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Abstract. Compounding 2D ultrasound sweeps into 3D volumes is, due
to its cost- and time-efficiency, of great clinical significance in both diag-
nostic and interventional imaging. However, today’s algorithms restrict
the sweeps to have homogeneous pressure and a linear trajectory, which
limits their use in clinical applications such as breast or musculoskeletal
ultrasound where artifacts occur due to soft and uneven surfaces. In this
work, we present two techniques to resolve those restrictions by using
an orientation-driven approach, first compensating for probe pressure
changes and then resolving ambiguities in regions, where multiple ultra-
sound frames from different acoustic windows overlap. After clustering
incoming frames by orientation, we determine the final voxel intensities
based on per-pixel uncertainty information. Qualitative and quantita-
tive evaluation of our methods shows that these techniques provide re-
constructions of superior quality for ultrasound sweeps of inhomogeneous
pressure and twisted trajectories. Furthermore, we propose optimizations
in the implementation of these techniques towards real-time applications,
interactively updating and refining the reconstructed volume.

1 Introduction

Ultrasound spatial compounding is the reconstruction of 3D volumes from 2D
ultrasound sweeps and has the potential to replace or extend current standard
clinical procedures for several applications, such as breast cancer diagnosis and
musculoskeletal (MSK) applications. Here, X-Ray does not only have the draw-
back of using ionizing radiation but also shows weak tissue contrast. MR imaging
is rather slow, expensive and additionally restricts the patient to be in a position
that might not be suited well for diagnostics. In contrast, ultrasound is relatively
low-cost, portable, real-time capable and offers good soft tissue contrast.

Recent advances in tracking calibration and compounding algorithms have led
to a significant increase in image quality of ultrasound compounding: Current
ultrasound probe calibration methods achieve millimeter tracking-accuracy and
the various spatial compounding algorithms offer different tradeoffs between al-
gorithm complexity and quality of the compounded volume. As a consequence,
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ultrasound compounding is making its way into commercial products shaping
the term 3D freehand ultrasound.

So far however, the term 3D freehand ultrasound promises more than it actu-
ally can deliver, since current methods implicitly assume constraints such as con-
stant probe pressure and/or constant motion of the ultrasound transducer along
a linear path. While this may be negligible for applications such as carotid ultra-
sound where the anatomy is easily accessible, breast and MSK applications have
highly curved surfaces requiring reconstruction of twisted sweep trajectories.

Curved sweeps lead to a challenging issue during the spatial compounding
process because some of the acquired ultrasound frames may overlap with each
other. Due to the dynamics and high complexity of the ultrasound image forma-
tion being dependent on incident angle, probe pressure and patient positioning,
ultrasound may yield different information (i.e. image intensities) for the same
point within the anatomy if scanned from different perspectives or at different
times. Our orientation-driven methods handle these ambiguities to result in more
accurate 3D reconstructions than current state-of-the art methods.

2 Related Work

In [1] Solberg et al. provide an overview on different 3D ultrasound compounding
techniques and identify three different classes of algorithms:

Pixel-based methods traverse the pixels in each 2D ultrasound frame, trans-
form the pixel location into voxel coordinates and write the pixel’s intensity
information into the initially empty volume. Since multiple pixels might con-
tribute to a single voxel, the final voxel value may be determined by averaging
or using the maximum intensity of all contributing pixels.

Voxel-based methods work the other way around by traversing the voxel grid
of the target volume and are thus also referred to as backward-warping methods.
For each voxel, they compute the corresponding pixels of the nearby ultrasound
frames and use a weighting function based on intensity and/or distance to de-
termine the final voxel value. Wein et al. show in [2] that voxel-based methods
yield superior quality and smaller computation time than pixel-based meth-
ods. Furthermore, backward-warping algorithms can easily be used to compute
multi-planar reconstructions (MPR) from the original ultrasound images with-
out computing the reconstructed volume before.

Finally, function-based methods estimate the coefficients for a set of locally
supported basis functions to approximate the input data. These functions are
then evaluated on the voxel grid to reconstruct the compounded volume [3,4].
Klein et al. [5] propose to use radio frequency (RF) data instead of reconstructed
B-mode images and a finite mixture model to obtain reconstructions of higher
quality and address the view-dependency of ultrasound. While these methods
yield 3D ultrasound reconstructions of very high quality, they are currently not
feasible for clinical practice due to being computationally expensive.

To compensate for probe pressure changes, Treece et al. use an image-based
non-rigid registration technique [6]. By computing the line-wise maximum
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normalized correlation between two adjacent B-mode images and applying a
monotonicity constraint they estimate the deformation in depth introduced by
the probe pressure. To avoid drift in the registration they constrain the registra-
tion results to the tracking. However, regularization will fail in case of inaccurate
calibration of the ultrasound probe, especially in the error-sensitive rotational
part.

3 Methods

3.1 Inter-frame Registration and Pressure Compensation

To correct for errors and inaccuracies in the tracking data (e.g. due to inaccurate
calibration or patient movement), as well as for artifacts due to probe pressure
changes, we propose an orientation-driven inter-frame registration technique:

Similar to Treece et al. [6], we perform an intensity-based registration between
adjacent ultrasound frames. Using a simple and thus real-time capable pixel-
wise uphill search evaluating the SSD, each ultrasound frame is registered to its
surrounding frames independently in terms of in-plane translation and in-plane
rotation. However, we perform the regularization by registering each ultrasound
frame to a window W of surrounding frames. This ensures to compensate for
drift independently of the tracking calibration accuracy.

Since the correlation between two ultrasound frames does not only depend
on their proximity but also on their orientation to each other [7], we determine
the weights for the frames in W by a combination of a Gaussian kernel of size
N and a term C, which describes the orientation-based correlation between two
images. For a given reference patch P and equally sized moving patch P ′ the
windowed SSD (wSSD) is given by

wSSDP,P ′,N (i) =
∑

p∈P,
p′∈P ′

N∑

n=−N

C(i, i+ n) · e n2

2σ2 · (Ii(p)− Ii+n(p
′)
)2

(1)

where i is the index of the reference frame and Ii(p) denotes the image intensity
of ultrasound frame i at the position p. The correlation term C(i, j) for frames
i and j is defined by the cosine distance of their normals ni, nj to model the
decreasing correlation between frames of increasing orientation difference:

C(i, j) := 1− 2

π
· acos

(
ni · nj

‖ni‖‖nj‖
)

(2)

To compensate for probe pressure artifacts, our method applies the above
inter-frame registration technique not only to a single patch, but to a grid of
independent patches of 1cm× 1cm size. Since we expect the deformation to be
orthogonal to the skin surface, our model allows free in-plane movement of the
patches to be flexible enough to allow both linear and curvilinear probes. After
computing the transformation for each patch as above, we set the transformation
of the central patch as rigid part and the difference to the other patches as
deformation field. The results can be seen in Fig. 1.
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(a) No pressure compensation (b) With pressure compensation

Fig. 1. Reconstruction of an abdominal phantom scan with probe pressure changes:
(a) MPR through the compounded volume without applying our pressure compen-
sation technique; (b) the same MPR through the compounded volume with pressure
compensation applied

3.2 Compounding of Non-homogeneous Sweeps

In a tortuous acquisition sweep parts of the ultrasound frames overlap and may
show different information for the same anatomy depending on the viewing angle.
Here, classical ultrasound compounding techniques with averaging or distance-
based weighting fail in correctly reconstructing such regions:

Given a set of ultrasound frames from different angles that all intersect near
our target voxel to reconstruct as depicted in Fig. 2. Standard compounding
algorithms such as [2] take the closest pixels in each ultrasound frame and de-
termine the final voxel intensity based on a weighting function usually preferring
closer pixel over pixels being farther away, hence the closest ultrasound frame
has the highest influence. If we now consider a neighbor voxel, the closest frame
may have a completely different orientation and thus show different informa-
tion (due to the view dependency of ultrasound). This yields to artifacts in the
compounded volume as depicted in Fig. 3a.

Furthermore, distance-based weighting can lead to incorrect reconstruction
since the distance of the frame to the voxel has no correlation with the amount
of information present in this pixel (i.e. level of uncertainty/noise). For instance,
it may ignore a pixel being farther away but having low uncertainty and instead
prefer a high uncertainty pixel (i.e. noise) because it is closer to the voxel.

Our orientation-driven ultrasound compounding technique tackles these issues
by exploiting additional uncertainty information using a two-step approach. Our
method assumes that for each ultrasound pixel with intensity Ii, we also have
an uncertainty value ui that we later use for weighting the image intensities.
While the actual method is independent from it, we use for our implementation
the attenuation maps proposed by Karamalis et al. [8]. Even though they model
ultrasound physics only to a limited amount, their attenuation maps can be
interpreted as uncertainty information.

Clustering of the Ultrasound Sweep by Direction: As a first step, we
perform a hierarchical clustering to identify tortuous sweep trajectories and re-
gions of overlapping ultrasound frames. This partitions the ultrasound sweep
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Fig. 2. Illustration of artifacts occurring in distance-weighted compounded regions
where multiple ultrasound frames from different angles intersect. The intensity of voxel
v1 will be mainly influenced by the information of frame f3 while the intensity of
neigbour voxel v2 will be mainly influenced by the information in frame f1. Since
the frames travel through different acoustic windows, the information at this spatial
location may significantly differ.

(a) No Clustering (b) Clustering by normal direction

Fig. 3. Effect on the clustering of ultrasound frames by normal direction: (a) shows a
compounding of a twisted ultrasound sweep with artifacts caused by the filtering based
on the distance to the voxel. (b) shows a compounding of the same sweep with our
clustering technique applied.

trajectory into parts where the frames have homogeneous orientation without
requiring us to predefine the number of clusters. We apply an average group
linkage algorithm using cosine distance to the normals of the ultrasound frames
Eq. (2). This yields a set of sub-sweeps meeting the usual restriction of being
contiguous and uniformly oriented.

A backward-warping algorithm then compounds each cluster c into a 3D vol-
ume applying our pressure compensation method as discussed in Section 3.1.
Since the ultrasound frames of each cluster are guaranteed to have the same
orientation and are thus travelling through the same acoustic window, we can
safely assume the distributions of uncertainty within the frame to be homoge-
neous within nearby frames. We compute the intensity for voxel x as

Ic(x) =

∑
i∈S Ii · d−µ

i∑
i∈S d−µ

i

(3)
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where S is the set of frame pixels close to the compounded voxel x, di the
Euclidean distance of pixel i to the compounded voxel and μ > 1 a smoothness
parameter ensuring that Ic(x) approximates the original data for di → 0 [9].
Furthermore, we propagate the uncertainty to the 3D volume using the same
weighting:

Uc(x) =

∑
i∈S ui · d−µ

i∑
i∈S d−µ

i

(4)

Uncertainty-Based Fusion of the Compounded Clusters: Since ultra-
sound image formation is a highly non-linear process and the pixel-based un-
certainty values ui are relative to the image content and thus not necessarily
comparable between different frames, we perform the uncertainty-based fusion
in a second step to avoid artifacts such as the ones depicted in Fig. 3a. In this
second step our method fuses clusters into the final 3D volume based on the prop-
agated uncertainty values. Let C be the set of clusters, then the final intensity
I at voxel x is given by

I(x) =

∑
c∈C(1− Uc(x))Ic(x)∑

c∈C 1− Uc(x)
(5)

4 Implementation

Our implementation of orientation-driven ultrasound compounding employs sev-
eral optimizations to allow real-time applications such as an interactive update
and refinement of the compounded volume: The regularized inter-frame regis-
tration needs only a limited number of frames lookahead (i.e. size of the regu-
larization window) and can hence be performed on-line as well as the clustering
by orientation, which simply starts a new cluster as soon as the cosine distance
is beyond the threshold.

Our incremental compounding adapts the two-step compounding of multiple
clusters to an in-place algorithm. Instead of reconstructing a separate volume for
each cluster, we use a single volume as accumulation buffer. The reconstructed
voxels of each cluster can be incrementally added by rewriting equation 5 to a
recurrence scheme, to gain a significantly lower complexity and memory foot-
print: Given the voxel intensity Ii−1 and uncertainty Ui−1 of the previous runs
and Ic, Uc of the current run, we define the new intensity Ii and uncertainty Ui

as:

Ii =
Ui−1Ii−1 + (1− Uc)Ic

Ui−1 + (1− Uc)
, Ui = Ui−1 + (1− Uc) (6)

The incremental compounding technique is further accelerated by using an in-
termediate lookup structure for the backward-warping: Each ultrasound frame
is sampled into a lower resolution brick structure using a scanline voxelization
technique as an efficient sampling method. Similar to scanline rasterization in
Computer Graphics, we compute the coordinates of the four corners of the frame,
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v0 = (x0, y0, z0)

v1 = (x1, y1, z1)

v2 = (x2, y2, z2)

v3 = (x3, y3, z3)

y1, z1)

v3 = (x3, y3, z3)
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E23
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Fig. 4. Illustration of the scanline voxelization scheme (for simplicity in 2D): Starting
at the bottom-most scanline around v0, we compute the left-most and right-most voxel
covered by the ultrasound frame. Using the slope of the edges E02 = E13 and E01 = E23

we can incrementally compute the start- and end-voxel for the next scanline by simple
additions. The increments have to be changed when advancing beyond v1 resp. v2
(advancing to middle/top part).

define a scanline axis and sort the corners along the axis. Exploiting the rect-
angularness of the image, we can compute the increments (i.e. slopes) along the
other two axes for one step along the scanline axis. Iterating brick-wise along the
scanline axis, we can compute all bricks touched by the frame using simple ad-
ditions as depicted in Fig. 4. The brick structure can then be used to accelerate
the lookup of all ultrasound frames close to a voxel.

5 Evaluation and Results

To evaluate our methods, we used an ACUSON S2000TM ultrasound machine
equipped with an Acuson 9L4 linear transducer and Ascension trakSTARTM2
electromagnetic tracking hardware being calibrated as described in [10].

To confirm the physically correct reconstruction of anatomy, we acquired ul-
trasound sweeps of an abdominal phantom including a tumor target of spherical
shape as depicted in Fig. 1. We computed 50 MPRs of arbitrary orientation
through the target and compared the maximum diameter with measurements
acquired from CT: The reconstructed ultrasound volume yielded an average tar-
get diameter of 14.63± 0.48 mm compared to 14.5± 0.84 mm in CT. Since the
target is positioned relatively close to the surface, it can be scanned from dif-
ferent directions and is prone to deformation, hence being a relevant scenario to
evaluate our method.

The effects of our inter-frame registration and pressure compensation tech-
nique can be observed in Fig. 1 showing the reconstructions of an ultrasound
sweep through the abdominal phantom: Due to the probe pressure changes the



Orientation-Driven Ultrasound Compounding Using Uncertainty Information 243

MPR through the reference volume (a) shows deformation of the originally round
target. Our techniques restore the original shape, seen in (b) showing the same
MPR through the volume compounded with pressure compensation.

Figure 3 shows the effect of our clustering technique when reconstructing a
twisted ultrasound sweep of human shoulder. Due to the overlapping frames
the baseline compounding in (a) shows artifacts because the closest frames for
neighboring voxels may be acquired from different angles. The reconstruction
in (b) uses our clustering technique to avoid overlapping frames and the occur-
ring artifacts and additionally exploits uncertainty information when fusing the
clusters so that unreliable intensities do not bias the final result.

Table 1. NCC and log-scale SNR in the overlapping region after registering the
two compounded volumes of two sweeps with perpendicular trajectories of the same
anatomy

Baseline [2] Our technique
NCC SNRdB NCC SNRdB

Phantom / constant pressure 0.90 19.39 0.94 23.16
Phantom / pressure changes 0.81 13.02 0.94 22.47

In-vivo leg / constant changes 0.72 9.21 0.76 11.69
In-vivo leg / pressure changes 0.67 8.53 0.75 11.03

For quantitative evaluation we acquired pairs of overlapping sweeps with per-
pendicular main trajectory of both phantom and in-vivo data. After compound-
ing the sweeps into separate 3D volumes using our methods, we applied a 3D-3D
rigid registration using the tracking data as initialization. Expecting our tech-
niques to yield better matching volumes, we compared their differences in the
overlapping region with the baseline method (standard backward-compounding
and no pressure compensation as described in [2]). With the average of the two
volumes as expected result for a correct reconstruction, we quantify their differ-
ence in Normalized Cross-Correlation (NCC) and log-scale Signal to Noise Ratio
(SNRdB), for which define the signal as average of the volumes and the noise
as RMS of the differences (Table 1). The sweeps with pressure changes show a
significant improvement in terms of increase in both NCC and SNRdB when our
technique is applied. Furthermore, when comparing constant pressure with pres-
sure changes, our technique shows significantly less drop of the measures. The
slight improvements for the sweeps acquired with constant pressure are mainly
due to the inter-frame registration correcting for the tracking error. Since the
sweeps are acquired with perpendicular trajectories and the volumes therefore
show different interpretations of the underlying data, no algorithm yields a per-
fect match. Furthermore, the in-vivo sweeps are expected to have lower similarity
since they show by far less homogeneous anatomy. Figure 5 shows the difference
images for the second phantom sweep.
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(a) Baseline (b) Our Technique

Fig. 5. Illustration of our evaluation method: First two images show the MPRs for each
perpendicular sweep, the third one shows the squared difference of their intensities after
3D-3D rigid registration. (a) traditional backward-compounding fails to align the dif-
ferent structures; (b) our technique yields alignment of all structures. The quantitative
results are shown in Table 1.

6 Discussion and Conclusion

In this work, we presented a novel orientation-driven approach to allow 3D free-
hand ultrasound for a broader range of clinical applications. Typical acquisition
sweeps in breast or musculoskeletal (MSK) ultrasound have pressure changes,
back- and forth or twisting motion, which are not handled well by current state-
of-the-art methods yielding artifacts for regions where the frames overlap. We
cluster the ultrasound frames based on orientation and proximity and thereby
guarantee that no frames in a cluster overlap. We further use per-pixel uncer-
tainty information when fusing the clusters into the compounded volume, which
yields more accurate reconstructions in places where we have information from
different acoustic windows, because intensities from uncertain regions do not
affect reliable intensities. Our method for probe pressure compensation uses a
similar inter-frame registration approach as [6] but also incorporates the orien-
tation of the frames to each other and uses a regularization independent from
the tracking calibration quality.

Since the evaluation of our methods shows very good results for the recon-
struction of non-homogeneous ultrasound sweeps, the question arises why our
two-step compounding approach of first clustering by frame orientation and then
fusing based on uncertainty information is superior to a classical one-step ap-
proach. We assume that the low signal-to-noise ratio of ultrasound, its high view-
dependency and thus very limited consistency in time and movement sets the
main challenge when compounding non-homogeneous ultrasound sweeps. Our
orientation-driven two-step compounding technique introduces an additional in-
terpolation step and thus compensates better for those highly non-linear effects.
By exploiting uncertainty information we ensure that this additional interpo-
lation does not impair the final image quality but even improves the result in
regions where we have inconsistent image information from different acoustic
windows. Also other applications [11] have shown the benefit of this uncertainty
based approach to information fusion.
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3D freehand ultrasound has a wide band of applications in both diagnostic
and interventional imaging. Our work allows high quality reconstructions also
in applications such as breast or MSK where soft and uneven surfaces lead to
sweeps of non-homogeneous pressure and non-linear trajectory. Our implemen-
tation shows optimizations to stream-line our methods to allow real-time appli-
cations where the compounded volume gets updated and refined interactively
during the acquisition, providing the clinician with direct feedback. Hence, we
believe that our orientation-driven methods will have a significant impact in
bringing ultrasound compounding further to clinical applications.
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