security

Improving Intrusion Detection Systems for Wireless Sensor Networks . . . 343
Andriy Stetsko, Tobiáš Smolka, Vashek Matyáš, and Martin Stehĺık

MoTE-ECC: Energy-Scalable Elliptic Curve Cryptography for Wireless
Sensor Networks . 361

Zhe Liu, Erich Wenger, and Johann Großschädl

Table of Contents XVII

BackRef: Accountability in Anonymous Communication Networks 380
Michael Backes, Jeremy Clark, Aniket Kate,
Milivoj Simeonovski, and Peter Druschel

WebTrust – A Comprehensive Authenticity and Integrity Framework
for HTTP . 401

Michael Backes, Rainer W. Gerling, Sebastian Gerling,
Stefan Nürnberger, Dominique Schröder, and Mark Simkin

Signatures

A Revocable Group Signature Scheme from Identity-Based Revocation
Techniques: Achieving Constant-Size Revocation List 419

Nuttapong Attrapadung, Keita Emura, Goichiro Hanaoka, and
Yusuke Sakai

Faster Batch Verification of Standard ECDSA Signatures Using
Summation Polynomials . 438

Sabyasachi Karati and Abhijit Das

On Updatable Redactable Signatures . 457
Henrich C. Pöhls and Kai Samelin

Practical Signatures from the Partial Fourier Recovery Problem 476
Jeff Hoffstein, Jill Pipher, John M. Schanck,
Joseph H. Silverman, and William Whyte

System Security

Activity Spoofing and Its Defense in Android Smartphones 494
Brett Cooley, Haining Wang, and Angelos Stavrou

Polymorphism as a Defense for Automated Attack of Websites 513
Xinran Wang, Tadayoshi Kohno, and Bob Blakley

Fragmentation Considered Leaking: Port Inference for DNS
Poisoning . 531

Haya Shulman and Michael Waidner

Secure Computation

Delegating a Pairing Can Be Both Secure and Efficient 549
Sébastien Canard, Julien Devigne, and Olivier Sanders

Automatic Protocol Selection in Secure Two-Party Computations 566
Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer

Author Index . 585

New Modular Compilers for Authenticated Key

Exchange

Yong Li1,�, Sven Schäge2,��, Zheng Yang1,���,
Christoph Bader1, and Jörg Schwenk1

1 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
{yong.li,christoph.bader,joerg.schwenk}@rub.de

2 University College London, United Kingdom
s.schage@ucl.ac.uk

3 Chongqing University of Technology
zheng.yang@rub.de

Abstract. We present two new compilers that generically turn passively
secure key exchange protocols (KE) into authenticated key exchange pro-
tocols (AKE) where security also holds in the presence of active adver-
saries. Security is shown in a very strong security model where the adver-
sary is also allowed to i) reveal state information of the protocol partici-
pants and ii) launch theoretically and practically important PKI-related
attacks that model important classes of unknown-key share attacks. Al-
though the security model is much stronger, our compilers are more
efficient than previous results with respect to many important metrics
like the additional number of protocol messages and moves, the addi-
tional computational resources required by the compiler or the number
of additional primitives applied. Moreover, we advertise a mechanism for
implicit key confirmation. From a practical point of view, the solution is
simple and efficient enough for authenticated key exchange. In contrast
to previous results, another interesting aspect that we do not require that
key computed by the key exchange protocol is handed over to the com-
piler what helps to avoid additional and costly modifications of existing
KE-based systems.

Keywords: Protocol Compiler, Authenticated Key Exchange, Security
Model.

1 Introduction

Authenticated key exchange (AKE) protocols are among the most important
building blocks of secure network protocols. They allow a party A to i) authen-
ticate a communication partner B and ii) securely establish a common session

� Corresponding author supported by secure eMobility grant number 01ME12025.
�� Corresponding author supported by EPSRC grant number EP/G013829/1.

��� Corresponding author supported by CSC china. Part of the work done at Ruhr
University Bochum as a doctoral student in 2013.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 1–18, 2014.
c© Springer International Publishing Switzerland 2014

2 Y. Li et al.

key with B. In many existing systems both of these tasks are addressed by a
single protocol. This can yield very efficient solutions. However, there are several
scenarios where these two tasks are actually addressed by separate protocols. For
example in typical browser-based applications, the user relies on TLS to exchange
a session key k with an authenticated server. The user, on the other hand, of-
ten uses a simple username/password combination which is encrypted with k to
authenticate himself. In this paper, we consider generic and very efficient con-
structions that securely combine authentication protocols (AP) and passively
secure key exchange protocols (KE) to yield authenticated key exchange.

While combined solutions may be more efficient in general, there are several
advantages for the modular design of AKE systems. One is flexibility as one can
resort to a rich collection of existing authentication and key exchange protocols
that can be combined to yield new AKE systems which are specifically crafted to
fit a certain application scenario. The second reason is applicability, as a generic
compiler (ideally) does not require any modifications in existing implementa-
tions of the input protocols (which are often costly or error-prone in practice).
Instead, security can be established by simply ‘adding’ the implementation of
the compiler to the system. Finally, a generic compiler can considerably simplify
the security analysis, as only the input protocols have to be analysed to meet
their respective security requirements. Security of the entire AKE protocol fol-
lows from the security proof of the compiler. This greatly pays off in the setting
of key exchange protocols, as here, we usually only require the underlying key
exchange protocol to be passively secure (which is a comparably simple secu-
rity notion) while the output protocol must be secure even under active attacks
(where the adversary is granted several additional attack capabilities).

1.1 Contribution

We present two very efficient compilers that construct secure AKE systems from
authentication protocols (AP) and passively secure key exchange protocols (KE).
To the best of our knowledge, they are the first such compilers that are efficient
and truly generic, i.e. they do not require any modifications in the underlying
AP and KE protocols. Thus, they are easily applicable to existing systems, what
makes them very useful in practice. Previous compilers require costly modifi-
cations on the key exchange protocol such that either the messages have to be
modified or the secret session key k also has to be output to the compiler. A
new session key is computed using e.g. the requested key derivation function
(KDF), i.e. the compilers require the session key of the underlying key exchange
KE protocol as input. We stress that in some scenarios it is very difficult or
impossible (for example because the network application is closed-source) to re-
alize these modifications. Our compilers, in contrast, avoid such problems as
they only require the public transcript of the key exchange protocol but not the
secret session key from the passively secure KE protocol as input. Our compilers
are very efficient but restrict the class of KE protocols to those which do not rely
on long-term keys. We have chosen to restrict our attention to this class of key
exchange protocols because they i) allow for efficient protocols with very high

New Modular Compilers for Authenticated Key Exchange 3

security guarantees (like forward secrecy) and ii) they can efficiently be recog-
nized. Let us elaborate on this. As a consequence of our restriction long-term
keys are only used in the authentication protocol, whereas in the KE protocol,
all values are freshly drawn in each new communication session. Our restriction
is useful to design protocols with forward secrecy, which states that even after
the compromise of long-term keys previously executed sessions remain secure.
The same restriction is made on the KE protocols which are used in the recent
compiler by Jager, Kohlar, Schäge, and Schwenk (JKSS) [7]. The well-known
compiler by Katz and Yung (KY) uses a slightly different approach by directly
requiring that the input protocol provides forward secrecy [9]. We present two
compilers each of which relies on a different authentication mechanism. Our first
compiler is very efficient. It relies on signature schemes and only requires two
additional moves in which signatures are exchanged. The second compiler relies
on public key encryption systems. Although the first compiler is more efficient,
the second compiler accounts for scenarios where the parties do not have (certi-
fied) signature keys but only encryption keys. This can often occur in practice.
For example, the most efficient (for the client) and most wide-spread key ex-
change mechanism in TLS is RSA key transport. The latter can be extended
to symmetric-based authentication systems in which the communication parties
have secure pre-shared keys. All our solutions work in the standard model, i.e.
without assuming random oracles.

Technical Contribution. Our efficiency improvements rely on the following tech-
niques. First, we do not use explicit key confirmation to thwart unknown-key
share attacks. Instead we use a form of implicit key confirmation where we in-
clude the identities of the partners in the messages that are authenticated. At
the same time, this helps to also counter strong attacks that an adversary might
launch with the help of the extended attack capabilities (state reveals and PKI-
based attacks) of our strong security model. In terms of efficiency, this helps us
to save the exchange of two MAC values (as compared to the JKSS compiler).
As our second efficiency improvement, we formally show that for security we do
not have to exchange uniformly random nonces after the key exchange protocol
as in the JKSS compiler. In the JKSS compiler these nonces are solely used to
make every session’s transcript unique. We can prove that instead it is sufficient
to use the public ephemeral keys which are exchanged in the key exchange pro-
tocol. Technically, we show that if a key exchange protocol that does not rely on
long-term keys is passively secure, then with negligible probability there are no
collisions among the ephemeral public keys. This is sufficient to show that even
in the presence of active attackers each transcript is unique as long as one party
is uncorrupted. Finally, our efficient compilers only require the public transcript
of the key exchange protocol, denoted here as KE, but not the secret key kKE
from KE as input. Our approach helps us to save the additional computation
of a new session key for authenticated key exchange (as compared to previous
compiler). In other words, our compilers require no cryptographic session key
generator other than KE itself.

4 Y. Li et al.

1.2 The Security Model

Our proofs of our compilers hold in two very strong security models respectively.
These models rely on the concept of indistinguishability of session keys which
first emerged in the seminal work of Bellare and Rogaway [2] and later extended
by [4,15,12] to the public key setting. In contrast to previous works, we explicitly
model the strong and practical PKI-based attacks (via a RegCorruptParty query)
like the public key substitution attack (PKS) [3,13] or the duplicate-signature
key selection (DSKS) attack [13,10]. To model strong and practical PKI-related
attacks we use the RegCorruptParty query into our models that allows attackers
to register adversarially chosen public keys and identities. Observe that the ad-
versary does not have to know the corresponding secret key. In practice, most
certification authorities (CAs) do not require the registrant to deliver proofs of
knowledge of the secret key. Using RegCorruptParty query the adversary may
easily register a public key which has already been registered by another honest
user U . Since the public keys are equal, all the signatures that are produced
by U can be re-used by the adversary. Such attacks can have serious security
effects [3,13,10]. Our model also formalizes the revelation of state information
of sessions (via a RevealState query) and perfect forward secrecy. We believe
that the revelation of state information is much more realistic than (just) the
revelation of keys. For forward secrecy, it is a very strong form of security which
guarantees that past sessions remain secure even if the long-term keys get ex-
posed in later sessions. We use a formal definition of forward secrecy that is
adopted from [8].

1.3 Related Work

In 1998, Bellare, Canetti and Krawczyk (BCK) were the first to consider a
modular way for the development of AKE [1]. They propose to first design a
protocol in the authenticated link model, an idealized model where the links
between parties are always authenticated. Then they systematically transform
the protocol into a protocol which is also secure in the unauthenticated link
model, in which the adversary has control over all the message flows in the
network, by applying a so-called authenticator. Basically, for every message A
needs to transmit to B there will be some additional communication with B in
which B sends a random nonce to A and A responds with an application of an
authentication mechanism on this nonce (in a challenge-response like fashion).
For example, when instantiated with a signature scheme or with a combination of
an encryption system and a message authentication code, the authenticator adds
another two messages to every message sent in the original protocol. Altogether,
this amounts for a 200% increase in the number of moves of the protocol and
the number of messages sent.

In 2003, Katz and Yung presented a generic compiler for group key agree-
ment [9]. The KY compiler first adds an initial round to a passively secure group
key exchange protocol where each party chooses a random nonce and broadcasts
it to its communication partner. In the next step, the compiler basically adds to

New Modular Compilers for Authenticated Key Exchange 5

every message of the original protocol a signature which is also computed over all
the random values that have been computed in the first phase. When restricted
to the two-party case, this compiler is much more efficient in terms of protocol
moves, in contrast to the BCK compiler, each message sent does not need to be
authenticated interactively. The KY compiler only accounts for a single round
that is added to the input protocol. However, the compiler still modifies each
message sent in the protocol by basically adding a signature to that message. As
before, this approach amounts for a huge decrease in efficiency due to the addi-
tional signature generation and verification operations each user has to execute.
The KY compiler outputs protocols which guarantee forward secrecy. However,
it does require that the input group key protocols already provide forward se-
crecy. This assumption is similar to our (and the JKSS) assumption on the KE
protocol to not rely on long-term keys. Our restriction is, in some sense rougher
than that of KY but it allows for a very simple verification by inspection. We
stress that we could adapt the KY definition and yield a slightly more general
result. We think, however, that in scenarios where a complex, practical proto-
col is given it might be hard to inspect if the KY compiler is applicable at all.
Intuitively, our approach implies forward-secrecy because if all values which are
used to generate the session keys are freshly computed in each session of the
passively secure key exchange protocol then the keys computed in the different
sessions are independent. This intuition is formalized in the security proofs of
the subsequent sections. In 2010 Jager et al. presented the first compiler which
accounts only for a constant number of additional messages (which is indepen-
dent of the KE protocol) to be exchanged [6], denoted here as JKSS compiler. In
terms of efficiency, this compiler is closest to our results. Basically, the compiler,
after executing the KE protocol, makes A and B additionally exchange 1) ran-
dom nonces, 2) signatures over these nonces and the KE transcript and 3) two
MAC values (using a MAC-key Kmac generated using the session key from the
passively secure KE protocol) which have been computed over all the previous
messages. As mentioned above this compiler is less efficient than our solution.
At the same time all of the above compilers do neither consider state reveals nor
PKI-related attacks in their security analysis.

2 Security Assumptions

Let [n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n, and κ ∈ N be a

security parameter. We write a
$← S to denote the action of sampling a uniformly

random element a from a set S. Let ‘||’ denote the operation concatenating two
binary strings. To state our results, we will rely on standard security definitions
for the collision-resistant cryptographic hash functions, IND-CCA2 secure public
key encryption schemes, unforgeable signature schemes, UF-CMA secure one-
time message authentication code schemes and a class of passively secure key
exchange protocols. Due to space restrictions, we only give generic definitions of
passively secure key exchange protocols in this section.

6 Y. Li et al.

Key Exchange Protocols. A two party key-exchange (KE) protocol is a
protocol that enables those two parties to compute a shared secret key. In the
following, we formally provide a very technical definition of KE which is more
detailed than in most other works. This is solely for the purpose of deriving a
technical result on general KE protocols without long-term keys. In other words,
we require that every secret keys used to generate the session keys must be
chosen freshly in each session. For simplicity we first focus on the practically
most important class of two-move key exchange protocols. We stress that our
definitions and results can easily be generalized to y-move key exchange protocols
as sketched below.

A key exchange scheme KE = (KE.Setup,KE.EKGen,KE.SKGen) consists of
three algorithms which may be called by a party ID ∈ IDS in each session.
Let MKE be the message space and ESK be the space for ephemeral secret key
and EPK be the space for ephemeral public key. Let T be the transcript of all
messages exchanged in a KE protocol instance (see Figure 1).

– pmske ← KE.Setup(1κ): This probabilistic polynomial time algorithm takes
as input the security parameter κ and outputs a set of system parameters
pmske. The parameters pmske might be implicitly used by other algorithms
for simplicity.

– (eskID, epkID,mID)
$← KE.EKGen(pmske, in): The probabilistic polynomial

time algorithm takes as input the system parameters pmske and message
in ∈ MKE and outputs an ephemeral key pair (eskID, epkID), where eskID ∈
ESK and epkID ∈ EPK, and a message mID ∈ MKE that requires to be
sent in a protocol move. The execution of this algorithm might be deter-
mined by the input message (in) which could be any information including
for example identities of session participants, ephemeral public key or just

empty string ∅. If mID = ∅, for simplicity we may write (eskID, epkID)
$←

KE.EKGen(pmske, in).

– k ← KE.SKGen(eskID, T): The session key generator is a deterministic poly-
nomial time algorithm which takes as input eskID of a session participant
ID and transcript T of all messages exchanged in this session, and outputs a
session key k.

Correctness.We say a correct key exchange protocol without long-term key if
for any protocol instance with session key generated as k := KE.SKGen(eskID, T)
it holds that eskID is generated freshly by KE.EKGen in corresponding protocol
instance. That is, each party computes each session key using only ephemeral
secret key which is freshly generated by KE.EKGen in corresponding protocol
instance. We consider key exchange protocols with perfect correctness that is

Pr

⎡⎢⎢⎣
KE.SKGen(eskID1 , T) = KE.SKGen(eskID2 , T);

(eskID1
, epkID1

,mID1
)

$← KE.EKGen(pmske, in1),

(eskID2 , epkID2 ,mID2)
$← KE.EKGen(pmske, in2),

(mID1
,mID2

) ∈ T.

⎤⎥⎥⎦ = 1.

New Modular Compilers for Authenticated Key Exchange 7

ID1 ID2

(eskID1 , epkID1 ,mID1)
$←

KE.EKGen(pmske, in1)
(eskID2 , epkID2 , mID2)

$←
KE.EKGen(pmske, in2)

−
mID1−−−−−−−−−−−→

←−
mID2−−−−−−−−−−−

T = mID1 ||mID2 T = mID1 ||mID2

accept
k := KE.SKGen(eskID1 , T)

accept
k := KE.SKGen(eskID2 , T)

Fig. 1. General Two-move KE Protocol

We observe that in a passively secure key exchange protocol where we do not
rely on long-term keys it is necessary that the values epkID1

and epkID2
are non-

empty and ‘meaningful’. This is because both parties have to keep the session key
secret from a curious adversary. For example in ephemeral Diffie-Hellman key
exchange (EDH) [5], the KE.EKGen is executed without any additional message,
i.e. in1 = in2 = ∅, and the generated messages such that mID1

= epkID1
and

mID2
= epkID2

. In some KE protocols, the KE algorithms of the initiator ID1 can
be very different from those of the responder ID2 like for example in encrypted
key transport with freshly chosen key material (FEKT), in which case we could
instantiate those messages in Figure 1 as: in1 = ∅, in2 = mID1

= epkID1
. We stress

that the key pairs (eskID1 , epkID1) and (eskID2 , epkID2) may have distinct forms
depending on specific KE protocol, which are also determined by the forms of
messages (in1, in2) while running KE.EKGen.

In case both parties ‘contribute’ values which are used to computed the session
key, i.e. k �= eskID2

and k �= eskID1
, this is very obvious as the contribution of

ID1 has to be transmitted to ID2 and vice versa. However, if only one party
IDc ∈ {ID1, ID2} decides on the session key eskIDc

= k, then k has to securely be
transferred to the other party (ID′

c) via some form of encryption of k. In order
to guarantee that only the single party ID′

c can decrypt the session key, the
encryptor has to encrypt the session key exclusively for ID′

c using an ephemeral
public key of ID′

c. As we do not rely on long-term keys, ID′
c has to generate this

key freshly and send it to IDc as epkID′
c
in the first move of the key exchange

protocol, resulting in ID′
c = ID1 and IDc = ID2.

In order to model passive attacks we define an Execute(ID1, ID2) query. The
adversary can use the query to perform passive attacks in which the attacker
initiates and eavesdrops on honest executions between parties ID1 and ID2. Note
that each identity should be uniquely chosen from the identity space IDS . By
using this query the adversary can obtain the transcripts that were exchanged
during the honest execution of the protocol. For each Execute(ID1, ID2) query,
an instance of KE protocol is executed between ID1 and ID2. After simulation

8 Y. Li et al.

this query returns the transcript T of all messages exchanged in corresponding
protocol instance and a session key.

Definition 1. We say that a correct key-exchange protocol KE is (t, εKE) pas-
sively secure if for all probabilistic polynomial-time (PPT) adversary A holds that
|[EXPps

KE,A(κ) = 1]−1/2| ≤ εKE for some negligible function εKE(κ) in the security

parameter κ in the following experiment EXPps
KE,A(1

κ): On input security param-
eter 1κ, the security experiment is proceeded as a game between a challenger C
and an adversary A based on a key exchange protocol KE, where the following
steps are performed:

1. C generates a set of identities {ID1, . . . , ID�} for potential protocol partic-
ipants where � ∈ N. A is given all identities as input and is allowed to
interact with C via making Execute(IDi, IDj) query at most d times for each
party where d ∈ N and i, j ∈ [�]. As response, C returns (T,K0) to A.

2. At some point, A outputs a special symbol � and sends � to C. Given �, C
runs a new protocol instance and outputs the transcript T ∗ and the session
key K∗

0 . Then, C samples K∗
1 uniformly at random from the key space of the

protocol, and tosses a fair coin b ∈ {0, 1}. Then C returns (T ∗,K∗
b) to A.

After that A may continually perform Execute(IDi, IDj) queries. Finally, A
may terminate with returning a bit b′ as output.

3. At the end of the experiment, 1 is returned if b′ = b; Otherwise 0 is returned.

In the following, we formally show that for every passively secure key exchange
protocol after polynomially calls to KE.EKGen there cannot be any collisions
among the ephemeral public keys generated by certain type of KE.EKGen. This
lemma will be useful in the security proofs of our compilers to show that a
compiler does not have to exchange additional random values after the KE run to
guarantee that the transcripts which are authenticated with the authentication
mechanism are unique. We can therefore discard the random values which are
used in the JKSS compiler. Please note that for a two-move and two-party (ID1

and ID2) KE-protocol there exist at most two types of KE.EKGen algorithms
which may be determined by input messages in1 and in2. We here explicitly
classify the algorithm KE.EKGen into two types denoted by KE.EKGenID1

for
party ID1 and KE.EKGenID2

for party ID2. While considering the collisions among
ephemeral keys, let Coll denote the event that: after a polynomial number q times
execution of KE.EKGen algorithm there exist at least two ephemeral public keys
epk and epk′ generated by the ephemeral key generator KE.EKGen are identical,
where the number q is determined by time t. Let probability εcoll denote the event
Coll occurred within time t. We say all ephemeral keys generated by KE.EKGen
are (q, t, εcoll)-distinct if those ephemeral keys are generated by KE.EKGen after q
times execution of KE.EKGen algorithm within time t and there exists no collision
among those ephemeral keys except for probability εcoll. For space reasons we
only provide a sketch of the proof.

Lemma 1. Assume KE is a (t, εKE)-passively secure protocol without long-term
key as defined above. Then all ephemeral public keys generated by KE.EKGen in
the runs of KE are (q, t, εcoll)-distinct such that εcoll ≤ q · εKE.

New Modular Compilers for Authenticated Key Exchange 9

Proof. We first consider the case that the ephemeral keys are generated by differ-
ent types of ephemeral key generators, i.e. KE.EKGenID1

�= KE.EKGenID2
. Obvi-

ously, in this case there is no collision between ephemeral keys epkID1 and epkID2 ,
because those keys are assumed to be generated from different key spaces, so we
only need to evaluate the collision probability among ephemeral keys generated
by the same type of ephemeral key generators, i.e. KE.EKGenID1 = KE.EKGenID2 .
For this case, we assume that with non-negligible probability εcoll there will be a
collision among the epkID1

after q protocol runs, or a collision among the epkID2

after q protocol runs. According to the protocol specification the epkID1
values

are computed by randomized runs of KE.EKGenID1
while the epkID2

values have
been computed by randomized runs of KE.EKGenID2 . In particular, the compu-
tation of the epkID1

and epkID2
are deterministic in system parameters pmske,

message in1 (resp. in2) and the internal random coins ω ID1 used by ID1 and ωID2

used by ID2. The ωID1 and ωID2 are drawn uniformly random and in particular
independently.

Let epk∗
ID1

and epk∗
ID2

be the ephemeral public keys that are exchanged in the
test session and given, together with the challenge key k∗

b and transcript T ∗, to
the adversary. Let esk∗

ID1
and esk∗

ID2
be the corresponding ephemeral secret keys.

These keys have also been computed using KE.EKGen1 (resp. KE.EKGen2) with
random coin ωID1

(resp. ωID2
) and in1 (resp. in2). The adversary first guesses

whether the collision occurs among the epkID1
or the epkID2

with probability
≥ 1/2. In the first case, the adversary can re-run KE.EKGenID1 (q − 1) times
with ωID1,i and in1,i to output {eskID1,i, epkID1,i} for i ∈ [1; q − 1] in time less
than t. With the same probability εcoll it obtains two values epk

′
ID1

, epk′′
ID1

among
the q values epk∗

ID1
, epkID1,1, . . . , epkID1,(q−1) with epk′

ID1
= epk′′

ID1
. Since it holds

with probability ≥ 2/q that either epk′
ID1

= epk∗
ID1

or epk′′
ID1

= epk∗
ID1

. In this
case the adversary knows one pair (ωID1,i, in1,i) that maps to epk∗

ID1
. Let esk′

ID1
be

the corresponding ephemeral secret key. We now have to show that esk′
ID1

helps
us to break the passive security. This simply follows from the determinism of
KE.SKGen and correctness of KE. Since we have perfect correctness the adversary
A can compute the session key k by using the ephemeral secret key esk′

ID1
and

transcript T ∗. Next the adversary can compare whether k∗
b = k and correctly

guess the value b. In case there is a collision among the epkID2 the situation is
similar. Hence, due to the security of KE protocol, we have that the probability
bound εcoll

q ≤ εKE.

General Key Exchange Protocols.The above definition of KE, the cor-
responding security definition, and the results of the above lemma can easily
be extended to y-move KE protocols. Concretely, besides the KE.Setup and
KE.SKGen algorithms, each party may run at most
y/2� different types of
KE.EKGen algorithms in each protocol instance depending on the input mes-
sages ini : 1 ≤ i ≤ y. Namely, each session participant can call at most
y/2� of
times of KE.EKGen algorithms during protocol execution. We let each invocation
of algorithm KE.EKGen in i-move (1 ≤ i ≤ y) as KE.EKGeni which is used to com-
pute the message for i-move. Consequently, we may have (for instance when y

is even) a series of executions:{(eskID1,1,epkID1,1, mID1,1)
$← KE.EKGen1(pmske,

10 Y. Li et al.

in1), (eskID2,2, epkID2,2, mID2,2)
$← KE.EKGen2(pmske, in2), . . ., (eskID1,(y−1),

epkID1,(y−1), mID1,(y−1))
$← KE.EKGen(y−1)(pmske, in(y−1)), (eskID2,y, epkID2,y,

mID2,y)
$← KE.EKGeny(pmske, iny)}. We could therefore apply the result of

Lemma 1 to y-move KE protocols, namely with overwhelming probability there
is for instance no collision among all epkIDb

generated by KE.EKGenIDb
with

b ∈ {1, 2}.

3 Security Model

In this section we present a formal security model for a two-party AKE pro-
tocol. We follow the important line of research that was initiated by Bellare
and Rogaway [2], and later modified and extended in [4,12]. In these models
the adversary is provided with an execution environment, which emulates the
real-world capabilities of an active adversary.

Execution Environment. Let K ∈ {0, 1}κ be the key space of session keys, and
{PK,SK} ∈ {0, 1}κ be key spaces of long-term public/private keys respectively.
Fix a set of honest parties {P1, . . . , P�} ∈ {0, 1}κ for � ∈ N, where each honest
party Pi ∈ {P1, . . . , P�} is a potential protocol participant and has a pair of long-
term public/private key (pki, ski) ∈ (PK,SK) that corresponds to its identity i.
In order to formalize several sequential and parallel executions of the protocol,
each party Pi is characterized by a polynomial number of oracles {πs

i } where
s ∈ [d] is an index for a range such that d ∈ N. An oracle πs

i represents a process
in which the party Pi executes the s-th protocol instance with access to the long-
term key pair (pki, ski) of party Pi and to all public keys of the other parties.
Moreover, we assume each oracle πs

i maintains a list of independent internal
state variables as described in Table 1.

Table 1. Internal States of Oracles

Variable Decryption

PIDs
i records the identity j ∈ {1, . . . , �} of intended communication partner Pj

Φs
i denotes Φs

i ∈ {accept, reject}
Ks

i records the session key Ks
i ∈ K

STAs
i records some secret states used to compute the session key Ks

i

Ts
i records all messages sent and received in the order of appearance by oracle πs

i

The internal state of each oracle πs
i is initialized as (PIDs

i , Φ
s
i , K

s
i , STA

s
i , T

s
i)

= (∅, ∅, ∅, ∅, ∅), where ∅ denotes the empty string. We assume that the session
key is assigned to the variable Ks

i such that Ks
i �= ∅ iff each oracle completes the

execution with an internal state Φs
i = accept.

Adversary Model. An active adversary A is able to interact with the execution
environment by issuing the following queries:

New Modular Compilers for Authenticated Key Exchange 11

– Send(πs
i ,m): A can use this query to send any message m of his own choice

to oracle πs
i . The oracle will respond according to the protocol specification

and depending on its internal state. If m consists of a special symbol �
(m = �), then πs

i will respond with the first protocol message.

– Corrupt(Pi): Oracle π1
i responds with the long-term private key ski of party

Pi. If Corrupt(Pi) is the τ -th query issued by A, then we say that Pi is
τ -corrupted. For parties that are not corrupted we define τ :=∞.

– RegCorruptParty(pkc, Pc): This query allows A to register a new party Pc

(� < c < N), with a static public key pkc on behalf of Pc. If the same party
Pc is already registered (either via RegCorruptParty-query or r ∈ [�]), a failure
symbol ⊥ is returned to A. Otherwise, Pc is registered, the pair (Pc, pkc) is
distributed to all other parties, and a symbol of success � is returned. This
query formalizes a malicious insider setting which can be used to model un-
known key share (UKS) attacks and other chosen public key attacks [3,15,14].
We here formalize the arbitrary key registration policy via this query. Parties
established by this query are called corrupted or adversary-controlled.

– Reveal(πs
i): Oracle πs

i responds to this query with the contents of variable
Ks
i to A. This query models the attacks that loss of a session key should not

be damaging to other sessions.1

– RevealState(πs
i): Oracle πs

i responds with the contents of the secret state
stored in variable STAs

i .

– Test(πs
i): This query may only be asked once throughout the game. Oracle

πs
i handles this query as follows: if the oracle has state Φs

i �= accept, then
it returns some failure symbol ⊥. Otherwise it flips a fair coin b, samples a

random element k0
$← K, sets k1 = Ks

i to the ‘real’ session key, and returns
kb.

Security Definitions. We model the partnership of two oracles via the concept of
matching conversations which was first introduced by Bellare and Rogaway [2]
and later refined in [8,11]. Let T s

i denote the transcript of messages sent and
received by oracle πs

i . We assume that messages in a transcript T s
i are represented

as binary strings. Let |T s
i | denote the number of the messages in the transcript

T s
i . Assume there are two transcripts T s

i and T t
j , where w := |T s

i | and n := |T t
j |.

We say that T s
i is a prefix of T t

j if 0 < w ≤ n and the first w messages in
transcripts T s

i and T t
j are pairwise equivalent as binary strings.

Definition 2 (Matching Conversations). We say that πs
i has a matching

conversation to oracle πt
j, if

– πs
i has sent the last message(s) and T t

j is a prefix of T s
i , or

– πt
j has sent the last message(s) and T s

i is a prefix of T t
j .

We say that two oracles πs
i and πt

j have matching conversations if πs
i has a

matching conversation to process πt
j or vice versa.

1 Note that we have Ks
i �= ∅ if and only if Φs

i = accept.

12 Y. Li et al.

Definition 3 (Correctness). We say that a two-party AKE protocol, Σ, is
correct if for any two oracles, πs

i and πt
j , that have matching conversations it

holds that Φs
i = Φt

j = accept, PIDs
i = j and PIDt

j = i and Ks
i = Kt

j.

Definition 4 (Security Game). We formally consider a security experiment
that is played between an adversary A and a challenger C. The challenger C
implements the collection of oracles {πs

i : i ∈ [�], s ∈ [d]}. At the beginning of the
game, long-term public/private key pairs (pki, ski) for each honest entity i are
generated by C. The adversary receives public keys pk1, . . . , pk� as input. Now
the adversary may start issuing Send, RevealState, Corrupt, RegCorruptParty and
Reveal queries, as well as one Test query at some point of the game. Finally, the
adversary outputs a bit b′ and terminates.

Definition 5 (Freshness). Let πs
i be an accepting oracle held by a party Pi

with intended partner Pj . Meanwhile, let πt
j be an oracle (if it exists), such that

πs
i and πt

j have matching conversations. Then the oracle πs
i is said to be τ0-fresh

when the adversary A issues its τ0-th query and none of the following conditions
holds:

– The party Pj has been established by the adversary A via the RegCorruptParty
query,

– Pi is τi-corrupted with τi ≤ τ0 and Pj is τj-corrupted with τj ≤ τ0,
– A has either made a RevealState(πs

i) query or a RevealState(πt
j) query (if πt

j

exists),
– A has either made a query Reveal(πs

i) query or a Reveal(πt
j) query (if πt

j

exists).

Definition 6. We say that a two-party AKE protocol Σ is (t, ε)-secure, if for all
adversaries A running the AKE security game within time t while having some
negligible probability ε = ε(κ), it holds that:

1. When A terminates, there exists no τ0-fresh oracle πs
i (except with probability

ε), such that
– πs

i has internal states Ω = accept and Ψ = j, and
– there is no unique oracle πt

j such that πs
i and πt

j have matching conver-
sations.

2. When A returns b′ such that
– A has issued a Test-query to oracle πs

i , and
– the oracle πs

i is τ0-fresh throughout the security game,
then the probability that b′ equals the bit b sampled by the Test-query is
bounded by

|Pr[b = b′]− 1/2| ≤ ε.

4 Authenticated Key Exchange Compiler from Signature

4.1 Protocol Description

The compiler takes as input the following building blocks: a passively secure
key exchange protocol KE and a digital signature scheme (SIG.Gen, SIG.Sign,

New Modular Compilers for Authenticated Key Exchange 13

SIG.Vfy). Each party A is assumed to possess a pair of long-term keys generated

as (skA, pkA)
$← SIG.Gen(1κ). In the sequel, we will use the superscript ‘A’ to

highlight the message recorded at party A (resp. party B). The compiled pro-
tocol between two parties A and B proceeds as follows, which is also informally
depicted in Figure 2.

A

(pkA, skA)
$← SIG.Gen(1κ)

B

(pkB , skB)
$← SIG.Gen(1κ)

←−
KE

−−−−−−−−−−−−→
obtain k and set
TA
1 := TA

KE||A||B
obtain k and set
TB
1 := TB

KE||A||B
σA := SIG.Sign(skA, “1”||TA

1) σB := SIG.Sign(skB , “2”||TB
1)

−
σA

−−−−−−−−−−−−→
←−

σB
−−−−−−−−−−−−

accept if
SIG.Vfy(pkB , “2”||TA

1 , σA
B) =

1

accept if
SIG.Vfy(pkA, “1”||TB

1 , σB
A) =

1

Fig. 2. AKE Protocol from Signature

1. First, A and B run the key exchange protocol KE. They obtain the secure
key k from the key exchange phase (as the session key of AKE) and record
the transcript as TA

KE and TB
KE, where TD

KE consists of the list of all messages
sent and received by party D ∈ {A,B}.

2. A sets TA
1 := TA

KE || A || B, computes σA := SIG.Sign(skA, “1” || TA
1) and

sends σA to B. Meanwhile, B sets TB
1 := TB

KE || A || B, computes σB :=
SIG.Sign(skB , “2” || TA

1) and sends σB to A.
3. Upon receiving signature on each side, A accepts if and only if SIG.Vfy(pkB ,

“2” || TA
1 , σA

B)=1. B accepts if and only if SIG.Vfy(pkA,“1” || TB
1 ,σB

A)=1.

Session States: In the following we assume that the ephemeral secret vector
esk used in each KE protocol instance will be stored in the variable STA.

4.2 Security Analysis

Theorem 1. Assume that the KE protocol without long-term key is (t, εKE)-
passively secure (Definition 1), and the signature scheme SIG is deterministic
and (qsig , t, εSIG)-secure (EUF-CMA), then the above protocol is a (t′, ε)-secure
AKE protocol in the sense of Definition 6 with t′ ≈ t, and qsig ≥ d, and it holds
that

ε ≤ 2� · εSIG + d�(d�+ 2) · εKE.
We prove Theorem 1 in two stages. First, we show that the AKE protocol is a
secure authentication protocol except for probability εauth, that is, the protocol
fulfills security property 1.) of the AKE definition. In the next step, we show that
the session key of the AKE protocol is secure except for probability εind in the
sense of the Property 2.) of the AKE definition. Due to space restrictions, we
only provide a sketch of the proof.

14 Y. Li et al.

Lemma 2. If the KE protocol is (t, εKE)-passively secure definition 1, and the
signature scheme SIG is deterministic and (qsig, t, εSIG)-secure (EUF-CMA), then
the above protocol meets the security Property 1.) of the AKE security definition 6
except for probability with

εauth ≤ d� · εKE + � · εSIG,

where all quantities are as the same as stated in the Theorem 1.

Proof. Let break
(1)
δ be the event that there exists a τ and a τ -fresh oracle πs∗

i

that has internal state Φ = accept and PIDs
i = j, but there is no unique oracle

πt
j such that πs

i and πt
j have matching conversations, in Game δ.

Game 0. This is the original security game. We have that

Pr[break
(1)
0] = εauth.

Game 1. In this game, the challenger proceeds exactly like the challenger in
Game 0, except that we add an abortion rule. The challenger raises event aborteph
and aborts, if an ephemeral key epks

i is computed by an oracle πs
i but it has been

sampled by another oracle before with the same type of ephemeral key generator.
From the result of Lemma 1, we have that

Pr[break
(1)

0] ≤ Pr[break
(1)

1] + d� · εKE.

Game 2. This game proceeds exactly as before, but the challenger raises event
abortsig and aborts if the following condition holds:

– there exists a τ -fresh oracle πs
i that has PIDs

i = j and T i,s
1 = T i,s

KE ||IDi||IDj

and Φs
i = accept,

– πs
i received a signature σi

j that satisfies SIG.Vfy(pkIDj
, “2” || T i,s

1 , σi
j)=1,

but there exists no oracle πt
j which has previously output a signature σi

j

over transcript T i,s
1 .

Clearly, we have

Pr[break
(1)

1] ≤ Pr[break
(1)

2] + � · εSIG.

Note that the RegCorruptParty query does not affect security, since all registered
identities should be distinct to the identities of honest parties. So in Game 2 each
accepting oracle πs

i has a unique ‘partner’ oracle πt
j sharing the same transcript

T1. With respect to other queries, they will be simulated honestly as in the
previous game without any modification since those values are not used for
authentication. Thus, if πs

i accepts, then it must have a matching conversation

to πt
j . So we have Pr[break

(1)

2] = 0. Sum up probabilities from Game 0 to Game 2,
we proved Lemma 2.

New Modular Compilers for Authenticated Key Exchange 15

Lemma 3. If the KE protocol is (t, εKE)-passively secure 1, the signature scheme
SIG is deterministic and (qsig , t, εSIG)-secure (EUF-CMA), then for any adver-
sary running in time t′ ≈ t, the probability of A to correctly answer the Test-query
is at most 1/2 + εind with

εind ≤ � · εSIG + d�(d�+ 1) · εKE,

where all quantities are as the same as stated in the Theorem 1.

Proof. Let break
(2)
δ denote the event that the A correctly guesses the bit b sam-

pled by the Test-query in Game δ, and Test(πs∗
i) is the τ -th query of A, and

πs∗
i is a τ -fresh oracle that is ∞-revealed throughout the security game. Let

Advδ := Pr[break
(2)
δ] − 1/2 denote the advantage of A in Game δ. Consider the

following sequence of games.

Game 0. This is the original security game. Thus we have that

Pr[break
(2)
0] = εind + 1/2 = Adv0 + 1/2.

Game 1. The challenger C in this game proceeds as before, which aborts if the
test oracle accepts without unique partner oracle. Clearly, we have

Adv0 ≤ Adv1 + εauth ≤ Adv1 + d� · εKE + � · εSIG,

where εauth is an upper bound on the probability that there exists an oracle that
accepts without unique partner oracle in the sense of Definition 6 (cf. Lemma 2).

Game 2. This game proceeds exactly as the previous game but the challenger
aborts if it fails to guess the test oracle πs∗

i and its partner oracle πt∗
j such that

πs∗
i and πt∗

j have matching conversations. We have that

Adv1 ≤ (d�)2 · Adv2.

Game 3. Finally, we replace the key k∗ of the test oracle πs∗
i and its partner or-

acle πt∗
j with the same random value k̃∗. Exploiting the security of key exchange

protocol, we obtain that
Adv2 ≤ Adv3 + εKE.

In this game, the response to the Test query always consists of a uniformly
random key, which is independent to the bit b flipped in the Test query. Thus
we have Adv3 = 0. Lemma 3 is proved by putting together of probabilities from
Game 0 to Game 3.

5 Authenticated Key Exchange Compiler from Public
Key Encryption

5.1 Protocol Description

The compiler takes the following building blocks as input: a passively secure
key exchange protocol KE, a public encryption scheme PKE, a collision resistant

16 Y. Li et al.

hash function CRHF and a one-time message authentication scheme OTMAC.
The compiled protocol between two parties A and B proceeds as follows, which
is also depicted in Figure 3.

A

(pkA, skA)
$← PKE.KGen(1κ)

B

(pkB , skB)
$← PKE.KGen(1κ)

←−
KE

−−−−−−−−−−−−→
obtain k and set
TA
1 := TA

KE||A||B
obtain k and set
TB
1 := TB

KE||A||B
NA := CRHF(TA

1)
KA ← OTMAC.KGen(1κ)

NB := CRHF(TB
1)

KB ← OTMAC.KGen(1κ)

CA
$←

PKE.Enc(pkB ,KA||NA)
CB

$←
PKE.Enc(pkA,KB ||NB)

−
CA

−−−−−−−−−−−−→
KB

A ||NB
A :=

PKE.Dec(skB , CB
A)

reject if NB
A �= NB

TB
2 := TB

1 ||CB
A ||CB,

RB := CRHF(TB
2)

MB :=
OTMAC.Tag(KB

A , “2”||RB)

←−
CB ,MB

−−−−−−−−−−−−
TA
2 := TA

1 ||CA||CA
B ,

RA := CRHF(TA
2)

reject if MA
B �=

OTMAC.Tag(KA, “2”||RA)
KA

B ||NA
B :=

PKE.Dec(skA, CA
B)

reject if NA �= NA
B

MA :=
OTMAC.Tag(KA

B , “1”||RA)
accept

−
MA

−−−−−−−−−−−−→
accept if MB

A =
OTMAC.Tag(KB , “1”||RB)

Fig. 3. AKE Compiler from PKE and OTMAC

1. First, A and B run the key exchange protocol KE, then both parties obtain
the key k from the key exchange phase (as the session key of AKE protocol)
and record the transcripts as TA

KE and TB
KE, where TD

KE consists of the list of
all messages sent and received by party D ∈ {A,B}.

2. A sets the transcript TA
1 := TA

KE || A || B and computes NA := CRHF(TA
1).

Then, it runs KA
$← OTMAC.KGen(1κ) and computes a ciphertext CA

$←
PKE.Enc(pkB, KA || NA) under B’s public key pkB and transmits CA to B.
Meanwhile, B sets TB

1 := TB
KE || A || B and computes NB := CRHF(TB

1).

It runs KB
$← OTMAC.KGen(1κ) and computes CB

$← PKE.Enc(pkA, KB ||
NB) under A’s public key pkA.

3. Upon receiving the ciphertext CB
A , B sets TB

2 := TB
1 || CB

A || CB and com-
putes RB := CRHF(TB

2). It decrypts CB
A (i.e. KB

A || NB
A := PKE.Dec(skB ,

New Modular Compilers for Authenticated Key Exchange 17

CB
A)). Then B checks whether NB

A = NB. If the check is not passed, then
B rejects. Otherwise, it computes MB := OTMAC.Tag(KB

A , “2” || RB) and
transmits (MB, CB) to A.

4. Upon receiving messages (MA
B , CA

B), A sets TA
2 := TA

1 || CA || CA
B and

computes RA := CRHF(TA
2). A rejects if MA

B �= OTMAC.Tag(KA,“2” || RA).
Then it decrypts the ciphertext CA

B (i.e. KA
B || NA

B := PKE.Dec(skB , C
A
B))

and checks whether NA = NA
B . If the check is not passed, then A rejects.

Otherwise, A computes MA := OTMAC.Tag(KA
B , “1” || RA), and sends MA

to B. Finally, A accepts the session.
5. Upon receivingMB

A ,B accepts if andonly ifMB
A = OTMAC.Tag(KB, “1”||RB).

Session States: We assume the ephemeral secret vector esk used in each KE
protocol instance and the random key KA and KB used by PKE.Enc will be
stored in the variable STA.

5.2 Security Analysis

Theorem 2. Assume that the KE protocol without long-term key is (t, εKE)-
secure (Definition 1), the public key encryption scheme PKE is (qpke, t, εPKE)-
secure (IND-CCA2), and the hash function CRHF is (t, εCRHF)-secure and the
one-time authentication code scheme OTMAC is deterministic and (t, εOTMAC)-
secure. Then the above protocol is a (t′, ε)-secure AKE protocol in the sense of
Definition 6 with t′ ≈ t and qpke ≥ d and holds that

ε ≤ 2εCRHF + d� · (2� · εPKE + 2εOTMAC + 2εKE) + (d�)2 · εKE.

We prove the theorem 2 with two lemmas, similar to the proof of Theorem 1.
For space reasons we only provide two lemmas 4 5.

Lemma 4. Assume that the KE protocol is (t, εKE)-passively secure (Defini-
tion 1), the public key encryption scheme PKE is (qpke, t, εPKE)-secure (IND-
CCA2), and the hash function CRHF is (t, εCRHF)-secure and the one-time au-
thentication code scheme OTMAC is deterministic and (t, εOTMAC)-secure. Then
the above protocol meets the security property 1.) of the AKE security definition 6
except for probability with

εauth ≤ εCRHF + d� · (εKE + � · εPKE + εOTMAC),

where all quantities are as the same as stated in the Theorem 2.

Lemma 5. Assume that the KE protocol is (t, εKE)-passively secure (Defini-
tion 1), the public key encryption scheme PKE is (qpke, t, εPKE)-secure (IND-
CCA2), and the hash function CRHF is (t, εCRHF)-secure and the one-time au-
thentication code scheme OTMAC is deterministic and (t, εOTMAC)-secure. Then
for any adversary running in time t, the probability of A to correctly answer the
Test-query is at most 1/2 + εind with

εind ≤ εCRHF + d� · (εKE + � · εPKE + εOTMAC) + (d�)2 · εKE,

where all quantities are as the same as stated in the Theorem 2.

18 Y. Li et al.

Acknowledgements. We would like to thank the anonymous referees for their
valuable comments and suggestions.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In:
STOC, pp. 419–428 (1998)

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

3. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (sts) protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999)

4. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

5. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

6. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Generic compilers for authenticated
key exchange. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 232–249.
Springer, Heidelberg (2010)

7. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Generic compilers for authenticated
key exchange (full version). IACR Cryptology ePrint Archive, 2010:621 (2010)

8. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the Security of TLS-DHE in the
Standard Model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012)

9. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. J.
Cryptology 20(1), 85–113 (2007)

10. Koblitz, N., Menezes, A.: Another look at security definitions. IACR Cryptology
ePrint Archive, 2011:343 (2011)

11. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the tls protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013)

12. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

13. Menezes, A., Smart, N.P.: Security of signature schemes in a multi-user setting.
Des. Codes Cryptography 33(3), 261–274 (2004)

14. Menezes, A., Ustaoglu, B.: Comparing the pre- and post-specified peer models for
key agreement. IJACT 1(3), 236–250 (2009)

15. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007)

Password-Based Authenticated Key Exchange
without Centralized Trusted Setup

Kazuki Yoneyama

NTT Secure Platform Laboratories
3-9-11 Midori-cho Musashino-shi Tokyo 180-8585, Japan

yoneyama.kazuki@lab.ntt.co.jp

Abstract. Almost all existing password-based authenticated key exchange
(PAKE) schemes achieve concurrent security in the standard model by relying
on the common reference string (CRS) model. A drawback of the CRS model
is to require a centralized trusted authority in the setup phase; thus, passwords
of parties may be revealed if the authority ill-uses trapdoor information of the
CRS. There are a few secure PAKE schemes in the plain model, but, these are
not achievable in a constant round (i.e., containing a linear number of rounds).
In this paper, we discuss how to relax the setup assumption for (constant round)
PAKE schemes. We focus on the multi-string (MS) model that allows a number of
authorities (including malicious one) to provide some reference strings indepen-
dently. The MS model is a more relaxed setup assumption than the CRS model
because we do not trust any single authority (i.e., just assuming that a majority
of authorities honestly generate their reference strings). Though the MS model is
slightly restrictive than the plain model, it is very reasonable assumption because
it is very easy to implement. We construct a (concurrently secure) three-move
PAKE scheme in the MS model (justly without random oracles) based on the
Groce-Katz PAKE scheme. The main ingredient of our scheme is the multi-string
simulation-extractable non-interactive zero-knowledge proof that provides both
the simulation-extractability and the extraction zero-knowledge property even if
minority authorities are malicious. This work can be seen as a milestone toward
constant round PAKE schemes in the plain model.

Keywords: authenticated key exchange, password, multi-string model, concur-
rent security.

1 Introduction

Password-based authenticated key exchange (PAKE) is one of most attractive crypto-
graphic primitives because authentication with short PINs or human memorable pass-
words is getting popular in web-based or cloud services. PAKE provides both the
authentication property by passwords and the secrecy of the session key generation
(often used to establish a secure channel) simultaneously. We consider the standard
two-party setting: two parties share a common short password in advance and can gen-
erate a common long session key over an insecure channel like the Internet.

The first PAKE scheme was proposed by Bellovin and Merritt [1]. However, the se-
curity of their scheme is not proved formally. To construct a provably secure PAKE

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 19–36, 2014.
c© Springer International Publishing Switzerland 2014

20 K. Yoneyama

scheme is not so easy because a password has only low entropy. Since a password dic-
tionary is small, an adversary can attempt off-line dictionary attacks that the adversary
guesses the correct password and locally tests guessed passwords with transcripts re-
peatedly. Also, the adversary can attempt on-line dictionary attacks that the adversary
guesses the correct password and tries to impersonate some honest party. Though on-
line dictionary attacks cannot be prevented essentially, resistance to off-line dictionary
attacks must be guaranteed. Thus, the required security of PAKE is that the advantage
of the adversary is bounded by Q/|D|, where Q is the number of impersonations that
the adversary attempts and |D| is the size of a password dictionaryD.

First provably secure PAKE schemes [2,3,4] rely on the random oracle (RO) model
or the ideal cipher (IC) model. Then, a secure PAKE scheme without ideal primitives
(i.e., RO and IC) is proposed by Katz et al. [5] by adopting the common reference string
(CRS) model. The CRS model assumes that a reference string (e.g., a public-key of a
trapdoor function) is honestly created before the beginning of all interactions, and later
available to all parties; thus, it is a setup assumption by a trusted third party. Though
the CRS model may be practical in some situations where a trusted setup is guaranteed
exactly, but it must be very restrictive in general; if an untrustworthy or a corrupted
party chooses the reference string, he may be able to learn all parties’ passwords by
just eavesdropping on the communications. Furthermore, parties cannot detect if CRS
is maliciously generated. Almost all existing secure and practical PAKE schemes in the
standard model are constructed in the CRS model [5,6,7,8,9,10,11,12,13,14,15,16].

There is another methodology to construct PAKE schemes via secure function evalu-
ation [17,18,19]. These schemes avoid both ideal primitives and the CRS model; that is,
these schemes are proved to be secure in the plain model. However, the security is only
guaranteed in the case of the non-concurrent (i.e., multiple sessions must be executed
sequentially) or bounded concurrent setting. Goyal et al. [20] proposed a PAKE scheme
(the GJO scheme) that is secure in the plain model under concurrent self-composition.
Unfortunately, it is a theoretical scheme because many rounds of communication is
necessary (i.e., containing a polynomial number of rounds). Thus, our interest is to
construct a concurrently secure and round efficient PAKE scheme without relying on
any of ideal primitives and the CRS model.

Our Results. In this paper, we give a three-move PAKE scheme that is secure without
assuming both ideal primitives and a (centralized) trusted setup.

Naturally, the most desirable goal is to construct a practical PAKE scheme in the
plain model. However, we have a lot of hurdles to get an efficient construction in the
plain model, even for getting constant round. Thus, this paper aims to avoid the draw-
back of the CRS model as a milestone toward a practical PAKE scheme in the plain
model. Our key idea is to adopt the multi-string (MS) model [21].

The MS model is a decentralized model of the ordinary CRS model. In the CRS
model, a single-authority creates the CRS and parties must trust the authority. For ex-
ample, in typical PAKE schemes, a public-key is set as the CRS, and then, a password is
encrypted with the public-key and the ciphertext is sent in the protocol. If the authority
keeps the secret-key corresponding to the public-key, the password can be decrypted.
Conversely, in the MS model, there are multiple authorities and each authority creates a

Password-Based Authenticated Key Exchange without Centralized Trusted Setup 21

random string, respectively. Honest authorities independently generates their reference
strings (i.e., each reference string does not depend on other reference strings) while ma-
licious authorities can set their reference strings arbitrarily. It is clearly decentralized
because we only assume a majority of authorities generate random strings honestly.
The MS model is very realistic because it is possible to be easily implemented in the
real world so that authorities just publish their random strings on the Internet, and par-
ties just need to agree on which authorities’ strings they want to use. Obviously, the MS
model is more relaxed than the CRS model in necessity of a trusted setup.

We introduce a new round-efficient PAKE scheme in the MS model. Our scheme has
two attractive points beside existing schemes as follows:

1. Round-Efficiency. The drawback of the GJO scheme is in communication complex-
ity; it needs linear number of rounds in the security parameter. Though Groth and
Ostrovsky [21] show that any universally composable (UC) multi-party computa-
tion protocol can be securely realized in the MS model, such a general construction
also needs a large number of rounds. Conversely, our scheme only needs three-
moves. The construction is based on the three-move PAKE scheme by Groce and
Katz [12] (GK scheme). The GK scheme is (concurrently) secure in the CRS model
and most efficient in known PAKE schemes secure in the standard model. To avoid
the single CRS (we will mention later), our scheme is not achieved in one-round;
but round efficiency of our scheme is comparable with existing schemes. As far as
we know, our scheme is first secure round-efficient PAKE scheme without a cen-
tralized trusted setup.

2. Decentralized Setup. The GK scheme needs a CRS to prove its security. The CRS
contains public-keys of semantically secure public-key encryption (CPA-PKE) and
chosen ciphertext secure labelled public-key encryption (CCA-lPKE) [22]. Since
the simulator needs to know secret keys corresponding to the CRS in order to re-
spond to adversarial messages in the security proof, public-keys have to be the CRS
in order that the simulator can generate secret keys. To achieve security in the MS
model, we must change the way to use strings in the protocol. Our technique is
twofold. One is that public-keys are chosen by parties temporarily in each session,
not included in reference strings. Thus, authorities cannot decrypt the ciphertexts;
but, the simulator cannot know secret keys in the security proof. To solve this prob-
lem, we use the multi-string simulation-extractable non-interactive zero-knowledge
(SENIZK) proof [21]. We can simulate responses to adversarial messages without
knowing secret keys by relying on simulation-extractability of the SENIZK proof
even if minority authorities are malicious. Hence, our scheme does not need a cen-
tralized CRS and enjoys the concurrent security as the GK scheme. We will discuss
how to avoid the single CRS in detail in Section 3.2.

To show usefulness of our technique, we also show two extended PAKE schemes in
the MS model. One is the lattice-based scheme, and the other is the UC scheme. These
schemes are obtained by applying our technique to existing PAKE in the CRS model.
Thus, while our technique is not generic transformation, it is applicable to a wide class
of PAKE schemes such as [7] and its variants.

22 K. Yoneyama

2 Preliminaries

Throughout this paper we use the following notations. If Set is a set, then by m ∈R Set
we denote that m is sampled uniformly from Set. If ALG is an algorithm, then by
y ← ALG(x; r) we denote that y is output by ALG on input x and randomness r (if
ALG is deterministic, r is empty).

2.1 Password-Based Authenticated Key Exchange in Multi-string Model

A PAKE scheme contains two parties (an initiator and a responder, or a client and a
server) who will engage in the protocol. We suppose that the total number of parties
in the system is at most N. Let passwords for all pairs of parties be uniformly and
independently chosen from fixed dictionaryD. This uniformity requirement is made for
simplicity and can be easily removed by adjusting security of an individual password
to be the min-entropy of the distribution, instead of 1/|D|. Parties P and P′ share a
password pwPP′ . Also, we suppose that the total number of authorities in the system is
at most n. Each honest authority publishes reference string ρ without recognizing each
other or any other parties.

We denote with Π i
P the i-th instance of key exchange sessions that party P runs.

Parties use reference strings to execute instances. Each party can concurrently execute
the protocol multiple times with different instances. We suppose that the total number of
instances of a party is at most �. The adversary is given oracle access to these instances
and may also control some of the instances itself. We remark that unlike the standard
notion of an “oracle”, in this model instances maintain state which is updated as the
protocol progresses. Also, the adversary can corrupt n − tp authorities and publish n −
tp reference strings (i.e., there are at least tp honest reference strings), possibly in a
malicious and adaptive manner (i.e., generating corrupted reference strings after seeing
honest strings). In particular the state of an instanceΠ i

P includes the following variables
(initialized as null):

– sidi
P : the session identifier which is the ordered concatenation of all messages sent

and received by Π i
P;

– pidi
P : the partner identifier whom Π i

P believes it is interacting (pidi
P � P);

– acci
P : a Boolean variable corresponding to whetherΠ i

P accepts or rejects at the end
of the execution.

We say that two instances Π i
P and Π j

P′ are partnered if the following properties hold:
pidi

P = P′ and pid j
P′ = P, and sidi

P = sid j
P′ � null except possibly for the final message.1

Partnered parties must accept and conclude with the common session key.

1 The exception of the final message for matching of sid is needed to rule out a trivial attack
that an adversary forwards all messages except the final one.

Password-Based Authenticated Key Exchange without Centralized Trusted Setup 23

Security Definition. Following [2,12], we show the security definition of PAKE. An
adversary is given total control of the external network connecting parties. This adver-
sarial capability is modeled by giving some oracle accesses2 as follows:

– Execute(P, i, P′, j) : This query models passive attacks. The output of this query
consists of the messages that were exchanged during the honest execution of the
protocol.

– Send(P, i,m) : This query models active attacks. The instanceΠ i
P runs according to

the protocol specification and updates state. The output of this query consists of the
message that the party P would generate on receipt of message m. If the inputted
message is empty (say ⊥), the query means activating the initiator and the output
of the query consists of the first move message.

– Reveal(P, i) : This query models leakage of session keys by improper erasure of
session keys after use or compromise of a host machine. The output of this query
consists of the session key S K of Π i

P if acci
P = 1.

– Test(P, i) : At the beginning a hidden bit b is chosen. If no session key for instance
Π i

P is defined, then return the undefined symbol ⊥. Otherwise, return the session
key for instance Π i

P if b = 1 or a random key from the same domain if b = 0. This
query is posed just once.

The adversary is considered successful if it guesses b correctly or if it breaks cor-
rectness of a session. We say that an instance Π i

P is fresh unless one of the following is
true at the conclusion of the experiment:

– the adversary poses Reveal(P, i),
– the adversary poses Reveal(P′, j) if Π i

P and Π j
P′ are partnered.

We say that an adversaryA succeeds if either:3

– A poses Test(P, i) for a fresh instance Π i
P and outputs a bit b′ = b,

– Π i
P and Π j

P′ are partnered, and acci
P = acci

P′ = 1, but session keys are not identical.

The adversary’s advantage is formally defined by AdvA(κ) = |2 ·Pr[A succeeds]−1|,
where κ is a security parameter.

Definition 1 (PAKE). We say a PAKE protocol is tp-secure if for a dictionary D and
any probabilistic polynomial-time (PPT) adversaryA that makes at most QSend queries
of Send to different instances the advantage AdvA(κ) is only negligibly larger than
QSend/|D| for κ, where tp is the number of honest reference strings.

2 The model does not contain any explicit corruption oracle access (i.e., to reveal passwords). In
the password-only setting, such an oracle is unnecessary because an adversary can internally
simulate these oracles by itself. Please see [23, pp.190, footnote 8] for details.

3 If a PAKE scheme requires mutual authenticity (i.e., an adversary cannot cause an instance to
accept without any partnered peer), we add the following condition: acci

P = 1 but Π i
P is not

partnered with any other instance.

24 K. Yoneyama

2.2 Smooth Projective Hash Functions

Smooth projective hash functions play a central role in our scheme. This notion is in-
troduced by Cramer and Shoup [24], and our scheme uses its variant.

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x the
statement and w the witness. Let X be a set and L ⊂ X be a NP-language consisting of
statements in R. Loosely speaking, hash function Hhk that maps X to some set is projec-
tive if there exists a projection key that defines the action of Hhk over the subset L of the
domain X. That is, there exists deterministic projection function F(·) that maps key hk
into its projection key hp = F(hk). The projection key hp is such that for every x ∈ L it
holds that the value of Hhk(x) is uniquely determined by hp and x. In contrast, nothing
is guaranteed for x � L, and it may not be possible to compute Hhk(x) from hp and
x. A smooth projective hash function (SPHF) has the additional property (smoothness)
that for x � L, the projection key hp actually says nothing about the value of Hhk(x).
More specifically, given x and hp = F(hk), the value Hhk(x) is uniformly distributed (or
statistically close) to a random element in the range of Hhk.

An interesting feature of SPHF is that if L is an NP-language, then for every x ∈ L
it is possible to efficiently compute Hhk(x) = hhp(x,w) using projection key hp = F(hk)
and witness w of the fact that x ∈ L. Alternatively, given hk itself, it is possible to
efficiently compute Hhk(x) even without knowing the witness. When L is a hard-on-the-
average NP-language, for a random x ∈R L, given x and hp = F(hk) the value Hhk(x)
is computationally indistinguishable from a random value in the range of Hhk(x). Thus,
even if x ∈ L, the value Hhk(x) is pseudorandom, unless the witness is known.

2.3 Multi-string Simulation-Extractable Non-interactive Zero-Knowledge Proof

We borrow the definition of multi-string SENIZK proof from [21].
A multi-string proof system for a relation R consists of PPT algorithms K,P,V,

that K means the key generator, P means the prover and V means the verifier respec-
tively. The key generation algorithm can be used to produce common reference string
ρ. The prover takes as input (ρ, x,w) where ρ is a set of n different common reference
strings and (x,w) ∈ R, and outputs a proof π. The verifier takes as input (ρ, x, π) and
outputs 1 if the proof is acceptable and 0 otherwise. We call (K,P,V) a (tc, ts, tz, n)-
simulation-extractable NIZK proof system for R if it has the completeness, simulation-
extractability and extraction zero-knowledge properties described below. Parameters
tc, ts and tz affect these properties in a threshold manner as follows: If tc out of n ref-
erence strings are honestly generated, then the prover holding an NP-witness for the
truth of the statement should be able to create a convincing proof (i.e., correspond-
ing to completeness). If ts out of n reference strings are honestly generated, then it
should be infeasible to convince the verifier about a false statement (i.e., correspond-
ing to soundness). If tz out of n reference strings are honestly generated, then it should
be possible to simulate the proof without knowing the witness (i.e., corresponding to
zero-knowledge).

Definition 2 (Completeness). We say (K,P,V) is computationally (tc, ts, tz, n)-complete
if for any non-uniform polynomial time adversary S, we have Pr[(ρ, x,w) ← SK(1κ);

Password-Based Authenticated Key Exchange without Centralized Trusted Setup 25

π ← P(ρ, x,w) : V(ρ, x, π) = 1 and (x,w) ∈ R] ≥ 1 − negl, where K is an oracle on
query i outputting ρi ← K(1κ) and S outputs ρ such that at least tc of the ρi’s generated
by K are included.

Simulation-extractability is a combining notion of simulation-soundness and proof
of knowledge. As simulation-soundness, it guarantees that an adversary cannot prove
any false statement even after seeing simulated proofs of arbitrary statements. Also, as
proof of knowledge, it guarantees that there are PPT algorithms that can extract a wit-
ness from a valid proof. An algorithm S E generates reference string ρ with trapdoor
information δ and ξ. An algorithm S uses δ to produce a valid proof from a statement
without knowing the corresponding witness. An algorithm E uses ξ to extract the wit-
ness from a valid proof.

Definition 3 (Simulation-Extractability). We say (K,P,V) is (tc, ts, tz, n)-simulation-
extractable if S E is a PPT algorithm that outputs (ρ, δ, ξ) and for any non-uniform
polynomial time adversary S, we have | Pr[ρ ← K(1κ) : S(ρ) = 1] − Pr[(ρ, δ, ξ) ←
S E(1κ) : S(ρ) = 1]| ≤ negl, and if S E is a PPT algorithm that outputs (ρ, δ, ξ), E is a
PPT algorithm that outputs w on input (ρ, ξ, x, π) and for any non-uniform polynomial
time adversary S, we have | Pr[(ρ, x, π) ← SS Es ,S (1κ); w ← E(ρ, ξ, x, π) : (ρ, x, π) �
L and (x,w) � R and V(ρ, x, π) = 1] ≤ negl, where S Es is an oracle on query i out-
putting (ρi, ξi) from (ρi, δi, ξi) ← S E(1κ), S is an oracle on input (ρ j, δ j, x j) outputting
π j such that δ j contains tz δi’s corresponding to ρi’s generated by S E, L is a list of
statements and corresponding proofs (ρ j, x j, π j) made by S , and ξ contains ts ξi’s cor-
responding to ρi’s generated by S E.

Extraction zero-knowledge is an extended notion of zero-knowledge according to
simulation-extractability. It guarantees that even after seeing many extractions it should
still be hard to distinguish real proofs and simulated proofs from one another.

Definition 4 (Extraction Zero-Knowledge). We say (K,P,V) is (tc, ts, tz, n)-extraction
zero-knowledge if S E is a PPT algorithm that outputs (ρ, δ, ξ), E is a PPT algorithm that
outputs w on input (ρ, ξ, x, π), S is a PPT algorithm that outputs π on input (ρ, δ, x) and
for any non-uniform polynomial time adversaryS, we have | Pr[(ρ, x,w)← SS Ez ,E(1κ); π
← P(ρ, x,w) : SE(π) = 1 and (x,w) ∈ R] − Pr[(ρ, x,w) ← SS Ez ,E(1κ); π ← S (ρ, δ, x) :
SE(π) = 1 and (x,w) ∈ R]| ≤ negl, where S Ez is an oracle on query i outputting (ρi, δi)
from (ρi, δi, ξi) ← S E(1κ), and E is an oracle on input (ρ j, ξ j, x j, π j) outputting w such
that the query contains ts ρi’s generated by S E and π j is not the challenge proof for S.

3 Three-Move PAKE in Multi-string Model

In this section, we show a PAKE scheme in the MS model based on the Groce-Katz
PAKE scheme [12] (GK scheme) in the CRS model. Though our scheme is less efficient
both in communication and computational complexity than the GK scheme, the setup
assumption is relaxed to a decentralized setup.

3.1 Recalling the GK Scheme

First, we recall the GK scheme that is secure in the CRS model. Fig. 1 shows an
overview of the GK scheme.

26 K. Yoneyama

Common private input : password pw = pwAB
Common reference string : pk, pk′

Party A (Initiator) Party B (Responder)

r′ ← {0, 1}∗

CT ′ = Enc′pk′(pw; r′)
trans1 := A||CT ′
−−−−−−−−−−−−−−−−→

hk ← KS
hp = F(hk, pk′ ,CT ′)
rB||τB||S KB = Hhk(pk′ ,CT ′, pw)
label := trans1 ||B||hp

trans2 := B||hp||CT
←−−−−−−−−−−−−−−−−−−− CT = Enclabel

pk (pw; rB)
rA||τA ||S KA = hhp(pk′,CT ′, pw, r′)

label := trans1 ||B||hp
ĈT = Enclabel

pk (pw; rA)

if ĈT � CT , abort
trans3 := A||τA−−−−−−−−−−−−−−→

if τA � τB, abort
output S KA output S KB

Fig. 1. A high-level overview of the GK scheme

The GK scheme uses a CCA-lPKE Σ = (Gen,Enc,Dec) where the message space
MS = D, PKS is the public-key space and CTS is the ciphertext space, and a CPA-
PKE Σ′ = (Gen′,Enc′,Dec′) with an associated SPHF where the message space
MS ′ = D, PKS ′ is the public-key space and CTS ′ is the ciphertext space. We
define sets X, {Lm}m∈D and language L for Σ′ with respect to pk′. Let X be a set
{(pk′,CT ′,m)|pk′ ∈ PKS ′; CT ′ ∈ CTS ′; m ∈ D}, Lm be a set {(pk′,CT ′,m)|(pk′, sk′)
← Gen′(1κ); Dec′sk′(CT ′) = m} and L be a set ∪m∈DLm.

As described in Section 2.2, the GK scheme uses a family of SPHFsH = {Hhk} such
that for every hk in the key space KS , Hhk : X → {0, 1}3κ and F : KS ×PKS ′ ×CTS ′ →
PS where PS is the projection key space. Formally, the SPHF that the GK scheme uses
is defined by a sampling algorithm that outputs (KS ,H , PS , F) such that:

– There are efficient algorithms that sample a uniform hk ∈ KS , compute Hhk for
hk ∈ KS and x ∈ X, and compute F(hk, pk′,CT ′) for all hk ∈ KS , pk′ ∈ PKS ′ and
CT ′ ∈ CTS ′.

– For any x = (pk′,CT ′,m) ∈ L, there is an efficient algorithm that given inputs
hp = F(hk, pk′,CT ′) and (pk′,CT ′,m, r′) such that CT ′ = Enc′pk′ (m; r′) computes
hhp(x, r′) = Hhk(x).

– For any x = (pk′,CT ′,m) ∈ X \ L, distributions {hk ← KS ; hp = F(hk, pk′,CT ′) :
(hp,Hhk(x))} and {hk ← KS ; hp = F(hk, pk′,CT ′); v ← {0, 1}3κ : (hp, v)} are
statistical indistinguishable in κ.

The GK scheme ensures both correctness and authenticity by relying on the SPHF.
First, correctness is guaranteed because of the projection property. Initiator A only
knows the projection key hp, but he also knows the randomness r′ in generating CT ′.
Thus, A can derive the correct session key S K with hhp and r′. On the other hand,
responder B does not know r′, but knows the hash key hk. Thus, B can derive the
correct session key S K only with hk. Also, authenticity is guaranteed because of the

Password-Based Authenticated Key Exchange without Centralized Trusted Setup 27

smoothness property. If a party does not know correct password pw, he cannot deter-
mine rA = rB and τA = τB; hence, the verification of the peer is failed.

3.2 Design Principle

Here, we show our strategy to avoid centralized trusted setup with the MS model.
First, we observe how the CRS model contributes to prove security of the GK scheme.

In some step of the security proof, a simulator needs to check if a ciphertext that is gen-
erated by the adversary is valid for the correct password. If so, the simulator regards the
adversary successful. The simulator can know secret keys sk, sk′ for pk, pk′ because
the CRS is generated by him. Thus, the simulator successfully works in this case with
the power of trapdoors of the CRS. In the MS model, the simulator cannot generate all
public-keys (pk1, . . . , pkn) because an adversary may publish malicious public-keys as
corrupt authorities. Then, the simulator can know trapdoors of only honest authorities.
Next, we discuss what is non-trivial to construct PAKE under this setting.

Simple Solutions Do Not Work. A naive idea is that parties encrypt the password
with all public-keys and send n ciphertexts. In this case, the simulator can check if a
ciphertext that is generated by the adversary is valid for the correct password with a
secret key of an honest authority. Obviously, to directly encrypt the password is flawed
because the adversary knows secret keys of corrupted authorities and can obtain the
password.

Threshold cryptography is widely used in cryptographic protocols involving a multi-
authority setting. If we apply it to the PAKE setting, parties transform the password
into n shares with a secret sharing scheme like [25], then, encrypt each share with each
public-key, and send n ciphertexts. If malicious public-keys are less than the threshold,
the password is perfectly protected, and the simulator can reconstruct the password and
check the validity of ciphertexts. However, there is a problem that each party cannot
know shares of the peer because he does not have any secret key and the share gen-
eration algorithm must be probabilistic with local randomness. To compute a common
value with the SPHF, parties can input the same encrypted messages to Hhk or hhp.
Therefore, the approach using threshold cryptography does not work.

Another way is to accumulate all public-keys to a combined public-key. For ex-
ample, with the ElGamal encryption, the public-keys (pk1, . . . , pkn) are combined as
pk =

∏n
1 pki, and the password is encrypted by pk. In this case, parties can compute

a common value with the SPHF. Unfortunately, this approach does not work because
a malicious authority can reveal the password. In the MS model, it is not guaranteed
that malicious authorities determine their reference strings without seeing other author-
ities’ strings. If a malicious authority observes all other authorities’ public-keys before
publishing her public-key, she can easily set pk =

∏n
1 pki to an arbitrary value that she

knows the underlying secret key.
Therefore, these orthodox techniques are not useful in the PAKE setting.

Our Technique. Our main idea is twofold: to use ad-hoc public-key and to use a
multi-string SENIZK proof. Problems we discussed above come from the fact that cor-
rupted authorities can decrypt ciphertexts. Thus, we modify the protocol as each party

28 K. Yoneyama

generates an ad-hoc public-key4 and encrypts the password with the ad-hoc public-key.
Then, the adversary cannot decrypt it. Conversely, the simulator cannot also decrypt
the ciphertext that is generated by the adversary because the ad-hoc public-key is also
generated by the adversary. We find that what the simulator must do is not to decrypt
the ciphertext but to check if it is valid for the correct password. Hence, we can solve
this problem by using the simulation-extractability of SENIZK. Each party proves that
he knows a plaintext and randomness that are used to generate the ciphertext with the
public-key. The simulation-extractability ensures that there is a PPT algorithm to ex-
tract a witness from a valid proof. The simulator can extract the encrypted plaintext,
and check if the plaintext is the correct password.

More formally, the SENIZK proves that ciphertext CT is well-formed in that there
exists (pw, r) such that CT = Encpk(pw; r). Nobody knows the secret key correspond-
ing to pk. Though the adversary can pose Send query, the simulator can handle such
a query with oracle S in the definition of the simulation-extractability. Also, even if
arbitrary simulated proofs are provided, the adversary cannot distinguish the simulation
environment and the real experiment from the extraction zero-knowledge, and cannot
prove any false statement from the simulation-extractability. We use (0, n+1

2 ,
n+1

2 , n)-
SENIZK (i.e., a majority of reference strings are honest). Such a SENIZK is given in
[21] for any NP-language. The SENIZK not only allowed us to prove security, but al-
lows us to do so without CCA-lPKE for the responder. A semantically secure labelled
public-key encryption (CPA-lPKE) is sufficient.

A remaining problem is how to deal with the SPHF. In the GK scheme, since the
SPHF is parameterized by a public-key in the CRS, the public-key is put in the CRS.
In our scheme, the SPHF is parameterized by an ad-hoc public-key; thus, we can-
not put it in some reference string. This problem is easily resolved. We can simply
put the specification of the SPHF in the system-wide parameter without parameter-
izing by a public-key because the hash key sampling algorithm does not depend on
the public-key and other functions are deterministic. The responder can compute pro-
jection key hp with an ad-hoc public-key and a ciphertext from the peer. Here, we
show an example of the SPHF for the ElGamal encryption: pk = (g, h) is the public-
key, r is the randomness to encrypt message m, and CT = (u = gr, e = mhr) is the
ciphertext. The hash key generation algorithm HKGen(Zp) chooses hash key hk =
(a1, a2) from Z

2
p, and the projection key generation algorithm HPGen(pk, hk) gener-

ates projection key hp as ga1ha2 . The hash key-based hash value derivation algorithm
HashHK(CT,m, hk) computes the hash value as ua1 (e/m)a2 , and the projection key-
based hash value derivation algorithm HashHP(r, hp) computes the hash value as hpr.
In this case, the specification of the SPHF without parameterizing by a public-key is set
as (HKGen(Zp),HPGen(·, ·),HashHK(·, ·, ·),HashHP(·, ·)). Thus, it can be put in the
system-wide parameter without depending on ad-hoc public-keys.

3.3 Our Protocol

A high-level overview of the protocol appears in Fig. 2. Our scheme is formally de-
scribed as follows:

4 It is unnecessary to keep the secret-key.

Password-Based Authenticated Key Exchange without Centralized Trusted Setup 29

Common private input : password pw = pwAB
Multi-string : ρ := (ρ1, . . . , ρn)

Party A (Initiator) Party B (Responder)

r′ ← {0, 1}∗
(pk′ , sk′)← Gen′(1κ)
CT ′ = Enc′pk′ (pw; r′)

π′ ← P(ρ, (pk′ ,CT ′), (pw, r′))
trans1 := A||pk′ ||CT ′||π′
−−−−−−−−−−−−−−−−−−−−−−−→

if V(ρ, (pk′,CT ′), π′) = 0, abort
hk ← KS
hp = F(hk, pk′ ,CT ′)
rB||τB ||S KB = Hhk(pk′ ,CT ′, pw)
(pk, sk) ← Gen(1κ)
label := trans1 ||B||hp||pk
CT = Enclabel

pk (pw; rB)
trans2 := B||hp||pk||CT ||π
←−−−−−−−−−−−−−−−−−−−−−−−−− π← P(ρ, (pk,CT, label), (pw, rB))

label := trans1 ||B||hp||pk
if V(ρ, (pk,CT, label), π) = 0, abort
rA ||τA ||S KA = hhp(pk′ ,CT ′, pw, r′)

ĈT = Enclabel
pk (pw; rA)

if ĈT � CT , abort
trans3 := A||τA−−−−−−−−−−−−−−→

if τA � τB, abort
output S KA output S KB

Fig. 2. A high-level overview of our basic PAKE scheme

Public Parameters. κ is a security parameter. Let Σ = (Gen,Enc,Dec) be a CPA-lPKE
where the message space MS = D, PKS is the public-key space and CTS is the cipher-
text space, and Σ′ = (Gen′,Enc′,Dec′) be a CPA-PKE with an associated SPHF where
the message space MS ′ = D, PKS ′ is the public-key space and CTS ′ is the ciphertext
space. We define sets X, {Lm}m∈MS and L for Σ′. Let X be a set {(pk′,CT ′,m)|pk′ ∈
PKS ′; CT ′ ∈ CTS ′; m ∈ MS ′}, Lm be a set {(pk′,CT ′,m)|(pk′, sk′) ← Gen′(1κ);
Dec′sk′(CT ′) = m} and L be a set ∪m∈MS Lm. We use a family of SPHFsH = {Hhk} such
that for every hk in the key space KS , Hhk : X → {0, 1}3κ and F : KS ×PKS ′ ×CTS ′ →
PS where PS is the projection key space. Each authority generates reference string
ρi ← K(1κ) for SENIZK. The multi-strings is ρ := (ρ1, . . . , ρn) where ρi is generated by
i-th authority.

Protocol Execution. The initiator A generates a randomness r′ ∈ {0, 1}∗ and a public-
key (pk′, sk′) ← Gen′(1κ), and computes the ciphertext CT ′ = Enc′pk′ (pw; r′) with the
password pw. Define a language L′ZK as L′ZK := {(pk′,CT ′) : ∃pw and r′ s.t. CT ′ =
Enc′pk′ (pw; r′)}. A produces a SENIZK proof π′ that (pk′,CT ′) ∈ L′ZK , with the multi-
string ρ. A sends trans1 := A||pk′||CT ′||π′ to the responder B. Upon receiving A||pk′||CT ′

||π′, B verifies π′ with pk′, CT ′ and ρ. If π′ is invalid, B aborts. Otherwise, B gen-
erates a hash key hk ← KS and a public-key (pk, sk) ← Gen(1κ), derives the pro-
jection key hp = F(hk, pk′,CT ′) and rB||τB||S KB = Hhk(pk′,CT ′, pw), sets label :=
trans1||B||hp||pk, and computes the ciphertext CT = Enclabel

pk (pw; rB). Define a lan-

guage LZK as LZK := {(pk,CT, label) : ∃pw and rB s.t. CT = Enclabel
pk (pw; rB)}. B

produces a SENIZK proof π that (pk,CT, label) ∈ LZK , with ρ. B sends trans2 :=

30 K. Yoneyama

B||hp||pk||CT ||π to A. Upon receiving B||hp||pk||CT ||π, A sets label := trans1||B||hp||pk,
and verifies π with pk,CT, label and ρ. If π is invalid, A aborts. Otherwise, A derives
rA||τA||S KA = hhp(pk′,CT ′, pw, r′), computes the ciphertext ĈT = Enclabel

pk (pw; rA), and

checks whether ĈT � CT . If so, A aborts. Otherwise, A sends τA to B and outputs
the session key S KA. Upon receiving τA, B checks whether τA � τB. If so, B aborts.
Otherwise, B outputs the session key S KB.

Correctness. When both parties A and B have the common password, the session
keys that they compute are the same. This is because the same hash value is obtained
when using the hash key hk and when using the projection key hp. This implies that the
correctness property holds for the protocol.

Concrete Instantiation. Σ and Σ′ can be instantiated by the ElGamal encryption
because it can admit a smooth projective hash function. A concrete SENIZK proof
in the MS model is introduced in [21]. Specifically, the SENIZK proof is constructed
from a CCA-PKE, a zap, and a strong one-time signature. We have efficient CCA-
PKE schemes such as the Cramer-Shoup encryption [26]. Zaps are public-coin witness-
indistinguishable proofs. While the original SENIZK proof uses a two-move zap [27],
we can replace it with an efficient non-interactive zap [28,29] for circuit SAT based on
the decisional linear assumption. We can also use an efficient strong one-time signature
scheme [30] based on the discrete-log assumption.

3.4 Security

Theorem 1. Assume that Σ′ is a CPA-PKE with an associated SPHF, Σ is a CPA-lPKE,
and (K,P,V) is (0, n+1

2 ,
n+1

2 , n)-simulation-extractable and (0, n+1
2 ,

n+1
2 , n)-extraction

zero-knowledge. Then, our scheme in Fig. 2 is (n+1
2)-secure in the MS model.

The security proof of our scheme follows the manner of the GK scheme. We proceed
to prove the security through a series of hybrid experiment.

Due to space limitation, the proof of Theorem 1 is shown in the full paper. We show
a sketch of the proof.

First, we modify the generation of the reference string ρi by each honest authority so
that ρi is generated with trapdoor information by the algorithm S E in the definition of
multi-string SENIZK proof. Since honest authorities are majority, this change is indis-
tinguishable from simulation-extractability of SENIZK. Trapdoor information helps to
extract the passwords from adversary-generated messages, and the simulator can check
the validity of adversary-generated messages in later.

Next, we modify the output of Execute oracle so that all proofs π′ and pi are changed
to simulated proofs by the algorithm S E in the definition of multi-string SENIZK
proof, ciphertexts CT ′ and CT are changed to encryptions of a fake password, and
Hhk(pk′,CT ′, pw) is changed to random. Since honest authorities are majority, these
changes are indistinguishable from extraction zero-knowledge of SENIZK, CPA secu-
rity and smoothness of SPHF, respectively. Then, the session key becomes truly random

Password-Based Authenticated Key Exchange without Centralized Trusted Setup 31

and all transcripts are independent from the real passwords for the output of Execute
oracle.

Finally, we modify the output of Send oracle similarly as the case of Execute oracle.
We note that the simulator must check the validity of adversary-generated messages by
verifying that the correct password is used. However, the simulator does not know the
secret key of Σ and Σ′ because it is not contained in reference strings. It can be solved by
using trapdoor information of reference strings of honest authorities. The simulator can
extract a password from the adversary-generated proof. and can check the validity of
it. This part is the distinguished point from existing proof scenarios in the CRS model.
From extraction zero-knowledge of SENIZK, CPA security and smoothness of SPHF,
we can change the output of Send oracle so that the session key becomes truly random
and all transcripts are independent from the real passwords.

4 Other Constructions

In this section, we briefly discuss if our technique is applicable to construct other PAKE
schemes that have different benefit than our basic scheme in Section 3.3.

4.1 Lattice-Based Three-Move PAKE in Multi-string Model

Katz and Vaikuntanathan [11] propose a lattice-based three-move PAKE scheme (the
KV1 scheme) in the CRS model. Because perfect correctness is hard to achieve in
lattice-based cryptosystems, the KV1 scheme uses the notion of approximate SPHF
(i.e., correctness is guaranteed approximately).

We can apply our technique (i.e., generating ad-hoc public-keys and adding the
SENIZK proof) to the KV1 scheme. Fig. 3 shows a high-level overview of the lattice-
based protocol. We use a family of ε-approximate SPHFsH = {Hhk} such that for every
hk in the key space KS , Hhk : X → {0, 1}� and F : KS ×PKS ×CTS ×LS → PS , where
KS is the hash key space, PTS is the public-key space, CTS is the ciphertext space, LS
is the label space and PS is the projection key space. Let ECC : {0, 1}κ → {0, 1}� be an
error-correcting code correcting a 2ε-fraction of errors. Let (Gen,Enc,Dec) be a CPA-
lPKE with an associated ε-approximate SPHF. Let (SigGen,Sign,Ver) be a one-time
signature scheme. The SENIZK proof (K,P,V) is for the same language as Section 3.3.
Please see [11] for definitions of ε-approximate SPHFs and error-correcting codes.

The security proof is similar to the proof in [11]. The main difference is the way to
extract the password from the ciphertext that is generated by an adversary. As the proof
of Theorem 1, we use the power of simulation-extractability of the SENIZK proof.

For an instantiation, we use the same ingredients as the KV1 scheme except the
SENIZK proof. As a building block of the SENIZK proof, while we can use an effi-
cient non-interactive zap [28,29] in the instantiation of our scheme in Section 3.3, it
is not suitable for the lattice-based protocol because of the assumption. Thus, we use
a two-move zap [27] that is constructed from a general NIZK proof. Therefore, our
lattice-based scheme is less efficient than our basic scheme; but, it has an advantage in
immunity against quantum attacks.

32 K. Yoneyama

Common private input : password pw = pwAB
Multi-string : ρ := (ρ1 , . . . , ρn)

Party A (Initiator) Party B (Responder)

(vk, ssk) ← SigGen(1κ)
r′ ← {0, 1}∗

(pk′, sk′)← Gen(1κ)
label′ := A||B||vk

CT ′ = Enclabel′
pk′ (pw; r′)

π′ ← P(ρ, (pk′,CT ′, label′), (pw, r′))
A||pk′||CT ′||vk||π′
−−−−−−−−−−−−−−−−−→

label′ := A||B||vk
if V(ρ, (pk′,CT ′, label′), π′) = 0, abort
hk ← KS
hp = F(hk, pk′ ,CT ′, label′)
(pk, sk) ← Gen(1κ)
label := ε
r ← {0, 1}∗
CT = Enclabel

pk (pw; r)
B||hp||pk||CT ||π
←−−−−−−−−−−−−−−− π← P(ρ, (pk,CT, label), (pw, r))

label := ε
if V(ρ, (pk,CT, label), π) = 0, abort

hk′ ← KS
hp′ = F(hk′ , pk,CT , label)

tk′ = Hhk′ (pk, label,CT, pw)·
hhp(pk′, label′,CT ′, pw, r′)

S KA ← {0, 1}κ
c := ECC(S KA)
Δ := tk′ ⊕ c

σ = Signssk(pk′,CT ′, pk,CT, hp′, hp)
A||hp′||Δ||σ
−−−−−−−−−−−→

if Vervk((pk′,CT ′, pk,CT, hp′, hp), σ) = 0,
abort
tk = hhp′ (pk, label,CT, pw, r)·

Hhk(pk′, label′,CT ′, pw)
S KB = ECC−1(tk ⊕ Δ)

output S KA output S KB

Fig. 3. A high-level overview of the lattice-based PAKE scheme

4.2 Universally Composable Three-Move PAKE in Multi-string Model

Katz and Vaikuntanathan [13] propose a UC one-round PAKE scheme (the KV2 scheme)
in the CRS model. The KV2 scheme achieves the UC security by adding a simulation-
sound NIZK (SSNIZK) proof that proves that 1) there exists a hash key which is the
plaintext of a ciphertext, and 2) a projection key is generated from the hash key.

We also can apply our technique to the KV2 scheme. Fig. 4 shows a high-level
overview of the UC protocol. We use the family of SPHFs H = {Hhk} that is con-
structed in [13]. The difference between SPHFs in Section 3.3 and in [13] is that the
projection key is generated without inputting the ciphertext in the latter SPHFs (i.e.,
hp = F(hk, pk)).5 Let (Gen1,Enc1,Dec1) be a CCA-PKE. Let (Gen2,Enc2,Dec2)
be a CPA-lPKE with an associated SPHF. The SENIZK proof (K,P,V) is for the same
language as Section 3.3. Also, we use a SSNIZK proof (K′,P′,V′) for the following

5 The SPHF based on the ElGamal encryption in [12] indeed satisfies the definition in [13].
Thus, we use the same SPHFs as Section 3.3.

Password-Based Authenticated Key Exchange without Centralized Trusted Setup 33

Common private input : password pw = pwAB
Multi-string : ρ := (ρ1, . . . , ρn) and ρ′ := (ρ′1, . . . , ρ

′
n)

Party A (Initiator) Party B (Responder)

(pk′1 , sk′1)← Gen1(1κ)

(pk′2 , sk′2)← Gen2(1κ)
A||pk′1 ||pk′2−−−−−−−−−−→

(pk1, sk1)← Gen1(1κ)
(pk2, sk2)← Gen2(1κ)
r1, r2 ← {0, 1}∗
hk ← KS
hp = F(hk, pk′2)
CT1 = Enc1pk1 (hk; r1)
π1 ← P′(ρ′, (pk1, hp,CT1), (hk, r1))
label := ssid||B||A||pk1||pk2 ||hp||CT1 ||π1

CT2 = Enc2label
pk2

(pw; r2)
B||pk1 ||pk2 ||CT1 ||CT2 ||hp||π1 ||π2←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− π2 ← P(ρ, (pk2,CT2 , label), (pw, r2))

if V′(ρ′, (pk1 , hp,CT1), π1) = 0, abort
label := ssid||B||A||pk1||pk2 ||hp||CT1 ||π1
if V(ρ, (pk2 ,CT2 , label), π2) = 0, abort

r′1, r
′
2 ← {0, 1}

∗

hk′ ← KS
hp′ = F(hk′ , pk2)

CT ′1 = Enc1pk′1
(hk′ ; r′1)

π′1 ← P′(ρ′, (pk′1 , hp′,CT ′1), (hk′, r′1))
label′ := ssid||A||B||pk′1||pk′2 ||hp′ ||CT ′1 ||π

′
1

CT ′2 = Enc2label′

pk′2
(pw; r′2)

π′2 ← P(ρ, (pk′2,CT ′2 , label′), (pw, r′2))
A||CT ′1 ||CT ′2 ||hp′ ||π′1 ||π

′
2−−−−−−−−−−−−−−−−−−−−−−→

if V′(ρ′, (pk′1, hp′,CT ′1), π′1) = 0, abort
label′ := ssid||A||B||pk′1||pk′2 ||hp′ ||CT ′1 ||π

′
1

if V(ρ, (pk′2,CT ′2 , label′), π′2) = 0, abort
S KA = Hhk′ (pk2 , label,CT2 , pw) S KB = hhp′ (pk2, label,CT2 , pw, r2)

·hhp(pk′2, label′,CT ′2 , pw, r′2) ·Hhk(pk′2 , label′,CT ′2 , pw)
output S KA output S KB

Fig. 4. A high-level overview of the UC PAKE scheme

language: {(pk, hp,CT) : ∃hk ∈ KS and r s.t. CT = Enc1pk(hk; r) and hp = F(hk, pk)}.
where the corresponding multi string is ρ′ := (ρ′1, . . . , ρ

′
n). Because SENIZK implies

SSNIZK, we can use the SENIZK proof as the SSNIZK proof in the MS model. Please
see [31,32,13] for the UC framework and the definition of the simulation-sound NIZK.

The security proof is similar to the proof in [13]. The simulator extracts the password
from the ciphertext that is generated by an adversary by simulation-extractability of the
SENIZK proof.

The KV2 scheme is one-round protocol, but our UC PAKE scheme needs three-
move. We add the first move in order to send initiator’s public-keys. The reason we
must do that is that the projection key is generated from the hash key and the public-
key. In the CRS model, the public-key is put as the CRS, and each party can generate
the projection key without interacting with the peer. However, in the MS model, the
public-key cannot be put as reference strings because of the discussion in Section 3.2.
Hence, we add an additional move to send the public-key.

4.3 Is One-Round PAKE in Multi-string Model Possible?

All our constructions are three-move protocols. Some existing PAKE schemes are one-
round such as a scheme in [13] which is secure in the game-based model (i.e., the BPR

34 K. Yoneyama

model [2]). One may wonder why we do not construct a one-round PAKE scheme.
Here, we show the reason as follows:

In SPHF-based PAKE, each party must send a projection key without receiving any
message from the peer in one-round protocols. However, our methodology requires that
public-keys are not put as a CRS but are sent in messages, and the generation of a
projection key depends on the public-key of the peer. Therefore, we need an additional
message to send the public-key of the initiator. It is the essential reason why our PAKE
scheme is not achieved in one-round. All known SPHF-based constructions fall into this
problem by adapting our methodology.

The last resort is to use another methodology than the SPHF-based. For example,
Canetti et al. [15] proposed a secure PAKE scheme in the CRS model based on an
oblivious transfer (OT). Unfortunately, their scheme is not achieved in one-round be-
cause it follows the design principle of the GK scheme.

Therefore, a secure one-round PAKE in the MS model is an open problem.

4.4 Semi-Generic Transformation from CRS Model

Our technique is able to be interpreted as a semi-generic transformation from secure
PAKE scheme to remove the centralized CRS. Our scheme indeed attaches public-keys
to messages, and the SENIZK to prove possession of a password to the GK scheme.
However, the technique cannot be applied to any secure PAKE in the black-box manner
because it heavily depends on the structure of the underlying scheme. In the GK scheme,
a password is encrypted (or committed) by PKE schemes (or a commitment scheme)
and the initiator and the responder exchange ciphertexts (or commitments). This struc-
ture allows us to prove possession of a password under self-generated public-keys with
the SENIZK.

On the other hand, it is applicable to schemes having the same structure like the
Gennaro-Lindell framework [7,9], the lattice-based PAKE [11], and the UC PAKE[13]
as in 4.1 and 4.2. The common feature of these protocols is that the CRS just contains
public-keys to encrypt passwords (and some public information) and the SENIZK prop-
erty is sufficient to replace NIZKs used in protocols (if any). In this case, we can give
the semi-generic transformation from a secure PAKE scheme π is as follows:

1. If π includes NIZKs in the CRS model, the CRS is replaced with the MS for the
SENIZK.

2. The initiator I and responder R in π generate public-keys (or commitment CRSs)
which are used to encrypt (or commit) the shared password. They exchange their
public-keys.

3. When I or R computes a ciphertext or a commitment of the password, the party also
generates a proof that public-keys are correctly generated under the password with
the SENIZK. Also, if generations of NIZK proofs are contained, these proofs are
replaced with the SENIZK.

4. In other parts, I and R execute π.

Though this transformation needs extra two moves for exchanging public-keys, we
can optimize the number of moves depending on the structure of the underlying proto-
col. For example, our constructions in Section 3.3 and 4.1 do not need any extra move,
but the construction in Section 4.2 needs an additional move.

Password-Based Authenticated Key Exchange without Centralized Trusted Setup 35

5 Concluding Remark

We introduced a first three-move PAKE scheme which is secure without any centralized
trusted setup (i.e., in the MS model).

Our idea to construct the PAKE scheme in the MS model is not trivially applicable to
a construction in the plain model. The proof in the MS model depends on the fact that
there are honest trusted authorities. Thus, we can use the SENIZK proof. Conversely, it
is impossible to construct NIZK proofs for non-trivial languages in the plain model [33].
A possible way is to use some (concurrently secure) interactive zero-knowledge proof
protocol in the plain model instead of using the SENIZK proof. However, such a proto-
col needs a large number of rounds.

Therefore, a secure constant round PAKE scheme in the plain model is still hard and
an open problem.

References

1. Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols Secure
Against Dictionary Attacks. In: IEEE S&P, pp. 72–84 (1992)

2. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure against Dic-
tionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155.
Springer, Heidelberg (2000)

3. Boyko, V., MacKenzie, P.D., Patel, S.: Provably Secure Password-Authenticated Key Ex-
change Using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 156–171. Springer, Heidelberg (2000)

4. MacKenzie, P.D., Patel, S., Swaminathan, R.: Password-Authenticated Key Exchange Based
on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 599–613. Springer,
Heidelberg (2000)

5. Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange Us-
ing Human-Memorable Passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

6. Katz, J., Ostrovsky, R., Yung, M.: Forward Secrecy in Password-Only Key Exchange Proto-
cols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 29–44.
Springer, Heidelberg (2003)

7. Gennaro, R., Lindell, Y.: A Framework for Password-Based Authenticated Key Exchange.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 408–432. Springer, Heidelberg
(2003)

8. Jiang, S., Gong, G.: Password Based Key Exchange with Mutual Authentication. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279. Springer, Heidelberg
(2004)

9. Gennaro, R.: Faster and Shorter Password-Authenticated Key Exchange. In: Canetti, R. (ed.)
TCC 2008. LNCS, vol. 4948, pp. 589–606. Springer, Heidelberg (2008)

10. Katz, J., Ostrovsky, R., Yung, M.: Efficient and secure authenticated key exchange using
weak passwords. J. ACM 57(1), 1–39 (2009)

11. Katz, J., Vaikuntanathan, V.: Smooth Projective Hashing and Password-Based Authenticated
Key Exchange from Lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 636–652. Springer, Heidelberg (2009)

12. Groce, A., Katz, J.: A new framework for efficient password-based authenticated key ex-
change. In: ACM Conference on Computer and Communications Security 2010, pp. 516–525
(2010)

36 K. Yoneyama

13. Katz, J., Vaikuntanathan, V.: Round-Optimal Password-Based Authenticated Key Exchange.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer, Heidelberg (2011)

14. Jutla, C.S., Roy, A.: Relatively-Sound NIZKs and Password-Based Key-Exchange. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 485–503.
Springer, Heidelberg (2012)

15. Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient Password Authen-
ticated Key Exchange via Oblivious Transfer. In: Fischlin, M., Buchmann, J., Manulis, M.
(eds.) PKC 2012. LNCS, vol. 7293, pp. 449–466. Springer, Heidelberg (2012)

16. Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient UC-
Secure Authenticated Key-Exchange for Algebraic Languages. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 272–291. Springer, Heidelberg (2013)

17. Goldreich, O., Lindell, Y.: Session-Key Generation Using Human Passwords Only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg (2001)

18. Nguyen, M.H., Vadhan, S.P.: Simpler Session-Key Generation from Short Random Passwords.
In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 428–445. Springer, Heidelberg (2004)

19. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure Computation Without Au-
thentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377. Springer,
Heidelberg (2005)

20. Goyal, V., Jain, A., Ostrovsky, R.: Password-Authenticated Session-Key Generation on the
Internet in the Plain Model. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 277–294.
Springer, Heidelberg (2010)

21. Groth, J., Ostrovsky, R.: Cryptography in the Multi-string Model. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007)

22. Shoup, V. (ed.): Information technology — Security techniques — Encryption algorithms —
Part 2: Asymmetric ciphers. International Organization for Standardization, ISO/IEC 18033–2
(2006)

23. Gennaro, R., Lindell, Y.: A Framework for Password-Based Authenticated Key Exchange.
ACM Trans. Inf. Syst. Secur. 9(2), 181–234 (2006)

24. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption Schemes Se-
cure against Adaptive Chosen Ciphertext Attack. SIAM Journal on Computing 33, 167–226
(2004)

25. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
26. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Adap-

tive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 13–25. Springer, Heidelberg (1998)

27. Dwork, C., Naor, M.: Zaps and Their Applications. In: FOCS 2000, pp. 283–293 (2000)
28. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and New Techniques for NIZK. In:

Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006)
29. Groth, J., Ostrovsky, R., Sahai, A.: New Techniques for Noninteractive Zero-Knowledge. J.

ACM 59(3), 11 (2012)
30. Mohassel, P.: One-Time Signatures and Chameleon Hash Functions. In: Biryukov, A., Gong,

G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer, Heidelberg
(2011)

31. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols. In: Cryptology ePrint Archive: 2000/067 (2005),
http://eprint.iacr.org/2000/067/

32. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally Composable
Password-Based Key Exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 404–421. Springer, Heidelberg (2005)

33. Goldreich, O., Oren, Y.: Definitions and Properties of Zero-Knowledge Proof Systems. J.
Cryptology 7(1), 1–32 (1994)

http://eprint.iacr.org/2000/067/

A Linear Algebra Attack to Group-Ring-Based

Key Exchange Protocols

M. Kreuzer2, A.D. Myasnikov1, and A. Ushakov1,�

1 Stevens Institute of Technology, Hoboken, NJ, USA
amyasnik,aushakov@stevens.edu
2 University of Passau, Germany
martin.kreuzer@uni-passau.de

Abstract. In this paper we analyze the Habeeb-Kahrobaei-Koupparis-
Shpilrain (HKKS) key exchange protocol which uses semidirect products
of groups as a platform. We show that the particular instance of the pro-
tocol suggested in their paper can be broken via a simple linear algebra
attack.

Keywords: Group-based cryptography, semidirect product, group ring.
Subject Classifications: 94A60, 68W30

1 Introduction

In this paper we study a key-exchange protocol proposed in [1]. The general
protocol uses semidirect products of (semi)groups as a platform. One of its spe-
cial cases is the standard Diffie-Hellman protocol based on cyclic groups. The
authors of [1] conjecture that, when the protocol is used with non-commutative
(semi)groups, it acquires several useful features. They suggest the extension of
a particular non-commutative semigroup of matrices over a certain finite group
ring by a conjugation automorphism as a suitable platform. Our main result is
that this particular instance of the protocol can be broken using a linear algebra
attack.

Before going into details we would like to mention that the semigroup of ma-
trices over a finite group ring has already been used in a cryptographic context,
namely in [3] and in [2]. (The former protocol was analyzed in [5].) For a general
introduction to non-commutative cryptography we refer to [4].

2 Description of the HKKS Key Exchange Protocol

Let G and H be groups, let Aut(G) be the group of automorphisms of G, and
let ρ : H → Aut(G) be a group homomorphism. The semidirect product of G

� The work of the second and third author was partially supported by NSF grant
DMS-1318716.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 37–43, 2014.
c© Springer International Publishing Switzerland 2014

38 M. Kreuzer, A.D. Myasnikov, and A. Ushakov

and H with respect to ρ is the set of pairs {(g, h) | g ∈ G, h ∈ H} equipped
with the binary operation given by

(g, h) · (g′, h′) = (gρ(h
′)g′, h ◦ h′).

for g ∈ G and h ∈ H . It is denoted by G �ρ H . Here gρ(h
′) denotes the im-

age of g under the automorphism ρ(h′), and h ◦ h′ denotes a composition of
automorphisms with h acting first.

Some specific semidirect products can be constructed as follows. First choose
your favorite group G. Then let H = Aut(G) and ρ = idG. In which this case
the semidirect product G�ρH is called the holomorph of G. More generally, the
group H can be chosen as a subgroup of Aut(G). Using this construction, the
authors of [1] propose the following key exchange protocol.

Algorithm 1. HKKS Key Exchange Protocol

Initial Setup: Fix the platform group G, an element g ∈ G, and ϕ ∈ Aut(G).
All this information is made public.

Alice’s Private Key: A randomly chosen m ∈ N.
Bob’s Private Key: A randomly chosen n ∈ N.
Alice’s Public Key: Alice computes (g, ϕ)m = (ϕm−1(g) . . . ϕ2(g)ϕ(g)g, ϕm)

and publishes the first component a = ϕm−1(g) . . . ϕ2(g)ϕ(g)g of the pair.
Bob’s Public Key: Bob computes (g, ϕ)n = (ϕn−1(g) . . . ϕ2(g)ϕ(g)g, ϕn) and

publishes the first component b = ϕn−1(g) . . . ϕ2(g)ϕ(g)g of the pair.
Alice’s Shared Key: Alice computes the key KA = ϕm(b)a taking the first

component of the product (b, ϕn) · (a, ϕm) = (ϕm(b)a, ϕnϕm). (She cannot
compute the second component since she does not know ϕn.)

Bob’s Shared Key: Bob computes the key KB = ϕn(a)b taking the first com-
ponent of the product (a, ϕm) · (b, ϕn) = (ϕn(a)b, ϕmϕn). (He cannot com-
pute the second component since he does not know ϕm.)

Note that KA = KB since (b, ϕn) · (a, ϕm) = (a, ϕm) · (b, ϕn) = (g, ϕ)n. The
general protocol described above can be used with any non-abelian group G and
an inner automorphism ϕ (conjugation by a fixed non-central element of G).
Furthermore, since all formulas used in the description of this protocol hold if G
is a semigroup and ϕ is a semigroup automorphism of G, the protocol can be
used with semigroups. The private keys m,n can be chosen smaller than the
order of (g, φ). For a finite group G, this can be bounded by (#G) · (#Aut(G)).
In an actual implementation, the elements a and b would not necessarily be
published, but sent to the other party. Hence our security analysis is based on
the assumption that an adversary is able to intercept this transmission without
being noticed.

A Linear Algebra Attack to Group-Ring-Based Key Exchange Protocols 39

3 Proposed Parameters for the HKKS Key Exchange
Protocol

In [1], the authors propose and extensively analyze the following specific instance
of their key exchange protocol.

Consider the alternating group A5, i.e. the group of even permutations on five
symbols. It is a simple group containing 60 elements. We denote its elements by
A5 = {σ1, . . . , σ60}. Let F7 = Z/7Z be the field with seven elements. Then the
group-ring F7[A5] is the set of formal linear combinations

A =
60∑
i=1

aiσi,

with ai ∈ F7. The addition and multiplication in F7[A5] are defined in the natural
way by (

60∑
i=1

aiσi

)
+

(
60∑
i=1

biσi

)
=

60∑
i=1

(ai + bi)σi

and (
60∑
i=1

aiσi

)
·
(

60∑
i=1

biσi

)
=

60∑
i=1

⎛⎝ ∑
σjσk=σi

ajbk

⎞⎠ σi.

By G we denote the monoid of all 3× 3 matrices over the ring F7[A5] equipped
with multiplication, i.e., we let G = Mat3(F7[A5]). As usual, by GL3(F7[A5]) we
denote the group of invertible 3× 3 matrices over the ring F7[A5].

Furthermore, we choose an inner automorphism of G, i.e., a map ϕ = ϕh :
G→ G defined by

g �→ h−1gh,

where h is a fixed matrix from GL3(F7[A5]). Clearly, we have (ϕh)
m = ϕhm and

ϕm−1(g) . . . ϕ2(g)ϕ(g)g = h−m+1ghm−1 . . . h−2gh2 · h−1gh1 · g = h−m(hg)m.

Thus we obtain the following specific instance of the HKKS key exchange pro-
tocol.

Algorithm 2. HKKS Key Exchange Protocol Using Mat3(F7(A5))

Initial Setup: Fix matrices g ∈ Mat3(F7[A5]) and h ∈ GL3(F7[A5]). They are
made public.

Alice’s Private Key: A randomly chosen m ∈ N.
Bob’s Private Key: A randomly chosen n ∈ N.
Alice’s Public Key: Alice computes a = h−m(hg)m and makes a public.
Bob’s Public Key: Bob computes b = h−n(hg)n and makes b public.
Shared Key: KA = KB = h−n−m(hg)n+m.

40 M. Kreuzer, A.D. Myasnikov, and A. Ushakov

The security of this protocol is based on the assumption that, given the ma-
trices g, h, a = h−m(hg)m, and b = h−n(hg)n, it is hard to compute the matrix
h−n−m(hg)n+m. This assumption is similar to the one considered by Stickel in
[8] and cryptoanalyzed in [7].

4 Embedding Matrices over Group Rings

In this section we present an embedding of Mat3(F7[A5]) into Mat180(F7). More
generally, fix a finite group G = {g1, . . . , gk}, where k = #G, and a commutative
ring R. We want to construct an embedding of Matn(R[G]) into Matnk(R).

Let a, b ∈ R[G] and c = a · b. We write

a =
∑
g∈G

ag · g, b =
∑
g∈G

bg · g, and c =
∑
g∈G

cg · g,

with ag, bg, cg ∈ R. Next we define a matrix Ma ∈ Matk(R) and two vectors
vb, vc ∈ Rk as follows:

Ma =

⎛⎝ ag1g−1
1

. . . ag1g−1
k

. . .
agkg−1

1
. . . agkg−1

k

⎞⎠ and vb =

⎛⎝ bg1
. . .
bgk

⎞⎠ and va =

⎛⎝ cg1
. . .
cgk

⎞⎠ .

Then it is easy to see that

Ma · vb = vc. (1)

In this way, the left multiplication in R[G] by a corresponds to a linear trans-
formation of Rk and can be naturally represented by a matrix in Matk(R).

Proposition 1. For a, b ∈ R[G], we have Ma·b = Ma · Mb. Furthermore, the
map Φ : R[G]→ Matk(R) given by a �→ Ma is a ring monomorphism.

Proof. Since we obviously have Ma+b = Ma + Mb, it suffices to prove that
Ma·b = Ma ·Mb. For i, j ∈ {1, . . . , n}, the entry in position (i, j) of the matrix
Ma·b is

(ab)gig−1
j

=
∑

gh=gig
−1
j

agbh.

On the other hand, the entry in position (i, j) of the matrix Ma ·Mb is

k∑
m=1

agig−1
m

bgmg−1
j

.

Since both elements agree, we have Ma·b = Ma ·Mb. Thus the map a �→ Ma is a
ring homomorphism. Finally, we note that we can easily reconstruct a from Ma.
Consequently, the map a �→ Ma is a monomorphism. ��

A Linear Algebra Attack to Group-Ring-Based Key Exchange Protocols 41

Next, we recall that any matrix A = (aij) ∈ Matn(R[G]) defines a linear
transformation of (R[G])n in the usual way:⎛⎜⎝ a11 . . . a1n

...
...

an1 . . . ann

⎞⎟⎠ ·

⎛⎜⎝ b1
...
bn

⎞⎟⎠ =

⎛⎜⎝
∑

i a1ibi
...∑

i anibi

⎞⎟⎠ .

Our goal is now to extend the above embedding of R[G] to vectors and ma-
trices over R[G]. For A = (aij) ∈Matn(R[G]), we define a block matrix A∗ and
for a column vector b = (b1, . . . , bn) ∈ (R[G])n, we define a vector b∗ ∈ Rkn by

A∗ =

⎛⎜⎝Ma11 . . . Ma1n

...
...

Man1 . . . Mann

⎞⎟⎠ and b∗ =

⎛⎜⎝ vb1
...

vbn

⎞⎟⎠ .

Let c = A · b. Then it is straightforward to check that we have

c∗ = A∗ · b∗. (2)

Proposition 2. Let G be a finite group of order k and R a commutative ring.
Then the map ϕ : Matn(R[G]) → Matnk(R) given by A �→ A∗ is a ring mono-
morphism.

Proof. For A,B ∈ Mn(R[G]), we obviously have (A+B)∗ = A∗ +B∗. It follows
from Proposition 1 that

A∗ ·B∗ = (AB)∗.

Hence the map ϕ is a ring homomorphism. Finally, we note that ϕ is injective
because, givenA∗, one can reconstruct the matrix A from A∗, since every element
aij is repeated on the main diagonal of Maij . ��

In particular, there exists an embedding of Mat3(F7[A5]) into Mat180(F7).
The following result characterizes the behavior of invertible matrices under this
embedding.

Proposition 3. For a matrix A ∈Matn(R[G]) we have

A ∈ GLn(R[G]) ⇐⇒ ϕ(A) ∈ GLnk(R).

Proof. The implication “⇒” follows from the fact that ϕ is a ring homomor-
phism. To prove the implication“⇐”, we let ϕ(A) ∈ GLnk(R). Let D(x1, . . . , xn)
be the determinant polynomial for matrices of size n×n. Using the rule for deter-
minants of block matrices, we know that det(ϕ(A)) = det(D(Ma11 , . . . ,Mann)).
The matrix D(Ma11 , . . . ,Mann) is a polynomial expression in the matrices Maij

which represent the left multiplications by the elements aij . Since the map Φ in
Proposition 1 is a ring homomorphism, we see that the matrixD(Ma11 , . . . ,Mann)
represents the left multiplication by D(a11, . . . , ann) in R[G]. Therefore it is
invertible if and only if the element D(a11, . . . , ann) is an invertible element
of R[G]. This is equivalent to A being an invertible element of Matn(R[G]). ��

42 M. Kreuzer, A.D. Myasnikov, and A. Ushakov

5 A Linear Algebra Attack on the HKKS Key Exchange
Protocol

In this section we show that the protocol described in Algorithm 2 can be broken
using a linear algebra attack. Thus we are breaking an instance of the computa-
tional Diffie-Hellman problem in this specific setting. Our attack provides a full
session key recovery and makes only use of the public parameters.

Our first observation is that, to impersonate Alice, we do not need to compute
her secret key m. It is sufficient to find two matrices l, r ∈ G = Mat3(F7(A5))
satisfying the following system of matrix equations:⎧⎨⎩ l · h = h · l,

r · (hg) = (hg) · r,
a = lr.

(3)

Indeed, if we know l and r satisfying the equations above, then we can compute
the shared key:

l · b · r = l · h−n(hg)n · r
= h−nlr(hg)n

= h−nh−m(hg)m(hg)n = K.

Our second observation is that system (3) has at least one solution with l ∈
GL3(F7[A5]), i.e., with an invertible matrix l, namely l = h−m and r = (hg)m.

Therefore, instead of solving system (3), it suffices to solve the system⎧⎨⎩
� · h = h · �,
r · (hg) = (hg) · r,
�a = r

(4)

and to recover the matrix l from the equation � · l = 1.
Our final observation is that, using the embedding of Section 4, the system

(4) can be transformed to a system of linear equations over F7. Indeed, we can
write the matrix � in the form

� =

⎛⎜⎝
∑60

i=1 l
(1,1)
i σi

∑60
i=1 l

(1,2)
i σi

∑60
i=1 l

(1,3)
i σi∑60

i=1 l
(2,1)
i σi

∑60
i=1 l

(2,2)
i σi

∑60
i=1 l

(2,3)
i σi∑60

i=1 l
(3,1)
i σi

∑60
i=1 l

(3,2)
i σi

∑60
i=1 l

(3,3)
i σi

⎞⎟⎠
with unknown coefficients l

(j,k)
i ∈ F7. Similarly, we can write the matrix r with

unknown coefficients r
(j,k)
i ∈ F7. After performing all matrix multiplications in

(4) and applying the embedding of Section 4, we obtain a system of 1620 linear

equations in 1080 unknowns l
(j,k)
i , r

(j,k)
i over the field F7.

Thus, to break the key exchange protocol, we can proceed as follows.

(1) First we find any solution of the described linear system arising from (4) that
defines a non-singular matrix �. We know that such a solution exists, since

A Linear Algebra Attack to Group-Ring-Based Key Exchange Protocols 43

� = h−1 and r = hg solve the system. Let us check that randomly chosen
solutions of the linear system will lead to a non-singular matrix � with high
probability.
In Section 4 we showed that there exists an embedding ϕ of M3(F7[A5])
into M180(F7). By Proposition 3, the matrix � is invertible if and only if
ϕ(�) is invertible, and this is equivalent to det(ϕ(�)) �= 0. The determinant

det(ϕ(�)) is a polynomial in the unknowns l
(j,k)
i , r

(j,k)
i with coefficients from

the field F7. By the Schwartz–Zippel Lemma (see [9,6]), the probability to
randomly select a singular solution is at most 1/7. Hence a sequence of,
say 100, trials will produce a non-singular solution of System (4) with very
high probability.

(2) After having found �, the determination of l requires merely the solution of
another (smaller) linear system corresponding to l·� = I. Since � is invertible,
there is a unique solution for l.

(3) Finally, the computation of the product l · b · r = K reveals the private key.

References

1. Habeeb, M., Kahrobaei, D., Koupparis, C., Shpilrain, V.: Public key exchange us-
ing semidirect product of (semi)groups. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 475–486. Springer,
Heidelberg (2013)

2. Kahrobaei, D., Koupparis, C., Shpilrain, V.: A CCA secure cryptosystem using matri-
ces over group rings, http://www.sci.ccny.cuny.edu/~shpil/res.html (preprint)

3. Kahrobaei, D., Koupparis, C., Shpilrain, V.: Public key exchange using matrices
over group rings. Groups, Complexity, Cryptology 5, 97–115 (2013)

4. Miasnikov, A.G., Shpilrain, V., Ushakov, A.: Non-Commutative Cryptography and
Complexity of Group-Theoretic Problems. Mathematical Surveys and Monographs.
AMS (2011)

5. Myasnikov, A.D., Ushakov, A.: Quantum algorithm for discrete logarithm problem
for matrices over finite group rings, http://eprint.iacr.org/2012/574 (preprint)

6. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.
JACM 27, 701–717 (1980)

7. Shpilrain, V.: Cryptanalysis of Stickel’s key exchange scheme. In: Hirsch, E.A.,
Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010,
pp. 283–288. Springer, Heidelberg (2008)

8. Stickel, E.: A new method for exchanging secret keys. In: Proceedings of the
Third International Conference on Information Technology and Applications (ICITA
2005). Contemporary Mathematics, vol. 2, pp. 426–430. IEEE Computer Society
(2005)

9. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Sym-
bolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg
(1979)

http://www.sci.ccny.cuny.edu/~shpil/res.html
http://eprint.iacr.org/2012/574

Improved Constructions of PRFs Secure
Against Related-Key Attacks

Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

Stanford University, Stanford, California, United States of America

Abstract. Building cryptographic primitives that are secure against related-key
attacks (RKAs) is a well-studied problem by practitioners and theoreticians alike.
Practical implementations of block ciphers take into account RKA security to mit-
igate fault injection attacks. The theoretical study of RKA security was initiated
by Bellare and Kohno (Eurocrypt ’03). In Crypto 2010, Bellare and Cash intro-
duce a framework for building RKA-secure pseudorandom functions (PRFs) and
use this framework to construct RKA-secure PRFs based on the decision linear
and DDH assumptions.

We build RKA-secure PRFs by working with the Bellare-Cash framework and
the LWE- and DLIN-based PRFs recently constructed by Boneh, Lewi, Mont-
gomery, and Raghunathan (Crypto ’13). As a result, we achieve the first RKA-
secure PRFs from lattices. In addition, we note that our DLIN-based PRF (based
on multilinear maps) is the first RKA-secure PRF for affine classes under the
DLIN assumption, and the first RKA-secure PRF against a large class of polyno-
mial functions under a natural generalization of the DLIN assumption. Previously,
RKA security for higher-level primitives (such as signatures and IBEs) were stud-
ied in Bellare, Paterson, and Thomson (Asiacrypt ’12) for affine and polynomial
classes, but the question of RKA-secure PRFs for such classes remained open.

Although our RKA-secure LWE-based PRF only applies to a restricted linear
class, we show that by weakening the notion of RKA security, we can handle a
significantly larger class of affine functions. Finally, the results of Bellare, Cash,
and Miller (Asiacrypt ’11) show that all of our RKA-secure PRFs can be used as
building blocks for a wide variety of public-key primitives.

Keywords: Related-key attacks, pseudorandom functions, learning with errors.

1 Introduction

The usual notions of security for cryptographic primitives do not address the possibility
that an attacker could adversarially modify the internal state of hardware devices that
implement the primitive. Indeed, fault injection attacks (and other types of side-channel
attacks including cold-boot attacks [22], timing attacks [24, 16], and power analysis at-
tacks [27]) have shown that our traditional security definitions are not sufficient for most
practical implementations of provably secure cryptographic primitives [12, 13, 33, 6].

To deal with fault injection attacks, cryptographers have developed the notion of
related-key attack (RKA) security. RKA security definitions [9] capture the following
notion: in addition to allowing the adversary to make input queries on the primitive
for a randomly chosen secret key, the adversary is allowed to make input queries on the

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 44–61, 2014.
c© Springer International Publishing Switzerland 2014

Improved Constructions of PRFs Secure Against Related-Key Attacks 45

primitive for adversarially chosen “related-key deriving” functions φ ∈ Φ of a randomly
chosen secret key (where Φ is a function family specified in advance). This notion can be
used to show that certain classes of tampering attacks are ineffective against primitives
proven secure in the presence of RKAs.

In the past few years, there has been much work in constructing RKA-secure primi-
tives [7, 8, 3, 11, 35, 10]. In addition, RKA security is also of interest to practitioners,
particularly in the design of block ciphers [19, 23, 36]. In this work, we will focus our
attention on building one of the most basic of the RKA primitives—pseudorandom func-
tions (PRFs). Not only do PRFs find applications in many real-world implementations
where side-channel attacks are possible (and hence RKA security becomes relevant) [6],
but RKA-secure PRFs are also known to imply RKA security for a wide range of more
advanced primitives, including signatures, identity-based encryption, and both public-
key and private-key chosen ciphertext secure encryption [8].

1.1 Background and Related Work

Bellare and Cash [7] developed the first RKA-secure PRF for a non-trivial class of
functions. Instantiations prior to [7] on RKA-secure PRFs required ideal ciphers, ran-
dom oracles, or non-standard assumptions [26, 9]. In addition, Bellare and Cash de-
velop a novel framework (which we call the BC framework) for building RKA-secure
PRFs, and show how the DDH assumption implies an RKA-secure PRF for the class
Φlin = {φa : Zm

q → Zm
q | φa(k) = k+ a}a∈Zm

q
, the class of all linear transformations

to the key. Additionally, they construct an RKA-secure PRF under the DLIN assump-
tion [34, 30] for an interesting multiplicative class Φ (where related keys are derived
from scalar multiples of components of the key).

Bellare et al. [8] explore the possibilities of transferring RKA security from one
primitive to another (while preserving the class Φ of related-key deriving functions). In
particular, they show that RKA-secure PRFs can be used to construct a wide variety
of higher-level RKA-secure primitives. Thus, improvements in building RKA-secure
PRFs have wide applicability to RKA-secure public-key cryptographic primitives.

Applebaum et al. [3] show how to build RKA-secure symmetric encryption from a
variety of hardness assumptions for linear related-key attacks. Wee [35] presents chosen
ciphertext RKA-secure public-key encryption scheme constructions from the DBDH
and LWE assumptions, also for linear related-key attacks. Finally, Bellare et al. [11]
show how to build RKA-secure variants from a variety of primitives discussed in [8] for
more expressive classes Φ including affine and polynomial function families. However,
constructing RKA-secure PRFs for affine or polynomial Φ is notably left open. Con-
currently, Bellare et al. [10] build RKA-secure signature schemes against related-key
deriving functions drawn from such classes of polynomials. Their construction relies
on RKA-secure one-way functions which appear to be easier to build under standard
assumptions (as opposed to RKA-secure PRFs).

PRFs are extremely well-studied primitives and have been built from a wide vari-
ety of assumptions [29, 18, 25, 15, 5, 14]. Currently known RKA-secure PRFs only
consider the Naor-Reingold [29] and Lewko-Waters [25] PRFs. We note that PRFs con-
structed by Boneh et al. [14] satisfy an additional “key homomorphism” property which

46 Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

we find useful in constructing RKA-secure PRFs. Our constructions are based on the
PRFs considered in this work.

1.2 Our Contributions

Lattice-based RKA-secure PRFs. We present the first lattice-based PRFs secure against
related-key attacks. Our construction achieves RKA security under the standard LWE as-
sumption against the class of related-key functions Φlin∗ = {φa : Zm

q → Zm
q | φa(k) =

k + a}a∈(q
p)Z

m
q

over the key space K = Zm
q . The class (qp)Z

m
q here denotes the vec-

tors in Zm
q whose entries are all multiples of q/p (where p divides q). This linear RKA

class Φlin∗ is a restricted case of the linear class in [7, Section 6], but our construction
offers two advantages: it is the first LWE-based RKA-secure PRF (as opposed to the
DDH-based construction in [7]) and its proof does not require a simulator that runs in
time exponential in the input length.1 Ideally we would like to address RKA security
for the entire class of linear key shifts, but we only achieve a weaker notion of security.
However, these restrictions are quite plausible as they translate to an adversary that can
inject faults into the higher order bits of the key.2

RKA Security against an Affine Class of Related Keys. Next, we show how the
powerful multilinear map abstraction by Garg et al. [20] along with the DLIN assump-
tion in this abstraction can be used to construct PRFs with RKA security against a
very large and natural class of affine key transformations Φaff = {φC,B : Zm×�

p →
Zm×�
p | φC,B(K) = CK + B} over the key space K = Zm×�

p . For Φaff , we require
that C comes from a family of invertible matrices and that Φaff be claw-free—for all
φ1, φ2 ∈ Φaff and K ∈ K, φ1(K) �= φ2(K).

Both restrictions arise from a technical requirement under the BC framework. As
noted in [7, 11], some restrictions must be placed on Φaff in order for PRFs to achieve
RKA security against them (for example, Φaff cannot include constant functionsφ(K) =
B). Hence, our class Φaff is essentially the most expressive affine class of transforma-
tions for which RKA PRF security is still attainable under the Bellare-Cash framework.
In fact, there are no known PRFs which are RKA-secure against a class which does
not have the claw-free restriction. Bellare et al. [11] constructed higher-level primitives
RKA-secure against affine classes, but left open the problem of constructing such a PRF
(for which we provide an answer).

Unique-input RKA Security against an Affine Class. We note, however, that the
assumption that there exists an instantiation of the Garg et al. multilinear map abstrac-
tion [20] for which DLIN holds is a fairly strong assumption. This raises the following
question: Can we achieve a similar result for RKA PRF security against affine trans-
formations from a more standard assumption? We answer this question in the affirma-
tive by considering a slightly weaker notion of RKA security, denoted unique-input

1 We note that we require the LWE assumption to hold over superpolynomially-sized modulus
q, but this is a well-studied and widely-used assumption [31, 5, 1, 14].

2 We note that when q and p are powers of 2, Φlin∗ captures all functions that perform linear
shifts on the entries of the key that do not modify the log(q/p)-least significant bits of each
entry.

Improved Constructions of PRFs Secure Against Related-Key Attacks 47

RKA security, where adversary queries are restricted to unique inputs. We build RKA-
secure PRFs from the LWE assumption that can handle the class of transformations
Φln-aff = {φC,B : φC,B(K) = CK + B}, where C is a full-rank “low-norm” matrix
andB is an arbitrary matrix in Zm×m

q from the LWE assumption. We observe that under
this weaker notion of security, our class is significantly more expressive than our first
result from lattices because it allows for the addition of arbitrary vectors. However, this
requires us to work outside the Bellare-Cash framework. We leave it as an open prob-
lem to construct “truly” RKA-secure PRFs from LWE (or other standard assumptions,
such as DDH) for an affine class of key transformations.

Unique-input RKA Security against a Class of Polynomials. We further explore the
connection between key homomorphism and unique-input RKA security by using the
multilinear map abstraction to tackle a polynomial class of related-key functions. More
specifically, we consider the class of polynomials Φpoly(d) of bounded degree d over ma-
trices Zm×m

q and consider a natural exponent assumption over multilinear maps called
the Multilinear Diffie-Hellman Exponent (MDHE) assumption. For technical reasons,
we require that at least one of the polynomial’s non-constant coefficient matrices is full-
rank. This natural restriction simply ensures that the output of the polynomial is suffi-
ciently random given a uniformly drawn input of a special form. We note that the MDHE
assumption is a natural and fairly plausible generalization of the DLIN assumption.

Finally, we can apply the results of [8] to get Φ-RKA security for signatures, identity-
based encryption, and public and private key CCA encryption from our Φ-RKA-secure
PRFs.

1.3 Our Techniques

At a high level, we use the Bellare-Cash framework with the (LWE- and DLIN-based)
key homomorphic PRFs from Boneh et al. [14] to construct RKA-secure PRFs against
the classes Φlin∗ and Φaff . Below, we give an outline of the framework and note that key
homomorphic PRFs are a natural starting point due to the malleability requirement of
the framework.

Bellare-Cash Framework. The only known construction of RKA-secure PRFs to date
is that of Bellare and Cash [7]. In their framework, Bellare and Cash identify sufficient
properties for constructing an RKA-secure PRF. They first consider PRFs F : K×X →
Y that are key malleable—PRFs which have an efficient algorithm (denoted a transformer
T) that when given an input (φ, x) ∈ Φ × X and oracle access to F (k, ·) computes
F (φ(k), x). In addition, T must satisfy a uniformity property, namely, when F (k, ·) is
replaced with a random function f(·), the outputs of T on inputs (φ1, x1), . . . , (φQ, xQ)
for distinct x1, . . . , xQ are uniform and independently distributed. The framework also
requires the existence of a key fingerprint—an input w ∈ X such that for all k ∈ K and
distinct φ1, φ2 ∈ Φ, F (φ1(k), w) �= F (φ2(k), w).

For a class Φ with a suitable key malleable PRF, a fingerprint w, and a collision-
resistant hash function that satisfies a simple compatiblity property Hcom (see Definition
2.8), under the Bellare-Cash framework, the authors show that the PRF Frka(k, x) =
F (k,Hcom(x, F (k, w))) is Φ-RKA-secure.

48 Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

Applying the BC Framework to the DLIN-based PRF. Our starting point is the con-
struction of a DLIN-based key homomorphic PRF by Boneh et al. [14], who note that
key homomorphic PRFs are key malleable. In this work, we generalize this PRF to op-
erate with the key space K = Zm×�

p instead of Z�
p. The PRF has public parameters

A0,A1 ∈ Z�×�
q . On input x, the PRF is of the form (g�)

W for W = KP where
P ∈ Z�×�

p is the publicly computable matrix Ax�
Ax�−1

· · ·Ax1 (that only depends
on the bits of x) and g� is the generator of a group with a multilinear map. This addi-
tional algebraic structure allows us to consider the class of affine related-key deriving
functions of the form CK + B for matrices C ∈ Zm×m

q and B ∈ Zm×�
q . The pseu-

dorandomness of the PRF holds by a straightforward hybrid argument, noting that the
rows of K are now identical to independent keys of the original PRF.

Working in the exponent, given access to an oracle that computes W and an input
φC,B, it is easy to construct a transformer that computes W′ = CW + BP. From
some simple algebra, one can verify that this indeed computes the exponent W′ corre-
sponding to FDLIN(φ(K), x). In addition, as long as C is restricted to the set of full-rank
matrices, it follows that the transformer described above outputs uniform matrices if W
corresponds to the outputs of a random function. From this, the rest of the BC frame-
work can be applied and is shown in Section 3.2. We note here that the restriction that
Φ is claw-free seems to be inherently required in applying the BC framework (here, we
require it in constructing a suitable fingerprint), and we do not overcome this limitation
in our construction either.3

Applying the BC Framework to the LWE-based PRF. Recollect that Boneh et al. con-
struct an “almost” key homomorphic LWE-based PRF F which on input x is of the
form �Pk�p, where P = Ax�

Ax�−1
· · ·Ax1 . (Here, �x�p for x ∈ Zq denotes multi-

plying x by p/q and rounding the result to Zp.) Unfortunately, the “almost”-ness of
the key homomorphism disallows a direct argument of key malleability. Furthermore, a
transformer which is “almost” key malleable (in the same sense) is still insufficient for
instantiating the BC framework.

This limitation can be overcome by observing that F (k1, x) + F (k2, x) = F (k1 +
k2, x) if the entries of either k1 or k2 are all multiples of q/p. This property is sufficient
to show that F is key malleable with respect to the class Φlin∗ , where k2 is required to
be an element of (qp)Z

m
q . Additionally, this restriction is needed show that any fixed

input w ∈ {0, 1}� acts as a key fingerprint for F under the class Φlin∗ . It seems likely
that this restriction is in fact necessary for applying the BC framework, leaving this the
most expressive class achievable for the LWE-based PRF F .

One natural question to ask is whether the Banerjee et al. [5] LWE-based PRF can be
used instead of F . We note that their PRF is not key homomorphic and hence the above
approach does not apply. However, we leave open the question of achieving unique-
input RKA security for their PRF (see Section 6).

Unique-input Adversaries. As was observed by Bellare and Cash, key malleability
is intuitively useful in constructing RKA security because it allows us to simulate
F (φ(k), ·) without access to the key k but also leads to a simple related-key attack

3 However, in [8], the authors overcome this barrier and achieve RKA security for PRGs, not
PRFs, against a class Φ which is not claw-free.

Improved Constructions of PRFs Secure Against Related-Key Attacks 49

against any class that contains the functions φid (the identity function) and any φ′ �= φid.
The difficulty in achieving security lies in the adversary’s ability to request multiple
related-key deriving functions on the same input x. Given φid, to attack the pseudoran-
domness, the adversary can run the transformer for φ′ himself and compare the output
of the transformer to the output of the oracle on (φ′, x). Thus, Bellare and Cash require
additional tools.

However, the notion of key malleability suffices to show security against unique-
input adversaries, where the adversary’s queries are restricted to distinct x’s. In extend-
ing the RKA-secure LWE-based PRF to a class of affine functions, as discussed earlier
in this section, the presence of the rounding does not directly imply key malleability.
However, in Section 4, we work through the proof of security of the pseudorandom-
ness of F , along the lines of the proof in [14], to consider its RKA security against
the larger class Φln-aff . We show that the structure of the PRF allows us to simulate,
in addition to PRF queries on input x, RKA queries for functions φ ∈ Φln-aff . As in
[14], the proof works through several hybrid arguments that modify a challenger from a
truly random function to a pseudorandom function that also provides answers to RKA
queries (φ, x) ∈ Φln-aff × {0, 1}�.

The low-norm restriction on the matrix C in φC,B ∈ Φln-aff is required to ensure
that when using LWE challenges in the hybrids, the noise does not grow larger than
what the rounding allows. In the final hybrid, the adversary interacts with uniform and
independently chosen outputs corresponding to inputs xi. As long as the adversary is
restricted to unique inputs, this interaction is identical to the game where the adversary
receives uniform and independent (consistent) values on queries (φ, x). This is suffi-
cient to show RKA security. Whether we can take advantage of the algebraic structure
of other pseudorandom functions to directly prove unique-input RKA security is an
interesting question.

Unique-input Security against a Class of Polynomials. We have shown how under
the DLIN and LWE assumptions we can build RKA-secure PRFs for classes of affine
functions, but unfortunately we do know how to extend these results to handle classes
of polynomials. However, in Section 5, we show that the PRF FDLIN (defined in Sec-
tion 3.2) is RKA-secure against unique-input adversaries under the (new) d-MDHE
assumption (see Definition 2.5) for a class of degree-d polynomials.

For integers �, d, and a prime p, we consider the class Φpoly(d) consisting of all degree-

d polynomials over Z�×�
p of the form P (K) =

∑d
i=0 Ci ·Ki, where C0, . . . ,Cd,K ∈

Z�×�
p and at least one of C1, . . . ,Cd is full rank. To prove the RKA security of FDLIN

against unique-input adversaries, we consider a series of hybrid experiments which re-
spond to queries (φP (·), x) ∈ Φpoly(d)×{0, 1}�, where P (S) =

∑d
i=0 Ci ·Si, by choos-

ing d uniformly random, independent secrets K1, . . . ,Kd and computing the weighted
sum C0+

∑d
i=1 Ci ·Ki, as opposed to choosing a single uniformly random secret S and

computing P (S). We show how an adversary which distinguishes between these two
cases can be used to break the d-MDHE assumption, and then we use the techniques
used to prove the pseudorandomness of FDLIN to complete the argument.

The additional requirement of at least one of C1, . . . ,Cd being full rank is only
needed to ensure that a sufficient amount of entropy from the secret key will remain in
the output of the PRF. Note that this restriction on Φpoly(d) rules out polynomials P for

50 Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

which the output of P on randomly chosen key can be predicted (as an example consider
constant polynomials P (K) = C for some fixed C ∈ Z�×�

p), for which achieving
RKA security is impossible. We believe Φpoly(d) captures what is essentially the most
expressive class of bounded-degree polynomials for RKA-secure PRFs.

Organization. In Section 2 we introduce preliminary notation and definitions. In Sec-
tion 3 we construct RKA-secure LWE- and DLIN-based PRFs using the BC framework.
Then, in Section 4, we give an LWE-based RKA-secure PRF against unique-input adver-
saries for an affine class of transformations. In Section 5, we show how the DLIN-based
PRF is secure against unique-input adversaries where the related-key attacks come from
a class of bounded-degree polynomials. We conclude in Section 6. In the full version,
we give additional preliminaries, missing proofs, and more details.

2 Preliminaries

2.1 Notation

Rounding. We define �·� to round a real number to the largest integer which does not
exceed it. For integers q and p where q ≥ p ≥ 2, we define the function �·�p : Zq → Zp

as �x�p = i where i · �q/p� is the largest multiple of �q/p� which does not exceed x.
For a vector v ∈ Zm

q , we define �v�p as the vector in Zm
p obtained by rounding each

coordinate of the vector individually.
When p | q, we let (qp)Zq denote the subgroup of Zq comprising the set {(q/p) · x |

x ∈ Zq}. The following lemma follows from some elementary arithmetic.

Lemma 2.1. For any u ∈ (qp)Zq and x ∈ Zq such that u ≡ x(q/p) mod q and any
y ∈ Zq ,

�y + u�p = �y�p + �u�p = �y�p + x (mod p).

Groups. For a matrix M, we let the component-wise exponentiation gM denote a ma-

trix with entries gMi,j . We let
(
gA
)B

denote the matrix with entries g(AB)i,j . We let
Rki(Za×b

p) denote the set of all a× b matrices over Zp of rank i.

Pseudorandom Functions. Informally, a PRF [21] is an efficiently computable func-
tion F : K×X → Y such that no efficient adversary can distinguish the function from
a truly random function given only black-box access. In this paper, we allow the PRF
to additionally take public parameters pp. The advantage Advprf

F (·) against the PRF is
defined in a standard manner and deferred to the full version due to space constraints.

2.2 RKA-secure PRFs

For a class of related-key deriving functions Φ = {φ : K → K}, the notion of Φ-RKA
security for a PRF F : K×X → Y is defined using an experiments between a challenger
and an adversaryA. For b ∈ {0, 1} define the following experiment Exptprf-rkab :

Improved Constructions of PRFs Secure Against Related-Key Attacks 51

1. Given security parameter λ, the challenger samples and publishes public parame-
ters pp to the adversary. Next, the challenger chooses a random key k ∈ K and if

b = 0, sets f(·) def
= F (k, ·). Otherwise, if b = 1, the challenger chooses a random

keyed function f : K × X → Y .
2. The adversary (adaptively) sends input queries (φ1, x1), . . . , (φQ, xQ) in Φ × X

and receives back f(φ1(k), x1), . . . , f(φQ(k), xQ).
3. The adversary outputs a bit b′ ∈ {0, 1}, and the experiment also outputs b′.

Definition 2.2 (RKA-secure PRF for Φ). A PRF F : K×X → Y is RKA-secure with
respect to class Φ if for all efficient adversaries A the quantity

Advprf-rka
Φ,F (A)

def
=
∣∣∣Pr[Exptprf-rka0 = 1

]
− Pr

[
Exptprf-rka1 = 1

]∣∣∣
is negligible.

Unique-input RKA Security (cf. [7]). We say that an adversary is unique-input in the
above security game if the input queries (φ1, x1), . . . , (φQ, xQ) ∈ Φ×X are such that
x1, . . . , xQ are distinct. A PRF is unique-input RKA-secure if it is RKA secure against
unique-input adversaries.

2.3 Security Assumptions

Learning with Errors (LWE) Assumption. The LWE problem was introduced by
Regev [32] who showed that solving the LWE problem on average is as hard as (quan-
tumly) solving several standard lattice problems in the worst case.

Definition 2.3 (Learning With Errors). For integers q > 2 and a noise distribution
χ over Zq , the learning with errors problem (LWE) over n-dimensional vectors is to
distinguish between the distributions {A,Aᵀs + χ} and {A,u}, where m = poly(n),
A← Zn×m

q , s← Zn
q , χ← χm, and u← Zm

q .

Regev [32] shows that for a certain noise distribution χ = Ψα,
4 for n polynomial in

λ and q > 2
√
n/α, the LWE problem is as hard as the worst-case SIVP and GapSVP

under a quantum reduction (see also [31, 17] for classical reductions). These results
have been extended to show that s can be sampled from a low-norm distribution (in
particular, from the noise distribution χ) and the resulting problem is as hard as the
basic LWE problem [2]. Similarly, the noise distribution χ can be a simple low-norm
distribution [28]. Boneh et al. [14] show that the variant of LWE where the entries of A
are binary and m > n log q is equivalent (modulo a log q-factor loss in dimension) to
LWE over n-dimensional vectors. In this work, we let B ∈ R be an error bound such
that for χ ← Ψα, |χ| ≤ B with overwhelming probability.

4 For an α ∈ (0, 1) and a prime q, let Ψα denote the distribution over Zq of the random variable
�qX� (mod q) where X is a normal random variable with mean 0 and standard deviation
α/

√
2π.

52 Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

Low-norm Matrix LWE. We work with the right-multiplied matrix form of (low-
norm) LWE, namely, that for a uniformly drawn A ← {0, 1}m×2m, U ← Zm×2m

q ,
S← Zm×m

q , and X← χm×2m, the problem is to distinguish between the distributions
{A,SA+X} and {A,U}.

To compare it to the low-norm LWE variant in [14], we note that {A,SA + X}
and {A,AᵀS+Xᵀ} are distributed identically, and a standard hybrid argument shows
that any adversary which can distinguish {A,AᵀS+Xᵀ} from {A,U} can be used to
distinguish {A,Aᵀs+ χ} from {A,u} with only a (1/m)-factor loss in advantage.

The DLIN Assumption in Multilinear Groups. In Section 3.2, we rely on the de-
cisional linear (DLIN) assumption (as stated in Boneh et al. [14]) for the Garg et
al. abstraction of graded multilinear maps [20]. Consider a sequence of groups �G =
(G1, . . . ,G�) with a set of bilinear maps êi for i ∈ [1, �− 1], and a generator g of G1.

Definition 2.4 (Decisional Linear). The κ-decisional linear (κ-DLIN) assumption in
the presence of a graded �-linear map states that for any integers a, b ≥ κ, and for any
� ≤ j < κ the distributions{

g, gX
}
X←Rkj(Za×b

p) and
{
g, gY

}
Y←Rkκ(Za×b

p)

are computationally indistinguishable, in the presence of �G and {êi}i∈[1,�−1].

The Multilinear Diffie-Hellman Exponent Assumption. In Section 5, we will use the
Multilinear Diffie-Hellman Exponent (MDHE) assumption, defined as follows. Con-
sider a sequence of groups �G = (G1, . . . ,G�) with a set of bilinear maps êi for
i ∈ [1, �− 1], and a generator g of G1.

Definition 2.5 (Multilinear Diffie-Hellman Exponent). The d-Multilinear Diffie-
Hellman Exponent (d-MDHE) assumption in the presence of a graded �-linear map (as
abstracted by [20]) states that, in the presence of �G and {êi}i∈[1,�−1], for any integer
j ≥ �, the distribution{

gA,
〈
gS

i·A
〉
i∈[d]

, gB,
〈
gS

i·B
〉
i∈[d]

}
A,B←Rkj(Zj×j

p),S←Z
j×j
p

is computationally indistinguishable from the distribution{
gA,

〈
gUi

〉
i∈[d]

, gB,
〈
gVi

〉
i∈[d]

}
A,B←Rkj(Zj×j

p), ∀i∈[d],Ui,Vi←Z
j×j
p

.

We note that the 1-MDHE assumption is essentially equivalent to the 2�-DLIN as-
sumption (where j = � and κ = 2� as in [14]), and hence the d-MDHE assumption can
be seen as a generalization of DLIN assumption to the dth exponent of the secret.

2.4 The Bellare-Cash Framework

Bellare and Cash [7] give a general framework (denoted the BC framework) for con-
structing RKA-secure PRFs for a class Φ using a key malleable PRF, a key fingerprint,
and a collision-resistant hash function. We review their definitions and main theorem
here.

Improved Constructions of PRFs Secure Against Related-Key Attacks 53

Definition 2.6 (Key Malleable PRF). A PRF F : K × X → Y is key malleable if
there exists an efficient algorithm T, which on input φ ∈ Φ and x ∈ X and with oracle
access to F (k, ·), which satisfies TF (k,·)(φ, x) = F (φ(k), x), for all k ∈ K. Also, we
require that for any distinct x1, . . . , xQ ∈ X , if f : X → Y is a truly random function,
then Tf(·)(φ, x1), . . . ,T

f(·)(φ, xQ) are distributed independently and uniformly in Y .

Definition 2.7 (Key Fingerprint). An element w ∈ X is a key fingerprint if for all
k ∈ K and distinct φ1, φ2 ∈ Φ, F (φ1(k), w) �= F (φ2(k), w).

Definition 2.8 (Compatible Hash Function). For a fingerprint w, a hash function
Hcom : X × Y → R is compatible if the set of oracle queries made by TF (k,·)(φ,w)
over all φ ∈ Φ is disjoint from the set of oracle queries made by TF (k,·)(φ, z) over all
z ∈ R and φ ∈ Φ.

Theorem 2.9 (c.f. [7, Theorem 3.1], paraphrased). For a fixed class Φ of related-key
deriving functions, let F : K × X → Y be a key malleable PRF for Φ, w ∈ X a key
fingerprint for F and Φ, and Hcom : X × Y → X a compatible hash function. Define
Frka : K × X → Y as

Frka(k, x) = F (k,Hcom(x, F (k, w))).

For any probabilistic polynomial-time (PPT) adversary A against the RKA PRF Frka

for the class Φ, there exist PPT adversaries B against the PRF security of FLWE and C
against the collision-resistance of the hash function Hcom such that

Advprf-rka
Φ,Frka

(A) ≤ Advprf
F (B) +Advcr

Hcom
(C) .

3 New RKA-secure PRFs Using the BC Framework

In this section, we use the BC framework [7] to construct new RKA-secure PRFs. We
introduce two classes of related-key functions, a linear (Φlin∗) and an affine (Φaff) class,
and show that the key homomorphic PRFs from Boneh et al. [14] can be used to instan-
tiate the BC framework. The main technical challenge requires using the key homomor-
phism property to construct appropriate transformers required in the BC framework.

3.1 RKA-secure PRFs for a Restricted Linear Class Φlin∗

Boneh, Lewi, Montgomery, and Raghunathan [14] constructed the following PRF that is
almost key homomorphic and showed its pseudorandomnessunder the LWE assumption.

The PRF FLWE. For parameters m, p, and q ∈ N such that p | q, the public parameters
of the PRF are binary matrices A0,A1 ∈ Zm×m

p . The PRF key is a vector k ∈ Zm
q .

The PRF FLWE : Zm
q → Zm

p is defined as follows:

FLWE(k, x) =

⌊
�∏

i=1

Axi · k
⌋
p

. (3.1)

54 Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

Theorem 3.1 (cf. [14], paraphrased). The function FLWE is pseudorandom under the
LWE assumption for suitable choices of the parameters.

The Class Φlin∗ . Recall the definition of (qp)Zq . We consider a class of linear RKA
functions defined as follows:

Φlin∗ = {φa : Zm
q → Zm

q | φa(k) = k+ a}a∈(q
p)Z

m
q
. (3.2)

In other words, Φlin∗ is identical to the class Φlin = {φa : Zm
q → Zm

q | φa(k) =
k + a}a∈Zm

q
of all possible linear transformations of the key (the class for which an

RKA-secure PRF is given in [7] under the DDH assumption), except that in Φlin∗ we
have the added restriction that the transformation must be an element of (qp)Z

m
q .

We use the homomorphic property of the PRF to construct a transformer, that we
denote Tf(·)

lin , in a straightforward manner: Tf(·)
lin (φa, x) := f(x) + FLWE(a, x). To use

the BC framework, it is necessary to show that for the class of RKA functions Φlin∗ , the
PRF and the transformer satisfy the malleability and uniformity properties.

Lemma 3.2 (Malleability). For all k ∈ Zm
q , φ ∈ Φlin∗ , and x ∈ {0, 1}�, it holds that

T
FLWE(k,·)
lin (φ, x) = FLWE(φ(k), x). (3.3)

Proof. Fix a key k ∈ Zm
q and x ∈ {0, 1}�. Let φa denote a function in Φlin∗ correspond-

ing to a ∈ (qp)Z
m
q . Define the product of matrices P =

∏�
i=1 Axi . From the definition

of the transformerTFLWE(k,·)
lin the left side of equation (3.3) equals �Pk�p+�Pa�p. The

right side of the equation is �P(k+ a)�p = �Pk+Pa�p. As a ∈ (qp)Z
m
q , it holds that

Pa ∈ (qp)Z
m
q . Applying Lemma 2.1 on each coordinate, it holds that �Pk+Pa�p =

�Pk�p + �Pa�p, as required.

The following lemma follows straightforwardly from the definition of Tf(·)
lin .

Lemma 3.3 (Uniformity). If f : {0, 1}� → Zm
p is a random function and x1, . . . , xQ ∈

{0, 1}� are distinct, for any functions φ1, . . . , φQ ∈ Φlin∗ , the values Tf(·)
lin (φi, xi) are

independently and uniformly distributed in Zm
p .

Next, we show that any w ∈ {0, 1}� is a key fingerprint for Φlin∗ .

Lemma 3.4 (Fingerprint). For any w ∈ {0, 1}�, k ∈ Zm
q , for any distinct φ1, φ2 ∈

Φlin∗ , it holds that FLWE(φ1(k), w) �= FLWE(φ2(k), w).

Proof. For i ∈ {1, 2}, let φi = φai for vectors ai ∈ (qp)Z
m
q . Let P =

∏�
i=1 Awi ,

the product of full-rank matrices. As φ1 and φ2 are distinct and P is full-rank over
Zq , it holds that P(a1 − a2) = u for some non-zero u. Moreover, as a1 and a2 are
in (qp)Z

m
q , the difference (a1 − a2) and therefore u are in (qp)Z

m
q . Now, note that

FLWE(φ1(k), w) = �P · k+P · a1�p = �P · k+P · a2 + u�p. Applying Lemma 2.1,
this in turn equals �P · k+P · a2�p+�u�p = FLWE(φ2(k), w)+�u�p. As u ∈ (qp)Z

m
q

and is non-zero, �u�p is also non-zero in Zm
p concluding the proof of the lemma.

Improved Constructions of PRFs Secure Against Related-Key Attacks 55

Consider a collision-resistant hash function H : {0, 1}� × Zm
q → {0, 1}�−1 and the

fingerprint w = 0�. We define H
(Φlin∗)
com : {0, 1}� × Zm

q → {0, 1}� as H
(Φlin∗)
com (x, y) =

1‖H(x, y) and note that it is a compatible hash function. Applying Lemmas 3.2–3.4
and Theorem 3.1 to the BC framework, Theorem 2.9 implies the following result.

Theorem 3.5. Under the LWE assumption and the collision-resistance of the hash func-
tion H , the function Frka-lin : Zm

q × {0, 1}� → Zm
p defined as:

Frka-lin(k, x) = FLWE

(
k, H(Φlin∗)

com

(
x, FLWE

(
k, 0�

)))
is an RKA-secure PRF with respect to Φlin∗ .

3.2 RKA-secure PRFs for an Affine Class Φaff

In addition to the LWE-based almost key homomorphic PRF, Boneh et al. [14] also con-
structed a “fully” homomorphic PRF under the DLIN assumption over groups equipped
with a multilinear map.

The PRF FDLIN. For parameters m and � ∈ N, let �G = (G1, . . . ,G�) be a sequence
of groups equipped with a graded �-multilinear map {êi}i∈[�−1]. The public parameters
comprise pp =

(
gA0 , gA1

)
, where A0,A1 ← Rk�

(
Z�×�
p

)
. The PRF key K is a matrix

in Zm×�
p . Define FDLIN : Zm×�

p × {0, 1}� → (G�)
m×� as follows:

FDLIN(K, x) = (g�)
W, where W = K ·

(
�∏

i=1

Axi

)
. (3.4)

Theorem 3.6 (cf. [14], paraphrased). The function FDLIN is pseudorandom under the
DLIN assumption for suitable choices of parameters.

As noted by Boneh et al., the PRF can be evaluated at a point x = x1 . . . x� ∈ {0, 1}�
given the the public parameters pp and secret key k ∈ Z�

p using the graded bilinear maps
êi : G1 × Gi → Gi+1. The matrix multiplication is carried out one step at a time by
nesting these bilinear maps as follows:

FDLIN(K, x) = ê�−1

(
gKAx1 , ê�−2

(
gAx2 , . . . ê2

(
gAx�−2 , ê1

(
gAx�−1 , gAx�

))))
,

where gKAx1 is computed “in the exponent” given K and gAx1 . A pairing ê
(
gA0 , gA1

)
of matrices given in the exponent is done by computing the component-wise dot prod-
ucts of rows of A0 with columns of A1 using the bilinear map ê.

Observe that this PRF is identical to the DLIN-based PRF in [14] except that the
key K is now a matrix. This is required to define a meaningful affine class over the key
space. The pseudorandomness extends to the case where K is a matrix by considering
the rows of K, k1

ᵀ, . . . ,km
ᵀ to be m independent keys of the original DLIN-based

PRF. The key homomorphism also extends in a straightforward manner.

The Affine Class Φaff . With the above DLIN-based PRF, we can consider the following
affine class of related-key deriving functions. We define

Φaff = {φC,B : Zm×�
p → Zm×�

p | φC,B(K) = CK+B}, (3.5)

56 Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

for matrices C ∈ Zm×m
p and B ∈ Zm×�

p constrained as follows: (a) the class Φaff is
claw-free, and (b) C is a full-rank matrix.

As in Section 3.1, the key homomorphism of FDLIN allows us to construct a trans-
former, denoted T

f(·)
aff , in the following manner: Tf(·)

aff (φC,B, x) sets f(x) = (g�)
F and

computes (g�)CF · FDLIN(B, x). In other words, we left-multiply (in the exponent) the
output of f(·) with entries from C and then use the homomorphism of FDLIN to incorpo-
rate B. We use the BC framework and show that for the class of related-key functions
Φaff , the PRF and the transformer satisfy the malleability and uniformity properties.

Lemma 3.7 (Malleability). For all K ∈ Zm×�
p , φ ∈ Φaff , and x ∈ {0, 1}�, it holds

that
T
f(·)
aff (φ, x) = FDLIN(φ(k), x). (3.6)

Proof. The proof follows from elementary algebra in the exponent. Let φ = φC,B for
arbitrary C and B. For a key K and input x, let W be the matrix in equation (3.4). By
definition, Tf(·)

aff (φ, x) = (g�)
C·W ·FDLIN(B, x) = FDLIN(CK+B, x) as required. The

last equality follows from the key homomorphism of FDLIN.

The following lemma follows straightforwardly from the definition of Tf(·)
aff .

Lemma 3.8 (Uniformity). If f : {0, 1}� → (G�)
m×� is a random function and x1, . . . ,

xQ ∈ {0, 1}� are distinct, for any functions φ1, . . . , φQ ∈ Φaff , the values Tf(·)
aff (φi, xi)

are independently and uniformly distributed in (G�)
m×�.

Next, we show that any w ∈ {0, 1}� is a key fingerprint for Φlin∗ .

Lemma 3.9 (Fingerprint). For any w ∈ {0, 1}�, for any K ∈ Zm×�
q , and for any two

distinct φ1, φ2 ∈ Φaff , it holds that FDLIN(φ1(K), w) �= FDLIN(φ2(K), w).

Proof. We use the fact that the family Φaff is claw-free. For any key K, this implies that

φ1(K) �= φ2(K). For i ∈ {1, 2}, let Wi denote the matrix φi(K) ·
(∏�

i=1 Awi

)
. The

product of full-rank matrices Awi is full-rank and as φ1(K) �= φ2(K), it follows that
W1 �= W2. As FDLIN is defined as (g�)W for generator g�, it holds that if W1 �= W2,
then (g�)

W1 �= (g�)
W2 concluding the proof of the lemma.

Consider a collision-resistant hash functionH : {0, 1}�×(G�)
m×� → {0, 1}�−1 and the

fingerprint w = 0�. We define H
(Φaff)
com : {0, 1}�×(G�)

m×� → {0, 1}� as H(Φaff)
com (x, y) =

1‖H(x, y) and note that it is a compatible hash function. Applying Lemmas 3.7–3.9 and
Theorem 3.6 to the BC framework, Theorem 2.9 implies the following result.

Theorem 3.10. Under the DLIN assumption and the collision-resistance of the hash
function H , the function Frka-aff : Zm×�

p × {0, 1}� → (G�)
m×� defined as:

Frka-aff(K, x) = FDLIN

(
K, H(Φaff)

com

(
x, FDLIN

(
K, 0�

)))
is an RKA-secure PRF with respect to Φaff .

Improved Constructions of PRFs Secure Against Related-Key Attacks 57

4 Unique-Input RKA-secure PRFs for an Affine Class

In this section, we construct RKA-secure PRFs from the LWE assumption for a slightly
more restricted notion of RKA security, denoted unique-input RKA security. As ex-
plained in Section 1.3, we work directly with the pseudorandomness proof of FLWE to
show unique-input RKA security against a larger class of affine related-key functions
rather than the restricted linear class Φlin∗ from Section 3.1. To do this, we use the alge-
braic structure that suits the key homomorphism of FLWE to overcome the restrictions
of Φlin∗ required in order to apply the Bellare-Cash framework. We prove unique-input
RKA security for the affine class Φln-aff = {φC,B : φC,B(K) = CK + B}, where C
is a full rank matrix in [−c, c]m×m for a small constant c, and B is an arbitrary matrix
in Zm×m

q .
We consider the PRF FLWE where the key k, originally a vector, is replaced by a

matrix K in order to obtain the algebraic structure required for Φln-aff . Recollect the
definition of FLWE from Equation (3.1). For parameters m, p, q ∈ N such that p | q, the
public parameters of the PRF are binary matrices A0,A1 ∈ Zm×m

p . The key is now
a matrix K ∈ Zm×m

q , and the PRF FLWE : Zm×m
q × {0, 1}� → Zm×m

p is defined as
follows:

FLWE(K, x) =

⌊
K ·

�∏
i=1

Axi

⌋
p

. (4.1)

Recollect the bound B for samples drawn from the LWE error distribution Ψα. In the
rest of the section, we set the parameters of the system q, p,m, c, B, λ, � > 0 such that
the quantity (2m)�cBp/q is negligible in the security parameter λ. This is along the
lines of the parameters chosen in [14]. We state the following theorem for this choice
of parameters:

Theorem 4.1. Under the LWE assumption, the PRF FLWE defined in Equation (4.1) is
RKA-secure against unique-input adversaries for the class Φln-aff .

Proof of Theorem 4.1. In what follows, for a bit string x on � bits, we use x|j to denote
the bit string comprising bits j through � of x. Let x|�+1 denote the empty string ε∗.
LetA be a probabilistic polynomial time unique-input RKA adversary. We consider the
following experiments interacting with A.

Experiment Gj for j ∈ [1, � + 1].

1. The challenger samples as public parameters full-rank matricesA0,A1∈{0, 1}m×m

⊂ Zm×m
q which are sent to the adversary.

2. The challenger creates a lookup table L of pairs (w,Z) ∈ {0, 1}�−j+1×Zm×m
q , and

initializes L to contain only the pair (ε∗,R) for some randomly chosen R ∈ Zm×m
q .

3. For k ∈ [Q], the adversary (adaptively) sends input queries
(
φ
(k)
C,B, x(k)

)
∈ Φln-aff×

{0, 1}� to the challenger. For each input query, the challenger checks to see if there
is a pair

(
x(k)|j ,Z

)
in L for some Z ∈ Zm×m

q . If there is no such pair, then the
challenger chooses a random Y ∈ Zm×m

q , adds the pair
(
x(k)|j ,Y

)
to L, and sets

58 Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

Z = Y. The challenger returns N =
⌊
CZ

∏j−1
i=1 A

x
(k)
i

+B
∏�

i=1 Ax
(k)
i

⌋
p

to the

adversary.
4. The adversary outputs a bit b′ ∈ {0, 1}, which the experiment also outputs.

Experiment Hj for j ∈ [1, � + 1].
1. The challenger samples as public parameters full-rank matricesA0,A1∈{0, 1}m×m

⊂ Zm×m
q which are sent to the adversary.

2. The challenger creates a lookup table L of triples (w,Y,Z) ∈ {0, 1}�−j+1 ×
Zm×m
q × Zm×m

q , and initializes L to contain only the triple (ε∗,R,Δ) for some

randomly chosen R ∈ Zm×m
q and Δ← Ψ

m×m

α .

3. For k ∈ [Q], the adversary (adaptively) sends input queries
(
φ
(k)
C,B, x(k)

)
∈ Φln-aff×

{0, 1}� to the challenger. For each input query, the challenger checks to see if there is

a triple (x(k)|j−1,Z,Δ) in L for someZ ∈ Zm
q andΔ← Ψ

m×m

α . If there is no such
triple, then the challenger chooses a random Y ∈ Zm×m

q and random V0,V1 ←
Ψ

m×m

α , adds the triples
(
0 ‖
(
x(k)|j

)
,Y,V0

)
and

(
1 ‖
(
x(k)|j

)
,Y,V1

)
to L, and

sets Z = Y and Δ = V
x
(k)
j−1

(i.e., V0 or V1 depending on the j − 1th bit of x(k)).

The challenger returns to the adversary the value:

N =

⌊
C
(
ZA

x
(k)
j−1

+Δ
)
·
j−2∏
i=1

A
x
(k)
i

+B ·
�∏

i=1

A
x
(k)
i

⌋
p

.

4. The adversary outputs a bit b′ ∈ {0, 1}, which the experiment also outputs.

Observe that G�+1 responds to the adversary’s queries identically as in Exptprf-rka0 .

Hence, Pr
[
Exptprf-rka0 = 1

]
= Pr[G�+1 = 1].

Lemma 4.2. For all j ∈ [2, �+1], it holds that |Pr[Gj = 1]− Pr[Hj = 1]| is negligible.

Proof. In Experiment Hj , let Mk = CZA
x
(k)
j−1

·
∏j−2

i=1 Ax
(k)
i

and Wk = CΔ ·∏j−2
i=1 A

x
(k)
i

. Since the entries of C lie within [−c, c], the entries of Δ lie within

[−B,B], and the entries of each of the j − 2 matrices A
x
(k)
i

lie within {0, 1}, the

entries of Wk must lie within [−cBmj−2, cBmj−2].5 Since A0 and A1 are full rank,
the product of these matrices is also full rank. Since Z is drawn uniformly at random
from Zm×m

q , the matrix Mk is distributed uniformly in Zm×m
q . Thus, the probabil-

ity that �Mk +Wk�p �= �Mk�p is at most m2(cBmj−2)p/q. By taking a union
bound over all x ∈ {0, 1}�, we have that the probability that there exists some in-
put x ∈ {0, 1}� for which �Mk +Wk�p �= �Mk�p is at most (2m)�cBp/q. Con-
ditioned on the above event not occurring, it holds that for all x, �Mk +Wk�p =
�Mk�p which implies that Gj and Hj respond identically to adversary queries. There-
fore |Pr[Gj = 1]−Pr[Hj = 1] | is bounded by the probability of the above “bad” event,
which is negligible for a suitable choice of parameters.

5 The fact that entries of Δ lie within [−B,B] holds only with overwhelming probability, but
we will ignore this detail for ease of presentation, as it does not affect the final theorem.

Improved Constructions of PRFs Secure Against Related-Key Attacks 59

We now state Lemmas 4.3 and 4.4, the proofs of which are deferred to the full version.
Applying Lemmas 4.2–4.4 with suitable parameters yields Theorem 4.1.

Lemma 4.3. Under the LWE assumption, for all j ∈ [2, �+1], it holds that the quantity
|Pr[Gj−1 = 1]− Pr[Hj = 1]| is negligible.

Lemma 4.4. Pr[G1 = 1] = Pr
[
Exptprf-rka1 = 1

]
.

5 Unique-Input RKA-secure PRFs for a Class of Polynomials

In this section, under the d-MDHE assumption, we show that FDLIN is RKA-secure
against unique-input adversaries with respect to the following class of bounded-degree
polynomials. For positive integers �, d and prime p we define

Φpoly(d) =
{
φP (·) : Z

�×�
p → Z�×�

p | φP (·)(K) = P (K)
}
,

for polynomials P over Z�×�
p of degree at most d which have at least one coefficient

matrix (excluding the constant coefficient matrix) which is full rank. In other words, if
P (K) =

∑d
i=0 Ci ·Ki for matrices Ci ∈ Z�×�

p , then there exists a j > 0 such that
Cj ∈ Rk�

(
Z�×�
p

)
. The proof of the following theorem is given in the full version.

Theorem 5.1. Under the d-MDHE assumption, the PRF FDLIN is RKA-secure against
unique-input adversaries for the class Φpoly(d).

6 Conclusions

We construct the first lattice-based PRFs secure against related-key attacks. We achieve
RKA security under the standard (super-polynomial) LWE assumption for a restricted
linear class of related-key functions and this result is comparable to the DDH-based
RKA-secure PRF construction by Bellare and Cash [7]. Under the powerful multilin-
ear map abstraction [20], we construct RKA-secure PRFs against a large and natural
class of affine related-key deriving functions with minimal restrictions. We believe this
to be the most expressive affine class of transformations attainable under the Bellare-
Cash framework. We also achieve the weaker notion of unique-input RKA security for
an affine class of related-key deriving functions by considering the LWE-based key
homomorphic PRF by Boneh et al. [14]. We show that by working with the proof of
pseudorandomness and utilizing the algebraic structure of the PRF, we can overcome
restrictions on the related-key class that are necessary to apply the Bellare-Cash frame-
work. Finally, we show how, under the d-MDHE assumption in the presence of mul-
tilinear maps, we can achieve RKA security against unique-input adversaries for the
class of degree-d polynomials. Our work on constructing new RKA-secure PRFs leads
to several interesting open problems:

� Can we construct LWE-based PRFs under the Bellare-Cash framework for a class
less restrictive than Φlin∗? The only known LWE-based PRFs [5, 14] both require
rounding and have “error terms” in proofs that have to be carefully dealt with. This
will require a more careful application of the Bellare-Cash framework.

60 Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

� Can we construct unique-input RKA-secure PRFs from other LWE-based PRFs by
Banerjee et al. [5] and (more recently) Banerjee and Peikert [4]?

� Can we construct RKA-secure PRFs against unique-input adversaries for classes of
polynomials from more standard assumptions such as LWE or DLIN?

References

[1] Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional encryp-
tion for threshold functions (or fuzzy IBE) from lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012)

[2] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

[3] Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and ap-
plications. In: ICS (2011)

[4] Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions.
Cryptology ePrint Archive, Report 2014/074 (2014), http://eprint.iacr.org/

[5] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer,
Heidelberg (2012)

[6] Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on crypto-
graphic devices: Theory, practice, and countermeasures. Proceedings of the IEEE 100(11)
(2012)

[7] Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure against
related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 666–684.
Springer, Heidelberg (2010)

[8] Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks and tam-
pering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 486–503.
Springer, Heidelberg (2011)

[9] Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-
PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 491–506. Springer, Heidelberg (2003)

[10] Bellare, M., Meiklejohn, S., Thomson, S.: Key-versatile signatures and applications: RKA,
KDM and joint enc/sig. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 496–513. Springer, Heidelberg (2014)

[11] Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier: IBE, en-
cryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 331–348. Springer, Heidelberg (2012)

[12] Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)

[13] Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in crypto-
graphic computations. J. Cryptology 14(2) (2001)

[14] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic pRFs and their
applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 410–428. Springer, Heidelberg (2013)

[15] Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom functions with
improved efficiency from the augmented cascade. In: ACM CCS (2010)

[16] Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin, L.,
Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer, Heidelberg (2006)

http://eprint.iacr.org/

Improved Constructions of PRFs Secure Against Related-Key Attacks 61

[17] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning
with errors. In: STOC (2013)

[18] Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In:
Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)

[19] Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.L.:
Improved cryptanalysis of rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978,
pp. 213–230. Springer, Heidelberg (2001)

[20] Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for cir-
cuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

[21] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 34(4) (1986)

[22] Alex Halderman, J., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A.,
Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot attacks on en-
cryption keys. Commun. ACM 52(5) (2009)

[23] Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key aes vari-
ants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 208–221.
Springer, Heidelberg (2004)

[24] Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other
systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer,
Heidelberg (1996)

[25] Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional linear as-
sumption and weaker variants. In: CCS (2009)

[26] Lucks, S.: Ciphers secure against related-key attacks. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 359–370. Springer, Heidelberg (2004)

[27] Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining smart-card security under the
threat of power analysis attacks. IEEE Trans. Computers 51(5) (2002)

[28] Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidel-
berg (2013)

[29] Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random func-
tions. In: FOCS (1997)

[30] Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J. Com-
put. 41(4) (2012)

[31] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: ex-
tended abstract. In: STOC. ACM (2009)

[32] Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In:
STOC (2005)

[33] Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud: explor-
ing information leakage in third-party compute clouds. In: CCS (2009)

[34] Shacham, H.: A cramer-shoup encryption scheme from the linear assumption and from
progressively weaker linear variants. IACR Cryptology ePrint Archive (2007)

[35] Wee, H.: Public key encryption against related key attacks. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279. Springer, Heidelberg (2012)

[36] Zhang, W., Zhang, L., Wu, W., Feng, D.: Related-key differential-linear attacks on reduced
AES-192. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 73–85. Springer, Heidelberg (2007)

Verifiable Multi-server Private Information

Retrieval

Liang Feng Zhang and Reihaneh Safavi-Naini

Institute for Security, Privacy and Information Assurance
Department of Computer Science

University of Calgary

Abstract. Private information retrieval (PIR) allows a client to retrieve
any block xi from a database x = x1 · · ·xn (stored on a server) such that
i remains hidden from the server. PIR schemes with unconditional pri-
vacy and sublinear (in n) communication complexity can be constructed
assuming multiple honest-but-curious servers. This assumption however
cannot be guaranteed in many real life scenarios such as using cloud
servers. There are also extra properties such as efficient update of the
database. In this paper, we consider a verifiable multi-server PIR (VPIR)
model where the servers may be malicious and provide fraudulent an-
swers. We construct an unconditionally t-private and computationally
secure k-server VPIR scheme with communication complexity compara-
ble to the best t-private k-server PIR scheme in the honest-but-curious
server model. Our scheme supports efficient update of the database, iden-
tification of the cheating servers, tolerance of slightly corrupted answers,
and multiple database outsourcing.

1 Introduction

Private information retrieval (PIR) allows a client to retrieve any block xi from
a database x = x1 · · ·xn (stored on a server) such that i remains hidden from
the server. The main efficiency measure of a PIR scheme is its communication
complexity and defined to be the total number of bits communicated for retriev-
ing a single bit of x. In a trivial PIR scheme, the client simply downloads x.
Although perfectly private, this solution has a prohibitive communication com-
plexity ≥ n. Chor et al. [5] showed that the trivial solution is optimal in terms of
communication complexity if there is only one server and perfect privacy is re-
quired. Non-trivial PIR schemes with communication complexity < n have been
constructed in information-theoretic (multi-server) setting [5,2,17] and computa-
tional (single-server) setting [13]. The former setting still provides privacy even
if the server spends unrestricted computational resources to recover i once xi

has been collected. Let 1 ≤ t < k. A k-server PIR scheme is said to be t-private
if no collusion of up to t servers can learn any information about i. The most
efficient t-private PIR scheme [17] with t > 1 has communication complexity
O(n1/
(2k−1)/t�) in the honest-but-curious server model.

The PIR servers’ computation complexity can be measured by the total num-
ber of database blocks read by the servers and is lower bounded by n in any

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 62–79, 2014.
c© Springer International Publishing Switzerland 2014

Verifiable Multi-server Private Information Retrieval 63

PIR schemes [3,1]. Advances in cloud computing makes it possible [14,6,12] to
implement multi-server PIR using cloud servers such that the high computation
complexity can be offloaded to the powerful clouds. However, the outsourcing
requires a stronger adversary model as the clouds may provide incorrect answers
due to malicious behaviors or accidental failures. In this paper, we strengthen
the honest-but-curious server model of the existing multi-server PIR schemes
[5,2,17] to provide security against malicious servers. We require that the client
should be able to identify the malicious servers. This is very important as an
unidentified malicious server can result in system failure without concern about
its reputation. In practice, very few databases stay unchanged over time. Thus,
we also would like our PIR scheme to have extra properties such as efficiently
updating the outsourced database and catering for multiple databases. In a triv-
ial malicious server PIR scheme the database owner may sign each block xi of
the database using any signature scheme and then send the “extended database”
of (block, signature) to the clouds; the client can use any PIR scheme to retrieve
xi along with its signature from the “extended database” and then verify. How-
ever, this solution becomes insecure after the first database update as the server
can always use old (block, signature) pairs without being detected. To improve
this trivial solution, the database owner may consider x1, . . . , xn as leaves of a
Merkle tree and publish the root of this tree for verification. To access one block,
in this case one leaf of the tree, the client runs a multi-server PIR scheme once
for each layer of the tree, obtains the required block and the siblings of all nodes
on the path from the leaf to the root and verifies the result against the root
of the tree. This solution provides basic update but with higher cost; and more
importantly, it does not allow identification of cheating clouds; it treats each
database individually with no saving when multiple databases are outsourced.

1.1 Our Contributions

In this paper, we consider verifiable multi-server PIR schemes that support effi-
cient update, cheater identification and multiple database delegations.

VPIR Model. We introduce a verifiable multi-sever PIR (VPIR) model (see
Figure 1) that consists of a database owner D, a client C and k clouds S1, . . . ,Sk.
Let λ be a security parameter. D has a database x = x1 · · ·xn ∈ Fn

p , where
n is a polynomial of λ and p is a λ-bit prime. The client C has an index
i ∈ [n] and wants to learn xi from the clouds, without revealing i. In a VPIR
scheme Γ = (KeyGen, Setup,Query,Answer,Challenge,Respond,Verify,Update),
D is responsible to set up the system and update x. To set up the system,
D runs a key generation algorithm (pk, sk) ← KeyGen(1λ, n) and a setup algo-
rithm vkx ← Setup(pk, sk, x). It publishes (pk, vkx) and gives x to every cloud.
To update the database from x to x′, D runs an update algorithm vkx′ ←
Update(pk, sk, vkx, x

′), publishes vkx′ and then instructs each cloud to change
x to x′. To retrieve xi, the client runs a query algorithm (Q1, . . . , Qk, aux) ←
Query(pk, i) and sends a query Qj to Sj for every j ∈ [k]. The cloud Sj runs
an answer algorithm Aj ← Answer(pk, x,Qj) and replies with Aj . To verify Aj ,
the client runs a challenge algorithm (I1, . . . , Ik) ← Challenge(pk) to produce

64 L.F. Zhang and R. Safavi-Naini

a challenge Ij for every cloud Sj and the cloud Sj must respond with a proof
σj ← Respond(pk, x,Qj , Ij) vouching for the correctness of Aj . At last, if the k
answers A1, . . . , Ak are all correct, then the client can run an extract algorithm
Extract(pk, vkx, {(Aj , Ij , σj) : j ∈ [k]}, aux) to compute xi. The running time of
all algorithms must be polynomial in λ.

C

i

xi
···

Aj

σj

x
D

publish pk, vkx

S1

Sj

Sk

Qj

Ij

···

x

x

x

Fig. 1. Verifiable multi-server PIR

We define privacy (information theoretic) and verifiability (computational) of
the system in line with the privacy in PIR and the security in VC. The defi-
nition is justified because the privacy attacker has unlimited time to break the
system, while verifiability of the clouds’ answers should be provided without de-
lay. The clouds’ answers are verified individually and so the cheating clouds can
be identified. The public key pk can be used for outsourcing multiple databases.
In fact it can be computed and published once by a third party and used by
many database owners. The algorithm Update only requires the difference be-
tween x′ and x and the algorithm Extract only requires a small portion of pk.
Throughout the paper, the size |w| of any string w is defined to be the number
of λ-bit blocks it contains.

VPIR Constructions. We propose a basic construction Γ0 and a main con-
struction Γ1 of VPIR schemes. The basic construction is obtained by adding
verifiability [15] to the best t-private PIR scheme [17]. As a main drawback, the
communication complexity of Γ0 squares that of the underlying PIR scheme [17].
The main construction reduces this cost to be comparable to [17]. Let t < k and
d = �(2k − 1)/t�. Let m > 0 be such that

�m
d

�
≥ n. The main construction Γ1

has the following properties.

Privacy. The scheme Γ1 achieves unconditional t-privacy in the sense that any
collusion of up to t clouds learns no information about the client’s index i, even
if they have unlimited computing power.

Security. No cloud Sj can deceive the client into accepting an incorrect answer
Āj with a forged proof σ̄j , except with negligible probability. In particular, the
client can identify any cheating cloud by verifying that cloud’s answer. The
security is based on the (m+ d− 1)-SBDH assumption (see Definition 2).

Communication. Each block of our database x has λ bits and so the communica-
tion complexity of our VPIR schemes is the number of λ-bit blocks communicated

Verifiable Multi-server Private Information Retrieval 65

by the client. To retrieve a block xi, the client sends a query Qj of size O(m) to
each cloud Sj and receives an answer Aj of size O(m). It also sends Sj a challenge
Ij of sizeO(logm) and receives a proof σj of sizeO(λm). Thus, the communication
complexity of Γ1 is O(λm) = O(λn1/
(2k−1)/t�).

Computation. (1) Client: The computation of Q1, . . . , Qk consists of evaluating
m univariate polynomials of degree ≤ t over Fp. The verification of each answer
Aj consists of checking λ equations, where each equation requires ≤ 2m bilinear
paring computations. The extraction of xi from A1, . . . , Ak consists of interpo-
lating and evaluating a univariate polynomial of degree ≤ 2k − 1. The client’s
computation is dominated by O(m) pairing computations. (2) Cloud: The com-
putation of Aj consists of evaluating a polynomial Px(z, y) (see equation (2))
at O(m) points. The computation of σj consists of decomposing Px (see Lemma
1) and computing O(m) bilinear group elements and O(m) field elements. We
show that the response time of each cloud in Γ1 can be significantly reduced by
distributing the PIR server computation to its numerous computing units.

Storage. Cloud: In Γ1, each cloud stores a copy of x. Client: The client uses
(vkx, aux) and O(m) elements of pk for verification and reconstruction. For each
retrieval, the client also temporarily stores k triples {(Aj , Ij , σj) : j ∈ [k]} of
total size O(λm).

Update. To change one block of x, say xi to x′
i, D needs to compute vkx′ for

x′ = x1 · · ·xi−1x
′
ixi+1 · · ·xn using d + 1 multiplications in a bilinear group of

order p, and then instructs each cloud to change xi to x′
i. Note that d is a

constant. Hence, the update complexity is O(1). The update is verifiable in the
sense that any cloud that does not change x accordingly will be detected as
cheating in the future executions of Γ1.

Additional Properties. The construction Γ1 also provides two additional
properties. Error Tolerance: Each cloud’s answer in Γ1 is a codeword under a
Reed-Solomon code. We show how to modify Γ1 such that slight corruptions of
each cloud’s answer can be tolerated. Multiple Database Delegation: The system
public key pk has size (2d+ 2+ o(1))n and can be used by any database owner
to delegate their database. For each database x, a short (one group element)
public verification key vkx will be published. Updating the database x is done
by updating this short key.

1.2 Related Work

PIR with Malicious Servers. Constructing PIR schemes that are secure in a
malicious server model is well-motivated and has been put forth by Beimel [1].
The GMW compiler [10] allows one to compile any PIR scheme in the honest-
but-curious server model into a PIR scheme in the malicious server model. How-
ever, its communication complexity is higher than the trivial PIR scheme and
thus much higher than Γ1. The robust multi-server PIR schemes that tolerate a
limited number of malicious servers have been studied in [4,9,7]. The communi-
cation complexities of all these schemes are much higher than Γ1. Furthermore,
if all the answering servers in these schemes collude with each other, then the

66 L.F. Zhang and R. Safavi-Naini

client may be deceived into computing an incorrect value of xi. In contrast, the
client in Γ1 will reject and not be deceived. More importantly, the PIR schemes
of [4,9,7] do not support update, while the database owner in Γ1 can efficiently
and verifiably update its outsourced database x.

Outsourced PIR. The practicality of outsourcing PIR has been demonstrated
by [14,6,12]. Mayberry et al. [14] presented a MapReduce-based outsourced
single-server PIR scheme called “PIRMAP” which is more than one order of
magnitude faster than the trivial PIR scheme. Devet [6] developed paralleliza-
tion techniques that significantly reduce each cloud’s response time by distribut-
ing the delegated PIR server computation among its numerous computing units.
Huang et al. [12] combined certain multi-server PIR with oblivious RAM to ob-
tain outsourced PIR schemes where the access patterns of the database owner
and all clients are hidden from the clouds. None of the schemes [14,6,12] consider
malicious clouds.

C

i

xi

···

aj

x
D

S1

Sj

Sk

qj

···

x

x

x

C

α

F (α)

a, σ

F D

publish pk, vkF

Sα, cα

F

Fig. 2. Private information retrieval and public verifiable computation

1.3 Building Blocks and Our Techniques

Woodruff-Yekhanin PIR Scheme. Let t, k > 0 be integers such that 1 ≤ t <
k. A t-private k-server PIR scheme (see Figure 2) involves a database owner D, a
client C and k servers S1, . . . ,Sk, where D has a database x = x1 · · ·xn ∈ Fn

p and
C wants to learn xi. The D does not directly communicate with the client but
gives x to each server. To privately retrieve xi, the client computes a query qj
to each server Sj and receives an answer aj in return. The queries are computed
such that any t of them give no information about i; the k answers allow the
client to recover xi. Let d = �(2k−1)/t� and m = O(n1/d) be such that

�m
d

�
≥ n.

Let IndEnc : [n] → Fm
p be a 1-to-1 index encoding that maps any index i ∈ [n]

to a 0-1 vector of Hamming weight d. Let

Fx(z) = PolyEnc0(x) �
n�

j=1

xj

�

�:IndEnc(j)�=1

z� (1)

be a polynomial encoding of x of total degree ≤ d in z = (z1, . . . , zm) such that
Fx(IndEnc(i)) = xi for every i ∈ [n]. Woodruff and Yekhanin [17] constructed
a PIR scheme Πwy where the client simply computes Fx(z) at its private input
IndEnc(i) with the servers. The client computes k queries q1, . . . , qk as k shares of

Verifiable Multi-server Private Information Retrieval 67

IndEnc(i) under Shamir’s t-private threshold secret sharing scheme; each server
Sj answers with aj = (Fx(qj),

∂Fx
∂z1

|qj , . . . , ∂Fx
∂zm

|qj); from a1, . . . , ak the client can
interpolate a univariate polynomial of degree < 2k whose evaluation at 0 gives
xi. In Πwy the client sends m field elements (i.e., qj ∈ Fm

p) to each server and
receivesm+1 field elements (i.e., aj). Its communication complexity is k(2m+1).

Papamanthou et al. PVC Schemes. Papamanthou et al. [15] introduced
a publicly verifiable computation (PVC) model (see Figure 2) that involves a
function owner D, a cloud S and a client C, where D has a function F ∈ F and
C wants to learn F (α). The function owner computes (pk, vkF), makes them
public and then gives F to the cloud; the client gives α and a challenge cα to
the cloud; the cloud computes a = F (α) and a proof σ using (pk, F); at last, the
client can verify a using (pk, vkF , σ). Let F ⊆ Fp[z] be the set of polynomials
of total degree ≤ d in z = (z1, . . . , zm). Papamanthou et al. [15] constructed a
scheme Π0 (Section B.1, eprint version of [15]) which allows the client to verify
the result F (α) from S for any (F, α) ∈ F × Fm

p and a scheme Π1 (Corollary 1,

eprint version of [15]) that allows the client to verify the result ∂F
∂z�

��
α
from S for

any ((F, �), α) ∈ (F × [m]) × Fm
p . In both schemes, the client sends a challenge

cα of size m− 1 to the cloud and receives a proof of size O(m).

Our Constructions. Our basic VPIR construction Γ0 is a composition of Πwy,
Π0 and Π1. In Γ0, each cloud Sj performs the computation of the jth server
in Πwy. The computation of aj by Sj involves one evaluation and m differenti-
ations of the polynomial Fx(z) at qj . We simply enforce the integrity of these
computations using Π0 and Π1, respectively.

In Γ0, the client sends a challenge of size m−1 to Sj and receives a proof of size
O(m) from Sj for every component of aj . Thus, the communication complexity of
Γ0 is k(m+1) ·O(m) = O(m2) and squares that of Πwy. Our main construction
Γ1 reduces it to O(λm) by limiting the proof size of each cloud. To do so, a
natural idea is using probabilistic verification: for every j ∈ [k], the client verifies
only λ random components of aj . If the cloud Sj has tampered with a constant
fraction (say δ) of aj, then Sj will be detected with overwhelming probability
1 − (1 − δ)λ. However, a clever Sj may tamper with only one component of aj
and deceive the client with non-negligible probability (1 − 1

m+1)
λ. To thwart

this attack, we encode aj using an error-correcting code C : Fm+1
p → FM

p such
that Sj must change a constant fraction of Aj = C(aj) in order to change aj ,
where M = O(m+ 1). Otherwise, the client can decode aj from Aj . We take C
to be the Reed-Solomon code that encodes any message w = w0 · · ·wm ∈ Fm+1

p

as C(w) = (fw(γ1), . . . , fw(γM)), where fw(y) = w0 + w1y + · · · + wmym and
γ1, . . . , γM ∈ Fp are distinct. Let

Px(z, y) = PolyEnc1(x) � Fx(z) +
m�

�=1

∂Fx(z)

∂z�
y�, (2)

where Fx(z) = PolyEnc0(x). Then Aj = C(aj) = (Px(qj , γ1), . . . , Px(qj , γM)).
The client in Γ1 learns Aj from Sj and then randomly verifies λ components
of Aj . If Sj tampers with a constant fraction of Aj , then it will be detected;
otherwise, the client can recover aj . The client can use Π0 to verifiably compute

68 L.F. Zhang and R. Safavi-Naini

the (m+1)-variate polynomial Px of total degree ≤ m+d− 1. But that requires
a public key of size

� 2m+d
m+d−1

�
= exp(O(n)). We develop a new PVC scheme Π2

for Px which requires a public key of size (2d + 2 + o(1))n. In Π2, the client
sends a challenge of size m to the cloud and receives a proof of size O(m). Thus,
the λ proofs required by our client have total size O(λm). Our client must send
the M challenges for computing Aj , and then ask for the λ proofs only after
Aj has been received; otherwise the cloud will know which λ components of
Aj will be verified and then break the security by changing other components.
However, we observe that these challenges can be chosen such that they are
equal to each other without compromising the security. That is, the client can
send one common challenge of size O(m) for the M computations. Enforcing the
integrity of computing Px using Π2 with probabilistic verification and common
challenge gives us a VPIR scheme of communication complexity O(λm).

2 Preliminaries

2.1 Our Model

We denote any negligible function in λ by neg(λ) and any polynomial function
in λ by poly(λ). Our VPIR model (see Figure 1) involves a database owner D,
a client C and k clouds S1, . . . ,Sk, where D has a database x = x1 · · ·xn ∈ Fn

p

and the client C wants to privately retrieve xi.

Definition 1. A k-server VPIR scheme is a tuple Γ = (KeyGen, Setup,Query,
Answer,Challenge,Respond,Extract,Update) of eight algorithms, where

– (pk, sk)← KeyGen(1λ, n) is a key generation algorithm which takes as input
(λ, n) and outputs a public key pk and a secret key sk;

– vkx ← Setup(pk, sk, x) is a setup algorithm which takes as input (pk, sk) and
any database x ∈ Fn

p and outputs a public verification key vkx;
– (Q1, . . . , Qk, aux) ← Query(pk, i) is a query algorithm which takes as input

pk and any index i ∈ [n] and outputs k queries Q1, . . . , Qk along with some
auxiliary information aux;

– Aj ← Answer(pk, x,Qj) is an answer algorithm which computes an answer
Aj from (pk, x,Qj);

– (I1, . . . , Ik) ← Challenge(pk) is a challenge algorithm that generates k chal-
lenges I1, . . . , Ik for the clouds;

– σj ← Respond(pk, x,Qj , Ij) is a respond algorithm which takes as input
(pk, x,Qj , Ij) and outputs a proof σj vouching for the correctness of Aj;

– {xi,⊥} ← Extract(pk, vkx, {(Aj , Ij , σj) : j ∈ [k]}, aux) is an extract algo-
rithm that reconstructs xi or outputs ⊥ (to indicate failure);

– vkx′ ← Update(pk, sk, vkx, x
′) is an update algorithm which generates a new

public verification key vkx′ from (pk, sk, vkx) and the new database x′.

The database owner D is responsible to set up the system and update x. To set
up the system, D runs KeyGen and Setup to compute (pk, sk) and vkx, publishes
(pk, vkx) and gives x to every cloud. To update the database from x to x′, D

Verifiable Multi-server Private Information Retrieval 69

runs Update to compute vkx′ , publishes vkx′ and then instructs each cloud to
change x to x′. To retrieve xi, C runs Query to compute (Q1, . . . , Qk, aux) and
sends a query Qj to the cloud Sj for every j ∈ [k]. The cloud Sj runs Compute,
computes and replies with Aj . To verify these answers, the client runs Challenge
to generate k challenges (I1, . . . , Ik). Each cloud Sj generates a proof σj using
Respond. At last, the client can run Extract to verify the k answers A1, . . . , Ak

and then compute xi if all answers are correct.

Correctness. The scheme Γ is said to be correct if the extract algorithm al-
ways outputs the correct value of xi when all k clouds are honest. Formally, let
(pk, sk)← KeyGen(1λ, n). Let x(0) ∈ Fn

p and vkx(0) = Setup(pk, sk, x(0)). For u =

1, . . . , U(= poly(λ)), let vkx(u) ← Update(pk, sk, vkx(u−1) , x(u)). Π is correct if for
any u ∈ {0, 1, . . . , U}, any i ∈ [n], any (Q1, Q2, . . . , Qk, aux)← Query(pk, i) and
any (I1, . . . , Ik)← Challenge(pk), it holds that Extract(pk, vkx(u) , {(Aj , Ij , σj) :

j∈ [k]}), aux)=x
(u)
i , where Aj=Answer(pk, x(u), Qj) and σj = Respond(pk, x(u),

Qj, Ij) for every j ∈ [k].

t-Privacy. The scheme Γ is said to be (unconditionally) t-private if no collusion
of up to t servers can learn any information about i. Formally, Γ is (uncondi-
tionally) t-private if for any k, n, any i1, i2 ∈ [n] and any set T ⊆ [k] of size
|T | ≤ t, the distributions of QueryT (pk, i1) and QueryT (pk, i2) are identical,
where QueryT denotes concatenation of j-th outputs of Query for j ∈ T .

Security. The scheme Γ is said to be secure if no probabilistic polynomial time
(PPT) adversary can deceive the client into reconstructing an incorrect value
of xi. Formally, Γ is secure if no PPT adversary A can win with non-negligible
probability in the following security game:

1. The challenger picks (pk, sk) ← KeyGen(1λ, n) and then gives pk to A.
2. A picks a database x(0) ∈ Fn

p and makes a query Setup(pk, sk, x(0)) to the chal-
lenger. The challenger returns vkx(0) . For u = 1, . . . , U(= poly(λ)), A makes a
query Update(pk, sk, vkx(u−1) , x

(u)). The challenger returns vkx(u) every time.
3. A picks u ∈ {0, 1, . . . , U}, i ∈ [n] and then gives (u, i) to the challenger. The

challenger gives k queries (Q1, . . . , Qk) to A and stores a string aux. A returns k
answers (Ā1, Ā2, . . . , Āk). The challenger then gives k challenges (I1, . . . , Ik) to
A and receives k proofs (σ̄1, σ̄2, . . . , σ̄k) in return.

4. A wins if Extract(pk, vkx(u) , {(Āj , Ij , σ̄j) : j ∈ [k]}, aux) /∈ {x(u)
i ,⊥}.

In our security game, A cannot deceive the client into computing an incorrect

value of x
(u)
i even if it can freely choose and update the database x. Thus, a VPIR

scheme secure under our definition above not only allows the client to verifiably
retrieve any block from the database, but also allows D to verifiably update its
outsourced database without compromising the security. The query, answer and
communication complexities of Γ are defined to be QCΓ = max{|Qj | + |Ij |},
ACΓ = max{|Aj |+ |σj |} and CCΓ =

�k
j=1(|Qj |+ |Ij |+ |Aj |+ |σj |), respectively.

70 L.F. Zhang and R. Safavi-Naini

2.2 Woodruff-Yekhanin PIR Scheme

Let 1 ≤ t < k and d = �(2k − 1)/t�. Let m = O(n1/d) be such that
�m
d

�
≥ n.

Let β1, . . . , βk ∈ F∗
p be distinct. Let IndEnc : [n] → Fm

p be the 1-to-1 index
encoding that maps any index i ∈ [n] as a 0-1 vector of Hamming weight d. Let
Fx(z) be the polynomial encoding of any database x ∈ Fn

p (see (1)) such that
Fx(IndEnc(i)) = xi for every i ∈ [n]. Woodruff and Yekhanin’s t-private k-server
PIR scheme is a triple Πwy = (Query,Answer,Extract) of algorithms, where

– (q1, . . . , qk, aux)← Query(i) is a query algorithm that picks v1, . . . , vt ← Fm
p ;

computes a query qj = IndEnc(i) + βjv1 + · · ·+ βt
jvt for every j ∈ [k] and an

auxiliary information aux = {v1, . . . , vt}.
– aj ← Answer(x, qj) is an answer algorithm that computes aj,0 = Fx(qj) and

aj,� =
∂Fx

∂z�

��
qj

for every � ∈ [m] and outputs aj = (aj,0, aj,1, . . . , aj,m).

– Extract(a1, . . . , ak, aux) is an extract algorithm that interpolates a polyno-
mial f(y) = Fx(IndEnc(i) + yv1 + · · ·+ ytvt) and outputs f(0) = xi.

The algorithm Query will be run by the client to generate k queries and aux; the
algorithm Answer will be run by each server to compute an answer; the algorithm
Extract will be run by the client to recover xi. In Πwy, the k queries q1, . . . , qk are
k shares of IndEnc(i) under Shamir’s t-private threshold secret sharing scheme.
Thus, no t or less servers can learn any information about i and thus the t-privacy
follows. The communication complexity of Πwy is k(2m+ 1) = O(m).

2.3 Papamanthou et al. PVC Schemes

Papamanthou et al.’s PVC scheme [15] (see Figure 2) is a tuple Π = (KeyGen,
Setup,Challenge,Compute,Verify,Update) of six algorithms, where

– (pk, sk) ← KeyGen(1λ,F) is a key generation algorithm that takes as input
λ and a function family F and outputs a public key pk and a secret key sk;

– vkF ← Setup(pk, sk, F) is a setup algorithm that computes a public verifi-
cation key vkF for any F ∈ F with the knowledge of (pk, sk);

– cα ← Challenge(pk, α) is a challenge algorithm that produces a challenge cα
for any α in the domain of F ;

– (a, σ)← Compute(pk, F, α, cα) computes a = F (α) along with a proof σ;
– {F (α),⊥} ← Π.Verify(pk, vkF , α, cα, a, σ) is a verification algorithm that

checks if a is indeed equal to F (α);
– vkF ′ ← Update(pk, sk, vkF , F ′) is an update algorithm that computes a

public verification key vkF ′ based on (pk, sk, vkF) and the changes of the
new function F ′ with respect to F .

In a PVC scheme, D is responsible to set up the system and update F . To set
up the system, D runs the first two algorithms to compute (pk, sk) and vkF . It
publishes (pk, vkF) and gives F to the cloud. To update the function from F
to F ′, D runs Update to compute vkF ′ , publishes vkF ′ and instructs the cloud
S to change F to F ′. To compute F (α), the client C runs Challenge and picks

Verifiable Multi-server Private Information Retrieval 71

a challenge cα to the cloud. The cloud runs Compute and replies with (a, σ).
At last, the client runs Verify to check if a is indeed equal to F (α). The query,
answer and communication complexities of Π are defined to be |α|+ |cα|, |a|+ |σ|
and |α| + |cα|+ |a|+ |σ|, respectively. Let F = {ze11 · · · zemm : e1 + · · ·+ em ≤ d}
and F = span(F) ⊆ Fp[z]. Papamanthou et al. [15] constructed a PVC scheme
Π0 and a PVC scheme Π1 for computing the evaluations and differentiations of
any F ∈ F . In both schemes, the client sends a challenge of size m − 1 to the
cloud and receives a proof of size O(m) in return. We also observe that the Verify
in both schemes uses at most m+ d− 2 out of the

�m+d
d

�
components of pk.

2.4 Bilinear Maps and Assumptions

Let G be a generator which takes λ as input and outputs a bilinear map instance
(p,G,GT , e, g), where G = 〈g〉 and GT are cyclic groups of prime order p; and
e : G×G→ GT is a non-degenerate bilinear map such that e(ga, gb) = e(g, g)ab

for any a, b ∈ Fp and e(g, g) is a generator of GT .

Definition 2. (d-SBDH) Let Λ = (p,G,GT , e, g)← G(1λ). Let d = poly(λ). We
say that the bilinear d-strong Diffie-Hellman assumption holds if for any PPT

algorithm A, Pr[s ← F∗
p : A(Λ, g, gs, . . . , gs

d

) = (θ, e(g, g)1/(s+θ))] < neg(λ),
where θ ∈ F∗

p \ {−s}.

3 Our Constructions

In this section we first present our basic construction Γ0 as a composition of
Πwy, Π0 and Π1. We then improve Γ0 to our main construction Γ1 whose com-
munication complexity is comparable to the PIR of [17].

3.1 Basic Construction

In Πwy the PIR servers’ computations consist of evaluating and differentiating
the polynomial Fx(z) = PolyEnc0(x) at k points q1, . . . , qk which are k shares of
IndEnc(i) under Shamir’s t-private threshold secret sharing scheme. In Γ0 (see
Fig. 3), the k clouds S1, . . . ,Sk perform these computations on behalf of the
PIR servers. For every j ∈ [k], the client runs Π0 with Sj to compute aj,0 and
runs Π1 with Sj to compute aj,� for every � ∈ [m].

Correctness, Privacy and Security. The correctness of Γ0 follows from that
of Πwy, Π0 and Π1. The only information about i that the clouds can learn is
from the k points q1, . . . , qk which are k shares of IndEnc(i) under Shamir’s t-
private threshold secret sharing scheme. Thus, no collusion of up to t clouds can
learn any information about IndEnc(i), i.e., Γ0 achieves unconditional t-privacy.
In Γ0, the client runs k(m+1) independent Π0 and Π1 instances with the clouds.
If any cloud can break one of the instances, then we can simulate that cloud to
break the d-SBDH assumption as in the security proofs of Π0 and Π1 (see [15]
for the proofs). Hence, Γ0 is secure under the d-SBDH assumption.

Theorem 1. Γ0 is an unconditionally t-private and computationally secureVPIR
scheme. Its security is based on the d-SBDH assumption.

72 L.F. Zhang and R. Safavi-Naini

KeyGen(1λ, n): Output (pk, sk) ← Π0.KeyGen(1
λ, span(F)), where sk = τ ∈ Fm

p .

Setup(pk, sk, x): Output vkx ← Π0.Setup(pk, sk, Fx).

Query(pk, i): Compute (q1, . . . , qk, aux
′) ← Πwy.Query(i). For every j ∈ [k] and � ∈

{0, 1, . . . ,m}, compute cj,� ← Π.Challenge(pk, qj), where Π = Π0 if � = 0 and
Π = Π1 otherwise. Output Qj = (qj , cj,0, cj,1, . . . , cj,m) for all j ∈ [k] and aux =
(aux′, {cj,� : j ∈ [k], 0 ≤ � ≤ m}).
Answer(pk, x,Qj): Compute (aj,�, σj,�) ← Π.Compute(pk,Fx, qj , cj,�), where Π = Π0

if � = 0 and Π = Π1 if � ∈ [m]. Output Aj(= aj) = (aj,0, aj,1, . . . , aj,m).

Challenge(pk): For every j ∈ [k], set Ij = {0, 1, . . . ,m}. Output (I1, . . . , Ik).

Respond(pk, x,Qj , Ij): Output σj = {σj,� : � ∈ Ij}.
Extract(pk, vkx, {(Aj , Ij , σj) : j ∈ [k]}, aux): Compute bj,� = Π.Verify(pk, vkx, qj , cj,�,
aj,�, σj,�), for every j ∈ [k] and � ∈ Ij . where Π = Π0 if � = 0 and Π = Π1 otherwise.
If all bj,�’s are 1, output xi = Πwy.Extract(A1, . . . , Ak, aux

′). Otherwise, output ⊥.

Update(pk, sk, vkx, x
′): Output vkx′ ← Π0.Update(pk, sk, vkx,PolyEnc0(x

′)).

Fig. 3. The scheme Γ0

Complexity. The database owner D runs Π0.KeyGen and Π0.Setup to set up
the system. Both algorithms are executed once and take time O(n). D may also
run Π0.Update to update x. To change one component of x, D needs to multiply
vkx with one element from {gh(τ) : h(z) ∈ F} (see [15]). Therefore, the update
complexity is O(1). The client C computes and sends Qj and Ij to the cloud Sj
for every j ∈ [k]. It receives Aj and σj . Therefore, QCΓ0 = max{|Qj| + |Ij |} =
O(m2), ACΓ0 = max{|Aj |+ |σj|} = O(m2) and CCΓ0 = O(m2). For verification,
the client uses aux (|aux| = O(m2)) and m + d − 2 = O(m) components of pk.
Each cloud stores x, runs Π0.Compute once and Π1.Compute m times.

Variant. In Γ0, the client communicates four messages Qj, Aj , Ij and σj with
every cloud Sj in two rounds. Note that Ij is always equal to {0, 1, . . . ,m}. We
can merge the four messages and obtain a two-message version of Γ0: the client
simply sends Qj to each cloud Sj and Sj replies with (Aj , σj). Thus, our basic
construction can be made into one round.

3.2 Main Construction

In this section, we reach Γ1 using a series of modifications to Γ0. For every
j ∈ [k], the client in Γ0 sends a queryQj = (qj , cj,0, cj,1, . . . , cj,m) and a challenge
Ij = {0, 1, . . . ,m} to Sj , where qj ∈ Fm

p , cj,0, cj,1, . . . , cj,m ∈ (F∗
p)

m−1. Clearly,
|Qj |+ |Ij | contributes O(m2) to CCΓ0 . If we use a common challenge cj,0 = cj,1 =
· · · = cj,m = cj ∈ (F∗

p)
m−1 in Γ0, then |Qj|+ |Ij | would be reduced to O(m) for

every j ∈ [k] and thus
�k

j=1(|Qj |+ |Ij |) will be reduced to O(m). We shall see

that this modification will not compromise the security of Γ0. We denote by Γ ′
0

this modified version of Γ0.
In Γ ′

0, each cloud Sj answers with aj = (aj,0, aj,1, . . . , aj,m) and responds with
σj = (σj,0, σj,1, . . . , σj,m), which contributes |aj |+|σj | = O(m)+O(m2) = O(m2)
to CCΓ ′

0
. If we can modify Γ ′

0 such that only O(λ) components of σj are needed

Verifiable Multi-server Private Information Retrieval 73

to verify aj , then we would reduce CCΓ ′
0
to O(λm). A natural idea is performing

probabilistic verification: instead of requesting the σj from Sj , the client requests
λ random components of σj , say {σj,� : � ∈ Ij}, where Ij ⊆ {0, 1, . . . ,m} is a
random λ-subset; the client accepts aj only if (aj,�, σj,�) verifies for every � ∈ Ij .
More precisely, Γ ′

0.Challenge will simply output k independent random λ-subsets
I1. . . . , Ik ⊆ {0, 1, . . . ,m}. We denote by Γ ′′

0 this modified version of Γ ′
0. Note

that the modification should not compromise the security of Γ ′′
0 . If a constant

fraction (say δ) of the elements of aj have been tampered with by Sj , then
except with negligible probability (1− δ)λ at least one element of {aj,� : � ∈ Ij}
happens to be tampered with and therefore Sj will be detected. However, a
clever Sj may tamper with only one element of aj . This will allow Sj to deceive
the client C into accepting aj with non-negligible probability (1− 1

m+1)
λ. Then

k such malicious clouds would be able to deceive the client into accepting their
answers a1, . . . , ak with non-negligible probability as λ = o(m) and k = O(1).
Whenever this occurs, the client will compute a wrong value of xi from those
answers, i.e., the security of Γ ′′

0 is compromised.
In order to thwart this attack, we ask the cloud Sj to return an encoding

Aj of aj under an error-correcting code C : Fm+1
p → FM

p , such that Sj must
change a constant fraction of Aj in order to change even one component of aj .
Furthermore, the client turns to verify Aj . Let C be an [M,m + 1, d′]p linear
code with constant expansion ρ = M/(m+1) and error rate δ = (d′− 1)/(2M),
then Γ ′′

0 can be further modified as below: the cloud Sj answers with Aj =
(Aj,1, . . . , Aj,M) = C(aj) instead of aj ; the client gives a random λ-subset Ij ⊆
[M] to Sj and Sj returns the proofs for {Aj,� : � ∈ Ij}; the client then verifies Aj,�

for every � ∈ Ij ; it accepts and decodes Aj to aj only if all the verifications are
successful. Let Γ ′′′

0 be this modified version of Γ ′′
0 . If such an idea of modifying

Γ ′′
0 can be realized, then each cloud Sj can deceive the client into accepting

āj �= aj only if it tampers with > δM components of Aj but {Aj,� : � ∈ Ij}
are not tampered with. Clearly, this event occurs with probability ≤ (1 − δ)λ,
which is negligible. On the other hand, if Sj only tampers with < δ fraction of
Aj , then the client can correctly decode aj from Aj .

A remaining problem is how to chooseC such that the idea can be realized, i.e.,
enable the verifiable computation of Aj . We take C to be an [M,m+1,M −m]p
Reed-Solomon code with constant expansion ρ = M/(m + 1) and error rate
δ = 1

2 −
1
2ρ . Under this choice each cloud Sj answers with Aj = C(aj) =

(faj (γ1), faj (γ2), . . . , faj (γM)), where faj(y) = aj,0 + aj,1y + · · · + aj,mym and

γ1, . . . , γM ∈ Fp are distinct. Recall that aj,0 = Fx(qj) and aj,� = ∂Fx

∂z�

��
qj

for

every � ∈ [m]. Let Px(z, y) = PolyEnc1(x). Then faj (γ�) = Px(qj , γ�) for every
� ∈ [M], where (qj , γ�) ∈ Fm+1

p . Thus, computing Aj is equivalent to evaluating
Px at M points (qj , γ1), . . . , (qj , γM). The PVC scheme Π0 can compute m-
variate polynomials of total degree ≤ m + d − 1 which in particular include
Px. However, that requires a public key of size

� 2m+d
m+d−1

�
which is exponential in

n ≤
�m
d

�
as m = ω(1) and d = O(1). Below we construct a new PVC scheme Π2

for evaluating Px. Enforcing the integrity of computing Px using Π2 with the
common challenge and the probabilistic verification techniques gives us Γ1.

74 L.F. Zhang and R. Safavi-Naini

Let P0 be the set of all monomials ze11 · · · zemm with e1, . . . , em ∈ {0, 1} and
e1 + · · · + em = d. Let P1 be the set of all monomials yu · ze11 · · · zemm with
u ∈ [m], e1, . . . , em ∈ {0, 1} and e1 + · · ·+ em = d− 1. Then

Px ∈ P = span(P0 ∪ P1).

For every i ∈ [m−1], let Bi be the set of monomials zeii · · · zemm with ei+2, . . . , em ∈
{0, 1} and ei + · · · + em ≤ d − 1; let Di be the set of monomials yuzeii · · · zemm
with u ∈ [m], ei+2, . . . , em ∈ {0, 1} and ei + · · · + em ≤ d − 2. Let Bm =
{yuzvm : 0 ≤ u+ v ≤ d− 1} and Dm = {yuzvm : 0 ≤ v ≤ d−2, u+v ≤ m+d−2}.
We have the following technical lemma.

Lemma 1. Let P (z, y) ∈ P , α=(α1, . . . , αm+1) ∈ Fm+1
p and r = (r1, . . . , rm) ∈

(F∗
p)

m. Then there exist Φ1(z, y) ∈ span(B1∪D1), . . . , Φm(z, y) ∈ span(Bm∪Dm)

and φ0, . . . , φm+d−2 ∈ Fp such that P (z, y)− P (α) =
�m

i=1(ri(zi − αi) + zi+1 −
αi+1)Φi+(y−αm+1)

�m+d−2
j=0 φjy

j . Furthermore,
�m

i=1 |Bi| ≤ (1+O(m−1))
�m
d

�

and
�m

i=1 |Di| ≤ (d+O(m−2))
�m
d

�
.

We defer the proof of Lemma 1 to the full version. Let P = P0∪P1∪∪m
i=1(Bi∪Di).

Below is the scheme Π2 for verifiably evaluating the polynomials in P .
KeyGen(1λ,P): Pick Λ = (p,G,GT , e, g) ← G(1λ) and τ = (τ1, τ2, . . . , τm+1) ←
Fm+1
p . Output sk = τ and pk = (Λ,M), where M = {gh(τ) : h(z, y) ∈ P}.

Setup(pk, sk, P): Compute and output vkP = gP (τ).

Challenge(pk): Pick r = (r1, . . . , rm) ← (F∗
p)

m and output c = r.

Compute(pk,P, α, c): Compute Φ1(z, y), . . . , Φm(z, y) and φ0, . . . , φm+d−2 such that
the decomposition of P (z, y) − P (α) in Lemma 1 holds. Compute wi = gΦi(τ) for
every i ∈ [m]. Output a = P (α) and σ = (w1, . . . , wm, φ0, . . . , φm+d−2).

Verify(pk, vkP , α, c, a, σ): If e(vkP · g−a, g) =
�m

i=1
e
�
gri(τi−αi)+τi+1−αi+1 , wi

	
·

�m+d−2

j=0
e
�
gτm+1−αm+1 , g

φjτ
j
m+1

�
, output 1; otherwise, output 0.

Update(pk, sk, vkP , P
′): Compute P ′(z, y) − P (z, y), say it is equal to ηh(z, y) for

η ∈ Fp and h(z, y) ∈ P. Output vkP ′ = vkP · (gh(τ))η.

Lemma 1 shows that Φ1, . . . , Φm, z1, . . . , zm, y, y2, . . . , ym+d−2 and P (z, y) all
belong to span(P). Thus the cloud can use pk to compute σ. On the other hand,

the 2m+ d− 2 components pk′ = (gτ1 , . . . , gτm , gτm+1, . . . , gτ
m+d−2
m+1) of pk suffice

for executing Π2.Verify. It is a trivial generalization of the security proof in [15]
to show Π2 is secure under the (m+ d− 1)-SBDH assumption.

Theorem 2. Π2 is a secure PVC scheme for evaluating the polynomials in P
with CCΠ2 = O(m). Its security is based on the (m+ d− 1)-SBDH assumption.

Due to Lemma 1, we have |P| ≤ (2d+2+o(1))n. Thus, Π2 only requires a public
key of size (2d+ 2 + o(1))n.

The Main Construction (Γ1). Recall that the polynomial encoding Px belongs
to P = span(P0 ∪ P1). Our main construction Γ1 is described as below.

Verifiable Multi-server Private Information Retrieval 75

KeyGen(1λ, n): Output (pk, sk) ← Π2.KeyGen(1
λ,P), where sk = τ ∈ (F∗

p)
m.

Setup(pk, sk, x): Output vkx ← Π2.Setup(pk, sk, Px).

Query(pk, i): Compute (q1, . . . , qk, aux
′) ← Πwy.Query(i). For every j ∈ [k], com-

pute cj ← Π2.Challenge(pk). Output Qj = (qj , cj) for every j ∈ [k] and aux =
(aux′, c1, . . . , ck).

Answer(pk, x,Qj): For every � ∈ [M], compute (Aj,�, σj,�) ← Π2.Compute(pk, Px,
Qj,�, cj), where Qj,� = (qj , γ�). Output Aj = (Aj,1, Aj,2, . . . , Aj,M).

Challenge(pk): Output k independent random λ-subsets I1, . . . , Ik ⊆ [M].

Respond(pk, x,Qj , Ij): Output σj = {σj,� : � ∈ Ij}.
Extract(pk, vkx, {(Aj , Ij , σj) : j ∈ [k]}, aux): Compute bj,� = Π2.Verify(pk, vkx, Qj,�,
cj , Aj,�, σj,�) for every j ∈ [k] and � ∈ Ij . If all bj,�’s are 1, then decode Aj to
aj = (aj,0, aj,1, . . . , aj,m) for every j ∈ [k], where aj,0 = Fx(qj) and aj,� =

∂Fx
∂z�

��
qj

for

every � ∈ [m]; and output xi ← Πwy.Extract(a1, . . . , ak, aux
′). Otherwise, output ⊥.

Update(pk, sk, vkx, x
′): Suppose that x′ is not different from x except that x′

i �= xi.
Suppose that the components of IndEnc(i) are all 0 except those labeled by i1, . . . , id ∈
[m]. Then Fx′(z) = Fx(z)+(x′

i−xi)π, where π =
�d

j=1
zij . It follows that Px′(z, y) =

Px(z, y) + (x′
i − xi)π(1 +

�d

j=1
z−1
ij

yij). The algorithm outputs vkx′ = gPx′(τ) =

vkx · gΔ, where Δ = (x′
i − xi) · τi1 · · · τid(1 +

�d

j=1
τ−1
ij

τ
ij
m+1).

Fig. 4. The scheme Γ1

Correctness, Privacy and Security. The correctness of Γ1 follows from that
of Πwy and Π2. The unconditional t-privacy of Γ1 follows from a similar argu-
ment as in Γ0. In Γ1, any malicious cloud Sj that tries to deceive the client into
computing an incorrect result must change at least δ = 1/2− 1/(2ρ) fraction of
its answer Aj . The client in Γ1 verifies λ random components of Aj . Therefore,
Sj will be detected with overwhelming probability ≥ 1− (1− δ)λ.

Theorem 3. Γ1 is an unconditionally t-private and computationally secureVPIR
scheme. Its security is based on the the (m+ d− 1)-SBDH assumption.

Proof. Suppose there is an adversary A that breaks the security of Γ1 with non-
negligible probability ε. We construct a simulator that simulates A and breaks
the (m+d−1)-SBDH assumption. The SBDH challenger picks a random bilinear
map instance Λ = (p,G,GT , e, g) ← G(1λ) and a random field element s ← F∗

p.

Given Λ and (g, gs, . . . , gs
m+d−1

), the simulator proceeds as below:

1. The simulator needs to mimic Γ1.KeyGen and gives a public key pk to A.
To do so, the simulator implicitly sets τ� = μ�s + ν� for every � ∈ [m + 1],
where μ� and ν� are uniformly chosen from Fp; Clearly, the simulator does
not know the secret key τ = (τ1, . . . , τm+1) ∈ Fm+1

p but can compute the

public key M = {gh(τ) : h(z, y) ∈ P}. In fact, each monomial h(z, y) ∈ P has
total degree ≤ m+ d− 1. Thus, h(τ) is a polynomial of degree ≤ m+ d− 1
in s whose coefficients are known to the simulator. Thus, the simulator can

compute gh(τ) as it knows g, gs, . . . , gs
m+d−1

; At the end, the simulator picks
k random field elements θ1, . . . , θk ← Fp and gives pk = (Λ,M) to A.

76 L.F. Zhang and R. Safavi-Naini

2. Given pk, A picks x(0) ∈ Fn
p and makes a query Γ1.Setup(pk, sk, x

(0)) to

the simulator. The simulator replies with vkx(0) = gP0(τ), where P0(z, y) =
PolyEnc1(x

(0)). For every u = 1, 2, . . . , U(= poly(λ)), A makes a query
Γ1.Update(pk, sk, vkx(u−1) , x(u)) to the simulator. The simulator replies with
vkx(u) = gPu(τ), where Pu(z, y) = PolyEnc1(x

(u)) and gPu(τ) can be com-
puted by the simulator although it does not know sk = τ .

3. The adversary A picks u ∈ {1, . . . , U}, i ∈ [n] and gives (u, i) to the simula-
tor. The simulator runs Πwy.Query(i) and picks k points q1, . . . , qk ∈ Fm

p

along with a string aux′. Furthermore, the simulator needs to choose a
challenge cj ∈ (F∗

p)
m, define Qj = (qj , cj) for every j ∈ [k] and aux =

(aux′, c1, . . . , ck). Note that the adversary may control some of the clouds.
For every j ∈ [k], the challenge cj must be chosen in a way such that the
cloud Sj can be successfully simulated in order to break the SBDH instance
if it is corrupted by A and provides incorrect answers. Therefore, the sim-
ulator will not pick the challenge cj using the Π2.Challenge as the client in
Γ1 has done. Instead, for every j ∈ [k], it will guess an index �j ∈ [M] such
that the cloud Sj will provide an incorrect answer Aj,�j . For notational con-
venience, for every j ∈ [k], we denote Qj,� = (qj , γ�j) = (αj,1, . . . , αj,m+1).
The simulator will carefully compute cj = (rj,1, . . . , rj,m) ∈ (F∗

p)
m such that

rj,�(τ� − αj,�) + τ�+1 − αj,�+1 = sj,�(s+ θj) (3)

for every � ∈ [m]. Note that the simulator had set τ� = μ�s + ν� for every
� ∈ [m+ 1]. It is easy to verify that (3) will hold for any s ∈ Fp when

rj,� =−θjμ�+1 + αj,�+1 − ν�+1

θjμ� + αj,� − ν�
and sj,� =

αj,�μ�+1 − μ�+1αj,�+1 + μ�ν�+1 − μ�+1ν�
θjμ� + αj,� − ν�

for every � ∈ [m]. The simulator defines Qj = (qj , cj) for every j ∈ [k],
aux = (aux′, c1, . . . , ck) and then gives (Q1, . . . , Qk) to A. Note that cj is
uniform over (F∗

p)
m due to the choices of {μ�, ν� : � ∈ [m+ 1]}.

4. A answers with (Ā1, . . . , Āk), where Āj = (Āj,1, . . . , Āj,M) for every j ∈ [k].
5. For every j ∈ [k], the simulator picks a random (λ − 1)-subset I ′j ⊆ [M]

such that �j /∈ I ′j and then set Ij = I ′j ∪ {�j}. It then gives (I1, . . . , Ik) to A.
Clearly, the distribution of (I1, . . . , Ik) is identical to the distribution of those
sets generated by Γ1.Challenge. Therefore, A cannot distinguish between the
simulation and the real execution of Γ1.

6. A responds with (σ̄1, . . . , σ̄k), where σ̄j = {σ̄j,� : � ∈ Ij} for every j ∈ [k].

To deceive the client into computing an incorrect value of xi, at least one of the
k answers Ā1, . . . , Āk, say Āj , should have Hamming distance > Mδ with the
correct answer Aj = (Aj,1, . . . , Aj,M), where Aj,� = Π2.Compute(pk, Pu, Qj,�, cj)
for every � ∈ [M]. Otherwise, the client would be able to correct the errors and
then compute the correct value of xi using Πwy.Extract. Furthermore, the forged
answers Ā1, . . . , Āk should not be rejected. Equivalently, all of the forged pairs
{(Āj,�, σ̄j,�) : j ∈ [k], � ∈ Ij} should pass the client’s verification, i.e.,

Π2.Verify(pk, vkx(u) , Qj,�, cj , Āj,�, σ̄j,�) = 1 (4)

Verifiable Multi-server Private Information Retrieval 77

for every j ∈ [k] and � ∈ Ij because otherwise the client will reject. Let E be
the event that (1) at least one of the forged answers Ā1, . . . , Āk has Hamming
distance > Mδ; and (2) the forged answers Ā1, . . . , Āk are not rejected, i.e.,
(4) holds for every j ∈ [k] and � ∈ Ij . Due to our assumption, Pr[E] ≥ ε. For
notational convenience, we suppose that the Hamming distance between Āj∗

and Aj∗ is > Mδ, where j∗ ∈ [k]. Let L = {� ∈ [M] : Āj∗,� �= Aj∗,�} ⊆ [M]
be the set of indices where Āj∗ and Aj∗ do not agree with each other. Then
|L| > Mδ. Let G be the event that Ij∗ ∩ L = ∅ and let ¬G be the event that
Ij∗ ∩ L �= ∅. Since the indices in Ij∗ are chosen uniformly and independently,
Pr[G] = (1 − |L|/M)λ ≤ (1 − δ)λ, which is negligible. It follows that Pr[E] =
Pr[E|G] Pr[G] + Pr[E|¬G] Pr[¬G] ≤ (1 − δ)λ + Pr[E|¬G] Pr[¬G]. Recall that
Pr[E] ≥ ε. We have Pr[(¬G)∧E] = Pr[E|¬G] Pr[¬G] ≥ ε−(1−δ)λ � ε1, which is
non-negligible. In other words, the event (¬G)∧E that Ij∗∩L �= ∅ and the forged
answers Ā1, . . . , Āk are accepted must occur with probability ≥ ε1. Recall that
the indices �1, . . . , �k ∈ [M] have been uniformly chosen by the simulator at step
3 of the simulation. Let F be the event that �j∗ ∈ L. Note that �j∗ is not different
from the other indices in Ij∗ since cj∗ is uniform over (F∗

p)
m and thus gives no

information on �j∗ . Thus, we have that Pr[F|¬G ∧E] ≥ 1/|Ij∗ | ≥ 1/λ. When F
and (¬G) ∧ E occur simultaneously, A can be simulated by a simulator in the
security game of the Π2 instance for computing Āj∗,�j∗ . Using that simulator, the
simulator in the security game of Γ1 can eventually break the (m+d−1)-SBDH
instance. Note that Pr[F∧(¬G)∧E] = Pr[F|¬G∧E] Pr[(¬G)∧E] ≥ ε1/λ, which
is non-negligible. Recall the security proof for Π2. By simulating an adversary
that breaks the security of Π2 with probability ε1/λ, one can break a random
(m+d−1)-SBDH instance with probability ≥ λ−1ε1(1−(m+d−1)/p), which is
non-negligible. Therefore, the simulator in the security game of Γ1 can eventually
break the random (m + d − 1)-SBDH instance with non-negligible probability.
Therefore, Γ1 must be secure under the (m+ d− 1)-SBDH assumption. �
Complexity. The database owner D runs Π2.KeyGen and Π2.Setup once. The
running time of Π2.KeyGen is dominated by the computation of M = {gh(τ) :
h(z, y) ∈ P} in Π2 that requires (2d + 2 + o(1))n = O(n) exponentiations. The
algorithm Π2.Setup computes one exponentiation gPx(τ). D also runs Π0.Update
to update x. To change one component of x, D needs to multiply vkx with
d+1 elements from M, i.e., the update complexity is d+1 = O(1). The client C
computes and sends Qj , Ij to Sj and receives Aj , σj from Sj for every j ∈ [k]. We
have that QCΓ0 = max{|Qj |+ |Ij |} = O(m), ACΓ0 = max{|Aj|+ |σj |} = O(λm)

and CCΓ0 =
�k

j=1(|Qj |+ |Ij |+ |Aj |+ |σj |) = O(λm). For each verification, the

client uses aux and 2m + d − 2 elements pk′ of pk, where |aux| = O(m). Each
cloud stores x and runs Π2.Compute M times.

Response Time. A computationally powerful cloud may employ hundreds of
thousands of computing units. For example, the Amazon Elastic Compute Cloud
(EC2) was employing more than 158000 computing units until May 2013. May-
berry et al. [14] and Devet [6] suggested to outsource the PIR servers’ computa-
tion to the clouds. Each cloud can distribute the PIR server computation to its
computing units and then combine the results of these units. This parallelization

78 L.F. Zhang and R. Safavi-Naini

technique can effectively reduce the response time of each cloud. It is trivial to see
the computation of each cloud in Γ1 only involves polynomial decompositions,
polynomial valuations and exponentiations. All of them can be distributed to
multiple computing units. Thus, each cloud can significantly reduce the response
time using the parallelization techniques.

Error Tolerance. In Γ1, the client verifies Aj by checking a random λ-subset
of the components of Aj for every j ∈ [k]. If any one of the λk verifications is
unsuccessful, then the client rejects; otherwise, it decodes every Aj to aj and
then reconstructs xi from a1, . . . , ak. Note that if a very small constant fraction
of aj has been corrupted, the client will reject with overwhelming probability.
For example, the answer Aj will be rejected with overwhelming probability even
if 2δ/3 fraction of Aj have been corrupted, where δ = 1

2−
1
2ρ and ρ = M/(m+1).

Recall that Aj = C(aj) is a Reed-Solomon encoding that can tolerate δ fraction
of corruptions. We say that Aj is slightly corrupted if a constant δ′ ≤ 2δ/3
fraction of Aj have been corrupted. The client’s verification is so severe that
a slightly corrupted Aj will be rejected as well while the corruptions can be
efficiently corrected. As a result, the client must execute the scheme Γ1 again
to retrieve xi, which incurs efficiency loss. In particular, if the corruptions were
introduced by the infrastructure failures, then rerunning Γ1 is unlikely to be
useful. In this case we can extend (modify) Γ1 such that the client will not reject
Aj except the event E : |{� ∈ Ij : bj,� = 0}| ≥ 3δ|Ij |/4 occurs. Suppose δ′

fraction of {Aj,� : � ∈ Ij} have been corrupted. If δ′ ≤ 2δ/3, then the client will
not reject and efficiently reconstruct aj except with probability exp(−O(λ)) as E
occurs with probability exp(−O(λ)); if δ′ > δ, then E will occur with probability
1−exp(−O(λ)) and thus the client will reject Aj with overwhelming probability.

Multiple Database Delegation. It is an interesting observation that none
of the algorithms in Γ1 actually takes sk as input. As a result, a trusted third
party rather than each database owner can run the algorithm KeyGen and then
publish pk such that any database owners, clouds and clients can freely use Γ1.
Therefore, Γ1 actually allows multiple database delegation.

Variant. In Γ1 the client must communicate with each cloud Sj in two rounds.
In the first round, it sends a queryQj = (qj , cj) and receives an answer Aj ; in the
second round, it sends a challenge Ij and receives a response σj . This two-round
communication is essential as sending Ij along with Qj in the first round would
reveal which components of Aj will be verified, and thus enable a cheating cloud
to break the security of Γ1. To get a one-round scheme, the client can consider the
M proofs for the M components of Aj as a database and use a single-server PIR
[11] with constant communication rate in the honest-but-curious server model
to privately retrieve the λ proofs it requires.

4 Conclusions
In this paper, we formally defined verifiable multi-server PIR schemes and con-
structed an unconditionally t-private and computationally secure VPIR scheme
based on the best t-private PIR scheme of Woodruff et al. [17] in the honest-
but-curious server model and a new PVC scheme for multivariate polynomial

Verifiable Multi-server Private Information Retrieval 79

evaluation. Our scheme has communication complexity O(λn1/
(2k−1)/t�) which
is comparable to [17]. Constructing VPIR schemes in the single server setting
seems difficult because the known VC with input privacy rely on FHE.

Acknowledgement. This research is in part supported by Alberta Innovates
Technology Futures.

References

1. Beimel, A.: Private Information Retrieval: A Primer (2008) (manuscript)
2. Beimel, A., Ishai, Y., Kushilevitz, E.: General Constructions for Information-

Theoretic Private Information Retrieval. J. Comput. Syst. Sci. 71(2), 213–247
(2005)

3. Beimel, A., Ishai, Y., Malkin, T.: Reducing the Servers’ Computation in Private
Information Retrieval: PIR with Preprocessing. J. Cryptol. 17(2), 125–151 (2004)

4. Beimel, A., Stahl, Y.: Robust Information-Theoretic Private Information Retrieval.
J. Cryptol. 20(3), 295–321 (2007)

5. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.
In: FOCS, pp. 41–50 (1995)

6. Devet, C.: Evaluating Private Information Retrieval on the Cloud. Technical Re-
port (2013), http://cacr.uwaterloo.ca/techreports/2013/cacr2013-05.pdf

7. Devet, C., Goldberg, I., Heninger, N.: Optimally Robust Private Information Re-
trieval. In: USENIX Security Symposium (2012)

8. Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

9. Goldberg, I.: Improving the Robustness of Private Information Retrieval. In: IEEE
Symposium on Security and Privacy, pp. 131–148 (2007)

10. Goldreich, O., Micali, S., Widgerson, A.: How to Play any Mental Game-A Com-
pleteness Theorem for Protocols with Honest Majority. In: STOC, pp. 218–229.
ACM (1987)

11. Groth, J., Kiayias, A., Lipmaa, H.: Multi-query Computationally-Private Informa-
tion Retrieval with Constant Communication Rate. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010)

12. Huang, Y., Goldberg, I.: Outsourced Private Information Retrieval. In: Workshop
on Privacy in the Electronic Society, pp. 119–130. ACM (2013)

13. Kushilevitz, E., Ostrovsky, R.: Replication Is Not Needed: Single Database,
Computationally-Private Information Retrieval. In: FOCS, pp. 364–373 (1997)

14. Mayberry, T., Blass, E., Chan, A.: PIRMAP: Efficient Private Information Re-
trieval for MapReduce. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859,
pp. 371–385. Springer, Heidelberg (2013)

15. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of Correct Computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013), http://eprint.iacr.org/2011/587.pdf

16. Sion, R., Carbunar, B.: On the Computational Practicality of Private Information
Retrieval. In: NDSS 2007 (2007)

17. Woodruff, D.P., Yekhanin, S.: A Geometric Approach to Information-Theoretic
Private Information Retrieval. SIAM J. Comp. 37(4), 1046–1056 (2007)

http://cacr.uwaterloo.ca/techreports/2013/cacr2013-05.pdf
http://eprint.iacr.org/2011/587.pdf

Certified Bitcoins

Giuseppe Ateniese1,2, Antonio Faonio1,
Bernardo Magri1, and Breno de Medeiros3

1 Sapienza - University of Rome, Italy
{ateniese,faonio,magri}@di.uniroma1.it

2 Johns Hopkins University, USA
ateniese@cs.jhu.edu

3 Google, Inc.
breno@google.com

Abstract. Bitcoin is a peer-to-peer (p2p) electronic cash system that
uses a distributed timestamp service to record transactions in a public
ledger (called the Blockchain). A critical component of Bitcoin’s success
is the decentralized nature of its architecture, which does not require or
even support the establishment of trusted authorities. Yet the absence
of certification creates obstacles to its wider acceptance in e-commerce
and official uses. We propose a certification system for Bitcoin that offers:
a) an opt-in guarantee to send and receive bitcoins only to/ from certified
users; b) control of creation of bitcoins addresses (certified users) by
trusted authorities. Our proposal may encourage the adoption of Bitcoin
in different scenarios that require an officially recognized currency, such
as tax payments—often an integral part of e-commerce transactions.

1 Introduction

Bitcoin is a peer-to-peer (p2p) electronic cash system, first described in [11]. The
Bitcoin p2p network implements a distributed timestamp service that records
transactions in a public ledger (called the Blockchain). The timestamp operation
is computationally expensive, requiring proof-of-work to verify a transaction and
insert it into the Blockchain. In compensation for this effort, the Bitcoin protocol
enables the nodes to mint coins, i.e., to add into the ledger transactions for
self-credit. This distributed minting operation is the source of new currency,
dispensing with the need of a central issuer.

Large numbers of users currently transact in Bitcoin, engaging in significantly-
sized transactions [13]. The decentralized nature of Bitcoin, wherein confidence
on the integrity of the public ledger arises by the cooperative nature of inter-
actions between the participants, is a critical component of its success: Bitcoin
removes the necessity for all involved to agree to trust any single entity. How-
ever, the converse is also true: Bitcoin does not offer a built-in mechanism to
incorporate trustworthiness from real-world entities into the system.

Anonymity In the Bitcoin Protocol. In the Bitcoin Blockchain, users are iden-
tified only by addresses, which are pseudonymous public key fingerprints. It is

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 80–96, 2014.
c© Springer International Publishing Switzerland 2014

Certified Bitcoins 81

possible for the user controlling a Bitcoin address to remain unidentified—until
information is voluntarily revealed during a purchase or in other circumstances.
For this reason Bitcoin has been at times chosen as a payment medium for illegal
business. Some governments1 are also concerned that Bitcoins could be used to
skirt capital control laws. On the other hand, legitimate users desirous of privacy
should be mindful of the fact that it is possible to link entities that share cash
streams—see Ober et al. [13] and Meiklejohn et al. [8] for how an analysis of the
Blockchain may reveal that the same real-world entity is behind multiple Bitcoin
addresses. Thus, such users should completely segregate their Bitcoin addresses
among their different personas.

Our Contribution: Certifiable Bitcoin Addresses. This paper describes
an extension of the Bitcoin protocol that preserves its decentralized nature, while
also enabling payers to optionally specify the involvement of a trusted authority
that attests to the identity of the payee, by requiring payees to use certified
Bitcoin addresses. Conversely, we also enable payees to require that a payer uses
a certified Bitcoin address. More specifically, we introduce the concept of Bitcoin
addresses that need to be generated with the support of a trusted authority.
Those addresses are still anonymous within the Bitcoin system, but the authority
can validate the legitimacy of the entity to whom it releases a certified address2,
and other members of the Bitcoin network can attest to the involvement of the
trusted authority in issuing the address. These certified addresses are allowed to
co-exist with the standard auto-generated Bitcoin addresses.

Certified Bitcoin addresses are blinded: While the trusted authority can mint
coins on behalf of a particular user, it cannot spend any of them. Certified
addresses mitigate existing reservations against the adoption of Bitcoin as a
currency in commercial uses and against acceptance of the Bitcoin payment
protocol as a fully valid alternative to credit card systems.

Identity Theft Mitigation. Our proposal also enhances security against identity
theft in Bitcoin. Indeed, consider the case where a man-in-the-middle (MITM)
attacker changes the payee’s bitcoin address for the attacker’s address. For in-
stance, the attacker could deface the payee’s website to receive payments in-
tended for the payee. This attack is quite devastating since, in the Bitcoin pro-
tocol, once the payment is accepted and registered in the ledger, it is impossible
to revert it (unlike credit card payments). With our proposed solution, the payer
can first check that the address is certified thus ensuring that the actual identity
of the attacker could be recovered by the trusted authority in case of dispute.

1.1 Outline

We briefly recall Bitcoin’s transaction mechanism. A Bitcoin transaction is a
cryptographically signed statement that transfers an amount of bitcoins from the

1 China [18] has recently declared Bitcoin illegal.
2 Note that users may be allowed to use simply, e.g., an email address to request
Bitcoin addresses. In this case, an email address, rather than an actual identity, is
bound to a Bitcoin address.

82 G. Ateniese et al.

sender’s to the receiver’s address. The sender proves ownership of the bitcoins
by “redeeming” a transaction already in the ledger that moves at least the same
amount of bitcoins to their address. For more details please refer to Section 3.

The standard approach to add certified addresses to the Bitcoin system would
be to use PKI-rooted certificates. A trusted authority would sign each newly re-
leased certified address by generating an address certificate. This mechanism can
be adapted into Bitcoin’s infrastructure by using the Bitcoin scripting language.
For a certified address one needs to include a certificate from the central author-
ity to each transaction: A new transaction redeems the earlier one only if a) it is
verifiable using the sender’ address, as with all transactions; and b) the attached
certificate is valid. However, there are some disadvantages to incorporating a
traditional PKI approach in Bitcoin, to wit:

1. A noticeable modification on the software is needed. We need a signature ver-
ification operation that takes as input the certified public key (the message),
the certificate (the CA’s signature on the message) and the public key of the
CA in order to verify the certificate. However the operation OP CHECKSIG,
which in the Bitcoin scripting language provides signature verification, takes
only two inputs – a public key and a signature – and assumes as message the
transaction’s data. The semantic of OP CHECKSIG would need to be signifi-
cantly modified or a new operation would have to be added to the scripting
language. Any modification of this type would require all the nodes in the
system to upgrade their software.

2. In Bitcoin, transaction fees are accounted per bytes: the bigger the size of a
transaction, the higher the fees to pay. PKI’s addition of certificate chains
to (potentially) each address in each transaction would significantly increase
transaction costs.

3. The Bitcoin wallet software must download the entire ledger. Even an in-
crease of a few gigabytes creates scalability issues, particularly for smart-
phones or devices with limited bandwidth and data capability. The average
size for a block is 156KB and the average number of transactions for each
block is 315, which means that the average size of a transaction is approx-
imately 507 Bytes. Considering that the size of a signature in the Bitcoin
system’s encoding is 71 Bytes, the transaction size will increase by at least
14% 3. Currently, the size of the ledger is approximately 12GB. In the worst
case scenario, where every transaction is being certified, the ledger would be
about 1.67 GB bigger.

It would be preferable to add certified addresses in the Bitcoin system without
increasing the size of the transactions (and, ultimately, the size of the ledger).
We achieve this by leveraging the storage and bandwidth cost benefits provided
by self-certified public keys. In particular, we adapt techniques developed for
self-certified PKI to work within the Bitcoin system. Compared with a standard
PKI approach, our solution does not have the drawbacks (2) and (3) outlined
above. Moreover, even though we still need to update the software of every

3 By taking the average over all transactions made in 2013.

Certified Bitcoins 83

node in the network, the modification to accommodate self-signed certificates
is easier to accomplish. It can be achieved without changes to the the Bitcoin
scripting language, or (in alternative implementation) with minimal changes.
Indeed, our solution is perfectly compatible with the current ledger and both
systems (standard and certified Bitcoin) can run contemporarily on the same
ledger.

1.2 Previous Work

Previous Work on Bitcoin. As pointed out earlier, the Blockchain allows to link
entities that share cash streams; and the misconception that pseudonymity pro-
vides anonymity has been partially unmasked by a series of recent works on the
Bitcoin transaction’s graph, see for example [16,13,1]. Previous research has thus
focused on strengthening the privacy guarantees afforded by Bitcoin. In [4] Barber
et al. provide a protocol that features secure mixing of money, ensuring money is
transferred to fresh, and thus unlinkable, addresses through an untrusted third
party. A more radical solution to anonymity is given in the paper of Miers et al.
[9], where the authors propose an innovative andBitcoin-compatible systemwhere
full anonymity is achieved via zero-knowledge techniques. In this paper, we focus
instead on enhancing trust, via certified bitcoins. Without additional measures,
this approach would lower the degree of anonymity in the system; but we point
out that our solution is compatible with the approaches proposed in [4,9], allowing
for both anonymity and certification within the system.

Other works have focused on improving the scalability of Bitcoin, particularly
in what regards the bandwidth required to validate the Blockchain. In [4], the
authors proposed a secure filtering service that is backward compatible with
the current system. The filtering service sends only relevant transactions to
nodes allowing for significant space savings. The service does not increase the
degree of linkability, and thus has no impact on the privacy of Bitcoin usage,
but the need of a fully-trusted third party can be a deterrent in the Bitcoin’s
context. Indeed, the filtering service could maliciously hide from the user im-
portant transactions—the user needs to fully trust the service provider for the
filtering service. In contrast, the trusted authority in our certification scheme is
only functionally trusted, and a pure enhancement to the Bitcoin’s ecosystem.
As we shall see in Section 3, the trusted party cannot recover the user secret
key. In addition, any abuse from the certification authority are detectable via
inspection of the Blockchain.

Another line of research has been recently proposed by Andrychowicz et al. [2]
where a general protocol for secure multiparty computation using Bitcoin’s trans-
actions is proposed. The system guarantees a form of fairness: if a party interrupts
the protocol, the outcome is still “tolerable” to the other honest parties.

Previous Work on Self-Certified Public Key. Our proposal can be seen as a weak
version of what is referred to as Self-certified (SC) PKI. SC-PKI contemplates
public keys that do not need to be accompanied by a certificate in order to be
authenticated by other users. To the best of our knowledge, the first schemes

84 G. Ateniese et al.

to rely on only functionally trusted authorities were described by M. Girault
in [7]—where the concept of SC-PKI is itself introduced. That work establishes
two SC-PKI constructions, one based on RSA and one based on Elgamal-type
public keys. It has been later shown that RSA constructions suffer from a draw-
back, namely it is possible for the trusted party to safely generate its keys to
include trapdoor information that facilitates the recovery of other parties’ se-
crets [17]. This attack applies to every RSA-based construction that results in
users reconstructing discrete-log type public keys. Therefore, we concentrate on
the case where the trusted party’s public keys are themselves of discrete-log type.

We note that Girault’s SC-PKI schemes are not ideally suited to the desired
Bitcoin application. The key generation protocol for the Girault’s scheme takes
as common inputs the group’s parameters (G, g), the user’s identity I and returns
as the user’s public key the tuple (r, rs) where r ∈ G and the user’s secret key
is s ∈ Zq.

By necessity, the discrete logarithm of r to base g should not be learned by
the user, for this would leak the trusted authority’s private key. As a result, two
public key pairs (rA, rsAA) and (rB , rsBB) of users A and B are computed with
respect to different bases rA and rB , respectively. However, this type of public
key (i.e., an element in G2) does not match the Bitcoin specification.

Another self-certified public key scheme based on Elgamal signatures and
provably secure in the Random Oracle Model (ROM) was described by Petersen
and Horster [14]. The security analysis relies on Pointcheval and Stern’s splitting-
lemma security arguments [15], and thus achieves only a loose reduction to the
Discrete Logarithm Problem (DLP).

However, in the Bitcoin setting, a tight proof in the Generic Group Model
(GGM) is more desirable than a loose proof in the RandomOracle Model. Indeed,
the Bitcoin protocol already relies on the security of the ECDSA standard—
which is only shown secure via a GGM (tight) reduction to the Elliptic Curve
Discrete Logarithm Problem (ECDLP). Our Certified Addresses construction is
thus a better fit for Bitcoin in that it is similarly provably secure in the GGM
by a tight reduction to the ECDLP—allowing for the entire security analysis to
occur within the same well-defined model.

Ateniese and de Medeiros [3] describe a new self-certified scheme based on the
Nyberg-Rueppel signature [12] scheme and its variants. The certification scheme
in Section 3 can be seen as a novel self-certified scheme where the certification re-
sults from the trusted party applying the modified Nyberg-Rueppel signature [3]
to the message m = 0.

Description of contents. On Section 2 we begin by giving a description of Bitcoin
and its transaction mechanism and then we introduce a few standard crypto-
graphic concepts and terminology that will be used in later sections. On Section 3
we present our contribution with a brief description of an implementation. On
Section 4 we provide the security analysis of our proposal. Lastly, on Section 5
we give a brief conclusion of the paper.

Certified Bitcoins 85

2 Background

In this section, we provide an overview of the Bitcoin system and its transac-
tion mechanism. We also introduce a few standard cryptographic concepts and
terminology that will be used in later sections.

2.1 Bitcoin Signature Scheme

Bitcoin employs the Elliptic Curve Digital Signing Algorithm (ECDSA) [19] for
all of its signatures. ECDSA is a widely used and trusted standard, and it has
been extensively analyzed. While a security proof for ECDSA in the Standard
Model is not known, it has been proved secure against existential forgery by
adaptive chosen-message attack in the GGM [5].

2.2 Bitcoin Transactions

In order to generate a new Bitcoin address (the core identifier in the Bitcoin
protocol), a user first produces a pair of private and public keys for ECDSA:
(sk, pk). The Bitcoin address relative to (sk, pk) is the hash of the public key,
namely H(pk), where H is a hash function based on SHA-256 and RIPEMD-160.
Some extra bytes are appended as a checksum.

The simplest case is a standard transaction, say with label Tn, between a
sender’s address S, with public key pkS , and one recipient address R. The pay-
load of this transaction, which we denote by [Tn] contains: an input index p
(which refers to the earlier transaction Tp, already committed to the public
ledger), the amount vn of bitcoins to be transferred, the sender’s public key pkS ,
and the receiver’s address R. In addition to its payload, the transaction includes
the sender’s signature τ on the transaction payload. More precisely, in addition
to the payload, the transaction includes a small, standard program in the Bitcoin
Scripting Language that when executed validates the sender’s signature on the
payload, by applying the following simple rules: The signature on Tn is valid if
and only if H(pkS) = S and the application of the ECDSA verification algo-
rithm with public key pkS , message [Tn], and signature τ succeeds. That alone
is insufficient for Tn to be accepted: In addition, the value vn being transferred
should not exceed the value vp in the output of the earlier transaction Tp. If
this latter condition holds, then Tn can be accepted to redeem transaction Tp,
provided that the transaction Tp has not been redeemed earlier (otherwise this is
an attempt to double-spend the same set of bitcoins, and the transaction should
be rejected).

More advance standard transactions with several inputs and several recipient
address can be defined. Since such transactions are not necessary for the under-
standing of this paper we skip their description and refer to [2]. Bitcoin allows
the users to also create non-standard (also called strange) transactions. Strange
transactions have a validity policy, specifically, a strange transaction Tp contains
in its output a piece of code in the Bitcoin Scripting Language which implements
a redemption policy. Subsequent strange transaction Tn that purports to redeem

86 G. Ateniese et al.

Tp should thus supply any necessary inputs for the evaluation of Tp’s policy code,
and the transaction Tn successfully redeems Tp if the evaluation of Tp’s policy
with inputs provided by Tn outputs true (and again under the restriction that
no earlier transaction had redeemed Tp).

3 Certified Bitcoin Address

3.1 Description of the Scheme

In this section we describe our main contribution. First we introduce some math-
ematical concepts and notation. The additive group of integer residues modulo
q is denoted by Zq. The Certification Authority (CA), denoted by T, has the
following public parameters: the description4 G of a finite group of size q, a gen-
erator g of G, and an additional element yT of G. The private parameter of the
CA is the value xT ∈ Zq such that yT = gxT . We also fix a function ρ from G to
Zq. This function could be fairly simple, e.g., it interprets the binary encoding
of an element of G as the encoding of a positive integer.

(Certified Address). A user U can request a certified address to the certifica-
tion authority T by jointly executing the protocol Certified Key Generation
in Table 1. Notice that U samples k uniformly at random in Zq (and so does
T for k′). At this point, U computes the secret key x and verifies that

gx = c · yρ(c)T .

The certified address A is the value H(c).

(Signature Verification). Given a self-certified public key c ∈ G, the signa-
ture verification process works by first extracting the embedded public key
y and then using the standard verification. The only operation that needs
to be added is the extracting procedure (step 2 on the right of Table 1).

(Certified Transaction). Let S be an address and R a certified address. Be-
fore sending bitcoins to the address R, the payer S checks whether there
already exists a transaction redeemed by R in the ledger. Notice that R can
ensure that such a transaction exists by sending some bitcoins to itself (i.e. a
self-transaction). We call the first redeemed transaction of a certified address
the address certification transaction.

The correctness of the public key derivation follows:

gx = gk+k′+ρ(c)xT = gk+k′ · gρ(c)xT = c · yρ(c)T (1)

For a comprehensive list of the possible interactions between standard and
certified addresses we refer to Figure 1.

4 By description here we mean a (binary) encoding of G and its operations that can
be programmed into a computer.

Certified Bitcoins 87

Table 1. Comparison between Bitcoin and Certified Bitcoin. In both systems, the
value A represents the Bitcoin address. The certified key generation is blinded while
the transaction verification needs only a single extra step (step 2 on the right). All
operations on the exponents are taken modulo q.

Standard Bitcoin Certified Bitcoin

Common inputs: G, g Common inputs: G, g, yT

Standard Key Generation: Certified Key Generation:

User

1. x ← Zq

2. y := gx

3. A := H(y)

User CA

1. k ← Zq

2. h := gk h

c, x̄

3. k′ ← Zq

4. c := h · gk′

5. e := ρ(c)
6. x̄ := k′ + e · xT

7. x := x̄ + k
8. A := H(c).

Standard Verification: Certified Verification:

1. Check A = H(y);

2. Check VrfECDSA
y ([T], τ)

1. Check A = H(c);

2. Set y := c · yρ(c)
T

3. Check VrfECDSA
y ([T], τ)

3.2 Implementation Designs

Because of how Bitcoin handles transactions internally, it is not possible to check
that an address is certified by just looking at the transaction script. A standard
transaction script is shown below:

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

scriptSig: <sig> <pubKey>

where scriptPubKey is the input script and scriptSig is the output script. To
verify a transaction, the following actions are performed: (1) after stacking up
the signature of the transaction and the redeemer’s public key, (2) the latter
is hashed by the OP_HASH160 operation and (3) the hashed valued is compared
with the <pubKeyHash> value. The problem is that such a value is a hash of
the public key and not a bitcoin address. The operation OP CHECKSIG is able to

88 G. Ateniese et al.

Fig. 1. Certified Bitcoin transactions: The figure shows all possible types of transac-
tions in a ledger with both standard and certified bitcoins. In the second block, a bitcoin
is sent to a newly created and supposedly-certified address. This first self transaction
in the third block designate that address as indeed certified. In the 5th block, bitcoins
are sent from a certified address to a standard address. The last transaction is between
standard bitcoin addresses.

distinguish whether the address is certified (by applying the certified signature
verification algorithm), but it has no way to report the type of address to the
Bitcoin client.

There are a few ways to implement our proposal into the Bitcoin client. We
briefly describe three viable options next.

New operation OP EXTCERTKEY. For this implementation, we extend the script-
ing language with a new operation OP EXTCERTKEY that takes a self-certified
public key c as input and then extracts the public key y from it, pushing the ex-
tracted key y into the stack, and then re-using the standard signature operation
OP CHECKSIG to verify the signature against the extracted key (now in the stack).
The size of the transaction would increase by the size of the new operation code
(1 byte):

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_EXTCERTKEY

OP_CHECKSIG

New operation OP CHECKCERTSIG. Instead, we could extend the scripting lan-
guage with a new operation OP CHECKCERTSIG that will exclusively handle certi-
fied transactions by first extracting the public key y from the self-certified public
key c to later perform the standard signature verification. The transaction script
for a certified transaction replaces the standard operation OP CHECKSIG with this
new operation:

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY

OP_CHECKCERTSIG

Certified Bitcoins 89

Modify the operation OP CHECKSIG. Another way is to just modify the client to
interpret each transaction as possibly a certified transaction. In this case, the
client would first execute the script normally, but if it failed, it would re-attempt
the execution using the certified transaction algorithm (i.e., performing an oper-
ation such as OP CHECKCERTSIG instead of OP CHECKSIG). The client would then
report one of (a) successful standard transaction; (b) successful certified trans-
action; or (c) verification failure accordingly. The Bitcoin scripting language is
unmodified in this approach.

3.3 Security Requirements and Goals

A standard Bitcoin address is self-generated, while a certified address is jointly
computed with the involvement of the CA. Thus, it is natural to require that
Bitcoin transactions be hard to forge even by a malicious CA. Another security
requirement is that certificates must be unforgeable—if the adversary does not
know the CA’s secret key, it cannot generate a certificate and a transaction
(signature) through that certificate. Certified Bitcoin addresses share some ideas
with both Self-Certified Public Keys [7] and Blind Signatures [6]. The security
of our construction holds in the GGM which is the same on which the security
of standard Bitcoin relies on. This allows us to provide a security analysis of the
protocol within a single and well-defined model.

Crucial to our security formulation is the stipulation that an address be rec-
ognized as certified only after it issues a signature (i.e., there is a certified trans-
action in the public ledger which redeems from it). Indeed, in the absence of the
burden of demonstrating knowledge of the secret key, it is trivial for an adver-
sary to “pretend” to have a certificate, since the output c of an (honest-party)
execution of the certification protocol is simply an uniformly distributed element
in G.

While, by unforgeability of ECDSA, the adversary can not redeem bitcoins
from the related address, they may still pretend that the address has been cer-
tified. This attack makes no sense in the context of standard Bitcoin addresses:
A rational adversary willing to maximize their gain would prefer to exhibit an
address for which the secret key is known (to be able to spend any received
coins). In our context, on the other hand, if a malicious user falsely claims that
an address is certified, it may induce other users to complete unpremeditated
transactions.

4 Security of the Certified Bitcoin Addresses

In this section we provide a formal security experiment that captures the informal
requirements given in Section 3. Then we show that no ppt generic adversary
can win the experiment, providing a formal proof of security to our construction.

We recall that the GGM captures algorithms that access group operations
(and indeed the group encoding) through black box function calls. The proofs
are inspired by the techniques described in Naccache et al. [10].

90 G. Ateniese et al.

In the GGM, the group encoding σ(·) : Zq → G represents an encoding oracle
that implements a homomorphism from Zq onto G.

As before, we employ a function ρ(·) from G to Zq, and via notation overload
also see ρ(·) as a function from G to Zq. To recall, since σ(·) encodes elements
of G into binary strings, these strings may thus be interpreted as the binary
expansion of an non-negative integer, and that integer can further be reduced by
computation of its positive remainder modulo q.

In this setting, one describes the public key y = gx as {σ(1), σ(x)}. This
notation just means that the homomorphism σ(·) maps 1 to g and therefore
maps x to y. σ(·) is an exponential notation, so x is unrecoverable from σ(x).

The group operation oracle · ⊕ · takes two encoded group elements σ(v1),
σ(v2), and returns the encoded product σ(v1 + v2). (Since this is exponential
notation, the product translate as a sum in the exponents.) Similarly, given
σ(v) and an integer u, one can implement the square-and-multiply algorithm
for exponentiation, using multiple calls to the group operation oracle, to obtain
σ(uv). One also needs a group inversion oracle #σ(v)→ σ(−v).

4.1 Unforgeability Formalizations and Proofs

Wenowprovide a rigorousdefinition of security for the construction in 3.1 by defin-
ing the Signature Unforgeability Experiment. This is an adversarial game wherein
an attacker may obtain one or more certified addresses by executing the protocol
with the CA and/or compromise the CA. To succeed in the experiment, the at-
tacker needs to produce a valid message-signature tuple for a fresh certified public
key (i.e., one requested by an honest party to the potentially malicious CA).

Notation: k denotes a security parameter, and poly(k) a value allowed to grow
as a polynomial function of k. A stands for the attacker or adversary. CKGP,T

represents the Certified Key Generation protocol described in 3.1, where P is
some party. In the adversarial game, the adversary has oracle access OT to the
trusted party and can execute the protocol CKGA,OT

, obtaining new certified
keys at will. It may also compromise the trusted party directly, in which case it
can execute the protocol CKGA,T entirely as a procedure.

The adversary may also request that new (honest) parties P be instantiated
and obtain oracle access OP with which to execute CKGOP ,OT

to produce a
certified address c for P . Alternatively, if A has compromised T, it can execute
CKGOP ,T, which additionally gives it T’s view of P ’s certificate key generation.

Finally the adversary can use oracle access OP to request signatures SignECDSA
OP

(·)
on arbitrarily chosen messages. The security experiment is described in Fig. 2.

Informally, we say that an adversary wins an experiment if only if the output
of the experiment is 1. The security claim is that, under the GGM, there is no
efficient adversary that wins the Signature Unforgeability Experiment.

Before stating our first security result, we informally recall the hypothesis of
the Security Theorem of the ECDSA signature scheme in the GGM (Thrm. 2
in D. Brown [5]). The theorem holds under the assumptions that the private
keys and ephemeral keys are uniformly random, the hash function is collision
resistance and satisfies two other properties called (1) zero-resistance, i.e., an

Certified Bitcoins 91

Expsig−unf
A (k) :

1. (G, g, xT, yT) ← Gen(1k) where |G| = poly(k), and set L ← ∅, S ← ∅;
2. A with input G, g, yT has oracle access to T = T(xT) with which

can play the protocol CKG·,OT

Let (c, x̄) be the output of T after any execution of CKGA,OT

L maintains all certificates whose secrets were produced by A:
Update L ← L ∪ {c};

3. Optionally A can extract the secret key xT of the trusted party by
compromising it;

4. A may request that arbitrary honest parties P be instantiated. Specifi-
cally, an oracle machine OP is instantiated and set in pause state;

5. Through oracle access OP , A may request that CKGOP ,OT be executed
to output a certified address c = cP for P (A has bystander view of an
honest party enrollment);

6. If A has compromised T, it may request that CKGOP ,T be executed,
giving A the trusted party view of an honest party enrollment;

7. A may request that honest party P sign arbitrary messages m of A’s
choice, executing τ ← SignECDSA

OP
(m) = SignECDSA

cP ·yρ(cP)

T

(m)

Let (cP ,m, τ) be the output after any such execution
S maintains the set of signatures directly given to A:
Update S ← S ∪ {(cP ,m, τ)};

8. Eventually A outputs a triple s = (c,m, τ); if

VrfECDSA
y (m, τ) = 1 and c′ /∈ L, and s /∈ S

holds where y = c · yρ(c)
T , then output 1 else 0.

Fig. 2. The Expsig−unf experiment

adversary cannot find a message that the hash function maps to 0k), and (2)
uniformity, roughly, the distribution of the output value of the hash function
on input a uniformly and random message is statistically close to the uniform
distribution (see [5] for more details). These two properties are generally believed
to hold true in practice for cryptographic hash functions in current usage, in
particular the ones employed in the Bitcoin protocol.

Theorem 1. If the Bitcoin’s hash function is collision resistant, zero resistant
and uniform, and the ephemeral keys are uniformly random, then there is no
efficient, generic adversary that achieves a non-negligible probability of success
in Expsig−unf .

We prove the theorem by transforming the above experiment into related ones
by reasoning about the adversary view (hybrid argument).

First, we note that we can assume that A always compromises T right after
receiving the public parameters. Indeed, the adversarial goal in the experiment
is the same whether T is compromised or not, and A’s view of the experiment
is strictly enlarged by directly playing the role of T throughout.

92 G. Ateniese et al.

Now we look into more detail on the protocol algorithm CKG within the GGM.
Whenever a party chooses some random value r and needs to compute gr ∈ G,
it actually needs to consult the encoding oracle for σ(r). The encoding oracle
in a GGM simulation maintains a list of previously asked for inputs ij it has
been given and the values it has returned for them: {i1, σ1 = σ(i1), . . . , in, σn =
σ(in)}. If the new input r matches an earlier i�, it will return the corresponding
σ�. Otherwise, it generates a completely new random binary string z, newly
defines σ(r) := z and appends to its list {i1, σ1, . . . , in, σn, in+1 = r, σn+1 =
σ(r) = z}, returning z to the caller.

We now modify the experiment simulation to Exp
sig−unf

A . The only difference

between Exp
sig−unf

A and Expsig−unf
A is as follows: When an honest party P en-

gages with A (impersonating T) to obtain a certificate, and A generates k′ and
attempts to compute c = hgk

′
= σ(k + k′), where k is the randomness com-

puted by P ; then if the GGM oracle already has some i� = k + k′ in its list of

previously encoded group elements, the experiment Exp
sig−unf

A terminates early,
with A victorious. Let us call Coll this event. Otherwise, it continues identically
as Expsig−unf

A , i.e., the GGM oracle computes an entirely new random string
c = σ(k + k′) and returns it to A.

We claim that A’s additional probability of success in Exp
sig−unf

A versus

Expsig−unf
A is negligible. For if the adversary were able to compute k′ such that

k′ = i� − k for a previously seen i�, it would also be able to extract the discrete
logarithm k = i� − k′ from h = gk, given only h. The claim then obviously fol-
lows by the standard security assumption of hardness of the Discrete Logarithm
Problem in elliptic curves (ECDLP).

Within Exp
sig−unf

A it holds that even when honest party P interacts with a
malicious trusted party, the protocol execution guarantees that c, and thus the
random contribution x̄ = k′ + ρ(c) · xT of T to P ’s private key x = x̄ + k is
uniformly and randomly distributed.

Specifically, let u be the number of instantiated honest parties P (i.e., u is
the number of execution of the CKG protocol between an honest party and the
trusted party) and let ε bound the probability that a ppt generic algorithm
solves the DLP in G, we have that:

Pr
[
Expsig−unf

A (k) = 1
]
≤ Pr

[
Exp

sig−unf

A (k) = 1
]
≤

≤ Pr
[
Exp

sig−unf

A (k) = 1 |¬Coll
]
+ Pr [Coll] ≤

≤ Pr
[
Exp

sig−unf

A (k) = 1 |¬Coll
]
+ u · ε

If ¬Coll holds the experiment guarantees that the honest parties private keys

are uniformly and randomly generated. Notice that the experiment Exp
sig−unf

A
under the condition ¬Coll is equivalent to u independent and parallel executions
of the existential forgery experiment under the chosen-message attack of the
ECDSA. We now can directly invoke the security of ECDSA in GGM. In fact,
the private keys are uniformly and random, and by hypothesis, the hash function

Certified Bitcoins 93

is collision resistance, zero-resistance and uniform and the ephemeral keys are
uniformly and random.
Specifically, let εcrh be the probability under collision resistance attack for the
underlying hash function, then:

Pr
[
Expsig−unf

A (k) = 1
]
≤ u · (εcrs + poly(k) · ε)

where the poly(k) depends on the running time of the adversary. ��
In the above we did not prove that the generation of certificates itself was

unforgeable—indeed, by disclosing T’s private key to A we made it trivial for A
to generate new certificates. Merely proving that a malicious T cannot bias the
selection of private keys by honest parties was sufficient given that the Bitcoin
construction requires issuing a signature to complete certificate validation. We
now consider the issue of unforgeability of certificates separately.

The property is not strictly necessary to the security of the certified Bitcoin
address construction, since without a previously seen signature issued by a Bit-
coin address, it cannot be considered certified. However, it provides evidence that
our Certified Key Generation mechanism can be used in any cryptographic ap-
plication, provided that the certificate be accompanied by a proof of knowledge
of the certificate’s associated private key.

We omit a formal definition of security requirements of self-certified public
schemes here for conciseness reasons, and instead refer the reader to [7]. More
specifically, we provide an adversarial-game formulation of security for the fol-
lowing claim: When the trusted party is honest, adversaries cannot on their own
generate certificates on public keys for which they know the private key.

Expcert−unf
A (k) :

1. (G, g, xT, yT) ← Gen(1k) where |G| = poly(k), and set L ← ∅;
2. A with input G, g, yT has oracle access to T = T(xT) with which

can play the protocol CKG·,OT

Let (c, x̄) be the output of T after any execution of CKGA,OT

L maintains all certificates whose secrets were produced by A:
Update L ← L ∪ {c};

3. Eventually A outputs x, c; if

y = gx = c · yρ(c)
T , where c /∈ L

holds then output 1 else 0.

The security claim is that, under the GGM, there is no efficient adversary A
that wins the Certificate Unforgeability Experiment Expcert−unf .

Theorem 2. There is no efficient, generic adversary that achieves a non-negligible
probability of success in Expcert−unf .

As a generic algorithm, A works as follows: It maintains a list of linear poly-
nomials {Fi}, where Fi = αi + βiX , and the coefficients lie in Zq. The list is

94 G. Ateniese et al.

initiated as {F1 = 1, F2 = X}. The algorithm also maintains a list {σi} of en-
codings, initiated as {σ1 = σ(1), σ2 = σ(xT)}. At the k-th time the algorithm
queries the oracle, it provides the indices i, j and a bit b, and the oracle responds
with either σk = σi ⊕ σj or σi ⊕ (#σj), according to the case b = 0 or b = 1,
respectively. The algorithm adds σk and Fk = Fi ± Fj mod q to each of the
respective lists, with the + sign being chosen if b = 0. (So it is the same sign
as in the definition of σk in terms of σi and σj .) Without loss of generality, we
may assume that the Fi are distinct linear polynomials with coefficients in Zq.
If, during the execution of the protocol, it happens that Fi(x) = Fj(x) mod q,
with i �= j, it follows that F = Fi−Fj is a non-zero polynomial, with F (xT) = 0
mod q. This can allow A to solve it for xT, thus extracting the trusted party’s
secret. If the discrete logarithm is hard in G this can only happen with negligible
probability, and we can rule out the occurrence of such execution sequences from
the game simulation (called unsafe sequences in GGM terminology).

Consider now an algorithm that produces a tuple (c, x), after u queries to the
group operation oracle. Note that in this case, the verification equation implies
that c = σ(x − ρ(c) · xT). Let e = ρ(c) and P = x − e · X . If P is not in the
list of oracle queries performed by the algorithm, augment the list by adding
Fu+1 = P at the end, and increment the number of queries u← u+ 1.

Let Fj be the unique appearance of the polynomial P in the list, without
loss of generality. Remind that, from the hardness of DL problem in G, there
does not exist a index i such that Fi(xT) ≡ Fj(xT) mod q. This implies that the
group operation oracle may return a random value for σj , because Fj represents
a query for a new encoding when the encoding oracle is called at step j. The
probability that σj equals c is therefore, no more than 1/|G|, as (almost) all
values are now equally likely. In other words, the probability that the adversary
will arrive at such an execution sequence is 1/|G| for each oracle query, and thus
overall negligible if given only a polynomial number of queries. ��

Implication of Certificate Unforgeability to Identity Theft Mitigation. Let us
briefly consider the implications of certificate unforgeability for our construc-
tion, where the certification authority is functionally trustworthy, and indeed
collects proofs of (real-world) identity from the entities it certifies. Now, recall
the attack scenario where a man-in-the-middle (MITM) attacker changes the
payee’s Bitcoin address for the attacker’s address. Since (by the result above) an
attacker cannot forge certificates, the payee has a recourse to report the fraud
and bind it to the identity of the malicious party, with cooperation of the CA. To
provide a full proof of security of this fact we would have to provide (verbose, but
intuitively straightforward) formalizations of CA functional trust and of identity
theft in the context of our Bitcoin construction—for reasons of brevity we refrain
from expanding on it here.

5 Conclusion

The decentralized nature of Bitcoin is a critical component of its success. In this
paper we describe an optional Bitcoin address certification mechanism that in-

Certified Bitcoins 95

corporates trustworthiness from real-world entities into the system, to mitigate
against existing reservations to the adoption of Bitcoin as a legitimate currency.
We describe how to implement the scheme with the current Bitcoin ledger, al-
lowing certified and non-certified addresses to be used concurrently. In addition,
we provide a proof of security within an adversarial-game security model, under
the Generic Group Model of computation.

Acknowledgments. This research was supported in part by the PRIN project
TENACE.

References

1. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluat-
ing user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859,
pp. 34–51. Springer, Heidelberg (2013)

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Secure mul-
tiparty computations on bitcoin. Cryptology ePrint Archive, Report 2013/784
(2013), http://eprint.iacr.org/

3. Ateniese, G., de Medeiros, B.: A provably secure nyberg-rueppel signature
variant with applications. Cryptology ePrint Archive, Report 2004/093 (2004),
http://eprint.iacr.org/

4. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better how to make bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012)

5. Brown, D.R.L.: The exact security of ecdsa. Technical report, Advances in Elliptic
Curve Cryptography (2000)

6. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO, pp. 199–203. Plenum Press, New York (1982)

7. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)

8. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: Characterizing payments among men with
no names. In: Proceedings of the 2013 Conference on Internet Measurement Con-
ference, IMC 2013, pp. 127–140. ACM, New York (2013)

9. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from bitcoin. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy, SP 2013, pp. 397–411. IEEE Computer Society, Washington, DC (2013)

10. Naccache, D., Pointcheval, D., Stern, J.: Twin signatures: an alternative to the
hash-and-sign paradigm. In: Proceedings of the 8th ACM Conference on Computer
and Communications Security (ACM CCS), pp. 20–27 (2001)

11. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Consulted 1, 2012
(2008)

12. Nyberg, K., Rueppel, R.: A new signature scheme based on the DSA giving mes-
sage recovery. In: Proceedings of the First ACM Conference on Computer and
Communications Security (ACM CCS 1993), pp. 58–61. ACM Press (1993)

13. Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the bitcoin
transaction graph. Future Internet 5(2), 237–250 (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/

96 G. Ateniese et al.

14. Petersen, H., Horster, P.: Self-certified keys – concepts and applications. In: Pro-
ceedings of the Third Conference on Communications and Multimedia Security.
Chapman & Hall (1997)

15. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.)EUROCRYPT1996.LNCS,vol. 1070,pp. 387–398. Springer,Heidelberg (1996)

16. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013)

17. Saeednia, S.: A note on girault’s self-certified model. Information Processing Let-
ters 86(6), 323–327 (2003)

18. Wired.com. Bitcoin bubble bursts as china cracks down on digital currency
(December 2013),
http://www.wired.com/wiredenterprise/2013/12/china_crackdown/

19. X9.62-2005, Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Standard (ECDSA) (November 2005)

http://www.wired.com/wiredenterprise/2013/12/china_crackdown/

Leakage Resilient Proofs of Ownership

in Cloud Storage, Revisited�

Jia Xu and Jianying Zhou

Infocomm Security Department, Institute for Infocomm Research, Singapore
{xuj,jyzhou}@i2r.a-star.edu.sg

Abstract. Client-side deduplication is a very effective mechanism to
reduce both storage and communication cost in cloud storage service.
Halevi et al. (CCS ’11) discovered security vulnerability in existing im-
plementation of client-side deduplication and proposed a cryptographic
primitive called “proofs of ownership” (PoW) as a countermeasure. In
a proof of ownership scheme, any owner of the same file can prove
to the cloud storage server that he/she owns that file in an efficient
and secure manner, even if a bounded amount of any efficiently ex-
tractable information of that file has been leaked. We revisit Halevi et
al.’s formulation of PoW and significantly improve the understanding
and construction of PoW. Our contribution is twofold: Firstly, we pro-
pose a generic and conceptually simple approach to construct Privacy-
Preserving Proofs of Ownership scheme, by leveraging on well-known
primitives (i.e. Randomness Extractor and Proofs of Retrievability) and
technique (i.e. sample-then-extract). Our approach can be roughly de-
scribed as Privacy-Preserving PoW = Randomness Extractor + Proofs
of Retrievability. Secondly, in order to provide a better instantiation of
Privacy-Preserving-PoW, we propose a novel design of randomness ex-
tractor with large output size, which improves the state of art by reducing
both the random seed length and entropy loss (i.e. the difference between
the entropy of input and output) simultaneously.

Keywords: Cloud Storage, Client-side Deduplication, Proofs of Own-
ership, Leakage Resilience, Privacy-Preserving, Proofs of Retrievability,
Randomness Extractor, Sample-then-Extract.

1 Introduction

Cloud storage service (e.g. Dropbox, Skydrive, Google Drive, iCloud, Amazon
S3) is becoming more and more popular in recent years [2]. The volume of
personal or business data stored in cloud storage keeps increasing [3,4,5]. In
face to the challenge of rapidly growing volume of data in cloud, deduplication
technique is highly demanded to save disk space by removing duplicated copies
of the same file (Single Instance Storage). SNIA white paper [6] reported that the
deduplication technique can save up to 90% storage, dependent on applications.

� This work is supported by Singapore A*STAR project SecDC-112172014. The full
version of this work is available at Cryptology ePrint Archive, Report 2013/514 [1].

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 97–115, 2014.
c© Springer International Publishing Switzerland 2014

98 J. Xu and J. Zhou

Traditional deduplication technique (i.e. server side deduplication [7,8,9,10])
in centralized storage system removes duplicated copies residing in the same
server. Unlike server-side deduplication, client-side deduplication in cloud storage
system will identify duplicated copies such that one copy resides in the cloud
storage server and the other resides remotely in the cloud client, and saves the
uploading bandwidth (time, respectively) for the duplicated file. In both server
and client side deduplication, all owners of the deduplicated file will be provided a
soft link to the unique copy of that file stored in the centralized storage or cloud
storage respectively. In contrast to server-side deduplication which saves only
storage on server side, client-side deduplication saves not only server storage but
also network bandwidth and transmission time, and benefits both cloud server
and client.

However, how to implement client-side deduplication securely in an untrusted
environment, is far more challenging than it first appears [11,12]. Arguably,
the root cause of the difference between security requirements of server-side
and client-side deduplication, is that server-side deduplication is executed in the
trusted server, while client-side deduplication is distributively executed between
the trusted1 cloud server and potentially untrusted cloud client. Here the cloud
user is considered as potentially untrusted, since anyone from the untrusted
Internet could become a cloud user and the cloud server is unable to distinguish
honest users from malicious users (i.e adversaries) in general.

Server side deduplication may simply apply a collision resistant hash function
(say SHA256) to identity duplicated files in the storage server, and remove the
extra copies to achieve “single instance storage”. An existing implementation
of client-side deduplication (called as “hash-as-a-proof” method) is as below:
Cloud storage server keeps a lookup table, which records hash value of each file
in its storage. Cloud user Alice, who tries to upload file F to the cloud storage,
will firstly send hash value hash(F) to the cloud server. If hash(F) is not found
in the lookup table, then Alice should upload file F to the cloud storage and
cloud server will update the lookup table by adding entry hash(F). Otherwise,
cloud server has a copy of F already, which could be uploaded by other users.
Consequently Alice’s uploading process will be saved, and Alice is allowed to
download F from cloud server on demand. In the above method, the knowledge
of hash value hash(F) is treated as a “proof” that Alice owns file F . Previously,
Dropbox2 applied the above “hash-as-a-proof” method on block-level cross-users
deduplication [12][13].

Halevi et al. [12] targets the critical security vulnerability in the above “hash-
as-a-proof” method, where the leakage of a short hash value hash(F) would lead
(or amplify) to leakage of entire file F to outside adversary. Their work pro-
poses a cryptographic primitive called “proofs of ownership” (PoW) to address

1 The cloud server is trusted in data integrity and availability in this work.
2 In Feb 2012, we noticed that Dropbox disabled the deduplication across different
users, probably due to recent vulnerabilities discovered in their original cross-user
client-side deduplication method. This also indicates the importance and urgency in
the study of security in client-side deduplication.

Leakage Resilient PoW in Cloud Storage, Revisited 99

such leakage amplification vulnerability. The distinguishable feature of Halevi et
al. [12] from all of previous study in security of deduplication (e.g. convergent
encryption [7,8,14]), is that Halevi et al. [12] adopts a bounded leakage model
to characterize the untrusted environment in which the client-side deduplication
runs. Their formulation requires that, after a setup between one owner of file
F and the cloud storage server, any owner of F can efficiently prove (in the
sense of “interactive proof system” [15]) to the cloud storage server that he/she
indeed owns file F without really transmitting F , even if a bounded amount
of any efficiently extractable information of F has been leaked via some owner
(considered as the accomplice or colluder) of F intentionally or unintentionally.

In this work, we revisit Halevi et al. [12]’s formulation, and extend it in two
aspects: (1) We shift a significant amount of workload (precisely, the setup proce-
dure) from cloud server to a cloud user, which reflects our understanding of real
world setting—the average computation power allocated to each online user by
cloud server is typically smaller than the computation power of an average cloud
user. (2) We protect data privacy against verifier (e.g. the cloud storage server),
during the interactive proof protocol. Halevi et al. [12]’s formulation does not
address privacy protection of user data against the cloud storage server. Pru-
dent users may have reasons to not trust the cloud server. For example, the cloud
server may be hacked (e.g.[16]), making it a single point of failure of user data pri-
vacy. In addition, the cloud server may make careless technical mistakes [17,18],
which may expose user data to unauthorized persons. In this work, we will trust
cloud storage server in data availability and integrity (which is the research topic
of proofs of storage [19,20]), but not trust it in data privacy.

1.1 Overview of Our Result

Under the framework of Halevi et al. [12], in a secure PoW scheme, if the input
file F has k bits min-entropy to the view of adversary at the very beginning and
at most T (< k−λ) bits of message about F is leaked at adversary’s (adaptive)
choice, then the adversary should not be able to convince the cloud storage server
that he/she owns file F with significant probability.

1.1.1 Generic Construction of Privacy-Preserving-PoW. Intuitively,
our generic construction of Privacy-Preserving-PoW is as below: At first, ap-
ply a proper3 randomness extractor over file F to output T + 2λ (< k) bits
almost-uniform random number YF . Next, apply a proper proofs of retrievabil-
ity (POR [19]) scheme over YF . Since the output YF of the randomness extractor
is statistically close to true uniform randomness, any adversary that learns at
most T bits arbitrary information of F , cannot output the T + 2λ bits long
value YF entirely with significant probability, and thus cannot succeed in the
verification of POR scheme. The difference (k − T) is like the entropy loss in
randomness extractor, thus the smaller the difference (k− T) is , the better the
PoW scheme is in aspect of leakage resilience.

3 See Theorem 1 and Theorem 2 for the explanation of “proper” randomness extractor
and “proper” POR.

100 J. Xu and J. Zhou

Our result can be combined with convergent encryption or Message-Locked
Encryption [7,8,21,10,22], in order to construct strong leakage-resilient client-
side deduplication scheme for encrypted data in cloud storage and thus protect
data privacy against both outside adversary and curious cloud server.

We remark that formulating and constructing privacy-preserving PoW scheme
are very challenging.PreviousworkbyNg et al. [23]made the first attempt towards
this goal, but gavean unsatisfactory solution:As pointed out byXu et al. [21], Ng et
al. [23] formulates the privacy property locally for each block and their scheme
suffers from “divide and conquer” attack: If an input file with N blocks has 1 bit
min-entropy in each block independently, then this file could be recovered by an
outside adversary via brute force search in time O(N) instead of O(2N).

1.1.2 Improved Randomness Extractor. Unfortunately, the state of art
[24,25] (with restriction of small seed size and practical computation cost) of ran-
domness extractor only gives us a PoWwith k−T = Ω(|F |) and requires relatively
large random seed. We propose a new randomness extractor with shorter random
seed and results in a PoW with k − T = O(|F |1−c) for any constant c ∈ (0, 1).

Table 1. Compare our PoW scheme with existing works. Unsatisfactory items are
highlighted in italic font and red color.

Scheme Distribution
of input

Seed
Size

Computation
complexity

Privacy-
Preserving

Security Model

PoW1 [12] Any O(λ) Expensive [12] No (Leaking
whole file F)

Stand. Model

PoW2 [12] Any ≥ 6T
†

Prohibitively
expensive [12]

No Stand. Model

PoW3 [12] Generalized
block-fixing
distribution

O(λ) Practical Unclear Rand. Oracle; Un-
justified Assump.‡

This work Any O(λ) Practical Yes Stand. Model

†T may take value 64MB.
‡ Theorem 3 in [12] relies on an unproven assumption that the code generated by the
third construction PoW3 is “good” and authors of [12] admits that it is very hard to
analyze this unproven assumption. See text surrounding Theorem 3 in [12].

Table 2. Compare randomness extractors with output size �ρ, where � could take value
as large as 221 ≈ 2 millions. The input is file F . Unsatisfactory items are highlighted
in italic font and red color.

Scheme Distribution of input Randomness complexity Computation complexity Entropy Loss Security Model
HMAC(s1,F)‖...
‖HMAC(s�,F) Any �λ �|F | small Random Oracle

Inner Product

Universal Hash

[26]

Any 2|F | Ω(|F | log(�ρ)) 2 log(1/ε) Stand. Model

[24] Any O(�λ) 2|F | log � Ω(|F |) Stand. Model

This work Any O(λ) 2|F | log � O(|F |1−c) † Stand. Model

†c ∈ (0, 1)

Leakage Resilient PoW in Cloud Storage, Revisited 101

1.2 Contributions

Our main contributions can be summarized as below:

1. We propose a generic and conceptually simple paradigm to construct proof
of ownership scheme: PoW=Randomness Extractor + Proofs of retrievabil-
ity. To the best of our knowledge, this is the first work that bridges the
proof of ownership and randomness extractor. Our result improves previous
works on PoW in the following aspects: (1) Complete proof of security in
standard model for any distribution of input file, while still being practi-
cal. (2) The first generic framework to construct PoW and benefited from
the future advance in randomness extractor or proofs of retrievability. (3)
Privacy-Preserving against verifier (e.g. cloud storage server). A detailed
comparison between our work and existing PoW schemes is given in Table 1
(on page 100).

2. We propose a novel construction of randomness extractor with large output
size, which improves existing work [24] by reducing both the seed length and
entropy loss (i.e. the difference between entropy of input and output) simul-
taneously. This new randomness extractor may have independent interest. A
detailed comparison between our work and existing randomness extractors
is given in Table 2 (on page 100).

1.3 Organizations

We introduce preliminaries and background in Section 2 and formulation in
Section 3. We present our overall solution in a modular approach in Section 4
and Section 5: At first in Section 4, we propose the construction of Privacy-
Preserving-PoW and analyze its security, by treating an important component
(i.e randomness extractor) as black-box. Next, Section 5 constructs the required
randomness extractor with rigorous analysis and completes the description of
the proposed solution. Section 6 concludes this paper. Due to space constraint,
experiment result and most detailed proofs will be available only in full paper [1].

2 Preliminaries and Background

2.1 Notations and Definitions

Key notations in this paper are defined in Table 3 (on page 102).

Definition 1 (Statistical Difference). The statistical difference between two
random variables X and Y on the same space U is defined as

SD(X,Y) =
1

2

∑
a∈U

∣∣∣Pr[X = a]− Pr[Y = a]
∣∣∣ (1)

Some useful background information about statistical difference is provided in
full paper [1].

2.2 Proofs of Retrievability

We adopt the formulation of proofs of retrievability from existing works [27,28]
and make some syntactical modifications according to our needs to construct
proofs of ownership scheme.

102 J. Xu and J. Zhou

Table 3. Key Notations

Notation Semantics

λ The security parameter.

PPT Probabilistic polynomial time (w.r.t. security parameter λ, if not explicitly stated otherwise).

[n] The set of integers 1, 2, 3, 4, . . . , n.

h(·) Full domain collision resistant hash function (e.g. SHA256).

F [i] The projection of bit-string F onto i-th coordinate (i.e. the i-th bit of F , 1 ≤ i ≤ |F |).
F [{i1, . . . , in}] The projection of bit-string F onto the subset of coordinates (i.e F [i1]‖F [i2]‖ . . . ‖F [in],

where 1 ≤ i1 < i2 < . . . < in ≤ |F |).
H∞(X) min-entropy of random variable X.

SD(X,Y) Statistical difference between random variables X and Y .

X ≈ε Y SD(X,Y) ≤ ε; X is ε-close to Y .

B|A=a The conditional distribution of B given that A = a for jointly distributed random variables (A,B).

x ∼ D Sample x according to distribution D.

U|n| Independent uniform random variable over {0, 1}n.
U|n|,1,

U|n|,2,... Independently and identically distributed uniform random variables over {0, 1}n.

Definition 2 (Proofs of Retrievability). A proofs of retrievability (POR)
scheme consists of PPT algorithms KeyGen,Tag,GenChal,GenProof and Verify,
which are described as below
• KeyGen(1λ) → (pk, sk). The key generation algorithm takes a security pa-

rameter λ as input and outputs a pair of public-private key (pk, sk).
• Tag(sk, {Fi}ni=1) → {σi}ni=1. The tag generation algorithm computes an au-

thentication tag σi for each file block Fi.
• GenChal(pk, n, c) → (C, ΨF , Ψσ). The challenger generation algorithm takes

as input the public key pk, erasure encoded file size n (in term of blocks), and
the sample size c, and outputs a sample C ⊂ [n] with |C| = c and meta-data
(ΨF , Ψσ).

• GenProof(pk, {(Fi, σi)}ni=1, C, ΨF , Ψσ)→ (F̄ , σ̄), where F̄ := GenProofdata(pk,
{Fi}ni=1, C, ΨF) and σ̄ := GenProoftag(pk, {σi}ni=1, C, Ψσ). The algorithm
GenProofdata takes as input the public key pk, file blocks Fi’s, a sample set
C ⊂ [n], and meta-data ΨF , and outputs an aggregated file block denoted
as F̄ . The algorithm GenProoftag takes as input the public key pk, authen-
tication tags σi’s, a sample set C ⊂ [n], and meta-data Ψσ, and outputs an
aggregated authentication tag denoted as σ̄.

• Verify(K, F̄ , σ̄, ΨF , Ψσ, C)→ Accept or Reject. If K is private key sk, then
the POR scheme supports private key verifiability; if K is public key pk, then
the POR scheme supports public key verifiability.

We remark that the above formulation is syntactically different from origi-
nal [27,28] in the sense that we explicitly decompose the algorithm GenProof
into two sub-routines: GenProofdata and GenProoftag, where GenProofdata pro-
cesses selected data blocks Fi (i ∈ C) and GenProoftag processes corresponding
authentication tags σi’s. Many existing works (e.g. [27,28] and Merkle Hash Tree
based POR) support such decomposition, but a few works (e.g. [19]) do not.

For some POR schemes [27,28], meta-data ΨF and Ψσ are two seeds from which
a list of coefficients {αi}i∈C , {βi}i∈C can be generated, and the aggregated values
are F̄ =

∑
i∈C αiFi and σ̄ =

∑
i∈C βiσi.

Definition 3 (Soundness of POR [19,27,28]). Let ε ∈ (0, 1). A POR scheme
is ε-sound, if there exists a PPT extractor algorithm, such that for any prover

Leakage Resilient PoW in Cloud Storage, Revisited 103

which can convince the verifier to accept with probability ≥ ε, then the extrac-
tor can output the original file with overwhelming high probability (1 - negl) by
executing POR proof protocol with the prover.

Readers may find more details about POR in [19,27,30,28].

2.3 Randomness Extractor

Definition 4 (Strong Extractor). We say Ext : {0, 1}�in×{0, 1}�s → {0, 1}�out
is a strong (k, ε)-extractor, if for any distribution X over {0, 1}�in with at least
k bits min-entropy, the following inequality holds

SD
(
(Ext(X ; s), s), (U�out , s)

)
≤ ε (2)

where the seed s is uniformly randomly chosen from {0, 1}�s and U�out is a uni-
form random variable over {0, 1}�out.

It is well known that the output size �out of any randomness extractor can not
exceed the min-entropy k of the input (i.e. �out < k), and the difference (k−�out)
is called the “entropy loss” of the randomness extractor.

3 Formulation: Proofs of Ownership, Revisited

Halevi et al. [12] proposed the formulation of proofs of ownership. In this section,
we revisit and revise their formulation and propose our definition for privacy-
preserving proofs of ownership.

Definition 5 (Proofs of Ownership [12]). Aproof of ownership scheme (PoW)
consists of a probabilistic algorithm S and a pair of probabilistic interactive algo-
rithm 〈P,V〉, which are described as below:

• S(F, 1λ) → ψ: The randomized summary function S takes a file F and the
security parameter λ as input, and outputs a short summary value ψ, where
the bit-length of ψ is short and independent on file size |F |.

• 〈P(F),V(ψ)〉 → Accept or Reject: The prover algorithm P which takes as
input a file F , interacts with the verifier algorithm V which takes as input a
short summary value ψ, and outputs either Accept or Reject.

We are only interested in efficient PoW scheme, such that V is polynomial time
algorithm w.r.t. security parameter λ and both S and P are polynomial algorithms
in |F | and λ.

Definition 6 (Completeness of PoW [12]). A PoW scheme (S, 〈P,V〉) is
complete, if for all positive integer λ and for any file F ∈ {0, 1}poly(λ), it holds
that

〈P(F),V(S(F, 1λ))〉 always outputs Accept.

3.1 Two Players Setting and Three Players Setting of PoW

In the original framework [12], PoW runs by two players: verifier and prover.
In this paper, we will redefine this system model by introducing a third player,
called summarizer, who is responsible to preprocess the data file F during the
setup. The PoW scheme in three players setting executes in this way: Summarizer

104 J. Xu and J. Zhou

(e.g. data owner of F) runs summary function to obtain ψ := S(F, 1λ) and sends
ψ to verifier (e.g. the cloud storage server). Then prover (e.g. some cloud user
claiming to own file F), who runs algorithm P(F), interacts with the verifier,
who runs algorithm V(ψ). A dishonest prover (e.g. dishonest cloud user) may
replace the prover algorithm P with any other PPT program of his/her choice.

Definition 7 (Two/Three Players setting of PoW). For any PoW scheme
(S, 〈P,V〉), the two players setting and three players setting are described as
below:

• in a two players setting, the summary algorithm S and verifier algorithm
V are executed by the first player—verifier (e.g. cloud storage server), and
the prover algorithm P is executed by the second player—prover (e.g. cloud
user);

• in a three players setting, the summary algorithm S is executed by the first
player—summarizer (e.g. cloud user owning file F), the verifier algorithm
V is executed by the second player—verifier (e.g. cloud storage server), and
the prover algorithm P is executed by the third player—prover (e.g. another
cloud user claiming to own F).

Our three players setting will further relieve the computation burden of the cloud
storage server, and might make our scheme easier to be adopted by cloud storage
servers in real applications—This is exactly our initial motivation to introduce
the new three players setting of PoW. We believe that, the average computation
resource that a cloud storage server allocates to each online user, is typically less
than the computation resource of an average cloud user. Additionally, the fact
that many cloud storage servers (e.g. Dropbox, Skydrive, and Google Drive)
provide free service to public users, further justifies our attempt to shift some
computation burden from cloud server to cloud user.

The change from two players setting to three players setting also leads to the
change of trust model and thus impact the security formulation. In the original
two players setting of PoW [12], preserving privacy of input file F during the
interactive proof 〈P,V〉 (like in zero-knowledge proof) is meaningless, since the
verifier, who runs V, also runs the summary function S(F, 1λ) and has direct
access to file F . Therefore, the verifier has to be trusted in data confidentiality
of input file F in this two players setting. In contrast, in our three players setting,
preserving privacy of F during the interactive proof 〈P,V〉 (like in zero-knowledge
proof) is an interesting problem, if the verifier (e.g. cloud storage server) is not
trusted in data confidentiality.

3.2 Soundness of PoW

Intuitively, PoW aims to prevent leakage amplification in client-side deduplica-
tion: If an outside adversary somehow obtain a bounded amount (≤ T bits) of
messages about the target user file F via out-of-band leakage, then the adversary
cannot obtain the whole file F by participating in the client-side deduplication
with the cloud storage server.

The security game GPoW
A (k, T) between a PPT adversary A and a challenger

w.r.t. PoW scheme (S, 〈P,V〉) is defined as below. Here k is the lower bound

Leakage Resilient PoW in Cloud Storage, Revisited 105

of min-entropy of the distribution of the challenged file F at the beginning of
the game, and the adversary is allowed to learn at most T bits message related
to file F (possibly including random coins chosen when processing F) from the
challenger via the leakage query.
Setup. The description of (S, 〈P,V〉) is made public. Let D be a distribution over
{0, 1}M with min-entropy ≥ k, where D is chosen by the adversary A and M is
any public positive integer constant. The challenger samples file F according to
distribution D and runs the summary algorithm to obtain ψ := S(F, 1λ).
Learning. The adversary A can adaptively make polynomially many queries to
the challenger, where each query is in one of the following types and concurrent
queries of different types are not allowed4. Furthermore, the total amount of
messages output by all leakage queries should not be greater than the threshold
T , i.e. YI + YII ≤ T , where YI and YII will be defined below.
• Prove-Query: The challenger, running the verifier algorithm V with input

ψ, interacts with the adversary A which replaces the prover algorithm P, to
obtain b := 〈A,V(ψ)〉. The adversary A is given the value of b.

• Leak-Query-I(P): This query consists of a description of a PPT algorithm
P (a variant version of prover algorithm). The challenger responses this
query by computing the output y of P(F) after interacting with V(ψ) (i.e.
y := P(F)V(ψ)) and sending y to the adversary A. Denote with YI the sum
of bit-lengths of all responses y’s for this type of queries.

• Leak-Query-II(L): This query consists of a description of a PPT algorithm
L. Let transcriptS denote the transcript of all steps of operations in the
execution of algorithm “ψ := S(F, 1λ)” in the above Setup phase. The
challenger responses this query by computing the output y := L(transcriptS)
and sending y to the adversary A. Denote with YII the sum of bit-lengths of
all responses y’s for this type of queries.

Challenge. The adversary A which replaces the prover algorithm P, interacts
with the challenger, which runs the verifier algorithm V with input ψ, to obtain
b := 〈A,V(ψ)〉. The adversary A wins the game, if b = Accept.

Definition 8 (Soundness of PoW (Refining [12])). APoW scheme is (k, T, ε)-
sound in three players setting, if for anyPPTadversaryA,Awins the security game
GPoW
A (k, T) with probability not greater than ε+ negl(λ).

Pr[A wins the security game GPoW
A (k, T)] ≤ ε + negl(λ). (3)

The (k, T, ε)-soundness definition in two players setting is the same as the above,
except that the adversary A is not allowed to make Leak-Query-II in the se-
curity game GPoW

A (k, T) (i.e. YII = 0).

4 Concurrent Prove-Query and Leak-Query would allow the adversary to replay
messages back and forth between these two queries, and eliminate the possibility
of any secure and efficient solution to PoW. Therefore, the framework of Halevi et
al. [12] do not allow concurrent queries of different types in the security formulation.
We clarify that, concurrent queries of the same type can be supported. Thus, in the
real application, the cloud storage server (verifier) can safely interact with multiple
cloud users (prover) w.r.t. the same file concurrently.

106 J. Xu and J. Zhou

We remark that (1) the (k, T, ε)-soundness definition in two players setting is
essentially the same as the original formulation [12], and (2) soundness in three
players setting implies soundness in two players setting, but not vice versa.

3.3 Privacy-Preserving PoW

Intuitively, we say a PoW scheme is privacy-preserving against the verifier, if
everything about file F that the verifier can learn after participating the PoW
scheme w.r.t. F , can be computed from the short summary value of F and some
almost-perfect uniform random number.

Definition 9 (Privacy-Preserving). A PoW scheme (S, 〈P,V〉) is (k, T, ε)-
privacy-preserving against the verifier (in the three players setting), if for any
distribution D over {0, 1}M with at least k bits min-entropy, for every PPT in-
teractive algorithm V∗, there exists a PPT algorithm Sim and a random variable
Z over domain {0, 1}T+λ+Ω(λ), such that

• SD(Z,U|Z|) ≤ ε, where U|Z| is the uniform random variable over {0, 1}|Z|;
• for any function f : {0, 1}M → {0, 1}, and any (leakage) function L :
{0, 1}M → {0, 1}≤T , the following two probabilities (taken over file F ∼ D
and the random coins of related algorithms) are equal

Pr
[
V∗(ψ‖L(F)

)P(F)
= f(F)

]
= Pr

[
Sim

(
ψ‖L(F), Z

)
= f(F)

]
,

where ψ := S(F, 1λ) and V∗(S(F, 1λ)‖L(F))P(F) denotes the output of (dis-
honest) verifier V∗ taking the summary value S(F, 1λ) and leakage information
L(F) as input and having interaction with interactive prover algorithm P(F).

As we discussed before, preserving privacy against the verifier for any PoW
scheme in the two players setting, is impossible.

3.4 Clarification on Leakage of User ID and Password

We admit that, as the same as Halevi et al. [12], this work will consider leakage of
user account (i.e. id and password) as out of scope. We assume the user account
is associated to user’s real identity (e.g. mobile phone number) and sibyl account
is hard to create. Thus, leakage of user file stored in cloud storage by disclosure of
user account could be traced back to the source and the corresponding account
could be disabled without affecting honest users.

4 Generic Construction of Proofs of Ownership

4.1 Some Unsatisfactory Approaches

At first, putting privacy-preserving property aside, we review some straightfor-
ward approaches and existing works for PoW as below.

4.1.1 Compute fresh MACs online on Both Sides. To prove his/her
ownership of a file F , the prover can compute a MAC (i.e. Message Authentica-
tion Code) value over F with a random nonce as key, where the random nonce
is chosen by the verifier. To verify the correctness of this MAC value, the verifier
need to re-compute the MAC value of F under the same key. This approach is
secure, but rejected for two reasons: (1) in some applications of PoW, the verifier

Leakage Resilient PoW in Cloud Storage, Revisited 107

does not have access to the file F ; (2) the stringent requirement on efficiency
(including disk IO efficiency) given by Halevi et al. [12] does not allow verifier
to access entire file F during the interactive proof.

4.1.2 Pre-compute MACs offline. In the summary phase, t number of
keys s1, . . . , st are randomly chosen and t number of MAC valuesMACsi(F)’s are
computed correspondingly. The summary value of file F is {(i, si,MACsi(F)) :
i ∈ [t]}. In the i-th proof session, the verifier sends the MAC key si to the prover
and expects MACsi(F) as response.

This approach is not secure in the setting of PoW [12], since a single malicious
adversary could consume up all of t pre-computed MACs easily by impersonating
or colluding with t distinct cloud users.

4.1.3 Proofs of Retrievability. Some instance of POR (e.g. [27,32,30]) can
serve as PoW.The first construction (i.e. PoW1 as in Table 1) of Halevi et al. [12] is
just the Merkle Hash Tree based POR scheme (MHT-POR), which combines error
erasure code andMerkle HashTree proofmethod5. The drawback of this approach
is that, the relatively expensive error erasure code6 is applied over the whole input
file, while in our approach, error erasure code is applied over the output of the
randomness extractor, which is much shorter than the whole input file.

We notice that recent work by Zheng and Xu [33] attempts to equip proofs
of storage (POR or PDP) with deduplication capability. However, their work is
not in the leakage setting of Halevi et al. [12].

4.1.4 Pairwise-Independent Hash with Large Output Size. The sec-
ond construction of PoW in Halevi et al. [12] is based on pairwise independent
hash family (a.k.a 2-independent or 2-universal hash family). A large input file
is hashed into a constant size (say about 3T = 3 × 64MB) hash value and then
apply the merkle hash tree proof method over the hash value. This construction
is secure, but very in-efficient in both computation and randomness complexity.
Furthermore, large random seed also implies large communication cost required
to share this seed among all owners of the same file. It is worth pointing out that
Halevi et al. [12] overlooked the disadvantage in large randomness complexity
(i.e. at least twice of hash output size, say about 2× 3T = 6× 64MB), although
they admitted that this construction is prohibitively expensive in computation
for practical data size.

A quick thought to reduce the seed length is to apply pseudorandomness
generated from a short true random seed. However, in the leakage setting of PoW,
any short seed could be leaked to the adversary by some colluded owner of target
file. Consequently, the standard computational indistinguishability argument of
pseudorandom number generator (or pseudorandom functions) is not applicable.

5 Merkle Hash Tree proof method proves the correctness of a leaf value by presenting
as a proof all sibling values along the path from the questioned leaf to the root of
Merkle Hash Tree, and verification requires only the root value.

6 In typical usage of error erasure code, block length is some small constant (say 223
bytes for (255, 223)-reed-solomon code). However, in the usage of POR, the block
length has to be as large as the input file, which makes the coding much slower than
typical case.

108 J. Xu and J. Zhou

It is unclear whether this pseudorandomness approach works or not without new
sophisticated proof (or disproof). Similar issue is discussed in the study of proofs
of retrievability by Dodis et al. [30], which adopts sampling technique with public
coin as seed to replace pseudorandomness.

4.1.5 PoW with respect to Particular Distribution. The third con-
struction of PoW in Halevi et al. [12] is the most efficient one among all of three
constructions proposed by Halevi et al. [12]. In the third construction, the size of
random seed is dramatically reduced by treating hash function SHA256 as a ran-
dom oracle. However, their proof (in random oracle model) of this construction
is incomplete: firstly, the distribution of input file is restricted as “generalized
bit/block-fixing distribution”7; secondly, their proof assumes their algorithm will
generate a “good linear code” and the authors admit that it is “very hard to
analyze” this unproven assumption (See texts around Theorem 3 in [12]).

We emphasize that, information leakage of file F may have different forms.
For example, some plain bits F [i]’s are leaked, or some aggregated information of
file F (e.g. a hash value) is leaked. In the latter case, file F is hardly considered
as fitting in (generalized) fixed-bit/block distribution.

Gabizon et al. [35] proposed a randomness extractor for input under bit-fixing
distribution. Such extractor can be combined with our generic construction to
obtain a secure PoW scheme for bit-fixing input file and with complete security
proof in standard model.

Other works on deduplication/PoW include Pietro and Sorniotti [36], which
treats a projection (F [i1], . . . , F [iλ]) of file F onto λ randomly chosen bit-positions
(i1, . . . , iλ) as the “proof” of ownership of file F . Similar to the “hash-as-a-proof”
method, this work is extremely efficient but insecure in the bounded leakage set-
ting [12]. Readers may find more related works in Xu et al. [21].

4.2 Our Approach: PoW = Randomness Extractor + POR

Intuitively, our generic construction extracts (T + 2λ) bits message Y from
the input file F and then apply a proofs of retrievability scheme over Y . It
is worth noting that in our usage of proofs of retrievability scheme, algorithm
POR.GenProofdata runs by prover and algorithm POR.GenProoftag runs by ver-
ifier8, while in the literature [19,27,28], both of these two algorithms run by
prover. It is easy to see that, such modification will preserve the soundness of
POR scheme.

The detailed construction is given in Figure 1 (on page 110). Before present-
ing a formal statement in Theorem 2 for the PoW scheme in Figure 1 which

7 A M bits long file F with k bit entropy under “generalized bit-fixing distribution”
is generated in this way: (1) Independently choosing k uniform random bits; (2)
deriving all other (M − k) bits from these k random bits (Halevi et al. [12] applies
linear transformation); (3) the file F is a random permutation of these k random
bits and (M − k) derived bits. If in the above step (2), all (M − k) bits are constant,
then the resulting distribution is called “bit-fixing distribution” with entropy k.

8 All tag values are stored with the verifier instead of the provers, in order to prevent
any potential leakage of partial information of Y from its tag values to the (dishonest)
provers.

Leakage Resilient PoW in Cloud Storage, Revisited 109

constructed from a generic randomness extractor algorithm and a generic POR
scheme, we will prove a stronger result in Theorem 1 for the special case that
the POR scheme is instantiated with MHT-POR9 scheme in the construction of
PoW. The reason that MHT-POR can achieve a stronger result is that, the secu-
rity of MHT-POR relies on the cryptographic one-way function without trapdoor
(precisely the collision resistance hash function). In contrast, most other POR
schemes rely on cryptographic trapdoor one-way function (e.g. factorization),
and such short trapdoor (or private key) might be leaked via some colluded file
owner in our stringent security model in three player setting. Once the short
trapdoor is leaked to the adversary, the POR scheme can be easily broken.

Theorem 1. Suppose Extractor : {0, 1}M × {0, 1}�s → {0, 1}T+2λ is a strong
(k, ε)-extractor, and the POR scheme is the Merkle Hash Tree based scheme
MHT-POR (as described in Sec 2.2.1 in the full paper [1]), which is ε-sound.
Then the PoW scheme constructed in Figure 1 is (k, T, ε)-sound and (k, T, ε)-
privacy-preserving in the three players setting. (Proof is in full paper [1])

Most POR schemes [27,28] require a short private key (e.g. the factorization
of a RSA modulus, the secret key of some pseudorandom function) to work and
thus cannot resist Type-II leak query Leak-Query-II, from which the adversary
could learn the short private key and break the POR scheme. Therefore, for
such POR schemes with private key, we have to disable Type-II leak query by
switching to the two players setting as below.

Theorem 2. Suppose Extractor : {0, 1}M × {0, 1}�s → {0, 1}T+2λ is a strong
(k, ε)-extractor and POR is an ε-sound POR scheme. Then the PoW scheme
constructed in Figure 1 is (k, T, ε)-sound in the two players setting.

We compare two instantiations of our generic approaches in Table 4 (on
page 109).

Table 4. Two instantiations of PoW=RE+POR

Choice of POR Setting Summary Value Size (bits) Communication cost (bits)

MHT-POR 2P,3P λ λ · log1−α ε · log (T/α)
Brent-Waters-POR [27] 2P T/(αs) † (s+ 3)λ+ 440

† : s is a system parameter of POR [27] and can take any positive integer value.

5 Randomness Extractor with Large Output Size

In this section, we propose in Figure 2 (on page 111) a novel randomness extrac-
tor with large output size using the well-known “sample-then-extract” approach:
Repeatedly sample a subset of bits from a weak random source and then apply
an existing extractor with small output size over the sample.

Intuitively, the sampling lemma [24,25] states that “if one samples a random
subset of bits from a weak random source, the min-entropy rate (i.e. ratio of min-
entropy to bit-length) of the source is nearly preserved”. Precisely if X ∈ {0, 1}n

9 Detailed description of Merkle Hash Tree based POR (MHT-POR) is given in Sec
2.2.1 of the full paper [1]

110 J. Xu and J. Zhou

S(F, 1λ) Summary function.
Input: An M -bit file F ∈ {0, 1}M and security parameter λ in unary form.
Extract: Choose random seed s from domain {0, 1}�s and compute Y :=

Extractor(F ; s).
Expand: Apply Erasure-Correcting-Code on Y to obtain Ŷ = (Ŷ1, Ŷ2, . . . , Ŷn)

such that Y can be completely recovered from any αn blocks among
{Ŷ1, Ŷ2, . . . , Ŷn}, where constant α ∈ (0, 1) is some system parameter. Gen-
erate POR-key pair (pk, sk) := POR.KeyGen(1λ), and authentication tags
{σi}ni=1 := POR.Tag(sk, {Ŷi}ni=1). Let πF = (pk, sk, {σi}ni=1).
Note: As mentioned in [12], in the construction of PoW, the decoding algo-
rithm of the above Erasure-Correcting-Code is not required to be practical,
since the decoding algorithm will not be invoked in the legitimate application
of PoW.

Output: The summary value of file F is ψ = (s, α, πF). Output ψ.

〈P(F),V(ψ)〉 Interactive proof system between verifier (cloud storage server)
and prover (cloud storage client).

Input: The prover has file F as input and the verifier has a summary value
ψ = (s, α, πF) as input, where πF = (pk, sk, {σi}ni=1).

V1: Verifier finds c = �log1−α ε� (i.e. c is the smallest integer such that (1 −
α)c ≤ ε) and computes (C,ΨF , Ψσ) := POR.GenChal(pk, n, c). Verifier sends
(C, s, α, pk, ΨF) to the prover.

P1: Prover runs the extractor algorithm to obtain Y := Extractor(F ; s), and
re-generate the erasure code Ŷ from Y using the same Erasure-Correcting-
Code with the same parameter α. Prover divides Ŷ into n blocks Ŷ1, . . . , Ŷn

and computes F̄ := POR.GenProofdata(pk, {Ŷi}ni=1, C, ΨF). Prover sends F̄
to verifier.

V2: Verifier computes σ̄ := POR.GenProoftag(pk, {σi}ni=1, C, Ψσ) and b :=
POR.Verify(K, F̄ , σ̄, ΨF , Ψσ) ∈ {Accept, Reject}, where K is pk if the POR
scheme supports public key verification; otherwise K is sk.

Output: Output b ∈ {Accept, Reject}.
Note: The subset C requires |C| log n bits communication cost. We can
reduce this communication cost by using Goldreich [29]’s (δ, γ)-hitter sam-
plera to represent C compactly with only log n + 3 log(1/γ) bits of public
random coins.

a Goldreich [29]’s (δ, γ)-hitter guarantees that, for any subset W ⊂ [1, n] with size
|W | ≥ (1 − δ)n, Pr[C ∩ W �= ∅] ≥ 1 − γ. Readers may refer to [29,30] for more
details.

Fig. 1. PoW = RE + POR: A Generic Construction of PoW using Randomness
Extractor Extractor(· ; ·) and POR scheme (KeyGen,Tag, GenChal, GenProofdata ,
GenProoftag ,Verify). The completeness of the constructed PoW scheme is straightfor-
ward.

has δn min-entropy and X [S] ∈ {0, 1}t is the projection of X onto a random set
S ⊂ [n] of t positions, then with high probability, X [S] is statistically close to a
random variable with δ′t min-entropy. We consider the difference (δt−δ′t) as the
entropy loss in sampling t bits. Nisan and Zuckerman(Lemma 11 in [24]) gave

Leakage Resilient PoW in Cloud Storage, Revisited 111

a sampling algorithm where δ′ = cδ/ log(1/δ) for some small positive constant
c. Vadhan (Lemma 6.2 in [25]) improved their result and allows δ′ = (δ − 3τ)
for sufficiently small positive constant τ .

We brief the existing approach [24,38] as below: (1) Independently and ran-
domly choose l number of seeds, in order to get l samples X1, . . . , Xl from the
input weak source F , which has min-entropy rate δ. (2) Show that (X1, . . . , Xl)
is a δ′-block-wise source with δ′ close to δ, i.e. for each i ∈ [l], conditional
on (X1, . . . , Xi), the random variable Xi+1 has min-entropy rate at least δ′.
(3) Apply existing randomness extractor on the structured weak random source
(X1, . . . , Xl) to generate almost-uniform random output (y1, . . . , yl).

Roughly speaking, in the analysis of the above approach in [24,38], to extract
each block yi, the remaining min-entropy of the input F reduces by |Xi| bits—the
bit-length of Xi. Unlike previous works [24,25,38], we do not generate block-wise
source as intermediate product, and manage to show that the remaining min-
entropy of the input F , after extracting each block yi, reduces by |yi| bits—the
bit-length of yi which is much smaller than |Xi|. Readers may find definition
and calculation of remaining (or conditional) min-entropy H̃∞(A|B) of variable
A given variable B in the full paper [1]. In this jargon, we manage to switch the
conditional variable B from Xi (as previous works) to yi in the analysis of our
new design.

Extractor(F ; s, s′) This extractor algorithm will serve as a subroutine to
construct PoW scheme.

Input: An M -bit file F ∈ {0, 1}M ; s ∈ {0, 1}r0 and s′ ∈ {0, 1}r1 are true
random seeds, where r0 + r1 = ρ.

Sample-then-Extract-Loop:
Let s1 := s and s′1 := s′. Let hF := SHA256(F) with |hF | ≤ ρ.
For each i from 1 to �:
Sample: Independently and randomly sample t distinct indices

from the set [M], using random seed si, to obtain Si :=
Samp([M], t; si) ⊂ [M].

Extract: Compute yi := Ext(hF ‖ F [Si]; s′i) ∈ {0, 1}ρ. Let si+1 be
the prefix of bit-length r0 of bit-string yi, and s′i+1 be the suffix
of bit-length r1 of bit-string yi.
Note: The hash value hF is added into the input of Ext, in order to

ensure that any change in file F will lead to significant change in the

output of randomness extractor.

Output: Let Y := y1‖y2‖ . . . ‖y� ∈ {0, 1}ρ�. The output is Y .

Fig. 2. A Novel Randomness Extractor with Large Output Size and Short Seed. Ext
is some existing strong randomness extractor and Samp is some existing sampling
algorithm.

Theorem 3. Let t = M c and τ = M−c for constant c ∈ (0, 1). Let Ext :
{0, 1}t+256 × {0, 1}r1 → {0, 1}ρ be a strong (k0, ε0)-extractor. Let Samp be an
(μ, θ, γ)-averaging sampler [25,38]. Then the algorithm Extractor : {0, 1}M ×

112 J. Xu and J. Zhou

{0, 1}ρ → {0, 1}ρ� constructed in Figure 2 is a (k1, ε1)-extractor, where ρ =
λ+ log(M/t) + log(1/γ) · poly(1/θ), ρ · � = k1 − (k0 +3)M1−c, and ε1 = 5�(ε0 +
γ + 2−λ + 2−Ω(τM)).

We make the following remarks: (1) Our algorithm in Figure 2 requires about
1/� fraction of the amount of random bits required by [24], since [24] requires
that all of sampling seeds s1, s2, . . . , s� should be independent randomness. (2)
The choice of value t = M c ensure that there will be sufficient remaining min-
entropy in the last sample (worst case), and this value of sample size t would be
much larger than required for the first few samples (good cases). One may use
different sample size ti for the i-th sample (t1 < t2 < t3 . . . < t� = M c), in order
to reduce the IO reading. (3) Alternatively, we may choose hitter-sampler [29]
as in [24] instead of averaging sampler, in order to reduce the seed length ρ
(only O(λ+logM) bits) at the cost of larger value of t. (4) In practice, one may
use Tabulation Hashing [39] or CBC-MAC or HMAC as the underlying extractor
algorithm Ext (possibly in the companion with hitter sampler which allows small
ρ), as analyzed by Dodis et al. [40].

To prove Theorem 3, we introduce Lemma 4 and Lemma 5.

Lemma 4 (Amplification). Suppose the algorithm Ext : {0, 1}M × {0, 1}ρ →
{0, 1}ρ defined as

Ext
(
X ; (s, s′)

) def
= Ext

(
SHA256(X) ‖ X [Samp(s)]; s′

)
(4)

is a strong (k2, ε2)-extractor. Then Extractor : {0, 1}M × {0, 1}ρ → {0, 1}ρ� con-
structed in Figure 2 is a (k1, ε1)-extractor, where k1 ≥ k2 + ρ(� − 1) + λ and
ε1 = 5�(ε2 + 2−λ).

Our proof for Lemma 4 in full paper [1] is an analog of hybrid proof technique
for (computational) indistinguishability [41].

Lemma 5 (Theorem 6.3 [25], sample-then-extract). Let 1 ≥ δ ≥ 3τ > 0.
Suppose that Samp : {0, 1}r0 → [M]t is an (μ, θ, γ) averaging sampler with
distinct samples for μ = (δ − 2τ)/ log(1/τ) and θ = τ/ log(1/τ) and that Ext :
{0, 1}t+256 × {0, 1}r1 → {0, 1}ρ is a strong (k0 = (δ − 3τ)t, ε0)-extractor. Let
ρ = r0 + r1 and define Ext : {0, 1}M × {0, 1}ρ → {0, 1}ρ by

Ext(X ; (s, s′))
def
=Ext

(
SHA256(X) ‖ X [Samp(s)]; s′

)
(5)

Then Ext is a strong (k2, ε2)-extractor with k2 = δM and ε2 = ε0+γ+2−Ω(τM).
Note: As mentioned in [25], τ could be arbitrarily small and approaches 0. In this

paper, we set τ = M−c for some constant c ∈ (0, 1).

Computational Complexity. Recall that, in order to reduce computation
cost, we could choose different sample size tj for iteration j, where t1 < t2 <
. . . < t� = t = M c. The computational complexity of our proposed randomness
extractor can be measured by the total number of bits read (or sampled) from
the file (double counting repeated bits), i.e. the sum of tj for j ∈ [�]. We will
give an upper bound on the sum of tj .

Leakage Resilient PoW in Cloud Storage, Revisited 113

Lemma 6 (Complexity). Suppose M1−c ≥ 2. The total number of bits (i.e.∑�
j=1 tj) of input file F accessed by the randomness extractor in Figure 2 is in

O(M log �).
Note: (1) If the underlying extractor Ext is Tabulation Hashing, then the constant

behind the big-O notation is very small—around 2. (2) Multiple access to the same

bit will be counted with its frequency. (3) The proof of this lemma is in full

paper [1].

We remark that the extractor algorithm in Figure 2 can be modified into m
concurrent threads/processes, while increasing the seed size by m times.

6 Conclusion and Open Problems

We were the first one to bridge construction of PoW with randomness extractor
and proofs of retrievability. We also proposed a novel randomness extractor with
large output size, which improves existing works in both seed length and en-
tropy loss (i.e. the difference between entropy of input and output). Our proofs
of ownership scheme can be applied in client-side deduplication of encrypted (un-
encrypted, too) data in cloud storage service, and the new randomness extractor
may have independent interest.

Whether “partition-then-extract” approach works for any distribution of in-
put file and how to apply pseudo-entropy extractor (e.g Yao-Entropy extractor)
to construct proofs of ownership scheme, remain two open problems.

References

1. Xu, J., Zhou, J.: Leakage Resilient Proofs of Ownership in Cloud Storage, Revis-
ited. Cryptology ePrint Archive, Report 2013/514 (2013),
http://eprint.iacr.org/2013/514

2. iHS iSuppli: Cloud Storage Services Now Have Over 375M Users, Could Reach
500M By Year-End, http://goo.gl/BO6zWy

3. Blog, A.: Amazon S3 goes exponential, now stores 2 trillion objects,
http://goo.gl/NUIEny,
http://gigaom.com/2013/04/18/

amazon-s3-goes-exponential-now-stores-2-trillion-objects/

4. Blog, W.A.S.T.: Windows Azure Storage – 4 Trillion Objects and Counting,
http://blogs.msdn.com/b/windowsazurestorage/archive/2012/07/20/

windows-azure-storage-4-trillion-objects-and-counting.aspx

5. Blog, D.: Over 175 million people using Dropbox and more than a billion files
synced each day, https://blog.dropbox.com/2013/07/dbx/

6. SNIA: Understanding Data De-duplication Ratios. white paper,
http://www.snia.org/sites/default/files/

Understanding Data Deduplication Ratios-20080718.pdf

7. Douceur, J., Adya, A., Bolosky, W., Simon, D., Theimer, M.: Reclaiming space from
duplicate files in a serverless distributed file system. In: ICDCS 2002: International
Conference on Distributed Computing Systems (2002)

8. Douceur, J., Bolosky, W., Theimer, M.: US Patent 7266689: Encryption systems
and methods for identifying and coalescing identical objects encrypted with differ-
ent keys (2007)

http://eprint.iacr.org/2013/514
http://goo.gl/BO6zWy
http://goo.gl/NUIEny
http://gigaom.com/2013/04/18/amazon-s3-goes-exponential-now-stores-2-trillion-objects/
http://gigaom.com/2013/04/18/amazon-s3-goes-exponential-now-stores-2-trillion-objects/
http://blogs.msdn.com/b/windowsazurestorage/archive/2012/07/20/windows-azure-storage-4-trillion-objects-and-counting.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2012/07/20/windows-azure-storage-4-trillion-objects-and-counting.aspx
https://blog.dropbox.com/2013/07/dbx/
http://www.snia.org/sites/default/files/Understanding_Data_Deduplication_Ratios-20080718.pdf
http://www.snia.org/sites/default/files/Understanding_Data_Deduplication_Ratios-20080718.pdf

114 J. Xu and J. Zhou

9. Storer, M., Greenan, K., Long, D., Miller, E.: Secure Data Deduplication. In: Stor-
ageSS 2008: ACM International Workshop on Storage Security and Survivability,
pp. 1–10 (2008)

10. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-Locked Encryption and Secure
Deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer, Heidelberg (2013),
http://eprint.iacr.org/2012/631

11. Harnik, D., Pinkas, B., Shulman-Peleg, A.: Side Channels in Cloud Services: Dedu-
plication in Cloud Storage. IEEE Security and Privacy Magazine, Special Issue of
Cloud Security 8(6) (2010)

12. Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proofs of ownership in remote
storage systems. In: CCS 2011: ACM Conference on Computer and Communica-
tions Security, pp. 491–500 (2011), http://eprint.iacr.org/2011/207

13. Dropship: Dropbox api utilities (April 2011),
https://github.com/driverdan/dropship

14. Storer, M., Greenan, K., Long, D., Miller, E.: Secure data deduplication. In: Pro-
ceedings of the 4th ACM International Workshop on Storage Security and Surviv-
ability, StorageSS 2008, pp. 1–10 (2008)

15. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

16. Wikipedia: PlayStation Network outage,
http://en.wikipedia.org/wiki/PlayStation_Network_outage

17. wired.com: Dropbox Left User Accounts Unlocked for 4 Hours Sunday,
http://www.wired.com/threatlevel/2011/06/dropbox/ ,
http://blog.dropbox.com/?p=821

18. Twitter: Tweetdeck,
http://money.cnn.com/2012/03/30/technology/tweetdeck-bug-twitter/

19. Juels, A., Kaliski, Jr., B.: Pors: proofs of retrievability for large files. In: CCS 2007:
ACM Conference on Computer and Communications Security, pp. 584–597 (2007)

20. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: CCS 2007: ACM Conference
on Computer and Communications Security, pp. 598–609 (2007)

21. Xu, J., Chang, E.C., Zhou, J.: Weak Leakage-Resilient Client side Deduplica-
tion of Encrypted Data in Cloud Storage. In: ASIACCS 2013: Proceedings of the
8th ACM Symposium on Information, Computer and Communications Security
(Full Paper), pp. 195–206 (2013), http://eprint.iacr.org/2011/538

22. Bellare, M., Keelveedhi, S., Ristenpart, T.: DupLESS: Server-Aided Encryption for
Deduplicated Storage (will appear in Usenix Security Symposium 2013). Cryptol-
ogy ePrint Archive, Report 2013/429 (2013), http://eprint.iacr.org/2013/429

23. Ng, W.K., Wen, Y., Zhu, H.: Private data deduplication protocols in cloud stor-
age. In: SAC 2012: Proceedings of the 27th Annual ACM Symposium on Applied
Computing, pp. 441–446 (2012)

24. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer
and System Sciences 52(Special issue on STOC 1993) , 43–52 (1996)

25. Vadhan, S.: Constructing Locally Computable Extractors and Cryptosystems in
the Bounded-Storage Model. J. Cryptol. 17(1), 43–77 (2004)

26. Stinson, D.R.: Universal hash families and the leftover hash lemma, and applica-
tions to cryptography and computing. Journal of Combinatorial Mathematics and
Combinatorial Computing 42, 3–31 (2002)

27. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

http://eprint.iacr.org/2012/631
http://eprint.iacr.org/2011/207
https://github.com/driverdan/dropship
http://en.wikipedia.org/wiki/PlayStation_Network_outage
http://www.wired.com/threatlevel/2011/06/dropbox/
http://blog.dropbox.com/?p=821
http://money.cnn.com/2012/03/30/technology/tweetdeck-bug-twitter/
http://eprint.iacr.org/2011/538
http://eprint.iacr.org/2013/429

Leakage Resilient PoW in Cloud Storage, Revisited 115

28. Xu, J., Chang, E.C.: Towards efficient proof of retrievability. In: ASIACCS 2012:
Proceedings of the 7th ACM Symposium on Information, Computer and Commu-
nications Security (Full Paper) (2012), http://eprint.iacr.org/2011/362

29. Goldreich, O.: A Sample of Samplers - A Computational Perspective on Sampling
(survey). Electronic Colloquium on Computational Complexity (ECCC) 4(20)
(1997)

30. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of Retrievability via Hardness Amplifi-
cation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

31. Xu, J., Chang, E.C., Zhou, J.: Leakage-Resilient Client-side Deduplication of
Encrypted Data in Cloud Storage. Cryptology ePrint Archive, Report 2011/538
(2011), http://eprint.iacr.org/2011/538

32. Chang, E.C., Xu, J.: Remote Integrity Check with Dishonest Storage Server. In:
Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 223–237.
Springer, Heidelberg (2008), http://eprint.iacr.org/2008/346

33. Zheng, Q., Xu, S.: Secure and efficient proof of storage with deduplication. In:
CODASPY 2012: ACM conference on Data and Application Security and Privacy,
pp. 1–12 (2012)

34. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.-X.,
Yu, Y.: Leftover Hash Lemma, Revisited. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 1–20. Springer, Heidelberg (2011)

35. Gabizon, A., Raz, R., Shaltiel, R.: Deterministic Extractors for Bit-Fixing Sources
by Obtaining an Independent Seed. SIAM Journal on Computing 36(4), 1072–1094
(2006)

36. Pietro, R.D., Sorniotti, A.: Boosting Efficiency and Security in Proof of Ownership
for Deduplication. In: ASIACCS 2012: ACM Symposium on Information, Computer
and Communications Security (Full Paper) (2012)

37. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Khan, O., Kissner, L., Peter-
son, Z., Song, D.: Remote data checking using provable data possession. ACM
Transactions on Information and System Security 14, 12:1–12:34 (2011)

38. Vadhan, S.: Pseudorandomness. Foundations and Trends in Theoretical Computer
Science 7(1-3), 1–336 (2012)

39. Patrascu, M., Thorup, M.: The power of simple tabulation hashing. In: STOC
2011: ACM Symposium on Theory of Computing, pp. 1–10 (2011)

40. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness Extrac-
tion and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

41. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press (2004)

http://eprint.iacr.org/2011/362
http://eprint.iacr.org/2011/538
http://eprint.iacr.org/2008/346

Private Message Transmission

Using Disjoint Paths

Hadi Ahmadi� and Reihaneh Safavi-Naini

Department of Computer Science, University of Calgary, Canada��

{hahmadi,rei}@ucalgary.ca

Abstract. We consider private message transmission (PMT) between
two communicants, Alice and Bob, in the presence of an eavesdropper,
Eve. Alice and Bob have no shared keys and Eve is computationally un-
bounded. There is a total of n communicating paths, but not all may
be simultaneously accessible to the parties. We let ta, tb, and te denote
the number of paths that are accessible to Alice, Bob and Eve respec-
tively. We allow the parties to change their accessed paths at certain
points in time during the PMT protocol. We study perfect (P)-PMT
protocol families that guarantee absolute privacy and reliability of mes-
sage transmission. For the sake of transmission rate improvement, we
also investigate asymptotically-perfect (AP)-PMT protocol families that
provide negligible error and leakage and behave the same as P-PMT
families when message length tends to infinity.

We derive the necessary and sufficient conditions under which P-PMT
and AP-PMT are possible and introduce explicit PMT schemes. Our re-
sults show AP-PMT protocols attain much higher information rates than
P-PMT ones. Interestingly, AP-PMT may be possible even in poor con-
ditions where ta = tb = 1 and te = n− 1. We study applications of our
results to private communication over the real-life scenarios of multiple-
frequency links and multiple-route networks. We show practical examples
of such scenarios that can be abstracted by the multipath setting: Our
results prove the possibility of keyless information-theoretic private mes-
sage transmission at rates 17% and 20% for the two example scenarios,
respectively. We discuss open question and future work.

1 Introduction

With the rapid growth of online communication, an increasing number of daily
activities are moved to the online world and fall under prying eyes resulting in
increasing loss of privacy. Personal data can be under surveillance by various
entities. Hackers easily tap into WiFi connections to steal online communication
data [9]. There are reported news on security agencies watching civilian com-
munications through routers in the Internet [8]. Given massive computational
resources accessible to the adversaries, näıve usage of traditional cryptographic

� The author has moved to Nulli Identity Solution Inc., Canada (hahmadi@nulli.com).
�� This work is in part supported by Alberta Innovates Technology Futures.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 116–133, 2014.
c© Springer International Publishing Switzerland 2014

Private Message Transmission Using Disjoint Paths 117

systems for protecting communication in many cases creates a false sense of secu-
rity rather than real protection [7]. Development of quantum algorithms such as
Shor’s algorithm [13] will also render all today’s widely used crypto algorithms
insecure. The widely known one-time-pad alternative with information-theoretic
security requires prior sharing of long keys, which is impractical.

In this paper, we investigate using multiple paths of communication as an
alternative resource for providing privacy against a computationally-unbounded
eavesdropper. A path may have different realizations such as a network route,
a frequency channel in wireless communication, or a fiber strand in fiber-optics.
Using path redundancy for security has been considered in the context of secure
message transmission (SMT) [5]. The focus of SMT research however has been
security against Byzantine active adversaries, an objective which is impossible
in many cases of interest where the majority of paths are corrupted. Note that
studying active adversaries is not necessary for networks under surveillance.

1.1 Our Work: PMT in the Multipath Setting

We consider message transmission over the following abstract communication
system with three parties: a message sender Alice, a message receiver Bob, and
an eavesdropper Eve. Alice wants to send a message to Bob, without leaking
information to computationally-unbounded Eve. There is no shared key between
Alice and Bob. The system provides n disjoint paths, but not all paths can be
accessed simultaneously: Alice, Bob, and Eve can have access to up to ta, tb, and
te paths at a time, respectively. We assume time is divided into intervals of equal
length λ, and the parties can change their accessed paths at the beginning of
each time interval. The value of λ is determined by the technological limitations
of the parties, esp. Eve, in switching between paths.

We refer to this problem as private message transmission (PMT) in the (n, ta,
tb, te, λ)-multipath setting. We provide formal definitions of PMT protocols in
this setting. Foremost, we are interested in necessary and sufficient connectivity
conditions, under which PMT is possible. But we do not stop here. We study
how to attain the so-called secrecy capacity, i.e., highest possible rate (message
bits divided by communicated bits). The study of secrecy capacity and optimal
constructions is essential due to bandwidth limitations and communication cost
in most practical scenarios.

P-PMT and AP-PMT. The security of PMT protocols is measured by re-
liability (δ) and secrecy (ε) parameters. The former shows the probability of
“incorrect” transmission and the latter represents information leakage. Ideally,
a PMT protocol is expected to provide perfect security δ = ε = 0. Relaxing the
security requirements to a desired extent may however let PMT at higher rates.
We consider designing of two types of PMT protocol families, namely perfect (P)-
PMT families with perfectly-secure protocols and asymptotically-perfect (AP)-
PMT families that allow positive yet decreasing δ and ε, with respect to message
length. The latter family is particularly interesting because it may provide secu-
rity for a much wider connectivity range. We define P-secrecy capacity C0 and

118 H. Ahmadi and R. Safavi-Naini

AP-secrecy capacity C∼0 as the highest achievable rates by P-PMT and AP-
PMT families. We start our investigation in full-access case (when ta = tb = n),
and then extend the study to the general case.

PMT Results. Our precise results on P-PMT and AP-PMT protocols are
rather complex (see Section 5). For the sake of a quick overview, we provide
in Table 1 an approximation of these results for sufficiently large λ. Section 6
gives details about why assuming large λ is plausible.

Table 1. PMT conditions and capacities in the (n, ta, tb, te, λ)-multipath setting

Full Access Partial Access
One-way Two-way One-way Two-way

Condition
P-PMT

te < n
te < tab

AP-PMT te < tb te < n

Capacity
C0 ≈ 1− te

n

≈ [1− te
tab

]+
C∼0 ≈ 1− te

n
≈ 1− te

n

In the full-access case, P-PMT and AP-PMT behave the same in rate and
connectivity condition. This result is not surprising: When te = n, Eve can
collect all data communicated over the paths to retrieve the message. Conversely
when te < n, message is divided into n shares and sent such that n− te shares
remain private, implying the secrecy rate of 1− te

n . We show that relaxing security
to asymptotically-prefect does not change the results. Surprisingly however, in
the case of partial-access, AP-PMT shows a huge advantage. P-PMT protocols
cannot exceed rate [1 − te

tab
]+, with tab = min{ta, tb}, whereas it is possible to

get rates close to 1 − te
n through AP-PMT. To appreciate this advantage more,

consider cases where Alice and Bob possess poor connectivity, but Eve has access
to almost all paths (i.e., ta, tb % te ≈ n): While P-PMT is clearly impossible,
one may take the benefit of positive-rate AP-PMT protocols.

We introduce one-round and two-round AP-PMT schemes to prove our AP-
secrecy rates. The schemes consist of two primitive blocks, namely a (low-rate)
key establishment block followed by a (high-rate) coordinated (keyed) PMT block.
The former allows the parties to share a secret key and the latter allows them
to use the secret key for high rate message transmission.

Practical Consideration. To show the practical relevance of our results, we
elaborate on two example scenarios of communication over multiple-frequency
links and multiple-route networks and show private communication is achieved at
rates 17% and 20%, respectively. This provides a novel attempt to build optimal-
rate communication with information-theoretic privacy in these scenarios.

Secrecy Rates and Multipath Setting Parameters. Although it may not
be clearly from Table 1, precise secrecy rates of P-PMT and AP-PMT (see
Section 5) depend on all multipath setting parameters (n, ta, tb, te, λ). Here are

Private Message Transmission Using Disjoint Paths 119

a few words on how the rates are affected generally by these parameters. First,
all secrecy rates are functions of path ratios ta

n , tb
n , and

te
n : As long as these

three values are not changed increasing/decreasing the total number n of paths
does not affect the derived rates. Next (and intuitively), the rates are improved
by allowing Alice and Bob higher connectivity (increasing ta

n and tb
n) and are

decreased when Eve obtains higher connectivity (ten is increased). Finally, having
longer time intervals (larger λ) results in better rates: The reason is larger λ
implies that Alice and Bob can send more information before Eve switches her
accessed paths.

1.2 Related Work and Discussion

Secure Message Transmission. In secure message transmission (SMT) [5],
Alice and Bob are connected by n paths, out of which t ≤ n can be corrupted by
the active adversary, Eve. The objective is to guarantee privacy and reliability of
a transmitted message. Our study of PMT deviates in a few directions from SMT.
Firstly, we focus on passive attacks and study capacity-achieving constructions.
Note that a great portion of threats to online communication are passive and
using immediate SMT results is an over-design with sub-optimal solutions.

Secondly, SMT assumes Alice and Bob can use all n paths. In dense net-
works or wide-band frequency channels however, there are more communication
paths than parties can possibly afford access. We address this by allowing par-
tial access for Alice and Bob. Last but not least, there is no concept of time
interval in SMT, i.e., Alice and Bob can communicate arbitrarily many bits
(in a round) without Eve switching her corrupted paths. In a real-life scenario
however, Eve may switch paths if enough time is provided. We capture this by
adding a time-interval length parameter λ to our abstract model. A SMT proto-
col that transmits more than λ bits in one round without accounting for Eve’s
movements is not necessarily functional in our new model. Note that the last
two differences cause our study to be more general than SMT.

FrequencyHopping. Frequency-hopping spread spectrum (FHSS) is a commu-
nication technique which transmits data as a sequence of blocks sent over pseudo-
random frequency channels. The technology has appeared in earlyWiFi and Blue-
tooth applications to enhance resistance against interference and narrow-band
noise, andmore recently, to countermeasure jamming-baseddenial of service (DoS)
attacks [15]. FHSS originally requires share keys between the communicants.
Strasser et al. [14] introduced keyless or uncoordinated frequency hopping (UFH)
for jamming-resistant key establishment. AlthoughUFH provides “jamming resis-
tance” securitywithout share keys, its security relies on higher-layer cryptography,
which implies two drawbacks: (i) the need for a public-key infrastructure and (ii)
only computational security guarantees.Looking at a different objective, our PMT
results showthepossibility ofprivate communicationovermultiple-frequencychan-
nels. In contrast to UFH, the PMT guarantees (i) do not rely on higher-layer cryp-
tography, and (ii) provide security against computationally-unlimited adversaries.

120 H. Ahmadi and R. Safavi-Naini

Notation. For real value x, we denoted [x]+ = max{0, x}. For two random
variables X ∈ X and Y ∈ Y, we denote their statical distance by SD(X,Y) =
0.5
∑

x∈X |Pr(X = x) − Pr(Y = x)|. Throughout, we use (n, ta, tb, te, λ) as

multipath setting parameters, and let tab = min(ta, tb) and Δ = 2
λ
2 −2−0.25)−1.

We consider Δ to be negligible for our numerical analysis by assuming large λ.

2 Preliminaries: Ramp and Quasi-ramp Secret Sharing

A secret sharing scheme (SSS) distributes a secret S among a set of m players
such that every “qualified” subsets can reconstruct S, while no information is
leaked to an “unqualified” subset. The scheme is defined by a pair (Share,Rec)
of functions: Share maps secret S to shares X = (X1, X2, . . . , Xm) and Rec
maps shares X ′ = (X ′

1, . . . , X
′
m) to a secret reconstruction Ŝ. A (k,m)-threshold

SSS [12] distributes the secret via m shares such that any ≥ k shares are qualified
and any ≤ k− 1 shares are unqualified. A (k, r,m)-ramp SSS extends the above
(to r �= 1) such that any ≥ k shares are qualified and ≤ k − r shares are
unqualified, and information leakage increases by the number of shares.

Polynomial-based ramp SSS. The simplest (k, r,m)-ramp SSS is Shamir’s
polynomial-based construction [12] denoted by (Sharepol,Recpol) and described
below. Define integer p ≥ m+ r and let S = (S0, . . . , Sr−1) ∈ Fr

p be the secret.

– Sharepol(S) chooses a random polynomial f(x) of degree ≤ k−1 over Fp[x],
such that f(0) = S0, f(1) = S1, . . . , f(r − 1) = Sr−1; it returns m shares
X1 = f(r), . . . , Xm = f(r +m− 1).

– Recpol(X
′) chooses the first k present shares: If this is not possible, re-

turns ⊥; otherwise obtains f(x) through interpolation and returns S =
(f(0), f(1), . . . , f(r − 1)).

Algebraic-geometric Quasi-ramp SSS. The polynomial-based ramp SSS re-
quires m + r ≤ p since there is only p points on the polynomial. Algebraic-
geometric constructions relax this requirement by using curves of high genus.
Garcia and Stichtenoth [6, Theorem 3.1] show an explicit family of curves with
arbitrary genus g and (

√
p−1)g many points over Fp (when p is a square). Chen

and Cramer [3] use these curves to construct an algebraic geometric (k, r, g,m)-
quasi-ramp SSS for any m < (

√
p−1)g shares. A Quasi-ramp SSS allows ≥ k+2g

shares to be qualified and any ≤ k − 1 shares to be unqualified.

(k, r, g,m)-quasi-ramp SSS (Sharealg,Recalg). Let C be a Garcia-Stichtenoth
curve with genus g over Fp, where p is a square and (

√
p−1)g ≥ m+r. Define Q,

P0, P1, . . . , Pm+r−1 as anym+r+1 distinct rational points on C,D = (k+2g).(Q)
as a rational divisor of C, and L(D) as the Riemann-Roch space associated with
D. Let S ∈ Fr

p be the secret.1

1 Refer to [3] for the definitions of rational divisor and Riemann-Roch space.

Private Message Transmission Using Disjoint Paths 121

– Sharealg(S) chooses a random function f(.) ∈ L(D) such that f(P0) =
S0, f(P1) = S1, . . . , f(Pr−1) = Sr−1 and returns shares X1 = f(Pr), . . . ,
Xm = f(Pm+r−1) over Fp.

– Recalg(X
′
1, . . . , X

′
m) chooses the first k + 2g present shares: If not possible,

returns ⊥); otherwise, obtains f(.) through linear interpolation and returns
S = (f(0), f(1), . . . , f(r − 1)).

The above SSS allows for more shares at the price of increasing the gap be-
tween the number of qualified and unqualified players. If field size p is large
enough, one can generate

√
p − 1 additional shares by allowing only 2 players

gap in SSS. We use this interesting property in our PMT constructions which
let p = 2λ, for time-interval length λ.

3 Problem Description

3.1 Multipath Setting Abstraction

A multipath setting refers to an abstract communication system which consists
of n disjoint communication paths, out of which at most ta, tb, and te can be
simultaneously accessed by Alice, Bob, and Eve, respectively. More precisely,
time is divided into equal-length intervals each of which corresponds to λ bits of
communication over at least one path. In the beginning of a time intervals, the
parties choose their access paths and will hold on to their choice till the end of
that interval, i.e., until λ bits are communicated over a path. This abstraction
of time intervals in bits is obtained by multiplying the bit-transmission speed by
path switching time. The value of λ depends on how fast the communicants and
(more importantly) Eve can release old paths and capture new paths without
possibly missing the live communication. This relates to the actual communi-
cation scenario, the communication capability of devices, and the transmission
speed. We shed more light on this in Section 6: The practical scenarios considered
there suggest typical values of λ > 100. To summarize, a multipath setting is
defined by five public parameters (n, ta, tb, te, λ) and we denote tab = min(ta, tb)
throughout. When tab = n, we refer to the setting as the (n, te, λ)-full-access
setting. Figure 1 illustrates full-access versus partial-access settings.

(a) Full-access: ta = tb = n. (b) Partial-access: ta, tb ≤ n.

Fig. 1. Full-access vs. partial-access multipath settings

122 H. Ahmadi and R. Safavi-Naini

3.2 PMT protocol and Secrecy Capacity: Definition

To deliver message S from Alice to Bob, a PMT protocol makes them commu-
nicate sequences of data so that Bob can obtain an estimate Ŝ. The protocol
leaves Eve with some view V iewE(S) of the communication. The randomness in
V iewE(.) comes from the PMT protocol and the adversary.

Definition 1 (PMT Protocol). A protocol Π over a multipath setting is a
(k, c, δ, ε)-PMT protocol if it transmits any k-bit message using c bits of commu-
nication such that

Reliability : ∀s ∈ {0, 1}k : Pr(Ŝ �= s) ≤ δ, (1)

Secrecy : ∀s1, s2 ∈ {0, 1}k : SD (V iewE(s1), V iewE(s2)) ≤ ε. (2)

Π is called perfect (P)-PMT if δ = ε = 0. The secrecy rate of Π equals R = k
c .

In practice, the message length may be unknown beforehand and one needs a
family of PMT protocols for arbitrarily long messages. PMT families are desired
to have a guaranteed rate for any message length. We refer to this guaranteed
rate as the secrecy rate of the family.

Definition 2 ((δ, ε)-PMT and P-PMT Families). A (δ, ε)-PMT family F
for a multipath setting S is a sequence (Πi)i∈N, where for each i, Πi is a
(ki, ci, δ, ε)-PMT protocol over S and ki+1 > ki. The (δ, ε)-secrecy rate of F
equals RF :δ,ε = inf{ki

ci
: i ∈ N}.2 When δ = ε = 0, F is called a perfect

(P)-PMT family and the P-secrecy rate is denoted by RF :0.

Designing P-PMT families is crucial for highly-sensitive data transmission. There
are however scenarios which desire non-zero yet negligible δ and ε. We define
asymptotically-perfect (AP)-PMT families with (δ, ε)-PMT protocols, such that
the values δ and ε tend to zero for longer messages.

Definition 3 (AP-PMT Family). An AP-PMT family F for a multipath set-
ting S is a sequence (Πi)i∈N where for each i, Πi is a (ki, ci, δi, εi)-PMT pro-
tocol over S , and it holds ki+1 > ki, δi+1 ≤ δi, εi+1 ≤ εi, and limi→∞ δi =
limi→∞ εi = 0. The AP-secrecy rate of F is defined as RF :∼0 = inf{ki

ci
: i ∈ N}.

We accordingly define the secrecy capacity of a multipath setting as the high-
est secrecy rate that can be guaranteed for all message lengths. We are particu-
larly interested in two types of capacities.

Definition 4 (Secrecy Capacity). The P- (resp. AP-) secrecy capacity C0

(resp. C∼0) of a setting S equals the largest P-secrecy (resp. AP-secrecy) rate
achievable by all possible P- (resp. AP-) PMT families over S .

2 The infimum exists as the sequence is bounded from below by zero.

Private Message Transmission Using Disjoint Paths 123

3.3 Relation among P-secrecy and AP-secrecy Capacities

Definition 1 implies that any (k, c, δ1, ε1)-PMT protocol is also (k, c, δ2, ε2)-PMT
for δ2 ≥ δ1 and ε2 ≥ ε1. Since families simply consist of protocols, any (δ1, ε1)-
PMT family is also a (δ2, ε2)-PMT family. This shows C0 ≤ C∼0. It is important
to know whether the above can be replaced by a strict inequality: It is fairly
reasonable to tolerate negligible deviation from perfect security to improve rate
or to make PMT possible. Below, we study P-PMT and AP-PMT protocols
starting from the full-access case (when ta = tb = n) and extend it to the
general multipath setting. Our study leads us the following ultimate conclusion:

For a wide range of settings, it holds C∼0 > C0.

4 PMT in the Full-access Scenario

In the (n, te, λ)-full-access setting (i.e., ta = tb = n) with infinite interval length
λ = ∞, the PMT problem relates to the SMT work [5] (for passive adversary):

The optimal solution, denoted by Fpol
0 , simply uses a polynomial-based (n, r, n)-

ramp secret sharing scheme (SSS), (Sharepol,Recpol), where r = n − te. Let
S ∈ Fr

2u be the secret message, for some integer u > log(2n− te).

– Alice calculates shares X = (X1, X2, . . . , Xn) = Sharepol(S) and sends
Xi ∈ F2u over path i.

– Having received Xi’s, Bob obtains the message as S = Recpol(X).

The perfect reliability and secrecy follow trivially from the properties of (n, r, n)-
ramp SSS: n shares are qualified and n− r = te shares are unqualified.

Proposition 1. The scheme Fpol
0 gives a family of (u.r, u.n, 0, 0)-P-PMT pro-

tocols with rate RFpol
0

= 1− te
n over the (n, te, λ)-full-access setting with λ =∞.

4.1 P-PMT for Finite λ

When λ is finite, the scheme Fpol
0 (without any modification) does not provide us

with a P-PMT family since it cannot give P-PMT protocols for message lengths
u.r such that u > λ. There is of course an easy fix to this. One can stay with a
constant field size 2λ and instead repeat Fpol

0 for sufficiently many times to send
arbitrarily long messages; hence, a PMT family.

Proposition 2. Repeating Fpol
0 for arbitrary times results in a P-PMT family

with rate RFpol
0

= 1− te
n in any (n, te, λ)-full-access setting with 2n− te ≤ 2λ.

The situation is unfortunate when 2n − te > 2λ: Fpol
0 cannot provide any

PMT protocol since the polynomial-based SSS cannot generate more points than

the field size 2λ. To resolve this, we propose a P-PMT scheme, Falg
0 , that is

similar to FPol
0 but uses the algebraic-geometric SSS of Section 2 with arbitrarily

many shares over F2λ and transmits message in q time-intervals. In precise, the

124 H. Ahmadi and R. Safavi-Naini

scheme uses a (qn−2g, r, g, qn)-quasi-ramp SSS (Sharealg,Recalg) for the secret

message S = (S1, . . . , Sr) ∈ Fr
2λ : To generate qn + r ≤ (

√
2λ − 1)g points, we

choose g =
 q(2n−te)
2λ/2−1

� and r = q(n−te)−2g. The reliability and secrecy properties

of Falg
0 follow from the quasi-ramp SSS: qn−2g+2g = qn shares are qualified and

qn− 2g − r = qte shares are unqualified. The rate equals RFalg
0

= rλ
qnλ = 1− te

n ,

where (inequality (a) follows by choosing q ≥ 2λ/2−1
te

−Δ)

Δ =
2� 2qn

2λ/2−1
− qte

2λ/2−1
�

qn

(a)

≤ 4qn

(2λ/2 − 1)qn
= (2

λ
2
−2 − 0.25)−1. (3)

Proposition 3. The scheme Falg
0 gives a P-PMT family over any (n, te, λ)-full-

access setting. The P-secrecy rate of the family is RFalg
0 :0 = [1− te

n −Δ]+ where

Δ ≤ (2
λ
2 −2 − 0.25)−1.

Implication to P-secrecy Capacity The existing work on SMT (cf. [11]) sug-
gests the upper-bound 1− te

n on achievable P-PMT secrecy rates. This combined
with the above results leads us to the following approximation of the P-secrecy
capacity for the full-access case:

[1− te
n
−Δ]+ ≤ CFA

0 ≤ 1− te
n
. (4)

It remains an interesting theoretical question to close the gap between the
two bounds. For practical scenarios (λ > 100), the gap Δ is reasonably small.

4.2 AP-PMT in the full-access Case

We are interested in finding whether PMT rates can be improved if reliability
or secrecy requirements are relaxed to asymptotically perfect. We already have
the trivial lower-bound CFA

∼0 ≥ CFA
0 . To derive an upper-bound, we obtain a

bound on (δ, ε)-secrecy rates and then study its behavior when δ and ε approach
zero. The bound is obtained by relating to (δ, ε)-secret-key rates for secret-key
establishment protocols. The proof is rather technical and is removed due to lack
of space. We refer to the full version [2, Section 4.3] for the proof.

Theorem 1. There is no (possibly multiple-round) (k, c, δ, ε)-PMT protocol in

the (n, te, λ)-full-access setting with k
c > 1−te/n

1−1.25ε′−ε′ log ε′ , where ε′ = ε + δ. This

implies the AP-secrecy capacity of (using the lower-bound (4))

[1− te
n
−Δ]+ ≤ CFA

∼0 ≤ 1− te
n
. (5)

The bounds (4) and (5) show that P-secrecy and AP-secrecy capacities fall
in the same range and will equal 1 − te

tab
assuming Δ → 0: We can conclude

relaxing security requirements from perfect to asymptotically-perfect does NOT
help improve the secrecy rate in the “full-access” case.

Private Message Transmission Using Disjoint Paths 125

5 PMT in the General Multipath Setting

Unlike full-access, relaxing security to asymptotically perfect benefits PMT in
the general setting. We study P-PMT and AP-PMT rates separately.

5.1 P-PMT: Capacity and Construction

We derive lower and upper bounds on the P-secrecy capacity in the general (two-
way) multipath communication setting that prove C0 ≈ [1 − te

tab
]+ and imply

P-PMT impossibility when te ≥ tab.

Lower-bound via one-round P-PMT. The lower-bound on C0 is attained by using
one-round PMT schemes, Fpol

0 or Falg
0 , over a fixed (hard-coded) set of tab paths.

The constructions promise the rate 1− te
tab

−Δ when te ≤ tab (see (4)).

Upper-bound on P-PMT achievable rates. Any (possibly multiple-round) P-PMT
protocol in the multipath setting needs to provide “perfect” secrecy, even in the
“worst” case when Eve always captures te of the ≤ tab communication paths
between Alice and Bob. This suggests the maximum rate 1− te/tab stated in the
following Lemma. For the proof, we refer to the full version [2, Appendix D].

Lemma 1. There is no (possibly multiple-round) (k, c, 0, 0)-PMT protocol over
the (n, ta, tb, te, λ)-multipath setting with rate R = k

c > [1− te
tab

]+.

Theorem 2 concludes the results on P-secrecy capacity.

Theorem 2. The P-secrecy capacity of any (n, ta, tb, te, λ) multipath setting sat-
isfies [1 − te

tab
− Δ]+ ≤ C0 ≤ [1 − te

tab
]+ and the lower-bound is achieved by an

explicit one-round PMT protocol.

5.2 AP-PMT: Capacity and Constructions

Achievable AP-secrecy rates in the general setting cannot be upper-bounded by
some similar approach to the full-access case (as in Section 4.2). This leaves us
with the trivial upper-bound

C∼0 ≤ U∼0
�
= 1− te

n
. (6)

At a first look, the upper-bound seems far from tight. It seems impossible to reach
secrecy rates up to 1 − te

n , regardless of connectivity parameters ta and tb. We
prove however that for sufficiently large λ, there are AP-PMT families which can
get close to this rate. For one-way multipath setting, the required connectivity
condition is tb > te; for two-way setting however, AP-PMT is always possible
only if te < n and ta, tb > 0.

126 H. Ahmadi and R. Safavi-Naini

AP-PMT Approach. We introduce three different AP-PMT schemes for dif-
ferent connectivity ranges. All schemes consist of two primitive blocks: (i) low-
rate key establishment block and (ii) high-rate coordinated PMT block. The key-
establishment block lets Alice and Bob share a long secret-key W in q1 intervals.
The coordinated PMT block allows Alice to send her message to Bob in q2 in-
tervals over the secret paths chosen based on W : Since Eve is unaware of W , the
coordinated PMT rate equals (almost) 1 − te

n . The overall rate however takes
into account the overhead communication for block (i). Both blocks take use of
the algebraic-geometric SSS of Section 2.

One-round AP-PMT for te ≤ tab. We introduce a one-round AP-PMT
scheme F1 with an AP-secrecy rate close to 1 − te

n . The scheme has perfect
reliability, but allows for negligible leakage. It composes a key-transport block
and a coordinated PMT block as follows. Given the (n, ta, tb, te, λ) multipath
setting, define w =
log

(
n
tab

)
�. For arbitrarily small ψ > 0, and sufficiently large

q1 ∈ N (to be determined), define 3

g1 = �q1(2tab − te)

2λ/2 − 1
�, r1 = q1(tab − te)− 2g1 (7)

q2 =
r1λ

w
, t′e,2 = (1 + ψ)

tabte
n

, g2 = �q2(2tab − t′e,2)

2λ/2 − 1
�, r2 = q2(tab − t′e,2)− 2g2.(8)

Let (Sharealg,1,Recalg,1) be a (q1tab−2g1, r1, g1, q1tab)-quasi-rampSSS overF2λ

used for key transport, and (Sharealg,2,Recalg,2) be a (q2tab− 2g2, r2, g2, q2tab)-
quasi-ramp SSS overF2λ used for coordinated PMT. Let T0 be a set of fixed (pub-
lic) tab paths and S ∈ Fr2

2λ
be the message to be transmitted.

One-round (0, ε)-PMT scheme F1.

(i) Key transport (q1 intervals).Alice generates randomlyW = (W1, . . . ,Wq2) ∈
{0, 1}q2w. She obtains shares X = (Xi,j)1≤i≤q1,1≤j≤tab

= Sharealg,1(W)

and sends (Xi,j)1≤j≤tab
over the tab paths of T0 in interval 1 ≤ i ≤ q1. Hav-

ing received shares, Bob reconstructs W = Recalg,1(X).
(ii) Coordinated PMT (q2 intervals). Alice and Bob calculate path sets Ti of size

tab, for 1 ≤ i ≤ q2, using key Wi ∈ {0, 1}w. Alice calculates message shares
Y = (Yi,j)1≤i≤q2,1≤j≤tab

= Sharealg,2(S) and sends the part (Yi,j)1≤j≤tab

over Ti in interval q1 + i. Having received all shares, Bob reconstructs
S = Recalg,2(Y).

Theorem 3. For any small ψ, ε > 0, the scheme F1 gives (0, ε)-PMT and AP-
PMT families over an (n, ta, tb, te, λ) multipath setting with te < tab ≤ n. The
AP-secrecy rate of the scheme equals

RF1:∼0 =
1− te

n −Δ

1 + ξ1
, where ξ1 =

log(en
tab

)

λ(1 − te
tab

−Δ)
and Δ = (2

λ
2 −2− 0.25)−1.

3 Here, we assume that q1 is chosen such that w divides r1λ.

Private Message Transmission Using Disjoint Paths 127

Proof. See Appendix A.

Remark 1. It is crucial to use the algebraic-geometric (rather than polynomial)
SSS. Expecting arbitrarily small ε > 0 requires sufficiently many (q2tab) shares
over field of constant size 2λ.

The rate RF1:∼0 shows rate improvement of AP-PMT compared to P-PMT.
The rate is however lower than upper-bound (6) mainly due to the key-transport
block communication overhead ξ1.

One-round AP-PMT for te ≥ tab. The scheme F1 cannot achieve any
positive secrecy rate when te ≥ tab. We observe the following two restricting
properties of F1: (i) it provides perfect reliability, and (ii) it is non-interactive.
In this section, we focus on relaxing perfect reliability and introduce a PMT
scheme F2 that only modifies the key-transport block in F1: It fixes a larger set
T0 of max(ta, tb) ≤ n′ ≤ n (instead of tab) paths and requires Alice and Bob to
communicate over random subsets of T0. This sacrifices the reliability, but allows
for pushing the multipath connectivity condition to te < tb instead of te < tab
(for scheme F1).
F2 uses same parameters (8) for coordinated PMT, but updates parameters

for key transport: It uses the algebraic-geometric (q1t
′
b,1−2g1, r1, g1, q1ta)-quasi-

ramp SSS (Sharealg,1,Recalg,1), where

t′b,1 = (1− ψ) tatbn′ , t′e,1 = (1 + ψ) taten′ ,

g1 =
 q1(ta+t′b−t′e,2)
2λ/2−1

�, r1 = q1(t
′
b,1 − t′e,1)− 2g1. (9)

One-round (δ, ε)-PMT scheme F2.

(i) Key transport (q1 intervals). Alice generates random W = (W1, . . . ,Wq2) ∈
{0, 1}w and shares X = (Xi,j)1≤i≤q1,1≤j≤ta

= Sharealg,1(W). In each

round 1 ≤ i ≤ q1, she sends the part (Xi,j)1≤j≤ta
over ta (random) paths

from T0, and Bob listens over tb (random) paths from T0. If Bob’s observa-
tion X ′ includes less than q1t

′
b,1 shares, he aborts and chooses Ŝ ∈R Fr2

2λ
;

otherwise, he reconstructs W = Recalg,1(X
′).

(ii) Coordinated PMT (q2 intervals). This is the same as F1.

Theorem 4. For any small ψ, δ, ε > 0, the scheme F2 gives (δ, ε)-PMT and
AP-PMT families over any (n, ta, tb, te, λ) multipath setting with te < tb. The
AP-secrecy rate of this scheme reaches

RF2:∼0 =
1− te

n −Δ

1+ξ2
, where

ξ2 =
log(en

tab
)

λ
(

tb−te
n′ −Δ

) , n′ = max(ta, tb), and Δ = (2
λ
2 −2 − 0.25)−1.

Proving Theorem 4 is similar to Theorems 3. We refer the reader to the full
version [2, Appendix F] for the proof.

128 H. Ahmadi and R. Safavi-Naini

Remark 2. When tb = n Scheme F2 can be simplified to achieve a higher rate:
Only Stage (i), key-transport, suffices to serve message transmission at rate
tb−te
tb

−Δ = 1− te
n −Δ, for n′ = n.

Impossibility of One-way PMT for te ≥ tb. It is impossible to obtain AP-
PMT in one-round when te ≥ tb. The reason any protocol that lets Bob recover
the message will let Eve too. For the proof, refer to [2, Appendix G]

Proposition 4. When te ≥ tb, there is no one-round (k, c, δ, ε)-PMT protocol
of rate R = k

c > 2ε
1−δ−α to transmit k ≥ 3/α bits of messages, implying the

AP-secrecy capacity of C∼0 = 0.

Implication to one-way AP-secrecy capacity. Putting things together, we
reach the following on AP-secrecy capacity of one-way communication.

Corollary 1. For any one-way (n, ta, tb, te, λ)-multipath setting, it holds that−→
L∼0 ≤

−→
C∼0 ≤

−→
U ∼0, where

−→
L∼0 =

⎧⎪⎪⎨⎪⎪⎩
[

1− te
n −Δ

1+min(ξ1,ξ2)
]+, if te < tab

[
1− te

n −Δ

1+ξ2
]+, if tab ≤ te < tb

0, if te ≥ tb

,
−→
U ∼0 =

{
1− te

n , if te < tb

0, if te ≥ tb
.(10)

AP-PMT: Always Positive Rates via Two-way Communication. We
introduce a two-round AP-PMT scheme F3 that achieves positive rates even
when te ≥ tb. The idea is using an interactive key-agreement block, instead of
key transport. Bob sends random elements over random paths and Alice publicly
responds (over a fixed path) which elements she has received. Having shared
common elements, Alice and Bob apply privacy amplification to convert them
into a secret-key. We use the algebraic-geometric SSS for privacy amplification.

Scheme F3 uses same parameters as F1 for coordinated PMT (8), but updates
paraments for key agreement: It uses the (q1t

′
a,1 − 2g1, r1, g1, q1t

′
a,1)-quasi-ramp

SSS (Sharealg,1,Recalg,1), where

t′a,1 = (1− ψ) tatbn , t′e,1 = (1 + ψ)
t′a,1te

n , (11)

g1 =
 q1(2t
′
a,1−t′e,1)

2λ/2−1
�, r1 = q1(t

′
a,1 − t′e,1)− 2g1. (12)

Two-round (δ, ε)-PMT scheme F3.

(i) Interactive key agreement (q1 intervals). Bob generates X = (Xi,j)

1≤i≤q1,1≤j≤tb randomly from (Fλ
2)

q1tb . In each interval 1 ≤ i ≤ q1, he
sends (Xi,j)1≤j≤tb over tb random paths and Alice listens over ta random
paths. If Alice’s observation includes < q1t

′
a,1 elements from X, she aborts

and Bob outputs Ŝ ∈R Fr2
2λ
; otherwise, let XA ⊆ X be the first q1t

′
a,1 ele-

ments observed by Alice over path sets (Pi)1≤i≤q1 . Alice sends (Pi)1≤i≤q1

information over a fixed (public) path to Bob. Alice and Bob use XA as
shares to calculate W = (W1, . . . ,Wq2) = Recalg,1(XA).

Private Message Transmission Using Disjoint Paths 129

(ii) Coordinated PMT (q2 intervals). This is the same as F1.

Theorem 5. For any ψ, δ, ε > 0, the scheme F3 gives (δ, ε)-PMT and AP-PMT
families over any (n, ta, tb, te, λ) multipath setting with ta, tb > 0 and te < n.
The AP-secrecy rate of F3 equals:

RF3:∼0 =
1− te

n −Δ

1+ξ3
,

where ξ3 =

(
n
ta

+
log(en2/(tatb)

λ

)
log en

tab

λ(1− te
n −Δ)

and Δ = (2
λ
2 −2 − 0.25)−1.

The proof is similar to those for Theorems 3 and 4. We refer the reader to the
full version [2, Appendix H].

Implication to two-way AP-secrecy capacity. The capacity is trivially
upper-bounded by 1 − te

n , unless when ta = 0 or tb = 0. Combining the lower
bounds from F1, F2, and F3, we have:

Corollary 2. For any (n, ta, tb, te, λ)-multipath setting, it holds L∼0 ≤ C∼0 ≤
U∼0, where

L∼0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[

1− te
n

−Δ

1+min(ξ1,ξ2,ξ3)
]+, if te < tab

[
1− te

n
−Δ

1+min(ξ2,ξ3)
]+, if 0 < tab ≤ te < tb

[
1− te

n
−Δ

1+ξ3
]+, if 0 < tb < te ∧ ta > 0

0, else

, U∼0=

{
1− te

n
, if ta, tb > 0

0, else
.(13)

5.3 Comparison of P-secrecy and AP-secrecy Rates

We have proved that in partial-access multipath communication, Alice and Bob
can achieve higher secrecy rates if they choose AP-PMT protocols over P-PMT
ones. To give more sense about how much rate improvement is attained by AP-
PMT protocols, we compare the P-secrecy and AP-secrecy capacities for typical
multipath parameters that match practical scenarios. Figure 2(a) graphs the
lower and upper bounds on C∼0 as well as C0 for different values of β = te

n ,
assuming λ = 100 and ta = tb = 0.2n. For this value of λ, we approximate
Δ ≈ 0 and thus C0 ≈ 1 − te

tab
= 1 − 5β (see Theorem 2). The capacity C0

and the bounds L∼0 and U∼0 are shown by solid, dotted, and dashed lines,
respectively. The graph clearly illustrates the benefit of using AP-PMT: While
the lower-bound L∼0 remains positive throughout, C0 drops fast and equals 0 for
β ≥ 0.2. For β ≤ 0.15, the lower bound L∼0 is achieved by one-round AP-PMT
and is quite close to the upper bound. Outside of this range, the lower-bound
corresponds to our two-round scheme F3. This is not surprising since one-way
AP-PMT is impossible when β ≥ 0.2 (implying te ≥ tb).

Figure 2(b) graphs the same three quantities (C0, L∼0, and U∼0) with re-
spect to α = tab

n , assuming λ = 100, ta = tb, and te = 0.2n. The gap between

130 H. Ahmadi and R. Safavi-Naini

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t
e
 to n ratio (β)

Se
cr

ec
y

ca
pa

ci
tie

s
an

d
bo

un
ds

U
~0

L
~0

C
0

1−round
AP−PMT

2−round
AP−PMT

(a) w.r.t. β= te
n

for ta= tb=0.2n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t
ab

 to n ratio (α)

Se
cr

ec
y

ca
pa

ci
tie

s
an

d
bo

un
ds

U
~0

L
~0

C
0

2−round
AP−PMT

1−round
AP−PMT

(b) w.r.t. α= tab
n

for ta= tb and te=0.2n

Fig. 2. Comparing the secrecy capacities and bounds

the bounds on C∼0 bridges as we increase α. What causes more gap for small
α < 0.25 is small is the two-round AP-PMT communication overhead ξ3. Find-
ing a better approximation of the AP-secrecy capacity, especially in the low
connectivity regime where ta, tb < te is recommended as future work.

6 Practical Consideration

We discuss two practical applications of our PMT results in the multipath setting
model, i.e., sending secret data over (i) multiple-frequency links and (ii) multiple-
route networks. Both scenarios include a set of paths that connect communicants
and can be tapped into by present eavesdroppers.

6.1 PMT Using Multiple-frequency Links

Multiple-frequency communication environments, such as wireless and fiber-
optics, realize our multipath setting. Our PMT results show the possibility
of secure communication, provided that the wiretapper does not have simul-
taneous access to all frequencies (i.e., te < n in our setting). The challenge
is to design a multiple-frequency system that enforces this property. Existing
frequency-hopping solutions do not satisfy this requirement. Bluetooth for ex-
ample transmits data at speed of 1Mbps over 79 adjacent 1-MHz frequency
channels and by the current technology, one can easily capture all the 80-MHz
frequency range and store hours of communication in a 1 Terabyte disk.

It is yet possible to design systems that serve our purpose as it is practi-
cally infeasible for a single transceiver (and ADC) to deal with wider than 100
MHz ranges [10]. All we need is to use a system whose frequency channels are far
apart. Consider for instance a system design that uses n = 70 20-MHz frequency-
channels distributed evenly (with 80-MHz distances) over the 57–64 GHz (un-
licensed Gigabit WiFi) frequency range. Data transmitted at 100 Mbps speed.
Since there is only one frequency channel in each 100-MHz slot, the eavesdropper
would require 70 transceiver blocks to access all 70 channels simultaneously. This
is not practical in certain scenarios due to expense concern or space restriction
(e.g., stealth attack on indoor communication).

Private Message Transmission Using Disjoint Paths 131

Let us assume legitimate devices use only ta = tb = 4 transceivers, while the
wiretapper’s device can embed te = 35 such blocks. The wiretapper may switch
between frequencies to learn more information. Fastest frequency synthesizers
have switching time around 1μs [1]. Although one may allow longer switching
time for legitimate parties, the 1μs time determines λ in our design. At the
speed of 100 Mpbs, this gives λ = �10−6 × 100 × 220� = 104 bits, implying a
(70, 4, 4, 35, 104)-multipath setting for which the two-round AP-PMT scheme F3

sends private data at rate 17%. This solution does not require pre-shared keys
and provides information-theoretic security.

6.2 PMT Using Multiple-route Networks

Multipath routing has been shown [16] to benefit reliable transmission over large
networks such as mobile ad hoc networks (MANETs) and the Internet. We study
whether the resource can be used to enhance privacy of communication when
middle routers can be tapped into. We focus on MANETs. Studies have shown
the average number of node-disjoint paths in a moderately-dense (around 500-
node) MANET is over 10. Consider the following scenario: There are n = 10
paths between the source and destination nodes. The source can send over only
ta = 2 paths while the destination receives data through all tb = 10 paths. The
adversary’s resources allow for compromising at most te = 8 paths at a time, and
at least 1 millisecond is needed to redirect resources to tap into new nodes (and
paths); this is quite plausible, noting the technical challenges of tapping into
communicating devices. The source transmits data at the speed of 512 Kbps,
implying λ = �10−3 × 512 × 210� = 524. This leads to the (10, 2, 8, 10, 524)-
multipath setting for which the simplified version of scheme F2 (Block (i) only
– see Remark 2) guarantees private transmission at rate 20%.

7 Conclusion and Future Work

We have derived connectivity conditions for the possibility of P-PMT and AP-
PMT in the multipath setting. We also derived lower and upper bounds on
the secrecy capacities. Although in the full-access case, P-PMT and AP-PMT
behave the same, in general, AP-PMT protocols attain strictly higher rates.
The maximum rate for P-PMT is [1 − te

tab
]+, whereas AP-PMT protocols can

achieves rates close to the upper-bound 1 − te
n . The is yet a gap between the

proved achievable rates and this upper-bound. Bridging the gap is an interesting
question which we leave for future work.

Any practical communication system with path diversity can be a case to test
the feasibility our PMT results. We considered the real-life scenarios of communi-
cation over multiple-frequency links and multiple-route networks. In both cases,
we elaborated on how to derive multipath setting parameters and used our results
to provide private communication at rates 17% and 20%, respectively. Showing
the possibility of keyless communication with information-theoretic privacy is
interesting. A followup work can be the design of concrete protocols considering
all practical and technical concerns that may have been missing in this work.

132 H. Ahmadi and R. Safavi-Naini

References

1. Winradio ms-8323 multichannel telemetry receiver, http://www.winradio.com/

home/ms8323.htm

2. Ahmadi, H., Safavi-Naini, R.: Multipath private communication: An information
theoretic approach. CoRR, abs/1401.3659 (2014)

3. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-
party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 521–536. Springer, Heidelberg (2006)

4. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Annals of Mathematical Statistics 23(4), 493–507 (1952)

5. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
Journal of the ACM (JACM) 40(1), 17–47 (1993)

6. Garcia, A., Stichtenoth, H.: On the asymptotic behaviour of some towers of function
fields over finite fields. Journal of Number Theory 61(2), 248–273 (1996)

7. Leyden, J.: Worried openssl uses nsa-tainted crypto? this bug has got your back
(2013), http://www.theregister.co.uk/2013/12/20/openssl crypto bug

beneficial sorta/

8. Lichtblau, E., Risen, J.: Spy agency mined vast data trove, officials report. New
York Times (2005)

9. Linder, F.: Cisco ios attack and defense the state of the art. Presented at the 25th
Chaos Communication Congress (2008)

10. Löhning, M., Fettweis, G.: The effects of aperture jitter and clock jitter in wideband
adcs. Computer Standards & Interfaces 29(1), 11–18 (2007)

11. Patra, A., Choudhury, A., Pandu Rangan, C., Srinathan, K.: Unconditionally reli-
able and secure message transmission in undirected synchronous networks: Possibil-
ity, feasibility and optimality. International Journal of Applied Cryptography 2(2),
159–197 (2010)

12. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

13. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509
(1997)

14. Strasser, M., Capkun, S., Popper, C., Cagalj, M.: Jamming-resistant key establish-
ment using uncoordinated frequency hopping. In: IEEE Symposium on Security
and Privacy (SP), pp. 64–78 (2008)

15. Wood, A.D., Stankovic, J.A.: Denial of service in sensor networks. Com-
puter 35(10), 54–62 (2002)

16. Ye, Z., Krishnamurthy, S.V., Tripathi, S.K.: A framework for reliable routing
in mobile ad hoc networks. In: INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications. IEEE Societies, vol. 1,
pp. 270–280. IEEE (2003)

http://www.winradio.com/home/ms8323.htm
http://www.winradio.com/home/ms8323.htm
http://www.theregister.co.uk/2013/12/20/openssl_crypto_bug_beneficial_sorta/
http://www.theregister.co.uk/2013/12/20/openssl_crypto_bug_beneficial_sorta/

Private Message Transmission Using Disjoint Paths 133

A Proof of Theorem 3

Given ψ, ε > 0, the PMT family from choices of q1 such that

q1 ≥
2λ/2 − 1

te
and q2 ≥ max

(
(2 + ψ)n

ψ2te
ln

1

ε
,
2λ/2 − 1

t′e,2

)
.

Secrecy Rate. The two blocks communicate c1 = q1tabλ and c1 = q1tabλ
bits, respectively. Recalling (7), tab = min(ta, tb), and Δ = (2

λ
2 −2 − 0.25)−1, we

calculate

RF1 =
r2λ

(q1 + q2)tabλ
=

q2

(
1− t′e,2

tab
− 2g2

q2tab

)
q2 + q1

=
q2

(
1− t′e,2

tab
− 2g2

q2tab

)
q2 +

r1
tab−te− 2g1

q1

=
q2

(
1− t′e,2

tab
− 2g2

q2tab

)
q2 +

q2w

λtab

(
1− te

tab
− 2g1

q1tab

)
(a)

≥
1− t′e,2

tab
−Δ

1 +
log (n

tab
)

λtab

(
1− te

tab
−Δ

)
(b)

≥
1− t′e,2

tab
−Δ

1 + log(en/tab)

λ
(
1− te

tab
−Δ

) .

Inequality (a) follows by using a similar argument as in (3), noting the choices of

g1 and g2 (7) as well as q1 ≥ 2λ/2−1
te

and q2 ≥ 2λ/2−1
t′e,2

. Inequality (b) holds due to

Stirling’s inequality
(

n
tab

)
< (ne/tab)

tab . The fact that ψ > 0 can be arbitrarily

small implies that limψ→0
t′e,2
tab

= te
n ; hence, the rate.

0-reliability. This is trivial: Both key-transport and coordinated-PMT use com-
mon paths.

ε-secrecy. Leakage occurs only if Eve observes more than q2t
′
e,2 of the q2tab

secret paths during coordinated PMT (otherwise SSS guarantees no information
leakage to Eve). Let T ′

i ≤ min(tab, te) = te be the number paths that Eve
observes in interval q1 + i. For every s1, s2 ∈ {0, 1}k, we have

SD(V iewE(s1), V iewE(s2)) ≤ Pr(

q2∑
i=1

T ′
i > q2t

′
e,2)× 1 = Pr(

q2∑
i=1

T ′
i > q2t

′
e,2).

We upper-bound the right hand side. T ′
i ’s are independent with hyper-geometric

distribution

∀0 ≤ j ≤ te : Pr(T ′
i = j) =

(
tab

j

)(
n−tab

te−j

)(
n
te

) ,

with an expected value of tabte
n . We apply the Chernoff bound [4] to the sum of

normalized variables
T ′
i

tab
, with mean μ = te/n, to obtain (the last inequality is

due to the choice of q2):

Pr

(
q2∑
i=1

T ′
i > q2t

′
e,2

)
= Pr

(
q2∑
i=1

T ′
i

tab
> (1 + ψ)q2μ

)
< e−

ψ2

2+ψ q2μ ≤ e− ln(1/ε) = ε.

Partial Key Exposure Attacks

on Takagi’s Variant of RSA

Zhangjie Huang1,2,3, Lei Hu1,2, Jun Xu1,2,
Liqiang Peng1,2, and Yonghong Xie1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

2 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing 100093, China

3 University of Chinese Academy of Sciences, Beijing 100049, China
{zhjhuang,hu,xjun,lqpeng,yhxie}@is.ac.cn

Abstract. We present several attacks on a variant of RSA due to Takagi
when different parts of the private exponent are known to an attacker.
We consider three cases when the exposed bits are the most significant
bits, the least significant bits and the middle bits of the private exponent
respectively. Our approaches are based on Coppersmith’s method for
finding small roots of modular polynomial equations. Our results extend
the results of partial key exposure attacks on RSA of Ernst, Jochemsz,
May and Weger (EUROCRYPT 2005) for moduli from N = pq to N =
prq (r ≥ 2).

Keywords: RSA, partial key exposure, Coppersmith’s method, lattice
reduction, LLL algorithm.

1 Introduction

In his seminal work [5] in 1996, Coppersmith described a method for finding small
roots of univariate modular polynomial equations in polynomial time based on
lattice basis reduction. Coppersmith showed that for a monic univariate poly-
nomial f(x) of degree d, one can find any root x0 of f(x) ≡ 0 (mod N) in
polynomial time if |x0| < N1/d. The essence of Coppersmith’s method is to
find integral linear combinations of polynomials which share a common root
modulo some integer such that the result has small coefficients. Thus one may
obtain a polynomial with the desired root over the integers and one can then
find the desired root using standard root-finding algorithms. This method was
then reformulated by Howgrave-Graham [11] in a simpler way which has been
widely adopted by researchers for cryptanalysis. In general, the reformulation
by Howgrave-Graham is used when we say Coppersmith’s method.

Coppersmith’s method can be extended to handle multivariate modular poly-
nomial equations with some heuristic assumptions. In the multivariate cases, we
obtain some multivariate integer polynomials and find the final roots by com-
puting the resultants or using Gröbner basis algorithms. At present, there have

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 134–150, 2014.
c© Springer International Publishing Switzerland 2014

Partial Key Exposure Attacks on Takagi’s Variant of RSA 135

been many variants of Coppersmith’s method. In 2006, Jochemsz and May [13]
described a general strategy for finding small roots of modular or integer multi-
variate polynomial equations. Their strategy makes it easier to construct lattices
and to analyse the bounds for the small roots. More recently, Herrmann and May
[9] introduced the technique of unravelled linearization and Aono [1] introduced
the Minkowski sum based lattice construction. All these variants make Copper-
smith’s method a powerful tool in the field of cryptanalysis.

Since the invention of Coppersmith’s method, much effort has been made to
evaluate the security of RSA and its variants. It was used to break RSA when
the private exponent d < N0.292 [3] and to attack CRT-RSA when the private
exponent is small [14]. It was also used to prove the equivalence between knowing
the private exponent d and factoring the modulus N [6,15]. The book [10] is a
good survey of these kinds of applications.

In order to gain a faster decryption, Takagi [18] proposed a RSA-type cryp-
tosystem with moduli N = prq. The polynomial-time equivalence between fac-
toring the modulus and recovering the private exponent for Takagi’s scheme was
proved in [15]. Later in [12], Itoh, Kunihiro and Kurosawa extended the method
of lattice construction in [15] and gave a polynomial-time attack when the pri-

vate exponent d < N
7−2

√
7

3(r+1) (and improved to d < N
2−√

2
r+1 by using “Geometrically

Progressive Matrices”). Both in [15] and [12], the authors constructed lattices
in a clever way by taking advantage of the foreknowledge that yrz = N where
variables y, z denote p, q respectively. They substituted N for every occurrence
of yrz while constructing lattices. This kind of foreknowledge was not used in
Jochemsz and May’s strategy [13]. This trick of substituting was first used in [3]
and then also adopted in [7].

In this paper, we consider the partial key exposure attacks on Takagi’s variant
of RSA. The partial key exposure attacks were first considered by Boneh, Durfee
and Frankel in [4]. The work was then followed by Blömer and May in [2] and
Ernst et al. in [8]. The first attack we present in this paper is for the case when
some of the most significant bits (MSBs) of the private exponent are known. Our
attack extends the method of constructing lattices in [12]. Our second attack on
knowing some of the least significant bits (LSBs) of the private exponent can be
achieved in an analogous way as it was done in [12]. We also consider how to
attack the case when the known bits lie in the middle of the private exponent.
All our attacks are based on Coppersmith’s method. We summarize our results
in the following theorems and prove them in Section 3.

Our attack results on known MSBs and on known bits in the middle of the
private exponent are asymptotically the same, i.e., the two attacks need the same
amount of known bits. We state the results of these two attacks in Theorem 1:

Theorem 1 (Known MSBs/Known Bits in the Middle). For any ε > 0
there exists N0 such that if N > N0 for N = prq where p and q are primes with
the same bit-length, the following holds: Let e = Nα and d = Nβ be integers
satisfying ed ≡ 1 (mod (p − 1)(q − 1)) and gcd(e, p) = 1. Given about (1 − δ

β)-
fraction of the MSBs or continuous bits in the middle of d, the modulus N can
be factored in polynomial time if

136 Z. Huang et al.

δ ≤ 7

4(r + 1)
− 1

4

√
24(α+ β)

r + 1
− 39

(r + 1)2
− ε.

We show our result of Theorem 1 in Fig. 1 with r = 2. The figure shows the
relation between the fraction of bits required for an attack and the size of d when
we set e as full-size, i.e., α = 2/(r+1). The left rectangle in the figure represents
the result of the small key attack from [12].

IKK08

Theorem 1

0.1 0.2 0.3 0.4 0.5 0.6
Β�logN�d�

0.2

0.4

0.6

0.8

1.

1�
Δ

Β

Fig. 1. Known MSBs/Known bits in the
middle attack: The relation between the
fraction of bits required and the size of d
when r = 2 and α = 2/(r + 1)

IKK08

Theorem 2

0.1 0.2 0.3 0.4 0.5 0.6
Β�logN�d�

0.2

0.4

0.6

0.8

1.

1�
Δ

Β

Fig. 2. Known LSBs attack: The relation
between the fraction of bits required and
the size of d when r = 2 and α = 2/(r+1)

We note that when r = 1 and α = 1, our result on known MSBs is a little bit
weaker than one of the results in [8] (Section 4.1.1 therein):

δ <
5

6
− 1

3

√
1 + 6β.

In this case, the way of constructing lattices in [8] is better than ours because
our method is not able to make the best of the information we get. We treat an
equation which is actually over the integers as a modular equation (see Section
3.1). On the other hand, our result is a general result when r ≥ 1 in N = prq.
The case of known MSBs can be viewed as a special case of known bits in the
middle.

Theorem 2 (Known LSBs). For any ε > 0 there exists N0 such that if N >
N0 for N = prq where p and q are primes with the same bit-length, the following
holds: Let e = Nα and d = Nβ be integers satisfying ed ≡ 1 (mod (p−1)(q−1))
and gcd(e, p) = 1. Given about (1 − δ

β)-fraction of the LSBs of d, the modulus
N can be factored in polynomial time if

δ ≤ 5

3(r + 1)
− 2

3

√
3(α+ β)

r + 1
− 5

(r + 1)2
− ε.

Partial Key Exposure Attacks on Takagi’s Variant of RSA 137

Fig. 2 illustrates our result when the least significant bits of d are known. We
set r = 2 and α = 2/(r+1) in Fig. 2. The figure shows the relation between the
fraction of bits required for an attack and the size of d. The left rectangle in the
figure represents the result of the small key attack from [12]. Our result when
r = 1 is the same with the result in [8]. Our result may be seen as an extension
of the result in [8] for moduli N = prq when r ≥ 2.

Our results stated above are general results for exponents (e, d) with arbitrary
sizes. From the bounds for δ in these two theorems, the relations between the
fraction of bits required and the size of e when d is full-size are also clear, we omit
the corresponding figures here. One may notice that the size of e (represented
as α) and the size of d (represented as β) have the same impact on the attacks.
Intuitively, the quality of our attacks depends on the information we know,
including the public exponent e and the known bits of d (and others). There is
a trade-off between the size of e and the size of known bits of d. We can mount
the attacks in the cases when e is smaller and d is larger (which means that we
know more bits of d) and vice versa, as long as we know approximately the same
number of bits. From this point of view, our results are reasonable intuitively.

The rest of this paper is organized as follows. Section 2 gives some preliminar-
ies on lattices and also a brief description of Takagi’s variant of RSA. We derive
our problems from Takagi’s variant of RSA in Section 3 and give our approaches
to the problems. The justification of our approaches is also examined through
some experiments in Section 4. Finally, we give our conclusion in Section 5.

2 Preliminaries

Coppersmith’s method uses lattice basis reduction to find the polynomials with
small coefficients. Hence we briefly introduce a few necessary definitions and facts
about lattices. It is common to use the LLL algorithm along with Howgrave-
Graham’s lemma to estimate the bounds for the small roots. This was stated
in Howgrave-Graham’s reformulation [11] of Coppersmith’s method. Finally we
introduce Takagi’s variant of RSA.

2.1 Lattices and Howgrave-Graham’s Lemma

Let b1, . . . , bω ∈ Zn be linearly independent (row) vectors. A lattice L generated
by b1, . . . , bω is the set of all integral linear combinations of these vectors:

L = L(b1, . . . , bω) =
{
v ∈ Zn |v =

ω∑
i=1

aibi, ai ∈ Z

}
.

We call n the dimension of L and ω its rank. We often denote the basis b1, . . . , bω
as a matrix, called the basis matrix of L:

B =

⎛⎜⎜⎜⎝
b1
b2
...
bω

⎞⎟⎟⎟⎠ ∈ Zω×n.

138 Z. Huang et al.

Then the determinant of L can be computed as det(L) =
√
det(BBT).

The most famous algorithm for lattice basis reduction is the LLL algorithm
[16]. It allows one to find a short vector in a lattice in polynomial time. The
proof of the following fact can be found in [17].

Fact 1 (LLL). Let L be a lattice spanned by the rows of B = (bT1 , . . . , bTω)
T .

The LLL algorithm outputs a reduced basis v1, . . . ,vω satisfying

‖vi‖ ≤ 2
ω(ω−1)

4(ω−i+1) det(L)
1

ω−i+1 , 1 ≤ i ≤ ω

in polynomial time in ω and in the bit size of the entries of the basis matrix B.

When using Coppersmith’s method to find the small roots of a modular poly-
nomial equation, the following lemma due to Howgrave-Graham is useful. It
states that under which condition a modular equation holds over the integers.
The norm of a polynomial f(x1, . . . , xn) =

∑
ai1,...,inx

i1
1 . . . xin

n is defined as

‖f(x1, . . . , xn)‖ =
√∑

|ai1,...,in |2.

Lemma 1 (Howgrave-Graham [11]). Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a
polynomial that consists of at most ω monomials. Suppose that

1. g(x
(0)
1 , . . . , x

(0)
n) ≡ 0 (mod N) for |x(0)

1 | ≤ X1, . . . , |x(0)
n | ≤ Xn, and

2. ‖g(X1x1, . . . , Xnxn)‖ < N√
ω
,

then g(x
(0)
1 , . . . , x

(0)
n) = 0 holds over the integers.

Combining the Howgrave-Graham’s lemma with the LLL algorithm, we de-
duce that if

2
ω(ω−1)

4(ω−i+1) det(L)
1

ω−i+1 <
N√
ω
,

then the polynomials corresponding to the shortest i reduced basis vectors satisfy
Howgrave-Graham’s bound. The condition implies

det(L) < 2−
ω(ω−1)

4 (
1√
ω
)ω−i+1Nω−i+1.

As in previous works, we ignore the terms that do not depend on N and simply
check the condition det(L) < Nω−i+1. In practice, this is convenient when N is
large enough. After obtaining enough equations over the integers, one can extract
the common roots by computing the resultants of these polynomials under the
following heuristic assumption:

Assumption 1. The resultant computations for the polynomials corresponding
to the first few LLL-reduced basis vectors produce non-zero polynomials.

The above assumption may sometimes fail especially for the cases dealing
with four or more variables. If this assumption fails, we may obtain the roots in
other ways (See the note in Section 4.).

Partial Key Exposure Attacks on Takagi’s Variant of RSA 139

2.2 Takagi’s RSA-Type Cryptosystem

In 1998, Takagi [18] proposed a cryptosystem with moduli N = prq based on
RSA aiming at a faster decryption process and keeping its security at the same
time. We give a brief description of Takagi’s cryptosystem here.

Generate two primes p and q with the same bit-length and let N = prq for
some small integer r ≥ 2. Let e and d be integers satisfying ed ≡ 1 (mod (p −
1)(q−1)) and gcd(e, p) = 1. Then set (N , e) as the public key and (p, q, d) as the
private key. The encryption of a message M ∈ Z∗

N is like in the RSA cryptosys-
tem: C = M e mod N . The decryption process is as follows. Firstly, compute
Mp = Cd mod p and Mq = Cd mod q. It is clear that M ≡ Mq (mod q). Then
compute an integer Mpr satisfying M ≡ Mpr (mod pr) from Mp and C using
Hensel lifting. At last M is obtained from Mq and Mpr using the Chinese Re-
mainder Theorem. We refer to the original article [18] for more details especially
for the Hensel lifting computation.

3 Description of Attacks and Proof of Theorems

In this section, we give our attack methods to the problems when one of the three
different parts of the private exponent d in Takagi’s variant of RSA is known.
Here the three different parts are the most significant bits, the least significant
bits and the continuous bits lying in the middle of d. We first describe how to
construct lattices from the problems and then prove the results stated in Section
1. The first two types of exposure bits are already considered in [8] and we treat
them in an analogous way in this paper. We consider a new type of known bits,
i.e., bits in the middle of d. Our methods extend the way of constructing lattices
in [12].

3.1 Attack with Known MSBs

Deriving the problem. In Takagi’s variant of RSA, we have

N = prq and ed ≡ 1 mod (p− 1)(q − 1),

where p and q are two primes with the same bit-length. There exists an integer
k such that

ed = 1 + k(p− 1)(q − 1). (1)

We assume the exponents e = Nα and d = Nβ . Since the bit-lengths of p
and q are the same, then it holds that p < 2N1/(r+1) and q < 2N1/(r+1). Since
e < (p−1)(q−1) and d < (p−1)(q−1), we have 0 < α, β < 2/(r+1). According
to (1), we have

k =
ed− 1

(p− 1)(q − 1)
<

2ed

pq
< 2Nα+β− 2

r+1 .

140 Z. Huang et al.

If we know some of the most significant bits of the private exponent d, that
is we know d̃ such that d = d̃ + d0, where d0 is the unknown part of d satisfies
|d0| = |d− d̃| < N δ for δ < β. Then we can rewrite (1) as

e(d̃+ d0) = 1 + k(p− 1)(q − 1),

and we know that the polynomial

fmsb(w, x, y, z) = x(y − 1)(z − 1) + ew + 1

has a root (−d0, k, p, q) modulo N0 = ed̃ (≈ Nα+β). Note that we view an integer
equation as a modular equation here. Define

W = N δ, X = 2Nα+β−2/(r+1) and Y = Z = 2N1/(r+1).

We are trying to find a “small” root (w0, x0, y0, z0) = (−d0, k, p, q) of

fmsb(w, x, y, z) ≡ 0 (mod N0)

with the bounds |w0| < W , |x0| < X , |y0| < Y and |z0| < Z.

Constructing the Lattice Basis. The first step of our attack is to collect some
polynomials which share a common root (w0, x0, y0, z0) modulo Nm

0 for some
fixed positive integer m which is polynomial in 1

ε . We define these polynomials
as (the form)

gi1,i2,i3,i4,i5(w, x, y, z) = wi1xi2yi3zi4fmsb(w, x, y, z)i5Nm−i5
0 , for 0 ≤ i5 ≤ m,

where the indices (i1, i2, i3, i4, i5) will be determined later. We then construct
a lattice basis with the coefficient vectors of gi1,i2,i3,i4,i5(wW, xX, yY, zZ) as its
basis vectors. The principle of the choice for (i1, i2, i3, i4, i5) is that we collect
an (ordered) list of polynomials G = { gi1,i2,i3,i4,i5 } such that every polynomial
in the list introduces exactly one monomial that does not appear in the previ-
ous polynomials. This will make the basis triangular which allows for an easy
determinant calculation.

Since our choice for the polynomials is based on the polynomials Itoh, Kuni-
hiro and Kurosawa chose in [12], we briefly introduce the construction of basis
in [12]. In [12], they considered the problem of finding the small root (k, p, q) of
the modular polynomial

f̄(x, y, z) = x(y − 1)(z − 1) + 1 mod e, (2)

where e, k, p and q are the same meanings as in (1). They constructed a basis
which was triangular by taking advantage of the relation that yrz = N since
N = prq is public. Every occurrence of yrz in the polynomials was replaced

Partial Key Exposure Attacks on Takagi’s Variant of RSA 141

Algorithm 1. The way of collecting polynomials in [12] for integers n and s

Gn ← ∅
for u = 0, . . . , n do

for i = 0, . . . , u− 1 do
append ḡu−i,0,0,i, ḡu−i,1,0,i to Gn

append ḡu−i,r−1,1,i, ḡu−i,r−2,1,i, . . . , ḡu−i,1,1,i to Gn

for j = 0, . . . , s do
append ḡ0,j,0,u to Gn

for k = 1, . . . , s do
append ḡ0,r−1,k,u, ḡ0,r−2,k,u, . . . , ḡ0,0,k,u to Gn

return Gn

by N and thus changed the monomials in the polynomials. All our settings are
the same with theirs except that we consider the polynomial

fmsb(w, x, y, z) = f̄(x, y, z) + ew mod N0 (3)

instead of f̄(x, y, z).
For a fixed positive integer n and some integer s, they defined the list of poly-

nomials, which we denote as Gn here, according to Algorithm 1. In Algorithm 1,
ḡj1,j2,j3,j4 = xj1yj2zj3 f̄ j4en−j4 , which means that all polynomials in Gn satisfy
ḡj1,j2,j3,j4(k, p, q) = 0 mod en. Obviously, with the same s, Gn ⊂ Gn+1 for any
n ≥ 0.

Now we come to our construction. The idea behind our choice for the poly-
nomials is as follows. First we will show that how to order the monomials can
we obtain a basis which is triangular. For any positive integer a, we have the
binomial expansion

fa
msb = (f̄ + ew)a = (ew)a︸ ︷︷ ︸

wa

+

(
a

1

)
(ew)a−1f̄︸ ︷︷ ︸
wa−1

+

(
a

2

)
(ew)a−2f̄2︸ ︷︷ ︸
wa−2

+ · · ·+ f̄a︸︷︷︸
w0

. (4)

We partition the set of monomials in fa
msb into a+1 subsets naturally in terms of

the exponent of w in the monomials in (4). Therefore, we order all the monomials
in fa

msb in the lattice basis by this sequence: the monomials in the term wa, then
the monomials in the term wa−1f̄ , and so on.

For 0 ≤ b ≤ a, we know from [12] that we can construct a triangular basis from
the polynomials in Gb (as in Algorithm 1 when n = b) for the monomials in f̄ b.
Obviously we can construct a triangular basis from the polynomials in wa−bGb

for the monomials in wa−bf̄ b. As an abuse of notation, we denote wa−bGb as
the set of polynomials in Gb each multiplied by the term wa−b. We use similar
notations hereafter. We then concatenate all the triangular basis for 0 ≤ b ≤ a
and end up with a triangular basis for the monomials in fa

msb.
We summarize this process in Algorithm 2. In Algorithm 2, we fix integers m

and s and define the list of polynomials G we chose for our problem as follows:

G =

m⋃
i=0

wm−iGi = wmG0

⋃
wm−1G1

⋃
wm−2G2

⋃
· · ·
⋃

w0Gm. (5)

142 Z. Huang et al.

Algorithm 2. Collecting the polynomials and the corresponding monomials

G ← ∅, H ← ∅
for v = m, . . . , 0 do

for u = 0, . . . ,m− v do
for i = 0, . . . , u− 1 do

append gv,u−i,0,0,i, gv,u−i,1,0,i to G
append wvxuzi, wvxuyi+1 to H
append gv,u−i,r−1,1,i, gv,u−i,r−2,1,i, . . . , gv,u−i,1,1,i to G
append wvxuyr−1zi+1, wvxuyr−2zi+1, . . . , wvxuyzi+1 to H

for j = 0, . . . , s do
append gv,0,j,0,u to G
if j = 0 then

append wvxuzu to H
else

append wvxuyu+j to H
for k = 1, . . . , s do

append gv,0,r−1,k,u, gv,0,r−2,k,u, . . . , gv,0,0,k,u to G
append wvxuyr−1zu+k, wvxuyr−2zu+k, . . . , wvxuzu+k to H

return G, H

We also denote the list of corresponding monomials introduced by the polyno-
mials in G as H .

Remark 1. We must stress that the Gi in (5) is not totally the same as the ones
that Algorithm 1 output. We write (5) for ease of presentation. They differ in
two places and the purpose of these two replacements is to make sure that the
polynomials we chose in G satisfy gi1,i2,i3,i4,i5(w0, x0, y0, z0) ≡ 0 mod Nm

0 .

1. The factor e is replaced by N0. This replacement does not influence the
structure of polynomials, i.e., the monomials they contain;

2. f̄ is replaced by fmsb. We will show that this replacement does not affect the
property of triangular of the final basis. For some 0 ≤ i ≤ m, we consider the
polynomials in wm−iGi. We know from Algorithm 1 that each polynomial
ḡ in Gi is in the form of ḡ = xj1yj2zj3 f̄ j4ei−j4 with j4 ≤ i. After the
replacements of e to N0 and f̄ to fmsb, the corresponding polynomial in
wm−iGi becomes wm−ixj1yj2zj3f j4

msbN
i−j4
0 . Rewrite this as

wm−ixj1yj2zj3f j4
msbN

i−j4
0

=wm−ixj1yj2zj3(f̄ + ew)j4N i−j4
0

=N i−j4
0 xj1yj2zj3

j4∑
j=0

(
j4
j

)
ejwm−i+j f̄ j4−j

=N i−j4
0 xj1yj2zj3wm−if̄ j4 +N i−j4

0 xj1yj2zj3
j4∑
j=1

(
j4
j

)
ejwm−i+j f̄ j4−j

︸ ︷︷ ︸ .

Partial Key Exposure Attacks on Takagi’s Variant of RSA 143

Look at the degrees of w in the last summation, it is m − i + j, which
is in the interval [m − i + 1,m]. The monomials in the summation part

are in the polynomials in
⋃i

j=1 w
m−i+jGi. As stated before, we present the

monomials in the basis according to the powers of w in it. Therefore, the
monomials in the summation part already appear in the basis. The new
monomials introduced are only those in the term N i−j4

0 xj1yj2zj3wm−if̄ j4 .
The corresponding polynomials for these new monomials are in wm−iGi.
Algorithm 1 guarantees that the final basis is triangular.

Calculating the Bound. A list of polynomials G = { gi1,i2,i3,i4,i5 } is defined
above.Denote the basis with the coefficient vectors of gi1,i2,i3,i4,i5(wW, xX, yY, zZ)
as its basis vectors as M and the lattice generated by M as L. Let M (v,u) be the
submatrix whose rows are corresponding to the polynomials for some v ∈ [0,m],
u ∈ [0,m − v] and columns are corresponding to the monomials in the form of
wvxuyazb for some integers a and b. We show the structure of M in Table 1 when
m = 2. All the entries above the main diagonal are zeroes and the entries marked
as asterisks are those whose values do not contribute to the determinant.

Table 1. Structure of matrix M with m = 2

w2 w1 w0

x0 x0 x1 x0 x1 x2

v = 2 u = 0 M (2,0)

v = 1
u = 0 ∗ M (1,0)

u = 1 ∗ ∗ M (1,1)

v = 0

u = 0 ∗ ∗ ∗ M (0,0)

u = 1 ∗ ∗ ∗ ∗ M (0,1)

u = 2 ∗ ∗ ∗ ∗ ∗ M (0,2)

Let s = τm for τ > 0 which will be optimized later. In Appendix A, an
asymptotic bound concerning the upper bounds for the sizes of the roots, W ,
X , Y and Z is given:

W (r+1)(1+4τ)X2(r+1)(1+2τ)Y 1+4τ+6τ2

Zr(1+4τ+6τ2) < N
(r+1)(1+4τ)
0 .

Substituting the values for N0, W , X , Y and Z, we obtain the inequality
on τ :

6

r + 1
τ2 + 4

(
δ − 1

r + 1

)
τ +

(
α+ β + δ − 3

r + 1

)
< 0.

Let τ be the optimal value 1
3 (1− δ(r + 1)). Then we obtain the inequality on δ:

2δ2 − 7

r + 1
δ +

11

(r + 1)2
− 3(α+ β)

r + 1
> 0.

144 Z. Huang et al.

This implies that

δ <
7

4(r + 1)
− 1

4

√
24(α+ β)

r + 1
− 39

(r + 1)2
.

The dimension of our lattice is O(m4) which is polynomial in 1
ε . The bit-sizes

of the entries are clearly polynomial in log(N). Hence, the running time of our
method is polynomial in (log(N), 1

ε). The result for knowing the MSBs in The-
orem 1 is obtained.

3.2 Attack with Known LSBs

In this section, we consider the case when we know some of the least significant
bits of the private exponent d.

Following the notations in Section 3.1, we let e = Nα and d = Nβ . Assume d
is in the form of d = d1R + d̂, where d̂ denotes the known LSBs and R is some

known integer. Let R be Nβ−δ. We deduce that |d1| = |d−d̂
R | < | dR | = N δ. Then

we can rewrite (1) as

e(d1R + d̂) = 1 + k(p− 1)(q − 1).

Define
flsb(x, y, z) = x(y − 1)(z − 1) + (1− ed̂).

Then (x0, y0, z0) = (k, p, q) is a root of flsb(x, y, z) ≡ 0 (mod N1) where N1 =
eR (= Nα+β−δ). Define

X = 2Nα+β−2/(r+1) and Y = Z = 2N1/(r+1),

then |x0| < X , |y0| < Y and |z0| < Z.
flsb(x, y, z) contains the same monomials with the polynomial f̄ (See Section

3.1.) considered in [12]. We can construct the lattice in an analogous way with
the authors did in [12]. We can also view this problem as a special case of the
problem we considered in Section 3.1. We collect polynomials as in Algorithm 2
except that we fix v = 0. We then construct a lattice using these polynomials. All
the computations are similar to those in Appendix A except that we fix v = 0.
We leave the calculations for the following condition in Appendix B:

X(r+1)(2+3τ)Y 1+3τ+3τ2

Zr(1+3τ+3τ2) < N
(r+1)(1+3τ)
1 .

τ is the same as in previous section. Substituting the values for N1, X , Y and
Z into the condition, we obtain

δ <
5

3(r + 1)
− 2

3

√
3(α+ β)

r + 1
− 5

(r + 1)2
,

when τ = 1
2 (1 − δ(r + 1)). The running time of our method is polynomial in

(log(N), 1
ε) as in the previous section. This completes the proof of Theorem 2.

Partial Key Exposure Attacks on Takagi’s Variant of RSA 145

3.3 Attack with Known Bits in the Middle

When the known bits are in the middle of d, we can write d as d = d2,1 +
d̄R1 + d2,2R2, where d̄ represents the known bits lying in the middle of d, and
d2,1, d2,2 represents the unknown least significant bits and most significant bits
respectively. Moreover, R1 and R2 are two known integers. Let us assume that
d2,1 and d2,2 are bounded by N δ1 and N δ2 respectively, then R2 is about Nβ−δ2 .
From (1) we have

e(d2,1 + d̄R1 + d2,2R2) = 1 + k(p− 1)(q − 1).

Rearranging it, we get

k(p− 1)(q − 1)− ed2,1 − ed̄R1 + 1 = eR2d2,2.

Therefore we formulate our problem as finding a small root of the polynomial

fmid(w, x, y, z) = x(y − 1)(z − 1)− ew + (1− ed̄R1)

modulo N2 = eR2 (≈ Nα+β−δ2). The root is (w0, x0, y0, z0) = (d2,1, k, p, q) with
|w0| < W , |x0| < X , |y0| < Y and |z0| < Z where

W = N δ1 , X = 2Nα+β−2/(r+1) and Y = Z = 2N1/(r+1).

The polynomial fmid(w, x, y, z) = x(y − 1)(z − 1)− ew + (1 − ed̄R1) has the
same monomials with fmsb we considered in Section 3.1. We can construct our
lattice in an analogous manner as in Section 3.1 and apply the bound directly.
Plugging the values for N2, W , X , Y and Z into the bound

W (r+1)(1+4τ)X2(r+1)(1+2τ)Y 1+4τ+6τ2

Zr(1+4τ+6τ2) < N
(r+1)(1+4τ)
2

and doing some routine calculations, we obtain that

δ <
7

4(r + 1)
− 1

4

√
24(α+ β)

r + 1
− 39

(r + 1)2
,

when τ = 1
3 (1− δ(r+ 1)). Here we denote δ1 + δ2 as δ. The running time of our

method is polynomial in (log(N), 1
ε) as in Section 3.1. This completes the proof

of Theorem 1.

Table 2. Some results of the experiments with r = 2 and α = 2/3

N (bits) β δ m s dim(L) log2(det(L)) time (LLL)

MSBs
600 0.10 0.03 6 1 280 7.69 × 105 16.2 hr
1000 0.05 0.04 6 1 280 1.19 × 106 2.8 hr

LSBs
2000 0.20 0.05 8 2 171 2.28 × 106 54.7 hr
1000 0.15 0.10 9 2 205 1.32 × 106 33.3 hr

MBs
1000 0.10 0.03 6 1 280 1.26 × 106 36.6 hr
1000 0.08 0.04 6 1 280 1.21 × 106 14.0 hr

146 Z. Huang et al.

4 Experiments

Our methods are heuristic due to Assumption 1 as stated before. In order to show
the correctness of our methods, we ran several experiments on a desktop running
Ubuntu with 2.83GHz Intel Core2 CPU and 4GB RAM. As examples, we only
ran our experiments with full-size e. Thinking of that the dimensions of our
lattices are large even with small parameters (r,m, s), we chose our parameters
which are relatively small.

We chose the parameters with the exact expressions, like (6) and (7) in Ap-
pendix A, for the dimensions and determinants of lattices. For a specific value of
β (representing size of d), we chose a value of δ (representing size of the unknown
bits) in the range of our results. Then we chose m and s subject to the condition

det(L) < N
m(dim(L)−1)
i

such that the dimension of the lattice is relatively small. We list some parameter
settings and the results of the experiments in Table 2. In all our experiments,
we could obtain the final roots and thus factored the moduli N .

We found that Assumption 1 may fail on a few occasions. In these cases, two
ways may be used to find the final roots.

1. For example, assume we have three polynomials f1(x, y, z), f2(x, y, z) and
f3(x, y, z) with a common root (x0, y0, z0). We take f12(y, z) = Resx(f1, f2),
f13(y, z) = Resx(f1, f3) and then f23(z) = Resy(f12, f13). If unfortunately
f23(z) ≡ 0, which means that f12 and f13 have a nontrivial factor, then
we can first take f ′

12 = f12
gcd(f12,f13)

and f ′
13 = f13

gcd(f12,f13)
. Finally, we take

f ′
23(z) = Resy(f

′
12, f

′
13). It ends up with f ′

23(z0) = 0 but f ′
23(z) �≡ 0. Use

any standard root-finding algorithm to recover z0 and then recover y0 from
f ′
12(y, z0) = 0 and x0 from f1(x, y0, z0) = 0.

2. Another way is to use the technique of Gröbner basis. We found that for
sufficiently large N , there were more polynomials which are corresponding to
the LLL-reduced basis vectors that share the desired root. This may benefit
us when computing the Gröbner basis by adding all these polynomials in the
basis.

Unfortunately, both the resultant computations and the Gröbner basis com-
putations consume too much memory and time in our experiments. For some
experiments, we just checked that the polynomials we obtained contain the roots
indeed but rather than really did the computations.

5 Conclusion

In this paper, we considered partial key exposure attacks on Takagi’s variant of
RSA with moduli N = prq (r ≥ 2). We presented three attacks when different
parts of the private exponent are exposed to an attacker. Our results showed
that when a certain number of bits of the private exponent are exposed, then
the modulus N can be factored in polynomial time. We examined the validity
of our methods through some experiments.

Partial Key Exposure Attacks on Takagi’s Variant of RSA 147

Acknowledgements. The authors would like to thank anonymous reviewers for
their helpful comments and suggestions. The work of this paper was supported
by the National Key Basic Research Program of China (2013CB834203), the Na-
tional Natural Science Foundation of China (Grant 61070172), and the Strate-
gic Priority Research Program of Chinese Academy of Sciences under Grant
XDA06010702.

References

1. Aono, Y.: Minkowski sum based lattice construction for multivariate simultaneous
Coppersmith’s technique and applications to RSA. In: Boyd, C., Simpson, L. (eds.)
ACISP. LNCS, vol. 7959, pp. 88–103. Springer, Heidelberg (2013)

2. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999)

4. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998)

5. Coppersmith, D.: Finding a small root of a univariate modular equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996)

6. Coron, J.S., May, A.: Deterministic polynomial-time equivalence of computing the
RSA secret key and factoring. J. Cryptol. 20(1), 39–50 (2007)

7. Durfee, G., Nguyên, P.Q.: Cryptanalysis of the RSA schemes with short secret
exponent from Asiacrypt ‘99. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS,
vol. 1976, pp. 14–29. Springer, Heidelberg (2000)

8. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

9. Herrmann, M., May, A.: Maximizing small root bounds by linearization and ap-
plications to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010)

10. Hinek, M.J.: Cryptanalysis of RSA and Its Variants, 1st edn. Chapman &
Hall/CRC (2009)

11. Howgrave-Graham, N.: Finding small roots of univariate modular equations re-
visited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

12. Itoh, K., Kunihiro, N., Kurosawa, K.: Small secret key attack on a variant of RSA
(due to Takagi). In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 387–406.
Springer, Heidelberg (2008)

13. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

14. Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-
exponents smaller than N0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

148 Z. Huang et al.

15. Kunihiro, N., Kurosawa, K.: Deterministic polynomial time equivalence between
factoring and key-recovery attack on Takagi’s RSA. In: Okamoto, T., Wang, X.
(eds.) PKC 2007. LNCS, vol. 4450, pp. 412–425. Springer, Heidelberg (2007)

16. Lenstra, A., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982)

17. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis,
University of Paderborn (2003)

18. Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)

A The Asymptotic Bound in Section 3.1

Let ωv,u be the dimension of M (v,u) as in Table 1. It is easy to see that

ωv,u = u(r + 1) + (s+ 1) + sr = (r + 1)(u+ s) + 1.

M (v,u) is lower triangular and the elements on its diagonal are bounds (multiplied
by some powers of N0) for the monomials. Therefore, the determinant of M (v,u)

is
det

(
M (v,u)

)
= N tn

0 W twXtxY tyZtz ,

where tn, tw, tx, ty and tz are given as follows:

tn =

u−1∑
i=0

(m− i)(r + 1) + (m− u)(1 + s+ rs)

= m((r + 1)(u+ s) + 1)− 1

2
u((r + 1)(u+ 2s)− r + 1),

tw = vωv,u = v((r + 1)(u+ s) + 1),

tx = uωv,u = u((r + 1)(u+ s) + 1),

ty =

u−1∑
i=0

(
i+ 1 +

1

2
r(r − 1)

)
+

s∑
j=1

(u + j) +

s∑
k=1

1

2
r(r − 1)

=
1

2
(u+ s)(u+ s+ r(r − 1) + 1),

tz =

u−1∑
i=0

(i + (i+ 1)(r − 1)) + u+

s∑
k=1

(u+ k)r =
1

2
r(u + s)(u + s+ 1).

Then we can compute the dimension of the lattice L:

dim(L) =

m∑
v=0

m−v∑
u=0

ωv,u =
1

6
(r + 1)(1 + 3τ)m3 + o(m3), (6)

and the determinant of L:

det(L) =

m∏
v=0

m−v∏
u=0

det
(
M (v,u)

)
= Nsn

0 W swXsxY syZsz , (7)

Partial Key Exposure Attacks on Takagi’s Variant of RSA 149

where

sn =

m∑
v=0

m−v∑
u=0

tn=
1

24
(r + 1)(3 + 8τ)m4 + o(m4),

sw =

m∑
v=0

m−v∑
u=0

tw=
1

24
(r + 1)(1 + 4τ)m4 + o(m4),

sx =

m∑
v=0

m−v∑
u=0

tx=
1

12
(r + 1)(1 + 2τ)m4 + o(m4),

sy =

m∑
v=0

m−v∑
u=0

ty =
1

24
(1 + 4τ + 6τ2)m4 + o(m4),

sz =

m∑
v=0

m−v∑
u=0

tz =
1

24
r(1 + 4τ + 6τ2)m4 + o(m4).

We then apply LLL-reduction algorithm to the lattice L. In order to obtain the
root (w0, x0, y0, z0) by computing the resultants, we need four polynomials which
all have (w0, x0, y0, z0) as a root. Since we already have two such polynomials,
which are f1 = yrz − N and f2 = x(y − 1)(z − 1) + ew + 1 − ed̃, we need
another two such polynomials. If the polynomials corresponding to the shortest
two vectors in the LLL-reduced basis satisfy Howgrave-Graham’s condition

det(L) < N
m(dim(L)−1)
0 ,

we get another two such polynomials f3 and f4 according to Lemma 1. Then the
root (w0, x0, y0, z0) can be obtained from these four polynomials by using the
resultant technique under Assumption 1.

Ignore the terms that do not depend on N0 and the low order terms o(m4),
we obtain that

W (r+1)(1+4τ)X2(r+1)(1+2τ)Y 1+4τ+6τ2

Zr(1+4τ+6τ2) < N
(r+1)(1+4τ)
0 .

B The Asymptotic Bound in Section 3.2

We reuse some notations in Appendix A. The dimension of the lattice we con-
struct for the problem in Section 3.2 is

dim(L) =

m∑
u=0

ωv,u =
1

2
(r + 1)(1 + 2τ)m2 + o(m2).

The determinant is det(L) = Nsn
1 XsxY syZsz where

sn =

m∑
u=0

tn=
1

6
(r + 1)(2 + 3τ)m3 + o(m3),

150 Z. Huang et al.

sx =

m∑
u=0

tx=
1

6
(r + 1)(2 + 3τ)m3 + o(m3),

sy =

m∑
u=0

ty=
1

6
(1 + 3τ + 3τ2)m3 + o(m3),

sz =

m∑
u=0

tz=
1

6
r(1 + 3τ + 3τ2)m3 + o(m3).

From det(L) < N
m(dim(L)−1)
1 , we derive that

X(r+1)(2+3τ)Y 1+3τ+3τ2

Zr(1+3τ+3τ2) < N
(r+1)(1+3τ)
1 .

New Partial Key Exposure Attacks

on CRT-RSA with Large Public Exponents

Yao Lu1,2,�, Rui Zhang1,�, and Dongdai Lin1

1 State Key Laboratory of Information Security (SKLOIS)
Institute of Information Engineering (IIE)

Chinese Academy of Sciences (CAS)
2 University of Chinese Academy of Sciences (UCAS)
lywhhit@gmail.com, {r-zhang,ddlin}@iie.ac.cn

Abstract. In Crypto’03, Blömer and May provided several partial key
exposure attacks on CRT-RSA. In their attacks, they suppose that an at-
tacker can either succeed to obtain the most significant bits (MSBs) or the
least significant bits (LSBs) of dp = d mod (p− 1) in consecutive order.
For the case of known LSBs of dp, their algorithm is polynomial-time only
for small public exponents e (i.e. e = poly(logN)). However, in some prac-
tical applications, we prefer to use large e (Like e ≈ dp, to let the public
and private operations with the same computational effort). In this pa-
per, we propose some lattice-based attacks for this extended setting. For

known LSBs case, we introduce two approaches that work up to e < N
3
8 .

Similar results (though not as strong) are obtained for MSBs case. We also
provide detailed experimental results to justify our claims.

Keywords: lattices, RSA, Coppersmith’s method.

1 Introduction

Let N = pq be an RSA modulus where p, q are of the same bitsize. The public
exponent e and private exponent d satisfy ed− 1 ≡ 0 mod (p− 1)(q− 1). Since
the decryption/signing in RSA require taking heavy exponential multiplication
modulus of N , low efficiency became a bottleneck of using RSA cryptosystem.

Perhaps the most straightforward solution to speed up RSA decryp-
tion/signing process is to choose small d. However, in 1991, Wiener [24] showed
that if d < N0.25 then the factorization of N can be found in polynomial-time.
Later, Boneh and Durfee [2] improved Wiener’s bound to d < N0.292, in their
attack, the proof of the final bound is complicated. Recently, a simple and ele-
mentary proof is given to achieve Boneh-Durfee’s bound [9,14].

Another sophisticated approach, proposed by Quisquater and Couvreur [18],
is to use the Chinese Remainder Theorem (CRT) for decryption/signing. In this
case, the public exponent e and private CRT-exponents dp and dq satisfy

edp ≡ 1 mod (p− 1)

edq ≡ 1 mod (q − 1)

� Corresponding author.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 151–162, 2014.
c© Springer International Publishing Switzerland 2014

152 Y. Lu, R. Zhang, and D. Lin

In [24], Wiener stated that decryption/signing time can be further reduced if we
use small private CRT-exponents. However, there are several attacks that can
break CRT-RSA if the CRT-exponents are sufficiently small. In Crypto’02, May
[16] described two attacks when the smaller prime factor is less than N0.382.
Later, in PKC’06, Bleichenbacher and May [1] improved May’s bound to N0.468.
These two attacks focus on the special case where p and q are unbalanced. In
Crypto’07, Jochemsz and May [12] presented an attack on the case of p and q
are balanced and e is full size (i.e. e ≈ N), they showed that CRT-RSA can be
broken when dp and dq are smaller than N0.073.

Partial Key Exposure Attacks on RSA. Even if we choose to use large
private exponents, in implementations, it may leaks some bits of the private
key, we can still recover the entire private key from this knowledge. This is
known as partial key exposure attack. Actually small private key attacks can
be seen as partial key exposure attacks where MSBs of the private exponent
are known to be equal to zero. In Asiacrypt’98, Boneh, Durfee and Frankel [3]
presented several attacks on RSA where the attacker gains knowledge of MSBs
or LSBs of d. In their attacks, the public exponent e must be relatively small.
In Crypto’03, Blömer and May [11] described several attacks for larger values
of public exponent e. Further in Eurocrypt’05, Ernst et al. [5] extended these
attacks to work up to full size e. As a follow-up work of [5], recently, Joye
and Lepoint [13] provided several attacks on the practical setting of a private
exponent d larger than the modulus N .

Partial Key Exposure Attacks on CRT-RSA. In Crypto’03, Blömer and
May [11] provided some partial key exposure attacks on CRT-RSA. Suppose
dp ≈ p, they showed that for small public exponents e (i.e. e = poly(logN)),
known half of the LSBs of dp are sufficient to factorize N .

Later in PKC’04, May [17] generalized Blömer-May’s results [11] to the multi-
power RSA [20] (Takagi’s scheme: Modulus N = prq (r ≥ 2)). Using Boneh,
Durfee and Howgrave-Graham’s result [4], May presented polynomial-time at-
tacks that need only a fraction of 1

r+1 of the MSBs or LSBs of dp(dp ≈ p) to
factor N when the public exponent e is small.

In ACNS’09, Sarkar and Maitra [19] provided another partial key exposure
attack on CRT-RSA. In their attack, they assume that certain amounts of MSBs
of dp and dq are exposed. Actually their attack can be regard as an extension of
Jochemsz-May’s attack [12].

1.1 Our Contribution

In this paper, we present two extended polynomial-time attacks that even works
for all e < N

3
8 when certain amounts of LSBs of dp are exposed. Moreover, in our

attacks, the upper bound of e can be further improved if one uses a small secret
CRT-exponent dp. As an immediate application, we can utilize our approach to
analyze Tunable Balancing of RSA which was introduced by Galbraith et al. [6]
in ACISP’05. Moreover, for known MSBs of dp, we can extend the results of [11]

New Partial Key Exposure Attacks on CRT-RSA 153

to any small secret exponents dp. We also point out that there are close relations
between our technique and the algorithm of Blömer and May [11].

Additionally, our technique can be easily extended to improve May’s attack
[17] on Takagi’s scheme. However, Takagi’s scheme requires the public exponent
e extremely small to make the decryption efficient (In the Hensel lifting Step in
Decryption, r − 1 modular exponentiations with exponent e need to be done).
Therefore, we do not discuss these extensions in this paper.

Experimental Results. For all these attacks, we carry out experiments to
verify the effectiveness of our algorithms, which are depicted in Sec. 5 in detail.
These experimental results demonstrate that our attacks are effective.

2 Preliminaries

2.1 Lattices

Our attacks are based on the techniques that rely on lattice basis reduction. In
this section, we review some basic background information about lattices and
lattice basis reduction.

A lattice is a discrete additive subgroup of Rn. For our purpose, given m ≤ n
linearly independent vectors b1, . . . , bm ∈ Rn, the set

L = L(b1, . . . , bm) = {
m∑
i=1

αibi|αi ∈ Z}

is a lattice. The bi are called the basis vectors of L and B = {bi, . . . , bm} is called a

lattice basis for L. The determinant of a lattice is defined as det(L) = det(BBt)
1
2 .

When the lattice is full-rank (m = n), the formula simplifies to det(L) = | detB|.
An important class of reduced basis, are LLL-algorithm, named after Lenstra,

Lenstra and Lovász [15]. The following lemma gives bounds on LLL-reduced
basis vectors.

Lemma 1 (LLL [15]). Let L be a lattice of dimension w. Within polynomial-
time, LLL-algorithm outputs a set of reduced basis vectors vi, 1 � i � w that
satisfies

||v1|| � ||v2|| � · · · � ||vi|| � 2
w(w−1)

4(w+1−i) det(L) 1
w+1−i

We also state a useful lemma from Howgrave-Graham [10]. Let g(x1, · · · , xk) =∑
i1,··· ,ik ai1,··· ,ikx

i1
1 · · ·x

ik
k . We define the norm of g by the Euclidean norm of

its coefficient vector: ||g||2 =
∑

i1,··· ,ik a2i1,··· ,ik .

Lemma 2 (Howgrave-Graham [10]). Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be
an integer polynomial that consists of at most w monomials. Suppose that

1. g(y1, · · · , yk) = 0 mod pm for | y1 |� X1, · · · , | yk |� Xk and

2. ||g(x1X1, · · · , xkXk)|| < pm

√
w

154 Y. Lu, R. Zhang, and D. Lin

Then g(y1, · · · , yk) = 0 holds over integers.

Our attacks rely on a well-known assumption which was widely used in the
literature [5,2,8].

Assumption 1. The lattice-based construction yields algebraically independent
polynomials. The common roots of these polynomials can be efficiently computed
using the Gröbner basis technique.

2.2 Blömer-May’s Partial Key Exposure Attacks on CRT-RSA

In [11], Blömer and May proposed two partial key exposure attacks on CRT-
RSA. Following we list their results.

Theorem 1 (LSBs). Let (N, e) be an RSA public key with N = pq and secret
key d. Let dp = d mod (p− 1). Given d0,M with d0 = dp mod M and

M > N
1
4

Then the factorization of N can be found in time e · poly(logN).

Theorem 2 (MSBs). Let (N, e) be an RSA public key with N = pq and secret
key d and e = Nα for some α ∈ [0, 1

4]. Furthermore, let dp = d mod (p − 1).

Given d̃ with
|dp − d̃| ≤ N

1
4−α

Then N can be factored in polynomial-time.

2.3 Finding Small Root of Bivariate Linear Equations

In Asiacrypt’08, Herrmann and May [8] gave an upper bound on the solutions
of a bivariate linear equations modulo an unknown divisor of a known com-
posite, which can also be extended to multivariate linear equations. Recently
in ACISP’13 [21], Takayasu and Kunihiro improved Herrman-May’s results by
taking into account the sizes of the root bound. In this paper we used their
approach to find small root of our attack polynomial.

Theorem 3 (Herrmann-May-Takayasu-Kunihiro). Let N be a sufficiently
large composite integer (of unknown factorization) with a divisor p ≥ Nβ. Let
f(x1, x2) ∈ Z[x1, x2] be a linear polynomial in two variables. Under Assumption
1, we can find all the solutions (y1, y2) of the equation f(x1, x2) = 0 mod p with
|y1| ≤ Nγ and |y2| ≤ N δ (Suppose δ > γ) if{

γ + δ ≤ 3β − 2 + 2(1− β)
3
2 if δ < β(1 −

√
1− β)

δ(3β − γ − 2
√
δ − γ) < β3 if β2 > δ > β(1−

√
1− β)

The time and space complexities of the algorithm are polynomial in logN .

New Partial Key Exposure Attacks on CRT-RSA 155

3 Key Recovery from Known LSBs

In this section, we assume that the attacker succeeded in getting the least sig-
nificant bits of dp

dp = d1M + d0

where d0 is known to the attacker, together with its higher bound M , but d1 is
unknown. (In a special case of known LSBs, M is a power of two.)

3.1 The Description of Our Attacks

In Crypto’03, Blömer and May [11] showed that if half of the lower bits of dp
(dp ≈ p) are known, one can factorize N in time e · poly(logN). Obviously their
attack is of exponential time when the public exponent e is large. However, in
some practical applications we need large e (Like e ≈

√
dp) to satisfy our specific

requirements, e.g., Galbraith et al.’s scheme [6] in ACISP’05. In such a situation,
the attack of [11] will not work.

We propose two polynomial-time attacks for the case of large e. Our attacks
are based on Coppersmith’s method for finding small roots of modular equa-
tions. The fist step of our attacks is to derive, from an CRT-RSA equation, a
multivariate polynomial in some of the unknowns of CRT-RSA parameters, like
p, dp.

Since dp = d1M + d0 and ed − 1 = kp(p − 1), we can rewrite CRT-RSA
equation as

eMd1 + ed0 − 1− kp(p− 1) = 0

Suppose that d1 ≈ N δ1 , dp ≈ N δ and e ≈ Nα, we have

kp =
edp − 1

p− 1
≈ N δ+α

N
1
2

≈ N δ+α− 1
2

For the first attack, we consider a bivariate modular polynomial

fLSB1(x, y) = eMx+ y + ed0 − 1

with the root (x0, y0) = (d1, kp) modulo p. Let X = N δ1 , Y = N δ+α− 1
2 , then

|x0| < X, |y0| < Y .
For the second attack, we use a different bivariate polynomial that modulo

eM . Specifically, we focus on the polynomial

fLSB2(x, y) = x(y − 1) + 1− ed0

with the root (x0, y0) = (kp, p) modulo eM . Using X = N δ+α− 1
2 , Y = N

1
2 , then

|x0| < X, |y0| < Y .
Next we give the details on how to find the small root of fLSB1 and fLSB2.

156 Y. Lu, R. Zhang, and D. Lin

3.2 Attack I: An Approach Modulo p

Theorem 4 (Attack I). Let N = pq, where p, q are primes of the same bit-size.
Let the public exponent e (e ≈ Nα) and private CRT-exponent dp (dp ≈ N δ)
satisfy edp ≡ 1 mod (p−1). Suppose that dp = d1M +d0 where d1 ≈ N δ1 . Given
d0,M , and assume that the following conditions are satisfied⎧⎪⎨⎪⎩

2− δ − α− 2
√
δ1 − δ − α+ 0.5 < 0.125

δ1
if 0.5 > δ1 > 0.146 > δ + α− 0.5

1.5− δ1 − 2
√
δ + α− δ1 − 0.5 < 0.125

δ+α−0.5 if 0.5 > δ + α− 0.5 > 0.146 > δ1

δ1 + δ + α− 0.707 < 0 if 0.146 > max{δ + α− 0.5, δ1}

Then N can be factored in polynomial-time.

Proof. According to the analysis of Sec. 3.1, we try to find the small root
(x0, y0) = (d1, kp) of the polynomial

fLSB1(x, y) = eMx+ y + ed0 − 1

Applying Theorem 3 and setting β = 1
2 , then

β(1−
√
1− β) =

2−
√
2

4
≈ 0.146

For the case of 0.146 > max{δ+α−0.5, δ1}, we can get δ1+δ+α−0.707 < 0. For
the case of 0.146 < max{δ+α−0.5, δ1}, we consider two subcases: δ+α−0.5 > δ1
and δ + α− 0.5 < δ1. After some calculations, we obtain the claimed result. ��

3.3 Attack II: An Approach Modulo eM

Theorem 5 (Attack II). Using the notations of Theorem 4, provided that

δ +
5

2
δ1 − 3δ21 + α− 7

8
< 0

Then N can be factored in polynomial-time.

Proof. According to the analysis of Section 3.1, we try to find the small root
(x0, y0) = (kp, p) of the polynomial

fLSB2(x, y) = x(y − 1) + 1− ed0

Note that the desired small solution contains the prime factor p, but p is already
determined by modulus N . Based on this observation, we apply the technique of
Bleichenbacher and May [1]. Define two integers m and t. Then we introduce a
new variable z for the prime factor q, and multiply the polynomial fLSB2(x, y)
by a power zs for some s that has to be optimized. Let us look at the following
collection of trivariate polynomials that all have the root (x0, y0) modulo (eM)m.

gi,j(x, y, z) = (eM)m−ixjzsf i
LSB2(x, y) for i = 0, . . . ,m; j = 0, . . . ,m− i

New Partial Key Exposure Attacks on CRT-RSA 157

hi,j(x, y, z) = (eM)m−iyjzsf i
LSB2(x, y) for i = 0, . . . ,m; j = 1, . . . , t.

For gi,j(x, y, z), hi,j(x, y, z), we replace every occurrence of the monomial yz by
N because N = pq. Therefore, compared to the unchanged collection, every
monomial xiyjzs(j ≥ s) with coefficient ai,j is transformation into a monomial
xiyj−s with coefficient ai,jN

s. And every monomial xiyjzs(j < s) with coeffi-
cient ai,j is transformation into a monomial xizs−j with coefficient ai,jN

j .
To keep the lattice determinant as small as possible, we try to eliminate the

factor of N j in the coefficient of diagonal entry. Since GCD(eM,N) = 1, we only
need multiplying the corresponding polynomial with the inverse of N j modulo
(eM)m 1.

We have to find two short vectors in lattice L. Suppose that these two vec-
tors are the coefficient vectors of two trivariate polynomial f1(xX, yY, zZ) and
f2(xX, yY, zZ). There two polynomials have the root (kp, p, q) over the integers.
Then we can eliminate the variable z from these polynomials by setting z = N

y .

Finally, we can extract the desired root (kp, p) from the new two polynomials if
these polynomials are algebraically independent. Therefore, our attack relies on
Assumption 1.

Now we give the details of the condition which we can find two sufficiently
short vectors in the lattice L. Let t = τm, s = σm, the determinate of the lattice
L is

det(L) = (eM)seMXsXY sY ZsZ

where

seM =

m∑
i=0

m−i∑
j=0

(m− i) +

m∑
i=0

t∑
j=1

(m− i) = (2 + 3τ) · 1
6
m3 + o(m3)

sX =

m∑
i=0

m−i∑
j=0

(i+ j) +

m∑
i=0

t∑
j=1

i = (2 + 3τ) · 1
6
m3 + o(m3)

sY =
m∑
i=s

m−i∑
j=0

(i− s) +
m∑
i=0

t∑
j=max{1,s−i}

(j + i− s)

= (1 + 3(τ − σ)(1 + τ − σ)) · 1
6
m3 + o(m3)

sZ =

s∑
i=0

m−i∑
j=0

(s− i) +

s∑
i=0

s−i∑
j=1

(s− i− j) = 3τ2 · 1
6
m3 + o(m3)

And X,Y, Z are the upper bounds of kp, p, q. An easy calculation shows the
dimension of the lattice is

n = dim(L) = 1

6
(3 + 6τ)m2 + o(m2)

1 In Sec. 4 of [1], the authors eliminated the factor N j by multiplying the inverse of
N j modulo e, in fact it should be em to satisfy the first condition of Lemma 2.

158 Y. Lu, R. Zhang, and D. Lin

Fig. 1. The Case of Known LSBs of dp (dp ≈ p)

To get two polynomials which sharing the root (kp, p, q), we get the condition
det(L) ≤ (eM)m dim(L). Substituting the values of the dim(L) and neglecting
low-order term, we obtain the new condition

(2+3τ)(α+ δ− 1

2
)+

1

2
(1+3(τ −σ)(1+ τ −σ))+

3

2
τ2− (1+3τ)(α+ δ− δ1) < 0

The optimized values of parameters τ and σ were given by

σ =
1

2
+ δ1 τ =

1

2
− 2δ1

Plugging in this values, we finally end up with the condition

δ +
5

2
δ1 − 3δ21 + α− 7

8
< 0

��
3.4 Comparison of the Attacks

We give the comparison of our attacks when the private exponent is full sized
i.e. dp ≈ p. Fig. 1 illustrates our results on known LSBs of dp when δ = 1

2 . The
maximal size of unknown d1 (d1 ≈ N δ1) for an attack is plotted as a function of
the size of e (e ≈ Nα). Notice that the bounds for Attack I and Attack II match
when α ≈ 0.04, thus Attack II is stronger than Attack I for α > 0.04. Besides
our attacks works up to α = 3

8 = 0.375.

4 Key Recovery from Known MSBs

In this section we consider the case when some MSBs of dp are known.

New Partial Key Exposure Attacks on CRT-RSA 159

Fig. 2. Known MSBs: δ = 0.5 Fig. 3. Known MSBs: δ = 0.4

Theorem 6 (Known MSBs). Let N = pq, where p, q are primes of the same
bit-size. Let the public exponent e (e ≈ Nα) and the private CRT-exponent dp
(dp ≈ N δ) satisfying edp ≡ 1 mod (p − 1). Given d̃ where |dp − d̃| < N δ1 , and
assume that the following conditions are satisfied⎧⎪⎨⎪⎩

2− δ − α− 2
√
δ1 − δ − α+ 0.5 < 0.125

δ1
if 0.5 > δ1 > 0.146 > δ + α− 0.5

1.5− δ1 − 2
√
δ + α− δ1 − 0.5 < 0.125

δ+α−0.5 if 0.5 > δ + α− 0.5 > 0.146 > δ1

δ1 + δ + α− 0.707 < 0 if 0.146 > max{δ + α− 0.5, δ1}

Then N can be factored in polynomial-time.

Proof. We have that edp − 1 = kp(p − 1) for some k ∈ N. We can rewrite our
equation as

e(dp − d̃) + kp + ed̃− 1 ≡ 0 mod p

Now we try to find the small root (y1, y2) = (dp − d̃, kp) of the polynomial

fMSB(x1, x2) = ex1 + x2 + ed̃− 1

Since dp − d̃ ≈ N δ1 , dp ≈ N δ and e ≈ Nα, we have

kp =
edp − 1

p− 1
≈ N δ+α

N0.5
≈ N δ+α−0.5

Applying Theorem 3 and setting β = 0.5, we obtain the claimed result. ��

4.1 Comparison with Blömer-May’s [11] Results

Fig. 2 and Fig. 3 compare the results on known MSBs of dp. We focus on two
cases: δ = 0.5 and δ = 0.4. In Fig. 2, note that Blömer-May’s [11] result is better
than ours. However, for the case δ = 0.4, our result is better (Fig. 3). Actually
our result is better than Theorem 2 if δ < 0.457.

160 Y. Lu, R. Zhang, and D. Lin

Table 1. Experimental Results for Partial Key Exposure Attacks (LSBs)

(a) LSBs Case: Attack I

e d d1 (m, t) dim(L) time(sec)

30 512 150 (10, 3) 66 172.241

60 512 110 (10, 3) 66 191.304

100 512 60 (10, 3) 66 250.397

150 512 20 (10, 3) 66 272.378

85 512 85 (13, 4) 105 4012.299

(b) LSBs Case: Attack II

e d d1 (m, t, u) dim(L) time(sec)

30 512 130 (7, 4, 2) 68 95.176

60 512 100 (7, 4, 2) 68 152.295

80 512 100 (10, 6, 3) 132 5642.342

100 512 70 (7, 4, 3) 68 391.281

150 512 35 (7, 4, 3) 68 605.471

200 512 10 (8, 4, 4) 81 3096.707

In fact, we can apply the linearization method on the equation of Theorem 6:

e(dp − d̃) + kp︸ ︷︷ ︸
x

+ed̃− 1 ≡ 0 mod p

This can be stated as finding the root of the linear monic polynomial f(x) =

x+ ed̃− 1 mod p where p = N
1
2 . Using Herrmann-May’s method [8], we can get

the same bound as [11]. In [8], Herrmann and May observed that their algorithm
gives much better bounds for a smaller number of unknown variables (From two
to one). That is the reason why [11]’s result is better than ours when δ = 0.5.
However, as the size of e(dp−d̃) and kp increasingly unbalanced, this linearization
method can not exploit the relation between the coefficients of the polynomial
fMSB. Therefore, our method is more appropriate for this scenario (δ is small).
Actually, in [22,7], the authors used the similar technique to improve the bound
for solving the Multi-Prime Φ-Hiding Problem.

5 Experimental Results

To verify the effectiveness of our lattice-based approaches, we carry out some
experiments2. We have implemented our attacks using Magma [23] on a laptop
with Intel c© CoreTM i5-2430M CPU 2.40 GHz, 2 GB RAM. For all the listed-up
parameters, we can recover the factorization of N .

In Table 13 we illustrate partial known LSBs attacks for 1024-bit RSA mod-
ulus N with 512-bit primes p, q. From the data of the table, it is clear that for
large e, Attack II works better than Attack I for recovering the whole key, which
was already shown in Sec. 3.4.

2 Since the attack of Sec. 4 is similar to the attack of Sec. 3.2, we omit experiments
for the MSBs case here.

3 In Table 1(a), we did not exploit Takayasu-Kunihiro’s technique [21] that consider
the sizes of the root bound. Because we believe that it is enough to show the efficiency
comparison of our two attacks.

New Partial Key Exposure Attacks on CRT-RSA 161

Acknowledgments. We would like to thank the anonymous reviewers for help-
ful comments. This work is supported by the National 973 Program of China
under Grant No. 2011CB302400, the National Natural Science Foundation of
China under Grant No. 61303257, No. 61100225 and No. 61379139. IIEs Research
Project on Cryptography under Grant No. Y3Z001C102, One Hundred Talents
Project of the Chinese Academy of Sciences, the Strategic Priority Research
Program of the Chinese Academy of Sciences under Grant No. XDA06010701.

References

1. Bleichenbacher, D., May, A.: New attacks on RSA with small secret CRT-
exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)

2. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)

3. Boneh, D., Durfee, G., Frankel, Y.: Exposing an RSA private key given a small
fraction of its bits. In: Full Version of the work from Asiacrypt, vol. 98 (1998)

4. Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring n = prq for large r. In:
Advances in Cryptology–CRYPTO 1999, p. 787. Springer (1999)

5. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

6. Galbraith, S.D., Heneghan, C., McKee, J.F.: Tunable balancing of RSA. In: Boyd,
C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 280–292.
Springer, Heidelberg (2005)

7. Herrmann, M.: Improved cryptanalysis of the multi-prime φ - hiding assump-
tion. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737,
pp. 92–99. Springer, Heidelberg (2011)

8. Herrmann, M., May, A.: Solving linear equations modulo divisors: On factor-
ing given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 406–424. Springer, Heidelberg (2008)

9. Herrmann, M., May, A.: Maximizing small root bounds by linearization and ap-
plications to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010)

10. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 131–142. Springer,
Heidelberg (1997)

11. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

12. Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-
exponents smaller than N0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

13. Joye, M., Lepoint, T.: Partial key exposure on RSA with private exponents larger
than n. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 369–380. Springer, Heidelberg (2012)

14. Kunihiro, N., Shinohara, N., Izu, T.: A unified framework for small secret exponent
attack on RSA. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118,
pp. 260–277. Springer, Heidelberg (2012)

162 Y. Lu, R. Zhang, and D. Lin

15. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261(4), 515–534 (1982)

16. May, A.: Cryptanalysis of unbalanced RSA with small CRT-exponent. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Heidelberg (2002)

17. May, A.: Secret exponent attacks on RSA-type schemes with moduli N = prq.
In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 218–230.
Springer, Heidelberg (2004)

18. Quisquater, J.-J.: Chantal Couvreur. Fast decipherment algorithm for RSA public-
key cryptosystem. Electronics Letters 18(21), 905–907 (1982)

19. Sarkar, S., Maitra, S.: Partial key exposure attack on CRT-RSA. In: Abdalla, M.,
Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536,
pp. 473–484. Springer, Heidelberg (2009)

20. Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)

21. Takayasu, A., Kunihiro, N.: Better lattice constructions for solving multivariate
linear equations modulo unknown divisors. In: Boyd, C., Simpson, L. (eds.) ACISP
2013. LNCS, vol. 7959, pp. 118–135. Springer, Heidelberg (2013)

22. Tosu, K., Kunihiro, N.: Optimal bounds for multi-prime φ-hiding assumption. In:
Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 1–14.
Springer, Heidelberg (2012)

23. Cannon, J., Bosma, W., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997); Computational algebra
and number theory, London (1993)

24. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

Bit-Flip Faults on Elliptic Curve

Base Fields, Revisited

Taechan Kim1,� and Mehdi Tibouchi2

1 Seoul National University
2 NTT Secure Platform Laboratories

Abstract. As part of their investigation of fault attacks on elliptic curve
cryptosystems, Ciet and Joye showed, back in 2003, that perturbing the
value representing the cardinality of the base field in a physical imple-
mentation of ECC could result in a partial key recovery. They had to
assume, however, that the perturbed computation would “succeed” in
some sense, and that is rather unlikely to happen in practice.

In this paper, we extend their analysis and show that, in a somewhat
stronger fault model, full key recovery is possible with a single fault. For
example, our fault attack typically reduces 256-bit ECDLP to solving
discrete logarithm problems in a few random elliptic curves over fields
of less than 60 bits, which typically takes a matter of seconds. More
generally, the asymptotic complexity of ECDLP becomes heuristically
subexponential under our fault attack.

Our attack also extends to a very efficient full key recovery attack on
ECDSA with two faulty signatures.

Keywords: Elliptic Curve Cryptography, Fault Analysis, ECDSA.

1 Introduction

Elliptic Curve Cryptography. Elliptic curves, whose use in public-key cryp-
tography was first suggested by Koblitz and Miller in the mid-1980s [29,31], offer
numerous advantages over more traditional settings like RSA and finite field dis-
crete logarithms, particularly higher efficiency and a much smaller key size that
scales gracefully with security requirements. This makes them especially well-
suited for implementations of cryptography, in both hardware and software, on
resource-constrained and embedded devices.

Despite some initial reluctance from practitioners, elliptic curve cryptography
(ECC) has become widely accepted in the cryptographic community and has
made major inroads in the industry starting from the early 2000s, with the
standardization of multiple elliptic curve-based cryptographic primitives [24,3]
(ECDSA [18] in particular has been widely adopted), agencies weighing in favor
of their use [32], and new embedded applications such as secure e-passports
mandating them [25].

� This work was carried out during the first author’s visit to NTT Secure Platform
Laboratories.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 163–180, 2014.
c© Springer International Publishing Switzerland 2014

164 T. Kim and M. Tibouchi

ECC implementations are now a staple of the modern cryptographic land-
scape, and it is thus of prime importance to study their security not only from a
purely algorithmic point of view, but also against physical attacks. A number of
works in recent years have been devoted to attacking ECC implementations with,
and protecting them against, both side-channel analysis, fault analysis, and even
combined attacks with both passive and active phases. See [14,2,15] for surveys
of recent results.

Fault Attacks on Elliptic Curves. In this paper, we are particularly in-
terested in active physical attacks against the elliptic curve discrete logarithm
problem (ECDLP). Much like the so-called Bellcore attack of Boneh, DeMillo
and Lipton [9] allows an attacker to recover an RSA secret key by perturbing the
computation of an RSA signature in a signing device, fault attacks on ECDLP
seek to recover a secret exponent k by perturbing the computation of the scalar
multiplication of an elliptic curve point P by k.

The most common type of fault attack on ECDLP consists of “weak curve
attacks”, the first of which was introduced by Biehl, Meyer and Müller in 2000 [8].
Their key observation was that at least one of the elliptic curve parameters does
not intervene in the expression of the addition and doubling formulas on that
elliptic curve; for example, in commonly used coordinate systems, the addition
and doubling formulas on the short Weierstrass curve E : y2 = x3 + ax + b do
not involve the parameter b at all. As a result, if one perturbs the computation
of a scalar multiplication kP by modifying the coordinates of P into those of a
different point P̃ not on the curve E, the computation carried out by the device
is still an elliptic curve scalar multiplication kP̃ , but on a different curve:

Ẽ : y2 = x3 + ax+ b̃ where b̃ = y2
P̃
− x3

P̃
− axP̃ .

If the discrete logarithm problem happens to be easy on Ẽ (this happens for

example when the group order of Ẽ is a smooth number, or when P̃ is a point
of small order on Ẽ), information about k can be deduced from the result kP̃ of
the faulty scalar multiplication.

This type of attack was later called invalid point attack because it relies on
obtaining, through fault injection, an input point to the scalar multiplication
algorithm that lies outside of the elliptic curve. One notable variant is the twist
attack of Fouque et al. [19], which assumes that the input point is in compressed
form, and which perturbs it (with probability 1/2) into a point on the twisted
curve of E, which is often weaker.

Ciet and Joye [11] extended the work of Biehl et al. in several directions, and
showed in particular that faults injected not only on the base point but also
on the curve parameters, or the representation of the base field, could cause
the scalar multiplication to be performed on a weak curve, and hence allow the
recovery of some information on the discrete logarithm.

Bit-Flip Faults on Elliptic Curve Base Fields, Revisited 165

We consider in particular their attack on the base field. In the prime field case,
it can be roughly described as follows: suppose that the elliptic curve E is defined
over the field Fp, and that a fault is injected on p, yielding a faulty modulus p′.
With high probability, p′ is then a composite number p′ =

∏r
i=1 q

ei
i . Hence, the

faulty computation of kP , assuming that it proceeds without error, should really
be a scalar multiplication by k on an elliptic curve over the ring Z/qe11 Z× · · · ×
Z/qerr Z, which decomposes as a product Ẽ1(Z/q

e1
1 Z) × · · · Ẽr(Z/qerr Z). Each of

the curves Ẽi is defined over a much smaller base than the original curve E, and
is therefore weaker, making the discrete logarithm problem potentially tractable.

If one tries to implement that attack, however, one finds that it fails almost
all the time, mainly because some of the prime factors qi of p′ are likely to be
very small; the reduced curve modulo those primes may either not be an elliptic
curve at all (due to having zero discriminant: this happens if one of the qi’s is
2 or 3, for example), or have such a small order that the scalar multiplication
will meet the point at infinity modulo that prime with high probability, causing
a division by zero or an otherwise erroneous computation.

Our Contributions. Motivated in part by recent work on modulus fault at-
tacks against RSA signatures [10], we revisit Ciet and Joye’s attack on the base
field representation in such a way as to make it actually work with as few as a
single faulty scalar multiplication.

Most of our analysis is in a stronger fault model than random fault model
considered by Ciet and Joye: namely, we assume that the adversary can choose
the fault they inject on the modulus from a certain set. This can be achieved in
various ways in practice, such as instruction skipping in software or triggering
reset wires in hardware to zero out some chosen bitstring in the modulus, or by
using the chosen bit-flip model considered in the original paper of Biehl et al..
Bit flips are often considered tricky to achieve against real devices, but Agoyan et
al. [1] have demonstrated that they can be performed in a reproducible way using
laser shots on SRAM memory cells.

We show that if one can flip a chosen bit of the modulus p (or otherwise inject
a fault chosen from a similarly-sized set), we can ensure that the resulting faulty
modulus p′ has much smaller prime factors (less than 60 bits each when p is a 256-
bit prime, say). This makes it possible to recover almost all the bits of k (all but a
couple dozen) from a single faulty computation of the scalar multiplication kP in
a division-free coordinate system (projective, Jacobian, etc.). The few remaining
bits can be quickly found using Pollard’s lambda algorithm if, in addition, the
result of the non-faulty computation is known. The attack also extends to the
more common case when the result is converted back to affine coordinates at the
end, unless the device implements a normally useless test to avoid it.

We provide an extensive theoretical analysis of this attack showing, more
generally, that a chosen bit-flip on an n-bit elliptic curve modulus allows the
recovery of n−O(log2 n) bits of the n-bit exponent k from a faulty computation
of kP in heuristic (slightly) subexponential time 2O(n log log n/ logn). And again, all

166 T. Kim and M. Tibouchi

n bits can be recovered if the correct value of kP is also known, making ECDLP
subexponential under this fault model. Note that our fault is chosen from a set of
polynomial size: this is in contrast with Biehl et al.’s subexponential complexity
result for their invalid point attack (later established more rigorously under
reasonable heuristics by Wang and Zhan [35]) which requires superpolynomially
many faults, and is therefore of little practical significance.

Furthermore, our attack extends to random faults as well, but several faults
are necessary for the recovery of the whole discrete log to become practical: for
256-bit elliptic curves, three or four faults are typically enough.

In addition, we propose a very efficient full key recovery attack on ECDSA
with only two faulty signatures based on our attack: each faulty signature reveals
most of the bits of the corresponding nonce, so that the ECDSA secret key can
easily be found using lattice reduction techniques with just two faults. Moreover,
for deterministic implementations of ECDSA, having one correct and one faulty
signature on the same message is also enough.

All variants of our attacks have been validated using simulations. In our im-
plementation, the search for the optimal bit flip on a 256-bit modulus takes a
few CPU hours (and is easily parallelized) on a standard PC, while the attacks
themselves, both on ECDLP and ECDSA, take seconds to minutes to complete.

2 Background on ECDLP and ECDSA

Elliptic Curves. An elliptic curve over a finite prime field Fp, p > 3, can be
described as the set of points (x, y) on the affine plane curve

E : y2 = x3 + ax+ b (1)

for some coefficients a, b ∈ Fp with 4a3 + 27b2 �= 0, together with the point at
infinity on the projective closure of the affine curve. This set E(Fp) is endowed
with a natural abelian group law which can be defined by a chord-and-tangent
process.

The formulas giving the affine coordinates of the sum of two curve points
involve divisions, so efficient implementations of elliptic curve arithmetic rely
on redundant coordinate systems for which division-free formulas exist. In this
paper, we consider in particular Jacobian coordinates (X : Y : Z) for the Weier-
strass form (1), given by (x, y) = (X/Z2, Y/Z3) as they seem to be the most
commonly used in practice (in particular, they are the coordinate system de-
scribed in the IEEE P1363 standard [23, A.10], and the one recommended over
prime fields in [22]). However, our results generalize directly to any other coor-
dinate system with division-free formulas for addition and doubling which are
independent of at least one curve parameter (like the formulas for Jacobian co-
ordinates below, which are independent of the parameter b of the Weierstrass
equation). This also includes projective coordinates in Weierstrass form, as well
as projective coordinates on Hessian and generalized Hessian curves [16], Huff
and twisted Huff curves [26], etc., but not Edwards curves [7], for which addition
formulas depend on all curve parameters.

Bit-Flip Faults on Elliptic Curve Base Fields, Revisited 167

Formulas for addition and doubling in Jacobian coordinates are provided in
the full version of this paper [28] (as well as many other standard references);
they are indeed division-free and do not depend on the parameter b of the curve
equation. Such formulas are sufficient to compute scalar multiplications P �→ kP
in E(Fp). While this can be done in several ways, we will assume in this paper
that the double-and-add algorithm (in either its left-to-right or its right-to-left
variant) used for those computations. Nevertheless, we note that our results
apply with little to no change to most other scalar multiplication algorithms,
including the generalized Montgomery ladder [27], and even to higher radix
algorithms (k-ary double-and-add, sliding window, etc.) as long as faults are
injected before the corresponding precomputations so that precomputed points
lie on the faulty curve as well.

ECDLP. Consider again an elliptic curve E over Fp, and a point P ∈ E(Fp) of
order N in the group (usually a generator of either E(Fp) itself or a subgroup
of small index). The elliptic curve discrete logarithm problem (ECDLP) in (the
subgroup generated by P in) E is the computational problem of finding k ∈
{0, . . . , N − 1} given P and the scalar multiple kP . For almost all isomorphism
classes of elliptic curves, this problem is considered hard, and the best known
attack has a complexity of O(

√
N).

ECDSA. The elliptic curve digital signature algorithm (ECDSA) is a digital
signature scheme based on elliptic curves and standardized as part of the Digital
Signature Standard [18]. ECDSA system parameters consist of an elliptic curve
E over a finite field (for example a prime field Fp), a generator P ∈ E(Fp) of a
large subgroup of the curve, of orderN , and a hash function H : {0, 1}∗ → Z/NZ.
The secret key is then a random integer d ∈ {0, . . . , N − 1}, and the public
verification key is the curve point dP . A message m is then signed as follows:
choose a uniformly random k ∈ {1, . . . , N − 1}, compute the scalar multiple
kP = (x, y) ∈ E(Fp), and return the signature as the pair (r, s) ∈ (Z/NZ)2

given by r = x mod N and s = k−1 ·
(
H(m) + r · d

)
mod N .

3 Our Attack

3.1 Attack Model

We consider a cryptographic device computing the scalar multiplication of a
known point P = (xP , yP) by an unknown scalar k on a public elliptic curve
E : y2 = x3 + ax+ b over the finite prime field Fp, and we try to recover k using
fault analysis. To fix ideas, we assume that the scalar multiplication is carried
out in Jacobian coordinates using the double-and-add algorithm (although, as
mentioned earlier, the approach extends to most curve shapes and coordinate sys-
tems admitting division-free addition and doubling formulas, and to essentially
any scalar multiplication algorithm with minor changes).

168 T. Kim and M. Tibouchi

Our fault model is to consider that a permanent fault is injected on the
representation of the base field Fp at the beginning of the computation, so that all
arithmetic operations are carried out modulo a different integer p′ instead, which
is typically composite: p′ =

∏r
i=1 q

ei
i . This type of fault is typically achieved using

laser beams on RAM cells after the value of p is loaded into memory. Note that
the model is only realistic if the device uses a generic implementation of base field
operations. Devices using curves with random base fields, such as Brainpool [30]
and the French government ANSSI curve [4], do satisfy that property, but in
some cases implementations of NIST curves [18] (which have special base fields)
do not, and those based on Curve25519 [5] and other “SafeCurves” [6] normally
do not either.

As noted in the introduction, the computation of the scalar multiplication by
k using the faulty modulus p′ essentially amounts to a scalar multiplication by
k in the product group Ẽ1(Z/q

e1
1 Z) × · · · × Ẽr(Z/qerr Z), where Ẽi is the curve

over Z/qeii Z defined by:

Ẽi : y
2 = x3 + ax+ bi where bi =

(
y2P − x3

P − axP

)
mod qeii .

More precisely, consider a prime factor qi of p′ of multiplicity 1 (ei = 1)

such that the curve Ẽi is indeed an elliptic curve over Fqi (i.e. qi is prime to
2 · 3 · (4a3 + 27b2i), which happens with high probability unless qi is very small),

and let Pi ∈ Ẽi(Fqi) be the point
(
xP mod qi, yP mod qi

)
. Then, the double-and-

add algorithm carried out in Jacobian coordinates modulo qi correctly computes
the Jacobian coordinates of the scalar multiple kPi ∈ Ẽi(Fqi), unless the validity
condition for the addition law1 described in Section 2 (saying that the points
being added are different, not inverses of each other and not at infinity) fails
at some point in the computation, in which case it is easy to check that the
computation returns either the point at infinity on Ẽi or the erroneous value
(0 : 0 : 0). The same holds modulo primary factors qeii of p of higher multiplicity,
except that zeros are replaced by non-invertible elements of Z/qeii Z.

As a result, it follows from the Chinese Remainder Theorem that when the
whole computation is carried out modulo p′, the algorithm returns a value
(X ′ : Y ′ : Z ′) which, when reduced modulo qeii , gives the correct scalar mul-

tiple kPi ∈ Ẽi(Z/q
ei
i Z) whenever Ẽi is indeed an elliptic curve and qi does

not divide Z ′. If, moreover, the order Ni of Pi in the group Ẽi(Z/q
ei
i Z) is not

too large (hopefully much smaller than 2n), we can hope to recover k mod Ni

in time O(
√
Ni) using a generic algorithm for the discrete logarithm such as

1 Note that a typical implementation of scalar multiplication on the curve can omit
checking whether the validity condition holds, as it is never satisfied under normal
conditions, but even if the check is carried out, it is immaterial for our purposes.
Indeed, the check would be done using equality modulo p′, and hence would not
detect equality modulo a single prime factor of p′.

Bit-Flip Faults on Elliptic Curve Base Fields, Revisited 169

Pollard’s rho.2 And ultimately, putting all those results together, we should
obtain k mod ν where ν is the LCM of the Ni’s corresponding to those primary
factors for which the computation could be carried out.

There are almost always primary factors for which the computation fails, and
even for those where it succeeds, the corresponding Ni’s may not be relatively
prime, so one cannot hope to recover all of k using a single faulty computation.
But as we will see, we can actually come quite close! Our analysis of the attack
will proceed as follows:

– In Section 3.2, we assume that the faulty modulus p′ is obtained from p by
flipping a single chosen bit, and we show that if that bit is selected correctly,
we can make p′ smooth enough that the discrete logarithm becomes easy in
all reduced curves Ẽi.

– In Section 3.3, we then show that the output of a single faulty double-and-add
computation in Jacobian coordinates is then enough to recover n−O(log2 n)
bits of k (out of n), which is quite close to optimal.

– In Section 3.4, we discuss how the few remaining unknown bits of k can be
recovered easily if the correct value of kP ∈ E(Fp) is known.

3

– In Section 3.5, we show that recovering k is still possible if the result of the
scalar multiplication is converted back from Jacobian to affine coordinates
before being output, under plausible assumptions on the Jacobian-to-affine
conversion algorithm. Furthermore, we show that the affine x-coordinate
alone is enough to carry out the attack.

– In Section 3.6, we discuss how this fault attack on scalar multiplication easily
extends to a full key recovery attack on ECDSA signatures given only two
faulty signatures.

– Finally, while all the previous results are obtained assuming chosen bit flip
faults, we briefly discuss in Section 3.7 how they extend to the case of random
faults when a higher number of faulty results is available.

3.2 Choice of the Faulty Modulus

In Ciet and Joye’s fault attack [11], of which the present paper is a variant,
faults injected on the modulus were considered random. As a result, for a 256-
bit elliptic curve, say, the faulty modulus p′ would typically have a prime factor of

2 In practice, Ni is often composite, so it is preferable to first factor this order and then
use the Pohlig–Hellman algorithm. Moreover, when ei > 1, we can recover k mod Ni

even faster by first carrying out the discrete logarithm computation in the reduced
curve modulo qi, and then lifting to q2i , q

3
i and so on until qeii . However, factors of

p′ with multiplicity higher than 1 are usually very small if they exist at all, so it is
rarely useful to treat them separately in practice.

3 Whether the correct value of kP is available to an attacker depends on the protocol
implemented by the device. This is typically the case when k is the secret key itself,
as in static Diffie–Hellman key exchange, BLS signatures and many other protocols.
In other settings like ECDSA, k is randomly chosen anew in each execution of the
protocol, but as we show below, we can then break the corresponding schemes using
several faults.

170 T. Kim and M. Tibouchi

size 256λ = 256 ·0.642 . . .≈ 164 bits (where λ is the Golomb–Dickman constant),
making the discrete logarithm problem on the corresponding reduced curve likely
intractable. As a result, Ciet and Joye’s attack can usually only recover a small
fraction of the bits of k using a single fault.

By contrast, our analysis is based on the assumption that the attacker can
choose the fault to some extent: more precisely, we assume that the attack gets
to flip a single chosen bit of p. This is a rather powerful fault model, but this
type of faults has been shown by Agoyan et al. [1] to be consistently achievable
in practice using laser shots on SRAM cells.

In such a setting, we claim that we can ensure that the faulty modulus p′ has
only relatively small prime factors, making the discrete logarithm probably easy
in all reduced curves.

Indeed, there are n integers obtained from p by flipping a single bit, and with
respect to the distribution of the sizes of their prime factors, it is reasonable to
make the heuristic assumption (as is usually done in the complexity analysis of e.g.
factoring algorithms) that they behave like independent random numbers of the
same size; our experiments seem to confirm that this assumption holds. Now, recall
that for any constant s > 1, the asymptotic probability that a random integer
x is x1/s-smooth (i.e. has all of its prime factors smaller than x1/s) is given by
Dickman’s function ρ(s) [13], which satisfies log ρ(s) ∼ −s log s (see e.g. [21]).

As a result, the probability that all of the integers obtained from p by flipping a
single bit have a prime factor of at least n/s bit is given by

(
1− ρ(s)

)n ≈ exp
(
−

nρ(s)
)
, which is bounded by 1/e as soon as nρ(s) ≥ 1, or equivalently, logn ≥

− log ρ(s) ∼ s log s. Therefore, with good probability, at least one of the integers
obtained from p by flipping a single bit is 2n/s-smooth with s ≈ logn/ log logn.

We have seen that our fault model essentially reduces the discrete logarithm
problem in E(Fp) to ECDLP instances in elliptic curves Ẽi over base fields Fqi

corresponding to the prime factors4 qi of the faulty modulus p′. Since we can
choose p′ to be 2n log logn/ log n-smooth with good probability by flipping a bit, we
obtain that, in this setting, the heuristic complexity of ECDLP-using-a-single-
fault is bounded by O(2n log logn/2 log n) which is subexponential in n.

More practically, if we consider 256-bit elliptic curves, say, we find that
(
1−

ρ(s)
)256

is 0.466 . . . < 1/2 for s = 4.2, and 256/4.2 = 60.9 Therefore, this
fault attack will typically reduce 256-bit ECDLP to discrete logarithm problems
in a few random curves over base fields of less than 61 bits, which are quite
easy to solve in practice. Note also that effectively finding the correct bit to flip
amounts to factoring 256 numbers of 256 bits each, which can be done in matter
of minutes on a standard desktop computer.

The next few sections are devoted to making precise, using properly justi-
fied heuristics, in what sense the fault does indeed “reduce” the larger ECDLP
instance to the smaller ones.

4 Due to the lifting technique mentioned in a previous note, this is correct even if p′

has repeated prime factors, but we reiterate that such factors of higher multiplicity
are irrelevant in practice: a prime factor q of p′ is repeated with probability ≈ 1/q,
which is small enough to ignore if q is larger than a dozen bits or so.

Bit-Flip Faults on Elliptic Curve Base Fields, Revisited 171

3.3 Result in Jacobian Coordinates: Recovering Most of the Scalar

In this section, we argue that an attacker who obtains the result of a single
faulty scalar multiplication by k as a point in Jacobian coordinates (i.e. that
is not converted back to affine coordinates) can recover almost all the bits of
k. This is done in three steps. We first show that the computation has a high
probability to succeed modulo all the prime factors qi of p

′ such that qi (n logn.
We call those prime factors “good moduli”, and the other ones “bad moduli”.
We then prove that the bad moduli account for only a small part of the bits of p′,
in the sense that the bit length of the O(n log n)-smooth part of p′ is bounded
as O(log n) with high probability. And finally, we show that, under reasonable
heuristics, the bit size of the LCM ν of the orders Ni = ord(Pi) is not much
smaller than n (it is of length n − O(log2 n) bits). As a result, since we finally
obtain k mod ν, our attack recovers n − O(log2 n) bits of information out of n
on the scalar k using just a single fault.

The Computation Succeeds for Good Moduli. First, we observe that the
erroneous computation is unlikely to happen on the large modulus. For a given
qi, we show that the probability that the computation kP on Ẽi(Fqi) meets the

point at infinity is O(n log qi
qi

), where n denotes the bit length of k. Our analysis
is based on the following reasonable heuristic assumptions:

1. the curve Ẽi behaves like a random elliptic curve over Fqi ;

2. the point P behaves like a random point in Ẽi(Fq); and
3. the scalar k is a random n-bit integer.

Note that the probability mentioned above is very small for a prime qi (
n logn. It is also consistent with the intuition that the point at infinity is much
more likely to be encountered as part of the scalar multiplication on a small
elliptic curve group than on a large one (and the Hasse–Weil bound implies that
the group size is essentially given by the size of the base field).

Assume that the scalar multiplication by k is carried out in the double-and-
add approach. The computation fails if a multiple of the order of the point
appears somewhere during the scalar multiplication. Under the heuristic assump-
tion that each constant appearing in the scalar multiplication behaves like a ran-
dom integer of the corresponding bit length, we prove in the full version of this
paper [28] that the probabilty of encountering the point at infinity is bounded
by 2n/ord(P) for the n-bit scalar multiple k.

Thus for a given curve E defined over Fq, the probability that a random
point P would meet the point at infinity becomes

∑
d Pr[ord(P) = d] · (2n/d),

where d runs over the divisors of the order of the elliptic curve. This leads us to

consider the function
∑

d
Pr[ord(P)=d]

d = 1
|E|
∑

P∈E
1

ord(P) . In the full version of

this paper [28], we show that the expected value of
∑

P∈E
1

ord(P) asymptotically

becomes O(log q). Consequently, we obtain that the probability O(n log q
q), which

is small for q (n logn. For example, this explains that for 256-bit elliptic curve
the result of the faulty computation gives a correct value on the corresponding
curves for large moduli qi such that qi (256 · 8 = 2048.

172 T. Kim and M. Tibouchi

Bad Moduli Account for a Small Number of Bits. From the previous
subsection, we expect that the computation modulo large factors of p′ succeeds
with high probability. However, the computation usually fails to give a useful
result on “bad moduli” qi = O(n logn). Fortunately, in this section we show
that the size of the product of these bad moduli is not so large.

For integers B and x, we write SB(x) for the B-smooth part of x, i.e. the
product of all prime factors of x (with multiplicities) which are ≤ B. Moreover,
if u is a B-smooth integer, we define PB(u) as the asymptotic probability that a
random integer x satisfies SB(x) = u. This probability is well-defined, and given
by PB(�

a) = 1
�a −

1
�a+1 on powers of primes �a ≤ B, from which the value of

PB(u) for all B-smooth integers u easily follows. Now consider the probability
that SB(p

′) ≤ Bα, i.e.
∑

u≤Bα PB(u). In the full version of this paper [28], we
prove:

Theorem 1. Let S(x, y) be the set of y-smooth integers up to x. For any positive
real number α > 0, we have∑

u∈S(Bα,B)

PB(u) ∼
1

eγ
·
∫ α

0

ρ(s)ds

as B → ∞. Here, ρ is Dickman’s function and γ is the Euler-Mascheroni con-
stant.

Consider the right-hand side of the asymptotics of Theorem 1. By definition of
Dickman’s function, ρ(s) = 1

s

∫ s

s−1
ρ(t)dt for all s > 1 and ρ(s) = 1 for 0 ≤ s ≤ 1.

It follows that ρ(s) = 1− log s for 1 ≤ s ≤ 2, and a simple calculation then gives:

1

eγ

∫ 2

0

ρ(s)ds =
3− 2 log 2

eγ
= 0.90603 · · · .

It means that for random n-bit integer p′, the inequality SB(p
′) ≤ B2 holds

with about 91% probability. More generally, for B = O(n log n), the bit length
of SB(p

′) is O(log n) with high probability. And in the case of a 256-bit random
integer p′, we can expect that the product of primes less than B ≈ 256 ·8 = 2048
is less than 2 log 2048 = 15.2 . . . bits with high probability.

Size of the LCM of the Good Orders. For each of the good moduli qi,
the faulty computation reveals the point kP̃i ∈ Ẽi(Fqi), and since the discrete
logarithm problem on each of these small curves is tractable, we can solve it to
obtain k mod Ni where Ni = ordẼi

(P). Then, the total recoverable bit length
of k is determined by the size of ν := lcm{Ni}, where the lcm is taken over the
set I of indices of the good moduli qi. Thus, to show that most bits of k can be
recovered, we would like to justify that the size of ν is close to n.

This is done in two steps. First, we argue that for each i, the order Ni of P̃i

in Ẽi(Fqi) is close to the order of the group itself. This can be done under the

heuristic assumption that P̃i is a random point on the corresponding curve, and
that the curve itself is random in an appropriate sense. Indeed, we can explicitly

Bit-Flip Faults on Elliptic Curve Base Fields, Revisited 173

compute the expected order of a random element in a finite abelian group with
at most two invariant factors (it is close to the exponent of the group), and the
order of the smaller invariant factor of a random elliptic curve is typically small
(precise estimates can be found in [20]). Overall, we prove in the full version of
this paper [28] that Ni, the order of P on Ẽi, is only a constant number of bits

shorter than |Ẽi(Fqi)| on average.
As a result, of the LCM ν of the Ni’s will be within a constant factor of the

LCM of the curve orders N ′
i = |Ẽi(Fqi)|. The second step is then to justify that

this latter LCM is close to the product of the N ′
i ’s, or equivalently of the qi’s,

which we know is of size n−O(log n) bits. To do so, we argue, using the results
of Gekeler [20] again, that the distribution of the sizes of the prime factors of
the order a random elliptic curve is essentially the same as that of a random
integer of the same size. Thus, the LCM of the N ′

i ’s should behave like the LCM
of |I| random integers of the same sizes. And a recent theorem of Fernández
and Fernández [17] provides a bound on the difference between the size of the
product and the size of the LCM: it ensures that log

∏
i∈I Ni− log ν = O(|I|2) =

O(log2 n).
All in all, under reasonable heuristic assumptions, the total recoverable bit

length of k is at least n−O(log2 n). A more detailed discussion of these heuristic
arguments, and full proofs under the appropriate assumptions, are provided in
the full version of this paper [28].

3.4 Result in Jacobian Coordinates: Recovering the Whole Scalar

Let (XQ : YQ : ZQ) be a point in the Jacobian coordinate of the result of the
faulty computation with modulus p′. If the scalar multiplication on the modulus
qi contains the point at infinity somewhere, then the Z-coordinate of the result
should be zero. Thus, in practice, we detect which modulus is a good modulus
by checking the value of the GCD of ZQ and p′; the good modulus qi never be
a factor of d := gcd(ZQ, p′).

With the proper choice of the faulty modulus, we have seen how to recover
a large part of the exponent, namely k (mod ν) where ν is a known integer of
expected bit size n − O(log2 n). Assume that we also obtain the value of the
correct computation kP . From k = νx+(k mod ν) for some x in a small interval
of length O(log2 n), we can recover x by applying Pollard’s lambda algorithm to
the pair of known points νP and x ·(νP) = kP −(k mod ν)P . This only requires

O(
√

log2 n) = O(log n) arithmetic operations on the elliptic curve E(Fp), and is
therefore quite fast (and in any case, polynomial time).

3.5 Result in Affine Coordinates

In practice, at the end of the computation, the final result is usually converted
back to affine coordinates before being output. So, the final point (XQ : YQ :
ZQ) in the Jacobian coordinate should be converted into the affine coordinate
(XQ/Z2

Q, YQ/Z3
Q). This step requires the inversion of ZQ in Fp. To invert the el-

ement ZQ modulo p, it is widely used the extended Euclidean algorithm (EEA):

174 T. Kim and M. Tibouchi

Find integers α and β satisfying αZQ + βp = 1, then compute (α2XQ mod p,
α3YQ mod p) from the point (XQ : YQ : ZQ).

In our fault model the inverse of ZQ does not exist with respect to the faulty
modulus p′, because ZQ and p′ are not relatively prime in general. However,
if we assume that the procedure of conversion from the Jacobian to the affine
coordinates is done by the EEA without checking that gcd(ZQ, p′) = 1 (this
is a reasonable assumption in the sense that this check is never necessary for
field arithmetic: a field element is invertible as soon as it is non-zero, and
this is normally verified separately), we obtain the faulty affine coordinates
(x̃, ỹ) = (α̃2XQ mod p′, α̃3YQ mod p′), where Q = (XQ : YQ : ZQ) is the re-

sult of computing kP modulo p′ and α̃ZQ + β̃p′ = gcd(ZQ, p′) in the EEA.

To obtain the value of kPi ∈ Ẽi, we need to compute the correct affine coor-
dinates:

(xi, yi) = (XQ/Z2
Q mod qi, YQ/Z3

Q mod qi)

from the given result (x̃, ỹ). Note that
ZQ

d and p′
d are relatively prime for d :=

gcd(ZQ, p′), and we have α̃ · ZQ

d + β̃ · p
′
d = 1. This induces that Z−1

Q = α̃
d mod qj

for prime factors qj of p′

d , so we deduce that

x̃/d2 = XQ/Z2
Q mod qj and ỹ/d3 = YQ/Z3

Q mod qj .

It remains to recover d from x̃ and ỹ. Note that d is the product of the prime
factors qi on which ZQ mod qi = 0.

If the computation of kP involves the point at infinity somewhere for P ∈
Ei(Fqi), then the final result is of form (0 : 0 : 0). Thus gcd(ZQ, p′) divides
gcd(XQ, p′).

Conversely, assume that ZQ �= 0 mod qi. The point (XQ/Z2
Q, YQ/Z3

Q) mod qi
behaves as a random point on Ei : y

2 = x3 + ax+ bi. The curve Ei has a point
of form (0, y) if and only if bi is a quadratic residue modulo qi and in this case

we have (0, y) = (0,±b
1/2
i). So, the probability that a randomly chosen point

has its x-coordinate zero is 2
|Ei| ≈

2
qi

if it exists. Thus XQ �= 0 mod qi with

the probability 1 − 1
2 ·

2
qi

= 1 − 1
qi
. Thus gcd(XQ, p′) divides gcd(ZQ, p′) with

probability
∏τ

i=1(1− 1/qi). We deduce that d = gcd(ZQ, p′) = gcd(XQ, p′) with
high probability.

Finally, we have gcd(x̃, p′) = gcd(α̃2XQ, p′) = gcd(XQ, p′) = d, since α̃ is
relatively prime to p′/d, and we are able to recover the correct affine coordinates
from (x̃, ỹ). The recovery of the exponent can be carried out as before.

Remark 1. Assume that we only have the affine x-coordinate of the faulty compu-
tation. In this case, we have two choices of possible point (xi mod qi, yi mod qi)
for each i. Therefore, if there are w good moduli, we have 2w possibilities for
k mod ν. If the exact value of kP is known, we can thus recover k by running Pol-
lard’s lambda algorithm 2w times as before using all of the possible candidates
for k mod ν. This exhaustive search is quite fast, and in any case polynomial
time.

Bit-Flip Faults on Elliptic Curve Base Fields, Revisited 175

3.6 Attack on ECDSA

Consider two faulty signatures of form

(r1, s1) := (x1, k1
−1(h1 + r1 · d) mod N) for h1 = H(m1)

and
(r2, s2) := (x2, k2

−1(h2 + r2 · d) mod N) for h2 = H(m2).

As before, we know that k1 = νx1+η1 and k2 = νx2+η2 for the small unknowns
0 < x1, x2 < 2O(log2 n). To find x1 and x2, we consider the equations obtained by
multiplying k1 and k2 for each s1 and s2:{

s1 · (νx1 + η1) = h1 + r1 · d mod N

s2 · (νx2 + η2) = h2 + r2 · d mod N.

Eliminating d, we obtain the equation

r2s1(νx1 + η1)− r1s2(νx2 + η2) = r2h1 − r1h2 mod N.

Hence the problem reduces to solving the bivariate modular equation αx1+βx2 =
γ mod N for small x1, x2 and known N which can be solved efficiently with the
LLL algorithm when |x1|, |x2| � N1/2 (since it is an instance of the (1, 2)-ME
problem in the terminology of Takayasu and Kunihiro [34]; see also [12]), and
that bound is of course satisfied in our setting.

3.7 Extending the Attacks to Random Faults

Suppose that we are unable to obtain faults on a specific bit of p, but can
instead carry out several faulty executions of the scalar multiplication with the
same scalar k in which a different random fault is injected in p every time. Ciet
and Joye have shown that, in such a setting, we can assume that each of the
faulty moduli p′j is known, as it can be recovered from the resulting point [11].

Our attack naturally extends to such a setting as follows: while some “good
moduli” among the largest factors of the p′j ’s may be too large for the correspond-
ing discrete logarithm instances to be tractable, we can use all the results from
the available good moduli starting from the easiest Pohlig–Hellman instances,
and stop as soon as enough bits have been recovered in the LCM so that all of
k is known. Experimentally, we find that for a 256-bit modulus, 3 to 4 random
faults are enough to recover all of k in a few minutes. The precise analysis of
this multiple random fault variant is left as future work. Note that this attack
is similar to the one originally proposed by Ciet and Joye, but does account for
“bad moduli” and can therefore be carried out in practice.

Similarly, it is even easier to adapt the ECDSA attack to random faults: if
each random fault reveals a bit more than one fourth of the nonce on average,
say, the LLL attack above generalizes directly to a full key recovery attack using
4 faulty signatures.

176 T. Kim and M. Tibouchi

4 Simulation Results

We have implemented the attacks described in the previous section in the Sage
computer algebra system [33], and carried out simulations on a mid-range work-
station with 16 Xeon E5 CPU cores at 2.9 GHz. All our code was run on a
single core of that machine, except the search for optimal bit flips, which was
parallelized.

We experimented with several standardized elliptic curve parameters: the 224-
bit and 256-bit prime field NIST curves [18], the Brainpool curves of the same
sizes [30], and the 256-bit curve recommended by the French government [4].
Indeed, the base fields of NIST curves have a special form, which we thought
could yield to a somewhat special behavior with respect to our attacks.

4.1 Search for Optimal Bit Flips

Given an elliptic curve E/Fp and a corresponding base point P ∈ E(Fp), we
search for “good” bit faults by trying, for each bit of p, to flip that bit, which
yields a certain faulty modulus p′. We then compute the prime factorization∏

qeii of p′, and the order Ni of each of the reduced points Pi on the reduced
curves Ei(Z/q

ei
i Z) (for those of them that are actually elliptic curves).

A faulty p′ is good if it is quite smooth (i.e. if the bit size of the largest
qi is relatively small), or more precisely if the Ni’s themselves are smooth, as
the complexity of recovering the discrete logarithm using the Pohlig-Hellman is
essentially given by the size of the LCM ν of the Ni’s.

It turns out that while the smoothest possible p′ is sometimes optimal in
the latter respect (this is the case for example for the French government curve
FRP256v1, for which flipping bit 184 of the modulus gives both the smoothest p′,
with a largest prime factor of 59 bits, and the smoothest ν, with a largest prime
factor of 35 bits), it is not always the case. For example, although the smoothest
possible p′ for NIST curve P–256 is obtained by flipping bit 64 (251-smooth), it
is much better to flip bit 5 of NIST curve P256: the corresponding p′ is only
2113-smooth, but ν is then 223-smooth (vs. 234-smooth for bit 64), providing
significantly faster discrete logarithm recovery.

To find the optimal bit flip, we can thus rank each bit position i of p according
to the size of the largest prime factor of ν associated with the faulty modulus
p′ = p⊕ 2i, and keep the best choice. Sometimes, the second or third best choice
can be preferred if the size of the largest prime factor of ν is close, but ν itself
is larger, as this makes the Pollard lambda step of the attack faster.

By far the most costly part of the attack is the factorization of the faulty
moduli p′. Factoring integers of 256 bits or less is not hard on modern computers
but can still take a substantial amount of time in unfavorable cases: using the
basic factor algorithm in Sage (which uses PARI’s implementation of ECM and
MPQS), we found that the whole search took around 2.5 CPU hours for a 256-bit
curve on a single core. Clearly, the search can easily be parallelized by running
the computations for different bits i separately. We do it using the @parallel

Bit-Flip Faults on Elliptic Curve Base Fields, Revisited 177

Table 1. Results of the search for optimal bit flips on five standard curve parameters.
For each curve, we provide the bit flip yielding the smoothest p′, the smoothest ν, and
the one we consider optimal for our purposes (ranked 1 to 3 in order of smoothness for
ν). The top-left cell “128 (46, 44, 134)” means that flipping bit 128 of the modulus for
the curve P–224 yields a 246-smooth p′, and a 244-smooth ν which is 134-bit long in
total. Computation time is on the wall clock, on our 16-core machine.

NIST Brainpool French gov.

Bit flips P–224 P–256 P224t1 P256t1 FRP256v1

Smoothest p′ 128 (46, 44, 134) 64 (51, 34, 227) 58 (51, 26, 213) 24 (60, 48, 228) 184 (59, 35, 218)
Smoothest ν 82 (60, 29, 219) 5 (113, 23, 232) 10 (71, 23, 193) 16 (88, 35, 239) 184 (59, 35, 218)
Recommended 82 (60, 29, 219) 5 (113, 23, 232) 58 (51, 26, 213) 16 (88, 35, 239) 39 (86, 36, 236)

Time (s) 116 822 109 887 854

decorator in Sage, which speeds up the computation by a factor of around 11 on
our 16-core machine. Detailed results are provided in Table 1.

4.2 ECDLP Attack

As described earlier, given the result of a faulty scalar multiplication kP carried
out with our chosen faulty modulus p′, we recover the exponent k modulo the
order Ni of P on each of the reduced curves using the Pohlig–Hellman algorithm,
and combine those result with the Chinese Remainder Theorem to get k modulo
ν. Note that for a given exponent k, the number of bits recovered at this step
may be lower than the theoretical maximum computed previously, in case the
point at infinity on one of the reduced curves is reached at some stage during
the scalar multiplication.

If in addition the result of the correct multiplication kP on the curve E is
available, we use Pollard’s lambda algorithm to find the remaining bits of k.

Our implementation uses Sage’s generic group algorithms for both Pohlig–
Hellman and Pollard lambda, which is certainly suboptimal, having both high
overhead from the unoptimized Python code and naive underlying elliptic curve
arithmetic. Nevertheless, the timings that we obtain and report in Table 2 con-
firm that the attack is very practical.

4.3 ECDSA Attack

In the ECDSA attack, we are given two faulty ECDSA signatures generated
with our chosen faulty modulus. We first use our ECDLP attack to recover more
than half of the bits of the nonce used in each signature (we can stop when those
bits are obtained: we don’t have to go through all possible reduced points). We
actually recover a set of candidate nonce values to exhaustively search over, due
to the sign indeterminacy discussed in the previous section. We then iterate over
this exhaustive search space trying to recover the remainder of the nonces, and
hence the full ECDSA secret key, using LLL lattice reduction.

178 T. Kim and M. Tibouchi

Table 2. Ranges for the number of bits recovered and the recovery time in the main
(Pohlig–Hellman) and final (Pollard lambda) steps of the ECDLP attack. Each recovery
has been carried out on 5 random exponents for each curve, using the optimal bit flip
computed before. Timings are given on a single CPU core of our machine.

NIST Brainpool French gov.

Measured attacks P–224 P–256 P224t1 P256t1 FRP256v1

Main recovered bit size 205–205 232–232 213–213 239–239 228–236
Main recovery time (s) 6.6–7.8 1.5–1.7 2.4–3.1 52–59 27–34

Remaining recovered bit size 20–20 25–25 11–11 18–18 21–29
Remaining recovery time (s) 0.29–2.4 1.0–7.1 0.08–0.10 0.15–0.59 0.54–8.1

Table 3. Timings for the initial as well as LLL stage of the ECDSA attack. Timings
are given on a single CPU core of our machine.

NIST Brainpool French gov.

Measured attacks P–224 P–256 P224t1 P256t1 FRP256v1

Recovered nonce size 153–153 178–178 134–134 182–182 177–177
Number of nonce pairs to search over 64–64 4–4 64–64 16–64 32–64
Nonce recovery time (s) 12–13 2.7–3.2 3.5–4.3 56–68 48–57

LLL recovery time (μs) 2–11 1–2 10–37 4–12 9–27

The attack is very fast, as shown in Table 3. In particular, the LLL step
takes negligible time, even though it requires carrying out the exhaustive search
discussed in Remark 1.

5 Conclusion

We have proposed and thoroughly analyzed an extension of the Ciet–Joye fault
attack on base fields of elliptic curves, and found that it works very well in
practice provided that precise enough faults can be obtained on the modulus. It
also extends to a very efficient fault attack on ECDSA, using only two faulty
signatures.

The original countermeasure suggested by Ciet and Joye (namely, consistency
checking of the modulus using a CRC or other cheap redundancy check) does
thwart this attack, but our results underscore the importance of using it in
actual implementations. Alternatively, using ECC implementations with dedi-
cated arithmetic for a specific base field, as is sometimes done for NIST curves
and almost always for rigid curve parameters such as Curve25519 [5] and other
“SafeCurves” [6] (but not curves with random base fields like the Brainpool
curves [30]), provides intrinsic protection against the attacks from this paper.

Bit-Flip Faults on Elliptic Curve Base Fields, Revisited 179

Note on the other hand that verifying the signature after generation (a com-
mon fault countermeasure especially in the RSA setting) does not help against
our attack at all.

We have only considered prime fields, but essentially the same attack carries
over in e.g. the binary field setting. It is probably less relevant to practitioners,
however, since implementations of binary elliptic curves often use dedicated base
field arithmetic as well.

References

1. Agoyan, M., Dutertre, J.-M., Mirbaha, A.-P., Naccache, D., Ribotta, A.-L., Tria, A.:
How to flip a bit? In: IOLTS 2010, pp. 235–239. IEEE (2010)

2. Alkhoraidly, A., Domı́nguez-Oviedo, A., Hasan, M.A.: Fault attacks on elliptic
curve cryptosystems. In: Joye, M., Tunstall, M. (eds.) Fault Analysis in Cryptog-
raphy. Information Security and Cryptography, pp. 137–155. Springer (2012)

3. ANSI X9.63:2001. Public Key Cryptography for the Financial Services Industry,
Key Agreement and Key Transport Using Elliptic Curve Cryptography. ANSI,
Washington DC, USA (2001)

4. ANSSI. Publication d’un paramétrage de courbe elliptique visant des applications
de passeport électronique et de l’administration électronique française (November
2011),
http://www.ssi.gouv.fr/fr/anssi/publications/

publications-scientifiques/autres-publications/publication-d-un-

parametrage-de-courbe-elliptique-visant-des-applications-de.html
5. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,

Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228.
Springer, Heidelberg (2006)

6. Bernstein, D.J., Lange, T.: SafeCurves: choosing safe curves for elliptic-curve cryp-
tography (2013), http://safecurves.cr.yp.to (accessed December 1, 2013)

7. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

8. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryptosys-
tems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146. Springer,
Heidelberg (2000)

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptology 14(2), 101–119 (2001)

10. Brier, É., Naccache, D., Nguyen, P.Q., Tibouchi, M.: Modulus fault attacks
against RSA-CRT signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 192–206. Springer, Heidelberg (2011)

11. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and
transient faults. Des. Codes Cryptography 36(1), 33–43 (2005)

12. Coron, J.-S., Naccache, D., Tibouchi, M.: Fault attacks against emv signatures. In:
Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220. Springer, Heidelberg
(2010)

13. Dickman, K.: On the frequency of numbers containing prime factors of a certain rel-
ative magnitude. Arkiv för Matematik, Astronomi och Fysik 22A(10), 1–14 (1930)

14. Fan, J., Guo, X., Mulder, E.D., Schaumont, P., Preneel, B., Verbauwhede, I.: State-
of-the-art of secure ECC implementations: a survey on known side-channel attacks
and countermeasures. In: HOST 2010, pp. 76–87 (2010)

http://www.ssi.gouv.fr/fr/anssi/publications/publications-scientifiques%/autres-publications/publication-d-un-parametrage-de-courbe-elliptique-visant-%des-applications-de.html
http://www.ssi.gouv.fr/fr/anssi/publications/publications-scientifiques%/autres-publications/publication-d-un-parametrage-de-courbe-elliptique-visant-%des-applications-de.html
http://www.ssi.gouv.fr/fr/anssi/publications/publications-scientifiques%/autres-publications/publication-d-un-parametrage-de-courbe-elliptique-visant-%des-applications-de.html
http://safecurves.cr.yp.to

180 T. Kim and M. Tibouchi

15. Fan, J., Verbauwhede, I.: An updated survey on secure ECC implementations:
Attacks, countermeasures and cost. In: Naccache, D. (ed.) Quisquater Festschrift.
LNCS, vol. 6805, pp. 265–282. Springer, Heidelberg (2012)

16. Farashahi, R.R., Joye, M.: Efficient arithmetic on Hessian curves. In: Nguyen, P.Q.,
Pointcheval, D. (eds.) PKC2010. LNCS, vol. 6056, pp. 243–260. Springer, Heidelberg
(2010)

17. Fernández, J.L., Fernández, P.: On the probability distribution of the gcd and lcm
of r-tuples of integers. arXiv (2013), http://arxiv.org/abs/1305.0536

18. FIPS PUB 186-3. Digital Signature Standard (DSS). NIST, USA (2009)
19. Fouque, P.-A., Lercier, R., Réal, D., Valette, F.: Fault attack on elliptic curve Mont-

gomery ladder implementation. In: Breveglieri, L., Gueron, S., Koren, I., Naccache,
D., Seifert, J.-P. (eds.) FDTC, pp. 92–98 (2008)

20. Gekeler, E.-U.: The distribution of group structures on elliptic curves over finite
prime fields. Documenta Mathematica 11, 119–142 (2006)

21. Granville, A.: Smooth numbers: computational number theory and beyond. Algo-
rithmic Number Theory, MSRI Publications 44, 267–323 (2008)

22. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer (2004)

23. IEEE Std 1363-2000. Standard Specifications for Public-Key Cryptography. IEEE
(2000)

24. ISO/IEC 18033-2:2006. Information technology – Security techniques – Encryption
algorithms – Part 2: Asymmetric ciphers. ISO, Geneva, Switzerland (2006)

25. ISO/IEC JTC1 SC17 WG3/TF5. Supplemental Access Control for Machine Read-
able Travel Documents, version 1.01. ICAO (2010), http://mrtd.icao.int/.

26. Joye, M., Tibouchi, M., Vergnaud, D.: Huff’s model for elliptic curves. In: Hanrot,
G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197, pp. 234–250. Springer,
Heidelberg (2010)

27. Joye, M., Yen, S.-M.: The Montgomery powering ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

28. Kim, T., Tibouchi, M.: Bit-flip faults on elliptic curve base fields, revisited. Cryp-
tology ePrint Archive (2014), Full version of this paper, http://eprint.iacr.org/

29. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 203–209 (1987)
30. Lochter, M., Merkle, J.: Elliptic Curve Cryptography (ECC) Brainpool Standard

Curves and Curve Generation. RFC 5639 (Informational) (March 2010)
31. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)
32. National Security Agency. The case for elliptic curve cryptography (2005),

http://www.nsa.gov/business/programs/elliptic_curve.shtml

33. Stein, W., et al.: Sage Mathematics Software (Version 5.11). The Sage Development
Team (2013), http://www.sagemath.org

34. Takayasu, A., Kunihiro, N.: Better lattice constructions for solving multivariate
linear equations modulo unknown divisors. In: Boyd, C., Simpson, L. (eds.) ACISP.
LNCS, vol. 7959, pp. 118–135. Springer, Heidelberg (2013)

35. Wang, M., Zhan, T.: Analysis of the fault attack ECDLP over prime field. Journal
of Applied Mathematics, 1–11 (2011)

http://arxiv.org/abs/1305.0536
http://mrtd.icao.int/
http://eprint.iacr.org/
http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://www.sagemath.org

All-but-One Dual Projective Hashing

and Its Applications

Zongyang Zhang1,4, Yu Chen2,�, Sherman S.M. Chow3, Goichiro Hanaoka1,
Zhenfu Cao4, and Yunlei Zhao5

1 National Institute of Advanced Industrial Science and Technology (AIST), Japan
2 State Key Laboratory of Information Security (SKLOIS),

Institute of Information Engineering, Chinese Academy of Sciences, China
3 Department of Information Engineering, The Chinese University of Hong Kong

4 Department of Computer Science and Engineering, Shanghai Jiao Tong University
5 Software School, Fudan University, China

zongyang.zhang@aist.go.jp, chenyu@iie.ac.cn, sherman@ie.cuhk.edu.hk,

hanaoka-goichiro@aist.go.jp, zfcao@sjtu.edu.cn, ylzhao@fudan.edu.cn

Abstract. Recently, Wee (EUROCRYPT’12) introduced the notion of
dual projective hashing as an extension of the Cramer-Shoup projective
hashing, with a simple construction of lossy trapdoor functions, and a
simple construction of deterministic encryption schemes which is chosen-
plaintext-attack secure with respect to hard-to-invert auxiliary input. In
this work, we further extend it to the all-but-one setting by introducing
the notion of all-but-one dual projective hashing.
– We provide a simple construction of all-but-one lossy trapdoor func-

tions. Our construction encompasses many known constructions of
all-but-one lossy trapdoor functions, as presented by Peikert and
Waters (STOC’08), and Freeman et al. (JoC’13). Particularly, we
present a new construction of all-but-one lossy trapdoor functions
based on the DLIN assumption, which can be viewed as an extension
of Freeman et al.’s DDH-based construction to the DLIN setting, and
therefore solves an open problem left by Freeman et al.

– We also provide a general construction of chosen-ciphertext-attack
(CCA) secure deterministic encryption schemes in the standard model,
under an additional assumption about the projective map. This ex-
tends the general approach of designing CCA secure deterministic
encryption schemes by Boldyreva, Fehr and O’Neill (CRYPTO’08).
In addition, we present a new construction of CCA secure determin-
istic encryption schemes based on the DLIN assumption.

Keywords: Smooth projective hashing, ABO lossy trapdoor function,
deterministic encryption, CCA security.

1 Introduction

In 1998, Cramer and Shoup [9] presented the first efficient public key encryption
scheme which is chosen-ciphertext-attack (CCA) secure in the standard model,

� Corresponding author.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 181–198, 2014.
c© Springer International Publishing Switzerland 2014

182 Z. Zhang et al.

under the decisional Diffie-Hellman assumption. Towards a general paradigm of
constructing CCA secure public key encryption schemes, they [10] abstracted
the above work to hash proof system (HPS). At the heart of HPS lies a prim-
itive dubbed “smooth projective hashing”. Thereafter, the smooth projective
hashing and its variants have found numerous applications beyond CCA secu-
rity, including password-based authenticated key exchange [15,19], extractable
commitment [1], lossy encryption [5], leakage-resilient public key encryption [21],
privacy-preserving interactive protocols [6], oblivious transfer [17], etc.

Informally, a smooth projective hashing is a family of keyed hash functions
{Hk} whose input u is from some hard language (consisting of YES instances
and NO instances). There are two ways to compute the function. First, know-
ing the hashing key k, one can compute the hash function on every instances
in its domain. Second, knowing a projective key α(k) where α is a projective
map, one can compute the hash function for each YES instance as long as it
additionally knows the associated “witness”. This means that the hash value
Hk(u) is completely determined by α(k) and u, and this is therefore called the
projective property. The other property, smoothness, means that the projective
key α(k) gives (almost) no information about the value of the hash function on
NO instance, i.e., the value of the hash function is completely undetermined.

Regarding evaluation on NO instances, instead of smoothness, Wee [25] con-
sidered invertibility that, for any NO instance u, one can compute the hashing
key k given the projective key α(k) and the hash value Hk(u) together with an
inversion trapdoor of u. This alternative introduced the notion of dual projective
hashing (DPH), where “dual” means that roles of u and k are exchanged. This
is why it is more convenient to write the function as Λu(k) := Hk(u). Moreover,
in typical applications of smooth projective hashing, YES instances are used
for functionality/correctness and NO instances are used to establish security. In
contrast, in applications of dual projective hashing, YES instances are used to
establish security, and NO instances are used for functionality/correctness.

Wee [25] showed a simple construction of lossy trapdoor functions via dual
projective hashing and presented instantiations of dual projective hashing from
Diffie-Hellman assumptions like Decisional Diffie-Hellman (DDH) and and Deci-
sional Linear (DLIN), number-theoretic assumptions like Quadratic Residuosity
(QR) and Decisional Composite Residuosity (DCR), and lattice-based assump-
tions like Learning-with-Error (LWE). It unifies (with slight changes) almost all
known constructions of lossy trapdoor functions in [22,13]. When considering
chosen-ciphertext security for encryption, many constructions based on lossy-
trapdoor function rely on a more generalized all-but-one (ABO) lossy trapdoor
functions [22]. It is natural to ask whether we can find an abstraction framework
to unify existing ABO lossy trapdoor functions.

Dual projective hashing also leads to a simple construction of deterministic
encryption scheme (with respect to hard-to-invert auxiliary input) [25]. Since
it only achieves chosen-plaintext security, it is natural to ask whether we can
achieve CCA security using dual projective hashing, or if we can get another
general framework for CCA secure deterministic encryption schemes.

All-but-One Dual Projective Hashing and Its Applications 183

1.1 Overview of Our Results

We introduce the notion of ABO dual projective hashing. We consider a fam-
ily of projective hash functions {Hk} indexed by a hashing key k and whose
inputs are (tag, u). Here, we do not consider YES or NO instances. For any
initial parameter tag∗ ∈ tag, and any u generated by some efficient algorithm
together with tag∗, if tag = tag∗, we require projective property that the hash
value Hk(tag, u) is completely determined by u and α(k); otherwise we require
invertibility that there is some inversion trapdoor allowing us to efficiently re-
cover k given (α(k),Hk(tag, u)) along with u. In addition, we require the hidden
projective tag property that a randomly chosen input u under any tag ∈ tag is
computationally indistinguishable from a randomly chosen input u′ under an-
other different tag tag′ ∈ tag. When tag = {0, 1}, an ABO dual projective
hashing degrades to a dual projective hashing (refer to Section 3.1 for details).
We proceed to answer the above two problems using ABO dual projective hash-
ing. Our applications treat u as an index and (tag, k) as an input to some hash
function. It is thus more convenient to denote an ABO dual projective hashing
by Λu(tag, k). For clarity, we replace k with x and use Λu(tag, x) instead.

ABO Lossy Trapdoor Functions. A collection of ABO lossy trapdoor functions
is associated with a set, whose members are called branches. The generator of
the collection takes an additional parameter b∗ ∈ B, and outputs a description
of a function f(·, ·) together with a trapdoor τ . The function f has the property
that for any branch b �= b∗ the function f(b, ·) is injective and can be inverted
using τ , while f(b∗, ·) is lossy, which means each function statistically loses a
significant amount of information about its input. Moreover, the hidden lossy
branch property requires that a description of a random function f1 generated
with a parameter b1 should be indistinguishable from a description of a random
function f2 generated with a distinct parameter b2.

Starting from ABO dual projective hashing, we can build a collection of ABO
lossy trapdoor functions as Fu,tag : x �→ α(x)||Λu(tag, x). The parameter u is
generated by a key generation algorithm whose inputs are the projective tag tag∗

together with some trapdoor information. For the injective branch tag �= tag∗,
invertibility guarantees that, x can be efficiently recovered from the output of
the hash function. For the lossy branch tag∗, the projective property guarantees
that the output is fully determined by α(x) (and u), and therefore preserves
at most log |α(x)| bits information of x. The hidden lossy branch property is
implied by the hidden projective tag property of ABO dual projective hashing.

Deterministic Encryption. Deterministic public key encryption, first introduced
by Bellare, Boldyreva and O’Neill [2], is proposed as an alternative in scenarios
where traditional randomized encryptions exhibit inherent drawbacks, such as
failure in supporting efficient search on encrypted data by simple equality test.
The only known general construction of CCA secure deterministic encryption
schemes was presented by Boldyreva, Fehr and O’Neill [7]. We give a new one
follow their approach. The differences are, they used (ABO) lossy trapdoor func-
tions in place of (ABO) dual projective hashing and the lossy mode acts as an

184 Z. Zhang et al.

universal hash function (called universal hash mode). With a family of universal
hash function H which is universal one-way, a dual projective hashing Λ, and an
ABO dual projective hashing Λ′, our construction is roughly as follows.

– The key generator chooses a random NO instance u of Λ together with a
trapdoor τ , and generates a random instance u′ of Λ′ together with trapdoor
τ ′ under a default projective tag. The public key is pk = (u, u′, H) where h
is a hash function chosen at random from H. The secret key is (τ, τ ′, pk).

– The encryption algorithm encrypts a message m as follows: H(m)||α(m)||
Λu(m)||α′(m)||Λ′

u(H(m),m). Note that Λ′
u uses H(m) as tag.

– The decryption algorithm attempts to decrypt a ciphertext c=h||c1||c2||c3||c4
as follows: It computes m′ from c1, c2 using the trapdoor τ . Since Λ is in-
vertible on NO instance u, this can be done efficiently. It outputs m’ if the
ciphertext is well-formed, that means it can be reconstructed from m′.

We show that if both α(·) and α′(·) are strong average-case extractors (where
the seed is provided by the public parameter) for high min-entropy sources, then
we obtain a CCA secure deterministic encryption scheme for high min-entropy
message distributions. With these requirements on α and α’, dual and ABO
dual projective hashing imply lossy and ABO lossy trapdoor functions with
universal hash mode, respectively, so our construction in general follows from
their framework. The additional requirements on α(·) and α′(·) are sometimes
satisfied under the cost of efficiency (i.e., the sizes of the keys and hash value).
We further present an extended general construction with improved efficiency,
which eliminates the extra requirement on the (ABO) dual projective hashing,
similar to existing technique [7]. In particular, we use an invertible, pairwise-
independent hash functions, and then show this extension suffices to provide
CCA security by applying a generalized crooked leftover hash lemma [7].

Instantiations. We present instantiations of ABO dual projective hashing from
three major classes of cryptographic assumptions, consisting of Diffie-Hellman
assumptions like DDH and DLIN, number-theoretic assumptions like DCR, and
lattice-based assumptions like LWE. Following similar technique of [25], we rely
on hashing keys to be vectors and/or matrices over {0, 1}∗ (except one of the
DCR-based constructions) in order to achieve the invertibility.

Our results also give a unified treatment of all known constructions of ABO
lossy trapdoor functions [22,13], since they can be obtained (with slight changes)
by applying our generic transformations from ABO dual projective hash to ABO
lossy trapdoor functions on these instantiations. In addition, we present a new
construction of ABO lossy trapdoor function based on the DLIN assumption,
which can be viewed as an extension of Freeman et al.’s [13] DDH-based scheme
to the DLIN setting, and therefore solves an open problem left by them1.

We then discuss instantiations of CCA secure deterministic encryption. Due
to the invertibility requirement, hashing keys k are vectors and/or matrices over

1 As explained later, DLIN-based ABO lossy trapdoor functions can be constructed
from DLIN-based lossy trapdoor functions by the parallel execution technique [22].

All-but-One Dual Projective Hashing and Its Applications 185

{0, 1}∗. Regarding the general construction, in order to instantiate α(·) and
α′(·) as average-case extractors, we resort to random linear functions where the
input k are vectors and/or matrices over {0, 1}∗ [21,25]. For the above reasons,
our DCR-based construction and the LWE-based construction are less efficient
compared with those of Boldyreva, Fehr and O’Neill [7]2. However, our DDH-
based construction achieves almost the same efficiency as theirs. In addition, we
present a new construction of CCA secure deterministic encryption based on the
DLIN assumption. Regarding the extended general construction, our DCR-based
and LWE-based instantiations are as efficient as those in [7].

1.2 Related Work

ABO Lossy Trapdoor Functions. Peikert and Waters [22] presented general con-
structions of ABO lossy trapdoor functions from lossy trapdoor function using
the “parallel execution” technique. As the sizes of the public key and hash value
are linear to the length of the branch, this approach yields inefficient construc-
tions. They also presented direct matrix-based constructions based on DDH and
LWE assumptions. Freeman et. al. [13] then proposed new and improved instan-
tiations of ABO lossy trapdoor functions based on DDH and DCR assumptions.
Recently, Joye and Libert [18] gave a new construction of ABO lossy trapdoor
function based on both the k-Quadratic Residuosity and the DDH assumptions,
which achieves much shorter outputs and keys than previous DDH-based ones.

Deterministic Encryptions. Bellare et al. [2] first introduced deterministic public
key encryption, formalized several notions of security, and gave a construction
in the random oracle model. Later, Bellare et al. [4] and Boldyreva, Fehr and
O’Neill [7] refined and extended the security notions, and presented construc-
tions in the standard model. Especially, the latter gave general constructions
of CPA/CCA secure deterministic encryption schemes, as well as efficient in-
stantiations under number-theoretic assumptions. After that, there are several
follow-up works, focusing on hard-to-invert auxiliary inputs [8,25], incrementatl-
ity [20] (i.e., small changes in the plaintext translate into small changes in the
corresponding ciphertext), multi-shot adversaries [3] (i.e., adversaries that inter-
actively challenge the scheme with plaintext distributions depending on previous
ciphertexts), bounded multi-message security [14] (i.e., the number of messages
are bounded before the setup of the system but messages may be arbitrarily
correlated), and impossibility for unbounded multi-message security [26].

There are two main limitations in the above work. One is plaintext unpre-
dictability, which means security can be satisfied when plaintext are distributed
over a large set. This limitation is inherent and essential for deterministic en-
cryption. The other limitation is key-independent plaintext distributions, which
means plaintext distributions are independent on the public key. It was consid-
ered to be inherent, until Raghunathan, Segev and Vadhan [23] showed that this

2 The DDH-based construction in [7] follows the general framework, while the DCR-
based and the LWE-based constructions follow the extended general framework.

186 Z. Zhang et al.

limitation can be removed, with meaningful security guarantee, by relying on a
randomness extraction from seed-dependent distributions. They also presented
CCA secure schemes based on lossy trapdoor functions.

2 Preliminaries

Notation. If A is a deterministic algorithm, then y := A(x) denotes the assign-
ment to y of the output of A on input x. If A is a probabilistic algorithm, then
y←$A(x) denotes the assignment to y of the output of A on input x with a set
of uniformly random coins. We write y := A(x; r) to denote the assignment to
y of the output of A on input x and random coins r. A function μ(·), where
μ : N → [0, 1] is called negligible if for every positive polynomial p(·), for all
sufficiently large κ ∈ N, μ(κ) < 1/p(κ). We use negl(·) to denote an unspecified
negligible function.

Let {0, 1}n be the set of n-bit strings. For a string x ∈ {0, 1}∗, |x| denotes the
length of x. For a random variable X , we use notation x ← X to denote that a
value x is sampled according to X . For a finite set X , we write x←$X to denote
the assignment to x of a uniformly randomly chosen element of X . We use |X |
to denote the cardinality of the set X .

The min-entropy of a random variable X , denoted as H∞(X), is H∞(X) :=
− log(maxx Pr[X = x]). A k-source is a random variable X with H∞(X) ≥ k.
A family of hash functions is a pair H := (K, H) where the key generation
algorithm K(1κ) returns a key K, and the deterministic hash function H takes
K and an input x to return a hash value y. Let � := �(κ) be a polynomial-
time computable function. For simplicity, {0, 1}� and R denote the domain and
image of H(K, ·), respectively. We call H an �-bit hash function. We say that
an �-bit hash function H with image R is universal if for all x1 �= x2 ∈ {0, 1}�,
Pr[H(K,x1) = H(K,x2) : K←$K(1κ)] ≤ 1/|R|. If we have an upper bound
of ε < 1 on the collision probability, we say that H is ε-almost universal. We
say that H is pairwise-independent if for all x1 �= x2 ∈ {0, 1}� and y1, y2 ∈ R,
Pr[H(K,x1) = y1 ∧H(K,x2) = y2 : K←$K(1κ)] ≤ 1/|R|2.

We say that H is universal one-way (UOW) if for every ppt adversary A :=
(A1, A2), theUOW-advantage AdvuowH,A(κ) := Pr[H(K,x1)=H(K,x2) : (x1, st)←
A1(1

κ),K←$K(1κ), x2 ← A2(K, st)] of A is negligible in κ. We say that H is
collision-resistant (CR) if for every ppt adversaryA, the advantageAdvcrH,A(κ) :=
Pr[H(K,x1) = H(K,x2) ∧ x1 �= x2 :,K←$K(1κ), x1, x2 ← A2(K)] of A is negli-
gible in κ. UOW is implied by CR.

Definition 1 (Dual Projective Hashing). A dual projective hashing P con-
sists of the following polynomial-time algorithms: Setup,Pub,Priv,Tdinv.

– Setup(1κ): takes as input a security parameter κ expressed in the unary
representation, and generates parameterized instances of the form para :=
(hp,msk,X ,Y,P ,U = ΠY

⋃
ΠN ,W , Γ,H, α), where hp contains global pub-

lic parameters3, msk is a master trapdoor related to hp (e.g., the randomness

3 Throughout the paper, we assume that all algorithms get hp as an input, and some-
times omit hp from the input for brevity.

All-but-One Dual Projective Hashing and Its Applications 187

used to generate hp), ΠY and ΠN are disjoint sets and correspond to YES
and NO instances, respectively, H := {Λu : X → Y}u∈U is a family of hash
functions indexed by u ∈ U , and α : X → P is a projective map (that we
will explain later). In addition, we require that there exists a pair of efficient
sampling algorithms SampYes and SampNo.
• YES instance sampling algorithm: SampYes(hp) outputs a random pair
of values (u,w) where u is uniformly distributed over ΠY and w is the
corresponding witness in W;

• NO instance sampling algorithm: SampNo(hp) outputs a random pairs of
values (u, τ) where u is uniformly distributed over ΠN and τ is the corre-
sponding trapdoor in Γ . Note that for some instantiations, SampNo(hp)
requires as input the master trapdoor msk in order to compute the in-
version trapdoor τ .

– Priv(u, x): is a deterministic private evaluation algorithm. It takes as input
a public parameter u ∈ U and an input x ∈ X , outputs y ∈ Y.

– Pub(u, α(x), w): is a deterministic public evaluation algorithm. It takes as
input a public parameter u ∈ ΠY , a projective value α(x) ∈ P, and a witness
w for u, outputs y ∈ Y.

– Tdinv(τ, α(x), Λu(x)): takes as input a trapdoor information τ ∈ Γ , a pro-
jective value α(x) ∈ P for any x ∈ X , and a hash value Λu(x) ∈ Y, outputs
x′ ∈ X .

Correctness. We require that for all κ ∈ N, all para generated by Setup(1κ), all
u ∈ ΠY

⋃
ΠN and all x ∈ X , Priv(u, x) = Λu(x).

Projectiveness. P is almost projective if for all κ ∈ N, all para generated by
Setup(1κ), all x ∈ X , Pr[Pub(u, α(x), w) = Λu(x) : (u,w)←$SampYes(hp)] ≥
1− negl(κ). If this holds with probability 1, we say that P is perfectly projective.

Invertibility. P is almost invertible if for all κ ∈ N, all para generated by
Setup(1κ), all x ∈ X , Pr[Tdinv(τ, α(x), Λu(x)) = x : (u, τ)←$SampNo(hp)] ≥
1− negl(κ). If this holds with probability 1, we say that P is perfectly invertible.
Subset Membership Assumption. This assumption states that the uniform distri-
butions over ΠY and ΠN are computationally indistinguishable, even given hp.
This is formally captured by the advantage function Advsm

dph,A(κ):

Advsm
dph,A(κ) := Pr[A(hp, u) = 1 : u←$ΠY]− Pr[A(hp, u) = 1 : u←$ΠN]

where hp is generated by Setup(1κ). The subset membership assumption states
that for all ppt adversary A, Advsm

dph,A(κ) is a negligible function in κ.

3 ABO Dual Projective Hashing

Definition 2 (ABO Dual Projective Hashing). An all-but-one dual pro-
jective hashing P consists of the following polynomial-time algorithms: Setup,
Keygen, Pub,Priv,Tdinv.

188 Z. Zhang et al.

– Setup(1κ): takes as input a security parameter κ expressed in the unary
representation, and generates parameterized instances of the form para :=
(hp,msk,tag,X ,Y,P ,U ,W , Γ,H, α), where hp contains global public pa-
rameters, msk is a master trapdoor related to hp (e.g., the randomness used
to generate hp), H := {Λu : tag×X → Y}u∈U is a family of hash functions
indexed by u ∈ U , and α : X → P is a projective map.

– Keygen(msk, tag∗): takes as input a master trapdoor msk and a tag tag∗ ∈
tag, and outputs (u,w, τ) consisting of a public parameter u ∈ U , a witness
w ∈ W, and an inversion trapdoor τ ∈ Γ . If no tag input is specified, it is
assumed to be a fixed “default” tag.

– Priv(u, tag, x): is the deterministic private evaluation algorithm. It takes as
input a public parameter u ∈ U , a tag tag ∈ tag and an input x ∈ X , and
outputs y ∈ Y.

– Pub(u, tag, α(x), w): is the deterministic public evaluation algorithm. It takes
as input a public parameter u ∈ U , a tag tag ∈ tag, a projective value
α(x) ∈ P and a witness w, and outputs y ∈ Y if tag = tag∗.

– Tdinv(τ, tag, α(x), Λu(tag, x)): takes as input a trapdoor information τ ∈ Γ ,
a tag tag ∈ tag, a projective value α(x) ∈ P for any x ∈ X , and a hash
value Λu(tag, x) for some tag tag ∈ tag, and outputs x′ ∈ X if tag �= tag∗.

Correctness. We require that for all κ ∈ N, all para generated by Setup(1κ),
all tag∗ ∈ tag, all (u,w, τ) generated by Keygen(msk, tag∗), and all x ∈ X ,
Priv(u, tag, x) = Λu(tag, x).

Projectiveness. We say P is almost projective if for all κ ∈ N, all para generated
by Setup(1κ), all tag∗ ∈ tag, all x ∈ X , Pr[Pub(u, tag∗, α(x), w) = Λu(tag

∗, x) :
(u,w, τ)←$Keygen(msk, tag∗)] ≥ 1 − negl(κ). If the projective property holds
with probability 1 then we say that P is perfectly projective.

Invertibility. We say P is almost invertible if for all κ ∈ N, all para← Setup(1κ),
all tag∗, tag ∈ tag where tag∗ �= tag, all x ∈ X , Pr[Tdinv(τ, tag, α(x), Λu(tag, x))
= x : (u,w, τ)←$Keygen(msk, tag∗)] ≥ 1−negl(κ). If the invertibility holds with
probability 1 then we say that P is perfectly invertible.

Hidden Projective Tag. For every para generated by Setup(1κ) and for any ppt

algorithm A := (A1, A2), the advantage AdvhptP,A(κ) of A is negligible in the
security parameter κ:

AdvhptP,A(κ) := 2Pr

[
b = b′ :

((tag0, tag1), st) ← A1(hp), b←${0, 1}
(u,w, τ)←$Keygen(msk, tagb), b

′ ← A2(hp, u, st)

]
− 1.

Dual projective hashing (DPH) and ABO dual projective hashing are equivalent
for appropriate choices of parameters. We show their relationship in Section 3.1.

3.1 Relationship between DPH and ABO DPH

From ABO DPH to DPH. Starting from an ABO dual projective hashing
P := (Setup,Keygen,Pub,Priv,Tdinv) with tag set tag = {0, 1}, we may derive
a dual projective hashing as follows.

All-but-One Dual Projective Hashing and Its Applications 189

– Setup′(1κ): runs (hp,msk, {0, 1},X ,Y,P ,U ,W , Γ,H, α)←$Setup(1
κ), then

run (u0, w0, τ0)←$Keygen(msk, 0), and (u1, w1, τ1)←$Keygen(msk, 1). De-
note by ΠY and ΠN the set of possible value of u0 and u1, respectively. The
family of functions H′ := {Λ′

u : X → Y}u∈U ′ is defined as Λ′
u(x) := Λu(0, x).

Return (hp,msk,X ,Y,P ,W ,U ′ := ΠY

⋃
ΠN , Γ,H′, α).

• SampYes(hp): runs (u,w, τ)←$Keygen(msk, 0) and outputs (u,w).
• SampNo(hp): runs (u,w, τ)←$Keygen(msk, 1) and outputs (u, τ).

– Priv′(u, x): outputs Priv(u, 0, x).
– Pub′(u, α(x), w): outputs Pub(u, 0, α(x), w).
– Tdinv′(τ, α(x), y): outputs x ← Tdinv(τ, 0, α(x), y).

From DPH to ABO DPH. We give a general construction of ABO dual pro-
jective hashing from a dual projective hashing by “parallel execution” which has
been used in previous works [12,24,22]. Starting from a dual projective hashing
P := (Setup,Pub,Priv,Tdinv), we can derive an ABO dual projective hashing
for tag set {0, 1}� as follows.
– Setup′(1κ): runs (hp,msk,X ,Y,P ,U = ΠY

⋃
ΠN ,W , Γ,H, α)←$Setup(1

κ).
Sets tag := {0, 1}�. Sets Y ′ := Y�,U ′ := U2�,W ′ := W�, Γ ′ := Γ �.
The family of functions H′ := {Λ′

u′ : tag × X → Y ′}u′∈U ′ is defined
as Λ′

u′(tag, x) := (Λui,tagi
(x))i∈[�] where u′ equals (ui,0, ui,1)i∈[�]. Returns

(hp,msk,tag,X ,Y ′,P ,U ′,W ′, Γ ′,H′, α).
– Keygen′(msk, tag∗): for i = 1 to �, runs (ui,tag∗

i
, wi)←$SampYes(hp) and

(ui,1−tag∗
i
, τi)←$SampNo(hp). Sets u′ := (ui,0, ui,1)i∈[�], w

′ := (wi)i∈[�], and
τ ′ := (τi)i∈[�]. Outputs (u′, w′, τ ′).

– Priv′(u′, tag, x): parses u′ as (ui,0, ui,1)i∈[�], and outputs (Priv(ui,tagi
, x))i∈[�].

– Pub′(u′, tag, α(x), w′): if tag �= tag∗, outputs ⊥. Otherwise parses u′ as
(ui,0, ui,1)i∈[�] and w′ as (wi)i∈[�], and outputs (Pub(ui,tagi

, α(x), wi))i∈[�].
– Tdinv′(τ ′, tag, α(x), (y1, . . . , y�)): computes xi ← Tdinv(τi, α(x), yi) for all i

such that tagi �= tag∗i . Denote the common value by x if all these values
agree and if not outputs ⊥. Checks yi = Priv(ui,tagi , x) for all i such that
tagi = tag∗i . If all the checks pass, then outputs x; otherwise outputs ⊥.

4 All-but-One Lossy Trapdoor Functions from ABO DPH

We construct a family of ABO lossy trapdoor functions in Fig. 1.

Theorem 1. Suppose that P := (Setup,Keygen,Pub,Priv,Tdinv) is an ABO
dual projective hashing, then the construction in Fig. 1 yields a collection of
(m,m− log |Imgα|)-ABO lossy trapdoor functions, where m := log |X |.

Proof. The correctness for injective functions follows from the invertibility prop-
erty. The lossiness for the lossy branch follows from the projective property. Re-
call that if tag = tag∗, then for all x ∈ X , Λu(tag, x) is determined by α(x) and
u. This means that the size of image set Imgfu,tag is at most |Imgα|. Thus, the
function is (m,m− log |Imgα|)-lossy. The hidden lossy branch property directly
follows from the hidden projective tag property of P.

190 Z. Zhang et al.

All-but-One Lossy Trapdoor Function

1. Sampling a branch: B(1κ) outputs a value tag∗ ∈ tag.
2. Sampling a function: Sabo(1

κ, tag∗) first runs (u,w, τ)←$Keygen(msk, tag∗), and
outputs (hp||u, τ).

3. Evaluation: Fabo(hp||u, tag, x) returns α(x)||Λu(tag, x). Note Λu(tag, x) can be
computed using Priv(u, tag, x).

4. Inversion of injective functions: Returns Tdinv(τ, tag, α(x), Λu(tag, x)) if tag �=
tag∗.

Note: (hp,msk,tag,X ,Y,P ,U ,W, Γ,H, α)←$Setup(1
κ).

Fig. 1. ABO lossy trapdoor function from ABO dual projective hashing

5 Deterministic Encryption from ABO DPH

5.1 Security Definition

Under page limit, we omit the definition of extractors and the left-over hash
lemma. Next we give the definition of deterministic encryption.

Definition 3 (Deterministic Encryption). A deterministic encryption
scheme Π is specified by three polynomial-time algorithms, Gen,Enc and Dec.

– Gen(1κ): on input a security parameter κ expressed in the unary representa-
tion, the key generation algorithm outputs a public key pk and a secret key
sk. The pk includes a description of finite message space M and a finite
ciphertext space C.

– Enc(pk,m): on input pk and a message m ∈M, the deterministic encryption
algorithm outputs a ciphertext c ∈ C.

– Dec(sk, c): on input a secret key sk and a ciphertext c, the decryption algo-
rithm outputs a message m ∈ M∪ ⊥.

Correctness. For all κ ∈ N, all message m ∈M, it holds that

Pr [Dec(sk,Enc(pk,m)) �= m : (pk, sk)←$Gen(1
κ)] ≤ negl(κ).

Security under chosen-ciphertext attack.We follow the indistinguishability-based
security definition of deterministic encryption [7,4]. For simplicity, we only con-
sider security while encrypting a single message, although our proof extends to
multiple messages for block-sources. We can also rely on the existing result that
for block-sources, single message security equals to multi-message security [7].

Definition 4 (PRIV-CCA). A deterministic encryption Π := (Gen,Enc,Dec)
is PRIV-CCA-secure for k-source if for any k-source M0,M1, the advantage
Advpriv-ccaΠ,A,M0,M1

(κ) := 2Pr[Exppriv-ccaΠ,A,M0,M1
(κ) = 1] − 1 of any ppt adversary A is

negligible in κ. The experiment Exppriv-ccaΠ,A,M0,M1
(κ) is defined by: 1) b←${0, 1}; 2)

mb ← Mb,(pk, sk)←$Gen(1
κ); 3) c := Enc(pk,mb); 4) b′ ← ADec�=c(sk,·)(pk, c)

where the oracle Dec �=c(sk, ·) decrypts any ciphertext except c; 5) Return b = b′.

All-but-One Dual Projective Hashing and Its Applications 191

5.2 Our Construction

Let P := (Setup,Pub,Priv,Tdinv), P′ := (Setup′,Keygen′,Pub′,Priv′,Tdinv′) be
a dual projective hashing and an ABO dual projective hashing respectively. Let
H := (K, H) be an �-bit universal and universal one-way hash function with
image R. For consistency, R does not include the default projective tag tag∗ of
P′. The deterministic encryption Π is shown in Fig. 2. The message space M is
a subset of both X and X ′, and the image R of the hash function H is a subset
of the set tag′\{tag∗}.

Key Generation: Gen(1κ) computes as follows.
1. Run (hp,msk,X ,Y,P ,U ,W, Γ,H, α)←$Setup(1

κ).
2. Run (hp′,msk′,tag′,X ′,Y ′,P ′,U ′,W ′, Γ ′,H′, α′)←$Setup

′(1κ).
3. Run (u, τ)←$SampNo(hp), (u′, w′, τ ′)←$Keygen

′(msk′, tag∗), andK←$K(1κ).
4. Output pk := hp||u||hp′||u′||K and sk := τ ||τ ′||w′||pk.

Encryption: Enc(pk,m) takes input pk = hp||u||hp′||u′||K and message m, and com-
putes as follows.
1. h := H(K,m).
2. c1 := α(hp,m) and c2 := Λu(m). Note that c2 can be computed using Priv(u,m).
3. c3 := α′(hp′,m) and c4 := Λ′

u′(h,m). Note that c4 can be computed using
Priv′(u′, h,m).

4. Output h||c1||c2||c3||c4.
Decryption: Dec(sk, c) computes as follows.
1. Parse sk as τ ||τ ′||w′||pk and c as h||c1||c2||c3||c4.
2. m′ ← Tdinv(τ, c1, c2).
3. c′ := Enc(pk,m′).
4. If c = c′ then return m′; otherwise return ⊥.

Fig. 2. Deterministic encryption scheme from (ABO) dual projective hashing

Theorem 2. Suppose that (x, hp) �−→ α(hp, x) is an average-case (k1, ε1)-
extractor, (x, hp′) �−→ α′(hp′, x) is an average-case (k2, ε2)-extractor, the sub-
set membership assumption for P holds, and H := (K, H) is �-bit universal hash
function that is also universal one-way. For any adversary A, any k-sources
M0,M1 such that k ≥ max{k1+log |R|, k2+log |R|+log |P|, log |R|+2 log(1/ε3)},
there exist adversaries Bhpt, Buow, Bsm such that:

Advpriv-ccaΠ,A,M0,M1
(κ) ≤ 2

(
AdvhptP,Bhpt

(κ)+AdvuowH,Buow
(κ)+Advsm

dph,Bsm
(κ)+ ε1+ ε2+ ε3

)
.

Furthermore, the running-time of Bhpt, Buow, Bsm are roughly that of A.

5.3 Extended General Construction

Our security proofs explored the fact that the projective map α acts as an
average-case extractor. In specific instantiations, we actually design α as a uni-
versal hash function and then apply the generalized leftover hash lemma (LHL)

192 Z. Zhang et al.

to conclude it is an average-case extractor. This sometimes results in ineffi-
cient constructions. Using similar technique of [7], we present an extension of
our generic construction, where the extra universality requirement on α is elim-
inated. We use an invertible, pairwise-independent hash functions, and then
showed this extension suffices to provide CCA security by applying a general-
ized crooked LHL [7].

We say a family of pairwise-independent hash functions Hpi := (Kpi, Hpi) is
invertible if there is a PPT algorithm I such that for allKpi output by Kpi and all
m ∈ {0, 1}�, I(Kpi, Hpi(Kpi,m)) outputs m. Let P := (Setup,Pub,Priv,Tdinv)
be a dual projective hashing. Let P′ := (Setup′,Keygen′,Pub′,Priv′,Tdinv′) be an
ABO dual projective hashing. LetHpi := (Kpi, Hpi) be a family of �-bit invertible
pairwise-independent permutations on {0, 1}�. For consistency, Hpi does not
map to a default projective tag tag∗ of P′. Let Huow := (Kuow, H) be a family
of universal one-way hash function with image Ruow. The extended generation
construction of deterministic encryption scheme Π := (Enc+,Gen+,Dec+) is
shown in Fig. 3. The message space M is {0, 1}�. The image of Hpi is a subset
of X ,X ′, and the domain of Huow.

Key Generation: Gen+(1κ) computes as follow.
1. Run (hp,msk,X ,Y,P ,U ,W, Γ,H, α)←$Setup(1

κ).
2. Run (hp′,msk′,tag′,X ′,Y ′,P ′,U ′,W ′, Γ ′,H′, α′)←$Setup

′(1κ).
3. Run (u, τ)←$SampNo(hp), (u′, w′, τ ′)←$Keygen

′(msk′, tag∗),Kuow←$Kuow(1
κ).

4. For i = 1 to 3 do Kpi,i←$Kpi(1
κ).

5. Output pk := hp||u||hp′||u′||Kuow||Kpi,1||Kpi,2||Kpi,3 and sk := τ ||τ ′||w′||pk.
Encryption: Enc+(pk,m) takes input pk = hp||u||hp′||u′||Kuow||Kpi,1||Kpi,2||Kpi,3

and message m, and computes as follows.
1. For i = 1 to 3 do hi := Hpi(Kpi,i,m).
2. h := H(Kuow, h1).
3. c1 := α(hp, h2) and c2 := Λu(h2). Note that c2 can be computed using

Priv(u, h2).
4. c3 := α′(hp′, h3) and c4 := Λ′

u′(h, h3). Note that c4 can be computed using
Priv′(u′, h, h3).

5. Output h||c1||c2||c3||c4.
Decryption: Dec+(sk, c) computes as follows.
1. Parse sk as τ ||τ ′||w′||pk and c as h||c1||c2||c3||c4.
2. h′

2 ← Tdinv(τ, c1, c2).
3. m′ ← I(Kpi,2, h

′
2).

4. c′ := Enc+(pk,m′).
5. If c = c′ then return m′; otherwise return ⊥.

Fig. 3. Deterministic encryption scheme from (ABO) dual projective hashing

Using the generalized crooked LHL [7], we are able to show the following.

Theorem 3. Let Π := (Enc+,Gen+,Dec+) be as defined in Fig. 3. For any ad-
versary A, any k-sources M0,M1 such that k ≥ log |Ruow| + log |P| + log |P ′| +
2 log(1/ε)−2, there exist adversariesBhpt, Buow, Bsm such thatAdvpriv-ccaΠ,A,M0,M1

(κ) ≤

All-but-One Dual Projective Hashing and Its Applications 193

2
(
AdvhptP,Bhpt

(κ)+AdvuowHuow,Buow
(κ)+Advsm

dph,Bsm
(κ)+3ε

)
. Furthermore, the running-

time of Bhpt, Buow, Bsm are roughly that of A.

6 Instantiations

6.1 Instantiations from DDH and DLIN

Let G be a finite cyclic group of prime order q specified by a randomly chosen
generator g. The d-LIN assumption asserts that gr1+···+rd

d+1 is pseudorandom given
g1, . . . , gd+1, g

r1
1 , . . . , grdd where g1, . . . , gd+1←$G; r1, . . . , rd←$Zq.

Here we present the DLIN-based ABO dual projective hashing. When instan-
tiated with our generic transformations, this yields a new DLIN-based (m,m−
d log q)-ABO lossy trapdoor functions. It also yields a similar DDH-based ABO
lossy trapdoor functions as given in [13]. As the projective map α is a universal
hash function, it is also an average-case extractor by applying the generalized
LHL [7]. Combining the DLIN-based dual projective hashing [25] and discrete-
logarithm based hash function [7] which is universal and collision-resistant, we
get a new DLIN-based PRIV-CCA secure deterministic encryption scheme.

– Setup(1κ): choose G, q, g as above and P←$Zd×m
q . Set hp := (G, q, gP),

msk := P, X := {0, 1}m, Y := Gm, P := Gd, U := Gm×m, W := Zm
q ,

tag := Zq. The map α is defined by α(gP,x) := gPx with x ∈ {0, 1}m .

– Keygen(msk, b∗): chooseW←$Zm×d
q , and computeU := gWP−b∗Im . The wit-

ness is W. The inversion trapdoor is (P,W, b∗). Output (U,W, (P,W, b∗)).
– Priv(U, b,x): ComputeΛU(b,x) := Ux∗gbx, where ∗ indicates the component-

wise product of elements of Gm.

– Pub(U, b∗, gPx,W)): Compute gW(Px).

– Tdinv((P,W, b∗), b, gPx, ΛU(b,x)) : first compute A := WP + (b − b∗)Im.
The trapdoor is A−1. Note that ΛU(b,x) = Ux ∗ gbx = gAx. Given A−1,
Λ∗
U(b,x), we can compute gx and thus x.

Projectiveness: When U = gWP−b∗Im and b = b∗, let (Ux)i := Σm
j=1U

xj

ij ,

we have Priv(U, b∗,x) = Ux ∗ gb
∗x = g(WP−b∗Im)x ∗ gb

∗x = gW(Px) =
Pub(U, b∗, gPx,W).

6.2 Instantiations from DCR

Fix a Blum integer N := PQ for safe primes P,Q ≡ 3 (mod 4) (such that
P := 2p+1 and Q := 2q+1 for sufficiently large primes p, q), where N is a κ-bit
string. Let s ∈ Z+ be an integer. The multiplicative group Z∗

Ns+1 is isomorphic
to ZNs × Z∗

N . The decisional composite residuosity (DCR) assumption states
that any ppt algorithm that receives an input a κ-bit N (generated as above)
cannot distinguish a random element in Z∗

Ns+1 from a random Ns-th power in
Z∗
Ns+1 with non-negligible probability of κ.

194 Z. Zhang et al.

First Construction. We present the DCR-based ABO dual projective hashing,
extended to the Damg̊ard-Jurik scheme [11]. When instantiated with our generic
transformation, this yields the DCR-based (s logN, s logN − log |φ(N)|)-ABO
lossy trapdoor functions given in [13] (with slight modifications). As the projec-
tive map α is not an average-case extractor, we have to rely on the extended
general framework in Section 5.3 to construct PRIV-CCA secure determinis-
tic encryptions. By combining the dual projective hash from DCR [25] and the
collision resistant hash function from DCR [7], we get a PRIV-CCA secure de-
terministic encryption which is as efficient as the DCR-based construction in [7].

– Setup(1κ): choose a Blum integer N := PQ as above. Pick g←$Z∗
Ns+1 . Set

hp := (N, gN
s

), msk := (g, P,Q), X := ZNs , Y := Z∗
Ns+1 , P ⊆ Z∗

Ns+1 (P
is isomorphic to Z∗

N), U := Z∗
Ns+1 , W := ZNs , tag := {0, . . . , 2κ/2−1}. The

projective map α is defined by α(gN
s

, x) := gN
sx where x ∈ ZNs .

– Keygen(msk, b∗): choose w←$ZNs , compute public parameter u := (1 +
N)−b∗ · gNsw. The witness is w. The inversion trapdoor is (P,Q, b∗).

– Priv(u, b, x): compute Λu(b, x) := ((1 +N)b · u)x.
– Pub(u, b∗, gN

sx, w): compute (gN
sx)w.

– Tdinv((P,Q, b∗), b, gN
sx, Λu(b, x)) : observe that Λu(b, x) = ((1+N)b ·u)x =

((1 + N)b−b∗ · gNsw)x. Given the inversion trapdoor (i.e., the factorization
of N and the projective tag b∗), we can efficiently compute (b − b∗)x. In
addition, the restriction b, b∗ ∈ {0, . . . , 2κ/2 − 1} implies that (b − b∗) is
smaller than both P and Q and is therefore relatively prime to N . Thus, we
can recover x by computing (b − b∗)x · (b − b∗)−1 mod Ns.

Projectiveness: When u = (1 +N)−b∗ · gNsw and b = b∗, we have

Priv(u, b∗, x) = ((1 +N)b
∗ · u)x = ((1 +N)b

∗ · (1 +N)−b∗ · gNsw)x

= gN
swx = (gN

sx)w = Pub(u, b∗, gN
sx, w).

The uniform distributions over {(1 + N)−b · gNsw : w ∈ ZNs} and {gNsw :
w ∈ ZNs} are computationally indistinguishable following from the DCR as-
sumption [11], which implies the hidden projective tag property.

Second Construction. This is a second DCR-based ABO dual projective hash-
ing which follows the matrix approach [22]. When instantiated with our generic
transformation, this yields a DCR-based (m,m−log |φ(N)|)-ABO lossy trapdoor
functions, which is less efficient than [13]. In order to construct a DCR-based
deterministic encryption scheme, we still need a universal hash function that
is also universal one-way. The projective map in the following construction al-
ready satisfies this, and we will discuss more about it after the construction.
Combining the instantiation of DCR-based dual projective hashing [25, Second
Construction] with the above instantiation and our generic transformation, this
yields a new DCR-based PRIV-CCA secure deterministic encryption, which is
less efficient than [7].

All-but-One Dual Projective Hashing and Its Applications 195

– Setup(1κ): choose a Blum integer N := PQ as above. Pick
p←$Zm

N , g←$Z∗
Ns+1 . Set hp := (N, (gN

s

)p), msk := (g,p, P,Q), X :=
{0, 1}m, Y := (Z∗

Ns+1)m, P ⊆ Z∗
Ns+1 , U := (Z∗

Ns+1)m×m, W := Zm
Ns+1,

tag := {0, . . . , 2κ/2−1}. The projective map α is defined by

α((gN
s

)p,x) := (gN
s

)p
�x ∈ Z∗

Ns+1 where x ∈ {0, 1}m,p ∈ Zm
N .

– Keygen(msk, b∗): choose w←$Zm
Ns+1 , compute public parameter U := (1 +

N)−b∗Im · (gNs

)wp�
. The witness is w. The inversion trapdoor is (P,Q, b∗)

– Priv(U, b,x): compute ΛU(b,x) := ((1 +N)bIm ·U)x.

– Pub(U, b∗, (gN
s

)p
�x,w): compute ((gN

s

)p
�x)w.

– Tdinv((P,Q, b∗), b, (gN
s

)p
�x, ΛU(b,x)) : observe that ΛU(b,x) = ((1+N)bIm ·

U)x = (1 +N)(b−b∗)xIm · (gNs

)wp�x = (1 +N)(b−b∗)x · (gNs

)wp�x.
Given the inversion trapdoor (i.e., the factorization of N and the projective
tag b∗), we can efficiently compute (b − b∗)x. In addition, the restriction
b, b∗ ∈ {0, . . . , 2κ/2 − 1} implies that (b − b∗) is smaller than both P and Q
and is therefore relatively prime to N . Thus, we can recover x by computing
(b− b∗)x(b − b∗)−1 mod Ns.

Projectiveness: When U = (1 +N)−b∗Im · (gNs

)wp�
and b = b∗, we have

Priv(U, b∗, x) = ((1 +N)b
∗Im ·U)x = ((1 +N)b

∗Im · (1 +N)−b∗Im · (gN
s

)wp�
)x

= ((gN
s

)wp�
)x = ((gN

s

)p
�x)w = Pub(U, b∗, (gN

s

)p
�x,w).

The hidden projective tag property follows from the DCR assumption.

Remark 1. The above projective map α satisfies the universal one-way property
and almost universal property. The universal one-way property follows from a
similar analysis as that in [7]. Next we show it is almost universal. For any
x �= x′ ∈ {0, 1}m such that α((gN

s

)p,x) = α((gN
s

)p,x′), we get
∑m

i=1 pixi ≡∑m
i=1 pix

′
i mod λ(N), where λ(N) is the least common multiple of P − 1 and

Q − 1. Without loss of generality, we assume that x1 − x′
1 �= 0, then p1 ≡∑m

i=2 pi(x
′
i − xi) mod λ(N). This happens with probability
N/λ(N)�/N ≤

2/λ = 1/pq.

6.3 Instantiations from LWE

We present the LWE-based construction, which is based on lossy trapdoor func-
tions in [22]. For a real parameter 0 < β < 1, we denote by Ψβ the distribution
over R/Z of a normal variable with means 0 and standard deviation β/

√
2π then

reduced modulo 1. Denote by Ψ̄β the discrete distribution over Zq of the random
variable �qX� mod q where the random variable X has distribution Ψβ. In the
following, we consider the standard LWE parameters m,n, q as well as additional
parameters ñ, p such that

m = O(n log q), β = Θ(1/q), ñ = m/ log p, and p ≤ q/16mñ.

196 Z. Zhang et al.

In particular, let γ < 1 be a constant. We will set q = Θ(n1+1/γ) and
p = Θ(n1/γ). When instantiated with our generic transformations, this yields the
LWE-based ABO lossy trapdoor functions in [22]. The projective map α in the
following is in fact a universal hash function which is collision-resistance [16] (un-
der small integer solution assumption which is implied by LWE). Since collision-
resistance implies universal one-way, α is also universal one-way. When combin-
ing the LWE-based dual projective hashing in [25] with our generic transforma-
tions, we get a PRIV-CCA-secure deterministic encryption based on LWE, which
is less efficient than that in [7]. In addition, we can give another construction
following from the extended general framework which is similar to [7].

Let r : {0, 1}ñ → Zm×ñ
q be a function mapping a branch value to its encoded

matrix over Zq (see [22, Section 6.4]).

– Setup(1κ): pick A←$Zn×m
q . Set hp := (A), msk :=⊥, X := {0, 1}m, Y :=

Zñ
q , P := Zn

q , U := Zm×ñ
q , W := Zn×ñ

q , tag := {0, 1}ñ. The projective map
α is defined by α(A,x) := Ax ∈ Zn

q with x ∈ {0, 1}m.

– Keygen(msk,v∗): choose S←$Zn×ñ
q ,E←$(Ψ̄β)

m×ñ. Compute public param-

eter U := A�S + E − r(v∗). The witness is S. The inversion trapdoor is
(S,v∗).

– Priv(U,v,x): compute ΛU(v,x) := x�U+ x�r(v) ∈ Zñ
q .

– Pub(U,v∗,Ax,S): compute (Ax)�S.

– Tdinv((S,v∗),v, α(A,x), ΛU(v,x)) : observe that

ΛU(v,x) = x�U+ x�r(v) = (Ax)�S+ x�E+ x�(r(v − v∗)).

Given the inversion trapdoor (S,v∗), we can recover x�E+x�(r(v)−r(v∗)).
The quantity x�E has small norm, so we can compute x using the bounded-
error decoding to recover x�(r(v) − r(v∗)) and then x.

Projectiveness: The projective property is approximate, that is when U :=
A�S+E− r(v∗) and v = v∗, we have

Priv(U,v∗,x) =x�U+ x�r(v∗)

=x�(A�S+E− r(v∗)) + x�r(v∗)

=(Ax)�S+ x�E ≈ (Ax)�S = Pub(U,v∗,Ax,S).

In fact, for all x ∈ {0, 1}m, with overwhelming probability over E, we have
x�E ⊂ [q/p]ñ. That is, the projective property holds up to an addictive error
term in [q/p]ñ.

The hidden projective tag property follows from the LWE assumption.

ABO Lossy Trapdoor Function. In the lossy mode, we bound the size of the
image by |Imgα| · (q/p)ñ, where (q/p)ñ accounts for the error incurred by the
approximate projective property, then, the lossiness is given by m − (n log q +
m

log p log(
q
p)) = (1− γ)m− n log q.

All-but-One Dual Projective Hashing and Its Applications 197

Acknowledgments. Zongyang Zhang is an International Research Fellow of
JSPS and his work is in part supported by NSFC under grant No. 61303201. He
thanks Shota Yamada for the discussion of lattice-based construction.

Yu Chen is supported by NSFC under grant No. 61303257 and IIE’s Cryp-
tography Research Project under Grant No. Y3Z0011102.

Sherman S. M. Chow is supported by the Early Career Scheme and the Early
Career Award of the Research Grants Council, Hong Kong SAR (CUHK 439713),
and Direct Grant (4055018) of the Chinese University of Hong Kong.

Zhenfu Cao is supported by NSFC under Nos. 61033014, 61161140320,
61371083 and by the Specialized Research Fund for the Doctoral Program of
Higher Education under Grant No. 20130073130004.

Yunlei Zhao is supported by NSFC under Grant No.61272012.

References

1. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth Projective Hashing for Con-
ditionally Extractable Commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 671–689. Springer, Heidelberg (2009)

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable
Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

3. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged Public-Key Encryption: How to Protect against Bad Randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer,
Heidelberg (2009)

4. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic Encryption:
Definitional Equivalences and Constructions without Random Oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

5. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and Impossibility Results for En-
cryption and Commitment Secure under Selective Opening. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

6. Blazy, O., Pointcheval, D., Vergnaud, D.: Round-Optimal Privacy-Preserving Pro-
tocols with Smooth Projective Hash Functions. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 94–111. Springer, Heidelberg (2012)

7. Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic En-
cryption, and Efficient Constructions without Random Oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

8. Brakerski, Z., Segev, G.: Better Security for Deterministic Public-Key Encryp-
tion: The Auxiliary-Input Setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 543–560. Springer, Heidelberg (2011)

9. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

10. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

11. Damg̊ard, I., Jurik, M., Nielsen, J.B.: A generalization of Paillier’s public-key sys-
tem with applications to electronic voting. Int. J. Inf. Sec. 9(6), 371–385 (2010)

198 Z. Zhang et al.

12. Dolev, D., Dwork, C., Naor, M.: Nonmalleable Cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000)

13. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Constructions
of Lossy and Correlation-Secure Trapdoor Functions. J. Cryptology 26(1), 39–74
(2013)

14. Fuller, B., O’Neill, A., Reyzin, L.: A Unified Approach to Deterministic Encryption:
New Constructions and a Connection to Computational Entropy. In: Cramer, R.
(ed.) TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

15. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. ACM Trans. Inf. Syst. Secur. 9(2), 181–234 (2006)

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC, pp. 197–206. ACM (2008)

17. Halevi, S., Kalai, Y.T.: Smooth Projective Hashing and Two-Message Oblivious
Transfer. J. Cryptology 25(1), 158–193 (2012)

18. Joye, M., Libert, B.: Efficient Cryptosystems from 2k-th Power Residue Symbols.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 76–92. Springer, Heidelberg (2013)

19. Katz, J., Vaikuntanathan, V.: Smooth Projective Hashing and Password-Based
Authenticated Key Exchange from Lattices. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009)

20. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental Deterministic Public-
Key Encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012)

21. Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg
(2009)

22. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. SIAM
J. Comput. 40(6), 1803–1844 (2011)

23. Raghunathan, A., Segev, G., Vadhan, S.P.: Deterministic Public-Key Encryption
for Adaptively Chosen Plaintext Distributions. In: Johansson, T., Nguyen, P.Q.
(eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg
(2013)

24. Wee, H.: Efficient Chosen-Ciphertext Security via Extractable Hash Proofs. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg
(2010)

25. Wee, H.: Dual Projective Hashing and Its Applications - Lossy Trapdoor Functions
and More. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 246–262. Springer, Heidelberg (2012)

26. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In:
Kleinberg, R.D. (ed.) ITCS, pp. 111–126. ACM (2013)

Distributed Smooth Projective Hashing

and Its Application to Two-Server Password
Authenticated Key Exchange

Franziskus Kiefer and Mark Manulis

Surrey Center for Cyber Security
Department of Computing, University of Surrey, UK

mail@franziskuskiefer.de, mark@manulis.eu

Abstract. Smooth projective hash functions have been used as building
block for various cryptographic applications, in particular for password-
based authentication.

In this work we propose the extended concept of distributed smooth
projective hash functions where the computation of the hash value is
distributed across n parties and show how to instantiate the underlying
approach for languages consisting of Cramer-Shoup ciphertexts.

As an application of distributed smooth projective hashing we build a
new framework for the design of two-server password authenticated key
exchange protocols, which we believe can help to “explain” the design of
earlier two-server password authenticated key exchange protocols.

Keywords: Smooth Projective Hash Functions, Two-Server PAKE.

1 Introduction

Smooth projective hashing allows to compute the hash value of an element from
a set in two different ways: either by using a secret hashing key on the element, or
utilising the public projection key and some secret information proving that the
particular element is part of a specific subset under consideration. In addition,
smooth projective hash values guarantee to be uniformly distributed in their
domain as long as the input element is not from a specific subset of the input
set. These features make them a quite popular building block in many protocols
such as CCA-secure public key encryption, blind signatures, password authenti-
cated key exchange, oblivious transfer, zero-knowledge proofs, commitments and
verifiable encryption.

Smooth projective hash functions (SPHF) are due to Cramer and Shoup [10]
who used them to construct CCA-secure public key encryption schemes and
analyse mechanisms from [9]. The first use of SPHFs in the construction of
a password authenticated key exchange (PAKE) protocol is due to Gennaro
and Lindell [11], who introduced additional requirements to the SPHF such as
pseudorandomness that was later extended in [15]. The SPHF-based approach
taken in [11] was further helpful in the “explanation” of the KOY protocol from
[14], where those functions were implicitly applied.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 199–216, 2014.
c© Springer International Publishing Switzerland 2014

200 F. Kiefer and M. Manulis

Abdalla et al. [1] introduced conjunction and disjunction of languages for
smooth projective hashing that were later used in the construction of blind
signatures [7,5], oblivious signature-based envelopes [7], and authenticated key
exchange protocols for algebraic languages [4]. Blazy et al. [7] demonstrate more
general use of smooth projective hashing in designing round-optimal privacy-
preserving interactive protocols.

We extend this line of work by considering divergent parametrised languages
in one smooth projective hash function that allows multiple parties to jointly
evaluate the result of the function. We propose the notion of (distributed) ex-
tended smooth projective hashing that enables joint hash computation for special
languages. Further, we propose a new two-server password authenticated key ex-
change framework using the new notion of distributed smooth projective hashing
and show how it helps to explain the protocol from [13]. Actually, the authors
of [2] already built a group PAKE protocol using smooth projective hashing in
a multi-party party protocol. However, they assume a ring structure such that
the smooth projective hashing is only used between two parties.

Organisation. We start by recalling smooth projective hash functions and in-
troduce useful definitions in Section 2. Our first contribution is the definition
of an extended smooth projective hash function SPHFx that handles divergent
parametrised languages in Section 3. Then we show how to distribute their com-
putation between multiple parties, introducing distributed SPHFx in Section 3.1
and give a concrete instantiation in Section 3.3. Finally, we propose a two-server
PAKE framework in Section 4 and analyse the two-server KOY protocol using
a variant of distributed SPHFx in Section 4.2.

2 Smooth Projective Hash Functions

First, we recall definitions from [5] for classical SPHF with some minor changes.
We stick with the framework from [5, Section 3] on cyclic groups G of prime
order and focus on languages of ciphertexts. This seems reasonable since it is
the preferred setting and allows a comprehensible description. An extension to
graded rings and general languages should be possible and is left open for future
work.

A language Laux is indexed by a parameter aux, consisting of global public
information and secret variable information aux′. In our setting of languages of
ciphertexts the public part of aux is essentially a common reference string crs

containing the public key pk of the used encryption scheme. The secret part aux′

contains the message that should be encrypted. By π we denote the crs trapdoor,
the secret key to pk. We denote L the encryption scheme used to generate words.
Unless stated otherwise we assume that L is a labelled CCA-secure encryption
scheme.

Distributed Smooth Projective Hashing and Its Application 201

Definition 1 (Languages of Ciphertexts). Let Laux ⊆ Set denote the lan-
guage of ciphertext under consideration. A ciphertext C is in the language Laux

if C ← EncLpk(�, aux
′;w) for aux = (pk, aux′). Formally, a word C is in the

language Laux if and only if ∃λ ∈ Z1×k
p such that Θaux(C) = λ + Γ (C), where

Γ : Set �→ Gk×n and Θaux : Set �→ G1×n for integers k, n.

We use the notation + and common matrix and vector operations on it from [5]:
for a ∈ G, r ∈ Zp : a+ r = r + a = ar ∈ G.

Definition 2 (SPHF [5]). Let Laux denote a language such that C ∈ Laux

if there exists a witness w proving so. A smooth projective hash function for
ciphertext language Laux consists of the following four algorithms:

– KGenH(Laux) generates a hashing key kh ∈R Z1×n
p for language Laux.

– KGenP(kh, Laux, C) derives the projection key kp = Γ (C)+kh ∈ Gk×1, possibly
depending on C.

– Hash(kh, Laux, C) outputs the hash value h = Θaux(C)+ kh ∈ G.
– PHash(kp, Laux, C, w) returns the hash value h = λ + kp ∈ G, with λ =

Ω(w,C) for some Ω : {0, 1}∗ �→ G1×k.

A SPHF has to fulfil the following three properties (formal definitions follow):

– Correctness : If C ∈ L, with w proving so, then Hash(kh, Laux, C) = PHash(kp,
Laux, C, w).

– Smoothness : If C �∈ Laux, the hash value h is statistically indistinguishable
from a random element in G.

– Pseudorandomness : If C ∈ Laux, the hash value h is indistinguishable from
a random element in G.1

In a nutshell, smoothness ensures that the hash value always looks random in
G when computed on an element not in the language, while pseudorandomness
ensures that it looks random in G when computed on an element in the language.
The authors of [6] identify three different SPHF classes: word-independent key
and adaptive smoothness (KV-SPHF, first proposed in [15]), word-independent
key and non-adaptive smoothness (CS-SPHF, first proposed in [10]), and word-
dependent key (GL-SPHF, first proposed in [11]).

In this work we focus on the strongest notion behind KV-SPHF: word-
independent key with adaptive smoothness. Unless stated otherwise all SPHFs
in the following are KV-SPHFs where the projection key is independent of the
ciphertext. This property enables our construction of extended SPHFs. The cor-
responding notion of adaptive smoothness with word-independent keys is defined
as follows. For any function f : Set\Laux �→ Gl×1 the following distributions are
statistically ε-close:

1 Note that this is not always a requirement or even possible. But as languages of
labelled CCA-secure ciphertexts are hard-on-average problems the corresponding
SPHF is also pseudorandom.

202 F. Kiefer and M. Manulis

{(kp, h) | kh R← KGenH(Laux); kp ← KGenP(kh, Laux);h ← Hash(kh, Laux, f(kp))}
ε
= {(kp, h) | kh R← KGenH(Laux); kp ← KGenP(kh, Laux);h ∈R G}

Gennaro and Lindell [11] introduced pseudorandomness of SPHFs to show that
Hash and PHash are the only way to compute the hash value even though the
adversary knows some tuples (kp, C, Hash(kh, Laux, C)) for C ∈ Laux. A SPHF is
pseudorandom if the hash values produced by Hash and PHash are indistinguish-
able from random without the knowledge of the uniformly chosen hash key kh or
a witness w, i.e. for all C ∈ Laux the following distributions are computationally
ε-close:

{(kp, C, h) | kh R← KGenH(Laux); kp ← KGenP(kh, Laux);h ← Hash(kh, Laux, C)}
ε
= {(kp, C, h) | kh R← KGenH(Laux); kp ← KGenP(kh, Laux);h ∈R G}

To define pseudorandomness of a SPHF we use an experiment based on those
from [11, Corollary 3.3] and [15].

Definition 3 (SPHF Pseudorandomness). For all PPT algorithms A there
exists a negligible function ε(·) such that∣∣∣Pr[AEncLpk(·),Hash(·) = 1]− Pr[AEncLpk(·),U(·) = 1]

∣∣∣ < ε(λ).

– EncLpk(�, aux) with aux = (pk, aux′) returns elements C ∈ Laux encrypting
aux′ using pk, label � and encryption algorithm L.

– Hash(C) returns (KGenP(kh, Laux, C), Hash(kh, Laux, C)) for fresh kh ← KGenH
(Laux) if C has been output by EncLpk, nothing otherwise.

– U(C) returns (KGenP(kh, Laux, C), h) for fresh kh ← KGenH(Laux) and random
h ∈ G if C has been output by EncLpk, nothing otherwise.

While the authors of [5,6] have skipped the proof of pseudorandomness as it is
straightforward, we want to briefly give an intuition why their SPHF framework
is pseudorandom. The reasoning for pseudorandomness of SPHFs is actually
easy and always follows the same approach given in [11]. By replacing the cor-
rect ciphertexts in the simulation with ciphertexts C �∈ Laux we can use the
smoothness of SPHFs to show their indistinguishability. The replacement itself
is covered by the hard-on-average subset membership problem, in the case of
ciphertexts their CCA-security. In [15] pseudorandomness in the case of hash
key and ciphertext reuse is added. We discuss this extension when defining con-
current pseudorandomness of our extended smooth projective hash functions in
the next section.

Encryption Schemes and SPHFs. We use SPHFs on labelled Cramer-
Shoup (CS) encryptions throughout this work as an example, i.e. L = CS.
Thus, we briefly recall its definition. Let C = (�,u, e, v) ← EncCS

pk (�,m; r) with

Distributed Smooth Projective Hashing and Its Application 203

u = (u1, u2) = (gr1 , g
r
2), e = hrgm1 and v = (cdξ)r with ξ = Hk(�,u, e) denote a

labelled Cramer-Shoup ciphertext. We assume m ∈ Zp and G is a cyclic group
of prime order p with generators g1 and g2 such that gm1 ∈ G. The CS public
key is defined as pk = (p,G, g1, g2, c, d,Hk) with c = gx1

1 gx2
2 , d = gy1

1 gy2

2 , h = gz1
and hash function Hk such that dk = (x1, x2, y1, y2, z) denotes the decryption

key. Decryption is defined as gm1 = DecCS
dk (C) = e/uz

1 if ux1+y1·ξ′
1 ux2+y2·ξ′

2 =
v with ξ′ = Hk(�,u, e). Benhamouda et al. propose a new perfectly smooth
SPHF for labelled Cramer-Shoup encryptions in [5]. Note that the witness for
C ∈ Laux is the used randomness w = r. The SPHF is den given by Definition

2 and the following variables: Γ (C) =

(
g1 1 g2 h c
1 g1 1 1 d

)
∈ G2×5, λ = (r, rξ) ∈

Z1×2
p for Ω(r, C) = (r, rξ), Θaux(C) = (u1, u

ξ
1, u2, e/m, v) ∈ G1×5 and kh =

(η1, η2, θ, μ, ν) ∈R Z1×5
p .

We further use El-Gamal (EG) encryptions. Let C = (u, e) ← EncEG
pk (m; r)

with u = gr and e = hrgm denote an El-Gamal ciphertext. Note that we assume
m ∈ Zp and G is a cyclic group of prime order p with generator g such that gm ∈
G. The El-Gamal public key is defined as pk = (p,G, g, h) with h = gz such that
dk = z denotes the decryption key. Decryption is given by gm = DecEG

dk (C) =
e/uz. A SPHF on El-Gamal ciphertexts can be build from Definition 2 using
the following variables: Γ (C) = (g, h)T ∈ G2×1, λ = r ∈ Zp for Ω(r, C) = r,
Θaux(C) = (u, e/m) ∈ G1×2 and kh = (η, θ) ∈R Z1×2

p .

3 Extended Smooth Projective Hash Functions (SPHFx)

We introduce an extended notion of smooth projective hashing that allows us to
distribute the computation of the hash value. The new notion of extended SPHF
(SPHFx) is defined in the following setting: The parameter aux, a language is
indexed with, allows us to easily describe languages that differ only in the secret
part aux′. We consider a language Laux with words (ciphertexts) C that are
ordered sets of n ciphertexts (C0, . . . , Cx). The secret variable information aux′

is chosen from the additive group (P,+) = (Z+
p ,+) with a function h : P �→ Px.

Let LL
aux denote the language of ciphertexts encrypting the secret part aux′ from

aux with the public key pk from aux using encryption scheme L. For all Ci, i ∈
{1, . . . , x} it must hold that Ci ∈ LL

auxi
where auxi = (pk, aux′i) with aux′i =

h(aux′)[i]. For C0 it must hold that C0 ∈ LL
aux. Furthermore, the ciphertexts

must offer certain homomorphic properties such that there exists a modified
decryption algorithm Dec′ and a combining function g such that Dec′π(C0) =
Dec′π(g(C1, . . . , Cx)), where π denotes the secret key for the corresponding public
key pk from crs.

The idea of SPHFx is to be able to use the SPHF functionality not only on
a single ciphertext, but on a set of ciphertexts with specific properties. Due to
the nature of the words considered in SPHFx they produce two different hash
values. One can think of the two hash values as h0 for C0 and hx for C1, . . . , Cx.
The hash value h0 can be either computed with knowledge of the hash key kh0
or with the witnesses w1, . . . , wx that C1, . . . , Cx are in LL

auxi
each. The hash

204 F. Kiefer and M. Manulis

value hx can be computed with knowledge of the hash keys kh1, . . . , khx or with
the witness w0 that C0 is in LL

aux.

Definition 4 (SPHFx). Let Laux denote a language such that C = (C0, C1, . . . ,
Cx) ∈ Laux if there exists a witness w = (w0, w1, . . . , wx) proving so and there
exist functions h(aux′) = (aux′1, . . . , aux

′
x) and g : Gl �→ Gl′ as described above.

An extended smooth projective hash function for language Laux with Γ ∈ Gk×n

consists of the following six algorithms:

– KGenH(Laux) generates a hashing key khi ∈ Z1×n
p for i ∈ {0, . . . , x} and lan-

guage Laux.
– KGenP(khi, Laux) derives the projection key kpi = Γ + khi ∈ G1×k for i ∈
{0, . . . , x}.

– Hashx(kh0, Laux, C1, . . . , Cx) outputs hash value hx = Θx
aux(C1, . . . , Cx)+kh0.

– PHashx(kp0, Laux, C1, . . . , Cx, w1, . . . , wx) returns hash value hx =
∏x

i=1(λ
i+

kp0), where λi = Ω(wi, Ci).
– Hash0(kh1, . . . , khx, Laux, C0) outputs hash value h0 =

∏x
i=1(Θ

0
aux(C0) + khi)

= Θ0
aux(C0)+

∑x
i=1 khi.

– PHash0(kp1, . . . , kpx, Laux, C0, w0) returns hash value h0 =
∏x

i=1(λ
0 + kpi),

with λ0 = Ω(w0, C0).

The correctness of the scheme can be easily verified by checking that Hashx =
PHashx and Hash0 = PHash0.

Security of SPHFx. We refine definitions of smoothness and pseudorandom-
ness to account for the two different hash functions. Therefore, we add both
hash values to the indistinguishable sets, as well as the vector of projection keys.
We start with the smoothness of the described SPHFx. The smoothness proven
in Theorem 1 follows directly from the proof given in [5, Appendix D.3] and
follows the same approach for smoothness proofs as in previous works on SPHF
[5,11,15]. Recall that we are only concerned with adaptive smoothness. Let kp
denote the vector of projection keys kpi for i = 0, . . . , x. For any functions f, f ′

to Set \ Laux the following distributions are statistically ε-close:

{(kp, h0, hx) | h0 ← Hash0(kh1, . . . , khx, Laux, f(kp0)); hx ← Hashx(kh0, Laux,

f ′(kp1, . . . , kpx)); ∀i ∈ {0, . . . , x} : khi
R← KGenH(Laux); kpi ← KGenP(khi, Laux)}

ε
={(kp, h0, hx) | h0 ∈R G; hx ∈R G; ∀i ∈ {0, . . . , x} : khi

R← KGenH(Laux);

kpi ← KGenP(khi, Laux)}.

Theorem 1 (SPHFx Smoothness). The SPHFx construction from Defini-
tion 4 on cyclic groups is statistically smooth.

Proof. We show that the logarithm of the projection keys kp and the logarithm
of the hash values h0 and hx are defined by linearly independent equations
and thus h0 and hx are uniform in G, given kp. To show that (kp, h0, hx) is

Distributed Smooth Projective Hashing and Its Application 205

uniformly distributed in Gk+2 for C �∈ Laux, i.e. ε-close to (kp, g0, gx) for random
g0, gx ∈R G, we consider a word C = (C0, C1, . . . , Cx) �∈ Laux and a projection
key kpj = Γ + khj such that one Cj does not fulfill the property Cj ∈ Lauxj , i.e.

∃j ∈ {0, . . . , x}, ∀λj ∈ Z1×k
p : Θauxj (Cj) �= λj + Γ . From [5, Appendix D.3] it

follows directly that Θauxj (Cj)+khj is a uniformly distributed element in G, and
thus Θx

aux(C1, . . . , Cx) + kh0 and
∏x

i=1(Θ
0
aux(C0) + khi) is uniformly in G. The

projection key kp is uniformly at random in Gk anyway, given the randomness
of all khi. Note that any violation of Dec′π(C0) = Dec′π(g(C1, . . . , Cx)) implies
the existence of an index j such that Cj �∈ Lauxj . ��

While smoothness is the foremost property of (extended) smooth projective hash
functions, in some cases like password authenticated key exchange pseudoran-
domness of the produced hash values has to be guaranteed too. Let kp denote
the vector of projection keys kpi for i = 0, . . . , x. A SPHFx is pseudorandom
if its hash values are computationally indistinguishable from random without
knowledge of the uniformly chosen hash keys kh or the witnesses w, i.e. for all
C = (C0, . . . , Cx) ∈ Laux the following distributions are computationally ε-close:

{(kp, C, h0, hx) | ∀i ∈ {0, . . . , x} : khi
R← KGenH(Laux); kpi ← KGenP(khi, Laux);

h0 ← Hash0(kh1, . . . , khx, Laux, C0); hx ← Hashx(kh0, Laux, C1, . . . , Cx)}
ε
= {(kp, C, h0, hx) | ∀i ∈ {0, . . . , x} : khi

R← KGenH(Laux); kpi ← KGenP(khi, Laux);

h0 ∈R G;hx ∈R G}

To prove pseudorandomness of an SPHFx we use modified experiments from [11]
given in Definition 5. The proof for the pseudorandomness of SPHFx follows the
line of argument from [11].

Definition 5 (SPHFx Pseudorandomness). A SPHFx Π is pseudorandom
if for all PPT algorithms A there exists a negligible function ε(·) such that

AdvPr
Π,A =

∣∣∣∣Pr[ExpPr
Π,A = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

ExpPr
Π,A(λ) : Choose b ∈R {0, 1}, call b′ ← AΩL

pk(·)(λ, kp0, . . . , kpx) with kpi ←
KGenP(khi, Laux, Ci) and khi ← KGenH(Laux) for all i ∈ 0, . . . , x. Return b = b′.

ΩL
pk(�, aux) returns elements C = (C0, . . . , Cx) ∈ Laux with C0 ← EncLpk(�0,

aux′; r0) and Ci ← EncLpk(�i, aux
′
i; ri) for all i ∈ 1, . . . , x and pk ∈ aux

using encryption scheme L and according labels �i. It additionally returns
Hash0(kh1, . . . , khx, Laux, C0), Hashx(kh0, Laux, C1, . . . , Cx) if b = 0 or h0, hx

∈R G if b = 1.

The following theorem shows pseudorandomness of hash values in SPHFx.

Theorem 2 (SPHFx Pseudorandomness). The SPHFx construction from
Definition 4 on cyclic groups is pseudorandom if L is a CCA-secure labelled
encryption scheme.

206 F. Kiefer and M. Manulis

Proof. Pseudorandomness of SPHFx follows immediately from its smoothness
and the CCA-security of the used encryption scheme. First we change ΩL

pk such
that it returns the encryption of 0 for a random i ∈ 0, . . . , x. This change is not
noticeable by the adversary due to the CCA-security of the encryption scheme.
Assuming 0 is not a valid message, i.e. aux′ �= 0 and auxi �= 0 for all i ∈ 1, . . . , x,
the pseudorandomness of SPHFx follows from its smoothness. ��

The authors of [15] furthermore highlight that this definition of pseudorandom-
ness is not enough when used in PAKE protocols if the hash values are not bound
to a specific session by signatures or MACs. Therefore, they prove pseudoran-
domness under re-use of hash keys and ciphertexts. Taking into account re-use of
SPHFx values such as ciphertexts and keys we formalise the notion of concurrent
pseudorandomness for SPHFx following the approach from [15]. Let kp denote
the vector of projection keys kpi for i = 0, . . . , x. A SPHFx is pseudorandom
in concurrent execution if the hash values are computationally indistinguish-
able from random without knowledge of the uniformly chosen hash keys or the
witnesses, i.e. for fixed l = l(λ) the following distributions are computationally
ε-close:

{(kp1, . . . , kpl, C1, . . . , Cl, h0,1, . . . , h0,l, hx,1, . . . , hx,l) |

∀i ∈ {0, . . . , x}, j ∈ {1, . . . , l} : khi,j
R← KGenH(Laux); kpi,j ← KGenP(khi, Laux);

∀j ∈ {1, . . . , l} : h0,j ← Hash0(kh1,j , . . . , khx,j , Laux, C0,j);

hx,j ← Hashx(kh0,j , Laux, C1,j , . . . , Cx,j)}
ε
= {(kp1, . . . , kpl, C1, . . . , Cl, h0,1, . . . , h0,l, hx,1, . . . , hx,l) |

∀i ∈ {0, . . . , x}, j ∈ {1, . . . , l} : khi,j
R← KGenH(Laux); kpi,j ← KGenP(khi, Laux);

∀j ∈ {1, . . . , l} : h0,j ∈R G;hx,j ∈R G}

We extend Definition 5 to capture re-use of hash keys and ciphertexts. The cor-
responding experiment in Definition 6 generates l hash values to each ciphertext,
one for each hash key.

Definition 6 (SPHFx Concurrent Pseudorandomness). A SPHFx Π of-
fers concurrent pseudorandomness if for all PPT algorithms A and polynomials
l there exists a negligible function ε(·) such that

AdvPr
Π,A =

∣∣∣∣Pr[ExpPr
Π,A = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

ExpPr
Π,A(λ) : Choose b ∈R {0, 1}, call b′ ← AΩL

pk(·)(λ, kp1, . . . , kpl) with kpj =

(kp0, . . . , kpx) where kpi ← KGenP(khi, Laux, Ci) and khi ← KGenH(Laux) for all
i ∈ 0, . . . , x and j ∈ 1, . . . , l. Return b = b′.

ΩL
pk(�, aux) returns elements C = (C0, . . . , Cx) ∈ Laux with C0 ← EncLpk(�0,

aux′; r0) and Ci ← EncLpk(�i, auxi; ri) for all i ∈ 1, . . . , x and pk ∈ aux

Distributed Smooth Projective Hashing and Its Application 207

using encryption algorithm L and according labels �i. It additionally returns
Hash0,j(kh1,j , . . . , kh

j
x, Laux, C0), Hashx,j(kh0,j , Laux, C1, . . . , Cx) if b = 0 or

h0,j , hx,j ∈ G if b = 1 for all j ∈ 1, . . . , l.

Using Definition 6 we prove the concurrent pseudorandomness of our construc-
tion, following the argument from [15, Lemma 1].

Lemma 1 (SPHFx Concurrent Pseudorandomness). The SPHFx con-
struction from Definition 4 on cyclic groups is pseudorandom on re-use of hash
and ciphertext values if L is a CCA-secure labelled encryption scheme.

Proof. Using a hybrid argument it is enough to show that the adversary can not
distinguish between experiment Exp1 where Ω returns random elements for the
first i hash values of the j-th query and all queries < j and correct hashes for all
subsequent queries and indices > i, and Exp2 where Ω returns random elements
for the first i + 1 hash values of the j-th query and all queries < j and correct
hashes for all subsequent queries and indices > i + 1. Having this in mind the
proof follows the same argument as the one for SPHFx pseudorandomness. We
briefly recall the argumentation there. We modify Exp1 to Exp′1 and Exp2 to Exp′2
such that Ω returns an encryption of 0 instead of correct encryptions for Cj . Note
that we assume 0 is not a valid message such that Cj �∈ Laux in Exp′1. Due to
CCA-security of L this step is not recognisable by the adversary. Changing Exp′1
to Exp′2 the smoothness of SPHFx ensures that A can not distinguish between
the two experiments, which proves the lemma. ��

3.1 Distributed Computation of SPHFx

Using SPHFx is only reasonable in a distributed manner. We therefore consider
n = x + 1 entities participating in the distributed computation of the SPHFx

hash values h0, hx. Let Pi for i ∈ {1, . . . , x} denote parties, each knowing auxi
and computing the according ciphertext Ci and projection key kpi. Furthermore,
let P0 denote the participant knowing aux and computing C0 and kp0. We de-
fine protocols in this setting with the purpose that both P0 and P1 eventually
compute h0 and hx.

While P0 can compute PHash0 and Hashx after receiving all Ci and kpi, com-
putation of Hash0 and PHashx can not be performed solely by the previously de-
scribed algorithms in this setting, without disclosing the witness or the hashing
key. To compute PHashx and Hash0, parties P1, . . . , Px have to collaborate since
they know only part of the input parameters. Distributed SPHFx defines pro-
tocols that allow secure calculation of h0 and hx. Intuitively distributed SPHFx

reaches the same security properties as SPHFx, namely smoothness and pseudo-
randomness in presence of a passive adversary, by additionally ensuring that no
protocol participant alone is able to compute the hash values. Note that while
we assume each Pi for i > 0 holds a key-pair and knows public keys of all other
Pi such that all communication between two Pi is secured by the receivers public
key, those keys are not authenticated, i.e. we do not assume a PKI.

208 F. Kiefer and M. Manulis

A distributed SPHFx protocol between n participants P0, . . . , Px computing
hx and h0 consists of three interactive protocols Setup, PHashDx and HashD0 . Let
Π denote the SPHFx algorithm that is being distributed.

– Setup(aux, P0, . . . , Px) initialises a new instance for each participant with
(aux, P0, P1, . . . , Px) for P0 and (auxi, Pi, P0, . . . , Px) for Pi, i ∈ {1, . . . , x}.
Eventually, all participants compute and broadcast projection keys kpi and
encryptions Ci ← EncLpk(�i, aux

′
i; ri) of their secret aux′i using Π.KGenH,

Π.KGenP and the associated encryption scheme L. Participants store incom-
ing kpi, Ci for later use. After receiving (kp1, C1, . . . , kpx, Cx), P0 computes
h0 ← Π.PHash0(kp1, . . . , kpx, Laux, C0, r0) and hx ← Π.Hashx(kh0, Laux, C1,
. . . , Cx).

– PHashDx is executed between parties P1, . . . , Px. Each Pi performs PHashDx
on input (kp0, auxi, C1, . . . , Cx, ri) such that P1 eventually holds hx while all
Pi for i > 1 do not learn anything about hx.

– HashD0 is executed between parties P1, . . . , Px. Each Pi performs HashD0 on
input (aux′i, khi, C0, . . . , Cx) such that P1 eventually holds h0 and all Pi for
i > 1 do not learn anything about h0.

A distributed SPHFx is said to be correct if PHashDx = PHashx and HashD0 =
Hash0 assuming that all messages are honestly computed and transmitted. The
security of the distributed SPHFx in presence of a passive adversary follows
immediately from smoothness and pseudorandomness of the SPHFx algorithms.

Remark 1. Note that we focus on asymmetric distribution here such that only
P1 computes the hash values. Building symmetric distribution protocols where
all parties Pi compute the hash values from this is straightforward but requires a
different security model. Likewise, it is possible to build asymmetric distribution
protocols where all Pi compute different hash values (we will see an example of
that later).

3.2 Security against Active Adversaries

Smooth projective hashing has not been used in a distributed manner before
such that it was not necessary to consider active adversaries. By introducing
distributed computation of hash values the HashD0 and PHashDx protocols are
exposed to active attacks. However, the adversary must still not be able to
distinguish real hash values from random elements, i.e. smoothness and pseudo-
randomness must hold. Therefore we introduce a security model for distributed
SPHFx smoothness and pseudorandomness, capturing active attacks in a multi-
user and multi-instance setting. Let {(P j

0 , P
k
1 , . . . , P l

x)}P j
0∈P0,Pk

i ∈P i∈{1,...,x} de-

note all tuples (P j
0 , P

k
1 , . . . , P l

x) such that P j
0 ∈ P0 knows aux and P k

1 , . . . , P l
x ∈ P

each know according auxi. We say P0 is registered with (P1, . . . , Px). The addi-
tional indices j, k, l denote the instance of the respective participant (assigned
by oracles and modelled as counters to ensure their uniqueness).

Distributed Smooth Projective Hashing and Its Application 209

Definition 7 (SPHFx Security). A distributed SPHFx protocol Π is secure
(offers adaptive smoothness and concurrent pseudorandomness) if for all PPT
adversaries A there exists a negligible function ε(·) such that :

AdvSPHFx

Π,A (λ) =

∣∣∣∣Pr[ExpSPHFx

Π,A (λ) = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

ExpSPHFx

Π,A (λ) : Choose b ∈R {0, 1}, call b′ ← ASetup(·),Send(·),Test(·)(λ, aux2, . . . ,
auxx,L, crs) and return b = b′.

– Setup(P0, . . . , Px) initialises new instances with (aux, P1, . . . , Px) for P0 reg-
istered with (P1, . . . , Px) and (aux1, P1, P0, . . . , Px) for P1 and returns ((kp0,
C0), (kp1, C1)) with Ci ← EncLpk(�, aux

′
i; ri) and khi ← Π.KGenH(Laux), kpi ←

Π.KGenP(khi, Laux)
– Send(Pa, Pb,m) sends message m with alleged originator Pb to Pa and re-

turns Pa’s resulting message m′ if any.
– Test(P j

i) for i ∈ {0, 1} returns two hash values (h0, hx). If the global bit b
is 0, the hash values are chosen uniformly at random from G, otherwise the
hash values are computed according to protocol specification Π.

Note that we assume without loss of generality that all participants P2, . . . , Px

are corrupted by the adversary, who knows their secrets. Furthermore, note that
A can query the Test oracle only once.

The active security notion for distributed computation of SPHFx covers
smoothness and pseudorandomess as defined before. The experiment is equiva-
lent to the computational smoothness definition when A computes and forwards
all messages honestly but changes at least one auxi. Note that this is actually a
stronger notion than smoothness as we require pseudorandomness of hash values
output by the projection function on a word not in the language. This is usually
not included in the smoothness definition, which is defined over the hash func-
tion. Further, Definition 7 is equivalent to Definition 6 when A computes and
forwards all messages honestly and does not change any auxi.

3.3 Instantiation – Distributed Cramer-Shoup SPHFx

We exemplify the SPHFx definition on the previously introduced Cramer-Shoup
encryption scheme. The ciphertexts are created as Ci = (u1,i, u2,i, ei, vi) ←
EncCS

pk (�i, aux
′
i; ri) for all i = 1, . . . , x with aux′i = h(aux′)[i] and C0 = (u1,0, u2,0,

e0, v0) ← EncCS
pk (�0, aux

′
0; r0), where �i consists of participating parties and the

party’s projection key. We define modified decryption as Dec′π(C) = e · u−z
1 .

The combining function g uses the homomorphic property of u1 and e of the CS
ciphertext such that g(C1, . . . , Cx) = (

∏x
i=1 u1,i,

∏x
i=1 ei) and aux′ =

∑x
i=1 aux

′
i.

The following variables define the Cramer-Shoup SPHFx:

210 F. Kiefer and M. Manulis

Γ =

(
g1 1 g2 h c
1 g1 1 1 d

)
∈ G2×5, λ = (r, rξ) ∈ Z1×2

p

Θ0
aux(C0) = (u1, u

ξ
1, u2, e/aux

′, v) ∈ G1×5

Θx
aux(C1, . . . , Cx) = (

x∏
i=1

u1,i,
x∏

i=1

uξi
1,i,

x∏
i=1

u2,i,
x∏

i=1

ei/aux
′,

x∏
i=1

vi) ∈ G1×5

Using them in the SPHFx Definition 4 yields the Cramer-Shoup SPHFx. In-
stead of aiming for absolute generality we describe the distributed Cramer-Shoup
SPHFx for x = 2 such that both participants P1 and P2 compute and broadcast
(kpi, Ci), while P0 computes and broadcasts (kp0, C0). Let × denote element
wise multiplication, e.g., for El-Gamal ciphertexts C1 = (u1, e1), C2 = (u2, e2),
C1 × C2 is defined as (u1u2, e1e2). PHash

D
x and HashD0 protocols are defined as

follows:

– PHashDx is executed between P1 and P2. P2 computes hx,2 = λ + kp0 =

(kp0[1] · kp0[2]
ξ2)r2 and sends it to P1. Eventually, P1 holds hx = hx,2 · (λ+

kp0) = kp0[1]
r1+r2 · kp0[2]

ξ1·r1+ξ2·r2 . Note that P1 always performs checks
that kp0 ∈ G and G , hx

2 �= 0.
– HashD0 is executed between P1 and P2 such that P1 eventually holds h0. Let

Pi for i ∈ {1, 2} denote the participating party knowing (auxi, ski, khi =
(η1, η2, θ, μ, ν), pk1, pk2, C0 = (u1, u2, e, v, ξ)).

• P1 computes m0 ← EncEG
pk1

(g−μ
1 ; r) and c′1 ← EncEG

pk1
(g

aux′1
1 ; r′), and sends

(m0, c
′
1) to P2.

• Receiving (m0, c
′
1) from P1, P2 computes

m1 ← (m0)
aux′2 × (c′1)

−μ × EncEG
pk1

(g
−μ·aux′2
1 · uη1+ξη2

1 · uθ
2 · eμ · vν ; r′′)

and sends it to P1.
• Receiving m1, P1 computes the hash value

h0 = g
−μ·aux′1
1 · DecEG

sk1
(m1) · uη1+ξη2

1 · uθ
2 · eμ · vν .

Security of Distributed Cramer-Shoup SPHFx. We show now that the
proposed distributed Cramer-Shoup SPHFx is secure. The intuition behind the
proof is that the pseudorandomness of hx can be reduced directly to the DDH
problem in G while pseudorandomness of h0 value follows from the smoothness
and pseudorandomness of the underlying SPHFx scheme.

Theorem 3 (Cramer-Shoup SPHFx Security). The distributed Cramer-
Shoup SPHFx instantiation is secure against active adversaries according to
Definition 7 when the DDH assumption in the used group G holds and L = CS
is CCA-secure.

Distributed Smooth Projective Hashing and Its Application 211

Proof. First, note that the theorem follows immediately from smoothness and
pseudorandomness in the passive case if the adversary queries Test(P0). We
therefore focus on Test(P1) queries. We start with the pseudorandomness of hx,
i.e. for all g it holds that Pr[hx = g] = 1/|G|. Consider an attacker A on input
(λ, aux2,L, crs) and let Exp0 denote the original SPHFx experiment.

Exp1 : We change Test such that a uniformly at random chosen element gx ∈R G
is returned for hx.

Claim.
∣∣∣AdvExp0Π,A − Adv

Exp1
Π,A

∣∣∣ ≤ ε(λ)

Proof. The hash value hx in Exp0 is computed as hx = (kp
′
0
[1] · kp′0[2]

ξ1)r1 · hx,2

with adversarially generated hx,2 and kp
′
0. Indistinguishability of hx and gx, and

thus the claim, follows immediately as long as the DDH assumption in G holds
(using DDH triple (kp

′
0
[1] · kp′0[2]

ξ1 , gr1 , hx) and (kp
′
0
[1] · kp′0[2]

ξ1 , gr1 , gx)). Note
that P1 aborts if either hx,2 �∈ G or kp

′
0 �∈ G2. ��

To show the security (concurrent pseudorandomness and adaptive smoothness)
of h0 we define two Send queries that allow execution of the protocol: (m1, c

′
1)←

Send1(P2, P1, (kp
′
0
, C′

0, kp
′
2
, C′

2)) starts the protocol execution between P1 and P2

and provides the attacker with (m1, c
′
1). Using these messages the adversary (P2)

computes a message m2 and sends it to P1 with Send2(P2, P1,m2). This reflects
the execution of a single protocol run of HashD0 such that P1 eventually computes
h0. In contrast to the passive and classical SPHF proofs we can not replace the
ciphertexts with encryptions of words not in the language. However, this is not
necessary as t is in fact the Hash computation of the classical Cramer-Shoup
SPHF without cancelling the message, i.e. t = h ·mμ.

Exp2 : We change Test such that a uniformly at random chosen element g0 ∈R G
is returned for h0.

Claim.
∣∣∣AdvExp1Π,A − Adv

Exp2
Π,A

∣∣∣ ≤ ε(λ)

Proof. The hash value h0 in Exp1 is computed as h0 = g−μ1·aux′1 · DecEG
sk1

(m2) · t
with t = u

η1,1+ξ0η2,1

1,0 uθ1
2,0e

μ1

0 vν10 where m2 and C′
0 = (u1,0, u2,0, e0, v0) may be

adversarially generated. The value t is actually the Hash value of the classical
Cramer-Shoup SPHF without cancelled message, or in other words t is the result
of a SPHF Hash computation for language L(crs,0) such that any C′

0, encrypting
some correct aux′ �= 0, is not in this language. Due to smoothness of the Hash

function [6] t is indistinguishable from a uniformly at random chosen element. If
the adversary encrypted 0 in C′

0 pseudorandomness of Hash takes effect. There-
fore h0 = d·t is indistinguishable from a random group element for all d ∈ G. ��

In Exp2 the adversary always gets random group elements in answer to his Test
query. Therefore, he can not do better than guessing bit b. ��

212 F. Kiefer and M. Manulis

4 Two-Server PAKE from Distributed SPHFx

In this section we present a new two-server PAKE framework as an application
of our distributed SPHFx concept. Moreover, we show that the two-server PAKE
protocol by Katz et al. [13] can be considered as a variant of our framework using
a “mix” of distributed SPHFx for Cramer-Shoup and El-Gamal ciphertexts.

With a single server storing the password, password authenticated key ex-
change (PAKE) protocols have an intrinsic single point of failure. As soon as the
server’s database, storing the client’s secrets, gets compromised the attacker can
impersonate the client to this server, and most likely also to others considering
that users tend to reuse their passwords across multiple services. Mechanisms
have been proposed to solve the problem of server compromise [12,19]. However,
as long as only one server is used, PAKE protocols are prone to offline dictionary
attacks on the server side. Two-server PAKE (2PAKE) protocols can solve this
problem by splitting the password in two parts such that a malicious or compro-
mised server can be used to recover only one part of the password. Raimondo and
Gennaro [17] proposed a t-out-of-n threshold PAKE, which is not suitable for
the 2PAKE setting as it requires t < n/3. Another t-out-of-n threshold PAKE
was proposed in a PKI-based setting with random oracles [16]. Brainard and
Juels [8] proposed two-server password based authentication without security
proof. Szydlo and Kaliski [18] later modified constuctions from [8] and proved
their security in a simulation-based model. The first two-server PAKE in the
password-only setting, i.e. without a PKI, is due to Katz et al. [13], based on
the KOY protocol from [14]. We consider the same setting as [13] in which the
client computes two independent session keys with the two servers.

4.1 A New Two-Server PAKE Framework

Using distributed SPHFx we can build efficient 2PAKE protocols. We consider
the same setting as 2KOY [13], in particular a client that negotiates independent
session keys with both servers that hold pw1 + pw2 = pw. We omit the second
server in the description of the protocol in Figure 1 as the framework is symmetric
in the sense that the second server S2 performs like S1. The framework follows
the same principle as the latest PAKE frameworks from SPHFs. In particular it
can be seen as a two-server variant of the PAKE protocol from [15].

You can think of the two-server protocol as the execution of two distributed
SPHFx protocols, one between (C, S1, S2) and one between (C, S2, S1) where
servers S2 and S1 swap roles, such that (C, S1) and (C, S2) eventually hold
common hash values that can be used to generate a shared session key sk1
and sk2. The only overlap between the two SPHFx executions is the Hashx
computation. The reuse of C1, C2 in Hashx functions is covered by the concurrent
pseudorandomness.

2PAKE Framework. The servers encrypt their password shares under a public
key pk stored in the crs using a CCA-secure labelled encryption scheme and dis-
tribute this ciphertext together with two appropriate projection keys for a secure

Distributed Smooth Projective Hashing and Its Application 213

C S1

pk, pw pk, pw1, sk1, pk2

kh0,1 ← KGenH(Laux), kh0,2 ← KGenH(Laux) kh1,1 ← KGenH(Laux), kh1,2 ← KGenH(Laux)

kp0,1 ← KGenP(kh0,1), kp0,2 ← KGenP(kh0,2) kp1,1 ← KGenP(kh1,1), kp1,2 ← KGenP(kh1,2)

�0,1 = (C, S1, S2), �0,2 = (C, S2, S1) �1 = (S1, C, S2)

C0,1 ← EncLpk(�0,1, pw; r0,1), C0,2 ← EncLpk(�0,2, pw; r0,2) kp0,1, C0,1, kp0,2, C0,2 C1 ← EncLpk(�1, pw1, r1) kp2,1, kp2,2, C2

kp1,1, kp1,2, C1

h0,1 ← PHash0(kp1, kp2, Laux, C0,1, r0,1) h0,1 ← HashD0 (C0,1, kh1,1, pw1, sk1, pk2)

h0,2 ← PHash0(kp1, kp2, Laux, C0,2, r0,2) hx,1 ← PHashDx (kp1,1, C1, r1)

hx,1 ← Hashx(kh0,1, Laux, C1, C2) HashD0 (C0,2, kh1,2, pw1, sk1, pk2)

hx,2 ← Hashx(kh0,2, Laux, C1, C2) PHashDx (kp1,2, C1, r1)

sk1 = h0,1hx,1, sk2 = h0,2hx,2 sk1 = h0,1hx,1

Fig. 1. Two-Server PAKE framework using SPHFx

Dashed lines denote broadcast messages

distributed SPHFx, (kp1,1, kp1,2, C1) and (kp2,1, kp2,2, C2). The client computes
two independent encryptions of the password and generates two independent ac-
cording projection keys (kp0,1, C0,1, kp0,2, C0,2). The previously described SPHFx

allows us to send all kpi, Ci in one round and therefore reach optimality for this
step. Using these values, the client can compute session keys as product of the
two hash values h0,1, hx,1 for sk1, which is shared with S1 and from h0,2, hx,2

for sk2 that is shared with S2.
Subsequently, the two servers perform the HashD0 and PHashDx protocols such

that S1 and S2 eventually hold hash values h0,1 and hx,1, h0,2 and hx,2 respec-
tively, to compute sk1, sk2 respectively. Eventually, C holds sk1 = h0,1 · hx,1

and sk2 = h0,2 ·hx,2, S1 holds sk1 = h0,1 ·hx,1 and S2 holds sk2 = h0,2 ·hx,2. An
instantiation of the framework using labelled Cramer-Shoup encryption and the
aforementioned distributed SPHFx yields a secure 2PAKE protocol. Note that
this actually requires two SPHFx executions.

Security. We use the well-known game based PAKE model first introduced by
Bellare et al. [3] in it’s two-server variant from [13]. For a formal description
of the model we refer to [13]. The security of the two-server PAKE framework
follows directly from the CCA-security of the used encryption scheme and the
security of the distributed SPHFx.

Theorem 4. Let (KGenH, KGenP, PHash0, Hashx, Hash
D
0 , PHashDx) be a secure dis-

tributed SPHFx and (KGen, Enc, Dec) a CCA-secure labelled encryption scheme,
then the proposed framework in Figure 1 is a secure two-server PAKE protocol.

Proof (sketch). Let Π denote a secure instantiation of the 2PAKE framework.
To prove security of Π we introduce three experiments such that the adversary
in the last experiment Exp3 can not do better than guessing the password as all

messages are password independent, i.e. Adv
Exp3
Π,A ≤ q/|D| for q active attacks.

We initially focus on the AKE-security of sk1.

214 F. Kiefer and M. Manulis

Exp1 is identical to the two-server AKE-security experiment except that the
simulator knows π, the decryption key to pk in the crs (only a syntactical
change) and the following changes: If C0,1 or C1, handed to S1 or C are adver-
sarially generated and encrypt the correct password(share), the simulator stops
and A wins the experiment. If C0,1, C1 or C2, handed to S1 or C encrypt a
wrong password(share), the key for that session is drawn uniformly at random
from G. The first change only increases the adversarial advantage and the second
one introduces a negligible gap according to the adaptive smoothness of the used
SPHFx.

Exp2 performs like Exp1 except that it draws the session key at random from
G if all Ci handed to C and S1 are oracle generated or encrypt the correct
password and no session key has been chosen for the partner in that session
(otherwise that previously drawn key is used). This introduces a negligible gap
between advantages in Exp1 and Exp2 due to the concurrent pseudorandomness
of the used SPHFx.

Exp3 acts like Exp2 except that it returns encryptions of 0 for C0,1 and C1

(note that 0 is not a valid password). This step is covered by the CCA-security
of the used encryption scheme.

AKE-security of sk1 follows as all messages are password independent in Exp3
unless the adversary guesses the correct password. Using the same sequence of
experiments but considering C and S2 instead of C and S1, AKE-security of sk2
follows. ��

4.2 2-Server KOY (2KOY) [13]

We can now “explain” the use of SPHF in 2KOY from [13]; similar to [11] that
“explained” the original KOY protocol from [14]. We define encryption schemes
and distributed SPHFx used in 2KOY, highlight changes to our framework and
discuss implications of this on the security of 2KOY.

The crs contains a public key pk for Cramer-Shoup encryption as well as a
public key g3 for El-Gamal encryption. Since [13] uses El-Gamal encryptions on
the server side, we have to use a combination of Cramer-Shoup and El-Gamal
based SPHFx in 2KOY. Instead of using Cramer-Shoup encryptions and SPHFx,
the client computes projection keys for an El-Gamal distributed SPHFx, which
is based on the aforementioned SPHF on El-Gamal ciphertexts.

Likewise, the servers compute projection keys for a Cramer-Shoup distributed
GL-SPHFx and El-Gamal encryptions of their password shares.2 The client sends
the projection keys in a third round together with a signature on the session
transcript to the servers. Eventually, the client computes hash values using the
PHash0 function of the GL-SPHFx scheme on CS ciphertexts and the Hashx func-
tion of the SPHFx scheme on El-Gamal ciphertexts. Further, the servers execute
the HashD0 protocol of the distributed GL-SPHFx scheme on CS ciphertexts and
the PHashDx protocol of the distributed SPHFx scheme on El-Gamal ciphertexts.

2 Note that an additional signature on the session transcript in round three ensures
“non-malleability” of these ciphertexts.

Distributed Smooth Projective Hashing and Its Application 215

Security of 2KOY. Security of the protocol against passive adversaries follows
immediately from [13, Theorem 1] as we do not change the protocol. However,
the authors of [13] need additional mechanisms to prove their protocol secure
against an active adversary. They add witness-indistinguishable Σ-protocols to
the PHashDx and HashD0 protocols that prove correctness of their messages. With-
out giving a proof it should be clear that Theorem 4 also holds for the 2KOY
instantiation without additional mechanisms. Examining the proof of [13, The-
orem 2] shows that the additional steps are only necessary to conduct the proof
without actually giving additional security. This shows the power of distributed
SPHFx as they allow for much simpler proofs of multi-party protocols. Further-
more, with our framework the protocol ceomes more efficient than 2KOY as it
needs only two rounds instead of three and does not need correctness proofs in
the distributed hash and projection protocols.

5 Conclusion

We introduced the notion of extended (distributed) smooth projective hashing
and gave an instantiation using Cramer-Shoup ciphertexts. Distributed smooth
projective hashing can be used as building block in threshold and multi-party
protocols. As an example, we built a two-server PAKE framework using a dis-
tributed smooth projective hash function. This two-server PAKE framework
yields the most efficient two-server PAKE protocols today. The framework also
allows us to explain and simplify the two-server PAKE protocol from [13].

While we focused on two-server password authenticated key exchange as ap-
plication of distributed SPHF in this work, (distributed) extended smooth pro-
jective hash functions is an interesting building block for future work on other
multi-party and threshold protocols.

Acknowledgments. This research was supported by the German Science Foun-
dation (DFG) through the project PRIMAKE (MA 4957).

References

1. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth Projective Hashing for Con-
ditionally Extractable Commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 671–689. Springer, Heidelberg (2009)

2. Abdalla, M., Pointcheval, D.: A Scalable Password-Based Group Key Exchange
Protocol in the Standard Model. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 332–347. Springer, Heidelberg (2006)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient
UC-SecureAuthenticatedKey-Exchange for Algebraic Languages. In:Kurosawa,K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 272–291. Springer, Heidelberg
(2013)

216 F. Kiefer and M. Manulis

5. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
Smooth Projective Hash Functions and One-Round Authenticated Key Exchange.
Cryptology ePrint Archive, Report 2013/034 (2013), http://eprint.iacr.org/

6. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
Techniques for SPHFs and Efficient One-Round PAKE Protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013)

7. Blazy, O., Pointcheval, D., Vergnaud, D.: Round-Optimal privacy-preserving pro-
tocols with smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 94–111. Springer, Heidelberg (2012)

8. Brainard, J., Juels, A.: A new two-server approach for authentication with short
secrets. In: USENIX 2003. SSYM 2003, vol. 12, p. 14. USENIX Association (2003)

9. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

10. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

11. Gennaro, R., Lindell, Y.: A Framework for Password-Based Authenticated Key
Exchange. ACM Trans. Inf. Syst. Secur. 9(2), 181–234 (2006)

12. Gentry, C., MacKenzie, P.D., Ramzan, Z.: A Method for Making Password-Based
Key Exchange Resilient to Server Compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006)

13. Katz, J., MacKenzie, P., Taban, G., Gligor, V.: Two-server password-only authen-
ticated key exchange. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 1–16. Springer, Heidelberg (2005)

14. Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange
Using Human-Memorable Passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

15. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011)

16. MacKenzie, P.D., Shrimpton, T., Jakobsson, M.: Threshold password-
authenticated key exchange. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 385–400. Springer, Heidelberg (2002)

17. Raimondo, M.D., Gennaro, R.: Provably secure threshold password-authenticated
key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 507–523. Springer, Heidelberg (2003)

18. Szydlo,M.,Kaliski,B.:Proofs forTwo-ServerPasswordAuthentication. In:Menezes,
A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 227–244. Springer, Heidelberg (2005)

19. Wu, T.: RFC 2945 - The SRPAuthentication and Key Exchange System (September
2000)

http://eprint.iacr.org/

Sakura: A Flexible Coding for Tree Hashing

Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1

1 STMicroelectronics
2 NXP Semiconductors

Abstract. We propose a flexible, fairly general, coding for tree hash
modes. The coding does not define a tree hash mode, but instead specifies
a way to format the message blocks and chaining values into inputs to
the underlying function for any topology, including sequential hashing.
The main benefit is to avoid input clashes between different tree growing
strategies, even before the hashing modes are defined, and to make the
SHA-3 standard tree-hashing ready.

Keywords: hash function, tree hashing, indifferentiability, SHA-3.

1 Introduction

A hashing mode can be seen as a recipe for computing digests over messages by
means of a number of calls to an underlying function. This underlying function
may be a fixed-input-length compression function, a permutation or even a hash
function in its own right. We use the term inner function and symbol f for the
underlying function and the term outer hash function and symbol F for the
function obtained by applying the hashing mode to the inner function.

The hashing mode splits the message into substrings that are assembled into
inputs for the inner function, possibly combined with one or more chaining values
and so-called frame bits. Such an input to f is called a node [6]. The chaining
values are the results of calls to f for other nodes.

Hashing modes serve two main purposes. The first is to build a variable-input-
length hash function from a fixed-input-length inner function and the second is
to build a tree hash function. In tree hashing, several parts of the message may be
processed simultaneously and parallel architectures can be used more efficiently
when hashing a single message than in sequential hashing [17,8,22,3,9,6].

The motivation for standardizing a tree hash mode, or to have a tree-hash-
ready SHA-3 standard, was discussed at various occasions during the SHA-3
competition on the NIST hash-forum mailing list [18]. A few candidates, like
MD6, SANDstorm and Skein, proposed built-in tree hash modes [21,23,10]. At
the Third SHA-3 Candidate Conference, Lucks, McGrew and Whiting motivated
why the SHA-3 standard should support parallelized tree hashing [15].

Different applications or use cases call for different approaches to tree hash-
ing and different tree topologies. For instance, some environments favor cutting
the input message in consecutive pieces and hashing these pieces independently,
while others favor to hash interleaved pieces of data, see, e.g., [11]. In his pre-
sentation at ESC 2013, Lucks suggested to use a n-ary tree with much potential

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 217–234, 2014.
c© Springer International Publishing Switzerland 2014

218 G. Bertoni et al.

parallelism and to let the implementation choose the most appropriate evalu-
ation strategy [14]. As another example, some applications require to keep the
intermediate hash values (e.g., to be able to re-compute the digest if only a part
of the input changes), whereas the mere exploitation of parallelism does not
require it.

Given all this diversity, it seems difficult to agree on a “one-size-fits-all” tree
hash mode. Instead, we take the different approach of allowing different tree hash
modes to co-exist. However, the co-existence of different modes on top of existing
(serial) hash functions calls for caution. While each individual hash mode can be
proven secure, the joint use of several modes can become insecure, in particular
due to the different coding conventions that could collide into equal inputs to
the inner function. This paper proposes a way to bring together different tree
hash modes in a secure way and follows ideas presented in [5, Slides 54-59].

We show that it is possible to define a tree hash coding, i.e., a way to format
the input to the inner function, that can cover a wide range of tree hash modes.
For a carefully designed tree hash coding, one can prove that the union of all
tree hash modes compatible with it is sound. By sound we mean that it does not
introduce any weaknesses on top of the risk of collisions in the inner function.
More precisely, a hashing mode is sound if the advantage of differentiating F
from a random oracle, assuming f has been randomly selected, is upper bound
by q2/2n+1, with q the number of queries to f and n the length of the chaining
values [1,16,7,6].

As a result, tree hash modes compatible with the defined coding can be pro-
gressively introduced while preserving their joint security. Also, as an additional
benefit, a tree hash mode following the coding convention is sound by construc-
tion, without the need of additional proofs.

For proving soundness, we use the results of [6], in which we specify a set
of conditions for a tree (or sequential) hashing mode to be sound. We assume
that to the choice of f is attached a security parameter, like the capacity in the
specific case of sponge functions or the security strength [19,2]. We consider this
security parameter to be specified together with f and to remain constant for
its entire use in a tree hash mode.

The remainder of this paper is structured as follows. In Section 2 we explain
the range of possibilities of our proposed sound tree hash coding and illustrate
it with some examples. In Section 3 we specify Sakura, the coding we propose,
while in Section 4 we define what it means for a hashing mode to be compatible
with Sakura and prove that any such tree hash mode is sound. In Section 5 we
give some examples of modes and in Section 6 we provide a concrete proposal in
the context of making the SHA-3 standard tree-hashing ready.

2 Functionality Supported by Sakura

We start by recalling the very general concept of node and tree of nodes. We
then capture the functionality of Sakura with trees of hops and how nodes and
hops relate to one another. Finally, some figures illustrate the concepts.

Sakura: A Flexible Coding for Tree Hashing 219

2.1 Modeling tree Hash Modes

We refer to [6, Section 2] for a detailed description of the model. We here give a
short summary.

A tree is a directed graph of nodes. Informally speaking, each node is hashed
with the inner function f and the output is given to its parent node as a chaining
value. The exception is for the final node (i.e., the root of the tree), which does
not have a parent, and the output of the outer hash function F (M) is the output
of f applied to this final node.

A tree hash mode T specifies a tree of nodes as a function of the input message
length |M | and some specific parameters A. In particular, it is up to the mode to
define how the tree scales as a function of |M |, how the message bits are spread
on the nodes, which nodes takes chaining values from which nodes, etc.

For a fixed |M | and A, a tree hashing mode specifies precisely how to format
the inputs to the inner function f with bits from the message, chaining values
and frame bits. The latter are constant bits for padding or domain separation.
The union of tree hash modes is defined in [6, Section 7.3]. The union Tunion
of k tree hashing modes Ti simply means that the user has a choice parameter
indicating the chosen mode i composed with the tree parameters Ai for the
particular mode i. With Tunion, the user can thus reach any node tree that
some Ti can produce.

2.2 From Generality to Functionality

The model of the tree using nodes is very general and allows modeling even the
most cumbersome tree hash mode, e.g., where a node inputs 2 chaining value
bits from child #4 then 7 message bits, etc. We now introduce some concepts
that restrict this general model to one that can be easily represented and yet is
sufficiently flexible to cover all practical cases we can think of.

We represent trees in terms of hops that model how message and chaining
values are distributed over nodes. Any tree of hops uniquely maps to a tree of
nodes, so they are still supported by the model mentioned above. However, not
all trees of nodes (such as the cumbersome example above) can be represented
in trees of hops.

In Sakura, any tree of hops is encoded into a tree of nodes. In other words,
the functionality supported by Sakura is exactly that of all possible trees of
hops that can be built. Sakura-compatible tree hash modes are not required to
generate all possible hop trees, but instead they can focus on the desired subset
of them. In the sequel, we define what the hops are and how they are encoded
into nodes.

2.3 Hops and Hop Trees

Unlike a node that may simultaneously contain message bits and chaining values,
there are two distinct types of hops: message hops that contain only message
bits and chaining hops that contain only chaining values.

220 G. Bertoni et al.

The hops form a tree, with the root of the tree called the final hop. Such a
hop tree determines the parallelism that can be exploited by processing multiple
message hops or chaining hops in parallel.

Each hop has a single outgoing edge. A message hop has no incoming edges.
The number of incoming edges of a chaining hop is called its degree d. The hops
at the other end of these edges are called the child hops of that chaining hop.
The edges to a hop are labeled with numbers 0 to d − 1 and the hop at the
end of edge 0 is called the first child hop. There is exactly one hop that has no
outgoing edge and we call it the final hop. There is exactly one path from each
hop to the final hop.

We define the position of a hop in a hop tree by an index, that specifies the
path to follow to reach this hop starting from the final hop. It consists of a
sequence of integers α = α0α1 . . . αn−1. Indexing is defined in a recursive way:

– The index of the final hop is the empty sequence, denoted ∗.
– The index of the i-th child of a hop with index α has index α||i− 1.

The length of this sequence specifies the distance of the specified hop to the final
hop and is called its height. The height of the hop tree is the maximum height
over all hops.

2.4 Interleaving the Input over Message Hops

In general, message bits are distributed onto message hops from the first to the
last child.

In streaming applications, one may wish to divide message substrings over
multiple hops as the message becomes available. For this purpose chaining hops
have an attribute called interleaving block size I that determines how this shall
be done. The principle is that a chaining hop distributes the message bits it
receives over its child hops. It hands the first I bits to its first child, the second
sequence of I bits to its second child and so on. After reaching the last of its
child hops, it returns to its first child and so on. When a receiving hop is also
a chaining hop, it will distribute the message bits over its child hops according
to its own interleaving block size. When this process ends is determined by the
hashing mode. For example, it can be when the end of the message is reached
or when the hops have reached some maximum size specified in the mode’s
parameters.

A mode that does not make use of message block interleaving can set the
interleaving block size of the chaining hops to a value that is larger than any
message that may be presented, and we say I =∞.

The way message bits are distributed is formally captured by the GetMessage
function in Definition 1 below. For examples with block interleaving, please see
Sections 5.2 and 5.3.

2.5 Mapping Hops to Nodes

One can define hashing modes where the concepts of node and hop coincide
by imposing that each node contains exactly one hop. With kangaroo hopping

Sakura: A Flexible Coding for Tree Hashing 221

defined below, however, the first child hop is coded before its parent in the same
node.

In a mode without kangaroo hopping, the node tree is constructed from the
hop tree using the same topology. A node contains exactly one hop. The nodes
are constructed by putting message bits in nodes containing a message hop and
by putting chaining values in nodes containing a chaining hop.

The motivation for kangaroo hopping is the following. The length of (a node
mapped from) a chaining hop is the number of children multiplied by the length
of the chaining value. Compared to sequential hashing, this corresponds to an
overhead. Also, there is typically some additional computational overhead per
call to f . Kangaroo hopping reduces this overhead by putting multiple hops per
node in a way that does not jeopardize the potential parallelism expressed in the
hop tree. A chaining hop has an attribute that says whether kangaroo hopping
must be applied on it, and if so, the chaining hop is also called a kangaroo hop.
When encoding a kangaroo hop into a node, the node contains its first child
hop itself instead the chaining value (its f -image). For the other child hops it
contains the chaining values as usual. Hence, when evaluating F (M), instances
of f can process child hops in parallel and then the instance of f for the first
child continues processing the parent hop.

Kangaroo hopping can be applied in a recursive way, i.e., the first child hop
may also be a kangaroo hop. All in all, a node may contain a message hop
followed by zero, one or more chaining hops, or one or more chaining hops.
Kangaroo hopping reduces the number of nodes to the total number of hops
minus the number of kangaroo hops. It is easy to see that the number of nodes
can be reduced to the number of message hops, but not to less.

The result of applying f to the final node is the output of F . The last hop in
this node is the final hop. The result of applying f to an inner node is a chaining
value.

2.6 Illustrations

We illustrate these concepts with some examples in Figures 1, 2 and 3. These
figures depict hop trees with the following conventions. Message hops have sharp
corners, chaining hops have rounded corners. The final hop has a grey fill, the
others a white fill. An edge between child and parent has an arrow and enters
the parent from above if the chaining value obtained by applying f to the child
hop is in the parent hop. It has a short dash and enters the parent hop from the
left in the case of kangaroo hopping. Hops on the same horizontal line are in the
same node.

In Figure 1 there are in total 5 hops: 4 message hops M0 to M3 and one
chaining hop Z∗. The final node contains both the final hop Z∗ and M0 because
of kangaroo hopping. The total number of nodes is 4.

In Figure 2 there are in total 7 hops: 4 message hops M00, M01, M10, M11,
and three chaining hops Z0, Z1 and Z∗. The final node contains only the final
hop Z∗. The hops M00 and Z0 are in a single node. Similarly, M10 and Z1 are
in a single node. The total number of nodes is 5.

222 G. Bertoni et al.

Fig. 1. Example of a hop tree with application of kangaroo hopping. M0 and Z are in
the same node.

Fig. 2. Another example of a hop tree. M00 and Z0 are in the same node, as well as
M10 and Z1.

In Figure 3 there is only a single hop, that is at the same time a message hop
and the final hop. Clearly, there is only a single node containing this hop.

Fig. 3. Example of a hop tree with a single node

3 The Sakura Tree Coding

In this section we specify the Sakura tree coding. The goal of this coding is
to allow a tree hash mode to encode a hop tree into the input of f . From this
definition, it should be clear how the evaluation of F (M) must be processed.

Sakura: A Flexible Coding for Tree Hashing 223

For a Sakura-compatible tree hash mode to be sound, the individual parts
(e.g., message bits, chaining values) must be unambiguously recovered by parsing
the node tree. Of course, such a decoding never occurs in practice but must be
ensured for satisfying tree-decodability. The coding adds frame bits for tree-
decodability, as well as to ensure domain separation between inner nodes and
the final node.

The coding is based on a number of simple principles:

– Nodes, namely inputs to f , can be unambiguously decoded into hops from
the end. This is done by
• coding in a trailing frame bit whether it is a chaining hop or a message
hop;

• allowing at most a single message hop per node, and this at the begin-
ning;

• allowing the parsing of a chaining hop from the end.
– The parsing of a chaining hop from the end is made possible in the following

way:
• it is a series of chaining values followed by an interleaving block size;
• an interleaving block size consists of 2 bytes;
• at the end of the chaining values their number is appended in suffix-free
coding;

• the length of the chaining values is determined by the security strength
of f .

– We apply simple padding between the hops in a node, so as to allow the
alignment of these elements to byte boundaries, 64-bit word boundaries or
to any other desired boundaries. (This is up to the mode to define.)

– We apply simple padding at the end of inner nodes. Where appropriate, this
can be used by a mode to ensure that different sibling inner nodes have
the same length. This may simplify the implementation, e.g., if sibling inner
nodes are processed in parallel using SIMD instruction. (Again, this is up to
the mode to define.)

3.1 Formal Description of Sakura

We specify the Sakura tree coding in Figure 4 below. In our specification we
use the Augmented Backus-Naur Form (ABNF), which is used for describing
the syntax of programming languages or document formats [20]. (We refer to
the Wikipedia entries for ABNF.)

In short, an ABNF specification is a set of derivation rules, where a non-
terminal symbol is assigned a sequence of symbols or a choice of a set of sequences
of symbols, separated by |. Symbols that never appear on a left side are terminals.
Non-terminal symbols are enclosed between the pair 〈〉. In our case, the terminals
are either the frame bits ‘0’ and ‘1’, frame bits whose value is specified in the
text (FRAME BIT), bits coming from the message (MESSAGE BIT), bits
coming from chaining values (CHAINING BIT), or the empty string ‘’. The
expression n〈x〉 denotes a sequence of n elements of type 〈x〉. In the language of

224 G. Bertoni et al.

〈final node〉 ::= 〈node〉 ‘1’

〈inner node〉 ::= 〈node〉 〈padSimple〉 ‘0’

〈node〉 ::= 〈message hop〉 | 〈chaining hop〉 | 〈kangaroo hopping〉

〈kangaroo hopping〉 ::= 〈node〉 〈padSimple〉 〈chaining hop〉

〈message hop〉 ::= 〈message bit string〉 ‘1’

〈message bit string〉 ::= ‘’ | 〈message bit string〉 MESSAGE BIT

〈chaining hop〉 ::= nrCVs〈CV 〉 〈coded nrCVs〉 〈interleaving block size〉 ‘0’

〈CV 〉 ::= nCHAINING BIT

〈coded nrCVs〉 ::= 〈integer〉 〈length of integer〉

〈integer〉 ::= 〈frame byte string〉

〈frame byte string〉 ::= ‘’ | 〈frame byte string〉 8FRAME BIT

〈length of integer〉 ::= 8FRAME BIT

〈interleaving block size〉 ::= 〈mantissa〉 〈exponent〉

〈mantissa〉 ::= 8FRAME BIT

〈exponent〉 ::= 8FRAME BIT

〈padSimple〉 ::= ‘1’ | 〈padSimple〉 ‘0’

Fig. 4. Definition of Sakura tree hash coding

[6], the produced nodes compose a tree template, i.e., a tree with placeholders
for message bits and chaining values.

The production rules for 〈node〉 express which sequences of hops can be en-
coded in a node. E.g., if the node contains one message hop followed by two
chaining hops because of kangaroo hopping, 〈node〉 expands to 〈message hop〉
〈padSimple〉 〈chaining hop〉 〈padSimple〉 〈chaining hop〉.

The length of the chaining values 〈CV〉 is n bits, where n is a multiple of 8 to
ensure byte-alignment. If the function f has worst-case (or collision resistance)
security strength s [19], then we take n equal to s multiplied by two and rounded
to a multiple of 8, i.e., n = 8
s/4�. In the case of a sponge function with capacity
c, n = 8
c/8�, e.g., if c = 256 bits, then a 〈CV〉 consists of 32 bytes [2]. We assume
that the security strength of the inner function is known from the context.

When interpreted as an integer, a byte has the value∑
0≤i<8

bi2
i, (1)

where the first bit in a byte has index 0 and the last 7.

Sakura: A Flexible Coding for Tree Hashing 225

The 〈coded nrCVs〉 codes the number of chaining values and is a positive
integer. It consists of two fields:

– 〈integer〉: a byte string that can be decoded to an integer using the function
OS2IP(X) specified in the RSA Labs standard PKCS#1[13],

– 〈length of integer〉: a single byte that codes the length (in bytes) of the
〈integer〉 field.

The interleaving block size codes an integer using a floating point represen-
tation. Its first byte is the mantissa m and its second byte is the exponent e.
The value of the interleaving block size I is then given by I = 2e(2m+ 1). The
largest possible value that the interleaving block size can have with this coding is
(29−1)2255, obtained by setting all bits in its coding to 1. In practice no message
will ever attain this length and we use it to denote that there is no interleaving.
This value will be denoted by I =∞ in the remainder of this paper.

Within a node, the chaining bits must come from child nodes with increasing
indexes, starting from 0 at the beginning of the node, across all chaining hops of
the node. When kangaroo hopping is not used, the node indexing matches the
hop indexing, but not in general.

The encoding of the message bits in the tree should allow the reconstruction
of the message by applying GetMessage to the final hop according to following
definition. Note that reconstructing the message from the nodes is an opera-
tion that is relevant in proving soundness rather than something to be used in
practice.

Definition 1. GetMessage is defined by the following recursion:

– GetMessage(message hop) is the message hop’s message string
– GetMessage(chaining hop) = DeInterleave(L, I), where

• L is an ordered list obtained by calling GetMessage() on each child hop,
• I is the input chaining hop’s interleaving block size attribute, and
• DeInterleave(L, I) extracts the first I bits from L0, then the first I

bits from L1, . . . , up to the last item of list, then back to L0, and so
on, until all strings in L are empty. Extracting more bits than available
reduces to extracting all remaining bits.

Definition 2. A tree template is Sakura-compatible if its nodes are compliant
with the coding specified in Figure 4, if the number of 〈CV〉 and the block inter-
leaving size are coded as explained above, and if the chaining bits and message
bits are as defined above.

3.2 Illustrations

We apply the Sakura encoding to the examples depicted on Figures 1, 2 and 3.
In these examples, we use the following conventions. Bit values are written as 0 or
1, while sequences of 8 bits can be written in hexadecimal notation prefixed with
0x with numerical value following Eq. (1). Spaces are inserted only for reading

226 G. Bertoni et al.

purposes. If Mα is a message hop, we denote by Mα its message bits. Similarly,
if Zα is a chaining hop, we denote by {Iα} the encoding of its interleaving
block size. Then, CVβ is the chaining value resulting from the application of f
to the node with index β. Finally, 0∗ indicates a non-negative number of bits 0
determined by the tree hash mode, typically inserted for alignment purposes.

The example corresponding to Figure 1 is given in Table 1. In the final node,
〈node〉 expands to 〈message hop〉 〈padSimple〉 〈chaining hop〉, while in all other
nodes it simply expands to 〈message hop〉.

The example corresponding to Figure 2 is given in Table 2. In two inner nodes,
〈node〉 expands to 〈message hop〉 〈padSimple〉 〈chaining hop〉 and in two other
inner nodes, 〈node〉 expands to 〈message hop〉. In the final node, 〈node〉 simply
expands to 〈chaining hop〉.

For sequential hashing (Figure 3), this reduces to a single final node containing
M11, and the relationship between the inner and outer hash functions reduces to

F (M) = f(M ||11). (2)

Table 1. Encoding for the hop tree example depicted in Figure 1

Node index Encoding

2 M31 10∗ 0

1 M21 10∗ 0

0 M11 10∗ 0

∗ M01 10∗ CV0 CV1 CV2 0x03 0x01 {I∗}0 1

Table 2. Encoding for the hop tree example depicted in Figure 2

Node index Encoding

10 M111 10∗ 0

1 M101 10∗ CV10 0x01 0x01 {I1}0 10∗ 0

00 M011 10∗ 0

0 M001 10∗ CV00 0x01 0x01 {I0}0 10∗ 0

∗ CV0 CV1 0x02 0x01 {I∗}0 1

4 Sakura-Compatible Tree Hash Modes and Soundness

We define Sakura-compatible tree hash modes in the following way.

Definition 3. A tree hash mode is Sakura-compatible if it generates only
Sakura-compatible templates.

Sakura: A Flexible Coding for Tree Hashing 227

We will now prove that any Sakura-compatible tree hash mode, as well as
the union of any set of Sakura-compatible tree hash modes, is sound by proving
a number of lemmas.

We start by defining S as a tree hash mode that can generate all Sakura-
compatible templates. By construction, this mode is Sakura-compatible. Its
parameters A must describe the whole hop tree structure with each hop’s at-
tributes, plus the length of all message blocks and the number of zeroes inserted
by 〈padSimple〉. This mode is not meant to be used in practice but only in the
scope of this proof.

Lemma 1. Given a node instance produced by S (i.e., with Sakura coding)
and the knowledge of the security strength of f , one can recover indices of all
hops, the message strings of the message hops, the location and indices (relative
to the given node instance index) of the chaining values, and the interleaving
block size attributes of all chaining hops.

Proof. From the definition of Sakura in Figure 4, it is clear that a 〈node〉,
obtained after removing the trailing bit from a 〈final node〉 or 〈inner node〉 (and
in the latter case, also removing the 〈padSimple〉 padding), consists of a possible
〈message hop〉 followed by one or more 〈chaining hop〉s, with simple padding in
between. A 〈chaining hop〉 in turn consists of a sequence of 〈CV〉s followed by
an encoding of their number and a 〈interleaving block size〉.

Parsing a 〈node〉 can be done starting at the end. If the last bit is 1 it simply
consists of a single message hop. Otherwise, it ends with a chaining hop. In the
latter case, the last two bytes code the interleaving block size of the chaining
hop and the byte before that denotes the length of the field coding the number
of chaining values and allows localizing it. Decoding this field yields the number
of chaining values and together with their lengths uniquely determines their
positions in the node, including the start of the chaining hop in the node. This
allows continuing the parsing until reaching the beginning of the 〈node〉 or the
end of the 〈message hop〉 in the beginning of the 〈node〉.

The interleaving block size of a chaining hop can be computed from the coding
in 〈interleaving block size〉 at its end and the message string of the 〈message hop〉
(if any) can be obtained by removing the trailing bit 1.

The index of the last 〈chaining hop〉 is that of the 〈node〉. Whenever kangaroo
hopping is used, the index of a 〈chaining hop〉 or 〈message hop〉 is recursively
the index of the next 〈chaining hop〉 with 0 concatenated to it. This is in line
with the node indexing specified in Section 3.1.

The indices of the nodes corresponding with the 〈CV〉s in a 〈node〉 can be
obtained by appending to the last hop index 0 for the first CV, 1 for the second
and so on, throughout all the 〈chaining hop〉s of the node instance from beginning
to end. ��

To prove the soundess of S, we use the three conditions that are shown to be
sufficient in [6]. We now informally summarize them.

228 G. Bertoni et al.

– The mode must be tree-decodable. This means that the tree can be parsed to
retrieve the frame bits, message bits and chaining bits unambiguously. There
must be a decoding algorithmAdecode that can parse the tree progressively on
subtrees, starting from the final node only, and each time adding a new inner
node and pointing at the corresponding chaining value. Also, the process
must terminate by requiring that one can distinguish between complete and
compliant trees, subtrees that are compliant except for some missing nodes
(called final-subtree-compliant), and incompliant trees.

– The mode must be message-complete. This means that the message can be
reconstructed from the complete tree.

– The mode must be final-node separable. This essentially means that one can
tell the difference between final nodes and inner nodes.

Lemma 2. The tree hash mode S is tree-decodable.

Proof. First, there are no tree instances that are both compliant and final-
subtree-compliant. Lemma 1 proves that one can always unambiguously decode
chaining values and distinguish them from other kind of bits given only one node
instance. This means that a final subtree S is a proper final subtree iff there are
chaining values pointing to nodes missing in S.

Second, the algorithm Adecode can be defined as follows. Given a tree instance
S with index set J , it first recursively decodes tree node instances of S as in
the proof of Lemma 1. If at any point, the coding does not follow the grammar
defined in Figure 4 or when the string is too short to contain the number of
〈CV〉s coded in 〈coded nrCVs〉, it returns “incompliant”.

The algorithm Adecode then looks for nodes that have chaining values pointing
to nodes missing in S (i.e., whose index is not in J). If there no such chaining
values, return “compliant”. Otherwise, return “final-subtree-compliant” and the
index of such a missing node using a deterministic rule (e.g., the missing node
with the first index in lexicographical order).

The algorithm Adecode runs in linear time in the number of bits in the tree
instance, as can be seen in the proof of Lemma 1. ��
Lemma 3. The tree hash mode S is message-complete.

Proof. Given a compliant tree instance S, the algorithm Amessage can be de-
fined similarly to the GetMessage function in Definition 1. From Lemma 1, the
necessary hop attributes can be extracted from the tree instance.

Clearly, this algorithm runs in linear time in the number of bits in the tree
instance. ��
Lemma 4. The tree hash mode S is final-node separable.

Proof. Sakura enforces domain separation between final and inner nodes, as
the trailing bit of a final node is always 1 and that of an inner node is always 0.

��
Theorem 1. Any Sakura-compatible tree hash mode, as well as the union of
any set of Sakura-compatible tree hash modes, is sound.

Sakura: A Flexible Coding for Tree Hashing 229

Proof. From the previous lemmas and [6, Theorem 1], it follows that S is sound.
The set ZT of tree templates that a Sakura-compatible tree hash mode T

produces is included in those produced by S, i.e., ZT ⊆ ZS . Therefore, T can be
implemented by running S as a sub-procedure, after encoding T ’s parameters
in the format that S accepts. This only restricts what an attacker can query, so
T is at least as secure as S.

When taking the union of two or more Sakura-compatible tree hash modes, if
the tree instances produced by each of the united modes are Sakura-compatible,
then so are the tree instances produced by the union. It follows that the union of
Sakura-compatible tree hash modes is Sakura-compatible and the argument
above carries over to the union. ��

5 Examples of Tree Hash Modes

In this section we give some examples of tree hash modes that can be realized
with the Sakura coding. In general, specifying a mode mainly comes down to
specifying how the tree grows as a function of the size of the input message.
These modes are parameterized and the value of the parameters must be known
at the time of hashing a message.

For fully specifying a tree hash mode compliant with Sakura, one has to
specify the number of hops and their indices, how the message bits are distributed
onto message hops, and for each chaining hop whether kangaroo hopping is
applied. In addition, the mode has to specify the length of the padding elements
as they appear in the grammar of Figure 4. For the padding between hops, this
can be derived from a simple strategy, such as always align on bytes, on 64-bit
boundaries or on the input block size (or rate) of the inner hash function f . If
desired, the mode can also specify how to use the padding at the end of inner
nodes to ensure that sibling nodes executed in parallel branches have the same
length.

In our examples, unless otherwise specified, the message is split into B-bit
blocks Mi, i.e.,

M = M0||M1|| . . . ||Mn−1,

with n =
|M |/B� and where the last block Mn−1 may be shorter than B bits.

5.1 Final Node Growing

With final node growing, the hop tree has fixed height 1 and the number of
leaves increases as a function of the input message length. There is only a single
chaining hop, namely the final hop. The indices of the message hops are integers
0 to n− 1 and the message string in message hop with index i is Mi, hence each
message hop has a fixed maximum size B. Interleaving is not applied, so the
interleaving block size in the final hop is I =∞.

This mode can be useful to enable a large amount of potential parallelism,
namely up to n =
|M |/B� message hops can be processed in parallel if the

230 G. Bertoni et al.

corresponding message blocks are available at the same time. In practice, a
number p of independent processes Pj , j = 0, . . . , p − 1 can be set up, which
does not depend on the tree structure other than in the total number of message
hops. Each process Pj could take care of message hops with indices j + kp.

The drawback of this method is an extra cost proportional to the message
length, as n chaining values of length c must be processed in the final node. This
extra cost represents approximately a fraction c/B of the nominal work, which
can be made arbitrarily small by choosing B large enough.

This mode has two parameters:

– B, the maximum size of message string in message hops, and
– whether or not kangaroo hopping shall be applied in the final hop.

5.2 Leaf Interleaving

With leaf interleaving, the hop tree has a fixed topology, i.e., its height is 1 and it
has D message hops, with D a parameter. The size of the message hops depends
on the input message length. The message is distributed over the leaves as it
arrives in blocks of size B. The message hops have indices i ∈ {0, 1, . . . , D − 1}
and their message string is Mi||Mi+D|| . . . ||Mi+(si−1)D with si =
(n − i)/D�.
The interleaving block size in the final hop shall be set to I = B. If |M | < DB,
there are message hops with zero message bits. (Note that an alternate message
assignment procedure is proposed later in this section.)

This mode is useful if one wants to hash a message in up to D parallel threads.
The drawback is that D represents a limit in the potential parallelism, and this
value must be chosen beforehand.

This method has a fixed extra cost, independent of the message length, as the
final node has to process D chaining values.

This mode has three parameters:

– B, the interleaving block size,
– D, the number of message hops, and
– whether or not kangaroo hopping shall be applied in the final hop.

Ensuring Equal-Length Inner Nodes. In the implementation, it may be
interesting to ensure that all the D nodes processed simultaneously have equal
block length w.r.t. the inner function f . For the D (or D−1, if kangaroo hopping
is applied) inner nodes, this can be achieved by systematically adding bits with
value 0 in the 〈padSimple〉 padding of the 〈inner node〉 production rule. A simple
procedure consists in adding padding bits so as to match the length of the longest
inner node.

When kangaroo hopping is applied, the final node has the possibility to add
padding bits after the message hop, just before the chaining values of the D− 1
inner nodes are added, i.e., in the 〈padSimple〉 padding of the 〈kangaroo hopping〉
production rule. The processing of all D pieces of message can therefore be
aligned, even with kangaroo hopping.

Sakura: A Flexible Coding for Tree Hashing 231

Avoiding Systematic Block Alignment. Implementations can also be made
easier when the interleaving block size B is equal to, or a multiple of, the input
block size (or rate) r of the inner hash function f . This avoids re-shuffling of the
input message bytes, in particular for implementations that process less than D
nodes in parallel.

But there is a potential efficiency problem in this case if care is not taken in
the way the message bits are spread on the D message hops, in particular for
the last |M | mod DB bits. If the message bits are cyclically spread by blocks of
B bits onto the D message hops until exhaustion, message hops will very often
contain a whole number of r-bit blocks. After adding frame and padding bits, the
resulting nodes will systematically be just a few bits longer than a whole number
of r-bit blocks. This would be unfortunate, as the inner function f would need
to process an additional block containing only frame and padding bits and no
message payload, and this amounts to quite an extra fixed cost compared to just
processing the final hop. E.g., if B = r = 1024, D = 4 and the message length is
3208 (mod 4096), the last 3208 bits would be split as 1024+ 1024+ 1024+ 136,
causing 3 extra blocks to be absorbed without any payload.

To address this, the mode can simply spread the last |M | mod DB bits as
equally as possible (up to, say, bytes) onto the D hops. The mode remains
Sakura-compatible since the GetMessage function in Definition 1 simply con-
catenates the last blocks of each nodes, even if they have less than I = B bits.
Taking the same example as above, the last 3208 bits could instead be spread as
800+ 800+ 800+ 808 and avoid the 3 extra blocks mentioned above. Note that
this technique requires to know the end of the message DB bits in advance or
to have a buffer of DB bits.

Let us specify a possible alternate procedure, which we illustrate in the case
that the message and interleaving block sizes are byte-aligned, i.e., |M | and B
are multiples of 8. With m = |M |/8 and b = B/8, we concentrate on the last
m mod Db bytes. If m mod Db = 0, message hops all contain whole blocks, and
there is nothing to do. If m mod Db > 0, we proceed as follows.

– Let M ′ be the last m mod Db bytes of M .
– For i from 0 to D − 1:

• Move the first
⌊
m+i
D

⌋
remaining bytes from M ′ to the i-th message hop.

5.3 Macro- and Microscopic Leaf Interleaving

Different orders of magnitudes for the block interleaving size I can be useful
depending on the kind of parallelism that one wishes to exploit. At one end
of the spectrum is a single-instruction multiple-data (SIMD) unit of a modern
processor or core. Such a unit can naturally compute two (or more) instances
of the same primitive in parallel. For the processor or core to be able to fetch
data in one shot, it is interesting to process simultaneously data blocks that are
located close to one another. Suitable I values for addressing this are, e.g., 64
bits or the input block size (or rate) of f .

232 G. Bertoni et al.

At the other end of the spectrum is the case of independent processors, cores
or even machines that process different parts of the input in parallel. In contrast,
it is here important to avoid different processors or cores having to fetch the same
memory addresses, or to avoid copying identical blocks of data for two different
machines. Suitable I values for addressing this are in the order of kilobytes or
megabytes.

The two cases can coexist, for instance, if several cores are used to hash in
parallel and each core has a SIMD unit. A suitable tree structure is one with
height 2, as depicted in Figure 2. The subtrees rooted by Z0 and Z1 are handled
by different cores, whereas the leaves are processed together in the SIMD units.
The final hop Z∗ splits the message to hash into macroscopic blocks (large I),
while the intermediate chaining hops Z0 and Z1 further split the macroscopic
blocks into microscopic blocks suitable for the SIMD unit (small I).

The tree hash mode of Section 5.2 can be generalized to support such mixed
interleaving block sizes.

5.4 Binary Tree

With a binary tree, the tree topology evolves as a function of the input message
size. All chaining hops have degree 2, and the message strings in the message
hops have a fixed maximum size B. The height of the message hops depends on
the length of the message and the position of the message string of that message
hop in the message. Interleaving is not applied, so the interleaving block size in
all chaining hops is I =∞.

This mode is useful if one wants to limit the effort to re-compute the hash
when only a small part of the message changes. This requires that the chaining
values are stored. Hence, in this application, kangaroo hopping is not interesting.

The hop tree can be defined in the following way. We first arrange the message
blocks Mi in a linear array to form the message hops. Each message hop can be
seen as a tree with height 0. Then we apply the following procedure iteratively:
combine the trees in pairs starting from 0 by adding a chaining hop and con-
necting the two root hops to it. If the number of trees is odd, the last tree is
just kept as such. Applying this
log2 n� times will reduce the number of trees
to a single one. The most recently added hop is the final hop. The indices of the
hops follow directly from the tree topology.

This mode has one parameter: B, the maximum size of message strings in the
message hops.

6 Application to Keccak and SHA-3

In the future, one may standardize tree hash modes. By adopting Sakura coding
from the start, any future Sakura-compatible tree hash mode using Keccak [4]
as inner function can be introduced while guaranteeing soundness of the union of
that new mode and any compatible tree hash mode(s) defined up to that point.
The sequential hash mode will then simply correspond with the single-hop case

Sakura: A Flexible Coding for Tree Hashing 233

of Figure 3. As shown in Eq. (2), this comes down to appending two bits to the
message before presenting to the inner function.

As NIST proposed to standardize both arbitrary output length instances
(SHAKE128 and SHAKE256) and SHA-2 drop-in replacement instances (SHA3-
224 to SHA3-512) with their traditional fixed output length [12], we think that it
would not make much sense to combine tree hashing with the latter. The reason
is that to carry over the full security of the underlying hash function, one has to
set the tree-level chaining value length n equal to the capacity c (or n equal to
twice the security strength in general). As for SHA3-n, NIST sets c = 2n, so one
would need to define some ad-hoc construction on top of it to get two output
blocks (like a mask generating function), and this would be absurd given that
SHA3-n is obtained by truncating Keccak’s output.

One may additionally require domain separation between SHA-3 and future
uses of Keccak, or even between different instances of SHA-3. For the SHA-3
instances that would foresee tree hashing, domain separation can be applied at
the level of the inner function f :

f(x) = Keccak[r, c](x||domain separation suffix).

If this additional domain separation is realized by appending sufficiently few
bits, there is no performance penalty for messages that consist of byte sequences
and rate values that are a multiple of 8. In particular, the multi-rate padding in
Keccak adds at least 2 bits and at most r bits. For byte sequences this becomes
at least 1 byte and at most r/8 bytes. So up to 6 bits can be appended to the
message without impacting these minimum and maximum values.

Acknowledgments. We would like to thank Stefan Lucks, Dan Bernstein and
the members of the NIST hash team for useful discussions.

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security 1993, pp. 62–73. ACM (1993)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008), http://sponge.noekeon.org/

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sufficient conditions for
sound tree hashing modes, Symmetric Cryptography. In: Handschuh, H., Lucks, S.,
Preneel, B., Rogaway, P. (eds.) Dagstuhl Seminar Proceedings, no. 09031, Dagstuhl,
Germany. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference
(January 2011), http://keccak.noekeon.org/

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak and the SHA3 stan-
dardization, presentation at NIST (February 2013),
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/

Keccak-slides-at-NIST.pdf

http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf

234 G. Bertoni et al.

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sufficient conditions for
sound tree and sequential hashing modes. International Journal of Information
Security (2013), http://dx.doi.org/10.1007/s10207-013-0220-y

7. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

8. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

9. Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of permutation-
based compression functions and tree-based modes of operation, with applica-
tions to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–121.
Springer, Heidelberg (2009)

10. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family, Submission to NIST (2008),
http://skein-hash.info/

11. Gueron, S.: A j-lanes tree hashing mode and j-lanes SHA-256. Journal of Infor-
mation Security 4, 4–11 (2013)

12. Kelsey, J.: Moving forward with SHA3, NIST hash forum (November 2013),
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/

kelsey-email-moving-forward-110113.pdf

13. RSA Laboratories, PKCS # 1 v2.2 RSA Cryptography Standard (2012)
14. Lucks, S.: Tree hashing: A simple generic tree hashing mode designed for SHA-2

and SHA-3, applicable to other hash functions, Early Symmetric Crypto (ESC)
(2013)

15. Lucks, S., McGrew, D., Whiting, D.: Batteries included: Features and modes for
next generation hash functions. In: The Third SHA-3 Candidate Conference (2012)

16. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

17. Merkle, R.C.: Secrecy, authentication, and public key systems, PhD thesis. UMI
Research Press (1982)

18. NIST, Mailing list on NIST’s cryptographic hash workshops and hash algorithm
competition, http://csrc.nist.gov/groups/ST/hash/email_list.html

19. Merkle, R.C.: NIST special publication 800-57, recommendation for key manage-
ment (March 2007) (revised)

20. Overell, P.: Augmented BNF for syntax specifications: ABNF, Internet Request
for Comments, RFC 5234 (January 2008)

21. Rivest, R., Agre, B., Bailey, D.V., Cheng, S., Crutchfield, C., Dodis, Y., Fleming,
K.E., Khan, A., Krishnamurthy, J., Lin, Y., Reyzin, L., Shen, E., Sukha, J., Suther-
land, D., Tromer, E., Yin, Y.L.: The MD6 hash function – a proposal to NIST for
SHA-3, Submission to NIST (2008), http://groups.csail.mit.edu/cis/md6/

22. Sarkar, P., Schellenberg, P.J.: A parallelizable design principle for crypto-
graphic hash functions, Cryptology ePrint Archive, Report 2002/031 (2002),
http://eprint.iacr.org/

23. Torgerson, M., Schroeppel, R., Draelos, T., Dautenhahn, N., Malone, S., Walker,
A., Collins, M., Orman, H.: The SANDstorm hash, Submission to NIST (2008),
http://www.sandia.gov/scada/documents/

SANDstorm Submission 2008 10 30.pdf

http://dx.doi.org/10.1007/s10207-013-0220-y
http://skein-hash.info/
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/kelsey-email-moving-forward-110113.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/kelsey-email-moving-forward-110113.pdf
http://csrc.nist.gov/groups/ST/hash/email_list.html
http://groups.csail.mit.edu/cis/md6/
http://eprint.iacr.org/
http://www.sandia.gov/scada/documents/SANDstorm_Submission_2008_10_30.pdf
http://www.sandia.gov/scada/documents/SANDstorm_Submission_2008_10_30.pdf

Reset Indifferentiability from Weakened Random
Oracle Salvages One-Pass Hash Functions

Yusuke Naito1,3, Kazuki Yoneyama2, and Kazuo Ohta3

1 Mitsubishi Electric Corporation
Naito.Yusuke@ce.MitsubishiElectric.co.jp

2 NTT Secure Platform Laboratories
yoneyama.kazuki@lab.ntt.co.jp

3 The University of Electro-Communications
kazuo.ohta@uec.ac.jp

Abstract. Ristenpart et al. (EUROCRYPT 2011) showed that the indifferentia-
bility theorem of Maurer et al. (TCC 2004) does not cover all multi-stage security
notions; it only covers single-stage security notions. They defined reset indiffer-
entiability, and proved the reset indifferentiability theorem, which covers all se-
curity notions; if a hash function is reset indifferentiable from a random oracle
denoted by RO, for any security, any cryptosystem is at least as secure under the
hash function as in the RO model. Unfortunately, they also proved the impos-
sibility of one-pass hash functions such as ChopMD and Sponge; there exists a
multi-security notion such that some cryptosystem is secure in the RO model but
insecure when RO is replaced with a one-pass hash function.

In order to ensure other multi-stage security notions, we propose a new method-
ology, called theWRO methodology, instead of the RO methodology. We con-
sider “Reset Indifferentiability from Weakened Random Oracle” which salvages
ChopMD and Sponge. The concrete procedure of theWRO methodology is as
follows:

1. Define a new concept ofWRO instead of RO,
2. Prove that a hash function H is reset indifferentiable fromWRO, (here the

examples are ChopMD and Sponge), and
3. For multi-stage security G, prove that a cryptosystem C is G-secure in the
WRO model.

As a result, C with H is G-secure by combining the results of Steps 2, 3, and
the theorem of Ristenpart et al. Moreover, for a public-key encryption scheme
(as C) and the chosen-distribution attack game (as the game of G) we prove that
C(WRO) is G-secure, which implies the appropriateness of the new concept of
theWRO methodology.

Keywords: Indifferentiable hash function, reset indifferentiability, multi-stage
game, Sponge, ChopMD.

1 Introduction

1.1 Indifferentiability

The Indifferentiability theorem [12] of Maurer, Renner, and Holenstein (MRH), called
MRH theorem, covers all single-stage security notions Gs and all cryptosystems C; for

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 235–252, 2014.
c© Springer International Publishing Switzerland 2014

236 Y. Naito, K. Yoneyama, and K. Ohta

∀G ∈ Gs and ∀C ∈ C, C is at least as G-secure in the F1 model as in the F2 model, de-
noted by C(F1) �G C(F2), if “F1 is indifferentiable from F2”, denoted by F1 � F2. The
game of F1 � F2 is a simulation based game where some stateful simulator S is con-
structed, which represents some adversary in the F2 model, thereby this game ensures
that any adversary in the F1 model can obtain some information in the F2 model due to
S . Thus, this framework distinguishes interfaces of F which are adversarial and honest
interfaces, denoted by F.adv and F.hon, respectively. Adversaries are permitted to ac-
cess to the adversarial interface, and honest parties are permitted to access to the honest
interface. The definition of F1 � F2 is that there exists a stateful simulator S such that
for any distinguisher D which interacts with two oracles (L,R), no D can distinguish
real world (L,R) = (F1.hon, F1.adv) from ideal world (L,R) = (F2.hon, S F2.adv) where
S has access to F2.adv. MRH proved the following theorem:

MRH Theorem.[12] F1 � F2⇒ ∀C ∈ C,∀G ∈ Gs: C(F1) �G C(F2).

1.2 ROMethodology

Coron, Dodis, Malinaud, and Puniya [7] pointed out that the MRH theorem opened a
nice modular approach for security proofs of cryptosystems using hash function HU;
HU � RO ⇒ ∀C ∈ C,∀G ∈ Gs: C(HU) �G C(RO) where it is assumed that the under-
lying primitiveU is ideal. Thus designers of hash functions only have to concentrate on
designing H such that HU � RO, and ones of cryptosystems concentrate on designing
of C such that C is G-secure in the RO model. This approach is called as the Random
Oracle (RO) methodology. In the proof of HU � RO, the real world is (L,R) = (HU,U)
and the ideal world is (L,R) = (RO, S RO). Hereafter, we call hash function HU such that
HU � RO an “IFRO (indifferentiable from a RO) hash function” and its construction
the “IFRO hash construction”.

So far, many IFRO hash constructions have been proposed such as the Chop Merkle-
Damgård (ChopMD) construction [7] and the Sponge construction [4]. SHA-512/224
and SHA-512/256, which are standarized in FIPS 180-4 [17], employ the ChopMD
construction, and the SHA-3 winner Keccak [16,5] employs the Sponge construction.
Therefore, IFRO security is an important criterion of designing hash functions.

1.3 Impossibility of IFRO Security in Multi-Stage Security Games

However, Ristenpart, Shacham, and Shrimpton (RSS) [18] pointed out that the MRH
theorem covers all single-stage security notions Gs, while it does not cover all multi-
stage security notions Gm.

The impossibility is from a difference of conditions of “state” sizes between indiffer-
entiability and multi-stage security. Indifferentiability deals with a “stateful” simulator,
that is, the size of the sate of the simulator is not restricted. On the other hand, in multi-
stage games, the size of the state shared among adversaries is restricted.

They gave an example meeting the impossibility. They defined a two party challenge
response protocol CR and multi-stage security, called CRP-security. They showed that
CR is CRP-secure in the RO model but insecure when using IFRO one-pass hash func-
tions such as the ChopMD hash function and the Sponge hash function.

Weakened Random Oracle Salvages One-Pass Hash Functions 237

Note that the RSS result does not always imply that for ∀G ∈ Gm and ∀C ∈ C, C
is G-secure in the RO model and insecure when using HU . So we have the following
question:

“Can we prove the G-security of C(HU)?”

This paper tackles how to solve this question. The candidate to solve this question is
reset indifferentiability of RSS [18].

1.4 Reset Indifferentiability

The reset indifferentiability framework is the extension of the indifferentiability frame-
work and this theorem, called RSS theorem, covers all security notions G (= Gs ∪Gm).
The RSS theorem ensures that for ∀G ∈ G and ∀C ∈ C, C(F1) �G C(F2) if F1 is reset
indifferentiable from F2, denoted by F1 �r F2. The reset indifferentiable game is the
same simulation based game as the indifferentiable game [12]. The difference is that in-
differentiability deals with a stateful simulator, while reset indifferentiability deals with
a stateless simulator. The “stateless” setting reflects the settings of multi-stage security
games where the state size among adversaries is restricted. So the definition of F1 �r F2

is that there exists a stateless simulator S such that for any distinguisherD which inter-
acts with two oracles (L,R), noD can distinguish a real world (L,R) = (F1.hon, F2.adv)
from an ideal world (L,R) = (F2.hon, S F2.adv). RSS proved the following theorem.

RSS Theorem. [18] F1 �r F2 ⇒ ∀G ∈ G,∀C ∈ C: C(F1) �G C(F2).

And, the RSS theorem offers the corollary: HU �r RO ⇒ ∀G ∈ G,∀C ∈ C : C(HU) �G
C(RO).

Unfortunately, RSS also proved the impossibility of HU �r RO where H is a one-
pass hash construction such as the ChopMD construction and the Sponge construction.
Therefore, we have to consider another solution than the RO methodology.

1.5 Our Contributions – A New Proposal ofWROMethodology –

We propose a WRO methodology which is based on “Reset Indifferentiability from
Weakened Random Oracle (WRO)” in order to ensure the G-security of C(HU). This
paper deals with the ChopMD construction and the fixed output length Sponge (FOL-
Sponge) construction as H, because these are employed in important hash functions
such as SHA-512/224, SHA-512/256, and SHA-3 winner Keccak.

The concrete proof procedure of theWRO methodology is as follows:

1. Define a new concept ofWRO instead of RO,
2. Prove that HU �r WRO assumingU is ideal, and
3. Prove that C is G-secure in theWRO model.

As a result we can ensure that C(HU) is G-secure by combining the results of Steps 2
and 3, and the RSS theorem. Moreover, for public-key encryption (as cryptosystem C)
and Chosen Distribution Attack [1,2] (as game G) we prove that C(WRO) is G-secure,
which implies the appropriateness of the new concept of theWRO model.

238 Y. Naito, K. Yoneyama, and K. Ohta

D’s Procedure 1 (Condition 1)
1.D makes a query x to R and receives the response y1.
2.D makes a query x to R and receives the response y2.

Fig. 1. Distinguisher’s Procedure 1

D’s Procedure 2 (Condition 2)
1. D makes a query IV‖M1 to R and receives the response y1

2. D makes a query y1‖M2 to R and receives the response y2

Fig. 2. Distinguisher’s Procedure 2

We define WRO so that one can construct a stateless simulator such that HU �r

WRO, that is, an adversary can simulate information ofU (= HU .adv) fromWRO.adv.
ThusWRO consists of RO and sub oracle O∗ which leaks information to simulateU,
and the interfaces are defined asWRO.hon = RO andWRO.adv = (RO,O∗).

To our knowledge, our result is the first result to ensure the reducibility from a
real model to an ideal model for the important hash constructions, ChopMD and
FOLSponge.

How to DefineO∗. We explain how to defineO∗ by basing on the proof of ChopMDh �
RO, where h : {0, 1}m+2n → {0, 1}2n is a random oracle compression function. For two
block message M1‖M2, the output of ChopMD is calculated as ChopMDh(M1‖M2) =
chopn(h(h(IV‖M1)‖M2)) where chopn accepts 2n bit value x′‖x∗ and returns the right n
bit value x∗. In this case, the real world is (L,R) = (ChopMDh, h). In the indifferentiable
game, distinguisherD tries to distinguish the real world from the ideal world by using
query-response values of (L,R). Therefore, the following two points are required to
construct a simulator S . The first point is the simulation of h. The second point is the
simulation of the relation between L and R in the real world, because L uses R in the
real world. We explain the simulations by considering the use of the S ’s state.

Simulation of h: We explain the simulation of h by using Fig. 1. This example is that
D makes a repeated query. In the real world the responses y1 and y2 satisfy the
following conditions, since R is a random oracle h,

– Condition 1: y1 is a random value and y2 = y1.
The following demonstrates that S can return responses satisfying the condition by
using the S ’s state.

– Constructing S : In Step 1 S chooses a random value as the response y1 for
the query x. Then S records the query response pair (x, y1). In Step 2 S finds
y1 from the recorded pair (x, y1), and defines y2 := y1.

Simulation of the L-R Relation: We explain the simulation of the relation between L
and R by using Fig. 2. In the real world, since (L,R) = (ChopMDh, h), the query
response values in Fig. 2 satisfy the following conditions.

– Condition 2: chopn(y1) = ChopMD f (M1) and chopn(y2) = ChopMDh(M1‖M2).
The following shows that S can return responses satisfying the condition by using
the S ’s state.

Weakened Random Oracle Salvages One-Pass Hash Functions 239

– Constructing S : In Step 1 S defines y∗1 := RO(M1) for the query IV‖M1,
chooses a random value y′1, and defines y1 := y′1‖y

∗
1. Then S records the pair

(M1, y1). In Step 2, for the query y1‖M2, S finds M1 from the recorded pair
(M1, y1). Then S chooses a random value y′2, defines y∗2 := RO(M1‖M2), and
y2 := y′2‖y

∗
2. This procedure ensures that chopn(y1) = RO(M1) and chopn(y2) =

RO(M1‖M2).

Thus, we can construct a stateful simulator S which ensures the two points. On the
other hand, we cannot construct a stateless simulator S which ensures the two points.
So we compensate the stateless setting by using sub oracle O∗. We define the sub oracle
as follows.

Sub Oracle for Simulation of h: In order to ensure the condition 1, we add random
oracle RO∗ to O∗. Then we can construct a stateless simulator S which ensures the
condition 1: In Step 1 S defines y1 := RO∗(x). In Step 2 S defines y2 := RO∗(x).
This procedure ensures that y1 = y2.

Sub Oracle for Simulation of L-R Relation: In order to ensure the condition 2, we
add random oracle RO† and trace oracle TO to O∗. The definition of TO is that
for query y′1 to TO, TO returns M1 if a query M1 to RO† was made such that y′1 =
RO†(M1), otherwise TO returns ⊥. Then we can construct a stateless simulator
S which ensures the condition 2: In Step 1, for query IV‖M1, S defines y′1 :=
RO†(M1) and y∗1 := RO(M1), and y1 := y′1‖y

∗
1. In Step 2, for query y1‖M2, S obtains

y′1 from y1 and makes a query y′1 to TO. Then M1 is returned from TO. Finally S
defines y∗2 := RO(M1‖M2) and y′2 := RO†(M1‖M2), and y2 := y′2‖y

∗
2. This procedure

ensures that chopn(y1) = RO(M1) and chopn(y2) = RO(M1‖M2).

We thus define O∗ := (RO∗,RO†,TO), thereby we can construct a stateless simu-
lator which ensures the above two conditions, and can prove ChopMDh �r WRO
(Theorem 2).

Similarly, for the FOLSponge construction, we define O∗ := (IC,RO†,TO), thereby
we can construct a stateless simulator which ensures the above two simulations, and
can prove FOLSponge �r WRO (Theorem 3) where IC = (E,D) is an ideal cipher. E
is an encryption oracle and D is a decryption oracle.

Consequently, we define the sub oracle as O∗ := (RO∗,RO†,TO, IC) in order to eval-
uate the ChopMD and the FOLSponge constructions by the singleWRO. Thus,WRO
consists of (RO,RO∗,RO†,TO, IC), and the interfaces are defined asWRO.hon = RO
andWRO.adv = (RO,RO∗,RO†,TO, IC).

Appropriateness of WRO. We succeed to bypass the impossible result in [18] by
introducing theWRO model; however, it is non-trivial if previous cryptosystems that
are secure for multi-stage games in the RO model are still secure in theWRO model.
Thus, the next step is to show that there exists a secure cryptosystem for a multi-stage
game in theWRO model. We consider public-key encryption (PKE) (as cryptosystem
C) for the Chosen Distribution Attack (CDA) game [1,2] (as gameG). Roughly, we say
a PKE scheme is CDA secure if message privacy is preserved even if an adversary can
control distributions of messages and randomness in generating the challenge cipher-
text. The CDA game captures several flavors of PKE settings (e.g., deterministic PKE

240 Y. Naito, K. Yoneyama, and K. Ohta

(DPKE) [1,3,6,10,13], hedged PKE (HPKE) [2], and message-locked PKE (MLPKE)),
and such PKE settings are tools for many practical applications. Thus, our target is to
find a CDA secure cryptosystem in theWRO model.

First, we start with the result in [18]. They showed that any CPA secure PKE scheme
in the RO model can be (redundancy-freely) transformed to an IND-SIM secure PKE
scheme in the RO model via conversion REwH1 [2]. The IND-SIM security is a very
weak property that an adversary cannot distinguish between encryptions of chosen mes-
sages under chosen randomness and the output of a simulator.1 We show that any IND-
SIM secure [18] PKE scheme in the RO model is also CDA secure in theWRO model
(Theorem 4). The combination of our theorem and the previous result implies that a
CDA secure PKE scheme in the WRO model can be obtained from any CPA secure
PKE scheme in the RO model.2

To prove the CDA security in theWRO model, we must ensure that the sub oracle
O∗ gives no advantage to an adversary in the CDA game. The CDA game consists of two
stages, where a first stage adversaryA1 sends no value to a second stage adversaryA2.3

First, the challenge ciphertext cβ does not leak any information of messages (m0,m1)
and r even with access to RO. This property is guaranteed by the IND-SIM security.
Next, if RO† and RO∗ are ideal primitives whose outputs do not leak no information for
the inputs, these oracles give no advantage to the adversary. Finally, A1 might deliver
some information about (m0,m1) or r via interfaces of IC, TO and RO†. A1 can pose
(m0,m1) or r (or a related value) to RO†, E, and D, where E and D are an encryption
oracle and a decryption oracle of IC. IfA2 could pose the corresponding output value of
RO†, E, or D to TO, D, or E,A2 would obtain information fromA1. However, indeed,
A2 cannot find the corresponding output value except negligible probability because of
following two reasons: 1) Any meaningful information from A1 is not obtained from
any of cβ, RO, RO† and RO∗ as discussed above. 2) Outputs of RO†, E, and D are
uniformly random, and then a possible action ofA2 is randomly guessing these values.
Therefore, TO and IC also give no advantage to the adversary.

1.6 Related Works

RSS gave a “from scratch” proof where REwH1 using the NMAC hash function [9]
is CDA secure. This approach has to consider structures of hash functions, while our
approach does not have to consider them. We only have to deal with the handy tool
WRO. Moreover, the NMAC hash construction does not cover important hash con-
structions ChopMD and Sponge.

1 This definition is meaningless in the standard model because the encryption algorithm uses
no further randomness beyond that input.

2 From Theorem 2 and 3, the CDA security in the WRO model is preserved if WRO is re-
placed with the ChopMD construction and the FOLSponge construction. Therefore, our result
achieves that a CDA secure PKE scheme with such practical hash functions can be obtained
from any CPA secure PKE scheme in the RO model.

3 In the first stage, an adversary A1 outputs two messages (m0,m1) and a random value r such
that the jointed values mi‖r have sufficient min-entropy. In the second stage, an adversary A2

receives the challenge ciphertext cβ = E(mβ; r) from the game where β is a random value of a
single bit, and outputs a bit b, where E is an encryption function. The adversary wins if b = β.

Weakened Random Oracle Salvages One-Pass Hash Functions 241

Two papers [8,11] independently show that for any domain extender H it is impos-
sible to prove HU �r RO. Because of the impossibility result, it cannot be guaranteed
to securely instantiate RO by HU via the reset indifferentiability. Thus, they try to sal-
vage H by relaxing limitations of S and/or D. Conversely, we salvage H by showing
instantiability fromWRO.

Demay et al. [8] propose a relaxed model that is called resource-restricted indif-
ferentiability. This model allows simulator S to have a fixed size state while the reset
indifferentiability restrict S to be stateless. That means, adversaries in a multi-stage
game can share a fixed size (denoted by parameter s) state. They show that it is pos-
sible to securely instantiate RO by HU via the resource-restricted indifferentiability.
Specifically, they define that F1 is s-resource-restricted indifferentiable from F2 (de-
noted by F1 �rr,s F2) if ∃S with the state size s bit s.t. noD distinguishes the real world
(F1.hon, F1.adv) from the ideal world (F2.hon, S F2.adv). They prove that for any multi-
stage game security G that the size of shared state between adversaries in multi-stage is
restricted to equal or lower than s bit, F1 �rr,s F2 ⇒ ∀C ∈ C C(F1) �G C(F2).

They also show a necessary condition of parameter s (i.e., s = l − m − log q > 0)
to prove HU �rr,s RO for any domain extender H, where l is the maximal input length
of H, m is the input length of the ideal primitive of H (e.g., compression function) and
q is the number of query of S . Their theorem is only valid for the case s > 0; that is,
their result is still restricted to specific multi-stage games. Indeed, unfortunately, their
approach cannot cover security games that shared state between adversaries in multi-
stage is restricted to zero (i.e., s = 0). Because the CDA game is the case s = 0, they
cannot salvage H for the CDA game while our result can do that.

Luykx et al. [11] propose a relaxed model that is called i-reset indifferentiability. This
model restricts distinguisherD so thatD is allowed to reset the memory of simulator S
only i times while the reset indifferentiability allowsD to reset any times. That means,
the number of stages in multi-stage games is equal or lower than i. They define that F1

is i-reset indifferentiable from F2 (denoted by F1 �r,i F2) if ∃S which is stateful s.t. no
D distinguishes the real world (F1.hon, F1.adv) from the ideal world (F2.hon, S F2.adv),
where D can reset S up to i times. They prove that for any i′-stage (1 ≤ i′ ≤ i) game
security G, F1 �r,i F2 ⇒ ∀C ∈ C C(F1) �G C(F2).

Unfortunately, they show the impossibility that HU �r,i RO cannot be proved for
any one-pass hash construction even if i = 1, and Baecher et al. clarifies that 1-reset
indifferentiability is equivalent to the reset indifferentiability. Hence, their approach
cannot salvage practical H. On the other hand, our result can salvage important and
practical one-pass H such as ChopMD and FOLSponge (Theorems 2 and 3); therefore,
our methodology withWRO is more suitable in a practical sense.

Recently, an independent paper from this paper was accepted at EUROCRYPT 2014
[14]. This independent paper proposed the unsplittability approach and showed that this
approach salvages some cryptosystems using Merkle-Damgård type hash constructions
in some multi-stage security games. Note that the unsplittability approach is differ-
ent from the WRO methodology. Moreover, these hash constructions do not include
Sponge, while these include ChopMD.

242 Y. Naito, K. Yoneyama, and K. Ohta

2 Preliminaries

Notations. Given two strings x and y, we use x||y to denote the concatenation of x and
y. Given a value y, x ← y means assigning y to x. When X is a non-empty finite set,

we write x
$←− X to mean that a value is sampled uniformly at random from X and

assign to x. ⊕ is bitwise exclusive or. |x| is the bit length of x. Given two sets A and C,

C
∪←− A means assign A ∪ C to C. For any l × r-bit value M, div(r,M) divides M into

r-bit values (M1, . . . ,Ml) and outputs them where M1‖ · · · ‖Ml = M. For a b-bit value x,
x[i, j] is the value from (left) i-th bit to (left) j-th bit where 1 ≤ i ≤ j ≤ b. For example,
let x = 01101001, x[3, 5] = 101. For a Boolean function F, we denote by “∃1M s.t.
F(M) is true” “there exists just a value M such that F(M) is true”. Vectors are written
in boldface, e.g., x. If x is a vector then |x| denotes its length and x[i] denotes its i-th
component for 1 ≤ i ≤ |x|. bit j(x) is the left j-th bit of x[1]‖ . . . ‖x[|x|].

Throughout this paper, we assume that any algorithm and game is implicitly given a
security parameter as input if we do not explicitly state.

Indifferentiability Frameworks [12,18]. The indifferentiability framework [12] en-
sures reducibility from one system F1 to another system F2 in any single-stage security
game, where an adversary uses a single state; for any single-stage security, any cryp-
tosystem is at least as secure in F1 model as in F2 model. This framework considers
two interfaces of system F. One is an adversarial interface, denoted by Fi.adv to which
adversaries have access. The other is an honest interface, denoted by Fi.hon to which
honest parties have access. In this framework, the reducibility reflects in a simulation
based game, called an indifferentiability game. When considering the reducibility from
F1 to F2, the advantage of this game is defined as follows.

Advindiff
F1 ,F2 ,S

(A) = | Pr[DF1 .hon,F1.adv ⇒ 1] − Pr[DF2 .hon,S F2 .adv ⇒ 1]|

where S is a simulator which has access to F2.adv and D is a distinguisher which has
access to left oracle L and right oracle R. The F1 case is that (L,R) = (F1.hon, F1.adv),
called Real World. The F2 case is that (L,R) = (F2.hon, S F2.adv), called Ideal World.
The reducibility from F1 to F2 is ensured if F1 is indifferentiable from F2; there exists
a stateful simulator S such that for anyD the indifferentiable advantage is negligible in
the security parameter [12].

The reset indifferentiability framework [18] is the extension of the indifferentiability
framework and covers any multi-stage security game in addition to any single-stage
security game. A multi-stage game is that the size of the state shared among adversaries
are restricted. The restricted situation is covered by dealing with a stateless simulator.
When considering the reducibility from F1 to F2, the advantage of this game is defined
as follows.

Advr-indiff
F1 ,F2 ,S

(A) = | Pr[DF1 .hon,F1.adv ⇒ 1] − Pr[DF2 .hon,S F2 .adv ⇒ 1]|

The reducibility from F1 to F2 is ensured if F1 is reset indifferentiable from F2; there
exists a stateless simulator S such that for anyD the indifferentiable advantage is neg-
ligible in the security parameter [18]. More precisely, RSS gave the following theorem.

Weakened Random Oracle Salvages One-Pass Hash Functions 243

ChopMDh(M)
1 M′ ← padc(M);
2 (M1, . . . ,Mi)← div(d,M′);
3 x← IV ;
4 for j = 1, . . . , i do x← h(x‖Mj);
5 return x[s + 1, s + n];

FOLSpongeP(M)
1 M′ ← padS (M);
2 (M1, . . . ,Mi)← div(n,M′);
3 s = IV ;
4 for i = 1, . . . , i do s = P(s ⊕ (Mi‖0c));
5 return s[1, n];

Fig. 3. Chop Merkle-Damgård and Sponge

RO†w(M)

1 if F†[M] =⊥ then F†[M]
$←− {0, 1}w;

2 return F†[M];

TO(y)
1 if ∃1 M s.t. F†[M] = y then return M;
2 return ⊥;

Fig. 4. RO†w and TO where F† is a (initially
everywhere ⊥) table

Theorem 1 (RSS Theorem [18]). Let G be any game. Let F1 and F2 be cryptographic
systems. Let S be a stateless simulator. For any adversary A = (A1, . . . ,Am), there
exist an adversary B = (B1, . . . ,Bm) and a distinguisherD such that

Pr[A wins in F1 model in G] ≤ Pr[B wins in F2 model in G] + Advr-indiff
F1 ,F2 ,S

(D).

Moreover, tBi ≤ tAi + qAi tS , qBi ≤ qAiqS , tA ≤ m + tG +
∑m

i=1 qG,itAi , qA ≤ qG,0 +∑m
i=1 qG,itAi where tA, tB, tD are the maximum running times ofA,B,D; qA, qB are the

maximum number of queries made byA and B in a single execution; and qG,0, qG,1 are
the maximum number of queries made by G to the private interface and to the adversary.

Definitions of Hash Functions. We give the description of the ChopMD construc-
tion [7]. Let h be a compression function which maps a value of d + n + s bits to a
value of n + s bits. The ChopMD ChopMDh : {0, 1}∗ → {0, 1}n is defined in Fig. 3.
padc : {0, 1}∗ → ({0, 1}d)∗ is an injective padding function such that its inverse is effi-
ciently computable. IV is a constant value of n + s bits.

We give the description of the FOLSponge construction [4]. Let P be a permutation
of d bits. The FOLSonge FOLSpongeP : {0, 1}∗ → {0, 1}n is defined in Fig. 3 such that
n < d.4 Let c = d − n. padS : {0, 1}∗ → ({0, 1}n)∗ is an injective padding function such
that the last n-bit value is not 0. IV is a constant value of d bits. IV1 = IV[1, n] and
IV2 = IV[n + 1, d]. For example, padS (M) = M‖1‖0i where i is a smallest value such
that |M‖1‖0i| is a multiple of n.

3 Reset Indifferentiability fromWRO
RSS [18] proved the impossibility of proving that the ChopMD and the FOLSponge are
reset indifferentiable from random oracles. To compensate the impossibility, we change

4 Note that if the output length (denoted by l) is smaller than n, the output length is achieved by
returning s[1, l].

244 Y. Naito, K. Yoneyama, and K. Ohta

the ideal world from a random oracle to a weakened random oracle (WRO). We define
WRO such that both of the ChopMD and the FOLSponge are reset indifferentiable
fromWROs.

We defineWRO as (ROn,RO∗v,RO
†
w,TO, ICa,b), where ROn,RO∗v, and RO†w are ar-

bitrary input length random oracles whose output lengths are n bit, v bit, and w bit,
respectively, TO is a trace oracle, and ICa,b is an ideal cipher with key length a and
block length b. The definition of TO is that for query y to TO, it returns M if ∃1M such
that a query M to RO†w such that y = RO†w(M) was made, and otherwise it returns ⊥.
Fig. 4 shows the method of implementing aRO†w and a TO. E : {0, 1}a×{0, 1}b → {0, 1}b
denotes the encryption oracle of ICa,b, and D : {0, 1}a × {0, 1}b → {0, 1}b denotes the
decryption oracle. The interfaces are defined byWRO.hon = ROn andWRO.adv =
(ROn,RO∗v,ROw,TO, ICa,b). Note that the parameters (n, v,w, a, b) are defined in each
hash function.

For a hash function HU using an ideal primitiveU, the advantage of reset indiffer-
entiability fromWRO is defined as follows.

Advr-indiff
HU ,WRO,S (D) = | Pr[DHU ,U ⇒ 1] − Pr[DWRO.hon,SWRO.adv ⇒ 1]|.

The RSS theorem ensures that if HU is reset indifferentiable from aWRO, any secu-
rity of any cryptosystem is preserved when a WRO is replaced by HU , where in the
WRO model adversaries have access toWRO.adv and the cryptosystem has access to
WRO.hon, and for the HU case, adversaries have access to U and the cryptosystem
has access to HU .

3.1 Reset Indifferentiability for ChopMD

In this proof, we define the parameter ofWRO as w = s and v = n + s. Note that ICa,b

is not used. Therefore,WRO = (ROn,RO∗n+s,RO
†
s ,TO).

Theorem 2. Let the compression function h be a random oracle. There exists a stateless
simulator S such that for any distinguisherD,

Advr-indiff
ChopMDh,WRO,S (D) ≤ qR(qR − 1) + 2σ(σ + 1)

2s

whereD can make queries to left oracle L = ChopMDh/ROn and right oracle R = h/S
at most qL, qR times, respectively, and l is a maximum number of blocks of a query to L.
σ = lqL + qR. S makes at most 4qR queries and runs in time O(qR). �

An intuition of this proof is shown in Subsection 1.5. This proof is given in Section 4.

3.2 Reset Indifferentiability for FOLSponge

We define the parameter ofWRO as w = c and b = d. We don’t care the key size a,
since ICa,b can be regarded as random permutation by fixing a key k∗. We denote E(k∗, ·)
by a random permutationP(·) of d bit and D(k∗, ·) by its inverse oracle P−1(·). Note that
in this proof, RO∗v are not used. Therefore,WRO = (ROn,RO†c ,TO,P,P−1).

Weakened Random Oracle Salvages One-Pass Hash Functions 245

Theorem 3. Assume that the underlying permutation P is a random permutation and
P−1 is its inverse oracle. There exists a stateless simulator S = (S F , S I) such that for
any distinguisherD,

Advr-indiff
FOLSpongeP ,WRO,S (D) ≤ 2σ(σ + 1) + q(q − 1)

2c
+
σ(σ − 1) + q(q − 1)

2d+1

where D can make at most qL, qF and qI queries to left L = FOLSpongeP/ROn and
right oracles RF =P/S F ,RI =P−1/S I. l is a maximum number of blocks of a query to L.
σ = lqL +qF +qI and q = qF +qI. S makes at most 4q queries and runs in time O(q). �

In the following, we outline why a stateless simulator can be constructed. To simplify
the explanation, we omit the padding function of FOLSpongeP. Therefore, queries to L
are in ({0, 1}n)∗. SinceD interacts with (L,RF ,RI), helpful information forD is obtained
from these oracles. Thus, the S ’s tasks are to simulate the following two points.

– Simulation of P and P−1: Since in the real world RF = P and RI = P−1, S must
simulate P and P−1.

– Simulation of L-R relation: Since there is a relation based on the FOLSponge con-
struction among query-response values of L and of RF in the real world, S must
simulate such relation.

Using WRO, we can construct a stateless simulator which succeeds in these
simulations.

– Simulation of P and P−1: S succeeds in this simulation by using P and P−1; S
returns the response of P(x) for query x, and returns the response of P−1(y) for
query y.

– Simulation of L-R relation: S succeeds in this simulation by using RO†c and TO.
We explain this simulation by using the following example.

• D makes query X1 (:= IV ⊕ (M1‖0c)) to RF and receives the response Y1.
• D makes query X2 (:= Y1 ⊕ (M2‖0c)) to RF and receives the response Y2.

In the real world, there are the relations Y1[1, n] = L(M1) and Y2[1, n] = L(M1‖M2).
Then S succeeds in this simulation by the following procedures.

• For query X1 to S F , S F parses X1 = W1‖IV2, M1 = W1 ⊕ IV1, Y∗1 := ROn(M1),
Y′1 := RO†c(M1) and Y1 = Y∗1‖Y

′
1.

• For query X2 S F parses X2 = W2‖Y′1, M1 = TO(Y′1), Y∗1 = ROn(M1), M2 =

W2 ⊕ Y∗1 and Y2 := ROn(M1‖M2)‖RO†c(M1‖M2).

These procedures ensure that in the ideal world, Y1[1, n] = L(M1) and Y2[1, n] =
L(M1‖M2).

As a result, we can construct a stateless simulator S which succeeds in the simulations
of (P, P−1) and of the L-R relation. Thus we can prove Theorem 3. The proof is given in
the full version of this paper [15].

246 Y. Naito, K. Yoneyama, and K. Ohta

Fig. 5. Figure of Merkle-Damgård

S (x‖m) where x1 = x[1, s], x2 = x[s + 1, n] and |m| = d
1 M ← TO(x1);
2 if x = IV then z← ROn(m); w← RO†s (m);
3 else if M �⊥ and x2 � ROn(M) then z← ROn(M‖m); w← RO†s (M‖m);
4 else w‖z← RO∗n+s(x‖m);
5 return w‖z;

Fig. 6. Simulator S

4 Proof of Theorem 2

First we define a graph GMD, which is initialized with a single node IV . Edges and
nodes in this graph are defined by query-response values to R, which follow the MD
structure. The nodes are chaining values and the edges are message blocks. For example,
if (IV,m1, y1), (y1,m2, y2) are query response values of R, (IV, y1, y2) are the nodes of

the graph and (m1,m2) are the edges. We denote the MD path by IV
m1−−→ y1

m2−−→ y2 or

IV
m1‖m2−−−−→ y2 (Fig. 5 may help to understand this path).

To simplify this proof, we omit the padding function padc. Thus queries to L are in
({0, 1}d)∗. Note that ChopMD with padc is the special case of that without padc, thereby
the security of ChopMD without padc ensures one with padc.

We define a stateless simulator S in Fig. 6. Step 4 ensures the simulation of h and
Steps 2 and 3 ensure the simulation of the L-R relation.

Detail. In the following, for the simulator S in Fig. 6 and any distinguisher D, we
evaluate the bound of the reset indiferentiable advantage of ChopMDh fromWRO. To
evaluate the bound we consider the following five games. In each game,D has access
to (L,R).

– Game 1 is the ideal world, that is, (L,R) = (ROn, S).
– Game 2 is (L,R) = (ROn, S 1), where S 1 keeps all query-response pairs. For a query

x‖m to S 1, if there is (x‖m,w‖z) in the query response history, then S 1 returns w‖z,
otherwise, S 1 returns the output of S (x‖m).

– Game 3 is (L,R) = (L1, S 1), where for a query M to L1 L1 makes S 1 queries
corresponding with ChopMDS 1 (M) and returns the response of ROn(M).

– Game 4 is (L,R) = (ChopMDS 1 , S 1).
– Game 5 is the real world, that is, (L,R) = (ChopMDh, h).

Weakened Random Oracle Salvages One-Pass Hash Functions 247

Let Gi be an event thatD outputs 1 in Game i. We thus have that

Advr-indiff
ChopMDh,WRO,S (D) ≤

4∑

i=1

|Pr[Gi] − Pr[Gi+1]| ≤ qR(qR − 1) + 2σ(σ + 1)
2s

.

In the following, we justify the above bound by evaluating each difference.

Game 1 ⇒ Game 2. From Game 1 to Game 2, we change R from S to S 1 where
S 1 records query response values, while S does not record them. The query-response
history ensures that in Game 2 if a query x‖m to S 1 was made and y was responded,
for the repeated query x‖m to S 1 the same value y is responded, while in Game 1 there
is a case that for some repeated query x‖m to S 1 where y was responded, a distinct
value y∗ (� y) is responded. The difference |Pr[G1] − Pr[G2]| is thus bounded by the
probability that in Game 1 the distinct value is responded. We call the event “Diff”.
Since the procedure of S to define outputs is controlled by TO (See the steps 2-4), the
event Diff relies on outputs of TO. Thus, if Diff occurs, for some repeated query to
TO the distinct value is responded. More precisely, if Diff occurs, the following event
occurs.

– For a query y to TO, w was responded, and then for the repeated query a different
value w∗ is responded. From the definition of TO, there are two cases for (w,w∗);
Diff1: w =⊥ and w∗ �⊥, Diff2: w �⊥ and w∗ =⊥.

We thus have that

|Pr[G1] − Pr[G2]| ≤ Pr[Diff1] + Pr[Diff2] ≤ qR(qR − 1)
2s

.

We justify the bound as follows.
First we bound the probability of Pr[Diff1]. Since the response w of the first query

is ⊥, when the first query is made, the query w∗ to RO†s such that y = RO†s (w∗) was
not made. Since the response w∗ of the repeated query is not ⊥, when the repeated
query is made, the query w∗ to RO†s was made such that y = RO†s(w∗). Therefore, first
y is defined. Second, the output of RO†s(w∗) is defined. Thus, Pr[Diff1] is bounded by
the probability that the response of RO†s (w∗), which is an s-bit random value, collides
with the value y. Since the numbers of queries to RO†s and TO are at most qR times,
respectively, we have that

Pr[Diff1] ≤
qR∑

i=1

i − 1
2s
≤ qR(qR − 1)

2s+1
.

Next we bound the probability of Pr[Diff2]. Since the response w of the first query is
not⊥, when the first query is made, the query w toRO†s was made such that y = RO†s(w).
Since the response w∗ of the repeated query is ⊥, when the repeated query is made, a
query w′ to RO†s was made such that w � w′ and RO†s(w) = RO†s(w′). Therefore,
Pr[Diff2] is bounded by the collision probability of RO†s . We thus have that

Pr[Diff2] ≤
qR∑

i=1

i − 1
2s
≤ qR(qR − 1)

2s+1
.

248 Y. Naito, K. Yoneyama, and K. Ohta

Game 2 ⇒ Game 3. From Game 2 to Game 3, we change L from ROn to L1 where
in Game 3 L makes additional queries to R corresponding with the calculation of
ChopMDS 1(M). Note thatD cannot directly observe the additional query response val-
ues but can observe those by making the queries to R. So we have to show that in Game
3 the additional queries by L don’t affect D’s behavior. We ensure this by Lemma 1

where in Game j, for any MD path IV
M−→ z, z = RO†s(M)‖ROn(M) unless Bad j occurs.

By Lemma 1, in both games, unless the bad event occurs, all responses to R are defined
by the same queries to RO†s and to ROn. Namely, in Game 3, the responses of the addi-
tional queries to R whichD observes are chosen from the same distribution as in Game
2 unless the bad event occurs. Thus, the difference |Pr[G2] − Pr[G3]| is bounded by the
probability of occurring the bad event.

First we define the bad event. Let Ti be a list which records (xt[1, s], yt[1, s]) for
t = 1, . . . , i − 1 where (xt‖mt, yt) is a t-th query response pair of S where yt = S (xt‖mt).

– Bad j is that in Game j for some i-th query xi‖mi to S , the response yi is such that
yi[1, s] collides with some value in Ti ∪ {xi[1, s]} ∪ {IV[1, s]}.

Note that since all outputs of S 1 are defined by using S , we deal with S instead of S 1.
Next we give Lemma 1 as follows. Note that Lemma 1 is also used when evaluating

the difference between Game 3 and Game 4.

Lemma 1. In Game j, for any MD path IV
M−→ y y = RO†s(M)‖ROn(M) unless Bad j

occurs. �

Proof of Lemma 1. Assume that Bad j does not occur. We show that for any MD path

IV
M−→ y, y = RO†s(M)‖ROn(M). Let (x1‖m1, y1), . . . , (xt‖mt, yt) be query response pairs

to S which correspond with the MD path where x1 = IV , xi = yi−1 (i = 2, . . . , t), yt = y,
and M = m1‖ . . . ‖mt.

When t = 1, y = RO†s(M)‖ROn(M) (see Step 2).
We consider the case that t ≥ 2.
Since Bad j does not occur, the following case does not occur; for some i ∈ {1, . . . , t−

1}, (xi‖mi, yi) is defined after (xi+1‖mi+1, yi+1) was defined. So (x1‖m1, y1), . . . , (xt‖mt, yt)
are defined by this order.

Since Bad j does not occur, no collision of outputs of RO†s occurs. Therefore, when
the query S 1(xt‖mt) is made, the pair (m1‖ . . . ‖m j−1, yt−1) has been recorded in the table
F† of RO†s , that is, F†[m1‖ . . . ‖mt−1] = yt−1 = xt.

Since Bad j does not occur, no collision of outputs of RO†s occurs. Therefore, there is
no value M∗ such that M∗ � m1‖ . . . ‖mt−1 and F†[M∗] = xt.

Thus, for the query xt‖mt to S , S makes the query xt[1, s] toTO, receives m1‖ . . . ‖mt−1

(Step 1), and returns the response yt such that yt = RO†s(M)‖ROn(M) (Step 3). ��
By Lemma 1, the difference |Pr[G2] − Pr[G3]| is bounded by

max{Pr[Bad2], Pr[Bad3]} ≤ σ(σ + 1)
2s

.

Finally we justify the bound. The left s-bit values of all outputs of S 1 are uniformly
chosen at random from {0, 1}s. The probability of occurring the bad event is that for

Weakened Random Oracle Salvages One-Pass Hash Functions 249

some i-th query to S the left s-bit value of the response, which is a random value, hits
some of Ti ∪ {xi[1, s]} ∪ {IV[1, s]}. We thus have

Pr[Bad2] ≤
qR∑

i=1

2(i − 1) + 2
2s

=
qR(qR + 1)

2s
, Pr[Bad3] ≤

σ∑

i=1

2(i − 1) + 2
2s

=
σ(σ + 1)

2s

where S 1 is called at most qR times in Game 2 and σ times in Game 3.

Game 3⇒ Game 4. From Game 3 to Game 4, we change L where in Game 3 L(M) =
ROn(M), while in Game 4 L(M) = ChopMDS 1 (M). Therefore, the modification does
not change D’s behavior iff in Game 4 ChopMDS 1 (M) = ROn(M). Since Lemma 1

ensures that for any MD path IV
M−→ z, z = RO†s(M)‖ROn(M) unless the bad event Bad4

occurs, the modification does not change D’s behavior. Thus the difference |Pr[G3] −
Pr[G4]| is bounded by the probability of occurring Bad4. Since S 1 is called at most σ
times, we have

|Pr[G3] − Pr[G4]| ≤ Pr[Bad4] ≤ σ(σ + 1)
2s

.

Game 4 ⇒ Game 5. From Game 4 to Game 5, we change R from S 1 to h. Since
outputs of S 1 are uniformly chosen at random from {0, 1}n+s, the modification of R does
not affectD’s behavior. We thus have that Pr[G4] = Pr[G5]. ��

5 Multi-Stage Security in theWROModel

In this section, we show appropriateness of our WRO methodology. We construct a
(non-adaptive) CDA secure [2] PKE scheme in theWRO model. Specifically, we show
that if a PKE scheme satisfies an weak security (i.e., IND-SIM security [18]) in the RO
model, then it is also CDA secure in theWRO model.

An IND-SIM secure PKE in the RO model is easily obtained by applying a known
technique [18] that any CPA secure PKE scheme can be converted into IND-SIM secure
by using EwH [1] and REwH1 [2] in the RO model. Therefore, our result implies that
a very large class of PKE schemes is CDA secure in theWRO model (e.g., factoring-
based, Diffie-Hellman-based, lattice-based, etc.).

Furthermore, our result in Section 3 guarantees to instantiate WRO by ChopMD
or FOLSponge. Hence, finally, we have that any CPA secure PKE in the RO model
can be converted into CDA secure with ChopMD or FOLSponge. While the previous
work [18] showed CDA secure PKE schemes only with the specific NMAC hash func-
tion, our work achieves CDA secure PKE schemes with large class of hash functions
(i.e., ChopMD and FOLSponge).

5.1 CDA Secure PKE in theWROModel

Public Key Encryption (PKE). A public key encryption scheme AE = (Gen,Enc,
Dec) consists of three algorithms. Key generation algorithm Gen outputs public key

250 Y. Naito, K. Yoneyama, and K. Ohta

CDAA1 ,A2
AE,F

β
$←− {0, 1}

(pk, sk)
$←− Gen

(m0,m1, r)←AF.adv
1

c← EncF.hon(pk,mβ; r)
β′ ← AF.adv

2 (pk, c)
return (β = β′)

IND-SIMBAE,S,F

β
$←− {0, 1}

(pk, sk)
$
←− Gen

β′ ← BRoS,F.adv(pk)
return (β = β′)

RoS(m, r)
If β = 1 then return EncF.hon(pk,m; r)
Otherwise return SF.hon(pk, |m|)

Fig. 7. CDA game and IND-SIM game

pk and secret key sk. Encryption algorithm Enc takes public key pk, plaintext m, and
randomness r, and outputs ciphertext c. Decryption algorithm Dec takes secret key sk
and ciphertext c, and outputs plaintext m or distinguished symbol ⊥. For vectors m, r
with |m| = |r| = l which is the size of vectors, we denote by Enc(pk,m; r) the vector
(Enc(pk,m[1]; r[1]), . . . ,Enc(pk,m[l]; r[l])). We say thatAE is deterministic if Enc is
deterministic.

CDA Security. We explain the CDA security (we quote the explanation of the CDA
security in [18]). Fig. 7 illustrates the non-adaptive CDA game for a PKE scheme AE
using a functionality F. This notion captures the security of a PKE scheme when ran-
domness r used in encryption may not be a string of uniform bits. For the remainder
of this section, fix a randomness length ρ ≥ 0 and a plaintext length ω > 0. An (μ, ν)-
mmr-source M is a randomized algorithm that outputs a triple of vector (m0,m1, r)
such that |m0| = |m1| = |r| = ν, all components of m0 and m1 are bit strings of length
ω, all components of r are bit strings of length ρ, and (mβ[i], r[i]) � (mβ[j], r[j]) for
all 1 ≤ i < j ≤ ν and all β ∈ {0, 1}. Moreover, the source has min-entropy μ, meaning
Pr[(mβ[i], r[i]) = (m′, r′)|(m0,m1, r) ← M] ≤ 2−μ for all β ∈ {0, 1}, all 1 ≤ i ≤ ν,
and all (m′, r′). A CDA adversary A1,A2 is a pair of procedures, the first of which is
a (μ, ν)-mmr-source. The CDA advantage for a CDA adversaryA1,A2 against scheme
AE using a functionality F is defined by

Advcda
AE,F(A1,A2) = 2 · Pr[CDAA1,A2

AE,F ⇒ true] − 1.

As noted in [2], in the RO model, mmr-sources have access to the RO. In this setting,
the min-entropy requirement is independent of the coins used by the RO, meaning the
bound must hold for any fixed choice of function as the RO. If this condition is removed,
one can easily break the CDA security (i.e., A1 and A2 can easily share the messages
(m1,m2, r)) for any cryptosystem using any indifferentiable hash function.

IND-SIM Security. The IND-SIM security is a special notion for PKE schemes. It
captures that an adversary cannot distinguish outputs from the encryption algorithm
and from a simulator S even if the adversary can choose plaintext and randomness. Fig.
7 shows the IND-SIM game. We define the IND-SIM advantage of an adversary B by

Advind-sim
AE,S,F(B) = 2 · Pr[IND-SIMBAE,F ⇒ true] − 1.

Weakened Random Oracle Salvages One-Pass Hash Functions 251

As noted in [18], in the standard model this security goal is not achievable because
AE uses no randomness beyond that input. In the RO model, we will use it when the
adversary does not make any RO queries. A variety of PKE schemes is shown to satisfy
IND-SIM security in the RO model.

CDA Security in the WRO Model. The following theorem shows that for any PKE
scheme the non-adaptive CDA security in theWRO model is obtained from IND-SIM
security in the RO model.

Theorem 4. LetAE be a PKE scheme. Let (A1,A2) be a CDA adversary in theWRO
model making at most qRO, qRO∗ , qRO† , qTO, qE , qD queries to ROn,RO∗v,RO†w,TO, ICa,b

= (E,D). For any simulator S there exists an IND-SIM adversary B such that

Advcda
AE,WRO(A1,A2) ≤ Advind-sim

AE,S,ROn
(B) + qRO ·maxpkAE +

qRO + 4q2
RO∗

2μ

+ max

⎧⎪⎪⎨⎪⎪⎩
4q2
RO†
+ 4q2

TO

2μ
,

qTO
2w−log qRO†

⎫⎪⎪⎬⎪⎪⎭ + max

⎧⎪⎨⎪⎩
4q2

E + 4q2
D

2μ
,

qD

2b−log qE
,

qE

2b−log qD

⎫⎪⎬⎪⎭ .

B makes no RO queries, makes ν RoS-queries, and runs in time that of (A1,A2) plus
O(qRO + qRO∗ + qRO† + qTO + qE + qD). maxpkAE is the maximum public key collision

probability defined as maxpkAE = max
γ∈{0,1}∗

Pr[pk = γ : (pk, sk)
$←− Gen]. μ is min-entropy

of the mmr-source. �

The proof outline is as follows: First, we start with game G0 which is exactly the
same game as the CDA game in theWRO model. Secondly, we transform G0 to game
G1 so that ROn returns a random value when A1 poses a message that is posed to
ROn by Enc to generate the challenge ciphertext. In game G1, outputs of ROn does
not contain any information about computations to generate the challenge ciphertext
forA1. Thirdly, we transform G1 to game G2 so that the table of inputs and outputs of
each oracle inWRO (except ROn) forA1 is independent of the table forA2 according
to the output of A1. In game G2, queries to sub-oracles for A2 does not contain any
information about the output of A1, and A1 cannot hand over any information to A2

with sub-oracles. Fourthly, we transform G2 to game G3 so that ciphertext c is generated
from a simulator S in the IND-SIM game. In game G3, ciphertext c does not contain
any information about outputs ofA1. Thus,A1 cannot hand over any information toA2

with c. Finally, we transform G3 to game G4 so that ROn returns a random value when
A2 poses a message that is posed to ROn by Enc to generate the challenge ciphertext.
In game G4, outputs of ROn does not contain any information about computations to
generate the challenge ciphertext forA2. Thus, the advantage ofA2 in G4 is nothing.

The proof of Theorem 4 is shown in the full version of this paper [15].

References

1. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable Encryption.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg
(2007)

252 Y. Naito, K. Yoneyama, and K. Ohta

2. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.:
Hedged public-key encryption: How to protect against bad randomness. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidelberg (2009)

3. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic Encryption: Definitional
Equivalences and Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of the Sponge
Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197.
Springer, Heidelberg (2008)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submission. Sub-
mission to NIST, Round 3 (2011)

6. Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic Encryption,
and Efficient Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

7. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård Revisited: How to Con-
struct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448.
Springer, Heidelberg (2005)

8. Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 664–683.
Springer, Heidelberg (2013)

9. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damgård for Practical Appli-
cations. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388. Springer,
Heidelberg (2009); Full Version in ePrint 2009/177

10. Fuller, B., O’Neill, A., Reyzin, L.: A Unified Approach to Deterministic Encryption: New
Constructions and a Connection to Computational Entropy. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

11. Luykx, A., Andreeva, E., Mennink, B., Preneel, B.: Impossibility results for indifferentiabil-
ity with resets. ePrint 2012/644 (2012)

12. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, Impossibility Results on Re-
ductions, and Applications to the Random Oracle Methodology. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

13. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental Deterministic Public-Key
Encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 628–644. Springer, Heidelberg (2012); Full Version in ePrint 2012/047

14. Mittelbach, A.: Salvaging indifferentiability in a multi-stage setting. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 603–621. Springer, Heidelberg
(2014)

15. Naito, Y., Yoneyama, K., Ohta, K.: Reset Indifferentiability from Weakened Random Oracle
Salvages One-pass Hash Functions. In: ePrint 2012/014 (2012); Full Version of this Paper

16. National Institute of Standards and Technology. Cryptographic Hash Algorithm Competition.
http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html

17. National Institute of Standards and Technoloty. FIPS PUB 180-4 Secure Hash Standard. In:
FIPS PUB (2012)

18. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with Composition: Limitations of the In-
differentiability Framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 487–506. Springer, Heidelberg (2011); Full Version: ePrint 2011/339

http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html

Memoryless Unbalanced Meet-in-the-Middle

Attacks: Impossible Results and Applications

Yu Sasaki

NTT Secure Platform Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. A meet-in-the-middle (MitM) attack is a popular tool for
cryptanalysis. It independently computes two functions F and G, and
finds a match of their outputs. When the cost of computing F and G
are different, the problem is called unbalanced MitM attack. It is known
that, for the balanced case, the MitM attack can be performed only
with a negligible memory size without significantly increasing the com-
putational cost by using the Floyd’s cycle-finding algorithm. It is also
widely believed that the same technique can be applied to the unbal-
anced case, while no one has shown the evidence of its possibility yet.
This paper contains two contributions. Firstly, we show an impossibility
of the memoryless unbalanced MitM attack without significantly increas-
ing the computational cost. The conversion to the memoryless attack
with the Floyd’s cycle-finding algorithm always requires additional com-
putational cost. Secondly, we find applications of the memoryless unbal-
anced MitM attack to show that it is still meaningful even with some
additional computational cost. It can be used to generate multi-collisions
of hash functions by using a dedicated collision attack algorithm. Our
method finds 3-collisions of SHA-1 with 2142 computations and negligible
memory size, while the known best attack requires 2106.6 computations
and 253.3 memory size. The memoryless unbalanced MitM attack can
also be applied to the limited-birthday distinguisher for hash functions.

Keywords: unbalanced meet-in-the-middle, memoryless attack, Floyd’s
cycle-findingalgorithm,hash function,SHA-1, 3-collision, limited-birthday
distinguisher.

1 Introduction

A meet-in-the-middle (MitM) attack is a tool for cryptanalysis on symmetric-key
primitives. It was introduced by Diffie and Hellman [1]. Then, Chaum and Evertse
applied it to the key recovery attack on reduced-round DES [2]. Since then, it has
beenapplied tomanyblock-ciphers,hash functionsandMACs forvariouspurposes.
Showing all references is hard. Several examples are [3–13]. TheMitM attack sepa-
rates the target function to be analyzed into two independent subfunctions F and
G so that the original function is represented by G ◦ F . The goal of the attack is

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 253–270, 2014.
c© Springer International Publishing Switzerland 2014

254 Y. Sasaki

finding a pair (x, y) such thatF(x) = G(y). BecauseF and G are independent, the
attack can be efficiently performed.

Let n be the size of the two functions output, let NF and NG be two values
satisfying NF × NG = 2n and let CF and CG be the computational cost to
compute F and G, respectively. The attack is processed as follows.

1. F is computed for NF distinct input values x1, x2 . . . , xNF , and (xi,F(xi))
for i = 1, 2, . . . , NF are stored in a list LF .

2. G is computed for NG distinct input values y1, y2 . . . , yNG, and (yj ,G(yj))
for j = 1, 2, . . . , NG are stored in a list LG.

3. Find a match between F(xi) and G(yj) stored in LF and LG.

If a match is found, the adversary can obtain some important information de-
pending on the attack scenario, i.e., secret-key candidates in key recovery attacks
for block-ciphers or preimage candidates in preimage attacks for hash functions.
With the simple method, the above procedure requires NF × CF + NG × CG

computations. Therefore, NF and NG are chosen so that NF ×CF and NG×CG

are balanced. The memory to store NF pairs of (xi,F(xi)) and NG pairs of
(yj ,G(yj)) is also required. Here, one of LF and LG can be omitted by check-
ing the match online as soon as each pair is obtained. The attack is called a
(balanced) MitM attack when the cost of computing F and G are the same,
i.e. CF = CG, and called an unbalanced MitM attack when CF �= CG. For
the balanced case, the computational cost is 2n/2 × CF (= 2n/2 × CG), and the
memory size is also 2n/2. For the unbalanced case, the computational cost is
NF × CF (= NG × CG), and the memory size is min{NF , NG}. Note that the
terminology of “MitM” is often used even if F and G are not subfunctions of
the original attack target, but simply two independent functions. In this paper,
we also use the terminology of “MitM” to describe a match of two independent
function outputs.

It is well-known that the balanced case can be performed only with a negligi-
ble memory size by using the Floyd’s cycle-finding algorithm [14] with keeping
almost the same computational complexity as the sufficient memory case. The
idea is computing F or G 2n/2 times in a sequential form to make a long chain
so that the output value of the previous evaluation of F or G is used as an input
value to the next evaluation of F or G. In the below, we firstly explain the MitM
attack with the Floyd’s cycle-finding algorithm with 2n/2 memory size. The idea
is also illustrated in Fig. 1.

1. Set a start value of the chain, v0, to an arbitrary value.
2. For i = 1, 2, 3, · · · do as follows.{

vi ← F(vi−1) if a selecting bit (e.g. LSB) of vi−1 is 0,
vi ← G(vi−1) if a selecting bit (e.g. LSB) of vi−1 is 1.

Store vi in a list L.
3. If a match between vi and previously stored vi′ in L is found, check if vi and

vi′ are computed with different choices of F and G.

Memoryless Unbalanced Meet-in-the-Middle Attacks 255

F

G

F

F
F F

F

F

F
F

F

G

G G

G

G
G

G

G

v0

v1

vi

vi'
vi-1'

vi-1

Fig. 1. MitM Attack with the Floyd’s
Cycle-Finding Algorithm (#F : #G = 1 :
1). vi−1 and v′i−1 are the solution

F

G

F

F
F F

F

F

F
F

F

F

F F

G

F
F

G

F

v0

v1

vi

vi'
vi-1'

vi-1

Fig. 2. Idea for the Unbalanced MitM
Attack (#F > #G). The solution is not
obtained from this cycle.

4. If so, output vi−1 and vi′−1 as a solution of the MitM attack. Otherwise, go
back to step 1, and repeat the attack until a solution is found.

Because the attack needs to find a match of different functions’ outputs, the
function must be switched between F and G with probability 1/2 when the
cycle is constructed. At Step 2, a selecting bit is introduced for this purpose.
Not only the value of LSB of vi−1, but also any choice of an event that occurs
with probability 1/2 can be used, as long as the selecting rule is fixed. At Step
4, the probability that vi and vi′ are computed with different choices of F and G
is 1/2. Therefore, the cycle construction is iterated 2 times on average. Finally,
a match between vi and vi′ is found with O(2n/2) evaluations, and thus the
size of L is also O(2n/2). To perform the above procedure with a negligible
memory size, instead of all vi, only a very small fraction of vi are stored in
L. Due to the sequential computational structure, a match between vi and vi′

indicates that the chain becomes a cycle of size O(2n/2). Therefore, even if a
match between vi and all previous vi′ cannot be checked immediately, sooner
or later, the computation reaches one of the values stored in L with at most
O(2n/2) additional computational cost. If a match is found, by recomputing the
cycle from previously stored point, the match between vi−1 and vi′−1 can be
detected. The attack smartly reduces the memory size of the balanced MitM
attack only with a small (constant time) increasing computational cost.

It raises a natural question: can the unbalanced MitM attack also be performed
with a negligible memory size only with a small increased computational cost?
Although no one has discussed its possibility in details yet, it is often believed
to be possible.

Without losing the generality, throughout the paper, we suppose that CG is
much bigger than CF , and thus NG is much smaller than NF . Obviously, by
using the Floyd’s cycle-finding algorithm in Fig. 1, i.e. by computing F and
G for the same quantity, the attack can be memoryless. However, this requires
2n/2 × CG computational cost, which is much more than the standard attack
(with a sufficient memory size) of NG × CG. So far, no other attempt is known
for the memoryless unbalanced MitM attack. Consequently, the possibility of the

256 Y. Sasaki

memoryless attack with negligible additional computational cost from NG×CG

is unknown.

Our Contributions. In this paper, we investigate the memoryless unbalanced
MitM attack. The fact that the balanced case computes F and G in the same
ratio seems to come from the fact that CF and CG are identical. Therefore, our
approach is changing the ratio of computing F and G when the cycle is con-
structed. The idea is illustrated in Fig. 2. Because CF < CG, we compute F
much more than G. This raises a new difficulty: when a match between vi and
vi′ are obtained, the probability that vi and vi′ are computed with different func-
tions becomes lower. Both are likely to be generated by F . Hence, the number
of iterations of the cycle construction will increase.

In this paper, we begin with summarizing the computational cost of the unbal-
anced MitM attack with a sufficient memory size when the cost of two functions
are given in variables CF and CG. Most of previous work analyzed the case that
CF = 1. We extend it to a two-variable case.

Then, we evaluate the computational cost of the memoryless unbalanced MitM
attack described in Fig. 2, and show that improving 2n/2×CG, which is the simple
application of the Floyd’s cycle-finding algorithm, is impossible for any values
of CF and CG, and any choice of the ratio of computing F and G.

Finally, we show an application of the memoryless unbalanced MitM attack.
That is to say, the simple application of the Floyd’s cycle-finding algorithm is
still meaningful. As the first application, we show that it can be used to gener-
ate 3-collisions of hash functions by using a dedicated collision attack algorithm.
The current best generic 3-collision attack against an n-bit hash function is the
one proposed by Joux and Lucks [17], which requires a computational cost of
O(22n/3) and a memory size of O(2n/3). Although the computational cost of this
attack matches the information theoretic lower-bound, preparing a memory of
O(2n/3) size is hard for a large n. For example, SHA-1 [18] produces 160-bit hash
digests, and the generic attack by [17] requires 2106.6 computational cost and 253.3

memory size. We point out that if a collision attack exists for a hash function,
it can be converted to a memoryless1 3-collision attack with some additional
computational cost. For SHA-1, a (memoryless) collision attack was proposed
by Wang et al. [19] which claimed 269 computational cost. Although many pa-
pers claim the improved computational cost [21–26], the current best complexity
is unclear. Because our purpose is showing a generic conversion framework, the
current exact computational cost is not a main issue. Suppose that collisions of
SHA-1 can be generated with 261 computational cost [25]. Then, our conversion
method can find 3-collisions of SHA-1 with 2142 computational cost and negli-
gible memory size. We do not claim that this is better than the generic attack
by [17]. However, we believe that the possibility of memoryless 3-collision attack
is worth noting, and if the attack is measured by a product of a computational
cost and a memory size, our result (2142 × 1 = 2142) becomes better than [17]

1 Here, we suppose that the collision attack itself is memoryless. In fact, many collision
attacks based on the ones by Wang et al. [19, 20] require few memory.

Memoryless Unbalanced Meet-in-the-Middle Attacks 257

(2106.6 × 253.3 = 2160). We also apply the memoryless 3-collision attack to hash
function HAVAL [27] by exploiting the existing collision attack presented by [28].
The comparison of the complexity is given in Table 1.

Table 1. Comparison of 3-collision Attacks

Target Attack Method Computational Cost Memory Size Reference

SHA-1 Generic Attack 2106.6 2106.6 [29]
Improved Generic Attack 2106.6 253.3 [17]
Memoryless Attack 2142 negl. Sect. 4.3

4-pass HAVAL Generic Attack 2170.6 2170.6 [29]
Improved Generic Attack 2170.6 285.3 [17]
Memoryless Attack 2165 negl. Sect. 4.3

5-pass HAVAL Generic Attack 2170.6 2170.6 [29]
Improved Generic Attack 2170.6 285.3 [17]
Memoryless Attack 2252 negl. Sect. 4.3

As the second application, we show that the memoryless unbalanced MitM
can be applied to the limited-birthday distinguisher on a hash function which
has been recently proposed by Iwamoto et al. [30].

Paper Outline. The organization of this paper is as follows. In Sect. 2, we
generalize the cost of the unbalanced MitM attack in which the computational
cost of F and G are given in variables. In Sect. 3, we show the impossibility of
improving the simple application of the Floyd’s cycle-finding algorithm for the
memoryless unbalanced MitM attack. In Sect. 4, we show the application of the
memoryless unbalanced MitM attack. Finally, we conclude this paper in Sect. 5.

2 Generalizing the Computational Cost of Unbalanced
MitM Attacks

In this section, we evaluate the cost of the unbalanced MitM attack when a
sufficient memory size is given. The goal of the attack is finding a match between
two functions of n-bit output F and G, where one execution of F and G require
CF and CG computational cost, respectively. To make the discussion easy, we
discuss the cost in exponential forms. Hence, we suppose that CF = 2α and
CG = 2β. Without losing the generality, we suppose that α < β.

2.1 Previous Work for CF = 1

There are several previous work, e.g. [3, 31], which performs the unbalanced
MitM attack when the cost for the cheaper function is 1, i.e. CF = 1 and
CG = 2β. The attack procedure for this case is described as follows.

258 Y. Sasaki

F

CF = 2α per
execution

n
G

CG = 2β per
execution

n

match
xi yj

inputs

(2n pairs)

Entire cost:

inputs

Fig. 3. Sketch of the Unbalanced MitM Attack with Sufficient Memory

1. Set NG ← 2(n−β)/2. For j = 1, 2, · · · , NG, choose a value of yj , compute
G(yj), and store the result in a list L where the data is indexed by G(yj).

2. Set NF ← 2(n+β)/2. For i = 1, 2, · · · , NF , choose a value of xi, compute
F(xi), and search for a match with G(yj) in the list L.

Because NF ×NG = 2n, one match is expected on average. The memory size for
Step 1 is NG, which is 2(n−β)/2. NF and NG are chosen so that the computational
cost for Step 1 and Step 2 are balanced. The computational cost for Step 1 is
2(n−β)/2 × 2β = 2(n+β)/2. The computational cost for Step 2 is 2(n+β)/2 × 1 =
2(n+β)/2. In the end, the attack is performed with 2((n+β)/2)+1 computational
cost and 2(n−β)/2 memory size.

2.2 Generalization for CF = 2α

We generalize the attack in Sect. 2.1 so that the cost of computing F is given by
2α. The only difference from Sect. 2.1 is the choice of NF and NG. The attack
procedure is as follows, which is also depicted in Fig. 3.

1. Set NG ← 2(n+(α−β))/2. For j = 1, 2, · · · , NG, choose a value of yj , compute
G(yj), and store the result in a list L where the data is indexed by G(yj).

2. Set NF ← 2(n−(α−β))/2. For i = 1, 2, · · · , NF , choose a value of xi, compute
F(xi), and search for a match with G(yj) in the list L.

Because NF × NG = 2n, one match is expected on average. The memory size
for Step 1 is NG, which is 2(n+(α−β))/2. The computational cost for Step 1
is NG × 2β = 2(n+α+β)/2. The computational cost for Step 2 is NF × 2α =
2(n+α+β)/2. In summary, the unbalanced MitM attack can be performed with
2((n+α+β)/2)+1 computational cost and 2(n+(α−β))/2 memory size.

Note that by setting CF = 1, i.e. α = 0, the complexity becomes 2((n+β)/2)+1

computational cost and 2(n−β)/2 memory size, which matches in Sect. 2.1.
The generalization in this section is quite straight-forward. We showed the

generalization as a tool for the future usage. Indeed, the discussion from the
next section uses this result.

Memoryless Unbalanced Meet-in-the-Middle Attacks 259

3 Impossibility of Efficient Memoryless Unbalanced
MitM Attacks

In this section, we aim to convert the unbalanced MitM attack in Sect. 2 to
the memoryless attack by using the Floyd’s cycle-finding algorithm. Firstly, we
explain the simple application of the Floyd’s cycle-finding algorithm in Sect. 3.1.
We then explain that it is impossible to improve the computational cost by
changing the ratio of computing F and G in Sect. 3.2. We give some remarks in
Sect. 3.3.

3.1 Simple Application of the Floyd’s Cycle-Finding Algorithm

In this section, we simply apply the memoryless attack on the balanced case even
though the cost of two functions F and G are unbalanced. We again suppose that
CF = 2α, CG = 2β and α < β. Because F and G are computed in the same
ratio, we choose an event of probability 1/2 as a selection rule of the choice of
F and G. Here, we simply use the LSB of previous chaining value.

To find a match, both F and G are computed about 2n/2 times, which requires
the computational cost of 2α+(n/2) and 2β+(n/2), respectively. If a match between
vi and v′i is found, we check if they are generated from different choices of F
and G. Because F and G are switched with probability 1/2, they are generated
from different functions with probability 1/2. Therefore, we need to iterate the
attack 2 times on average, which requires the computational cost of 2α+(n/2)+1+
2β+(n/2)+1. Considering that α < β, the entire computational cost is

2β+(n/2)+1. (1)

The evaluation is summarized in Table 2.

Table 2. Complexity for the simple application of the Floyd’s cycle-finding algorithm

Functions #computed times Computational #iterations of Dominant
per match cost per match cycle constructions computational cost

F 2n/2 2α+(n/2)

2 2β+(n/2)+1

G 2n/2 2β+(n/2)

Note that the computational costwith a sufficientmemory size is 2((n+α+β)/2)+1

as shown in Sect. 2.2. Compared to it, the simple application of the Floyd’s cycle-
finding algorithm increases the computational cost by a factor of 2(β−α)/2.

3.2 Unbalanced Selecting Bits: Changing the Ratio of F to G
To make the computational cost of computing F and G balanced, we use an event
with probability 2−(β−α) as a selection rule of the choice of F and G. Therefore,

260 Y. Sasaki

if the (β − α) LSBs of vi−1 are all 0, we compute vi ← G(vi−1). Otherwise, we
compute vi ← F(vi−1). Then, the ratio of F to G becomes 2β−α to 1. To be
more precise, the chain is computed as follows.{

vi ← F(vi−1) if (β − α) LSBs of vi−1 are all 0,
vi ← G(vi−1) otherwise.

The number of computations ofF and G become 2n/2+(β−α)/2 and 2n/2−(β−α)/2

respectively. The corresponding computational cost is obtained by multiplying 2α

and 2β respectively, which result in 2(n+α+β)/2 for both. Because F and G is com-
puted in the ratio 2β−α to 1, the probability that amatch is obtained fromdifferent
choice ofF and G is about 2−(β−α). Therefore, the cycle constructionmust be iter-
ated2β−α times onaverage.The entire computational costbecomes 2(n+3β−α)/2+1.
The evaluation is summarized in Table 3.

Table 3. Complexity using the unbalanced ratio of F to G

Functions #computed times Computational #iterations of Dominant
per match cost per match cycle constructions computational cost

F 2n/2+(β−α)/2 2(n+α+β)/2

2β−α 2(n+α+β)/2+1 × 2β−α

G 2n/2−(β−α)/2 2(n+α+β)/2 = 2(n+3β−α)/2+1

Let us compare the computational cost of this case with the one in Sect. 3.1.
The condition that the computational cost of this attack can be smaller than
the one in Sect. 3.1 is

2β+(n/2)+1 > 2(n+3β−α)/2+1,

which is converted into

α > β.

This clearly contradicts to the assumption of α < β, thus regardless of the values
of α and β, the attack in Sect. 3.1 is better.

Results do not change even if we consider the other ratio. Let us set the
ratio of the number of F and G to 2z to 1. The evaluation is similar. F is
computed 2n/2+z/2 times in a cycle, and its computational cost is 2n/2+z/2+α. G
is computed 2n/2−z/2 times in a cycle, and its computational cost is 2n/2−z/2+β .
The probability that a match is obtained from different choices of F and G is
about 2−z. Therefore, the cycle construction will be iterated 2z times on average.
Hence, the total computational cost is 2n/2+z/2+α +2n/2+z/2+β . The results are
summarized in Table 4.

Memoryless Unbalanced Meet-in-the-Middle Attacks 261

Table 4. Complexity evaluation by setting the ratio of F to G as a variable

Func. #computed times Computational #iterations of Dominant
per match cost per match cycle constructions computational cost

F 2n/2+z/2 2n/2+z/2+α

2z 2n/2+3z/2+α + 2n/2+z/2+β

G 2n/2−z/2 2n/2−z/2+β

Compared to 2β+(n/2)+1 for the simple application in Sect. 3.1, the second
term of the dominant computational cost in Table 4, which is 2n/2+z/2+β , is
always higher by a factor of 2z/2−1.

3.3 Summary and Remarks

We showed that as long as the Floyd’s cycle-finding algorithm is used, the simple
application that computes F and G in the same ratio is the best, and the attack
increases the computational cost by a factor of 2(β−α)/2 compared to the one
with a sufficient memory size.

We like to note that without using the Floyd’s cycle-finding algorithm, the
trivial time-memory tradeoff exists for both balanced and unbalanced MitM
attacks. In the MitM attack, NG outputs are stored for G, and NF outputs are
generated online for F , where NG ×NF = 2n. Usually, NG and NF are chosen
so that the computational cost NG × CG and NF × CF are balanced. In order
to reduce the memory size, instead of storing NG outputs for G, we only store
G/w results. When NF are computed later, we generate w ×NF results so that
a match is still expected. This reduces a memory size by a factor of w and
increases the computational cost by a factor of w. This is a tradeoff such that
Time ×Memory = constant. If the memory size needs to be reduced only by
a small factor, using this trivial time-memory tradeoff may be more convenient
than using the fully memoryless cycle-finding algorithm which always increases
the computational cost by a factor of 2(β−α)/2.

4 Applications of the Memoryless Unbalanced MitM
Attacks

In the previous section, we showed a negative result, i.e. the computational cost
of the memoryless unbalanced MitM attack cannot be faster than the simple
application in Sect. 3.1. In this section, we show that the memoryless unbalanced
MitM attack in Sect. 3.1 is still meaningful. Firstly in Sect. 4.1, we explain the
generic condition that the memoryless unbalanced MitM attack can be applied.
Secondly in Sect. 4.2, we explain that several claims of the previous memoryless
MitM preimage attacks, e.g. [15], is incorrect. Thirdly in Sect. 4.3, as a concrete
example, we show that it can be used to generate 3-collisions for hash functions
by exploiting a dedicated collision attack algorithm. Finally in Sect. 4.4, as
another example, we show the applications to the limited-birthday distinguisher
recently proposed by Iwamoto et al. [30].

262 Y. Sasaki

4.1 Conditions to Apply Memoryless Unbalanced MitM Attack

From eq. (1), the computational cost of the memoryless unbalanced MitM is
given by 2β+(n/2)+1, where 2β is the cost to execute the heavier function G.
In order to be faster than 2n computational cost, we obtain the condition
2β+(n/2)+1 < 2n, which is converted to

CG = 2β < 2(n/2)−1. (2)

Therefore, to be converted to the memoryless attack, the computational cost of
G must be smaller than the birthday attack complexity.

4.2 Incorrectness of Previous Memoryless MitM Preimage Attack

Recently, various preimage attacks based on the MitM attack have been pro-
posed against narrow-pipe Merkle-Damg̊ard hash functions [7, 11, 13, 15, 16].
In those hash functions, the hash digest is computed by iteratively computing
the compression function Hi ← CF(Hi−1,Mi−1), where Mi is the message value
and H0 is an initial value defined in the hash function specification.

Those attacks, for a given hash digest, aim to generate a preimage consisting of
two message blocks. The attack is depicted in Fig. 4. It firstly generates pseudo-
preimages, which are a pair of (H1,M1) such thatH1 �= IV and the corresponding
compression function output, H2, is a given digest. In many cases, the cost of
the pseudo-preimage generation is much higher than 2n/2. After that, generated
pseudo-preimages are converted into a preimage by applying the unbalanced
MitM attack for the first message block. In details, the pseudo-preimage attack
is regarded as function G and the randommessage generation for the first message
block is regarded as function F whose computational cost is 1 per execution.

Several (but not all) previous work claim that the unbalanced MitM part
can be performed with negligible memory size by using the Floyd’s cycle-finding
algorithm, e.g. [15, Section 4.5].

However, the conversion from pseudo-preimages to preimages is an exam-
ple that the unbalanced MitM attack part cannot be memoryless by using the
Floyd’s cycle-finding algorithm. If the conversion is applied, the computational
cost of the memoryless preimage attack becomes more than 2n, which is worse
than the generic attack. This result immediately indicates the incorrectness of
the claim in previous work about the memoryless preimage attack. We would
like to stress that, with a sufficient amount of memory, the previous attack can
work correctly.

4.3 Application to 3-Collisions

The first application of the memoryless unbalanced MitM attack is a 3-collision
attack on hash functions. A 3-collision on a hash functionH is a triplet of distinct
input values (I1, I2, I3) such that H(I1) = H(I2) = H(I3).

In general, it is known that a t-collision can be generated with a computa-
tional cost of O(2(t−1)n/t) and O(2(t−1)n/t) memory size [29]. For n = 3, the

Memoryless Unbalanced Meet-in-the-Middle Attacks 263

CF
n n

CF
n n

H0

M0 M1

H1 H2
(IV) (digest)

F: random generation
CF = 1

G: pseudo-preimage attack
CG > 2n/2

match

Fig. 4. Previous preimage attacks using unbalanced MitM attack

computational cost is O(22n/3) and the memory size is O(22n/3). At Asiacrypt
2009, Joux and Lucks showed a generic 3-collision attack on an n-bit narrow-
pipe Merkle-Damg̊ard hash function [17], which requires a computational cost
of O(22n/3) and a memory size of O(2n/3). One drawback of this attack is a
memory size of O(2n/3). For a relatively large n, preparing a memory of size
O(2n/3) is infeasible.

We point out that a memoryless 3-collision attack on H can be achieved from
a (memoryless) collision attack on H. In short, the strategy is as follows, which
is also illustrated in Fig. 5. A collision attack produces a pair of input messages
(I1, I2) such that H(I1) = H(I2) with a computational cost of CG = 2β , where
β < n/2. This operation is regarded as function G, namely, G produces an n-
bit value H(I1) = H(I2) at a computational cost of CG = 2β. To find the
third colliding input message I3, we simply test randomly generated messages.
Therefore, F produces an n-bit value H(I3) at a computational cost of CF = 1.
A 3-collision is generated by observing a match of the output values between F
and G. This is exactly the unbalanced MitM attack. Hence the 3-collision attack

n
H0

H1

(IV) (digest)

F: random generation
CF = 1

G: collision attack
CG = 2 < 2n/2

match

n
H0

H1

(IV) (digest)

Fig. 5. Memoryless 3-collision Attack with Memoryless Unbalanced MitM Attack

264 Y. Sasaki

can be memoryless by following the strategy in Sect. 3.1, which results in the
computational cost of 2β+(n/2)+1 and a negligible memory size.

For example, SHA-1 [18] is a 160-bit narrow-pipe hash function. On one
hand, the generic attack by [17] requires 2106.6 computational cost and 253.3

memory size to find a 3-collision. On the other hand, [25] showed that colli-
sions of SHA-1 can be generated with 261 computational cost and negligible
memory size. Then, the conversion in Sect. 3.1 can find 3-collisions of SHA-
1 with 2142(= 261+(160+/2)+1) computational cost and negligible memory size.
Other two examples are 4-pass HAVAL and 5-pass HAVAL [27], each is a 256-
bit narrow-pipe hash function. A collision attack was proposed by Yu et al.,
which finds collisions of 4-pass HAVAL with 236 computational cost and neg-
ligible memory and collisions of 5-pass HAVAL with 2123 computational cost
and negligible memory [28]. The generic 3-collision attack by [17] requires 2170.6

computational cost and 285.3 memory size for both of 4-pass and 5-pass HAVAL.
Preparing a memory of size 285.3 seems almost infeasible. The conversion in
Sect. 3.1 can find 3-collisions of 4-pass HAVAL with 2165(= 236+(256/2)+1) com-
putational cost and negligible memory size and 3-collisions of 5-pass HAVAL
with 2252(= 2123+(256/2)+1) computational cost and negligible memory size.

Strictly speaking, we need to be more careful about the details of collision
finding algorithm G to generate a Floyd’s cycle. The collision attack on SHA-
1 [19, 25], to achieve the claimed computational cost, involves various analytic
techniques such as message modification technique and early aborting technique.
To make the cycle, G must be solely dependent on the value of vi−1. Besides, for
the same vi−1 received in different timings, G must reproduce the same output
value vi. In short, this can be achieved by fixing the search rule i.e. in which
order the freedom degrees are used and the conditions to apply the techniques.
We show the detailed analysis specific to the SHA-1 collision search in Appendix.

4.4 Application to Limited-Birthday Distinguisher

The limited-birthday distinguisher was firstly mentioned by Gilbert and Peyrin
at FSE 2010 [32] to distinguish a target function H from an ideal one. In this
framework, the distinguisher is firstly given a pair of an input (truncated) dif-
ference ΔIN and an output (truncated) difference ΔOUT . The goal of the dis-
tinguisher is finding a value x satisfying both the input and output differences,
i.e., H(x)⊕H(x⊕ΔIN) = ΔOUT . If such a value can be found for H faster than
for an ideal function, H is said to be non-ideal.

Then, Iwamoto et al. showed that, for a narrow-pipe hash function, the
limited-birthday distinguisher for the entire construction can be constructed
from a semi-free-start collision attack on the compression function [30]. Here, a
semi-free-start collision attack is a kind of collision attack on the compression
function CF, which finds a triplet of a previous chaining variable Hi−1, a message
x, and a message difference δIN such that CF(Hi−1, x) = CF(Hi−1, x ⊕ δIN).
Iwamoto et al. point out that in many of previous semi-free-start collision at-
tacks, δIN can be fixed before x is searched. Then, their framework of the

Memoryless Unbalanced Meet-in-the-Middle Attacks 265

conversion to the limited-birthday distinguisher on H is as follows, which is
also illustrated in Fig. 6.

CF
n n

CF
n n

M0 M1

(IV)

F: random generation

CF = 1

G: semi-free-start
collision

CG = 2 < 2n/2

match

CF
n n

padding

(digest)

Δ = 0 Δ = 0Δ = 0 Δ = 0

Δ = 0 Δ = δIN Δ = 0

appended by a
padding rule

H0 H1 H2 H3

Fig. 6. Framework of the Limited-birthday Distinguisher on H from a Semi-free-start
Collision Attack on CF. An input difference is fixed to (0‖δIN), and an output difference
is fixed to 0.

1. Find a semi-free-start-collision attack on CF, which can work for a pre-
specified message difference δIN . Set an input difference for H to (0‖δIN)
and set an output difference of H to 0.

2. For the second message block, perform the semi-free-start-collision attack to
find many triplets of (H1,M1,M1 ⊕ δIN). The results are stored in a list L.

3. For the first message block, compute H1 ← (H0,M0) for many randomly
generated messages M0, and find a match with one of the H1 in L.

4. For a matched M0‖M1 and M0‖M1⊕δIN , a padding block is often appended
inside the computation of H. Because all input information for the third
message block has no difference, the output difference is ensured to be 0.

The match between the first message block and the second message block is
an unbalanced MitM attack. Suppose that the cost of semi-free-start collision
attack is 2β, and β < n/2. It generates 2(n−β)/2 semi-free-start collisions with a
computational cost of 2(n−β)/2 × 2β = 2(n+β)/2 and the results are stored in a
list L with 2(n−β)/2 memory size. It also tests 2(n+β)/2 random messages in the
first message block. In the end, the total computational cost is 2((n+β)/2)+1.

As discussed in Sect. 3.1, the attack can be memoryless, which results in the
computational cost of 2β+(n/2)+1 and negligible memory size.

5 Concluding Remarks

In this paper, we studied the memoryless unbalanced MitM attack with the
Floyd’s cycle-finding algorithm. On the contrary to the previous belief, the un-
balanced MitM attack cannot be memoryless without significantly increasing
the computational cost compared to the sufficient-memory case. We showed

266 Y. Sasaki

that among any ratio of the numbers of computing F and G, 1 to 1 leads to
the best computational cost. We then searched for the applications in which the
memoryless unbalanced MitM attack with the Floyd’s cycle-finding algorithm is
still useful. The condition to apply the Floyd’s cycle-finding algorithm is that
the computational cost for the heavier function G must be below 2(n/2)−1. We
showed that the application to the MitM preimage attack is impossible. We also
showed that a 3-collision attack and a limited-birthday distinguisher on a hash
function are good examples of applications.

Our research is the first-step to discuss the unbalanced memoryless MitM
attack. A possible future research direction is finding alternatives of the Floyd’s
cycle-finding algorithm to reduce the memory size. In particular, it is interesting
to investigate the memoryless attack when the computational cost of the heavier
function G is bigger than the birthday attack cost.

Acknowledgments. The author would like to appreciate Takanori Isobe for
insightful discussions.

References

1. Diffie, W., Hellman, M.E.: Exhaustive Cryptanalysis of the NBS Data Encryption
Standard. Computer Issue 6(10) (1977)

2. Chaum, D., Evertse, J.-H.: Crytanalysis of DES with a Reduced Number of
Rounds: Sequences of Linear Factors in Block Ciphers. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 192–211. Springer, Heidelberg (1986)

3. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

4. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the
Full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 344–371. Springer, Heidelberg (2011)

5. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanal-
ysis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidel-
berg (2011)

6. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-Middle: Improved
MITM Attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222–240. Springer, Heidelberg (2013)

7. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-
age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-
2. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer,
Heidelberg (2010)

8. Isobe, T.: A Single-Key Attack on the Full GOST Block Cipher. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 290–305. Springer, Heidelberg (2011)

9. Isobe, T., Shibutani, K.: All Subkeys Recovery Attack on Block Ciphers: Extending
Meet-in-the-Middle Approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 202–221. Springer, Heidelberg (2013)

Memoryless Unbalanced Meet-in-the-Middle Attacks 267

10. Isobe, T., Shibutani, K.: Generic Key Recovery Attack on Feistel Scheme. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 464–485.
Springer, Heidelberg (2013)

11. Knellwolf, S., Khovratovich, D.: New Preimage Attacks against Reduced SHA-
1. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 367–383. Springer, Heidelberg (2012)

12. Khovratovich,D., Nikolić, I.,Weinmann, R.P.: Meet-in-the-Middle Attacks on SHA-
3 Candidates. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 228–245.
Springer, Heidelberg (2009)

13. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2009)

14. Floyd, R.W.: Nondeterministic Algorithms. Journal of the ACM 14(4), 636–644
(1967)

15. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

16. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating Fundamental Security Re-
quirements on Whirlpool: Improved Preimage and Collision Attacks. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer,
Heidelberg (2012)

17. Joux, A., Lucks, S.: Improved Generic Algorithms for 3-Collisions. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 347–363. Springer, Heidelberg
(2009)

18. U.S. Department of Commerce, National Institute of Standards and Technology:
Secure Hash Standard (SHS) (Federal Information Processing Standards Publica-
tion 180-3) (2008),
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

19. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

20. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

21. Chen, R.: New Techniques for Cryptanalysis of Cryptographic Hash Functions.
Ph.D. thesis, Technion (2011)

22. Cochran, M.: Notes on the Wang et al. 263 SHA-1 Differential Path. Cryptology
ePrint Archive, Report 2007/474 (2007)

23. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer,
Heidelberg (2007)

24. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

25. Stevens, M.: New Collision Attacks on SHA-1 Based on Optimal Joint Local-
Collision Analysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 245–261. Springer, Heidelberg (2013)

26. Wang, X.: Cryptanalysis of SHA-1 Hash Function. Keynote Speech at
The First Cryptographic Hash Workshop conducted by NIST (2005),
http://csrc.nist.gov/groups/ST/hash/first_workshop.html

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/groups/ST/hash/first_workshop.html

268 Y. Sasaki

27. Zheng, Y., Pieprzyk, J., Seberry, J.: HAVAL — One-Way Hashing Algorithm
with Variable Length of Output. In Seberry, J., Zheng, Y., eds.: AUSCRYPT’92.
In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 83–104.
Springer, Heidelberg (1993)

28. Yu, H., Wang, X., Yun, A., Park, S.: Cryptanalysis of the Full HAVAL with 4 and
5 Passes. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 89–110. Springer,
Heidelberg (2006)

29. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday Paradox for Multi-
Collisions. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences E91-A(1), 39–45 (2008)

30. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-birthday Distinguishers for Hash
Functions: Collisions Beyond the Birthday Bound can be Meaningful. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 504–523.
Springer, Heidelberg (2013)

31. Leurent, G.: MD4 is Not One-Way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

32. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like
Permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–383.
Springer, Heidelberg (2010)

33. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On
the Full Cost of Collision Search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC
2007. LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)

34. Grechnikov, E.A.: Collisions for 72-step and 73-step SHA-1: Improvements in the
Method of Characteristics. Cryptology ePrint Archive, Report 2010/413 (2010)

35. Grechnikov, E., Adinetz, A.: Collision for 75-step SHA-1: Intensive Parallelization
with GPU. Cryptology ePrint Archive, Report 2011/641 (2011)

A Cycle Construction with SHA-1 Collision Attack

The core idea of the Floyd’s cycle-finding algorithm is that, for a previous chain
value vi−1, a function G (and F) must reproduce an identical value vi as the next
chain value. Because the collision attack requires a complicated attack procedure,
the detailed operations in G must be carefully determined. In this section, we
explain the following three points that require special attention.

– How to ensure sufficient freedom degrees to find a collision of SHA-1.

– How to reproduce the same colliding value for the same input vi−1 received
in different timings.

– How to apply advanced collision-search techniques by ensuring the repro-
duction of the same colliding value.

Ensuring Sufficient Freedom Degrees. Collision attack on SHA-1 [19] gener-
ates a collision of 2-blocks long. From several experimental researches on reduced
rounds [33–35], we can see that the available freedom degrees for the collision
search within the first message block may not be sufficient. This is because most

Memoryless Unbalanced Meet-in-the-Middle Attacks 269

of the message bits must be fixed to control the differential propagation. There-
fore, embedding a previous 160-bit chain value vi−1 inside the first message block
gives a critically bad impact.

In our method, G generates a collision consisting of four message blocks, where
the size of each message block is 512 bits. The overview is given in Fig. 7. We

CFCF
160

M0 M1

IV CF

padding

(digest)

Δ = 0 Δ m1 Δ = 0

appended by a
padding rule

CF
160

M2

Δ m2

Δ h2

512

2-block
collision

Generating sufficient
freedom degrees

Collision
occurs here.

vi

(vi-1 is embedded in M0)

Fig. 7. Construction of G with SHA-1 Collision Attack

add another message block M0 before the 2-block collision. The size of M0 is 512
bits. We set 160 bits of M0 to vi−1. The other 352 bits can be fixed to any value
as long as the rule is uniquely fixed for the reproduction. The simplest way is
fixing the other 352 bits to 0. This reproduces the same output value of the first
message blocks for the same vi−1. Then, the 2-block collision is located in the
second and third message blocks. Note that the third message blocks are also
heavily fixed to control the differential propagation. Hence, we cannot embed
the padding string inside the third message block. This is the reason why we
need the fourth message block.

Because no limitation exists for the second and third message blocks, sufficient
freedom degrees can be ensured for generating a 2-block collision.

Reproducing the Same Colliding Value. Collision search algorithm is usu-
ally a random algorithm. Messages to be tested are generated randomly from
uniformly distributed space. However, this way cannot be used in our case due
to the problem of reproduction.

The problem can be simply avoided by stopping using the random algorithm
but choose messages to be tested in a specific rule. An example is pre-determining
the message-bit positions to be modified during the collision search. If 2β mes-
sages need to be tested, we can choose particular β-bit position. Whenever we
change the message, we take the message by modifying the chosen β-bit posi-
tion. In addition, we set the rule of the order of the modification. For example,
we modify the message from the least significant bit. The rule enables us to
reproduce the same message when the same situation occurs. Note that not only
inside M1 but also the 352 bits of M0 can be modified as long as the modification
rule is uniquely fixed.

270 Y. Sasaki

Application of Advanced Collision-Search Techniques. Complicated
collision-search techniques such as the message modification technique and the
early aborting technique can also be applied with ensuring the reproductivity by
pre-determining the application rule. The important thing is that the collision-
search algorithm must behave in the same way when the same situation occurs.
Therefore, by setting the condition to apply the message modification or early
aborting technique, reproducing the same result is possible.

On the (In)Equivalence of Impossible

Differential and Zero-Correlation Distinguishers
for Feistel- and Skipjack-Type Ciphers

Céline Blondeau1, Andrey Bogdanov2, and Meiqin Wang3

1 Department of Information and Computer Science, Aalto University School of
Science, Finland

celine.blondeau@aalto.fi
2 Technical University of Denmark, Denmark

anbog@dtu.dk
3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Jinan 250100, China
mqwang@sdu.edu.cn

Abstract. For many word-oriented block ciphers, impossible differential
(ID) and zero-correlation linear (ZC) cryptanalyses are among the most
powerful attacks. Whereas ID cryptanalysis makes use of differentials
which never occur, the ZC cryptanalysis relies on linear approximations
with correlations equal to zero. While the key recovery parts of ID and
ZC attacks may differ and are often specific to the target cipher, the
underlying distinguishing properties frequently cover the same number
of rounds. However, in some cases, the discrepancy between the best
known IDs and ZC approximations is rather significant.

At EUROCRYPT’13, a link between these two distinguishers has been
presented. However, though being independent of the underling structure
of the cipher, it is usually not useful for most known ID or ZC distin-
guishers. So despite the relevance of those attacks, the question of their
equivalence or inequivalence has not been formally addressed so far in a
constructive practical way.

In this paper, we aim to bridge this gap in the understanding of the
links between the ID and ZC properties. We tackle this problem at the
example of two wide classes of ciphers, namely, Feistel- and Skipjack-type
ciphers. As our major contribution, for those ciphers, we derive condi-
tions for impossible differentials and zero-correlation approximations to
cover the same number of rounds. Using the conditions, we prove an
equivalence between ID and ZC distinguishers for type-I and type-II
Feistel-type ciphers, for Rule-A and Rule-B Skipjack-type ciphers, as
well as for TWINE and LBlock. Moreover, we show this equivalence for
the Extended Generalised Feistel construction presented at SAC’13. We
also use our theoretical results to argue for an inequivalence between ID
and ZC distinguishers for a range of Skipjack-type ciphers.

Keywords: impossible differential, zero-correlation, Feistel-type ciphers,
Skipjack-type ciphers.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 271–288, 2014.
c© Springer International Publishing Switzerland 2014

272 C. Blondeau, A. Bogdanov, and M. Wang

1 Introduction

Differential and linear cryptanalyses [3,14] definitely belong to the most essential
types of attacks on block ciphers and have known numerous generalizations and
extensions. Among those are impossible differential (ID) cryptanalysis [2,12] and
zero-correlation (ZC) cryptanalysis [8, 9] which have been proven efficient when
applied to word-oriented block ciphers – block ciphers with strong local diffusion.

Classically, ID distinguishers take advantage of differentials which never oc-
cur for the studied permutations. This technique has been the subject of many
research publications. The security of new and old primitives has been evaluated
with respect to this attack. For instance, an early ID attack still remains the
best known key-recovery for Skipjack [2]. Also automated methods to find IDs
have been proposed [13, 25].

In ZC cryptanalysis, attackers rather take advantage of linear approximations
that have probability 1/2 to hold. This new attack which can be seen as multi-
dimensional linear attack with capacity equal to zero [7], has also been applied
to many word-oriented block ciphers [6, 7, 9, 18, 23, 24] to evaluate their security
and often improve upon the state-of-the-art cryptanalysis.

Usually techniques similar to the U-method or a generalization thereof are
used to identify ID distinguishers for word-oriented construction. In the fol-
lowing, we refer to these various methods as matrix methods. Recently, it has
been shown in [18] that this method can be applied to find ZC distinguishers in
particular for the block cipher LBlock [26].

While for many of these ciphers the discovered ZC distinguishers cover the
same number of rounds as the ID distinguishers, the numbers of rounds cov-
ered by the properties can be sometimes rather distinct. In [7], there is a ZC
distinguisher for a 30-round Skipjack variant for which only a 21-round ID dis-
tinguisher is known to exist. This discrepancy raises the question of equivalence
between ZC and ID distinguishers. As a first attempt to formalize this problem,
at EUROCRYPT’13 [4], using a mathematical link between linear and differen-
tial cryptanalysis, this question has been shown to have a positive answer in the
special case of multidimensional linear spaces of specific size. The link of [4] can
be outlined as follows:

For a given n-bit block cipher, we have an ID distinguisher (0, δ) � (0, γ)
with δ ∈ Ft

2 \ {0} and γ ∈ Fn−t
2 \ {0} if and only if we have a ZC distinguisher

(u, 0) � (v, 0) with u ∈ Fn−t
2 \{0} and v ∈ Ft

2 \{0}. Though this relation is inde-
pendent of the underlying cipher and its specific structure, it has the limitation
of involving (2t− 1)(2n−t − 1) ≈ 2n differentials or linear approximations. How-
ever, for many ciphers, fewer differentials are involved, which poses a limitation
to the practical application of this general theoretical result.

In this paper, with matrix techniques for IDs and ZC approximations, we
address this question for many more relevant constructions including Feistel-
type and Skipjack-type ciphers. A major difference of this paper with the link
of [4] is that the results presented here depend of the structure of the underlying
ciphers, thus, being both less general and more practical.

On the (In)Equivalence of ID and ZC 273

Our Contributions. The contributions of this paper are as follows.

– Condition of equivalence between ZC and ID distinguishers: As our
main contribution, we show that for many constructions, once we have an ID
distinguisher on r rounds involving M differentials, we obtain a ZC distin-
guisher on the same r rounds involving M linear approximations, and vise
versa. This yields a necessary and sufficient condition of equivalence between
ZC and ID distinguishers. We point out that the key recovery procedures on
top of those distinguishers may be quite different and may result in differ-
ent number of rounds cryptanalyzed in the actual attacks. While for most
Feistel constructions, the inverse of the internal function is not required for
deciphering, for ciphers like Skipjack the deciphering is obtained thanks to
the inverse of the internal function. We refer to the first type as Feistel-type
ciphers and to the second type as Skipjack-type ciphers. Understanding the
relation between these distinguishers, ID and ZC, will help designers check
if a separate study of ZC and ID distinguishers is necessary for a security
evaluation. Representation of the different constructions can be found in the
different part of this paper. For instance, in Fig. 1, Feistel-type ciphers are
represented, and in Fig. 3 and Fig. 4 Skipjack-type ciphers are represented.

– Inequivalence considerations for ZC and ID distinguishers: The nec-
essary and sufficient equivalence condition also allows us to reason about
cases of inequivalence for Feistel- and Skipjack-type ciphers. We consider
inequivalence between ZC and ID distinguishers for several interesting ex-
amples including the Feistel-type constructions of FSE’10 [19] featuring op-
timal branch shuffles as well as for the construction proposed at SAC’13 [1].
We also explain the type of inequivalence between ID and ZC distinguishers
observed for Skipjack variants in ASIACRYPT’12 [7].

Organization of the Paper. The remainder of this paper is organized as fol-
lows. In Section 2, we define what we call a Feistel-type cipher and recall how
a matrix representation of the round function can be used to find ID distin-
guishers or to compute the differential diffusion of such constructions. In the
same section, we also reconsider the recent method proposed in [18] to find ZC
distinguishers on a Feistel-type cipher. Based on this method, in Section 3, we
present conditions under which ID distinguishers involving M differentials and
ZC ones involving M linear approximations can be applied on the same number
of rounds of a Feistel-type cipher. Section 4 is dedicated to the Skipjack-type
ciphers. In this section, we discuss the equivalence/inequivalence between ZC
and ID distinguishers on Skipjack variants. In Section 5, we discuss the adap-
tion of the results of Section 3 and Section 4 to other types of word-oriented
ciphers. In particular, we discuss the Extended Generalised Feistel construction
presented at SAC’13 [1] and constructions similar to MARS and GF-NLFSR
such as Four-Cell. Section 6 concludes this paper.

274 C. Blondeau, A. Bogdanov, and M. Wang

2 Preliminaries

In this paper we assume word-oriented block ciphers with b words. The state
of a n-bit word-oriented block cipher with n = b · s is represented by X =
(X1, X2, · · · , Xb) where the Xi, 1 ≤ i ≤ b are blocks or words of s bits.

As recalled in the introduction, different constructions make use of this block
decomposition of the state, to apply at each round non-linear operations on a
subset of these blocks. Impossible differential cryptanalysis and zero-correlation
linear cryptanalysis are among the best attacks on this type of construction. In
this section, we describe these two distinguishers and their relation on what we
call a Feistel-type cipher.

2.1 Feistel-Type Cipher and Matrix Representation

At FSE’10 [19], Suzaki and Minematsu proposed a general framework to describe
what we call in this paper a Feistel-type cipher. This framework covers the well
known type-I (see Fig. 1), type-II, type-III (similar to type-I) constructions as
well as constructions such as the one proposed by Nyberg in [16]. The round
function of Feistel-type cipher is such that a branch (word) can at each round
be the input of a non-linear function or be linearly affected by the output of
such non-linear function. As represented1 in Fig. 1, a branching operation is
done on the branches corresponding of the input of a non-linear function, and
an exclusive-or addition (Xor) is done on the branches modified by the output
of these non-linear functions. The number I of non-linear layers depends on the
construction and can vary from 1 to b/2. Part of the diffusion is then provided by
a permutation of the branches. For such constructions, a key is usually Xor-ed

F� � ��

���������������

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

F ���

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���������������

F ���

���������������

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

Fig. 1. A type-I Feistel with 4 branches: On the left the round function, in the middle
the inverse of the round function and on the right the mirror of the round function as
described in Def. 2.

to the partial state. As the distinguishers presented in this paper do not depend
on this operation, this part will not be described.

Notice that given the round function of a Feistel-type cipher, as for a SPN
constructions, one can distinguish the non-linear part consisting of the applica-
tion of the non-linear functions to the linear part, consisting on the permutation
of the branches. Similarly to what has been done in [1], the round function of a

1 While depending on the construction, the number of branches of a word-oriented
cipher can varies, for illustration purposes the pictures presented in this paper con-
centrate on ciphers with 4 branches.

On the (In)Equivalence of ID and ZC 275

Feistel-type cipher can be matricially represented. This description can be split
in regard to the different layers which are F-layer and P-layer.

Definition 1. Omitting key and constant addition, the round function of a
Feistel-type cipher with b branches can be matricially represented as a combi-
nation of two b× b matrices F , P with coefficients {0, 1, Fi} where the {Fi}i≤I

denote the internal non-linear functions.

– Representing the non-linear layer (F-layer), the non-zero coefficients of the
matrix F are equal to 1 in the diagonal and have coefficient Fi in row j and
column k if the input of the function Fi is given by the k-th branch and the
output is Xor-ed to the j-th branch. Meaning that F can have up to one Fi

on each row and column.
– Representing the permutation of the branches (P-layer), the matrix P is a

permutation matrix with only one non-zero coefficient per line and column.

From these two matrices, a Feistel-type round function can be represented by
a b× b matrix R as R = P · F .

Example 1. The round function of the Type-I Feistel with 4 branches depicted
in Fig. 1 can be represented from F and P as follows:

F =

⎛⎜⎝ 1 0 0 0
F 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ , P =

⎛⎜⎝ 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎠ and R = P · F =

⎛⎜⎝F 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎠ .

In this paper, we assume that the internal non-linear functions Fi : Fs
2 → Fs

2,
are bijective. When it is not necessary, to make a distinction between the different
non-linear functions, we denote them as F instead of Fi.

In this paper, −1 and −F are identified with respectively 1 and F . The matrix
representation of the inverse round function is R−1 = F−1 · P−1.

2.2 Matrix Method for Impossible Differential Distinguisher

Through this paper, we express a truncated input (resp. output) difference as a
vector Δ (resp. Γ) of size b.

Impossible differential distinguishers are often derived from a miss-in-the-
middle or inconsistency between two intermediate differences. More precisely,
cryptanalysts are interested in finding truncated differences Δ and Γ and some
integers � and m such that we have an inconsistency between the intermediate
differences R� ·Δ and R−m · Γ .

To study the propagation of differences thought this type of construction, the
rules depicted in Fig. 2 and the matrix representation of the round function
of a Feistel-type cipher are used. In particular one can find ID by computing
the values R� · Δ and R−m · Γ and detecting an inconsistency between the
intermediate differences. This method has been described in [11,13] and used to
analyse the security of many ciphers.

276 C. Blondeau, A. Bogdanov, and M. Wang

Context Branching Xor F-function

Differential �

δ1

δ2

δ3

δ3 = δ1 = δ2 �

δ1

δ2

δ3

δ3 = δ1 ⊕ δ2

δ1

δ2

F

δ1 = δ2 = 0

δ1 �=0 and δ2 �=0

Linear �

u1

u2

u3

u3 = u1 ⊕ u2
�

u1

u2

u3

u3 = u1 = u2

u1

u2

F

u1 = u2 = 0

u1 �=0 and u2 �=0

Fig. 2. Propagation of differences and linear masks through the basic operations.
δ1, δ2, δ3 denote differences and u1, u2, u3 linear masks. The conditions correspond
to the case where the probabilities/correlations are non-zero.

2.3 Matrix Method for Zero-Correlation Distinguishers

While ID cryptanalysis has been defined at the end of the 90’s, the first attack
using linear approximations with no-correlation has been published in 2012 [9].

Through this paper, we denote a truncated input (resp. output) mask as a
vector U (resp. V) of size b. As for ID cryptanalysis, the classical method used
to find ZC approximations consists in detecting an inconsistency, a difference,
between two intermediate masks.

In [18] a generic method to find zero-correlation linear approximations on
Feistel-type ciphers is described. This method is similar to the matrix method
used for finding impossible differentials. Nevertheless, as depicted in Fig. 2, the
branching and Xor operations in the linear context and then a fortiori for ZC
distinguishers are converse to the ones in the differential context.

From these simple observations, we deduce that the matrix representation of
the round function can not be used directly to find ZC distinguishers. Instead,
as in [18] it seems natural to define what we will call the mirror round function.
In this mirror function as illustrated in Fig. 1 the role played by the input and
output of the non-linear functions are swapped meaning that the branching and
Xor operations are swapped.

The matrix representation of what we call mirror function of a Feistel-type
cipher can be defined easily from the matrix representation of the original func-
tion.

Definition 2. For a Feistel-type cipher given the matrix representation of the
round function R = P · F , we call mirror function the round function described
by the matrix M = P ·FT , where FT denotes the transposition of the matrix F .

Example 2. The mirror function of the Feistel-type function of Fig. 1 can be
represented by the matrix

M =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 F 0 0

⎞⎟⎟⎠ with inverse M−1 =

⎛⎜⎜⎝
F 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎠ .

On the (In)Equivalence of ID and ZC 277

Description of the matrix method in the ZC context [18] is given from the
mirror of the round function of the LBlock cipher. In a general matter, as in the
differential context, we can use this method to determine the linear diffusion of
the cipher or to find ZC distinguishers on a Feistel-type cipher.

3 Equivalence for Feistel-Type Ciphers

3.1 Condition of Equivalence

In the previous section, we explain how ID and ZC distinguishers on a Feistel-
type cipher can be found using a matrix method. However, the provided discus-
sion shows that the matrices used in both context are different. While in the
differential context the matrix R representing the round function can be used
directly, in the linear context one should use the matrix M refereed as mirror
matrix. Based on these remarks and on the fact that ZC distinguishers and ID
distinguishers threaten usually the same number of rounds of many Feistel-type
ciphers, we study in this section, the relation between these attacks. In par-
ticular we analyze the conditions which allow us to state that we have an ID
distinguisher involving M differentials on r = �+m rounds of the cipher if and
only if we have a ZC distinguisher involving M linear approximations on the
same r = �+m rounds.

Theorem 1. Let R be the matrix representation of the round function of a
generalized Feistel Network as presented in Sect. 2 and M be the matrix repre-
sentation of its mirror function. If it exists a b × b permutation matrix Q such
that

R = Q ·M · Q−1 or R = Q ·M−1 · Q−1, (1)

we deduce that:
It exists an impossible differential distinguisher on r rounds involving M differ-
entials if and only if it exists a zero-correlation linear distinguisher on r rounds
involving M linear masks.

Proof. As the second condition of (1) seems to be the most likely in practice, we
assume in this proof that we have R = Q ·M−1 · Q−1. The other case can be
proved in a similar way.
We assume that we have an ID on �+m rounds meaning that we know some Δ
and Γ such that we have an inconsistency between R� ·Δ and R−m · Γ .
As we have R� = Q ·M−� · Q−1 and R−m = Q−1 ·Mm · Q, we deduce that we
have an inconsistency between R� · Δ and R−m · Γ , if and only if we have an
inconsistency between Q ·M−� · Q−1 ·Δ and Q−1 ·Mm · Q ·Γ . Given the masks
U = Q−1 ·Δ and V = Q · Γ , we deduce an inconsistency between Q ·M−� · U
and Q−1 ·Mm · V .
Notice that the intermediate masks correspond to a linear permutation of the
intermediate differences and that we have transformed the inconsistency in the
differential context to an inconsistency in the linear context.

278 C. Blondeau, A. Bogdanov, and M. Wang

More precisely, we have shown that if it exists a permutation matrix Q such
that R = Q ·M−1 · Q−1, and if we have an ID distinguisher on �+m rounds of
a Feistel-type cipher, we have a ZC distinguisher on m + � rounds of the same
cipher. The converse proof is obtained by inverting the role played by R and
M. From the details provided in the proof, one can notice that since Q is a
permutation matrix, the truncated masks and differences, U and Δ as well as V
and Γ , are similar and the number of differences corresponds to the number of
masks. ��

Similarly one can prove that the linear and differential diffusion of a Feistel-
type cipher are equal if the round function respect one of the conditions given
in (1).

3.2 Example of Equivalence

In practice many Feistel-type ciphers respect the condition given in Th. 1. In
this section, we discuss some of the well-known constructions.

For instance for the type-I Feistel-type cipher of Ex. 1 we have

Q =

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎠ and R = Q ·M−1 · Q−1.

Using this method, we can also show that any type-II Feistel-type ciphers have
the same linear and differential diffusion.

The construction proposed by Nyberg [16] is, at the difference of the type-I
and type-II one non-alternating, meaning that over the rounds the same branch
can affected by many branching operations before being affected by a Xor. As
this construction fulfills the condition given in Th 1, from the model proposed
in this paper, one can easily adapt the security analysis provided against ID
cryptanalysis to the linear context.

In [19], Suzaki and Minematsu proposed a general framework for all these
Feistel-type ciphers. Based on this analysis, they later design the block cipher
TWINE [21]. While the security of this cipher in regard to ID cryptanalysis
has been analysed by the designers, up to our knowledge no analysis of the
security/insecurity of this cipher in regard to ZC cryptanalysis has been done.
In [20], the authors explain the similarity between TWINE and LBlock. From
our framework, we can check that the 14-round ID distinguisher of LBlock or
TWINE [21] can be converted directly to a 14-round zero-correlation one. As this
distinguisher was considered in the security analysis performed by the designers
and the round function of these ciphers fulfilled to conditions of Th. 1, one can
question the relevance of, for instance, the zero-correlation attack of [18] on
LBlock.

The next section is dedicated to the analysis of the results of [19].

On the (In)Equivalence of ID and ZC 279

3.3 Example of Non-Equivalence

In Appendix of [19], many Feistel-type round functions with different diffusion
layers are proposed. Among other, the security in regards to ID cryptanalysis is
analyzed for different permutations, π, of the 6, 8, 10, 12, 14 or 16 branches.

We checked the framework proposed in Th. 1 on these constructions. In par-
ticular, for each permutation π proposed in [19], using the matrix representation,
we checked if it exists a permutation matrix Q, such that one of the conditions
given in (1) is satisfied. As no security analysis against zero-correlation linear
attack is provided in [19], we compare our result (existence or non-existence of
such matrix) with the differential and linear diffusion provided in [19]. While
for most of them we can prove that the existence of an ID distinguisher implies
the existence of a ZC distinguisher, for illustration purpose, we present here two
cases where the condition given in Th. 1 is not satisfied. In Tables 1 and 2 both
ciphers have an impossible distinguisher on 14 rounds and after 8 rounds 38, 40
or 35 Sboxes are active in the differential or linear context.

Table 1. Case No.12 of Table 5 of [19] (b = 14).

π
Number of rounds Number of active Sboxes
impossible diffusion diff. context linear context

{1, 2, 9, 4, 11, 6, 7, 8, 5, 12, 13, 10, 3, 0} 14 8 38 40

The permutation defined Table 1 is such that the minimal number of active
Sboxes after 8 rounds in the differential context is smaller than the one in the
linear context, this results is confirmed by the fact that we can prove that there
exists no-matrix Q verifying the condition given in Th. 1. The diffusion (number

Table 2. Case No.5 of Table 4 of [19] (b = 12).

π
Number of rounds Number of active Sboxes
impossible diffusion diff. context linear context

{5, 0, 7, 2, 1, 6, 11, 8, 3, 10, 9, 4} 14 8 35 35

of active Sboxes) in the linear and differential context of the Feistel-type function
given in Table 2 has been computed as equal. With the method described in this
paper, we can show that the condition of Th. 1 is not fulfilled. This example
illustrates the possibility that the conditions given in Th. 1 are sufficient but not
necessary to have the same linear and differential diffusion.

4 Equivalence for Skipjack-Type Ciphers

4.1 Skipjack-Type Ciphers

Some word-oriented ciphers, which are also vulnerable to ID and ZC do not
fulfill the conditions given in Sect. 3. This is for instance the case of the cipher
Skipjack and its two different round functions known as Rule-A and Rule-B.

280 C. Blondeau, A. Bogdanov, and M. Wang

F

� ��

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

															

�
F

� � ��

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

															

Fig. 3. Rule-A (left) and Rule-B (right) as in Skipjack

For these functions represented in Fig. 3, the internal non-linear functions should
be bijective to allow the decryption.

In this section, a Skipjack-type cipher is defined as an iteration of Skipjack-
type round functions. For such round function the input and output of a
non-linear function are on the same branch. Such round function can have one
non-linear bijective function in each of its branch. We assume that the linear
operations consisting at mixing the information of the different branches are
executed after the F-layer. We call this step X-layer. In this section, we assume
that only one branching or exclusive-or operation is allowed on each branches.
The permutation of the branches, P-layer, is the last operation performed in this
round function. More precisely, using a matrix representation, a Skipjack-type
round function can be described as follows.

Definition 3. A Skipjack-type round function with b branches can be matricially
represented as a combination of three b × b matrices G, X , P with coefficients
{0, 1, F}, where F denotes a non-linear layer operation.

– Representing the F-layer, the matrix G is diagonal with 1 or F in the diago-
nal. The j-th element of the diagonal is equal to F if a non-linear function
is applied to the branch j.

– Representing the X-layer, the matrix X has 1’s in the diagonal and at max-
imum two 1 per row and column.

– Representing the P-layer, the matrix P is a permutation matrix with only
one non-zero element per line and column.

From these three matrices, a Skipjack-type round function can be represented by
a b× b matrix R defined as R = P · X · G.

Example 3. Rule-A of Skipjack depicted in Fig. 3 can be represented as

RA = P · XA · G =

⎛⎜⎜⎝
F 1 0 0
0 0 1 0
0 0 0 1
F 0 0 0

⎞⎟⎟⎠ ,

with XA =

⎛⎜⎜⎝
1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , G =

⎛⎜⎜⎝
F 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ and P =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠ .

Def. 3 covers more constructions than just the Rule-A of the Skipjack. In Fig. 4
an other example of Skipjack-type function with two non-linear functions and
different P-layer is represented.

On the (In)Equivalence of ID and ZC 281

F F

����

�
�

�
�

�

����������

����������

Fig. 4. A Skipjack-type round function with two internal non-linear layers

ID distinguishers can be found using this matrix representation. The incon-
sistency rules and the properties defined in Fig. 2 remains the same than for a
Feistel-type cipher.

As in Sect. 3, we identify −1 as 1, −F as F but also in this section, we identify
1/F and F−1 as F .

Definition 4. Given R = P · X · G the matrix representation of a Skipjack-type
round function (see. Def. 3), we call mirror function the round function described
by the matrix M = P · X T · G.

Example 4. The mirror of the Skipjack Rule-A round function given in Fig. 3
is:

F

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

															

��� �

with M =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
F 1 0 0

⎞⎟⎟⎠ .

Similarly to the description provided in Sect. 2.3 for Feistel-type ciphers, this
mirror representation can be use find ZC distinguishers on a cipher defined as
an iteration of a unique Skipjack-type round function.

4.2 Condition of Equivalence

In this section, before describing in Th. 2 under which condition, the existence of
an ID distinguisher involving M differences is equivalent to the existence of a ZC
distinguisher involving M linear masks, we explain why the Rule-B of Skipjack
depicted in Fig. 3, can be represented in our model.

Rule-B of Skipjack depicted in Fig. 3 can be represented using the matrices
G and P of Ex. 3 as

RB = P · G · XB =

⎛⎜⎜⎝
F 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠ with XB =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

⎞⎟⎟⎠ .

Notice that forRB at contrary toRA the X-layer is performed before the F-layer.
Nevertheless, when it comes at computing the differential and linear diffusion
but also at finding ID or ZC distinguishers of a cipher defined as an iteration

282 C. Blondeau, A. Bogdanov, and M. Wang

of Rule-B, the first and or last linear layer can be omitted or interchanged.
More explicitly we can define new round function with matrix representation:
R∗ = XB · P · G = P · (P−1 · XB · P) · G. This transformed function corresponds
to the mirror of Rule-A given in Ex. 4.

Remark 1. In a general matter, if the X-layer is performed before the F-layer,
meaning if the round function is represented as R = P · G · X with P ,X ,G as
in Def. 3, for studying the differential and linear properties, we can transform
of this round function to fulfill the Def. 3 of a Skipjack-type cipher. The matrix
representation of this transformed round function can be computed as R∗ =
X · P · G = P · (P−1 · X · P) · G.

While the number of differences (resp. masks) considered in an ID (resp. ZC)
distinguisher remain the same for the transformed round function than for the
original one, the input/output differences (resp. masks) pattern can be different
for the transformed cipher than for the original one. For instance, as illustrated in
Table 3, when iterating only Rule-B the input differences of the ID distinguisher
are equal in two of the branches, while when iterating only Rule-A the input
differences are non-zero in only one of the branches.

In this section we assume a cipher with identical round functions. Discussion
for construction with different rules will be provided in Sect. 4.3.

Theorem 2. Let R be the matrix representation of a Skipjack-type round func-
tion as in Def. 3 and M be its mirror function. If it exists a b × b permutation
matrix Q such that

R = Q ·M · Q−1 or G · P · X = Q ·M−1 · Q−1, (2)

we deduce that:
It exists an impossible differential distinguisher on r rounds involving M differ-
entials if and only if it exists a zero-correlation linear distinguisher on r rounds
involving M linear masks.

Proof. The proof is similar to the one of Th. 1. While the proof is easy for the
first condition of (2), we assume here that G ·P ·X = Q·M−1 ·Q−1. The different
steps of the proof for the Rule-A of Skipjack are illustrated in Fig. 5.

From Def. 3, we have R−1 = G−1 ·X−1 ·P−1 or equivalently R−1 = P−1 · (P ·
G−1 ·P−1) ·(P ·X−1 ·P−1). One can notice that the order of the operations of the
inverse of the round function does not match the order of the mirror function
or even the one of the round function. From Rem. 1, we can modify the round
function to obtain the transformed function R−1

∗ = P · X−1 · P−1 · G−1 · P−1 =
P · (R∗)

−1 · P−1.
We have an inconsistency between R� · Δ and R−m · Γ if and only if we

have an inconsistency between R�
∗ · Δ∗ and R−m

∗ · Γ∗, where Δ∗ and Γ∗ are
linear combinations of Δ and Γ and where R∗ = (R−1

∗)−1. More explicitly, if
and only if we have an inconsistency between

[
P · (G · P · X)l · P−1

]
· Δ∗ and[

P · (X−1 · P−1 · G−1)m · P−1
]
· Γ∗.

On the (In)Equivalence of ID and ZC 283

Assuming representatives of the linear masks U and V similar to Δ∗ and Γ∗ this
means that we have an inconsistency between

[
P · (Q ·M−1 · Q−1)l · P−1

]
· V

and
[
P · (Q ·M · Q−1)m · P−1

]
· U .

And we deduce an inconsistency between S ·M−� · S−1 ·V and S ·Mm · S−1 ·U
where S = P · Q is a permutation matrix. Meaning that we have transformed
an ID distinguisher on �+m rounds to a ZC distinguisher on m+ � rounds. ��

F

� ��

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

															

�

� ���

F (F−1)

F

��� �

F

� ���

F

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

															

��� �

Round function Inverse function Exchange the order of the operations

Equivalent formulation Permutation of the branches
Mirror function

Fig. 5. Illustration of the different steps in the proof of Th. 2 for Rule-A of Skipjack

4.3 Example of Skipjack-Type Ciphers

While Skipjack is defined as a 32-round cipher where 8 rounds of Rule-A are
followed by 8 rounds of Rule-B, analysis of different variants using different
combination of these rules can be found in the literature. In this section, we
discuss these different variants.

Taken independently, Rule-A and Rule-B fulfill the condition given in Th. 2
and a cipher using only one of these rules will have ZC and ID distinguishers on
the same number of rounds.

But using a combination of theses rules, we know [7] that ZC and ID dis-
tinguishers are inequivalent (see Table 3). In particular, the number of rounds
on which the distinguisher can be applied depends on the alternation. For in-
stance the original Skipjack where 8 rounds of Rule-A are followed by 8 rounds
of Rule-B is more resistant to ZC cryptanalysis than to ID cryptanalysis [7].

Table 3. ID and ZC for different variants of Skipjack

Structure Impossible Differential Zero-Correlation Linear Hull

rounds pattern rounds pattern

Original 24 (0, δ, 0, 0) � (γ, 0, 0, 0) 17 (u, 0, 0, 0) � (v, v, 0, 0)

(4 Rule-A, 4 Rule-B) 21 (0, δ, 0, 0) � (γ, 0, 0, 0) 30 (u, u, 0, 0) � (v, v, 0, 0)

(only Rule-A) 16 (0, δ, 0, 0) � (γ, γ, 0, 0) 16 (u, 0, 0, 0) � (v, v, 0, 0)

(only Rule-B) 16 (δ, δ, 0, 0) � (γ, 0, 0, 0) 16 (u, u, 0, 0) � (0, v, 0, 0)

284 C. Blondeau, A. Bogdanov, and M. Wang

This example illustrates that when designing a cipher using a combination
of different round functions, a more precise analysis than the one proposed in
this paper may be required. Below we describe an analysis for a variant where a
round with Rule-B is followed directly by a round with Rule-A.

After analysis we can show that when Rule-B is followed by Rule-A the two
rounds are equivalent, in the sense of Rem. 1, to the round function given in
Fig. 4. The matrix representation of this round function is:

RBA = PBA · XBA · GBA =

⎛⎜⎜⎝
0 F 1 0
0 0 0 1
F 0 0 0
0 0 1 0

⎞⎟⎟⎠ with

XBA =

⎛⎜⎜⎝
1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , GBA =

⎛⎜⎜⎝
F 0 0 0
0 F 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ and PBA =

⎛⎜⎜⎝
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞⎟⎟⎠ .

From simple computation, we can show that neither this function nor its
inverse are equivalent to its mirror function. This observation can most probably
explain why ID and ZC distinguishers can not be applied of the same numbers
of rounds for different variants of Skipjack.

5 Other Constructions

5.1 Generalized Feistel-Type Ciphers

For some constructions such as the one proposed by Berger, Minier, Thomas
in [1], the round function can be decomposed into a non-linear layer, F-layer,
similar to the one of Feistel-type cipher (see Sect. 2), a X-layer similar to the
one described for the Skipjack-type cipher (see Sect. 4) and a permutation layer
(P-layer). A full description of these layers can be found in [1]. An example with
4 branches of the construction proposed in [1] is depicted in Fig. 6.

In this section we denote by F ,X ,P , the matrix representation of the different
layers, where F and P are defined as in Def. 1, and X is defined as in Def. 3. The
round function of the construction described in this section can be represented
by the product of these three matrices R = P · X · F .

For such constructions, one can see that ZC distinguishers can be found thanks
to the matrix M = P · X T · FT , which corresponds to the representation of the
mirror round function.

Similarly than for Th. 1 and 2 we derive conditions on the equivalence between
ID and ZC distinguishers with same number of differences and masks.

On the (In)Equivalence of ID and ZC 285

����������

����������

����������

����������

F

F

� �

� �

�
�

��

��

��

��

�

�

�

�

R = P · X · F with F =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 F 1 0
F 0 0 1

⎞⎟⎟⎠ ,

X =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

⎞⎟⎟⎠ and P =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ .

Fig. 6. Round function proposed in Fig. 3 of [1] and its matrix representation (Example
with 4 branches)

Theorem 3. Let R = P · X · F be the matrix representation of a generalized
Feistel-type round function and M = P · X T · FT be its mirror function. If it
exists a permutation matrix Q such that

R = Q ·M · Q−1 or R = Q ·M−1 · Q−1, or F · P · X = Q ·M−1 · Q−1, (3)

we deduce that:
It exists an impossible differential distinguisher on r rounds involving M differ-
entials if and only if it exists a zero-correlation linear distinguisher on r rounds
involving M linear masks.

The round functions of Sect. 2.2 of [1] fulfill the model presented in this section.
In particular, one can check that R = M−1. While in the original paper, the
security in regard to ZC cryptanalysis is not measured, thanks to the analysis
presented in this paper we are able to prove the existence of ZC distinguishers
on the same number of rounds than the ID distinguishers.

5.2 Constructions Similar to MARS and Four-Cell

For some of the constructions depicted in Fig. 7, the output of the round
function can in the same round influence many branches (i.e. MARS [15]) or
many branches can be used to determine the input of a non-linear function (i.e.
SMS4 [17]). While the round function of MARS can be represented using the
following matrices,

R = P · F with F =

⎛⎜⎜⎝
1 0 0 0
F 1 0 0
F 0 1 0
F 0 0 1

⎞⎟⎟⎠ and P =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠ ,

one can see that this decomposition does not correspond to the one of the round
function of a Feistel-type cipher.

In [13], the authors show the existence of an ID distinguisher on 11 rounds
on MARS: (0, 0, 0, δ) � (δ, 0, 0, 0), δ ∈ Fs

2, and the existence of a 11-round
ID distinguisher on SMS4: (δ, δ, δ, 0) � (0, δ, δ, δ), δ ∈ Fs

2. As we can easily
see from Fig. 7 that the round function of SMS4 is the mirror function of the

286 C. Blondeau, A. Bogdanov, and M. Wang

round function of MARS, we deduce directly a ZC distinguisher on 11 rounds of
MARS: (u, u, u, 0) � (0, u, u, u), u ∈ Fs

2 as well as a 11-round ZC distinguisher
on SMS4. Notice that for these two round functions we can easily see that it
exists a permutation matrix Q such that R−1 = Q · R · Q−1.

More generally, to perform a similar analysis on this construction than the
analysis presented in Sect. 5.1, one can give a more precise decomposition of the
matrix representation. For a better understanding, we illustrate in Fig. 7 this
decomposition in the case of MARS and SMS4.

F
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

															

��

��

��

� F

�
�

��

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

															

��

��

��

��

��

�

�

�

�

�

F

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

															

�
�
�

�
�

�

�

�� F

�
�

��

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

															

��

��

��

��

��

�

�

�

�

�

Fig. 7. Left: Round function of MARS and equivalent representation. Right: Round
function of SMS4 and equivalent representation.

Let Y represent the first X-layer and be defined as the matrix X of Def. 3, a
round function of a MARS-type cipher can be decomposed as R = P · X · F · Y.
Based on Rem. 1, we can analyze the transformed function: R∗ = Y ·P ·X ·F =
P · (P−1 ·Y ·P ·X) ·F . If we denote X ′

∗ = P−1 ·Y ·P ·X we have R∗ = P ·X ′
∗ ·F .

For this type of construction where the X-layer is represented by a matrix X ′

similar to the matrix X of Def. 3 but where we can have more than two “1” per
row or column, another arithmetic is required. In particular, one should assume
that F (δ1) ⊕ F (δ2) = F (δ1 + δ2) meaning that F is linear when it comes to
analyze the differential and linear properties of the cipher.

By noticing that this transformed round function corresponds to the descrip-
tion of the Generalized Feistel-type cipher of Sect. 5.1, one can verify that for
both MARS and SMS4, none of the conditions described in (3) are satisfied.

In ASISP 2009 [10] a construction called GF-NLFSR was proposed. For this
construction which is a generalization of the Skipjack-type construction, many
operations on the branches can be performed in the same rounds. The four
branches instance of this construction is known as Four-Cell.

Similarly than for ciphers of the previous type one can determine under which
condition we can convert an ID distinguisher using M differences to a ZC distin-
guisher using M linear masks. This simple analysis show that the mirror round
function of Four-Cell is not equivalent to the function or its function, and while
the best known ID distinguisher is on 18 rounds [22], we were only able to find
a ZC distinguisher on 12 rounds.

6 Conclusion

Understanding the relations between ID and ZC is of great importance to sim-
plify the analysis by designers and cryptanalysts. In this paper, we show that for
some constructions based on the generalizations of the well-known Feistel and
Skipjack constructions, ZC distinguishers and ID distinguishers can be derived

On the (In)Equivalence of ID and ZC 287

from each other. In particular, we show that, if a round function and its mirror
representation are related, both distinguishers cover the same number of rounds.
Examples of ciphers for which we can prove such an equivalence are provided,
along with a discussion of inequivalent cases. While we do not claim to have
considered all types of word-oriented ciphers, this work is bridging the gap be-
tween these two attacks and allows for a better understanding of how to design
ciphers with similar ID and ZC properties. The question of equivalence between
corresponding key-recovery attacks – applied on top of those distinguishers – has
been tackled in [5] and remains dependent on the outer rounds.

Acknowledgements. This work has been supported by the National Basic Re-
search 973 Program of China under Grant No. 2013CB834205, National Natural
Science Foundation of China under Grant No. 61133013, Program for New Cen-
tury Excellent Talents in University of China under Grant No. NCET-13-0350,
as well as the Interdisciplinary Research Foundation of Shandong University of
China under Grant No. 2012JC018.

References

1. Berger, T.P., Minier, M., Thomas, G.: Extended Generalized Feistel Networks using
Matrix Representation. In: SAC 2013 (to appear)

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

3. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

4. Blondeau, C., Nyberg, K.: New Links between Differential and Linear Cryptanal-
ysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 388–404. Springer, Heidelberg (2013)

5. Blondeau, C., Nyberg, K.: Links Between Truncated Differential and Multidi-
mensional Linear Properties of Block Ciphers and Underlying Attack Complex-
ities. In: Oswald, E., Nguyen, P.Q. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 165–182. Springer, Heidelberg (2014)

6. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-Correlation Linear
Cryptanalysis with FFT and Improved Attacks on ISO Standards Camellia and
CLEFIA. In: SAC 2013. LNCS. Springer (2014)

7. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and Multidimensional
Linear Distinguishers with Correlation Zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

8. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanal-
ysis of block ciphers. Designs, Codes and Cryptography 70(3), 369–383 (2014)

9. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29–48.
Springer, Heidelberg (2012)

10. Choy, J., Chew, G., Khoo, K., Yap, H.: Cryptographic Properties and Application
of a Generalized Unbalanced Feistel Network Structure. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 73–89. Springer, Heidelberg
(2009)

288 C. Blondeau, A. Bogdanov, and M. Wang

11. Kim, J., Hong, S., Lim, J.: Impossible differential cryptanalysis using matrix
method. Discrete Mathematics 310(5), 988–1002 (2010)

12. Knudsen, L.R.: DEAL- A 128-bit Block-Cipher. NIST AES Proposal (1998)
13. Luo, Y., Lai, X., Wu, Z., Gong, G.: A unified method for finding impossible differ-

entials of block cipher structures. Inf. Sci. 263, 211–220 (2014)
14. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)

EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
15. Moriai, S., Vaudenay, S.: On the pseudorandomness of Top-Level schemes of block

ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302.
Springer, Heidelberg (2000)

16. Nyberg, K.: Generalized Feistel Networks. In: Kim, K.-c., Matsumoto, T. (eds.)
ASIACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996)

17. SMS4. Specication of SMS4, block cipher for WLAN products SMS4 (in Chinese)
18. Soleimany, H., Nyberg, K.: Zero-Correlation Linear Cryptanalysis of Reduced-

Round LBlock. In: International Workshop on Coding and Cryptography, WCC
2013, pp. 329–343 (2013)

19. Suzaki, T., Minematsu, K.: Improving the Generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

20. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight,
Versatile Block Cipher. In: Leander, G., Standaert, F.-X. (eds.) ECRYPT Work-
shop on Lightweight Cryptography (2011)

21. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight
Block Cipher for Multiple Platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

22. Wu, W., Zhang, L., Zhang, L., Zhang, W.: Security analysis of the GF-NLFSR
structure and Four-Cell block cipher. In: Qing, S., Mitchell, C.J., Wang, G. (eds.)
ICICS 2009. LNCS, vol. 5927, pp. 17–31. Springer, Heidelberg (2009)

23. Wen, L., Wang, M., Bogdanov, A.: Multidimensional zero-correlation linear crypt-
analysis of E2. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 147–164. Springer, Heidelberg (2014)

24. Wen, L., Wang, M., Bogdanov, A., Chena, H.: Multidimensional Zero-Correlation
Attacks on Lightweight Block Cipher HIGHT: Improved Cryptanalysis of an ISO
Standard. Information Processing Letters 114(6), 322–330 (2014)

25. Wu, S., Wang, M.: Automatic Search of Truncated Impossible Differentials for
Word-Oriented Block Ciphers. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT
2012. LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg (2012)

26. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

Improved Cryptanalysis on Reduced-Round

GOST and Whirlpool Hash Function�

Bingke Ma1,2,3, Bao Li1,2, Ronglin Hao1,2,4, and Xiaoqian Li1,2,3

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, 100093, China

2 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, 100093, China

{bkma,lb,xqli}@is.ac.cn
3 University of Chinese Academy of Sciences, Beijing, China

4 Department of Electronic Engineering and Information Science,
University of Science and Technology of China, Hefei, 230027, China

haorl@mail.ustc.edu.cn

Abstract. The GOST hash function family has served as the new Rus-
sian national hash standard (GOST R 34.11-2012) since January 1, 2013,
and it has two members, i.e., GOST-256 and GOST-512 which corre-
spond to two different output lengths. Most of the previous analyses of
GOST emphasize on the compression function rather than the hash func-
tion. In this paper, we focus on security properties of GOST under the
hash function setting. First we give two improved preimage attacks on
6-round GOST-512 compared with the previous preimage attack, i.e., a
time-reduced attack with the same memory requirements and a mem-
oryless attack with almost identical time. Then we improve the best
collision attack on reduced GOST-256 (resp. GOST-512) from 5 rounds
to 6.5 (resp. 7.5) rounds. Finally, we construct a limited-birthday distin-
guisher on 9.5-round GOST using the limited-birthday distinguisher on
hash functions proposed at ASIACRYPT 2013. An essential technique
used in our distinguisher is the carefully chosen differential trail, which
can further exploit freedom degrees in the inbound phase when launch-
ing rebound attacks on the GOST compression function. This technique
helps us to reduce the time complexity of the distinguisher significantly.
We apply this strategy to Whirlpool, an ISO standardized hash function,
as well. As a result, we construct a limited-birthday distinguisher on 9-
round Whirlpool out of 10 rounds, and reduce the time complexity of
the previous 7-round distinguisher. To the best of our knowledge, all of
our results are the best cryptanalytic results on GOST and Whirlpool in
terms of the number of rounds analyzed under the hash function setting.

Keywords: hash function, GOST, Whirlpool, multicollision, preimage,
collision, limited-birthday distinguisher.

� This work was supported by the National Basic Research Program of China (973
Project, No.2013CB338002), the National High Technology Research and Develop-
ment Program of China (863 Program, No.2013AA014002), the National Natural
Science Foundation of China (No.61379137), and the Strategic Priority Research
Program of Chinese Academy of Sciences under Grant XDA06010702.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 289–307, 2014.
c© Springer International Publishing Switzerland 2014

290 B. Ma et al.

1 Introduction

A hash function takes a message of arbitrary length and produces a bit string of
fixed length. For a hash function, three classical security notions are mainly con-
sidered: collision resistance, second preimage resistance, and preimage resistance.
Many nowaday hash functions divide messages into many blocks and process
each block with a compression function iteratively, such as the Merkle-Damg̊ard
[5,25] based hash functions. Security properties of the underlying compression
functions are also considered by cryptanalysts, and sometimes they do have im-
pacts on the security properties of the hash functions. An example was shown in
a recent work [13] by Iwamoto et al., in which a semi-free-start collision attack
on the compression function can be turned into a limited-birthday distinguisher
on the hash function.

The old GOST R 34.11-94 hash function [10] was theoretically broken in 2008
[21,22]. As a consequence, the new GOST R 34.11-2012 hash function [6,11,15]
has replaced GOST R 34.11-94 as the new Russian national hash standard since
January 1, 2013. GOST R 34.11-2012 shares a lot of its structure with the broken
GOST R 34.11-94, while its internal compression function is very similar to the
one of the ISO standardized hash function Whirlpool [3,12]. The main differences
between GOST and Whirlpool are the number of rounds and the transposition
operations.

Several cryptanalytic results [1,2,30] have been presented for the new GOST
hash function, but most of them only focus on the GOST compression function
rather than the hash function, except for a recent work by Zou et al. [32]. They
presented collision attacks on 5 rounds of all variants of GOST and a preim-
age attack on 6-round GOST-512 out of 12 rounds. For Whirlpool, there are
several cryptanalytic results concerning the compression function [23,18,19,29].
While at the hash function level, the best collision [19] and preimage [29] attacks
only reach 5.5 and 6 rounds out of 10 rounds, and a 7-round limited-birthday
distinguisher on Whirlpool was given in [13] recently.

Our Contributions. In this paper, we look into the similarities and differences
of GOST and Whirlpool, and improve previous attacks on GOST and Whirlpool
under the hash function setting. First we give two improved preimage attacks
on 6-round GOST-512 compared to [32], i.e., a time-reduced attack with the
same memory requirements and a memoryless attack with almost identical time.
Then by discovering the weakness of the transposition operation of GOST, we
present a 6.5-round collision attack on GOST-256 and a 7.5-round attack on
GOST-512, while previous results only reach 5 rounds. Finally, we construct a
limited-birthday distinguisher [13] on 9.5-round GOST. A very essential part
of our distinguisher is the carefully chosen truncated differential trail, which
reduces the time complexity of the distinguisher significantly. We apply similar
strategy to Whirlpool, and achieve a 9-round limited-birthday distinguisher. The
time complexity of the previous 7-round distinguisher [13] is reduced as well. As
far as we know, these are the best results on GOST and Whirlpool in terms of

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 291

the number of rounds analyzed under the hash function setting. Our results and
some representative previous works are summarized in Table 1.

The rest of this paper is organized as follows: In Section 2, we give brief de-
scription of the GOST hash function and the tools used in this paper. In Section
3, we present improved preimage attacks on 6-round GOST-512. In Section 4, we
show collision attacks on both GOST variants. In Section 5, a limited-birthday
distinguisher on 9.5-round GOST is given. Due to the space limitation, details
of the limited-birthday distinguishers on reduced-round Whirlpool are provided
in the full version of this paper [20]. We conclude and summarize the paper in
Section 6.

Table 1. Comparison of Previous and Ours Results on GOST and Whirlpool

Target Attack Type Rounds Time Memory Ideal Reference

GOST-256

(12 Rounds)
Collision Attack

5 2122 264
2128

[32]

6.5 2125 264 Section 4.1

GOST-512

(12 Rounds)

Preimage Attack

6 2505 264

2512
[32]

6 2496 264 Section 3

6 2504 211 Section 3

Collision Attack
5 2122 264

2256
[32]

7.5 2181 264 Section 4.2

Limited-birthday

Distinguisher
9.5 2441 2136 2449 Section 5.1

Whirlpool

(10 Rounds)

Collision Attack 5.5 2120 264 2256 [19]

Preimage Attack 6 2481 2256 2512 [29]

Limited-birthday

Distinguisher

7 2440 2128 2505 [13]

7.5 2368 2144 2497 Full Version [20]

9 2354 2158 2385 Full Version [20]

2 Preliminaries

2.1 The GOST Hash Function

The GOST hash function takes any message up to 2512 bits as input, and out-
puts a 256- or 512-bit hash value, i.e., GOST-256 and GOST-512. GOST-512 and
GOST-256 are almost the same, except that they have different initial values,
and GOST-256 truncates the final 512-bit chaining value into a 256-bit digest. As
depicted in Fig. 1, the GOST hash function family adopts the Merkle-Damg̊ard
structure with a unique output transformation. The hash computation contains

292 B. Ma et al.

three stages. Before we give specific descriptions of each stage, we define several
notations.

A||B The concatenation of two bit strings A and B.
M The input message, which is divided into 512-bit blocks.
Mi The i-th 512-bit message block of M.
|M | The bit length of M.
Len The bit length of the last message block of M.

Σ The 512-bit checksum of all message blocks.
CF The compression function.
hi The i-th 512-bit chaining variable.

CTi The i-th 512-bit counter which denotes the total message
bits processed before the i-th CF call.

In the initialization stage, M is padded into a multiple of 512 bits, i.e.,
M ||1||0∗ is the padded message, which is then divided into N 512-bit blocks
M0||M1||...||MN−1. h0 is assigned to the predefined IV of GOST-256 or GOST-
512. |M |, Σ and CT0 are assigned to 0. In the compression stage, each block
Mi is processed iteratively, i.e., hi+1 = CF (hi,Mi, CTi) for i = 0, 1, ..., N −
1. After each compression function computation, |M |,Σ and CTi+1 are up-
dated accordingly. In the finalization stage, the immediate chaining value of the
last message block hN goes through the output transformation, i.e., hN+1 =
CF (hN , |M |, 0), hN+2 = CF (hN+1, Σ, 0). For GOST-256 (resp. GOST-512),
MSB256(hN+2) (resp. hN+2) is the hash value of M .

CFh0

M0

|M|

M1

CFh1 CFh2

M2

CFhN-2

MN-2

512512 512 512

CFhN-1

MN-1
*

Len

CFhN

0

CFhN+1

0

hN+2

Initialization
= |M| = 0

h0 = 0512, for GOST-512
h0 = (00000001)64, for GOST-256

Compression
Len = |M| mod 512
MN-1

* = MN-1||1||0511-Len

Finalization
h = hN+2, for GOST-512
h = MSB256(hN+2), for GOST-256

|M|

CT0 CT1 CT2 CTN-2 CTN-1

Fig. 1. Three Stages of the GOST Hash Function

The compression function CF (hi,Mi, CTi) can be seen as an AES-like block
cipher EK used in a Miyaguchi-Preneel-like mode, i.e., CF (hi,Mi, CTi) =
Ehi⊕CTi(Mi) ⊕ Mi ⊕ hi. As for the block cipher EK , a 512-bit internal state
is denoted as an 8 × 8 byte matrix. For the key schedule part, hi ⊕ CTi is as-
signed as the key K, then K0 is computed from K as follows:

K0 = L ◦ P ◦ S(K)

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 293

The round keys K1,K2, ...,K12 are generated as follows:

Kj+1 = L ◦ P ◦ S ◦XC(Kj) for j = 0, 1, 2, ...11,

where K12 is used as the post-whitening key:

– AddRoundConstant(XC): XOR a 512-bit constant predefined by the de-
signers.

– SubBytes(S): process each byte of the state through the SBox layer.
– Transposition(P): transpose the k-th column to be the k-th row for k =

0, 1, 2, ..., 7, i.e., transposition of the state matrix.
– MixRows(L): multiply each row of the state matrix by an MDS matrix.

For the data processing part, Mi is the plaintext, and is assigned to the initial
state S0. Then the state is updated 12 times with the round function as follows:

Sj+1 = L ◦ P ◦ S ◦X(Sj), for j = 0, 1, 2, ...11,

where AddRoundKey(X) XOR the state with the round key Kj . Finally, the
ciphertext EK(Mi) is computed with S12 ⊕K12.

Notations. The round indexes of GOST are denoted with r0, r1, r2, ..., r11.
The input state of round rj is denoted as Sj , and SX

j , SS
j , S

P
j , SL

j denote the
corresponding state after the X, S, P, L operation of round rj respectively,
i.e., Sj+1 = SL

j .

2.2 The Multicollision Attack and Its Applications

The t-multicollisions are t-tuples of messages which all hash to the same value.
In [14], Joux gave the multicollision attack on iterated hash functions. He shows
that constructing 2t-collisions costs only t times as much as building ordinary
2-collisions.

The multicollision attack has been used in many occasions. A variant of the
multicollision attacks, known as the expandable messages [16], was applied in
second preimage attacks. Moreover, the expandable messages were also used
to construct long preimages [31,29]. Another application of the multicollision
attacks was given in [8] to attack Merkle-Damg̊ard-like hash functions with
linear-XOR or additive checksum operations.

2.3 Limited-Birthday Distinguisher on Hash Functions

The limited-birthday problem was first proposed by Gilbert and Peyrin in [9],
and they also presented a generic procedure to solve this problem. In [13],
Iwamoto et al. proved that the generic attack given in [9] is actually the best
generic attack possible. Moreover, they proposed a new generic distinguisher
for Merkle-Damg̊ard-like hash functions based on the limited-birthday problem.
Now we give brief descriptions of the limited-birthday problem for hash functions
and the new distinguisher derived.

294 B. Ma et al.

The Limited-Birthday Problem. [13] ”Let h be an n-bit output hash func-
tion, and process any input messages of fixed size, m bits where m ≥ n. Let IN
be a set of admissible input differences and OUT be a set of admissible output
differences, with the property that IN and OUT are closed sets with respect to
⊕1. Then for the limited-birthday problem, the goal of the adversary is to gener-
ate a message pair (M,M ′), such that M⊕M ′ ∈ IN and h(M)⊕h(M ′) ∈ OUT”
for a randomly chosen instance of h.”

Note that IN and OUT can be freely chosen by the adversary, let 2I and 2O

denote the sizes of IN and OUT respectively, it is proved in [13] that the lower
bound of the time complexity of the limited-birthday problem for a one-way
function is

max
{
2

n−O+1
2 , 2n−I−O+1

}
.

The Limited-Birthday Distinguisher on Hash Functions. Let h be an n-
bit hash function which iteratively calls CF to process each fixed length message
block, where CF is a compression function which takes an m-bit message and a
k-bit (k ≥ n) chaining variable as inputs, and outputs a k-bit chaining value. A
semi-free-start collision for CF is a pair ((CV,M), (CV,M ′)) with M �= M ′ and
a freely chosen CV , such that CF (CV,M) = CF (CV,M ′). Assume that the
adversary is able to find 2s distinct semi-free-start collisions of CF in 2c time,
with s ≤ k/2 and s ≤ c. IN corresponds to the set of all possible differences for
all the colliding messages, a limited-distinguisher on h can be derived as follows:

1. Generate 2s semi-free-start collisions {(CVj ,Mj), (CVj ,M
′
j)} on CF with 2c

operations, and store all 2s CVj values in a list TL1.

2. From IV , pick 2k−s random message blocks {Mi}, and compute the corre-
sponding chaining values {hi}.

3. For each hi, check whether it is in the list TL1. If so, the message couple
((Mi||Mj), (Mi||M

′
j)) is a collision pair of the hash function.

The above procedure needs 2c + 2k−s computations. The adversary outputs
the collision couple, whose input difference mask lies in a space IN of size 2I , and
output difference mask lies in a space OUT of size 1 (due to the collision). The
limited-birthday problem tells us that this should require max{2n/2, 2n−I+1}
queries in the ideal case. Since 2c + 2k−s ≥ 2s + 2k−s ≥ 2k/2 ≥ 2n/2, the above
procedures can be seen as a valid distinguisher if and only if

2c + 2k−s < 2n−I+1.

It is also described in [13] that one can even derive a valid limited-birthday
distinguisher from a semi-free-start near-collision attack, when the near-collision
is located in the last message block and padding can be satisfied.

1 The ⊕ operation can be replaced by any other group operation, we use ⊕ for a simple
specification.

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 295

3 Improved Preimage Attack on 6-Round GOST-512

In this section, we improve the preimage attack on 6-round GOST-512 in [32].
First we reduce the time complexity from 2505 to 2496 by removing the unneces-
sary MitM (Meet-in-the-Middle) step. Then we show a memoryless attack with
time complexity 2504. Moreover, by using the technique in [8] to build more com-
plicate multicollisions, we deal with the checksum straightforwardly with success
probability 1 while Zou’s attack deals with it probabilisticly. Before describing
our attacks, we clarify that a single compression function computation (resp. a
512-bit storage which is the bit size of the state) is used as the basic unit of time
(resp. memory) in this paper.

The MitM preimage attack on GOST-like compression functions has been well
studied [28,31,29,32], thus we use the results without providing more details. As
depicted in Fig. 2, our preimage attack is divided into three steps. The specific
procedures of each step are described as follows:

IV
h1

h2

h1'

h3

h4

h3'

h1023

h1024

h1023'
h1022

M1024
h1025 h1026

|M| (M)
hX

Step 1. 2512-multicollisions Step 2. MitM preimage attack

Step 3. solve the checksum with 2512-multicollisions

Fig. 2. 3 Steps of the Preimage Attacks on 6-round GOST-512

Step 1. From IV , use the technique of [8] to build 2512-multicollisions. The
exact steps are as follows:

1. Let h0 = IV .
2. For i = 0 to 511:

(a) Let Ai, Bi be two random blocks.
(b) For j = 0 to 2256 − 1:

i. X [j] = (Ai + j)||(Bi − j).
ii. X ′[j] = (Ai − j + 2i)||(Bi + j).
iii. Let Yi[j] denote immediate hash value of X [j] from h2i, store it in

the list Yi.
iv. Let Y ′

i [j] denote immediate hash value of X ′[j] from h2i, store it in
the list Y ′

i .
(c) Search for a collision in Yi and Y ′

i . Let M2i||M2i+1 = (Ai+Ci)||(Bi−Ci)
and M ′

2i||M ′
2i+1 = (Ai−C′

i+2i)||(Bi+C′
i) denote the collision pair, and

h2(i+1) denote the collision hash value.

In the end, h1024 is the hash value of the 2512-multicollisions.
Step 2. We randomly choose the value of an additional message block M1024,
and make sure M1024 satisfy padding. Without loss of generality, we fix the
last bit of M1024 to ’1’, then the bit length of the message can be denoted

296 B. Ma et al.

as |M | = 1024 × 512 + 511 = 524799. From h1024, we compute the immediate
chaining value h1026 with M1024 and |M |. Suppose that hX is the target value.
We find a preimage Σ(M) using the MitM preimage attack with a probability
1 − e−1. If no candidate for Σ(M) is found, we just choose another value of
M1024 and repeat Step 2.
Step 3. Step 2 will eventually succeed, thus we get the checksum value Σ(M),
and need to find a combination of the first 1025 message blocks to satisfy Σ(M).
This problem has already been well studied in [8], and the exact steps are as
follows:

1. Let CCS = hX −M1024 denote the checksum which is desired.
2. Compute Q =

∑511
i=0(Ai +Bi).

3. Compute D = CCS − Q =
∑511

i=0 ki2
i, the ki sequence is the binary repre-

sentation of D.
4. Set M to an empty message.
5. For i = 0 to 511:

(a) If ki = 0, then M = M ||M2i||M2i+1.
(b) Else M = M ||M ′

2i||M ′
2i+1.

6. M = M ||M1024.

At the end of this phase,M contains a sequence of 1025 blocks which corresponds
to the desired checksum. Thus M is a preimage of hX .

Memoryless Collision Search. In Step 1, we need to launch the collision
search 512 times, and a common birthday attack would require 2256 memory.
Thanks to the memoryless MitM (collision) attacks2 [27,26] [24, Remark 9.93],
the memory requirement can be reduced to 211 (since the collision pairs and the
immediate hash values need to be stored). The specific steps for each collision
search are as follows:

1. Denote h2i as the initial hash value of the i-th collision search.
2. Randomly choose two message blocks Ai, Bi.
3. Let s0 denote the immediate hash value of Ai||Bi from h2i.
4. For j = 0 to 2256

(a) If the least significant bit of sj is 0, compute sj+1, which is the immediate
hash value of (Ai + sj)||(Bi − sj) from h2i.

(b) Else compute sj+1, which is the immediate hash value of (Ai − sj +
2i)||(Bi + sj) from h2i.

Finally, the attacker detects the cycle of the above procedure, and finds intersec-
tion point of the cycle. We denote sα and sβ as the two points before the inter-
section point. If the least significant bit of sα and sβ are distinct, without loss of
generality, we suppose the least significant bit of sα is 0 and the least significant
bit of sβ is 1, then (Ai+sα)||(Bi−sα) and (Ai−sβ+2i)||(Bi+sβ) are the collision

2 The memoryless attacks are based on cycle detection techniques such as Floyd’s
cycle-finding algorithm [7] or Brent’s algorithm [4].

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 297

message blocks desired. The time complexity is at most 23 times3 more than the
generic birthday attack. Thus we need a total 1024×23×2256 = 2269 compression
function computations and 211 memory to generate the 2512-multicollisions.

Memoryless Meet-in-the-Middle Preimage Attack. The memoryless
MitM preimage attack, explored by Khovratovich et al in [17], is based on
the classical memoryless MitM technique [26]. Similar to the memoryless MitM
preimage attack on Whirlpool in [29], we can launch a memoryless MitM preim-
age attack on the GOST compression function with 2504 computations. Please
refer to [29,32] for more details.

Now we consider the overall complexity of our attack. Step 1 can be done
with 2269 compression function calls and 211 memory. As for step 2, we need
2496 time and 264 memory to minimize the time complexity or 2504 time to
launch the memoryless attack. There are only a few simple operations in step 3,
both time and memory are negligible. So it takes 2496 time and 264 memory or
2504 time and 211 memory to find a single preimage of 6-round GOST-512.

Remarks. An improved preimage attack on the compression function of GOST
is likely to work for the preimage attack on the hash function using the generic
procedures above.

4 Improved Collision Attacks on Reduced-Round GOST

As far as we know, the 5-round attacks [32] are the best collision attacks on
GOST-256 and GOST-512 in terms of rounds attacked. In this section, we
present improved collision attacks on both variants of GOST. The improved
collision attacks mainly come from a direct observation of the transposition op-
eration of GOST. First, we describe a collision attack on 6.5-round GOST-256.
Then by further exploiting freedom degrees in the chaining values, we present a
collision attack on 7.5-round GOST-512.

4.1 Collision Attack on 6.5-Round GOST-256

We first show collision attack on the compression function of GOST-256 by using
the rebound attack [23] and the SuperSBox technique [9,18]. Then we show how
to convert it to a collision attack on the GOST-256 hash function.

Attack on the Compression Function. The truncated differential trail used
in our attack is depicted in Fig. 3. Since the transposition operation P has the
involution property, the active columns of S0 and SP

6 will both locate at the first

3 The success possibility is 1/2, and using Brent’s algorithm [4] to detect the cycle and
find the intersection point costs at most 22 times more than the generic birthday
attack.

298 B. Ma et al.

column. Thus, if they cancel each other, we would achieve a collision attack on
the compression function. Note that the involution property of P is originally
exploited in [30], and will also be used in our later analyses. The whole attack
can be divided into the inbound phase (in red), and the outbound phase (in
blue). In the following part we describe each phase in detail.

P
L
X

S
P
L

S5

X

S

P

L

S4 S5 S6S0 S1 S2 S3 S6
P

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P

inbound phase outbound phaseoutbound phase

SuperSBox
S2

S

r0 r1 r2 r3 r4 r5 r5.5

S3
X S4

S

Fig. 3. Collision Attack on 6.5-Round GOST-256 Compression Function

Inbound Phase. We need to find two states which follow the two middle
rounds from SS

2 to S5. It can be summarized as follows.

1. We start from picking a random nonzero difference of SS
2 at the 8-byte active

positions indicated in Fig. 3. Since all the operations between SS
2 and SX

3 are
linear, we can propagate the difference forwards to SX

3 . The states between
SX
3 and SS

4 can be seen as eight parallel SuperSBoxes, and the input to
each SuperSBox is the corresponding row of SX

3 . For each SuperSBox, we
enumerate all 264 pairs of inputs according to the difference of SX

3 , and
calculate the corresponding output differences of the SuperSBox. Store all
the output differences and corresponding pairs of values in a table for each
SuperSBox. This step requires 264 time and 264 memory.

2. Pick a random nonzero difference of S5 at the 8-byte active positions, and
propagate the difference backwards to SS

4 . Note that this can be repeated
for all 255 = 28 − 1 nonzero differences of each active byte in each row
independently.

3. Now we have to connect the states SX
3 and SS

4 such that the differential trail
holds, and this can be done for each row independently. For each SuperSBox,
we search the corresponding difference of SS

4 in the table built in step 1. Since
we have 264 values in each table, and we need to match a 64-bit difference
value, the expected number of solutions is 1.

4. We can repeat step 2 and step 3 with another nonzero difference of S5.
After enumerating all 264 differences of S5, we expect to get 264 solutions.
Combining with the complexity of step 1, the above procedures require 264

time and 264 memory to generate 264 solutions. In other words, the expected
time needed to get one solution is only 1.

If the number of solutions of the inbound phase is insufficient, we can repeat
step 1-4 with another difference of SS

2 . Since there are 264 differences for SS
2 , we

can generate at most 264+64 = 2128 solutions for the inbound phase.

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 299

Outbound Phase. We use the solutions of the inbound phase and propagate
them forwards and backwards. The outbound phase has one 8 → 1 transition,
and we need to match a 64-bit difference between S0 and SP

6 , so it requires
256+64 = 2120 computations to find one collision for the 6.5-round compression
function.

Impact of the DDT of the GOST SBox. The DDT (Difference Distribution
Table) of the SBox is the core of the rebound attack. The SBox of GOST is not as
balanced as the AES SBox. In fact, its maximal differential probability reaches
2−5 while the one of the AES SBox is 2−6. Thus, the matching probability of
the GOST SBox is lower than the AES SBox, which might introduce some small
biases. However, as discussed in [29], the DDT has no impacts on the expected
number of solutions for a random difference pair of an SBox. Hence, the time
complexity is not increased if we need to find many solutions from the inbound
phase.

Attack on the Hash Function. Similar to the technique of [32], we extend
the attack on the compression function to the hash function. Since we aim to
construct two collision messages with identical length, we only need to deal with
the final checksums. As depicted in Fig. 4, we first build 232-multicollisions,
then find two message chains with an identical checksum. The exact steps are
as follows:

M1

M1'

h1

M0

M0'

h0=IV h2 h3 collisionh31 h32

M2

M2'

M31

M31'

checksum solved with 232-multicollisions

M32 ...

Fig. 4. Collision Attack on 6.5-round GOST-256

1. Start from the initial value h0 = IV :
For j = 0 to 31,
– Find two messages Mj and M ′

j using the compression function collision
attack above, such that CF (hj ,Mj) = CF (hj ,M

′
j), and let hj+1 =

CF (hj ,Mj). Notice that (Mj ,M
′
j) differs only in the first column.

2. After step 1, we build 232-multicollisions from h0 to h32. Since each collision
pair only differs in the first column, besides the identical parts of the 232-
multicollisions always have identical sums including carries, the difference of
their checksums lies in a space whose size is at most 264. We can generate 232

checksums with the 232-multicollisions. According to the birthday paradox,
we expect to find one collision among these checksums. Then we append
any identical message blocks which satisfy padding, and finally construct a
collision on the GOST-256 hash function.

300 B. Ma et al.

In the above procedures, collision attack on the compression function is repeated
32 times, so the overall time complexity of the collision attack on GOST-256 is
32 × 2120 = 2125 which is lower than the birthday bound 2128. The memory
requirement stays 264 due to the SuperSBox technique.

4.2 Collision Attack on 7.5-Round GOST-512

The collision attack on GOST-256 can be directly applied to GOST-512 with
the same complexity, but in this part we show how to extend one more round
for GOST-512. The differential trail of the 7.5-round attack on the compression
function is depicted in Fig. 5. Again the inbound phase can provide at most
2128 solutions with 2128 time and 264 memory. But there are two 8 → 1 transi-
tions in the outbound phase, and we need to match a 64-bit difference between
S0 and SP

7 in order to get a collision, thus we need at least 256+56+64 = 2176

solutions from the inbound phase. The freedom degree of the inbound phase
is obviously insufficient, and the attack will only succeed with a very low
probability 2128−176 = 2−48.

S4 S5S0 S1 S2 S3 S6
X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

inbound phase outbound phaseoutbound phase

X
S
P
L

S7 S7
P

X
S
P

Fig. 5. Collision Attack on 7.5-round GOST-512 Compression Function

Luckily, we can exploit more freedom degrees by choosing different chaining
values as depicted in Fig. 6. More precisely, we launch a two-block attack on the
compression function. First, from a chaining value h2i, we randomly choose a
message blockM2i and compute the corresponding chaining variable h2i+1. Then
we launch the rebound attack with the value of h2i+1 and check if a collision
pair (M2i+1,M

′
2i+1) is obtained. If no collision is achieved, we choose another

value for M2i and repeat this procedure. Since the collision attack succeeds
with probability 2−48, we expect to get one collision after we randomly choose
248 different values for M2i. Hence, the rebound attack needs to be repeated 248

times, and the time and memory required are 248+128 = 2176 and 264 respectively.

M3

M3'

h2 h3
M2

M1

M1'

h0=IV h1
M0 h4

M63

M63'

h62 h63
M62 h64 collision

checksum solved with 232-multicollisions

M64 ...

Fig. 6. Collision Attack on 7.5-round GOST-512

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 301

As depicted in Fig. 6, we build 232-multicollisions by repeating the compres-
sion function attack 32 times. According to the birthday paradox, we expect
to get two messages with identical checksum from the 232-multicollisions, and
derive a collision for the GOST-512 hash function. Thus the time complexity is
32 × 2176 = 2181, while the memory requirement remains 264. Note that when
the same strategy is applied to GOST-256, the time complexity is beyond the
birthday attack bound 2128.

5 Limited-Birthday Distinguishers on GOST-512 and
Whirlpool

In this section, we build limited-birthday distinguishers for reduced-round GOST-
512 and Whirlpool. It is indicated in [13] that if a better balance is achieved
between the total number of semi-free-start collisions one can generate and the
average complexity to generate one collision, a better limited-birthday distin-
guisher can be derived. Therefore, we try to achieve a better balance between
attack parameters by choosing the differential trails used in the inbound phase
carefully. This is actually a very essential idea of our distinguishers. We launch
a 9.5-round semi-free-start collision attack on GOST-512 compression function
with a differential trail, which is different from previous trails for collision-like
attacks. As a result, we build a valid limited-birthday distinguisher on 9.5-round
GOST-512.

The very same strategy can be applied to Whirlpool as well. With the ex-
pandable messages [16], we are able to convert a semi-free-start near-collision
attack on 9-round Whirlpool compression function into a valid distinguisher for
9-round Whirlpool hash function. We also reduce the time complexity of the
previous distinguisher on 7-round Whirlpool [13]. Due to the space limitations,
specific descriptions of the limited-birthday distinguishers on Whirlpool are
provided in the full version of this paper [20].

5.1 Limited-Birthday Distinguisher on 9.5-Round GOST-512

Semi-Free-Start Collision Attack on the GOST Compression Func-
tion. The differential trail used in the 9.5-round semi-free-start collision attack
on the GOST-512 compression function conforms to the following form:

8
r0−→ 1

r1−→ 8
r2−→ 64

r3−→ 8x
r4−→ 8x

r5−→ 64
r6−→ 8

r7−→ 1
r8−→ 8

r8.5−→ 8

where x = 1, 2, ..., 8 and denotes the number of active rows (columns) in the
middle rounds. Fig. 7 depicts the trail when x = 3. Suppose there are 8x active
bytes in the middle parts of the trail, we describe the attack in detail.

Inbound Phase. We aim to connect both differences and actual values between
SS
2 and S7. The inbound phase is divided into two subinbound phases, and the

merge inbound phase merges the two subinbound phases.

302 B. Ma et al.

S4 S5 S6S0 S1 S2 S3 S7
X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

inbound phase outbound phaseoutbound phase

X
S
P
L

S8 S9
X
S
P
L

X
S
P

S9
P

inbound phase 1 inbound phase 2merge inbound

Fig. 7. Semi-free-start Collision Attack on 9.5-Round GOST-512 Compression Function

1. Phase 1. We find states connecting SX
3 and S4.

(a) We start with a random difference of S4, and propagate the difference
backwards to SS

3 .
(b) Choose a random difference of SS

2 . Since all the operations between SS
2

and SX
3 are linear, we can propagate the difference forwards to SX

3 , and
match it with the difference of step 1(a) through the SBox layer. Notice
the match can be done for each row independently. We have 255 different
values for each active byte SS

2 , and expect to get one difference match
and each match provides 28 solutions. So it takes 29 operations to find 28

solutions of SX
3 and S4 for each row. After enumerating all 264 differences

of SS
2 for each row independently, we expect to get 264 solutions in 29

computations.
2. Subinbound Phase 2. We find states connecting SX

6 and S7.
(a) Start with a random difference of SS

5 . Since all the operations between
SS
5 and SX

6 are linear, we can propagate the difference forwards to SX
6 .

(b) Choose a random difference of S7 and propagate the difference backwards
to SS

6 , match it with the difference of step 2(a) through the SBox layer.
Again, we expect to get 264 solutions of SX

6 and S7 after enumerating
all 264 differences of S7 in 29 computations.

3. Merge Inbounds. We need to connect the actual values of S4 and SX
6

obtained from the two subinbound phases. That is, we need to find solutions
for the following equation using the freedom degrees of the key:

L ◦ P ◦ S(L ◦ P ◦ S(S4 ⊕K4)⊕K5)⊕K6 = SX
6 , (1)

where K4,K5 = L◦P ◦S(K4⊕C4),K6 = L◦P ◦S(K5⊕C5) denote the round
keys, and C4, C5 denote the round constants in the key schedule. Equation
(1) can be rewritten as:

S(L ◦ P ◦ S(S4 ⊕K4)⊕K5)⊕ S(K5 ⊕ C5) = P−1 ◦ L−1(SX
6). (2)

Notice equation (2) can be solved column by column independently. We
denote the left half and the right half of equation (2) with VL and VR re-
spectively. The merge inbounds phase is then as follows:

(a) Enumerate all 264 values of each column of S4 and all 264 values of the
corresponding column of K4, propagate forwards to get the correspond-
ing values of VL. Store all the pairs in tables and sort them by the value
of S4||VL. The size of the tables is 2128. This step requires 2128 time

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 303

and 2128 memory, and the precomputed tables can be reused in later
attacks. Notice that we omit the precomputation part in the complexity
analysis of our distinguishers, since the precomputation part is not the
dominated part.

(b) For each pair (S4, S
X
6), we compute the value of VR with SX

6 and check
whether S4||VR is in the tables built in step 3(a). Notice that K4 pro-
vides 264 freedom degrees per column in the matching part. For each
active column of S4, we need to match two 64-bit values with proba-
bility 264−128 = 2−64. For each non-active column, we need to match
one 64-bit value and expect to find one match. Hence, if there are x
active columns in S4, the matching probability is 2−64x. Notice that we
have generated 264 pairs of S4 in step 1, and 264 pairs of SX

6 in step 2,
thus we expect to get 264+64−64x = 264(2−x) solutions. This step requires
264 table lookups, and the average complexity to find one solution is
264−64(2−x) = 264(x−1).

(c) After we connect the values of S4 and SX
6 for each column of S4 indepen-

dently, we propagate both forwards and backwards to SS
2 and S7, thus

derive a solution for the inbound phase.

4. If the solutions of the inbound phase are not enough, we can repeat the
above steps from step 1(a) with another difference of S4. If the solutions are
still insufficient, we can repeat the above steps from step 2(a) with another
difference of SS

5 . Since there are x active columns in S4 and x active rows
in SS

5 , we can repeat the above steps 264(x+x) = 2128x times. Each time we
obtain 264(2−x) solutions with 264 time. So the maximum number of solutions
we can generate is 2128x+64(2−x) = 2128+64x. The average complexity to find
one solution remains 264(x−1).

Outbound Phase. The outbound phase has two 8 → 1 transitions, and we
need to match a 64-bit difference, so it requires 256×2+64 = 2176 computations
to find one collision for the 9.5-round compression function.

Combining the results of the inbound phase and the outbound phase together,
we deduce that we can generate at most 2128+64x−176 = 264x−48 semi-free-start
collisions, and the average complexity to find one collision is 264(x−1)+176 =
264x+112.

The Limited-Birthday Distinguisher on 9.5-Round GOST-512. In or-
der to apply the limited-birthday distinguisher on GOST-like hash functions,
we have to deal with the message checksums, i.e., we need to find two message
chains with identical length and checksum. As depicted in Fig. 8, we can solve
this problem with two MitM procedures. The specific steps are as follows:

1. We find 2y semi-free-start collisions, and store the corresponding chaining
variables h1,i and message pairs (M1,i,M

′
1,i) in a table TL1. Notice there are

only 8 active bytes in the colliding pairs, thus the difference of the colliding
pairs lies in a space whose size is at most 264.

304 B. Ma et al.

M3

M3'

h2 h3
M2

M1

M1'

IV h1
M0 h4 collision

checksum solved with
 M1 - M1' = M3' - M3

MitM MitM

Fig. 8. Limited-Birthday Distinguisher on 9.5-Round GOST-512

2. Start from IV , randomly choose 2512−y different values of M0,j , and compute
the corresponding chaining value h′

1,j , check whether it is in TL1. There is
a high probability that we can find a match. We denote the corresponding
message pairs as ((M0||M1), (M0||M ′

1)), and the immediate hash value as h2.
3. Find all entries in TL1 which satisfy Mk −M ′

k = M ′
1 −M1, and store all

(Mk,M
′
k) pairs in a table TL2. The equation holds with a probability 2−64,

since the difference space of the colliding pairs is at most 264. There are 2y

entries in TL1, so the expected number of entries in TL2 is 2y−64.
4. Start from h2, randomly choose 2512−(y−64) different values of M2,j, and

compute the corresponding chaining value h′
2,j , check whether it is in TL2.

There is a high probability that we can find a match. We denote the corre-
sponding message pairs as ((M2||M3), (M2||M ′

3)), and the immediate hash
value as h4.

5. Since M1−M ′
1 = M ′

3−M3, if we append any identical messages which satisfy
padding to the message pairs ((M0||M1||M2||M3), (M0||M ′

1||M2||M ′
3)), we

get a collision pair of the hash function.

Suppose the time needed to find one semi-free-start collision is 2T1 , then the
time complexity of the above procedure is

T = 2y+T1 + 2512−y + 2512−(y−64) = 2y+T1 + 2512−y + 2576−y.

Although there are two different positions in the twomessage chains, i.e., (M1,M3)
and (M ′

1,M
′
3), but their values are restrained byM1−M ′

1 = M ′
3−M3, so we know

that 2I = 264, and 2O = 1. For an ideal one-way function, find two such messages
would require 2n−I−O+1 = 2449 computations. If T < 2449, the above procedure
can be seen as a valid distinguisher on 9.5-round GOST-512.

As we mentioned above, the average time complexity to find one semi-free-
start collision is 2T1 = 264x+112, and we can generate at most 2N1 = 264x−48

semi-free-start collisions. Now we show how to choose the values of y and T1

which minimize the time complexity.
Two different occasions need to be considered. In the first occasion, if we can

generate enough collisions, we can balance T by letting y + T1 = 576 − y, i.e.,
y = (576−T1)/2 = 232− 32x. In this occasion, we need to ensure N1 ≥ y. Since
both T1 and N1 can be denoted with x, we solve this inequality and get that
x > 2. Then T can be rewritten as:

T = 2y+T1+1 = 2232−32x+64x+112+1 = 2345+32x, for x = 3, 4, 5, 6, 7, 8.

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 305

On the other hand, when x ≤ 2, we can’t generate enough collisions, so T
is dominated by 2576−y and we need to find all the semi-free-start collisions
in order to maximize y. In this occasion, we find all the collisions, i.e., let
y = N1 = 64x− 48, then T can be rewritten as:

T = 2576−y = 2576−64x+48 = 2624−64x, for x = 1, 2.

Finally, we consider both occasions, and find out that the lowest complexity
is 2441 when x = 3. Notice 2441 < 2449, thus we build a valid limited-birthday
distinguisher on 9.5-round GOST-512. Since we need to store all the collision
pairs, the memory requirement is 2y = 2136.

6 Conclusion

In this paper, we have first investigated fundamental security requirements of
reduced-round GOST, including improved preimage attacks on GOST-512 and
improved collision attacks on both GOST-256 and GOST-512. Then, using the
newly proposed limited-birthday distinguisher on hash functions, we construct
a 9.5-round distinguisher on GOST-512 by choosing the differential trail dis-
creetly. Finally, we apply this strategy to Whirlpool, and achieve a new 9-round
distinguisher. We also reduce the time complexity of the previous 7-round dis-
tinguisher. As far as we know, all of our results are the best cryptanalytic results
on GOST and Whirlpool in terms of the number of rounds analyzed under the
hash function setting.

A notable implication of our collision attack and distinguisher on GOST is
the importance of a proper transposition operation such as the AES ShiftRow.
More attention is paid to construct secure SBoxes or MDS matrices in designing
AES-like primitives, but a misbehaviour of a transposition operation might bring
security problems. As in the GOST case, the transposition operation which trans-
poses the state matrix seems not an optimal selection to achieve transposition,
since compared to the ShiftColumn operation of Whirlpool, the transposition
operation of GOST facilitates our collision and distinguisher attacks with more
rounds.

Acknowledgements. We would like to thank the anonymous reviewers of
ACNS 2014 for their valuable comments and suggestions.

References

1. AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound Attacks on Stribog. In: ICISC
2013. LNCS. Springer (2013) (to appear)

2. AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound Attacks on Stribog. Cryptology
ePrint Archive, Report 2013/539 (2013), http://eprint.iacr.org/2013/539.pdf

3. Barreto, P., Rijmen, V.: The Whirlpool Hashing Function. Submitted to NESSIE
(2000), http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

http://eprint.iacr.org/2013/539.pdf
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

306 B. Ma et al.

4. Brent, R.P.: An Improved Monte Carlo Factorization Algorithm. BIT Numerical
Mathematics 20(2), 176–184 (1980)

5. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

6. Dolmatov, V., Degtyarev, A.: GOST R 34.11-2012 Hash Function (2013)
7. Floyd, R.W.: Nondeterministic Algorithms. J. ACM 14(4), 636–644 (1967)
8. Gauravaram, P., Kelsey, J.: Linear-XOR and Additive Checksums Don’t Protect

Damg̊ard-Merkle Hashes from Generic Attacks. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008)

9. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-
like Permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,
pp. 365–383. Springer, Heidelberg (2010)

10. Information Protection and Special Communications of the Federal Security Ser-
vice of the Russian Federation: GOST R 34.11-94, Information Technology Cryp-
tographic Data Security Hashing Function (1994) (in Russian)

11. Information Protection and Special Communications of the Federal Security Ser-
vice of the Russian Federation: GOST R 34.11-2012, Information Technology Cryp-
tographic Data Security Hashing Function (2012),
https://www.tc26.ru/en/GOSTR3411-2012/GOST_R_34_11-2012_eng.pdf

12. International Organization for Standardization: ISO/IEC 10118-3:2004: Informa-
tion technology - Security techniques - Hash-functions - Part 3: Dedicated hash-
functions (2004)

13. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-Birthday Distinguishers for Hash
Functions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 504–523. Springer, Heidelberg (2013)

14. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

15. Kazymyrov, O., Kazymyrova, V.: Algebraic Aspects of the Russian Hash Stan-
dard GOST R 34.11-2012. Cryptology ePrint Archive, Report 2013/556 (2013),
http://eprint.iacr.org/2013/556.pdf

16. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much
Less than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 474–490. Springer, Heidelberg (2005)

17. Khovratovich, D., Nikolić, I., Weinmann, R.-P.: Meet-in-the-Middle Attacks
on SHA-3 Candidates. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665,
pp. 228–245. Springer, Heidelberg (2009)

18. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Dis-
tinguishers: Results on the Full Whirlpool Compression Function. In: Matsui, M.
(ed.) ASIACRYPT2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)

19. Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The Re-
bound Attack and Subspace Distinguishers: Application to Whirlpool. J. Cryptol-
ogy, 1–40 (2013)

20. Ma, B., Li, B., Hao, R., Li, X.: Improved Cryptanalysis on Reduced-Round GOST
and Whirlpool Hash Function (Full Version). Cryptology ePrint Archive (2014)

21. Mendel, F., Pramstaller, N., Rechberger, C.: A (Second) Preimage Attack on
the GOST Hash Function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 224–234. Springer, Heidelberg (2008)

22. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis
of the GOST Hash Function. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 162–178. Springer, Heidelberg (2008)

https://www.tc26.ru/en/GOSTR3411-2012/GOST_R_34_11-2012_eng.pdf
http://eprint.iacr.org/2013/556.pdf

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 307

23. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

24. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press (2010)

25. Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

26. Morita, H., Ohta, K., Miyaguchi, S.: A Switching Closure Test to Analyze Cryp-
tosystems. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 183–193.
Springer, Heidelberg (1992)

27. Quisquater, J.-J., Delescaille, J.-P.: How Easy Is Collision Search? Application
to DES. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS,
vol. 434, pp. 429–434. Springer, Heidelberg (1990)

28. Sasaki, Y.: Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and
an Application to Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733,
pp. 378–396. Springer, Heidelberg (2011)

29. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating Fundamental Security Re-
quirements on Whirlpool: Improved Preimage and Collision Attacks. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer,
Heidelberg (2012)

30. Wang, Z., Yu, H., Wang, X.: Cryptanalysis of GOST R Hash Function. Cryptology
ePrint Archive, Report 2013/584 (2013), http://eprint.iacr.org/2013/584.pdf

31. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) Preimage Attack
on Round-Reduced Grøstl Hash Function and Others. In: Canteaut, A. (ed.) FSE
2012. LNCS, vol. 7549, pp. 127–145. Springer, Heidelberg (2012)

32. Zou, J., Wu, W., Wu, S.: Cryptanalysis of the Round-Reduced GOST Hash Func-
tion. In: Inscrypt 2013. LNCS. Springer (2013) (to appear)

http://eprint.iacr.org/2013/584.pdf

Differential Cryptanalysis and Linear

Distinguisher of Full-Round Zorro

Yanfeng Wang1,3 , Wenling Wu1,2, Zhiyuan Guo1,3, and Xiaoli Yu1,3

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, P.R. China

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, P.R. China

3 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
{wwl,wangyanfeng}@tca.iscas.ac.cn

Abstract. Zorro is an AES-like lightweight block cipher proposed in
CHES 2013, which only uses 4 S-boxes per round. The designers showed
the resistance of the cipher against various attacks and concluded the
cipher has a large security margin. Recently, Guo et. al [1] have given a
key recovery attack on full-round Zorro by using the internal differential
characteristics. However, the attack only works for 264 out of 2128 keys.
In this paper, the secret key selected randomly from the whole key space
can be recovered much faster than the brute-force attack. We first observe
that the fourth power of the MDS matrix used in Zorro(or AES) equals
to the identity matrix. Moveover, several iterated differential character-
istics and iterated linear trails are found due to the interesting property.
We select three characteristics with the largest probability to give the
key recovery attack on Zorro and a linear trail with the largest correla-
tion to show a linear distinguishing attack with 2105.3 known plaintexts.
The results show that the security of Zorro against linear and differen-
tial cryptanalysis evaluated by designers is insufficient and the security
margin of Zorro is not enough.

Keywords: Zorro, block cipher, differential cryptanalysis, linear distin-
guisher.

1 Introduction

Block ciphers are used as building blocks for many symmetric cryptographic
primitives for encryption, authentication, pseudo-random number generation,
and hash functions. Security of these primitives is evaluated in regard to known
attacks against block ciphers. Among the different types of attacks, the statistical
ones exploit non-uniform behavior of the data extracted from the cipher to distin-
guish the block cipher from random permutations. Differential cryptanalysis[2]
and linear cryptanalysis[3] are the most prominent statistical attacks against
block ciphers.

Differential cryptanalysis has been introduced in 1990 by Biham and Shamir
in order to break the DES block cipher. This statistical cryptanalysis exploits

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 308–323, 2014.
c© Springer International Publishing Switzerland 2014

Differential Cryptanalysis and Linear Distinguisher of Full-Round Zorro 309

the existence of a differential, i.e., a pair (-in,-out) of differences such that
for a given input difference -in, the output difference after encryption equals
-out with a high probability. For a b-bit random permutation, the probability
is about 2−b. The gap of the probability results in a distinguisher between the
cipher and the random permutation, which is often extended to distinguish the
correct key and the wrong keys. In 1993, the iterated differentials are proposed to
analyze DES and s2-DES[4]. Since then, the differential cryptanalysis is always a
hot topic of cryptanalysis[5,6,7]. The problem of estimating the data complexity,
time complexity and success probability of a differential cryptanalysis is far from
being simple. In 2011, [8] presented a general method (Algorithm 1) for finding
an accurate number of samples to reach given error probabilities which can be
applied to the differential cryptanalysis.

Linear cryptanalysis[9,10] is a known-plaintext attack proposed in 1993 by
Matsui to break DES. It exploits the correlation between linear combinations
of input bits and linear combinations of output bits of the block cipher. If the
correlation between input and output equals C, the required amount of known
plaintexts is about C−2 if we want to distinguish the block cipher from the
random permutation with a high success probability.

The large development of low resource devices such as RFID tags and sensor
nodes increases the need to provide security among such devices. The imple-
mentation costs should be taken into account when choosing security algorithms
for resource-limited devices. Symmetric-key algorithms, especially block ciphers,
still play an important role in the security of embedded systems. Recently, a lot
of block ciphers and authenticated encryption ciphers suitable for these environ-
ments have been designed, such as PRESENT[11], KATAN & KTANTAN[12],
PRINT[13], LBlock[14], FIDES[15], Piccolo[16], LED[17] etc.

Zorro[18] is a new lightweight block cipher proposed at CHES 2013. It is an
AES-like block cipher and is designed to improve the side-channel resistance of
AES[19]. The secret key is added to the state only after each 4 rounds as in the
block cipher LED-64. The S-box layer of Zorro only applies four same S-boxes
to the first row per round and the S-box is different from that of AES. Besides,
the MC operation is the same as AES. The designers have evaluated the secu-
rity of the cipher against various methods. For differential/linear cryptanalysis,
authors found a balance between the number of inactive S-boxes and degrees of
freedom for the differential (or linear) paths. Considering the average number
of conditions imposed at each round, designers concluded that 14(or 16) rounds
are the upper bound for building a classical differential(or linear) path. Finally,
a 12-round meet-in-the-middle attack was shown as the best powerful attack on
Zorro in the single key model. Recently, Guo et. al[1] have given a key recovery
attack on full-round Zorro by using the internal differential characteristics, while
it only works for 264 keys of the whole key space.

In this paper, we revaluated the security of Zorro against differential crypt-
analysis and linear cryptanalysis. As mentioned in [1], the main weakness of
Zorro includes defining a new S-box and applying only four S-boxes to the first
row per round. Besides, we observed that the fourth power of the MDS matrix of

310 Y. Wang et al.

Zorro(or AES) is equal to the identity matrix. Coincidentally, one step of Zorro
consists of four rounds with four MDS matrix transformations. Interestingly,
there exist several iterated differential characteristics with a high probability
and iterated linear trails with a high correlation for one step of Zorro. Further-
more, we can recover the secret key of the full-round Zorro based on a 23-round
differential characteristic with a time complexity of 2106 full-round Zorro encryp-
tions. Interestingly, no matter how many plaintext-ciphertext pairs are given, the
time complexity of filtering the right key is at least 296 full-round encryptions
based on the 23-round distinguisher. In order to clarify the special property of
the structure used in Zorro, another TMTO attack based on a 22-round differ-
ential characteristic is also shown and it only costs about 264 full-round Zorro
encryptions to filter out the right key. Meanwhile, 1/C2 of some linear trails of
full-round Zorro is also lower than the size of the plaintext space 2128. Thus, we
can obtain a full-round linear distinguisher for Zorro with 1/C2 known plain-
texts. All in all, the above results have threatened the theoretical security of the
full-round Zorro.

The remainder of this paper is organized as follows. Section 2 gives a brief
description of Zorro block cipher. Section 3 proposes some iterated differential
characteristics for one step of Zorro and shows two key recovery attacks on full-
round Zorro. Section 4 presents a linear distinguisher of full-round Zorro based
on the theory of correlation matrix. Finally, Section 5 concludes this paper.

2 A Brief Description of Zorro

The block cipher Zorro has 128-bit key and 128-bit state. It iterates 24 rounds
and the 24 rounds are divided into 6 steps of 4 rounds each.

Encryption Algorithm. As in AES-128, the state in Zorro is regarded as 4×4
matrix of bytes, and one round consists of four distinct transformations: SB∗,
AC, SR and MC. SB∗ is the S-box layer where only 4 same S-boxes are applied
to the 4 bytes of the first row in the state matrix. The S-box used in Zorro
is different from the one of AES and the definition of S-box is referred to Ap-
pendix A. Next, AC is the addition of round constants in round i. Specifically,
the four constants (i, i, i, i<<3) are added to the four bytes of the first row. Fi-
nally, the last two transformations, SR and MC, are the AES’s ShiftRows and
MixColumns.

Key Schedule Algorithm. The key schedule algorithm of Zorro is similar to
that of LED. Before the first and after each step, the master key is bitwisely
added to the state and the same addition is done after the last step.

Let us focus on MC(MixColumn) used in Zorro which is a permutation oper-
ation on the state column by column. The matrix multiplication can be shown

Differential Cryptanalysis and Linear Distinguisher of Full-Round Zorro 311

as:

M =

⎛⎜⎜⎜⎝
02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

⎞⎟⎟⎟⎠ , M−1 =

⎛⎜⎜⎜⎝
0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

⎞⎟⎟⎟⎠ .

Interestingly, the following equation is true:

M4 =

⎛⎜⎜⎜⎝
01 00 00 00

00 01 00 00

00 00 01 00

00 00 00 01

⎞⎟⎟⎟⎠ .

Combined with the fact that only 4 S-boxes are applied to the first row for every
round, iterated differential characteristics and linear trails are found for four
rounds(one step) of Zorro.

3 Differential Cryptanalysis of Full-Round Zorro

Differential cryptanalysis defines characteristics that describe possible evolve-
ments of the differences through the cipher. For non-linear operations (such as
S-boxes), it is possible to predict statistical information on the output differ-
ence given the input difference by generating the differential distribution table
(DDT). If the expected difference for the intermediate data before the last few
rounds is given, it may be possible to deduce the unknown key by a statistical
analysis. The attack is a chosen plaintext attack that is performed in two phases:
In the data collection phase the attacker requests encryption of a large number
of pairs of plaintexts, where the differences of all the plaintext pairs are selected
to have the input difference of the characteristic. In the data analysis phase the
attacker then recovers the key from the collected ciphertexts.

Generally, the total probability of a differential characteristic is the product
of the probabilities of each round assuming that the round functions are inde-
pendent. For Zorro, the secret key is added to the data every four rounds. If we
add one value to the input and one at the output of the step, 4 rounds of Zorro
can be seen as a step that has no constants in the rounds[1]. As a result, the as-
sumption that the step functions are independent is more rational than the one
that round functions are independent for Zorro. In this section, we will present
two key recovery attacks on full-round Zorro. The basic one uses a 23-round
distinguisher to give an attack with a time complexity of 2106 and a memory
complexity of 232. In order to clarify the special structure used in Zorro, another
attack with a key searching time complexity of 264 and a memory complexity of
264 is also described.

3.1 Iterated Differential Characteristic

As mentioned by designers, the most damaging differential patterns are those
that would exclude active bytes affected by non-linear operations. This kind of

312 Y. Wang et al.

differential characteristic with probability 1 exists for at most two rounds. We
extend one type of the differential pattern to 4 rounds by adding 4 active bytes.
In order to keep the high differential probability for one step, we aim to build
iterated differential trails taking advantage of the fact that M4 = I. In order
to reduce the searching cases and remove the influence of ShiftRow, we set the
original four-byte differences in each row all equal and the first row all zero. The
obtained active model is shown in Figure 1. The big squares represent states,
small squares represent bytes, white bytes are the ones with zero difference, gray
bytes are the ones with a non-zero difference and the letters in gray bytes present
the values of difference. As shown in Figure 1, the probability of the path from
#1 to #7 is always 1 as the S-boxes are all inactive. If the output differences of
all the 4 active S-boxes in the fourth round are equal to the input differences,
then the differences of #1 are equal to those of #9 because M4 = I.

*SBaaaa

bbbb

AC
SR
MC

*SBcccc
d

eeee
ddd

AC
SR
MC

ffff

gggg

*SB
AC
SR
MC

*SBiiii
j

kkkk
jjj

AC
SR
MC

hhhh

AK

#1 # 2 #3 # 4 #5

#6 #7 #8 #9

aaaa

bbbb

aaaa

bbbb

cccc
d

eeee
ddd

ffff

gggg

#5

ffff

gggg

iiii
j

kkkk
jjj

hhhh
p

Fig. 1. Iterated differential characteristic of four rounds Zorro

Firstly, we find that 255 different values of (a, b) make the path from #1 to
#7 with probability 1. After searching the differential distribution table (DDT)
of the S-box used in Zorro, 101 original differences make the path from #7
to #9 possible. The probability of the differential characteristic from #1 to
#9(four rounds) is determined by the value of (h, h) in DDT. Specifically, if
the value of (h, h) in DDT of S-box is m, then there are m different solutions
with the equation S(x)

⊕
S(x

⊕
h) = h. Thus, the probability of the differential

characteristic p shown in Figure 1 is (m/256)4. Obviously, the largest m means
the highest probability of the characteristic. We find that the maximum m is
equal to 6 and 3 options of hmake the probability of the differential characteristic
be (6/256)4 ≈ 2−21.66. The corresponding values of differences expressed in
decimal are shown in Table 1. Furthermore, if the state of #1 is replaced by
#3,#5 or #7, we can obtain another three iterated differential characteristics
with the same probability.

3.2 Basic Key Recovery Attack on Full-Round Zorro

In order to recover the secret key of Zorro, three iterated differential characteris-
tics of 23-round Zorro are used to distinguish the right key and the wrong keys.
With the assumption that the step functions of Zorro are independent, we can

Differential Cryptanalysis and Linear Distinguisher of Full-Round Zorro 313

Table 1. Three kinds of iterated differential characteristics on one step

NO a b c d e f g h i j k

1 22 58 22 88 98 166 138 123 221 35 169

2 107 189 107 183 10 30 200 234 244 93 149

3 88 232 88 123 147 174 30 247 89 140 146

extend the iterated characteristics to 5 steps of Zorro. The probability becomes
2−21.66×5=2−108.3 which is much lower than 2−128 for the random permutation.
Meanwhile, the 23-round differential characteristics shown in Figure 2 have the
same probability 2−108.3 as the path from #1 to #7 with probability 1, where
the values of a and b are referred to Table 1. With another assumption that
the secret key is randomly chosen from the whole key space, we can give a key
recovery attack on the full-round Zorro.

1 stepaaaa

bbbb

AK

#1

aaaa

bbbb

#1

1 stepaaaa

bbbb

AK

#1

aaaa

bbbb

#1

1 stepaaaa

bbbb

AK

#1

aaaa

bbbb

#1

3 roundsaaaa

bbbb

AK

#1

1 stepaaaa

bbbb

AK

#1

aaaa

bbbb

#1

1 stepaaaa

bbbb

AK

#1

aaaa

bbbb

#1

*SB

iiii
j

kkkk
jjj

hhhh
#7

iiii
j

kkkk
jjj

????
#7

AC
SR

AK C

differential
characteristics

108.3
0 2p

P

iiii
j

kkkk
jjj

????
MC ????

?
????
???

????
iiii

j
kkkk
jjj

????

Fig. 2. Key recovery attack on full-round Zorro

Outline. In order to recover the secret key of Zorro efficiently, we combine 3
iterated differential trails to give a structure attack. If we denote the secret key
by K, we can change the order of MC and AK in the last round by adding the
equivalent key K

′
= MC−1(K) before MC. Meanwhile, recovering the equiv-

alent key means that the secret key is found. Note that it is impossible to dis-
tinguish equivalent keys that share the same values in the last three rows based
on the above distinguisher. Therefore, we focus on the 4 bytes of the first row

314 Y. Wang et al.

of K ′. We first reduce the size of guessing key space from 232 to 1 and then
exhaustively search the remaining key candidates for the whole 128-bit key.

1. Choice of Plaintext Pairs
The chosen plaintexts structure is shown as Figure 3. It is easy to see that
in such a structure each difference appears three times. Thus, a total of 9
pairs are contained in a structure of 7 plaintexts. Choose n structures and
ask all the 7n plaintexts for the corresponding ciphertexts, we can obtain 9n
plaintext-ciphertext pairs.

0 000
22222222

0
585858
000

1 :

58

0 000
107107107107

0
189189189
000

2 :

189

P

1P

2P3P

1 2P

2 3P

1 3P

0 000
88888888

0
232232232
000

3 :

232

Fig. 3. Chosen plaintexts structure

2. Filtration of Plaintext-Ciphertext Pairs
Choose ciphertext pairs so that the differences of the input of 24-round sat-
isfy the condition in #7. About 232 among 2128 pairs can satisfy the differ-
ential condition. Therefore, it remains about 9n× 2−96 plaintext-ciphertext
pairs to distinguish the right key from wrong keys.

3. Reduction of Key Candidates in the First Row
Guess the four bytes of the first row of K

′
(232), and decrypt the remaining

pairs to get the differences of the bytes which fall in the first row of the
output of 23-round. If the differences satisfy the condition in the first row of
the output of distinguisher, increase the corresponding counter of the guessed
key.

4. Extraction from Key Candidates
Up to now, 9n × 2−96 plaintext-ciphertext pairs are left to distinguish the
right key from wrong keys. The correct key is suggested with a probability
of 2−108.3/2−96 = 2−12.3 while it is about 2−128/2−96 = 2−32 for the incor-
rect keys. Utilizing the probability differences between the correct key and
incorrect keys, we can extract the correct key. We use the ranking paradigm
to filter out the key in the first position as the right key candidate.

5. Recovery the Right Key
Exhaustively test the remaining key candidates(296 keys) to find the correct
128-bit key.

Differential Cryptanalysis and Linear Distinguisher of Full-Round Zorro 315

Complexities

1. Data Complexity

As mentioned in the first step of attack, 7n chosen plaintexts are needed to
process the attack.

2. Time Complexity

One computational complexity is checking whether the differences of cipher-
text pairs satisfy the differences of last three rows of #7 or not. It can be
processed column by column. As is known to us, having known arbitrary
4 bytes in the input and output of MC in AES, the other 4 bytes can be
determined. Thus, we can pre-compute all the 28 possible outputs of MC
with knowing last three input bytes (i, j, k) and store them in a table with
the last output byte as the index. Given the difference in the last byte of
arbitrary column, the only possible differences in the other three bytes can
be obtained from the table. Thus, a pair can be verified after looking up the
table at most 4 times, which is much less than 1/4 one-round encryption.
Checking all pairs spend about 9n× 2−6.6 full-round Zorro encryptions.

Another computational complexity is incrementing counters for correct key
candidates from the tuples of guessed 32-bit keys and plaintext-ciphertext
pairs. It is smaller than 9n×2−96×232 one round encryption. Finally, we need
about 296 full-round Zorro encryptions to exhaustively test the remaining key
candidates.

3. Memory Complexity

Since attackers must choose the correct key among the 32-bit keys, it is
necessary for the attacker to have enough memory for each 232 keys, which
is independent of n.

Given the probabilities (p0, p), the authors provided a general method for
finding an accurate number of samples to reach given error probabilities in
[8](Algorithm 1 shown in Appendix B), where p(resp. p0) is the probability sug-
gested for a wrong key(resp. for the right key). We first denote the type-I error
probability (the probability to wrongfully discard the right key) with α and the
type-II error probability (the probability to wrongfully accept a random key as
the right key) with β. In our attack, we want to determine the number of sample
9n×2−96 with p0 = 2−12.3 and p = 2−32. If α = 10% and β = 2−32, about 216.85

samples(9n× 2−96 pairs) can reduce 232 keys to 1 candidate. That is to say, the
data complexity of our attack is about 2112.5 chosen plaintexts. Therefore, the
number of remaining key candidates for 128-bit key is about 296 and we exhaus-
tively check the key candidates to filter out the right key. All in all, the time
complexity is about 2112.85 × 2−6.6 + 216.85 × 232 × 1/24+ 296 ≈ 2106 full-round
Zorro encryptions.

As mentioned before, it is impossible to distinguish the wrong keys that share
the same values in the last three rows with the right key based on the above
23-round distinguisher. Thus, the number of key candidates after the distin-
guishing process is no less than 296. In other words, the time complexity for
searching the right key is 296 full-round encryptions at least no matter how many

316 Y. Wang et al.

plaintext-ciphertext pairs are given. In order to reduce the time complexity of
key filtering process, we will show a TMTO attack in the next section.

3.3 TMTO Key Recovery Attack on Full-Round Zorro

In this section, three iterated differential characteristics of 22-round Zorro are
used to filter out the right key from the whole key space. The 22-round differential
characteristics shown in Figure 4 also have the probability of 2−108.3, where the
values of c, d and e are referred to Table 1. With the assumption that the secret
key is randomly chosen from the whole key space, we can also give a full-round
key recovery attack on Zorro with a less time complexity for key filtering process.
We first consider 64-bit equivalent key and then use the ranking paradigm to
filter out the correct one as the right 64-bit key candidate. Finally, exhaustively
test the remaining 264 key candidates to find the correct 128-bit key.

#1#1 #1#1

#1#1

2 roundsAK

#1

1 stepAK

#1#1 #1#1

iiii
j

kkkk
jjj

hhhh
#7

 differential
characteristics

108.3
0 2p

P cccc
d

eeee
ddd

cccc
d

eeee
ddd

1 stepAK cccc
d

eeee
ddd

cccc
d

eeee
ddd

1 stepAK cccc
d

eeee
ddd

cccc
d

eeee
ddd

1 stepAK cccc
d

eeee
ddd

cccc
d

eeee
ddd

1 stepAK cccc
d

eeee
ddd

*SB
AC
SR

{0,4,8,12}AK Ciiii
j

kkkk
jjj

????

MC *SB
AC
SR

MC13951
2

151173
14106

????
95113

10
315117
6214

????

AK iiii
j

kkkk
jjj

????
95113

10
315117
6214

????
13951

2
151173
14106

12840

13951
2

151173
14106

12840

 :indexes of K

*SB iiii
j

kkkk
jjj

????
AC
SR

AK Ciiii
j

kkkk
jjj

????
MC *SB

AC
SR

MC????
?

????
???

????
????

?
????
???

????
????

?
????
???

????
????

?
????
???

????

cccc
d

eeee
ddd

cccc
d

eeee
ddd

Fig. 4. TMTO key recovery attack on full-round Zorro

Outline. As before, we combine 3 iterated differential trails to give a structure
attack and recover the equivalent keyK

′
= MC−1(K) beforeMC. We divide the

128-bit K ′ to 16 bytes and denote them as shown in Figure 4. As we know, the
key addition can be removed through the linear function with the corresponding
operation. Because the S-box layer of Zorro only consists of four S-boxes, we
divide the 128-bit K ′ into two parts, the first row after and the last three rows
before the 24-round S-box layer. The following three rows of K ′ can be removed
before the 23-round MC operation and a new 128-bit key K

′′
generated from 12

bytes of K ′ appears. Meanwhile,

Differential Cryptanalysis and Linear Distinguisher of Full-Round Zorro 317

K
′′
=

⎛⎜⎜⎜⎜⎜⎝
K

′′
0 K

′′
4 K

′′
8 K

′′
12

K
′′
1 K

′′
5 K

′′
9 K

′′
13

K
′′
2 K

′′
6 K

′′
10 K

′′
14

K
′′
3 K

′′
7 K

′′
11 K

′′
15

⎞⎟⎟⎟⎟⎟⎠ = MC−1 ×

⎛⎜⎜⎜⎜⎝
0 0 0 0

K
′
13 K

′
1 K

′
5 K

′
9

K
′
10 K

′
14 K

′
2 K

′
6

K
′
7 K

′
11 K

′
15 K

′
3

⎞⎟⎟⎟⎟⎠ .

The 128-bit K
′′
is independent with K

′
{0,4,8,12} and they together determine

the equivalent 128-bit key K ′. We can replace the operation AK
′
by respec-

tively adding K
′′
after the 23-round SR and adding K

′
{0,4,8,12} after the 24-round

SR. Similarly, it is impossible to distinguish the keys located in the last three
rows of K

′′
based on the distinguisher(Figure 4). As a result, we first use the

plaintext-ciphertext pairs and distinguisher to filter out the correct 64-bit equiv-
alent key(K

′
{0,4,8,12} and K

′′
{0,4,8,12}). Finally, exhaustively test the remaining 264

key candidates to find the right 128-bit key.

1. Choice of Plaintext Pairs

The chosen plaintexts structure is similar to that of the basic attack. Three
kinds of differences are used to construct each structure and their values
are given in Figure 5. Thus, we can obtain 9n differential pairs with 7n
plaintext-ciphertext pairs.

0 000
22222222

88
989898
888888

1 :

98

0 000
107107107107

183
101010

183183183
2 :

10

0 000
88888888

123
147147147
123123123

3 :

147

Fig. 5. Three differences in the chosen plaintexts structure

2. Filtration of Plaintext-Ciphertext Pairs

Considering one column MC transformation used in AES, if we have known
arbitrary four bytes among the 8 bytes in the input and output, then the
other four bytes can be determined with probability 1. Given a ciphertext
pair, we can obtain the differences in the last three rows after the MC oper-
ation of 23-round with probability 1. Meanwhile, if a pair may suggest some
keys, then the differences in the last three rows before the MC are equal to
that of the output of the distinguisher. As a result, 6 bytes are known for each
column and the matching between four columns occurs with a probability of
2−16×4 = 2−64. Choose ciphertext pairs that the differences of the last three
rows successfully match between the MC operation of the 23-round. About 1
among 264 pairs can satisfy the above condition. Therefore, it remains about
9n× 2−64 plaintext-ciphertext pairs to distinguish the right 64-bit key from
wrong keys.

318 Y. Wang et al.

3. Reduction of Key Candidates

To reduce the time complexity, we compute the values of suggested keys
from the remaining ciphertext pairs instead of exhaustively guessing the
corresponding keys. The procedure can be described as follows:

(a) Given a remaining pair, we can easily get the differences before and after
the MC of 23-round as explained above. Thus, the input and the output
differences of the S-box layers in the 23-round and 24-round are known.

(b) After looking up the difference table of S-box, we can obtain the corre-
sponding input and output values of the 8 S-boxes(4 in 23-round and 4
in 24-round).

(c) Up to now, we have known the output values of the 4 S-boxes in the 24-
round. Furthermore, we can easily get the suggested values K

′
{0,4,8,12}.

On the average, only one key is suggested because given the input and
output difference of the S-box in Zorro, one solution is averagely ob-
tained.

(d) Meanwhile, we have known all the values before the 23-round MC and
the values in the first row after the 23-round SR. Easily, the possible
values of K

′′
{0,4,8,12} are also obtained.

(e) Increase the corresponding counters of the computed 64-bit keys.

The above steps are repeated at most 9n × 2−64 times. If there exists im-
possible input-output difference pair of S-box in Step (b), skip the following
three steps and go to the next remaining pair.

4. Extraction from Key Candidates

There are 9n×2−64 plaintext-ciphertext pairs to distinguish the right 64-bit
key from wrong keys. The incorrect key is suggested with a probability of
2−128/2−64 = 2−64 while it is about 2−108.3/2−64 = 2−44.3 for the right key.
We also use the ranking paradigm to filter out the correct key.

5. Recovery the Right Key

Exhaustively test the remaining 264 key candidates to find the correct 128-bit
key.

Similarly, we want to determine the number of samples 9n× 2−64 with p0 =
2−44.3 and p = 2−64. If α = 10% and β = 2−64, about 249.81 samples(9n× 2−64

pairs) can reduce 264 keys to 1 candidates. That is to say, the data complexity
of our attack is about 2113.5 chosen plaintexts. To clarify the special structure
of Zorro, we only focus on the time complexity for searching the right key after
filtering out wrong pairs. For a remaining pair, the suggested 64-bit keys can
be computed by looking up table 8 times. All in all, it costs much smaller than
9n× 2−64 one round encryption to reduce the key space to 264. Finally, we need
about 264 full-round Zorro encryptions to exhaustively test the remaining key
candidates. Thus, the time complexity of searching keys is about 249.81× 1/24+
264 ≈ 264 full-round Zorro encryptions with 264 memory.

Differential Cryptanalysis and Linear Distinguisher of Full-Round Zorro 319

4 Linear Distinguishing Attack on Full-Round Zorro

Consider an n-bit block cipher F and let the input of the function be x ∈ Fn
2 .

A linear approximation (u, v) with an input mask u and an output mask v has
probability

p(u, v) = Prx∈Fn
2
(u · x⊕ v · F (x) = 0).

The value CF (u, v) = 2p(u, v)−1 is called the correlation of linear approximation
(u, v).

Consider a mapping F : Fn
2 → Fn

2 given as a key-alternating iterative block
cipher, i.e. F = Fr ◦Fr−1 ◦ ... ◦F1. A linear trail consists of an input mask u and
output mask v and a vector U = (u1, ..., ur−1) with ui ∈ Fn

2 . The correlation of
the trail is defined as

CF (u, v, U) = CF1(u, u1)CF2(u1, u2)...CFr−1 (ur−2, ur−1)CFr (ur−1, v).

In contrary to the piling-up lemma[3], no assumption of any kind has to be
made for this equation to hold. The characteristics of the correlation matrices
of some special boolean functions are summarized as follows[19]:

Lemma 1 (XOR with a Constant): Consider the function that consists of the
bitwise XOR with a constant vector k: F (x) = x⊕ k, the correlation matrix is a
diagonal matrix with

CF (u, u) = (−1)uT k.

Lemma 2 (Linear functions): Consider a linear function F (x) = Mx, with M
an m × n binary matrix. The elements of the corresponding correlation matrix
are given by

CF (u, v) = δ(MT v ⊕ u),

where

δ(w) =

{
1, when w = 0

0, when w �= 0
.

Lemma 3 (Bricklayer Functions): Consider a bricklayer function y = F (x)
that is defined by the following component functions: y(i) = F(i)(x(i)) for 1 ≤ i ≤
l. For every component function F(i) there is a corresponding correlation matrix
denoted by CF(i)

. The elements of the correlation matrix of F are given by

CF (u, v) =
∏
i

CF(i)
(u(i), v(i)),

where u = (u(1), u(2), ..., u(l)) and v = (v(1), v(2), ..., v(l)).

In this section, we will give a linear distinguishing attack for full-round Zorro
according to the above three rules. F represents the 24-round Zorro, and Fi

represents the corresponding i-th step function. Note that the fact M4 = I
implies that (MT)4 = I, where MT means the transpose of matrix M .

320 Y. Wang et al.

4.1 Iterated Linear Trail

There exists some iterated linear trails for 4 rounds of Zorro and the pattern
can also be shown as Figure 1, where the gray bytes are the ones with a non-
zero mask. We compute the correlation of the linear trail using the theory of
the correlation matrix with u = v = ui(i ≤ 6). There are 255 different (a, b)

*SB

AC
SR
MC

*SB182182182182
34

133133133133
343434

AC
SR
MC

*SB

AC
SR
MC

*SB122122122122
170

73737373
170170170

AC
SR
MC

136136136136

AK

#3 # 4 #5

#6 #7 #8 #1

182182182182
34

133133133133
343434

208208208208

193193193193

#5

208208208208

193193193193

122122122122
170

73737373
170170170

136136136136
c

148148148148

133133133133

#1

148148148148

133133133133

2

148148148148

133133133133

208208208208

193193193193

Fig. 6. Iterated linear trail of one-step Zorro

which result in the path from #1 to #7 with the absolute of correlation to
be 1. After searching the linear approximation table(LAT) of the S-box used
in Zorro, only 210 original linear masks make the path from #7 to #8 with
a non-zero correlation. The largest linear correlation occurs when a = 208 and
b = 193 and the absolute value of the corresponding correlation |c| = (28/128)4 ≈
2−8.77. If we change the relative location of #1 with #3,#5 or #7, |c| re-
mains equal. Meanwhile, if the input mask and the output mask of one step are
both (0, 0, 0, 0, 208, 208, 208, 208, 0, 0, 0, 0, 193, 193, 193, 193), the linear trail is
determined as Figure 6.

1 step208208208208

193193193193

AK

#1

AK

Linear
Distinguisher

52.622C

AK

208208208208

193193193193

#1

1 step208208208208

193193193193

#1

208208208208

193193193193

#1

1 step208208208208

193193193193

AK

#1

AK208208208208

193193193193

#1

1 step208208208208

193193193193

#1

208208208208

193193193193

#1

1 step208208208208

193193193193

AK

#1

AK208208208208

193193193193

#1

1 step208208208208

193193193193

#1

208208208208

193193193193

#1

Fig. 7. Linear distinguisher on full-round of Zorro

Differential Cryptanalysis and Linear Distinguisher of Full-Round Zorro 321

4.2 Linear Distinguisher of the Full-Round Zorro

If we fix the input linear mask of every step to be the pattern of #1 with
a = 208 and b = 193, we can get a linear trail of full-round Zorro. The absolute
value of the correlation of the linear trail can be computed as |C| = 2−8.77×6 =
2−52.62 without any assumption. Thus we can distinguish the full-round Zorro
from random permutation by using 1/C2 ≈ 2105.3 known plaintexts and the
distinguisher is shown as Figure 7.

5 Conclusion

In this paper, we evaluated the security of Zorro against differential cryptanalysis
and linear cryptanalysis. Two different key recovery attacks were described in
Section 3. The basic one recovered the secret key with a data complexity of 2112.4

chosen plaintexts, a time complexity of 2106 full-round Zorro encryptions and a
memory complexity of 232. The TMTO attack required 2113.9 chosen plaintexts,
a key filtering complexity of 264 full-round Zorro encryptions and 264 memory.
Meanwhile, we gave a linear distinguishing attack on the full-round Zorro with
2105.3 known plaintexts.

For convenience, we fix that the differences of four bytes in each row are all the
same. If we exhaustively search the characteristics covering three rounds with
probability 1, we may obtain some trails for one step of Zorro with a probability
higher than 2−21.66. Thus the complexity of our key recovery attacks can be
improved. The similar cases may occur for the linear distinguishing attack. In
summary, the results show that only four S-boxes located in the first row and
an iterated structure as AES produce a theoretical weak block cipher. Designers
should carefully reduce the non-linear operations when designing a lightweight
block cipher based on AES block cipher.

Acknowledgments. We thank the anonymous reviewers for their useful com-
ments that help to improve the paper. The research presented in this paper is
supported by the National Basic Research Program of China (No. 2013CB338002)
and National Natural Science Foundation of China (No. 61272476, No.61232009
and No. 61202420).

References

1. Guo, J., Nikolic, I., Peyrin, T., Wang, L.: Cryptanalysis of Zorro. Cryptology ePrint
Archive, Report 2013/713 (2013), http://eprint.iacr.org/

2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

3. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

4. Knudsen, L.R.: Iterative characteristics of DES and s2-DES. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 497–511. Springer, Heidelberg (1993)

http://eprint.iacr.org/

322 Y. Wang et al.

5. Knudsen, L.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

6. Sugita, M., Kobara, K., Imai, H.: Security of reduced version of the block cipher
Camellia against truncated and impossible differential cryptanalysis. In: Boyd, C.
(ed.) ASIACRYPT2001. LNCS, vol. 2248, pp. 193–207. Springer, Heidelberg (2001)

7. Wang, M.: Differential cryptanalysis of reduced-round Present. In: Vaudenay, S.
(ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg
(2008)

8. Blondeau, C., Gérard, B., Tillich, J.P.: Accurate estimates of the data complexity
and success probability for various cryptanalyses. Designs, Codes and Cryptogra-
phy 59(1-3), 3–34 (2011)

9. Biham, E.: On Matsui’s linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995)

10. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

11. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: Present: An ultra-lightweight block cipher. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007)

12. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

13. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINT cipher: A
block cipher for ic-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

14. Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

15. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: FIDES: Lightweight
authenticated cipher with side-channel resistance for constrained hardware. In:
Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158.
Springer, Heidelberg (2013)

16. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

17. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

18. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: How far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

19. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag New York, Inc.,
Secaucus (2002)

Differential Cryptanalysis and Linear Distinguisher of Full-Round Zorro 323

Appendix A: S-box of Zorro

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 B2 E5 5E FD 5F C5 50 BC DC 4A FA 88 28 D8 E0 D1

10 B5 D0 3C B0 99 C1 E8 E2 13 59 A7 FB 71 34 31 F1

20 9F 3A CE 6E A8 A4 B4 7E 1F B7 51 1D 38 9D 46 69

30 53 E 42 1B F 11 68 CA AA 6 F0 BD 26 6F 0 D9

40 62 F3 15 60 F2 3D 7F 35 63 2D 67 93 1C 91 F9 9C

50 66 2A 81 20 95 F8 E3 4D 5A 6D 24 7B B9 EF DF DA

60 58 A9 92 76 2E B3 39 C 29 CD 43 FE AB F5 94 23

70 16 80 C0 12 4C E9 48 19 8 AE 41 70 84 14 A2 D5

80 B8 33 65 BA ED 17 CF 96 1E 3B B C2 C8 B6 BB 8B

90 A1 54 75 C4 10 5D D6 25 97 E6 FC 49 F7 52 18 86

A0 8D CB E1 BF D7 8E 37 BE 82 CC 64 90 7C 32 8F 4B

B0 AC 1A EA D3 F4 6B 2C FF 55 A 45 9 89 1 30 2B

C0 D2 77 87 72 EB 36 DE 9E 8C DB 6C 9B 5 2 4E AF

D0 4 AD 74 C3 EE A6 F6 C7 7D 40 D4 D 3E 5B EC 78

E0 A0 B1 44 73 47 5C 98 21 22 61 3F C6 7A 56 DD E7

F0 85 C9 8A 57 27 7 9A 3 A3 83 E4 6A A5 2F 79 4F

Appendix B: Computation of the exact number of samples
required for a statistical attack

Input: Given error probabilities (α, β) and probabilities (p0, p).
Output: N and τ : the minimum number of samples and the corresponding

relative threshold to reach error probabilities less than (α, β).

Set τmin to p and τmax to p0.
repeat

Set τ to (τmin + τmax)/2.
Compute Nnd such that ∀N > Nnd, Gnd(N, τ) ≤ α.
Compute Nfa such that ∀N > Nfa, Gfa(N, τ) ≤ β.
if Nnd > Nfa then

τmax = τ .
else

τmin = τ .
end if

until Nnd = Nfa.
Return N = Nnd = Nfa and τ .

Detecting Hidden Leakages

Amir Moradi1, Sylvain Guilley2,3, and Annelie Heuser2,�

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
amir.moradi@rub.de

2 TELECOM-ParisTech, Crypto Group (COMELEC dpt), Paris, France
firstname.lastname@telecom-paristech.fr

3 Secure-IC S.A.S., Rennes, France

Abstract. Reducing the entropy of the mask is a technique which has
been proposed to mitigate the high performance overhead of masked
software implementations of symmetric block ciphers. Rotating S-box
Masking (RSM) is an example of such schemes applied to AES with the
purpose of maintaining the security at least against univariate first-order
side-channel attacks. This article examines the vulnerability of a real-
ization of such technique using the side-channel measurements publicly
available through DPA contest V4. Our analyses which focus on exploit-
ing the first-order leakage of the implementation discover a couple of
potential attacks which can recover the secret key. Indeed the leakage
we exploit is due to a design mistake as well as the characteristics of the
implementation platform, none of which has been considered during the
design of the countermeasure (implemented in naive C code).

Keywords: Side-channel analysis, leakage detection, variance test,
NICV, correlation-collision, CPA, hidden models, linear regression.

1 Introduction

Counteracting side-channel analysis attacks, as a major concern for embedded
cryptographic solutions, is a must for today’s both software- and hardware-based
applications. One of the most studied countermeasures is masking [9,12,25,35],
which by randomizing the secret internals aims at cutting the relation between
the side-channel leakages and predictable processes. Realization of masking in
hardware platforms faces many challenges due to the uncontrolled glitches hap-
pening inside the masked circuits. Since these issues are out of scope of this
article, the interested reader is referred to [26,29,32,38]. Although there exist
a couple of different masking techniques, the focus of this work is on Boolean
masking for software-based platforms, where the challenges are mainly due to
their significant overhead.

If masking is correctly realized in software, it can significantly increase the
complexity of a successful attack. The goal of most of the techniques is to prove
� Annelie Heuser is a Google European fellow in the field of privacy and is partially

founded by this fellowship.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 324–342, 2014.
c© Springer International Publishing Switzerland 2014

Detecting Hidden Leakages 325

the impossibility of first-order attacks if the implementation as well as the leakage
models follow the corresponding assumptions. As stated, the significant overhead
needed to realize the masking schemes is amongst their major drawbacks. This
overhead is due to two main issues:

– processing the mask and the masked data. For example, the linear operations
(e.g., MixColumns of AES) must be performed on the masked data as well
as on the mask, and

– on-the-fly recomputation of the masked look-up tables which are responsible
to realize the non-linear operations, e.g., AES S-box.

The first issue is usually not the most dominant part and stays as is for most
of the masking schemes. However, many solutions have been proposed to re-
lax the second problem. Some focused on avoiding look-up tables for non-linear
operations (like with secure multiplication — the interested reader is referred
to [39,17]). It is worth to mention that masking schemes usually assume uni-
formly distributed random masks. Therefore, on-the-fly recomputation of the
S-box is unavoidable unless a huge memory is available to precompute all the
necessary tables [36]. Since dealing with this overhead is challenging, a couple
of heuristic scenarios, e.g., reusing the mask for certain S-boxes, have been used
mainly by industry sector1. However, each of these heuristics has a drawback
which may lead to a seriously vulnerable implementation (see [10]). Instead,
reducing the entropy of the mask is the idea followed by [30,31]. Use of fewer
mask values allows precomputing all masked look-up tables and fit them to the
small-size platforms, e.g., smartcards or microcontrollers with a few Kilobytes
of flash memory. These schemes claim to provide the first-order security, which
is defined as follows:

For all possible mask values, mean of the side-channel leakages based on
the predictable secret internals, e.g., one S-box output, is independent
of the selected internal, i.e., �(l|v) is constant, where l and v denote
leakage and a secret internal respectively.

In this work we mainly concentrate on a software implementation of Rotating
S-boxes Masking (RSM) as a low-entropy masking scheme for AES [31]. We first
in Section 2 restate the scheme and provide the necessary notations for formal
discussions. Next we focus on an implementation which is publicly available
through the DPA Contest V4 [43]. We also use the corresponding side-channel
measurements (of DPA Contest V4) to perform our security evaluations. The
practical analyses, which are given in Section 3, aim at examining the existence of
a first-order leakage. Two attacks are detailed: one correlation-collision (without
a model) and then one correlation attack (with a model). Despite the claims
of the original scheme as well as the security proofs, our analysis exploits a
strong first-order leakage allowing us to recover the first 128-bit round key using
less than 200 measurements. We also provide theoretical reasoning behind the
exploitable leakage as well as a solution to prevent it in Section 4.
1 Based on the authors’ observations.

326 A. Moradi, S. Guilley, and A. Heuser

As related works we should address three recently published articles [3,23,46]
which made use of DPA Contest V4 measurements. Although all of these arti-
cles provide many useful discussions and analysis tools, none of them exploits
the first-order leakage that we present here. We give more detailed comparison
between these works and our contribution in Section 4.

2 Masking in Software

Cryptographic software can be protected against differential side-channel attacks
by having the sensitive intermediate variables depend on some random numbers.
This strategy is called masking. The procedure consists in splitting every sensi-
tive intermediate variable into several shares randomly, with the property that
there exists a way to constructively recombine them to recover the sensitive
variable. A classical sharing is the first-order Boolean additive masking, where a
sensitive variable X is split in two shares S0 and S1 in such a way X = S0⊕S1.
Typically, in this scheme, S1 can be drawn uniformly randomly, and will be called
the mask. Then S0 is computed as X ⊕ S1. It is well known that any linear op-
eration l is easy to evaluate in this paradigm: it is indeed sufficient to compute
l on each share individually. The reason is that S′

0 = l(S0) and S′
1 = l(S1) is a

sharing of l(X). However, this does not apply to non-linear operations, such as
the computation of a substitution box (S-box). Most of the research effort in the
field of masking has thus been spent on this topic.

As we shall detail in the sequel, variants of masking schemes have been put
forward. Their motivations are manifold:

– first-order masking might not be secure enough, i.e., more shares are re-
quired;

– some cryptographic functions are not Boolean (e.g., RSA is based on modular
arithmetic, hence is preferably masked in some ring �N);

– there are situations where the mask cannot be injected additively (which
has the merit of being compatible with the key addition stage), but rather
multiplicatively [19] or via a homographic function [14].

2.1 Traditional Scheme

Historically, the initial masking strategy was called the “S-box precomputa-
tion”. We illustrate in the sequel such masking on a substitution permuta-
tion network (SPN) such as the AES, where the S-box is called SubBytes. For
each unique S-box table in the design (e.g., one in case of AES and eight in
case of DES), two random variables S1 and S′

1 are drawn, in order to mask
respectively its input and its output. Using them, a so-called masked S-box
MaskedSubBytes is computed [27]. For every input Y , MaskedSubBytes evaluates
MaskedSubBytes(Y) = SubBytes(Y ⊕S1)⊕S′

1. This table can be used to securely
traverse the S-box of the first share S0 = X ⊕ S1, since MaskedSubBytes(S0) is
equal to SubBytes(X) ⊕ S′

1, and thus this new share combined with S′
1 is a

Detecting Hidden Leakages 327

valid sharing of SubBytes(X). Nevertheless, in this operation, neither X nor
SubBytes(X) appears unmasked, hence the security. So to protect a complete
algorithm, the procedure is as follows; each plaintext byte P is first masked with
S1. Then, usually, the first operation is the addition with a key k. This operation
is on purpose compatible with the masking, meaning that it is secure to add k
to P ⊕ S1: indeed, it yields (P ⊕ k)⊕ S1, which together with S1 is a sharing of
P ⊕ k. The share (P ⊕ k)⊕ S1 can now enter the precomputed MaskedSubBytes
as already discussed. The computation goes on this way until the end of the
algorithm, where it is eventually secure to demask the masked ciphertext with
S′
1 (after the last key addition).
Such a protection is especially efficient for algorithms such as AES that uses sev-

eral instances of the same S-box. Indeed, the precomputation of MaskedSubBytes
(whichwill consist in 2×256XORsand 256 copies of bytes) is factored for each invo-
cationof theS-box (16 timesper round, for all the14 rounds in the case ofAES-256).
Since MixColumns is linear and hence transparent to Boolean masking, it should
generally be performedonboth shares.However, sinceMixColumns(S′

1, S
′
1, S

′
1, S

′
1)

=S′
1, it is sufficient to perform MixColumns on only one share.

2.2 Problems

The “S-box precomputation” has two types of contradictory drawbacks:

1. First of all, it has an inherently low security level, because some efficient
attacks have reported, such as second-order attacks (that combine two leak-
ing samples in a view to remove their common mask) are very practical.
Moreover, there exist efficient techniques, e.g., [34,44], which target the
precomputation of MaskedSubBytes.

2. Second, it is already costly in practice, both in terms of cycle count (owing
to the long S-box precomputation), and in terms of mask “entropy” budget.
We recall that producing random numbers is difficult and costly; indeed,
in theory, the modelization of masking requires independent and uniformly
distributed masks. Even if masks are practically produced by an algorithmic
pseudo-random generator (e.g., a stream cipher), this operation is obviously
consuming resources.

Therefore researches have been carried out in these two directions. With-
out surprise, increasing the number of shares does impact negatively the per-
formances. At the opposite, it is interesting to note that some simplifications
successfully managed to maintain a notion of security while avoiding the pre-
computation stage and reducing the required pool of entropy.

2.3 Multi-mask FEMS vs Mono-Mask LEMS

Systematic countermeasures aim at fixing the problem of the masks reuse. In-
deed, this can be exploited by a combination of the two leakage samples using
the same mask to cancel or bias it. If the two leaking operations are similar,

328 A. Moradi, S. Guilley, and A. Heuser

e.g., two computations of S-box, then the attack is referred to as a collision at-
tack [6]. Otherwise, the attack is generally termed bivariate, and can consist in
second-order CPA [28], multivariate MIA [18], or any other variant (e.g., [15]).
For this reason, every intermediate variable is masked independently (e.g., the
same masked S-box cannot be used twice), and the sharing is done with strictly
more than two shares. Hence the name multi-mask fully entropic masking scheme
(FEMS, as coined in [46]). However, this generalization is not trivial. For exam-
ple, the first attempt to adapt the precomputation S-box scheme to d masks (i.e.,
d+1 shares) by [41] happened to be flawed. Indeed, a dependence with the sen-
sitive variable could be exhibited by combining only two shares [13]. The design
error was that only one masked table was used. A repaired version has been pre-
sented recently at [11]; it employs d+1 tables that need each to be precomputed
d times (hence a quadratic complexity overhead in the number of masks). Other
provably secure schemes have been promoted, such as the computation of the
S-box in a Galois field; refer for instance to [39]. In some contexts (e.g., AES),
it is the most efficient scheme, but still with roughly d2 complexity.

At the opposite direction, some masking schemes have been designed to limit
the amount of entropy. They are referred to as LEMS (low-entropy masking
schemes) in [46]. Specifically, the masking scheme requires only one mask, that
can take only a small number of values. This allows to precompute once for all
possible masked S-boxes, and to store them hardwired in memory. This strat-
egy is winning in terms of performance (albeit at the expense of more ROM).
Security-wise, as the mask S1 is no longer uniformly distributed, zero-offset [45]
or mutual information attacks [2] become possible. But the degree to which the
leakage shall be raised for a CPA attack – on a platform with a linear leak-
age function – to be successful can be made strictly larger than three (see next
section), and thus becomes the relevant security parameter.

2.4 RSM

Rotating S-box Masking (RSM) is an example of such low entropy masking
schemes [31]. The mask values are chosen in such a way that the leakage caused
by the masked variable X ⊕ S1 depends on X only at degree 4. It is explained
in [4] that such security can be reached if the masks are distributed as the 16
codewords of the [8, 4, 4] linear code, extension with one parity bit of the [7, 4, 3]
Hamming code.

3 Practical Realization

3.1 DPA Contest V4

How the Scheme is Implemented. The investigated cipher is AES-256 in
encryption (Electronic Code Book) mode. It complies with the NIST FIPS stan-
dard [33]. In the notations that will follow, some minor adjustments are done
with respect to the standard; for instance, depending on the context, SubBytes

Detecting Hidden Leakages 329

(resp. MixColumns) can be considered on the whole state or on individual bytes
(resp. individual columns). It is mainly coded in the C language, and is compiled
by avr-gcc; only some constants to be stored in Flash memory are given in
an assembly code. The implementation realizing the RSM scheme is supposed
to provide security against univariate side-channel attacks up to order 3 if the
leakage model is linear.

It can be considered that the protection by masking is added on top of an
unprotected AES. This “base AES” has those features:

– The key schedule is precomputed.
– The sixteen substitution boxes (S-boxes) are called in this order:

0, 2, 4, 6, 8, 10, 12, 14, // Even S-boxes first
1, 3, 5, 7, 9, 11, 13, 15. // Odd S-boxes second

– The MixColumns operation is computed on a byte-by-byte basis, using an
xtime table.

The masking protection is an additive Boolean masking scheme, with stati-
cally masked S-boxes (as introduced in Section 2.4). It adds to the “base AES”
those features:

– Sixteen values of the mask (noted S1 in Section 2), are noted asMi, i = �0, 15�.
Those values are incorporated in the computation.They constitute a space vec-
tor, defined as {0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a, 0x95, 0x9a,
0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff}, and are public information. They are
precomputed as state-wide masks, called Maskoffset and defined as:

Maskoffset = ((Moffset+0, Moffset+1, Moffset+2, Moffset+3),

(Moffset+4, Moffset+5, Moffset+6, Moffset+7),

(Moffset+8, Moffset+9, Moffset+10,Moffset+11),

(Moffset+12,Moffset+13,Moffset+14,Moffset+15)) .

Notice that in the equation above, the layout of the bytes is transposed
with respect to the canonical representation of the state (i.e., lines represent
columns).

– A random offset, noted offset, is drawn randomly in �0, 15� at the beginning
of the computation; it determines the allocation of the masks for each byte
of the state. Explicitly, the state byte i is masked by mask Moffset+i. In
this equation, offset+ i is to be understood “modulo 16”. We do the same
assumption in the sequel concerning indices of bytes in a state.

– The S-box is replaced by sixteen masked S-boxes, that are stored precom-
puted; their equation is MaskedSubBytesi(X) = SubBytes(X⊕Mi)⊕Mi+1,
where X is a byte. This means that the output mask of each S-box is the
successor of the input mask. This also explains why S-boxes are not called in
the natural order; the goal is to prevent unfortunate demasking that might
occur otherwise.

330 A. Moradi, S. Guilley, and A. Heuser

– To pass through the linear layer, the mask bytes are compensated (by exclus-
ive-or), thanks to sixteen 128-bit precomputed constants, that are equal to:

MaskCompensationoffset = Maskoffset ⊕MixColumns(ShiftRows(Maskoffset))

= Maskoffset ⊕ (

MixColumns(Moffset+0, Moffset+5, Moffset+10,Moffset+15),

MixColumns(Moffset+4, Moffset+9, Moffset+14,Moffset+3),

MixColumns(Moffset+8, Moffset+13,Moffset+2, Moffset+7),

MixColumns(Moffset+12,Moffset+1, Moffset+6, Moffset+11)) .

This operation can be termed a “trans-masking”, insofar as it simultaneously
removes the mask used to protect the linear part of the current round and
remasks with the new mask suitable for the S-boxes at the next round, and
so without revealing any sensitive variable unmasked.

– For the last round, the compensation is slightly different, because there is
no MixColumns. Instead of MaskCompensationoffset, the following constant is
added by exclusive-or to the state to remove the mask and generate the
ciphertext:

MaskCompensationLastRoundoffset = ShiftRows(Maskoffset) .

The protected AES can thus be represented by the algorithm 1. The unpro-
tected version of this algorithm can be recovered by erasing the lines in blue,
and by trading MaskedSubBytes for SubBytes. This algorithm runs in constant
time (the test at line 10 does not depend either on plaintext or roundkeys), so
timing attacks [16] do not apply.

How the Measurement Is Performed. The information related to experi-
mental setup is as mentioned on the DPA contest V4 website [43]. The whole de-
sign is loaded into an ATMega163 8-bit smartcard, and evaluated on a SASEBO-
W platform. The measurements were taken using a LeCroy wave-runner 6100A
oscilloscope by means of a Langer EMV 0–3 GHz EM probe. The acquisition
bandwidth is 200 MHz and the sampling rate FS = 500 MS/s. The smartcard
is powered at 2.5 V and clocked at 3.57 MHz by the on-board Xilinx Spartan-6
FPGA.

3.2 Analysis

Before doing the analysis it is worth to have a look at the mean of the traces
and specify the operations performed at different time periods. Figure 1 shows a
mean trace (obtained using 1 000 traces) where the operations of the first round
of the underlying AES encryption are marked. The following parts of this section
deal with different schemes and methods we used to analyze the vulnerability of
the implementation.

Detecting Hidden Leakages 331

Algorithm 1. AES-256 used for the DPA contest V4 [43].
Input : Plaintext X, seen as 16 bytes Xi, i ∈ �0, 15�,

Key schedule, 15 128-bit constants RoundKeyr, r ∈ �0, 14�
Output: Ciphertext X, seen as 16 bytes Xi, i ∈ �0, 15�

1 Draw a random offset, uniformly in �0, 15�
2 X = X ⊕Maskoffset /* Plaintext blinding */
3
4 for r ∈ �0, 13� do
5 X = X ⊕ RoundKeyr /* AddRoundKey */
6 for i ∈ �0, 15� do
7 Xi = MaskedSubBytesoffset+i+r(Xi)
8 end
9 X = ShiftRows(X)

10 if r �= 13 then
11 X = MixColumns(X)
12 X = X ⊕MaskCompensationoffset+1+r

13 end
14 end
15
16 X = X ⊕ RoundKey14 /* Last AddRoundKey */
17 X = X ⊕MaskCompensationLastRoundoffset+14 /* Ciphertext demasking */

Fig. 1. A mean trace covering the first round of the AES encryption, using 1 000 traces

ExaminingtheFirst-OrderLeakage. Back to the original correlation-collision
attack [29], which is shortly restated later, the authors proposed a variance test ap-
proach which can identify the time instances when a first-order leakage is exhibited
by the traces. It is worth to mention that relatively-similar approaches were pre-
viously introduced in [1,42] as inter cluster separation and variance test. In order
to follow this approach we first need to estimate the mean of the traces classified
by the plaintext bytes. To express it formally let us denote the number of traces by
N , the plaintexts by p0, . . . , pN−1, the plaintext bytes by p

n∈{0,...,N−1}
j∈{0,...,15} , and the

traces by t0, . . . , tN−1. We also express the corresponding random variables as P ,
Pj∈{0,...,15}, and T . We now estimate the mean traces, denoted by m

i={0,...,255}
j={0,...,15} , as

follows:
mi

j = �(T |Pj = i) .

332 A. Moradi, S. Guilley, and A. Heuser

According to [29] a variance trace over the mean traces, e.g., vj∈{0,...,15} =
Var(mi

j ; ∀ i) should indicate the time samples in which the mean traces depend
on the plaintext byte, i.e., j. For example, Fig. 2 shows two variance traces v0
and v2 obtained using 100 000 traces. Note that according to the realization
of the scheme expressed in Section 3.1, the corresponding plaintext bytes of
these two variance traces, i.e., 0 and 2, are processed consequently during the
SubBytes operation. As clearly shown by the graphics, there is an unambiguous
dependency between the mean traces m

i∈{0,...,255}
0 and the value of the first

plaintext byte when the relevant S-box is computed. Therefore, due to the initial
AddRoundKey and the AES S-box as a bijection, the same dependency holds
for the S-box input as well as its output. As a result, back to the definition of a
first-order leakage illustrated in Section 1 we conclude that there is a first-order
leakage available in the traces. In the next parts of this section we show how to
extract this leakage thereby recovering the secrets. We should note that the big
peaks shown by Fig. 2 before 50μs are related to the initial masking of plaintext
bytes before the key addition.

Fig. 2. Two variance traces v0 and v2, using 100 000 traces, i.e., around 390 traces per
mean trace

Correlation-Collision Attack In order to perform a correlation-collision at-
tack which aims at recovering the linear difference between the targeted key
bytes (see AES linear collision attack [7]) the mean traces, e.g., mi

0 and mi
2,

should be first aligned based on the time instances of leaking parts discovered
by the variance check approach restated above. Suppose that m′i

2 indicate the
mean traces mi

2 which are aligned to the mean traces mi
0, i.e., by shifting each

mean trace mi
2 9.524μs (4762 sample points) to the left (see Fig. 2). For a spe-

cific key difference guess Δk = k0 ⊕ k2, computing the correlation between mi
0

and m′i⊕Δk
2 (series of 256 values indexed by i) at each sample point individually

leads to a correlation trace cΔk. Repeating the same scenario for all possible Δk
guesses we obtain 256 correlation traces which are shown by Fig. 3. The correct
Δk can be clearly distinguished from the other candidates. We repeated this
scheme targeting different key bytes, and the difference between all key bytes
can be recovered similarly. Moreover, the number of required traces for a suc-
cessful Δk recovery, reported as 2500 traces by Fig. 3(b), is approximately the
same for other key bytes. The achieved correlation is almost reaching one (its

Detecting Hidden Leakages 333

maximal value), which is consistent with the reuse of exactly the same code for
the evaluation of all the sixteen S-boxes.

We now seek for a faster attack, namely a CPA with a relevant leakage model.

CPA by Bit Model. According to the property of the underlying masking
scheme and the specific way the mask list is selected [31] (also restated in Sec-
tion 2), there should not exist any first-order leakage. However, the results shown
above somehow contradict with the security proofs. Therefore, we tried to pin-
point the leakage source by performing CPA attacks with different hypothetical
power models. The straightforward models like the Hamming weight (HW) of
the S-box input or its output failed to recover any secret. The same holds for all
bit-wise models, e.g., the most significant bit (MSB) of the S-box output. How-
ever, our analysis showed a clear dependency between the traces and bit-wise
Hamming distance (HD) of the S-box input and output. In other words, when
the power model is selected as

hp(x, k, b) = (x⊕ k ⊕ SubBytes (x⊕ k)) & 2b , (1)

where x denotes the plaintext byte value, k the key byte candidate, and b ∈
{0, . . . , 7} the bit position within the byte, the CPA attack is able to recover
the correct key candidate. Figure 4 shows the CPA attack results for all 8 bit-
wise models targeting the first key byte. As shown by the graphics, the attacks
are successful not for all the selected models, and the polarity of the relation
between the model and the traces differs from a model to another. For example,
the polarity of correlation value for the correct key candidate related to the bits
0 and 3 is the inverse of that of the bits 6 and 7. We should mention that the
shape of the graphics and the attack results look similar when targeting other
key bytes. Another issue is related to the low number of required traces, i.e.,
around 500, to successfully mount the attack.

Leakage Source. In order to find the reason behind such leakage we carefully
followed the operations performed during the SubBytes operation. As illustrated

(a) (b)

Fig. 3. Result of a correlation collision attack targeting the difference between the first
and the third key bytes Δk = k0 ⊕ k2, (a) using 100 000 traces, (b) at time instance
200.968 μs over number of traces

334 A. Moradi, S. Guilley, and A. Heuser

Fig. 4. The CPA attack results, bit-wise HD model of S-box input:output, using 100 000
traces

before the i-th masked S-box, which gets the input masked by Mi, issues the
S-box output masked by Mi+1 mod 16. It means,

MaskedSubBytesi(x
′) = SubBytes(x′ ⊕Mi)⊕Mi+1 mod 16,

where x′ denotes the masked input as x ⊕Mi. Since during the SubBytes op-
eration the cipher state is replaced by its substituted one using the S-box, the
XOR of the S-box input and output usually influences the power consumption.
Following the given formula above, the XOR of a masked S-box input and output
yields to

x′ ⊕ SubBytes(x′ ⊕Mi)⊕Mi+1 mod 16 =

x⊕ Mi ⊕ SubBytes(x)⊕Mi+1 mod 16 =

x⊕ SubBytes(x)⊕Mi ⊕Mi+1 mod 16. (2)

It means that the XOR between the S-box input and output (for instance if
these two values are consecutively saved in a register) is masked by M ′

i = Mi ⊕
Mi+1 mod 16. Considering the used mask table (see Section 2), M ′

i is amongst
the list below:

M ′
i∈�0,15� = { 0x0f, 0x39, 0x0f, 0x6a, 0x0f, 0x39, 0x0f, 0xff,

0x0f, 0x39, 0x0f, 0x6a, 0x0f, 0x39, 0x0f, 0xff} .

First, this mask list does belong to the codewords ([8, 4, 4] code) defined in
Section 2.4, since they are obtained by the composition with a XOR (the internal
law) of pairs of codewords. Second, the distribution of the list does not seem to

Detecting Hidden Leakages 335

Table 1. Probabilities of M ′(b) being equal to one

M ′(b) M ′(0) M ′(1) M ′(2) M ′(3) M ′(4) M ′(5) M ′(6) M ′(7)

�(M ′(b) = 1) 0.875 0.750 0.625 1.000 0.375 0.500 0.250 0.125

be a suitable mask list as it consists of 8 times 0x0f, 4 times 0x39, 2 times
0x6a, and 2 times 0xff. This code M ′ is not balanced, hence inefficient against
first-order attacks. Therefore, the leakage observed by the correlation-collision
attack as well as the CPA with bit-wise HD model is due to this fact that the
XOR of the S-box input and output is not suitably masked.

CPA by Optimal Model. In order to understand the results in Fig. 4, which
show very distinct correlation coefficients for each bit, and to identify an optimal
model for CPA, we further investigate in the code M ′. As in Eq. (1), let z =
x⊕ k⊕SubBytes (x⊕ k) and y = HW(z⊕m′)+N , with random mask m′ ∈ M ′

and additive noise N . It is known [37] that, if the noise N is Gaussian, the optimal
model is given by fopt(Z) = �(Y |Z). We note that m′ is uniformly distributed
in M ′, that is a code with duplicated codewords (i.e., it is not a simple code as
M). By linearity of the Hamming weight, we gain the following: (by z(b) and
m′(b) we denote the right most b-th bit of z and m′ respectively)

fopt(z) =
∑7

b=0�(z
(b) ⊕m′(b))

=
∑7

b=0 z
(b) × �(m′(b) = 0) + (1 − z(b))× �(m′(b) = 1)

=
∑7

b=0 �(m
′(b) = 1)︸ ︷︷ ︸

:=α

+
∑7

b=0 z
(b) × 2

(
�(m′(b) = 0)− 1

2

)
. (3)

Further, according to M ′ we can compute the probabilities for each m′(b) equal
to 1 as given in Tab. 1, and of course, �(m′(b) = 1) = 1− �(m′(b) = 0) .

We can ignore the constant α = 4.5 in Eq. (3), as it is not relevant for CPA.
Similarly, we can multiply fopt by a constant (e.g.,−4) to make all the coefficients
be integers. After these transformations, the optimal model is:

fopt(z) = 3 z(0) + 2 z(1) + z(2) + 4 z(3) − z(4) − 2 z(6) − 3 z(7) . (4)

Note that, we removed the factor for z(5) as the probabilities for both states are
0.5 and thus bit 5 is perfectly masked.

However, the model for CPA given in Eq. (4) is only valid if the assumption
y = HW(z ⊕m′) + N is true. Or in other words, if the power consumption is
not composed of a weighted sum of bits with different weights, otherwise the
probabilities from Tab. 1 have to be adjusted with the weights of the bits. Thus,
in order to identify the weights, we performed a linear regression [22,40] using
the model

hp(x, b) = (x⊕ k∗ ⊕ SubBytes (x⊕ k∗)⊕m′) & 2b , (5)

336 A. Moradi, S. Guilley, and A. Heuser

where the mask m′ and the correct key k∗ are known. Figure 5(a) shows the
weights (β-coefficients) estimated by linear regression for each bit b = {0, . . . , 7}.
Interestingly, one can clearly identify similar β-coefficients for each bit and thus
a clear Hamming weight leakage at the last two leakage moments. Note that,
these are the same moments as in Fig. 4. Therefore, the assumption on y is valid
and we can directly use the weights as in Eq. (4).

(a) (b)

(c)

Fig. 5. (a) β-coefficients for bit b = {0, . . . , 7} when the mask and the correct key are
known, showing a clear HW leakage at the main leakage moments, (b) β-coefficients
when the mask is unknown (c) CPA result using the optimal model Eq. (4) using 1 000
traces

The CPA attack result when using the optimal model (Eq. (4)) is depicted in
Fig. 5(c). The graphics show the suitability of the model as the correlation of the
correct key candidate is much higher compared to that of Fig. 4 indicating less
than 200 traces for a successful attack. Interestingly, the “investment” of 100 000
traces required for the leakage detection (recall Fig. 2) allows a considerable
speed-up in the leakage exploitation.

Additionally, the probabilities given in Tab. 1 also explain the results of the
bitwise CPA. As explained above bit 5 is perfectly masked, which is also reflected
in Fig. 4. Additionally, the greater |�(M ′(b) = 1)− 0.5 | the easier the bit is to
attack, since it is not well masked. For example, the bits with the highest distance
are b = {0, 3, 7}, which also show the highest correlation coefficient in Fig. 4.

Moreover, we perform a linear regression without considering the mask using
the model

hp(x, b) =
(
(x⊕ k∗ ⊕ SubBytes (x⊕ k∗)) & 2b

)
. (6)

Detecting Hidden Leakages 337

The β-coefficients are displayed in Fig. 5(b). When looking at the highest leakage
moment around 201μs, we can see that coefficient of bit 5 is nearly zeros, thus
has no influence as explained before. Furthermore, the other bits follow the same
tendency as in Fig. 4 and in Tab. 1. Thus, using the optimal model in Eq. (4) is
“equivalent” to the use of a profiled model.

4 Discussion

4.1 Attack and Leakage Orders

The leakage we discovered in the specific implementation of RSM on the ATMega
smartcard is based on Hamming distance. Indeed by Hamming distance between
a and b we recover the bits of a⊕b = (a∧¬b)∨(¬a∧b). Therefore, the execution
platform itself is realizing the multiplication between several values, that happen
to be x ⊕ k ⊕Mi on the one hand and SubBytes(x ⊕ k) ⊕Mi+1 mod 16 on the
other. So, as noted in Eq. (2), a first-order leakage is created by the device itself
by artificially multiplying the bits of the S-box input and output. This leakage
is subtle in that it is not a trivial unmasking, as if X ⊕ S0 would be overwritten
by S0.

Strictly speaking, the rot is already set in, meaning that the implementation
on the smartcard actually prepares a leakage that can be exploited at first order
by an attacker.

4.2 Comparison with other Attacks on the DPA Contest V4 AES
Traces

Ye and Eisenbarth implemented several distribution-based attacks [46]. They
exploit the fact that even though the implementation of RSM manages to cancel
the moments of order 1, 2 and 3 of the leakage conditioned by a sensitive byte,
the moments of order greater than 3 do depend on the sensitive byte. Therefore,
the information-theoretic study of the leakage will without doubt allow to put
forward biases exploitable in key recovery attacks. In this sense, RSM is not a
first-order masking scheme according to the definition that can be found in [11]
for instance. A couple of nice and interesting tools, e.g., detecting the collisions
due to the complimentary mask lists, are provided in [46] to make use of the
leakage distributions. As underlined at [21], the common protection strategy
behind leakage squeezing [24] and RSM [31], namely the cancellation of leakage
moments, indeed conveys an increased security. This explains why the attacks of
Ye and Eisenbarth require many more traces (around 10 000), where a first-order
attack knowing the mask requires only about 12 traces.

Lerman et al. have developed a profiling attack that consists in recovering the
masks [23]. They used supervised learning to recognize the mask offset, that leaks
strongly. This is illustrated in Fig. 6, which shows that the normalized inter-class
variance (i.e., NICV = Var(�(T |offset))/Var(T) [5], also known as the coefficient

338 A. Moradi, S. Guilley, and A. Heuser

Fig. 6. Normalized inter-class variance for the mask offset of the RSM countermeasure

of determination) reaches almost its maximal value ‘1’ at many points in the
trace. The idea behind the attack is to make profiles based on the mask value
(which has a low entropy), and use these profiles to detect the randomly selected
mask during the attack phase and finally run a CPA [8] knowing the mask.

Belgarric et al. prove in [3] that an straightforward second-order correlation
attack using the centered product as a combination function [37] needs 300 traces
to retrieve the key with probability greater than 80%. Then, the authors assume
that the attacker does not know exactly the two leakage points to be combined.
Using time-frequency techniques, such as the discrete Hartley transform, the
attack remains feasible within about 550 traces even if the investigated window
sizes around the leaking samples is of width 2000.

Our Attack is particular, in that it requires neither a learning nor a profiling
phase. It also does not make use of either the higher-order moments or the
leakage distributions. It simply consists in launching a standard attack of lowest
possible degree, namely one, with a regular distinguisher (the Pearson correlation
coefficient). Our attack, and more precisely the methodology that led to the
attack, is constructive, in that it allows to point out the leakage cause, which
allowed us to fix it (refer to the next Section 4.3).

Summing up, none of the other three attacks referred in this section are specific
to RSM, except that of Ye and Eisenbarth (but they require much more traces
than a regular second-order attack). Indeed, the attacks of Lerman et al., and
Belgarric et al. could as well apply on an FEMS. Since there exists first-order
leakage in particular points of the traces, it is not clear whether this leakage was
beneficial in the work by Ye and Eisenbarth as well as by Belgarric et al.It is
uncertain whether these works are still efficient if the aforementioned first-order
leakage is avoided. Our attack is specific to the mask distributions, but what
it exploits is an unexpected leakage provided by the implementation platform.
Concluding, even if all assumptions including the leakage models are hold, the
RSM can be insecure if implemented improperly.

Detecting Hidden Leakages 339

Table 2. Reordering of the sixteen codewords of [8, 4, 4] linear code so that the Ham-
ming distance between two consecutive codewords is balanced

i 0 1 2 3 4 5 6 7

Mi 0x00 0x0f 0x36 0x39 0x53 0x95 0x5c 0xc9

Mi+1 0x0f 0x36 0x39 0x53 0x95 0x5c 0xc9 0xff

M ′
i = Mi ⊕Mi+1 0x0f 0x39 0x0f 0x6a 0xc6 0xc9 0x95 0x36

i 8 9 10 11 12 13 14 15

Mi 0xff 0xc6 0xac 0x9a 0x6a 0xa3 0x65 0xf0

Mi+1 0xc6 0xac 0x9a 0x6a 0xa3 0x65 0xf0 0x00

M ′
i = Mi ⊕Mi+1 0x39 0x6a 0x36 0xf0 0xc9 0xc6 0x95 0xf0

4.3 Plugging the First-Order Leakage

There are various ways to plug the first-order leakage. We mention hereafter two
of them.

– First of all, the masks sequence (S-box input:output relationship) can be
tuned, so as to make the HD leakage of Eq. (2) leak-free at first order (which
is lower than claimed for RSM, i.e., order 1 versus order 3). We found that
there exist several reordering functions f : {0, 15} → {0, 15} of the masks
such that Mi ⊕ Mi+1 is balanced. One example of such order is shown in
Tab. 2.

– Second, it is easy to identify in the ASM generated by avr-gcc the register
transfers that are leaking. The leakage source happens to be an instruction
lpm (Load Program Memory, i.e., read from FLASH) that overwrites its in-
put with its output. We have implemented a secure lpm (as an ASM macro)
that clears the destination register before it is written to when we access
FLASH (where the MaskedSubBytes tables are stored). Still, this implemen-
tation (as any implementation of masking) deserves a verification, either
with formal methods or with real-world leakage measurements.

5 Conclusions

This paper has highlighted a systematic methodology to detect and then to
attack side-channel leakages on cryptographic implementations. The first stage
consists in the identification. It can be realized by many tools, such as variance-
based tests or NICV [5]. Generally these approaches only detect leakages that
involve one or a few bytes of known data (typically plaintext or ciphertext).
Indeed, the more bytes, the more traces for the partitioning, and also the more
memory for the conditional traces averaging. Another approach, based on pair-
wise comparison of traces, has been suggested [20]; however, it requires chosen

340 A. Moradi, S. Guilley, and A. Heuser

plaintexts. Second, the attacker will try to turn this leakage into a bias that can
yield to a key recovery. The second stage is referred to as the exploitation. This
step is illustrated in the paper by the intuition that a timely leakage occurring
during the S-boxes is likely to have a given expression. A naturally expression
(namely the overwriting of a look-up table address by the result) is indeed shown
to leak, at first-order (despite the masks that are still there). The efficiency of
such an attack is contrasted to second-order attacks [3]. In summary, this pa-
per has shown that a universal verification of the implementation in practice is
necessary due diligence, even for provable masking scheme (that are based on
hypotheses that must be checked).

Acknowledgements. The authors would like to thank Nicolas Bruneau, from
STMicroelectronics Rousset & TELECOM-ParisTech, for the computation of
the normalized inter-class variance (NICV) on the offset, and for the research of
the masks reordering.

References
1. Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential Cluster Analysis. In:

Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 112–127. Springer,
Heidelberg (2009)

2. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual Information Analysis: a Comprehensive Study. J. Cryp-
tology 24(2), 269–291 (2011)

3. Belgarric, P., Bhasin, S., Bruneau, N., Danger, J.-L., Debande, N., Guilley, S.,
Heuser, A., Najm, Z., Rioul, O.: Time-Frequency Analysis for Second-Order At-
tacks. In: CARDIS 2013. LNCS. Springer (2013)

4. Bhasin, S., Carlet, C., Guilley, S.: Theory of masking with codewords in hardware:
low-weight dth-order correlation-immune Boolean functions. Cryptology ePrint
Archive, Report 2013/303 (2013), http://eprint.iacr.org/2013/303/

5. Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z.: NICV: Normalized Inter-Class Vari-
ance for Detection of Side-Channel Leakage. In: International Symposium on Elec-
tromagnetic Compatibility (EMC 2014), Tokyo, May 12-16. IEEE (2014); Session
OS09: EM Information Leakage. Hitotsubashi Hall (National Center of Sciences),
Chiyoda, Tokyo, Japan

6. Bogdanov, A.: Improved Side-Channel Collision Attacks on AES. In: Adams, C.,
Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer,
Heidelberg (2007)

7. Bogdanov, A.: Multiple-Differential Side-Channel Collision Attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008)

8. Brier, É., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

9. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

10. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved Collision-
Correlation Power Analysis on First Order Protected AES. In: Preneel, B., Takagi,
T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg (2011)

http://eprint.iacr.org/2013/303/

Detecting Hidden Leakages 341

11. Coron, J.-S.: Higher Order Masking of Look-up Tables. Cryptology ePrint Archive,
Report 2013/700 (2013), http://eprint.iacr.org/

12. Coron, J.-S., Goubin, L.: On Boolean and Arithmetic Masking against Differen-
tial Power Analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 231–237. Springer, Heidelberg (2000)

13. Coron, J.-S., Prouff, E., Rivain, M.: Side Channel Cryptanalysis of a Higher Or-
der Masking Scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 28–44. Springer, Heidelberg (2007)

14. Courtois, N., Goubin, L.: An Algebraic Masking Method to Protect AES Against
Power Attacks. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935,
pp. 199–209. Springer, Heidelberg (2006)

15. Dabosville, G., Doget, J., Prouff, E.: A New Second-Order Side Channel Attack
Based on Linear Regression. IEEE Trans. Computers 62(8), 1629–1640 (2013)

16. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P., Quisquater, J.-J., Willems, J.-L.:
A practical implementation of the timing attack. In: Schneier, B., Quisquater, J.-J.
(eds.) CARDIS 1998. LNCS, vol. 1820, pp. 167–182. Springer, Heidelberg (2000)

17. Genelle, L., Prouff, E., Quisquater, M.: Thwarting Higher-Order Side Channel
Analysis with Additive and Multiplicative Maskings. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011)

18. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting Higher-Order
DPA Attacks: Multivariate Mutual Information Analysis. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 221–234. Springer, Heidelberg (2010)

19. Golic, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES.
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 198–212. Springer, Heidelberg (2003)

20. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation. In: NIST Non-Invasive Attack Testing Workshop (September
2011),
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/
papers/08_Goodwill.pdf

21. Grosso, V., Standaert, F.-X., Prouff, E.: Leakage Squeezing, Revisited. In: CARDIS
2013. LNCS. Springer (2013)

22. Kardaun, O.: Classical Methods of Statistics. Springer (2005)
23. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A Machine Learning

Approach Against a Masked AES. In: CARDIS 2013. LNCS, Springer (2013)
24. Maghrebi, H., Guilley, S., Danger, J.-L.: Leakage Squeezing Countermeasure

Against High-Order Attacks. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011.
LNCS, vol. 6633, pp. 208–223. Springer, Heidelberg (2011), doi:10.1007/978-3-642-
21040-2_14.

25. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (2007)

26. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

27. Messerges, T.S.: Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms. PhD thesis, University of Illinois at Chicago, USA, 468 pages (2000)

28. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant Soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

http://eprint.iacr.org/
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

342 A. Moradi, S. Guilley, and A. Heuser

29. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis
Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 125–139. Springer, Heidelberg (2010)

30. Nassar, M., Guilley, S., Danger, J.-L.: Formal Analysis of the Entropy / Security
Trade-off in First-Order Masking Countermeasures against Side-Channel Attacks.
In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107,
pp. 22–39. Springer, Heidelberg (2011)

31. Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: A small and fast coun-
termeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: DATE
2012, pp. 1173–1178. IEEE (2012)

32. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlin-
ear Functions in the Presence of Glitches. J. Cryptology 24(2), 292–321 (2011)

33. NIST/ITL/CSD. Advanced Encryption Standard (AES). FIPS PUB 197 (Novem-
ber 2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

34. Pan, J., den Hartog, J.I., Lu, J.: You Cannot Hide behind the Mask: Power Analysis
on a Provably Secure S-Box Implementation. In: Youm, H.Y., Yung, M. (eds.)
WISA 2009. LNCS, vol. 5932, pp. 178–192. Springer, Heidelberg (2009)

35. Prouff, E., Giraud, C., Aumônier, S.: Provably Secure S-Box Implementation Based
on Fourier Transform. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 216–230. Springer, Heidelberg (2006)

36. Prouff, E., Rivain, M.: A Generic Method for Secure SBox Implementation. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2008)

37. Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second Order Differential
Power Analysis. IEEE Trans. Computers 58(6), 799–811 (2009)

38. Prouff, E., Roche, T.: Higher-Order Glitches Free Implementation of the AES Using
Secure Multi-party Computation Protocols. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)

39. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

40. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

41. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

42. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univari-
ate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee, P.J.,
Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg
(2009)

43. TELECOM ParisTech SEN research group, 4th edn. DPA Contest (2013-2014),
http://www.DPAcontest.org/v4/

44. Tunstall, M., Whitnall, C., Oswald, E.: Masking Tables - An Underestimated Se-
curity Risk. In: FSE 2013. LNCS, vol. 8424, Springer (2014),
http://eprint.iacr.org/2013/735

45. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

46. Ye, X., Eisenbarth, T.: On the Vulnerability of Low Entropy Masking Schemes. In:
CARDIS 2013. LNCS. Springer (2013)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.DPAcontest.org/v4/
http://eprint.iacr.org/2013/735

Improving Intrusion Detection Systems

for Wireless Sensor Networks

Andriy Stetsko, Tobiáš Smolka, Vashek Matyáš, and Martin Stehĺık

Masaryk University, Brno, Czech Republic
{stetsko,xsmolka,matyas,xstehl2}@fi.muni.cz

Abstract. A considerable amount of research has been undertaken in
the field of intrusion detection in wireless sensor networks. Researchers
proposed a number of relevant mechanisms, and it is not an easy task
to select the right ones for a given application scenario. Even when a
network operator knows what mechanism to use, it remains an open
issue how to configure this particular mechanism in such a way that it is
efficient for the particular needs. We propose a framework that optimizes
the configuration of an intrusion detection system in terms of detection
accuracy and memory usage. There is a variety of scenarios, and a single
set of configuration values is not optimal for all of them. Therefore, we
believe, such a framework is of a great value for a network operator who
needs to optimize an intrusion detection system for his particular needs,
e.g., attacker model, environment, node parameters.

Keywords: Intrusion detection, optimization, wireless sensor networks.

1 Introduction

Awireless sensor network (WSN) consists of sensor nodes – small devices equipped
with sensors, microcontroller, wireless transceiver and battery. Each node moni-
tors a physical phenomenon and sends the measurements to a base station. Since a
node communication range is limited to tens of meters and it is not always feasible
for the node to directly communicate with the base station, data are usually sent
hop-by-hop from one node to another until they reach the base station. WSNs can
support various applications for ecology andwildlife monitoring,military, building
and industrial automation, energy management, agriculture, etc.

Sensor nodes are constrained in processing power, memory and mainly in
energy. A MICAz sensor node is a typical sensor node. It is equipped with
the 8 MHz Atmel Atmega128L microcontroller, 512 KB flash memory, 802.15.4
compliant Texas Instruments CC2420 transceiver and two AA batteries. The
transceiver consumes 18.8 mA (with 3.3 V power supply) in the receiving mode
[1], which is the most energy consuming mode. If we use two NiZn AA batteries
with a nominal voltage of 1.65 V and a capacity of 1800 mAh, the estimated
lifetime of a constantly receiving node is approximately 96 hours, i.e., 4 days.
However, in general for WSNs one expects a functional network for the duration
of time that ranges from several days to several years.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 343–360, 2014.
c© Springer International Publishing Switzerland 2014

344 A. Stetsko et al.

In this paper, we propose a framework that semi-automatically optimizes the
configuration of an intrusion detection system (IDS) in terms of detection ac-
curacy and memory usage for any given scenario, e.g., a network topology, the
network stack of benign sensor nodes, and anticipated attacks. We do not aim
to propose particular novel techniques for intrusion detection (as such) in sensor
networks and our ultimate long-term aim is to provide a framework that does
not depend on a particular attacker model (or a group of models). We focus
on intrusion detection since it is an essential mechanism to protect a network
against internal attacks that are relatively easy and not expensive to mount in
WSNs. In comparison to conventional wired and wireless networks, an attacker
can often easily access the deployment area of a WSN, capture some nodes, and
launch a wide range of attacks (for the list of possible attacks, see [18]).

The paper roadmap is as follows. The conceptual architecture of our frame-
work is described in Section 2. Section 3 contains high-level technical details of
our proof-of-concept implementation. In Section 4, we describe our test case.
We tested the framework using a static topology in three different scenarios –
these scenarios were selected to illustrate the framework merits, Section 5 de-
scribes these scenarios and test results. We compare our approach to related
work in Section 6. Finally, Section 7 concludes the paper and presents plans for
our future work. Particular details of evolutionary algorithms that we used for
optimization are then provided in our technical report [7].

2 Conceptual Architecture of the Framework

In this section, we present the conceptual architecture of our framework that
semi-automatically optimizes the configuration of an IDS for a given application
scenario. The framework includes an optimization engine and a general-purpose
network simulator (see Figure 1). The whole process consists of five main steps.
In the first step, a network operator defines a fitness function for the evaluation of
an IDS configuration. We define a reasonable fitness function in Subsection 3.3.
It integrates evaluation metrics from [2] such as true positives, true negatives and
memory usage. In the second step, the network operator configures the network
simulator in such way that it simulates a scenario in which an IDS should be
deployed. This step is described in Subsection 2.1 in more detail. The remaining
three steps are completely automatic. The third and fourth steps take place in an
iterative manner. The optimization engine provides a candidate configuration of
an IDS to the simulator. The simulator evaluates it according to predefined met-
rics, e.g., detection accuracy, memory usage, and returns information required to
compute the fitness function back to the optimization engine. Based on the eval-
uation, the optimization engine changes the values of parameters and repeats the
procedure until a predefined condition holds, e.g., parameters become optimal
for a given scenario, or the maximum number of iterations is exceeded. Finally,
in the fifth step, the optimization engine outputs the best found (hopefully, the
optimal) IDS configuration.

Improving Intrusion Detection Systems for Wireless Sensor Networks 345

Optimization
engine

Network
simulator

Fitness function Simulator configuration

IDS configuration

1 2

3

4

5

Fig. 1. Conceptual architecture. The arrows depict input (output) to (from) the com-
ponents of our framework.

2.1 Simulator Configuration

The network operator provides a complete network model, which among oth-
ers, includes a network topology, models of benign and malicious nodes, wireless
channel and energy consumption models (see Figure 1).

Network Topology: The simulator provides a possibility to set a topology
manually or to generate it automatically. In case the network operator knows
the precise topology of the network, he can use the first option, and optimize the
IDS for this particular topology. In case the topology is not known in advance, the
network operator can use the second option, generate several random topologies,
and optimize the IDS for all of them simultaneously. For more details, see the
discussion on robustness of a found solution in Subsection 2.2.

Benign Sensor Node: Models of the node hardware and software should be
provided, i.e., radio, IDS, medium access control (MAC) layer, network layer,
and application layer models. There could be several types of a benign node
in the network (e.g., a cluster head, a base station, a general-purpose sensor
node), and they might have a different network stack. The network operator
composes a benign node model from the available protocols (distributed within
the simulator, or implemented by a third party). If the required protocol at a
certain network layer is not available, the network operator should implement
it. Further, the network operator configures the parameters of the models.

Malicious Sensor Node: Similarly, models of the node hardware and software
should be provided. There could be several types of a malicious node in the net-
work (e.g., internal/external [18], passive/active [21]). Usually, it is known to a
network operator where the network will be deployed, and what the purpose of
the network is. Based on this information, the network operator can estimate
the risks of different attacks (e.g., selective forwarding, jamming, hello flood),

346 A. Stetsko et al.

and include into a simulation only those that pose a serious threat. The network
operator composes a malicious node model from the modified models available
within the distribution of the simulator, or implements them by himself. For
example, to implement a selective forwarder, it might be enough to modify the
network layer of a benign node to drop a certain percentage of incoming packets.

Wireless Channel: The simulator can provide more than one model for radio
propagation, and a network operator can choose the one that is more suitable
for the environment where a network will be deployed.

Energy Consumption: The simulator can provide more than one energy
consumption model.

2.2 Discussion

In this subsection, we discuss several issues related to the framework design
choices and framework usage.

Simulator Versus Testbed: We decided to use a simulator since a testbed
is slow for comparison of considered alternative configurations, labour-intensive
and it does not produce comparable results due to the uncontrollable factors
(e.g., wireless channel effects). Candidate configurations should be tested under
the same network conditions, otherwise they cannot be compared. In a testbed,
we are not able to reproduce the same environment each time a candidate config-
uration is tested because of the wireless channel effects. The simulator provides
us with such a possibility. The usage of a simulator, however, does not mean
that different wireless channel effects (similar to those in a real network) cannot
be modelled in the simulator (see wireless channel models in [9]).

Simulator Calibration: In order to get realistic results, the operator needs to
calibrate an energy consumption model and a wireless channel model in accor-
dance to the environment where a network will be deployed (we calibrated the
wireless channel for two specific environments in [4]). Their calibration can be
done manually or automatically by the integration of a simulator and a testbed
[5]. The calibration should take place before the optimization. The carefully
calibrated wireless channel model (energy consumption model) can statistically
reflect the wireless channel behaviour (energy consumption) in a real network.

Solution Robustness: A wireless environment is dynamic. It can change in an
unexpected way which may result into conditions that were not observed during
the calibration. The framework, however, should cope with that, i.e., a found
solution should keep working (preferably decreasing its effectiveness only grad-
ually) even if some network characteristics change in the network. In order to

Improving Intrusion Detection Systems for Wireless Sensor Networks 347

achieve this, a candidate solution should be evaluated on networks with different
topologies and a wireless channel model should be calibrated for different envi-
ronments (e.g., network congestion, network maximum throughput). Moreover,
the network operator can calibrate a wireless channel model for some pessimistic
scenario (even though it has not been observed yet in a given environment). For
example, he can deliberately increase the noise level in the noise model, increase
the path loss or variation in the log-normal shadowing model. For more infor-
mation on the log-normal shadowing model, see [9]. The evaluations obtained
from different networks can be combined into a single evaluation score.

Framework Generality: The framework is generic, and it could be used to
optimize different types of an IDS (misuse-based or anomaly-based, centralized
or distributed). Further, we list several examples.

In [15], the authors proposed a scheme that activates IDS agents preloaded
in sensor nodes with a certain probability. Our framework can be used to find
an optimal value of the probability for a given application scenario, i.e., to solve
the trade-off between the number of packets (links) left unmonitored (influences
a detection accuracy) and the number of IDS agents being activated (influences
energy consumption).

In [17], the authors proposed a distributed IDS that involves a set of rules
to detect different types of an attack. Our framework can be used to automat-
ically select the appropriate rules and optimize (among others) their detection
thresholds.

In [16], the authors proposed an IDS to detect packet reception rate and
receive power anomalies. The authors demonstrated that there is a trade-off
between detection probability, detection delays and false positives for their tech-
nique. Our framework can help a network operator to find the optimal values of
the IDS parameters for his/her application scenario.

3 Implementation of the Framework

Relevant high-level implementation details are provided in this section.

3.1 Optimization Engine

There are two classes of optimization algorithms – exact and approximate (heuris-
tic) algorithms. Since the evaluation of candidate solutions cannot be done ana-
lytically in our case, the exact algorithms can hardly be applied. The heuristics
are divided into population-based and single-solution based algorithms. We use
a population-based algorithm because in comparison to a single-solution based
algorithm it provides us with the ability to evaluate multiple candidate solutions
in parallel and hence to speed up the convergence of an optimization.

348 A. Stetsko et al.

There is a variety of population-based algorithms, e.g., evolutionary algo-
rithms (EAs), particle swarm optimization, immune networks. We use EAs as
we already have successfully applied these algorithms for the automatic
generation of secrecy amplification protocols in WSNs [3].

EAs work with a population of candidate solutions (individuals in terms of
EAs) and evaluate them using a fitness function. EAs generate new candidate
solutions applying genetic operators of crossover and mutation to the solutions
in the population. In each generation, EAs update the population with new
candidate solutions. The process repeats until an optimal solution is found or
the maximum number of iterations is exceeded. For more information on EAs,
see [8].

The optimization engine is based on Evolving Objects [10], an advanced
component-based framework with a high number of already implemented opti-
mization algorithms. For the purpose of this work, we used a basic evolutionary
algorithm eoEasyEA that is highly configurable and suits our needs. We reused
existing operators for selection, replacement, termination and statistics collec-
tion, and implemented only problem specific parts of initialization, mutation,
crossover, and evaluation. More details on the settings of EAs can be found in
our technical report [7].

3.2 Network Simulator

We use the MiXiM network simulator [11], which is based on the OMNeT++
simulation framework [12]. MiXiM has a modular architecture with a high num-
ber of already implemented models for a WSN simulation. It inherits many
advanced features from OMNeT++ and thus is very adaptable and configurable.
The whole simulation is configured via a dedicated OMNeT++ configuration file.
A candidate solution (an individual) is represented as a list of configuration val-
ues stored in a separate configuration file. Before the evaluation (simulation)
starts, the file is included in the main configuration file.

The choice of a general-purpose WSN simulator allowed us to move one step
forward towards more realistic simulations, since MiXiM provides more accurate
simulation models, e.g., for wireless channel, radio, and MAC layers, in compar-
ison to a very fast purpose-built simulator we used in our previous work [3].
However, the accuracy comes at the price of speed. We simulated a network
operating for one hour, and it took about 5 minutes to simulate such network
on a single CPU core. In order to get a solution in acceptable time, we decided
to utilize distributed computing.

We chose the BOINC distributed computing platform [13] for our experiments.
In cooperation with the Institute of Computer Science at Masaryk University, we
attached about 200 CPU cores from the campus to our BOINC infrastructure
and used them when they were idle. Other 700 cores were available from the
National Grid Infrastructure project MetaCentrum.

Improving Intrusion Detection Systems for Wireless Sensor Networks 349

3.3 Configuration Evaluation

A candidate configuration of an IDS is evaluated based on its accuracy and
memory usage. In this paper, two terms IDS and monitoring node are used
interchangeably.

Notation 1. The set A = {a1, ..., anm} is a set of malicious nodes in a network.

Notation 2. The set C = {c1, ..., cnb
} is a set of all benign nodes in a network.

Notation 3. The function x : N→ N takes a sensor node index as an argument,
and returns a number of the neighbours that consider this node benign.

Notation 4. The function y : N→ N takes a sensor node index as an argument,
and returns a number of the neighbours that consider this node malicious.

Notation 5. The function n : N→ N takes a sensor node index as an argument,
and returns a number of the neighbours of this node.

Notation 6. The function m : N → N takes a sensor node index as an ar-
gument, and returns the amount of memory (in bytes) used by an IDS on this
node.

Accuracy: We measured accuracy based on the number of true positives and
true negatives:

– A true positive occurs when a monitoring node c ∈ C correctly considers its
neighbour a ∈ A malicious.

– A true negative occurs when a monitoring node ci ∈ C correctly considers
its neighbour cj ∈ C (i �= j) benign.

A node k ∈ C ∪ A considers the node l ∈ C ∪ A as a neighbour if it received
at least one packet from l during the simulation. We assume that sensor nodes
are distributed in such a way, that every node in the network has at least one
neighbour.

For a benign node ci, we calculated the percentage of the neighbours that
considered the node benign. Further, we found the average of such values over
all benign nodes in the network and denoted the result as tn. Similarly, for a
malicious node ai, we calculated the percentage of the neighbours that consid-
ered the node malicious. Further, we found the average of such values over all
malicious nodes in the network and denoted the result as tp.

The accuracy function is the weighted mean of tn and tp:

w1∗tn+w2∗tp
(w1+w2)

, where tn = 1
|C| ∗

∑
ci∈C

x(ci)
n(ci)

, tp = 1
|A| ∗

∑
ai∈A

y(ai)
n(ai)

.

We assume that |C| > 0 and |A| > 0.
The function values range from 0 to 1. If every malicious node in the network

is detected by all of its neighbours, and every benign node in the network is not

350 A. Stetsko et al.

considered malicious by any of its neighbours, the accuracy function is equal
to 1, i.e., the maximum possible value. On the other hand, if none of malicious
nodes is detected by at least one of its neighbours, and every benign node is
considered malicious by all of its neighbours, the accuracy function is equal to
0, i.e., the minimum possible value.

The proposed function does not take the distribution of x(ci)
n(ci)

and y(bi)
n(bi)

into

account. In certain cases, e.g., when a base station uses a majority voting scheme
to make a final decision whether a node is benign or not, it might be preferable

to have more values of x(ci)
n(ci)

and y(bi)
n(bi)

that are slightly above 0.5 instead of a

few values that are extremely high.

Memory Usage: The effectiveness of memory usage by the IDS on a node
ci ∈ C was evaluated using the formula: 1

1+m(ci)
.

If the IDS is switched off at the node ci, then m(ci) = 0 and 1
1+m(ci)

= 1.

Furthermore, if m(ci) increases, then the effectiveness of memory usage decreases
towards zero.

Further, we calculated the average value of 1
1+m(ci)

over all benign nodes in

the network. More formally, it can be written as: 1
|C| ∗

∑
ci∈C

1
1+m(ci)

. We assume

that |C| > 0.
The designed function provides values that are not correlated to accuracy

values. In certain cases, however, it might be useful to take into account that
even a small amount of memory is a waste if the accuracy of an IDS is low. Yet
a higher amount of used memory can be justified if the IDS is highly accurate.

Fitness Function: For the purpose of this work, we added both accuracy and
memory usage metrics together, making the accuracy metric to contribute more
to the value of the sum than the memory metric by introducing weights. The
weight was set to 1 for the accuracy metric, and it was set to 0.1 for the memory
usage metric. The weight for the memory usage should be carefully selected – if
it is too high (i.e., it is more important to save memory than to detect attacks),
the optimal solution is to switch all IDSs off, or set a maximum number of mon-
itored nodes and buffer size to zero. We set w1 = w2 = 1 in the accuracy metric.
The resulting fitness function is:

1
2|C| ∗

∑
ci∈C

x(ci)
n(ci)

+ 1
2|A| ∗

∑
ai∈A

y(ai)
n(ai)

+ 0.1 1
|C| ∗

∑
ci∈C

1
1+m(ci)

.

4 Our Test Case

In this section, we describe the scenario for which we would like to test the
framework on. The framework is used to find optimal parameters of an IDS
(we implemented it in the MiXiM simulator for purposes of our previous work [6])
for a given scenario. A network operator (a person who uses our framework)
knows behavior of benign nodes and assumes behavior of malicious nodes.

Improving Intrusion Detection Systems for Wireless Sensor Networks 351

If another than assumed type of an attack appears in the deployed network,
the parameters found by the framework might not be optimal for such network.

4.1 Topology

Wegenerated a topology of 250 static sensor nodes uniformly randomly distributed
over an 200m× 200m area.A single base station is placed in the center of the area.
The topology together with a routing tree is depicted in
Figure 2. There are 246 benign sensor nodes (white) including the base station,
and 5 malicious nodes (black filled). According to [14], the terrestrial WSNs typ-
ically consist of hundreds to thousands of inexpensive sensor nodes. However, the
purchase of a large network is not always feasible due to the current price of sensor
nodes. AMICAz sensor node costs aboute80. Therefore, we believe that medium-
sized networks that consist of hundreds of nodes are more reasonable to consider.

In order to make the analysis of results (w.r.t. their optimality) from the
framework simpler and more intuitive, we focus on static sensor nodes. However,
more dynamic network scenarios can be modeled as well. MiXiM provides a
variety of node mobility models [11].

(a) 1st placement of mal. nodes. (b) 2nd placement of mal. nodes.

Fig. 2. Topology, routing tree, and placement of malicious nodes

4.2 Benign Node

We assume a benign node uses a network stack that consists of application,
routing protocol, MAC protocol, and intrusion detection system.

Application Layer: We consider a standard application for a WSN, where
every node sends one packet to a base station every 30 seconds. The application
runs for one hour. In order to avoid collisions (due to node synchronization), the
whole time-frame is divided into intervals of length 30 seconds. For every interval
i, a node generates a random number r (0 ≤ r ≤ 30) and starts transmitting at
i+ r. The size of a packet is 152 B.

352 A. Stetsko et al.

Network Layer: We assume that the network layer uses static routing. The
routing tree was generated as follows. A base station broadcasts a packet con-
taining its identification together with the value h set to 0. A node waits until it
receives a packet from a neighbour that is the closest one (has the highest signal
strength). Then the node sets the neighbour as its parent, increases value h by
1 and broadcasts the value together with its identification. Value h represents
number of hops to the base station.

Medium Access Layer: We use CSMA-CA at this layer.

Physical Layer: We use a model for CC2420 radio that is commonly used in
sensor nodes, e.g., TELOSB, MICAz sensor nodes.

Intrusion detection system: We use a simple IDS that we implemented in
the MiXiM simulator for the purpose of our previous work [6]. The IDS uses a
detection rule (more specifically, a retransmission rule) from [17]. It is not the
goal of this paper to propose a complex IDS, but rather to test the framework
as such. In the conventional networks, one can use a commercial IDS, to run
the framework on, and compare the IDS before and after the optimization to
see the improvement. For WSNs, however, to our best knowledge, there are no
commercial IDSs available.

An IDS is running on a sensor node and it continuously analyzes sent and
overheard packets. The IDS does not include responsive and collaborative com-
ponents (see [20] for the conceptual architecture of an IDS in WSNs). Therefore,
the IDS does not generate any additional traffic.

A monitoring node overhears to some extent both incoming and outgoing
packets of a close enough monitored neighbour. An IDS stores a table, where
each row corresponds to a certain monitored node. The table contains the number
of packets received (PR) and forwarded (PF) by a monitored node. The number
of rows is limited to a number of monitored nodes.

The detection exploits the fact that a monitoring node overhears (to some
extent) both incoming and outgoing packets of a close enough monitored neigh-
bour. If the IDS on a node ci ∈ C overhears a packet P sent to a node bj ∈ C∪A,
bj is close enough and bj should forward the packet (e.g., bj is not a base sta-
tion), then the IDS stores P in the buffer and increments the PR counter of
the monitored node bj. The number of packets is limited by a buffer size. If a
new packet arrives but the buffer is full, the oldest packet is removed from the
buffer. When the IDS overhears the packet P being forwarded by the node bj , it
removes P from the buffer (if it is still there) and increments the PF counter of
the node bj . Since both the table and the buffer are limited, the IDS monitors
only the closest nodes and the newest packets.

The detection is done at the end of the simulation based on the collected
statistics. The node ci considers the node bj as a selective forwarder if the drop-
ping ratio of bj, i.e., ratio of a number of packets dropped to a number of packets

Improving Intrusion Detection Systems for Wireless Sensor Networks 353

received, is higher than a predefined detection threshold. If the node ci overheard
less than the predefined number of packets received by bj as overheard by ci, ci
does not consider bj malicious as the number of overheard packets is small and
there is a high level of uncertainty. We cannot influence the number of overheard
packet, but we can change our decision making process based on this value and
potentially decrease a number of false positives.

The IDS running on a node ci consumes m(ci) = p1 ∗ 8+p2 ∗ 16 B of memory.
Each record in the table occupies 8 B (4 B for node ID, 2 B for PR, 2 B for PF),
and there are p1 such records. Each record in the buffer occupies 16 B (4 B for
MAC source ID, 4 B for MAC destination ID, 4 B for MAC intermediate node
ID, and 4 B for packet counter), and there are p2 such records.

We would like to optimize the following four parameters: p1 (number of nodes
to be monitored), p2 (a number of packets stored in a buffer), p3 (number of
packets received) and p4 (detection threshold). The value of p1 ranges from 0 to
54 (the maximum number of neighbours in our simulation scenario), p2 – from
0 to 100, p3 – from 0 to 2000, and p4 from 0 to 100.

4.3 Malicious Node

Currently, for our proof-of-concept implementation of the framework, we assume
a single type of malicious node – a selective forwarder, i.e., a node that drops a
certain percentage of received packets. We assume the model is the same as the
model of a benign node, except for the network layer that is modified to drop
a certain percentage of received packets (in our case 50%), and an IDS that is
omitted.

5 Testing Results

We tested our prototype on three optimization scenarios, each with the different
size of the search space. Their description together with the obtained results are
presented in the following subsections. The settings of EAs for each optimiza-
tion scenario are described in the corresponding subsections of our technical
report [7]. For the evaluation of a candidate configuration, we used the fitness
function defined in Subsection 3.3. Time needed to complete the optimization is
indicated in terms of a number of EA generations and evaluations.

5.1 Optimization Scenario No. 1

In this scenario, we assume that every benign node in the network runs an
IDS, and the IDS is configured in the same way for these nodes. The goal is
to optimize the configuration (p1, p2, p3 and p4), common for all sensor nodes,
using our framework.

We performed both an exhaustive search and an EA-based search, and com-
pared the results. In order to make the exhaustive search timely acceptable, we
fixed p2 = 100 and p3 = 0. The reduced search space contained 5555 possible
configurations (see the description of an IDS in Subsection 4.2).

354 A. Stetsko et al.

Exhaustive Search: Fitness values for each possible combination of p1 and
p4 are depicted in Figure 3. The maximum fitness value (0.8249276442) was
achieved for the configuration with p1 = 27 and p4 = 0.45. The threshold is
below 0.5 (the dropping rate of a malicious node, see Subsection 4.3), because a
monitoring node cannot reliably overhear all packets sent to a malicious node,
and hence the dropping rate of the malicious node as observed by the monitoring
node may be lower than 0.5.

(a) View from the side. (b) View from the top.

Fig. 3. Fitness values for all possible combinations of p1 and p4

Evolutionary Algorithm: We ran the optimization process 30 times. The EA
was able to find the best configuration (found by the exhaustive search) using
19 generations on average. The standard deviation was 9.64. On average, the
EA required 144.87 evaluations. The standard deviation was 67.37. In the worst
case, the EA required 271 evaluations, while the exhaustive search required 5400
evaluations.

5.2 Optimization Scenario No. 2

In this scenario, we assume that only a subset of benign nodes runs IDSs, which
are configured in the same way on all selected nodes. As opposed to the node
(IDS) placement problem, the framework should find the optimal placement as
well as the optimal configuration of the IDSs.

There are 250 parameters to optimize: p1, p2, p3, p4, and 246 Boolean pa-
rameters, each indicating whether the IDS should be enabled or disabled on a
given node. We fixed two parameters (p2 = 100 and p3 = 0). The search space
contained 55 ∗ 101 ∗ 2246 possible configurations.

We ran the optimization process on two networks with the same topology but
with the different placement of malicious nodes (see Figure 4(a) and Figure 4(b)).
The malicious nodes are depicted with black filling. We repeated the optimization
process 30 times for both placements of malicious nodes.

First Placement of Malicious Nodes: The best configuration found by the
EA had the fitness value equal to 0.8940953359, p1 = 27, and p4 = 0.45 (the

Improving Intrusion Detection Systems for Wireless Sensor Networks 355

same values were found for the first optimization scenario). The switched on/off
IDSs are depicted in Figure 4(a). Nodes that ran an IDS are depicted with grey
filling. The configuration generated 1723 false positives and 33 false negatives,
i.e., 7.03 false positives per benign node, and 6.6 false negatives per malicious
node. The configuration was found using 581.77 generations on average. The
standard deviation was 88.59. On average, the EA required 10600.17 evaluations.
The standard deviation was 1603.29. In the worst case, the EA required 13349
evaluations.

Although we did not perform an exhaustive search, we believe that the found
configuration was optimal. The intuition behind this is as follows. If an IDS
running on a node ci ∈ C detects a malicious neighbour aj ∈ A, then switching
it off reduces a number of false positives, increases memory usage effectiveness,
but causes a false negative. As we discovered, it is natural for the EA to switch
such an IDS on since the benefit (according to the designed evaluation function,
see Subsection 3.3) is higher than from switching the IDS off. We verified (by
setting p4 = 0 and p1 = 54) that the EA achieved the minimum possible number
of false negatives, and the minimum number of false positives for the given
number of false negatives.

(a) 1st placement of mal. nodes. (b) 2nd placement of mal. nodes.

Fig. 4. The best found placements of IDSs in the network

Second Placement of Malicious Nodes: The best configuration found by
the EA had the fitness value equal to 0.8780288967, p1 = 24, and p4 = 0.5. The
switched on/off IDSs are depicted in Figure 4(b). The configuration generated
1173 false positives and 42 false negatives. We believe that the found configura-
tion was optimal. The intuition behind this is the same as for the first placement
of malicious nodes. We verified (by setting p4 = 0 and p1 = 54) that the achieved
number of false negatives was the lowest possible, and the achieved number of
false positives was the lowest possible for the given number of false negatives.

The best configuration was found by 14 optimization runs. The average num-
ber of generations was 499.57. The standard deviation was 82.185. On average,

356 A. Stetsko et al.

the EA required 9096.1 evaluations. The standard deviation was 1501.5. Other
8 runs ended up with the configuration where the fitness value was equal to
0.8764108606. The rest of the runs found configurations with fitness values equal
to or higher than 0.8656972029.

When comparing the best configurations found for both placements, an av-
erage number of false events per node (an average number of false positives per
node added together with an average number of false negatives per node) was
higher for the first placement (13.6 versus 13.17), but the fitness value was higher
for the second one (0.8940953359 versus 0.8780288967). That might be caused by
the fact that nodes falsely accused or falsely not detected in the first placement
had a higher number of neighbours, which is also reflected in the selected value
of p1 (27 versus 24).

5.3 Optimization Scenario No. 3

In this scenario, we again assume that only a subset of benign nodes runs IDSs.
In comparison to the previous optimization scenario, here each IDS may be con-
figured in a different way. As opposed to the node (IDS) placement problem, the
framework should find the optimal placement as well as the optimal configuration
of each IDS.

The search space contained (55 ∗ 101 ∗ 2001 ∗ 101 ∗ 2)246 configurations. The
IDS implemented in our test case did not influence the network traffic, and
hence did not influence other IDSs. Therefore, configurations of any two IDSs
were independent of each other. We launched 246 independent optimizations and
significantly reduced the search space, i.e., to 246 ∗ (55 ∗ 101 ∗ 2001 ∗ 101 ∗ 2)
possible configurations.

We did two experiments. In the first experiment, we launched a single opti-
mization that searched for the best configuration for all sensor nodes together.
In the second experiment, we launched 246 independent optimizations, each
searching for the best configuration for a particular sensor node only.

First Experiment: We started with a randomly generated initial population.
The evolution began to improve the configuration, but the speed of convergence
was too slow. Therefore, we decided to start the optimization process again,
using the population of the best configurations from the second optimization
scenario (see Subsection 5.2). This optimization was gradually improving the
configuration and reached the fitness value of 0.955133 after 136′765 evaluations
in the 21′439th generation. The evolution was stopped when no improvement
was found during next 500 generations.

Second Experiment: All 246 optimizations started with the initial population
that contained the best configurations for the second optimization scenario. By
combining optimized parameters from these optimizations, a configuration that
reached the fitness value of 0.9604364302 was found. When compared to the
second optimization scenario, this approach was able to significantly improve

Improving Intrusion Detection Systems for Wireless Sensor Networks 357

the resulting IDS configuration by tweaking the parameters independently for
each node. A configuration found in each independent optimization required
422.63 generations on average. The standard deviation was 63.84. On average,
the EA required 2811.68 evaluations to find a configuration in each independent
optimization. The standard deviation was 427.05. In the worst case, the EA
required 5365 evaluations.

We ran another experiment to verify whether the configuration found by the
EA was optimal. The experiment was based on the intuition we mentioned in
Subsection 5.2. For an IDS, we fixed the parameters in such a way that it could
detect as many malicious nodes as possible (p1 = 54, p2 = 100, p3 = 0, p4 = 0).
Further, we found the minimum value of p1 such that all malicious nodes can
still be detected by the IDS. The same procedure was repeated for other three
parameters. We confirmed that p1, p2 and the placement of IDSs were optimal.
However, p3 and p4, as we discovered, could be further improved.

6 Related Work

The placement of nodes (IDSs) can be considered as a subproblem of a more
general node (IDS) configuration problem where one of the node (IDS) config-
uration parameters may indicate where the node is placed (whether an IDS is
enabled/disabled at this node).

The placement problem received high attention from research community. For
example, [22,23,24] proposed techniques for IDS placement problem in WSNs.
[19] surveyed 46 techniques that help to find optimal node placement in WSNs.
In contrast, our framework is more generic and additionally provides a possibility
to find optimal configuration of IDS parameters (e.g., detection threshold, buffer
size). For more information, see Sections 4 and 5. To the best of our knowledge,
we are the first optimizing IDS parameters in WSNs.

[22] proposed an algorithm finding a minimum number of activated IDSs such
that every packet forwarded from a source towards the base station was analyzed
at least once on its path. In comparison to our work, the authors did not consider
IDS configuration. Furthermore, the algorithm considers only packets forwarded
by the monitoring nodes and not packets overheard in a promiscuous mode.

[26] aimed at multi-objective optimization using an EA for deployment of a
homogeneous WSN with the coverage and lifetime of the network as objectives.
[25] presented a methodology of multi-objective optimization for self-organizing
WSNs using an EA. Their fitness function took application-specific, connectivity
and energy-related metrics into account. The goal was to find out optimized
operation mode for each node in the network. The authors did not consider any
IDS. Furthermore, they did not consider node parametrization.

Methodology how a multi-objective evolutionary algorithm for design-space
exploration could be configured was presented in [27]. Lifetime, latency and
reliability are used as three QoS (Quality of Service) metrics with several trade-
offs. In our work, we used a different set of metrics. The authors used multi-
objective optimization.

358 A. Stetsko et al.

[28,29,30] used EAs for several optimization issues in WSNs.
[30] incorporated local monitoring nodes (LMNs) into the WSN. These nodes

observe suspicious behavior and monitor data message patterns, message colli-
sions, route traffic activity trends and sensor positioning in their neighbourhood.
The fitness function measures optimality of the LMN positioning and accurate
identification of malicious nodes. The authors do not consider optimization of
IDSs parameters in this work.

More detailed treatment of related work is provided in our tech. report [7].

7 Conclusion and Future Work

To our best knowledge, there is no work that focuses on (semi) automatic and
systematic configuration of intrusion detection systems for wireless sensor net-
works, which we believe is an important area to explore.

In this work, we describe procedures to optimize the configuration of an intru-
sion detection system for a given application of a wireless sensor network. Also,
we discusses how solution robustness and solution realism can be achieved.

We presented a prototype of our framework that optimizes the configura-
tion of an intrusion detection system in wireless sensor networks. The design
and implementation of the framework leveraged our previous results in the field
of simulators (particularly realism of simulators for wireless sensor networks),
optimization and evaluation metrics.

We tested our framework on three carefully selected scenarios with a different
size of their search space. Our results demonstrated that evolutionary algorithms
can be potentially used to search for a solution of the given problem more effec-
tively. However, this conclusion is not valid in general (since the hypothesis was
tested only on three selected scenarios). More general conclusion can be made
if the community use evolutionary algorithms on a bigger set of different sce-
narios (different application, routing, medium access control and physical layer,
different topologies, different attacker models).

Our framework can find reasonable (if not optimal) configuration of an intru-
sion detection system for a given (arbitrary but specified in advance) scenario.
Values found by our framework may not be reasonable if these values are used in
a different scenario, i.e., intrusion detection system, topology, attacker behavior.

The obtained results, we believe, are more than promising. Hence, we plan
to use our framework to optimize different techniques for detection of different
attackers. Also, we plan to use our framework to optimize an intrusion detec-
tion system for our laboratory testbed, configure the intrusion detection system
according to the output provided by the framework, deploy it, and analyze the
results collected from the testbed.

The future version of our framework will also use multi-objective evolutionary
algorithms.

While we focused on the optimization of an intrusion detection system (other
layers were fixed), we believe that such a framework can be easily extended to
optimize the whole network stack. This can be explored in the future.

Improving Intrusion Detection Systems for Wireless Sensor Networks 359

Acknowledgment. This work was supported by the project GAP202/11/0422
of the Czech Science Foundation. We thank the National Grid Infrastructure
project MetaCentrum and Institute of Computer Science at Masaryk University
for the provided computational resources. Our thanks also belong to anonymous
reviewers.

References

1. Texas Instruments. CC2420 – 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
transceiver, http://focus.ti.com/

2. Stetsko,A.,Matyas,V.:Effectivenessmetrics for intrusiondetection inwireless sensor
networks. In: European Conference on Computer NetworkDefense, pp. 21–28 (2009)

3. Svenda, P., Sekanina, L., Matyas, V.: Evolutionary design of secrecy amplification
protocols for wireless sensor networks. In: ACM Conference on Wireless Network
Security, pp. 225–236 (2009)

4. Stetsko, A., Stehlik, M., Matyas, V.: Calibrating and comparing simulators for
wireless sensor networks. In: IEEE Conference on Mobile Adhoc and Sensor Sys-
tems, pp. 733–738 (2011)

5. Wen, Y., Zhang, W., Wolski, R., Chohan, N.: Simulation-based augmented reality
for sensor network development. In: ACM Conference on Embedded Networked
Sensor Systems, pp. 275–288 (2007)

6. Stetsko, A., Smolka, T., Jurnecka, F., Matyas, V.: On the credibility of wireless sen-
sor network simulations: evaluation of intrusion detection system. In: Conference
on Simulation Tools and Techniques, pp. 75–84 (2012)

7. Stetsko, A., Smolka, T., Matyas, V., Stehlik, M.: Improving intrusion detection
systems for wireless sensor networks. Technical report FIMU-RS-2014-01: Masaryk
University, Faculty of Informatics, Brno, Czech Republic (March 2014)

8. Talbi, E.-G.: Metaheuristics – From Design to Implementation. John Wiley & Sons,
Inc. (2009)

9. Rappaport, T.: Wireless communications: Principles and practice, 2nd edn. Pren-
tice Hall PTR (2001)

10. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: A general
purpose evolutionary computation library. In: Conference on Evolution Artificielle,
pp. 231–242 (2002)

11. Kopke, A., Swigulski, M., Wessel, K., Willkomm, D., Haneveld, P.T.K., Parker,
T.E.V., Visser, O.W., Lichte, H.S., Valentin, S.: Simulating wireless and mobile
networks in OMNeT++ the MiXiM vision. In: Conference on Simulation Tools
and Techniques for Communications, Networks and Systems & Workshops (2008)

12. OMNeT++ Community, http://www.omnetpp.org/
13. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In:

IEEE/ACM Workshop on Grid computing, pp. 4–10 (2004)
14. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer

Networks 52(12), 2292–2330 (2008)
15. Roman, R., Zhou, J., Lopez, J.: Applying intrusion detection systems to wireless

sensor networks. In: IEEE Consumer Communications and Networking Conference,
pp. 640–644 (2006)

16. Onat, I., Miri, A.: An intrusion detection system for wireless sensor networks. In:
IEEE Conference on Wireless and Mobile Computing, Networking and Communi-
cations, pp. 253–259 (2005)

http://focus.ti.com/
http://www.omnetpp.org/

360 A. Stetsko et al.

17. da Silva, A.P.R., Martins, M.H.T., Rocha, B.P.S., Loureiro, A.A.F., Ruiz, L.B.,
Wong, H.C.: Decentralized intrusion detection in wireless sensor networks. In: ACM
International Workshop on Quality of Service & Security in Wireless and Mobile
Networks, pp. 16–23 (2005)

18. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and
countermeasures. Ad Hoc Networks 1(23), 293–315 (2003)

19. Younis, M., Akkaya, K.: Strategies and techniques for node placement in wireless
sensor networks: A survey. Ad Hoc Networks 6(4), 621–655 (2008)

20. Zhang, Y., Lee, W.: Intrusion detection in wireless ad-hoc networks. In: Conference
on Mobile Computing and Networking, pp. 275–283 (2000)

21. Roosta, T., Pai, S., Chen, P., Sastry, S., Wicker, S.: Inherent security of routing
protocols in ad-hoc and sensor networks. In: Global Telecommunications Confer-
ence, pp. 1273–1278 (2007)

22. Anjum, F., Subhadrabandhu, D., Sarkar, S., Shetty, R.: On optimal placement
of intrusion detection modules in sensor networks. In: Conference on Broadband
Networks, pp. 690–699 (2004)

23. Liu, C., Cao, G.: Distributed monitoring and aggregation in wireless sensor net-
works. In: Conference on Computer Communications, pp. 1–9 (2010)

24. Hassanzadeh, A., Stoleru, R.: Towards optimal monitoring in cooperative IDS for
resource constrained wireless networks. In: Conference on Computer Communica-
tions and Networks, pp. 1–8 (2011)

25. Ferentinos, K.P., Tsiligiridis, T.A.: Adaptive design optimization of wireless sensor
networks using genetic algorithms. Computer Networks 51(4), 1031–1051 (2007)

26. Jourdan, D.B., de Weck, O.L.: Layout optimization for a wireless sensor network
using a multi-objective genetic algorithm. In: IEEE Vehicular Technology Confer-
ence, pp. 2466–2470 (2004)

27. Nabi, M., Blagojevic, M., Basten, T., Geilen, M., Hendriks, T.: Configuring multi-
objective evolutionary algorithms for design-space exploration of wireless sensor
networks. In: ACM Workshop on Performance Monitoring and Measurement of
Heterogeneous Wireless and Wired Networks, pp. 111–119 (2009)

28. Khanna, R., Liu, H., Chen, H.H.: Self-organization of sensor networks using genetic
algorithms. In: IEEE Conference on Communications, pp. 3377–3382 (2006)

29. Khanna, R., Liu, H., Chen, H.H.: Dynamic optimization of secure mobile sensor net-
works: A genetic algorithm. In: IEEEConference onCommunications, pp. 3413–3418
(2007)

30. Khanna, R., Liu, H., Chen, H.H.: Reduced complexity intrusion detection in sen-
sor networks using genetic algorithm. In: IEEE Conference on Communications,
pp. 1–5 (2009)

MoTE-ECC: Energy-Scalable Elliptic Curve

Cryptography for Wireless Sensor Networks

Zhe Liu1, Erich Wenger2, and Johann Großschädl1

1 University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security (LACS),

6, rue Richard Coudenhove-Kalergi, L–1359 Luxembourg
{zhe.liu,johann.groszschaedl}@uni.lu

2 Graz University of Technology,
Institute for Applied Information Processing and Communications,

Inffeldgasse 16a, A–8010 Graz, Austria
erich.wenger@iaik.tugraz.at

Abstract. Wireless Sensor Networks (WSNs) are susceptible to a wide
range of malicious attacks, which has stimulated a body of research on
“light-weight” security protocols and cryptographic primitives that are
suitable for resource-restricted sensor nodes. In this paper we introduce
MoTE-ECC, a highly optimized yet scalable ECC library for Memsic’s
MICAz motes and other sensor nodes equipped with an 8-bit AVR pro-
cessor. MoTE-ECC supports scalar multiplication on Montgomery and
twisted Edwards curves over Optimal Prime Fields (OPFs) of variable
size, e.g. 160, 192, 224, and 256 bits, which allows for various trade-offs
between security and execution time (resp. energy consumption). OPFs
are a special family of “low-weight” prime fields that, in contrast to the
NIST-specified fields, facilitate a parameterized implementation of the
modular arithmetic so that one and the same software function can be
used for operands of different length. To demonstrate the performance
of MoTE-ECC, we take (ephemeral) ECDH key exchange between two
nodes as example, which requires each node to execute two scalar mul-
tiplications. The first scalar multiplication is performed on a fixed base
point (to generate a key pair), whereas the second scalar multiplication
gets an arbitrary point as input. Our implementation uses a fixed-base
comb method on a twisted Edwards curve for the former and a simple
ladder approach on a birationally-equivalent Montgomery curve for the
latter. Both scalar multiplications require about 9 · 106 clock cycles in
total and occupy only 380 bytes in RAM when the underlying OPF has
a length of 160 bits. We also describe our efforts to harden MoTE-ECC
against side-channel attacks (e.g. simple power analysis) and introduce
a highly regular implementation of the comb method.

1 Introduction

Some ten years ago, an article in MIT’s Technology Review magazine identified
Wireless Sensor Networks (WSNs) as one of the technologies that will change

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 361–379, 2014.
© Springer International Publishing Switzerland 2014

362 Z. Liu, E. Wenger, and J. Großschädl

the world in the 21st century [6]. This prediction could not have been more true
given today’s omnipresence of wireless sensors in various kinds of applications
ranging from medical monitoring over home automation to environmental sur-
veillance [1]. All these applications rely on distributed sensor nodes being able
to collect, process and transmit data correctly and reliably, which has initiated
a large body of research on the security of WSNs. Unfortunately, a WSN is, in
general, harder to protect than a “traditional” (i.e. wired) network like e.g. an
Ethernet-based LAN, which has two major reasons. First, the wireless nature
of communication within a WSN makes eavesdropping fairly easy. Second, the
nodes themselves can be subject to an attack since WSNs are often deployed in
unattended areas. An attacker could, for example, capture one or more nodes
and compromise them to obtain all stored data, or he may even reprogram the
nodes and inject them into the WSN to conduct malicious activities [25].

Similar to conventional networks (e.g. the Internet), Public-Key Cryptogra-
phy (PKC) can play a vital role in the security arena of WSNs [25]. The main
problem with the practical use of PKC are the extremely constrained resources
of battery-powered sensor nodes. For example, the prevalent MICAz mote from
Memsic [8] is equipped with an 8-bit AVR processor (the ATmega128 [3]) and
features only 4 kB of RAM and 128 kB flash memory. Gura et al [13] were the
first to demonstrate that Elliptic Curve Cryptography (ECC) [15] is feasible on
such restricted 8-bit platforms. Thanks to their so-called hybrid multiplication
technique (a smart optimization of long-integer multiplication by exploiting the
large register file of the ATmega128), they managed to reach an execution time
of just 6.4 · 106 clock cycles for a full scalar multiplication on a SECG-specified
elliptic curve over a 160-bit generalized-Mersenne prime field. TinyECC [23] is
the currently most-widely used ECC library for WSNs; it is highly configurable
and features a number of optimizations for “standardized” curves over 160 and
192-bit prime fields. Other examples of highly-optimized ECC implementations
for 8-bit AVR processors are WM-ECC [33], Nano-ECC [31], MIRACL [7], and
RELIC [2]. Very recently, it was shown that even high-security ECC using an
elliptic curve over a 255-bit pseudo-Mersenne prime field is feasible on the AT-
mega128 [17]. However, as noted in [31], the feasibility of ECC on constrained
devices does not automatically imply that it is attractive to use ECC since the
state-of-the-art in terms of performance is still not satisfactory for many kinds
of application. Therefore, the efficient implementation of ECC on sensor nodes
remains an active research topic and approaches to further reduce the execution
time (i.e. energy cost) and memory footprint are still eagerly sought.

In this paper we introduce MoTE-ECC, a light-weight ECC implementation
for Memsic’s MICAz motes and other 8-bit AVR-based sensor nodes (or, more
generally, embedded devices equipped with an 8-bit AVR processor). The main
goal we aimed to achieve with the design and implementation of MoTE-ECC
was to find a suitable compromise between the following four requirements: (1)
short execution times, (2) high flexibility and scalability (i.e. support of curves
providing different levels of security), (3) low memory (i.e. RAM) footprint, and
(4) some basic protection against passive implementation attacks. Energy is,

MoTE-ECC: Elliptic Curve Cryptography 363

in general, the most precious resource of a battery-powered sensor node. There-
fore, it is important to optimize the performance of ECC software because the
energy consumption of scalar multiplication grows linearly with the execution
time. Another essential requirement of an ECC implementation for WSNs is to
support curves of different order (i.e. different cryptographic “strength”) since
the various tasks a sensor node performs during its lifetime have very different
security needs [30,22]. For example, a multi-tier security framework for WSNs
can permit lower security levels (i.e. shorter keys) for some less-critical tasks in
order to save energy. High flexibility at the field-arithmetic layer is difficult to
achieve with the NIST-specified generalized Mersenne primes as each of them
requires a different reduction routine (see [15, Section 2.2.6]). Consequently, an
implementation supporting all five NIST fields needs five different modular re-
duction functions, which massively bloats code size. MoTE-ECC uses so-called
Optimal Prime Fields (OPFs), a special family of fields that allows for flexible
yet efficient modular arithmetic [24,34]. Formally, an OPF is defined through a
prime of the form p = u · 2k + 1 where u is “small” in relation to 2k (e.g. u is a
16-bit integer). All arithmetic functions of our OPF library get the factor u as
well as the length of p as parameter and can process operands of arbitrary size
(e.g. from 160 to 512 bits) without the need to re-compile the library. Thus, we
can easily trade security versus performance and energy efficiency, which means
MoTE-ECC is an energy-scalable ECC implementation.

The version of MoTE-ECC we describe in this paper supports two families
of elliptic curves, namely Montgomery [27] and twisted Edwards [5] curves. An
outstanding feature of elliptic curves in Montgomery form is the existence of a
differential addition law that involves only the x-coordinate of the points. The
so-called Montgomery ladder for scalar multiplication can use such differential
additions in an efficient way and has the further benefit of a regular execution
profile, which naturally protects against Simple Power Analysis (SPA) attacks
[20]. Montgomery curves excel in settings where run-time memory (i.e. RAM)
is scarce and scalar multiplication has to be performed with an arbitrary base
point that is not known a priori. On the other hand, twisted Edwards curves
provide the currently fastest formulas for general (i.e. non-differential) addition
of points. Furthermore, the addition law presented in [5, Section 6] is complete
if the curve parameters fulfill certain conditions. These properties make twisted
Edwards curves attractive for applications that perform scalar multiplications
by a fixed base point using e.g. the comb method [15]. In this paper, we take
ephemeral ECDH key exchange as example1 to evaluate the performance and
memory consumption of MoTE-ECC. Ephemeral ECDH has one big advantage
over static ECDH, namely forward secrecy, which is a highly desirable feature

1 In accordance with previous work on ECC for WSNs (e.g. [23]), we use a straight-
forward (i.e. unauthenticated) variant of the ECDH protocol for our performance
evaluation. However, a real-world application of (ephemeral) ECDH key exchange
would require protection against Man-in-the-Middle (MitM) attacks, which can be
achieved by signing the messages sent in each run of the protocol, or by using an
advanced version of ECDH with “implicit” authentication, e.g. ECMQV.

364 Z. Liu, E. Wenger, and J. Großschädl

for any kind of network, including WSNs. Our ECDH implementation combines
the individual advantages of the Montgomery form and twisted Edwards form
by exploiting the fact that every twisted Edwards curve is birationally equiva-
lent to a Montgomery curve [5]. Ephemeral ECDH key exchange between two
sensor nodes requires each node to execute two scalar multiplications; the first
is performed with a fixed base point (namely the generator of an elliptic curve
group) to generate a key pair, whereas the second scalar multiplication gets an
arbitrary point as input and yields the shared secret key. Our implementation
uses a fixed-base comb method on a twisted Edwards curve for the former and
a Montgomery ladder on a Montgomery curve that is birationally equivalent to
the Edwards curve for the latter, thereby combining the specific computational
advantages of the two curve shapes in an optimal way2.

We also made an effort to protect MoTE-ECC against passive, non-invasive
implementation attacks. In the case of our ephemeral ECDH, this boils down to
protecting the two scalar multiplications against Simple Power Analysis (SPA)
attacks since, in each run of the protocol, a freshly generated random scalar is
used, i.e. Differential Power Analysis (DPA) is not possible. All field-arithmetic
operations are implemented in a highly regular fashion (i.e. without conditional
statements such as if-then-else constructs) so that always exactly the same
sequence of instructions is executed, independent of the value of the operands
[24]. Furthermore, we developed a new approach for performing the fixed-base
comb method with the goal of reducing SPA-leakage in relation to a standard
implementation. It should be noted, however, that WSN applications have less
stringent demands regarding side-channel resistance than e.g. smart cards. The
integration of countermeasures against all known forms of side-channel attacks
would introduce unfeasible overheads for most WSN applications. Instead, we
aimed to protect our ECDH implementation against a so-called stealthy node
compromise (i.e. a side-channel attack mounted “in the field” without physical-
ly capturing a node) as described in [9]. Since such in-field attacks are carried
out under sub-optimal conditions (e.g. large noise levels), it normally suffices to
have some basic countermeasures in place.

2 Arithmetic in Optimal Prime Fields

The prime fields we use in MoTE-ECC belong to a special class of finite fields
known as Optimal Prime Fields (OPFs) [11]. These fields are defined by primes
that can be written as p = u · 2k + v whereby u and v are “small” compared to
2k so that they fit into one or two registers of the target platform. MoTE-ECC
supports OPFs with 215 ⊂ u < 216 (i.e. u is 16 bits long) and v = 1. A concrete
example is p = 65356 · 2144 + 1 (i.e. u = 65356 and k = 144), which happens to
be a 160-bit prime that looks as follows in hex notation.

p = 0xFF4C000000000000000000000000000000000001

2 MoTE-ECC is an abbreviation for Montgomery and Twisted Edwards based ECC.

MoTE-ECC: Elliptic Curve Cryptography 365

Primes of such form are characterized by a low Hamming weight since only the
two most significant bytes and the least significant byte are non-zero; all bytes
in between are zero. The low weight of p allows for specific optimization of the
modular arithmetic because only the non-zero bytes of p need to be processed
in the reduction operation. For example, Montgomery’s algorithm [26] can be
simplified for these primes so that the modular reduction has only linear com-
plexity, similar to generalized-Mersenne or pseudo-Mersenne primes [15].

2.1 Parameterized OPF Library

Our implementation of arithmetic operations in OPFs is largely based upon the
OPF library for 8-bit AVR processors described in [24]. This library provides
the full spectrum of arithmetic functionality required for scalar multiplication
on Montgomery and twisted Edwards curves (i.e. addition, subtraction, multi-
plication, squaring and inversion), whereby each operation includes a reduction
modulo a low-weight prime of the form p = u · 2k + 1. Both multiplication and
squaring employ a special variant of the Montgomery reduction method [26] so
that only the non-zero bytes of p are processed. All functions of the library are
written in assembly language and optimized to yield a good trade-off between
performance and (binary) code size. Furthermore, the arithmetic functions are
parameterized, which means the operand length is not fixed (i.e. hard-coded)
but passed as parameter to the function. In this way, the OPF library provides
a high degree of flexibility as one and the same function can process operands
of any length. Another important feature of the library is its resilience against
SPA attacks as all arithmetic operations are implemented in a regular fashion
and execute always the same sequence of instructions, regardless of the actual
value of the operands. Only the inversion from [24] has a non-regular execution
profile; therefore, we implemented a Fermat-based inversion from scratch (see
below). A detailed description of the OPF library can be found in [24].

2.2 Fermat-Based Inversion in OPFs

Unlike to field addition and multiplication, inversion in Fp is not executed dur-
ing the scalar multiplication when using projective coordinates [15]. In fact, the
inversion operation is only needed to convert the result from projective back to
affine coordinates. Two well-known techniques for computing the inverse of an
element of Fp are the Extended Euclidean Algorithm (EEA) [15] and Fermat’s
little theorem. However, the EEA is highly irregular and may leak information
about the input value that could be exploited to mount an attack as described
in [28] to recover a few bits of the secret scalar. Therefore, it is mandatory to
use an inversion algorithm that executes in a regular way and is not vulnerable
to SPA and SPA-like attacks. Our implementation of the inversion in OPFs is
based on Fermat’s little theorem ap−2 ∈ a−1 mod p, i.e. we perform inversion
via exponentiation. Unfortunately, the conventional square-and-multiply expo-
nentiation method with an exponent of the form u · 2k − 1 requires n squarings
and almost n multiplications, whereby n denotes the bit-length of p. To reduce

366 Z. Liu, E. Wenger, and J. Großschädl

Algorithm 1. Optimized exponentiation-based inversion for OPFs

Input: Element a of Fp with p = u · 2k +1.

Output: r ← au·2k−1 ← a−1 mod p.
1: u′ → u− 1
2: r → a, b → ∈ld(k)− 2�, i → 1
3: while b > 0 do
4: t → r2

5: for j = 1 to i− 1 do
6: t → t2

7: end for
8: r → r · t
9: i → i ∅ 1

10: if k & b > 0 then
11: r → r2 · a
12: i → i+ 1
13: end if
14: b → b � 1
15: end while

16: t → r · a
17: b → 1
18: while b < 0x8000 do
19: if u′ & b > 0 then
20: r → r · t
21: end if
22: t → t2

23: b → b ∅ 1
24: end while
25: if u′ & b > 0 then
26: r → r · t
27: end if

execution time, we developed an inversion technique that is specifically crafted
for OPFs (specified in Algorithm 1). Thanks to this algorithm, it is possible to
nearly halve the overall number of operations to n squarings plus only HW (k)
+HW (u− 1) + 1 multiplications, where HW (x) denotes the Hamming weight
of x. In practice, this optimization almost doubles the performance compared
to a straightforward square-and-multiply exponentiation. Algorithm 1 operates

in two phases; in the first phase, a2
k−1 is calculated using the exponentiation

method of Itoh and Tsujii [18], which was originally proposed for binary exten-
sion fields. In the second phase, a right-to-left square-and-multiply algorithm is
carried out. Note that, for our primes, this second phase is much shorter since

u is (at most) 16 bits long. In step 16, the multiplication r · a = a2
k−1 · a yields

t = a2
k

, which is needed for the right-to-left square-and-multiply algorithm.

3 Scalar Multiplication for Ephemeral ECDH

Performing ephemeral ECDH key exchange between two sensor nodes requires
each node to execute two scalar multiplications; one to generate an ephemeral
key pair and the second to obtain the shared secret. MoTE-ECC uses a twisted
Edwards curve [5] for the former and a Montgomery curve [27] for the latter. In
fact, it is more correct to say that both scalar multiplications are computed on
the same elliptic curve; in one case we adopt the twisted Edwards form of this
curve and in the second case its Montgomery form. We describe both forms in
the next subsection and also discuss the execution time of scalar multiplication
algorithms by counting the number of underlying field operations, whereby we
adhere to the following notation: M (multiplication), S (squaring), A (addition
or subtraction), I (inversion), and D (multiplication by a curve constant).

MoTE-ECC: Elliptic Curve Cryptography 367

3.1 Montgomery and Twisted Edwards Curves

Montgomery Curve. In 1987, Peter Montgomery introduced a special model
of elliptic curves, today known as Montgomery model [27]. An elliptic curve in
Montgomery form over a prime field Fp is defined through the equation

EM : Bv2 = u3 +Au2 + u (1)

where A ← Fp \ {−2, 2} and B ← Fp \ {0}. The major attraction of these curves
is the possibility to perform point arithmetic with the x-coordinate only. More
precisely, when using projective coordinates to represent curve points, just the
X and Z coordinate are needed to perform point addition and doubling. A so-
called “differential” point addition requires exactly 3M + 2S + 6A, whereas the
doubling of a point costs 2M + 2S + 1D + 4A. The Montgomery ladder is well
known for being a per se highly regular algorithm for scalar multiplication on
Montgomery curves [29]. Its regularity is simply due to the fact that it always
executes both a point addition and a point doubling per scalar bit, irrespective
of whether said bit is 0 or 1. Therefore, given a scalar k and base point P , the
cost of computing k · P amounts to 5M + 4S + 1D + 10A per bit of k.

Normally, the parameter A is chosen so that multiplication by (A + 2)/4 is
fast. However, in our case this means the Montgomery image of (A + 2)/4 has
to be small since, as stated in Section 2.1, the OPF library uses Montgomery’s
reduction technique [26] for the modular multiplication.

Twisted Edwards Curve. Currently, elliptic curves in twisted Edwards form
offer the most efficient formulae for general (i.e. non-differential) point addition
[16], which makes them attractive for practical implementations. According to
Bernstein et al [5], a twisted Edwards curve over a non-binary field Fq is given
by an equation of the form

EE : ax2 + y2 = 1 + dx2y2 (2)

whereby a and d are distinct, non-zero elements of Fq. The authors of [5] also
introduced formulae for addition and doubling on such a curve using standard
projective coordinates. Thereafter, Hişil et al proposed an extended coordinate
system that includes an auxiliary coordinate t = xy [16]. Instead of represent-
ing a point on a twisted Edwards curve EE by its x and y coordinate only, one
can use the extended affine coordinates (x, y, t). The corresponding projective
coordinates of that point are (X : Y : T : Z), whereby the auxiliary coordinate
T has the property T = XY/Z with Z ∅= 0. Thanks to these coordinates, Hişil
et al were able to devise very efficient point addition formulae, especially if the
parameter a = −1. After applying some straightforward optimizations [14], the
computational cost of a mixed point addition on a curve with a = −1 amounts
to 7M + 6A, while a doubling requires 3M + 4S + 6A.

Birational Equivalence. Bernstein et al proved in [5] that the set of twisted
Edwards curves over a non-binary field Fq is equivalent to the set of Montgomery

368 Z. Liu, E. Wenger, and J. Großschädl

curves over Fq. In particular, they showed that the twisted Edwards curveEE over
Fq with non-zero parameters a, d is birationally equivalent over Fq to the Mont-
gomery curve EM given by

A = 2(a+ d)/(a− d), B = 4/(a− d) (3)

For an arbitrary point (x, y) on the twisted Edwards curve EE , we can get the
related point (u, v) on the equivalent Montgomery curve EM as follows

u = (1 + y)/(1− y), v = (1 + y)/((1− y)x) (4)

Conversely, given the curve parameters A ← Fq \ {−2, 2} and B ← Fq \ {0}, the
corresponding Montgomery curve EM is birationally equivalent over Fq to the
twisted Edwards curve EE with the parameters

a = (A+ 2)/B, d = (A− 2)/B (5)

and the point (x, y) corresponding to (u, v) can be obtained as follows

x = u/v, y = (u − 1)/(u+ 1) (6)

3.2 Generation of Curves

The security of elliptic curve cryptosystems is based on the intractability of the
underlying Elliptic Curve Discrete Logarithm Problem (ECDLP). To date, the
most efficient algorithm for solving a generic instance of the ECDLP in a given
elliptic curve group E(Fp) has complexity O(

√
n) where n is the largest prime

divisor of #E(Fp) [15]. Therefore, one must be careful to choose a field Fp and
a curve E over Fp so that E(Fp) has prime order or contains a large subgroup
of prime order. More concretely, when writing #E(Fp) as a product of a prime
n and a co-factor h, then n should have a length of approximately 160 bits and
h should be small, e.g. h ⊂ 4 [15]. Furthermore, one has to ensure that E does
not belong to a class of curves for which the ECDLP can be solved in less than√
n steps. Examples for such “weak” curves over Fp are anomalous curves and

curves with small embedding degree (e.g. supersingular curves). Depending on
the application, further security criteria not directly related to the ECDLP in
E(Fp) may need to be considered. One example is twist security, which means
that not only the curve E itself, but also the quadratic twist E′ of E meets all
criteria for hardness of the ECDLP. Using a curve with a secure twist thwarts
certain implementation attacks (e.g. [10]) and allows for a simplification of the
ECDH protocol when only the x-coordinates of points are exchanged [4].

Besides the security requirements from above, our curve generation process
also takes certain efficiency criteria into account to ensure the point arithmetic
on both the twisted Edwards curve and its Montgomery equivalent can achieve
the best possible execution times. When generating a Montgomery curve, it is
common practice to choose the curve parameter A such that (A+ 2)/4 is small
(as suggested in [27]). In our case, this actually means the Montgomery image

MoTE-ECC: Elliptic Curve Cryptography 369

of (A+ 2)/4 has to be small since our OPF library uses Montgomery reduction
for the multiplication in Fp. The second curve parameter B does not appear in
the addition/doubling formulae and, therefore, has no impact on the execution
time. On the other hand, the point arithmetic on a twisted Edwards curve is
most efficient when the parameter a is fixed to −1 as in this case Hisil et al’s
fast and complete 7M formula for mixed addition can be used [16]. The second
parameter d appears as operand in the complete addition formula described in
Section 3.1 of [16], but not in the dedicated addition from [16, Section 3.2]. In
our case, we can still use the complete addition formula without loss of perfor-
mance since the comb method always adds a fixed base point P (or a multiple
of P), which allows us to pre-compute 2d T2 as suggested in [16]. Another issue
to consider is that the addition formula from [16, Section 3.1] is only complete
when a is a square and d a non-square in Fp. Fortunately, a = −1 is always a
square in an OPF defined by a prime of the form p = u · 2k + 1; this becomes
immediately evident by an evaluation of the Legendre symbol

(−1
p

)
taking into

account that (p− 1)/2 is highly even for all our primes.
As pointed out in Subsection 3.1, every twisted Edwards curve over a non-

binary finite field Fq is birationally equivalent over Fq to a Montgomery curve
and, conversely, every Montgomery curve is birationally equivalent to a twisted
Edwards curve [5]. However, this does not imply that every Montgomery curve
is birationally equivalent to a twisted Edwards curve with a fast and complete
addition law. The goal of our curve generation procedure is to find a Montgom-
ery curve along with its twisted Edwards counterpart so that both satisfy the
security and efficiency criteria outlined above. To achieve this, we used the com-
puter algebra system Magma. Magma provides an extensive pool of functions
for computations on elliptic curves given in both short and long (non-simplified)
Weierstraß form, but does not directly support the twisted Edwards from. How-
ever, a twisted Edwards curve with the parameters a, d ← Fq can be expressed
via a non-simplified Weierstraß equation as follows.

a2 =
a+ d

2
, a4 =

(
a− d

4

)2

, and a1 = a3 = a6 = 0 (7)

The above formulas were derived by simply exploiting the fact that any twisted
Edwards curve over a non-binary field Fq is birationally equivalent to a Mont-
gomery curve, which was formally proven in [5]. We fixed the parameter a to −1
to take advantage of the fast formulas for point addition and doubling presented
in [16]. Furthermore, we only consider values of d that are non-square so as to
ensure completeness of the addition formula.

3.3 Regular Digit-Set Conversion for Comb Method

When performing a scalar multiplication k · P on a fixed base point P , one can
take advantage of the so-called comb method to reduce execution time [15]. In
general, the comb method processes w ≤ 2 bits of the scalar k at once and re-
quires pre-computation and storage of (up to) 2w curve points, all of which are

370 Z. Liu, E. Wenger, and J. Großschädl

linear combinations of w multiples of P . An n-bit scalar multiplication consists
of exactly d = �n/w≥ point doublings and at most d point additions. Thus, the
w-bit comb method cuts the number of point doublings by a factor of w versus
the binary (i.e. “double-and-add”) technique. The number of point additions is
not constant but depends on the scalar since, similar to the binary method, the
addition step is simply omitted if the corresponding w bits of k are all 0. It is
possible to reduce the number of pre-computed points to 2w−1 at the expense
of point negation operations to be carried out “on-the-fly,” resulting in a slight
performance degradation. Our implementation of the comb method follows this
avenue; in each step we process w = 4 bits of the scalar at once using 2w−1 = 8
pre-computed points, which are negated on-the-fly if necessary.

A conventional implementation of the comb technique can leak information
related to the scalar k since, as explained above, the number of point additions
is not constant but depends on k. MoTE-ECC uses the comb method for fixed-
point scalar multiplication on a twisted Edwards curve, which means we could
exploit the completeness of the Edwards addition law and just add the neutral
element O to achieve a (more) regular execution profile. Even though such an
approach would foil timing attacks, it may still leak SPA-relevant information
since the coordinates of O consist of the field elements 0 and 1. Multiplying an
arbitrary field element by 0 or 1 causes less bit flips in the multiplier hardware
and register file than a multiplication of two random elements of Fp. Thus, we
opted to not add O but represent the 4-bit digits processed in each step of the
comb method using a signed digit-set that does not contain 0.

To foil SPA attacks, all operations involving bits of the secret scalar k need
to be implemented in a highly regular way without conditional statements. In
our case, this requirement boils down to the demand for a regular algorithm to
convert a radix-24 integer with digits from the set D = {0, 1, 2, . . . , 14, 15} into
an equivalent radix-24 representation using a “zero-free” digit set of the form
D′ = {±1, ±3, . . . , ±13, ±15}. Algorithms for this kind of digit-set conversion
were proposed in e.g. [19,14]. However, we use a different conversion technique
that is more regular and easier to implement than the state-of-the-art. Our al-
gorithm for digit-set conversion is based on the following observation: Any odd
n-bit integer k given by k =

∑n−1
i=0 ki · 2i with ki ← {0, 1} for 0 < i < n− 1 and

kn−1 = k0 = 1 can be written in standard Binary Signed-Digit (BSD) form as

k = 2n−1 +
∑n−2

i=0 (2ki+1− 1) · 2i. The expression 2ki+1− 1 yields either 1 (when
ki+1 = 1) or −1 (if ki+1 = 0), i.e. all digits of our BSD representation of k are
non-zero. One can verify the correctness of this conversion as follows.

k = 2n−1 +
n−2∑
i=0

(2ki+1 − 1) · 2i = 2n−1 −
n−2∑
i=0

2i +
n−2∑
i=0

2ki+1 · 2i =

= 1+
n−2∑
i=0

ki+1 · 2i+1 = 1 +
n−1∑
i=1

ki · 2i =
n−1∑
i=0

ki · 2i with k0 = 1 (8)

Equation (8) leads to a simple technique to convert an odd integer given in
conventional binary form into a BSD representation consisting of only non-zero

MoTE-ECC: Elliptic Curve Cryptography 371

Algorithm 2. Regular w-bit comb method for fixed-base scalar multiplication

Input: n-bit scalar k = (kn−1, . . . , k1, k0)2 with k0 = 1, point P ∈ E(Fp).
Output: Q = k · P
1: Pre-compute R[j] = R[aw−2, . . . , a1, a0] = 2dwP + (2aw−2 − 1)2(d−1)wP + . . . +

(2a1 − 1)2wP + (2a0 − 1)P for all bit-strings j = (aw−2, . . . , a1, a0) of length w− 1
2: Q → R[kdw, . . . , k2d, kd]
3: for i = d− 1 downto 1 do
4: Q → 2Q
5: Q → Q+ (2k(w−1)d+i − 1) · R[k(w−2)d+i, . . . , kd+i, ki]
6: end for

digits, namely −1 and 1. We just have to shift the whole binary representation
of k one bit to the right and insert a “1” at the vacant MSB position. Now this
shifted bit-string is already exactly the BSD-form of k when we interpret all 0
bits as −1. A radix-24 representation can be obtained by dividing the bit-string
into groups of 4-bit digits, each of which corresponds to an odd number in the
range [−15, 15]. In this way, we get a signed radix-24 representation that does
not contain zero digits. Similar to Joye et al’s signed-digit recoding algorithm
from [19, Sect. 3.2], our conversion technique requires k to be odd as otherwise
the result will be off by 1. More precisely, when performing a scalar multiplica-
tion using the proposed digit-set conversion with an even k, the actual result is
(k − 1) · P instead of k · P , which means a final addition of P is required. How-
ever, such a final addition does not necessarily introduce an irregularity in the
comb method since we can define private keys to be odd (or even) so that the
final addition is either never or always executed. Unlike the recoding technique
from [19], the execution time and power consumption profile of our conversion
is independent of the position of the MSB of k since a leading bit-string of the
form 000 · · · 001 becomes 11̄1̄ · · · 1̄1̄1̄ where 1̄ denotes −1. Hence, short scalars
(i.e. scalars having less than n bits) are processed in precisely the same way as
an n-bit scalar, which is not the case for the conversion proposed in [19].

Algorithm 2 shows a highly regular variant of the fixed-base comb method
for point multiplication. We use the same notation as Sect. 3.3.2 in [15], which
means w denotes the number of bits (i.e. length of the bit-string) processed in
each iteration of the loop and d = �n/w≥. Similar to the straightforward comb
method specified in [15, Algorithm 3.44], our variant comprises an offline phase
(Step 1) and an online phase. In the first phase, 2w−1 points are pre-computed
and stored, all of which are linear combinations of P . Our implementation pre-
computes eight points as we use w = 4 to achieve a balance between execution
time and storage requirements. Note that an expression of the form (2ai − 1) in
Step 1 yields either 1 (when ai = 1) or −1 (if ai = 0), thereby performing the
digit-set conversion described above. The online phase consists of a simple loop
that executes a doubling followed by an addition in each iteration. However, in
contrast to the standard comb method, w − 1 bits (instead of w bits) of k are
used to determine which of the 2w−1 pre-computed points is to be added, while
a further bit (namely k(w−1)d+i in Step 5 of Algorithm 2) defines whether this

372 Z. Liu, E. Wenger, and J. Großschädl

point is actually added or subtracted. To achieve a regular execution, we need
a function that, depending on the value of a bit, assigns either a point R or the
negative of that point (i.e. −R) to a destination. The negative of a point R in
extended affine coordinates is −R = (−x, y,−t) [16]; consequently, the problem
of negating a point boils down to the negation of elements of Fp, which can be
realized through subtractions from p. MoTE-ECC performs the negation of an
element x ← Fp depending on the value of a bit b as follows. First, we compute
x′ = p− x via subtraction. Then, we use the bit b to derive a mask m, which is
either an “all-1” byte (if b = 1) or an “all-0” byte (if b = 0), in the same way as
described in [24]. Furthermore, we need a second mask m′ that is the bit-wise
complement of m, i.e. m′ is 0 if m is an “all-1” byte and vice versa. After these
preparations, we compute (xi

′ &m) | (xi &m′) for all bytes of x′ and x (where
& and | denote the bit-wise and and or operation, respectively) and assign the
result to the corresponding byte of the destination. The field element we get in
this way is either −x = p− x (if b = 1, i.e. the negation is actually carried out)
or simply x (if b = 0, i.e. no negation). In summary, our regular comb method
executes always exactly d− 1 point additions and d− 1 doublings, irrespective
of the actual value of the scalar bits and the index of the MSB.

4 Implementation and Evaluation

We implemented MoTE-ECC for the 8-bit AVR platform (e.g. ATmega128 [3])
and assessed its execution time and memory footprint using ephemeral ECDH
key exchange as example. The main idea of our ECDH protocol is to exploit the
birational equivalence between Montgomery and twisted Edwards curves [5] to
improve the overall performance. Assume two sensor nodes, named A and B in
the following, want to establish a shared secret key, whereby the set of domain
parameters (a, d, A, B, G, p) has already been agreed upon. Here, a and d are
the parameters of a twisted Edwards curve EE , while A and B characterize the
birationally-equivalent Montgomery curve EM . G is a point of prime order on
EE , and p defines the underlying OPF. One round of our ECDH key exchange
protocol can be divided into two stages as follows:

1. Node A generates a private key dA and computes the corresponding public
key Q = dA ·G. This scalar multiplication is done on the twisted Edwards
curve EE using generator G. Then, node A converts the point Q = (xq, yq)
to a point M = (xm, ym) on the birationally equivalent Montgomery curve
EM and sends the x-coordinate xm of M to node B. Node B performs the
same steps with private key dB and sends its x-coordinate to A.

2. After node A has received the x-coordinate from B, it computes the scalar
multiplication S = dA ·M (whereby M consists of only an x coordinate) on
the Montgomery curve EM . Node B does the same with the x coordinate it
received from node A.

Both node A and node B have to carry out two scalar multiplications to obtain
the shared secret key S = dA · dB ·G. Since the base point G is fixed and known

MoTE-ECC: Elliptic Curve Cryptography 373

Table 1. Execution time (in clock cycles) of field arithmetic operations for operands
of a length of 160, 192, 224, and 256 bits

Operation 160 bits 192 bits 224 bits 256 bits

mod add 530 631 732 833

mod sub 530 631 732 833

mod mul 3237 4500 5971 7650

mod sqr 2901 3909 5058 6347

mod inv 571916 830823 1163655 1491839

in advance, we can speed up the execution of the first scalar multiplication with
help of the fixed-base comb method using a window width of w = 4 and eight
pre-computed points as described in Section 3.3.

MoTE-ECC adopts the “extended” coordinate system for twisted Edwards
curves introduced in [16], which means we obtain the point Q resulting from the
first scalar multiplication in extended projective coordinates. A straightforward
conversion of a point Q on a twisted Edwards curve EE into a point M on the
birationally-equivalent Montgomery curve EM can be executed in the following
way. We firstly convert the projective point Q = (Xq, Yq, Tq, Zq) on EE to its
affine representation Q = (xq , yq) and then calculate the equivalent point M =
(xm, ym) on EM via xm = (1+ yq)/(1− yq) and ym = (1 + yq)/((1− yq) · xq) as
specified in [5]. However, when doing so, we have to execute an inversion in the
affine-to-projective conversion to get 1/Zq and another inversion as part of the
Edwards-to-Montgomery transformation (to obtain 1/[(1− yt) · xt]). To reduce
the computational overhead caused by two inversions, we directly transform the
point Q = (Xq, Yq, Tq, Zq) to the point M = (xm, ym) as follows.

xm = (1 + yq)/(1− yq) = (1 + Yq/Zq)/(1− Yq/Zq) = (Zq + Yq)/(Zq − Yq) (9)

ym = (1 + yq)/(xq · (1− yq)) = (Z2
q + YqZq)/(XqZq −XqYq) (10)

In this way, we only need one inversion to compute 1/(XqZq −XqYq), which we
just have to multiply by Xq to get 1/(Zq − Yq).

4.1 Execution Time

As explained in Section 2, we implemented the OPF inversion from scratch and
used the OPF library from [24] for all other arithmetic operations. Table 1 lists
the simulated execution times for the ATmega128. The modular multiplication
only takes 3237, 4500, 5971 and 7650 clock cycles for 160, 192, 224 and 256-bit
operands, respectively. As stated in [24], these timings represent speed records
for modular multiplication on an 8-bit AVR processor. For 256-bit operands, the
OPF multiplication is even faster than the multiplication of the NaCl software
for AVR [17]. As also shown in Table 1, our regular Itoh-Tsujii inversion needs
571916 clock cycles (in a 160-bit OPF), which is about 1.36 times faster than
the unprotected inversion of the well-known TinyECC library [23].

374 Z. Liu, E. Wenger, and J. Großschädl

Table 2. Execution time (in clock cycles) of point arithmetic operations over 160, 192,
224, and 256-bit OPFs

Operation 160 bits 192 bits 224 bits 256 bits

Mo point add 19479 25890 33207 41428

Mo point dbl 15950 21072 26884 33390

TE point add 27355 36903 47907 60367

TE point dbl 25421 33848 43463 54262

We wrote the functions for point arithmetic in ANSI C and determined the
execution time of point addition and point doubling on both twisted Edwards
and Montgomery curves. The timings are reported in Table 2 for OPFs of sizes
ranging between 160 and 256 bits. Taking the 160-bit OPF as example, it turns
out that addition and doubling on a Montgomery curve require exactly 19, 479
and 15, 950 clock cycles, respectively. On the other hand, adding two points on
a twisted Edwards curve needs 27, 355 clock cycles, while a doubling operation
costs 25, 421 cycles. Our simulation results are exactly in line with the analysis
in Section 3. For example, the point addition on a Montgomery curve requires
only 3M + 2S, which is clearly more efficient than the 7M for adding points on
a twisted Edwards curve. Thus, it is not surprising that the point arithmetic on
the Montgomery curve is much faster than on the twisted Edwards curve. The
addition and doubling operation of our implementation for Montgomery curves
outperform that of the TinyECC library by a factor of more than three. On the
other hand, the point addition and doubling on the twisted Edwards curve are
roughly 2.1 and 1.9 times faster than TinyECC, respectively.

Table 3. Execution time (in clock cycles) of scalar multiplication over 160, 192, 224
and 256-bit OPFs

Operation 160 bits 192 bits 224 bits 256 bits

Scalar mul. Mo curve 6276630 9964549 14856446 21118778

Scalar mul. TE curve 2767454 4412519 6603888 9420788

Full MoTE-ECDH 9044084 14377068 21460334 30539566

The execution times of a full scalar multiplication using the two curve sha-
pes over 160, 192, 224 and 256-bit OPFs are summarized in Table 3. Each run
of our ECDH key exchange protocol consists of two scalar multiplications; the
first one is performed on a twisted Edwards curve, while the second is carried
out on the birationally-equivalent Montgomery curve. When using a fixed-base
comb method as described in Section 3.3, the first stage of the ECDH protocol
can be executed in about 2.76 · 106 clock cycles over a 160-bit OPF (i.e. 0.37 s
at the typical sensor-node frequency of 7.37 MHz), which already includes the
Edwards-to-Montgomery conversion. The second stage of the ECDH protocol is
more expensive than the first one since it involves a scalar multiplication by an

MoTE-ECC: Elliptic Curve Cryptography 375

elliptic-curve point that is neither fixed nor known a priori. MoTE-ECC uses a
simple ladder on a Montgomery curve for this second scalar multiplication and
achieves an execution time of roughly 6.27 · 106 cycles in the 160-bit case. The
complete computational cost of an ephemeral ECDH key exchange amounts to
about 9.04 · 106 clock cycles when using a 160-bit OPF as underlying algebraic
structure, which corresponds to an execution time of 1.22 s at 7.37 MHz.

4.2 Memory Footprint and Code Size

Besides performance, run-time memory consumption is an important criterium
for WSN applications since a typical AVR-based sensor node features only 4 kB
RAM. Our comb method for scalar multiplication on a twisted Edwards curve
requires to store eight points given in extended affine coordinates. However, as
these points are pre-computed “off-line,” we can store them in ROM or in flash
memory. In this way, we only need to transfer the point that is required for the
current iteration of the comb method from ROM or flash memory to RAM. As
a consequence, a full ephemeral ECDH key exchange supporting elliptic curves
over 160, 192, 224, and 256-bit OPFs (without re-compilation) occupies a mere
556 bytes in RAM, which includes besides all global and local variables also the
stack. A stripped-down variant of MoTE-ECC supporting only fields of a size
of up to 160 bits has a RAM footprint of just 380 bytes.

Even though ROM (resp. flash) usage is, in general, less critical than RAM
footprint, it is still important to analyze the (binary) code size. The arithmetic
library for OPFs used by MoTE-ECC is implemented in a parameterized form
with rolled loops (so as to support operands of varying length [24]), which has
the side-benefit of compact code size. Besides the field arithmetic, also the con-
crete implementation of the fixed-base comb method has a large impact on the
ROM (resp. flash) requirements of MoTE-ECC. Our choice of w = 4 with eight
pre-computed points represents a fair trade-off between performance and code
size. The total ROM/flash footprint of MoTE-ECC supporting Montgomery as
well as twisted Edwards curves is 14.7 kB, which constitutes some 11.5% of the
128 kB flash memory that is available on a typical AVR-based sensor node.

4.3 Comparison with Related Work

Many ECC implementations for the 8-bit AVR platform have been reported in
the literature. However, most of them were solely optimized for speed and did
not properly consider the limited resources of 8-bit sensor nodes. We compare
our MoTE-ECC library with previous work in three main aspects: performance
(i.e. execution time of fixed-point and variable-point scalar multiplication, and
execution time of both together), RAM footprint, and ROM requirements. The
key figures of MoTE-ECC and previous ECC implementations can be found in
Table 4, whereby all timings are specified for an ATmega128 processor clocked
at a frequency of 7.37 MHz. We take the implementations using a 160-bit field
as example to demonstrate the advantages of MoTE-ECC. Our implementation
achieves the best execution time for ephemeral ECDH key exchange among all

376 Z. Liu, E. Wenger, and J. Großschädl

Table 4. Comparison of ECC libraries for 160, 192, 224, and 256-bit prime fields

Reference Field Fixed P. Rand. P. RAM ROM ECDH

Liu [23] 160 bit 2.05 s 2.30 s 1174 B 19.0 kB 4.35 s

Wang [33] 160 bit 1.24 s 1.35 s 3200 B 15.8 kB 2.59 s

Szczech. [31] 160 bit 1.27 s 1.27 s 1800 B 46.1 kB 2.54 s

Gura [13] 160 bit 0.88 s 0.88 s 282 B 3.7 kB 1.76 s

Ugus [32] 160 bit 0.57 s 1.03 s 543 B 3.6 kB 1.60 s

Großschädl [12] 160 bit 0.74 s 0.74 s n/a n/a 1.48 s

MoTE-160 160 bit 0.37 s 0.85 s 556 B 14.7 kB 1.22 s

Liu [23] 192 bit 2.90 s 2.90 s 1510 B 19.0 kB 5.80 s

Gura [13] 192 bit 1.35 s 1.35 s 336 B 4.0 kB 2.70 s

Lederer [21] 192 bit 0.71 s 1.67 s 1398 B 23.0 kB 2.38 s

MoTE-192 192 bit 0.60 s 1.35 s 556 B 14.7 kB 1.95 s

Gura [13] 224 bit 2.38 s 2.38 s 422 B 4.8 kB 4.76 s

MoTE-224 224 bit 0.90 s 2.01 s 556 B 14.7 kB 2.91 s

Hutter [17] 255 bit 3.80 s 3.80 s 922 B 17.4 kB 7.60 s

Hutter [17] 255 bit 3.11 s 3.11 s 681 B 28.9 kB 6.22 s

MoTE-256 256 bit 1.28 s 2.86 s 556 B 14.7 kB 4.14 s

prime-field based ECC libraries documented in the literature. In particular, we
require just about 28% of the execution time of TinyECC [23]. However, since
MoTE-ECC supports two curve shapes, it occupies slightly more RAM and is
larger in terms of code size than the implementations from [13] and [32]. When
compared with all known implementations using 160-bit fields (including also
binary-field libraries, which are not specified in Table 4), our implementation is
only slower than the work of Aranha et al [2]. However, their software employs
a carefully-optimized multiplication technique for binary fields, which achieves
high performance at the expense of a RAM footprint of 2.8 kB and a code size
of 32.0 kB. Furthermore, it should be noted that MoTE-ECC contains counter-
measures against SPA attacks, which is not the case for all other ECC libraries
listed in Table 4 except NaCl [17] and the work introduced in [21]. NaCl is the
only implementation with a high level of SPA resistance similar to ours. While
NaCl is fast and small in terms of code size, it supports only a single curve. In
contrast, our implementation is highly scalable as it supports fields and curves
of various size (e.g. from 160 to 256 bits) without re-compilation.

5 Conclusions

The main contributions of this paper can be recapitulated as follows: First, we
extended Liu et al’s [24] parameterized yet efficient arithmetic library for OPFs
with a Fermat-based inversion that is robust against SPA attacks. Second, we
presented a highly regular implementation of the comb method so as to reduce
the SPA-leakage of fixed-base scalar multiplication. Third, we described a new

MoTE-ECC: Elliptic Curve Cryptography 377

way of performing ephemeral ECDH key exchange by combining the individual
computational benefits of Montgomery and twisted Edwards curves. Fourth, we
discussed how these curves have to be generated to satisfy both efficiency and
security criteria. The former three contributions have been implemented and
evaluated in MoTE-ECC, an efficient, scalable, and SPA-resistant ECC library
for AVR processors such as the ATmega128. MoTE-ECC is able to perform the
two scalar multiplications of an ephemeral ECDH key exchange in a little more
than 9 · 106 clock cycles altogether when the underlying OPF has a size of 160
bits, which significantly advances the state-of-the-art in prime-field based ECC
on an 8-bit processor. Another advantage of MoTE-ECC is its scalability since
it supports fields and curves of different size (e.g. 160, 192, 224, and 256 bits)
without re-compilation. The RAM footprint of MoTE-ECC for OPFs of up to
256 bits is 556 bytes, which is less than 15% of the available RAM of a typical
AVR-based sensor node. A stripped-down variant of MoTE-ECC that supports
OPFs of a size of up to 160 bits occupies only 380 bytes in RAM.

Acknowledgements. We thank the anonymous reviewers of CHES 2013 and
ACNS 2014 for their valuable comments and suggestions.

The research described in this paper was supported in part by the Austrian
Research Promotion Agency (FFG) under grant 836628 (SeCoS) and the Fonds
National de la Recherche (FNR) Luxembourg under AFR grant 1359142.

References

1. Akyildiz, I.F., Vuran, M.C.: Wireless Sensor Networks. John Wiley and Sons (2010)

2. Aranha, D.F., Dahab, R., López, J.C., Oliveira, L.B.: Efficient implementation
of elliptic curve cryptography in wireless sensors. Advances in Mathematics of
Communications 4(2), 169–187 (2010)

3. Atmel Corporation. 8-bit ARV� Microcontroller with 128K Bytes In-System Pro-
grammable Flash: ATmega128, ATmega128L, Datasheet, available for download
at http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
(June 2008)

4. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer,
Heidelberg (2006)

5. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405.
Springer, Heidelberg (2008)

6. Brody, H.: 10 emerging technologies that will change the world. Technology Re-
view 106(1), 33–49 (2003)

7. CertiVox Corporation. CertiVox MIRACL SDK. Source code (June 2012), available
for download at http://www.certivox.com

8. Crossbow Technology, Inc. MICAz Wireless Measurement System (2006), Data
sheet, available for download at
http://www.xbow.com/Products/Product pdf files/

Wireless pdf/MICAz Datasheet.pdf

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.certivox.com
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf

378 Z. Liu, E. Wenger, and J. Großschädl

9. de Meulenaer, G., Standaert, F.-X.: Stealthy compromise of wireless sensor nodes
with power analysis attacks. In: Chatzimisios, P., Verikoukis, C., Santamaŕıa,
I., Laddomada, M., Hoffmann, O. (eds.) MOBILIGHT 2010. LNICST, vol. 45,
pp. 229–242. Springer, Heidelberg (2010)

10. Fouque, P.-A., Lercier, R., Réal, D., Valette, F.: Fault attack on elliptic curve
Montgomery ladder implementation. In: Breveglieri, L., Gueron, S., Koren, I.,
Naccache, D., Seifert, J.-P. (eds.) Proceedings of the 5th International Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC 2008), pp. 92–98. IEEE
Computer Society Press (2008)

11. Großschädl, J.: TinySA: A security architecture for wireless sensor networks. In:
Diot, C., Ammar, M., Sá da Costa, C., Lopes, R.J., Leitão, A.R., Feamster, N.,
Teixeira, R. (eds.) Proceedings of the 2nd International Conference on Emerging
Networking Experiments and Technologies (CoNEXT 2006), pp. 288–289. ACM
Press (2006)

12. Großschädl, J., Hudler, M., Koschuch, M., Krüger, M., Szekely, A.: Smart elliptic
curve cryptography for smart dust. In: Zhang, X., Qiao, D. (eds.) QShine 2010.
LNICST, vol. 74, pp. 623–634. Springer, Heidelberg (2012)

13. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit cPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

14. Hamburg, M.: Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309 (2012), http://eprint.iacr.org

15. Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-
raphy. Springer (2004)

16. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves re-
visited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008)

17. Hutter, M., Schwabe, P.: NaCl on 8-bit AVR microcontrollers. In: Youssef,
A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918,
pp. 156–172. Springer, Heidelberg (2013)

18. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF (2m) using normal bases. Information and Computation 78(3), 171–177 (1988)

19. Joye, M., Tunstall, M.: Exponent recoding and regular exponentiation algo-
rithms. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 334–349.
Springer, Heidelberg (2009)

20. Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

21. Lederer, C., Mader, R., Koschuch, M., Großschädl, J., Szekely, A., Tillich, S.:
Energy-efficient implementation of ECDH key exchange for wireless sensor networks.
In: Markowitch, O., Bilas, A., Hoepman, J.-H., Mitchell, C.J., Quisquater, J.-J.
(eds.) Information Security Theory and Practice. LNCS, vol. 5746, pp. 112–127.
Springer, Heidelberg (2009)

22. Lee, J., Son, S.H., Singhal, M.: Design of an architecture for multiple security levels
in wireless sensor networks. In: Proceedings of the 7th International Conference on
Networked Sensing Systems (INSS 2010), pp. 107–114. IEEE (2010)

23. Liu, A., Ning, P.: TinyECC: A configurable library for elliptic curve cryptography
in wireless sensor networks. In: Proceedings of the 7th International Conference
on Information Processing in Sensor Networks (IPSN 2008), pp. 245–256. IEEE
Computer Society Press (2008)

http://eprint.iacr.org

MoTE-ECC: Elliptic Curve Cryptography 379

24. Liu, Z., Großschädl, J., Wong, D.S.: Low-weight primes for lightweight elliptic
curve cryptography on 8-bit AVR processors. In: Lin, D., Xu, S., Yung, M. (eds.)
Information Security and Cryptology — INSCRYPT 2013. LNCS (2014)

25. Lopez, J., Zhou, J.: Wireless Sensor Network Security. Cryptology and Information
Security Series, vol. 1. IOS Press (2008)

26. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

27. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

28. Naccache, D., Smart, N.P., Stern, J.: Projective coordinates leak. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 257–267.
Springer, Heidelberg (2004)

29. Okeya, K., Kurumatani, H., Sakurai, K.: Elliptic curves with the montgomery-
form and their cryptographic applications. In: Imai, H., Zheng, Y. (eds.) PKC
2000. LNCS, vol. 1751, pp. 238–257. Springer, Heidelberg (2000)

30. Slijepcevic, S., Potkonjak, M., Tsiatsis, V., Zimbeck, S., Srivastava, M.B.: On com-
munication security in wireless ad-hoc sensor networks. In: Proceedings of the 11th
IEEE International Workshops on Enabling Technologies: Infrastructure for Col-
laborative Enterprises (WET ICE 2002). IEEE Computer Society Press (2002)

31. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:
Testing the limits of elliptic curve cryptography in sensor networks. In: Verdone,
R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)

32. Ugus, O., Westhoff, D., Laue, R., Shoufan, A., Huss, S.A.: Optimized imple-
mentation of elliptic curve based additive homomorphic encryption for wire-
less sensor networks. In: Wolf, T., Parameswaran, S. (eds.) Proceedings of the
2nd Workshop on Embedded Systems Security (WESS 2007), pp. 11–16 (2007),
http://arxiv.org/abs/0903.3900

33. Wang, H., Li, Q.: Efficient implementation of public key cryptosystems on mote
sensors (Short paper). In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 519–528. Springer, Heidelberg (2006)

34. Zhang, Y., Großschädl, J.: Efficient prime-field arithmetic for elliptic curve cryp-
tography on wireless sensor nodes. In: Proceedings of the 1st International Con-
ference on Computer Science and Network Technology (ICCSNT 2011), vol. 1,
pp. 459–466. IEEE (2011)

http://arxiv.org/abs/0903.3900

BackRef: Accountability in Anonymous

Communication Networks

Michael Backes1,3, Jeremy Clark2, Aniket Kate1, Milivoj Simeonovski1,
and Peter Druschel3

1 Saarland University, Germany
2 Concordia University, Canada

3 Max Planck Institute for Software Systems (MPI-SWS), Germany

Abstract. Many anonymous communication networks (ACNs) rely on
routing traffic through a sequence of proxy nodes to obfuscate the orig-
inator of the traffic. Without an accountability mechanism, exit proxy
nodes may become embroiled in a criminal investigation if originators
commit criminal actions through the ACN. We present BackRef, a
generic mechanism for ACNs that provides practical repudiation for the
proxy nodes by tracing back the selected outbound traffic to the predeces-
sor node (but not in the forward direction) through a cryptographically
verifiable chain. It also provides an option for full (or partial) traceabil-
ity back to the entry node or even to the corresponding originator when
all intermediate nodes are cooperating. Moreover, to maintain a good
balance between anonymity and accountability, the protocol incorpo-
rates whitelist directories at exit proxy nodes. BackRef offers improved
deployability over the related work, and introduces a novel concept of
pseudonymous signatures that may be of independent interest.

We exemplify the utility of BackRef by integrating it into the onion
routing (OR) protocol, and examine its deployability by considering sev-
eral system-level aspects. We also present the security definitions for
the BackRef system (namely, anonymity, backward traceability, no for-
ward traceability, and no false accusation) and conduct a formal security
analysis of the OR protocol with BackRef using ProVerif, an automated
cryptographic protocol verifier, establishing the aforementioned security
properties against a strong adversarial model.

Keywords: anonymity, malicious users, accountability, repudiation,
traceability, formal verification.

1 Introduction

Anonymous communication networks (ACNs) are designed to hide the originator
of each message within a larger set of users. In some systems, like DC-Nets [1] and
Dissent [2], the message emerges from aggregating all participants’ messages. In
other systems, like onion routing [3], mix networks [4], and peer-to-peer anony-
mous communication networks [5], messages are routed through volunteer nodes

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 380–400, 2014.
c© Springer International Publishing Switzerland 2014

Accountability in Anonymous Communication Networks 381

that act as privacy-preserving proxies for the users’ messages. We call this latter
class proxy-based ACNs and concentrate on it henceforth.

Proxy-based ACNs provide a powerful service to their users, and correspond-
ingly they have been the most successful ACNs so far [6,7]. However the nature
of the properties of the technology can sometimes be harmful for the nodes serv-
ing as proxies. If a network user’s online communication results in a criminal
investigation or a cause of action, the last entity to forward the traffic may be-
come embroiled in the proceedings [8,9], whether as the suspect/defendant or as
a third party with evidence. While repudiation in the form of a partial or full
traceability has never been a component of any widely-deployed ACN, it may
become the case that new anonymity networks, or a changing political climate,
initiate an interest in providing a verifiable trace to users who misuse anonymity
networks according to laws or terms of service.

While several proposals [10,11,12,13,14,15,16] have been made to tackle or at
least to mitigate this problem under the umbrella term of accountable anonymity,
as we discuss in the next section some of them are broken, while others are not
scalable enough for deploying in low latency ACNs.

Our Contributions. In this work, we design BackRef, a novel practical re-
pudiation mechanism for anonymous communication, which has advantages in
terms of deployability and efficiency over the literature. To assist in the design of
BackRef, we propose a concept of pseudonymous signatures (§3), which employ
pseudonyms (or half Diffie-Hellman exponents) as temporary public keys (and
corresponding temporary secrets) employed or employable in almost all ACNs
for signing messages. These pseudonym signatures are used to create a verifi-
able pseudonym-linkability mechanism where any proxy node within the route
or path, when required, can verifiably reveal its predecessor node in time-bound
manner. We use this property to design a novel repudiation mechanism (§4),
which allows each proxy node, in cooperation with the network, to issue a crypto-
graphic guarantee that a selected traffic flow can be traced back to its originator
(i.e., predecessor node) while maintaining the eventual forward secrecy of the
system. Unlike the related work, which largely relies on group signatures and/or
anonymous credentials, BackRef avoids the logistical difficulties of organizing
users into groups and arranging a shared group key, and does not require ac-
cess to a trusted party to issue credentials. While BackRef is applicable to all
proxy-based ACNs, we illustrate its utility by applying it to the onion routing
(OR) protocol. We observe that it introduces a small computational overhead
and does not affect the performance of the underlying OR protocol (§5). Back-

Ref also includes a whitelisting option; i.e., if an exit node considers traceability
to one or more web-services unnecessary, then it can include those services in a
whitelist directory such that accesses to those are not logged.

We formally define the important security properties of the BackRef net-
work (§6). In particular, we formalize anonymity and no forward traceability
as observational equivalence relations, and backward traceability and no false
accusation as trace properties. We conduct a formal security analysis of Back-

Ref using ProVerif, an automated cryptographic protocol verifier, establishing

382 M. Backes et al.

the aforementioned security and privacy properties against a strong adversarial
model. We believe both the definitions and the security analysis are of indepen-
dent interest, since they are the first for the OR protocol.

2 Background and Related Work

Anonymous communication networks (ACNs) aim at protecting personally iden-
tifiable information (PII), in particular the network addresses of the communi-
cating parties by hiding correlation between input and output messages at one or
more network entities. For this purpose, the ACN protocols employ techniques
such as using a series of intermediate routers and layered encryptions to obfus-
cate the source of a communication, and adding fake traffic to make the ‘real’
communication difficult to extract.

Anonymous Communication Protocols. Single-hop proxy servers, which
relay traffic flows, enable a simple form of anonymous communication. However
anonymity in this case requires, at a minimum, that the proxy is trustworthy and
not compromised, and this approach does not protect the anonymity of senders
if the adversary inspects traffic through the proxy [17]. Even with the use of
encryption between the sender and proxy server, timing attacks can be used to
correlate flows.

Starting with Chaum [4], several ACN technologies have been developed in
the last thirty years to provide stronger anonymity not dependent on a single
entity [6,3,7,2,1,18,19,20,21]. Among these, mix networks [4,7] and onion rout-
ing [6] have arguably been most successful. Both offer user anonymity, relation-
ship anonymity and unlinkability [22], but they obtain these properties through
differing assumptions and techniques.

An onion routing (OR) infrastructure involves a set of routers (or OR nodes)
that relay traffic, a directory service providing status information for OR nodes,
and users. Users benefit from anonymous access by constructing a circuit—a
small ordered subset of OR nodes—and routing traffic through it sequentially.
The crucial property for anonymity is that an OR node within the built circuit
is not able to identify any portion of the circuit other than its predecessor and
successor. The user sends messages (to the first OR node in the circuit) in a
form of an onion—a data structure multiply encrypted by symmetric session
keys (one encryption layer per node in the circuit). The symmetric keys are ne-
gotiated during an initial circuit construction phase. This is followed by a second
phase of low latency communication (opening and closing streams) through the
constructed circuit for the session duration. An OR network does not aim at
providing anonymity and unlinkability against a global passive observer, which
in theory can analyze end-to-end traffic flow. Instead, it assumes an adversary
that adaptively compromises a small fraction of OR nodes and controls a small
fraction of the network.

A mix network achieves anonymity by relaying messages through a path of
mix nodes (or mixes) in a latency-tolerant manner. The user encrypts a message
to be partially decrypted by each mix along the path. Mixes accept a batch

Accountability in Anonymous Communication Networks 383

of encrypted messages, which are partially decrypted, randomly permuted, and
forwarded. Unlike onion routing, an observer is unable to correlate incoming and
outgoing messages at the mix; thus, mix networks provide anonymity against a
powerful global passive adversary. In fact, as long as a single mix in the user’s
path remains uncompromised, the message will maintain some anonymity.

Accountable Anonymity Mechanisms. The literature has examined several
approaches for adding accountability to ACN technologies, allowing misbehaving
users to be selectively traced [10,11,12], exit nodes to deny originating traffic it
forwards [13,14], misbehaving users to be banned [15,16], and misbehaving par-
ticipants to be discovered [2,23,24]. All of these approaches either require users
to obtain credentials or do not extend to interactive, low-latency, internet-scale
ACNs. A number also partition users into subgroups, which reduces anonymity
and requires a group manager. BackRef does not require credentials, sub-
groups, and is compatible with low-latency ACNs like onion routing, adding
minimal overhead.

Kopsell et al. [10] propose traceability through threshold group signatures. A
user logs into the system to join a group, signs messages with a group signature,
and a group manager is empowered to revoke anonymity. The system also in-
troduces an external proxy to inspect all outbound traffic for correct signatures
and protocol compliance. The inspector has been criticized for centralizing traffic
flows, which enables DOS, censorship, and increases observability [25].

Von Ahn et al. [11] also use group signatures as the basis for a general trans-
formation for traceability in ACNs and illustrate it with DC networks. Users are
required to register as members of a group capable of sending messages through
the network. Our solution can be viewed as a follow-up to this paper, with a con-
centration on deployability: we do not require users to be organized into groups
or introduce new entities, and we concentrate on onion routing.

Diaz and Preneel [12] achieve traceability through issuing anonymous creden-
tials to users and utilizing a traitor tracing scheme to revoke anonymity. It is
tailored to high-latency mix networks and requires a trusted authority to issue
credentials—both impede deployability. Danezis and Sassaman [25] demonstrate
a bypass attack on this and the Kopsell et al. scheme [10]. The attack is based
on the protocols’ assumption that there can be no leakage of information from
inside the channel to the world unless it passes through the verification step.
Our protocol does not rely on such a strong assumption, namely any exit node
(or any node who leaks the information) with enabled BackRef can always
activate the repudiation mechanism and shift liability to its predecessor node.

Short of revoking the anonymity of misbehaving users, techniques have been
proposed to at least allow exit nodes to deny originating the traffic. Golle [13]
and Clark et al. [14] pursue this goal, with the former being specific to high-
latency mix networks and the latter requiring anonymous credentials. Tor offers
a service called ExoneraTor [26] that provides a record of which nodes were
online at a given time, but it does not explicitly prove that a given traffic
flow originated from Tor. Other techniques, such as Nymble [15] and its suc-
cessors (see a survey [16]), enable users to be banned. However these systems

384 M. Backes et al.

inherently require some form of credential or pseudonym infrastructure for the
users, and also require web-servers to verify user requests. Finally, Dissent [2]
and its successors [23,24] presents an interesting approach for accountable anony-
mous communication for DC Nets [1], however even when highly optimized [23],
DC Nets are not competitive for internet-scale application.

3 Design Overview

In this section we describe our threat model and system goals, and present our
key idea and design rationale.

3.1 Threat Model and System Goals

We consider the same threat model as the underlying ACN in which we wish to
incorporate the BackRef mechanism. Our active adversary A aims at breaking
some anonymity property by determining the ultimate source and/or destination
of a communication stream or breaking unlinkability by linking two communi-
cation streams of the same user. We assume that some, but not all, of the nodes
in the path of the communication stream are compromised by the adversary A,
who knows all their secret values, and is able to fully control their functionalities.
For high latency ACNs like mix networks, we assume that the adversary can also
observe all traffic in the network, as well as intercept and inject arbitrary mes-
sages, while for low latency ACNs like onion routing, we assume the adversary
can observe, intercept, and inject traffic in some parts of the network.

While maintaining the anonymity and unlinkability properties of an ACN, we
wish to achieve the following goals when incorporating BackRef in the ACN:

Repudiation: For a communication stream flowing through a node, the node
operator should be able to prove that the stream is coming from another
predecessor node or user.

Backward traceability: Starting from an exit node of a path (or circuit), it
should be possible to trace the source of a communication stream back to the
entry node when all nodes in the path verifiably reveal their predecessors.

No forward traceability: For a compromised node, it should not be possible
for the adversary A to use BackRef to verifiably trace its successor in any
completed anonymous communication session through it.

No false accusation: It should not be possible for a compromised node to
corrupt the BackRef mechanism to trace a communication stream:
1. to a path different from the path employed for the stream, and
2. to a node other than its predecessor in the path.

Non-goals. We expect our accountability notion to be reactive in nature. We
do not aim at proactive accountability and do not try to stop an illegal activity
in an ACN in a proactive manner, as we believe perfect black-listing of web
urls and content to be an infeasible task. Moreover, some nodes may choose
not to follow the BackRef mechanism locally (e.g., they may not maintain

Accountability in Anonymous Communication Networks 385

Fig. 1. Backward Traceability Verification

or share the required evidence logs), and full backward traceability cannot be
ensured in those situations; nevertheless, the cooperating nodes can still prove
their innocence in a verifiable manner.

Due to its reactive nature, our repudiation mechanism inherently requires
evidence logs containing verifiable routing information. Encrypting these logs
and regularly rotating the corresponding keys can provide us eventual forward
secrecy [27]. However, we cannot aim for immediate forward secrecy due to the
inherently eventual forward secret nature of the encryption mechanism.

3.2 Design Rationale and Key Idea

Fig. 1 presents a general expected architecture to achieve the above mentioned
goals. It is clear the network level logs and the currently cryptographic mecha-
nism in the ACNs cannot be used for verifiably backward traceability purpose
as they cannot stop false accusations (or traceability) by compromised nodes: a
compromised node can tamper with its logs to intermix two different ACN paths
as there is no cryptographic association between different parts of an ACN path.

We observe that almost all OR protocols [19,27,28,29,30,31] (except TAP) and
mix network protocols [32,33,34,20,7,21] employ (or can employ1) an element of
a cyclic group of prime order satisfying some (version of) Diffie-Hellman assump-
tion as an authentication challenges or randomization element per node in the
path. In particular, it can be represented as X = gx, where g is a generator of a
cyclic group G of prime order p with the security parameter κ and x ∈R Zp is a
random secret value known only to the user. This element is used by each node
on the path to derive a secret that is shared with the user and is used to extract
a set of (session) keys for encryption and integrity protection. In the anonymity
literature, these authentication challenges X are known as user pseudonyms.

The key idea of our BackRef mechanism is to use these pseudonyms X = gx

and the corresponding secret keys x as signing key pairs to sign pseudonym’s
for successor nodes at entry and middle nodes, and to sign the communication
stream headers at the exit nodes. Signatures that use (x, gx) as the signing
key pair are referred to as pseudonym signatures. As pseudonyms are generated
independently for every single node, and the corresponding secret exponents are
random elements of Zp, they do not reveal the user’s identity. Moreover, it also
is not possible to link two or more pseudonyms to a single identity. Therefore,

1 Although some these have been defined using RSA encryptions, as discussed in [20]
they can be modified to work in the discrete logarithm (DL) setting.

386 M. Backes et al.

pseudonym signatures become particularly useful in our BackRef mechanism,
where users utilize them to sign messages without being identified by the verifier.

We can employ a CMA-secure [35] signature scheme against a computation-
ally bounded adversary (with the security parameter κ) such that, along with
the usual existential unforgeability, the resultant pseudonym signature scheme
satisfies the following property:

Unconditional Signer Anonymity: Theadversary cannotdetermine a signer’s
identity, even if it is allowed to obtain signatures on an unbounded number of
messages of its choice.

We use such temporary signing key pairs (or pseudonym signatures) to sign
consecutively employed pseudonyms in an ACN path and the web communica-
tion requests leaving the ACN path. Pseudonym signatures provide linkability
between the employed pseudonyms and the communicated message on an ACN
path. However, these pseudonyms are not sufficient to link the node employed
in the ACN path: for a pseudonym received by a node, its predecessor node can
always deny sending the pseudonym in the first place. We solve this problem
by introducing endorsement signatures: We assume that every node signs the
pseudonym while sending it to the successor so that it cannot plausibly deny
this transfer during backward tracing.

3.3 Scope of Solution

To understand the scope of BackRef, first consider traceability in the context
of the simplest ACN: a single-hop proxy. Any traceability mechanism from the
literature implicitly assumes a solution to the problem of how users can be traced
through a simple proxy. We dub this the ‘last mile’ problem. The proxy can keep
logs, but this requires a trusted proxy. Alternatively the ISP could observe and
log relevant details about traffic to the proxy, requiring trust in the ISP. The
solution more typically used in the literature is to assume individual users have
digital credentials or signing keys—essentially some form of PKI is in place to
certify the keys of individual users. [10,11,12,13,14]

None of these last mile solutions are particularly attractive. The assumption
of a PKI provides the best distribution of trust but short-term deployment ap-
pears infeasible. We believe the involvement of ISPs is the most readily deploy-
able. Such a solution involves an ISP with a packet attestation mechanism [36]
which acts as a trusted party capable of proving the existence of a particular
communication. We discuss the packet attestation mechanism further in §5.

For selected traffic flows,BackRef provides traceability to the entrance node.
This is effectively equivalent to reducing the strong anonymity of a distributed
cryptographic ACN to the weak anonymity of a single hop proxy. For full trace-
ability, we then must address the ‘last mile’ problem: tracing the flow back to
the individual sender. Thus BackRef is not a full traceability mechanism, but
rather an essential component that can be composed with any systems solution
to the last mile problem. While we later discuss a solution that involves ISPs, we

Accountability in Anonymous Communication Networks 387

emphasize that BackRef itself is concentrated on, arguably, the more difficult
problem of offering ensured traceability within the ACN.

4 Repudiation (or Traceability)

In this section, we present our BackRef repudiation scheme. For ease of ex-
position, we include our scheme in an OR protocol instead of including it in
the generic ACN protocol. Nevertheless, our scheme is applicable to almost all
ACNs mentioned in §3.2. We start our discussion with a brief overview of the OR
protocol in the Tor notions [37]. We then discuss the protocol flow for BackRef

and describe our cryptographic components.

4.1 The OR Protocol: Overview

The OR protocol is defined in two phases: circuit construction and streams relay.

OR Circuit Construction. The circuit construction phase involves the user
onion proxy (OP) randomly selecting a short circuit of (e.g., 3) OR nodes, and
negotiating a session key with each selected OR node using one-way authenti-
cated key exchange (1W-AKE) [31] such as the ntor protocol. When a user wants
to create a circuit with an OR node N1, she runs the Initiate procedure of the
ntor protocol to generate and send an authentication challenge to N1. Node N1

then runs the respond procedure and returns the authentication response. Fi-
nally, the user uses the ComputeKey procedure of ntor along with the response
to authenticate N1 and to compute a session key with it. To extend the circuit
further, the user sends an extend request to N1 specifying the address of the next
node N2 and a new ntor authentication challenge for N2. The process continues
until the user exchanges the key with the exit node N3.

Relaying Streams. Once a circuit (denoted as 〈U ↔ N1 ↔ N2 ↔ N3〉) has
been constructed throughN1, N2 and N3, the user-client U routes traffic through
the circuit using onion-wrapping WrOn and onion-unwrapping UnwrOn proce-
dures. WrOn creates a layered encryption of a payload (plaintext or onion) given
an ordered list of (three) session keys. UnwrOn removes one or more layers of
encryptions from an onion to output a plaintext or an onion given an input onion
and a ordered list of one or more session keys. To reduce latency, many of the
user’s communication streams employ the same circuit [6].

The structure and components of communication streams may vary with the
network protocol. For ease of exposition, we assume the OR network uses TCP-
based communication in the same way as Tor, but our schemes can easily be
adapted for other types of communication streams.

In Tor, the communication between the user’s TCP-based application and
her Tor proxy takes place via SOCKS. To open a communication stream (i.e.,
to start a TCP connection to some web server and port), the user proxy sends
a relay begin cell (or packet) over the circuit to the exit node N3. When N3

388 M. Backes et al.

receives the TCP request, it makes a standard TCP handshake with the web
server. Once the connection is established, N3 responds to the user with a relay
connected cell. The user then forwards all TCP stream requests for the server
as relay data cells to the circuit. (See [6,37] for a detailed explanation.)

4.2 The BackRef Protocol Flow

Consider a user U who wishes to construct an OR circuit 〈U ↔ N1 ↔ N2 ↔ N3〉,
and use it to send communication stream m. BackRef adds the repudiation
mechanism as a layer on the top of the existing OR protocol. We assume that
every OR node possesses a signing (private) key for which the corresponding
verification (public) key is publicly available through the OR directory service.

The corresponding OR protocol with the BackRef scheme works according
to the following five steps:

1. Circuit Construction with an Entry Node: The user U creates a circuit
with the entry node N1 using the ntor protocol. If the user is an OR node, then
it endorses its pseudonym X1 by signing it with its public key and sending the
signature along with X1.

However, if the user U is not an OR node, it cannot endorse the pseudonym
X1 as no public-key infrastructure (PKI) or credential system is available to him.
We solve this systems problem by entrusting the ISP with a packet attestation
mechanism [36] such that the ISP can prove that a pseudonym was sent by U
to N1. We discuss the packet attestation mechanism in §5.

2. Circuit Extension: To extend a circuit to N2, U generates a new pseudonym
X2 of an ntor instance, signs X2 and the current timestamp with the secret
value x1 associated with X1, and sends an extend request to N1 along with the
identifier for N2, {X2||tsx2}σX1

and a timestamp tsx2 . Notice that the extension
request is encrypted by a symmetric session key negotiated between U and N1.

Upon receiving a message, N1 decrypts and verifies {X2||tsx2}σX1
using the

previously received pseudonym X1 and timestamp. We call this verification
pseudonyms linkability verification. If the signature is valid, it creates an evi-
dence record as discussed in Step 4, signs X2 using its private key to generate
{X2||ts2}σsk1

and sends a circuit create request to the node N2 with {X2||ts2}σsk1
.

Node N2, upon receiving a circuit creation request along with {X2||ts2}σsk1
,

verifies the signature. Upon a successful verification, it replies to N1 with an ntor
authentication response for the OR key agreement and generates the OR session
key for its session with (unknown) user U . N1 sends the authentication response
back to U using their OR session, who then computes the session key with N2

and continues to build its circuit to N3 in a similar fashion.
Notice that we carefully avoid any conceptual modification of the OR circuit

construction protocol; the above signature generation and verification steps are
the only adjustments that BackRef makes to this protocol.

3. Stream Verification: Once a circuit 〈U ↔ N1 ↔ N2 ↔ N3〉 has been es-
tablished, the user U can utilize it to send her web stream requests. To open a

Accountability in Anonymous Communication Networks 389

TCP connection, the user sends a relay begin cell to the exit node N3 through
the circuit. The user U includes a pseudonym signature (or stream request sig-
nature) on the cell contents signed with the secret exponent x3 of X3. The user
also includes a timestamp in her stream request. When the relay cell reaches the
exit node N3, the exit node verifies the pseudonym signature with X3. Once the
verification is successful and the timestamp is current, N3 creates the evidence
log (Step 4) and proceeds with the TCP handshake to the destination server.
The relay stream request is discarded otherwise.

This stream verification helps N3 to prove linkability between its handshakes
with the destination server and the pseudonym X3 it has received from N2.
When a whitelist directory exists, the exit node first consults the directory and
if the request (i.e., web stream request) is whitelisted, the exit node just forwards
it to the destination server. In such a case, the exit node does not require any
signature verification and also does not create an evidence log. We further discuss
the server whitelisting in §4.4.
4. Log Generation: After every successful pseudonym linkability or stream
verification, the evidence record is created. A pseudonym linkability verification
evidence record associates linkability between two pseudonyms Xi and Xi+1

and an endorsement signature on Xi, while a stream verification evidence record
associates a stream verification with an endorsement signature on X3 for N3.

5. Repudiation or Traceability: The verifier contacts the exit node N3

with the request information (e.g., IP address, port number, and timestamp)
for a malicious stream coming out of the exit node N3. The operator of N3 can
determine a record using the stream request information. This evidence record
verifiably reveals the identity of the middle node N2.

As an optional next step, using the evidence records, it is possible for N2 to
verifiably reveal the identity of its predecessor N1. Then, the last mile of a full
traceability is to reach from N1 to the user U in a verifiable manner using the
record on N1 and the request information on the ISP [36]. When the user U is
an OR node a record at N1 is sufficient and the last mile problem does not exist.

4.3 Cryptographic Details

BLS Signatures. For pseudonym and endorsement signatures, we use the short
signature scheme of Boneh, Lynn and Shacham (BLS) [38]. Consider two Gap
co-Diffie-Hellman groups (or co-GDH group) G1 and G2 and a multiplicative
cyclic group GT , all of the same prime order p, associated by a bilinear map [39]
e : G1 ×G2 → GT .

Let g1, g2, and gT be generators for G1, G2, and GT respectively and let a
full-domain hash function H : {0, 1}∗ → G1. The BLS signature scheme [38]
comprises following three algorithms:
Key Generation: Choose random sk ∈R Zp and compute pk = gsk2 . The private

key is sk , and the public key is pk .
Signing: Given a private key pk ∈ Zp, and a message m ∈ {0, 1}∗, compute

h = H(m) ∈ G1 and signature σ = hsk , where σ ∈ G1.

390 M. Backes et al.

Verification: Given a public key pk ∈ G2, message m ∈ {0, 1}∗, and signature
σ ∈ G1, compute h = H(m) ∈ G1 and verify that (g2, pk , h, σ) is a valid
co-Diffie-Hellman tuple.

We choose the BLS signature scheme due to the shorter size of their signatures;
however, if signing and verification efficiency is more important, we can choose
faster signature schemes such as [40].

Circuit Extension. To extend the circuit 〈U ↔ N1〉 to the next hop N2, the
user U chooses x2 ∈R Zp and generates a pseudonym X2 = gx2

2 , where g2 ∈ G2.
U then signs the pseudonym X2 and the current timestamp2 value tsx2 with
pseudonym X1 as public key to obtain a signature σX1 = H(X2||tsx2)

x1 . Upon
receiving the signed pseudonym {X2||tsx2}σX1

along with the timestamp tsx2 ,

the node N1 checks if the timestamp is current and verifies it as follows:

e(H(X2||tsx2), X1)
?
= e(σX1 , g2)

Pseudonym Endorsement. After successful verification, N1 creates an en-
dorsement signature σ1 = H(X2||ts2)sk1 for pseudonym X2 and current times-
tamp ts2 using its signing key sk1 and sends it along with X2 and ts2 to N2.

The node N2 then follows the pseudonym endorsement step. Upon receiving
the signed pseudonym {X2||ts2}σ1 , N2 verifies it as follows:

e(H(X2||ts2), pk1)
?
= e(σ1, g2).

On a successful verification, N2 continues with the OR protocol.

Stream Verification. To generate a stream request signature, the user signs
the stream request (i.e., selected contents of the relay begin cell) using the
pseudonym X3 = gx3

2 where x3 is the secret corresponding to X3. For contents
of the relay cell m = {address‖port‖tsxm}, the stream request signature σX3 is
defined as σX3 = H(m)x3 . The user sends the signature along with the relay
cell and the current timestamp tsxm to the exit node through the already-built
circuit.

Once the signed stream request reaches N3, it verifies the signature as follows:

e(H(m), X3)
?
= e(σX3 , g2).

Upon a successful verification, the exit node N3 proceeds with the TCP hand-
shake. A verified request allows the node to link X3 and the request.

Note that when the destination server ensures an authenticated end-to-end
connection with the user, stream verification of the stream request (relay begin)
suffices; otherwise, the user should sign and the exit node should verify each
relay data cell to avoid any content modification attack by the exit node.

Log Generation. After every successful pseudonym or stream verification, an
evidence record is added to the evidence log. The evidence records differ with
nodes’ positions within a circuit, and we define two types of evidence logs.

2 Here, in presence of evidence records, we require only coarse-grained timestamps
(e.g., dd/mm/yyyy:hh) for replay prevention. Moreover, in the low-latency ACNs,
we avoid fine-grained timestamps as they may lead to (offline) traffic-analysis attacks.

Accountability in Anonymous Communication Networks 391

Exit node log: For every successful stream verification, an evidence record is
added to the evidence log at the exit node. A single evidence record con-
sists of the signature on X3 (i.e., {X3||ts3}σ2), and the stream request H(m)
coupled by the pseudonym signature {m}σX3

and the timestamp tsxm .
Middle and entry node log: The middle and entry node evidence record com-

prises two pseudonyms Xi, Xi+1, and a timestamp value tsxi+1 coupled with
the appropriate signatures and the IP address of Ni−1. The pseudonym Xi

is coupled with an endorsement signature {Xi||tsi}σi−1
from node Ni−1, and

the pseudonym Xi+1 is coupled by a pseudonym signature {Xi+1||tsx+1}σXi
.

When the user is not an OR node and does not posse a verifiable signature
key pair, the corresponding record at N1 consists of a signed pseudonym
{X2||tsx2}σX1

, pseudonym X1, timestamp value tsx2 , and the IP of the user.

Repudiation or Traceability. Given the server logs of a stream request, an
evidence record corresponding to the stream request can be obtained. In the first
step, it is checked whether the timestamp matches the stream request under ob-
servation. In the next step, the association between the stream request and the
pseudonym of the exit node X3 is verified using the pseudonym signature. Then,
the association of the pseudonym X3 and N2 is checked using the pseudonym
endorsement signature. Given the pseudonym X3 and a timestamp tsxm , the
backward traceability verification at node N2 is carried out as follows:

1. Do a lookup in the evidence log to locate the signed pseudonym {X3||tsx3}σX2

and the timestamp tsx3 , where X3 is the lookup index.
2. Compare the timestamps (tsxm and tsx3) under observation and prove the

linkability between X2 and X3 by verifying the signature {X3||tsx3}σX2
.

3. If verification succeeds, reveal the IP address of the node N1 who has for-
warded X2 and verify {X2||ts2}σ1

with pk1.

The above three steps can be used repeatedly to reach the entry node. How-
ever, they cannot be used to verifiably reach the user if we do not assume any
public key and credential infrastructure for the users. Instead, our protocol relies
on the ISP between user U and N1 to use packet attestation [36] to prove that
the pseudonym X1 was sent from U to N1.

4.4 Exit Node Whitelisting Policies

To provide a good balance between anonymity and accountability, we include a
whitelisting option for exit nodes. This option allows a user to avoid the complete
verification and logging mechanisms if her destination is in the whitelist directory
of her exit node. In particular, we categorize the destinations into two groups:

Whitelisted Destinations: For several destinations such as educational .edu
websites, an exit node may find traceability to be unnecessary. The exit node
includes such destinations in a whitelist directory such that, for these destina-
tions, it does not require any endorsement and pseudonym signatures. Traffic

392 M. Backes et al.

sent to these whitelisted destinations through the circuit remains anonymous in
the current ACNs sense as the sender does not have to employ BackRef. In
that case, to protect malicious user’s access, such destinations may use end-to-
end blacklisting systems such as Nymble [15] and its successors [16].

Non-listed Destinations: For destinations that are not listed in the exit-node
whitelist directory, the user has to use BackRef while building the circuit to
it; otherwise, the exit node will drop her requests to the non-listed destinations.

We emphasize that BackRef is not an “all-or-nothing” design alternative:
it allows an ACN to conveniently disable the complete verification and logging
mechanisms for some pre-selected destinations. In particular, an exit node with
“Sorry, it is an anonymity network, no logs” opinion can still whitelist the whole
Internet, while others employ BackRef for non-whitelisted sites. The use of
BackRef is transparent, and users can choose if they wish to use a BackRef node
for their circuits.

5 Systems Aspects and Discussion

Communication Overhead. Communication overhead for BackRef is min-
imal: every circuit creation, circuit extension, and stream request carries a 32
byte BLS signature and additional 4 byte timestamp.

Computation Overhead. In a system with BackRef, every node has to
verify a signature and generate another. Using the pairing-based cryptography
(PBC) library, a BLS signature generation takes less than 1ms while a verification
requires nearly 3ms for 128-bit security on a commodity PC with an Intel i5
quad-core processor with 3.3 GHz and 8 GB RAM. Signing and verification time
(and correspondingly system load) can be further reduced using faster signature
schemes (e.g., [40]).

Log Storage. BackRef requires nodes to maintain logs of cryptographic
information for potential use by law enforcement. These logs are not innocuous,
and the implications of publicly disclosing a record need to be considered. The
specificity of the logs should be carefully designed to balance minimal disclosure
of side-information (such as specific timings) while allowing flows to be uniquely
identified. It must also be possible to reconstruct the logged data from the types
of information available to law enforcement. The simplest entry would contain
the destination IP, source (exit node) IP, a coarse timestamp, as well as the
signature. Logs should be maintained for a pre-defined period and then erased.

No single party can hold the logs without entrusting this entity with the
anonymity of all users. The OR nodes can retain the logs themselves. This,
however, would require law enforcement to acquire the logs from every such
node and consequently involve the nodes in the investigation—a scenario that
may not be desirable. Furthermore, traceability exposes nodes of all types, not
just exit nodes, to investigation. We are aware of a number of entities who
deliberately run middle nodes in Tor to avoid this exposure. An alternative is to
publish encrypted logs, where a distributed set of trustees share a decryption key

Accountability in Anonymous Communication Networks 393

and act as a liaison to law enforcement, while holding each other accountable by
refusing to decrypt logs of users who have not violated the traceability policy.
Such an entity acts in a similar fashion to the group manager schemes based on
group signatures [11].

Non-cooperating Nodes. Given the geographic diversity of the ACNs, it
is always possible that some proxy nodes will cooperate with the BackRef

mechanism, while others will not. The repudiation property of BackRef ensures
that a cooperating node can always at least correctly shift liability to a non-
cooperating node. Moreover, such a cooperating node may also reactively decide
to block any future communication from the non-cooperating node as a policy.

Venturing the Last Mile. In the scenarios where full traceability is required,
we need a mechanism for solving the last mile problem addressed in the previous
sections. BackRef does not introduce any PKI for the users, therefore our
protocol has to rely on some trust mechanism to prove the linkability between
the IP address of the user and the entry node pseudonym. For this purpose,
we consider an ISP with a packet attestation mechanism [36] to be a proper
solution that adds a small overhead for the existing ISP infrastructure and at
the same time does not harm any of the properties provided by the ACN. In
some countries there is an obligation for the ISPs to retain data that identify the
user. In other countries the ISPs are not obligated by law, but it is nevertheless
common practice. The protocol is designed in a way that the ISP has to attest
only to the ClientKeyExchange message (this message is a part of the TLS
establishing procedure, and also is public and not encrypted message) which is
used to establish the initial TLS communication. This message does not reveal
any sensitive information related to the identity of the user. By its design, we
reuse this message as a pseudonym for the entry OR node.

6 Security Analysis

We conduct a formal security analysis of BackRef. We model our protocol from
§4 (in a restricted form) in the applied pi calculus [41] and verify its important
properties, i.e., anonymity, backward traceability, no forward traceability, and no
false accusation with ProVerif [42], a state-of-the-art automated theorem prover
that provides security guarantees for an unbounded number of protocol sessions.

We model backward traceability and no false accusation as trace properties,
and anonymity and no forward traceability as observational equivalence rela-
tions. The employed ProVerf scripts as well as an extended version of the paper
are available online [43],[44].

Basic Model. We model the OR protocol in the applied pi calculus to use cir-
cuits of length three (i.e., one user and three nodes); the extension to additional
nodes is straightforward. To prove different security properties we upgrade the
model to use additional processes and events. To solve the last mile problem, our
model involves an honest ISP which can prove the existence of a communication
channel between the user and the entry node. This channel is modeled as pri-
vate, preventing any ISP log forgeries. The cryptographic log collection model

394 M. Backes et al.

is designed in a decentralized way such that nodes retain the logs themselves in
a table that is inaccessible to the adversary.

We model the flow of the pseudonyms and the onion, together with the
corresponding verification. However, we do not model the underlying, crypto-
graphically verified 1W-AKE ntor [31] protocol, and assume that the session
key between the user and the selected OR process is exchanged securely. The
attacker is a standard Dolev-Yao active adversary with full control over the pub-
lic channels: It learns everything ever send on the network, and can create and
insert messages on the public channels. It also controls network scheduling.

Backward Traceability. The goal of our protocol is to trace the source of the
communication stream starting from an exit node. We verify that the property of
backward traceability arrives from the correctness of the (backward) verification
mechanism. The correctness property can be formalized in ProVerif as follows:

TraceUser(IP) =⇒ (LookupISP (X1, IP) =⇒ (RevealPred(IP)) =⇒
(RevealPred(ipN1)) =⇒ (RevealPred(ipN2))∧ CheckSig ∧ LookupN3(m))),

(1)

where the notation A =⇒ B denotes the requirement that the event A must
be preceded by a event B. In our protocol, the property says that the user U
is traced if all nodes in the circuit verifiably trace their predecessors and the
ISP solves the last mile problem. The traceability protocol P starts with the
event LookupN3(m) which means that for a given message m (stream request)
the verifier consults the log, and if such a request exists, it checks the signa-
ture CheckSig. Finally, when all conditions are fulfilled, the verifier reveals the
identity of the predecessor node RevealPred(ipN2). This completes the nested
correspondence (CheckSig ∧ LookupN3(m) ∧RevealPred(ipN2)) which verifi-
ably traces N2. In a similar fashion, the verifier traces N1 and U .

To solve the last mile problem, after the identity of U is revealed the verifier
lookup into the evidence table of the ISP (LookupISP) to prove the connection
between the identity of the user IP and the pseudonym of the entry node X1.
If such a record exists, the event TraceUser(IP) is executed.

Theorem: The trace property defined in equation (1) holds true for all possible
executions of process P.

Proof. Automatically proven by ProVerif. ��

No False Accusation. There are two aspects associated with false accusations:
1. It should not be possible for a malicious node NA to trace a communication

stream to an OR node NC other than to its predecessor in the corresponding
circuit. Informally, to break this property, NA has to be obtain a signature of
NC on a particular pseudonym associated with the circuit. This requires NA

to forge a signature for NC , which is not possible due to the unforgeability
property of the signature scheme.

2. It should not be possible for a malicious node NA to trace a communication
stream to a circuit C1 other than the circuit C2 employed for the commu-
nication stream. Consider a scenario where two concurrent circuits (C1 and

Accountability in Anonymous Communication Networks 395

Fig. 2. No False Accusation adversarial model

C2), established by two different users U1 and U2, pass through a malicious
node NA. Suppose that NA collaborates with U2 who is misbehaving and
has used the OR network for criminal activities. To help U2 by falsely ac-
cusing a different predecessor, NA must forge two signatures: To link two
pseudonyms X1i−1 and X2i from circuits C1 and C2 respectively, NA has to
forge the pseudonym signature on X2i with X1i−1 as a public key, or he has
to know the temporal signing key pair for the predecessor in C1.

Intuitively, the first case is ruled out by the unforgeability property of the
signature scheme. We model the later case as a trace property. Here, even when
NA collaborates with U2, it cannot forge the signed pseudonym received from
its predecessor. The property remains intact as long as one of the nodes on C1

and the packet attesting ISP [36] remain uncompromised. In the absence of a
PKI or credential system for users, the last condition is unavoidable.

We formalize and verify the latter case of the property in an adversarial model
where the attacker has compromised one user (U1 or U2). Figure 2 provide a
graphical representation of the protocol P . We upgrade the basic model involving
additional user U2 who sends additional message m2. As mentioned before, to
simulate the packet attesting mechanism [36] we involve a honest ISP between
the user and the entry node. The ISP only collects data that identifies the user
(IP address of the user) and the pseudonym for the entry node (X1), which is
send in plain-text. The adversary does not have access to the log stored by the
ISP. We want to verify that for all protocol executions the request mi cannot be
associated with any user Ui other than the originator. To formalize the property
in ProVerif, we model security-related protocol events with logical predicates.
The event CorrISP defines the point of the protocol where the ISP is corrupted.
In absence of support for timestamp in ProVerif, we model timestamp values ts
for circuits as fresh nonces. The property can be formalized as follows:

Accuse(IP,m) =⇒ CorrISP. (2)

It says that if a user with address IP is falsely accused for a message m, i.e.
Accuse(IP,m), then indeed the ISP has to be corrupted.

Theorem: The trace property defined in equation (2) holds true for all possible
executions of process P.

Proof. Automatically proven by ProVerif. ��

396 M. Backes et al.

Fig. 3. Anonymity Game

Anonymity. We use observational equivalence to formalize privacy related
properties such as in [45], [46]. We model anonymity as an equivalence rela-
tion between two processes that are replicated an unbounded number of times
and execute in parallel. In the first process P , users U1 and U2 send two messages
m1 and m2, respectively. While in the second process Q the two messages are
swapped. If the two defined processes are observationally equivalent (P ≈ Q),
then we say that the attacker cannot distinguish between m1 and m2 i.e. cannot
learn which message is sent by which user. In our scenario we assume that the
attacker can compromise some fraction of the OR nodes, but not all of them.
Figure 3 provides a graphical representation of the anonymity game where the
exit node N3 is honest. The game works as follows:

1. U1 and U2 create an onion data structure O1 and O2, respectively, intended
for N3 and send via previously built circuits C1 (U1 ↔ N1 ↔ N2 ↔ N3) and C2

(U2 ↔ N1 ↔ N2 ↔ N3). Nodes communicate between each other through public
channels. 2. Two of the intermediate nodes are corrupted and the attacker has
full control over them. The intermediate compromised nodes (in our case N1 and
N2) remove one layer of encryption from O1 and O2 and send the onion to the
exit node N3. 3. After receiving these two onions from the users U1 and U2 and
possibly other onions from compromised users, the exit OR node N3 removes
the last layer of the encryption and publishes the message on a public channel.

Note that the ISP does not affect the anonymity game and only acts as a
proxy between the users and the outside world. For the verification, we assume
that U1 and U2 are honest and they follow the protocol. Nevertheless, the action
of any compromised user and honest users can be interleaved in any order.

Theorem: The observational equivalence relation P ≈ Q holds true.

Proof. Automatically proven by ProVerif. ��

No Forward Traceability. The evidence log of the backward traceability
protocol inBackRef does not store any information (i.e., IP addresses) that can
identify or verifiably reveal the identity of a node’s successor. The log contains
only the pseudonym for the successor node which does not reveal anything about
the identity of the node.

We formalize this property as an observational equivalence relation between
two distinct processes and verify that an adversary cannot distinguish them.
Figure 4 provides a graphical representation of the game. To prove the observa-
tional equivalence, we model a scenario with concurrent circuit executions.

Accountability in Anonymous Communication Networks 397

Fig. 4. No Forward Traceability

In this game, the adversary can corrupt parties and extract their secrets only
after the message transmission over the circuit has completed. For this game,
our model involves an additional middle node and user U2. Two users U1 and
U2 send two different messages m1 and m2 via two circuits. We verify that it
is impossible for an attacker to deduce any meaningful information about the
successor node for a particular request. Our game works as follows: 1. U1 and U2

start the protocol and construct two different circuits, C1(U ↔ N1 ↔ N2 ↔ N3)
and C2(U ↔ N1 ↔ N∗

2 ↔ N3) respectively, with adequate values (x1, x2, x3) for
a circuit C1 and (x′

1, x
′
2, x

′
3) for C2. 2. U1 and U2 create an onion data structure

O1 and O2 and send to the exit node N3 via previously built circuits C1 and C2.
Nodes communicate with each other through public channels. 3. After receiving
the two onions from the users and possibly other onions from compromised users,
N3 removes the last layer of the encryption and publishes the messages on a
public channel. 4. After protocol completion, the entry node N1 is compromised
and the adversary obtains the evidence log.

In the first process P , U1 sends m1 and U2 sends m2, while the process Q is
reversed process P . For the no forward traceability verification, we assume that
all other parties in the protocol remain honest, except the compromised N1. For
example, if two neighbor nodes are compromised, the no forward traceability
can be easily broken by activating the backward traceability mechanism.

Theorem: The observational equivalence relation P ≈ Q holds true.

Proof. Automatically proven by ProVerif. ��

Finally, to the best of our knowledge, our formal analysis is the first ProVerif-
based analysis of the OR protocol; it can be of independent interest towards
formalizing and verifying other properties of the OR protocol.

7 Conclusion

We presented BackRef, an accountability mechanism for ACNs that provides
practical repudiation for the proxy nodes, allowing selected outbound traffic
flows to be traced back to the predecessor node. It also provides a full trace-
ability option when all intermediate nodes are cooperating. While traceability
mechanisms have been proposed in the past, BackRef is the first that is both
compatible with low-latency, interactive applications (such as anonymous web
browsing) and does not require group managers or credential issuers. BackRef

is provably secure, requires little overhead, and can be adapted to a wide range of
anonymity systems. We also analyzed some important systems issues (namely,
white-listing, log storage, non-cooperating nodes, and the last mile problem)

398 M. Backes et al.

with any reactively accountable ACN, and presented plausible options towards
deploying BackRef in practice.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable comments. We would also like to thank Kim Pecina for his assistance
with ProVerif proofs. This work was supported by the German Ministry for
Education and Research through funding for the Center for IT-Security, Privacy
and Accountability and the German Universities Excellence Initiative.

References

1. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. J. Cryptology 1(1) (1988)

2. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: CCS, pp. 340–350 (2010)

3. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: IEEE Symposium on Security and Privacy (1997)

4. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
CACM 24(2) (1981)

5. Mittal, P., Borisov, N.: Shadowwalker: peer-to-peer anonymous communication
using redundant structured topologies. In: CCS, pp. 161–172 (2009)

6. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: USENIX Security (2004)

7. Möller, U., Cottrell, L., Palfrader, P., Sassaman, L.: Mixmaster Protocol— Version
2. IETF Internet Draft (2003), http://mixmaster.sourceforge.net/

8. Janssen, A.W.: Tor madness reloaded (2007),
http://itnomad.wordpress.com/2007/09/16/tor-madness-reloaded/ (accessed
January 2014)

9. AccusedOperator: Raided for operating a Tor exit node (2012),
http://raided4tor.cryto.net/

10. Köpsell, S., Wendolsky, R., Federrath, H.: Revocable anonymity. In: Müller, G.
(ed.) ETRICS 2006. LNCS, vol. 3995, pp. 206–220. Springer, Heidelberg (2006)

11. von Ahn, L., Bortz, A., Hopper, N.J., O’Neill, K.: Selectively traceable anonymity.
In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 208–222. Springer,
Heidelberg (2006)

12. Diaz, C., Preneel, B.: Accountable anonymous communication. In: Security, Pri-
vacy, and Trust in Modern Data Management (2007)

13. Golle, P.: Reputable mix networks. In: Martin, D., Serjantov, A. (eds.) PET 2004.
LNCS, vol. 3424, pp. 51–62. Springer, Heidelberg (2005)

14. Clark, J., Gauvin, P., Adams, C.: Exit node repudiation for anonymity networks.
In: On the Identity Trail: Privacy, Anonymity and Identity in a Networked Society.
Oxford University Press (2009)

15. Johnson, P.C., Kapadia, A., Tsang, P.P., Smith, S.W.: Nymble: Anonymous IP-
address blocking. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776,
pp. 113–133. Springer, Heidelberg (2007)

16. Henry, R., Goldberg, I.: Formalizing anonymous blacklisting systems. In: IEEE
Symposium on Security and Privacy, pp. 81–95 (2011)

17. Goldberg, I., Wagner, D., Brewer, E.: Privacy-enhancing technologies for the in-
ternet. In: IEEE Compcon. (1997)

http://mixmaster.sourceforge.net/
http://itnomad.wordpress.com/2007/09/16/tor-madness-reloaded/
http://raided4tor.cryto.net/

Accountability in Anonymous Communication Networks 399

18. Goldberg, I., Shostack, A.: Freedom network 1.0 architecture and protocols. Tech-
nical report, Zero-Knowledge Systems (2001)

19. Kate, A., Zaverucha, G.M., Goldberg, I.: Pairing-based onion routing with im-
proved forward secrecy. ACM Trans. Inf. Syst. Secur. 13(4) (2010)

20. Danezis, G., Goldberg, I.: Sphinx: A compact and provably secure mix format. In:
IEEE Symposium on Security and Privacy (2009)

21. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: design of a type iii anony-
mous remailer protocol. In: IEEE Symposium on Security and Privacy (2003)

22. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data min-
imization v0.34,
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf (Au-
gust 2010)

23. Wolinsky, D.I., Corrigan-Gibbs, H., Ford, B., Johnson, A.: Dissent in numbers:
making strong anonymity scale. In: OSDI (2012)

24. Corrigan-Gibbs, H., Wolinsky, D.I., Ford, B.: Proactively accountable anonymous
messaging in verdict. In: USENIX Security (2013)

25. Danezis, G., Sassaman, L.: How to bypass two anonymity revocation schemes.
In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp. 187–201.
Springer, Heidelberg (2008)

26. TorProject: Exonerator Service (2012), https://exonerator.torproject.org/

(accessed January 2014)
27. Øverlier, L., Syverson, P.F.: Improving efficiency and simplicity of tor circuit es-

tablishment and hidden services. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS,
vol. 4776, pp. 134–152. Springer, Heidelberg (2007)

28. Kate, A., Goldberg, I.: Using sphinx to improve onion routing circuit construction.
In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 359–366. Springer, Heidelberg
(2010)

29. Backes, M., Kate, A., Mohammadi, E.: Ace: an efficient key-exchange protocol for
onion routing. In: WPES (2012)

30. Catalano, D., Fiore, D., Gennaro, R.: Certificateless onion routing. In: CCS (2009)
31. Goldberg, I., Stebila, D., Ustaoglu, B.: Anonymity and one-way authentication in

key exchange protocols. Designs, Codes and Cryptography (2012)
32. Camenisch, J.L., Lysyanskaya, A.: A formal treatment of onion routing. In: Shoup,

V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005)
33. Danezis, G., Diaz, C., Troncoso, C., Laurie, B.: Drac: An architecture for anony-

mous low-volume communications. In: Atallah, M.J., Hopper, N.J. (eds.) PETS
2010. LNCS, vol. 6205, pp. 202–219. Springer, Heidelberg (2010)

34. Shimshock, E., Staats, M., Hopper, N.: Breaking and provably fixing minx. In:
Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp. 99–114. Springer,
Heidelberg (2008)

35. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

36. Haeberlen, A., Fonseca, P., Rodrigues, R., Druschel, P.: Fighting cybercrime with
packet attestation. Technical report, MPI-SWS (2011)

37. Dingledine, R., Mathewson, N.: Tor Protocol Specification (2008),
https://gitweb.torproject.org/torspec.git/tree/HEAD (accessed January
2014)

38. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 514. Springer, Heidelberg
(2001)

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://exonerator.torproject.org/
https://gitweb.torproject.org/torspec.git/tree/HEAD

400 M. Backes et al.

39. Blake, I., Seroussi, G., Smart, N., Cassels, J.W.S.: Advances in Elliptic Curve
Cryptography. Cambridge University Press (2005)

40. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (2011)

41. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL (2001)

42. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
CSFW (2001)

43. BackRef: Introducing accountability to anonymity networks (proverif scripts),
http://crypsys.mmci.uni-saarland.de/projects/BackRef/

44. Backes, M., Clark, J., Kate, A., Simeonovski, M., Druschel, P.: Backref: Introducing
accountability to anonymity networks, http://arxiv.org/abs/1311.3151

45. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols, 435–487 (2009)

46. Chothia, T.: Analysing the MUTE anonymous file-sharing system using the pi-
calculus. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE
2006. LNCS, vol. 4229, pp. 115–130. Springer, Heidelberg (2006)

http://crypsys.mmci.uni-saarland.de/projects/BackRef/
http://arxiv.org/abs/1311.3151

WebTrust – A Comprehensive Authenticity
and Integrity Framework for HTTP

Michael Backes1, Rainer W. Gerling2, Sebastian Gerling1, Stefan Nürnberger1,
Dominique Schröder1, and Mark Simkin1

1 CISPA, Saarland University
2 University of Applied Sciences Munich

Abstract. HTTPS is the standard for confidential and integrity-protected
communication on the Web. However, it authenticates the server, not its
content. We present WebTrust, the first comprehensive authenticity and
integrity framework that allows on-the-fly verification of static, dynamic,
and real-time streamed Web content from untrusted servers. Our frame-
work seamlessly integrates into HTTP and allows to validate streamed con-
tent progressively at arrival. Our performance results demonstrate both the
practicality and efficiency of our approach.

Keywords: HTTP, Integrity, Authenticity, Verifiable Data Streaming.

1 Introduction

The Hypertext Transfer Protocol (HTTP) is the standard protocol in the World
Wide Web that allows clients to request and receive any type of content from
a server such as static, dynamically created, or even live streamed content [9].
HTTP is a pure transfer protocol that does not provide any state information or
security guarantees by itself. For many applications, however, security guarantees
are strictly necessary and various extensions haven been proposed. The standard
protocol to provide security guarantees is HTTPS (HTTP over TLS [31]), which
establishes a secure channel between the client and the server. Although a secure
channel guarantees that the transferred content has not been modified during
the transmission, it neither guarantees the authenticity nor the integrity of the
delivered document itself. Moreover, if an attacker gained access to the server,
any content the attacker would put on the server would be authenticated at the
client’s side, since HTTPS only authenticates the connection. This situation is
completely unsatisfactory, since one can neither rely on the information in pub-
lished documents nor prove their correctness to third parties (non-repudiation).
Consider for example news aggregators that mainly serve information generated
by news agencies: An established HTTPS connection to a news aggregator or
social network cannot guarantee anything about the authenticity and integrity
of the delivered content itself. The problem becomes even more challenging when
we want to ensure the authenticity and integrity of live streamed content.

One intuitive approach to ensure the authenticity and integrity of content would
be to append a digital signature. However, signatures need to be downloaded

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 401–418, 2014.
c© Springer International Publishing Switzerland 2014

402 M. Backes et al.

separately and there is no unified solution that integrates into the existing infras-
tructure. Moreover, in case of large files, a single signature can only be verified
after the content has been downloaded completely. Individual signatures also do
not fulfill the requirements defined by today’s Web resources that embed other
resources such as images and scripts. Especially for (live) streamed content, this
calls for a flexible and efficient solution that allows to verify content on-the-fly.
In order to prevent an attacker from being able to replace partial content with
other, also signed, content, all relevant interconnected documents need to be ver-
ified together. Mobile broadband providers replace embedded pictures with their
compressed versions in order to save bandwidth [10]. Certain Internet providers
even go as far as to inject advertisements into foreign websites [30].

1.1 Contribution

In this paper we present WebTrust, a comprehensive integrity and authenticity
framework for static, dynamic, and live streamed Web content that seamlessly in-
tegrates into the existing infrastructure. Our framework allows content genera-
tors to publish authenticity- and integrity-protected content (from now on referred
to as WebTrust protected content) on untrusted servers. In addition, WebTrust
offers protection against active network attackers. The integrity and authentic-
ity of downloaded HTTP documents can further be proven to third parties in an
offline setting (non-repudiation). The verification of documents takes place on-
the-fly (progressive content verification (PCV)) while the document is still being
downloaded. In particular, WebTrust enables the client to detect any modified data
packet upon arrival without downloading the entire document. Our solution adapts
recent cryptographic primitives and profits from the lessons learned in previous
approaches that focus on subsets of the aforementioned problems to realize our
comprehensive integrity and authenticity framework [32,2,12,23,37,14]. WebTrust
further supports efficient data updates and enables the usage of Web caches (the
latter only, if confidentiality is not needed). Finally, our concept and implementa-
tion supports individual verifiability of content aggregated from different authors
via IFrames.

1.2 Related Work

We discuss related frameworks that also provide authenticity and integrity guar-
antees and we compare them to WebTrust in Table 1. In that table, we com-
pare the approaches w.r.t. the following features: The 1st column indicates if
the framework supports verifiable authorship meaning that the content can be
verified against the author and not (only) against the server. The 2nd column
shows if documents can be revoked, i.e., the author can enforce and immediate
expiration. The property of non-repudiation is compared in the 3rd column and
allows proving the authorship to third parties. The 4th column indicates if the
content can be updated, i.e., updating parts of the content is possible without
re-signing the entire dataset. The 5th column shows if caches resp. content dis-
tribution networks (CDN) are supported, i.e., the content can be distributed to

WebTrust – A Comprehensive Authenticity and Integrity Framework 403

Table 1. Comparison of approaches to protect the integrity of HTTP transferred data

Feature 1 2 3 4 5 6 7

SHTTP [32] – – – – – S/D/L –
HTTPS [31] – – – – – S/D/L –
SSL Splitting [18,19] – – – – � S/D/L –
Bayardo and S. [2] � – � – � S/D/– �
Sine [12] – – � – � S/D/– �
HTTPI [6] – – – – � S/D/L –
Spork [23] – – � – � S/D/– –
HTTPi [37] – – � – � S/D/– �
iHTTP [14] – – � – � S/–/– �
WebTrust � � � � � S/D/L �
Legend: 1. Verifiable Authorship 2. Document Revocation 3. Non-repudiation
4. Data updates 5. Caching/CDN-Support 6. Content types (Static, Dynamic,
Live Streaming) 7. Progressive Verification �: yes/full support, – no support.

different servers without harming the verifiability. In the 6th column the differ-
ent supported content types are listed such as static, dynamic, and streamed
live content. Handling streamed content is particularly challenging as full pre-
computation is generally not possible. Static content is a mere copy of the file to
the client, while dynamic content is generated on demand, and (live) streamed
content is a stream of data that has an infinite size and is not known in ad-
vance. The 7th column compares the approaches w.r.t. progressive verification
meaning that the content can be verified while loading. Progressive verification
is desired in setting where the clients do not want to wait until the end of a
stream to verify any of the security properties. Due to space constrains we can-
not discuss each approach in detail, but the chart already shows that none of
the existing approaches provides a comprehensive solution to all common usage
scenarios of HTTP. Further approaches exist that focus on efficient methods for
a specific data type (cf. [20,8,29]), or focus on the data transmission of files on
the Internet, or focus on streams such as [13,28] (not in real-time) or [27] for
multicast streams over lossy channels with real-time support. Two less closely
related approaches [11,30] also consider the problem of providing integrity for
HTTP, however, they do not provide security guarantees in a cryptographic
sense. Therefore we omit a more detailed discussion of these papers.

2 System Model

In the following we provide a high-level overview of WebTrust and discuss the
attacker model as well as the underlying assumptions of our system. The global
setup of WebTrust consists of three parties: the client with a Web browser, the
HTTP-based Web server, and the content generator (cf. Figure 1).

The content generator either creates WebTrust-protected documents a priori
and uploads them to the Web server (static content), or the content is created

404 M. Backes et al.

WEB SERVERCLIENT Request CONTENT GENERATOR

Storage

Fig. 1. WebTrust system overview

on-the-fly by the content-generator and merely relayed by the server to the
client (dynamic content). The client is then able to request protected resources
based on the Unified Resource Identifier (URI) from the Web server and to
progressively verify their integrity and authenticity with the help of the content
generator’s public key during the arrival. Depending on the scenario, the Web
server can also fetch dynamic content from the content generator. The content
generator and the Web server do not have to be different entities. However,
we recommend them to be different whenever possible to mitigate the risks of
key exposure through Web server breaches. Splitting these entities also allows
us to assume an untrusted Web server which is accessible from the Web and
potentially vulnerable.

2.1 Security Objectives

The goal of WebTrust is to provide robust security guarantees to users. In par-
ticular, our system needs to fulfill the following security objectives: authenticity,
integrity, validity, and freshness of Web documents with respect to their author:

– Authenticity ensures that content indeed stems from the alleged author.
– Integrity ensures that content cannot be altered after its generation without

being detected.
– Freshness ensures that a client always receives the latest version of a docu-

ment, i.e., a man in the middle cannot replace a response with an integrity-
protected and authentic, but old copy of a requested document.

– Document revocation ensures that a document was not actively revoked
by its author.

– Non repudiation allows to proof the authenticity of documents to third
parties.

Depending on the scenario, confidentiality of the transmission needs to be pro-
vided as well. This is not explicitly stated as an security objective, since this
is orthogonal to our solution and can be achieved by transmitting WebTrust
protected documents via HTTPS.

2.2 Attacker Model

We assume an active adversary that is able to eavesdrop and arbitrarily mod-
ify all network traffic. Such an adversary could be, for instance, the Inter-
net service provider that is in control of the network connection. In addition,
we assume that the adversary is able to fully compromise the Web servers in
our scenario (including the servers of a content distribution network (CDN)).

WebTrust – A Comprehensive Authenticity and Integrity Framework 405

This effectively grants the attacker access to all files stored on such server and
allows to manipulate all requests and responses processed by them.

2.3 Assumptions

To provide robust security guarantees, it is central for WebTrust that the crypto-
graphic keys used to sign content cannot be accessed by an attacker. Therefore,
WebTrust has the following requirements to achieve its goals:

1. The content generator stores sensitive keys to sign content locally. We assume
that these keys cannot be accessed by an attacker.

2. In case the content generator and the Web server are the same entity (implies
that keys are stored locally on the Web server), we assume that the Web
server cannot be compromised by an attacker. Otherwise, we consider the
Web server untrusted without further assumptions.

3. We assume a standard trusted PKI that provides additional support for
WebTrust content revocation lists (WT-CRLs) (cf. Section 4).

3 Theoretical Foundations

In the following we introduce the cryptographic primitives required by WebTrust,
namely elliptic curve cryptography [22], collision-resistant hash functions [16],
chameleon hash functions [17], digital signatures [16], and verifiable data stream-
ing [34]. We use the following notation: By y ← A(x) we denote the execution
of a probabilistic polynomial time (PPT) algorithm on input x with output y.

3.1 Hash Functions

Collision-Resistant Hash Functions. We assume the existence of compress-
ing collision-resistant hash functions. Roughly speaking, a function H is called
collision-resistant if the probability that an efficient adversary finds two distinct
pre-images m0 �= m1 that map to the same image H(m0) = H(m1) is negligible.
WebTrust supports any state of the art collision-resistant hash function.
Chameleon Hash Functions. A chameleon hash (CH) function is similar
to regular collision-resistant hash functions that are based on number theo-
retic assumptions and it provides additionally a trapdoor. Invertible chameleon
hash functions are defined through the tuple CH = (chGen, ch, col, scol) [17]. Its
key generation algorithm chGen(1λ) returns a key pair (skch , pkch). The func-
tion ch(x; r) is parametrized by the public key pkch and outputs a hash value
h ∈ {0, 1}out for a input message x ∈ {0, 1}in and a randomness r ∈ {0, 1}λ. The
trapdoor skch allows us to efficiently find collisions, i.e., a randomness r′ such
that both (x, r) and (x′, r′) will be mapped to the same hash value. CH functions
can be instantiated from many number theoretic assumptions, such as the dis-
crete logarithm assumption [17,1], the factoring assumption [35], and the RSA
assumption [1,15]. We use the scheme introduced by Nyberg and Rueppel [1].

406 M. Backes et al.

Its security is proven in the generic group model assuming the hardness of some
variant of the discrete logarithm problem in the cyclic group Zp. Our framework
uses the elliptic curve variant of the Nyberg and Rueppel chameleon hash func-
tion. The advantage of using elliptic curves is that the chameleon hash values
become smaller in size. For our choice of the curve, please refer to Section 7.
Merkle Trees. A Merkle Tree is a binary tree that allows an efficient verification
of distinct elements from larger data sets. Data is stored in the tree’s leafs and
all inner nodes are computed recursively as the hash value of its concatenated
children. The root node’s value is published as the public key and can be used
to verify each leaf individually. The authentication of a certain leaf requires all
hash values that are adjacent to the nodes on the path from this leaf node to the
root node, hence all proofs are logarithmic with respect to the amount of leafs.

3.2 Verifiable Data Streaming (VDS)

The verifiable data streaming (VDS) protocol [34] allows to authenticate data
streams. VDS is based on a variant of Merkle Trees [21], so-called chameleon au-
thentication trees (CAT), which have the following additional capabilities: New
elements can be inserted into the tree without updating the root and already
inserted elements can be updated efficiently. The correctness of each single el-
ement in the tree is publicly verifiable and can be proven to third parties. In
essence, the security of VDS says that only the data owner can insert elements
to and modify exiting elements in the CAT.
VDS Adaptation for WebTrust. The original VDS protocol [34] was designed
to allow a computationally weak client to stream its entire data to a seemingly
all-powerful server. In our scenario, the content generator is the client of the
VDS setting. It streams content to an untrusted server, which is later received
and publicly verified by other clients.

Consider the tree as depicted in Figure 2.
The root v1,0 of the tree is a hash, which is part of the content generator’s

public key. In the following, we denote the root value by ρ. Each left node
of the tree is computed by a collision-resistant hash function and every right
node is computed via a CH function. Since the CH function takes a randomness
as additional input, it is necessary to store it in the right nodes. To verify a
leaf in the tree, one has to compute an authentication path as in a traditional
Merkle Tree (cf. Figure 3): To verify L0 in the tree, the algorithm computes
v0,0 ← H(L0‖v−1,1) and checks if ρ = H(v0,0‖v0,1).

Now, let us assume that the client requests a video stream of a press conference
and the client would like to verify the authenticity and integrity of the streamed
content on-the-fly. The basic idea is to chop the stream in chunks of data such
that a hash of each chunk is stored in a leaf. We illustrate this idea with a tree of
small depth, but our data structure supports a binary tree of polynomial depth
that can authenticate an exponential number of leaves. For an easier exposition
of the main idea, we assume that the first two leaves L0, L1 are known in advance.
To set up the tree, the algorithm picks two dummy elements for the part of the

WebTrust – A Comprehensive Authenticity and Integrity Framework 407

v1,0

v0,0 v0,1

v1,0

L0

L1

L2

L3

v-1,1 v-1,3

SHA-1

Chameleon Hash

Leaves (actual data)

SHA-1

v1,0 H(n1,0)
n1,0 v0,0 || v0,1

v0,0 H(n0,0)
n0,0 L0 || v-1,1

v0,1 CH(n0,1;r0,1)
n0,1 L2 || v-1,3

Fig. 2. CAT for four leaves (L0 to L3) with vertices named vheight,index

stream that is unknown. In our case, it chooses elements (n0,1, r0,1) uniformly at
random. The element n0,1 is the input to the chameleon hash functions stored at
node v0,1 and r0,1 is the corresponding randomness. Now, suppose that another
element is streamed to the client that will be stored in the leave L2. To add this
elements to the tree, the server picks a dummy value for v−1,3 and computes the
collision with help of the algorithm r′

0,1 ← col(skch , n0,1, r0,1, (L2‖v−1,3)) and
sends (L2, v−1,3, r′

0,1) to the client.

3.3 Digital Signature Schemes

Digital signature schemes allow to compute a signature σ on a document m using
a private key sk, such that any party in possession of the corresponding public
key pk can verify the validity of σ. Our construction requires a digital signature
scheme that is secure against the standard notion of existential forgery under
chosen message attacks [16]. WebTrust uses the RSA [33] signature scheme. It is
provable secure in the random oracle model [3] and its underlying mathematical
structure are composite order groups.

4 System Details

WebTrust leverages the previously described cryptographic primitives to achieve
robust progressive integrity and authenticity verification of different content
types with respect to their authors. In the following we describe our framework
in detail and discuss how our security objectives (cf. Section 2.1) can be achieved.
Moreover, we show that WebTrust is backwards compatible and supports caches
as well as CDNs. WebTrust splits all content types into individual segments and
processes them in the signature provider (Sign in the following figures) of the
content generator (cf. Figure 4 for static content and Figure 5 for dynamic con-
tent). Our system currently supports two different signature providers, namely
VDSECC and RSA-Chaining.

408 M. Backes et al.

Fig. 3. CAT of depth 5 that authenticates the leaves L0 and L1. Root node and left
nodes are computed by a collision-resistant hash function, right nodes by a chameleon
hash. The leaves L2, . . . L7 are unknown. Appending the leaves L4 and L5 to the CAT
(dotted in gray), requires the computation of a collision in nodes v2,1 and v−1,5.

VDSECC. VDSECC combines the VDS protocol with the elliptic curve vari-
ant of the Nyberg and Rueppel chameleon hash. It generates one CAT for each
content object. For each content object its individual segments are hashed and
added to the CAT. The first segment of a content object always includes meta-
information such as the content URI, the creation date, and the expiration date.
The ordering of segments is implicitly ensured through the CAT itself. Once a
segment has been processed by the VDSECC signature provider, the returned
proof is attached to the segment. The verification of each segment is done as
previously described in Section 3.2.

RSA-Chaining. RSA-Chaining produces a signature chain by creating one sig-
nature for each pair of adjacent segments. For each incoming content object all

CLIENT WEB SERVER

Secure Environment
skstatic

Sign

Storage

DOCU MENT

SIGA

Request

DOCU MENT

SIGA1 SIGA2

DOCUMENT

DOCUMENT

U M

Fig. 4. Static content: Data and signa-
tures are broken into segments and are
delivered interleaved

WEB SERVER

SIGB
3

CLIENT

Trusted Hardware
skondemand

DO CUM ENT

SIGB

Request Content
Generator

DB

Interleave DOCUMENT

SignSignSignSIGB
2SIGB

1

Fig. 5. Dynamic content (Web server and
content generator as a single entity): Sig-
natures SIG1

B, SIG
2
B , . . . are calculated

during dynamic document creation

WebTrust – A Comprehensive Authenticity and Integrity Framework 409

its individual segments are first prepended by the same meta-information that
we add to the first packet in the CAT and we additionally add the segments po-
sition in the chain. Afterwards, each segments is hashed and finally signed using
RSA with the content generator’s secret key. Once a segment has been processed
by the RSA signature provider, each signature is attached to the segment. The
client-side verification is based on a classical RSA signature verification against
the content generator’s public key. The chaining ensures that ordering of seg-
ments in the stream cannot be altered.

In order to achieve a seamless integration into the existing Web infrastruc-
ture, we now need to embed the signatures either created by the VDSECC or
the RSA-Chaining signature provider into the data transmission in a backwards
compatible manner. We achieve this by leveraging the existing HTTP/1.1 chun-
ked mode. HTTP chunking ([9] section 3.6.1) is designed for documents whose
size is unknown a priori and which are generated and transferred piecemeal to
the client. Since HTTP chunking is a transfer encoding, it does not modify the
content but merely the way it is transported to the client and thus perfectly
meets our requirements. Clients that do not support WebTrust will simply ig-
nore the attached signatures. Clients with WebTrust support will extract the
embedded signatures for incoming segments, compute the hash of each segment,
and finally verify whether the signatures are valid or not.

4.1 Progressive Content Processing

The progressive verification of WebTrust is enabled by splitting content into
segments in combination with the particular design of the signature providers.
Due to the content splitting, every segment is sent to the client with its own au-
thenticity and integrity protection that can be verified immediately after arrival.
Both signature providers are designed to allow the signing of a segment i without
yet knowing the segment i + 1. VDSECC and RSA-Chaining allow the client to
verify content object partially (e.g., media sub streams) without requiring the
client to know the start, the end, or the file as a whole. WebTrust allows the
progressive verification of all content types.

4.2 Individual Verifiability

Since WebTrust is supposed to be used by authors of content to protect their
data, it allows to combine content of different authors in one website with indi-
vidual verifiability. Our framework realizes this by loading each author’s content
into an individual IFrame of a website. Each IFrame triggers a separate WebTrust
protected HTTP request. The user gets visual feedback about the verification
result of each IFrame as shown in Figure 6.

In certain scenarios it may be desirable to ensure that an attacker cannot
substitute any of the IFrames with a different signed resource. Consider the
following scenario: A client requests the document www.example.com/a.html,
which explicitly references a JavaScript file www.example.com/script.js. As-
sume that another script file signed by the same author with the same key exists

410 M. Backes et al.

Fig. 6. The WebTrust Chrome Extension showing the verified authorship of an em-
bedded tweet in our modified Twitter page

at www.example.com/anotherscript.js. In this scenario, an attacker may re-
place script.js with anotherscript.js in the web response. To prevent this,
WebTrust supports the incorporation of the content’s full URI into the signature.
This allows the detection of maliciously replaced files. Furthermore, WebTrust
can be configured to include arbitrary HTTP headers in the signature. This may
be particularly useful for critical headers such as cookies.

4.3 Content Updates

CATs allow content updates by design and our RSA signature chains can achieve
the same functionality with the help of WT-CRLs. However, their update algo-
rithms differ fundamentally. In particular, when using a CAT each update re-
quires an update of the public key and involves updating a logarithmic amount
of nodes in the tree. Instead, we introduce a second CAT which aggregates the
roots of all the content object CATs as its leaf nodes. This method allows us to
verify several content objects against only one public key, which is the root of the
second CAT. When using RSA-Chaining, the update algorithm computes signa-
tures for the new segment and adds the old segment to the WT-CRL. Hence,
the size of the WT-CRL is linear with respect to the amount of updates.

4.4 Caching and CDN-Support

WebTrust content can be cached by proxies, cache servers, or CDNs, since the
signature of static content is also static. Outsourcing content to CDNs is common
practice to reduce load on a single server. In addition, CDNs equalize latencies
around the globe by mirroring content at locations with a large distance to the
central server. Dynamic content could also be cached from a technical point
of view, but usually this content would have a no-cache directive set because
caching does not make sense from a logical point of view.

WebTrust – A Comprehensive Authenticity and Integrity Framework 411

4.5 Key Security

Content generators use secret keys to generate WebTrust protected content.
These keys need to be protected against malicious access. In particular, in the
case where the Web server and the content generator are the same entity, keys
should be protected by a Hardware Security Module (HSM) as shown in Figure 5.
With an HSM in place, an attacker that breaks into the Web server could still
forge signed content by using the HSM as a signing oracle. However, he would
never get hold of the key itself. This achieves the same level of security as storing
HTTPS/TLS certificate private keys in an HSM.

5 Implementation

5.1 Server

We implemented the WebTrust server extension as a patch to the Apache Tomcat
Web server 7.0.39. Our patch extends the existing processing routines for the
HTTP chunked transfer encoding using a filter in the HTTP chunking driver of
Tomcat. The HTTP 1.1 chunked mode allows so-called chunk-extensions that
can be embedded into a chunk’s header. The specification starts with the number
of bytes in hexadecimal format, which can be followed by extensions of the format
;key=value,key=value,.... The extensions are then followed by a line break
before the actual chunk data. This overall format is repeated for every chunk. We
attach the base64-encoded WebTrust protection as extension in the requested
format (the example has a chunk size of 2761 bytes, 0xAC9 bytes in hex):

AC9;SIG=8CD3ABU8ULS2KMDN4HW3NK6A5BPP84HB6A7CC

Since the transmitted bytes are still well-formed HTTP, legacy clients will
only extract the unmodified content. We successfully verified this compatibility
of HTTP chunking extensions with Firefox, Chrome, Safari, Internet Explorer,
wget, curl and Java. The public key for the overall verification is specified in
the HTTP header itself, since it does not change for a single request. For that
purpose, we added two additional HTTP headers to indicate the used WebTrust
algorithm (here, VDS with SHA-1) and the corresponding public key:

Content-Verification-Scheme: 1.0/SHA1-VDSECC
Content-Verification-Key: 61KJHQ1J4NED97NBP2SJ44FP0

Similarly, chained hashes that are signed with RSA are implemented (1.0/
SHA1-RSA).

The signature cache for static content is implemented using the default
servlet of Tomcat. The default servlet is used when there is no dynamic servlet
to generate content and the URI points to an actual file on the server. For each
such file, we keep a list of chunk sizes and attached signatures. The default
servlet implementation ensures that every response uses the same chunk size
and hence can benefit from the stored signature chain. For the dynamic case,
the implementation is slightly more complex: Servlets decide on their own how

412 M. Backes et al.

many bytes to flush to the network. For example, every time they call flush(),
the bytes written so far are sent to the WebTrust filter which takes care of ac-
cumulating them and eventually adding the signature. This ensures that if the
servlet generates exactly the same output over two different runs, we generate
exactly the same chunks. As those chunks appear to be static, we can cache
them. The look-up procedure is realized using a hash map that is indexed by a
tuple consisting of the SHA-1 hash of the content and the preceding signature.

To further reduce the server load we enable the WebTrust extension only if the
client has requested its usage by sending the ’Accept-Content-Verification:
SHA1-RSA’ header, where SHA1-RSA defines one of the supported schemes. De-
pending on the flag set by the client, the server responds using the requested
scheme. The implementation of the cryptographic primitives on the server side is
based on the SunRsaSign and Sun cryptography providers for non elliptic curve
primitives as delivered with Oracle’s Java [26], and based on Bouncycastle [4]
for the elliptic curve primitives, and our own Java implementation for the CAT.

5.2 Client

We implemented the client-side prototype as a patch to the open source Chromium
browser 29 [7] in combination with a browser extension. The patch targets the
chunked-mode handling of Chromium and is used to parse and verify the Web-
Trust integrity and authenticity proof of incoming documents. Moreover, it in-
cludes the routines for adding the WebTrust headers into Web requests, which
can be switched on and off. The required cryptographic primitives build upon the
OpenSSL library [25] and include our own implementation for CATs in C++. The
browser extension is used to prototype the UI for providing the user with feedback
about the verification result. It also supports to give feedback for the individual
verifiability of documents loaded inside of IFrames as described in Section 4.1. We
would like to stress that this approach is merely used for prototyping the client ap-
plication. A future release of the system is supposed to directly integrate the indi-
vidual verifiability into Web browsers instead of an extension to optimize usability
and performance. We would like to point out that although our concept leverages
a PKI for freshness and revocation, our client-side prototype focuses primarily on
the implementation and evaluation of our new signature providers and hence does
not have an implementation for revocation.

6 Security Evaluation

In the following, we discuss how WebTrust fulfills the security objectives defined
in Section 2.1 and how WebTrust is protected against attacks.

6.1 Integrity, Authenticity, and Non Repudiation

Our integrity check is based on hashing content segments with a collision re-
sistant hash function. The property of collision resistance guarantees that an

WebTrust – A Comprehensive Authenticity and Integrity Framework 413

attacker cannot find a second chunk that maps to the same hash value. To en-
sure that content segments cannot be replaced, all hashes are authenticated by
one of the signature providers. Since the attacker can neither access the author’s
secret keys, nor forge valid signatures for RSA-Chaining or VDSECC without
the secret key, the hash as proof of integrity cannot be replaced or modified.
Since the proofs of integrity are verified against a specific user’s public key, this
immediately provides authenticity. Therefore, the integrity and authenticity of
data is guaranteed and our signature providers allow to prove the correctness of
the WebTrust protected segments to third parties (non repudiation). Whenever
embedded content or a client-side script fetches another resource, this triggers
another HTTP request, which is then also verified by WebTrust.

6.2 Freshness and Content Revocation

Our framework supports freshness, i.e. the user always obtains the latest version
of the requested content object. This is achieved by incorporating an expiry date
into the content object. If content is replaced before it is expired, the old version
is revoked and does no longer verify successfully. In the case of RSA-Chaining
this revocation is achieved by adding the old version to the WT-CRL at the
PKI. This explicit revocation is not needed for the VDS protocol, which updates
the public key on every update thereby rendering old versions invalid.

6.3 Active Network Attacker

The active network attacker can modify or replace data packets containing doc-
uments or signatures. However, any modification or replacement would either
result in an invalid signature since the document and its corresponding signa-
ture would no longer match, or result in a document signed with the untrusted
key of the attacker. The attacker cannot access the secret key that was used
by the content author to sign the original data and hence cannot re-compute
the signature. The attacker can also try to substitute the response with a valid
response of another or older document. Replacement with another document is
prevented by the embedded absolute URI as part of the signature chain, which
reveals the substitution. The older document is prevented by the previously de-
scribed freshness properties. Since HTTP is per se stateless, session cookies are
often deployed to transfer state information. This way, the same URI can trans-
fer different Web resources. WebTrust allows to uniquely identify these different
documents, since the session information is part of the signed HTTP header.

6.4 Active Attacker against CDN and Web Server

Our solution successfully protects against the CDN Attacker. The CDN stores
solely documents that are already WebTrust protected. If an attacker exploits
a known vulnerability in the CDN server, documents can be replaced. However,
the attacker cannot forge valid signatures for this malicious content since there

414 M. Backes et al.

Fig. 7. Average transactions per second under maximum load

is no possibility to access the required secret key. Hence, our solution preserves
the authenticity and integrity of documents. Since we assume that static and
dynamic content signing takes place at the content generator where an attacker
cannot gain access, content can only be manipulated after it has left the content
generation server. In this stage, it is already digitally signed and can no longer
be manipulated without detection.

7 Experimental Evaluation

In the following, we provide the experimental evaluation of our prototypical Web-
Trust implementation. The evaluation encompasses the computational overhead
at the client and the content generator as well as the network overhead. However,
the measured overhead does not include any processing of or communication
with the PKI, which may slightly skew the measured performance. Moreover,
we discuss usability issues of the current implementation.

7.1 Performance Evaluation

We conducted a comprehensive performance evaluation to measure the runtime
and network overhead induced by WebTrust. The server side evaluation was
performed with our patched Apache Tomcat version running on a Dell Opti-
plex 9010 Workstation equipped with an Intel Core i7 CPU and 32 GB of Ram.
The client side evaluation was performed on an identical machine with 16 GB
of Ram instead. We chose the security parameters of the cryptographic schemes
according to the latest NIST recommendations [24], i.e. 2048 bit for RSA. To
achieve a comparable level of security, we chose the elliptic curve P-224 for the
chameleon hashes inside the CAT.

The performance and network overhead depends on the total amount of sig-
natures that are sent over the network, i.e. the ratio between transmitted bytes
of data and transmitted bytes used for signatures. The smaller the size of each
chunk, the more signatures are need for the same amount of data. In our proto-
type, we evaluated different chunk sizes, namely 8 KB, 32 KB and 128 KB. If we

WebTrust – A Comprehensive Authenticity and Integrity Framework 415

Fig. 8. Round trip times for a 100 KB document

consider a video stream of moderate standard definition quality with 2 Mbit/s
data rate, then 128 KB chunks would correspond to one second of video – which
seems to be an acceptable frequency for content verification. The experiments
were conducted using the Siege [36] benchmark tool that downloaded a 100 KB
file 10,000 times while simulating 100 concurrent users accessing the server. The
server and the client were both connected to the Internet via a 1 Gbit/s uplink
and they are 11 hops apart. We measured the maximum transactions that the
server was capable of delivering without WebTrust, with WebTrust RSA and
VDSECC and over HTTPS (see in Figure 7).

This number of transactions is limited by the computational burden on the
server side. The client-side verification adds an additional delay for verifying each
chunk. This delay is 121μs for one RSA signature verification and 371μs for one
CAT node verification. The resulting round trip times are depicted in Figure 8.
Our results show that in the case of static content, the cached versions have a
negligible overhead compared to plain HTTP connections. Without server-side
caching, i.e. the server has to calculate the corresponding RSA signatures or
CAT trees for each chunk, the computational load on the server side increases.
However, RSA signature chaining still outperforms HTTPS with RSA 2048 bit
Diffie-Hellman key exchange and AES-256-CBC encryption. Even though the
VDSECC-based authentication without caching provides less throughput than
HTTPS, VDSECC is the only primitive whose revocation mechanism does not
need to keep a list for each revoked document (see section 4).
Network Overhead. WebTrust introduces a small overhead in size for every
signature that is transmitted from the Web server to the client. The overhead for
a single signature depends on the signature scheme and its security parameter.
The signature size of RSA 2048 bit is 344 bytes. The size of one VDSECC data
structure is 167 bytes. These sizes resemble a space overhead of 4% (RSA) and
2% (VDSECC) in the worst case of very small 8 KiB sized chunks. For more
realistic sizes of 128 KB chunks, the overhead is a mere 0.3% for RSA and 0.1%
for VDSECC, respectively.

416 M. Backes et al.

7.2 Usability

The prototypical implementation seamlessly integrates into HTTP’s chunked
transfer encoding, which provides full backward compatibility. At the client-side,
the prototype is integrated into Chromium and uses in addition an extension for
providing the individual verifiability.
Discussion. If the distinctive features of the CAT are not required and band-
width considerations are less important than the computational overhead RSA
is the primitive of choice. Otherwise CAT provides the full set of functionality at
a speed that is still reasonable for today’s Internet connections. Our round-trip
time measurement indicates that delay introduced by the network transmission
still dominates the computation times the client and the server. The CAT-based
solution leaves still room for performance optimizations. Depending on the use-
case one could pre-calculate several keys to further reduce the computational
load [5], especially on the client side. Moreover, we did not use multi-threading
for verifying chunks simultaneously. Depending on the scenario one could also
reduce both the computational and the network overhead can be tweaked by
changing the verification ratio via the chunk size.

8 Conclusion

Verifying the integrity and authenticity of dynamic Web content and real-time
Web streams on-the-fly is infeasible with existing solutions. Motivated by this
lack of solutions, we developed WebTrust, the first comprehensive solution to
provide integrity in all major Web scenarios. WebTrust allows to verify integrity
and authenticity of static, dynamic, and streamed Web content and integrates
seamlessly into the existing Web infrastructure. Our performance results demon-
strate both its practicality and efficiency, even in the mobile setting. The results
of our evaluation show that there is not one primitive for all scenarios that clearly
outperforms all others. Which technique and which cryptographic primitive to
use highly depends on the task since no primitive provides all security features,
a small overhead in size, enables caching, and provides a high performance both
on the client and the server side.

Acknowledgement. We thank the anonymous reviewers for their comments
and Oliver Schranz for his assistance with the implementation. This work was
supported by the German Ministry for Education and Research (BMBF) through
funding for the Center for IT-Security, Privacy and Accountability (CISPA).

References

1. Ateniese, G., de Medeiros, B.: On the Key Exposure Problem in Chameleon
Hashes. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179.
Springer, Heidelberg (2005)

WebTrust – A Comprehensive Authenticity and Integrity Framework 417

2. Bayardo, R.J., Sorensen, J.S.: Merkle tree authentication of HTTP responses. In:
Proc. of the 14th International Conference on World Wide Web (WWW 2005),
pp. 1182–1183. ACM (2005)

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In: Proc. of the 1st ACM Conference on Computer and
Communication Security (CCS 1993), pp. 62–73. ACM (1993)

4. bouncycastle.org: The Legion of the Bouncy Castle (2013),
http://www.bouncycastle.org/

5. Catalano, D., Fiore, D., Gennaro, R.: Certificateless onion routing. In: Proc. of the
16th ACM Conference on Computer and Communication Security (CCS 2009),
pp. 151–160. ACM (2009)

6. Choi, T., Gouda, M.G.: HTTPI: An HTTP with Integrity. In: Proc. of the 20th
International Conference on Computer Communications and Networks (ICCCN
2011), pp. 1–6. IEEE Computer Society (2011)

7. The Chromium Projects (2014), http://www.chromium.org/
8. Devanbu, P., Gertz, M., Kwong, A., Martel, C., Nuckolls, G., Stubblebine, S.G.:

Flexible Authentication Of XML documents. In: Proc. of the 8th ACM Conference
on Computer and Communication Security (CCS 2001), pp. 136–145. ACM (2001)

9. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1 (1999),
http://tools.ietf.org/html/rfc2616

10. Fox, A., Brewer, E.A.: Reducing WWW Latency and Bandwidth Requirements
by Real-Time Distillation. In: Proc. of the 5th International Conference on World
Wide Web (WWW 1996), pp. 1445–1456. Elsevier (1996)

11. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A.,
Stewart, L.: RFC 2617 - HTTP Authentication: Basic and Digest Access Authen-
tication (1999), http://tools.ietf.org/html/rfc2617

12. Gaspard, C., Goldberg, S., Itani, W., Bertino, E., Nita-Rotaru, C.: Sine: Cache-
friendly integrity for the web. In: Proc. of the 5th IEEE Workshop on Secure
Network Protocols (NPSec 2009), pp. 7–12. IEEE Computer Society (2009)

13. Gennaro, R., Rohatgi, P.: How to sign digital streams. In: Kaliski Jr., B.S. (ed.)
CRYPTO 1997. LNCS, vol. 1294, pp. 180–197. Springer, Heidelberg (1997)

14. Gionta, J., Ning, P., Zhang, X.: iHTTP: Efficient Authentication of Non-
confidential HTTP Traffic. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 381–399. Springer, Heidelberg (2012)

15. Hohenberger, S., Waters, B.: Realizing Hash-and-Sign Signatures under Standard
Assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 333–350.
Springer, Heidelberg (2009)

16. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Chapman & Hall/Crc
Cryptography and Network Security Series). Chapman and Hall/CRC (2007)

17. Krawczyk, H., Rabin, T.: Chameleon Signatures. In: Proc. of the 7th Annual Net-
work and Distributed System Security Symposium (NDSS 2000). The Internet
Society (2000)

18. Lesniewski-Laas, C., Kaashoek, M.F.: SSL Splitting: Securely Serving Data from
Untrusted Caches. In: Proc. of the 12th Usenix Security Symposium, pp. 187–199.
Usenix Association (2003)

19. Lesniewski-Laas, C., Kaashoek, M.F.: SSL splitting: Securely serving data from
untrusted caches. Computer Networks 48(5), 763–779 (2005)

20. Lin, C.Y., Chang, S.F.: Generating robust digital signature for image/video au-
thentication. In: Proc. of the 1st Workshop on Multimedia and Security at ACM
Multimedia 1998, vol. 98, pp. 94–108. ACM (1998)

http://www.bouncycastle.org/
http://www.chromium.org/
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2617

418 M. Backes et al.

21. Merkle, R.C.: Method of Providing Digital Signatures (US Patent: US4309569A)
(1979)

22. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

23. Moyer, T., Butler, K.R.B., Schiffman, J., McDaniel, P., Jaeger, T.: Scalable Web
Content Attestation. IEEE Transactions on Computers 61(5), 686–699 (2012)

24. NIST: Recommendation for Key Management. Special Publication 800-57 Part 1
Rev. 3 (2012)

25. OpenSSL. (2014), http://www.openssl.org/
26. Oracle: Java Cryptography Architecture – Oracle Providers Documentation

(2013),
http://docs.oracle.com/javase/7/docs/technotes/guides/
security/SunProviders.html

27. Pannetrat, A., Molva, R.: Efficient Multicast Packet Authentication. In: Proc. of
the 10th Annual Network and Distributed System Security Symposium (NDSS
2003). The Internet Society (2003)

28. Perrig, A., Canetti, R., Tygar, D., Song, D.: Efficient authentication and signing of
multicast streams over lossy channels. In: Proc. of the 2000 IEEE Symposium on
Security and Privacy (Oakland 2000), pp. 56–73. IEEE Computer Society (2000)

29. Ray, I., Kim, E.: Collective Signature for Efficient Authentication of XML Docu-
ments. In: Deswarte, Y., Cuppens, F., Jajodia, S., Wang, L. (eds.) Security and Pro-
tection in Information Processing Systems. IFIP, vol. 147, pp. 411–424. Springer,
Boston (2004)

30. Reis, C., Gribble, S.D., Kohno, T., Weaver, N.C.: Detecting In-Flight Page Changes
with Web Tripwires. In: Proc. of the 5th Usenix Symposium on Networked Systems
Design and Implementation (NSDI 2008), pp. 31–44. Usenix Association (2008)

31. Rescorla, E.: RFC 2818 - HTTP Over TLS (2000),
http://tools.ietf.org/html/rfc2818

32. Rescorla, E., Schiffman, A.: RFC 2660 - The Secure HyperText Transfer Protocol
(1999), http://tools.ietf.org/html/rfc2660

33. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM (CACM) 21(2),
120–126 (1978)

34. Schröder, D., Schröder, H.: Verifiable data streaming. In: Proc. of the 19th ACM
Conference on Computer and Communication Security (CCS 2012), pp. 953–964.
ACM (2012)

35. Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

36. Siege Home (2014), http://www.joedog.org/siege-home/
37. Singh, K., Wang, H.J., Moshchuk, A., Jackson, C., Lee, W.: Practical End-to-End

Web Content Integrity. In: Proc. of the 21st International Conference on World
Wide Web (WWW 2012), pp. 659–668. ACM (2012)

http://www.openssl.org/
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html
http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc2660
http://www.joedog.org/siege-home/

A Revocable Group Signature Scheme

from Identity-Based Revocation Techniques:
Achieving Constant-Size Revocation List

Nuttapong Attrapadung1, Keita Emura2, Goichiro Hanaoka1,
and Yusuke Sakai1,�

1 National Institute of Advanced Industrial Science and Technology (AIST), Japan
{n.attrapadung,hanaoka-goichiro,yusuke.sakai}@aist.go.jp

2 National Institute of Information and Communications Technology (NICT), Japan
k-emura@nict.go.jp

Abstract. Any multi-user cryptographic primitives need revocation
since a legitimate user may quit the organization, or may turn to be
malicious, or the key may be leaked. In the group signature context,
usually group manager publishes the revocation list that contains revo-
cation tokens. Since signers/verifiers need to obtain the revocation list
in each revocation epoch for generating/verifying a group signature, a
small-size revocation list is really important in practice. However, all
previous revocable group signatures require at least O(r)-size revocation
list, where r is the number of revoked users. In this paper, we propose
the first revocable group signature scheme with the constant size revo-
cation list from identity-based revocation (IBR) techniques. We use an
IBR scheme proposed by Attrapadung-Libert-Panafieu (PKC2011) as a
building block. Although the maximum number of the revoked users
needs to be fixed in the setup phase, however, the maximum number
of group members is potentially unbounded (as in IBR). This property
has not been achieved in the recent scalable revocable group signature
schemes, and seems to be of independent interest.

Keywords: Revocable Group Signature, Identity-Based Revocation.

1 Introduction

1.1 Group Signature and Revocation

Group signature, proposed by Chaum and van Heyst [12], is a famous cryp-
tographic primitive that enables signer anonymity. The group manager (GM)
issues a signing key to a user, and the user makes a group signature on a cer-
tain message. A verifier can verify the signature by a group public key only, i.e.,
without using any user-dependent value. Therefore, no verifier can identify who
the actual signer is, though the validity of signatures can be verified.

� The fourth author is supported by a JSPS Fellowship for Young Scientists.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 419–437, 2014.
c© Springer International Publishing Switzerland 2014

420 N. Attrapadung et al.

Any multi-user cryptographic primitives need revocation since a legitimate
user may quit the organization, or may turn to be malicious, or the key may
be leaked. In the group signature context, usually GM publishes the revocation
list that contains revocation tokens.1 Nakanishi et al. [28] proposed the first
(pairing-based) group signature schemes with constant signing/verification costs
in the random oracle model. However, their scheme requires O(

√
N)-size public

key, where N is the maximum number of users. Fan et al. [15] also proposed a
group signature scheme with constant signing/verification costs in the random
oracle model. Though they achieve constant-size group public keys, GM needs
to publish O(N) size values at each revocation. Therefore, the revocation list
size of the Fan et al. scheme is O(N).

Libert, Peters, and Yung (LPY) [25] proposed scalable group signature
schemes with revocation in the standard model by applying broadcast encryp-
tion (BE) techniques, where no signing key update is required, the verification
cost does not depend on the number of (revoked) users, and the size of public
key is also small. Their main idea for implementing the revocation functionality
in an efficient way is to apply subset cover framework (proposed by Naor, Naor,
and Lotspiech (NNL) [30]) which is explained as follows. The set of authorized
users S is partitioned into disjoint subsets S1, . . . , Sm, and an encryption key is
associated with each subset. There are mainly two ways for making partitions
called Complete Subtree (CS) and Subset Difference (SD). Here, m = O(r) (SD)
and m = O(r · log(N/r)) (CS). A public key setting of subset cover framework
is proposed in [14], where CS and SD settings can be implemented by using
identity-based encryption (IBE) and hierarchical IBE (HIBE), respectively. In
the LPY schemes [25], denoted as the LPY1(SD) scheme and the LPY2(CS)
scheme, respectively, each user has a decryption key of IBE(CS) or HIBE(SD)
issued by GM in the join phase. Moreover, in each revocation epoch, GM pub-
lishes the revocation list which contains m NNL ciphertexts as revocation tokens.
In the signature generation phase, a signer proves the decryption ability of a NNL
ciphertext in order to prove that the signer has not been revoked. They use the
Boneh-Boyen-Goh (BBG) HIBE [8] for SD and the Boneh-Boyen IBE [6] for CS
as building blocks. One may think that the Boneh-Gentry-Waters (BGW) BE
scheme [10] should be applied, since the BGW scheme supports the constant-size
ciphertext and it may lead to an efficient construction. It might be true, but the
size of public key becomes linear of N , and therefore there is no improvement
form the Nakanishi et al. scheme [28] though random oracles can be removed.

Libert, Peters, and Yung also proposed another SD-based revocable group sig-
nature scheme with the constant-size certificate [24] by applying concise vector
commitments [27] instead of HIBE. We denote this scheme the LPY3 scheme.
In order to show that a signer belongs to one of the SD subsets, the signer
proves that certain equality and inequality relations of identities against pri-
mary/secondary roots of the corresponding SD subset. See [24] for scheme

1 Actually, the revocation list contains a set of the revoked users, however, this can be
represented as at most N bits. So, we estimate the overhead size of the revocation
list, i.e., the size of tokens, as in [24] and BE schemes.

A Revocable Group Signature Scheme from IBR Techniques 421

details, but the crucial point is the revocation list containsm structure-preserving
signatures (such as the Abe-Haralambiev-Ohkubo (AHO) signature [1,2]) for
anonymously proving the equality and inequality relations.

Problem Statement: Though three LPY schemes [25,24] achieve not only ef-
ficient signing/verification costs but also small-size group public key and user
certificate, the group public key and certificates need to be obtained only once.
Whereas signers and verifiers need to obtain the revocation list in each revoca-
tion epoch for generating/verifying a group signature, and therefore a small-size
revocation list is desired in practice. That is, there is room for argument on the
size of the revocation list. However, as explained before, the set of authorized
users is partitioned into disjoint subsets S1, . . . , Sm, and revocation list contains
NNL ciphertexts/signatures in the LPY schemes, since m subsets are required
for covering all non-revoked users.

It is to be noted that the efficiency of the LPY schemes, in terms of the public
key size and signing/verification costs, are realized from the BE technique, but
this technique itself brings on O(r)-size revocation list. So, for reducing the size
of revocation list without detracting benefit points taken from BE, we need to
not only investigate another methodology of BE but also this methodology also
covers the above outcome of the BE technique.

1.2 Our Contribution

In this paper, we propose the first revocable group signature scheme in the
standard model with the constant-size revocation list. We compare our schemes
and (pairing-based) revocable group signature schemes which are secure in the
standard model [26,24,25,29] in Table 1. As the underlying one-time signature
(OTS) scheme of these group signature schemes, we use the Groth OTS scheme
[17] (which is existential unforgeable under the discrete logarithm assumption
in the standard model), where the verification key consists of 3 group elements
and the signature consists of 2 group elements.

Our Main Idea: Revocable Group Signatures from IBR Techniques:
In Identity-Based BE (IBBE), a user with ID can decrypt a ciphertext if ID ∈ S,
where S is the set of authorized users. In contrary, in Identity-Based Revocation
(IBR) [23], a user with ID can decrypt a ciphertext if ID �∈ S. In the group
signature context, the set S can be seen as IDs of revoked users, say R, and only
a non-revoked user can prove that ID �∈ R by showing the decryption ability of a
ciphertext associated with R. We apply the Attrapadung-Libert-Panafieu IBR
(ALP-IBR) scheme [4,3] as a building block.

It is particularly worth noting that only one ciphertext (corresponding to
R) needs to be contained into the revocation list, whereas m ciphertexts for
each subset S1, . . . , Sm and signatures thereof needs to be contained in the
LPY1(SD)/LPY2(CS) schemes [25]. That is, revocation tokens contained in the
revocation list can be described as in informally for now:

422 N. Attrapadung et al.

Table 1. Comparison between Pairing-based Revocable Group Signatures in the Stan-
dard Model. Let N be the maximum number of users, T be the maximum number
of revocation epochs, T ′ be the parameter of the accumulated value in [29], r be the
number of revoked users, and R be the maximum number of revoked users. We denote
the number of group elements contained in a group signature on () in Signature size. ♦
stands for this scheme can be modified to have O(1)-size group public keys. † stands for
this complexity is only invoked at the first signature of each revocation epoch. Bounded
means that the maximum number of users N needs to be fixed in the setup phase.

Schemes Group PK Sig. Membership Rev.
size size cert size list size

LV [26] O(T)♦ O(1) (47) O(1) O(r)
LPY1(SD) [25] O(logN)♦ O(1) (96) O(log3 N) O(r)
LPY2(CS) [25] O(1) O(1) (96) O(logN) O(r · log(N/r))
LPY3 [24] O(logN) O(1) (144) O(1) O(r)
NF [29] O(T ′ logN) O(1) (143) O(T ′) O(r/T ′)
This work O(1) O(1) (98) O(R) O(1)

Schemes Sig. Verif. Rev. Num. of
cost cost cost Max. Users

LV [26] O(1) O(r) O(r) Bounded

LPY1(SD) [25] O(logN)† O(1) O(r · logN) Bounded
LPY2(CS) [25] O(1) O(1) O(r · log(N/r)) Bounded
LPY3 [24] O(1) O(1) O(r) Bounded
NF [29] O(T ′)† O(1) O(r · logN) Bounded

This work O(r)† O(1) O(r) Unbounded

LPY1(SD)/LPY2(CS): RL = {(Enc(S1), . . . ,Enc(Sm)}, where Enc is IBE or
HIBE, S1, . . . , Sm are subsets, and m = O(r) (SD) and m = O(r · log(N/r))
(CS). More precisely, RL contains m (structure-preserving) signatures on
each Enc(Si) for i ∈ [1,m].

Ours: RL = {Enc(R)}, where Enc is IBR of ALP and R is the set of revoked
users. More precisely, RL contains a signature on Enc(R). Note that no
structure-preserving signature is required here.

Since the ALP-IBR ciphertext is constant size, we can achieve the revocation
list containing the O(1)-size revocation token. Moreover, in our scheme, a signer
is not required to hide such information since all signers share one ciphertext,
whereas in the LPY1(SD)/LPY2(CS) schemes, a signer needs to hide which
subset is chosen, so as to achieve anonymity. This is the reason why no structure-
preserving signature is required for establishing RL, and a structure preserving
signature is used for hiding a membership certificate only in our scheme.

As another benefit point to apply IBR, the maximal number of group mem-
bers is potentially unbounded (as in IBR). Though this property has been

A Revocable Group Signature Scheme from IBR Techniques 423

achieved in the (non-revocable) dynamic group signature context and revocable
group signature scheme applying the revocation methodology introduced in [9],2

whereas scalable revocable group signature schemes (introduced in Table 1) do
not achieve this property, since these schemes apply BEs, vector commitments,
or accumulators.

Moreover, a revocable group signature with constant-size public key can be
constructed, though it is required to be obtained only once. That is, in IBR con-
text, R-size public key is published in order to compute a ciphertext, whereas in
group signature context, ciphertexts need to be computed by GM only,3 and sign-
ers/verifiers do not use the IBR public key for signing/verification algorithms.
So, the IBR public key can be contained into the GM secret key, and can be
removed from the group public key.

We achieve the constant-size revocation list as expense of the size of member-
ship certificate. Our scheme can be viewed as pre-computing offline components
(certificate) so as to achieving optimal-size online components (revocation to-
ken). Though a signer is required O(r) computations for signing, however, this
procedure is only invoked at the first signature of each revocation epoch as
in [25],4 and no signing key update is required.

Concurrent Work: Independent of our work, recently Nakanishi and Funabiki
(NF) [29] also consider to reduce the revocation list size by using a completely
different method, namely extended accumulators based on [5]. Briefly, they re-
duce the number of structure-preserving signatures of the LPY3 scheme [24]
from m to
m/T ′�, where GM accumulates T ′ subsets in the SD method, and
makes
m/T ′� signatures. Their scheme can be seen as a trade-off scheme, where
they can reduce the revocation size as expense of the size of public key and
membership certificate.

Improvement of the NF Scheme: We observe that the NF scheme also can
achieve the constant size revocation list by setting T ′ ≥ R though this fact is
not mentioned in the NF paper [29]. However, the signature size is longer than
that of our scheme (see Table 1). That is, our scheme is more efficient than this
variant of the NF scheme.

2 RL contains signing keys of revoked users, and non-revoked users update their sign-
ing keys using these values. Moreover, GM also updates gpk according to the current
RL. This methodology can be used for [13,16].

3 The same thing occurs in the LPY1(SD) scheme [25], where the HIBE public key,
say mpkBBG in their notation, can be removed from the group public key. Note that
the LPY3 scheme [25] requires O(logN)-size group public key since signers need to
compute vector commitments. Similarly, the NF scheme [29] requires O(T ′ · logN)-
size group public key since signers need to compute accumulators. Moreover, even if
a revocable group signature scheme is constructed from the BGW-BE scheme whose
public key size is O(N), it seems hard to reduce the public key size since a decryptor
of a BE ciphertext needs to use the public key.

4 Similarly, in the LPY1(SD) scheme [25], signers need to derive their HIBE secret
key before computing a group signature.

424 N. Attrapadung et al.

2 Preliminaries

In this section, we give definitions of complexity assumptions, and introduce
cryptographic tools which are applied in our construction. Let PPT means prob-

abilistic polynomial time, and x
$← X means that an element x is chosen at

uniformly random from a set X . We use bilinear maps e : G × G → GT over
groups of prime order p, where e(g, h) �= 1GT iff g, h �= 1G.

2.1 Complexity Assumptions

Definition 1 (The Decision Linear (DLIN) assumption [9]). We say that
the DLIN assumption holds in G if for all PPT adversary A, AdvDLIN

A (λ) :=
|Pr[A(g, ga, gb, gac, gbd, gc+d) = 0]−Pr[A(g, ga, gb, gac, gbd, gz) = 0]| is negligible,
where g

$← G and a, b, c, d, z
$← Z∗

p.

Definition 2 (The q-Strong Diffie-Hellman (SDH) assumption [7]). We

say that the q-SDH assumption holds in G if for all PPT adversary A, Advq-SDH
A (λ)

:= Pr[A(g, ga, ga
2

, . . . , ga
q

) = (g
1

a+x , x)] is negligible, where g
$← G, a

$←∈ Z∗
p, and

x ∈ Zp.

Definition 3 (The q-Simultaneous Flexible Pairing (SFP) assumption
[2]). We say that the q-SFP assumption holds in G if for all PPT adversary

A, Advq-SFPA (λ) := Pr[A(gz , hz, gr, hr, a, ã, b, b̃, {(zj, rj , sj, tj , uj , vj , wj)}qj=1) =

(z∗, r∗, s∗, t∗, u∗, v∗, w∗)] is negligible, where gz, hz, gr, hr, a, ã, b, b̃
$← G, z∗ �= 1G,

and z∗ �= zj for all j = 1, . . . , q. Note that for all j = 1, . . . , q, e(a, ã) = e(gz, zj)

e(gr, rj)e(sj , tj) and e(b, b̃) = e(hz, zj)e(hr, uj)e(vj , wj) hold, and (z∗, r∗, s∗, t∗,
u∗, v∗, w∗) also satisfies these equations.

Next, we newly define a static complexity assumption (flexible Parallel Bilinear
Diffie-Hellman, flexible PBDH) as follows. The flexible PBDH assumption can
be considered as a variant of the Bilinear Diffie-Hellman Exponent (BDHE)
assumption [8,10]. We give the analysis of the flexible PBDH assumption over
bilinear generic group model in the full version of this paper due to the page
limitation, where it belongs to the uber-assumption family [8,11].

Definition 4 (The q-Computation Flexible PBDH assumption). We say
that the flexible q-Flexible Parallel Bilinear Diffie-Hellman (q-flexible PBDH)

assumption holds in (G,GT) if for all PPT adversary A, Advq-F-PBDH
A (λ) :=

Pr[A(g, {g
a
bi , gbi}i∈[1,q], {g

abi
bj }i,j∈[1,q],i�=j) = (gy, g

y(a
bi

(b1+···+bq)))∧i ∈ [1, q]∧y ∈
Z∗
p] is negligible, where g

$← G and a, b1, . . . , bq
$← Zp.

2.2 Groth-Sahai Proof Systems

Here, we introduce Groth-Sahai proof systems [19] as follows. Let A,B be equal-
dimension vectors or matrices containing group elements. Then A + B denotes

A Revocable Group Signature Scheme from IBR Techniques 425

their entry-wise product. Let f := (f1,f2,f3) ∈ G3 × G3 × G3 be a common

reference string (CRS) s.t. β1, β2, ξ1, ξ2
$← Z∗

p, f1 = gβ1 , f2 = gβ2 , f1 = (f1, 1, g)

and f2 = (1, f2, g). In the perfectly sound proof setting, f3 = f1
ξ1 + f2

ξ2 where
ξ1, ξ2 ∈ Z∗

p. To commit a group element X ∈ G, compute commitments C =

(1, 1, X)+ f1
r + f2

s+ f3
t with r, s, t

$← Z∗
p, which is a ciphertext of the Boneh-

Boyen-Shacham linear encryption scheme. In the witness indistinguishability
(WI) setting, f1,f2,f3 are linearly independent. Then, C is a perfectly hiding
commitment. To commit a scalar x ∈ Zp, compute C = ϕx + f1

r + f2
s with

r, s
$← Z∗

p. In the perfectly sound proof setting, ϕ = f3 + (1, 1, g) where f3 =

f1
ξ1 + f2

ξ2 for ξ1, ξ2 ∈ Z∗
p. Then ϕ,f1,f2 are linearly independent. In the WI

setting, ϕ = f1
ξ1 + f2

ξ2 for ξ1, ξ2 ∈ Z∗
p.

Groth-Sahai proofs prove that the committed values satisfy pairing-product
equations

∏n
i=1 e(Ai,Xi) ·

∏n
i=1 ·

∏n
j=1 e(Xi,Xj)

ai,j = tT for variables X1, . . . ,Xn

∈ G, constants tT ∈ GT , A1, . . . ,An ∈ G, ai,j ∈ Zp for i, j ∈ {1, . . . , n}.
Groth-Sahai proofs also follow multi-exponentiation equations

∏m
i=1A

yi

i ·
∏n

i=1

X bj
j ·

∏m
i=1 ·

∏n
i=1 X

yiγij

j = T for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp, and
constants T,A1, . . . ,Am ∈ G, b1, . . . , bn ∈ Zp and γij for i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}. Proofs for quadratic equations require 9 group elements, proofs
for linear equations require 3 group elements, and proofs for linear
multi-exponentiation equations require 2 group elements.

2.3 The Abe-Haralambiev-Ohkubo Structure-preserving Signatures

In this section, we introduce the AHO signature [2]. Let pp = ((G,GT), g) and
n ∈ N be an upper bound on the number of group elements that can be signed
altogether. In our group signature, we set n = 3.

KeyGen(pp, n) : Choose Gr, Hr
$← G, γz, δz

$← Zp, and γi, δi
$← Zp for i =

1, . . . , n. Compute Gz = Gγz
r , Hz = Hδz

r , Gi = Gγi
r , and Hi = Hδi

r for

i = 1, . . . , n, and compute αa, αb
$← Zp, A = e(Gr, g

αa), and B = e(Hr, g
αb).

Output pk = (Gr , Hr, Gz , Hz, {Gi, Hi}ni=1, A,B) ∈ G2n+4 × G2
T and sk =

(αa, αb, γz, δz, {γi, δi}ni=1).

Sign(sk, (M1, . . . ,Mn)) : Choose ζ, ρ, τ, ν, ω
$← Zp, and output a signature σ =

(θ1, . . . , θ7) where
(
θ1 = gζ , θ2 = gρ−γzξ ·

n∏
i=1

M−γi

i , θ3 = Gτ
r , θ4 = g(αa−ρ)/τ ,

θ5 = gν−δzξ ·
n∏

i=1

M−δi
i , θ6 = Hω

r , θ7 = g(αb−ν)/ω
)
.

Verify(pk, σ, (M1, . . . ,Mn)) : Check the equationsA = e(Gz , θ1)e(Gr, θ2)e(θ3, θ4)∏n
i=1 e(Gi,Mi) and B = e(Hz, θ1)e(Hr, θ5)e(θ6, θ7)

∏n
i=1 e(Hi,Mi). If both

equations hold, then output 1, and 0 otherwise.

The AHO signature is existential unforgeable under the q-SFP assumption.

426 N. Attrapadung et al.

3 Definitions of Revocable Group Signature

In this section, we give the syntax and correctness definitions of revocable group
signature. We use the LPY definitions [24,25] which are modified from the
Kiayias-Yung (KY) model [21,20] to match the revocation functionality. We use
R to the Setup algorithm as its input, instead of the maximal number of group
membersN , due to our construction. Though we need to fix R in the setup phase,
however, the maximal number of group members is potentially unbounded (as
in IBR).

A revocable group signature schemeR-GS consists of 6 algorithms (Setup, Join,
Revoke, Sign,Verify,Open) as follows:

Definition 5 (Revocable Group Signature).

Setup(λ,R) : This algorithm takes as inputs a security parameter λ ∈ N and
a maximal number of revoked users R ∈ N, and outputs a group public
key Y, the group manager (GM) private key for revocation SGM, and the
opening authority (OA) private key for opening SOA. Moreover, the algorithm
initializes a public state St comprising a set data structure Stusers = ∅ and a
string data structure Sttrans = ε.

JoinGM,Ui : This interactive protocol between GM and a user Ui (whose iden-
tity is IDi) involves two interactive Turing machines Juser and JGM which
execution is denoted as [Juser(λ,Y), JGM(λ, St,Y,SGM)]. Ui obtains a mem-
bership secret seci and a membership certificate certi which contains IDi. If
the protocol is successful, GM updates Stusers ← Stusers ∪ {IDi} and Sttrans ←
Sttrans||〈i, transcripti〉.

Revoke(Y,SGM, t,Rt ⊂ Stusers) : This algorithm takes as input Y, SGM, a revoca-
tion epoch t, and a set of revoked users Rt ⊂ Stusers, and outputs an updated
revocation list RLt which contains Rt.

Sign(t, RLt, cert, sec,M) : This algorithm takes as input a time t, RLt, cert,
sec, and a message M to be signed, and outputs ⊥ if ID ∈ Rt, and a group
signature Σ, otherwise.

Verify(Σ, t, RLt,M,Y) : This algorithm takes as input Σ, t, RLt, M , and Y,
and outputs 1 or 0 which mean valid or invalid, respectively.

Open(M,Σ,Y, t,SOA, St) : This algorithm takes as input M , Σ, Y, t, SOA, and
St := (Stusers, Sttrans), and outputs i such that IDi ∈ Stusers ∪ {⊥}, where ⊥
is a symbol indicating an opening failure.

Next, we define correctness. Let St be a public state, and St is said to be
valid if it can be reached from St = (∅, ε) by a Turing machine having oracle
access to JGM. A state St′ is said to be extended anther state St if it can be
reached from St. As in [21,20,24,25] we use certi 	Y seci to express that there
exist coin tosses $ for JGM and Juser s.t., for some valid state St′, the execution
of [Juser(λ,Y), JGM(λ, St,Y,SGM)]($) provides Juser with 〈i, certi, seci〉.

Definition 6 (Correctness). A revocable group signature scheme R-GS is
said to be correct if:

A Revocable Group Signature Scheme from IBR Techniques 427

1. In a valid state St = (Stusers, Sttrans), the condition |Stusers| = |Sttrans| holds,
and no two entries of Sttrans can contain certificates with the same tag. Note
that in our scheme, tag is (ID, X).

2. If [Juser(λ,Y), JGM(λ, St,Y,SGM)] is honestly run by both parties and 〈i, certi,
seci〉 is obtained by Juser, then certi 	Y seci holds.

3. For each t andany 〈i, certi, seci〉 satisfying condition 2,Verify(Sign(t, RLt, certi,
seci,M), t, RLt,M,Y) = 1 holds if IDi �∈ Rt.

4. For any 〈i, certi, seci〉 resulting from the interaction [Juser(·, ·), JGM(·, St, ·, ·)]
for some valid state St, any t s.t. IDi �∈ Rt, Open(M,Σ,Y, t,SOA, St) = i
holds where Σ = Sign(t, RLt, certi, seci,M).

Nextwe introduce three securitydefinitions,misidentification, non-frameability,
and anonymity. Before that, we introduce variables and oracles as follows:

stateI : This is a data structure which is initialized as stateI = (St,Y,SGM,SOA)
← Setup(λ,R). This structure represents the state of the interface as the ad-
versary invokes the various oracles, and includes a counter t which indicates
the number of user revocation queries so far (i.e., the current revocation
epoch).

n = |Stusers| : This is the current cardinality of the group.
Sigs : This is a set of signatures Sigs created by the signing oracle. Each entry

is represented as (IDi, t,M,Σ), where Σ is a group signature on M signed
by Ui on t.

Ua : This is the set of corrupted users who were introduced by the adversary A
via an execution of the join protocol.

U b : This is the set of honest users who were added in the system by the join
protocol with the adversary A who acts a dishonest GM. A can obtain the
transcript of the join protocol, but A cannot obtain sec.

Qpub, QkeyGM, and QkeyOA : When these oracles are invoked, the interface looks
up stateI , and returns Y, SGM, or SOA, respectively.

Qa-join : This is the join oracle for a corrupted user. On behalf of GM, the in-
terface runs JGM in interaction with Juser which is run by the adversary. If
this protocol successfully ends, the interface increments n ← n + 1, add
IDn to Ua, and updates St s.t. Stusers ← Stusers ∪ {IDn} and Sttrans ←
Sttrans||〈n, transcriptn〉.

Qb-join : This is the join oracle for an honest user. On behalf of a user, the in-
terface runs Juser in interaction with JGM which is run by the adversary. If
this protocol successfully ends, the interface increments n ← n + 1, add
IDn to U b, and updates St s.t. Stusers ← Stusers ∪ {IDn} and Sttrans ←
Sttrans||〈n, transcriptn〉. Moreover, the interface stores certn and secn in a
private part of stateI .

Qsig : This is the signing oracle. Given (i,M), the interface checks whether the
private area of stateI contains (certi, seci) or not, and also checks IDi �∈ Rt,
where t is the current revocation epoch. In no such (certi, seci) with IDi �∈
Rt exist or IDi �∈ U b, then return ⊥. Otherwise, the interface runs Σ ←
Sign(t, RLt, certi, seci,M), updates Sigs ← Sigs||(IDi, t,M,Σ), and returns
Σ.

428 N. Attrapadung et al.

Qopen : This is the opening oracle. Given (M,Σ), the interface runs Open(M,Σ,
Y, t,SOA, St) using the current state St, and returns its output result.

Q¬S
open : This is the restricted opening oracle. Let S be a set with the form
(M,Σ, t). Given (M,Σ, t) the oracle returns the result of Open(M,Σ,Y, t,
SOA, St) if (M,Σ, t) �∈ S.

Qread and Qwrite : These are reading and writing oracles, respectively, in order
to read/write stateI . Qread outputs the whole stateI but the public/private
keys and the private part of stateI where membership secrets are stored after
Qb-join queries. The adversary can modify stateI via Qwrite at will as long as
it does not remove or alter elements of Stusers, Sttrans, or invalidate the public
state St.

Qrevoke : This is the revocation oracle. Given an index i ∈ N such that IDi ∈
Stusers, the interface checks whether IDi is contained in the appropriate user
set (i.e., either Ua or U b) or not, and whether 〈i, transcripti〉 s.t. IDi �∈ Rt is
contained in Sttrans or not, where t is the current revocation epoch. If not,
then return ⊥. Otherwise, the interface increments t ← t+1, adds IDi to Rt,
and updates RLt. We assumed that the adversary only revokes one user per
query to Qrevoke. However, it can be easily extended to allow multiple users
revocation at once.

Moreover, we define the IsRevoked algorithm. This algorithm takes as input
(sec, cert, RLt), and outputs 1 if a user who has (sec, cert) is contained in RLt,
and 0 otherwise.

Nextwe introduce three securitydefinitions,misidentification, non-frameability,
and anonymity. Briefly, misidentification guarantees that no adversary (who does
not have SGM) can produce a valid group signature whose opening result is in
outside of the set of non-revoked adversarially-controlled users. Non-frameability
guarantees that no adversary (who can corrupt GM and OA) can produce a group
signature whose opening result is an honest user. Anonymity guarantees that no
adversary (who does not have SOA) can distinguish whether signers of two group
signatures are the same or not.

Definition 7 (Misidentification). Let A be an adversary and C be the chal-
lenger. C runs stateI = (St,Y,SGM,SOA) ← Setup(λ,R). A is allowed to access
Qpub, Qa-join, Qrevoke, Qread, and QkeyOA. Finally, A outputs (M∗, Σ∗). We say
that A wins if (1) Verify(Σ∗, t∗, RLt∗ ,M

∗,Y) = 1, where t∗ is the challenge re-
vocation epoch, and (2) for ID ← Open(M∗, Σ∗,Y, t∗,SOA, St′), ID �∈ Ua \ Rt∗ .
Let Advmis−id

A (λ) := Pr[A wins]. We say that R-GS is secure against misidenti-

fication attack if for all PPT A, Advmis−id
A (λ) is negligible.

Definition 8 (Non-frameability). Let A be an adversary and C be the chal-
lenger. C runs stateI = (St,Y,SGM,SOA) ← Setup(λ,R). A is allowed to access
Qpub, QKeyGM, QkeyOA, Qb-join, Qrevoke, Qsig, Qread, and Qwrite. Finally, A outputs
(M∗, Σ∗, t∗, RLt∗). We say that A wins if (1) Verify(Σ∗, t∗, RLt∗ ,M

∗,Y) = 1,
and (2) for ID ← Open(M∗, Σ∗,Y, t∗,SOA, St′), ID ∈ U b and (ID, t∗,M∗, ∗) �∈
Sigs. Let AdvnfA(λ) := Pr[A wins]. We say that R-GS is secure against misiden-
tification attack if for all PPT A, AdvnfA(λ) is negligible.

A Revocable Group Signature Scheme from IBR Techniques 429

Definition 9 (Anonymity). Let A be an adversary and C be the challenger.
C runs stateI = (St,Y,SGM,SOA) ← Setup(λ,R). A is allowed to access Qpub,
QKeyGM, Qrevoke, Qopen, Qread, and Qwrite. A outputs (aux,M∗, t∗, RLt∗ , (cert

∗
0,

sec∗0), (cert
∗
1, sec

∗
1)). For d ∈ {0, 1}, if (cert∗d 	Y sec∗d), IsRevoked(sec∗d, cert

∗
d,

RLt∗) = 0, and cert∗0 �= cert∗1, then C chooses b
$← {0, 1}, computes Σ∗ ←

Sign(t∗, RLt∗ , cert
∗
b , sec

∗
b ,M

∗), and sends Σ∗ to A. Then A is allowed to access
Qpub, QKeyGM, Qopen, Qread, and Qwrite, with one exception that A is not allowed
to send (M∗, Σ∗, t∗) to Qopen. Finally, A outputs b′ ∈ {0, 1}. Let AdvanonA (λ) :=
|Pr[b = b′] − 1

2 |. We say that R-GS is anonymous if all PPT A, AdvanonA (λ) is
negligible.

4 Attrapadung-Libert-Panafieu Identity-Based
Revocation

For the sake of clarity, in this section we introduce the Attrapadung-Libert-
Panafieu Identity-Based Revocation (ALP-IBR) scheme [4,3]. Before that, we
introduce the underlying idea for constructing ALP-IBR as follows: Let R =
(ID1, . . . , IDr) be the set of unauthorized users, and then the polynomial fR(Z) =
(Z − ID1) · · · (Z − IDr) = a0 + a1Z + · · ·ar−1Z

r−1+Zr and its coefficients yR =
(a0, a1, . . . , ar−1, 1) are uniquely determined. Let X ID := (1, ID, ID2, . . . , IDr).
Then, ID �∈ R ⇐⇒ fR(ID) �= 0 ⇐⇒ yR ·X ID �= 0 hold. Let (r+1)× r matrix
MID be

MID :=

⎛⎜⎜⎜⎜⎜⎝
−ID −ID2 · · · −IDr

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠ =

(
−ID −ID2 · · · −IDr

Ir

)

where Ir is the r × r identity matrix, and let M1 be the first row of MID,
i.e., (−ID,−ID2, . . . ,−IDr). Let ω = (a1, . . . , ar−1, 1). Then, ωMT

1 = −(a1ID +
a2ID

2 + · · · + ar−1ID
r + IDr). Now fR(ID) �= 0 ⇐⇒ −(a1ID + a2ID

2 + · · · +
ar−1ID

r + IDr) �= a0 holds. That is, ID �∈ R ⇐⇒ ωMT
1 �= a0 holds. The

ALP-IBR scheme is constructed by using this relation.
Next, we introduce the ALP-IBR scheme. An IBR scheme IBR consists of

4 algorithms (Setup,KeyGen,Encrypt,Decrypt). Briefly, a user whose identity is
ID has a secret key skID. A ciphertext which is associated with a set of revoked
user R can be decrypted by skID if ID �∈ R. In the following scheme, gα :=
(gα1 , . . . , gαR+1) for α = (α1, . . . , αR+1) and for A = gα, Az = (gα)z = g〈a,z〉,
where 〈·, ·〉 is the inner product.

Setup(1λ, R) : Here λ is a security parameter and R is the maximum number
of revoked users. Choose a bilinear group G of prime order p > 2λ with

a random generator g
$← G. Choose α, α1, . . . , αR+1

$← Z∗
p, and set α :=

(α1, . . . , αR+1). Output pkALP = (g, gα,A = e(g, g)α) and mskALP = α.

430 N. Attrapadung et al.

KeyGen(ID,msk, pk) : Let MID be a (R+1)×R matrix defined as in the above.

Choose u
$← Z∗

p, and compute D0 = gu, D1 = gα+uα1 , and K = guM
T
IDα,

and output skID = (D0, D1,K), where K = guM
T
IDα = (gu(−IDα1+α2), . . . ,

gu(−IDRα1+αR+1)) ∈ GR.
Encrypt(R,M, pk) : For a set of revoked user R = (ID1, . . . , IDr), let yR =

(a0, a1, . . . , ar−1, 1) is the vector of coefficients of fR(Z) = (Z− ID1) · · · (Z−
IDr), where R = {ID1, . . . , IDr} is the set of identities of revoked users.

Choose s
$← Z∗

p, and compute C0 = M · As, C1 = gs, and C2 = gs〈yR,α〉.

Note that C2 = gs〈yR,α〉 can be computed without knowing α from gα and
yR. Output a ciphertext C = (C0, C1, C2).

Decrypt(C,R, skID, pk) : Let M1 be the vector of the first row of MID. Let yR =
(a0, a1, . . . , ar−1, 1) as in the Encryption algorithm. If ID ∈ R, then ωMT

1 =
a0 holds, where ω = (a1, . . . , ar, 1), and output ⊥. Otherwise, if ID �∈ R,
then ωMT

1 �= a0 holds. Let Kr be the vector of the first r components of
K, i.e., Kr := (gu(−IDα1+α2), . . . , gu(−IDrα1+αr+1)) ∈ Gr. Then,

Kω
r = gu(α1ωMT

1 +〈yR,α〉−α1a0) = guα1(ωMT
1 −a0)gu〈yR,α〉,

e(C2, D0)

e(Kω
r , C1)

=
e(gs〈yR,α〉, gu)

e(guα1(M1ω−a0)gu〈yR,α〉, gs)

=
e(gu〈yR,α〉, gs)

e(guα1(M1ω−a0), gs)e(gu〈yR,α〉, gs)

= e(g, g)−suα1(M1ω−a0), and

e(D1, C1) = e(gα+uα1 , gs) = e(g, g)αse(g, g)suα1 holds. Therefore,

C0

e(D1, C1)
(

e(C2,D0)
e(Kω

r ,C1)

) 1
M1ω−a0

= M · As/e(g, g)αs = M holds.

5 Proposed Revocable Group Signature Scheme from
Identity-Based Revocation

General Idea: In this section, we give our revocable group signature. In or-
der to explain our construction methodology, first we give a big picture which
gives our intuitive idea as follows. Assume that GM has a (long term) signature
signing/verification key (gsk, gpk), and a (structure preserving) signature sign-
ing/verification key (skGM, vkGM). Let (upk, usk) be a public/secret key pair of

a user, OT S = (G,S,V) be an OTS scheme, (Sign(i),Verify(i)) for i = 1, 2 be
signature schemes, IBR be an IBR scheme, and Tag be a tag-based encryption
scheme [22]. For an element X , we denote by X as its corresponding variable in
the proof system, and denote comX as the corresponding commitment.

User Signing Key: cert = (ID, upk, IBR.skID, σ = Sign
(1)
skGM

(upk, IBR.skID)) and
seci = usk.

A Revocable Group Signature Scheme from IBR Techniques 431

Revocation Token: IBR.Enc(R,M) and σrevoke = Sign
(2)
gsk(IBR.Enc(R,M)).

Group Signature: (SK,VK)← G(λ). Commit upk, IBR.skID, and σ to com =
(comupk, comIBR.skID

, comσ). Compute a proof Π that the committed values
satisfying the following:

IBR.Dec
(
IBR.skID, IBR.Enc(R,M)

)
= M (1)

Verify
(1)
vkGM

(
(upk, IBR.skID), σ

)
= 1 (2)

Tag.Enc
(
pkOA,VK, upk

)
= C (3)

Compute SSK(C, com,Π) = σOTS. A group signature is Σ = (VK, σOTS, C,
com,Π).

Verification : Verify proof Π, σOTS, and Verify
(2)
gpk(IBR.Enc(R,M), σrevoke) = 1.

Open : Tag.Dec
(
skOA,VK, C

)
= upk.

That is, a signer (whose identity is ID) has (upk, usk), and has a decryption key of
IBR IBR.skIDwhich is issuedbyGM.GMalso issues a signatureσ of (upk, IBR.skID).
The signer proves that (1) ID �∈ R by showing that IBR.Enc(R,M) can be de-
crypted by IBR.skID, (2) (upk, IBR.skID) are issued by GM by showing the posses-
sion of σ on (upk, IBR.skID), and (3) C is a ciphertext (with tag VK) of upk.

Techniques Towards Our Construction: In the actual scheme, usk = x and
upk = X := gx and (skGM, vkGM) is a key pair of the AHO signature scheme.
Moreover, we use the Kiltz tag-based encryption [22] for Tag.Enc. Note that we
do not have to prepare a full IBR ciphertext. Actually, for each revocation epoch
t, GM computes a (de-randomized) ALP-IBR ciphertext Ct = g〈yR,α〉 instead of
IBR.Enc(Rt,M), where Rt := (ID1, . . . , IDr) is the set of current revoked users.

GM signs Ct as an evidence that Ct is made by GM (Sign(2) in the big picture).
Unlike the LPY schemes, the signer does not have to hide Ct, since it is shared
by all signers, and therefore GM does not have to use any structure preserving
signature for signing Ct (this is the reason why we need to setup just one AHO
signature key pair whereas the LPY schemes require two AHO signature key
pairs), and a signer does not have to compute a commitment of Ct and the
corresponding Groth-Sahai proof.

For proving the decryption ability, we use the following (modified) decryption

equation. Let y := M1ω, A := e(g, g)α, Γ1 := guω
TMT

IDα, Γ2 = gy, Γ3 := gu,
and Γ4 := gα · guα1 . Here, IBR.skID = (Γ3, Γ4), and Γ1 can be computed from

K = guM
T
IDα and ω as in the ALP-IBR scheme. Then, from the equation e(gα ·

guα1 , g) = e(g, g)α
(

e(Kω,g)

e(g〈yR,α〉,gu)

) 1
y−a0

, we have

e(Γ4, g) = A ·
(e(Γ1, g)

e(Ct, Γ3)

) 1
y−a0

= A · e(Γ
1

y−a0
1 , g)

e(Ct, Γ
1

y−a0
3)

= A · e(σy,1, g)

e(Ct, σy,2)
(4)

432 N. Attrapadung et al.

where σy,1 = Γ
1

y−a0
1 and σy,2 = Γ

1
y−a0
3 are Boneh-Boyen short signatures [7]. In

order to prove that these are valid short signatures on y with the verification
key ga0 , we use the following equations

e(σy,1, Γ2/g
a0) = e(Γ1, g), e(σy,2, Γ2/g

a0) = e(Γ3, g)

From these equations, y �= a0 is guaranteed. This technique has been considered
in the LPY3 paper [24] for proving an inequality relation. Note that Γ3 and Γ4

(and upk = X also) are signed by GM by using the AHO signature, and the
signer also proves that the possession of an AHO signature on (X,Γ3, Γ4). One

may think that g
1

y−a0 and C
1

y−a0
t are enough to prove the decryption ability. As

the reason, the equation (4) is linear since g and Ct are constant values. This
helps to reduce the signature size since the corresponding Groth-Sahai proof con-
tains just 3 group elements, whereas for a quadratic equation the corresponding
Groth-Sahai proof contains 9 group elements.

As another part of a group signature, a signer encrypts its identifier X , and
prove that a plaintext X is signed by GM. To do so, the signer makes a commit-
ment of X and also makes commitments of the AHO signature of X , and make
Groth-Sahai proofs that a plaintext X is signed by GM. For achieving CCA -
anonymity, where an adversary is allowed to issue open queries in the anonymity
game, we use the Kiltz tag-based encryption scheme [22], as in the Groth group
signature scheme [18] and the LPY schemes.

Note that all components of an AHO signature do not have to be commit-
ted by applying the ReRand algorithm [2]. That is, for an AHO signature σ, let
{θ′i}7i=1 ← ReRand(pkAHO, σ) be a result of re-randomization. Then, {θ′i}i∈{3,4,6,7}
are independent of the corresponding signed message, and therefore {θ′i}i∈{3,4,6,7}
can be directly included into a part of a group signature. That is, the size of group
signature can be reduced by avoiding to compute commitments of {θ′i}i∈{3,4,6,7}
thanks to the ReRand algorithm. This technique also has been considered in LPY
schemes [25,24].

OurProposed Scheme: Each user Ui has a long term signature signing/verification
key (usk[i], upk[i]) which is registered in some PKI. Moreover, GM also has a long
term signature signing/verification key (gsk, gpk) which is also registered in some
PKI.We assume that each user has a unique identity ID ∈ Zp (chosen byGM), and
IDi �= IDj for all i �= j.

Construction 1 (Revocable Group Signature from IBR).

Setup(λ,R):
1. Choose (G,GT) of prime order p > 2λ, where 〈g〉 = G.
2. Generate a key pair (skAHO, pkAHO) for the AHO signature in order to

sign three group elements.
– pkAHO = (Gr , Hr, Gz , Hz, {Gi, Hi}3i=1, A,B)
– skAHO = (αa, αb, γz, δz, {γi, δi}3i=1)

3. Setup the ALP-IBR scheme, and obtain (pkALP,mskALP). Parse pkALP =
(g, gα,A = e(g, g)α).

A Revocable Group Signature Scheme from IBR Techniques 433

4. Select a CRS for NIWI proof system: f := (f1,f2,f3) ∈ G3×G3×G3 s.t.

β1, β2, ξ1, ξ2
$← Z∗

p, f1 = gβ1 , f2 = gβ2 , f1 = (f1, 1, g), f2 = (1, f2, g),

and f3 = f1
ξ1 + f2

ξ2 . ϕ = f3 + (1, 1, g) is also defined.

5. Choose U, V
$← G (for the Kiltz Tag-based encryption scheme).

6. Choose a strongly unforgeable OTS scheme OT S = (G,S,V).
Output Y = (g,A, pkAHO, gpk, f ,ϕ, (U, V),OT S), SGM = (pkALP,mskALP,
(skAHO, gsk)), and SOA = (β1, β2). Note that (g,A) is a part of pkALP.

JoinGM,Ui:

User : Choose x
$← Zp, compute X = gx, and send X to GM.

GM :

1. If X already appears in some entry transcriptj, then abort and return
⊥. Otherwise, choose IDi ∈ Zp.

2. Choose u
$← Z∗

p, and compute gu, gα · guα1 and guM
T
IDi

α, where

MIDi
:=

(
−IDi −ID2

i · · · −IDR
i

IR

)
is a (R + 1)× R matrix, IR is the R × R identity matrix, and T is
transpose of matrix.

3. Generate an AHO signature σ = (θ1, . . . , θ7) on (X, gu, gα · guα1) by
using skAHO.

4. Send (gu, gα · guα1 , guM
T
IDi

α) to User.

User : If these keys arewell-formed, then compute sigi = Signusk[i](X ||(gu, gα ·
guα1 , guM

T
IDi

α)) by using the long-term key, and send sigi to GM.

GM : If Verifyupk[i](X ||gu, gα ·guα1 , guM
T
IDi

α), sigi) = 1, then send σ to User,
and store transcripti = (IDi, X, σ) in Sttrans. Moreover, update Stusers ←
Stusers ∪ {IDi}.

User : Set certi = (IDi, σ,X, (gu, gα · guα1 , guM
T
IDi

α)) and seci = x.

Revoke(Y,SGM, t,Rt ⊂ Stusers):

1. Let Rt := (ID1, . . . , IDr) ⊂ Stusers be the revocation list on time t. For a
variant Z, define the revocation polynomial fRt(Z) := (Z− ID1) · · · (Z−
IDR) = a0 + a1Z + a2Z

2 + · · ·+ ar−1Z
r−1 + Zr, and let yRt be a set of

coefficients (a0, a1, . . . , ar−1, 1).
2. Compute a (part of) de-randomized IBR ciphertext Ct = g〈yR,α〉 from

yRt and gα = (gα1 , . . . , gαr+1).
3. Generate a signature Θt on (Ct, g

t) by using gsk.

Output RLt = (t,Rt, Ct, Θt). Note that we estimate the size of RLt without
considering IDs as in the estimation of the certificate-size in [24].

Sign(t, RLt, cert, sec,M):

1. Parse cert = (ID, σ,X, (gu, gα · guα1 , guM
T
IDα)) and sec = x.

2. (SK,VK)← G(λ) (OTS).

434 N. Attrapadung et al.

3. Let ω := (a1, . . . , ar−1, 1) and M1 = (−ID,−ID2, . . . ,−IDr) (the first

row of MID). Set y := ωMT
1 and compute Γ1 = guω

TMT
IDα and Γ2 = gy,

set Γ3 = gu and Γ4 = gα · guα1 , and compute σy,1 = Γ
1

y−a0
1 and σy,2 =

Γ
1

y−a0
3 .

4. Compute {θ′i}7i=1 ← ReRand(pkAHO, σ).
5. Compute Groth-Sahai commitments comX and {comθ′

i
}i∈{1,2,5}, and com-

pute a NIWI proof πσ which provides evidence that

A = e(Gz , θ
′
1)e(Gr, θ

′
2)e(θ

′
3, θ

′
4)e(G1, X)e(G2, Γ3)e(G3, Γ4)

B = e(Hz , θ
′
1)e(Hr, θ

′
5)e(θ

′
6, θ

′
7)e(H1, X)e(H2, Γ3)e(H3, Γ4)

Since {θ′i}i∈{3,4,6,7} are constants, the above equations are both linear
and require 3 elements each. That is, πσ contains 6 group elements.

6. Compute Groth-Sahai commitments {comσy,i}2i=1 and {comΓi}4i=1, and

compute a NIWI proof πΓ which provides evidence that A · e(σy,1,g)
e(Ct,σy,2)

=

e(g, Γ4), e(σy,1, Γ2/g
a0) = e(Γ1, g), and e(σy,2, Γ2/g

a0) = e(Γ3, g). Since
the first equation is linear, and the second and third equations are
quadratic, πΓ requires 21 group elements.

7. Encrypt X by the Kiltz tag-based encryption scheme [22] (tag: VK),

where z1, z2
$← Zp and (Ψ1, Ψ2, Ψ3, Ψ4, Ψ5) = (fz1

1 , fz2
2 , X · gz1+z2 , (gVK ·

U)z1), (gVK · V)z2)).
8. Generating a NIZK proof that comX and (Ψ1, Ψ2, Ψ3) are

Boneh-Boyen-Shacham linear encryptions of the same value X.
comX + (Ψ1, Ψ2, Ψ3)

−1 can be represented as comX + (Ψ1, Ψ2, Ψ3)
−1 =

(f τ1
1 f τ3

3,1, f
τ2
2 f τ3

3,2, g
τ1+τ2f τ3

3,3). Compute Groth-Sahai commitments

{comτj}3j=1 and proofs {πeq−comj
}3j=1 that (τ1, τ2, τ3) satisfies the above

three relations. Since these are linear equations, each πeq−comj
requires

2 group elements, and {πeq−comj
}3j=1 requires 6 group elements in total.

9. Compute σVK = g1/(x+VK) and compute a Groth-Sahai commitment
comσVK

and compute a NIWI proof πσVK
that the committed value σVK

and X satisfy e(σVK, X · gVK) = e(g, g). Since this equation is quadratic,
πσVK

requires 9 group elements.
10. Compute σOTS = SSK(M,RLt, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ω, com,Π)),

where Ω = {θ′i}i∈{3,4,6,7}, com =
({comΓi}4i=1, comX , {comσy,i}2i=1, {comθ′

i
}i∈{1,2,5}, {comτi}3i=1, comσVK

),
and Π = (πΓ , πσ, πeq−com1

, πeq−com2
, πeq−com3

, πσVK
).

Output the group signature Σ = (VK, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ω, com,Π, σOTS).
Verify(Σ, t, RLt,M,Y):

1. If V(VK, (M,RLt, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ω, com,Π), σOTS) = 0, then return
0.

2. Return 0 if e(Ψ1, g
VK) �= e(f1, Ψ4) or e(Ψ2, g

VK) �= e(f2, Ψ5).
3. Return 1 if all proofs properly verify. Otherwise, return 0.

A Revocable Group Signature Scheme from IBR Techniques 435

In the verification, a verifier uses (Ct, g
t) which is signed by GM. This can

be checked by Θt and gpk. We assume that the verifier always uses (Ct, g
t)

certified by GM.
Open(M,Σ,Y, t,SOA, St):

1. Return ⊥ if Verify(Σ, t, RLt,M,Y) = 0.

2. Otherwise, compute X̃ = Ψ3 · Ψ1−/β1

1 Ψ
−1/β2

2 .
3. Find a record (ID, X, σ) in Sttrans such that X = X̃. If no record exists,

return ⊥. Otherwise, return ID.

Duo to the page limitation, we give the security proofs of the following theo-
rems in the full version of this paper.

Theorem 1 (Misidentification). The proposed group signature scheme is se-
cure against misidentification attack under the qa-SFP assumption and the qa-
flexible PBDH assumption, where qa is the maximal numbers of Qa-join queries.

Theorem 2 (Non-frameability). The proposed group signature scheme is se-
cure against framing attack under the qb-SDH assumption and OT S is a strongly
unforgeable one-time signature scheme, where qb is the maximal numbers of
Qb-join queries.

Theorem 3 (Anonymity). The proposed group signature scheme is anony-
mous under the DLIN assumption and OT S is a strongly unforgeable one-time
signature scheme.

Acknowledgement. We thank the members of Shin-Akarui-Angou-Benkyou-
Kai and Prof. Toru Nakanishi for their helpful comments.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for
modular protocol design. IACR Cryptology ePrint Archive 133 (2010)

3. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Ràfols,
C.: Attribute-based encryption schemes with constant-size ciphertexts. Theor.
Comput. Sci. 422, 15–38 (2012)

4. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

5. Begum, N., Nakanishi, T., Funabiki, N.: Efficient proofs for CNF formulas on
attributes in pairing-based anonymous credential system. In: Kwon, T., Lee, M.-K.,
Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 495–509. Springer, Heidelberg
(2013)

436 N. Attrapadung et al.

6. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

7. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

8. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

9. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

10. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

11. Boyen, X.: The Uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008)

12. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

13. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006)

14. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

15. Fan, C.-I., Hsu, R.-H., Manulis, M.: Group signature with constant revocation
costs for signers and verifiers. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011.
LNCS, vol. 7092, pp. 214–233. Springer, Heidelberg (2011)

16. Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps.
IEICE Transactions 89(5), 1328–1338 (2006)

17. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

18. Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007)

19. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

20. Kiayias, A., Yung, M.: Group signatures: Provable security, efficient constructions
and anonymity from trapdoor-holders. IACR Cryptology ePrint Archive 76 (2004)

21. Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and
separable authorities. IJSN 1(1/2), 24–45 (2006)

22. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

23. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private
keys. In: IEEE Symposium on Security and Privacy, pp. 273–285 (2010)

24. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revoca-
tion. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 571–589. Springer, Heidelberg (2012)

A Revocable Group Signature Scheme from IBR Techniques 437

25. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 609–627. Springer, Heidelberg (2012)

26. Libert, B., Vergnaud, D.: Group signatures with verifier-local revocation and back-
ward unlinkability in the standard model. In: Garay, J.A., Miyaji, A., Otsuka, A.
(eds.) CANS 2009. LNCS, vol. 5888, pp. 498–517. Springer, Heidelberg (2009)

27. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (2010)

28. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009)

29. Nakanishi, T., Funabiki, N.: Revocable group signatures with compact revocation
list using accumulators. In: ICISC (to appear, 2013)

30. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

Faster Batch Verification of Standard ECDSA

Signatures Using Summation Polynomials

Sabyasachi Karati and Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India

{skarati,abhij}@cse.iitkgp.ernet.in

Abstract. Several batch-verification algorithms for original ECDSA
signatures are proposed for the first time in AfricaCrypt 2012. Two of
these algorithms are based on the naive idea of taking square roots in the
underlying fields, and the others perform symbolic manipulation to verify
small batches of ECDSA signatures. In this paper, we use elliptic-curve
summation polynomials to design a new ECDSA batch-verification
algorithm which is theoretically and experimentally much faster than
the symbolic algorithms of AfricaCrypt 2012. Our experiments on NIST
prime and Koblitz curves demonstrate that our proposed algorithm
increases the optimal batch size from seven to nine. We also mention
how our algorithm can be adapted to Edwards curves.

Keywords: Elliptic Curve, ECDSA, Batch Verification, Summation
Polynomial, Koblitz Curve, Edwards Curve, EdDSA.

1 Introduction

When multiple signatures sharing common system parameters need to be veri-
fied, the concept of batch verification turns out to be useful. The basic incentive
is a reduction in the running time of individually verifying the signatures. The
elliptic-curve digital signature algorithm (ECDSA) [12] has been accepted as a
standard signature scheme. An ECDSA signature on a messageM is a pair (r, s),
where r is x-coordinate of an elliptic-curve point R = (r, y), and s absorbs the
hash of M and the private key of the signer. The absence of the y-coordinate
of the point R in an ECDSA signature resists a straightforward adaptation
of the previously proposed batch-verification methods [16,11]. There exist two
y-coordinates corresponding to the x-coordinate r. This results in an ambigu-
ity in identifying the correct y-coordinate and leads to a sizable overhead for
eliminating the y-coordinate from the batch-verification equation. In a variant
ECDSA* [7], the entire point R replaces r in the signature. As a result, batch
verification of ECDSA* signatures is straightforward. However, since ECDSA* is
not standardized and leads to an expansion in the signature size without any in-
crease in security, batch verification of standard ECDSA signatures continues to
remain a problem of both theoretical and practical importance in cryptography.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 438–456, 2014.
c© Springer International Publishing Switzerland 2014

Faster Batch Verification of Standard ECDSA Signatures 439

Karati et al. [13] propose several batch-verification algorithms for standard
ECDSA signatures. Their naive algorithm N is based upon the computation
of the y-coordinate by taking a square root in the underlying field. The algo-
rithms S1 and S2 of [13] trades the square-root computation time by symbolic
manipulations that treat the y-coordinates as symbols satisfying the elliptic-
curve equation. Algorithm S1 performs linearization during the elimination of
the unknown y-coordinates. Algorithms S2 adopts a separate and more efficient
elimination method. Both S1 and S2 outperform the naive method N for small
batch sizes. For a batch of size t, S1 runs is O(m3) time and S2 runs in O(mt2)
time, where m = 2t, and the running times are measured in the number of field
operations. Since m is already an exponential function in t, these algorithms be-
come impractical except only for small batch sizes. Reducing the running time
to below O(mt2) is stated as an open problem in [13].

In this paper,we address this openproblem.Wepropose anewbatch-verification
algorithm (we call it SP) which is theoretically more efficient and experimentally
faster than the symbolic-computation algorithms of [13]. Our proposed algorithm
uses a separate elimination technique which is based on Semaev’s elliptic-curve
summationpolynomials [21].AlgorithmSPhas a running-time complexity ofO(m)
and so is theoretically superior than the earlier symbolic algorithms. Practically,
Algorithm SP can handle batches of size up to ten, whereas the earlier symbolic al-
gorithms are effective for batch sizes t� 8 only.We show thatAlgorithmSP (like S1
and S2) supplies security guarantees equivalent to the standard batch-verification
algorithm for ECDSA* [7].

Algorithms S1 and S2 proceed in two phases. In the first phase, a sum of the
elliptic-curve points (ri, yi) is computed. In this phase, ri are known and yi are
treated as symbols. The second phase eliminates all yi values using more symbolic
manipulations. The elimination phase effectively determines the running times
of S1 and S2 as O(m3) and O(mt2), respectively. Algorithm SP, on the contrary,
completely avoids the symbolic addition phase, and manages the elimination of
all yi values in O(m) time only.

The rest of the paper is organized as follows. Section 2 introduces the notations
and a quick overview of the ECDSA scheme and the batch-verification algorithms
of [13]. In section 3, we propose the new Algorithm SP. Section 4 contains the
complexity analysis and the security analysis of Algorithm SP. NIST Koblitz
curves are dealt with in Section 5. We provide our experimental results for NIST
prime and Koblitz curves in Section 6. Section 7 deals with the adaptation of
Algorithm SP to Edwards curves. The security of Algorithm SP depends on
the structures of the elliptic-curve groups over quadratic extensions of the base
fields. These structures are studied in Section 8 for some of the NIST curves.
Section 9 concludes the paper after highlighting some pertinent open problems.

2 Notations and Background

In the rest of this paper, we plan to verify a batch of t ECDSA signatures
(M1, r1, s1), (M2, r2, s2), . . . , (Mt, rt, st).

440 S. Karati and A. Das

2.1 ECDSA over NIST Prime Fields

Let
E : y2 = x3 + ax+ b (1)

be an elliptic curve defined over the prime field Fp. The size of the group E(Fp)
is assumed to be a prime n close to p. Let P be a fixed generator of E(Fp).

An ECDSA private key d is randomly chosen from {1, 2, . . . , n−1}. The public
key is computed as Q = dP .

The ECDSA signature (r, s) on a messageM is generated as follows. A random
session key k ∈ {1, 2, . . . , n−1} is selected. The point R = kP is computed, and r
is taken as the x-coordinate x(R) of R reduced modulo n. Finally, s is computed
as s = k−1(H(M) + dr) (mod n), where H is a cryptographic hash function like
SHA-1 [18].

By Hasse’s theorem, we have |n−p−1| � 2
√
p. If n
 p, then r as an element

of Zn has a unique representation in Zp, otherwise it has two representations.
The density of elements of Zn having two representations in Zp is � 2/

√
p which

is close to zero if p is large. Consequently, we ignore the cases where the modulo n
and the modulo p values of r may be different.

To verify an ECDSA signature (M, r, s), we compute w = s−1 (mod n),
u = H(M)w (mod n) and v = rw (mod n). The point R is reconstructed as

R = uP + vQ. (2)

The signature is accepted if and only if x(R) = r (mod n).
As mentioned before, an ECDSA* signature on M is the pair (R, s). Verifica-

tion proceeds as in the case of ECDSA signatures, and the validity of Eqn(2) is
used as the acceptance criterion.

For a given x-coordinate r, there are in general two y-coordinates ±y. The
point R is one of (r, y) and (r,−y). In another variant of ECDSA, henceforth re-
ferred to as ECDSA#, an extra bit is appended to a standard ECDSA signature
in order to identify which of (r,±y) is equal to R. Unlike ECDSA*, ECDSA#—
although not accepted as a standard—does not suffer from an unacceptable
expansion in the signature size. Since ECDSA# has important bearings on the
naive batch-verification algorithm of [13], we refer to it in Section 6. ECDSA*
is considered only in the security proof of Algorithm SP.

2.2 Batch Verification of ECDSA Signatures

We assume that all of the t signatures (Mi, ri, si) come from the same signer
with public key Q (an adaptation to the case of multiple signers being straight-
forward). A batch-verification attempt aggregates the t signatures as

t∑
i=1

Ri =

(
t∑

i=1

ui

)
P +

(
t∑

i=1

vi

)
Q. (3)

The right side of Eqn(3) can be computed numerically using two scalar multi-
plications (or one double scalar multiplication). Let this point be (α, β). If Ri

Faster Batch Verification of Standard ECDSA Signatures 441

are reconstructed as uiP + viQ, the effort is essentially the same as individual
verification. The algorithms of [13] get around this difficulty in several ways.

The naive method N computes yi by taking the square root of r3i + ari + b.
Since there are two square roots (in general) for each ri, the ambiguity in the sign
of yi can be removed by trying all of the m = 2t combinations. If Eqn(3) holds
for any of these choices, the batch of signatures is accepted. If we use ECDSA#,
then the yi values can be uniquely identified, and we can avoid trying all the
m = 2t combinations. This variant of the naive algorithm is referred to as N′. The
computation of the square roots of r3i + ari+ b cannot be avoided in Algorithms
N and N′. If the underlying field is large, this overhead may be huge.

The symbolic-manipulation algorithms S1 and S2 avoid computing these square
roots altogether. They instead compute the left side of Eqn(3) symbolically. Each
yi is treated as a symbol satisfying y2i = r3i + ari + b. This symbolic addition gives
an equality of the form

(g(y1, y2, . . . , yt), h(y1, y2, . . . , yt)) = (α, β), (4)

where g and h are polynomials in yi with each yi-degree � 1.
Algorithm S1 makes a linearization by repeatedly squaring g(y1, y2, . . . , yt) =

α (or multiplying by even-degree monomials). At this stage too, the equations
y2i = r3i + ari + b are used in order to keep the yi-degrees � 1 in each generated
equation. The linearized system has 2t−1− 1 = m

2 − 1 variables standing for the
square-free monomials in y1, y2, . . . , yt of even degrees. The linearized system
is in general dense, and is solved by Gaussian elimination in O(m3) time. The
equation h(y1, y2, . . . , yt) = β is subsequently used to solve for each yi. Finally,
it is verified whether y2i = r3i + ari + b for all i.

Algorithm S2 avoids the massive O(m3) overhead of Gaussian elimination as
follows. The equation g(y1, y2, . . . , yt) = α is rewritten as γ(y2, y3, . . . , yt)y1 +
δ(y2, y3, . . . , yt). Multiplying this by γy1 − δ and using y21 = r31 + ar1 + b gives
an equation free from y1. The other variables y2, y3, . . . , yt are eliminated one
by one in the same way. Eventually, the batch is accepted if we obtain the zero
polynomial after all yi are eliminated. This elimination phase takes O(mt2) time.

An improved variant of S1 and S2 significantly speeds up the symbolic-
addition phase. Let τ =
t/2�. Eqn(3) is rewritten as

∑τ
i=1 Ri = (α, β) −∑t

i=τ+1 Ri. The two sides are individually computed symbolically. This reduces
the running time of the symbolic-addition phase from O(mt2) to O(

√
mt2). These

variants of S1 and S2 are referred to as S1′ and S2′. The elimination phases of
S1′ and S2′ run in O(m3/2) and O(mt2) times, respectively.

2.3 Randomization of Batch Verification

Bernstein et al. [2] propose two attacks on these batch-verification algorithms.
They also suggest that these attacks can be largely eliminated by randomizing
the batch-verification process (see [1,16]). For randomly chosen non-zero multi-
pliers ξ1, ξ2, . . . , ξt, the individual verification equations are now combined as

t∑
i=1

ξiRi =

(
t∑

i=1

ξiui

)
P +

(
t∑

i=1

ξivi

)
Q. (5)

442 S. Karati and A. Das

The right side can again be computed numerically. The x-coordinates of ξiRi

can be computed from x(Ri) [15,14], and are supplied as inputs to the batch-
verification algorithms. The randomization process is external to batch verifica-
tion. However, individual verification does not require randomization. Although
randomized batch verification is the cryptographically meaningful implementa-
tion of the algorithms, we also study batch verification without randomization in
order to compare the raw performances of various batch-verification algorithms.

It is worthwhile to note that Eqns(3) and (5) can be readily modified to the
case when the t signatures come from different signers having different public

keys Qi. For example, the sum
(∑t

i=1 ξivi

)
Q in Eqn(5) should be replaced by∑t

i=1(ξiviQi). But then, the number of scalar multiplications increases from two
to t+1. Since randomization incurs additional overheads similar to several scalar
multiplications, randomized batch verification using the algorithms S2′ or SP is
expected to be slower than individual verification. Consequently, we do not study
the case of multiple signers in this paper.

3 A New Batch-Verification Algorithm (SP) for ECDSA

The new batch-verification algorithm we propose in this paper is based on
elliptic-curve summation polynomials introduced by Semaev [21] in the con-
text of improving the known bounds of the index-calculus method for solving
the elliptic-curve discrete-logarithm problem.

Let E be the elliptic curve defined over a prime field Fp by Eqn(1). Let
x1, x2, . . . , xt be t
 2 elements of Fp. The t-variable summation polynomial ft
is defined by the following recurrences:

f2(x1, x2) = x1 − x2, (6)

f3(x1, x2, x3) = (x1 − x2)
2x3

2 − 2((x1 + x2)(x1x2 + a) + 2b)x3 +

((x1x2 − a)2 − 4b(x1 + x2)), (7)

ft(x1, x2, . . . , xt) = ResX(ft−k(x1, . . . , xt−k−1, X), fk+2(xt−k, . . . , xt, X))

for t
 4 and for any k in the range 1 � k � t− 3. (8)

Here, ResX stands for the resultant of two polynomials with respect to the
variable X . Semaev proves that ft(x1, x2, . . . , xt) = 0 if and only if there exist
y1, y2, . . . , yt ∈ Fp with (xi, yi) satisfying Eqn(1) for all i = 1, 2, . . . , t such that

we have the following sum in the elliptic-curve group E(Fp):

(x1, y1) + (x2, y2) + · · ·+ (xt, yt) = O, (9)

where O is the point at infinity on E, and Fp is the algebraic closure of Fp.
For the batch verification of t ECDSA signatures (Mi, ri, si), we first compute

the numeric sum R on the right side of Eqn(5). In the non-randomized case of
Eqn(3), we have ξ1 = ξ2 = · · · = ξt = 1. Let R = (α, β), where α, β ∈ Fp. Let
ξi(ri, yi) = (r′i, y

′
i). Eqn(5) can be rewritten as

(r′1, y
′
1) + (r′2, y

′
2) + · · ·+ (r′t, y

′
t) + (α,−β) = O. (10)

Faster Batch Verification of Standard ECDSA Signatures 443

By Eqn(9), this is equivalent to the condition ft+1(r
′
1, r

′
2, . . . , r

′
t, α) = 0. Algo-

rithm 1 incorporates this idea to verify a batch of t ECDSA signatures.

Algorithm 1. ECDSA Batch-verification Algorithm SP for NIST Prime Curves

INPUT: Domain Parameters, ECDSA signatures (M1, r1, s1), (M2, r2, s2), . . . ,
(Mt, rt, st) and public keys Q1, Q2, . . . , Qt of the signers.

OUTPUT: Accept/Reject the batch of t signatures.

1. Optional sanity check: For each i = 1, 2, . . . , t, check whether r3i + ari + b is a
quadratic residue modulo p. If not, reject the i-th signature and remove it from
the batch. Let us assume that all the signatures in the batch pass the sanity
check. (Also see Section 4.5.)

2. Compute wi = s−1
i (mod n) for all i = 1, 2, . . . , t.

3. Compute ui = H(Mi)wi (mod n) for all i = 1, 2, . . . , t.
4. Compute vi = riwi (mod n) for all i = 1, 2, . . . , t.
5. Choose t random integers ξ1, ξ2, . . . , ξt ∈ {1, 2, . . . , n− 1}, where n is the order

of the base point of the elliptic curve. For the non-randomized version, we take
ξ1 = ξ2 = · · · = ξt = 1.

6. Compute R = (
∑t

i=1 ξiui)P + (
∑t

i=1 ξivi)Q = (α, β).
7. For the randomized version, compute r′i = x(ξi(ri, yi)) using Montgomery lad-

ders or seminumeric scalar multiplication of [14,15]. For the non-randomized
version, take r′i = ri.

8. Compute the value of the summation polynomial φ = ft+1(r
′
1, r

′
2, . . . , r

′
t, α).

9. Accept the batch of signatures if and only if φ = 0.

4 Analysis of Algorithm SP

4.1 Properties of Summation Polynomials

For t = 2 or 3, we straightaway use the formulas given in Eqn(6) or (7). For t
 4,
we make two recursive calls as given in Eqn(8). In order to optimize efficiency, the
number of variables in each recursive call should be about t/2. More precisely, we
always choose k =
t/2� (this is in the allowed range of values of k), so the first
recursive call computes f�t/2�+1 and the second recursive call computes f
t/2�+1.
The leaves of the recursion tree deal with the base cases of Eqns(6) and (7).

Theorem 1: Let t = 2h + 2 for some h
 0. Then, the recursion tree for
the computation of ft is a complete binary tree of height h, and all the leaves
correspond to the computation of f3 by Eqn(7).

Proof We proceed by induction on h. For h = 0, we compute f3 straightaway
from Eqn(7) without making any recursive call, that is, the recursion tree is of
height zero. For h
 1, suppose that the assertion holds for the computation of
f2h−1+1. The computation of ft proceeds as

ft(x1, x2, . . . , xt) = ResX(f t
2+1(x1, . . . , x t

2
, X), f t

2+1(x t
2+1, . . . , xt, X)).

444 S. Karati and A. Das

Here, t is even, so
t/2� = �t/2� = t/2. Moreover, t/2 = 2h−1 + 1, so by the
induction hypothesis, the sub-trees for the two recursive calls are complete binary
trees with each leaf computing f3. •

In general, let h be the height of the recursion tree for the computation of
ft. By Theorem 1, we have 2h−1 + 2 < t � 2h + 2, that is, log2(t − 2) � h <
1 + log2(t− 2), that is, the height of the recursion tree is Θ(log t).

Theorem 2: Let t = 2h + 2 with h
 1. If we compute ft recursively as

ft(x1, x2, . . . , xt) = ResX

(
f t

2
+1

(
x1, . . . , x t

2
, X

)
, f t

2
+1

(
x t

2
+1, . . . , xt, X

))
, (11)

then we take the resultant of two polynomials in X of degrees equal to 2(
t−2
2).

Proof. We first supply a direct proof based upon induction on h. For the base
case h = 1, we have four elements x1, x2, x3, x4. We compute f4(x1, x2, x3, x4) =
ResX(f3(x1, x2, X), f3(x3, x4, X)). By Eqn(7), the X-degree of each of the two

arguments of ResX is 2 = 2(
4−2
2).

Now, let h
 2 and t′ = t
2 +1 = 2h−1 +2. We have ft′(x1, x2, . . . , xt′−1, X) =

ResY

(
f t′

2 +1

(
x1, . . . , x t′

2
, Y
)
, f t′

2 +1

(
x t′

2 +1, . . . , xt′−1, X, Y
))

. We inductively

assume that this computation of ft′ involves the resultant calculation of two

polynomials of Y -degree δ = 2

(
t′−2

2

)
each. But each summation polynomial is

symmetric about its arguments. Therefore, the X-degree of the second argument

is again δ = 2

(
t′−2

2

)
. Let us write

f t′
2 +1

(
x1, . . . , x t′

2
, Y
)
= aδY

δ + aδ−1Y
δ−1 + · · ·+ a0, (12)

f t′
2 +1

(
x t′

2 +1, . . . , xt′−1, X, Y
)
= bδY

δ + bδ−1Y
δ−1 + · · ·+ b0. (13)

Here, the coefficients ai do not involve X , whereas the coefficients bi are polyno-
mials in X . Since the X-degree of the second polynomial is δ, and the polyno-
mial is symmetric about X and Y , we conclude that the X-degree of bδ is δ. The
X-degrees of the other coefficients bi are � δ.

The (2δ)× (2δ) Sylvester matrix of the polynomials in Eqns(12) and (13) is

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aδ aδ−1 · · · a0 0 · · · 0
0 aδ aδ−1 · · · a0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 aδ aδ−1 · · · a0
bδ bδ−1 · · · b0 0 · · · 0
0 bδ bδ−1 · · · b0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 bδ bδ−1 · · · b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Faster Batch Verification of Standard ECDSA Signatures 445

The X-degree of detS is the X-degree of bδδ, that is, δ2 = 2t
′−2 = 2(

t−2
2).

Similarly, the X-degree of f t
2+1

(
x t

2+1, . . . , xt, X
)
is again 2(

t−2
2). •

Alternative proof In [21], Semaev proves that the summation polynomial fk,
k
 3, is of the form

fk(x1, x2, . . . , xk) = f2
k−1(x1, x2, . . . , xk−1)x

2k−2

k + · · · . (14)

Now, we put k = t
2 + 1 and xk = X , and rewrite Eqn(14) as

f t
2+1

(
x1, . . . , x t

2
, X
)
= f2

t
2

(
x1, x2, . . . , x t

2

)
X2(

t−2
2)

+ · · · ,

that is, f t
2+1

(
x1, . . . , x t

2
, X
)
is a polynomial of degree 2(

t−2
2) in X . Likewise,

f t
2+1

(
x t

2+1, . . . , xn, X
)
too is a polynomial of degree 2(

t−2
2) in X . •

Theorem 2 can be generalized to any value of t (that is, values not only of
the form 2h+2). However, the resulting formulas involve many floor and ceiling
expressions. For the sake of simplicity, we restrict only to the special case which
already portrays the performance of SP as a function of t.

4.2 A Strategy to Handle the Variables in the Recursion Tree

Let ri denote the known x-coordinates, andXj the variables used in the recursion
of Eqn(8). For achieving good performance, we reduce the number of variables in
each node of the recursion tree. Each child of the root has one variable. Now, let
some node compute the summation polynomial of ri, ri+1, . . . , ri+k−1, Xj (the
case of one variable). Its two child nodes compute the summation polynomials of
ri, ri+1, . . . , ri+�k/2�−1, Xj′ and ri+�k/2�, . . . , ri+k−1, Xj , Xj′ . On the other hand,
if a node computes the summation polynomial of ri, ri+1, . . . , ri+k−1, Xj , Xj′

(the case of two variables), then its two child nodes compute the summation
polynomials of ri, ri+1, . . . , ri+�k/2�−1, Xj, Xj′′ and ri, ri+1, . . . , ri+k−1, Xj′ , Xj′′ .
This is allowed since summation polynomials are symmetric about its arguments.
It is thus ensured that the number of variables in each node never exceeds two.
At each node of the leftmost paths in the two subtrees of the root, the number of
variables is� 1. At every other node in the tree, the number of variables is exactly
two. Figure 1 shows the recursive construction of f10(r1, r2, . . . , r10). Only the
nodes on the paths from the root to the leaves (r1, r2, X4) and (r6, r7, X6) have
numbers of variables � 1.

4.3 Running Time of SP

Let C(t) denote the running time of Algorithm SP in the number of field op-
erations on a batch of size t. In view of Eqn(10), we need to compute ft+1. If
t = 2, we use the base case which return in constant time. For t
 3, we use the

446 S. Karati and A. Das

Fig. 1. Recursion tree for computing the summation polynomial of ten variables

recursive strategy of Eqn(11). Recursion stops in all cases at the base case of the
computation of f3. By Theorem 2, we need to take the resultant of two polyno-

mials of degree 2(
t−1
2) each. The time complexity of resultant computation for

two k-degree polynomials by the subresultant PRS algorithm [6,9] is O(k2).
The running time of SP is dominated by the times for the computation of the

resultants. The degrees of the polynomials, of which the resultant is computed,
is a function of the level λ in the tree. In addition, the resultant-computation
time depends on how many variables are involved at that node, call it ν. We can

have ν = 0, 1, 2 only. Let C
(λ)
ν denote the time for resultant computation for a

given λ and ν. The case of C
(λ)
0 occurs at level λ = 0 only. The case of C

(λ)
1

occurs on the leftmost paths of the two subtrees of the root. At all other nodes,

the resultant-computation cost is C
(λ)
2 .

For simplicity, we assume that the recursion tree is a complete binary tree of

height h, that is, t+ 1 = 2h + 2. We have C
(0)
0 = O(22

h

), C
(λ)
1 = O(22

h−λ−1×3),

and C
(λ)
2 = O(22

h−λ+1

). At level zero, we have the cost C0, whereas at any other

level λ we have exactly two cases of C
(λ)
1 and 2λ − 2 cases of C

(λ)
2 . Moreover,

C
(λ)
1 < C

(λ)
2 for each fixed λ. Therefore, the total cost C(t) of computing ft+1

is of the order of

C
(0)
0 +

h−1∑
λ=1

(
2C

(λ)
1 + (2λ − 2)C

(λ)
2

)
< C

(0)
0 +

h−1∑
λ=1

2λC
(λ)
2

= O

(
22

h

+

h−1∑
λ=1

2λ+2h−λ+1

)
.

The inequality λ + 2h−λ+1 > (λ + 1) + 2h−(λ+1)+1 holds if and only if we have
2h−λ > 1. For all λ in the range 1 � λ � h − 1, we have 2h−λ > 1. Therefore,
C(t) is of the order of

22
h

+

h−1∑
λ=1

[
2λ+2h−λ+1

]
= 22

h

+
[
21+2h + 22+2h−1

+ · · ·+ 2(h−1)+22
]

Faster Batch Verification of Standard ECDSA Signatures 447

< 22
h

+
1+2h∑
i=0

2i < 22
h

+ 22+2h = 22
h

+ 22+2h = 5× 22
h

.

Substituting 2h by t− 1, we see that C(t) = O(m), where m = 2t.
The above analysis implies that the computation of the resultants at the top

two levels determines the order of C(t). For a general t of the form 2h−1 + 2 <
t+ 1 � 2h + 2, we let τ =

⌈
t+1
2

⌉
, and conclude that C(t) is of the order of

2

t+1
2 �+� t+1

2 �−2 + 2×
(
2(

τ+1
2 �+� τ+1

2 �−2)
)2

= 2t−1 + 22(τ+1)−3 � 2t−1 + 2t =
3

2
× 2t = O(m).

4.4 Security of SP

In this section, we prove the equivalence between the security of Algorithm SP
and the security of the standard ECDSA* batch-verification algorithm. Suppose
that the x-coordinates r1, r2, . . . , rt in ECDSA signatures are available to an
adversary and that the batch is accepted by Algorithm SP. By Eqn(10), there
exist exactly two solutions (y1, y2, . . . , yt) and (−y1,−y2, . . . ,−yt) for the y-
coordinates satisfying y2i = r3i + ari + b for i = 1, 2, . . . , t such that (r1, y1) +
(r2, y2) + · · · + (rt, yt) = (α, β), and (r1,−y1) + (r2,−y2) + · · · + (rt,−yt) =
(α,−β). These are the only cases in which ft+1(r1, r2, . . . , rt, α) = 0. Both these
solutions are consistent with φ = 0 (Step 9 of Algorithm SP). One of these
solutions corresponds to the ECDSA* signatures based upon the disclosed values
r1, r2, . . . , rt. For ECDSA*, the y-coordinates are known, and we have only one
possibility (r1, y1)+(r2, y2)+ · · ·+(rt, yt) = (α, β). Given ri alone, the adversary
can obtain the y-coordinates yi up to sign by making t square-root computations
which demand only moderate computing resources. The sign ambiguity can be
removed by trying all of the 2t sign combinations (as in Algorithm N). For small
values of t (as we deal with), this too is a tolerable overhead to the adversary. To
sum up, if the adversary can forge ECDSA signatures that pass Algorithm SP,
(s)he can produce in feasible time ECDSA* signatures too that pass the standard
ECDSA* batch-verification algorithm. The converse is obvious.

4.5 Necessity of the Sanity Check

The security proof in the last section assumes that all yi reside in Fp itself, that
is, the points (ri, yi) lie on the curve E defined over Fp. The sanity check made
in Step 1 of Algorithm 1 ensures this.

The sanity check may be unnecessary in many situations. Suppose that an
adversary chooses an ri for which r3i + ari+ b is a quadratic non-residue modulo
p. The square roots of all quadratic non-residues in Fp lie in Fp2 , that is, we
now get two y-coordinates in Fp2 (but outside Fp). The corresponding points
(ri,±yi) lie in E(Fp2). The right sides of Eqns(3) and (5) always lie in the
group E(Fp) generated by the base point P . The batch-verification condition

448 S. Karati and A. Das

demands the sum of R1, R2, . . . , Rt to lie in E(Fp) in order to pass the test
ft+1(r1, r2, . . . , rt, α) = 0 (see Eqn(9)). If one or more of the points Ri are defined
over Fp2 (but not over Fp), then what is the probability of

∑t
i=1 Ri ∈ E(Fp)?

A satisfactory answer to this question can be given if the group structure of
E(Fp2) is known to us. E(Fp) is already a cyclic subgroup of E(Fp2) of large
prime order n. If E(Fp2) is cyclic too, randomly chosen points Ri ∈ E(Fp2) have
a probability of about 1/p to have their sum in E(Fp). Even when E(Fp2) is
of rank two with no small-order subgroups (like Zn ⊕ Zn), there may be little
problem. The use of randomizers makes the probability of

∑t
i=1 Ri ∈ E(Fp)

negligible even when the x-coordinates ri are carefully crafted by the adversary.
Only when E(Fp2) contains subgroups of small orders, the adversary may win
with non-negligible probability. Randomizers do not seem to help much in this
case. Section 8 deals with the cases of some of the NIST curves.

In Algorithm 1, the sanity check involves the computation of t Legendre sym-

bols
(

r3i+ari+b
p

)
. This is anyway not a huge overhead compared to the com-

putation of ft+1 (unless t is very small). Consequently, there is little harm in
conducting the sanity check even when the probability of

∑t
i=1 Ri ∈ E(Fp) for

points Ri defined over Fp2 is overwhelmingly small.
A sanity check like this may be needed for the previously published algorithms

S2 and S2′ too. This issue is only mentioned but not discussed in detail in [13].

4.6 Cases of Failure of SP

The symbolic-manipulation algorithms of [13] have a few cases of failure. Al-
gorithm SP is robust against most of these failures. First, computations which
treat yi as symbols cannot distinguish between the cases of point addition and
point doubling. On the contrary, summation polynomials work equally well for
both of these operations. Second, Algorithms S1, S2, S1′ and S2′ fail when
the point R = (α, β) computed from the right side of Eqn(3) or (5) is the
point O at infinity. Algorithm SP continues to work. Eqn(10) is now rewrit-
ten as (r′1, y

′
1) + (r′2, y

′
2) + · · · + (r′t, y

′
t) = O. That is, instead of computing

ft+1(r
′
1, r

′
2, . . . , r

′
t, α), we now compute ft(r

′
1, r

′
2, . . . , r

′
t).

5 Adaptation of Algorithm SP to Koblitz Curves

Let E be a Koblitz curve defined over a binary field F2d by the equation

E : y2 + xy = x3 + ax2 + 1, where a ∈ {0, 1}. (15)

Let n be the order of the group we work in, and ĥ = |E(F2d)|/n the cofac-

tor. For Koblitz curves, ĥ = 2 or 4. Because ĥ is small, appending a few extra
bit(s) to ECDSA signatures, we can uniquely retrieve the x-coordinates from the

Faster Batch Verification of Standard ECDSA Signatures 449

published value of r in a signature. We therefore assume that the x-coordinates
are known to us. We denote these x-coordinates by ri itself. We can apply our
batch-verification Algorithm SP mutatis mutandis to Koblitz curves.

5.1 Summation Polynomials for Koblitz Curves

Here, we supply only the first three base cases of summation polynomials f2,
f3, and f4. The recurrence relation for Koblitz-curve summation polynomials ft
with t
 5 is identical to the case of prime curves.

f2(x1, x2) = x1 + x2,
f3(x1, x2, x3) = (x1x2 + x1x3 + x2x3)

2 + x1x2x3 + 1,
f4(x1, x2, x3, x4) = (x1+x2+x3+x4)

4 + (x1x2x3+x1x2x4+x1x3x4+x2x3x4)
4+

x1x2x3x4(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1 + x2 + x3 + x4)
2+

(x1x2x3x4)
2(x1 + x2 + x3 + x4)

2 + (x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)
2.

Eqn(9) holds for Koblitz curve too, that is, there exist y1, y2, . . . , yt ∈ F2d with
each (xi, yi) satisfying Eqn (15) if and only if ft(x1, x2, . . . , xt) = 0.

For prime curves, we always reduce the recursion to the computation of f3,
since the explicit formula for f4 is rather clumsy. For Koblitz curves, we use both
the cases f3 and f4 as those that terminate recursion. This helps us to reduce
the height of the recursion tree for most of the batch sizes.

Notice that all batch-verification algorithms for Koblitz curves can be readily
adapted to other ordinary (non-supersingular) curves over binary fields. We deal
with the NIST family of Koblitz curves as an illustrative sample.

5.2 Adaptation of the Sanity Check

The sanity check (the equivalent of Step 1 in Algorithm 1) is quite easy in the
context of NIST Koblitz curves. In order that the point Ri = (ri, yi) is defined
over F2d , we now need the equation y2i +riyi+(r3i +ar2i +1) = 0 to be solvable (for

yi) in F2d . This is equivalent to the condition that the trace of
r3i+ar2i+1

r2i
over F2 is

zero. Let the field F2d = F2[X]/〈F (X)〉 be defined by the irreducible polynomial
F (X) = Xd + ad−1X

d−1 + · · ·+ a1X + a0, where ai ∈ F2. Let θ ∈ F2d be a root

of F (X). Any element c ∈ F2d can be represented as c =
∑d−1

k=0 ckθ
k. We can

compute the trace of c as Tr(c) = c0 +
∑d−1

k=1 kckad−k (see [8] for a discussion).
For NIST Koblitz curves, the defining polynomial F (X) has very few non-zero
coefficients, so the computation of Tr(c) is essentially a constant-time effort given
any c ∈ F2d .

Even when the solutions for yi lie in F2d , there is no guarantee that the point
Ri = (ri, yi) belongs to the subgroup of E(F2d) generated by the base point

P , since Koblitz curves have cofactors ĥ > 1. At present, we do not know any
efficient solution of this problem. If E(F2d) is cyclic, then Ri is in the subgroup
generated by P if and only if nRi = O. However, computing the scalar multipli-
cation nRi for each i lets us forfeit the speedup obtained by batch verification.

450 S. Karati and A. Das

Table 1. Times (in ms) for finding yi from ri

Square-root method in prime fields P-256 0.28
P-521 0.76

Factorization method in binary fields K-283 8.31
K-571 30.83

Table 2. Times (in ms) of scalar multiplication for prime curves

Scalar-multiplication algorithm P-256 P-521
l = 128 l = 256 l = 128 l = 256 l = 521

Numeric scalar multiplication 2.04 3.92 2.69 5.48 10.60
Seminumeric scalar multiplication 2.04 4.12 2.81 5.92 11.44
Multiple scalar multiplication ξ1R1 + ξ2R2 2.93 5.67 4.37 7.89 16.30

l is the bit length of the randomizers

Table 3. Times (in ms) of scalar multiplication for Koblitz curves

Scalar-multiplication algorithm K-283 K-571
l = 128 l = 283 l = 128 l = 256 l = 571

Numeric scalar multiplication 200.00 216.00 517.00 964.00 1076.00
Seminumeric scalar multiplication 267.10 288.93 718.88 1378.06 1532.89
Multiple scalar multiplication ξ1R1 + ξ2R2 443.46 973.75 1170.09 2344.40 5215.14

l is the bit length of the randomizers

6 Experimental Results

All experiments are carried out in a 2.33 GHz Xeon server running Ubuntu Linux
Server Version 2012 LTS. The algorithms are implemented using the GP/PARI
calculator [20] (version 2.5.0 compiled by the GNU C compiler 4.6.2). We have
used the symbolic-computation facilities of the calculator in our programs. All
other functions (like scalar multiplication and square-root computation) are writ-
ten as subroutines in which function-call overheads are minimized as much as
possible. We have used the best formulas supplied in [5,8]. We only used the built-
in field arithmetic provided by the calculator. Since all algorithms are evaluated
in terms of number of field operations, this gives a fare comparison of experimen-
tal data with the theoretical estimates. The GP/PARI library is much slower
for binary fields than for prime fields. However, this speed difference matters
only slightly in the experimental speedup figures which are ratios. As argued in
Section 2.3, we consider only the case of the same signer.

The average times of finding the roots yi from ri are listed in Table 1. The
average times of randomization achieved by the seminumeric algorithm [14] and
numeric scalar multiplication are listed in Tables 2 and 3 for prime curves and
Koblitz curves. Here, l denotes the length of the randomizers. We consider only
two cryptographically meaningful values of l: 128 (giving 128-bit security irre-
spective of the difficulty of the ECDLP) and half-length (same security as offered

Faster Batch Verification of Standard ECDSA Signatures 451

by the square-root methods for the ECDLP). Tables 4 and 5 list the overheads
associated with different ECDSA batch-verification algorithms for several batch
sizes with all the signatures coming from the same signer. Finally, the speedup
figures (over individual verification) are listed in Tables 6 and 7 for prime curves
and Koblitz curves.

Table 4. Overheads (in ms) of different batch-verification algorithms for prime curves

Batch size N N′ S2′ SP
(t) P-256 P-521 P-256 P-521 P-256 P-521 P-256 P-521

2 0.091 0.126 0.022 0.031 – – 0.038 0.080
3 0.289 0.401 0.034 0.050 0.081 0.158 0.121 0.153
4 0.788 1.097 0.048 0.067 0.183 0.315 0.144 0.267
5 1.813 2.585 0.063 0.086 0.391 0.596 0.211 0.377
6 4.316 6.229 0.075 0.106 0.701 1.062 0.446 0.789
7 10.104 14.667 0.080 0.112 1.493 2.213 0.663 1.167
8 23.191 33.265 0.098 0.130 3.574 5.398 1.464 2.698
9 – – – – – – 2.385 4.240
10 – – – – – – 8.234 15.598

Table 5. Overheads (in ms) of different batch-verification algorithms for Koblitz curves

Batch size N N′ S2′ SP
(t) K-283 K-571 K-283 K-571 K-283 K-571 K-283 K-571

2 19.75 53.16 4.96 13.86 3.96 10.57 1.640 4.545
3 73.60 200.21 9.42 25.87 12.00 32.71 4.378 12.710
4 212.18 581.49 13.80 37.65 33.84 91.12 48.927 179.337
5 556.25 1544.59 18.16 49.03 131.00 354.30 62.790 220.271
6 1372.07 3791.10 22.34 60.61 303.08 825.00 141.345 458.448
7 3356.48 9161.95 27.00 72.89 1000.61 2749.37 585.654 1784.127
8 – – – – – – 734.916 2277.102
9 – – – – – – 1409.530 4340.618
10 – – – – – – 3258.385 9602.883

In Algorithm N′, there is a possibility of using multiple scalar multiplication.
The times for computing the sum ξ1R1 + ξ2R2 using a single double-and-add
loop are also listed in the Tables 2 and 3. For prime curves, the multiple scalar-
multiplication times are significantly less than that of two separate scalar mul-
tiplications by the most efficient windowed NAF variant. However, for Koblitz
curves, the sum of times to compute two numeric scalar multiplications by the
τ -NAF method [22] is much smaller than the time of a double scalar multiplica-
tion. While calculating the speedup figures, we have considered the best available
options. Algorithm N′ is suited to ECDSA#. We first obtain each yi uniquely
by a square-root computation. Randomization in this case uses numeric scalar
multiplication (or double scalar multiplication whichever is better).

452 S. Karati and A. Das

Table 6. Speedup obtained by batch-verification algorithms for prime curves

Batch-verification Randomization t P-256 P-521
algorithm algorithm None∗ l = 128 None∗ l = 128 l = 256

3 2.50 1.32 2.58 1.81 1.38
4 2.99 1.44 3.19 2.09 1.54

N Numeric 5 3.19 1.49 3.59 2.26 1.63
6 2.92 1.42 3.61 2.26 1.63
7 2.24 1.24 3.14 2.07 1.53
8 1.46 0.96 2.34 1.69 1.31

3 2.60 1.48 2.63 1.90 1.53
4 3.32 1.79 3.36 2.32 1.85

N′ Numeric 5 3.98 1.89 4.04 2.58 1.97
6 4.59 2.10 4.67 2.87 2.19
7 5.15 2.14 5.25 3.04 2.24
8 5.68 2.31 5.80 3.27 2.41

3 2.96 1.36 2.97 1.96 1.43
4 3.87 1.53 3.92 2.34 1.62

S2′ Seminumeric 5 4.68 1.64 4.82 2.63 1.75
6 5.34 1.72 5.63 2.86 1.85
7 5.54 1.74 6.16 2.99 1.90
8 4.91 1.67 6.01 2.95 1.89

3 2.94 1.36 2.97 1.97 1.43
4 3.90 1.54 3.94 2.34 1.62
5 4.82 1.66 4.89 2.65 1.76
6 5.56 1.74 5.72 2.88 1.86

SP Seminumeric 7 6.27 1.80 6.53 3.07 1.94
8 6.36 1.81 6.86 3.14 1.97
9 6.34 1.81 7.14 3.20 1.99
10 4.08 1.56 5.11 2.72 1.79

∗ Without randomization

The experimental results clearly indicate that SP is the most efficient batch-
verification algorithm for standard ECDSA signatures. Even for ECDSA# signa-
tures, Algorithm SP often outperforms the naive method N′. The optimal batch
size for Algorithm S2′ is t = 7 (for prime curves) and t = 5 or 6 (for Koblitz
curves). With Algorithm SP, the optimal batch sizes are t = 9 (for prime curves)
and t = 6 (for Koblitz curves). For both these families, the maximum speedup
is noticeably higher in Algorithm SP than what is achieved by Algorithm S2′.

The implications associated with the sanity check (Step 1 of Algorithm 1)
are now discussed. For prime curves, the sanity check incurs negligible overhead.
Without this check, the maximum achievable speedup figures for t = 9 are
6.55, 1.95, 7.25, 3.22 and 2.00. The corresponding row in Table 6 shows slightly
smaller speedup values 6.34, 1.81, 7.14, 3.20 and 1.99 caused by the check. Similar
observations hold for Algorithm S2′ too. For Koblitz curves, the sanity check is
very efficient and does not produce noticeable performance degradation.

Faster Batch Verification of Standard ECDSA Signatures 453

Table 7. Speedup obtained by batch-verification algorithms for Koblitz curves

Batch-verification Randomization t K-283 K-571
algorithm algorithm None∗ l = 128 None∗ l = 128 l = 256

2 1.84 0.99 1.90 1.30 1.03
3 2.44 1.15 2.64 1.62 1.21

N Numeric 4 2.55 1.17 3.01 1.75 1.28
5 2.10 1.06 2.79 1.67 1.24
6 1.40 0.85 2.11 1.40 1.08
7 0.79 0.58 1.31 0.99 0.82

2 1.90 1.01 1.93 1.32 1.04
3 2.78 1.22 2.84 1.69 1.25

N′ Numeric 4 3.61 1.35 3.72 1.96 1.40
5 4.39 1.45 4.57 2.18 1.50
6 5.14 1.52 5.39 2.35 1.58
7 5.85 1.58 6.17 2.49 1.64

2 1.99 1.18 1.99 1.49 1.17
3 2.94 1.46 2.97 1.98 1.45

S2′ Seminumeric 4 3.78 1.64 3.88 2.35 1.64
5 4.08 1.69 4.48 2.55 1.74
6 3.94 1.67 4.73 2.63 1.78
7 2.56 1.36 3.69 2.27 1.61

2 1.99 1.18 2.00 1.49 1.17
3 2.98 1.47 2.99 1.99 1.46
4 3.69 1.62 3.78 2.31 1.62
5 4.51 1.76 4.66 2.61 1.77

SP Seminumeric 6 4.82 1.81 5.22 2.78 1.84
7 3.48 1.58 4.42 2.53 1.78
8 3.52 1.59 4.59 2.59 1.76
9 2.62 1.37 3.73 2.29 1.61
10 1.51 0.99 2.42 1.72 1.31

∗ Without randomization

7 Summation Polynomial for Edwards Curves

Edwards curves are introduced by Edwards in [10]. Bernstein and Lange apply
these curves to cryptographic usage [4]. Edwards curves offer faster addition
and doubling formulas than elliptic curves. Moreover, the unified addition and
doubling formulas make Edwards-curve cryptosystems resistant to simple side-
channel attacks. An Edwards curve over a prime field is defined by the equation:

x2 + y2 = c2(1 + dx2y2), where cd(1− dc4) �= 0.

The sum of two points P1 = (x1, y1) and P2 = (x2, y2) on this curve is given as

454 S. Karati and A. Das

(x3, y3) =

(
x1y2 + x2y1

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1− dx1x2y1y2)

)
.

This formula holds even when P1 = ±P2.
EdDSA is the Edwards-curve equivalent of ECDSA [3]. Like ECDSA, only the

y-coordinate of an Edwards-curve point is sent in an EdDSA signature. An extra
bit to identify the correct x-coordinate is included in the signature. As a result,
all the batch-verification algorithms studied in connection with ECDSA apply
equally well to EdDSA signatures. Here, we mention the adaptation necessary
to make Algorithm SP work for EdDSA batch verification. The original proposal
of EdDSA refers to a batch-verification method akin to Algorithm N′.

The two base cases f2 and f3 of Edwards-curve summation polynomials are
given by

f2(y1, y2) = y1 − y2,

f3(y1, y2, y3) = c2(B − d2Ay21y
2
2)y

2
3 − 2y1y2(B − dA)y3 + (By21y

2
2 −A),

where A = (c2 − y21)(c
2 − y22) and B = (1− c2dy21)(1− c2dy22).

The recurrence relation for Edwards-curve summation polynomials ft for t
 4
is the same as for prime/Koblitz curves. The sanity check for Edwards curves
follows the same procedure as for elliptic curves.

8 The Group Structures in Quadratic Extensions

Here, we investigate the groups E(Fp2) and E(F22d) for the NIST prime and
Koblitz curves [19] for which we have reported our experimental results. Since
the sizes of the groups over the base fields are known, it is easy to compute
the orders of the groups over quadratic extensions using a well-known result by
Weil [8]. These sizes give an initial (sometimes complete) understanding of the
structures of the groups over the extension fields.

The curve P-256 is defined over Fp for a 256-bit prime p. The order of E(Fp)
is a prime n, so E(Fp) is cyclic. The size of E(Fp2) is |E(Fp2)| = 3 × 5 × 13 ×
179× n× n′, where n′ �= n is a 241-bit prime. Since |E(Fp2)| is square-free, the
group E(Fp2) is cyclic. However, it contains subgroups of small orders.

The curve P-521 is defined over Fp for a 521-bit prime p. The order of E(Fp) is
a prime n, so E(Fp) is cyclic. The size of E(Fp2) is |E(Fp2)| = 5×7×69697531×
635884237× n × n′, where n′ �= n is a 461-bit prime. Again E(Fp2) is cyclic,
since its order is square-free. This group too has subgroups of small orders.

The Koblitz curve K-283 is defined over F2d , d = 283, and has an order 4n for
a prime n. If the group E(F2d) is not cyclic, we must have E(F2d) ∼= Z2n ⊕ Z2.
But then, by the structure theorem of elliptic-curve groups of rank two, we have
2|(2d − 1), which is impossible. So E(F2283) is cyclic. In the quadratic extension
F22d , the group has order |E(F22d)| = 23 × 5 × 250057× 43611431× n× n′ for

Faster Batch Verification of Standard ECDSA Signatures 455

a 238-bit prime n′ (different from n). As argued above, E(F22d) is easily seen to
be cyclic. However, it contains subgroups of small orders.

The Koblitz curve K-571 is defined over F2d , d = 571, and has order 4n for
a prime n. We have the order |E(F22d)| = 23 × 83520557720108799306580699×
596201686362718542354710701×n×n′ for a 395-bit prime n′ �= n. Both E(F2d)
and E(F22d) are cyclic. Again, E(F22d) contains subgroups of small orders.

Since each of these groups in the quadratic extension has small-order sub-
groups, the sanity check is apparently preferred for all these curves. However, if
the points of small orders on a curve over the quadratic extension do not have
x-coordinates in the base field, then we can eliminate the sanity check.

9 Conclusion

In this paper, we propose a new and efficient batch-verification algorithm for
original ECDSA signatures. Our algorithm outperforms all previously known
batch-verification algorithms for ECDSA. We theoretically and experimentally
establish this superiority for the NIST prime and Koblitz families of elliptic
curves. We also mention how the methods can be adapted to EdDSA signa-
tures. Theoretical and experimental performance comparisons of different batch-
verification algorithms for EdDSA signatures remains an open (albeit fairly
straightforward) problem. The elliptic-curve group structures over quadratic ex-
tensions of the base fields need to be determined for all NIST curves, at the
minimum to gauge the necessity of running the sanity check.

References

1. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

2. Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.-J.: Faster batch forgery iden-
tification. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668,
pp. 454–473. Springer, Heidelberg (2012)

3. Ghosh, S., Roychowdhury, D., Das, A.: High speed cryptoprocessor for ηT pairing
on 128-bit secure supersingular elliptic curves over characteristic two fields. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 442–458. Springer,
Heidelberg (2011)

4. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

5. Bernstein, D.J., Lange, T.: Explicit-formulas database (2007),
http://www.hyperelliptic.org/EFD/

6. Brown, W.S.: The subresultant PRS algorithm. ACM Transactions on Mathemat-
ical Software 4(3), 237–249 (1978)

7. Cheon, J.H., Yi, J.H.: Fast batch verification of multiple signatures. In: Okamoto,
T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 442–457. Springer, Heidelberg
(2007)

http://www.hyperelliptic.org/EFD/

456 S. Karati and A. Das

8. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of elliptic and hyperelliptic curve cryptography. CRC Press (2006)

9. Collins, G.E.: Subresultants and reduced polynomial remainder sequences. Journal
of ACM 14(1), 128–142 (1967)

10. Edwards, H.M.: A normal form for elliptic curves. Bulletin of American Mathe-
matical Society 44(3), 393–422 (2007)

11. Harn, L.: Batch verifying multiple RSA digital signatures. Electronics Let-
ters 34(12), 1219–1220 (1998)

12. Johnson, D., Menezes, A.J., Vanstone, S.A.: The Elliptic Curve Digital Signature
Algorithm (ECDSA). International Journal of Information Security 1(1), 36–63
(2001)

13. Karati, S., Das, A., Roychowdhury, D., Bellur, B., Bhattacharya, D., Iyer, A.:
Batch verification of ECDSA signatures. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 1–18. Springer, Heidelberg (2012)

14. Karati, S., Das, A., Roychowdhury, D.: Using randomizers for batch ver-
ification of ECDSA signatures, IACR Cryptology ePrint Archive (2012),
http://eprint.iacr.org/2012/582

15. Montgomery, P.L.: Speeding up Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

16. Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. Be improved?
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer,
Heidelberg (1995)

17. NIST: Digital Signature Standard (DSS),
http://csrc.nist.gov/publications/drafts/fips_186-3/Draft-FIPS-186-3

18. NIST: Secure Hash Standard, SHS (2007),
http://csrc.nist.gov/publications/drafts/fips 180-3/

draft fips-180-3 June-08-2007.pdf

19. NIST: Recommended elliptic curves for federal government use (1999),
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

20. PARI Group: PARI/GP Home (2003-2013), http://pari.math.u-bordeaux.fr/
21. Semaev, I.: Summation polynomials and the discrete logarithm problem on elliptic

curves (2004), http://eprint.iacr.org/2004/031
22. Solinas, J.A.: Improved algorithms for arithmetic on anomalous binary curves,

Combinatorics and Optimization Research Report CORR 99-46, University of Wa-
terloo (1999),
http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-46.ps

http://eprint.iacr.org/2012/582
http://csrc.nist.gov/publications/drafts/fips_186-3/Draft-FIPS-186-3
http://csrc.nist.gov/publications/drafts/fips_180-3/draft_fips-180-3_June-08-2007.pdf
http://csrc.nist.gov/publications/drafts/fips_180-3/draft_fips-180-3_June-08-2007.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://pari.math.u-bordeaux.fr/
http://eprint.iacr.org/2004/031
http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-46.ps

On Updatable Redactable Signatures

Henrich C. Pöhls1,2,�, Kai Samelin��

1 Chair of IT-Security, University of Passau, Germany
2 Institute of IT-Security and Security Law (ISL), University of Passau, Germany

{hp,ks}@sec.uni-passau.de

Abstract. Redactable signatures allow removing parts from signed doc-
uments. State-of-the-art security models do not capture the possibility
that the signer can “update” signatures, i.e., add new elements. Neglect-
ing this, third parties can generate forgeries. Moreover, there are con-
structions which permit creating a signature by merging two redacted
messages, if they stem from the same original. Our adjusted definition
captures both possibilities. We present a provably secure construction in
the standard model, which makes use of a novel trapdoor-accumulator.

1 Introduction

Assume we sign a set S = {v1, v2, . . . , v�}, generating a signature σ protecting
S.1 The use of a redactable signature scheme (RSS) now allows removing el-
ements from S: a verifying signature σ′ for a subset S ′ ⊆ S can be derived
by anyone. This action is called a redaction. For this, no secret key is not
required, i.e., redacting is a public operation. This possibility is contrary to
standard digital signatures, which do not permit any alterations. Public redac-
tions are especially useful, if the original signer is not reachable anymore, e.g.,
in case of death, or if it produces too much overhead to resign a message ev-
ery time an alteration is necessary, e.g., if communication is too costly. Hence,
RSSs partially address the “digital document sanitization problem” [36]. For-
mally,RSSs are a proper subset of (P-)homomorphic signatures [1]. The obvious
applications for RSSs are privacy-preserving handling of medical records, the
removal of the date-of-birth from certificates from job applications, and the re-
moval of identifying information for age-restricted locations from XML-files or
the cloud [7,27,30,40,41,42,43,45]. Real implementations are given in [40,44,46].
However, existing provably secure constructions offer the possibility of “dynamic
updates”. In a nutshell, dynamic updates allow the signer to add new elements
to existing signatures. This captures the ideas given in [8,29]. Hence, a signer
can add new elements without the need to re-sign everything, e.g., to add new

� The research leading to these results has received support from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 609094.

�� This work was partly supported by the German Federal Ministry of Education and
Research (BMBF) within EC SPRIDE and by the Hessian LOEWE excellence ini-
tiative within CASED, while working at CASED.

1 [14,19,43] show how to treat more complex data-structures with an RSS for sets.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 457–475, 2014.
c© Springer International Publishing Switzerland 2014

458 H.C. Pöhls and K. Samelin

credentials or new database entries. This is useful in many situations, e.g., if
it is too costly to re-sign a database completely for each new entry added. In
other words, updates may become less expensive than a complete re-sign. Un-
fortunately, this also allows forgeries according to the existing security models
whenever the adversary is given access to an “update-oracle”. Jumping ahead,
this oracle essentially models the adversary’s possibility to ask the signer to
adaptively “update” signatures with elements of its own choice. Given the afore-
mentioned application scenarios, this possibility must not be neglected. Related,
and present in many RSSs in the literature is the possibility of “merging”: given
two set/signature pairs derived from the same signature, one can combine them
into a single merged, set/signature pair (S, σ).

Example. Consider bio data banks, which are collections of samples of human
bodily substances (e.g., DNA) that are associated with personal data. While
the personal data part might be quite small, the medical data is often very
large. However, from the association with personal data follows the necessity to
obey strict data protection requirements. Once this association is removed, the
protection can be (partly) forgo and the handling of this data becomes simpler.
Hence, one wants to store tables containing columns with personally identifying
information separate from those that contain other data, which on its own is
anonymous. Splitting the data allows to store it on servers with different security
requirements, and possibly different costs. Also, the outsourcing party wants to
allow the database service provider to repartition the database as it sees suitable
for an optimal operation. The use of a private, updatable and mergeable RSS
now allows protecting the integrity by signing each single field of each row in each
table as an element. In RSSs, privacy says that no information about redacted
elements can be derived from signatures, if one has no access to them. In our
example, this means that the low-security servers gain no information about the
high-security columns. A formal definition is given in Sect. 2. To clarify, consider
a simple database with one table and three columns (id, Name, DNA). When this
database is signed, we get one signature over the complete database. Now, we
can split the complete record into one table containing only (id, Name) pairs,
and a second one holding (id, DNA) pairs. To do so, we generate two separate
signatures by using the redact operation of the RSS . Now, the RSS can further
be used by each database server to generate and hand valid signature over to
clients for any elements returned by their queries. If a query only returns one row,
the database server redacts all other rows and sends the resulting signature to
the client. The client is able to verify that the result set is from the original signer
and the returned values have not been modified. In turn, mergeability now allows
deriving a single valid signature from formerly split database records. Hence,
the database service provider can undo the splitting by merging the result set,
and the signatures, before returning it. A property we define in Sect. 2, named
merge transparency, even hides the information that a signature has been created
through a merge operation from the verifying client.

On Updatable Redactable Signatures 459

If the splitting was done for privacy, any client or third-party service which is
allowed to query for private data, e.g., (id, Name), and (id, DNA) can merge the
database server’s answers and gain assurance that the merged result containing
data with three columns (id, Name, DNA) comes from the trusted source and
establish that the records have not been modified. On the other hand, dynamic
updates have been motivated in previous work before and allow the signer, i.e.,
the database owner, to dynamically add new records to the database.

In our scenario, we require that: (1) an attacker cannot generate non-legitimate
signatures, (2) redacted information remains hidden, and (3) that all algorithms
create linkable versions of the same document. The third requirement makes
RSSs useable in practice: an attacker must not be able to generate “clones” of
a signed set by gradually redacting different elements. As an example, assume
that Name consists of several columns (FirstName, MiddleName, FamilyName).
Then, we do not want that the DNA record of “Rose” “Fitzgerald” “Kennedy”
can be duplicated without detection into several sets by redaction of some of
the elements, e.g., pretending two signed DNA records exist: one for a member
of the “Kennedy” family and another one for a woman with the first name of
“Rose”. Merging thus serves as a test when its questionable whether or not two
records are derived from the same original: once two signed sets are available,
their signatures only merge, if they are linkable.

State-of-the-Art. The concept of RSSs has been introduced as “content ex-
traction signatures” by Steinfeld et al. [45], and, in the same year, as “homomor-
phic signatures” [28] by Johnson et al. A security model for sets has been given by
Miyazaki et al. [37]. Their ideas have been extended to work on trees [14,30,42],
on lists [19,43], and also on arbitrary graphs [30]. There are also some schemes
which offer context-hiding, a very strong privacy notion, and variations thereof,
e.g., [1,3,4]. Context-hiding schemes allow to generate signatures on derived sets
with no possibility to detect whether these correspond to an already signed
set in a statistical sense. To some extend, the concept of sanitizable signature
schemes (SSS) is related [2,13,15,16,17,21,31]. In an SSS , the sanitizer does not
redact elements, but can change “admissible elements” to arbitrary strings, i.e.,
v′i ∈ {0, 1}∗. SSSs require sanitizers to know a secret and therefore do not allow
public alterations. Even though they seem to be related, the aims and security
models of SSSs and RSSs substantially differ on a detailed level [22]. Hence,
SSSs are not discussed in any more detail in this paper. Most recent advances
generalize similar concepts. These are normally referred to as “(P-)homomorphic
signatures”, “functional signatures”, and/or “delegateable signatures”. Notewor-
thy work includes [1,3,4,5,10,12,20,23]. In this paper, we focus on RSSs, while
our results are applicable to the aforementioned primitives.

In the field of RSSs, all existing provably private constructions only con-
sider how to redact elements. The opposite — reinstating previously redacted
elements, i.e., merging signatures — in a controlled way has neither been formal-
ized nor have security models been properly discussed. Notions of mergeability
are initially given by Merkle for hash-trees [35], but these are not private in the
context of RSSs. The closest existing works mentioning merging in our context

460 H.C. Pöhls and K. Samelin

are [28,33,38,39]. However, neither of the mentioned schemes is fully private in
our model, while [28] is even forgeable — merging from any signed set is possible.

Contribution. As aforementioned, current security models do not correctly
capture the possibility that some signatures can be updated, i.e., that the signer
can freely add new elements. Additionally, they also do not discuss that signa-
tures can, under certain circumstances, be merged. In this paper, we introduce
an extended security model explicitly capturing both possibilities. Our contribu-
tion is therefore manifold: (1) We present some shortcomings in existing security
models, which do not consider the case of updating signatures by the signer. We
show how an adversary can construct forgeries, if this possibility is neglected. (2)
We propose a countermeasure: we augment the state-of-the-art security model
with explicit access to an “update-oracle”, which an adversary can query adap-
tively. We also rigorously define the notions of “update privacy” and “update
transparency”. Jumping ahead, both properties describe which information can
be derived from an updated signature. (3) We introduce a formal definition of
“mergeability”, i.e., under which circumstances signatures can be merged into a
single one. With private and transparent mergeability, we give the first security
model of the inverse operation of redaction, extending the work done in [33].
Again, both properties aim to formalize which information an adversary can
obtain from a merged signature. We prove that merging signatures has no neg-
ative impact on existing security properties. (4) We show how the new and old
notions are related to each other, extending the work by Brzuska et al. [14]. (5)
We derive a provably secure construction, meeting our enhanced definitions. (6)
For our construction, we deploy trapdoor-accumulators. This construction is of
independent interest. Moreover, it turns out that we do not require any kind of
standard signature scheme, which is a very surprising result on its own. Also,
our construction proves that the statement given in [30] that accumulators are
not sufficient for RSSs is not true.

2 Preliminaries and Security Model

We heavily modify the security model introduced by Brzuska et al. [14], as we
explicitly allow merging and updating signatures. We do so by introducing the
algorithms Merge2 and Update.

Definition 1 (Mergeable and Updatable RSS). A mergeable and updat-
able RSS consists of six efficient algorithms. Let RSS := (KeyGen, Sign,Verify,
Redact,Update,Merge), such that:

KeyGen. The algorithm KeyGen outputs the public and private key of the signer,
i.e., (pk, sk)← KeyGen(1λ), where λ is the security parameter

Sign. The algorithm Sign gets as input the secret key sk and the set S. It outputs
(S, σ, τ) ← Sign(1λ, sk,S). Here, τ is a tag

2 Merge was named “combine” in [33].

On Updatable Redactable Signatures 461

Verify. The algorithm Verify outputs a bit d ∈ {0, 1} indicating the correctness of
the signature σ, w.r.t. pk and τ , protecting S. 1 stands for a valid signature,
while 0 indicates the opposite. In particular: d← Verify(1λ, pk,S, σ, τ)

Redact. The algorithm Redact takes as input a set S, the public key pk of the
signer, a tag τ , and a valid signature σ and a set R ⊂ S of elements to
be redacted. The algorithm outputs (S ′, σ′, τ) ← Redact(1λ, pk,S, σ,R, τ),
where S ′ = S \ R. R is allowed to be ∅. On error, the algorithm outputs ⊥

Update. The algorithm Update takes as input a verifying set/signature/tag tu-
ple (S, σ, τ), the secret key sk and a second set U . It outputs (S ′, σ′, τ) ←
Update(1λ, sk,S, σ,U , τ), where S ′ = S ∪ U , and σ′ is a verifying signature
on S ′. On error, the algorithm outputs ⊥

Merge. The algorithm Merge takes as input the public key pk of the signer,
two sets S and V, a tag τ , and the corresponding signatures σS and σV .
We require that σS and σV are valid on S and V. It outputs the merged
set/signature/tag tuple (U , σU , τ)← Merge(1λ, pk,S, σS ,V , σV , τ), where U =
S ∪ V and σU is valid on U . On error, the algorithm outputs ⊥

We assume that one can efficiently, and uniquely, identify all the elements vi ∈ S
from a given set S. All algorithms, except Sign and Update, are public opera-
tions, as common in RSSs. In other words, all parties can redact and merge sets,
which includes the signer, as well as any intermediate recipient. The correctness
properties must also hold, i.e., every genuinely signed, redacted, merged, or up-
dated set must verify. The same is true for updates and merging signatures. This
must even hold transitively, i.e., the history of the signature must not matter. τ
does not change on any operation. As we allow merging signatures, unlinkability
cannot be achieved: τ makes signatures linkable.

On the Security Implications of Dynamic Updates. In our model, Update
and Merge are explicitly defined, while in existing work they are present only
implicitly. The schemes we want to review have in common that they allow
dynamic updates and merging of signatures. In particular, there is a very sub-
tle possibility, undermining existing schemes’ unforgeability in current security
models. Even without explicit algorithms, the following succeeds regardless of a
scheme’s implementation.

For the following, all signatures share the same tag τ . An adversary A can
break the state-of-the-art unforgeability [14] of an RSS in the following way: A
queries its signing oracle with a set {A}, receiving a signature σA. Afterward,
A requests the signer to update {A} to {A,B}, receiving a signature σA,B .
Additionally, A requests a second update of {A} to {A,C}, receiving σA,C . A
can then “merge” ({A,B}, σA,B) and ({A,C}, σA,C) to a new verifying signa-
ture ({A,B,C}, σ∗). This set/signature pair is considered a forgery in existing
models, while this may be a wanted behavior, e.g., if in medical records new
diseases are appended by two different medical doctors. Let us stress that we
have introduced a new oracle, namely the update-oracle. However, even if the
adversary cannot request updates of his own choosing, it can merge them into
a forgery, according to existing models, once the signer performs two different

462 H.C. Pöhls and K. Samelin

updates on a signed set. Hence, either dynamic updates must be completely
prohibited, or the existing security model must be altered. As our application
scenario proves, dynamic updates have their merits and enable many practi-
cal applications. Therefore, we chose to take the second path. Note, that our
example is tailored for sets, while some schemes address lists and trees. How-
ever, the aforementioned possibility is not limited to sets, but works on all the
schemes aforementioned with minor adjustments. We stress that we explicitly
took care that most current existing schemes, e.g., [14,37,42,43], can be consid-
ered secure in our enhanced security model. An exception are schemes which
offer context-hiding (and their variants). This property discourages any discus-
sions about dynamic updates, as an updated signature cannot be linked against
an “old” one. This allows meeting the property of (statistical) unlinkability: de-
rived signatures must be indistinguishable from fresh signatures. For this reason
we explicitly split updating and signing signatures: updating a signature does
not draw a new tag.

Security Model. Next, we introduce the extended security model and define
the notions of transparency, privacy, unforgeability, merge privacy, merge trans-
parency, update privacy, and update transparency. We then show how these
properties are related to each other. As before, we use the definitions given
in [14,37,42,43] as our starting point.

As common in RSSs, all of the following definitions specifically address the
additional knowledge a third party can gain from the signature σ alone: if in
real documents the redactions or updates are obvious due to additional context
information or from the message contents itself, e.g., missing parts of a well
known document structure, it may be trivial for attackers to detect them. This
observation is general and also applies to schemes which offer context-hiding and
cannot be avoided.

Unforgeability. No one must be able to produce a valid signature on a set S∗

verifying under pk with elements not endorsed by the holder of sk, i.e., the
signer. That is, even if an attacker can adaptively request signatures on different
documents, and also can adaptively update them, it remains impossible to forge
a signature for a new set or new elements not queried. In Fig. 1 we use Sτ∗ to
remember all elements signed by the oracle under tag τ∗ and T to collect all
tags. This unforgeability definition is analogous to the standard unforgeability
requirement of standard digital signature schemes [26]. We say that an RSS is
unforgeable, if for every probabilistic polynomial time (PPT) adversary A the
probability that the game depicted in Fig. 1 returns 1, is negligible.

Privacy. The verifier should not be able to gain any knowledge about redacted
elements without having access to them. In this definition, the adversary chooses
two tuples (S0,R0) and (S1,R1), whereRi ⊆ Si describes what shall be removed
from Si. A redaction of R0 from S0 is required to result in the same set as
redacting R1 from S1. The two sets are input to a “Left-or-Right”-oracle which

On Updatable Redactable Signatures 463

Experiment UnforgeabilityRSS
A (λ)

(pk, sk) ← KeyGen(1λ)
Set T ← ∅
(S∗, σ∗, τ∗) ← ASign(1λ,sk,·)

Update(1λ,sk,·,·,·,·)(1
λ, pk)

For each query to oracle Sign:
let (S , σ, τ) denote the answer from Sign
Set Sτ ← S
Set T ← T ∪ {τ}

For each call to oracle Update:
let (S , σ, τ) denote the answer from Update
Set Sτ ← Sτ ∪ S

return 1, if

Verify(1λ, pk,S∗, σ∗, τ∗) = 1 and
τ∗ /∈ T or S∗ � Sτ∗

Fig. 1. Unforgeability

Experiment PrivacyRSS
A (λ)

(pk, sk) ← KeyGen(1λ)

b
$← {0, 1}

d ← ASign(1λ,sk,·),LoRRedact(1λ,·,·,·,·,sk,b)
Update(1λ,sk,·,·,·,·) (1λ, pk)

where oracle LoRRedact
for input S0,S1,R0,R1:
If R0 � S0 ∨ R1 � S1, return ⊥
if S0 \ R0 �= S1 \ R1, return ⊥
(S , σ, τ) ← Sign(1λ, sk,Sb, τ)
return (S ′, σ′, τ) ← Redact(1λ, pk,S , σ,Rb, τ).

return 1, if b = d

Fig. 2. Privacy

Experiment TransparencyRSS
A (λ)

(pk, sk) ← KeyGen(1λ)

b
$← {0, 1}

d ← ASign(1λ,sk,·),Sign/Redact(1λ,·,·,sk,b),Update(1λ,sk,·,·,·,·)(1λ, pk)
where oracle Sign/Redact for input S ,R:

if R �⊆ S , return ⊥
(S , σ, τ) ← Sign(1λ, sk,S),
(S ′, σ′, τ) ← Redact(1λ, pk,S , σ,R, τ)
if b = 1:

(S ′, σ′, τ) ← Sign(1λ, sk,S ′)
return (S ′, σ′, τ)

return 1, if b = d

Fig. 3. Transparency

signs Sb and then redacts Rb. The adversary wins, if it can decide which pair
was used by the oracle as the input to create its corresponding output. This is
similar to the standard indistinguishability notion for encryption schemes [25].
We say that an RSS is private, if for every PPT adversary A the probability
that the game depicted in Fig. 2 returns 1, is negligibly close to 1

2 . Note, this
definition does not capture unlinkability.

Transparency. The verifier should not be able to decide whether a signature has
been created by the signer directly, or through the redaction algorithm Redact.
The adversary can choose one tuple (S,R), where R ⊆ S describes what shall be
removed from S. The pair is input for a “Sign/Redact” oracle that either signs
and redacts elements (using Redact) or remove elements as a redaction would
do (S \R) before signing it. The adversary wins, if it can decide which way was
taken. We say that an RSS is transparent, if for every PPT adversary A, the
probability that the game depicted in Fig. 3 returns 1, is negligibly close to 1

2 .

464 H.C. Pöhls and K. Samelin

Experiment Merge PrivacyRSS
A (λ)

(pk, sk) ← KeyGen(1λ)

b
$← {0, 1}

d ← ASign(1λ,sk,·),LoRMerge(1λ,·,·,·,sk,b)
Update(1λ,sk,·,·,·,·) (1λ, pk)

where oracle LoRMerge
for input S ,R0,R1:

if R0 � S ∨R1 � S , return ⊥
(S , σS , τ) ← Sign(1λ, sk,S)
(S ′, σ′

S , τ) ← Redact(1λ, pk,S , σS ,Rb, τ)
(S ′′, σ′′

S , τ) ← Redact(1λ, pk,S , σS ,S \ Rb, τ)

return Merge(1λ, pk,S ′, σ′
S ,S ′′, σ′′

S , τ)
return 1, if b = d

Fig. 4. Merge Privacy

Experiment Merge TransparencyRSS
A (λ)

(pk, sk) ← KeyGen(1λ)

b
$← {0, 1}

d ← ASign(1λ,sk,·),Sign/Merge(1λ,·,·,sk,b)
Update(1λ,sk,·,·,·,·) (1λ, pk)

where oracle Sign/Merge for input S ,R:
if R �⊆ S , return ⊥
(S , σ, τ) ← Sign(1λ, sk,S)
if b = 0:

(T ′, σ′
T , τ) ← Redact(1λ, pk,S , σS ,R, τ)

(R′, σ′
R, τ) ← Redact(1λ, pk,S , σS ,S \ R, τ)

(S ′, σ′, τ) ← Merge(1λ, pk, T ′, σ′
T ,R′, σ′

R, τ)
if b = 1: (S ′, σ′, τ) ← (S , σS , τ)
return (S ′, σ′, τ)

return 1, if b = d

Fig. 5. Merge Transparency

Merge Privacy. If a merged set is given to another third party, the party should
not be able to derive any information besides what is contained in the merged
set, i.e., a verifier should not be able to decide which elements have been merged
from what set. In this definition, the adversary can choose three sets S,R0,R1.
The oracle LoRMerge signs S and then generates two signed redacted versions
S ′ = S \ Rb and S ′′ = Rb. Then, it merges the signatures again. The adversary
wins, if it can decide if R0 or R1 was first redacted from S and then merged
back. We say that an RSS is merge private, if for every PPT adversary A, the
probability that the game depicted in Fig. 4 returns 1, is negligibly close to 1

2 .

Merge Transparency. If a set is given to a third party, the party should not be
able to decide whether the set has been created only by Sign or through Sign and
Merge. The adversary can choose one tuple (S,R) with R ⊆ S. This pair is input
to a Sign/Merge oracle that signs the set S and either returns this set/signature
pair directly (b = 1) or redacts the S into two signed “halves” R and T only
to merge them together again and return the set/signature pair derived using
Merge (b = 0). The adversary wins, if it can decide which way was taken. We say
that an RSS is merge transparent, if for every PPT adversary A, the probability
that the game depicted in Fig. 5 returns 1, is negligibly close to 1

2 .
We emphasize that the notions of merge transparency and merge privacy

are very similar to the notions of privacy and transparency, as they achieve
comparable goals.

Update Privacy. If an updated set is given to another third party, the party
should not be able to derive which elements have been added. In the game,
the adversary wins, if it can decide which elements were added after signature
generation. In this definition, the adversary can choose three sets S,R0,R1.
The oracle LoRUpdate signs S ∪ Rb and then adds Rb−1 to the signature. The
adversary wins, if it can decide which set was used for the update. A scheme
RSS is update private, if for every PPT adversary A, the probability that the
game depicted in Fig. 6 returns 1, is negligibly close to 1

2 .

On Updatable Redactable Signatures 465

Experiment Update PrivacyRSS
A (λ)

(pk, sk) ← KeyGen(1λ)

b
$← {0, 1}

d ← ASign(1λ,sk,·),LoRUpdate(1λ,·,·,·,sk,b)
Update(1λ,sk,·,·,·,·) (1λ, pk)

where oracle LoRUpdate for input S ,R0,R1:
(S ′, σ′

S , τ) ← Sign(1λ, sk,S ∪ Rb)

return Update(1λ, sk,S ′, σ′
S ,R1−b, τ)

return 1, if b = d

Fig. 6. Update Privacy

Experiment Update TransparencyRSS
A (λ)

(pk, sk) ← KeyGen(1λ)

b
$← {0, 1}

d ← ASign(1λ,sk,·),Sign/Update(1λ,·,·,sk,b)
Update(1λ,sk,·,·,·,·) (1λ, pk)

where oracle Sign/Update for input S ,R:

if b = 1: (S ′, σ′, τ) ← Sign(1λ, sk,S ∪R),

if b = 0: (T ′, σ′
T , τ) ← Sign(1λ, sk,S)

(S ′, σ′, τ) ← Update(1λ, sk, T ′, σ′
T ,R, τ)

return (S ′, σ′, τ)
return 1, if b = d

Fig. 7. Update Transparency

Update Transparency. A verifying party should not be able to decide whether
the received set has been created by Sign or through Update. The adversary can
choose one pair (S,R). This pair is input to a Sign/Update oracle that either
signs the set S ∪ R (b = 1) or signs S and then adds R using Update (b = 0).
The adversary wins, if it can decide which way was taken. We say that a scheme
RSS is update transparent, if for every PPT adversary A, the probability that
the game depicted in Fig. 7 returns 1, is negligibly close to 1

2 .
As before, the notions of update transparency and update privacy are, on

purpose, kept very similar to the notions of privacy and transparency due to
their similar goals.

Definition 2 (Secure RSS). We call an RSS secure, if it is unforgeable,
transparent, private, merge transparent, merge private, update private, and up-
date transparent.

We now give some relations between the security properties. This section can
be kept brief, as we tailored the definitions to be similar (in terms of relation)
to the ones given in [14]. This is intentional, to keep consistent with existing
wording and to blend into the large body of existing work. We have to explicitly
consider the update-oracle, as it may leak information about the secret key sk.

Theorem 1 (Merge Transparency =⇒ Merge Privacy). Every scheme
which is merge transparent, is also merge private.

Proof. Intuitively, the proof formalizes the following idea: if an adversary can
decide which elements have been merged, then it can decide that the signature
cannot be created by Sign, but by Merge.

Assume an (efficient) adversary A that wins our merge privacy with probabil-
ity 1

2 + ε. We can then construct an (efficient) adversary B which wins the merge
transparency game with probability 1

2 +
ε
2 . According to the merge transparency

game, B receives a public key pk and oracle access to OSign, OSign/Merge, and
OUpdate. Let B randomly pick a bit b′ ∈ {0, 1}. B forwards pk to A. Whenever
A requests access to the signing oracle OSign, B honestly forwards the query to
its oracle and returns the unmodified answer to A. The same is true for OUpdate.
When A requests access to OLoRMerge, i.e., when it sends a query (S,R0,R1),

466 H.C. Pöhls and K. Samelin

then B checks that R0 ⊂ S ∧ R1 ⊂ S and forwards (S,Rb′) to OSign/Merge and
returns the answer to A. Eventually, A outputs its guess d. Our adversary B
outputs 0, if d = b′ and 1 otherwise. What is the probability that B is correct?
We have to consider two cases:

1. If b = 0, then OSign/Merge signs, redacts, and merges the set. This gives exactly
the same answer as OLoRRedact would do, if using the bit b′. Hence, A can
correctly guess the bit b′ with probability at least 1

2 + ε, if b = 0.

2. If b = 1, then OSign/Merge always signs the set as is. Hence, the answer is
independent of b′. Pr[B = 1 | b = 1] = 1

2 follows.

Hence, due to the probability of 1
2 that b = 1, it follows that Pr[B = b] = 1

2 +
ε
2 .

Hence, B has non-negligible advantage, if ε is non-negligible.

Theorem 2 (Merge Privacy � Merge Transparency). There is a scheme
which is merge private, but not merge transparent.

Proof. At sign, we append a bit d = 0. For all other algorithms d is cut off, and
appended after the algorithm finished. However, we set d = 1 once signatures
are merged. Obviously, we leave all other properties intact.

Theorem 3 (Update Transparency =⇒ Update Privacy). Every scheme
which is update transparent, is also update private.

Proof. The proof is essentially the same as for Th. 1.

Theorem 4 (Update Privacy�Update Transparency). There is a scheme
which is update private, but not update transparent.

Proof. The proof is essentially the same as for Th. 2.

Theorem 5 (Merge Transparency is independent). There is a scheme
which fulfills all mentioned security goals but merge transparency.

Proof. The proof is essentially the same as for Th. 2.

Theorem 6 (Update Transparency is independent). There is a scheme
which fulfills all mentioned security goals but update transparency.

Proof. The proof is essentially the same as for Th. 2.

Theorem 7 (Unforgeability is independent). There is a scheme which ful-
fills all mentioned security goals but unforgeability.

Proof. We simply use a verify algorithm which always accepts all inputs.

Theorem 8 (Transparency =⇒ Privacy). Every scheme which is trans-
parent, is also private. Similar to [14].

Theorem 9 (Privacy � Transparency). There is a scheme which is private,
but not transparent. Similar to [14].

On Updatable Redactable Signatures 467

Theorem 10 (Transparency is independent). There is a scheme which ful-
fills all mentioned security goals but transparency. Similar to [14].

Even though the transparency properties give stronger security guarantees,
legislation requires that altered signatures must be distinguishable from new
ones [16]. However, privacy is the absolute minimum to be useful [16]. We there-
fore need to split the definitions: depending on the use-case, one can then decide
which properties are required.

3 Trapdoor-Accumulators and Constructions

Cryptographic accumulators have been introduced by Benaloh and de Mare [9].
They hash a potentially very large set S into a short single value a, called the ac-
cumulator. For each element accumulated, a witness is generated, which vouches
for the accumulation. A trapdoor-accumulator allows generating proofs for new
elements not contained by use of a trapdoor. Our construction is based upon
such an accumulator. Using an accumulator allows us to achieve mergeability
“for free”, as we can add and remove witnesses and the corresponding elements
freely. We do not require non-membership witnesses [32], or non-deniability [34]
for our scheme to work. We do note that there exists the possibility of dynam-
ically updating an accumulator [18]. However, they also allow removing accu-
mulated elements, while they need to adjust every single witness. This is not
necessary for our goals. However, accumulators are very versatile. We leave it
as open work to discuss the impact of accumulators with different properties
plugged into our construction.

Algorithmic Description and Security Model. We now introduce trapdoor
accumulators. The definition is derived from [6].

Definition 3 (Trapdoor Cryptographic Accumulators). A cryptographic
trapdoor accumulator ACC consists of four efficient (PPT) algorithms. In par-
ticular, ACC := (Gen,Dig,Proof,Verf) such that:

Gen. The algorithm Gen is the key generator. On input of the security parameter
λ, it outputs the key pair (skACC , pkACC)← Gen(1λ)

Dig. The algorithm Dig takes as input the set S to accumulate, the public pa-
rameters pkACC. It outputs an accumulator value a ← Dig(1λ, pkACC ,S)

Proof. The deterministic algorithm Proof takes as input the secret key skACC,
the accumulator a, and a value v and returns a witness p for v. Hence, it
outputs p ← Proof(1λ, skACC , a, v)

Verf. The verification algorithm Verf takes as input the public key pkACC, an
accumulator a, a witness p, and a value v and outputs a bit d ∈ {0, 1},
indicating whether p is a valid witness for v w.r.t. a and pkACC. Hence, it
outputs d← Verf(1λ, pkACC , a, v, p)

We require the usual correctness properties to hold. Refer to [6] for a formal
definition of the correctness properties for accumulators.

468 H.C. Pöhls and K. Samelin

Experiment Strong − Coll. − Res.ACC
A (λ)

(skACC, pkACC) ← Gen(1λ)
(S∗, st) ← A1(1

λ, pkACC) //st denotes A’s state

a ← Dig(1λ, pkACC , S
∗)

(v∗, p∗) ← AProof(1λ,skACC,a,·)
2 (st, a)

return 1, if

Verf(1λ, pkACC, a, v
∗, p∗) = 1,

and v∗ has not been queried to Proof

Fig. 8. Strong Collision-Resistance

Strong Collision-Resistance. An adversary should not be able find a valid wit-
ness/element pair (p∗, v∗) for a given accumulator a, even if it is allowed to
adaptively query for elements not contained in the original set accumulated and
to choose the original set to be accumulated. We call a family of trapdoor ac-
cumulators strongly collision-resistant, if the probability that the experiment
depicted in Fig. 8 returns 1, is negligible. We do note that this definition is very
similar to the standard unforgeability of signature schemes. The naming is due
to historical reasons [6].

Trapdoor-Accumulators. Next, we show how a trapdoor-accumulator can be
build. We use the ideas given in [6], but make use of the trapdoor ϕ(n).

Construction 1 (Trapdoor-Accumulator ACC). We require a division-
intractable hash-function H : {0, 1}∗ → {0, 1}λ mapping to odd numbers. A
formal definition is given in [24]. Let ACC := (Gen,Dig,Proof,Verf) such that:

Gen. Generate n = pq, where p and q are distinct safe primes of length λ.3

Return (ϕ(n), (n,H)), where ϕ(pq) := (p− 1) · (q − 1).
Dig. To improve efficiency, we use the build-in trapdoor. A new digest can there-

fore be drawn at random. Return a ∈R Z×
n .

Proof. To generate a witness pi for an element vi, set v′i ← H(vi). Output pi ←
av

′−1
i (mod ϕ(n)) mod n

Verf. To check the correctness of a proof p w.r.t. an accumulator a, the public

key pkACC , and a value v, output 1, if a
?
= pH(v) (mod n), and 0 otherwise

We do note that this construction is related to GHR-signatures [24]. Due to the
build-in trapdoor, we do not require any auxiliary information as proposed in [6].
The use of safe primes allows us to almost always find a root for odd numbers. If
we are not able to do so, we can trivially factor n. The proofs that our trapdoor-
accumulator is strongly collision-resistant can be found in the appendix.

We want to explicitly stress that an adversary can simulate the Proof-oracle

itself for the elements used for Dig. It calculates a = x
∏

vi∈S H(vi) mod n for

a random x ∈R Z×
n and for each proof pi, it lets pi = x

∏
vj∈S,i�=j H(vj) mod n.

For new elements, this technique does not work. Note, a is drawn at random

3 A prime p is safe, if p = 2p′ + 1, where p′ is also prime.

On Updatable Redactable Signatures 469

for efficiency. We can also use the slower method aforementioned: a will be
distributed exactly in the same way.

Updatable and Mergeable RSS — Construction. The basic ideas are: (1)
Our trick is to fix the accumulator a for all signatures. Additionally, each element
is tagged with a unique string τ to tackle mix-and-match attacks. Hence, all
derived subset/signature pairs are linkable by the tag τ . τ is also accumulated to
avoid trivial “empty-set”-attacks. (2) Redactions remove vi and its corresponding
witness pi. The redactions are private, as without knowledge of the proof pi
nobody can verify if vi is “in” the accumulator a. (3) Mergeability is achieved,
as supplying an element/witness pair allows a third party to add it back into the
signature. (4) Unforgeability comes from the strong collision-resistance of ACC.
(5) Dynamic updates are possible due to a trapdoor in ACC, only known to the
signer. (6) Privacy directly follows from definitions, i.e., the number of proofs
is fixed, while the proofs itself are deterministically generated, without taking
already generated proofs into account. We do note that we can also use aggregate-
signatures to reduce the signature size [11]. However, we want to show that an
accumulator is enough to build RSSs. Having a suitable security model, we can
now derive an efficient, stateless, yet simple construction. Our construction is
inspired by [28]. However, their construction is forgeable and non-private in our
model, as they allow for arbitrary merging, and do not hide redacted elements
completely. One may argue that a very straight-forward construction exists: one
signs each element vi ∈ S and gives out the signatures. However, our approach
has some advantages: we can exchange the accumulator to derive new properties,
e.g., prohibiting updates using a trapdoor-free accumulator [34]. Moreover, we
prove that using accumulators are sufficient, opposing the results of [30].

Construction 2 (Updatable and Mergeable RSS). We use || to denote a
uniquely reversible concatenation of strings. Let RSS := (KeyGen, Sign,Verify,
Redact,Update,Merge) such that:

KeyGen. The algorithm KeyGen generates the key pair in the following way:
1. Generate key pair required for ACC, i.e., run (skACC , pkACC)← Gen(1λ)
2. Call a ← Dig(pkACC , ∅)
3. Output (skACC , (pkACC , a))

Sign. To sign a set S, perform the following steps:
1. Draw a tag τ ∈R {0, 1}λ
2. Let pτ ← Proof(skACC , a, τ)
3. Output (S, σ, τ), where σ = (pτ , {(vi, pi) | vi ∈ S ∧ pi ←

Proof(skACC , a, vi||τ)})
Verify. To verify signature σ = (pτ , {(v1, p1), . . . , (vk, pk)}) with tag τ , perform:

1. For all vi ∈ S check that Verf(pkACC , a, vi||τ, pi) = 1
2. Check that Verf(pkACC , a, τ, pτ) = 1
3. If Verf succeeded for all elements, output 1, otherwise 0

Redact. To redact a subset R from a valid signed set (S, σ) with tag τ , with
R ⊆ S, the algorithm performs the following steps:

470 H.C. Pöhls and K. Samelin

1. Check the validity of σ using Verify. If σ is not valid, return ⊥
2. Output (S ′, σ′, τ), where σ′ = (pτ , {(vi, pi) | vi ∈ S \ R})

Update. To update a valid signed set (S, σ) with tag τ by adding U and knowing
skACC, the algorithm performs the following steps:
1. Verify σ w.r.t. τ using Verify. If σ is not valid, return ⊥
2. Output (S ∪U , σ′, τ), where σ′ = (pτ , {(vi, pi) | vi ∈ S} ∪ {(vk, pk) | vk ∈
U , pk ← Proof(skACC , a, vk||τ)})

Merge. To merge two valid set/signature pairs (S, σS) and (T , σT) with an equal
tag τ , the algorithm performs the following steps:
1. Verify σS and σT w.r.t. τ using Verify. If they do not verify, return ⊥
2. Check, that both have the same tag τ
3. Output (S ∪ T , σU , τ), where σU = (pτ , {(vi, pi) | vi ∈ S ∪ T }), where pi

is taken from the corresponding signature

Our construction is elegantly simple, yet fulfills all security goals (all but un-
forgeability even perfectly), and is therefore useable in practice. The proofs of
security are in the appendix. All reductions are tight, i.e., we have no reduction
losses. We want to explicitly clarify that we do not see the transitive closure of
the updates as forgeries. If we want to disallow the “transitive update merging”,
we can deploy accumulators which also update the witnesses, e.g., [18]. This
requires a new security model, which renders existing constructions insecure,
which we wanted to avoid. We leave this as future work.

4 Conclusion and Open Questions

We have revised existing notions of redactable signature schemes. We derived
a security model, addressing the shortcomings of existing ones. We presented
an attack on existing RSSs, if dynamic updates are not carefully considered.
Moreover, we have formalized the notion of mergeability, the inverse of redac-
tions. These properties allow using RSSs in more application scenarios, e.g.,
distributed databases and general cloud-storage. Finally, we have presented a
provably secure construction in the standard model, based on a novel trapdoor-
accumulator. It is unclear how we can prohibit dynamic updates and merging
signatures, how accumulators and signatures are related to each other, and if
efficient constructions for more complex data-structures exist.

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. ePrint Report 2011/096 (2011)

2. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

3. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

On Updatable Redactable Signatures 471

4. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

5. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. IACR
Cryptology ePrint Archive, 408 (2013)

6. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

7. Becker, A., Jensen, M.: Secure combination of xml signature application with mes-
sage aggregation in multicast settings. In: ICWS, pp. 531–538 (2013)

8. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case
of hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 216–233. Springer, Heidelberg (1994)

9. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative
to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765,
pp. 274–285. Springer, Heidelberg (1994)

10. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

11. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

12. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. IACR Cryptology ePrint Archive 401 (2013)

13. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

14. Brzuska, C., et al.: Redactable Signatures for Tree-Structured Data: Definitions
and Constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
87–104. Springer, Heidelberg (2010)

15. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable
signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 444–461. Springer, Heidelberg (2010)

16. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-Interactive Public Accountability
for Sanitizable Signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.)
EuroPKI 2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013)

17. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and Perfectly Unlinkable Sani-
tizable Signatures without Group Signatures. In: Katsikas, S., Agudo, I. (eds.)
EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014)

18. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to ef-
ficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

19. Chang, E.-C., Lim, C.L., Xu, J.: Short Redactable Signatures Using Random Trees.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer,
Heidelberg (2009)

20. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures:
Complex unary transformations and delegatable anonymous credentials. IACR
Cryptology ePrint Archive 179 (2013)

21. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Scope of security properties of
sanitizable signatures revisited. In: ARES, pp. 188–197 (2013)

472 H.C. Pöhls and K. Samelin

22. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: On the relation between
redactable and sanitizable signature schemes. In: Jürjens, J., Piessens, F.,
Bielova, N. (eds.) ESSoS. LNCS, vol. 8364, pp. 113–130. Springer, Heidelberg
(2014)

23. Deiseroth, B., Fehr, V., Fischlin, M., Maasz, M., Reimers, N.F., Stein, R.: Com-
puting on authenticated data for adjustable predicates. In: Jacobson, M., Locasto,
M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 53–68.
Springer, Heidelberg (2013)

24. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
123–139. Springer, Heidelberg (1999)

25. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

26. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM JoC 17, 281–308 (1988)

27. Herkenhöner, R., Jensen, M., Pöhls, H.C., De Meer, H.: Towards automated pro-
cessing of the right of access in inter-organizational web service compositions. In:
IEEE WSBPS 2010. IEEE (July 2010)

28. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer,
Heidelberg (2002)

29. Kiltz, E., Mityagin, A., Panjwani, S., Raghavan, B.: Append-only signatures. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 434–445. Springer, Heidelberg (2005)

30. Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Int.
J. Inf. Sec. 12(6), 467–494 (2013)

31. Lai, J., Ding, X., Wu, Y.: Accountable trapdoor sanitizable signatures. In: Deng,
R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 117–131. Springer,
Heidelberg (2013)

32. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007)

33. Lim, S., Lee, E., Park, C.-M.: A short redactable signature scheme using pairing.
SCN 5(5), 523–534 (2012)

34. Lipmaa, H.: Secure accumulators from euclidean rings without trusted setup. In:
Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240.
Springer, Heidelberg (2012)

35. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

36. Miyazaki, et al.: Digital documents sanitizing problem. Institute of Electronics, In-
formation and Communication Engineers Technical Reports 103(195), 61–67 (2003)

37. Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme
based on bilinear maps. In: ASIACCS 2006, pp. 343–354. ACM (2006)

38. Pöhls, H.C.: Verifiable and revocable expression of consent to processing of ag-
gregated personal data. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 279–293. Springer, Heidelberg (2008)

39. Pöhls, H.C., Bilzhause, A., Samelin, K., Posegga, J.: Sanitizable signed privacy
preferences for social networks. In: DICCDI 2011. LNI. GI (2011)

On Updatable Redactable Signatures 473

40. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable Signatures in XML Signature -
Performance, Mixing Properties, and Revisiting the Property of Transparency. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer,
Heidelberg (2011)

41. Rass, S., Slamanig, D.: Cryptography for Security and Privacy in Cloud Comput-
ing. Artech House (2013)

42. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: On Structural
Signatures for Tree Data Structures. In: Bao, F., Samarati, P., Zhou, J. (eds.)
ACNS 2012. LNCS, vol. 7341, pp. 171–187. Springer, Heidelberg (2012)

43. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable sig-
natures for independent removal of structure and content. In: Ryan, M.D., Smyth,
B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg
(2012)

44. Slamanig, D., Rass, S.: Generalizations and extensions of redactable signatures
with applications to electronic healthcare. In: De Decker, B., Schaumüller-Bichl, I.
(eds.) CMS 2010. LNCS, vol. 6109, pp. 201–213. Springer, Heidelberg (2010)

45. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

46. Wu, Z.-Y., Hsueh, C.-W., Tsai, C.-Y., Lai, F., Lee, H.-C., Chung, Y.: Redactable
Signatures for Signed CDA Documents. Journal of Medical Systems, 1–14
(December 2010)

A Security Proofs

Theorem 11 (Our Construction is Unforgeable). Our construction is un-
forgeable, if the underlying accumulator is strongly collision-resistant.

Proof. We do not consider tag collisions, as they only appear with negligible
probability. S∗ ⊆ Sτ for some signed τ is not a forgery, but a redac-
tion. We denote the adversary winning the unforgeability game as A. We can
now derive that the forgery must fall into exactly one of the following categories:

Case 1: S∗ � Sτ∗ , and τ∗ was used as a tag by Sign
Case 2: S∗ verifies, and τ∗ was never used as a tag by Sign

Each case leads to a contradiction about the security of our accumulator.

Case 1. In this case, an element v∗ not been returned by the Proof-oracle for the
accumulator a, but is contained in S∗. We break the strong collision-resistance
of the underlying accumulator by letting B use A as a black-box:

1. B receives pkACC from the challenger
2. B requests an accumulator a for ∅
3. B receives a from its own challenger
4. B forwards pk = (pkACC , a) to A
5. For each query to the signing oracle, B answers it honestly: it draws τ hon-

estly and uses the Proof-oracle provided to get a witness for each vj ∈ Si
queried, with τ concatenated as the label. Also, B gets a proof for τ

474 H.C. Pöhls and K. Samelin

6. For each call to the Update-oracle, B uses its Proof-oracle provided to get a
witness for each vj ∈ Si queried, with τ concatenated as the label

7. Eventually, A outputs a pair (S∗, σ∗)
8. B looks for (v∗, p∗), v∗ not queried to Proof, in (S∗, σ∗) and returns them

In other words, there exists an element v∗ ∈ S∗ with a corresponding witness p∗.
If v∗ has not been asked to the Proof-oracle, B breaks the collision-resistance of
the underlying accumulator by outputting (v∗, p∗). This happens with the same
probability as A breaks unforgeability in case 1. Hence, the reduction is tight.

Case 2. In case 2, the tag τ∗ has not been accumulated. We break the strong
collision-resistance of the underlying accumulator by letting B use A:

1. B receives pkACC from the challenger
2. B requests an accumulator a for ∅
3. B forwards pk = (pkACC , a) to A
4. For each query to the signing oracle, B answers it honestly: it draws τ hon-

estly and uses the Proof-oracle provided to get a witness for each vj ∈ Si
queried, with τ concatenated as the label. Also, B gets a proof for τ

5. For calls to the Update-oracle, B uses its Proof-oracle provided to get a
witness for each vj ∈ Si queried, with τ concatenated as the label

6. Eventually, A outputs a pair (S∗, σ∗, τ∗)
7. B returns (p∗τ , τ

∗). Both is contained in σ∗

In other words, there exists an element τ∗ ∈ σ∗ with a corresponding witness
p∗τ , as otherwise σ∗ would not verify. We know that τ∗ was not queried to Proof,
because otherwise we have case 1. This happens with the same probability as
A breaks the unforgeability in case 2. Note, we can ignore additional elements
here. Again, the simulation is perfect.

Theorem 12 (Our Construction is Merge Private and Transparent).
Our construction is merge private and merge transparent.

Proof. The distributions of merged and freshly signed signatures are equal. In
other words, the distributions are the same. This implies, that our construction
is perfectly merge private and perfectly merge transparent.

Theorem 13 (Our Construction is Transparent and Private).

Proof. As the number of proofs only depends on n, which are also determin-
istically generated, without taking existing proofs into account, an adversary
has zero advantage on deciding how many additional proofs have been gener-
ated. Moreover, redacting only removes elements and proofs from the signatures.
Hence, fresh and redacted signatures are distributed identically. Perfect trans-
parency, and therefore also perfect privacy, is implied.

Theorem 14 (Our Construction is Update Private and Transparent).
Our construction is update private and update transparent.

On Updatable Redactable Signatures 475

Proof. The distributions of updated and freshly signed signatures are equal. In
other words, the distributions are the same. This implies, that our construction
is perfectly update private and perfectly update transparent.

Theorem 15 (The Accumulator is Strongly Collision-Resistant).

Proof. Let A be an adversary breaking the strong-collision-resistance of our
accumulator. We can then turn A into an adversary B which breaks the
unforgeability of the GHR-signature [24] in the following way:

1. B receives the modulus n, the hash-function H, and the value s. All is pro-
vided by the GHR-challenger

2. B sends pk = (n,H) to A. Then, B waits for S from A
3. B sends s to A. Note, we have a perfect simulation here, even as we ignore
S, as the GHR-signature scheme draws s in the exact same way as we do for
our accumulator

4. For each Proof-oracle query vi, B asks its signing oracle provided, which
returns a signature σi. Send σi as the witness pi back to A

5. Eventually, A comes up with an attempted forgery (v∗, p∗)
6. B returns (v∗, p∗) as its own forgery attempt

Now let y = v∗, and p = σ∗. As s = pH(y) (mod n), and we have embedded our
challenges accordingly, B breaks the GHR-signature with the same probability as
A breaks the strong collision-resistance of our trapdoor-accumulator. [24] shows
how to break the strong-RSA-assumption with the given forgery.

Practical Signatures from the Partial Fourier

Recovery Problem

Jeff Hoffstein1, Jill Pipher1, John M. Schanck2,
Joseph H. Silverman1, and William Whyte2

1 Brown University, Providence, RI, 02912
{jhoff,jpipher,jhs}@math.brown.edu

2 Security Innovation, Wilmington, MA 01887
{jschanck,wwhyte}@securityinnovation.com

Abstract. We present PASSRS , a variant of the prior PASS and PASS-2
proposals, as a candidate for a practical post-quantum signature scheme.
Its hardness is based on the problem of recovering a ring element with
small norm from an incomplete description of its Chinese remainder rep-
resentation. For our particular instantiation, this corresponds to the re-
covery of a vector with small infinity norm from a limited set of its
Fourier coefficients.

The key improvement over previous versions of PASS is the introduc-
tion of a rejection sampling technique from Lyubashevsky (2009) which
assures that transcript distributions are completely decoupled from the
keys that generate them.

Although the scheme is not supported by a formal security reduction,
we present extensive arguments for its security and derive concrete pa-
rameters based on the performance of state of the art lattice reduction
and enumeration techniques.

1 Introduction

In the late 1990s two authors of the present paper proposed authentication and
signature schemes based on the problem of recovering a polynomial with tightly
concentrated coefficients given a small number of evaluations of that polynomial.
The heuristic justification for the security of the scheme was that the uncertainty
principle severely restricts how concentrated a signal can be in two mutually
incoherent bases.

An early incarnation of the scheme is found in [12], and a later version, called
PASS-2 was published in [13]. A rough description goes as follows. Let N be a
positive integer, and choose a prime q = rN+1, with r ≥ 1. We will denote by Rq

the ring Zq[x]/(x
N − 1), though we will often treat elements of Rq as vectors in

ZN
q equipped with the %-multiplication of Rq. To avoid confusion, we will denote

component-wise multiplication of vectors by +. For any β, with (β, q) = 1, it
follows from Fermat’s little theorem that βrN ≡ 1 (mod q). Consequently, the
mapping f → f(βr) is well defined for any f in Rq. In addition to being well

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 476–493, 2014.
c© Springer International Publishing Switzerland 2014

Practical Signatures from the Partial Fourier Recovery Problem 477

defined, it is also a ring homomorphism, for the simple reason that for any
f1,f2 ∈ Rq,

(f1 + f2)(β
r) = f1(β

r) + f2(β
r) and (f1 % f2)(β

r) = f1(β
r)f2(β

r).

More generally, for any Ω = {βr
1 , β

r
2 , . . . , β

r
t }, the mapping F : Rq → Zt

q given
by

FΩf = (f (βr
1),f (β

r
2), . . . ,f(β

r
t))

T

is a ring homomorphism, with addition and +-multiplication modulo q done on
the right hand side. This is an example of the more general phenomenon of the
ring homomorphism mapping functions to their Fourier transforms.

In the above setting, the uncertainty principle implies that a ring element with
a coefficient vector drawn from a small region of ZN

q will have widely dispersed
discrete Fourier coefficients. For instance a vector with small infinity norm, e.g.
with coefficients in {−1, 0, 1}, will likely be supported on all powers of a primitive
N th root ω and will have Fourier coefficients which are essentially uniformly
distributed in Zq.

The hard problem in PASS can be stated as the following underdetermined
linear inversion problem, which we will refer to as the partial Fourier recovery
problem. Let ω be a primitive N th root of unity modulo q. We define the discrete
Fourier transform over Zq to be the linear transformation Ff = f̂ : ZN

q → ZN
q

given by
(F)i,j = ωij .

Furthermore, let FΩ be the restriction of F to the set of t rows specified by an
index set Ω,

(FΩ)i,j = ωΩij .

The partial Fourier recovery problem is: given an evaluation f̂ |Ω ∈ Zt
q, find x

with small norm such that x̂|Ω = f̂ |Ω (mod q).
The problem of recovering a signal from a restricted number of its Fourier co-

efficients is well studied and known to be quite difficult in general. The restricted
image f̂ |Ω is expected to contain very little information about the unobserved
Fourier coefficients (the evaluations of f on ωi for i not in Ω), and often the
only way to recover f will be an expensive combinatorial optimization proce-
dure. However, there are cases (some quite surprising) in which the problem is
known to be easy.

Certainly, if t log q is small, brute force search over f ′ with appropriate norm
may be a viable solution – each randomly chosen candidate having essentially a
q−t chance of evaluating to f̂ |Ω.

The problem is trivial in the large t regime, t ≥ N , since any rank N sub-
matrix of the chosen Vandermonde matrix will be invertible. As t decreases
slightly below N , or we allow some portion of the coefficients to be corrupted,
the problem essentially becomes that of decoding Reed-Solomon codes and we

478 J. Hoffstein et al.

can expect to recover f by list-decoding or similar techniques. Efficient recovery
of general signals when t is much less than N would have significant coding
theoretic implications.

For t in an intermediate range, say t ≈ N/2, the situation is more complicated.
Were one to consider the complex Fourier transform rather than the number
theoretic transform, one might be able to apply techniques from the field of
compressed sensing. Recent work in this field has delineated cases in which a
sparse signal can be recovered from a limited number of its (complex) Fourier
coefficients by an L1 optimization procedure. For this to be successful the signals
must be very sparse, having a number of non-zero coefficients which is less than
|Ω|/2 [2]. It is not clear how these results translate into the finite field setting.

As far as we are aware, the best technique for solving the partial Fourier
recovery problem is by solving an associated closest vector problem. Specifically,
let Λ⊥(FΩ) be the lattice of vectors in the kernel of FΩ. That is,

Λ⊥(FΩ) =
{
a ∈ ZN

q : FΩa = 0 (mod q)
}
.

If, given y ∈ ZN
q , a point x ∈ Λ⊥(FΩ) can be found such that ‖y − x‖∞ ≤ β,

then FΩ(y − x) = ŷ|Ω and ‖y − x‖∞ ≤ β. Since one can easily find (large)

y such that ŷ|Ω = f̂ |Ω for any evaluation set f̂ |Ω, the ability to solve CVP in
Λ⊥(FΩ) implies the ability to solve arbitrary partial Fourier recovery instances

While there is no known reduction from standard lattice problems to the
partial Fourier recovery problem, there is at very least a superficial relationship
between finding short preimages of FΩ and another well studied hard problem.
A great deal of the research in lattice based cryptography throughout the last
decade has focused on a type of underdetermined linear inverse problem referred
to as the small integer solution (SIS) problem.

SIS is the problem of of finding a vector y in the kernel of a specified linear
transformation A : Zn

q → Zm
q such that y is small with respect to a given norm.

That is, the goal is to solve

Ay = 0 (mod q) and ‖y‖ ≤ β.

Ajtai showed in [1] that, for certain parameters and uniform random A, SIS
enjoys a remarkable average-case correspondence with worst-case lattice prob-
lems. That is to say that the ability to solve random SIS instances with non-
negligible probability implies an ability to find short vectors in any lattice. This
correspondence between worst and average cases is attractive from a provable se-
curity point of view, offering strong assurance that easy to generate instances of
the SIS problem will be hard to solve, but it does not yield particularly efficient
cryptosystems without additional assumptions.

The most efficient and compact SIS schemes in the literature are based on the
Ideal-SIS problem, wherein the matrix A is replaced by several uniform random
elements, a1,a2, . . .ak of a quotient ring Rϕ

q = Zq[x]/(ϕ). The polynomial ϕ is
typically, but not necessarily, cyclotomic. A solution to Ideal-SIS is y1,y2, . . .yk

in the ring such that:

Practical Signatures from the Partial Fourier Recovery Problem 479

k∑
i=1

ai % yi = 0 and

k∑
i=1

‖yi‖
2 ≤ β2.

These schemes derive their security from the presumed hardness of Ideal-SVP
– the shortest vector problem in the restricted class of lattices generated by
matrix representations of elements of Rϕ

q . Reductions from worst-case Ideal-SVP
to average-case Ideal-SIS were presented in [17] [20]. Unfortunately, even with
the reduced storage requirements and fast multiplication algorithms available in
some rings, provably secure Ideal-SIS based constructions are still too inefficient
to be competitive with existing (non-quantum resistant) schemes.

The security of PASS can be said to rest on the assumed average-case hardness
of Vandermonde-SIS. We are not aware of any technique for reducing a worst-
case lattice problem to Vandermonde-SIS, nor will we postulate the existence of
such a reduction. We do however raise the question of whether there might be
a characterization of hard instances of SIS which does not rely on structural
properties of the matrix A. Or more generally, when is a constrained linear
inverse problem hard?

We believe an answer to this problem would likely simultaneously explain
the hardness of Uniform-, Ideal- and Vandermonde-SIS, as well as delineate new
classes.

2 Related Work

2.1 The Original PASS Protocols

Given a (padded) message μ, a secret key f with small norm, and a public key

f̂ |Ω = FΩf , the objective is to construct a signature that mixes f and μ and

can be verified by means of f̂ |Ω. A prototype of this was presented in [12].
To sign, Alice

• Computes and keeps secret a short polynomial g ∈ Rq and reveals the com-
mitment ĝ|Ω = FΩg.

• Computes and reveals a short challenge polynomial c ∈ Rq from Hash(ĝ|Ω, μ).
• Computes and reveals h = g % (f + c).

To verify, Bob

• Verifies that h has norm less than a specific upper bound.
• Verifies that c = Hash(ĥ|Ω/(f̂ |Ω + ĉ|Ω), μ)

The first condition for verification is met because

‖g % (f + c)‖ ≈ ‖g‖ ‖f + c‖ .

480 J. Hoffstein et al.

The fact that ‖f‖, ‖g‖, ‖c‖ are small thus implies that ‖h‖ is small1. The second
condition is true because FΩ is a ring homomorphism.

To forge a signature, a third party would need to produce an h which is short,
and which satisfies the required evaluations at points in Ω. It is conjectured that
finding such an h is no easier than solving the associated CVP .

2.2 Transcript Weaknesses in Previous PASS Protocols

The difficulty with this PASS prototype is that a transcript of signatures pro-
duced by a single signer on any set of messages leaks information about that
signer’s secret key. One way to see this is via a ring homomorphism ρ : Rq → Rq

given by

ρ(a0 + a1x+ a2x
2 + · · ·+ aN−1x

N−1) = a0 + aN−1x+ aN−2x
2 + · · ·+ a1x

N−1.

The homomorphism ρ plays the same role that conjugation would play if x were
replaced by a primitive N th root of unity. If a polynomial p ∈ Rq is drawn
randomly from a distribution, let E[p] denote the expectation of p, that is, the
average of p over many samples. A third party observing many examples of
g % (f + c) could compute

E[g % (f + c) % ρ(g % (f + c))] = E[g % ρ(g)]E[(f + c) % ρ(f + c)]

For simplicity assume that E[c] = 0, then, since f is constant, the above becomes

E[g % ρ(g)] (E[c % ρ(c)] + f % ρ(f)) .

The distributions from which c and g are drawn are known, and thus a suffi-
ciently long transcript will reveal f % ρ(f) from which f may be computed by a
technique from Gentry and Szydlo [8].

2.3 Recent Developments and Countermeasures

The problem with PASS was not that individual signatures leaked information
about the secret key, but rather that an average over a collection of signatures
would converge to a secret key dependent value. This is not a concern for signa-
ture schemes based on number theoretic trapdoor permutations, as such schemes
enjoy relatively simple proofs that their signatures are uniformly distributed over
the full range of possibilities. However, the requirement that PASS signatures
have small norm, i.e. that they occupy a small region of the full domain, neces-
sitates throwing out much of the algebraic structure that makes such uniformity

1 The original PASS protocol used the centered L2 norm - the L2 norm about the
mean of the vector. This norm can be seen to enjoy the above quasi-multiplicative
property for independent random polynomials by considering the product in the
complex Fourier domain, noting that the centering operation has the effect of zeroing
the constant terms, and by applying Parseval’s theorem.

Practical Signatures from the Partial Fourier Recovery Problem 481

guarantees possible. Full decoupling of secret keys from transcripts was a diffi-
cult barrier for the construction of secure lattice based signature schemes, and
more so for the construction of efficient schemes.

The first successful decoupling, the signature scheme of Gentry, Peikert, and
Vaikuntanathan [7], involved computing a candidate signature point x and then
adding noise sampled from a discrete Gaussian distribution centered at −x. The
resulting signatures have a distribution which is computationally indistinguish-
able from a spherical discrete Gaussian centered at the origin.

Lyubashevsky, in [14], constructed a lattice based identification scheme which
avoids transcript analysis attacks with a technique he called “aborting.” In this
scheme, provers are capable of determining when their response to a challenge
will leak information about their secret key. Whenever this occurs they abort
the protocol rather than supply a response.

In [15], Lyubashevsky improved his aborting technique and constructed a
signature scheme through the Fiat-Shamir transform with hardness based on
the Ring-SIS problem. Improvements and variants of this scheme with different
hardness assumptions were presented in [16].

The first truly practical lattice signature scheme to avoid transcript attacks
was developed by Güneysu, Lyubashevsky, and Pöppelmann [9]. Their scheme is
a highly optimized variant of [16] and relies on a stronger hardness assumption.

The current state of the art would appear to be the new scheme, called BLISS,
by Ducas, Durmus, Lepoint, and Lyubashevsky [4]. This scheme makes use of
an NTRU-like key generation procedure and a bimodal discrete Gaussian noise
distribution to produce very compact signatures. The efficiency of the scheme is
also very impressive, especially considering the complexity of sampling discrete
Gaussians.

3 PASSRS – PASS with Rejection Sampling

We now present PASSRS a new variant of PASS which completely decouples the
transcript distribution from the secret key. Table 1 lists the public parameters
of the system and gives a brief description of each.

Table 1. Public parameters

N - Dimension
q - Prime ≡ 1 (mod N)
g - a primitive N th root of unity in Zq

Ω - A subset of {gj : 1 ≤ j ≤ N − 1}
t - |Ω|
k - Infinity norm of noise polynomials
b - 1-norm of challenge polynomials

482 J. Hoffstein et al.

Some notes on notation: Rq is the ring Zq[x]/(x
N − 1); elements a ∈ Rq

are represented as polynomials a = a0 + a1x + a2x
2 + · · · + aN−1x

N−1, with
coefficients in ai ∈ Zq. We freely transition between this polynomial representa-
tion and a coefficient vector representation, a = [a0, a1, a2, . . . , aN−1]

T , wherever
convenient.

Norms, such as ‖a‖∞ and ‖a‖1, are the standard Lp norms on coefficient
vectors; for numerical calculations we consistently identify ai with an integer
such that |ai| ≤ q/2.

We write B1(b) to denote the elements of Rq with 1-norm ≤ b, and B∞(k) to
denote the elements of Rq with ∞-norm ≤ k.

Lastly, The indicator function 1S(x) yields 1 if x ∈ S and 0 otherwise.

3.1 Key Generation

A secret key is a polynomial with L∞ norm equal to 1. We recommend the
simple strategy of choosing each coefficient independently and uniformly from
{−1, 0, 1}. Binary coefficients, though attractive for several reasons, would open
the system up to a UniqueSVP gap amplification attack similar to that used by
Nguyen in his cryptanalysis of GGH [19].

The public key corresponding to the secret key f is f̂ |Ω = FΩf .

3.2 Signing

Signing is an iterated process consisting of the generation of a candidate signa-
ture followed by a rejection sampling step to prevent the publication of candi-
dates that could leak secret key information.

A party with secret key f , who wishes to sign a message μ, first selects a
commitment polynomial y uniformly at random from B∞(k). The commitment
y serves to mask the private key and must be treated with the same care as the
private key itself. The signer then computes and stores ŷ|Ω = FΩy, which will
ultimately be made public if the candidate passes rejection sampling.2

Next, the signer computes a challenge, c, which binds ŷ|Ω to μ. To do so she
makes use of the public algorithms:

Hash : Zt
q × {0, 1}∗ → {0, 1}�, and

FormatC : {0, 1}� ↪→ B1(b).

Hash concatenates its inputs and passes the result through a cryptographic hash
function such as SHA-512. FormatC maps the set of bitstrings output by Hash
into a set of sparse polynomials. We avoid further description of the algorithms
for now and simply say that

c = FormatC(Hash(ŷ|Ω, μ)).
2 Note that the generation of y and the computation of ŷ|Ω can both be done offline,
oblivious to the message to be signed.

Practical Signatures from the Partial Fourier Recovery Problem 483

Finally, the signer computes a candidate signature point

z = f % c+ y ∈ Rq,

if any of the coefficients of z fall outside the interval [−k + b, k − b], then y, c,
and z are discarded and the signing process is repeated. Otherwise, the signer
outputs the signature (c, z, μ).

In section 4 we will prove that signatures that pass the rejection sampling
procedure have z values that are uniformly distributed over B∞(k − b).

3.3 Verification

The signature (c, z, μ) is valid if z is in B∞(k − b) and if

c = FormatC(Hash(ẑ|Ω − f̂ |Ω + ĉ|Ω, μ)).

Since FΩ is a ring homomorphism, it is the case that ẑ|Ω = f̂ |Ω + ĉ|Ω + ŷ|Ω.
Therefore, on receipt of (c, z, μ), any verifier in possession of the appropriate

public key f̂ |Ω can evaluate z and c and compute ŷ|Ω = ẑ|Ω − f̂ |Ω + ĉ|Ω. The
correctness of the scheme is immediate.

Algorithm 1. Sign

Input: (μ, f)
1. repeat

2. y
$←− B∞(k)

3. h ← Hash(ŷ|Ω, μ)
4. c ← FormatC(h)
5. z ← f � c+ y
6. until z ∈ B∞(k − b)
Output: (c,z, μ)

Algorithm 2. Verify

Input: (c,z, μ, f̂ |Ω)
1. result ← invalid
2. if z ∈ B∞(k − b) then

3. h′ ← Hash(ẑ|Ω − f̂ |Ω � ĉ|Ω, μ)
4. c′ ← FormatC(h′)
5. if c = c′ then
6. result ← valid
7. end if
8. end if
Output: result

4 Rejection Sampling

Each iteration of the signature generation routine produces a candidate signature
which is accepted or rejected based on its infinity norm alone. In this section
we will argue that this rejection sampling procedure completely decouples the
distribution of signature points from the private key.

We will make use of the following fact:

Fact 1. Each candidate signature z is in B∞(k + b).

Proof. By definition we have ‖z‖∞ = ‖f % c+ y‖∞ and by the triangle in-
equality: ‖f % c+ y‖∞ ≤ ‖f % c‖∞ + ‖y‖∞. Again by the triangle inequality,
‖f % c‖∞ ≤ ‖f‖∞ ‖c‖1, thus

‖z‖∞ ≤ ‖f‖∞ ‖c‖1 + ‖y‖∞ ≤ b+ k.

484 J. Hoffstein et al.

We will also make use of the following assumption on instantiations of Hash
and FormatC.

Assumption 1. Let the public parameters (N, q, k, b,Ω) be fixed and let c ∈
B1(b), y ∈ B∞(k), μ ∈ {0, 1}∗ be random variables related by

c = FormatC(Hash(ŷ|Ω, μ)).

We assume that Hash is a collision resistant hash function, that c and y are
independent, and that c is uniform over the range of FormatC. More explicitly,
for any fixed c0 ∈ B1(b) and fixed y0 ∈ B∞(k),

Pr [c = c0 | y = y0] =
Pr [c = c0] Pr [y = y0]

Pr [y = y0]
= |B1(b)|−1.

Note that assumption 1 is no stronger than the standard random oracle as-
sumption, so the reader may assume we are working in the random oracle model.
We state the assumption in the above form to aid in the analysis of concrete in-
stantiations. Clearly the assumption that the joint distribution of y and c factors
is untenable - no deterministic instantiation of Hash can satisfy it while main-
taining collision resistance. Yet by choosing an appropriate padding scheme for
μ one should be able to approximately satisfy the assumption. We leave the ex-
ploration of padding schemes and analysis of the practical impact of assumption
1 to future work.

The following proposition describes the distribution of candidate signatures.

Proposition 1. Fix vectors f0 ∈ B∞(1) and z0 ∈ B∞(k+ b). Then as the pair
(c,y) is chosen uniformly from the space B1(1)× B∞(k), we have

Pr [f0 % c+ y = z0] = |B∞(k)|−1
∑

c0∈B1(b)

Pr [c = c0]1B∞(k)(z0 − f0 % c0).

Proof. For any fixed c0 ∈ B1(b) we have

Pr [f0 % c0 + y = z0] = Pr [y = z0 − f0 % c0]

=

{
|B∞(k)|−1 if (z0 − f0 % c0) ∈ B∞(k)

0 otherwise.

By application of the law of total probability and the assumption that the c and
y are independent:

Pr [f0 % c+ y = z0] =
∑

c0∈B1(b)

Pr [c = c0] Pr [f0 % c+ y = z0 | c = c0]

=
∑

c0∈B1(b)

Pr [c = c0] Pr [y = z0 − f0 % c0]

= |B∞(k)|−1
∑

c0∈B1(b)

Pr [c = c0]1B∞(k)(z0 − f0 % c0).

Practical Signatures from the Partial Fourier Recovery Problem 485

Recall from section 3.2 that a candidate signature is rejected unless its z
component is contained in B∞(k−b). The following proposition shows that each
point in B∞(k − b) is selected as a candidate signature with equal probability.

Proposition 2. Fix vectors f0 in B∞(1) and z0 in B∞(k−b). Then as the pair
(c,y) is chosen uniformly from the space B1(b)× B∞(k), we have

Pr [f0 % c+ y = z0] = |B∞(k)|−1.

Proof. We first note that B∞(k−b) is contained within B∞(k+b), so proposition
1 applies. Additionally, it is the case that ‖z0‖∞ ≤ k − b and consequently, for
any fixed c0 ∈ B1(b), we have ‖z0 − f0 % c0‖∞ ≤ k. Thus z0−f0%c0 is contained
in B∞(k) and the indicator function in proposition 1 is unconditionally satisfied.
Therefore,

Pr [f0 % c+ y = z0] = |B∞(k)|−1
∑

c0∈B1(b)

Pr [c = c0] = |B∞(k)|−1.

Proposition 2 informs us that each of the |B∞(k − b)| acceptable signature
points is chosen with probability |B∞(k)|−1. We infer that each pass through
the signature generation routine has probability

Pr [accept] =
|B∞(k − b)|
|B∞(k)| =

(
1− 2b

2k + 1

)N

≈ e−
Nb
k

of generating a valid signature point, where the approximation is valid provided
that both N and k/b are large.

A transcript is a set of signatures published by an honest signer. For instance,
a signer who uses private key f to sign messages μ1, μ2, . . . , μk produces a tran-
script

T = {(ci, zi) : (ci, zi, μi) = Sign(μi,f)} .

Proposition 3. A transcript T generated by an honest signer with private key f
is indistinguishable from a set of points drawn uniformly from B1(b)×B∞(k−b).
Furthermore, for any fixed c0 ∈ B1(b), z0 ∈ B∞(k−b) and f0 ∈ B1(1), the events
(c0, z0) ∈ T and f = f0 are independent.

Proof. The c components of T are uniformly distributed over B1(b) by assump-
tion 1. Proposition 2 establishes not only that the z components of T are uni-
formly distributed over B∞(k−b), but also that the distribution of z depends only
on the distribution of y. Again by assumption 1, c and y are independent and
therefore c and z are independent. The distribution of transcript points is conse-
quently the product distribution of c and z, i.e. uniform over B1(b)×B∞(k− b).

Independence of transcript points from the secret key follows from the fact
that proposition 2 holds for all choices of f0 in B∞(1).

486 J. Hoffstein et al.

5 Security Analysis

Our security analysis will focus on two types of attacks, those that target the
hash function (or the combination FormatC ◦ Hash), and those that target the
partial Fourier transform FΩ. Other attacks may be possible, and investigating
them is an area for future work.

As our aim is to develop a practical quantum-resistant signature scheme, we
will assume that the adversary has access to a quantum computer. Relatively
little is known about the existence or non-existence of quantum algorithms for
lattice problems, so our assumptions related to quantum computers will only
address their ability to solve k-element black-box search problems in Θ(

√
k)

time.

5.1 Attacks on the Hash Function

The most obvious constraint on the security of the system comes from the en-
tropy of c. An adversary who can find a Hash preimage of a particular c can
produce forgeries on structured messages from any user’s public key. To do so,
the adversary:

1. Chooses arbitrary z and c from the appropriate domains.
2. Computes ĝ|Ω = ẑ|Ω − f̂ |Ω + ĉ|Ω, where f̂ |Ω is the victim’s public key.
3. Finds a preimage of c in Hash(ĝ|Ω, ·).

While attacks against specific hash functions can have arbitrarily low com-
plexity, we will assume that a strong hash function is chosen, and only consider
generic attacks. If the output of Hash is r bits, a quantum adversary can find
preimages in time Θ(2r/2). For κ-bit security, the range of FormatC◦Hash should
produce an essentially uniform distribution on a set of cardinality 22κ.

5.2 Attacks on the Partial Fourier Transform

An adversary who can find FΩ preimages which are in B∞(k − b) can forge
signatures on arbitrary messages from any user’s public key.

1. Adversary chooses random point gF in B∞(k)
2. cF = FormatC(Hash(FΩgF , μ))

3. ẑF |Ω = ĝF |Ω + f̂ |ΩĉF |Ω
4. Adversary uses preimage attack on ẑF |Ω to find appropriate zF .

Adversaries could also try to recover the secret key directly with their preimage
algorithm, but in order for this to be effective they must be able to find ex-
ceptionally short preimages. The problem of secret key recovery seems, at least
intuitively then, to be harder than forgery. Yet, surprisingly, given the particular
parameters of the scheme, lattice attacks may be better suited for solving the
secret key recovery problem than they are for forging messages. Some care must
be taken when choosing parameters to balance the difficulty of the two problems.

Practical Signatures from the Partial Fourier Recovery Problem 487

Lattice Attacks on FΩ. As mentioned briefly in the introduction, the partial
Fourier recovery problem can easily be seen to be no harder than a specific class
of closest vector problem CVP. Presented with the evaluation set, Ω, and a partial
Fourier representation ẑ|Ω, an adversary can construct a lattice in which solving
the CVP associated to any arbitrary preimage of ẑ|Ω allows them to construct a
short preimage of ẑ|Ω.

That lattice, which we denote Λ⊥(FΩ), is equivalent to the kernel of FΩ,

Λ⊥(FΩ) =
{
a ∈ ZN

q : FΩa = 0 (mod q)
}
.

In practice, CVP instances are almost always solved by transforming the prob-
lem into an SVP in dimension N +1. If z′ is an arbitrary preimage of the target
ẑ|Ω, i.e. FΩz

′ = ẑ|Ω but ‖z′‖ is large, and {b1, b2, . . . , bm} form a Hermite Nor-
mal Form basis for Λ⊥(FΩ), then solving SVP in the lattice generated by the
columns of

LSVP
z′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q 0 b1,0 . . . bm,0 z′
0

. . .
...

. . .
...

...
0 q b1,t−1 . . . bm,t−1 z′

t−1

0 . . . 0
...

. . .
...

...
...
. . .

... b1,N−1 . . . bm,N−1 z
′
N−1

0 . . . 0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is likely to yield a short z such that FΩz = ẑ|Ω.

Experiments by Micciancio and Regev [18] have demonstrated that lattice
reduction algorithms perform best against the kernel lattices, Λ⊥(A), of t ×N
matrices A when N ≈

√
t log(q)/ log(γ) for some γ ≈ 1.01 determined experi-

mentally for each reduction algorithm. In the PASSRS setting this places restric-
tions on t and q that we have obeyed in all of our proposed parameter sets. As
such there should be no benefit to attacking a sublattice of LSVP, and we proceed
under this assumption.

The performance of lattice reduction algorithms, particularly LLL and BKZ,
on lattices such as LSVP

z′ is difficult to analyze in practice. Perhaps the most
surprising complicating factor is that the performance depends crucially on the
coset of ZN

q /Λ⊥(FΩ) to which z′ belongs, and not strongly on z′ itself. This
dependence gives rise to two regimes that we will analyze separately. The ex-
treme case, when z′ is very close to the kernel lattice, produces instances of
the UniqueSVP problem and determines the difficulty of the secret key recovery
problem in PASSRS. The average case produces instances of ApproxSVP which
will inform our discussion of the signature forgery problem.

UniqueSVP is the problem of finding a shortest vector in a lattice that is known
to have a significant gap between the lengths of its first and second successive
minima. Such is the case3 in the lattices LSVP

f ′ , as the the secret key, f , has an

expected norm of
√
2N/3 and [f , 1]T ∈ LSVP

f ′ .

3 Curiously, the fact that the kernel lattice always contains the exceptionally short
vector [1, 1, . . . , 1] seems to have no impact here.

488 J. Hoffstein et al.

Lattice reduction algorithms can be ranked according to the so-called Her-
mite factor that they achieve. Algorithms that achieve Hermite factor γ can
be expected to find the shortest vector in a lattice when the UniqueSVP-gap,
λ2(L)/λ1(L), is greater than a constant fraction of γ. This behavior was first ex-
amined by Gama and Nguyen, whose experiments determined that for a certain
class of random lattices the constant is approximately 0.48 [5]. They exhibited
classes of lattices for which the constant was smaller, but these appear to be
somewhat exceptional. Ducas et al. [4] performed similar experiments on the
lattices that occur in BLISS, and found the constant again to be 0.48, and we
have found the same to be true of the lattices related to PASSRS.

Table 2 contains estimates on the Hermite factor needed to recover PASSRS
secret keys at several concrete parameter levels. We estimate λ2(LSVP

f ′) by the

Gaussian heuristic in the L2 norm. This predicts that N successive minima of
a lattice will be tightly clustered around the radius of the smallest N -ball that
has volume equal to the determinant of the lattice. The q-ary lattices, Λ⊥(FΩ),
have determinant qt, and the Gaussian heuristic therefore predicts

λ2(LSVP
f ′) = λ1(Λ

⊥(FΩ)) ≈ det(Λ⊥(FΩ))
1/N

√
N
2πe = qt/N

√
N
2πe .

As mentioned above, we estimate λ1 as
√
2N/3, the length of the secret

key. This gives us a UniqueSVP-gap, λ2/λ1 ≈ qt/N
√
3/(4πe). Incorporating the

constant 0.48 adjustment, we find that lattice reduction algorithms must achieve
Hermite factor

γ = 0.62 · qt/N (1)

in order to recover PASSRS secret keys.
The analysis for forgery attacks is very similar, only now the target ẑ|Ω will

lie in an essentially random coset of ZN
q /Λ⊥(FΩ). The relevant problem is now

ApproxSVPα the problem of finding a short vector that is more than α factor of
being optimal, in other words a vector that is no longer than αλ1(LSVP

z′). Lattice
reduction algorithms that achieve Hermite factor γ can solve ApproxSVP with
factor α = γ2 in the worst case. That said, α = γ seems achievable on average [5],
so we use this estimate in our analysis.

PASSRS signatures are validated by the L∞ norm, but lattice reduction al-
gorithms typically only guarantee the L2 norm of their results. A vector of L2

norm
√
N · (k−b) could potentially serve as a forgery, but this is highly unlikely.

We estimate the approximation factor to be the ratio of the expected length of
a forgery to the volume of the lattice, which is

α =
√
N · V/qt/N , (2)

where V is the variance of the discrete uniform distribution on [−k + b, k − b].

Concrete Performance of Lattice Reduction Algorithms. Current folk-
lore is that lattice reduction algorithms can achieve Hermite factor ≈ 1.01N

in reasonable time but that Hermite factor 1.005N is completely out of reach.

Practical Signatures from the Partial Fourier Recovery Problem 489

These are useful heuristics, but they reflect more our ignorance about the con-
crete performance of lattice reduction and enumeration algorithms than they
do our knowledge. Unfortunately, it seems that we know far too little about
how these algorithms perform in high dimension to give precise “bit-security”
estimates. We can, however, roughly determine which of the currently available
lattice reduction algorithms might be useful for attacking PASSRS.

Experiments by Schneider and Buchmann [21] indicate that the Hermite factor
reachable by BKZ with blocksize β is approximately:

1.01655− 0.000196185 · β,

which for Hermite factors relevant to our parameter sets yields:

Blocksize (β) 15 30 40 55

Root Hermite factor 1.0136 1.0107 1.0087 1.0058

Table 2 lists several PASSRS parameter sets, the line labeled “Lattice security
factor” represents our best guess as to the Hermite factor needed to launch either
a key recovery or forgery attack (whichever is easier). We expect that our toy
parameter set, N = 433, could be defeated by running BKZ-15 to completion.
Although we do not have a good estimate on how long this would take, it should
be possible with current technology.

Our other parameter sets should be significantly more difficult to attack.
While Hermite factor 1.01N is nominally within reach of today’s technology,
this has only been verified in relatively small dimensions. We know very little
about how the algorithms will perform in dimension 577. Key recovery attacks
on this parameter set should be possible with BKZ-30, but other approaches are
likely needed to make the attack practical.

Chen and Nguyen have had impressive success with their BKZ-2.0 algorithm
[3], which combines extreme pruning, developed in [6], with an early termination
procedure, theoretically justified by [11]. BKZ-2.0 runs BKZ at phenomenally
high blocksizes for a small number of rounds under the experimentally justified
belief that most of the progress of BKZ is made in the early rounds. It is difficult
to extrapolate security estimates from the results published thus far on BKZ-
2.0’s performance, but it would appear that our 577, 769, and 1153 parameter
sets could be within reach of terminated BKZ-75, 122, and 229 respectively.

For N = 577, our experiments with a BKZ-2.0 simulator similar to that pre-
sented in [3] indicate that 56 rounds of BKZ-75 would be sufficient to reach root
hermite factor 1.0106; for N = 769, 47 rounds of BKZ-122 would suffice to reach
1.0084; and for N = 1153, 42 rounds of BKZ-229 would reach 1.0058.

Following the analysis of [3], we expecte enumeration to be the most expensive
subroutine of BKZ-2.0. Each round consists of approximately N enumerations,
and the cost of each enumeration depends on the the number of nodes visited in
the enumeration tree. The estimated bit security is

490 J. Hoffstein et al.

log2(N · rounds) + log2(nodes per enumeration) + log2(cost per node)

Using number-of-node and cost-per-node estimates from [3], we have that the
estimated security of ourN = 769 parameter is log2(769·47)+53+log2(200) ≈ 76
bits.

For N = 1153, a single enumeration in BKZ-229 is expected to take over 2130

time, which is greater than the expected time for a quantum attack on the hash
function.

Table 2. Parameter sets and security indicators. UniqueSVP gap refers to λ2/λ1 with-
out any correction for the performance of specific lattice reduction algorithms.

N 433 577 769 1153
q 775937 743177 1047379 968521
g 268673 296108 421722 56574
k 212 − 1 214 − 1 215 − 1 215 − 1
b 19 24 29 36
t 200 280 386 600

Pr [Accept] 0.78 0.57 0.49 0.72
UniqueSVP gap 1.0117 1.0093 1.0075 1.0052

ApproxSVP factor 1.0105 1.0101 1.0081 1.0054
Lattice security factor 1.0134 1.0106 1.0084 1.0058

Entropy of c 124 160 200 260

Bit-security bound � 62 � 80 < 100 ≤ 130

6 Reference Implementation

We have created a reference implementation of PASSRS in C and made it avail-
able4 under the GNU General Public License. Table 3 gives some idea of the
performance of PASSRS relative to the recent proposal of Ducas et al. (BLISS [4])
and to RSA and ECDSA. BLISS was tested using the June 13, 2013 version5. The
implementations of RSA and ECDSA are from OpenSSL 1.0.1e. All benchmarks
were run on a single 2.8GHz core of an Intel Core i7-2640M with hyper thread-
ing and turbo boost disabled. We make no claims as to the accuracy of these
benchmarks - the timing methods used internally by the three libraries tested
are incommensurate and many variables have been left uncontrolled. However,
we do feel that these preliminary performance estimates are worth reporting, as
they indicate that the schemes are competitive with each other and that further
comparisons would be interesting.

4 https://github.com/NTRUOpenSourceProject/ntru-crypto
5 http://bliss.di.ens.fr/

https://github.com/NTRUOpenSourceProject/ntru-crypto
http://bliss.di.ens.fr/

Practical Signatures from the Partial Fourier Recovery Problem 491

6.1 Performance Considerations

The two most computationally intensive parts of PASSRS are the number theo-
retic transforms (NTT) used to compute FΩ, and the sparse cyclic convolution
used in computing z = f % c + y. To compute FΩ we use Rader’s algorithm to
decompose the prime length NTT into cyclic convolution of length N − 1. We
compute the resulting convolution as a pair of Fourier transforms over C using
version 3.3.3 of FFTW. For all of the parameter sets presented above we have
chosen chosen N to be a Pierpont prime (a prime of the form 2u ·3v+1) as these
yield very fast Fourier transform algorithms. Fermat primes (2u+1) would yield
a faster transforms, but there are no Fermat primes in our preferred parameter
range.

We have made little effort to optimize the computation of sparse convolutions,
and these often dominate the running time of the signing process.

6.2 Concrete Instantiations of Public Functions

Our reference implementation uses SHA-512 to instantiate Hash for all parameter
sets. The input passed to SHA-512 is the concatenation of the low order byte of
each coefficient of ŷ|Ω followed by the SHA-512 digest of μ.

Hash(ŷ, μ) = SHA-512(lowbyte(ŷ0) | . . . | lowbyte(ŷt−1) | SHA-512(μ))

We have not implemented any message padding.
Our instantiation of FormatC sets aside the first 64 bits of h0 = Hash(ŷ|Ω, μ) to

use as signs of the nonzero coefficients of c. The remaining bits of h0 are used,
16 at a time, in a rejection sampling procedure to generate uniform random
values in the interval [0, N−1]. Each such value becomes the index of a non-zero

Table 3. Benchmarks. Times are averages over many operations.

Algorithm Parameter Set Sign (μs) Verify (μs) Sig. (bytes) Pub. key (bytes)

PASSRS

577 62 31 1115 700
769 73 40 1578 965

1153 203 69 2360 1500

BLISS

0 321 25 413 413
I 164 44 700 875
II 642 43 625 875
III 270 45 750 875
IV 496 47 813 875

RSA
1024 225 15 128 128
2048 1591 50 256 256
4096 11532 185 512 512

ECDSA
secp160r1 80 270 40 20
nistp256 146 348 64 32
nistp384 268 1151 96 48

492 J. Hoffstein et al.

coefficient of c. If the pool of bits is ever exhausted, the process continues on
hi = SHA-512(hi−1).

The random coefficients of y are generated by a rejection sampling procedure
on the output of a stream cipher. Specifically we use the procedure from [10]
of keying the Salsa20 stream cipher with a short seed from the Linux kernel
random number generator.

Table 4. Sandy Bridge cycle counts for PASSRS. 100k samples.

Parameter Set
Sign Verify

Median Average Median Average

577 121996 171753 86828 87031
769 174900 205456 120204 120374
1153 421904 584230 172428 172641

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Com-
puting, STOC 1996, pp. 99–108. ACM (1996)

2. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal re-
construction from highly incomplete frequency information. IEEE Transactions on
Information Theory 52(2), 489–509 (2006)

3. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)

4. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bi-
modal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

5. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EU-
ROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

6. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010)

7. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pp. 197–206. ACM (2008)

8. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (2002)

9. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: A signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)

10. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 67–82. Springer, Heidelberg (2013)

Practical Signatures from the Partial Fourier Recovery Problem 493

11. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms us-
ing dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 447–464. Springer, Heidelberg (2011)

12. Hoffstein, J., Kaliski, B.S.J., Lieman, D.B., Robshaw, M.J.B., Yin, Y.L.: Secure
user identification based on constrained polynomials, U.S. Classification: 713/168;
380/28; 380/30; 713/170; 713/176 International Classification: H04L 932; H04L
928; H04L 930 (2000)

13. Hoffstein, J., Silverman, J.H.: Polynomial rings and efficient public key authenti-
cation II. In: Lam, K.-Y., Shparlinski, I., Wang, H., Xing, C. (eds.) Cryptography
and Computational Number Theory, Progress in Computer Science and Applied
Logic, vol. 20, pp. 269–286. Birkhäuser (2001)

14. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008)

15. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 598–616. Springer, Heidelberg (2009)

16. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

17. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

18. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer
(2009)

19. Nguyên, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem
from Crypto 1997. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 288–304. Springer, Heidelberg (1999)

20. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006)

21. Schneider,M., Buchmann, J.: Extended lattice reduction experiments using theBKZ
algorithm. In: Sicherheit, Gesellschaft für Informatik. LNI, vol. 170, pp. 241–252
(2010)

Activity Spoofing and Its Defense

in Android Smartphones

Brett Cooley1, Haining Wang1, and Angelos Stavrou2

1 The College of William and Mary, Williamsburg, VA, USA
2 George Mason University, Fairfax, VA, USA

{brcooley,hnw}@cs.wm.edu, astavrou@gmu.edu

Abstract. Smartphones have become ubiquitous in today’s digital world
as a mobile platform allowing anytime access to email, social platforms,
banking, and shopping. Many providers supply native applications as a
method to access their services, allowing users to login directly through
a downloadable app. In this paper, we first expose a security vulnerabil-
ity in the Android framework that allows for third party apps to spoof
native app activities, or screens. This can lead to a wide variety of secu-
rity risks including the capture and silent exfiltration of login credentials
and private data. We then compare current defense mechanisms, and
introduce the concept of Trusted Activity Chains as a lightweight pro-
tection against common spoofing attacks. We develop a proof of concept
implementation and evaluate its effectiveness and performance overhead.

1 Introduction

In the recent years, global smartphone sales have grown 73%, while Android
phone sales have grown 379% [1]. Due to this massive growth, mobile platforms
are being used for a wide variety of services. By accessing these services, end
users have become accustomed to authenticating to multiple third parties. This
experience can be similar to more traditional models if the services utilize a
web-based application. However, more and more services are deploying native
applications, which is a departure from the web interfaces more frequently found
on a desktop or laptop computing model. Therefore, users are not familiar with
the expected results of common tasks like launching an app or navigating be-
tween apps when unfamiliar windowing system is in use. These factors lower the
barrier of entry for malicious code to fool a user into doing something unintended.

While malware is written to use any and all possible security holes, widespread
threats will generally target the most lucrative opportunities with the largest
possible user base. Due to the relative unfamiliarity users have for mobile devices
and the lack of standardized interface paradigms, taking advantage of this has
the potential to affect the vast majority of smartphone users. It also has the
potential to be incredibly lucrative, as the possibilities for surreptitious logging
of highly personal data like bank account credentials or credit card numbers are
both numerous and take little effort. In a compounding effect, there are few to
no technical challenges needed to deceive users.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 494–512, 2014.
c© Springer International Publishing Switzerland 2014

Activity Spoofing and Its Defense 495

Traditionally, phishing or web spoofing are targeted attacks designed to trick
users into revealing sensitive information or credentials to a third party, often
without the user’s knowledge that something bad has happened. Most phishing
attempts do not need to exploit security vulnerabilities in websites, but rely on
social engineering, look-alike links, and persuasive or seemingly urgent emails
to lure users to release their private information [2]. Many studies have focused
on the prevention of phishing, both via automated detection of malicious web-
sites [3–5] and training and informing users [2]. However, all of these studies and
tools are focused on web-based phishing, and many of the methods involved are
unsuitable for a mobile environment. They are either too specific to be useful in
the context of native applications or rely on services which would be too resource
intensive and non-trivial to port to mobile devices. All of these roadblocks are
due to the difference in the interaction model used by native mobile apps. To
fully understand phishing in the context of a native app, we must look at the
framework from which native apps are built.

Android is designed with a strong inter-process communication framework,
enabling third party apps to integrate both with Android services and other
apps. One of the major design goals was to enable component reuse among
apps. For example, Android devices with a camera ship with an associated app,
allowing third parties to treat the camera as a service, from which they can make
simple requests and get back a picture in a variety of forms. At the same time,
the user is presented with a familiar camera interface, then returned to the app
they were originally interacting with. The Android framework was designed to
make this use-case simple to achieve for developers, and interactions with the
myriad of hardware devices on a smartphone predictable and easy to manage for
users. These goals are made possible by two major portions of the framework,
Activities and Intents.

In this paper, we explore how the ability to reuse activities changes user
expectations, thus allowing activities to be spoofed by almost any third party
app. We show how this can lead to exfiltration of account credentials among other
breaches of privacy. We further explore how such an attack can be embedded
in a legitimate application, and a proof-of-concept attack is demonstrated. We
then discuss different defenses, including simple solutions and more sophisticated
approaches already developed. We propose a framework for Trusted Activity
Chains, which provide a lightweight, transparent system with a variable level of
protection and user interaction. We evaluate the effectiveness of our defense along
with its performance overhead. In addition, we discuss how our adaptation can
protect against a larger surface of attacks than just credential-focused phishing
attacks, and possible areas for future work and analysis.

The remainder of the paper is structured as follows. Section 2 describes the
background information on Android activity. Section 3 presents the vulnera-
bility of activity spoofing. Section 4 details different defense mechanisms and
our proposed approach. Section 5 evaluates the effectiveness of our solution and
its performance overhead. Section 6 surveys related work. Finally, Section 7
concludes the paper with the discussion of future work.

496 B. Cooley, H. Wang, and A. Stavrou

2 Background

Activities can be considered an abstraction for all of the code required to both
display and handle events on a single screen. Activities can also serve as the entry
point to an app, when properly designated as such. This allows any activity to
be reused by an app other than its own as long as the third party app knows
the correct message, or intent, to send that activity. The associated framework
that enables the aforementioned messages is a custom facility, which Android
calls intents. Intents can be constructed in any activity, and are used to either
explicitly bring another activity into view or to implicitly request a certain type
of activity to handle the attached data. When an activity is requested for use by
an intent, it is brought to the foreground and displayed to a user for interaction.
Once the user is finished with an activity or the activity in turn sends an intent
to yet another activity, the current activity finishes and is stopped. This returns
the user to the previous foreground activity or the newly started one. This model
is designed around a stack of activities [6], and allows for a fluid exchange of
data between apps, and a seamless experience for the user.

Android does provide some methods for limiting the scope of an activity, but
they alone do not provide adequate protection for developers or users. The two
major methods of protection are permission preconditions and private scoping
of activities. Optionally, activities can require apps which send them intents
to possess certain permissions, such as the ability to access a user’s location.
This can be used to ensure correct functionality of an activity, or ensure that
some data collected by an app with certain permissions is only passed to other
apps with the same or similar permissions. This feature, while helpful, is widely
unused [7], and users cannot rely upon apps to safeguard their information to
any greater degree than the Android system requires. Even with the use of
these permission checks, there are well-known permission escalation attacks [8].
Another privatization method for activities is requiring a custom “key”, thereby
ensuring that any invoking app knows the exact string required to launch that
particular activity. More frequently, they can receive standard system messages,
allowing any app which asks for a particular kind of service to possibly be routed
to the activity in question. The final, and default option is for an activity to
require explicit invocation by name. However, as we will discuss below, this is
actually the least effective method of protecting an activity from third party
access.

Android does not place any restrictions on what types of apps are allowed
to request the execution of activities. By default, without flagging an activity
for a certain type of action, activities can only be launched outside of their
respective apps via invoking them by their full name including the package in
which they reside. However, easy to use tools [9] exist which enable finding the
package and full class names of all activities in any published app. This effectively
makes securing components the job of the developer, which has been shown to be
problematic [7,10,11]. Due to these limitations, a variety of patterns of misuse are
available to app developers. We will focus on a particularly dangerous pattern,
called activity spoofing.

Activity Spoofing and Its Defense 497

Fig. 1. Facebook’s login activity

3 Activity Spoofing

Due to the relative lack or inadequacy of protections for activities, one cannot
be assured of which activities belong to which apps. When one app displays an
activity which is visually similar or identical to an activity from another app,
users will become confused as to which application they are interacting with.
This is called activity spoofing. We give an overview of how activity spoofing
works, then discuss the properties and magnitude of the attack surface, and
finally look into a particular attack vector.

3.1 Overview of Threat Model

Activities consist of many different kinds of information and interactions. We are
interested primarily in authentication screens, or other activities that require a
user to enter some kind of credentials or private data. These kinds of screens are
commonly found in many types of apps, including popular social network apps
like Facebook (Figure 1) and Twitter (Figure 2). Activity spoofing normally
occurs when a user launches an app, which attempts to display an activity (the
intended activity), but another activity is immediately launched (the spoofed
activity) afterwards, which mimics the intended activity in appearance but is
not the activity the user is expecting. Activity spoofing which does not have
a temporal context can also be executed by an app advertising some kind of
interoperability, like the ability to tweet about something from within the app.
When the user goes to exercise this functionality, the app is free to launch an
activity which mirrors the official app’s appearance and feel.

498 B. Cooley, H. Wang, and A. Stavrou

Fig. 2. Twitter’s generic login activity, which could further encourage spoofing

When users are presented with the spoofed activity, they assume that it is
in fact the intended activity; as it looks identical to the intended activity and
is exactly what they expect by launching the intended app. This is primarily
because Android operates with only one activity visible at a time. This deprives
users of any possible knowledge that there are two activities which mirror each
other in appearance. Another enabling factor is that Android does not force
activities to actively display what app they belong to. Therefore, users have no
way of knowing that the spoofed activity does not belong to the app it appears
to originate from. When the user interacts with the spoofed activity, it has full
control over what is done with any information the user provides.

If users do enter whatever credentials are required to authenticate to the ser-
vice which the spoofed activity is masquerading as, such as a login ID or email
address and a password or PIN, they are handing the spoofed activity full access
to that service. The spoofed activity can capture these values, and is free to
exfiltrate them as it pleases. Moreover, the likelihood of these credentials being
correct is much higher than more traditional methods of credential collection.
This is because users are trying to actively use the service being portrayed, en-
suring they are making a good-faith effort to provide current login and password
data. Since most apps send credentials to a server to be authenticated, active
network I/O is very common after submitting credentials to a login activity. This
creates a perfect opportunity to send the data collected by the spoofed activ-
ity to an external server associated with the spoofed activity’s app. Combining
legitimate network traffic with data exfiltration makes detection of the private
data leakage more difficult.

To keep users unaware of the data leakage, the spoofed activity can act in a
variety of ways after it has captured the entered credentials. It can display an

Activity Spoofing and Its Defense 499

error message to the users, and exit silently. This has the effect of redirecting
the users to the intended activity, which allows them to re-enter their credentials
without interference. Another option is to pass the data on to the intended
activity and initiate the submission of the data, bypassing the intended activity
and displaying the next activity in app. Note that either of the two approaches
could raise some suspicions.

By displaying an error message to users, the spoofed activity is returning
control to the intended activity’s app as quickly as possible, thereby minimizing
the chances for detection due to lag in the user-interface or other abnormalities.
However, over time, the prevalence of these errors could arouse suspicion. Also,
this requires the spoofed activity to closely mimic the intended activity’s error
dialog. This adds complexity to the spoofing code, which increases the code’s
footprint. To combat these issues, the app containing the spoofed activity could
only launch the spoofed activity a fraction of the times the user attempts to
interact with the intended activity. This allows for a more realistic error rate,
which users will be more willing to tolerate. If the spoofed activity passes the
data on, the expected workflow is uninterrupted. This decreases the likelihood
of user suspicion, as the sequence of activities displayed to the user is unchanged
by the spoofed activity. However, Android must update the display when the
spoofed activity exits, and the ability to programmatically bypass an activity is
dependent on the authentication model employed. This delay could potentially
draw attention from a trained user. We next describe what common types of
interactions are vulnerable to activity spoofing.

3.2 Properties of Vulnerable Apps

Despite Android’s unhindered access model, not every activity can be easily
spoofed. Activities which display real-time data, or frequently updated streams
which aren’t publicly available can present real challenges to spoofing. Also, ac-
tivities which make API-specific request from services over the network typically
employ the use of an API key, which would require a spoofed activity to also
obtain an API key. While this is significantly more difficult than spoofing a basic
activity, there are common weaknesses in this approach which could allow for
bypassing the need for an API key [12]. Nevertheless, we will focus on those
activities that do not make use of private API’s. This covers the large majority
of activities, most of which are vulnerable to spoofing, but are also relatively
harmless. The harmful activities require user interaction, typically asking users
to enter some sort of login credentials or private information. As discussed be-
fore, these kinds of activities are prime for spoofing. Depending on the exact
methods used for mimicking an application, the spoofed activity could look any-
where from close to an exact replica of the intended activity. In some cases, apps
provide very generic login activities which can lead to confusion as to what app
is requesting the user’s credentials, even without the introduction of spoofing
attacks. While many kinds of activities fit these criteria, we now present social
networking apps as a particular attack vector.

500 B. Cooley, H. Wang, and A. Stavrou

3.3 Spoofing Social Network Logins

Social networking has been exponentially increasing in the past few years, with
the rise in popularity largely due to the sites like Myspace, Facebook, and Twit-
ter. With a website like Facebook having well over 1.2 Billion active users [13],
social network users account for one of the largest user-bases available. Com-
bined with the fact that both Facebook and Twitter apps come preinstalled on
many Android smartphones, the attack surface available to spoof a social net-
working application is very large. However, users do not hold access to their
social networking accounts as important as access to more important accounts,
like bank accounts and online shopping sites. This leads to weaker passwords,
and password reuse [14] which furthers the expected value of intercepting this
data. As an added benefit, some social networks use the user’s email address
as the account identifier. By capturing this data along with a valid password, a
malicious app would have the ability to access some percentage of users email
accounts, due to password reuse as mentioned previously. Many online services
allow someone with access to the email address associated with an account to
reset the password, thereby gaining access without knowing the chosen password
a priori. All of these factors combine to make users’ social network credentials
highly desirable targets. To demonstrate the ease of these kinds of attacks, a
proof-of-concept app was developed, and is discussed below.

3.4 Spoofed Activity Attack

In order to demonstrate the ease and effectiveness of spoofing popular appli-
cations, we have created a proof-of-concept attack on the Facebook app for
Android. A true attacker would implement the activity spoofing code within
another seemingly benign app; however, for our purposes, we have simply im-
plemented a stand-alone app. Regardless of how the code is loaded, the app will
generally follow a monitor-capture-exfiltrate cycle.

Monitoring. In order to spoof an activity, the attacking app must know when
the intended activity is being launched. This is trivial if the user is already
using the attacking app; but if they aren’t, Android provides the ability for
apps to launch background tasks called services. Our app uses a service which
is detached from the app itself, allowing for it to continue to run in the back-
ground even after the app’s activities are stopped. This service monitors An-
droid’s ActivityManager, which allows it to launch the spoofed activity as soon
as any app requests for the intended activity to be launched.

Capture. Once the intended activity has been launched, our monitor launches
the spoofed activity. This ensures it appears after, and therefore, above the
intended activity. By utilizing Apktool [9], we have simply copied the relevant
design assets and XML files which describe the look and feel of Facebook’s
app into our own, making the intended and spoofed activities appear identical
(Fig. 1 is taken from our proof-of-concept). The users have no possible way
of knowing that they are interacting with the spoofed activity, instead of the

Activity Spoofing and Its Defense 501

Fig. 3. User’s credentials captured by a spoofed activity

intended activity. Once the users attempt to authenticate, the spoofing app will
intercept and capture their credentials, unbeknown to them.

Exfiltrate. While our proof of concept simply displays the captured values back
to the user (Figure 3), a real application could exfiltrate this data, possibly over
the network to a remote server. This presents the most challenging part of the
spoofing attack, as tools like TaintDroid [15] exist to track this kind of infor-
mation flow. However, none of the currently available flow analysis tools would
flag this particular information leak, as the user is providing the information
willingly, and from their memory or other medium outside the control of the
phone. Therefore, any systems-based approach [16–18] wouldn’t be able to dif-
ferentiate this kind of data from valid data captured by the intended app itself.
Significantly more intrusive and resource intensive methods would have to be
employed for one of these systems to be able to differentiate between spoofed
and valid authentication attempts at the activity level.

4 Defenses

While activity spoofing is hard to prevent and easy to implement, there exist
a wide range of possible defenses. Any defensive measure must prevent activity
spoofing from occurring while allowing benign apps to continue to reuse third
party components. In addition, if the defense is to be practical, it must have a
very low level of false positives (benevolent apps which are flagged as malicious)
and have minimal impact on the user. False negatives (spoofed activities which
are not caught) are acceptable as some protection is better than no protection;
but false positives will lead to users bypassing any protections offered in order

502 B. Cooley, H. Wang, and A. Stavrou

to simply achieve their desired functionality. Correctly identifying spoofing at-
tempts is difficult because of the plethora of ways to emulate another activities
functionality. Below we discuss two fundamental types of preventative measures,
including analysis of a current solution [19]. We then offer a refinement on one
of our proposed models, which offers a variable level of required user interaction,
and protects against a wide range of attacks.

One strategy to defend against phishing is to deploy other apps which monitor
or otherwise protect against phishing attempts. This approach has a low barrier
to entry, and allows for widespread distribution even to older Android devices
which may not receive official system updates. However, app-based solutions will
have a limited ability to actively protect the user from other apps, and while
monitoring and alerting users to potential threats is worthwhile, a better defense
mechanism might be sought when valuable personal information is at risk.

4.1 Secure Phrases

On the Internet, websites have long dealt with phishing and spoofing attacks.
One of the most popular methods of combating these attacks is the use of secure
phrases and images [21–23]. These images or phrases are set up after successfully
authenticating for the first time, and are displayed on the authentication page the
subsequent times when users visit the site. This approach requires app developers
to modify the apps’ implementation. However, most major providers already
have the infrastructure in place to offer this service via their web apps. All that
would be required is a translation of the feature to work on an Android device.
However, since this approach requires minimal work at the Android device, it
is also the least effective. While rendering the simple implementation discussed
previously ineffective, adding a secure phrase wouldn’t prevent more complex
spoofing attacks. For example, the spoofing activity could simply implement a
transparent frame. If placed in the correct spot on screen, this transparency
would give the appearance of displaying the secure phrase or image as if it was
being displayed by the spoofing activity itself.1 On the other hand, this approach
introduces zero false positive, and does not restrict activity reuse in any way.

4.2 Spoof Killer

The main idea behind Spoof Killer [19] is to introduce a system interrupt into
the login procedure, during which the system verifies that the current context, or
the application from which the login request was generated, matches some sort
of internal whitelist or certificate list. If the context is safe, the login proceeds,
and is otherwise aborted. This system interrupt takes the form of requesting the
user activate a pre-defined interrupt key, like the home key on Android phones.
This requires users to correctly execute an additional step every time they login

1 As of Android 4.0, there are built-in measures to guard against such attacks. But by
2014, the top five banking and social network apps have not yet implemented any
sort of secondary security measures.

Activity Spoofing and Its Defense 503

to any app. From a usability perspective this may not be advantageous, as it
introduces another step during which a user could fail the login procedure. This
may lead users to find the feature cumbersome, and disable it or find an alternate
(and thereby more insecure) method of authentication. However, as was outlined
in the cited page, when correctly used this feature builds a behavior into users
that provides inertia against attacks that try and bypass this mechanism.

From a technical standpoint, requiring a global interrupt for any app authen-
tication must be handled by the app developers, as there is no way for the system
to detect every application’s version of authentication unless they are using some
standardized authentication feature. This could hamper usability as not all ap-
plications will implement the system interrupt feature, leading users to either
distrust valid applications, or to not form the habit of initiating the interrupt,
which weakens the protection provided. Also, by relying on a whitelist, Spoof
Killer implicitly places the burden of ensuring an up-to-date whitelist on the
end user’s system, which may or may not be feasible for all platforms, specifi-
cally enterprise infrastructures which largely follow out-of-band update cycles.
These concerns lead us to an alternate paradigm for less intrusive protection
that requires no prior knowledge of trust.

5 Trusted Activity Chains

We now propose a system-level defense which provides a new framework feature
to app developers, called Trusted Activity Chains. We will give an overview of
the approach, discuss the components of our framework, potential issues which
arise from this model, and the impacts it has on both the usability and security
of an Android device.

5.1 Overview

Our framework introduces the concept of sequences of activities which should
not be interrupted. App developers should be able to simply annotate a chain
of activities with a request that they not be interrupted, and the system should
handle the rest. In keeping with the design ideas of the Android framework,
at any given time only one activity is displayed in the foreground. The app
which owns this activity can therefore be considered the “foreground app”. When
an activity is brought into the foreground, it requests a lock, signaling that it
should not be interrupted. Once this lock is granted by the operating system, the
system will begin to monitor any attempts by other apps, background services,
or other process to launch a new activity. Depending on the configuration, the
system will handle these requests differently than it normally would (e.g. let the
activity launch). Once the foreground activity is finished, the next activity in
the uninterrupted chain will be launched, or the lock will be given up and the
system will revert to standard behavior, allowing any activity to be launched.

504 B. Cooley, H. Wang, and A. Stavrou

5.2 Components

There are a number of interactions that Trusted Activity Chains give rise to. In
order for the concept to work, we need to have processes to deal with how an
activity acquires the interrupt lock, how it releases the same lock, how the OS
manages the lock, and what happens when there is an attempted interruption
while the lock is being held. Figure 4 gives a state diagram for the possible states
of the lock, which will be referenced below.

NOT HELD

LOCK HELD

FINISH,
SYS REQ

LOCK ACQ

PASS ON,
INT ATTEMPT

END REACHED

END

END COMP

Fig. 4. State Diagram for Lock Life Cycle

Acquisition and Release. To acquire the interrupt lock, an activity simply
needs to be marked as requesting the lock. When the ActivityManager launches
such an activity, it will also check if the lock is free (NOT HELD). If so, it assigns
the lock to the launching activity (LOCK ACQ), and allows it to launch without
further interference. The activity now holds the lock (LOCK HELD), and may do
any number of things with it. If the activity (such as a login screen) wants to
assure that the next activity the user is shown upon successful authentication in
the app’s home screen, then the home screen can be tagged as the end point for
the lock (END). This allows for the application to ensure that no other activities
will be launched before its home screen is displayed (END REACHED, END COMP),
which protects against post-authentication spoofing, such as a malicious activity
launching a cloned version of the intended activity’s error dialog for a failed
authentication, and asking the user to try again. If the chain of activities which
request the lock does not end at the app’s home screen, the lock is simply
transferred to the next activity (PASS ON), and the cycle continues.

Alternatively, the lock-holding activity may simply release the lock when it is
paused or removed from the foreground (FINISH). This can be caused either by
design when the activity is the last one the app wishes to display for the moment;
or by the system if it needs to execute an action such as locking the screen or
displaying information on an incoming call (SYS REQ). Since these activities can
only be initiated by the system or the user via hardware buttons, they are safely
allowed to override the lock.

Activity Spoofing and Its Defense 505

Management. The Android framework already handles all activity lifetime
services through a central class, the ActivityManager [20]. Using this class to
simply keep track of which activity, if any, currently has the lock allows for
all of the features discussed. The OS must simply pass control back through
the ActivityManager any time it requests control from activities, so that the
lock can correctly be released in these scenarios. This both encapsulates all
modifications, and keeps the overhead imposed to a minimum.

Interrupt Handling. While the lock is held, if a third party app attempts to
launch an activity, the ActivityManager intercepts this request, and can handle
it depending upon the configuration of the system. Some options include alerting
the user that a third party activity is trying to launch, and notify the user that
the third party activity will be launched at the completion of the current app’s
sequence (INT ATTEMPT). While effective, this may be too heavy-handed, and so
the OS could allow the third party activity to be launched, but require it identify
itself as a third party. The Android framework already includes a mechanism for
this by way of title bars. Title bars are an UI element that may optionally be
turned off, depending on the theme selected by the app developer. This allows
for a visual cue that the current activity is different from the activity that was
just in focus.

5.3 Potential Issues

Trusted Activity Chains allow for a very robust defense against many kinds
of spoofing and phishing attacks. However, there are some potential drawbacks
which could limit the effectiveness of this mechanism. As with any system which
employs a locking mechanism, we must handle the possibility of race conditions
and deadlocks. Because Trusted Activity Chains require developers to adapt
their apps to the framework, we also must address intentional and unintentional
misuse by developers, along with issues of adoption.

Race Conditions and Deadlocks. Race conditions could occur when two
or more activities are launched, each of which requests the interrupt lock. Due
to the nature of Android, the order of activity launches is not precise, but is
atomic. That is, one of the activities that is attempting to launch will be first,
and will be launched before any of the other activities are picked by the system
to begin the launch process. This ensures that one activity will always be able
to fully acquire the lock before another activity is allowed to check the status
of the lock. Therefore, while the activity receiving the lock may not always be
the one expected to receive it, there is never a situation in which two activities
simultaneously will have the lock.

Similarly, deadlocks are never an issue, as even in the case where an activity
never manually releases the lock, any actionable item the system has to deal with
automatically releases the lock. This includes the user pressing the hardware
buttons, allowing the user control even in the event of a malfunction.

506 B. Cooley, H. Wang, and A. Stavrou

Developer Misuse. In order for Trusted Activity Chains to protect an activity,
the developers of that activity must flag that it requests the lock. This kind
of control can of course be misused by developers unfamiliar with the system,
as well as opening up a possible attack vector. Fortunately, Trusted Activity
Chains are resilient against all forms of misuse. If a developer were to tag an
activity as requesting the lock unintentionally, the app will still function, but
will simply prevent third party activities from launching. Even if the mistakenly
tagged activity requires data from a third party activity to function, because the
launch request for the third party activity originates from the activity with the
lock, it will be allowed to launch and run as normal.

While inadvertent misuse is a honest scenario to consider when designing a
framework, malicious misuse generally is more potentially damaging. However,
because our framework is overridden when the system has tasks to handle, a
malicious developer is not granted any more power than they already have within
the larger Android framework.

Adoption. There are innumerable proposed extensions to Android for the pur-
pose of enhanced security [15–19], all of which have varying levels of security,
usability, and overhead. In addition to the vast number of users who are either
indifferent or unaware of the security concerns with Android, this plethora of
options makes adoption of any one strategy difficult. Furthermore, Trusted Ac-
tivity Chains require developers to write apps with them in mind in order to be
of use.

While these obstacles do exist, Trusted Activity Chains are still useful even
without a widespread adoption. We allow for apps using our modifications to
interact seamlessly with other apps and the system as a whole. This incremental
approach allows for developers to slowly integrate Trusted Activity Chains into
their apps at their own pace, which slowly builds momentum. It also relieves the
pressure to patch all old apps immediately, as they too can be slowly phased in
as time allows.

Trusted Activity Chains can be easily added to old and new applications with
very few lines of code. Since the locking and unlocking mechanism does not
impair application functionality even when misused, developers can integrate
Trusted Activity Chains with confidence that they are not introducing bugs.
We also note that by adding support, developers are taking an action which
protects their users, which can generate positive press for the developer’s apps.
It can also call attention to other apps which fail to use this feature. This form
of peer pressure can further drive adoption.

5.4 Implications

While providing a high level of protection, our framework could hurt usability.
Therefore, we offer a less defensive, but more transparent method of functional-
ity, wherein third party activities which launch during other app’s activity chains
are required to identify themselves to the user. This would alert the user to the
presence of a activity which did not belong to the foreground app. While this

Activity Spoofing and Its Defense 507

Fig. 5. The spoofed activity with Trusted Activity Chains enabled

does not guarantee that a user won’t fall for a spoofed activity, it does allow
easy identification of the intended activity in contrast with the spoofed activity.
This defense has the added benefit of giving apps more control over how they
interact with other portions of the Android system.

We note that this approach, like that of [19] requires developers to actively
implement new features in the apps for the defense to function. However, apps
which lack our approach do not function incorrectly in its absence, but are
merely less secure. This allows for our approach to be implemented without
prior widespread adoption as discussed above. Also, our approach is both flexible
and extendable, and can be used for non-security related problems as well as
protecting against many kinds of malicious behaviors.

6 Evaluation

To validate the efficacy of our proposed defense mechanism, we developed a
prototype of Trusted Activity Chains. Then, we evaluated its effectiveness and
usability via a case study, as well as performance impact on the Android smart-
phone. It is important that the proposed Trusted Activity Chains can be easily
used by normal users, while its performance overhead is minor for using them.
Our experiments were conducted using a Motorola device with a 550MHz ARM
A8 processor and 256MB of RAM, running Android 2.2.3. For the purposes of
evaluation, our defense mechanism was configured to simply block third-party
app execution while a Trusted Activity Chain is underway. This allows for the
most accurate performance measurements to be collected.

508 B. Cooley, H. Wang, and A. Stavrou

6.1 Effectiveness and Usability

Obviously, in the mode where third party launches are forbidden during a Trusted
Activity Chain, a user will be simply unaware of the attempt assuming that the
app developer has correctly annotated their app. So, we have only validated
the effectiveness and usability when the mechanism is configured to allow third
party apps to launch, but force them to show their title bars. We conducted a
case study with a small group of users (<10) who do not use an Android device
on a regular basis. We explained the purpose of the study, and told them to use
the test device to log on to Facebook, take a photo, and share it. We did not
give any information on how Trusted Activity Chains work, nor that there was
any modification to the Android device. The Facebook app leverages the stock
Android camera app to take photos, which means that it will allow third party
code to run when the users attempt to take a picture. We have modified the
Facebook app so that this action will occur during a Trusted Activity Chain
to simulate developer misuse. We have also left our attack application running,
which means the users will be confronted with the spoofed Facebook login ac-
tivity before getting to the real activity. However, as per our configuration, the
spoofed activity will be forced to display a title bar, which will display the app
name to which the activity belongs.

During the initial launch, the users correctly identified that the spoofed ac-
tivity was not the true Facebook login screen, but could not pinpoint the reason
beyond that it looked different than what they were used to. This shows that

Fa
ceb

oo
k (C

old
Sta

rt)

Fa
ceb

oo
k (R

esu
me

)

Tw
itt
er

(C
old

Sta
rt)

Tw
itt
er

(R
esu

me
)

500

1,000

1,500

2,000

2,500

L
o
a
d
in
g
T
im

e
(m

s)

Stock Android

Trusted Activity Chains

Fig. 6. Average load time for social networking app

Activity Spoofing and Its Defense 509

even if a malicious application chose a name very similar to the one of the app it
was attempting to spoof, users may still be able to discern the difference under
our framework. After identifying the fraud, the users were unsure what to do to
proceed, but were able to complete a valid login. However, when they attempted
to take a picture, they again noticed that the camera app seemed different, and
decided to cancel taking the picture. While this outcome is not a failure of our
framework but rather due to developer misuse, our future work will consider
how to resolve this type of false-positives.

6.2 Performance

In order to measure the performance overhead associated with Trusted Activity
Chains, we took measurements of the total time elapsed to launch two social
networking apps with and without the defense mechanism enabled. We tested
both a cold start of the app along with resuming the app after five minutes
of web browsing. We installed our attack application, which monitors for the
launch of either app, and attempts to launch its own spoofed version of the login
screens. These scenarios were repeated 10 times each, and we took the average
time after dropping the highest and lowest times for each.

As we can see in Figure 6, the overhead during a cold start is barely recogniz-
able. This is due to the initialization which must be undertaken for an app to be
started for the first time taking much more time than our monitoring. However,
on a resume we do see an extra delay. Note that the overall times it takes to
resume the app are already rather high at 690ms and 460ms, respectively, under
normal conditions. Thus, even though we introduce an extra delay of ∼170ms,
a user will likely not notice it because the normal transition delays are more
than two to three times larger than this additional delay. Furthermore, users ex-
pect there to be some delay when moving between apps, as Android’s UI shows
transition effects when performing a context switch. From these observations,
we can conclude that Trusted Activity Chains does not impair normal function-
ality of an Android device, and can be included without noticeable performance
degradation.

7 Related Work

Previous work has identified flaws with both the Android IPC model [7] and
the permission model [11]. This work identifies similar possible attack models,
including Intent spoofing and activities external to the launcher’s app returning
information to the launcher. We take this a step further by silently monitoring
for valid launches of activities and inject spoofed versions of these activities. A
similar attack was presented in [24], however no publications have resulted.

Felt and Wagner [25] detailed numerous categories of phishing attacks levied
at mobile devices, including spoofing an activities login screen. This work builds
on their result to show an embedded approach, as well as revealing some of the
technical features which enable this class of attacks. Further, we provide a robust
defense mechanism which could protect against many of their listed attacks.

510 B. Cooley, H. Wang, and A. Stavrou

Russello et al. [17] built on TaintDroid [15] to provide information flow track-
ing as well as a fine-grained label system which allows users to allow or deny
access to information on an per-app basis. Their work requires no action on
the developer’s behalf, but does require users to specify what data should be
labeled. Users are generally less aware of application and data security concerns
than developers, and this strategy might be too technical for many users.

Quire [18] offers call chain tracking to prevent confused deputy attacks [26]
along with a signature scheme which allows intents to be signed and verified.
This approach is limited to protecting well-meaning services from being duped
by other less benevolent apps, but does not stop information leakage like what is
possible via activity spoofing. More recently, ScreenPass [27] secures user pass-
words on touchscreen by providing a trusted password-entry user interface and
defends against spoofing via optical character recognition.

Like Spoof Killer [19], we demonstrate a defense against spoofing attacks.
However, our modification requires no whitelists, and protects users from a broad
class of attacks as opposed to only protecting against login phishing attacks.
Similar to the cited method, our approach does require developer involvement.

8 Conclusion

In this paper, we have presented a simple but dangerous exploit of the Android
framework that allows arbitrary applications to spoof sensitive activities of other
applications in order to collect private data without users’ knowledge. This can
be accomplished because of an inability to identify what app a given activity
belongs to. We have developed a simple method for constructing spoof activi-
ties and integrating them into stand-alone or existing code. The danger of this
exploit lies in the simplicity of engineering a spoofed activity for any service
that provides a native app for Android, and the ease of collecting the harvested
data from user devices. We have then described possible defenses to this class
of attacks, considering some existing methods before introducing Trusted Ac-
tivity Chains. We have demonstrated that Trusted Activity Chains are robust
and provide an easy way to optimize for security and usability. We have also
shown that they have minor impact on performance. We have further discussed
the details of how Trusted Activity Chains support spoofing prevention without
the pitfalls generally associated with locking mechanisms.

Our future work includes expanding the proposed defense mechanism, along
with a large scale usability study to further demonstrate both the severity of
the exploit and the effectiveness of our defense framework. The requirement of
developer action to secure users’ devices is less than ideal, and we would like to
develop an automated method to detect which activities need to be protected
and which do not. We also would like to implement a full version of our defense,
and integrate it into the Android open source project.

Activity Spoofing and Its Defense 511

References

[1] Canalys. Press Release 2011/081. Android takes almost 50% share of worldwide
smartphone market (August 1, 2011),
http://www.canalys.com/newsroom/android-takes-almost-50-

share-worldwide-smart-phone-market

[2] Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cranor, L.F., Hong, J.,
Nunge, E.: Anti-Phishing Phil: The Design and Evaluation of a Game That
Teaches People Not to Fall for Phish. In: Symposium On Usable Privacy and
Security, pp. 88–99 (2007)

[3] Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.: A Comparison of Machine Learn-
ing Techniques for Phishing Detection. In: APWG eCrime Researchers Summit,
Pittsburgh, PA, pp. 60–69 (2007)

[4] Bian, K., Park, J., Hsiao, M.S., Bélanger, F., Hiller, J.: Evaluation of Online
Resources in Assisting Phishing Detection. In: 9th IEEE International Symposium
on Applications and the Internet, Bellevue, WA, pp. 30–36 (2009)

[5] Xiang, G., Hong, J., Rose, C.P., Cranor, L.F.: CANTINA+: A Feature-rich Ma-
chine Learning Framework for Detecting Phishing Web Sites. ACM Trans. on Inf.
and Syst. Security 14(21) (2011)

[6] Android Dev Guide. Tasks and Back Stack (August 28, 2011),
http://developer.android.com/guide/topics/fundamentals/

tasks-and-back-stack.html

[7] Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing Inter-Application
Communication in Android. In: ACM MobiSys, Washington, D.C., pp. 239–252
(2011)

[8] Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation at-
tacks on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011)

[9] Brut.alll. Apktool (May 15, 2011), http://code.google.com/p/android-apktool
[10] Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Appli-

cation Security. In: USENIX Security, San Francisco, CA (2011)
[11] Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D., et al.: Android Permissions

Demystified. In: ACM Conference on Computer and Communication Security,
Chicago, IL, pp. 627–638 (2011)

[12] Farrel, S.: API Keys to the Kingdom. IEEE Internet Computing 13(5), 91–96
(2009)

[13] Facebook. Facebook Fact Sheet (March 31, 2012),
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22

[14] Ives, B., Walsh, K.R., Schneider, H.: The Domino Effect of Password Reuse. C.
ACM 47(4), 75–78 (2004)

[15] Enck, W., Gilbert, P., Chun, B., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: An Information-Flow Tracking System for Real-time Privacy Moni-
toring on Smartphones. In: USENIX Operation Systems Design and Implemen-
tation, Vancouver, B.C (2010)

[16] Beresford, A.R., Rice, A., Skehin, N., Sohan, R.: MockDroid: Trading privacy for
application functionality on smartphones. In: 12th Workshop on Mobile Comput-
ing Systems and Applications, Phoenix, AZ, pp. 49–54 (2011)

[17] Russello, G., Crispo, B., Fernandes, E., Zhuniarovich, Y.: YAASE: Yet Another
Android Security Extension. In: 3rd Conference on Privacy, Security, Risk, and
Trust (PASSAT), Boston, MA, pp. 1033–1040 (2011)

http://www.canalys.com/newsroom/android-takes-almost-50-share-worldwide-smart-phone-market
http://www.canalys.com/newsroom/android-takes-almost-50-share-worldwide-smart-phone-market
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://code.google.com/p/android-apktool
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22

512 B. Cooley, H. Wang, and A. Stavrou

[18] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: Lightweight
Provenance for Smartphone Operating Systems. In: USENIX Security,
San Francisco, CA (2011)

[19] Jakobsson, M., Leddy, W.: Spoof Killer (May 21, 2011),
http://www.spoofkiller.com

[20] Android API Reference. ActivityManager (Mar 13, 2012),
http://developer.android.com/reference/android/

app/ActivityManager.html

[21] Dhamija, R., Tygar, J.: The battle against phishing: Dynamic security skins.
In: Proceedings of the Symposium on Usable Privacy and Security (SOUPS),
pp. 77–88. ACM (2005)

[22] Whalen, T., Inkpen, K.M.: Gathering evidence: use of visual security cues in web
browsers. In: Proceedings of 2005 Graphics Interface (GI), pp. 137–144. Canadian
Human-Computer Communications Society (2005)

[23] Schecter, S., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security
indicators: An evaluation of website authentication and the effect of role playing
on usability studies. In: Proceedings of IEEE Symposium on Security and Privacy
(S&P), pp. 51–65 (2007)

[24] Hassell, R.: Hacking Androids for Profit (August 31, 2011),
http://conference.hitb.org/hitbsecconf2011kul/?page_id=1740

[25] Felt, A.P., Wagner, D.: Phishing on Mobile Devices. In: Web 2.0 Security and
Privacy, Oakland, CA (2011)

[26] Hardy, N.: The Confused Deputy. ACM Operating Systems Review 22(4), 36–38
(1988)

[27] Liu, D., Cuervo, E., Pistol, V., Scudellari, R., Cox, L.: ScreenPass: Secure Pass-
word Entry on Touchscreen Devices. In: Proceedings of ACM MobiSys 2013,
Taipei, Taiwan (June 2013)

http://www.spoofkiller.com
http://developer.android.com/reference/android/app/ActivityManager.html
http://developer.android.com/reference/android/app/ActivityManager.html
http://conference.hitb.org/hitbsecconf2011kul/?page_id=1740

Polymorphism as a Defense

for Automated Attack of Websites

Xinran Wang1, Tadayoshi Kohno2, and Bob Blakley3

1 Shape Security
xinran@shapesecurity.com
2 University of Washington
yoshi@cs.washington.edu

3 Citigroup
bob.blakley@citi.com

Abstract. We propose PolyRef, a method for a polymorphic defense to
defeat automated attacks on web applications. Many websites are vul-
nerable to automated attacks. Basic anti-automation countermeasures
such as Turing tests provide minimal efficacy and negatively impact the
usability and the accessibility of the protected application. Motivated by
the observation that many automated attacks rely on interaction with
the publicly visible code transmitted to the browser, PolyRef proposes
to make critical elements of the underlying webpage code polymorphic,
rendering machine automation impractical to implement. We categorize
the threats that rely on automation and the available anti-automation
approaches. We present two techniques for using polymorphism as an
anti-automation defense.

1 Introduction

A web user interface (UI) is designed for manual use. The intent is that a human
interacts with a web UI in a browser, and the web browser acts as a user agent
to communicate with a web server. Unfortunately, by design the source code
(HTML, JavaScript, and CSS) of every web page is publicly visible, and thus
can be exploited by attackers in numerous ways including subjecting the website
to automated attacks.

The past decade has seen a staggering diversity and volume of automated
attacks on web applications. Man-in-the-Browser (MitB) attacks, such as the
notorious Zeus, seize control of the end user’s browser and can modify bank
transactions without possessing authentication credentials or compromising any
of the bank’s technology infrastructure. For example, in 2007 the online bank-
ing services of KBC Bank were compromised with MitB techniques despite
two-factor transactional authentication [1]. Credential stuffing attacks test a
list of authentication credentials stolen from one website on a different web-
site to discover where users have re-used their credentials. When originating
from a botnet, these attacks can be indistinguishable from legitimate traffic [11].
Business logic denial-of-service (DoS) attacks interact with a website and ex-
ercise resource-intensive business logic: these attacks knock over sites without

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 513–530, 2014.
c© Springer International Publishing Switzerland 2014

514 X. Wang, T. Kohno, and B. Blakley

requiring a significant volume of traffic. Furthermore, these attacks are unstop-
pable using traditional network DoS defenses [8].

Automation by attackers is not a new problem in web security. For lack of
better options, Turing tests are widely used to block automation. As attackers
have become more sophisticated about solving Turing tests, either with automa-
tion or human solvers, the tests have increased in difficulty to the point that
the failure rate of humans approaches the failure rate of bots. Combinations of
reputation and rate thresholds are currently promoted by application delivery
controller (ADC) and web application firewall (WAF) vendors, [2] but are largely
rendered obsolete by the widespread availability of botnets, which reside on the
same machines as the legitimate website users.

We propose PolyRef, a novel technique using polymorphism for defense, which
may offer a practical path to block certain classes of automation. Our approach
is driven by the observation that today’s automated interaction with a web-
site often requires interacting with page content transmitted to the browser.
By dynamically re-writing the page content, PolyRef impedes two types of at-
tack: HTTP attacks, which rely on known POST or URL parameters to directly
construct HTTP requests and DOM attacks, which manipulate DOM elements.

As shown in Fig. 1, PolyRef sits between a firewall and a web server. When
a web page sent by the web server arrives, PolyRef finds the target forms and
then applies reference and/or field polymorphism techniques. Note that the re-
placement happens for each page request. When the form is submitted, PolyRef
restores the field names of the form back to their original values.

Browser Firewall PolyRef Web Server

Internet

Fig. 1. PolyRef as a transparent proxy

We study several actual automated attack cases, and show how PolyRef uses
reference and field polymorphism to impede unwanted automation. We also dis-
cuss potential counter attacks for PolyRef and the limitations of PolyRef.

The contributions of this Paper are summarized below.

– The paper systematically analyzes automated attacks against web applica-
tions defining a representative threat model, identifying relevant vulnerabil-
ities, applications for automation, and implementation archetypes.

– We propose PolyRef, a new defense concept using polymorphism. We show
how PolyRef deflects current generation automated attacks, and analyze
impact of potential attacker evolution.

– We implement a prototype of PolyRef as a transparent proxy to protect web
servers. We evaluate PolyRef in two experiments: a fake account creation
attack and a Zeus MitB attack. The evaluation shows PolyRef is effective
to deflect these attacks. We also evaluate PolyRef with a real world large
e-commerce website and show latency is very low with caching turned on.

Polymorphism as a Defense for Automated Attack of Websites 515

2 Background: Automated Attacks

We observed that many notable attacks on websites seemed to be rooted in
automation, yet there are surprisingly few options for a viable defense. We set
out to appreciate the extent to which automation is a current problem and look
for options to mitigate the threat.

Definition 1. Automated Attack/Automation. An interaction performed by a
program on the user interface of a website where the user interface is intended
exclusively for use by a human.

2.1 Threat Model

To generalize the kinds of threats connected to automated attack of websites, we
made a list of archetypical example threats. The list is derived from surveys of
security practitioners for large scale websites in e-commerce, financial services,
healthcare, national government, and social media, and is also informed by key
threats listed in the OWASP Top 10.1 We discarded threats and vectors not
connected to automated attacks and the remainder are shown in the “Surveyed
Threats” column of Table 1.

The “Attack Vectors” column of the table lists examples of the corresponding
vulnerabilities that might be exploited by automation to realize a successful
attack:

Credential Stuffing— The attacker tests a list of authentication credentials
stolen from one website on other websites to discover where users have re-used
these same credentials. Particularly useful when multiple websites can be corre-
lated with the same credentials such as credit card and e-commerce sites.

Business Logic DoS—Denial-of-service attacks that interact with a website as
if they were a human operated browser and exercise resource-intensive business
logic. For example, loading a shopping cart on an e-commerce site often causes
numerous writes to an underlying database.

Fake Account— Accounts used for the sole purpose of manipulation. Often
created or exercised in a sufficiently large volume that they are impractical with-
out automation.

Account Aggregation— Account aggregation services (for example, mint.com)
collect and use login credentials to access their customer’s bank accounts elec-
tronically and scrape information from the bank’s website.

Carding— Small purchases used to verify the validity of stolen credit card
data. Often operated on a large volume of low quality data and therefore re-
liant on automation. Particularly damaging to certain e-commerce sites as the
chargeback fees can be much larger than the transactions.

Man-in-the-Browser (MitB)— A kind of man-in-the middle attack where the
attacker controls the user’s browser, and may observe or change information that
is transmitted between the browser and the website.

1 Open Web Application Security Project, www.owasp.org

516 X. Wang, T. Kohno, and B. Blakley

Table 1. Relationship of threats to automated attack vectors

Surveyed Threats
Attack
Vectors

Automation
Application

Vulnerability
Category

Account takeover
Database scraping

Credential
stuffing

Iteration
Inherent

Protection racketeering
Hacktivism
Masking of other attacks

Business logic
DoS

Comment SPAM
Rating/review skewing
Database scraping

Fake account

Customer disintermediation
Reduced security posture
Database scraping

Account
aggregation

Chargeback fees Carding
Credential harvesting
Account takeover
Transaction manipulation

MitB
Manipulation

Information leakage
Loss of control

XSS
CSRF

Inadvertent

XSS/CSRF— Non-persistent cross-site scripting and cross-site request for-
gery as defined by OWASP.

For the purpose of this threat model, we further narrowed the list of vulnera-
bilities and vectors to the cases where automation is required. For an attacker,
automation is applied for at least two fundamentally different reasons which are
noted in the “Automation Application” column of the table.

Iteration— A repeated interaction with a web user interface where a high
number of iterations are required to realize value.

Manipulation— A one-time operation performed autonomously by a program
over a specific web interface, because it is not practically accessible to a human
attacker at the time of attack.

We distinguish between Inadvertent and Inherent vulnerabilities to highlight
an observation2 that the majority of concerns for large scale websites are for
vulnerabilities not contemplated in the OWASP Top 10.

Inadvertent vulnerabilities Some attacks rely on vulnerabilities that are the
product of implementation errors or design failures. In theory, this category of
vulnerability never need exist and when discovered can be corrected without
impacting user experience, business requirements, or application functionality.
Many well known web application vulnerabilities such as CSRF, XSS, SQL in-
jection, and the remainder of the OWASP Top 10 belong to this category.

Inherent vulnerabilities Many modern website attacks rely on vulnerabilities
that are the byproducts of fundamental design requirements or conditions not

2 Perhaps our survey suffered from a type of selection bias where our sample had
sufficient budgets to remediate the better understood inadvertent vulnerabilities.

Polymorphism as a Defense for Automated Attack of Websites 517

under the control of the solution architect. For example, a credential stuffing
vulnerability stems from the requirement that sites must allow anonymous con-
nections to attempt authentication, or they fail to meet the most fundamental
business need: access from the Internet. To illustrate with a specific example,
consider that an attacker could abuse the common security protocol of locking
out an account after five consecutive login failures to create a denial-of-service
attack. Depending on the design objectives of website, the solution to stop lock-
ing out accounts may not be an option. Unlike inadvertent vulnerability attacks,
inherent vulnerabilities cannot be mitigated by “fixing” the application as the
“fix” is at odds with a design requirement.

2.2 Methods of Automated Attacks

We classify the methods of automated attacks into three categories, each with
fundamentally different approaches:HTTP attack, DOM attack, and GUI attack.

HTTP attack— This approach relies on manipulating the target of attack by
transmitting GET or POST messages, but without any appreciation of how the
target page would be rendered in a browser. A common example is a credential
stuffing attack where a simple POST request is transmitted with the username
and password key-value pairs. Another variation employed for manipulation in-
stead of iteration is a CSRF attack where the HTTP GET is in the form of URL
embedded in an HTML email message.

DOM attack— This attack operates inside a browser and uses JavaScript to
feed input into DOM elements and perform submission. In DOM attacks, the
target web page and all referenced content including JavaScript is loaded in
a browser. The attack software now examines the DOM and feeds input into
input elements of a target form. Because DOM attacks drive a real web browser,
JavaScript, application state, cookies, nonces, sessions, properly set referrers,
and other dependencies that arise in a complex web application are handled
seamlessly. MitB attacks take this form (e.g., Fig. 13). Most existing inherent
vulnerability attacks, which exploit automation test tools such as Selenium and
HtmlUnit, also take this form (e.g., Fig. 11).

GUI attack— A more complicated option is when the attacker takes full con-
trol of a real browser to render the image of the target web page and interact
with the web page by directing mouse movement/click and keystrokes. It can
position the input focus by tab key press, x, y coordinates, or relative vectors,
and then stream keystrokes into fields of focus. DOM manipulation is not nec-
essary in this method. Note that GUI attacks need full control of a real browser
and cannot be performed inside a web page by JavaScript. Although JavaScript
in a web page can simulate a mouse event and cause browsers to fire the de-
fault action for the event (e.g., navigate to the link’s href, or submit a form),
browsers do not perform the default action for simulated keystroke events by
JavaScript (e.g., browsers do not assign the value to an input field), and the ac-
tual mouse location cannot be changed by JavaScript. Many automated attacks
presently implemented with the HTTP or DOM approaches could be adopted to

518 X. Wang, T. Kohno, and B. Blakley

the GUI approach by implementing them in open source automation test tools
like PhantomJS.

Note that CSRF is limited to the HTTP approach, as it has no possibility
to control the browser or to access the DOM of the target domain due to the
same-origin policy limit. Non-persistent XSS is limited to the HTTP approach
or the DOM approach, as it has no control of a browser. Other attacks may
choose any of the three methods. The choice of methods depends on the attack
requirements, and the methods are used differently due to the required attacker
resources and the properties of the targeted web application.

2.3 Scope

In this paper, we focus on HTTP and DOM attacks. GUI attacks are out of
scope. As PolyRef forces an adversary to perform GUI attacks with keyboard and
mouse activity, the behavioral biometric method [13,14] mentioned in Section 3,
which can tell the difference between mouse and keystroke behaviors of a human
and those of a bot, can be used to complement the PolyRef method.

2.4 Requirements for a Theoretical Ideal Mitigation Solution

Having defined automation as a fundamental and significant threat it seems clear
a protection is needed. We were not able to identify any well accepted industry
term of art for this class of solution and chose the term “botwall,” a portmanteau
of botnet and firewall.

Definition 2. Botwall. A website security layer intended to mitigate program-
matic or automated use of a website user interface that is intended exclusively
for use by a human.

We propose the following design objectives for an ideal botwall:
Preventive— Able to deflect automation.
Transparent— Does not impact the user experience.
Comprehensive— Broadly useful; not a point solution.
Facile— Easily applied to legacy websites.

3 Related Work

There is a wealth of research on web security, we survey the most relevant
works here. Numerous protection techniques have been introduced during the
last decade which create some friction for automation. However, all of them
either have a low efficacy or a negative impact on usability.

Turing Test— CAPTCHAs [22] are widely used on web to mitigate some
automated attacks. However, CAPTCHAs negatively impact the usability and
the accessibility of the protected application [23]. In addition, CAPTCHAs do
not work for MitB attacks.

Polymorphism as a Defense for Automated Attack of Websites 519

Browser Detection— Examination of headers such as “user-agent” or explo-
ration of expected browsers capabilities like running a JavaScript program that
calculates the answer to a selected problem.

Reputation— Reputation methods are based on information about the histor-
ical activity of endpoints and their connection to activities of ill repute. These
methods hinge on being able to establish the unique identity of the endpoint.
Common approaches of creating a unique identity include IP address, cookies,
and fingerprinting [10, 18]. IP address methods are not reliable because of dy-
namic IP addressing. Cookie methods are easily bypassed by removing tracking
cookies [19]. The fingerprint algorithm collects information such as browser fonts,
timezone, and installed plugin to uniquely identify a browser. Fingerprints may
be used in combination with other techniques to facilitate a whitelist of known
customer devices, or blacklists of problematic devices.

Honeypot— In the honeypot method, faked fields, links, and forms are inserted
in the web page. They are invisible to users and only bots can perform the tasks
in the honeypot. As honeypot forms are not real forms, honeypot methods cannot
be used to prevent inherent vulnerability attacks such as MitB and credential
stuffing. This method has been used to detect bots performing reconnaissance
attacks [4]. This method can be used to complement PolyRef. PolyRef makes
forms polymorphic and the “original” forms can be used as a honeypot.

Rate Threshold— Rate thresholds can be used to detect bots performing it-
eration attacks. Some application delivery controllers (load balancers) and web
application firewalls (WAFs) detect bots by measuring volume and speed in the
context of endpoint identity [2]. Often these implementations rely entirely on
the IP address for endpoint identity but may also use cookies or browser finger-
printing. This solution is at best a modest barrier today given the widespread
availability of botnets to distribute the traffic from rather broad selections of
endpoints with a low request rate. This technique generally fails on the efficacy
prong of our test as attackers may limit their request rate or generate requests
from a botnet to bypass this form of detection. Furthermore, it also fails on the
user impact test as well: IP rate-limiting may generate false positives in cases
where multiple users are NATed through the same IP address.

Behavioral Biometrics— User keyboard and mouse activity can also be used
to detect bots. The method injects a piece of JavaScript code in web pages
which collects the user keyboard and mouse activity. The activity is sent back
to web servers, and the web servers check if the results fit an expected human
behavior distribution. This technique has been used to detect game bots [13],
chat bots [14], and twitter and blog bots [6, 7].

Token—The secret validation token method [15, 17, 21] is a approach to de-
fend against CSRF attacks. A secret validation token is attached to each HTTP
request. If a request is missing a validation token or if the token does not match
the expected value, the server rejects the request. Ollmann [20] proposed token-
based methods to protect web applications against some malicious automated
scanning tools. One disadvantage of this approach is that a website must main-
tain a large state table to validate the tokens.

520 X. Wang, T. Kohno, and B. Blakley

Header Validation— Referer header checking is a common method to prevent
CSRF. The header contains the URL of the site making the request, and thus
can differentiate a same-site request from a cross-site request. A website can pre-
vent CSRF by checking if a request was issued by the site itself. One problem of
referer header checking is that it causes privacy leaking. Barth et al. [5] proposed
a defense against CSRF by introducing an origin header with POST requests
in the browser. It provides the security benefit of the referer header while re-
sponding to privacy concerns. Czeskis et al. [9] proposed a developer-friendly
and complete coverage method called Allowed Referrer Lists (ARLs) to prevent
CSRF. An ARL is a whitelist of referrer uniform resource locators (URLs) that
allows browsers to withhold sending ambient authority credentials for websites
wishing to be resilient against CSRF attacks.

Multi-Factor Authentication— It can be used to prevent password dictionary
attacks and credential stuffing attacks. The approach requires the presentation of
two or more of the three authentication factors: a knowledge factor (“something
only the user knows”), a possession factor (“something only the user has”), and
an inherent factor (“something only the user is”). However, this approach cannot
stop MitB attacks [3].

Out-of-Band Verification— It is an effective method of combating MitB at-
tacks. It overcomes MitB attacks by verifying the transaction details to the user
over a channel other than the browser (for example, an automated telephone
call or SMS). The downside of Out-of-Band Verification is a negative impact to
the user experience from more and slower steps.

4 Proposal: PolyRef

The idea of PolyRef is motivated by the observation that all automated attacks
are based on the fixed web page of a web user interface. PolyRef makes the web
page of any web user interface polymorphic: the web page is different every time
it is served. The variation introduced by PolyRef makes it hard for the attacker
to predict how to automatically operate a future page. In this paper, we define
Polymorphism as follows:

Definition 3. Polymorphism. [As applied in this paper] Any technique which
makes key elements of a web user interface (for example, HTML/JavaScript
references) sufficiently varied for each request so that future constructions of the
page are non-deterministic and render automated operation impractical.

Unlike the use of polymorphism for the construction of malware, it is not our
objective to protect intellectual property, obfuscate design, or even impede the
manual reverse engineering of a given case, but to make the next case unpre-
dictable or impede automatic program analysis.

We propose two types of polymorphism: reference and field polymorphism.
Note that PolyRef is not limited to these two types. It can accommodate new
types of polymorphism for any elements of HTML as attack evolves.

Polymorphism as a Defense for Automated Attack of Websites 521

4.1 Reference Polymorphism

In reference polymorphism, HTML symbols such as form names, field names, and
element identifiers are replaced with random character strings. Fig. 2 shows an
example where the form name Login, the field name lastname and the element
identifier lastname id are randomized.

Fig. 2. Form Name and Element ID
transformation

Fig. 3. Example JavaScript with trans-
formed HTML reference

Fig. 4. Example JavaScript with a vari-
able name randomized

Fig. 5. Sequence code determines the
order of field alternation

Fig. 6. Stacked display preserves user
experience

Form name and element identifier randomization will prevent attackers from
directly locating a field. For example, using the JavaScript statement document.-
getElementByID(lastname id) to locate lastname field in Fig. 2 will not work
anymore. As form name and element identifier may also be referenced in Java-
Script/CSS, the randomization should be consistent. Fig. 3 shows an example
of JavaScript changed with HTML symbol randomization.

Similarly, symbols in JavaScript should also be randomized. The JavaScript
shown in Fig. 3 makes it clear to an attacker that the field b24mpqdfKX should
contain a last name due to the JavaScript variable name lastname. A simple
regular expression could allow an attacker to script the scraping of the field name
from the page. Fig. 4 shows that we extend the concept of HTML polymorphism
to JavaScript.

4.2 Field Polymorphism

Reference polymorphism is effective for HTTP attacks and existing DOM at-
tacks. However, it is vulnerable to advanced DOM attacks. Advanced DOM

522 X. Wang, T. Kohno, and B. Blakley

attacks can indirectly find fields to defeat reference polymorphism. For exam-
ple, instead of looking for the field lastname, an adversary could refer to it as
the third field of the first form in DOM or even find fields based on the page
structure after page rendering.

We propose field polymorphism to impede advanced DOM attacks. In field
polymorphism, a field is broken into multiple fields. Keystrokes are distributed
between the multiple fields in a pattern that is unique for each page served.

As shown in Fig. 5, focus is alternated between several input fields as each
keystroke is typed. The alternation sequence is defined by a constant (sequence
code), and a unique code is embedded into the dynamically generated JavaScript
added to each page. From the website visitor’s perspective, the user experience
remains largely unchanged, as all fields are stacked in the display and appear
like one field. (See Fig. 6.)

Examination of the POST shows the characters of a single field split between
multiple name-value pairs. The constant required to reassemble the sequence
was determined in advance, encrypted by a shared key only residing in the
PolyRef server. It is embedded in the return POST as a hidden field. In Fig. 7,
“KYTr29y7rhKJP6” is the hidden field containing the encrypted constant.

Fig. 7. Value distributed across multiple fields Fig. 8. Business logic attack

5 Case Study

We study several real-world automated attack cases, and show how PolyRef
defeats them with only reference polymorphism. Note that we only consider
contemporary attacks (i.e., attacks that already exist today) in this Section. We
will discuss future attacks in Section 8.

5.1 Cross-Site Request Forgery

Let’s look at a cross-site request forgery (CSRF) attack on bank.com. It has a
web page with a form that allows its customers to transfer money.

Assume Alice wants to transfer $50 to Bob. Although the POSTmethod is used
in the money transfer form, bank.com has accidentally allowed GET requests as
well. Our malicious attacker, Mallet, exploits the vulnerability to automate a
form submit with the URL http://bank.com/transfer.jsp?to account=Mall

et&amount=1000 which will transfer $1000 from an unwitting victim to himself.
There are a couple of ways Mallet can trick Alice into submitting the URL.

One way is to include the request as an HTML image element in an email to Alice.

Polymorphism as a Defense for Automated Attack of Websites 523

Her browser will make the request automatically as if it were any other image
content on a page <img src=http://bank.com/transfer?to account=Mallet

&amount=1000>. If Alice’s bank keeps her authentication information in a cookie,
and if the cookie has not expired, then the attempt by Alice’s browser to load the
image will submit the transfer request along with her cookie, thus authorizing a
transaction without Alice’s knowledge.

We can see that in this case, the CSRF attack must have fixed symbols for the
forms parameters to work. Polymorphic references therefore stop these attacks.

5.2 Business Logic Denial-of-Service

Denial-of-service attacks have moved up the web stack from early Smurf attacks
to syn floods to more modern socket exhaustion attacks. The next generation of
DoS attacks focus on computationally intensive requests on back-end servers.

For web applications that must remain up-to-date or for content that cannot
be cached for other reasons, distributing content on a worldwide content delivery
network (CDN) is not an option. Thus requests must reach back to centralized
back-end servers. One example of an attack that reaches back to a back-end
server is a branch locator function.

An attacker could craft a POST like the one shown in Fig. 8 that asks a website
for branch locations. This computationally intensive request could be made at
arbitrary rates from a botnet until the server collapses under the computational
load.

This attack is difficult to stop using current defenses. It bypasses CDN caching
and does not rely on volume to overwhelm servers. It contains no malicious
signature as it is, in fact, a perfectly valid request. However, if the site operator
stops automation the attack is stopped.

It is clear to see that the attack shown in Fig. 8 will fail by applying reference
polymorphism.

6 Design and Implementation

We constructed a prototype of PolyRef, implemented as a special case of a trans-
parent HTTP proxy located adjacent to the web server. When a web page passes
through this special proxy, PolyRef finds the target forms and then replaces se-
lected content with a revised version applying reference polymorphism described
in Section 4. Note that a different polymorphic variant is applied for each page
request. When the form is later submitted, the same special proxy restores the
key/value pairs of the form to the expected content so the protected web appli-
cation continues to operate without modification. Since many websites terminate
SSL at the load balancer, our special proxy would never see HTTPS and hence
our implementation does not handle SSL directly.

Our implementation addresses the following scenario: A company — without
modifying its own web servers — installs PolyRef as per Fig. 1. The implementa-
tion therefore needs to handle the complexity of modern web page design, includ-
ing the use of CSS and JavaScript. There are two distinct phases for handling

524 X. Wang, T. Kohno, and B. Blakley

each web page. The first is a pre-computation phase, in which PolyRef learns
the relevant symbols. This phase is performed automatically the first time a new
page is processed and then cached, and hence can employ heavyweight tech-
niques. Following the pre-computation phase is the application phase, in which
the polymorphic techniques are applied. Our description below focuses on the
pre-computation phase.

6.1 Web Page Transformation

If an HTTP response contains a web page, PolyRef will transform it to its
polymorphic version with the polymorphic techniques described in Section 4.
The transformation is trivial, if the page contains only plain HTML without
CSS and JavaScript. However, today almost all web pages contain CSS and
JavaScript. We must make symbols consistent among JavaScript, HTML, and
CSS; otherwise, the functionality may be broken.

The process of the web page transformation is as follows. In the first step,
we find target forms for transformation. The target forms are configured in a
profile. We use a HTML parser to parse the web page into a DOM tree. The
target forms are identified in the DOM tree. To keep consistency, once we find
all relevant symbols, we need to accurately identify all references to them in
CSS and JavaScript. A simple regular expression match may have problems.
For example, the string username in line 12 of Fig. 9 is a reference to the field
username, while the one in line 16 is not. To make symbols consistent among
JavaScript, HTML, and CSS, in the second step, we parsed JavaScript and CSS
into abstract syntax trees (ASTs). ASTs can tell us if a symbol is a property of
a form. For example, as shown in Fig. 10 (2), username is the property of the
form; while username in Fig. 10 (1) is not.

There are cases where relying on ASTs alone is not enough. For example,
variable pwd in line 11 of Fig. 9 will be used to get the reference to field password

and should be made consistent. To handle these cases, we do a static analysis in
the analyzer step. We exploit several compiler optimization techniques such as
constant folding and propagation in this step. By exploiting constant folding and
propagation, the value of variable in line 11 of Fig. 9 will be made consistent.
After all references are identified, symbols are randomized consistently across
HTML, JavaScript, and CSS, and a new web page is generated in the serializer
stage.

In this implementation, two cases are handled with human assistance. First,
the fields of forms may be referenced in the eval function. Second, forms may
be dynamically generated by JavaScript. Future work could potentially address
these cases via more sophisticated automation or – changing the model slightly
– combining the earlier approach with annotations or support at the web server.

6.2 HTTP Request Restoration

When the transformation is made, the mapping between symbols and random-
ized values is encrypted and added to the target form as a hidden field. When

Polymorphism as a Defense for Automated Attack of Websites 525

Fig. 9. HTML consistency example Fig. 10. AST examples

an HTTP POST request arrives, PolyRef decrypts the mapping and restores the
names in the name-value pairs of the HTTP POST back to original values so the
underlying web application requires no changes to work with the PolyRef. Note
the encryption key is a only known by PolyRef and can be periodically rotated.

7 Evaluation

We designed three experiments to evaluate the prototype implementation of
PolyRef. The first two experiments tested the effectiveness, and the third exper-
iment tested the performance. We will discuss future attacks in Section 8.

7.1 Fake Account Creation Attack

In this Section, we first demonstrate a fake account creation attack, and then
show the result after applying PolyRef. We examined the Top 10 Alexa websites,
found four of them (Facebook, Yahoo, Twitter, and LinkedIn) did not require
CAPTCHAs in the account creation page. We used Facebook as an example for
our attack. To avoid directly attacking Facebook, we mirrored the front page
(login and account creation page) of Facebook.com. We wrote a simple back-end
which stored the created accounts in a database.

526 X. Wang, T. Kohno, and B. Blakley

Fig. 11. Fake account creation function. It be-
gins by creating a Firefox driver and visit-
ing the account creation page. It then uses
the web driver API find element by id and
find element by name to find all fields of the
account creation form. It fills the fake account
data into the fields by send keys API and
pick select item and pick radio item func-
tions. Finally, it clicks the form submission.

Victim
(Infected wtih Zeus)

Hacme
Bank

PolyRef

Fig. 12. Zeus MitB experiment setup

Fig. 13. Page injection Config for
Hacmebank. The config tells Zeus to
find the Hacme bank transfer account
page to inject two pieces of code.
The first one hijacks onclick func-
tion of “transfer” button. The sec-
ond one performs the malicious trans-
fer: replaces the transfer destination
to the attacker’s account 05. Param-
eter set url sets the attack target;
Parameter data before describes the
data to search for before the injec-
tion; Parameter data inject is the
actual script that will be injected.

The attack is written as a Python script using Selenium Webdriver API.
Selenium is a software testing framework for web applications. The attack script
exploits SeleniumWebdriver API to drive a Firefox browser to launch the attack.
Fig. 11 shows the source code of the fake account creation function. It only
contains tens of lines of Python code. Note that the Python import header is
ignored for brevity.

We used the attack script to attack our mirrored Facebook.com and we suc-
cessfully created 1000 accounts. We deployed a PolyRef in front of the mirrored
Facebook.com. We launched the attack again, and all 1000 attempts failed. We
tested the account creation manually through the user interface and creation
still works with PolyRef deployed.

7.2 Zeus MitB Attack

In this experiment, we show how Zeus performs a Man-in-the-Browser attack.
Then, we demonstrate how our PolyRef blocks Zeus’s attack.

Experiment Setup. Fig. 12 shows the setup of this experiment. We used
McAfee’s Hacme Bank, a security training bank application built on Microsoft

Polymorphism as a Defense for Automated Attack of Websites 527

IIS/.Net framework. It is a database driven application. Hacme Bank provides a
minimal representation of a financial institution such as authenticated accounts
with balances and fund transfers between accounts.

Alex is a customer of Hacme Bank. Unfortunately, Alex’s laptop is infected
with Zeus malware. When Alex logs into Hacme Bank, the Zeus malware hijacks
the session by page injection and secretly transfers money to attacker Mallet. One
benefit of page injection is that Zeus is able to bypass two-factor authentication.

Victim Alex’s machine is installed with Windows 7, Service pack 1, and IE 10
is installed and used as the browser. The victim machine was infected with our
custom Zeus, created with a Zeus 2.0.8.9 builder. It is configured with a page
injection file webinjects.txt, shown in Fig. 13.

Experiment. In the experiment, we show account transfers from a clean ma-
chine and a machine infected with Zeus. We created user Alex and two accounts
01 and 02. We also deposited $10000 and $100 into these two accounts, respec-
tively. We started the victim machine without Zeus infection. We logged into
Hacme Bank as Alex. We did an account transfer: $1000 from account 01 to 02.
The account balance of account 01 and 02 became $9000 and $1100, respectively.

Then, we infected the victim machine with the Zeus sample created in our
setup. We did another transfer after infection: $500 from account 01 to 02. The
account balance shows $500 was deducted from account 01, but the balance of
account 02 did not increase. The transaction details show the transfer destination
is account 05 instead of account 02. This transaction was hijacked by Zeus.

We then deployed the PolyRef. We did a final transfer: $400 from account 01
to account 02. We checked the account balance and transaction details. There are
no malicious transactions. The result shows PolyRef successfully deflected the
Zeus MitB attack. The Zeus MitB attack failed to reference the account transfer
form WelComeForm and the payment destination field ctl03 txtExternalPaymen

tAccount in the doTransfer function (Fig. 13) because of the reference poly-
morphism.

7.3 Performance

In this experiment, we showed that the additional latency to deliver the login
page for a popular e-commerce website is very low—if we cache the results of
our first-time analysis. We ran PolyRef on a laptop with a quad-core Intel CPU
and 16G memory. We used the laptop as a proxy to visit the login page of the
tested website, stubhub.com3. The average additional latency to load the login
page is shown in Table 2. We tested the latency with 1 to 32 concurrent threads
in 6 tests, and each test was performed for 60 seconds. We used Apache JMeter
to measure the result. Note that we started our test after page analysis cache
was created during the first visit. Although the first-time analysis of the page
(particularly the JavaScript) is time-consuming, it only needs to be done once.

3 One of the largest online ticket marketplaces.

528 X. Wang, T. Kohno, and B. Blakley

Table 2. The latency generated by PolyRef

Concurrent threads 1 4 8 16 24 32

Average latency (ms) 4 4 6 10 13 13

8 Discussion

We view PolyRef as the first step in polymorphic defense for websites. Adver-
saries, once they learn about PolyRef, may be able to tailor their attack tech-
niques to target PolyRef’s current defenses. In this section we discuss potential
challenges and next steps, and we encourage future research on polymorphic
defenses for web security.

8.1 Attacker Response

Field polymorphism raises the bar for advanced DOM attacks. An adversary may
respond to field polymorphism by automatically extracting the sequence code
from the dynamically generated JavaScript for each page served. It may be not
hard for a skilled adversary to manually reverse the obfuscated JavaScript code
of a page and extract the sequence code. However, DOM attacks have to perform
automatic static analysis, as the sequence code is unique for each page served.
Automatic static analysis of JavaScript is difficult, if not impossible, due to a
number of dynamic features [16] and hard-to-understand semantic features [12]
of JavaScript. In addition, the dynamically generated JavaScript can be highly
obfuscated which makes the automatic analysis even harder. Obfuscation tech-
niques including, but not limited to, variable and function name replacement,
dead code insertion, encryption, string and number encoding, eval hiding, and
opaque predicates, can be used to impede future attacks.

Eval hiding — hides the usage of eval function. Eval is commonly used to run
code stored as a string in a variable which makes static analysis hard or even
impossible. To hide uses of eval function, eval functions are assigned to various
randomly named variables.

Opaque predicate — is defined as an expression for which the outcome is
predetermined to be always true or false. The most simple example of this is
expression if (true). Opaque predicates can thwart static analysis by constructing
expressions that are not so simple to determine without evaluating them inside
the targeted environment.

8.2 Limitations

The limitation of PolyRef is that it does not prevent GUI attacks (where the
attacker controls a real browser and interacts by directing mouse movement
and keystrokes) as defined in Section 2. A GUI attack is equipped with a fully
functional browser and sends OS mouse and keyboard events to the browser to

Polymorphism as a Defense for Automated Attack of Websites 529

simulate human interaction. It positions the input focus by x, y coordinates or
relative vectors, and then streams keystrokes into the field of focus. As the attack
relies on fixed x, y coordinates of web UI elements, a new type of polymorphism—
view polymorphism, where view will be varied for each page served, may be
used to impede such attacks. For example, locations of forms and fields can be
changed slightly for each HTTP request, so that the x and y coordinates are
unpredictable. In practice, moving a form slightly down in the browser may
not affect the user experience. On the other hand, as mentioned in Section 2,
the attack relies on simulating keyboard and mouse activity so the behavioral
biometric method [13, 14] mentioned in Section 3, which can tell the difference
of mouse and keystroke behaviors between human and bot, could be used to
complement PolyRef. Finally, the impact of GUI attacks is limited; that method
does not enable CSRF or non-persistent XSS attacks.

9 Conclusion

We propose PolyRef, a method for a polymorphic defense to defeat automated
attacks on web applications. PolyRef broadly deflects many types of automated
attacks. As a preventive technique, it does not have false positive or false nega-
tives. Further, the PolyRef concept is transparent to the web server, and most
importantly, it has no deleterious user impact.

References

1. Belgisch gerecht ontdekt oplichting bij internetbankieren (2010)
http://www.hbvl.be/nieuws/economie/aid956766/

belgisch-gerecht-ontdekt-grootschalige-bankfraude.aspx

2. BIG-IP application security manager (2013),
http://www.f5.com/pdf/products/

big-ip-application-security-manager-ds.pdf

3. Multi-factor authentication (2013),
http://en.wikipedia.org/wiki/Multi-factor_authentication

4. Mykonos web security (2013),
http://www.mykonossoftware.com

5. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: Proceedings of the 15th ACM Conference on Computer and Communications
Security, CCS 2008, pp. 75–88. ACM, New York (2008)

6. Chu, Z., Gianvecchio, S., Koehl, A., Wang, H., Jajodia, S.: Blog or block: Detecting
blog bots through behavioral biometrics. Comput. Netw. 57(3), 634–646 (2013)

7. Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Who is tweeting on twitter: Human,
bot, or cyborg? In: Proceedings of the 26th Annual Computer Security Applications
Conference. ACM, New York (2010)

8. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks.
In: Proceedings of the Usenix Security Symposium 2003, Berkeley, CA, USA,
pp. 243–255. USENIX Association (2003)

http://www.hbvl.be/nieuws/economie/aid956766/belgisch-gerecht-ontdekt-grootschalige-bankfraude.aspx
http://www.hbvl.be/nieuws/economie/aid956766/belgisch-gerecht-ontdekt-grootschalige-bankfraude.aspx
http://www.f5.com/pdf/products/big-ip-application-security-manager-ds.pdf
http://www.f5.com/pdf/products/big-ip-application-security-manager-ds.pdf
http://en.wikipedia.org/wiki/Multi-factor_authentication
http://www.mykonossoftware.com

530 X. Wang, T. Kohno, and B. Blakley

9. Czeskis, A., Moshchuk, A., Kohno, T., Wang, H.J.: Lightweight server support for
browser-based csrf protection. In: Proceedings of the 22nd International Conference
on World Wide Web, WWW 2013 Companion, Republic and Canton of Geneva,
Switzerland, pp. 273–284. International World Wide Web Conferences Steering
Committee (2013)

10. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010)

11. Fontana, J.: Password’s rotten core not complexity but reuse (March 2013),
http://www.zdnet.com/passwords-rotten-core-

not-complexity-but-reuse-7000013019/

12. Gardner, P.A., Maffeis, S., Smith, G.D.: Towards a program logic for JavaScript.
In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2012, pp. 31–44. ACM, New York (2012)

13. Gianvecchio, S., Wu, Z., Xie, M., Wang, H.: Battle of botcraft: Fighting bots in
online games with human observational proofs. In: Proceedings of the 16th ACM
Conference on Computer and Communications Security, CCS 2009, pp. 256–268.
ACM, New York (2009)

14. Gianvecchio, S., Xie, M., Wu, Z., Wang, H.: Measurement and classification of hu-
mans and bots in internet chat. In: Proceedings of the 17th Conference on Security
Symposium, SS 2008, pp. 155–169. USENIX Association, Berkeley (2008)

15. Heiderich, M.: Csrfx (2007), http://php-ids.org/category/csrfx/
16. Jensen, S.H., Jonsson, P.A., Møller, A.: Remedying the eval that men do. In: Pro-

ceedings of the 2012 International Symposium on Software Testing and Analysis,
pp. 34–44. ACM, New York (2012)

17. Jovanovic, N., Kirda, E., Kruegel, C.: Preventing cross site request forgery attacks.
In: Second IEEE Communications Society/CreateNet International Conference on
Security and Privacy in Communication Networks. IEEE (2006)

18. Kee, T.: Beyond cookies: digital fingerprints may track personal devices (December
2010), http://econsultancy.com

19. Miessler, D.: Bypassing WAF anti-automation using burp’s cookie jar (September
2013), http://www.danielmiessler.com

20. Ollmann, G.: Stopping automated application attack tools. Technical report, Black
Hat Europe 2006 (2006)

21. Sheridan, E.: OWASP CSRFGuard project (2008),
http://www.owasp.org/index.php/CSRF_Guard

22. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard ai
problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 294–311. Springer, Heidelberg (2003)

23. Yan, J., El Ahmad, A.S.: Usability of CAPTCHAs or usability issues in CAPTCHA
design. In: Proceedings of the 4th Symposium on Usable Privacy and Security,
SOUPS 2008, pp. 44–52. ACM, New York (2008)

http://www.zdnet.com/passwords-rotten-core-not-complexity-but-reuse-7000013019/
http://www.zdnet.com/passwords-rotten-core-not-complexity-but-reuse-7000013019/
http://php-ids.org/category/csrfx/
http://econsultancy.com
http://www.danielmiessler.com
http://www.owasp.org/index.php/CSRF_Guard

Fragmentation Considered Leaking:
Port Inference for DNS Poisoning

Haya Shulman and Michael Waidner

Fachbereich Informatik
Technische Universität Darmstadt

Darmstadt, Germany
{haya.shulman,michael.waidner}@cased.de

Abstract. Internet systems and networks have a long history of attacks
by off-path adversaries. An off-path adversary cannot see the traffic ex-
changed by the legitimate end points, and in the course of an attack it
attempts to impersonate some victim by injecting spoofed packets into
the communication flow. Such attacks subvert the correctness and avail-
ability of Internet services and, among others, were applied for DNS
cache poisoning, TCP injections, reflection DDoS attacks.

A significant research effort is aimed at hardening client systems against
off-path attacks by designing challenge-response defences, whereby ran-
dom challenges are sent with the request and the responses are validated
to echo the corresponding values.

In this work we study the security of a standard and widely deployed
challenge-response defence port randomisation, and show that off-path
attackers can efficiently and stealthily learn the ports selected by end
systems.

We show how to apply our techniques for DNS cache poisoning. We
tested our attacks against standard and patched operating systems and
popular DNS resolvers software. Our results motivate speeding up adop-
tion of cryptographic defences for DNS.

Keywords: Challenge-response defences, DNS cache poisoning, frag-
mentation.

1 Introduction

Cryptography has known decades of research with numerous schemes, however,
very few of those results are actually used in practice. Most Internet traffic is still
not cryptographically protected, and basic systems and protocols, such as routing
and naming, that constitute foundations of the Internet, are not protected. There
is some (albeit limited) deployment of cryptography, mainly for protection of web
traffic, e.g., based on the CAIDA dataset of 3 million packets [1] we found that
only about 6% of the TCP traffic is cryptographically protected with SSL/TLS.

Currently, most systems deploy challenge-response defences, which provide
security guarantees against off-path adversaries. Unlike a man-in-the-middle
(MitM) adversary, an off-path adversary cannot observe nor modify legitimate

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 531–548, 2014.
c© Springer International Publishing Switzerland 2014

532 H. Shulman and M. Waidner

packets exchanged between other parties. Off-path adversaries typically launch
attacks by transmiting packets that contain a spoofed (fake) source IP address
- impersonating some legitimate party; see attacker model in Figure 1. Spoofed
packets are used in many attacks, most notably, in cache poisoning and Denial of
Service (DoS) attacks. Significant efforts are invested to enforce ingress filtering,
[RFC3704], in order to prevent spoofing. However, IP spoofing is still possible
via many ISPs and networks, [2].

Fig. 1. Off-Path Attacker Model

Challenge-response authentication provides
means to distinguish between packets sent
from spoofed source IP addresses and pack-
ets exchanged between legitimate communi-
cation end-points. In order to authenticate a
response from a server, a client sends a ran-
dom challenge within the request, which the
server echoes in the response. Since an off-path
attacker cannot eavesdrop on the packets ex-
changed between the server and the client, it
appears that it would have to guess the challenge. Thus, a challenge, selected at
random from a large distribution, should suffice to prevent an off-path attacker
from crafting a response packet with valid challenge values.

The security of most Internet services, e.g., email, web surfing, DNS, peer-
to-peer applications, relies on challenge-response mechanisms, mainly as part
of the underlying transport and application layer protocols. A popular defence
at the transport layer, supported by vast majority of the systems, is port ran-
domisation, whereby the response is validated to have arrived on the same port
from which the request was sent. Challenge-response defences in the applica-
tion layer include widely-used web-security mechanisms based on cookies, such
as in HTTP, or identifiers, such as in DNS. Trivially, challenge-response mech-
anisms are ineffective against MitM adversaries, since they can eavesdrop on
the challenges and copy their values to responses. However, there is ‘hope’ that
challenge-response defences should suffice to foil attacks by off-path adversaries.

In this work we focus on DNS security against off-path adversaries, especially
in light of the recent standardisation efforts to further enhance DNS security with
challenge-response mechanisms, [RFC6056, RFC4697, RFC5452]. These recom-
mendations were standardised following Kaminsky’s DNS cache poisoning attack
in 2008, but most of them were known security measures also before.

In a DNS cache poisoning attack the attacker triggers a DNS request and
then sends multiple spoofed responses, each containing different values, trying
to guess the correct challenges. The first response with the correct values in
challenge fields is accepted and cached by the DNS resolver; subsequent responses
are ignored.

The attacker can use DNS cache poisoning to redirect clients to incorrect
addresses, e.g., for spam, or malware distribution, credentials theft, or even to
gain MitM capabilities for communication to the victim domain.

Fragmentation Considered Leaking 533

1.1 Challenge-Response Authentication

Following Kaminsky’s cache poisoning attack, DNS resolverswere quickly patched
to support challenge-response defences against cache poisoning. Most existing
challenge-response mechanisms are ‘patches’, randomising and validating existing
fields in the TCP/IP protocols. We next review standardised and most commonly
used challenge-response authentication mechanisms.

DNS uses a random 16-bit TXID (transaction identifier) field that associates
a DNS response with its corresponding request. DNS implementations addition-
ally support a random selection of name servers each time they send a request.
The main defence, that makes poisoning impractical is a (16-bit) source port ran-
domisation recommended in [RFC5452], which together with a TXID result in
a search space containing 232 possible values; a source port identifies the client-
side application in requests, and is echoed (as a destination port) in responses.
Specific recommendations for port randomisation algorithms were recently pro-
vided in [RFC6056]. Due to the significance of port randomisation for preventing
off-path attacks, e.g., cache poisoning and injections into TCP, multiple studies
were conducted to measure support of port randomisation in the Internet, and it
seems that many resolvers adopted port randomisation methods that were rec-
ommended in [RFC6056]; we also confirmed this using CAIDA’s data traces [1],
see Section 3. Furthermore, a number of DNS checker services, e.g., [3–5], were
set up to enable clients to validate predictability of the ports supported by client
systems, and algorithms recommended in [RFC6056] are reported secure.

Indeed, security of most DNS resolvers relies on these challenge-response
mechanisms, and support of TXID together with source port randomisation,
are believed to provide sufficient defence against attacks by off-path adversaries.

Notice however, that port randomisation, as well as other challenge-response
mechanisms, do not prevent attacks by MitM adversaries. To protect DNS
against a MitM, a cryptographic mechanism, DNSSEC [RFC4033-4035], was
standardised already in 1997. DNSSEC is a standard for signing DNS records,
allowing resolvers to validate DNS responses. However, so far, DNSSEC is not
widely deployed, both at the zones as well as at the resolvers. For example,
Google reports that less than 1% of the DNS records it retrieves are signed;
and [6, 7] tested queries to org and found that 0.8% of the resolvers were vali-
dating. Clearly, the deployment of DNSSEC is still very limited.

The goal of our work is twofold. (1) The vulnerabilities that we found and
present in this work indicate the dangers of incorrect modelling of adversar-
ial capabilities. In this work we present techniques allowing off-path attackers
to efficiently reconstruct the (believed to be secure) ephemeral ports that are
allocated in random kernel mode, thus allowing to derandomise standard port
randomisation algorithms. Our techniques use fragmented DNS responses in or-
der to elicit timing side channels. These side channels can be used to identify
the ephemeral ports’ sequence used by the victim system to a specific destina-
tion. We recommend fixes against our attacks in the short term. We notified
the operating systems vendors and recent Linux kernel was patched to support
our (immediate) short term recommendations [8]. (2) Our main message is to

534 H. Shulman and M. Waidner

emphasise the significance of cryptographic defence, DNSSEC, which provides
systematic protection even against other unforeseen vulnerabilities which may
be discovered in the future, and prevents attacks not only by off-path but also
by a stronger MitM adversary. We hope that the vulnerabilities that we found
will encourage wider adoption of DNSSEC.

1.2 Related Work

Recently, a number of DNS cache poisoning attacks were published. We review
them and put our contribution in context. The attacks can be grossly categorised
into three distinct classes: (1) injection of spoofed records via fragmentation, (2)
resolvers behind middleboxes and (3) source port inference.

Injection of Spoofed Records. When a DNS response is fragmented and the sec-
ond fragment is sufficiently large to contain a DNS record, an attacker can re-
place the second fragment with a spoofed one, which contains malicious records,
e.g., redirecting the client to incorrect hosts, [9]. Most DNS responses are not
fragmented, however, [9], presented techniques allowing to cause fragmentation.

Resolvers-Behind-Middleboxes. Resolvers behind middleboxes, e.g., NAT devices
or upstream forwarders, is a common setting in the Internet. However, attacks
were shown allowing port inferences in both settings, [10–12]. The idea behind
attacks is that the middlebox allows to attack the 232 search space sequentially:
the attacker first learns the port, and then, when it known the port, it sends 216
packets to match the correct TXID.

Source Port Inference. Kernel processing of incoming packets introduces side
channels which can be used to differentiate an open port from a closed one.
Recently, [13] showed how to apply it for port inference. However, the techniques
are effective on LANs and may be not suitable when the attacker is located on
a different network due to the noise introduced by the routers and intermediate
Internet devices.

In our work we improve over the results in [13], and present an effective and a
much more efficient technique, requiring much less traffic and resilient to network
noise.

Our Contributions

We show how off-path attackers can exploit fragmented DNS responses in order
to infer ports allocated by common operating systems that support algorithms
recommended in [RFC6056]. The ability to predict ports can be used for DNS
cache poisoning, and we show how to extend our attacks to poison patched DNS
resolvers software; we tested our attacks against Bind 9.8.1 and Unbound 1.4.19
DNS software.

Our techniques improve over the attacks presented in [10], which showed how
to predict ports of the resolvers located behind NAT devices. The limitation

Fragmentation Considered Leaking 535

of [10] is that the attacks apply only when resolvers are behind NAT devices,
and require a user-priviledged malware on the LAN. We show that using our
techniques much more efficient attacks are possible, which also do not require
a malware, and apply to a general scenario, as well as to resolvers behind NAT
devices.

We show how to extend our attacks for DNS responses interception. The lim-
itation of applying our techniques for packet interception is that it requires a
compromised host on the same LAN with the resolver, behind NAT or firewall
device. DNS responses interception allows to circumvent more sophisticated de-
fenses against cache poisoning, such as Eastlake cookies.

2 IP-Defragmentation Cache-Poisoning

In this section we present the basic technique IP defragmentation cache poisoning
which we apply as a building block throughout the rest of this paper.

IP Fragmentation. TCP/IP networks impose a limit, maximal transmission unit
(MTU), on the size of IP packets that they can support. If a packet exceeds the
MTU of the link to which it is being forwarded, it is fragmented to smaller
packets, i.e., fragments. Each fragment, of the original IP packet, is stamped
with the same IP identifier (IP-ID) as the IP-ID value in the original IP packet,
and is marked with an offset that corresponds to its location in the byte stream
of the original IP packet.

Fragments are stored in an IP defragmentation cache at the destination. When
all fragments comprising the original IP packet are received, they are reassem-
bled. Operating systems typically impose a limit on the number of cached frag-
ments per each (source, destination, protocol) triple. For example, in recent ver-
sions of the Linux kernel, the default value is 64, and older versions support up
to several hundreds of fragments. This limit is imposed via the ipfrag_max_dist
variable; see [14]. In order for fragments to be reassembled, they must match
in four parameters: source and destination IP addresses, transport protocol and
the IP-ID field. In IPv4, the IP-ID is a 16 bit field1 selected by the source.

If some fragments are lost or missing, the cached fragments cannot be re-
assembled and are discarded after a timeout (default value is 30 seconds). The
reassembled IP packet is then moved from the defragmentation cache, for trans-
port layer processing.

We performed a study of typical DNS response sizes of Top Level Domains
(TLDs) and top Alexa domains, [15], signed and non-signed; the results are
plotted in Figure 2. As can be seen, DNS responses signed with DNSSEC result
in much larger packets than traditional (unsigned) responses, and even the ‘non-
existing domain (NXD)’ responses that are signed, often exceed the maximal
transmission unit (MTU).

1 In IPv6, the IP-ID is 32 bits; we focus on IPv4, since adoption of IPv6 is still limited.

536 H. Shulman and M. Waidner

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

D
om

ai
ns

 (
%

)

Response Size (bytes)

Legend
DNSKEY (TLDs)
NXD signed (TLDs)
NXD (TLDs)
ANY (TLDs)
ANY signed (TLDs)
ANY signed (Alexa)

Fig. 2. Length of responses for signed and non-signed Alexa and TLDs, for ANY, DNSKEY
and A resource records; A records were sent for random subdomains of tested domains,
and resulted in NXD responses

14801480

14801480

14801480

00

14801480

14801480

00

Fig. 3. Defragmentation-cache poisoning via a spoofed second fragment

Replacing IP Fragments. Defragmentation-cache poisoning is reassembly of
spoofed IP fragments together with authentic fragments into a correct IP packet.
To perform IP defragmentation cache poisoning, the attacker has to cache in the
IP defragmentation cache of the victim, spoofed fragments, which contain the
same IP addresses as the authentic fragments, sent by the victim, the same IP-ID
and protocol fields. Using IP defragmentation cache poisoning, the attacker can
replace any authentic fragment, first, middle or last, with a spoofed fragment.

Fragmentation Considered Leaking 537

In order for IP to merge a spoofed fragment with a legitimate fragment,
the two fragments must match in four parameters: source and destination IP
addresses, transport protocol and the IP identifier (IP-ID) field. In our setting,
the attacker knows the IP addresses, and the transport protocol is UDP. Hence,
the only parameter, which the attacker may not know, is the value of the IP-ID. A
naive (brute-force) strategy is to try all possible IP-ID values, by sending multiple
spoofed fragments, each containing a different IP-ID value. The efficiency of the
attack can be significantly improved since most servers support predictable IP-ID
values. We collected statistics for name servers of top-level domains (TLDs) and
found the following common IP-ID allocation methods: sequentially incrementing
(supported by more than 70% of the name servers) and random (supported by
less than 1% of the name servers); see [9], for techniques to predict and hit the
correct IP-ID for each allocation method.

Let B denote the number of spoofed fragments sent by the attacker. The
defragmentation-cache poisoning attack for a special case2 where attacker re-
places a second authentic fragment with a spoofed one is illustrated in Figure 3.
The attack begins when the attacker sends B spoofed second fragments (step 1),
which are stored at the defragmentation cache of the destination (for 30 seconds
by default), and triggers a DNS request via a puppet (step 2). If one of the B
spoofed fragments, that the attacker sent, matches the reassembly parameters
in the authentic first fragment, they are reassembled.

The only value that the attacker may need to guess is the IP-ID value in
responses from the name server. The probability that the IP-ID of a legitimate
(fragmented) response matches the IP-ID of one of the (up to B) spoofed second
fragments, which the attacker sent, depends on the IP-ID assignment method;
see analysis of the efficiency of defragmentation-cache poisoning for common
IP-ID allocation methods: incrementing and random in [9], we briefly provide it
here for completeness.

Random IP-ID. In a random IP-ID allocation the name server selects the
IP-ID values in each response uniformly. Let n be the number of DNS requests
triggered by the attacker and B the number of spoofed second fragments sent
by the attacker. The probability for a successful poisoning can be expressed as
follows:

Pr[success] ∼= 1−
(
1− B

216

)n
(1)

See graph representing defragmentation cache-poisoning success probability,
based on Eq. (1), in Figure 4. As can be seen, for a default defragmentation
buffer of 64 = 26 and 256 parallel DNS requests, the chances are rather slim,
i.e., below 0.4. However, random IP-ID is not common among servers, e.g., less
than 1% of top-level domain name servers support it, and most deploy (varia-
tions of) incrementing IP-ID assignment. As we next show, incrementing IP-ID
allows much more efficient prediction strategy.

2 Extension to a general case is easy, and in this work, we focus on replacing second
fragments.

538 H. Shulman and M. Waidner

0

0.2

0.4

0.6

0.8

1

1 4 16 64 256 1024

P
oi

so
ni

ng
 S

uc
ce

ss
 P

ro
ba

bi
lit

y

DNS Requests Sent

#fragments (B)
26

210

212

214

Fig. 4. Defragmentation-cache poi-
soning success probability per at-
tempt, by analysis (Eq. (1)), for
B ∈ {64, 1024, 4096, 16384} (number
of fake second fragments in cache)

0

10000

20000

30000

40000

50000

60000

70000

20 40 60 80 100 120

IP
-I

D
 V

al
ue

s

Time (in seconds)

Fig. 5. Progress of globally in-
crementing IP-ID values of
a0.org.affilias-nst.info name server
of org TLD.

Incrementing IP-ID. A significant fraction (more than 70%) of the name
servers use incrementing IP-ID allocation methods. An attacker can query the
name server directly and find out the current IP-ID value (since the same counter
is used for sending packets to the attacker and to all other destinations, in-
cluding the resolver). However, the IP-ID may considerably change between
the query of the attacker and the query of the resolver, since the name server
receives queries from other sources too. Therefore, in busy nameservers, that
receive queries at a high rate, the IP-ID may grow very rapidly. Notice though
that even if the DNS requests’ rate to popular name servers is high, it is typi-
cally predictable. For example, in Figure 5, we show the measurements we ran
on a0.org.affilias-nst.info, one of the name servers of org, that supports
globally-incrementing IP-ID allocation; notice how rapidly the IP-ID ‘grows’
across the cyclic 16-bit counter field, yet it can be seen that the increments are
predictable.

Indeed, the IP-ID value can be extrapolated, and the reason for this is that
the query rate to name servers is stable, see [16].

To find the IP-ID value, the attacker measures the rate at which the name
server receives requests, then measures the latency between itself and the victim
resolver, and estimates the latency between the victim resolver and the name
server. Then it samples the current IP-ID value, by seding a query to the name
server. The attacker uses the response from the name server to extrapolate the
value of the IP-ID that will be assigned by the name server to the response that
it will generate for the resolver.

3 Port Derandomisation via IP Defrag-Cache Poisoning

In this section we describe port randomisation methods, standardised and de-
ployed in popular systems, and show how to apply IP defragmentation cache
poisoning, described in Section 2, for port derandomisation and discovery. IP de-
fragmentation cache poisoning was applied in prior art, but mainly for attacks

Fragmentation Considered Leaking 539

on performance, e.g., to ruin an IP packet, e.g., for denial of service attacks
see [RFC6274] and [17], or name server pinning, [10] or for injection, [9]. In this
work we present the first port derandomisation attacks using defragmentation
cache poisoning. Our techniques apply to standard, and widely deployed, port
assignment methods, supported by popular operating systems. This allows off-
path attackers to predict client ports for a wide range of attacks, including DNS
cache poisoning.

The Myth of Per-Destination Ports Security. A globally incrementing port al-
location is not considered secure, since the attacker can sample the current port
value, and then use it to extrapolate the next port value that will have been
assigned by the client to its DNS requests. Indeed, most systems currently sup-
port a per-destination incrementing port allocation algorithms, recommended in
[RFC6056]. A per-destination incrementing port is believed to be secure, since
different ports’ sequences are assigned by the resolver to different destinations;
in particular learning the port value to one destination does not leak the port
value assigned to some other destination. We checked, in [11], the predictability
rate assigned by the popular DNS checker service provided by the OARC [4], to
resolvers that send DNS requests with per-destination incrementing port. The
tool reported (the highest) great score, indicating that per-destination alloca-
tion methods are believed to be secure by the DNS experts. However, our results
(within) show otherwise.

The idea behind per-destination incrementing ports is that a different se-
quence is selected to each destination as follows: the first port to some desti-
nation is selected at random, and subsequent packets to that destination are
assigned sequentially incrementing ports. As a result, each destination knows
only the port sequence that is used for communication to it, and cannot learn
anything about communication to other destinations. Per-destination ports al-
location underlies most of the algorithms proposed in [RFC6056]; more details
in Section 3.2.

We collected statistics, [11], from two CAIDA datasets from 2012 [1] and
found that many DNS requests support incrementing ports; the packets’ traces
are collected by CAIDA on (several) backbone (OC192) links. We used the traces
to collect all the DNS requests (destination port 53) over UDP, and then filtered
out IP addresses with a single DNS request, and collected only the sources that
sent two or more requests. This allowed us to infer information about the source
port allocation of the remaining DNS requests. We found that 54% of the requests
were sent from incrementing ports.

In this section, we present attacks against standard and widely deployed
port randomisation algorithms. We first show an attack against a popular per-
destination algorithm, supported by Linux kernel OS, and then show extensions
against other algorithms recommended in [RFC6056].

540 H. Shulman and M. Waidner

3.1 Predicting Linux OS Ports

In Linux OS kernel, the initial port to some destination is selected at random, and
subsequent ports to that destination are incremented sequentially. This method
is in fact a special case of Algorithm #3 [RFC6056] in Section 3.2, except that
a distinct counter is maintained to each destination (instead of a global counter
for all destinations). We show how to apply fragmentation to traverse the ports’
range, in descending order, from the highest to lowest until correct port is found3.

When traversing the ports’ range, at each iteration i the attacker can sam-
ple more than a single port. For instance, if attacker samples p ports at each
iteration, in the worst case, the attacker ‘meets the resolver’ after 216

2p attempts.

0.0009

0.02

0.06

0.25

1

8 16 32 64 128 256 512

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Number of Requests [log-scale]

Iterations
1
10
50
100
250

Fig. 6. Discovery of ‘random’ ephemeral ports’ sequences against Linux Kernel, by
applying defragmentation cache poisoning. The attacker uses the latency of DNS
responses as a timing side channel to learn whether the correct port was hit.

The search distribution is composed of ports’ pool and of the TXIDs range.
We next show how to apply IP defragmentation-cache poisoning to split the
distribution of TXIDs and ports values to two separate distributions of size (at
most) 216 each (assuming an ideal case where a maximal number of ports is
used).

The steps of the attack are illustrated in Figure 7. We assume that the attacker
already discovered the IP-ID value using techniques described in Section 2.

The idea is to use fragmentation to overwrite the transport layer header of
the fragmented IP packet sent by the name server to the resolver. In each such
attempt the attacker sends a spoofed fragment with a source IP of the name
server and includes a guess for a port. If the guess is correct - the response
is accepted and cached by the resolver. Otherwise, if the port in the spoofed
fragment is incorrect - the resolver rejects the response, and retransmits the
3 Often not all ports are used by the OS. DNS running on Windows server 2008 uses

ports range (49152−65535) and Windows 2000/XP/server 2003 use ports from range
(1025 − 5000). Older Bind versions use fixed ports. This results in ranges that are
significantly smaller than 216, e.g., it is considered safe to use ports in the range
(1024− 49152), [RFC5452].

Fragmentation Considered Leaking 541

√√

√√

??

√√

√√

√√

τ

∈{1,...,216}∈{1,...,216}

Fig. 7. DNS request port discovery: in step 1, the attacker plants a spoofed fragment
in the resolver’s defragmentation cache and then in step 2 the puppet triggers a DNS
request to a resource within the victim’s domain. The off-path attacker, in step 3, sends
its guess for a port. If failure, timeout event occurs, and the resolver retransmits the
DNS request. Otherwise, the attacker guessed the correct port.

request. The attacker uses the time till the response arrives, as a side channel,
to distinguish between the correct and an incorrect ports.

In order to overwrite the (UDP) transport layer header, the attacker has to
craft a spoofed first fragment, which is smaller than the original first fragment.
The spoofed first fragment is 8 bytes long, and contains a guess for a new port; its
purpose is to overwrite only the UDP header (also 8 bytes long) in the authentic
first fragment. Notice that when two fragments contain identical offsets, then the
last arriving fragment overwrites the first. Therefore, in order for the spoofed
fragment to overwrite the transport header of the authentic fragment, it must
arrive at the resolver after the first authentic fragment, and before the IP packet
is reassembled, when the authentic second fragment arrives. Notice that this is
not trivial, since once the two legitimate fragments arrive, they are immediately
reassembled. Thus the attacker has to ensure that the first legitimate fragment
remains in the defragmentation so that its header can be overwritten. To achieve
that, the attacker has to plant a spoofed second fragment, similarly to attack in
Section 2, which will be reassembled with the legitimate first fragment.

542 H. Shulman and M. Waidner

Attack. We next describe the steps of the attack.
Let f = f1||f2 be the IP packet consisting of two fragments f1 starts at offset

0 and is of length N1 and f2 starts at offset N1 and is of length N2.
(1) attacker triggers a DNS request (whose response is fragmented).
(2) the attacker sends a spoofed second fragment f ′

2, starting at offset (N1+Δ),
where Δ is some number of bytes.

(3) When the first authentic fragment f1 arrives it is reassembled with the
spoofed second fragment f ′

2 that is already waiting in the defragmentation cache;
when the authentic second fragment f2 arrives, it is discarded since a spoofed
fragment starts and ends at a higher offset (N1 +Δ). However, the reassembled
IP packet does not leave the defragmentation cache since there is a gap of Δ
bytes that are still missing.

(4) The attacker sends a short fragment that overwrites only the UDP header
in the original first fragment. This fragment overlaps with the first 8 bytes (the
UDP header) in the authentic first fragment; the spoofed fragment contains
checksum 0, which indicates that checksum validation is disabled4, more frag-
ments is set to 1 (mf=1), and offset is 0. When initiating the attack, the
attacker sets the UDP port in this spoofed first fragment to 216, and decrements
its value during each subsequent iteration.

(5) Finally, the attacker sends a fragment that starts at an offset N1 and is
of size Δ. This fragment fills the missing gap.

Following reassembly, these fragments result in a complete IP packet, that
leaves the IP defragmentation cache and is passed to upper UDP layer.

If the attacker guessed the port correctly, in step (4), the DNS resolver will
cache and forward the response to the puppet. In contrast, if the port is incorrect,
the resolver will discard the DNS response; as a result, a timeout event will
occur, and the resolver will retransmit the request again. The attacker uses the
differences in responses’ latencies as a side channel to detect guessing the correct
port.

Analysis. Let r be a DNS response size in bytes. Let R bytes/sec be the trans-
mission rate of the attacker. Let t seconds be a limit on the timeout for a DNS
request (i.e., including all retransmitted requests for that query) and let q be
a number of times a pending query is retransmitted until it is terminated and
serverfail is returned.

Resolvers implement retransmission policy based on round trip time estimates
of the name servers, [RFC1536], and support timeout management with expo-
nential backoff. When a timeout occurs resolver enters an exponential backoff
phase, i.e., the timeout is doubled, and query is retransmitted. Resolvers im-
plement variable timeout and retransmission values, typically up to 45 seconds
(which is also a recommended ceiling for total timeout for a query [RFC1536]),
and attempt up to 15 retransmissions. For instance, Unbound 1.4.19 sets t to a

4 UDP checksum validation is optional, and it can be disabled by name servers by set-
ting it to 0 (0000 in hexadecimal). When the checksum is disabled it is not validated
by the resolvers.

Fragmentation Considered Leaking 543

maximal value of 40 seconds and Bind 9.8.1 sets t ≤ 30 seconds and q ≤ 10, i.e.,
supports up to 10 retransmissions before terminating a query.

In each retransmission the resolver advances the port (in case an incrementing
allocation is supported). This allows the attacker to sample a number of ports in a
single iteration (since with each retransmission there is a new pending request).
Once the port is known the attacker launches a DNS cache poisoning attack,
i.e., sends 216 spoofed DNS responses, for some victim domain, such that each
response contains a different TXID value.

The number of iterations required to hit the correct port in the worst case is:
215

(q+1) for a per-destination incrementing port assignment; during each iteration
the attacker matches the original query and up to q query retransmissions. Since
the attacker does not need to match the TXID, at each iteration only 3 fragments
are sent; this significantly reduces the complexity of the naive cache poisoning
attack, where the attacker attempts to hit both the correct port and the correct
TXID.

The worst-case number of requests required to guess the port is 215

(q+1) . Dur-
ing each iteration 3(q + 1) fragments are sent, thus the worst case number of
fragments is 3(q + 1) · 215

(q+1) = 3 · 215.
Once the port sequence is known, the attacker launches the traditional DNS

cache poisoning attack: (1) triggers a DNS request and (2) generates and trans-
mits 216 forged DNS responses (with a spoofed IP address of the victim name
server) such that each DNS response contains a different value of the TXID, and
the port number, which was guessed earlier. One of the responses, that contains
the correct value of TXID, is accepted and cached by the resolver. The analysis
of the attack is presented in Figure 6.

We next calculate the success probability, the required worst case number of
attack iterations and the number of requests triggered by the puppet, and the
number of fragments sent by an off-path attacker.

The probability of hitting the correct port in a single attempt, when triggering
Q DNS queries, is: Pr[success] = Q

216 .
The success probability during ith iteration of the attack is:
Pr[success] = Q

216−i·Q .

In the worst case the attack has to be repeated at most i ≤ 216

2·Q = 215

Q

iterations (assuming that at each iteration the attacker sends Q queries). The
number of DNS requests, sent by the client, in the worst case is: Q · 215

Q = 215.
Total number of sets of fragments (i.e., three fragments each time, as described
in Figure 7), sent by off-path attacker is: N · 215

Q .
Notice that the attacker can reduce the number of iterations by sampling

more ports in each iteration, and it can also reduce the number of requests in
each iteration by circumventing a ‘birthday protection’.

544 H. Shulman and M. Waidner

3.2 Inferring Ports Supported by other Algorithms

In each following subsection, we give an abstract presentation of the port alloca-
tion method recommended in [RFC6056] and show how it can be circumvented
using IP defragmentation cache poisoning.

Notice that only Algorithms #1 and #2, [RFC6056], select random port for
each outgoing packet, and thus are not vulnerable to port prediction attacks via
fragmentation. However, they are vulnerable to port exhaustion attacks, [10],
whereby the attacker occupies all the available ports except one, which is then
assigned to the query of the resolver.

Simple Hash-Based Port Selection. Simple hash based port assignment
method is described in Algorithm #3, [RFC6056]. The port selection algorithm,
at the sender, maintains a different offset to each destination. The offset is a
result of a pseudorandom function computed over a tuple (source IP address,
destination IP address, destination port, secret key). The algorithm uses a single
counter, incremented globally, by one, for each port allocation, and added to the
offset of the relevant destination. As a result, connections to different destina-
tions will have different sequences of port numbers, and one destination should
not be able to anticipate the ports allocated to the other. This algorithm was
supported by Linux OS kernel version 2.6, and was believed to be secure against
off-path attackers. Recent Linux versions also use a variation of per-destination
incrementing ports, see Section 3.1.

We show how to apply our IP defragmentation cache poisoning technique to
discover the ephemeral port used by a victim resolver to some destination name
server. The attacker learns the typical delay δ for a request to some name server.
The attacker then triggers DNS requests (via the puppet on the LAN), and
sends spoofed fragments for each candidate port that it samples, starting with
the highest port, and decrementing the port during each attempt. The attacker
learns when the correct port is hit, via the response latency. The ephemeral
port is found if during sampling of a candidate port z the response arrives after
τ > δ seconds. Otherwise, the attacker repeats the attack with a new port z− 1;
following a descending order of ports. When the correct port is hit, the resolver
accepts the DNS response. Otherwise, when an incorrect port is hit, the resolver
discards the response. This results in query retransmission by the resolver, and
adds more than a second to the response5.

Once the port is discovered, the attacker can use its value for attacks at some
later time, without the need to discover the port again. This is due to the fact
that the same counter is used to all destinations, thus the attacker only needs to
trigger a DNS request to a server that it controls, to check the current counter
value, and adjust the port value accordingly.

Double-Hash Port Selection. Algorithm #4, [RFC6056], builds on Algo-
rithm #3 (Section 3.2), but instead of keeping a globally incrementing counter

5 Typical latency for a DNS request and response is in the order of 100 ms.

Fragmentation Considered Leaking 545

for all destinations, it groups the destinations to m sets and uses a separate
counter to each set. The recommended value of m is 10, [18,19], however, as [19]
notes, larger m values provide for better port obfuscation, since the same counter
is not shared between too many clients. Notice that the special case of m = 1 is
supported in Linux kernel (Section 3.1).

Port derandomisation attack proceeds as follows: first, the attacker attempts
to find an IP address that falls within the same set as the target name server (the
goal of the attacker is to eventually discover the port, used by the resolver, to that
name server); the attacker may employ for its attack a number of compromised
hosts, e.g., bot computers that it controls (located in different networks and not
necessarily on the same LAN with the resolver). The idea is to trigger a request
to some host i, and then launch IP defragmentation cache poisoning to check
if the current port, allocated to the target server, was incremented; the port
sampling attack steps are similar to those presented against simple hash-based
port selection. If the port was incremented, then the host at IP address i falls
within the same set as the target name server. This host i can be used to sample
port increments.

Random-Increments Port Selection. Algorithm #5, [RFC6056], maintains
a globally incrementing counter to all the destinations, which is incremented
by (a randomly selected) N at each invocation of the ephemeral port alloca-
tion procedure. For N = 1 this is exactly the globally incrementing algorithm
implemented in Windows and FreeBSD operating systems.

The attack against simple hash-based port selection applies with a slight mod-
ification: the attacker has to sample N ports, instead of one, in each attempt.
Notice, that the actual value selected by the port allocation procedure can be
less than N , but since the attacker does not know its value, it has to sample N
ports each time in the worst case. Furthermore, when hitting the correct port,
the attacker cannot tell which, out of the sampled N ports, it was, and it only
learns that it was one the sampled ports. To reduce the success of port de-
randomisation attacks, N should be as large as possible. On the other hand,
large N increases the chance for port collisions due to ports’ reuse from previous
connections, and smaller values of N are required to reduce collisions.

4 Resolvers behind NAT Devices

A natural question is what is the impact of port derandomisation attack against
resolvers behind NAT devices. In fact, the same attack step, illustrated in Fig-
ure 7, apply, since the NAT itself reassembles IP fragments in order to be able to
forward the packet to the correct internal host on the LAN based on the ports.
This also improves over the attack in [10] which required a zombie order to leak
the port number used by the NAT, in packets payload, to the external attacker,
and used significantly more packets, rendering the attack impractical.

546 H. Shulman and M. Waidner

4.1 Are They Common?

To estimate what fraction of resolvers are located behind NAT devices, we ran
statistics on two CAIDA datasets from 2012 [1], that were collected on equinix-
chicago and equinix-sanjose monitors on high-speed Internet backbone links.
Both traces contained packets sent from distinct 89750 source IP addresses,
collected over two minutes interval. We ran the following test to check for DNS
resolvers behind NAT devices: (1) we collected all DNS requests, i.e., packets
sent to port 53; (2) we created a set of IP addresses that sent at least one DNS
request per second (to ensure that we do not mistakenly interpret a host for
a resolver behind a NAT; (3) we then parsed the traces to check if those IP
addresses also sent packets to other ports, including port 80, and 443. We then
concluded with high probability that those resolvers were behind NAT devices.
We came up with a total of 3492, out of 89750, resolvers behind NAT devices.

4.2 Packet Interception

In a setting where a victim resolver is located behind a NAT device, and the
off-path attacker controls a host on the same LAN, it can use the technique
described in Section 3 to intercept DNS requests sent by the resolver. Notice that
such a setting is common, e.g., the attacker may be a legitimate user on the same
organisational network with the resolver, or on a public wireless access network,
or it may control an infected host, i.e., user space malware would suffice (many
computers are infected with malware), on the same network with a resolver. The
same attack steps as in Section 3 apply, except that the target is the NAT device.
The internal host first sends a packet (or a number of packets) to the name server,
in order to create a mapping in the NAT table. The off-path attacker sends the
spoofed fragments (as in Section 3), to overwrite the port of authentic response
from the name server. The outcome of overwriting the port of inbound packets
traversing the NAT, is that the DNS response is sent to a different internal host,
i.e., the one that is identified by the new port which was used by the off-path
attacker in its spoofed fragment, instead of the designated recipient (i.e., the
resolver). Such attacks would enable circumvention of Eastlake cookies, and all
other non cryptographic defences.

5 Defenses

The vulnerabilities described in this paper are severe and apply to many systems
that support (variations of) per-destination ports assignment. We recommend
a number of short term client-side defences. Most notably, proper port ran-
domisation, which would prevent these attacks. Client side defences also include
firewall-based mechanisms, such as [20]. In particular, in [20] we showed two
techniques which make cache poisoning impractical: (1) we showed how to artifi-
cially increase the number of IP addresses allocated to a resolver, and (2) how to
detect poisoning attacks by keeping track of responses which contain incorrect
challenge-response values.

Fragmentation Considered Leaking 547

Another simple defence is to deploy IPv6. Its much larger IPv6 address space,
makes the attack impractical.

In the long term we recommend to deploy systematic defences, most notably
DNSSEC [RFC4033-RFC4035], which is the best defense against the poisoning
attacks. DNSSEC provides security not only against off-path but also against
MitM attackers. However, deployment faces multiple challenges and obstacles,
see [7, 21, 22] for details. We hope that our results will help motivate speeding
up adoption of DNSSEC and focusing efforts on investigation of the deployment
challenges.

6 Conclusions

We presented port inference techniques using timing side channels which IP de-
fragmentation cache poisoning makes available. Our techniques allow to predict
source ports selected by client systems supporting port randomisation algorithms
recommended in [RFC6056]. Our attacks effectively circumvent the ‘source port
randomisation (SPR)’ defence making DNS cache poisoning, and other attacks
which rely on ports’ prediction, practical. We applied our techniques for DNS
cache poisoning attacks agaist standard DNS resolvers, Bind 9.8.1 and Unbound
1.4.19, and popular operating system, Linux kernel OS. This attack is signif-
icant, since a large and growing number of networks support per-destination
algorithms recommended in [RFC6056].

Acknowledgements. We are grateful for support for CAIDA’s Internet Traces
[1] that is provided by the National Science Foundation, the US Department of
Homeland Security, and CAIDA Members.

References

1. Paulo, S.L.M., Barreto, S.D., Galbraith, C.O.: hEigeartaigh, and Michael Scott.
Efficient pairing computation on supersingular abelian varieties. IACR Cryptology
ePrint Archive, 375 (2004)

2. Beverly, R., Koga, R., Claffy, K.: Initial Longitudinal Analysis of IP Source Spoof-
ing Capability on the Internet. Internet Society Article (July 2013)

3. Corporation, G.R.: DNS Nameserver Spoofability Test (2012),
https://www.grc.com/dns/dns.htm

4. DNS-OARC: Domain Name System Operations Analysis and Research Center
(2008), https://www.dns-oarc.net/oarc/services/porttest

5. Provos, N.: DNS Testing Image (July 2008),
http://www.provos.org/index.php?/archives/43-DNS-Testing-Image.html

6. Gudmundsson, O., Crocker, S.D.: Observing DNSSEC Validation in the Wild. In:
SATIN (March 2011)

7. Lian, W., Rescorla, E., Shacham, H., Savage, S.: Measuring the practical impact
of dnssec deployment. In: Proceedings of USENIX Security (2013)

8. Neira, P.: Patchset of Netfilter Updates (2013),
http://patchwork.ozlabs.org/patch/307041/

https://www.grc.com/dns/dns.htm
https://www.dns-oarc.net/oarc/services/porttest
http://www.provos.org/index.php?/archives/43-DNS-Testing-Image.html
http://patchwork.ozlabs.org/patch/307041/

548 H. Shulman and M. Waidner

9. Herzberg, A., Shulman, H.: Fragmentation Considered Poisonous: or one-domain-
to-rule-them-all.org. In: The Conference on Communications and Network Security,
CNS 2013. IEEE (2013)

10. Herzberg, A., Shulman, H.: Security of Patched DNS. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 271–288. Springer,
Heidelberg (2012)

11. Herzberg, A., Shulman, H.: Vulnerable Delegation of DNS Resolution. In: Cramp-
ton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 219–236.
Springer, Heidelberg (2013)

12. Gilad, Y., Herzberg, A., Shulman, H.: Off-Path Hacking: The Illusion of Challenge-
Response Authentication. IEEE Security & Privacy (2014)

13. Herzberg, A., Shulman, H.: Socket Overloading for Fun and Cache Poisoning.
In: ACM Annual Computer Security Applications Conference (ACM ACSAC)
(December 2013)

14. Kernel.org: Linux Kernel Documentation (2011),
http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

15. Alexa: The web information company, http://www.alexa.com/
16. Wessels, D., Fomenkov, M.: Wow, thats a lot of packets. In: Proceedings of Passive

and Active Measurement Workshop, PAM (2003)
17. Gont, F.: Security Implications of Predictable Fragment Identification Values.

Internet-Draft of the IETF IPv6 maintenance Working Group (6man) (March
2012) (expires September 30, 2012)

18. Larsen, M., Gont, F.: Recommendations for Transport-Protocol Port Randomiza-
tion. RFC 6056 (Best Current Practice) (January 2011)

19. Allman, M.: Comments on selecting ephemeral ports. ACM SIGCOMM Computer
Communication Review 39(2), 13–19 (2009)

20. Herzberg, A., Shulman, H.: Unilateral antidotes to DNS poisoning. In: Rajarajan,
M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm 2011. LNICST, vol. 96,
pp. 319–336. Springer, Heidelberg (2012)

21. Herzberg, A., Shulman, H.: Dnssec: Security and availability challenges. In: 2013
IEEE Conference on Communications and Network Security (CNS), pp. 365–366.
IEEE (2013)

22. Herzberg, A., Shulman, H.: Retrofitting Security into Network Protocols: The Case
of DNSSEC. IEEE Internet Computing 18(1), 66–71 (2014)

http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
http://www.alexa.com/

Delegating a Pairing Can Be Both

Secure and Efficient

Sébastien Canard1, Julien Devigne1,2, and Olivier Sanders1,3

1 Orange Labs, Applied Crypto Group, Caen, France
2 UCBN, GREYC, Caen, France

3 École normale supérieure, CNRS & INRIA, Paris, France

Abstract. Bilinear pairings have been widely used in cryptographic
protocols since they provide very interesting functionalities in regard
of identity based cryptography, short signatures or cryptographic tools
with complex properties. Unfortunately their implementation on limited
devices remains complex and even if a lot of work has been done on the
subject, the current results in terms of computational complexity may
still be prohibitive. This is clearly not for today to find the implemen-
tation of a bilinear pairing in every smart card. One possibility to avoid
this problem of efficiency is to delegate the pairing computation to a
third party. The result should clearly be both secure and efficient. Re-
garding security, the resulting computation of a pairing e(A,B) by the
third party should be verifiable by the smart card. Moreover, if the points
A and/or B are secret at the beginning of the protocol, they should also
be secret after its execution. Regarding efficiency, besides some specific
cases, existing protocols for delegating a pairing are costlier than a true
embedded computation inside the smart card. This is due to the fact that
they require several exponentiations to check the validity of the result.

In this paper we first propose a formal security model for the delega-
tion of pairings that fixes some weakness of the previous models. We also
provide efficient ways to delegate the computation of a pairing e(A,B),
depending on the status of A and B. Our protocols enable the limited
device to verify the value received from the third party with mostly one
exponentiation and can be improved to also ensure secrecy of e(A,B).

Keywords: pairings, secure delegation, elliptic curve.

1 Introduction

Pairings. Since the publication of the paper by Joux [23], elliptic-curve bilinear
pairings have been frequently used in cryptography because they offer more
functionalities than RSA groups while keeping a lower size. One of their most
famous application was due to Boneh and Franklin [8] who used them to solve
the open problem of constructing an efficient identity-based encryption scheme.
Other known usefulness of pairings is their capacity to shorten signatures [9,10,6]
and to obtain constructions in the standard model for cryptographic tools with
complex properties (see e.g. [5]).

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 549–565, 2014.
c© Springer International Publishing Switzerland 2014

550 S. Canard, J. Devigne, and O. Sanders

In the following, we more generally consider a bilinear environment, which
corresponds to a set of two additive groups G1, G2 and one multiplicative group
GT , all of known prime order l, along with an efficiently computable bilinear map
e : G1 × G2 → GT . The way to describe such bilinear map has first been pro-
posed by Miller in his unpublished paper. This work was next improved in many
other ones, especially regarding the way to efficiently compute such mathemati-
cal function. Unfortunately, despite several improvements (one can find some of
them in [2,3]), the computational cost of a pairing still remains high and may be
prohibitive for restricted devices such as smart cards or RFID tags/sensor nodes.
This may be a problem in some practical applications where the properties of a
pairing are very useful.

Delegation. One way to solve this problem is to delegate the pairing compu-
tation to a more powerful entity such as a mobile phone (which is now possible
in an efficient way [14,28]), a computer or a server. But this cannot be done at
the detriment of the security. Indeed, if a smart card may today be considered
as secure, this does not remain true for a mobile phone, a computer or a server
that may be controlled by some dishonest entity (by the way of e.g. a malware).

In the setting of the delegation of a pairing, two security properties could be
taken into account. The first one is secrecy, requiring that the more powerful en-
tity should not learn anything about the inputs of the pairings (unless they are
public). The second one is verifiability (also called correctness) and requires that
the restricted device cannot accept a wrong value for the pairing which is dele-
gated to the more powerful entity. We emphasize that a delegation protocol that
does not ensure verifiability may cause severe security problems. As evidence, if
the pairing occurs in the verification algorithm of some digital signature scheme,
as the ones from [9,7], an incorrect value may lead for the restricted device to
accept an invalid signature.

Related Work. The delegation of cryptographic operations is a technique which
has been known since a long time (see e.g. [27,15,26]) and it now exists some
constructions in the generic case [32,13]. The particular case of the pairing com-
putation has first been studied, as far as we know, in a work by Girault and
Lefranc [20]. But they have only considered the secrecy of the computation.
Verifiable protocols for delegating a pairing e(A,B) have first been provided by
Chevallier-Mames et al. ([16,17]) and later by Kang et al. [25]. However their
efficiency depends on the status of A and B. More specifically, their protocols re-
main rather efficient as long as one of the involved points is constant. Indeed, the
online phase of the proposal for variable A and B in [16] (resp. [25]) necessitates
5 (resp. 3) exponentiations in GT , 3 tests of membership in GT (resp. 3), plus
additional scalar multiplications in G1 and G2, for the case of secret values. The
proposal in [16] for a verifiable (but for public variable values) pairing delegation
requires 3 exponentiations in GT and 3 tests of membership in GT . Even if the
computational costs of a pairing and of group operations depend on the choice of
the parameters, the recent results of [28], implementing an optimal-Ate pairing

Delegating a Pairing Can Be Both Secure and Efficient 551

over Barreto-Naehrig curves [4] (the most popular choice), seem to confirm that,
regarding efficiency, it is better to directly embed the pairing computation inside
the restricted device than using these solutions. Otherwise, the main contribu-
tion will be the save of area that is required to implement a pairing in a smart
card, which is certainly a good point, but not enough in most contexts.

In [31], the authors have considered the more general case of delegating sev-
eral pairings all at once. They pointed out the lack of formal security models
in the previous works and therefore proposed a candidate for it. They have also
described a protocol fulfilling this model but which can only handle one variable
point (the other one has to be constant). Unfortunately, as illustrated by the
results of the previous works, the trickiest case is the one where both A and B
are variable which is commonly found in the verification of signature schemes
[9,7] where verifiability is particularly relevant.

Our Methodology. For variable A and B, both papers [16,25] make use of
the same methodology. They started by providing a protocol for secret points A
and B, and they then convert it into a protocol where A and/or B are publicly
known. We argue that it is far more interesting to convert a protocol for public
A and B into a protocol for secret A and B. Indeed, if we assume the existence
of a verifiable delegation protocol P to compute the pairing e(A,B) for public
A and B, then the case of the protocol P ′ for secret A and B can be treated,
as in [20], by simply computing A′ ← [u]A and B′ ← [v]B for random u and v,
and then running P with A′ and B′. From e(A′, B′), it is then easy to recover

e(A,B) ← e(A′, B′)(uv)
−1

, and A′ and B′ need not to be secret. Then, the
conversion from P into P ′ mostly requires one additional exponentiation in GT .
Moreover, the result is obviously secure.

Curiously, the opposite is not true. If we consider a secure (verifiable and
secret) pairing delegation protocol P ′ for secret values, the execution of this
protocol for public values of A and B is not necessarily true, in particular de-
pending on the kind of verifiability fulfilled by P ′. As evidence, we show in
Section 3, using the protocol in [25], that this may permit the adversary to
break the verifiability property from the knowledge of the secret points. We con-
sequently describe a complete security model for pairing delegation. Our model
is close to the one of [31] but with some necessary modifications, especially for
the secrecy property.

In this paper, we will then focus on the design of an efficient scheme for pub-
lic variable points since it leads to a scheme for secret ones. We will also study
a specific case where we can ensure both secrecy and verifiability with better
efficiency than the previous generic conversion.

Organization of the Paper. Section 2 gives some preliminaries for our study
and Section 3 provides a security model for the delegation of a pairing. We
describe in Section 4 verifiable protocols for public variable A and B, which
necessitate the low-power entity to only compute one exponentiation (in the
most important group). We explain in Section 5 how to achieve secrecy using the

552 S. Canard, J. Devigne, and O. Sanders

above idea but also provide an improved protocol for a specific case. Eventually,
our last section compares our work with related ones and gives an example of
the expected gain for a specific family of curve.

2 Preliminaries

In this section we recall some necessary definitions that will be used throughout
the document.

Some Notations. In the following,
$← corresponds to a random choice, while

← is used to indicate an assignment of a variable.

Bilinear Groups. Bilinear groups are a set of three groups G1,G2 (with addi-
tive notations, as for elliptic curves) and GT (with multiplicative notation), all
of prime order l, along with a bilinear map e : G1×G2 → GT with the following
properties:

1. for allX1 ∈ G1, X2 ∈ G2 and a, b ∈ Zl we have e([a]X1, [b]X2) = e(X1, X2)
ab;

2. for X1 �= 1G1 and X2 �= 1G2 , e(X1, X2) �= 1GT ;
3. e is efficiently computable;

where 1G1 (resp. 1G2 and 1GT) is the neutral element of the group G1 (resp. G2

and GT).

Elliptic Curve Pairings. Our first protocol (see section 4.1) works for any
bilinear groups while the second one (see section 4.2) works only for pairing
computations on elliptic curves (which is currently the common case) and thus
requires some additional definitions. We refer to [19,18] for a more extensive
background on pairings.

Let p be a prime number. Let E(Fp) be an elliptic curve over the field Fp. We
usually define G1 as a subgroup of E(Fp), G2 as a subgroup of E(Fpk) and GT

as a subgroup of (Fpk)∗, where k, called the embedding degree, is the smallest
integer such that l divides pk − 1.

Remark 1. In cryptography, the family of Tate’s algorithms [19] is most of the
time used to compute a pairing. These algorithms are divided in two parts: the
Miller loop and the final exponentiation. This last step makes use of the exponent

defined as c = pk−1
l . In the following, ∀ α ∈ GT , α̃ will denote an element of

(Fpk)∗ such that α̃c = α. Thus, considering that α̃ is the output of the Miller’s
algorithm, α corresponds to the expected pairing value.

Testing Membership in GT . As said in the introduction, existing
works [16,25,31] necessitate to test whether a value α belongs to GT or not.
The simplest way to test this membership is to check whether αl = 1 or not.
However, this method requests one exponentiation in Fpk . As we will explain
later (Remark 6), the only purpose of this check in our protocols (or the ones

Delegating a Pairing Can Be Both Secure and Efficient 553

of [16,25,31]) is to ensure that the server does not return an element of Fpk of
small order. In [29], the author provides a very efficient way to avoid such a case.
For example, for k = 12 (the usual choice for a 128-bit security), since pairing
values are elements of the cyclotomic subgroup of order φ12(p) = p4−p2+1, one

may check membership of α to this subgroup by testing if α · αp4

= αp2

. Using
the Frobenius action this can be done almost for free. However, this is useful as

long as the cofactor h := φ12(p)
l does not have small factors (for example, if h is

prime and greater than l) which requires a special care when choosing the curve
parameters. In the following, we will thus distinguish a test of membership from
an exponentiation in Fpk .

3 Security Model

In this section, we give the security properties that we require for a secure pairing
delegation. Let A ∈ G1 and B ∈ G2. We consider a restricted device, usually
called a client, wanting to obtain the output of e(A,B). For this purpose, the
client interacts with a more powerful device, usually called the server, which is
not necessarily trusted. We thus need to describe an interactive protocol between
the client and the server where the output for the client is e(A,B).

3.1 Syntax

A pairing delegation scheme consists of the three algorithms defined below, where
params are some public parameters (see Remark 2 below).

– Init(params,A,B): this probabilistic algorithm takes as inputs two points
A and B and outputs σ, sent to the server to compute with, and τ , kept
secret by the client.

– Compute(params, σ): this deterministic algorithm is run by the server to
compute α, which value is sent to the client.

– Extract(params, σ, τ, α): this algorithm is run by the client which uses the
known secret (τ) and public values (σ) to check whether the computations
(α) performed by the server are valid or not. The client finally outputs either
a value μ (equals to e(A,B) in the former case) or an error message ⊥ (in
the latter case).

Remark 2. We do not add a Setup algorithm since we assume that our delegation
scheme will be used to compute pairings in cryptographic protocols where the
public parameters params (containing, for example, a description of the bilinear
groups) are already defined.

In practice, there are mainly two cases, considering the values A and B. In
the first case, A or B is a constant value that never changes from one pairing
computation to another, while the other is said variable. The other case is when
both A and B are variables.

554 S. Canard, J. Devigne, and O. Sanders

3.2 Security Notions

Regarding security, the authors of [16] and [25] have considered the three fol-
lowing informal security notions: (i) completeness (an honest client, interacting
with an honest server, obtains e(A,B) after completion of the protocol), (ii)
correctness (a client interacting with a cheating server will output ⊥ with over-
whelming probability) and (iii) secrecy (even a dishonest server cannot learn any
information about A and B).

As in [31], we rather define our security notions through experiments since
they describe more precisely the power and knowledge of the adversary. Our
correctness/verifiability (see the remark below) experiment is similar with the
one from [31]. However, we propose a stronger definition of secrecy. Our security
notions make use of the following oracle.

– OSim(params,A,B): is an oracle that executes the client’s side of the pro-
tocol. In this case, the adversary plays the role of the corrupted server.

Remark 3. In this paper we will talk about verifiability rather than correct-
ness since the latter is frequently used to denote completeness in cryptographic
protocols.

Completeness. Informally, our definition of completeness is the same as the
one provided by [16]. More formally, we define the completeness experiment
Expcomp

A (params) as follows, where AOSim denotes an adversary A having an
unconditional access to the OSim oracle, in an interactive way.

1. (A,B)← AOSim(params).
2. (σ, τ) ← Init(params,A,B).
3. α ← Compute(params, σ).
4. μ ← Extract(params, σ, τ, α).
5. If μ = e(A,B) then return 1.

A pairing protocol is complete if the probability Pr[Expcomp
A (params) = 1] is

overwhelming for all A.

Verifiability. Regarding the literature on the subject, the definitions that one
can find in [16,25] on the verifiability property are not very satisfying. In fact,
they do not clearly specify the status (known or unknown) of A and B w.r.t. the
server. Indeed, it seems that the status of A and B w.r.t. the adversary in the
experiment related to the verifiability property depends, in their definition, of
their status w.r.t. the server in the real protocol. Then, the probability of success
of an adversary against the verifiability property may depend on the one against
the secrecy, which is not very common in security where property definitions are
usually independent one with each other.

A remark on related work security. In fact, this may even lead to some
defaults related to security, and we can illustrate that using [25]. Let us consider
a server being able to recover the secret points A and B with non-negligible

Delegating a Pairing Can Be Both Secure and Efficient 555

probability λ for the protocol described in [25] (see Figure 1). It is then possible
to show that such adversary is able to break the verifiability of this protocol
with the same probability λ.

Indeed, if the server sends (instead of specified values), α3 = e(R1, R2)
1+z

and α4 = e(T1, T2).e(A,B)z , for a randomly chosen z, then the client will output
e(A,B)1+z instead of e(A,B) since α1, α2, α3 and α4 still satisfy the last equality
test on α4. The adversary will then succeed against the verifiability property with
probability at least λ.

As a conclusion, we think that it is better to consider another definition for the
verifiability property, which does not depend on the status (known or unknown)
of A and B.

client (A,B,G1, G2, GT = e(G1, G2)) server(G1, G2)

g1, g2
$← Zl

R1 ← [g1]A; R2 ← [g2]B
R1, R2−−−−−−−−→

α1 ← (R1, G2); α2 ← (G1, R2);
α3 ← e(R1, R2)

α1, α2, α3←−−−−−−−−
For i ∈ {1, 2, 3}:

If αi /∈ GT , return ⊥
r1, r2

$← Zl

T1 ← A+ [r1]G1; T2 ← B + [r2]G2

T1, T2−−−−−−−−→
α4 ← e(T1, T2)

α4←−−−−−−−−
If α4 = α

(g1g2)
−1

3 · αg−1
1 r2

1 · αg−1
2 r1

2 ·Gr1r2
T

Return μ := α
(g1g2)

−1

3

Else, return ⊥

Fig. 1. The Kang et al protocol [25] for secret A and B

Formal definition of verifiability. Informally, verifiability requires that
the client, even interacting with a dishonest server, will not output a wrong value
for e(A,B). We define the verifiability experiment Expverif

A (params) as follows.

1. (A,B, st)← AOSim(params).
2. (σ, τ) ← Init(params,A,B).
3. α ← AOSim(params, σ, st).
4. μ ← Extract(params, σ, τ, α).
5. If μ = ⊥ or μ = e(A,B) then return 0.
6. Else return 1.

556 S. Canard, J. Devigne, and O. Sanders

We define Advverif
A (params) = Pr[Expverif

A (params) = 1]. A pairing delega-
tion protocol is verifiable if, for any probabilistic polynomial time adversary, this
advantage is negligible.

Secrecy. Informally, secrecy requires that the server cannot learn any infor-
mation about A or B. We define the secrecy experiment Expsec

A (params) as
follows.

1. (A0, B0, A1, B1, st)← AOSim(params).

2. b
$← {0, 1}.

3. (σ, τ) ← Init(params,Ab, Bb).
4. b∗ ← AOSim(params, σ, st).
5. If b∗ = b then return 1. Else return 0.

We define Advsec
A (params) = |Pr[Expsec

A (params) = 1]− 1
2 |. A pairing dele-

gation protocol is secret if, for any probabilistic polynomial time adversary, this
advantage is negligible.

In [31], the adversary against the secrecy property must distinguish a valid
transcript from a simulated one without knowing the secret points. Our model
is then stronger since it allows the adversary to choose the challenge points A
and B. It is similar to the IND-CPA notion for public key encryption schemes.

4 Protocols with Public A and B

We provide in this section two efficient protocols to delegate the computation
of public A and B, even if both of them are variable. For clarity’s sake we first
describe a protocol whose efficiency is equivalent to one exponentiation and one
test of membership and then show how to modify it to suit the case where this
last operation cannot be performed cheaply.

4.1 A Protocol with Test of Membership

We assume, as the authors of [16], [25] and [31], that the public parameters
contain 3 elements: G1 ∈ G1, G2 ∈ G2 and ρ = e(G1, G2).

Remark 4. Papers [16,25] do not explain how the client obtains the values G1, G2

and ρ. As mentioned in [31], there are two ways to treat this. For example, the
client could generate G1 and G2 and compute ρ once for all. This computation
can also be done by a trusted authority, which one could then embed the val-
ues in the client. In the latter case, there is no longer need for implementing
the whole pairing computation algorithm in the client since our protocols only
require group operations in the bilinear groups. This may justify, besides the
efficiency, the use of our solutions since it saves some area needed to implement
cryptographic operations. Indeed, there exist several different pairings, such as
the Weil pairing, the Tate pairing or one of its variants [1,22]. Our protocols are
then compatible with all of them as long as the values e(G1, G2) (one for each
type of pairing) are loaded in the client’s memory.

Delegating a Pairing Can Be Both Secure and Efficient 557

The three algorithms defining our pairing delegation scheme are described in
Figure 2 and enable the client to delegate the computation of e(A,B) with
public A �= 1G1 and B �= 1G2 .

client (A,B,G1, G2, ρ) server(A,B)

Init(params,A,B):

x1, x2
$← Zl

X1 ← [x1]G1; X2 ← [x2]G2

χ ← ρx1·x2

T1 ← [x−1
2]A+X1; T2 ← [x−1

1]B +X2

Return (σ, τ) := ((T1, T2), (x1, x2))
σ−−−−−→

Compute(params, σ):

α1 ← e(T1, T2)[e(G1, B)e(A,G2)]
−1

α2 ← e(A,B)
Return α := (α1, α2)

α←−−−−−
Extract(params,σ, τ, α):

If α1 = χ · α(x1.x2)
−1

2 and α2 ∈ GT

Return μ := α2

Else, return ⊥

Fig. 2. Delegation protocol for public A and B

Computational Cost. Since X1, X2 and χ are easily pre-computable (they do
not need the knowledge of A and B), the client only has to compute online a
scalar multiplication in G1, another one in G2, an exponentiation in GT and a
test of membership in GT . The efficiency of our method strongly depends on
the parameters of the bilinear groups, especially if they allow us to use the idea
from [29] to avoid an exponentiation in Fpk for the test of membership (see end
of Section 2). To get an idea of the order of magnitude of the computational cost,
one may look at the results from [12,11]. For every family of curves, their timings
indicate that the cost of our protocol (assuming that the test of membership in
GT is cheap) is significantly smaller than the one of a pairing. One example (for
an optimal ate pairing on a KSS-18 curve [24]) is given in Table 1 at the end of
this paper.

Security. As A and B are public, we only need to verify that our protocol en-
sures the completeness and the verifiability properties.

Completeness. The protocol is complete since:

α1 = e([x−1
2]A+X1, [x

−1
1]B +X2)[e(G1, B)e(A,G2)]

−1

= e(A,B)(x1.x2)
−1

e(X1, X2) = χ · α(x1·x2)
−1

2 .

558 S. Canard, J. Devigne, and O. Sanders

Verifiability. The main idea of our protocol is to request from the server the
computations of α1 and α2, involved in a relation with the secret value τ . So, an
adversary trying to cheat the client has to provide α′

1 and α′
2 satisfying the same

relation. In the following, we argue that he is unable to do so, which ensures the
verifiability of our protocol.

Remark 5. Our following proof is verified in the generic group model (extended
to the bilinear setting). Even if we do not really provide a formal theorem that
the underlying new assumption is valid, the methodology we adopt in the sequel
is quite similar to a proof in the generic group model.

In the verifiability experiment, the server is controlled by the adversary who
wants to convince the client to accept a wrong value for e(A,B). This means
that the adversary sends an element α′

2 �= α2 = e(A,B) belonging to GT (since
we test membership in this subgroup). So we have α′

2 = α2.δ for some δ ∈ GT .
It follows that the server has to send α′

1 = α1 · γ verifying:

α′
1 = χ · (α′

2)
(x1·x2)

−1 ⇐⇒ α1 · γ = χ · (α2 · δ)(x1·x2)
−1 ⇐⇒ γ = δ(x1·x2)

−1

.

For the adversary, breaking the verifiability is then equivalent to find any
two values γ, δ ∈ GT such that γ = δ(x1·x2)

−1

. However, finding such a pair
(δ, δ(x1·x2)

−1

) ∈ G2
T does not match any standard computational assumption.

So we cannot directly conclude. We then study the probability of recovering
(δ, δ(x1·x2)

−1

) by using combinations of elements involved in the protocol. We
consider the case of type 3 pairings (i.e. there is no efficiently computable iso-
morphism between G1 and G2) in order to reduce the number of possible com-
binations. However, our proof can also be done for other types of pairings.

Let a, b, x1, x2 ∈ Zl be such that:

A = [a]G1, B = [b]G2, X1 = [x1]G1 and X2 = [x2]G2.

Our security model defined in the previous section allows the adversary to
choose A and B and we consequently assume that he knows a and b. Since we
work with bilinear groups, we assume that the adversary is only able to compute
pairings or algebraic combinations in G1 or G2, i.e. the adversary is only able
to choose a1, a2, a3, a4 ∈ Zl and computes:

e([a1]G1 + [a2]T1, [a3]G2 + [a4]T2) = e(G1, G2)
s·(x1·x2)

−1+t,

with s = a2a4ab and t = a1a3 + a1a4b(x1)
−1 + a1a4x2 + a2a3a(x2)

−1 + a2a4a+
a2a3x1 + a2a4b + a2a4x1x2. The only way (unless to guess (x1 · x2)

−1 with

probability 1
l) for the server to find a suitable pair (δ, δ(x1·x2)

−1

) is then to
recover:

(e(G1, G2)
s, e(G1, G2)

s·(x1·x2)
−1

)

which means that it must find a1, a2, a3, a4 cancelling t but not s. The map

ψ : (Zl)
4 → Zl

(a1, ..., a4) �→ t

is a quadratic form, its matrix M is:

Delegating a Pairing Can Be Both Secure and Efficient 559

2−1

⎛⎜⎜⎝
0 0 1 b(x1)

−1 + x2

0 0 a(x2)
−1 + x1 a+ b+ x1x2

1 a(x2)
−1 + x1 0 0

b(x1)
−1 + x2 a+ b+ x1x2 0 0

⎞⎟⎟⎠
=

(
0 N

NT 0

)
where NT is the transpose of N . ∀ a, b ∈ Z∗

l the rank of Na,b is 2, the number
of zeroes of ψ is then:

|{(a1, · · · , a4) ∈ Z4
l : ψ(a1, · · · , a4) = 0}| ≤ l3 + l2 − l ≤ 2l3.

Since the server does not know x1 or x2, he must guess suitable values for
v = (a1, a2, a3, a4). However, the probability that v is an isotropic vector (i.e.

t = 0) is negligible (l
3+l2−l

l4 ≤ 2
l). Then, if α2 �= e(A,B), the client outputs

⊥ with overwhelming probability, which concludes the fact that our protocol is
verifiable.

Remark 6. In our protocol, as in previous works, the client has to test mem-
bership in GT of some values returned by the server. However, the purpose of
such test is to ensure that the server does not return elements of (Fpk)∗ of small
orders. Indeed, as shown in the above security study, the adversary has to find
a pair (δ, δ(x1·x2)

−1

) to break the verifiability property. If the order of α2 is not
checked, then the adversary can choose an element of (Fpk)∗ of order 2, and
would then succeed with probability 1

2 , since it just has to guess the parity of
(x1 · x2)

−1.

4.2 Efficient Variant with One Exponentiation

As explained above, the efficiency of our protocol mainly depends on the com-
putational cost of the test of membership. If the curve parameters do not allow
the client to use the idea from [29], then the test of membership in GT will
require a costly exponentiation in (Fpk)∗, making the speed-up of the delega-
tion less obvious. Our aim in this section is to remove this test while ensuring
verifiability.

In a nutshell, we will make use of Remark 1 given in Section 2 so that the
fact that the order of α2 is implicitly l, without the necessity to verify such fact.
More precisely, the client will now compute χ̃ (instead of χ) such that χ = ρx1x2 .

As explained in Remark 1, χ̃c = χ, where c = pk−1
l . Then, the client and the

server proceed as in the protocol of Figure 2, except that the server now returns
α̃1 (where α̃c

1 = α1) and α2. Then, the client needs to check that

α2 = (α̃1 · χ̃−1)c·x1·x2.

Obviously, checking that α2 is equal to an element of (Fpk)∗, raised to the
power c, necessarily ensures that it belongs to GT (since this group contains all

560 S. Canard, J. Devigne, and O. Sanders

the elements of order l). As a conclusion, we no longer need to verify that α2

belongs to GT . It follows that no adversary is able to cheat unless to provide a
pair (δ, δ(x1·x2)

−1

) with δ of order l. The security of this variant is thus the same
as the one of the original protocol.

Regarding efficiency, our protocol now requires 1 scalar multiplication in G1,
1 scalar multiplication in G2 and only one exponentiation in (Fpk)∗. Since the
exponent involved in this last operation is close to the one (namely c) involved
in the last step of the Tate pairing, usually called the final exponentiation, we
may use a similar methodology as the one in [30]. It thus remains to compare
the computational cost of a Miller loop against 1 scalar multiplication in G1

and 1 scalar multiplication in G2. Using the timings from [28], we may conclude
that our protocol is still more efficient than computing the pairing. Again, an
estimated ratio is given in Table 1 for this variant.

4.3 Batch Delegation

In [31], the authors have considered the delegation of several pairings all at
once but they have only proposed protocols with one constant point to each
pairing. There are two reasons why batch delegation does not suit our proto-
col. First, with one constant point A, one may efficiently check the validity of
the requested e(A,B1),...,e(A,Bn) by using the bilinearity of the pairing since
e(A,B1+B2+...+Bn) = e(A,B1)·...·e(A,Bn). However this is not possible with
our protocol since we do not assume that one of the pairing’s input is constant.
More specifically, assuming that we want to delegate e(A1, B1), ..., e(An, Bn),
the computation of e(A1 + ... + An, B1 + ... + Bn) is useless because it also in-
volves several unknown values (the values e(Ai, Bj) for i �= j) that the client
will have to cancel, which leads to additional computations. Second, the goal of
batch delegation is to check validity of the n delegated pairings with less than
n equality tests. However, when two pairings αi = e(Ai, Bi) and αj = e(Aj , Bj)
are involved in the same equality test, they must be raised to different powers,
else, an adversary could return αi · δ and αj · δ−1, for some δ ∈ GT , and still
satisfy the test. It then seems hard to construct a protocol for delegating n pair-
ings with less than n exponentiations in GT which is roughly the cost of n runs
of our protocol (in the case of a cheap test of membership in GT).

5 Ensuring both Verifiability and Secrecy

We now consider the case where the points A and/or B are/is secret. We first
explain how to modify our previous protocols to achieve secrecy and then propose
an improved protocol which suits the case where B is a constant public point.

5.1 A Generic Conversion

There is an easy way to reach the secrecy property from the protocols described
in the previous section, using the ideas given in [20]. If A and B are secret,

Delegating a Pairing Can Be Both Secure and Efficient 561

one can simply compute A′ ← [u]A and B′ ← [v]B for randomly chosen u
and v in Zl. Then, the client and the server play one of the protocols given
in the previous section to get e(A′, B′). Finally, e(A,B) is obtained by simply

computing e(A′, B′)(uv)
−1

. The completeness and verifiability of this protocol
directly follow from the ones of the protocols given in the previous section.
The secrecy is then obvious since A′ and B′ are seen as random elements in
G1 and G2 respectively. This leads to a secure protocol requiring mainly two
exponentiations in GT and either one test of membership if we use the protocol
described in Section 4.1, or one exponentiation in GT and another one in (Fpk)∗

if we use the protocol described in Section 4.2. Since all of these exponentiations
require the knowledge of A and B, they have to be performed online.

5.2 A Protocol with Public Constant B

The case where A is a secret variable point and B is a constant public one can
be found in some cryptographic protocols such as the one of Hess [21]. It was
consider in [25] and [31]. But, on one hand, the solution provided in the former is
not enough secure (see Section 3.2), since the verifiability depends on the secrecy.
On the other hand, the solution of the latter requires two exponentiations in GT ,
one test of membership and additional computations in G1 and G2 during the
online phase.

We here assume that the client already knows ' ← e(G1, B) (G1 is a parameter
and B is constant). We then provide a more efficient protocol, which is described
in Figure 3.

client (A,B,G1, �) server(B)

Init(params,A,B):

x, y, u
$← Zl

X ← [x]G1; Y ← [y]G1

(χ1, χ2) ← (�x, �y)
T1 ← A+X; T2 ← [u]A+ Y
Return (σ, τ) := ((T1, T2), (u))

σ−−−−−→
Compute(params,σ):

α1 ← e(T1, B)
α2 ← e(T2, B)
Return α := (α1, α2)

α←−−−−−
Extract(params,σ, τ, α):

If α2 = χ2 · (α1 · χ−1
1)u and α1 ∈ GT

Return μ := α1 · χ−1
1

Else, return ⊥

Fig. 3. Delegation protocol for secret A and public constant B

562 S. Canard, J. Devigne, and O. Sanders

Table 1. Efficiency and security comparison, where m1 (resp. m2) stands for a scalar
multiplication in G1 (resp. G2), eT stands for an exponentiation in GT , eF for an ex-
ponentiation in (Fpk)

∗, tT for a test of membership in GT and pT stands for a pairing.
We say that the verifiability is “conditional” when it depends on the secrecy (see sec-
tion 3.2). Provided ratios assume that the test of membership can be performed cheaply
[29]. The amount of storage required to store the pre-computed values is implicitly given
in the column “offline client”. Indeed, if an operation in a group is pre-computed, then
the result, which is an element of this group, must be stored.

Protocols with variable A and B

secrecy verifiability offline client online client server Ratios

[20] yes no - 1m1,1m2,1eT 1pT 0.46

[16,17] [Sect 4.1] yes yes 2m1,2m2,2eT 1m1,1m2,5eT ,3tT 4pT 1.46

[16,17] [Sect 5.2] no yes 1m1,1m2,1eT 1m1,1m2,3eT ,3tT 4pT 0.96

[25] yes conditional 1m1,1m2,1eT 1m1,1m2,3eT ,3tT 4pT 0.96

Ours [Sect 4.1] no yes 1m1,1m2, 1eT 1m1,1m2,1eT ,1tT 4pT 0.46

Ours [Sect 4.2] no yes 1m1,1m2, 1eT 1m1,1m2,1eF 4pT 0.84

Ours + [20][Sect 5.1] yes yes 1m1,1m2, 1eT 2m1,2m2,2eT ,1tT 4pT 0.92

Protocols with variable secret A and constant public B

secrecy verifiability offline client online client server Ratios

[25][Sect 4.3] yes conditional 1m1,1eT 1m1,1eT ,1tT 2pT 0.30

[31][SVPC] yes yes 1m1,1eT 2m1,2eT ,1tT 2pT 0.60

Ours [Sect 5.2] yes yes 2m1,2eT 1m1,1eT ,1tT 2pT 0.30

Computational Cost. Since χ1 and χ2 can be pre-computed, our protocol re-
quires one exponentiation in GT , one test of membership in GT and one scalar
multiplication in G1.

Security. The protocol is complete since e(A,B) = α1 · χ−1
1 and:

χ2 · (α1 · χ−1
1)u = e(Y,B) · (e(A+X,B) · e(X,B)−1)u

= e(Y,B) · e(A,B)u

= α2.

Delegating a Pairing Can Be Both Secure and Efficient 563

T1 and T2 are random elements of G1 and thus do not reveal any information
about A. As in the previous section, a pair (α′

1, α
′
2) will satisfy the equality test

if and only if α′
1 = α1 · δ and α′

2 = α2 · δu. Since u is only involved in the
computation of T2, an adversary, even knowing A, will not be able to find a
couple (δ, δu) ∈ G2

T unless to guess Y . Our protocol ensures then both secrecy
and verifiability with less computations than the one from [31], as we will see in
the next section.

6 Conclusion and Efficiency Comparison

In this paper, we have provided several delegation processes for a bilinear pairing.
We argue that our results are much more efficient than the state-of-the-art, for
a comparable or improved security. As evidence, we provide in Table 1 a global
comparison between our results and related works.

We use in this table the timings from [12,11] since this paper precisely de-
scribes the computational cost of operations in each group. Moreover, the authors
have implemented their algorithms so that ratios between their different bench-
mark results do not depend on the platforms. They therefore remain relevant
even considering an implementation on a smart card.

We emphasize that the efficiency of our protocols depends on the chosen
pairing and curve. We do not claim that our protocols are more efficient than
any implementation of pairing on any curve. However, there are some curves for
which the efficiency gain is significant. As evidence, we give in the last column
of Table 1 the estimated ratios between the online computational cost of our
protocols and the one of a pairing for the KSS-18 [24] family of curves.

Acknowledgments. This work was supported in part by the French ANR-12-
INSE-0014 SIMPATIC Project. We are also grateful to anonymous referees for
their valuable comments.

References

1. Paulo, S.L.M., Barreto, S.D., Galbraith, C.O.: hEigeartaigh, and Michael Scott.
Efficient pairing computation on supersingular abelian varieties. IACR Cryptology
ePrint Archive, 375 (2004)

2. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for
pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 354–368. Springer, Heidelberg (2002)

3. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25.
Springer, Heidelberg (2004)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

564 S. Canard, J. Devigne, and O. Sanders

5. David Bernhard, Georg Fuchsbauer, Essam Ghadafi, Nigel P. Smart, and Bogdan
Warinschi. Anonymous attestation with user-controlled linkability. IACR Cryptol-
ogy ePrint Archive, 658 (2011)

6. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)

7. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

10. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM
Conference on Computer and Communications Security 2004, pp. 168–177. ACM
(2004)

11. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. In: Selected
Areas in Cryptography (2013) (to appear)

12. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. IACR
Cryptology ePrint Archive, 458 (2013)

13. Canard, S., Coisel, I., Devigne, J., Gallais, C., Peters, T., Sanders, O.: Toward
Generic Method for Server-Aided Cryptography. In: Qing, S., Zhou, J., Liu, D.
(eds.) ICICS 2013. LNCS, vol. 8233, pp. 373–392. Springer, Heidelberg (2013)

14. Canard, S., Desmoulins, N., Devigne, J., Traoré, J.: On the implementation of
a pairing-based cryptographic protocol in a constrained device. In: Abdalla, M.,
Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 210–217. Springer, Heidelberg
(2013)

15. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

16. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. IACR Cryptology ePrint Archive, 150 (2005)

17. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 24–35. Springer, Heidelberg (2010)

18. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23(2), 224–280 (2010)

19. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

20. Girault, M., Lefranc, D.: Server-aided verification: Theory and practice. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg
(2005)

21. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg
(2003)

22. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

23. Joux, A.: A one round protocol for tripartite diffie-hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

Delegating a Pairing Can Be Both Secure and Efficient 565

24. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing-friendly
elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Paterson,
K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008)

25. Kang, B.G., Lee, M.S., Park, J.H.: Efficient delegation of pairing computation.
IACR Cryptology ePrint Archive, 259 (2005)

26. Lim, C.H., Lee, P.J.: Server (Prover/Signer)-aided verification of identity proofs
and signatures. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 64–78. Springer, Heidelberg (1995)

27. Matsumoto, T., Kato, K., Imai, H.: Speeding up secret computations with inse-
cure auxiliary devices. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403,
pp. 497–506. Springer, Heidelberg (1990)

28. Sánchez, A.H., Rodŕıguez-Henŕıquez, F.: NEON implementation of an attribute-
based encryption scheme. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 322–338. Springer, Heidelberg (2013)

29. Scott, M.: Unbalancing pairing-based key exchange protocols. Cryptology ePrint
Archive, Report 2013/688 (2013), http://eprint.iacr.org/

30. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009)

31. Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch pairing delegation. In: Miyaji, A.,
Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90.
Springer, Heidelberg (2007)

32. Yao, A.C.-C.: Protocols for Secure Computations (extended abstract). In: FOCS,
pp. 160–164. IEEE Computer Society (1982)

http://eprint.iacr.org/

Automatic Protocol Selection

in Secure Two-Party Computations

Florian Kerschbaum1, Thomas Schneider2, and Axel Schröpfer1

1 SAP, Karlsruhe, Germany
{florian.kerschbaum,axel.schroepfer}@sap.com

2 Technische Universität Darmstadt, Germany
thomas.schneider@ec-spride.de

Abstract. Performance of secure computation is still often an obstacle
to its practical adaption. There are different protocols for secure compu-
tation that compete for the best performance. In this paper we propose
automatic protocol selection which selects a protocol for each operation
resulting in a mix with the best performance so far. Based on an elabo-
rate performance model, we propose an optimization algorithm and an
efficient heuristic for this selection problem. We show that our mixed
protocols achieve the best performance on a set of use cases. Further-
more, our results underpin that the selection problem is so complicated
and large in size, that a programmer is unlikely to manually make the op-
timal selection. Our proposed algorithms nevertheless can be integrated
into a compiler in order to yield the best (or near-optimal) performance.

Keywords: Secure Two-Party Computation, Performance, Optimiza-
tion, Protocol Selection.

1 Introduction

Secure two-party computation allows two parties to compute a function f over
their joint, private inputs x and y, respectively without revealing their private
inputs or relying on a trusted third party. Afterwards, no party can infer anything
about the other party’s input except what can be inferred from her own input
and the output f(x, y). Secure computation has many applications, e.g., in the
financial sector, and has been successfully deployed in commercial and industrial
settings [6,25,5].

Performance is still often an obstacle to practical adoption of secure computa-
tion, even in the widely used semi-honest security model. A number of protocols
compete for the best performance in this model. Recently, the garbled circuit
implementation FastGC [20] has been used in several privacy-preserving applica-
tions, including [19,18], but still garbled circuits have some inherent limitations,
e.g., due to the large circuit size of some functionalities such as multiplication.
In this paper we propose a different approach. Instead of relying on a single
protocol we mix protocols. Then, based on an extended performance model we
automatically select the best protocol for a sub-operation. In all prior works this

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 566–584, 2014.
c© Springer International Publishing Switzerland 2014

Automatic Protocol Selection in Secure Two-Party Computations 567

selection was done manually, e.g., [17,21,3]. We present two algorithms for the
protocol selection – an optimization based on integer programming and a heuris-
tic. We apply these to three use cases from the literature: secure joint economic
lot-size, biometric identification, and data mining. We use the evaluation of their
implementation in the intermediate language of [43] to test three hypotheses:

– Our mixed protocols are faster than a pure garbled circuit implementation.
– The results of our heuristic and the optimum found by integer programming

are close.
– The protocol selection problem is too complicated to be solved manually by

the programmer.

Our heuristic can then be used in a compiler to automatically select the fastest
sub-protocols in secure computations.

Our Contributions and Outline. In summary, this paper contributes

– an extended performance model for mixed protocol secure computation,
– two selection algorithms to automatically select mixed protocols with (near-)

optimal performance based on this model,
– an evaluation based on three use cases from the literature.

Our paper is structured as follows: In §2 we review related work. In §3 we de-
scribe our mixed protocols for secure computation. §4 explains the corresponding
cost model including conversion costs. We present our selection algorithms in §5
and our evaluation results in §6. Our conclusions are summarized in §7.

2 Related Work

Our results are based on the performance model framework of [43] for forecast-
ing runtimes of secure two-party computations based on garbled circuits and
homomorphic encryption. In §4.1 we provide a summary of this framework and
extend it in §4.2 to cover conversion between the protocols. For completeness,
we note that there are also other techniques for secure two-party computation
beyond the ones we cover in this work, e.g., the GMW protocol [16] implemented
in [8]. However, as this protocol also favors Boolean circuits, but differently from
garbled circuits has a non-constant number of rounds, we chose garbled circuits
in our work. Furthermore, this and other protocols can be integrated into our
main approach by extending the performance model of [43] accordingly.

[24] describes automatic optimizations of secure computation protocols that
automatically infer which operations can be performed locally by each party.
This approach is orthogonal to ours that automatically selects the most efficient
sub-protocol; combining both approaches yields even more efficient protocols.

There are several implementation frameworks for secure computation. Frame-
works for secure two-party computation are either based on garbled circuits (e.g.,
Fairplay [33], FastGC [20], VMCrypt [32], and CBMC-GC [18]) or homomorphic
encryption (e.g., VIFF [9]). The L1 framework [44] allows to describe secure

568 F. Kerschbaum, T. Schneider, and A. Schröpfer

computation protocols that employ both techniques, garbled circuits and homo-
morphic encryption. The TASTY framework [17] provides additional support for
conversions between these two approaches. Both, L1 and TASTY require to spec-
ify which part of the protocol should be run with which technique. We provide
the first method to automatically partition a functionality into sub-techniques.

The Sharemind framework [4] implements secure multi-party computation
for three players using an additive secret sharing scheme over the ring Z232 .
The compiler of [31] implements secure two-party computations expressed using
operations in the field Zq of integers modulo a prime q and in the multiplicative
subgroup of order q in Z∗

p for q|p−1 with generator g. Our protocols use additive
secret sharing over Z2l among the two players for intermediate values (cf. §3.2).

Several protocols benefit from the combination of homomorphic encryption
and garbled circuits, including [17,21,3]. In these protocols, the partitioning into
sub-protocols was defined manually, whereas our methods allow to automatically
find a good partition.

The authors of [35] describe a technique to compile functionalities described
in Fairplay’s Secure Function Definition Language (SFDL) [33] into Boolean
circuits in a memory-efficient way. For this, they first compile the SFDL program
into an intermediate language that represents operations as three-operand code.
As we use a similar three-operand code language to describe the functionality
that needs to be computed securely (cf. §4.1), the compiler of [35] could be easily
extended to compile SFDL programs into our input language.

3 Secure Computation Protocols

We integrate two protocols for performing secure two-party computations – gar-
bled circuits and homomorphic encryption. Both protocols are generic, i.e., they
can securely implement any ideal functionality. Nevertheless they have different
performance characteristics as shown by the performance evaluations in [17,43].
Throughout the paper we name the two parties Alice A and Bob B.

Next we explain the two basic protocols in §3.1 and §3.2, give the conversions
that allow to combine and automatically select between both protocols in §3.3,
and give background on the underlying semi-honest security model in §3.4.

3.1 Garbled Circuits

Garbled circuits, introduced by Yao [45], were the first generic protocol for secure
two-party computation. An excellent introduction can be found in [33] which also
presents the first implementation of this protocol. For the purposes of this paper
a high-level overview without the technical details of encryption suffices.

Yao’s garbled circuits protocol allows secure computation of an arbitrary ideal
functionality that is represented as a Boolean circuit C. The basic idea is that
C is evaluated on symmetric keys where one key corresponds to the plain value
0 and another to the plain value 1. Alice creates for each gate of C an encrypted
table such that given the gate’s input keys only the corresponding output key

Automatic Protocol Selection in Secure Two-Party Computations 569

can be decrypted. Then, Alice sends to Bob the keys for the input wires of C
in an oblivious manner: For each of Bob’s inputs, both parties run a 1-out-of-
2 oblivious transfer (OT) protocol. The OT protocol ensures that Bob obtains
only the key corresponding to his input whereas Alice does not learn Bob’s input.
Now, Bob can use the encrypted tables to evaluate C under encryption. Finally,
Bob sends the keys that correspond to Alice’s outputs back to Alice. For his
outputs, he is given a mapping that allows him to decrypt the output keys into
plain output values.

For Yao’s garbled circuits protocol we use the following optimizations and
instantiations that are implemented in FastGC [20] (which is used in many recent
works such as [19,18]) and VMCrypt [32]: For OT we use OT extensions of [22]
with the OT protocol of [36] for the base OTs. For garbled circuits we use free
XOR gates [28], garbled row reduction [37,41], and pipelining [20]. All these
protocols and constructions are proven secure against semi-honest adversaries
based on the random oracle and the computational Diffie-Hellman assumptions.

3.2 Homomorphic Encryption

Secure computation can also be implemented based on additively homomorphic
encryption. On the one hand, opposed to fully homomorphic encryption [12],
additively homomorphic encryption only implements addition (modulo a key-
dependent constant) as the homomorphic operation. On the other hand, addi-
tively homomorphic encryption is almost as fast as standard public-key cryptog-
raphy, whereas the practicality of fully homomorphic encryption schemes is still
subject to research, e.g., [13].

Let EX(x) denote the encryption of plaintext x encrypted under X ’s (Alice’s
or Bob’s) public key and DX(c) the corresponding decryption of ciphertext c.
Then the additive homomorphism can be expressed as DX(EX(x) · EX(y)) =
x+y. Multiplication with a constant c can easily be derived asDX(EX(x)c) = cx.

Secure computation of an arbitrary functionality represented as arithmetic
circuit can be built from homomorphic encryption as follows. Each variable is
secretly shared between Alice and Bob. Let x be a variable of bit length l. Then
Alice has share xA and Bob has share xB, such that x = xA + xB mod 2l.

In order to securely implement the ideal functionality it suffices to securely
implement addition and multiplication of shares. Addition of x = xA + xB and
y = yA + yB (of the same bit-length l) can be implemented locally by addition
of each party’s shares. Multiplication z = x · y needs to be implemented as
a protocol. Let σ be the statistical security parameter in the share conversion
protocol of [10] and r be a uniformly random number of bit length 2l + σ + 1.
We use the following protocol for secure multiplication of shares:

A −→ B: EA(xA), EA(yA)
B −→ A: EA(c) = EA(xA)

yBEA(yA)
xBEA(r) = EA(xayB + yAxB + r)

A: c = DA(EA(c)), zA = xAyA + c mod 2l

B: zB = xByB − r mod 2l.

It is easy to verify that zA + zB = (xA + xB)(yA + yB) mod 2l. Also other
operations can be implemented using homomorphic encryption (cf. §4.1).

570 F. Kerschbaum, T. Schneider, and A. Schröpfer

In our implementation we use Paillier’s cryptosystem [39] which is secure
against chosen plaintext attacks (IND-CPA) under the decisional composite
residuosity assumption.

3.3 Conversion

In the following, we describe how secure computations based on garbled cir-
cuits and homomorphic encryption can be combined by converting from one
representation of intermediate values to the other. Our methods used for these
conversions are similar to those of previous works [17,27], but more efficient as we
directly compute on l-bit shares instead of computing on ciphertexts with longer
masks: In previous approaches, one party held an l-bit value that is additively
homomorphically encrypted under the public key of the other party. To convert
such a value into an input of a garbled circuit required to add a (σ+ l)-bit mask
to the encrypted value, send this ciphertext back, and after decryption take off
the (σ + l)-bit mask in the garbled circuit. Conversion in the opposite direction
is similar. In these previous approaches the mask had to be σ bits longer than
l in order to statistically hide the l-bit value. In our approach described below
we directly combine the shares modulo 2l and hence do not require expensive
masking, decryption, and transfer of the ciphertext.

Homomorphic Encryption to Garbled Circuits. Assume that we want
to compute a sub-functionality f using garbled circuits where one of the l-bit
inputs x was computed using homomorphic encryption, i.e., x is represented as
shares xA, xB with x = xA+xB mod 2l. To use x as input for the garbled circuit,
we extend the inputs of the garbled circuit computing f with an l-bit addition
circuit to which A provides input xA and B provides input xB , i.e., the slightly
larger garbled circuit computes f(. . . , xA +xB mod 2l, . . .). Note that reduction
modulo 2l is easily obtained by dropping the most significant carry bit.

Garbled Circuits to Homomorphic Encryption. Similarly, we can convert
the output z of a sub-functionality that has been computed using garbled circuits
into secret shares zA, zB that can later on be used for secure computations using
homomorphic encryption. For this, we extend the output of the garbled circuit
with an l-bit subtraction circuit whose subtrahend is a randomly chosen l-bit
share zA provided by A. We modify the garbled circuit protocol such that only B
obtains the output zB = z − zA mod 2l, i.e., he does not send the output keys
back to A. Again, reduction modulo 2l is easily obtained by dropping the most
significant carry bit.

Optimization. Note that we only need to convert the inputs and outputs of
operations that are securely computed with a different protocol type. Further-
more, each variable needs to be converted at most once and then can be used as
input to all sub-functionalities.

Automatic Protocol Selection in Secure Two-Party Computations 571

3.4 Security

All protocols described in this section—garbled circuits, homomorphic encryp-
tion, and mixed protocols—are secure in the semi-honest model. In this model
participants follow the protocol as prescribed, but keep a record of the messages
received and try to infer as much information as possible about the other party’s
input [15]. Protocols secure in the semi-honest model ensure that an adversary
cannot infer any information beyond what he can infer from its input and out-
put of the protocol. This model covers many real-life threats such as attacks by
honest but curious insiders.

For garbled circuits a proof of security can be found in [30]. Proofs for the
protocols using homomorphic encryption can be found in [1,14,23]. For security
of the mixed protocol we refer to Goldreich’s composition theorem [15].

4 Cost Model

In order to choose which operation to implement using which protocol we need
to compare their costs. By cost we mean the (wall clock) run-time of the protocol
and its communication. Since the protocol can be composed from sub-protocols
of both protocol types – garbled circuits and homomorphic encryption – we need
to be able to assess their performance while taking care of additional conversion
costs. We base our cost model on the model of [43] which can (reasonably)
reliably forecast the protocol run-time and communication for both types of
protocols. The accuracy of the forecast mainly determines the effectiveness of
our approach. We summarize the layers of the cost model in §4.1 and give the
costs for conversions in §4.2.

4.1 Layers

The cost model of [43] is divided into four layers. The top three layers are pa-
rameterized by the implemented algorithm and security parameters. The lowest
layer is parameterized by the performance of the actual systems on which the
protocols are deployed. This performance is measured for some basic operations
once. Then, different protocols can be compiled. Alternatively, pre-configured
costs for representative environments can be chosen by the programmer.

The first layer captures the number of input and output variables of every
player, as well as the bit-length of these variables. The second layer captures the
algorithm as a sequential list O of operations. An operation o = {l, ◦, r} ∈ O
consists of an assigned variable, a left-operand, an operator and a right-operand
(3-operand code). All assignments are single static assignments. We adopt the
intermediate language of [43] for our selection algorithms.

The intermediate language currently supports the following operations for
which secure protocols are given in [1,14,23,27]. Some of these operations lever-
age the specific advantages of the respective protocol type, i.e., direct access to
single bits and shift operations for garbled circuits or arithmetic operations for

572 F. Kerschbaum, T. Schneider, and A. Schröpfer

homomorphic encryption: addition ⊕, subtraction #, dot product +e, multipli-
cation by a constant +c, division by a constant 0c, left shift by a constant %c,
right shift by a constant (c, less-or-equal ≤. All operands are scalars with the
exception of dot product which concurrently multiplies vectors of e elements.

The third layer captures the protocol type and their security parameters, i.e.,
the lengths of keys in garbled circuits, homomorphic encryption, and oblivi-
ous transfer. The fourth layer captures the performance of the systems and the
network, i.e., the times for performing local operations (e.g., a homomorphic
encryption or a hash-function), and network bandwidth and latency.

Given these parameters, a run-time forecast (cost) of the protocol is computed
in the respective model. We implement the cost computation using the arithmetic
formulas from [43]. Using an empirical evaluation, the authors of [43] show that
these formulas estimate the run-time reasonably precisely: for n forecasts fi and

measurements ei the average error is only
∣∣∣1− 1

n

∑n
i=1

fi
ei

∣∣∣ = 3.6%.

4.2 Conversion Costs

The model of [43] actually distinguishes the two protocol types. We now need
to additionally estimate the conversion costs between the two protocols.

Recall that all operations in the intermediate language are represented in 3-
operand code (cf. §4.1). Let a = b ·c be such a 3-operand operation. As each vari-
able is assigned exactly once (single static assignment), we can use the assigned
variable a as a short notation for the operation. There are two cases when we
need to consider conversion costs according to the conversions described in §3.3:
If a is implemented using homomorphic encryption, but b (or c) is implemented
using garbled circuits, then we need to convert b (or c) from their garbled circuit
representation into secret shares by adding an input for Bob’s random share zB
and extending the garbled circuit with a subtraction circuit. If a is implemented
using garbled circuits, but b (or c) is implemented using homomorphic encryp-
tion, then we need to convert b (or c) from their representation as secret shares
into inputs for the garbled circuit by adding an addition circuit and inputs for
the shares. Again, we emphasize that each operand needs to be converted at
most once in the entire mixed protocol.

We can then compute the cost of the mixed protocol as the sum of its parts. For
the costs of each part implemented as either protocol type we use the formulas
of [43] for homomorphic encryption, the improved formula described in the full
version [26] for garbled circuits, and the conversion costs described above.

5 Optimal Partitioning

Given the cost model described in §4 we can define the problem of an optimal
partitioning of the operations into the protocol types. Consider a compiler that
translates a programming language into the intermediate language described
in §4.1. In order to construct a cost-optimal (i.e., the fastest) protocol it needs

Automatic Protocol Selection in Secure Two-Party Computations 573

to assign each operation of the intermediate language a protocol type, also con-
sidering the conversion costs.

We setup the problem formulation as follows. Let the elements xi correspond
to the left hand-side variable assigned in an operation. We denote with X the
set of these elements (variables). The operator mapping function op maps xi

to the right hand-side operators of that operation. The cost function a(xi) cor-
responds to the costs for computing xi using garbled circuits and b(xi) to the
costs using homomorphic encryption, respectively. The cost functions c(xi) and
d(xi) correspond to the costs for converting xi from homomorphic encryption
to garbled circuits and vice-versa, respectively. The set Y ⊆ X of instructions
will be implemented using garbled circuits; the set X \ Y using homomorphic
encryption. We formally define the problem as follows:

Definition 1 (Problem Definition). Let X be a set of elements x1, . . . , xn;
op(xi) be a function mapping xi to a set Fi ⊆ X; and a(xi), b(xi), c(xi), d(xi)
be four cost functions. Find the subset Y ⊆ X that optimizes the following cost
function ∑

{x|x∈Y} a(x) +
∑

{x|x∈X\Y} b(x)+∑
{x|x∈X\Y,∃y.y∈Y,x∈op(y)} c(x)+∑
{x|x∈Y,∃y.y∈X\Y,x∈op(y)} d(x).

There are some restrictions on the function op that are not captured in this
problem definition. First, the set Fi is restricted to a size of at most 2 (three
operand code). Second, the set X is ordered and op(xi) may only include ele-
ments xi′ that have been computed already, i.e., i′ < i. Nevertheless, if we solve
the general problem we also solve the restricted problem.

A further complication is that the cost functions in the cost model of [43]
do not only depend on the individual operation, but also on its neighbors. As
such this already complex problem can only be seen as an approximation of the
performance model. We address this in §5.1.

Partitioning problems, e.g., graph partitioning, are typically NP-hard, but
unfortunately we cannot provide a hardness proof for our specific instance. First,
our specific parameters for the maximum sizes of the partitions (almost the
entire set) have not yet been proven NP-hard. Second, our restrictions on the
function op(x) complicates the reduction. Nevertheless, we conjecture that the
problem is NP-hard.

5.1 Integer Programming (IP)

We search for the best solution to the partitioning problem defined above using
an optimization algorithm. However, due to the size of the problem (our largest
example considered in §6 has 383 operations) an exhaustive search is prohibitive,
such that a more efficient approach for optimization is needed. 0, 1-integer pro-
gramming is a suitable candidate, but we have to consider some non-linear costs.

In 0, 1 integer programming there are variables z for which an assignment
is sought which minimizes a linear objective function c(z) Tz subject to certain
constraints. In its standard form it is represented as

574 F. Kerschbaum, T. Schneider, and A. Schröpfer

min c T z
Az ≤ b

z ∈ −−−→{0, 1}.

For each element xi in the set of variables X we add the following three
variables to the integer program:

– z′i ∈ {0, 1} indicates whether the operation assigning xi will be executed
using homomorphic encryption (0) or garbled circuits (1).

– z′′i ∈ {0, 1} indicates whether the variable xi needs to be converted from
homomorphic encryption to garbled circuits (1) or not (0).

– z′′′i ∈ {0, 1} indicates whether the variable xi needs to be converted from
garbled circuits to homomorphic encryption (1) or not (0).

An element xi is either implemented as garbled circuits or homomorphic en-
cryption. So one variable suffices, but for conversion we need two variables. An
element might not be converted at all, but is never converted in both directions.
The objective function to be minimized follows directly from this construction:

min

(∑
i

a(xi)z
′
i −

∑
i

b(xi)z
′
i +

∑
i

c(xi)z
′′
i +

∑
i

d(xi)z
′′′
i

)
.

One complication of this objective function is the non-linearity of garbled
circuit execution time. As described in [43], side effects on OS and hardware
level (like JIT compilation, CPU caching, etc.) lead to non-linear costs per gate
if the number of gates is below a certain threshold. These effects have an influence
on the cost objective of the integer program. Sums of costs for single garbled
circuits of adjacent operations of the SSA algorithm are likely (due to their
small size) to be higher than costs of a garbled circuit of combined operations
(exceeding the threshold).

Our method to incorporate a correction in the objective function is to add
different (decreasing) costs for a respective operation xi, depending on whether
the previous operations i′ < i have been computed using garbled circuits (zi′ =
1). In order to limit the number of additional variables in the integer program, we
consider at most k = 20 previous operations. Let aj(xi) (a0(xi) > · · · > ak(xi))
be the cost of an operation xi if it and the previous j (0 ≤ j ≤ k) consecutive
operations are executed as garbled circuits. We then introduce new variables z′i,j
and replace each term a(xi)z

′
i of operation i in the objective function by

a0(xi)z
′
i,0 + a1(xi)z

′
i,1 + · · ·+ ak(xi)z

′
i,k.

We add a constraint to allow only one new variable z′i,j per operation to be set
to 1 such that only its cost is added

z′i,0 + · · ·+ z′i,k − z′i = 0.

Automatic Protocol Selection in Secure Two-Party Computations 575

We then add constraints for previous operations that are executed as garbled
circuits in order to select the correct (minimal) j’th cost aj(xi)

z′i,j − z′i−0 ≤ 0
· · ·

z′i,j − z′i−j ≤ 0.

The following constraints implement the conditions for the conversions based
on the operator mapping function op. For each operation (element) xi ∈ X and
each of its operands xj ∈ op(xi) we add the following constraint that deter-
mines whether xj needs to be converted from garbled circuits to homomorphic
encryption

z′i − z′j − z′′j ≤ 0,

i.e., if z′i is set (xi is to be computed using garbled circuits), but z′j is not set (xj

was computed using homomorphic encryption), then z′′j must be set (xj must
be converted).

Similarly, for each operation xi ∈ X and each of its operands xj ∈ op(xi) we
add the following constraint that determines whether xj needs to be converted
from homomorphic encryption to garbled circuits

−z′i + z′j − z′′′j ≤ 0,

i.e., if z′i is not set (xi is to be computed using homomorphic encryption) and z′j
is set (xj was computed using garbled circuits), then z′′′j must be set (xj must
be converted).

Let n = |X| be the number of operations. Then, our integer program has

kn+ 4n variables and at most k(k−1)n
2 + 5n constraints.

5.2 Heuristic

Integer programming is NP-complete and can become very slow for large in-
stances. We therefore also implement a heuristic using a greedy algorithm. We
start with all operations executed as garbled circuits. Then we consecutively scan
each operation in a loop. If the overall cost decreases when converting this oper-
ation to homomorphic encryption we do so. We repeat until no more operations
are converted.

The heuristic algorithm is shown in Algorithm 1. We use the same variables z′i
as above in §5.1 for each operation representing its assignment to either protocol
type. We infer the variables z′′i and z′′′i using a helper routine and implement the
remainder of the cost function in COST also as described above in §5.1. Initially
we set all z′i to 1 for garbled circuits (line 1). The algorithm has worst-case
complexity O(n2), since the inner loop (lines 6 - 17) is executed at most n times
(at least one operation must be converted per iteration of the outer loop).

576 F. Kerschbaum, T. Schneider, and A. Schröpfer

Algorithm 1. Cost-Driven Heuristic

Require: Cost function cost(·)
Ensure: Partitioning z′ of the operations into protocols
1: z′ ← 1
2: cost ← cost(z′)
3: flag ← 1
4: while flag = 1 do
5: flag ← 0
6: for 0 ≤ i < n do
7: if z′i = 1 then
8: z′i ← 0
9: c ← cost(z′)
10: if c < cost then
11: flag ← 1
12: cost ← c
13: else
14: z′i ← 1
15: end if
16: end if
17: end for
18: end while

6 Use Cases

In order to validate the complexity of manual partitioning and the cost advantage
of our algorithmic approach, we consider three use cases for secure computation
from the literature: joint economic-lot-size (§6.1), biometric identification (§6.2),
and data mining (§6.3). Afterwards, we evaluate their performance in §6.4.

6.1 Secure Joint Economic Lot-Size

The secure joint economic lot-size problem describes a two-party scenario be-
tween a vendor and a buyer of a product. Both try to align the process of produc-
tion, shipping, and warehousing according to an overall buyer’s demand. Specif-
ically, they try to agree on a joint lot-size q for production and shipping. We call
the demand known to both parties d, vendor’s setup cost fA, vendor’s capacity c,
supplier’s ordering cost fB, vendor’s holding cost hA, and supplier’s holding cost
hB. Using the formula of [2] we can compute q as q2 = 2·d·fA+2·d·fB

d·hA
c +hB

. The inputs to

this calculation are sensitive (such as costs and capacities), since they disclose in-
formation about the cost calculation and influence future price negotiations if re-
vealed. As described in [40] and can be seen above, the confidentiality-preserving
computation of q can be reduced to secure division, see e.g. [1,7]. Secure division
is also relevant for many other real world secure computations, e.g., k-means
clustering [7]. As our use case we consider two division algorithms: the Newton-
Raphson algorithm described in [1,43] and the long division algorithm described
in [40]. That is, we compute for 32 bit inputs x and y held as shares xA, yA and

Automatic Protocol Selection in Secure Two-Party Computations 577

xB, yB by the respective parties (cf. §3.2) f(xA, yA, xB , yB) =
⌊
xA+xB

yA+yB

⌋
. The

Newton-Raphson algorithm has 302 operations in the intermediate language and
the long division algorithms has 383 operations.

6.2 Biometric Identification

Comparing and matching biometric data is a highly privacy-sensitive task in
systems that are widely used in law enforcement, including fingerprint-, iris-, and
face-recognition systems, e.g., [11,21,3]. The identification is based on comparing
the submitted biometric information to values in a database, determining the
closest match with respect to some metric (e.g., Euclidean distance). As use case
we consider an algorithm for biometric identification, computing the distances
using Euclidean distance as metric which is commonly used for fingerprints and

faces. We compute min
(∑M

i=1(S1,i − Ci)
2, · · · ,

∑M
i=1(SN,i − Ci)

2
)

for N = 5

vectors of M = 4 elements Si,j in the server database and a client vector Ci

of M elements, for elements of 32 bit. The algorithm has 80 operations in the
intermediate language.

6.3 Data Mining

Data mining aims to extract knowledge from databases, connecting the worlds
of databases, artificial intelligence, and statistics. Various data mining algorithm
for different purposes have been proposed in the literature. One particular pur-
pose is that of structuring data sets in order to provide decision mechanisms that
can be used for classification. A well known algorithm for decision tree learning
is the ID3 algorithm described in [42]. A privacy-preserving classification variant
of ID3, described in [29] as one of the first privacy-preserving data mining algo-
rithms, enables new applications where multiple private databases can be used
to act as training set (e.g., medical databases). The authors of [29] use entropy
to compute the best attributes, with the privacy-preserving computation of the
natural logarithm as the basis operation. As our use case we consider an algo-
rithm to compute the natural logarithm. To the best of our knowledge, this is the
first implementation of this privacy-preserving data mining algorithm. That is,
we compute the natural logarithm of a 32 bit input x = 2n(1+ ε) held as shares
xA and xB by the respective parties where 2n is the power of 2 which is closest
to x and −1/2 ≤ ε < 1/2. The natural logarithm is approximated with a Taylor

series with k = 10 iterations: ln(x) = ln(2n(1+ ε)) = n ln 2+ ε− ε2

2 + · · · εkk . The
algorithm has 270 operations in the intermediate language.

6.4 Evaluation

In the following we evaluate our partitioning algorithms of §5 on the three use
cases introduced in §6.1, §6.2, and §6.3. Using these results we compare the
performance of mixed protocols to garbled circuit protocols, the optimization

578 F. Kerschbaum, T. Schneider, and A. Schröpfer

Table 1. Runtime forecasts in [seconds] for long division (LD), Newton-Raphson (NR),
Euclidean distance (ED), and natural logarithm (LOG) on 32 bit inputs

Security Partitioning LD NR ED LOG
LAN WAN LAN WAN LAN WAN LAN WAN

short- HE-only 81.6 104.7 93.6 119.5 14.8 18.4 72.6 95.7
term GC-only 2.0 5.6 12.3 82.2 6.1 16.6 1.6 4.0

Heuristic 2.0 5.5 12.3 59.5 6.0 11.4 1.5 3.3
IP 2.0 5.5 12.3 59.5 6.0 11.4 1.4 3.1

mid- HE-only 588.6 611.7 675.0 700.9 106.8 110.4 523.3 546.4
term GC-only 2.1 7.8 12.1 115.0 5.9 23.1 1.6 5.4

Heuristic 2.0 7.7 12.1 115.0 5.8 22.8 1.4 4.6
IP 2.0 7.6 12.1 115.0 5.8 22.7 1.4 4.4

long- HE-only 1,974.2 1,997.3 2,264.9 2,290.9 359.5 363.1 1,749.2 1,772.4
term GC-only 2.1 8.8 12.1 131.4 5.9 26.3 1.6 6.2

Heuristic 2.0 8.8 12.1 131.4 5.8 25.9 1.4 5.2
IP 2.0 8.6 12.1 131.4 5.8 25.9 1.4 4.9

of the heuristic to that of integer programming, and the automatic optimal
partitioning to the manual partitioning approach.

As execution environment of the secure computation protocols we consider
a LAN environment (bandwidth b = 100 Mbit/s, latency tLAT = 1 μs) and
a WAN environment (bandwidth b = 1 Mbit/s, latency tLAT = 100 ms). The
performance of local operations has been measured on servers with four AMD
Opteron 885 dual-core 64-bit CPUs and 16 GB RAM using a single-threaded
implementation (cf. the full version [26] for details). We use Java Version 6 and
instantiate security parameters according to NIST recommendations [38] (cf. the
full version [26] for details).

In a brief experimental study we confirmed the accuracy of the performance
model described in §4. We executed all four use cases in the LAN/WAN setting
with short-term security (80 bit) using the mixed partitioning. Our forecasts
were always within the same error bound as reported in [43].

Tab. 1 summarizes the runtime forecasts. The table consists of the respective
results in seconds for partitions that are computed entirely using homomorphic
encryption (HE-only) or garbled circuits (GC-only), and for mixed partitions
that were found by our heuristic and by integer programming (IP).

Mixed versus Non-mixed Protocols. The results in Tab. 1 show that for our
use cases, mixed protocols can reduce runtimes below those of single protocols.
For pure homomorphic encryption and garbled circuits we draw two conclusions.

First, in all use cases and settings the HE-based encryption protocols result
in highest runtimes. In particular for growing key lengths of mid- and long-term
security settings, HE is slower than GC by orders of magnitudes.

Second, GC-based protocols are sometimes competitive, but may be improved
by mixed protocols. In 16 out of 24 experimental settings, garbled circuits have
runtimes close to the best results (not more than 5% deviation). In four cases

Automatic Protocol Selection in Secure Two-Party Computations 579

Table 2. Communication forecasts in [kb] for long division (LD), Newton-Raphson
(NR), Euclidean distance (ED), and natural logarithm (LOG) on 32 bit inputs

Security Partitioning LD NR ED LOG

short- HE-only 776 852 96 892
term GC-only 5,057 76,668 15,147 3,384

Heuristic 5,012 76,668 14,877 3,361
IP 4,938 76,668 14,945 2,648

mid- HE-only 1,552 1,704 192 1,784
term GC-only 7,080 107,336 21,192 4,737

Heuristic 7,017 107,336 20,814 4,706
IP 6,914 107,336 20,908 3,692

long- HE-only 2,328 2,556 288 2,676
term GC-only 8,092 122,669 24,214 5,414

Heuristic 8,020 122,669 23,782 5,378
IP 7,901 122,669 23,890 4,214

the GC protocol results in the best performance. In all experimental settings,
both partitioning mechanisms for computing optimal mixed protocols result in
the best performance, including the previously mentioned four pure garbled cir-
cuit cases. In 8 of 24 settings, the mixed protocols result in an average of 20%
less runtime. The largest improvement is 31% lower runtime compared to the
protocol entirely implemented as garbled circuit (Euclidean distance, short-term
security, WAN).

We infer that network conditions are essential in the context of performance
measurements. For LAN settings, mixed protocols obtain on average an improve-
ment over the garbled circuit protocol of 4%. For WAN settings, however, the
improvement is significantly higher, namely 11%.

Tab. 2 depicts the communication complexities of the protocols in kilobytes.
Clearly, non-mixed protocols yield either most (GC-only) or least (HE-only)
communication traffic. From the perspective of communication and related costs
(e.g., fees charged in mobile networks), HE-only as well as mixed protocols clearly
have an advantage over GC-only protocols. The reason are the corresponding op-
erators and sub-protocols of HE sub-protocols that, compared to GC-only pro-
tocols, have to transmit only a low amount of data. Additional communication
savings can be obtained by packing these data. A good example is the use-case of
calculating the Euclidean distance. Considering the amount of data to transmit,
in Tab. 2 we see a difference of magnitudes between GC-only and HE-only and
a reasonable difference to the mixed protocol. Regarding the example, a joint
view on Tab. 1 and Tab. 2 shows how a mixed protocol (by both, Heuristic and
IP) can significantly reduce runtime as well as network traffic.

Heuristic versus Integer Programming. Both optimization approaches re-
sult in mixed protocols that perform, in almost half of all experimental settings,
noticeably better than pure protocols. As seen from the results in Tab. 1, the
heuristic based partitioning results are close to those of integer programming

580 F. Kerschbaum, T. Schneider, and A. Schröpfer

(a) Long Division (LD) (b) Newton-Raphson (NR)

(c) Euclidean Distance (ED) (d) Natural Logarithm (LOG)

Fig. 1. Partitioning of algorithms for 32 bit inputs. Operations computed using GC
are depicted in dark-gray, those computed using HE in gray. The upper and lower bar
depict the partitioning found by the heuristic and integer program, respectively.

(deviating not more than 2.7% on average, at maximum 7.6%). While the heuris-
tic only requires seconds to compute the partitioning per use case and setting,
the integer program requires several hours using the LP solver SoPlex1 on the
aforementioned server hardware. While the performance of the mixed protocols
found by the two partitioning algorithms is similar, the resulting partitionings
differ in several aspects (see the full version [26] for details). The heuristic, in
comparison to the integer program, tends to reduce the number of blocks. A
block is a sequence of consecutive operations with the same protocol type. For
long division and natural logarithm, over all settings, the ratio between number
of blocks and number of operations is less than 0.025, while it is more than
0.279 (i.e., larger by a factor of 10) for the integer program. On the contrary, re-
sults for Netwton-Raphson and Euclidean distance show that both partitioning
algorithms may result in similarly high (0.5) or low (0.003) ratios.

Manual versus Automated Partitioning. Using an analysis of the partitions
found by our algorithms – independent of heuristic or integer program – we argue
that it is complicated to find the same partition manually. Fig. 1 shows how
the optimization approaches partitioned the use cases in the various settings.
Operations computed using garbled circuits are depicted in dark-gray, those
computed using homomorphic encryption in gray.

1 Version 1.6.0, available at http://soplex.zib.de/

Automatic Protocol Selection in Secure Two-Party Computations 581

Fig. 1 shows that the mixed protocols are heavily fragmented in order to
achieve the optimal performance (cf. the full version [26] for details). We obtain
a wide spectrum of fragmentations. For Euclidean distance we have 40 blocks (of
at most two operations per block) within only 80 operations in total. Similarly,
for Newton-Raphson we obtain 113 blocks (of 1 to 26 operations per block)
within 302 operations. Regarding partitions with at least two blocks, we obtain
the largest block for natural logarithm (of 221 operations) within 270 operations.

Although there seem to be patterns in some areas of the diagrams, it is difficult
to infer a general conclusion that can be used to manually derive a partitioning
with similar performance. Fig. 1 shows that for some sub-sequences partitions
are constant (within the same network setting but for changing security levels,
e.g., long division). Others change within the same network setting for changing
security levels (e.g., Euclidean distance and Newton-Raphson). In only 3 out of
12 cases there is no change in the partitioning across different network settings.
We provide more details in the full version [26].

7 Conclusions

In this paper we have presented algorithms to automatically select a protocol –
garbled circuits or homomorphic encryption – in secure two-party computation.
Based on a performance model our algorithms minimize the costs of a mixed
protocol. We present an evaluation based on three use cases from the literature:
secure joint economic lot-size, biometric identification, and data mining.

Our results support that mixed protocols perform better than pure garbled
circuit implementations. In 8 out of 24 experiments we achieve a performance
gain of 20% on average. We conclude that the option to mix protocols improves
performance of secure two-party computation.

Our results also support that our heuristic is close to the optimization algo-
rithm based on integer programming. In all experiments our heuristic achieved a
performance within 2.7% of the optimum on average. Nevertheless, the heuristic
runs within seconds whereas the integer program requires hours. We conclude
that it is practically feasible to automatically do the (near-optimal) selection.

Furthermore, our detailed analysis of the experiments also revealed that there
is no discernible pattern of the selection. A programmer cannot rely on simple
hints in order to perform the selection manually. We therefore conclude that
the protocol selection problem is too complicated to be solved manually by the
programmer and needs to be solved automatically, e.g., by a compiler.

Acknowledgements. The research leading to these results has received funding
from the European Union Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement n. 609611 (PRACTICE). Thomas Schneider was supported
by the German Federal Ministry of Education and Research (BMBF) within EC
SPRIDE and by the Hessian LOEWE excellence initiative within CASED.

582 F. Kerschbaum, T. Schneider, and A. Schröpfer

References

1. Atallah, M., Bykova, M., Li, J., Frikken, K., Topkara, M.: Private Collaborative
Forecasting and Benchmarking. In: ACM Privacy in the Electronic Society, WPES
(2004)

2. Banerjee, A.: A Joint Economic-Lot-Size Model For Purchaser and Vendor. Deci-
sion Sciences 17(3) (1986)

3. Blanton, M., Gasti, P.: Secure and Efficient Protocols for Iris and Fingerprint
Identification. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879,
pp. 190–209. Springer, Heidelberg (2011)

4. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-
Preserving Computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

5. Bogdanov, D., Talviste, R., Willemson, J.: Deploying Secure Multi-Party Com-
putation for Financial Data Analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS,
vol. 7397, pp. 57–64. Springer, Heidelberg (2012)

6. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure Multiparty Computation Goes Live. In: Dingledine, R., Golle, P. (eds.)
FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

7. Bunn, P., Ostrovsky, R.: Secure Two-Party k-Means Clustering. ACM Computer
and Communications Security, CCS (2007)

8. Choi, S.G., Hwang, K.-W., Katz, J., Malkin, T., Rubenstein, D.: Secure Multi-Party
Computation of Boolean Circuits with Applications to Privacy in On-Line Mar-
ketplaces. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 416–432.
Springer, Heidelberg (2012)

9. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous Multiparty
Computation: Theory and Implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

10. Damg̊ard, I., Thorbek, R.: Efficient Conversion of Secret-Shared Values Between
Different Fields, http://eprint.iacr.org/2008/221

11. De Cristofaro, E., Jarecki, S., Kim, J., Tsudik, G.: Privacy-Preserving Policy-Based
Information Transfer. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS,
vol. 5672, pp. 164–184. Springer, Heidelberg (2009)

12. Gentry, C.: Fully Homomorphic Encryption using Ideal Lattices. In: ACM Sympo-
sium on Theory of Computing, STOC (2009)

13. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption
Scheme. In: Paterson, K.G. (ed.) EUROCRYPT2011. LNCS, vol. 6632, pp. 129–148.
Springer, Heidelberg (2011)

14. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On Private Scalar Product
Computation for Privacy-Preserving Data Mining. In: Park, C.-S., Chee, S. (eds.)
ICISC 2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005)

15. Goldreich, O.: Foundations of Cryptography: Volume 2 – Basic Applications. Cam-
bridge Univ. Press (2004)

16. Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game. In: ACM
Symposium on Theory of Computing, STOC (1987)

17. Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY:
Tool for Automating Secure Two-partY computations. In: ACM Computer and
Communications Security, CCS (2010)

http://eprint.iacr.org/2008/221

Automatic Protocol Selection in Secure Two-Party Computations 583

18. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure Two-Party Computation
in ANSI C. In: ACM Computer and Communications Security, CCS (2012)

19. Huang, Y., Evans, D., Katz, J.: Private Set Intersection: Are Garbled Circuits Bet-
ter than Custom Protocols? In: Network and Distributed System Security, NDSS
(2012)

20. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster Secure Two-Party Computation
Using Garbled Circuits. In: USENIX Security Symposium (2011)

21. Huang, Y., Malka, L., Evans, D., Katz, J.: Efficient Privacy-Preserving Biometric
Identification. In: Network and Distributed System Security, NDSS (2011)

22. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

23. Kerschbaum, F.: Practical Privacy-Preserving Benchmarking. In: IFIP Interna-
tional Information Security Conference, SEC (2008)

24. Kerschbaum, F.: Automatically Optimizing Secure Computation. In: ACM Com-
puter and Communications Security, CCS (2011)

25. Kerschbaum, F., Schröpfer, A., Zilli, A., Pibernik, R., Catrina, O., de Hoogh, S.,
Schoenmakers, B., Cimato, S., Damiani, E.: Secure Collaborative Supply Chain
Management. IEEE Computer 44(9) (2011)

26. Kerschbaum, F., Schneider, T., Schröpfer, A.: Automatic Protocol Selection in Se-
cure Two-Party Computations (Full Version), http://eprint.iacr.org/2014/200

27. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved Garbled Circuit Building
Blocks and Applications to Auctions and Computing Minima. In: Garay, J.A.,
Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer,
Heidelberg (2009)

28. Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and
Applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

29. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. Journal of Cryptology
15(3) (2002)

30. Lindell, Y., Pinkas, B.: A Proof of Yao’s Protocol for Secure Two-Party Computa-
tion. Journal of Cryptology 22(2) (2009)

31. MacKenzie, P.D., Oprea, A., Reiter, M.K.: Automatic Generation of Two-Party
Computations. ACM Computer and Communications Security, CCS (2003)

32. Malka, L.: VMCrypt - Modular Software Architecture for Scalable Secure Compu-
tation. ACM Computer and Communications Security, CCS (2011)

33. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - A Secure Two-party Com-
putation System. In: USENIX Security Symposium (2004)

34. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)

35. Mood, B., Letaw, L., Butler, K.: Memory-Efficient Garbled Circuit Generation for
Mobile Devices. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 254–268.
Springer, Heidelberg (2012)

36. Naor, M., Pinkas, B.: Efficient Oblivious Transfer Protocols. In: Symposium on
Data Structures and Algorithms, SODA (2001)

37. Naor, M., Pinkas, B., Sumner, R.: Privacy Preserving Auctions and Mechanism
Design. In: ACM Conference on Electronic Commerce (EC) (1999)

38. NIST. Recommendation for Key Management. Special Publication 800-57 Part 1
Rev. 3, 07/2012

http://eprint.iacr.org/2014/200

584 F. Kerschbaum, T. Schneider, and A. Schröpfer

39. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

40. Pibernik, R., Zhang, Y., Kerschbaum, F., Schröpfer, A.: Secure Collaborative Sup-
ply Chain Planning and Inverse Optimization - The JELS Model. European Journal
of Operational Research (EJOR) 208(1) (2011)

41. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Com-
putation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 250–267. Springer, Heidelberg (2009)

42. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1) (1986)
43. Schröpfer, A., Kerschbaum, F.: Forecasting Run-Times of Secure Two-Party Com-

putation. In: Int. Conference on Quantitative Evaluation of Systems, QEST (2011)
44. Schröpfer, A., Kerschbaum, F., Müller, G.: L1 - An Intermediate Language for

Mixed-Protocol Secure Computation. In: IEEE Computer Software and Applica-
tions Conference, COMPSAC (2011)

45. Yao, A.C.: How to Generate and Exchange Secrets. In: IEEE Foundations of Com-
puter Science, FOCS (1986)

Author Index

Ahmadi, Hadi 116
Ateniese, Giuseppe 80
Attrapadung, Nuttapong 419

Backes, Michael 380, 401
Bader, Christoph 1
Bertoni, Guido 217
Blakley, Bob 513
Blondeau, Céline 271
Bogdanov, Andrey 271

Canard, Sébastien 549
Cao, Zhenfu 181
Chen, Yu 181
Chow, Sherman S.M. 181
Clark, Jeremy 380
Cooley, Brett 494

Daemen, Joan 217
Das, Abhijit 438
de Medeiros, Breno 80
Devigne, Julien 549
Druschel, Peter 380

Emura, Keita 419

Faonio, Antonio 80

Gerling, Rainer W. 401
Gerling, Sebastian 401
Großschädl, Johann 361
Guilley, Sylvain 324
Guo, Zhiyuan 308

Hanaoka, Goichiro 181, 419
Hao, Ronglin 289
Heuser, Annelie 324
Hoffstein, Jeff 476
Hu, Lei 134
Huang, Zhangjie 134

Karati, Sabyasachi 438
Kate, Aniket 380
Kerschbaum, Florian 566
Kiefer, Franziskus 199

Kim, Taechan 163
Kohno, Tadayoshi 513
Kreuzer, M. 37

Lewi, Kevin 44
Li, Bao 289
Li, Xiaoqian 289
Li, Yong 1
Lin, Dongdai 151
Liu, Zhe 361
Lu, Yao 151

Ma, Bingke 289
Magri, Bernardo 80
Manulis, Mark 199
Matyáš, Vashek 343
Montgomery, Hart 44
Moradi, Amir 324
Myasnikov, A.D. 37

Naito, Yusuke 235
Nürnberger, Stefan 401

Ohta, Kazuo 235

Peeters, Michaël 217
Peng, Liqiang 134
Pipher, Jill 476
Pöhls, Henrich C. 457

Raghunathan, Ananth 44

Safavi-Naini, Reihaneh 62, 116
Sakai, Yusuke 419
Samelin, Kai 457
Sanders, Olivier 549
Sasaki, Yu 253
Schäge, Sven 1
Schanck, John M. 476
Schneider, Thomas 566
Schröder, Dominique 401
Schröpfer, Axel 566
Schwenk, Jörg 1
Shulman, Haya 531
Silverman, Joseph H. 476

586 Author Index

Simeonovski, Milivoj 380
Simkin, Mark 401
Smolka, Tobiáš 343
Stavrou, Angelos 494
Stehĺık, Martin 343
Stetsko, Andriy 343

Tibouchi, Mehdi 163

Ushakov, A. 37

Van Assche, Gilles 217

Waidner, Michael 531
Wang, Haining 494
Wang, Meiqin 271
Wang, Xinran 513
Wang, Yanfeng 308

Wenger, Erich 361
Whyte, William 476
Wu, Wenling 308

Xie, Yonghong 134
Xu, Jia 97
Xu, Jun 134

Yang, Zheng 1
Yoneyama, Kazuki 19, 235
Yu, Xiaoli 308

Zhang, Liang Feng 62
Zhang, Rui 151
Zhang, Zongyang 181
Zhao, Yunlei 181
Zhou, Jianying 97

	Preface
	Organization
	Invited Talks
	How Not to Generate Random Numbers
	The Emergence of Authenticated Encryption
	Table of Contents
	Key Exchange
	New Modular Compilers for Authenticated KeyExchange
	1 Introduction
	1.1 Contribution
	1.2 The Security Model
	1.3 Related Work

	2 Security Assumptions
	3 Security Model
	4 Authenticated Key Exchange Compiler from Signature
	4.1 Protocol Description
	4.2 Security Analysis

	5 Authenticated Key Exchange Compiler from Public Key Encryption
	5.1 Protocol Description
	5.2 Security Analysis

	References

	Password-Based Authenticated Key Exchange without Centralized Trusted Setup
	1 Introduction
	2 Preliminaries
	2.1 Password-Based Authenticated Key Exchange in Multi-string Model
	2.2 Smooth Projective Hash Functions
	2.3 Multi-string Simulation-Extractable Non-interactive Zero-Knowledge Proof

	3 Three-Move PAKE in Multi-string Model
	3.1 Recalling the GK Scheme
	3.2 Design Principle
	3.3 Our Protocol
	3.4 Security

	4 Other Constructions
	4.1 Lattice-Based Three-Move PAKE in Multi-string Model
	4.2 Universally Composable Three-Move PAKE in Multi-string Model
	4.3 Is One-Round PAKE in Multi-string Model Possible?
	4.4 Semi-Generic Transformation from CRS Model

	5 Concluding Remark
	References

	A Linear Algebra Attack to Group-Ring-BasedKey Exchange Protocols
	1 Introduction
	2 Description of the HKKS Key Exchange Protocol
	3 Proposed Parameters for the HKKS Key Exchange Protocol
	4 Embedding Matrices over Group Rings
	5 A Linear Algebra Attack on the HKKS Key Exchange Protocol
	References

	Primitive Construction
	Improved Constructions of PRFs Secure Against Related-Key Attacks
	1 Introduction
	1.1 Background and Related Work
	1.2 Our Contributions
	1.3 Our Techniques

	2 Preliminaries
	2.1 Notation
	2.2 RKA-secure PRFs
	2.3 Security Assumptions
	2.4 The Bellare-Cash Framework

	3 New RKA-secure PRFs Using the BC Framework
	3.1 RKA-secure PRFs for a Restricted Linear Class Φlin
	3.2 RKA-secure PRFs for an Affine Class Φaff

	4 Unique-Input RKA-secure PRFs for an Affine Class
	5 Unique-Input RKA-secure PRFs for a Class of Polynomials
	6 Conclusions
	References

	Verifiable Multi-server Private InformationRetrieval
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Building Blocks and Our Techniques

	2 Preliminaries
	2.1 Our Model
	2.2 Woodruff-Yekhanin PIR Scheme
	2.3 Papamanthou et al. PVC Schemes
	2.4 Bilinear Maps and Assumptions

	3 Our Constructions
	3.1 Basic Construction
	3.2 Main Construction

	4 Conclusions
	References

	Certified Bitcoins
	1 Introduction
	1.1 Outline
	1.2 Previous Work

	2 Background
	2.1 Bitcoin Signature Scheme
	2.2 Bitcoin Transactions

	3 Certified Bitcoin Address
	3.1 Description of the Scheme
	3.2 Implementation Designs
	3.3 Security Requirements and Goals

	4 Security of the Certified Bitcoin Addresses
	4.1 Unforgeability Formalizations and Proofs

	5 Conclusion
	References

	Leakage Resilient Proofs of Ownershipin Cloud Storage, Revisited
	1 Introduction
	1.1 Overview of Our Result
	1.2 Contributions
	1.3 Organizations

	2 Preliminaries and Background
	2.1 Notations and Definitions
	2.2 Proofs of Retrievability
	2.3 Randomness Extractor

	3 Formulation: Proofs of Ownership, Revisited
	3.1 Two Players Setting and Three Players Setting of PoW
	3.2 Soundness of PoW
	3.3 Privacy-Preserving PoW
	3.4 Clarification on Leakage of User ID and Password

	4 Generic Construction of Proofs of Ownership
	4.1 Some Unsatisfactory Approaches
	4.2 Our Approach: PoW = Randomness Extractor + POR

	5 Randomness Extractor with Large Output Size
	6 Conclusion and Open Problems
	References

	Private Message TransmissionUsing Disjoint Paths
	1 Introduction
	1.1 Our Work: PMT in the Multipath Setting
	1.2 Related Work and Discussion

	2 Preliminaries: Ramp and Quasi-ramp Secret Sharing
	3 Problem Description
	3.1 Multipath Setting Abstraction
	3.2 PMT protocol and Secrecy Capacity: Definition
	3.3 Relation among P-secrecy and AP-secrecy Capacities

	4 PMT in the Full-access Scenario
	4.1 P-PMT for Finite λ
	4.2 AP-PMT in the full-access Case

	5 PMT in the General Multipath Setting
	5.1 P-PMT: Capacity and Construction
	5.2 AP-PMT: Capacity and Constructions
	5.3 Comparison of P-secrecy and AP-secrecy Rates

	6 Practical Consideration
	6.1 PMT Using Multiple-frequency Links
	6.2 PMT Using Multiple-route Networks

	7 Conclusion and Future Work
	References

	Attacks (Public-Key Cryptography)
	Partial Key Exposure Attackson Takagi’s Variant of RSA
	1 Introduction
	2 Preliminaries
	2.1 Lattices and Howgrave-Graham’s Lemma
	2.2 Takagi’s RSA-Type Cryptosystem

	3 Description of Attacks and Proof of Theorems
	3.1 Attack with Known MSBs
	3.2 Attack with Known LSBs
	3.3 Attack with Known Bits in the Middle

	4 Experiments
	5 Conclusion
	References

	New Partial Key Exposure Attackson CRT-RSA with Large Public Exponents
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Lattices
	2.2 Bl¨omer-May’s Partial Key Exposure Attacks on CRT-RSA
	2.3 Finding Small Root of Bivariate Linear Equations

	3 Key Recovery from Known LSBs
	3.1 The Description of Our Attacks
	3.2 Attack I: An Approach Modulo p
	3.3 Attack II: An Approach Modulo eM
	3.4 Comparison of the Attacks

	4 Key Recovery from Known MSBs
	4.1 Comparison with Bl¨omer-May’s [11] Results

	5 Experimental Results
	References

	Bit-Flip Faults on Elliptic CurveBase Fields, Revisited
	1 Introduction
	2 Background on ECDLP and ECDSA
	3 Our Attack
	3.1 Attack Model
	3.2 Choice of the Faulty Modulus
	3.3 Result in Jacobian Coordinates: Recovering Most of the Scalar
	3.4 Result in Jacobian Coordinates: Recovering the Whole Scalar
	3.5 Result in Affine Coordinates
	3.6 Attack on ECDSA
	3.7 Extending the Attacks to Random Faults

	4 Simulation Results
	4.1 Search for Optimal Bit Flips
	4.2 ECDLP Attack
	4.3 ECDSA Attack

	5 Conclusion
	References

	Hashing
	All-but-One Dual Projective Hashingand Its Applications
	1 Introduction
	1.1 Overview of Our Results
	1.2 Related Work

	2 Preliminaries
	3 ABO Dual Projective Hashing
	3.1 Relationship between DPH and ABO DPH

	4 All-but-One Lossy Trapdoor Functions from ABO DPH
	5 Deterministic Encryption from ABO DPH
	5.1 Security Definition
	5.2 Our Construction
	5.3 Extended General Construction

	6 Instantiations
	6.1 Instantiations from DDH and DLIN
	6.2 Instantiations from DCR
	6.3 Instantiations from LWE

	References

	Distributed Smooth Projective Hashingand Its Application to Two-Server PasswordAuthenticated Key Exchange
	1 Introduction
	2 Smooth Projective Hash Functions
	3 Extended Smooth Projective Hash Functions (SPHFx)
	3.1 Distributed Computation of SPHFx
	3.2 Security against Active Adversaries
	3.3 Instantiation – Distributed Cramer-Shoup SPHFx

	4 Two-Server PAKE from Distributed SPHFx
	4.1 A New Two-Server PAKE Framework
	4.2 2-Server KOY (2KOY) [13]

	5 Conclusion
	References

	Sakura: A Flexible Coding for Tree Hashing
	1 Introduction
	2 Functionality Supported by Sakura
	2.1 Modeling tree Hash Modes
	2.2 From Generality to Functionality
	2.3 Hops and Hop Trees
	2.4 Interleaving the Input over Message Hops
	2.5 Mapping Hops to Nodes
	2.6 Illustrations

	3 The Sakura Tree Coding
	3.1 Formal Description of Sakura
	3.2 Illustrations

	4 Sakura-Compatible Tree Hash Modes and Soundness
	5 Examples of Tree Hash Modes
	5.1 Final Node Growing
	5.2 Leaf Interleaving
	5.3 Macro- and Microscopic Leaf Interleaving
	5.4 Binary Tree

	6 Application to Keccak and SHA-3
	References

	Reset Indifferentiability from Weakened Random Oracle Salvages One-Pass Hash Functions
	1 Introduction
	1.1 Indifferentiability
	1.2 RO Methodology
	1.3 Impossibility of IFRO Security in Multi-Stage Security Games
	1.4 Reset Indifferentiability
	1.5 Our Contributions – A New Proposal of WRO Methodology –
	1.6 Related Works

	2 Preliminaries
	3 Reset Indifferentiability from WRO
	3.1 Reset Indifferentiability for ChopMD
	3.2 Reset Indifferentiability for FOLSponge

	4 Proof of Theorem 2
	5 Multi-Stage Security in the WRO Model
	5.1 CDA Secure PKE in the WRO Model

	References

	Cryptanalysis & Attacks (Symmetric Cryptography)
	Memoryless Unbalanced Meet-in-the-MiddleAttacks: Impossible Results and Applications
	1 Introduction
	2 Generalizing the Computational Cost of Unbalanced MitM Attacks
	2.1 Previous Work for CF = 1
	2.2 Generalization for CF = 2α

	3 Impossibility of Efficient Memoryless Unbalanced MitM Attacks
	3.1 Simple Application of the Floyd’s Cycle-Finding Algorithm
	3.2 Unbalanced Selecting Bits: Changing the Ratio of F to G
	3.3 Summary and Remarks

	4 Applications of the Memoryless Unbalanced MitM Attacks
	4.1 Conditions to Apply Memoryless Unbalanced MitM Attack
	4.2 Incorrectness of Previous Memoryless MitM Preimage Attack
	4.3 Application to 3-Collisions
	4.4 Application to Limited-Birthday Distinguisher

	5 Concluding Remarks
	References

	On the (In)Equivalence of ImpossibleDifferential and Zero-Correlation Distinguishersfor Feistel- and Skipjack-Type Ciphers
	1 Introduction
	2 Preliminaries
	2.1 Feistel-Type Cipher and Matrix Representation
	2.2 Matrix Method for Impossible Differential Distinguisher
	2.3 Matrix Method for Zero-Correlation Distinguishers

	3 Equivalence for Feistel-Type Ciphers
	3.1 Condition of Equivalence
	3.2 Example of Equivalence
	3.3 Example of Non-Equivalence

	4 Equivalence for Skipjack-Type Ciphers
	4.1 Skipjack-Type Ciphers
	4.2 Condition of Equivalence
	4.3 Example of Skipjack-Type Ciphers

	5 Other Constructions
	5.1 Generalized Feistel-Type Ciphers
	5.2 Constructions Similar to MARS and Four-Cell

	6 Conclusion
	References

	Improved Cryptanalysis on Reduced-RoundGOST and Whirlpool Hash Function
	1 Introduction
	2 Preliminaries
	2.1 The GOST Hash Function
	2.2 The Multicollision Attack and Its Applications
	2.3 Limited-Birthday Distinguisher on Hash Functions

	3 Improved Preimage Attack on 6-Round GOST-512
	4 Improved Collision Attacks on Reduced-Round GOST
	4.1 Collision Attack on 6.5-Round GOST-256
	4.2 Collision Attack on 7.5-Round GOST-512

	5 Limited-Birthday Distinguishers on GOST-512 and Whirlpool
	5.1 Limited-Birthday Distinguisher on 9.5-Round GOST-512

	6 Conclusion
	References

	Differential Cryptanalysis and LinearDistinguisher of Full-Round Zorro
	1 Introduction
	2 A Brief Description of Zorro
	3 Differential Cryptanalysis of Full-Round Zorro
	3.1 Iterated Differential Characteristic
	3.2 Basic Key Recovery Attack on Full-Round Zorro
	3.3 TMTO Key Recovery Attack on Full-Round Zorro

	4 Linear Distinguishing Attack on Full-Round Zorro
	4.1 Iterated Linear Trail
	4.2 Linear Distinguisher of the Full-Round Zorro

	5 Conclusion
	References
	Appendix A: S-box of Zorro
	Appendix B: Computation of the exact number of samples required for a statistical attack

	Detecting Hidden Leakages
	1 Introduction
	2 Masking in Software
	2.1 Traditional Scheme
	2.2 Problems
	2.3 Multi-mask FEMS vs Mono-Mask LEMS
	2.4 RSM

	3 Practical Realization
	3.1 DPA Contest V4
	3.2 Analysis

	4 Discussion
	4.1 Attack and Leakage Orders
	4.2 Comparison with other Attacks on the DPA Contest V4 AES Traces
	4.3 Plugging the First-Order Leakage

	5 Conclusions
	References

	Network Security
	Improving Intrusion Detection Systemsfor Wireless Sensor Networks
	1 Introduction
	2 Conceptual Architecture of the Framework
	2.1 Simulator Configuration
	2.2 Discussion

	3 Implementation of the Framework
	3.1 Optimization Engine
	3.2 Network Simulator
	3.3 Configuration Evaluation

	4 Our Test Case
	4.1 Topology
	4.2 Benign Node
	4.3 Malicious Node

	5 Testing Results
	5.1 Optimization Scenario No. 1
	5.2 Optimization Scenario No. 2
	5.3 Optimization Scenario No. 3

	6 Related Work
	7 Conclusion and Future Work
	References

	MoTE-ECC: Energy-Scalable Elliptic Curve Cryptography for Wireless Sensor Networks
	1 Introduction
	2 Arithmetic in Optimal Prime Fields
	2.1 Parameterized OPF Library
	2.2 Fermat-Based Inversion in OPFs

	3 Scalar Multiplication for Ephemeral ECDH
	3.1 Montgomery and Twisted Edwards Curves
	3.2 Generation of Curves
	3.3 Regular Digit-Set Conversion for Comb Method

	4 Implementation and Evaluation
	4.1 Execution Time
	4.2 Memory Footprint and Code Size
	4.3 Comparison with Related Work

	5 Conclusions
	References

	BackRef: Accountability in AnonymousCommunication Networks
	1 Introduction
	2 Background and Related Work
	3 Design Overview
	3.1 Threat Model and System Goals
	3.2 Design Rationale and Key Idea
	3.3 Scope of Solution

	4 Repudiation (or Traceability)
	4.1 The OR Protocol: Overview
	4.2 The BackRef Protocol Flow
	4.3 Cryptographic Details
	4.4 Exit Node Whitelisting Policies

	5 Systems Aspects and Discussion
	6 Security Analysis
	7 Conclusion
	References

	WebTrust – A Comprehensive Authenticity and Integrity Framework for HTTP
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 System Model
	2.1 Security Objectives
	2.2 Attacker Model
	2.3 Assumptions

	3 Theoretical Foundations
	3.1 Hash Functions
	3.2 Verifiable Data Streaming (VDS)
	3.3 Digital Signature Schemes

	4 System Details
	4.1 Progressive Content Processing
	4.2 Individual Verifiability
	4.3 Content Updates
	4.4 Caching and CDN-Support
	4.5 Key Security

	5 Implementation
	5.1 Server
	5.2 Client

	6 Security Evaluation
	6.1 Integrity, Authenticity, and Non Repudiation
	6.2 Freshness and Content Revocation
	6.3 Active Network Attacker
	6.4 Active Attacker against CDN and Web Server

	7 Experimental Evaluation
	7.1 Performance Evaluation
	7.2 Usability

	8 Conclusion
	References

	Signatures
	A Revocable Group Signature Schemefrom Identity-Based Revocation Techniques:Achieving Constant-Size Revocation List
	1 Introduction
	1.1 Group Signature and Revocation
	1.2 Our Contribution

	2 Preliminaries
	2.1 Complexity Assumptions
	2.2 Groth-Sahai Proof Systems
	2.3 The Abe-Haralambiev-Ohkubo Structure-preserving Signatures

	3 Definitions of Revocable Group Signature
	4 Attrapadung-Libert-Panafieu Identity-Based Revocation
	5 Proposed Revocable Group Signature Scheme from Identity-Based Revocation
	References

	Faster Batch Verification of Standard ECDSASignatures Using Summation Polynomials
	1 Introduction
	2 Notations and Background
	2.1 ECDSA over NIST Prime Fields
	2.2 Batch Verification of ECDSA Signatures
	2.3 Randomization of Batch Verification

	3 A New Batch-Verification Algorithm (SP) for ECDSA
	4 Analysis of Algorithm SP
	4.1 Properties of Summation Polynomials
	4.2 A Strategy to Handle the Variables in the Recursion Tree
	4.3 Running Time of SP
	4.4 Security of SP
	4.5 Necessity of the Sanity Check
	4.6 Cases of Failure of SP

	5 Adaptation of Algorithm SP to Koblitz Curves
	5.1 Summation Polynomials for Koblitz Curves
	5.2 Adaptation of the Sanity Check

	6 Experimental Results
	7 Summation Polynomial for Edwards Curves
	8 The Group Structures in Quadratic Extensions
	9 Conclusion
	References

	On Updatable Redactable Signatures
	1 Introduction
	2 Preliminaries and Security Model
	3 Trapdoor-Accumulators and Constructions
	4 Conclusion and Open Questions
	References

	Practical Signatures from the Partial FourierRecovery Problem
	1 Introduction
	2 Related Work
	2.1 The Original PASS Protocols
	2.2 Transcript Weaknesses in Previous PASS Protocols
	2.3 Recent Developments and Countermeasures

	3 PASSRS – PASS with Rejection Sampling
	3.1 Key Generation
	3.2 Signing
	3.3 Verification

	4 Rejection Sampling
	5 Security Analysis
	5.1 Attacks on the Hash Function
	5.2 Attacks on the Partial Fourier Transform

	6 Reference Implementation
	6.1 Performance Considerations
	6.2 Concrete Instantiations of Public Functions

	References

	System Security
	Activity Spoofing and Its Defensein Android Smartphones
	1 Introduction
	2 Background
	3 Activity Spoofing
	3.1 Overview of Threat Model
	3.2 Properties of Vulnerable Apps
	3.3 Spoofing Social Network Logins
	3.4 Spoofed Activity Attack

	4 Defenses
	4.1 Secure Phrases
	4.2 Spoof Killer

	5 Trusted Activity Chains
	5.1 Overview
	5.2 Components
	5.3 Potential Issues
	5.4 Implications

	6 Evaluation
	6.1 Effectiveness and Usability
	6.2 Performance

	7 Related Work
	8 Conclusion
	References

	Polymorphism as a Defensefor Automated Attack of Websites
	1 Introduction
	2 Background: Automated Attacks
	2.1 Threat Model
	2.2 Methods of Automated Attacks
	2.3 Scope
	2.4 Requirements for a Theoretical Ideal Mitigation Solution

	3 Related Work
	4 Proposal: PolyRef
	4.1 Reference Polymorphism
	4.2 Field Polymorphism

	5 Case Study
	5.1 Cross-Site Request Forgery
	5.2 Business Logic Denial-of-Service

	6 Design and Implementation
	6.1 Web Page Transformation
	6.2 HTTP Request Restoration

	7 Evaluation
	7.1 Fake Account Creation Attack
	7.2 Zeus MitB Attack
	7.3 Performance

	8 Discussion
	8.1 Attacker Response
	8.2 Limitations

	9 Conclusion
	References

	Fragmentation Considered Leaking:Port Inference for DNS Poisoning
	1 Introduction
	1.1 Challenge-Response Authentication
	1.2 Related Work

	2 IP-Defragmentation Cache-Poisoning
	3 Port Derandomisation via IP Defrag-Cache Poisoning
	3.1 Predicting Linux OS Ports
	3.2 Inferring Ports Supported by other Algorithms

	4 Resolvers behind NAT Devices
	4.1 Are They Common?
	4.2 Packet Interception

	5 Defenses
	6 Conclusions
	References

	Secure Computation
	Delegating a Pairing Can Be BothSecure and Efficient
	1 Introduction
	2 Preliminaries
	3 Security Model
	3.1 Syntax
	3.2 Security Notions

	4 Protocols with Public A and B
	4.1 A Protocol with Test of Membership
	4.2 Efficient Variant with One Exponentiation
	4.3 Batch Delegation

	5 Ensuring both Verifiability and Secrecy
	5.1 A Generic Conversion
	5.2 A Protocol with Public Constant B

	6 Conclusion and Efficiency Comparison
	References

	Automatic Protocol Selectionin Secure Two-Party Computations
	1 Introduction
	2 Related Work
	3 Secure Computation Protocols
	3.1 Garbled Circuits
	3.2 Homomorphic Encryption
	3.3 Conversion
	3.4 Security

	4 Cost Model
	4.1 Layers
	4.2 Conversion Costs

	5 Optimal Partitioning
	5.1 Integer Programming (IP)
	5.2 Heuristic

	6 Use Cases
	6.1 Secure Joint Economic Lot-Size
	6.2 Biometric Identification
	6.3 Data Mining
	6.4 Evaluation

	7 Conclusions
	References

	Author Index

