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Abstract. Approximately 20–30% of patients with focal epilepsy are medically 
refractory and may be candidates for curative surgery. Stereo EEG is the 
placement of multiple depth electrodes into the brain to record seizure activity 
and precisely identify the area to be resected. The two important criteria for 
electrode implantation are accurate navigation to the target area, and avoidance 
of critical structures such as blood vessels. In current practice neurosurgeons 
have no assistance in the planning of the electrode trajectories.  

To provide assistance a real-time solution was developed that first identifies 
the potential entry points by analysing the entry-angle, then computes the asso-
ciated risks for trajectories starting from these locations. The entry angle, the to-
tal length of the trajectory and distances to critical structures are presented in an 
interactive way that is integrated with standard electrode placement planning 
tools and advanced visualisation. We show that this improves the planning of 
intracranial implantation, with safer trajectories in less time.  

1 Introduction 

Approximately 20–30% of patients with focal epilepsy are medically refractory to 
treatment with anti-epileptic drugs. These patients are potential candidates for cura-
tive respective surgery [1]. The primary aim of epilepsy surgery is to remove the epi-
leptogenic zone—‘the minimum amount of cortex that must be resected (inactivated 
or completely disconnected) to produce seizure freedom’ [2]. The identification of the 
epileptogenic zone often requires the placement of intracranial electrodes to record 
where seizures start and rapidly propagate. Stereo-electroencephalography (SEEG) is 
the practice of recording electroencephalographic signals via depth electrodes that are 
surgically implanted into the brain tissue. The challenge in epilepsy surgery now is in 
the treatment of the more difficult patient groups (extratemporal non-lesional) where 
SEEG is increasingly utilised. This invasive investigation carries the risks of infec-
tion, haemorrhage and neurological deficit [3]. In the current work we only consider 
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SEEG electrode implantation where brain shift is anticipated to be negligible due to 
the borehole surgery approach. 

Preoperative planning of SEEG electrode placement is a necessary prerequisite to 
implantation. Important anatomical and functional landmarks of the brain (such as 
blood vessels, pial boundaries, nerve tracts, etc.) can be identified with advanced 
neuro-imaging and image-processing techniques. SEEG electrode trajectories are 
defined by a target area that has to be reached by the electrode and an entry point 
where the electrode penetrates the skull. Electrode arrangements are planned to 
achieve adequate cortical coverage and pass through safe, avascular planes. The large 
number of electrodes required in SEEG and the cumulative risk associated with this 
implies that assisted planning (AP) is the most useful in these clinical cases.  

Previous publications on pre-operative planning of depth electrode placement de-
scribe approaches to find the optimal path either automatically [4-6] or by assisting 
the decision making process of the neurosurgeon [7-9]. Another state of the art ap-
proach [10] proposed a system to assist planning at all stages of the planning from the 
selection of the target point to the selection of a safe entry point that minimizes the 
risk of hitting with vital structures. In all of these approaches the operator needs to 
select the target point precisely and the time required to compute the optimised paths 
is generally long. A recent article describes a high performance solution to enable 
quantitative estimation of the risk associated with a particular access path at interac-
tive rates. The authors employ Graphics Processing Units (GPUs) to achieve real-time 
speed and use risk maps visualisation to aid the planning process [11]. 

Here we present an advanced set of tools for computer-assisted planning of SEEG 
electrode placement that come as part of our surgical planning system EpiNavTM 
(CMIC, UCL, London, UK) that allows neurosurgeons to define safer trajectories in 
less time. EpiNavTM advances on previous work by offering improved real-time visual 
feedback to planning; including the addition of several vital structures (such as func-
tional brain regions) into the risk assessment and also factoring the entry angle of the 
trajectory line with the skull surface. 

2 Methods 

To enable a faster planning process and ensure safety of the resulting implantation 
plan the following conditions have to be met with the aid of the planning system: 

1. Critical structures have to be clearly identifiable (visualisation). 
2. None of the trajectories can intersect any critical tissue to avoid harm to the  

patient. 
3. The trajectory should be further from any critical tissue by a specified safety mar-

gin based on the accuracy of the surgical procedure of implanting the electrodes. 
4. The trajectory should be as short as possible. It is assumed here that only the tip of 

the electrode is meant to hit the target. At this stage we are not considering cases of 
multiple targets sampled by one electrode. 

5. The entry angle of the trajectory should be as close to 90 degrees as possible to  
allow robust implementation of the planned entry angle during the surgical  
procedure. 
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To achieve fast processing and real-time interaction EpiNavTM was developed us-
ing a cross platform C++ library NifTK (www.niftk.org) that is based on the Medical 
Imaging and Interaction Toolkit (MITK, www.mitk.org). Furthermore we employ a 
modern graphics card (GPU) and utilize the OpenCL library to enable parallel pro-
gramming. EpiNavTM can be installed on any recent PC that runs Mac OS X, Linux or 
Windows and has a GPU that is OpenCL 1.1 compatible. 

2.1 Critical Structures 

Identifying critical objects is key to successful estimation of a safe trajectory. The 
critical structures are imported into an interactive visualisation workstation using the 
functionality of EpiNavTM, then converted into 3D surface mesh objects and coloured 
using a colour scheme (See Fig. 3/a) as in our previous work [12]. The clinically rele-
vant landmarks are white matter tracts (e.g. cortico-spinal tract, optic radiation tract) 
derived from DTI data, lesions, eloquent cortex (e.g. language or motor areas) derived 
from fMRI, areas of ictal hyperperfusion derived from SPECT, areas of hypometabo-
lism derived from PET image, ictal or interictal EEG/MEG sources. Blood vessel 
images were acquired using CTA, 3D Phase Contrast MR imaging and in some cases 
ToF MR, then the vasculature was extracted using a custom tool. A surface represen-
tation of the skull is used to determine the accurate location of the entry points and to 
compute the entry angle of the trajectory. The skull surface is usually derived from 
CT, CTA or pseudo CT synthetized from an MR scan.  

2.2 Trajectory Planning 

The planning process starts with the selection of the target point. The target point can 
be placed by clicking on any location within the space of the reference image on one 
of the 2D or 3D views. If a detailed brain parcellation map is available it can be used 
to aid the target selection, by highlighting various anatomical regions of the brain. 
Entry points can only be placed onto the skull surface. In manual mode this is ensured 
by the entry point selection tool.  

2.3 Entry Points Search and Risk Analysis 

As soon as the target point is selected the system will analyse the topology of the 
critical structures and offer a set of entry points that represent minimal risk. The entry 
point search algorithm is a fully automatic method that is implemented on the GPU. It 
takes the skull mesh as the input and processes each of its vertices, so the sampling 
rate is defined by the number of vertices in the skull model. The algorithm takes into 
account the distance of the target point and the currently evaluated vertex (i.e. the 
length of the trajectory) and the entry angle of the trajectory starting from this vertex. 
From a surgical point of view the entry angle has to be as close to perpendicular as 
possible, otherwise it is not possible to drill the borehole through the skull. As the 
angle and length analysis is computationally inexpensive it is practical to perform it as 
the first step and disqualify entry points that are too far, or the entry angle is outside a 
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= − ∗ ℎ 

This formula yields risk values in the range of 0-1. The quality of the entry angle 
can be similarly evaluated  given the range of accepted values, as well as the 
length of the trajectory . These independent risk components can be combined 
by applying certain weight factors: = + + ,        ℎ  = 1   ∈ [0~1] 

This final metric  describes the overall quality of the trajectory. After every 
potential trajectory has been assessed the risk values are visualised in form of a risk-
map (Fig. 2.). The planning module will automatically suggest to use the trajectory 
that has the lowest risk value across the whole map. However, the surgeon can over-
ride this by modifying the entry point according to the risk map. 

The technical challenges of this work are related to the efficient parallel implemen-
tation of collision detection, proximity search and distance evaluations in OpenCL. To 
allow real-time performance a Bounding Volume Hierarchy (BVH) is built over the 
cells of critical structures, that is an acceleration data structure used to facilitate the 
fast traversal of large datasets containing 3D points. Discussion of the specific im-
plementation details will be presented in our future publication, however a good de-
scription of the use of BVH for proximity analysis using GPU hardware can be found 
here [11, 13, 14].  

2.4 Visualisation 

EpiNavTM provides the standard ortho-view (2D planes: axial, coronal, sagittal), com-
bined with 3D visualisation (volume / surface rendering) in a 2x2 layout. The “Probe 
Eye View” display and a “Distance Graph” widget are placed in a separate window. 
The Probe Eye View displays an oblique plane (2D) that is always perpendicular to 
the line of the trajectory (See Fig. 3/b). The distance graph widget (Fig. 3/c) provides 
the visual representation of the minimal distance information in form of a graph. The 
length of the graph (horizontal axis) corresponds to the length of the trajectory, while 
the height of the bars (vertical axis) represent the distance to the nearest critical struc-
ture for that particular point of the trajectory. The graph is re-scaled along the vertical 
axis to focus the representation on the critical sections (Risk Zone). 

EpiNavTM offers linked visualisation components (similarly to [10]) where the cur-
sor location is synchronised between all visualisation components. For example  
picking a surface point in the 3D window will update the position of all other views. 
Similarly, clicking on a point of the distance graph will update the slice positions in 
the 3 orthogonal plane views and will also update the displayed slice in the probe eye 
view. This behaviour allows the user to visually identify risky sections of the planned 
trajectory, by clicking on these sections on the risk display the associated 2D and 3D 
views will be presented for review. 



 A Comput

 

Fig. 3/a. Visualisation of var
hypometabolism PET, Deep P
trajectory 3/b: Probe Eye Vie
with distance graph showing 
graph the length of the path, an

The locations of the suit
ouring their location accord
colour lookup table that ext
symbolising low-risk. All i
angle, risk, length and slic
adjusted. 

Fig. 4. Risk Map visualisatio
points while the coloured patc
low risk, red – high risk. In thi

ter Assisted Planning System for the Placement of sEEG 

rious critical structures. Blue: Cerebrospinal tract (CST), P
Pink: SPECT, Cyan-Red: blood vessels, Green arrow: Histor
ew displaying a projection that is perpendicular to the trajec

distances to critical structures along the trajectory. Above 
ngle of entry and the risk are displayed.  

table entry points are marked on the skull surface by c
dingly (Fig. 4). The risk values are linearly mapped ont
tends from red to green, red meaning high risk while gr
information in the risk map, distance graph, as well as 
ce position are updated real time as the trajectory be

 

on: The semi-transparent part of the skull represent non-suit
ch shows the potential entry points with associated risk. Gree
is case the target point was picked at random. 

123 

 

Pink: 
rical 
tory 
the 

col-
to a 
reen 

the 
eing  

able 
en – 



124 G. Zombori et al. 

 

3 Evaluation and Results 

3.1 Computational Performance 

To evaluate the efficiency each of the proposed methods were tested several times 
using different input data and the average execution time was recorded for each case. 
In the evaluation 4 surface meshes were used: skull surface (185k vertices); cerebro-
spinal tract (33k vertices); veins (91k vertices); arteries (70k vertices). The process 
times were recorded using OpenCL time events, including both the execution time of 
the OpenCL kernels, task executions scheduling and the time of data transfer between 
host and device. The desktop computer that was used in the tests has the following 
configuration: Intel XEON 16core CPU, 16 GB of RAM and an NVidia Quadro 
K2000 2 GB GPU. 

The first step of the risk analysis is the entry point search algorithm that aims to re-
duce the number of trajectory candidates. To test this the skull surface model was 
loaded and 10 historical electrode target points were selected. The average time to 
complete was measured to be 2.7ms, while the average reduction factor was 97%, 
resulting between 200-6000 entry point candidates. The next step is the construction 
of the BVH that only needs to be constructed once at the start. For the reference skull 
image (the largest mesh used in the test) the construction took 50ms on average. 

Table 1. Computation time of risk evaluation for software generated trajectories 

Total Num. of Trajectories Risk Evaluation (ms) 
1 1.3 
5 7.1 

50 13.4 
500 96.7 

5000 248.1 
 

To evaluate risk computation times various number of trajectories were generated 
by specifying a target point and assigning a number of random entry points. The com-
putation time was found to be a linear function of the number of trajectory candidates, 
for the expected maximal number of entry points (~6000) the AP module provides 
close to real time interactions with 4fps (Table 1). 

3.2 Neurosurgical Evaluations 

To evaluate the benefits of employing the new risk estimation, the risk map and dis-
tance graph, 30 electrode trajectories in 6 patients were evaluated, and their length 
(Fig. 5), angle of entry (Fig. 6) risk value (Fig. 7) were compared to results of non-
assisted planning. The analysis was performed using historical data, where the origi-
nal electrode trajectories were planned by expert neurosurgeons who relied only on 
traditional 2D visualisation. The average time to plan one electrode using the non-
assisted approach is estimated as 10-15 min based on our previous experience. The 
new trajectories were planned by a neurosurgeon using the computer assisted plan-
ning (AP), keeping the same target points for the purpose of comparison.  
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Fig. 5. Comparison of length. Values in blue represent trajectories that were planned without 
AP, while results in orange were acquired using the AP module.  

For each target point, the AP module analysed the topology of the critical struc-
tures to find potential entry points and computed the risks for them. Based on these 
risk values the system automatically offered an optimal entry for the new trajectory.  

 

Fig. 6. Comparison of entry angle. Values in blue represent trajectories that were planned with-
out AP, while results in orange were acquired using the AP module. 

The new trajectories were inspected by the surgeon to validate the safety profile and 
feasibility. The entry point has changed in all cases (Fig. 8), while the target point had to 
be adjusted in three cases (P2–T5, P3-T4, P5-T4) when it was placed too close to a 
critical structure originally (without assistance - Fig. 3/b), which made AP impossible.  

 

Fig. 7. Comparison of risk. Values in blue represent trajectories that were planned without the 
AP, while results in orange were acquired using the AP module.  
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The AP module provided a more feasible angle in all cases, while length of the tra-
jectory was shorter in 57 of the 60 cases. The overall risk was smaller in 57 of the 60 
cases using the AP, for the remaining 3 cases the risk was only marginally higher 
while both angle and length values were better. The general feedback from the sur-
geon was that the new system provides trajectories that are easier to implement in 
theatre and a lower risk profile by locating feasible entry points. The required plan-
ning time reduced to 2-3min per electrode, which is approximately the time it takes to 
thoroughly inspect the full length of the planned trajectory. 

 

Fig. 8. Change in the Trajectory. Green: Old path; Purple: New path from assisted planning. 
The increased distance to blood vessels can be observed. 

4 Conclusion 

We have demonstrated that EpiNavTM finds safer trajectories that are easier to imple-
ment and gives the surgeon greater confidence in individual electrode trajectory. The 
GPU based implementation enables real-time interaction and risk evaluation that re-
duces planning time and allows a more efficient clinical workflow. One limitation 
with assisted planning is the reliance on the quality of segmented surfaces that are 
used. As new imaging and segmentation tools become available, assisted planning 
will become increasingly reliable. Future work will concentrate on optimising elec-
trode efficiency by segmenting out grey and white matter, and by simulating electrode 
contacts. The user will then be able to combine safety, feasibility and efficiency 
scores to select the most appropriate trajectory. The next logical advance on assisted 
planning is to incorporate electrode arrangements instead of individual electrodes and 
to add a semi-automatic target placement by employing anatomical parcellation tools.  
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