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Abstract. In computer-aided interventions, the visual feedback of the
doctor is vital. Enhancing the relevant object will help for the perception
of this feedback. In this paper, we present a learning-based labeling of
the surgical scene using a depth camera (comprised of RGB and depth
range sensors). The depth sensor is used for background extraction and
Random Forests are used for segmenting color images. The end result
is a labeled scene consisting of surgeon hands, surgical instruments and
background labels. We evaluated the method by conducting 10 simulated
surgeries with 5 clinicians and demonstrated that the approach provides
surgeons a dissected surgical scene, enhanced visualization, and upgraded
depth perception.
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1 Introduction

Humans boast a sophisticated cognitive system which takes approximately 15-
20 different psychological stimuli into account in order to perceive spatial re-
lationships between objects [1]. Nevertheless, in complex settings, such as the
operating room theatre, the cognitive system is challenged as clinicians are con-
fronted with information stemming from multiple sources when making surgical
decisions. Presenting all of the information in an effective manner is a difficult
task. Consequently, improving the understanding and perception of clinicians
towards their surgical environment becomes an important feedback for the suc-
cess of computer-assisted intervention applications (e.g. labeling the surgeons
action helps in workflow analysis [2], or improving surgeon visualization of fused
modalities helps successful patient outcomes).

This feedback can be provided by mixed and augmented reality (AR) visual-
izations for use in computer-assisted interventions. However, few of these systems
have been introduced for daily use into the operating room (OR). This may be
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the result of several factors: the systems are developed from a technical perspec-
tive, are rarely evaluated in the field, and/or lack consideration of the clinician
and the constraints of the OR [3].

As of late, the community did achieve success in deploying the first medi-
cal augmented reality technology (an AR mobile fluoroscope) within orthopedic
and trauma surgery rooms, and this recent introduction promises to support
surgeons in their understanding of the spatial relationships between anatomy,
implants and their surgical tools [4,5]. The output overlay of such a technology is
a uniform alpha-blending between the X-ray and optical images. The issue with
this blending type is that the understanding of the scene can be altered when the
field of view of the scene becomes highly cluttered (e.g. with surgical tools and
implants). It becomes increasingly difficult to rapidly recognize and differentiate
different structures in the fused image. Moreover, the clinicians depth perception
is altered as (i) the X-ray anatomy appears floating on top of the scene in the
optical image, (ii) hands and surgical instruments occlude the visualization, and
(iii) there is no correct ordering between structures in the fused images.

With these issues in mind, we note that all pixels in X-ray and optical images
do not have the same importance and contribution to the final blending (e.g. the
background is not important compared to the surgical tool). This observation
suggests extracting only relevant-based data according to pixels belonging to
background, tools and clinician hands [6]. The labeling of the surgical scene by
a precise segmentation and differentiation of its different parts allows a relevant
blending respecting the desired ordering of structures. A few attempts have been
endeavored, such as in [7]. In these early works, a Naive Bayes classification
approach based on color and radiodensity is applied to recognize the different
objects in X-ray and color images. Depending on the pair of pixels it belongs to,
each pixel is associated to a mixing value to create a relevant-based fused image.
While authors showed promising results, recognizing each object on their color
distribution is very challenging and not robust to changes in illumination.

Contribution: We introduce a surgical scene labeling paradigm based on ma-
chine learning and having as input both an optical and depth camera in a medical
AR setting. In our application, the depth is a useful hint for the segmentation and
ordering of hands and tools with respect to anatomy since the clinician performs
surgery over the patient. Thus, our visualization paradigm is founded on seg-
mentation consisting in modeling the background via depth data. We perform
in parallel color image segmentation via the state-of-the-art Random Forests.
To refine our segmentation method we use the GrabCut algorithm. Lastly, we
combine our background modeling and color segmentation in order to identify
the objects of interests in the color images and achieve successfully ordering of
structures. We conducted 10 simulated surgeries with 5 clinicians to showcase
our visualization results.
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2 Methods

A depth camera with an integrated optical camera (Asus Xtion Pro Live) is
affixed to a mobile C-arm fluoroscope above of the surgery workspace, giving
a general overview of clinician gestures and surgical tool manipulations. The
depth camera is positioned at its fabricated optimal visual focal length (70cm)
of the patient table. Since the camera has a visual view of the surgical scene it
is reasonable to assume that the hands and surgical instruments are on top of
or at the same level as the patient. The depth image is built-in registered to the
RGB camera therefore the image I and depth image D are defined on the same
domain Ω ∈ R

2 with I and D being defined respectively as I : σ −→ R
3 and

D : σ −→ R.

2.1 Identifying Objects of Interest in RGB-D

The objective is to dissect the surgical scene using the images from the RGB and
depth camera. We divide the scene into 3 classes C = {tool, hands, background}.
The surgeon actions via tools and hands are combined to form the foreground
class (closer to the camera). We use the depth image to create a background
model that will, for every frame, give a probability at a given pixel x, PD(f c|x)
of belonging to the background (f c, complement class of the foreground). With
the RGB images, the probabilities PI(c|x) of belonging to the tools, the sur-
geon hand or the background is obtained using Random Forests. Then, since
the modalities RGB and depth are independent (the color is not interfering on
the depth), we can decompose the joint distribution of a pixel belonging to
the foreground and to an object c PI,D(f, c|x) as

PI,D(f, c|x) = (1− PD(f c|x))PI(c|x) (1)

Background Extraction Using Depth Images. Background modeling has
been widely studied for performing background subtraction in color images in
tracking applications. In a fixed camera setup, the key idea is to learn a color
distribution for each pixel from a set of background images. As reported in [8],
several approaches have been proposed within the last decade for adaptive real-
time background subtraction based on running Gaussian averages, mixture mod-
els, kernel density estimation or the so-called Eigenbackground. In the present
work, we propose to learn a fixed background model using the depth image and
based solely on a set of acquired depth frames at the beginning of the surgery. A
fixed model is more suitable to our application since adaptive models presume
that foreground objects are moving fast, while in surgery, the object of interest
(hands or tools) may stay immobile the majority of the time. Formally, we con-
sider a set of N depth frames D accumulated at the beginning of the surgical
sequence, when no objects of interest are present in the scene. We consider the
background model at each pixel x ∈ Ω as a univariate gaussian model where the
mean and variance of this distribution are the values measured over the set of
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frames D at the pixel x ∈ Ω . Lastly, in the remaining images of the sequence
(objects of interests enter the scene), a background probability image is created
for each individual frame.

Segmentation by Random Forest of RGB Images. As reported in [9], ran-
dom forests have found a wide variety of applications in medical image analysis
such as anatomy localization, segmentation or lesion detection. As an ensemble
of decision trees, they provide piecewise approximations of any distribution in
high-dimensional space. In our case, we model the probability PI(c|x) x ∈ Ω
to belong to a class c ∈ C = {tool, hands, background}. The visual content of
a pixel x is defined by a feature vector X ∈ R

d. X encodes the mean intensity
value computed in d rectangular regions of different sizes in the neighborhood
of x in the color channels of the CIELab color space. Following a “divide” and
“conquer” strategy, each tree t, t ∈ {1, T }, first partitions the feature space
in a hierarchical fashion and then estimates the posterior probabilities in each
“cell” of this space. Given a training set of pixels from different color images
and their corresponding labels, a tree t aims at subdividing these data by using
axis-aligned splits in R

d so that consistent subsets are created in its “leaves” in
terms of their visual context and class information c. Each leaf of a tree models
“locally” the posterior probability P t

I (c|x), encoded as a class histogram, com-
puted from the set of observations reaching the leaf. At test time, the output of
the trees can be combined by using posterior averaging: PI(c|x) =

∑T
t=1 P

t
I (c|x).

Object Extraction. For each frame, the joint probability can be calculated
by multiplying the probability of belonging to the foreground PD(f |x) with the
probability of belonging to any class c PI(c|x). Finally, the class label ĉ of a pixel
is estimated by finding the class whose probability PI,D(f, c|x) is higher, such
as ĉ = argmaxc∈CPI,D(f, c|x).

Refinement Using GrabCut. Since the class estimations might be noisy, we
choose to refine the current extraction of interest objects by a segmentation
algorithm [10]. Known as GrabCut, this algorithm is an extension of the graph-
cut framework that uses an efficient iterative estimation and handles incomplete
labelling. GrabCut permits decreasing the labelling burden as it integrates 4
possible label classes: foreground, probably foreground, probably background,
background. For more details, we refer the reader to [10]. In our case, to refine
the extraction of tools in the frame, the pixels classified as tool by the Random
Forest are labelled as possible foreground, the rest is labelled as background.
GrabCut is then performed on the corresponding color frame using that labelling
to provide a finer extraction of the tool. The same step is renewed also for the
clinician’s actions. Even though this step requires additional computations, it
is fast and efficient, and permits to filter out some false positives or catch false
negatives that comes from missing depth values. At this step, the different parts
(background, clinician’s hands and tools) have been classified in the image. This
process is repeated for every frame of the video.
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2.2 Application Using an Augmented Reality Fluoroscopy

Identifying Object of Interest in X-ray. We consider an X-ray image J
that is co-registered to the color and depth images, with J : Ω −→ R. To improve
the alpha-blendings developed in [5,4], the segmentation in different clusters as
previously described is used. However, to further improve the visualization, we
also extract from the X-ray image J the objects of interest to the clinician (e.g.
bones, implants). This classification task will assign a label r ∈ {0, 1} for each
pixel x, where r = 1 if x belongs to a relevant structure or r = 0 if not. In
a probabilistic framework, we model the posterior distribution PJ (r|x) by us-
ing a random forest. Similarly, the visual context of each pixel x is described
by a feature vector X ∈ R

t, encoding mean radiodensity values computed in
t rectangular regions in its neighborhood. Once the forest has been trained by
using a set of annotated images, a new incoming X-ray can be labelled by using
r̂ = argmaxr∈{0,1}PJ(r|x). Once the labelling is done, we refine with Grab-
Cut the current segmentation. All the pixels classified as belonging as relevant
structure (r = 1) are labeled as possible foreground and the rest is labeled as
background.

Relevance-Based Image Fusion. The AR fluoroscopy technologies use an
uniform alpha-blending to overlay the color images and the X-ray where the
blending coefficient α is constant for all pixels. In this paper, we introduce a
pixel dependant α parameter that changes values according to its belonging to
an object of interest in the color image or in the X-ray image. Our new mixing
paradigm is:

Ioverlay(x) = α(x)I(x) + (1− α(x))J ′(x) (2)

where J ′ is the 3-channels grayscale image corresponding to J such J ′ = [J, J, J ].
Note that those values can be changed on the fly according to the will of the
clinician, the type of clinician and also the different phases of the surgery work-
flow. For example, the value for the hands and tools can be decreased to allow
the clinician to see the anatomy on the X-ray when performing distal locking on
an intramedullary nail.

3 Experiments and Results

3.1 Evaluation of the Objects Identification

To evaluate the object identification algorithm for color images, 10 different or-
thopedic surgery simulations using a surgical phantom have been performed.
Each simulation involves various clinician tasks and tools (clamps, screwdrivers,
hammer, radiolucent drill, and scalpel). Each surgical simulation acquisition con-
sisted of an average of 1000 frames. For the background modelling, the first 30
images (∼ 1 second) of each sequence have been used to compute the background
model.
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Object Identification Using Color Images. In each of the 10 sequences, 4
video frames have been annotated. To describe the visual context of each pixel in
the color image, 50 context features are extracted per CIElab channel. To tackle
the task of object identification, a random forest classifier consisting in 20 trees of
depth 15 is trained. After the first identification step, the GrabCut algorithm is
executed using 2 iterations to refine the classifier results. The medium- to larger-
sized surgical instruments are segmented very well. Minor segmentation errors
occur specifically for the tip of the clamp allowing us to conclude that the seg-
mentation algorithm needs further improvement to handle thin structures. The
clinician’s hands are globally well segmented over the various examples however
we observe in some cases a wrong segmentation for the fingers primarily due to an
aggressive GrabCut algorithm step that withdraws false positives, but also con-
siders as background the pixels where the probability classes are too ambiguous
to be considered as possible foreground. For quantitative results, we measure the
accuracy of the classification into a class c thanks to the precision P and recallR
measures over the annotated frames. We also calculate the DICE scoreD, a simi-
larity measure between the segmented class pixels and the annotated class pixels.
The precision is over 0.8 for the hand, foreground and background classes, with
a high score of 0.98 for the background, signifying that we have a good classifica-
tion of most of the pixels belonging to those classes. Regarding the surgical tools,
we achieve average precision with a value of 0.53 and a high standard deviation of
0.3. However, this global precision value can be decomposed to tool sizes as seen in
Figure 3. As previously mentioned, medium to larger sized tools are generally well
segmented. After further investigating our algorithm, the tools precision results
can be explained by the amount of images used for the training of the Random
Forest. Over the 38 training frames, each surgical tool appears in 5 images maxi-
mum and globally the presence of smaller tools in the training frames were much
lower than the medium to larger sized tools. Resolving these issues will undoubt-
edly increase the precision values. Lastly, the recall values are really good for hand,
foreground and background classes with values over 0.95, meaning that almost ev-
ery annotated pixels have been recovered in those classes. The recall is good also
for the surgical tool class. As a final note, a a clinician had their watch on and
due to its black color, this structure was classified as a tool. In surgery and under
sterile conditions, this issue would be resolved as the watch would be withdrawn.
The computation time is 1.5 seconds per frame.

3.2 Fusion with X-ray Images

For the classification, 20 X-ray shots have been annotated. 50 context features
are extracted by pixel, and the classifier consists in a random forest of 20 trees
with depth 15. Then, the GrabCut algorithm is performed using 2 iterations to
refine the segmentation of the object of interests.

Evaluation of Identification in X-ray Images. We use the same metrics
(precision and recall) as with the RGB images. The recall and precision of both
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background and foreground are close to 1, showing a good performance of the
segmentation algorithm.

Evaluation of Fusion Results. The visualization results of the fused
X-ray and RGB images are depicted in Figure 1. A qualitative evaluation of
the relevance-based blending visualization compared to the uniform blending
is performed. In total, 5 clinicians (3 experts surgeons and 2 last year medical
students) provide their feedback using the traditional 5-pt Likert scale question-
naire (1- strongly disagree, 2-disagree, 3-neutral, 4-agree, and 5-strongly agree).
Participants strongly agreed (4.6 ± 0.5) that the depth ordering is resolved using
our approach ( e.g. hands/tools first followed by patient/X-ray). Concerning the
visibility of the instrument tip or the implants in X-ray, the feedback is respec-
tively neutral (3.0 ± 1.4) and slightly positive (3.4 ± 1.1). Participants agreed

Fig. 1. Uniform and content-based visualizations over 6 frames
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(4.0 ± 1.4) that the overall perception of the visualization is improved. Finally,
all participants strongly agreed (4.6 ± 0.9) on the fact that they would prefer
our new visualization compared to classical alpha blending found in the majority
of registration algorithms in our community.

4 Conclusion

In this paper, we proposed a learning-based surgical scene labeling allowing
the improved understanding and perception of various tasks when compared to
the traditional alpha blending schemes. Our algorithm can detect the position
and shape of the surgeon hands as well as the used tools. Our results are very
promising for almost all objects, except smaller tools, but a more extended train-
ing phase should resolve this issue. We have demonstrated the applicability of
our visualization framework in the context of existing medical augmented real-
ity technologies. In future, our method can be extended to further applications
such as 3D tool template matching, tool tracking and workflow analysis. Lastly,
together with the IPCAI community, we hope to catalyze discussions on possible
ways in improving visualization schemes that enable algorithms to ”learn” what
the surgeon wants to see during the surgical workflow phases.
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