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Preface

The 5th International Conference on Information Processing in Computer-
Assisted Interventions, IPCAI 2014, was held in Fukuoka, Japan, at the Fukuoka
Convention Center on June 28, 2014.

The IPCAI series of meetings was created as a forum to present and dis-
cuss the latest developments in computer-assisted interventions (CAI). With
the paradigm shift towards minimally invasive surgery, computers and advanced
surgical assist devices are increasingly present in the modern operating room and
have a significant influence on how procedures are performed. Through the use
of CAI systems it is possible to carry out surgical interventions that are more
precise and less invasive than conventional procedures by providing enhanced
surgical planning, instrument dexterity, positioning accuracy, real-time imaging,
guidance and visualization. The wealth of added information in a CAI system
can be processed in realtime or stored to facilitate quantitative analysis of sur-
gical workflow and ergonomics, tracking of patient outcomes and improvements
in treatment. Going beyond procedure-specific or system-specific CAI technolo-
gies, it is the synergy between the different CAI concepts and capabilities that
gives rise to a new paradigm. To promote and develop these concepts further,
the IPCAI series seeks to showcase papers presenting novel technical algorithms
and theory, clinical needs and applications, as well as hardware and software
systems and their validation.

This year, IPCAI was hosted outside Europe for the first time and we re-
ceived 58 full paper submissions: 38 from Europe, 11 from North America, and 9
from Asia. Divided by primary topic category, 14 submissions were in Planning,
Simulation, and Patient-Specific Models for Computer-Assisted Interventions,
14 in Medical Robotics and Surgical Navigation, 15 in Interventional Imaging
and Advanced Intra-op Visualization, 5 in Cognition, Modeling and Context
Awareness, and 10 in Clinical Applications, Systems, Software, and Validation.
The submissions were coordinated by nine area chairs and reviewed by a total
of 114 external reviewers. “Primary” and “secondary” area chairs were assigned
to each paper and each paper received at least three external reviews. After
the initial review process, the authors were given the opportunity to respond to
the reviewers’ and the area chairs’ comments. Reviewers and area chairs then
had the opportunity to revise their review based on the authors’ response. After
the review process was complete, papers that received unanimous accept recom-
mendations were automatically accepted and papers without a single vote for
acceptance were automatically rejected. Finally, an independent body consisting
of the five program board members as well as the program and general chairs
discussed all remaining papers and made decisions on them. We finally accepted
28 papers for the meeting’s program and the program chairs checked the final
material to ensure that all reviewers’ comments were addressed.



VI Preface

The format of IPCAI is designed to encourage interaction and allows time for
constructive discussion and as such all authors of accepted papers were asked
to give short five-minute platform presentations. In addition, each paper was
presented as a poster during interactive sessions with organized discussion. The
conference delegates were then asked to vote for a list of papers that they wanted
to see discussed in a longer platform presentation. The papers with the highest
number of votes were then presented in detailed podium sessions during the
afternoon for questions from the attendees and the committee members.

We would like to take this opportunity to thank the area chairs, program
board, and all of the reviewers for their help and efforts to maintain the high
quality of the series and select outstanding papers stimulating an exciting dis-
cussion at the meeting. Finally, we would also like to thank all the authors who
submitted their research to IPCAI and for their subsequent work in revising the
papers for final publication.

June 2014 Danail Stoyanov
Louis Collins

Ichiro Sakuma
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Olivier Pauly, Benôıt Diotte, Séverine Habert, Simon Weidert,
Ekkehard Euler, Pascal Fallavollita, and Nassir Navab

Towards Better Laparoscopic Video Database Organization by
Automatic Surgery Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Andru P. Twinanda, Jacques Marescaux, Michel De Mathelin, and
Nicolas Padoy

Model-Based Identification of Anatomical Boundary Conditions in
Living Tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Igor Peterlik, Hadrien Courtecuisse, Christian Duriez, and
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2D-3D Pose Tracking of Rigid Instruments

in Minimally Invasive Surgery

Max Allan1,2, Steve Thompson1,3, Matthew J. Clarkson1,3,
Sébastien Ourselin1,3, David J. Hawkes1,3, John Kelly4, and Danail Stoyanov1,2

1 Centre for Medical Image Computing, UCL, London, UK
2 Department of Computer Science, UCL, London, UK

3 Department of Medical Physics and Bioengineering, UCL, London, UK
4 Division of Surgery and Interventional Science, Medical School, UCL, London, UK

{maximilian.allan.11,s.thompson,m.clarkson,s.ourselin,
d.hawkes,j.d.kelly,d.stoyanov}@ucl.ac.uk

Abstract. Instrument localization and tracking is an important chal-
lenge for advanced computer assisted techniques in minimally invasive
surgery and image-based solutions to instrument localization can pro-
vide a non-invasive, low cost solution. In this study, we present a novel
algorithm capable of recovering the 3D pose of laparoscopic surgical in-
struments combining constraints from a classification algorithm, multi-
ple point features, stereo views (when available) and a linear motion
model to robustly track the tool in surgical videos. We demonstrate
the improved robustness and performance of our algorithm with opti-
cally tracked ground truth and additionally qualitatively demonstrate its
performance on in vivo images.

1 Introduction

Image-based instrument tracking and localization has important applications in
computer assisted interventions (CAI) and in robotic minimally invasive surgery
(RMIS). Computing the pose of the instruments is critical for enabling enhanced
guidance and navigation where precise knowledge of the sub-surface patient
anatomy can assist the surgeon to avoid critical structures and accurately excise
tissue. With robotic manipulators, virtual fixtures can be applied if the tools
approach delicate regions [1] or alternatively haptic feedback can be used to
improve instrument-tissue manipulation [2]. The major challenge with localiz-
ing the tools is in developing a system that integrates into the operating room
with minimal disruption of the workflow or additional invasion of the patient
anatomy. While instrument tracking can be realised by using hardware sensors,
encoders or external optical systems, such approaches require extensive hard-
ware integration and still have limitations in accuracy and integration into the
operating theatre. A significant advantage of image-based methods [3,4] is that
they recover the tool’s position and orientation directly in the surgeon’s viewing
reference and do not require any additional hardware [5,6].

D. Stoyanov et al. (Eds.): IPCAI 2014, LNCS 8498, pp. 1–10, 2014.
c© Springer International Publishing Switzerland 2014



2 M. Allan et al.

For minimally invasive surgery (MIS), instrument detection based purely on
images has been investigated for a number years [7]. Recent state-of-the-art
methods involve the use of trained classifiers and combine the detection and
subsequent tracking of instruments [8,9]. Such algorithms achieve excellent re-
sults but from a single image only the 2D image position of the instrument is
recovered. The full 3D position and orientation of the instrument can be recov-
ered using specialized fiducial markers machined onto the instruments, however,
this approach is restrictive and it interferes with the hardware making it difficult
for general theatre use with arbitrary instruments [10]. Naturally appearing fea-
tures can potentially also be used to localize the instrument. For example, edge
information with gradient direction filtering based on the trocar position has
been demonstrated [11]. This constraint can cope with significant image noise
but estimating the trocar position can be complex in the presence of insuffla-
tion and physiological motion such as breathing and heart rate. Gradient based
point features can also be combined with color-based features and classification
to track articulated robotic instruments [12] or as part of a brute force matching
of rendered tool templates [13]. Such methods can be implemented in real-time
with GPU processing but they rely heavily on kinematic data from the robotic
system and this therefore limits their application to non-robotic procedures. Ad-
ditionally, the gradient features are focussed around the tip of the articulated
instrument which fails to exploit the large constraint provided by the cylindri-
cal instrument shaft. In [14] we demonstrated the use of this constraint for five
degrees of freedom (5 DOF) instrument localization.

In this paper we propose combining constraints from feature points with a
region based level set segmentation to develop an instrument localization and
tracking framework that is more robust than using either individual technique in
isolation. We handle challenging data containing occlusions and large reflections
by exploiting strong prior knowledge of the instrument appearance and shape
though discriminative classification with a Random Forest (RF) and by applying
constraints to the level set propagation. We formulate this within a cost func-
tion that is simple to optimize and robust to noise in the image. The addition
of multi-view constraints to suit an emerging line of stereo laparoscopes add
further information and temporal motion is incorporated with a Kalman filter.
We show that these modifications provide improvement over previous work by
comparison experiments with ex vivo tissue and ground truth tracking provided
by an optical system. To further illustrate the effectiveness of our algorithm we
include qualitative results from MIS videos.

2 Method

2.1 Region Based Alignment

Region based tracking methods using level sets are generally framed as the max-
imization of an energy functional

E =

∫
Ωf

rf (I(x), C))dΩ +

∫
Ωb

rb(I(x), C)dΩ (1)
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where rf |b represent functions which measure the agreement between the infor-
mation in the pixels x of image I within a contour C (the foreground) and outside
the contour (the background) with learned statistical models. These agreement
functions are summed over the foreground and background regions Ωf |b. Nor-
mally this energy functional is maximized by finding the set of pose parameters
which define the optimal segmentation of the target image into a foreground and
background region.

The significant challenges within region based tracking are selecting a func-
tion r(.) to measure the region agreement and choosing the parameters which
determine the evolution of the contour. By assuming a weak constraint, which
can be relaxed, that we are tracking a rigid object we solve the latter problem
by following [15] optimizing in the space of the 6 degrees of freedom of a rigid
transformation, constraining the contour to belong to the set of image plane
projections of our target object at the current estimate of pose.

Selecting the function r(.) is problematic in MIS as the complex lighting and
occlusions lead to ambiguous regions for which simple classification models fail.
Following [14] we learn the function r(.) with random decision forests trained
on the Hue, Saturation, Opponent 2 and Opponent 3 color spaces, which were
demonstrated by the authors to have good performance on MIS images.

2.2 Incorporating Stereo Constraints

A significant challenge of 3D pose estimation using a monocular camera is the
difficulty in estimating the depth of the target object purely from perspective
cues [14]. Incorporating stereo constraints is important for creating a system that
is capable of reliably estimating 3D information. Practically, stereo acquisition is
also more common now with 3D laparoscope systems recently becoming available
from a variety of commercial manufacturers [16]. We incorporate stereo as a
special case multi-view constraint [15] by constructing the cost function over
both images of the stereo pair before solving for the pose in the reference camera
coordinate system.

2.3 Refinement with Point Based Tracking

One of the challenges of region based tracking is that it struggles to refine the
pose to highly accurate solutions when there are ambiguous contours or noise
around the edge of the target object. However, it is good at providing a reason-
ably close solution to the global maximum.

Point based tracking methods however can provide highly accurate pose esti-
mation but suffer heavily from data association errors, particularly when working
with relatively featureless surfaces such as those found on medical instruments.
The robustness of region based tracking can be combined with the high preci-
sion of point based tracking by jointly optimizing for both features. We avoid
the difficulties of data association errors by searching for matches in a small
region around expected locations of feature points (as suggested by the current
estimated pose of the target object).
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This results in our overall discretized energy functional being represented as

E =
∑
i∈Il|r

∑
x∈Ωi

(
rf (x)H(g(x)) + rb(x)(1 −H(g(x)))

)
+ λ

∑
y∈Γ

|y′ − P (y)|2 (2)

where y′ is a matched feature in the image (we perform feature matching ex-
clusively in the left image for simplicity) and P (y) is the projection of its corre-
sponding 3D point. λ is a weighting parameter used to modify the contribution
of the point alignments. H(.) is the smoothed Heaviside function of the level
set embedding function g(x), which is represented as a signed distance function
as is typical in the level set formulation of image segmentations [17]. Il|r are
set of the left and right images (although this could represent any number of
calibrated images) and x ∈ Ωi refer to the pixels in a single image over which
segmentation is performed. Γ is the set of features on the target object which
we are attempting to match in the image. In our current implementation we
choose SIFT features [18] but any feature with good invariance to lighting and
pose changes could be chosen. To build a library of detectable points for a given
instrument, we collect target SIFT features from a sample image of the object in
which the instrument pose has been manually aligned, backprojecting them to
their intersection with the target object to find their object space coordinates.

The cost function is optimized using gradient descent as this only requires
first derivatives yielding faster iterations than other optimization techniques. We
additionally use the quaternion representation of angular pose which, although
requiring normalization at each step, avoids the singularity problems of the Euler
angle representation.

2.4 Initialization and Tracking

To initialize our pose estimate we follow the method of [14]. Frame by frame
tracking is provided with a linear Kalman filter for both position and orientation.
Our state vector for the kth estimate is defined as

xk = (x, y, z, ẋ, ẏ, ż, θ, ψ, φ) (3)

where the terms have their usual meanings. We transform the quaternion rota-
tion representation to Euler angles to allow linearization of the Kalman filter.
We update pose using the standard Kalman Filter equations

xk = Fxk−1 +N(0,Q) (4)

zk = Mxk +N(0,R) (5)

where zk is the measurement vector, F is the position-velocity state transition
matrix and M is the identity observation model. Both are corrupted by normally
distributed noise of zero mean and variance Q,R. For more details on the linear
Kalman filter, the reader is directed to [19].
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3 Results

To evaluate the performance of the proposed method we conducted experiments
within a controlled laboratory environment where we were able to obtain ground
truth data. For comparison to prior work we compared our results to a recent
state-of-the-art method [14]. Qualitative evaluation is also reported for in vivo
surgical videos.

The implementation of the method used in these results is written in C++
and a single iteration of the gradient descent takes approximately 1 second on a
3.0 GHz dual core CPU. As each pixel of the level set optimization is evaluated
independently, the method is highly parallelizable and real time performance has
been demonstrated for similar techniques on a GPU [15].

3.1 Laboratory Experiments

A mock-up surgical site was constructed with a lamb’s liver and an Endopath
monopolar dissector (Ethicon Endo-Surgery Inc.) as the working instrument.
The scene was visualized with a 3DHD laparoscope (Viking Systems). We at-
tached optical tracking markers to the proximal end of the laparoscope and to
the proximal end of the instrument and tracked their locations using an Op-
totrak Certus system (Northern Digital). Hand eye calibration was performed
using OpenCV1 and Tsai’s handeye method [20] implemented within the NifTK

Fig. 1. This image shows the optical tracking system we constructed to capture video
with synchronized ground truth data. Inset shows an example frame from our captured
video.

1 http://docs.opencv.org/
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toolbox2 to determine the transformations between the optical tracker and the
camera coordinate systems (See Figure 1). The location of the instrument tip
relative to the tracking markers was found using an invariant point method, also
implemented in NifTK. Laparoscope tracking error was experimentally deter-
mined to be 1.7mm RMS and instrument tracking error estimated to be 0.7mm
RMS, assuming independence this gives a tracking error of 1.8 mm RMS for the
instrument tip relative to the laparoscope lens.
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Fig. 2. These plots show the ground truth translation from the center of the camera
coordinate system to the tip of the tracked instrument obtained with theOptical tracking
system compared with the results obtained from our algorithm and the algorithm of [14]

We learn instrument color models from a single image of the target object
manually segmented from a homogeneous background and the background model
is learned from a single image of the target environment captured before the
instrument is introduced to the scene.

We recorded a single video of the instrument moving in front of the liver
synchronising the video and tracking data using NifTK. The transformation
from the camera coordinate system to the tip of the instrument is computed for
each frame by our algorithm and by the optically tracked markers. Due to the
calibration inaccuracy we are forced to manually remove the offset by choosing a
frame where the tracking alignment appears most accurate and setting the fixed
offset as the difference between the estimates at this point.

2 http://cmic.cs.ucl.ac.uk/home/software/
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Table 1. The numerical results showing the mean and std. dev. of error in each axis

Mean Error (mm) Std. Dev. Error (mm)

X axis - Our Method 1.51 1.48

X axis - Comparison 1.73 1.21

Y axis - Our Method 1.25 1.04

Y axis - Comparison 1.89 1.17

Z axis - Our Method 3.05 2.68

Z axis - Comparison 9.86 4.89

(a) (b)

(c) (d)

(e) (f)

Fig. 3. The images show estimates of the instrument pose overlaid on the video. The
left hand column of images show our technique which incorporates stereo, points and a
Kalman filter compared with the right hand column showing the method of [14] which
does not use these features.
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We show quantitative results from the tracking in Figure 2. Selected frames
from the tracking procedure compared with the equivalent estimate from our
comparison method are shown in Figure 3.

3.2 Qualitative Results

We also demonstrate the qualitative results of our method by performing track-
ing on several sequences from surgical environments where 3D tracking data is
not available. This dataset was not captured with a stereo camera which pre-
vents us from incorporating these constraints in our pose estimation. Selected
frames from this validation are shown in Figure 4.

(a) (b) (c)

Fig. 4. The frames show select examples from an in vivo dataset with the instrument
model overlaid at the current pose estimate.

3.3 Failure Modes

The most significant point of failure in our algorithm is dealing with a poor
initialization, which is typically due to difficulties in correctly labelling the image
pixels using the random forest. When this occurs, the model is placed too far
from the ideal location for convergence to occur.

A secondary failure mode occurs due to our treatment of the instrument color
model with a bag-of-pixels approach. This means that when the (often different
colored) tip of the instrument is occluded behind tissue (e.g. due to cutting) the
model can still fit to the image with a high degree of confidence as it doesn’t care if
the pixels itmatches to the tip region of the contour actuallymatch the true surface
color at that point, only that theymatch the appearancemodel of the whole instru-
ment surface. Potentially the appearance of the instrument model can be broken
up into multiple classes [21] but as of yet this is not an area we have investigated.

4 Conclusion and Discussion

In this work, we have presented a novel framework for tracking rigid 3D objects
using stereo 2D images. We combine a region based segmentation technique
with point based pose estimation simultaneously addressing the weaknesses of
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both methods. Quantitative validation is performed on optically tracked endo-
scopic images in a mock surgical environment. Figure 2 shows the estimated
(x, y, z) position of the instrument tip compared with the method of [14]. Both
methods provide good accuracy in x and y, although ours appears slightly more
accurate and there is a significant accuracy improvement in the z direction, which
is to be expected given the stereo constraints our method includes. The decrease
in error over the duration of the sequence can be explained by the method grad-
ually recovering from inaccuracies in the pose initialization. Table 1 shows the
numerical performance improvements of our method. Visual comparison can be
seen in sample frames in Figure 3 where both methods converge to an accurate
solution but our method more accurately converges around the instrument tip
and does not have the same errors in estimating the shaft rotation. The full video
can be found online at https://youtu.be/5VyRmvGBT8k. Qualitative validation
on in vivo data demonstrates that our method is feasible in real surgical envi-
ronments. Sample frames showing the alignment accuracy are shown in Figure 4
which demonstrates the method’s robustness to lighting and fast motion as well
as the significant articulation in some frames.

Our method presents several areas where improvement is necessary. The most
significant of which is the modelling of instrument articulation. Methods of dis-
joint optimization appear the most simple, where each articulated component
is optimized separated however [21] and [22] have both presented methods of
3D pose tracking which handle the articulation as part of a single optimization.
Additionally, further constraints need to be added to model the trocar insertion
point which would help to improve the accuracy of our system.
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Abstract. Visual tracking in endoscopic scenes is known to be a difficult
task due to the lack of textures, tissue deformation and specular reflec-
tion. In this paper, we devise a real-time visual odometry framework to
robustly track the 6-DoF stereo laparoscope pose using the quadrifocal
relationship. The instant motion of a stereo camera creates four views
which can be constrained by the quadrifocal geometry. Using the previ-
ous stereo pair as a reference frame, the current pair can be warped back
by minimising a photometric error function with respect to a camera
pose constrained by the quadrifocal geometry. Using a robust estimator
can further remove the outliers caused by occlusion, deformation and
specular highlights during the optimisation. Since the optimisation uses
all pixel data in the images, it results in a very robust pose estimation
even for a textureless scene. The quadrifocal geometry is initialised by
using real-time stereo reconstruction algorithm which can be efficiently
parallelised and run on the GPU together with the proposed tracking
framework. Our system is evaluated using a ground truth synthetic se-
quence with a known model and we also demonstrate the accuracy and
robustness of the approach using phantom and real examples of endo-
scopic augmented reality.

1 Introduction

Visual odometry is the process of determining the position and orientation of
a camera moving in 3D space using only the associated image data. In mini-
mally invasive surgery (MIS), visual odometry is an element of surgical vision
that enables endoscope/laparoscope tracking without additional hardware such
as optical or electromagnetic trackers [16]. Such tracking is crucial for image-
guided surgery because the accuracy of camera tracking dominates the stability
of applications such as registering a preoperative model to the surgical site [3] or
building a mosaic for dynamic view expansion [17]. By using a visual odometry
approach it is possible to overcome the hand-eye calibration and to reduce error
propagation while simplifying clinical translation.

D. Stoyanov et al. (Eds.): IPCAI 2014, LNCS 8498, pp. 11–20, 2014.
c© Springer International Publishing Switzerland 2014
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Camera tracking based on photometrics in endoscopic scenes is difficult be-
cause of the homogeneous appearance of certain tissues, tissue deformation and
severe specularities caused by the strong illumination intensity. Previous works
have adopted a sparse feature based simultaneous localisation and mapping
(SLAM) approach to stereo laparoscope tracking [6,11]. In such systems, salient
features build a long-term map in order to globally correct for camera drift, but
however they are severely affected by large highlights and lack of scene rigid-
ity. Recent dense approaches have shown promising results where the camera
tracking benefits from using the entire image data resulting in a very robust mo-
tion estimation even without bundle adjustment in a texture-poor or occluded
scene [5, 12].

In this paper, we propose a dense approach for real-time stereo laparoscope
tracking. Our method uses a combination of stereo reconstruction, which is ef-
fective at recovering snapshots of the surgical site geometry [9], and quadrifocal
tracking. Benefiting from recent GPU technology and parallelisable optimisation
algorithms, the proposed dense visual odometry can reach real-time performance.
We validate the proposed approach by a ground truth study using a photo real-
istic surgical scene rendition. We also demonstrate the robustness of the tracking
on a real phantom video as well as in vivo clinical MIS sequences.

2 Method

The proposed system for dense stereo visual odometry has two main components:
1) stereo reconstruction and 2) quadrifocal tracking. The first reconstruction step
is crucial because it initialises point correspondences for the later quadrifocal
warping. Importantly both components rely purely on photometric information.

2.1 Preliminaries

Consider an image function I(p) : ΩI → R where the p = (u, v) is the pixel
location in the domain ΩI ⊆ R

2. In the rectified stereo geometry, point pl in the
left image has its correspondence pr = (u − d(pl), v) in the right image found
by the disparity function d : ΩI → Rd, where Rd is the range of the disparity
in subpixel accuracy.

To represent variables in the two-view stereo, it is convenient to consider the
set of image measurements in a vector form such that I = (Il, Ir)

� is a vector
of stacked intensity values. The stereo disparity can be represented in a similar
way, i.e., D = (dl,dr)

� which also implicitly defines the correspondence set P .

2.2 Dense Stereo Reconstruction

The task of stereo reconstruction is to optimise the disparity function d in order
to establish point correspondence P across the stereo pair. We exploit the re-
cent real-time stereo reconstruction algorithm [4], which optimises a variational
energy function with respect to d:
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d̊ = argmin
d

Er(d), where

Er(d) =
∑
p∈ΩI

{
‖γ(p)∇d(p)‖ε + λC(p,d(p))

}
. (1)

The data term C is a 3D disparity cost-volume which is built up by zero-mean
normalised cross-correlation (ZNCC) to save the photometric similarity between
left and right pixels within the determined disparity range Rd.

The variational model is regularised by disparity gradient, which takes the
assumption that the disparity shall be smooth in areas of homogeneous appear-
ance. To preserve discontinuities, which usually occur along image edges, we
adopt the anisotropic diffusion tensor for the weighting function:

γ(p) = exp(−α|∇I(p)|β)nn� + n⊥n⊥�
,

where n is the normalised image gradient n = ∇I(p)
|∇I(p)| and n⊥ its perpendicular

vector and α and β define the weighting strength [18]. The effects of the data
and the regularisation term are controlled by the λ.

The energy function is optimised by a GPU-implemented primal-dual algo-
rithm which provides a linear convergence rate O(1/N) [2]. The optimisation
parameters are determined by preconditioning which significantly reduces the
number of iterations to converge [13]. Note that the Eq. 1 is a first-order total
generalized variation (TGV) model which is only able to reconstruct fronto-
parallel structure [14]. However we have observed that instead of applying a
rather expensive second-order TGV to reconstruct the affine structure, using
the Huber-norm ‖ · ‖ε for the regulariser term is a good approximate to avoid
the staircasing effect caused by L1-norm, which is sufficient for reconstructing
general endoscopic scenes.

2.3 Dense Stereo Camera Tracking

The camera motion x is minimally parameterised by se(3) Lie algebra. Specif-
ically the 6-vector x = (ν, ω) ∈ R

6 consists of ν ∈ R
3 for the linear velocity

and ω ∈ R
3 for the angular velocity of the motion. The smooth and invertible

rigid-body transformation T ∈ SE(3) based on the 6-vector can be obtained by
the exponential map of g(x):

T(x) = exp(g(x)) =

(
R t
0 1

)
∈ R

4×4,

where R ∈ SO(3) and t ∈ R
3. Details of the SE(3) Lie group and its generator

function g can be found in [15].
Given a reference frame pair I∗ and the reconstructed disparity D, we can

track the camera by continuously registering the current frame pair I with the
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reference pair using a generative model called quadrifocal warping w(P∗,Trl,

Kl,Kr; T̊). The T̊ ∈ SE(3) is the current pose with respect to the reference
one in camera coordinate. We assume that the stereo laparoscope is calibrated
in advance and the intrinsic matrices Kl, Kr and the extrinsic matrix Trl are
constant.

The registration warping with respect to the camera motion x can be obtained
by optimising the photometric energy function:

x̊ = argmin
x

Et(x), where

Et(x) =
∑

P∗∈R∗

(
I(w(P∗;T(x)T̂)

)
− I∗(P∗))2. (2)

All the corresponding pixels from the reference frame pair form the set R∗ =
{{p∗

l ,p
∗
r}1, {p∗

l ,p
∗
r}2, . . . , {p∗

l ,p
∗
r}n} which mutually includes the left and right

matching pair with in total n number of correspondences used for tracking. The
optimisation incrementally updates the warping motion T̂ ← T(x)T̂ toward
the minimum. It is assumed that the truth motion parameter x exists so that
∃x̊ : T(̊x)T̂ = T̊.

Quadrifocal Geometry. To maximally exploit the stereo image data for track-
ing, the quadrifocal geometry is a constraint for associating geometric entities
across the four views. However, instead of adopting the rather complicated
quadrifocal tensor, two trifocal tensors are decoupled from the four-view in or-
der to bring the quadrifocal geometry constraint into the optimisation [5]. Fig. 1
shows an example of the trifocal geometry for the left view. Note that we will
elaborate only the left trifocal tensor, and the right one is exactly its inverse.

A trifocal tensor T = [T1(x), T2(x), T3(x)] is a 3× 3 × 3 matrix. Each slice in
the tensor is defined by Tj = ajb

�
4 (x) − a4b

�
j (x) where aj are the columns of

Trl and bj(x) are the columns of the motion matrix T(x). We use the point-
line-point configuration in which the correspondent line lr = (−1,−1, u+v) with
each of the three tensor slices form the columns of a homography matrix:

H (x) = [H1(x),H2(x),H3(x)] and Hj(x) = T �
j (x)K−1

r lr.

The corresponding point pl in the current image can be simply obtained by the
homography transformation of the reference point p∗

l . We can now define the
warping function in Eq. 2 for each correspondence as:

w(p∗
l ;x) = π

(
KlH (x)K−1

l

[
p∗
l

1

])
, (3)

where π is the dehomogenisation function projecting a point to its image
coordinate.
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Light source

Fig. 1. Point-line-point trifocal geometry: The point p∗
l in the left reference frame is

transformed to the point pl in the left current frame using the homography formed
by back-projecting the corresponding line l∗r, which defines an incidence relation p∗

l ↔
l∗r ↔ pl

Note that the incremental update motion T(x) is applied to the centralised
pose Tc at the middle of the stereo-rig baseline as shown in Fig. 1. This estab-
lishes a canonical coordinate for the stereo geometry, in which the left and right
camera poses can be obtained via:

Tc = explog(Trl)/2, Tl = T−1
c and Tr = TcT

−1
rl . (4)

Robust Tracking. The original energy function in Eq. 2 is the standard least-
square method which assumes the residuals have a zero-mean Gaussian distri-
bution. However, the residual distribution is usually not Gaussian, especially
when there are outliers appearing in the scene. For example, occluding objects
which do not belong to the original reconstructed model, lighting changes or
specularities will generate a considerable number of outliers.

We can instead reformulate Eq. 2 in terms of using a different norm ρ(r). For
a least-square norm, ρ(r) = 1

2r
2:

Erobust(x) =
∑

P∗∈R∗
ρ
(
I(w(P∗;T(x)T̂)

)
− I∗(P∗)). (5)

We use the non-convex Tukey M-estimator which essentially rejects outliers
above the tuning threshold [19]. This results in very robust tracking even with
the appearance of instruments occluding the endoscopic scene.
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Rapid Motion. Because the Tukey norm is not a convex function, one cannot
expect to find the true global minimum. Furthermore the linearization with
respect to the parameters se(3) only holds for small camera motions. To make
the method more robust towards rapid camera motions we adopt a common
coarse-to-fine scheme.

Optimisation. We adopt the efficient second-order minimisation (ESM) algo-
rithm for optimising Eq. 5. ESM is mainly the combination of a forward and an
inverse compositional algorithm, which can avoid local minima and takes fewer
iterations to converge [10]. The optimisation of quadrifocal warping can be easily
framed using ESM due to the fact that the warping is simply two homography
transformations in which the warped current image pair and the reference im-
age pair have a linear relationship. Dense tracking by warping a 2.5D surface
projection image has no such property and can only use the first-order forward
compositional algorithm [1, 12].

The ESM optimisation for solving Eq. 5 is performed with an iteratively
reweighted least squares (IRLS) scheme, which will require three Jacobians: JI∗ ,
JI and Jw, the Jacobians of the reference image, the current image and the warp-
ing function (Eq. 3) respectively. It can be shown that the overall approximate
second-order Jacobian can be derived as:

J =
(JI + JI∗)

2
Jw. (6)

Derivations of these Jacobians can be found in [5]. Using the common normal
equation solver with IRLS, the update parameter x can be obtained by :

x = −(WJ )+W(I − I∗), (7)

where the W is the diagonal weighting matrix determined by the Tukey
M-estimator and (·)+ is the pseudo-inverse operator.

2.4 Reference Frame Selection

The proposed dense stereo visual odometry has the advantage that the recon-
struction can be done any time to provide a dense model for the quadrifocal
tracking without the need of a bootstrapper. However, reconstructing a model
for every frame is unnecessary and in fact frame-to-frame tracking is suscepti-
ble to drift. To constrain tracking and prevent drift, we adopt frame-to-model
tracking which is essentially the same concept as the keyframe strategy in visual
SLAM systems [8, 12].

Whether a subsequent stereo frame pair is selected as the reference frame
is based on two criteria: 1) if the overlay between the warping image and the
reference image is below a threshold; 2) if the root-mean-square error of Eq. 5
is larger than a threshold. The first criterion occurs when the scope explores a
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sufficiently large area of the scene, so that there is not enough of the previous
reference model in view. The second criterion can also be associated with insuf-
ficient overlap one but it is additionally useful that when the scene is invaded
by other objects and we have to immediately reconstruct a new reference model
for tracking.

3 Empirical Studies

The system is implemented in C/C++ and CUDA running on a Nvidia GeForce
GTX 670 with 2GB GPU memory. The real video sequences are acquired from
da Vanci robot’s stereo endoscopy with size 720 × 576 and downsampled to
360× 288. The stereo reconstruction for two frames takes about 100ms and the
tracking for per subsequent stereo pair takes about 40ms.

3.1 Sythetic Ground Truth Study

In order to have a ground truth dataset, we use POV-Ray for realistic rendering
for a bladder and a pelvis phantom model. The luminance is intentionally set as
using a point light source and materials with strong specularity to simulate the
real surgical scene where the only light source is at the middle of the endoscopy
cameras as shown in Fig. 1. Fig. 2a shows a realistically rendered stereo frames.
Following the same methodology in [7], we use the proposed approach to track a
real phantom model using the da Vinci robotic platform as shown in Fig. 3b to
generate a realistic camera motion. We then use this camera trajectory to render
the ground truth sequence. The ground truth trajectory is shown in Fig. 2c.

The first frame is used as the reference frame for tracking the rest. The
methodology for the validation is to add white noise to the reference model with
different standard deviation and observe how this will affect the tracking. Fig. 2b
shows the tracking errors along the x-axis under different level of white noise. It
reveals several important results. Firstly, as the green curve shows, tracking with
a perfect model gives almost no drift but in practice a perfect reconstruction is
never achievable. The blue curve is closer to the real situation where we have
a decent reconstruction but not perfect. Due to using the imperfect model, the
camera drifts about 0.5mm after tracking for 100 frames. The cyan curve shows
that with a very bad reconstructed model, the tracking can still work but with
a significant drift.

3.2 Real Sequences

To validate the proposed approach on real data, we use a phantom and a clinical
endoscopy sequence to conduct a qualitative evaluation. The phantom is an
anatomical pelvis and prostate model from Educational and Scientific Products
Limited with added surrounding tissue features made from coloured silicone and
outer areas filled with polyeurathane expanding foam to avoid unrealistic sharp
edges as shown in Fig. 3a. Fig. 3c shows the reconstructed disparity map of the
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Fig. 2. The ground truth study. (a) The realistically rendered stereo frames with a
pelvis and bladder models. (b) The displacement of the tracked x-translation away
from the ground truth. (c) The trajectories. The figures are best viewed on screen with
colour and zoomed in.

(a) (b) (c) (d)

Fig. 3. (a) The painted plastic phantom. (b) A viewport from the da Vanci robot’s
endoscopy. (c) The reconstructed disparity map used for quadrifocal tracking. (d) The
Tukey M-estimator weighting image where the blue pixels are rejected and gray pixels
from black to white corresponds to the weight value from 0.1 to 1.0.

Fig. 3b where the depth discontinuity around the instrument is preserved. With
this well-reconstructed model, when the instrument starts to move, the robust
estimator assigns low weight for the tracked pixels which do not belong to the
model or even completely rejects them, as shown in Fig. 3d.

The proposed dense approach can be applied to a variety of applications.
We demonstrate augmented reality (AR) using the reconstructed dense model.
As shown in Fig. 4a, we can draw text on the dense model and maintain their
position on the surface. Note that this is not possible for sparse feature approach
in which there is no a dense geometry to be drawn on. This method could be
useful as it allows surgeons to tag AR annotation in the endoscopic scenes.
Fig. 4b shows another application where we augment the preoperative models
into the endoscopic scene.

Another useful function of the robust tracking using a dense model is to detect
occlusions. As shown in Fig. 4c and Fig. 4d, the dense reference model provides
a strong prior to reject the occluding instrument which is judged directly by
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(a) (b) (c) (d)

Fig. 4. (a) Text drawn on the 3D dense reconstructed model. (b) Preoperative models
augmented into the in vivo endoscopic scene. (c) An example for occlusion detection.
(d) The Tukey weights of (c) showing that the pixels from the invading instrument
together with the specularities are mostly rejected.

Tukey’s weight. When a new reference model is added, the occlusion can be
also detected by comparing the depths between the tagged markers and the
new model. Note that in Fig. 4d, those specularities are also rejected for the
quadrifocal tracking. The tracking quality can be observed in the supplementary
video1.

4 Conclusions

In this paper, we proposed a dense visual odometry method for tracking the mo-
tion of the stereo laparoscope in MIS by using quadrifocal constraints. The dense
approach has been shown to achieve promising results for synthetic, phantom
and clinical data even in sequences with instruments occluding the surgical site.
Promising applications of the proposed technique include image-guided surgery
with AR overlay onto the laparoscopic images. In our future work we will focus
on building a fully dense SLAM system with keyframes refined by pose graph op-
timisation to accurately maintain a global map while efficiently selecting known
keyframes for tracking.
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2 LTSI, Université de Rennes 1, Rennes, F-35000, France

3 INSERM, UMR 1099, Rennes, F-35000, France
pierre.jannin@univ-rennes1.fr

Abstract. This paper introduces a novel type of human-machine inter-
face for laparoscopic telesurgery that employs an optical sensor.
A Raven-II laparascopic robot (Applied Dexterity Inc) was teleoper-
ated using two different human-machine interfaces, namely the Sigma 7
electro-mechanical device (Force Dimension Sarl) and the Leap Motion
(Leap Motion Inc) infrared stereoscopic camera. Based on this hardware
platform, a comparative study of both systems was performed through
objective and subjective metrics, which were obtained from a population
of 10 subjects. The participants were asked to perform a peg transferring
task and to answer a questionnaire. Obtained results allow to confirm
that fine tracking of the hand could be performed with the Leap Mo-
tion sensor. Such tracking comprises accurate finger motion acquisition
to control the robot’s laparoscopic instrument jaws. Furthermore, the
observed performance of the optical interface proved to be comparable
to that of traditional electro-mechanical devices, such as the Sigma 7,
during adequate execution of highly-dexterous laparascopic gestures.

Keywords: Infrared stereoscopic camera, human-machine interface,
teleoperation, laparoscopic surgery, hand tracking.

1 Introduction

During the last three decades, the field of laparoscopic surgerywas constantly sub-
ject to technological advances looking to offer better healthcare in terms of safety,
patient outcome, medical staff coordination and comfort [1]. Among these ad-
vances, the appearance of telesurgical systems represents a major breakthrough.
Teleoperated systems enabled surgeons to interact with a distant environment,
while providing them with a sense of immersion within the remote environment.
To that end, high-resolution endoscopic cameras and intuitive human-machine
interfaces (HMIs) for controlling the robotized laparoscopic tools have been de-
veloped. Moreover, it is well-known that telesurgical systems allow further per-
formance improvements for surgeons by scaling down the hand motions (i.e. to
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c© Springer International Publishing Switzerland 2014
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perform more accurate gestures), filtering involuntary hand tremor and offering,
in some cases, force-feedback information [2]. However, the lack of cost-effective,
sterilizable, precise and repeatable force sensing solutions represents an open is-
sue, which is clearly reflected in currently available commercial robotic systems
such as the Da Vinci R© surgical system (Intuitive Surgical Inc) or the Raven-II
platform [3] [4].

The majority of master-slave systems used in telesurgery exchange kinematic
information of the operator’s hands (e.g. through the system’s position and/or
velocity channels) in order to define the control reference of the robotic end-
effectors [5]. Hence, the HMIs that are used to recover kinematic information
from the surgeon do have a direct impact on the overall robotic system per-
formance. For that reason, some recent research focused on the development
of novel HMIs to improve dexterity and ergonomy. In [6], for instance, the au-
thors presented an analysis of an electro-mechanical HMI for minimally invasive
surgery, which is based on ergonomic principles and on polls carried out within
the surgical community. Their results suggested that surgeons’ preferences are
mainly driven by 2 factors: comfort and precision. Nevertheless, the proposed
electro-mechanical HMI is unable of fully exploiting the capabilities of the sur-
geon’s hands. For example, their workspace is limited in order to avoid collisions
between the left and right hand devices, whereas a human operator is capable
of highly-dexterous and accurate bi-manual surgical manipulations within the
frontal region that is unexploited by conventional electro-mechanical HMIs (e.g.
the Sigma 7 employed in this work, or the Omega 7 modified in [6]). Therefore,
ergonomy and intuitiveness of today’s HMIs might be further improved.

In this paper, we address the issue of validating the possibility of perform-
ing highly-dexterous and precise telesurgical tasks by means of an infrared
stereoscopic camera, the Leap Motion. Furthermore, initial results on the novel
possibilities that could be offered by such type of interfaces are also intro-
duced through a comparative study with a high-performance commercial electro-
mechanical HMI, the Sigma 7.

Previous works employing optical based sensors in the context of teleopera-
tion can be found in the literature. In [7], the Kinect device (Microsoft Corp)
was employed to track the user’s upper limbs and to control two industrial robot
arms to perform pick and place tasks. Thanks to the anthropomorphic configu-
ration of the robot arms, the user can easily control their motion by using joint
angle inputs without major kinematic issues. Similarly, [8] implemented tracking
algorithms to segment and detect the hand’s thumb and index fingers in order
to control the robot end-effector. However, their algorithms were highly sensi-
tive to optical occlusions, and also relied on the detection of the entire forearm.
Finally, whether a surgical application is considered, these approaches would
fail to accurately distinguish finger motions for fine control of the instrument
tips. In consequence, it might be more suitable to state that [7] and [8] em-
ployed less accurate hand gesture recognition techniques (e.g. open hand and
fist gestures) for control of the robotic end-effectors. Finally, in [9] the authors
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performed simultaneous tracking of both hands and fingers in a robust manner,
accounting for possible optical occlusions by estimating two 26 degrees of free-
dom (DoFs) hand models and performing optimization to find an unique fitted
solution based on Kinect sensor measurements. Nevertheless, one major issue of
their work regards its considerable computational complexity due to the solution
of a high-order optimization problem using stochastic algorithms. Indeed, time
delay and synchronization are two key factors which affect the performance of
the entire teleoperation system. Therefore, a simplified and less computationally
expensive solution using a 7 DoF hand model is introduced in this paper for
tracking of the hand within the context of laparoscopic surgery.

The remaining sections are structured as follows. Section 2 introduces the tele-
operation platform with the two different HMIs that were compared. Section 3
describes the methods employed for evaluating the performance of the system
and the obtained results are also presented and analyzed. Lastly, in section 4
concluding remarks and future works are discussed.

2 The Teleoperation Setup

In order to effectively compare the relative performance of both HMI technolo-
gies, the platform depicted in Figure 1 was employed. Such a scheme was pro-
posed to isolate the influence of the HMIs by keeping constant the other hardware
components (i.e master components and the slave robot system). For that rea-
son, an unified HMI application programming interface (API), which allows quick
exchange of the interfaces, was implemented by software wrapping of the cor-
responding device drivers. A footpedal was used in order to activate/deactivate
teleoperation when required.

Fig. 1. Overall diagram of the teleoperation setup
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In Figure 2, pictures of the actual slave side system components are provided,
including the peg board used for laparoscopic task evaluation. The Raven-II
robot comprises two robotic arms of 7 DoFs, in which the two distal DoFs are
decoupled and allow independent movements of each grasping jaw. During the
experiments with both HMIs, the same Cartesian position servoing software
routines were employed at a control frequency of 1kHz.

(a) Raven-II system (b) Peg board

Fig. 2. Slave side hardware

Figure 3 depicts the main master side system components. Each of the Sigma
devices has 7 active DoFs. A Cartesian position measurement accuracy of about
0.005 mm (including translation and grasping motions) is reported by the manu-
facturer. During tests, these devices were polled at a 1 kHz rate. Since the Sigma
interfaces were disposed in order to avoid workspace overlapping of the left and
right hands, no risk of collision between the HMIs exists.

Fig. 3. Sigma 7 based master side hardware
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(a) Infrared stereoscopic camera (b) Electro-mechanical device

Fig. 4. Hand model geometry shown for both HMIs

Regarding the Leap Motion HMI, visible in Figure 4(a), three infrared sensors
coupled with an array of two cameras is used to create a depth map of the
scene. The Leap Motion’s Cartesian position measurement accuracy is about
0.01 mm, and the employed hand tracking refresh rate was ≈110 Hz. The API
provided by the manufacturer allows tracking of hand palms and fingers, the
latter being classified as pointy objects. Such device could also allow left and
right hand workspaces overlapping without the associated risks of HMI collisions.
Such possibility might be advantageous during some laparascopic tasks (e.g.
intracorporeal knotting and peg or needle transfers from one hand to another),
which could otherwise turn to be less comfortable and intuitive. Nonetheless,
whether the hand workspaces intersect, particular care should be taken when
optical hand occlusions arise. For that reason, a simple model consisting of three
points (i.e. index finger, thumb finger and hand palm) was defined in order to
allow robust model based tracking using a simple time-consistent Kalman filter.
The model geometry is depicted in Figures 4(a) and (b).

Tremor filtering is applied in both HMIs through an autoregressive moving-
average (ARMA) low-pass filter, having an attenuation of ≈25 dB at 2 Hz [10].
Finally, whenever hand tracking is lost, special care was taken in order to stop
teleoperation (i.e. overriding the footpedal), while avoiding bumps when the
tracking is recovered.

3 Performance Assessment of the HMIs

3.1 Methods

A population of ten researchers from the LIRMM Lab were enrolled in the
comparative performance evaluation of the HMIs. A video was shown to each
candidate in order to introduce the overall system functioning and the demanded
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peg transferring sequence. The latter sequence consisted in transferring some
pegs directly from one pin to another, and takes into account guidelines provided
by SAGES and FLS organizations [11]. The sequence is defined as follows:

1. Pick the first peg with the left tool and insert it in target 1 (leftmost pin of
Fig. 2(b))

2. Pick the second peg with the right tool and insert it in target 2 (rightmost
pin)

3. Pick the latest peg with the left or right tool, then advance towards the
center of the peg board to grab it with the other available tool in order to
finally insert it in target 3 (uppermost pin)

Each subject began the protocol with a randomly selected HMI and was al-
lowed to freely use the device during 5 minutes, allowing him/her to test-drive
the teleoperated system, familiarize with movements and hand coordination.
During this test-drive, the participant was taught how the system works, about
its possibilities and limitations (i.e. avoiding prolonged-time occlusions when us-
ing the Leap Motion or engaging teleoperation at the workspace limits of the
Sigma 7). Subsequently, the candidates were asked to repeat the presented peg
transferring sequence five times with each device. The last three trials were used
for the statistical analysis. Finally, the subjects were asked to grade each HMI
through multiple measurements.

3.2 Results

Recorded data were analyzed using the JMP 11 software (SAS Institute Inc).
A one-way analysis of variance (ANOVA) was carried out by defining the HMI
device as a fixed factor and the duration as the response variable. ANOVA relies
on the variance analysis from multiple samples to determine their affiliation
and whether a difference between mean durations exists, and thus, to accept or
discredit H0 hypothesis, which means that each device allows to perform the same
task with the same duration time. Before performing ANOVA calculation, we
ensured that data respect a normality function for an homogeneous repartition
(i.e. χ2 normality test).

Figure 5(a) depicts the average value and standard deviation of the total task
completion time for all subject trials with each device. It is observed that the
candidates were able to execute the task 13% faster in the case of the Sigma 7
device. ANOVA computation results are summarized in Figure 5(b), which shows
the mean difference of duration times for each device. With a p-value of 0.0172,
this analysis highlights that a significant difference between both devices can be
confirmed, so that they can constitute two distinct populations. Nevertheless,
even though a difference is confirmed, there is only a small gap between both
devices (i.e. 14 seconds for a task requiring ≈1 min 50 secs).

Figure 6(a) shows the success rate of peg transfers. A fail was attributed to
the operator whenever a peg was dropped before reaching the intended target. A
higher success rate was observed in the case of the Leap Motion, signifying that,
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Fig. 5. Duration of the pick and place task for all subjects and repetitions, with stan-
dard deviations for each HMI. The one-way ANOVA analysis shows the median, first
and third quartiles and highlights the significant mean duration difference of the HMIs
based on the variance of each population (p-value= 0.0172).

in spite of the slightly larger task completion times, the operators committed
less mistakes with this device.

Similarly, the number of times the users had to clutch the teleoperation sys-
tem through the footpedal was recorded (see ”Clutching” column in Figure 6(b)).
Subjects had to do this in order to reposition themselves for being able to carry
on with the peg transferring task (e.g. hand tracking loss, reaching the workspace
limits). It can be observed that better clutching results could be obtained with
the Sigma 7 device, mainly due to the simple occlusions handling strategy that
was implemented for the Leap Motion device. Consequently, operators were not
able to properly detect the limit of the manipulation workspace, leading to a
security lock and forced subjects to clutch in order to recover the hand tracking.
Indeed, similar completion times, clutching and success rates can be obtained
with both devices (see ”Time”, ”Success” and ”Clutching” columns in Figure
6(b)), whereas two additional metrics highlight a significant difference between
the HMIs. On the one hand, the cost of each interface is taken into account (see
”Cost” column in Figure 6(b)), in favor of the Leap Motion sensor. Even so,
the high cost of the Sigma 7 interface is mainly explained by the force-feedback
embedded technology which is not employed during the experimentations. Al-
ternative positioning systems such as the MicroScribe R© (Solution Technologies
Inc) or the Phantom Omni R© haptic device (Sensable, now part of Geomagic)
can be taken on board for a more relevant comparison. Nevertheless, the Leap
Motion device is still one of the cheaper interactive device present on the market.
On the other hand, the sterilization capacity was compared (see ”Sterilization”
column in Figure 6(b)). This latter measurement refers to the possibility for the
surgeon of preserving asepsis (i.e. hygiene without considering the certification
requirements) during the whole duration of the procedure, so that he/she can di-
rectly operate in the patient, if required, without forced to change surgical gloves.
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An upper grade was attributed to the Leap Motion device, since infrared light
can easily traverse a thin film of plastic to prevent it from contaminating the
sterile environment. In the case of the Sigma 7, a lower grade was attributed to
the device, since the presented system is not certified to meet such requirement.

(a) Success rates (b) Objective metrics

Fig. 6. Success of the pick and place task for all subjects and repetitions. Evaluation
of the system through five normalized objective metrics.

Figure 7 summarizes the results that were obtained after questioning each
operator. It can be confirmed that the Sigma 7 device outperformed the Leap
Motion in terms of perceived reactivity, precision, robustness and comfort. Nev-
ertheless, in terms of intuitiveness, the operators were more satisfied with the
contact-less optical device. It is also observed that important ameliorations in
terms of robustness are imperative for future experimentations, including an
accurate optical occlusion management.

Fig. 7. Attributed grades, for each subjective factor, by all operators
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4 Conclusions and Future Works

Considering the advantages and disadvantages of the Sigma 7 and the Leap Mo-
tion devices, together with their relative performance during the peg transferring
task, our initial results suggest that infrared stereoscopic camera sensors have a
promising potential for the development of cost-effective, sterilization compati-
ble, more intuitive and accurate HMIs for laparoscopic telesurgery. Nonetheless,
the obtained results also indicate that imperative development are required to
improve the robustness of the hand tracking algorithms in the presence of optical
occlusions.

Some design recommendations for next-generation HMIs could also be sug-
gested from this first study. Report from experimentation highlights that the
enlarged workspace and the freedom of bi-manual interactions between hands
was appreciated by subjects. Furthermore, alternative solutions allowing force-
reflecting teleoperation might be considered in the future, whether appropriate
force sensing solutions for the medical field become available, through the devel-
opment of wearable antagonistic tendon-like systems, exoskeletons, or through
the application of model based electrical stimulation of the upper limbs.

Immediate future works mainly regard the development of a more robust
model based hand tracking. Unfortunately, the API of the Leap Motion is closed
by the device provider. Therefore, other specific sensors with open APIs, such
as the Senz3D (Creative Labs Ltd, time-of-flight sensor), might be employed in
the future. Additionally, a complementary study relying on trajectory analysis,
from both master and slave sides, should be considered in order to enhance the
interpretation of the results obtained during these experimentations.

Finally, other surgical tasks requiring higher accuracy, such as dissection of
small targets, suturing and clip application should be studied, including expert
and novice surgeon operators, in order to improve the statistical significance of
our first results.
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Abstract. In the medical field, there exists some surgical simulators and
training platforms that have been developed for training novice surgeons
in order to improve their surgical skills and for performing preoperative
planning. In this paper we present a haptic platform for surgical nee-
dle insertion training gestures. It uses passive brakes based on Electro-
Rheological (ER) fluids to provide a safe and realistic physical feedback
to the physician. To achieve this objective, a prototype has been built, its
kinematic model has been obtained and experimentally validated. The
modelling, the bandwidth analysis and the force control scheme of the
platform are also presented.

Keywords: Needle insertion, ERF, Force control, Haptic Feedback.

1 Introduction

Known the risks of letting inexperienced practitioners perform operations on
actual patients, it was necessary to develop artificial training methods, which
could emulate the conditions of a real operation as faithful as possible.

In the context of medical applications, many industries have created training
platforms that would recreate certain parts of the human body, depending on
the goal of the training, like the TraumaMan System [1] and the Arthrocentesis
model [2], both by Simulab Corporation. Another type of training platforms are
virtual platforms, which emulate the conditions of the operation as it were to
be remotely performed, like the DV trainer by Mimic Technologies [3]. A major
characteristic in training platforms is the feedback illusion given to the user,
which has to be the closest possible to the reality.

The most common way of creating a feedback illusion is by using actua-
tors such as electrical motors, working against the user’s movements such as
the Phantom from Geomagic [4] and the Omega Haptic device from Force
Dimension [5].

Another way of giving a force feedback sensation is by using passive devices
such as brakes, which impede the movement not by moving actively against it,
but creating a passive physical resistance. Such devices do not create energy,
so they do not have the stability problems which active devices suffer from,
as discussed in [6] and in [7]. This decreases the stability, thus the safety is-
sues related to the operator. These passive devices can be implemented using
Magneto-Rheological and Electro-Rheological fluids.
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Magneto-Rheological Fluids (MRF) increase their apparent viscosity when
subjected to a magnetic field, to the point of becoming a viscoelastic solid [8].
Their damping properties can be used to create a haptic illusion, like the proposal
of a “Smart Mouse” by K. H. Kim et al [9], where a haptic hand master intended
to display force feedback at the fingertip of the human user is proposed. The
authors in [10] showed also the possibility of directly using a MRF to simulate
the behavior of soft tissues in cutting operations, by developing a haptic interface
which combines the MRF properties with a moving table.

Electro-Rheological Fluids (ERF), on the other hand, increase their apparent
viscosity in the presence of an electrical field [11]. The capacity of ER fluids in
increasing or diminishing their shear rate in very short periods of time (under 1
ms) allowed to use them in applications which require a quick response and high
dynamics, such as joint damping and, in general, mechatronic devices [12]. In
the medical context, ERF-based devices should be thus the suitable candidate
to replicate the dynamics of the needle insertion interaction force through soft
tissue.

An example of using ERF in the medical context is the Robotic Hand Rehabil-
itation System presented in [13], which facilitates repetitive performance of low
dynamics task specific exercises for patients recovering from neurological motor
deficits. Another example is the work presented in [14] where a 4DoF ERF-based
haptic interface for teleoperating a slave robot in the context of minimally inva-
sive surgery (MIS) have been developed. The proposed solution can generate a
repulsive force/torque with the 4DoF motion.

In the context of surgical training platforms regarding haptic feedback, a
needle insertion simulator is proposed in this paper. It features ERF brakes
capable of changing its physical resistance in a one DoF motion, to simulate
the different tissue behaviors against the movement of a surgical needle without
feeling the mechanical impedance of the haptic interface.

In the medical field, there exist some surgical simulators and training plat-
forms that have been developed. However, at this moment and to our knowledge,
there exists neither haptic device dedicated to surgical simulations nor needle
insertion training platform based on ERF solution. Indeed, all what have been
described in the literature regarding needle insertion simulators concerns only
the modeling of the needle tissues interaction and all the proposed needle inser-
tion simulators use conventional and commercially available motor based haptic
devices [15], [16], [7].

In this work, the ERF based solution has been preferred to homemade or com-
mercially available motor based haptic device since, compared to motor based so-
lutions, ERF based solutions are passive thus stable and safe, reversible, low cost,
compact and lightweight, and they can offer a negligible mechanical impedance
compared to motor based solutions (even more if geared motors are used).

The proposed study includes a built of a prototype, its mathematical model,
parameter estimation, and a PI force control test. These are preliminary tests
on this platform to validate the concept and viability of such a device.
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2 Design of a Force Simulator Using ERF

The purpose of the platform is to simulate the physical resistance of several tis-
sues against the movement of a surgical needle. The ERF would, thus, change its
viscosity as the user moves the knob of the manipulator, giving the mentioned
force-feedback. When performing a needle insertion, there are significant experi-
ence differences depending on the part of the body where it is performed. More-
over, the tissues’ characteristics are different from one patient to another, adding
a problem of patient dependance. So, instead of building a physical polymer-
based platform for training in each case, it can be easier to have a cheaper,
programmable device which can emulate several scenarios, such as inserting a
needle through different stiffness tissue layers, which can be easily programmed.

2.1 Prototype Description

This project’s object of study is a prototype-state platform which has been
developed to study the phenomena and validate the concept of a haptic-feedback
simulator for needle insertion. It is based on the Couette flow problem in fluids
mechanics. In this problem, a plate is moving above a static surface, with a fluid
between them. The shear stress is maximal at the moving plate, and zero at the
stationary plate, and depends on the viscosity of the fluid. The main idea is to
dynamically modify the fluid’s viscosity, so the shear stress is, as well, modified.
Thus, the necessary force to move the plate can be dynamically changed using
a smart fluid.

The moving plate is a 53x53x1.5 millimeter copper plate, with a soldered elec-
trode and four holes for its attachment to a same-size plastic plate. This plastic
plate is mounted to a rounded-bearing profile rail guide to ensure minimum
friction. The static plate is a 243x196x1.5 millimeter copper plate, also with a
soldered electrode, but mounted inside an open plastic box, to store the fluid and

(a) The experimental Platform (b) Robotized platform.

Fig. 1. Experimental platform
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ensure electrical isolation. This box is 30 mm high. The montage allows to select
different gap values, by loosening and tightening the threadless screws which
connect the small plates. This gap has been experimentally fixed to 1.6mm to
avoid the apparition of electrical arc and to optimize the time response of the
system. During the experiments, the overall platform is kept horizontally and
the moving plate is fully immersed within the fluid (see Fig. 1).

The effect of pushing on the copper plate in addition to the friction between
the copper plate and the fluid and to the friction at the level of the bearing
transmission are felt by the operator. However, the mechanical impedance of the
device remains almost transparent to the user and offers 0.2N measured force
while no actuation is performed.

2.2 Mathematical Model

The procedure which will be used here to evaluate the parameters and equations
of the platform is inspired by the one used in [11] where a rotary knob that
dynamically changes its physical resistance using an ERF actuator was studied.

As it was discussed before, the platform works according to the Couette Flow
problem, using an ER fluid which behaves under a non-Newtonian model known
as Bingham model. Although there are other models which can predict the
behavior of these kind of fluids, the Bingham is the most used in these kind
of applications, given its linearity and simplicity, according to the literature
([11],[17],[12]). In order to perform a further control of the platform, it is neces-
sary to obtain the relation between the force output F and the voltage input V ,
starting with the equation which states the relation between the force and the
shear stress τ of the Couette flow problem. Force equals to the double integral of
the shear stress on a rectangular plate whose sides are a and b. In this particular
case, a square plate of area A:

F =

¨
τ · db · da =

ˆ

A

τ · dA (1)

The shear stress, τ , in eq.1 can be replaced with the corresponding equation
of the Bingham Model,

τ = μ · γ̇ + τy,d (2)

where the shear rate γ̇ is a function of the speed of the sliding plate, dx
dt , and

the gap, h, between both plates.

γ̇ =
dx

dt
· 1
h

(3)

Also, the documentation of the commercial fluid used in this project states
that both terms τy,d (dynamic yield stress) and μ (plastic viscosity) are functions
of the squared value of the electrical field applied, E, and two constants, Cd and
Cv, [18].

τy,d = Cd · E2 (4)
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μ = μ0 − Cv ·E2 (5)

where μ0 is the zero field viscosity.
The combination of equations 1 to 5 leads to the relationship between force

and electrical field applied:

F =

ˆ

A

[(μ0 − Cv · E2) · dx
dt

· 1
h
+ Cd ·E2] · dA (6)

As the relationship between the applied field, E, the voltage output of a high
voltage source, and the gap between the two plates is E = V

h , the final equation
of the platform is, after replacing and integrating:

F = [(μ0 − Cv · V
2

h2
) · dx

dt
· 1
h
+ Cd · V

2

h2
] · A (7)

To evaluate those parameters more easily, the equation will be modified to be
expressed as a combination of three scalar constants, so the final model can be
written as:

F = (a0 − a1 ·
dx

dt
) · V 2 + a2 ·

dx

dt
(8)

where ai, iε {1, 2, 3} are constant positive scalars given by:⎧⎪⎨
⎪⎩
i = 0 a0 = A·Cd

h2

i = 1 a1 = A·Cv
h3

i = 2 a2 = A·μ0

h

(9)

Also, the inverse model of the system, needed for control, is obtained writing
the value of the voltage as a function of the rest of the parameters:

V = h ·

√
F
A − μ0

h · dx
dt

Cd− Cv
h · dx

dt

(10)

It is necessary, then, to obtain the parameters which lead to the direct and
inverse model of the platform to perform a control, with desired force as input,
to obtain it as output.

2.3 Prototype Testing and Parameter Estimation

In order to evaluate the mathematical model and estimate the values of the pa-
rameters, an experimental setup was built. The goal is to measure the force when
applying an increasing electrical field to the platform, with the plate moving at
a desired speed. To do so, a six-axis Viper s650 articulated robot designed for
assembly applications was chosen. An ATI Nano43 force sensor was attached to
the upper platform to measure the interaction force, and the robot arm attached



36 A. Graña et al.

to it (see Fig. 1b). Although the final objective is to manually operate the sim-
ulator, a robot-controlled experimentation was chosen over manually-controlled
in order to guarantee the repeatability of the experiment and the soundness of
the results and their analysis. To create the needed electrical field, an EMCO
C80R DC/DC High Voltage converter was used. The ERF used was the Smart
Technologies LID 3354S, made up of polymer particles in a non density matched
silicone based oil [18] (for more information, see www.smarttec.co.uk). The pa-
rameters of the liquid, such as dynamic yield stress, plastic viscosity and density
are provided by the developer and are ambient temperature dependent. How-
ever, to our knowledge, there is no study in the literature that has shown that
the ER fluid heated up over time and through continuous use. Consequently, it
is necessary to run identification experiments in order to obtain, with the great-
est accuracy, the real parameters of the platform and of the fluid, which may
differ from the ones given in the literature. The robot and the voltage control
was performed by a RTAI Linux PC running at 1kHz commanding a National
Instruments DAQ Card (NI 6034e) that drives the voltage controller.

The purpose of the experiment will be the estimation of the parameters a0,
a1 and a2 of the eq. 8, i.e., the fluid and the platform parameters : Cd,Cv, μ0, A
and the gap h . Assuming a linear behavior, the mathematical procedure will be
the following:

As dx
dt = v, for a number of samples n, each sample i corresponds to:

F (i) = a0 · V 2(i)− a1 · v(i) · V 2(i) + a2 · v(i) (11)

which, written as array, leads to:⎛
⎜⎜⎜⎜⎜⎜⎝

F (0)
...

F (i)
...

F (n)

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
B

=

⎛
⎜⎜⎜⎜⎜⎜⎝

V 2(0) −v(0) · V 2(0) v(0)
...

...
...

V 2(i) −v(i) · V 2(i) v(i)
...

...
...

V 2(n) −v(n) · V 2(n) v(n)

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

•

⎛
⎝a0

a1
a2

⎞
⎠

︸ ︷︷ ︸
a

(12)

Thus, a simple operation leads to the vector of parameters a, being A# the
pseudo-inverse of A, as it is not invertible :

a =

⎛
⎝a0

a1
a2

⎞
⎠ = A# ·B (13)

The identification experiments were carried away with the robot arm perform-
ing a continuous sinusoidal movement (0.2Hz, 1.5cm/s), while different voltage
steps (0.5, 1, 1.5, 2KV ) were applied. A voltage ramp was finally applied while
the platform’s speed reaches its maximum value. The objective here is to pro-
vide an as rich as possible signal excitation to guarantee the good conditioning
of the matrix A and thus the parameters identification success. This has been
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evaluated here using the “COND()” Matlab function which gave the satisfac-
tory value cond(A) > 103. The data registered is the speed, the force, and the
voltage. The obtained data leads to the successful calculation of the parameters
and the force output during the estimation procedure reaches values between 2.5
and 3N , suitable quantities to simulate the resistance of soft tissues, according
to [19].

Beside these results, the maximum force that has been obtained with the
current version of the prototype is more than 10N for a voltage input of 5kV .
If we increase the input voltage, electrical arcs should appear and disturb the
measurements. Moreover, beyond 10N of input force, the plate started to stick-
slip and electrical arcs appear again. If needed, higher force capabilities should
be obtained by increasing the contact surface between the electrodes and by
increasing the voltage input. Optimizing the gap between the electrodes should
reduce the appearing of electrical arcs.

2.4 PI Force Control of the Platform

To assess the quality of the model and the parameter estimation procedure,
a PI type force control was developed. According to [11], a PID controller is
unstable due to the derivative term, in this type of fluid application, so a PI
type controller was chosen. Since the prototype is at an early design state, it
was necessary to make an on-line calibration on each control experiment, to
avoid issues regarding parameters temperature dependency and the variability
of the boundary conditions.

(a) Step input (b) Sinusoidal input

Fig. 2. PI control results

Fig. 2 shows the PI force control results of the experiment. In a first experi-
ment, the robot arm is moving at a speed of 6mm/s, and the desired force was
a step of 1N (see Fig. 2a). In a second experiment, a desired sinusoidal force of
0.8N , 1Hz of frequency, and a mean value of 1N was specified as an input for
the system (see Fig. 2b). As seen in Fig. 2, the proposed PI force controller gives
very promising results in terms of tracking errors and dynamics. Indeed, the
steady state error (step response) and the dynamic error (sinusoidal response)
of the system are both less than 0.15N . On the other hand, the closed loop force
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feedback bandwidth of the platform is capable of managing a step response and
a 1Hz sinusoidal force signal. One can conclude that the controller could with-
stand, with an affordable error rate, the soft tissues needle insertion forces, under
non-optimal conditions.

(a) Measured forces during needle insertion
through multilayer soft tissue and its fre-
quency analysis

(b) Needle insertion results

Fig. 3. Measured needle interaction forces

2.5 Needle Insertion Interaction Forces Experiments

In order to validate the reliability of the ERF-based platform and its force feed-
back control scheme, it is fundamental to analyze the measured interaction force
during a needle insertion on soft tissue in terms of time and frequency variation.
To do so, we have measured the interaction forces during an ex-vivo robotized
needle insertion experiment through a multilayer soft tissue (two different bovine
slices of approx. the same depth 18mm) [20] (see Fig. 3a-up). In this ex-vivo ex-
periment, the two soft tissue layers were horizontally superposed and attached
together and a 18 gauge beveled biopsy needle was vertically inserted into the
tissues. As it can be observed on the Fig. 3a-up, it appears three “puncture
points”. The first one at the needle entry point (at approx. 1.5s ), the second
one at the boundary between the two layers (at approx. 3.5s) and the last one
at approx. 5.2s which corresponds to a tissue inhomogeneity.

The Fig. 3a-down presents the frequency analysis (FFT) of the measured
force and shows that the energy of the interaction force is mainly located at the
very low frequencies (0− 2Hz) and the force amplitude can be almost neglected
beyond 10Hz since it is less than 0.15N which corresponds to the previously
obtained PI force controller error. One can thus conclude that the bandwidth
of the proposed device should be sufficient to realistically feedback this needle
interaction forces to the user. Indeed, as shown in the Fig. 3b, we have per-
formed a last validation experiment where the desired controlled force was the
one recorded in Fig. 3a during the multi-layer needle insertion procedure on soft
tissue.

As one can see on the Fig. 3b, the measured interaction forces correctly reaches
the desired value. However, the measured force lags somehow behind the desired
force when the latter makes a discrete change which corresponds to the first and
the second “points of puncture” (at approx. 750 samples and 3750 samples) but
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surprisingly not at the last discrete change (at approx. 5200 samples). This lag
phenomena should be related either to the overall system bandwidth (includ-
ing the high voltage converter) or the the presence of the integral term in the
controller. This result has to be deeply investigated and fixed in a future work.

Beside this lag phenomena, the obtained results are very promising and showed
that ERF-based technology is a good candidate to safely simulate the physical
resistance of soft tissues.

3 Conclusions and Future Work

The goal of this research was to test the possibilities of a simple, programmable
ERF-based platform, as a linear haptic-feedback device simulating different stiff-
nesses. A prototype was built, its mathematical model has been obtained, and
experimentally validated. The inverse model was used in a PI force controller.
The control experiments showed the capabilities of the platform to exhibit a fast
and accurate response, given the design limitations of the device. The prelim-
inary experimental results are very promising and showed the great potential
of the ERF-based platform to simulate the physical resistance of soft tissues
against the movement of a surgical needle. However, many improvements in
terms of mechatronic, modeling and control have to be considered before to link
the ERF-based needle training platform to a FEM-based virtual needle insertion
simulator as the one presented in [21]. User trials experiments have also to be
conduced to evaluate the quality of the force feedback rendering and to improve
the platform design and control.
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Abstract. We have developed an intraoperative image guidance system that in-
tegrates information from cone beam computed tomography with video aug-
mentation for transoral robotic surgery. A proposed workflow to overlay critical 
structures with relative tool positions on stereoscopic endoscopy for resection 
of base of tongue neoplasms was evaluated using ex vivo and in vivo animal 
models. Results included visual confirmations of augmented critical anatomy 
during controlled arterial dissection and successful mock tumor resection. The 
proposed image-guided robotic system also achieved improved resection ratios 
of mock tumor margins (1.00) when compared to control scenarios (0.0) and  
alternative methods of image guidance (0.58).  

Keywords: Transoral robotic surgery, video augmentation, daVinci®, cone 
beam computed tomography, image-guided robotic surgery.  

1 Introduction 

The rising incidence of oropharyngeal cancer related to the human papilloma virus 
has become a significant health care concern.  Both surgical and non-surgical treat-
ment modalities have been advocated. Recently, transoral robotic surgery (TORS) has 
become an increasingly utilized minimally invasive surgical intervention for treatment 
of base of tongue (BOT) oropharyngeal cancer. TORS allows for the en bloc removal 
of oropharygneal tumors with minimal adjacent tissue injury, thereby optimizing 
functional results. Surgical strategy and navigational approaches to excise a specific 
tumor with adequate margins are derived from merging preoperative volumetric data 
(i.e. computed tomography (CT) and magnetic resonance (MR)), obtained in the su-
pine position with a meticulous evaluation of the patient in clinic. The integration of 
preoperative planning to the surgical scene is conducted as a mental exercise; thus the 
accuracy of this practice is highly dependent on the surgeon’s experience with this 
operative technique and subject to inconsistencies. This is further complicated by the 
                                                           
* Corresponding author. 
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fact that patient positioning for a TORS procedure requires the patient neck to be 
extended, mouth open, and tongue pulled anteriorly, presenting a surgical workspace 
highly deformed from that of preoperative acquisitions. 

Research groups have sought to overcome some of the above limitations by inte-
grating information from medical images through augmented reality in orthopedics 
[1], laparoscopy [2-4], and other head and neck interventions. Approaches differ in 
visualization from projective and smart displays, to head mounted gear, x-ray and 
video overlay [5], in addition to direct augmentation of the endoscope [4, 6]. Present-
ing supplementary navigational information to the surgeon directly within the primary 
means of visualization (i.e. the endoscopic video) has shown to be advantageous in 
biliary surgery [4] and skull base studies [7]. Image guidance derived from preopera-
tive data [2-4, 6] benefit from the ability of multiple modalities to target different 
anatomies, however intraoperative imaging [5, 8] can capture real-time patient posi-
tioning and tissue deformation during surgery. 

We previously investigated an augmented reality workflow for overlaying graphi-
cal information about critical anatomic structures onto stereo endoscopic video during 
TORS procedures with the daVinci® robot (Intuitive Surgical, Inc., Sunnyvale, CA) 
[9] as a means of assisting the surgeon in accurately resecting tumors. In this ap-
proach, graphic models of TORS critical structures (i.e. lingual arteries, tumor) are 
segmented from standard diagnostic CT or MRI images. Intraoperatively, a CBCT 
image is acquired after the patient is prepared for surgery and just before the robot is 
docked next to the operating table. An intensity-based algorithm developed by 
Reaungamornrat et al. [10] is used to deformably register the preoperative image to 
the intraoperative CBCT, and the deformation field is then used to update the graphi-
cal models of the anatomic structures. In this paper, we propose identifying critical 
structures directly from intraoperative cone beam computed tomographic angiography 
(CBCTA). A series of experiments resecting BOT mock tumors were conducted on ex 
vivo and in vivo animal models comparing the proposed workflow for video augmen-
tation to simulated control and fluoroscopy-based image guidance. 

2 Materials and Methods 

2.1 System Overview and Workflow 

In our proposed workflow, the patient is positioned in a standard intraoperative posi-
tion, contrast material is injected to enable visualization of critical oropharyngeal 
structures, while an intraoperative CBCTA image is obtained. Critical data as well as 
registration fiducials are manually segmented from the CBCTA using ITK-Snap and 
registered to the stereo video camera of the da Vinci robot. Segmentation by intensity-
based thresholds (manual initialization) from angiographies can be accomplished on 
order of seconds. Alternatively, detailed preoperative planning based on standard 
diagnostic CT/MRI can be created prior to the operation, thus does not contribute to 
the overall intraoperative time. Guidance through video augmentation (refer to [9] for 
details of system architecture), is implemented by extending the SURGICAL ASSISTANCE 

WORKSTATION (SAW) open-source toolkit [11], developed at the Engineering Research 
Center for Computer Integrated Surgery (CISST ERC, Johns Hopkins University). 
Visual overlay of TORS resection targets (tumor/ margins) and the lingual artery are 
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Fig. 1. (a) Single axial slice from CBCT of an ex vivo pig tongue phantom 
with embedded tumor (green). (b). Single sagittal slice CBCTA of an in
vivo pig phantom with segmented models of the right lingual artery
(orange), and two base-of-tongue tumors (right in yellow, left in blue).  
(c). Photograph of an ex vivo pig tongue phantom affixed with green regis-
tration fiducials. (d) Photograph of an in vivo pig phantom supine and rea-
died for tumor placement. 

directly rendered within the endoscopic video to guide the surgeon during BOT tumor 
resection. The augmentation follows camera kinematics, provided by the daVinci® 
application programming interface (API), and intraoperative tracking of custom fidu-
cials. Orthogonal views of tracked tools relative to the critical data are added to  
supplement the surgeon’s stereo perspective in depth, (i.e. parallel to the camera axis). 

2.2 Porcine Models 

Ex vivo (EV) 
Porcine Ton-
gue Phantoms 
Ex vivo excised 
porcine tongues 
(Fig. 1c) were 
used in simp- 
le experimental 
scenarios. To 
simulate cur-
rent standard of 
practice, as a 
control scenario, 
EV models 
were used in 
mock tumor 
resec-tion with-
out integrated 
image guidance 
(i.e. CBCT 
viewed in off-
line displays). 
Custom features 
and settings  
(i.e. determi-
ning color and 
opacity values 
for augmented 
structures and 
thresholds for 
tool tracking) 
for the user 
interface (UI) 
was initially tested using ex vivo models prior to in vivo experiments. Each EV tongue 
was embedded with a synthetic mock tumor, an 8 mm diameter nitrile sphere (green in 
Fig. 1a), and five to eight 3.2 mm diameter nylon spheres (green in Fig. 1c) were 
affixed to the tongue surface, which served as registration and landmark fiducials. A 
CBCT (109 kVp, 290 mA, 0.48x0.48x0.48 mm3 voxel size) was then acquired with 
the tongue secured onto a flat foam template. 
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Using color thresholds, the green framework of the fiducial was first located as an 
initial region of interest. Corner annuli of the green frame created circular negatives 
that were segmented using contours detection, and matched by their average color to 
the nylon spheres. Chromatic thresholds, updated on successful fiducial segmenta-
tions, were designed to be dynamically adaptive in order to be robust to fiducial color 
changes due to pollution from cautery. A rigid transformation from point-based track-
ing of the spheres on the customized fiducial updated the locally rigid transformation 
of the attached resected volume.  

Forward kinematics from instrument joint encoders, as provided by the API, has 
been measured with error  25 mm [15]. To correct for this offset, necessary for tool 
tracking, we tested two methods: 1). Establish the euclidean transformation corres-
ponding tool tip locations in stereo video and the API in several tool poses. 2). Derive 
setup joint corrections through vision-based processing of markers attached to the 
shaft of the instrument (a proprietary function developed by Intuitive Surgical Inc.)  
 

Fluoroscopy Augmentation 
For comparison with video-based augmentation we also tested scenarios with fluo-
rscopy-based image guidance using the Siemen’s Syngo workstation. For the IV ex-
periments, after docking the robotic arms to the operating table, the C-Arm was 
placed laterally to capture sagittal x-rays of IV experiments. For intraoperative fluo-
roscopic-guided experiments the surgeon side console was setup in radiation-shielded 
workspace with access to manually activated x-ray on request. The live fluoroscopic 
images and its overlay onto the CBCTA of the head of the porcine specimens was 
rendered in 2D in the bottom left and right corners of the SSC through TilePro®.  

3 Experiments 

During two sets of experiments (S1 and S2), a head and neck surgeon (second author) 
resected embedded mock tumors, commensurate with standard surgical practice (i.e 
attempting to achieve a 10 mm margin around the tumor while avoiding and/or con-
trolling the lingual artery), from EV and IV phantoms using a research da Vinci® Si 
console with variations of the proposed image guidance. Each set of experiments 
(variable scenarios summarized in Table 1) included: (a). control with EV phantom, 
(b) video augmentation with EV phantom, (c) Fluoroscopy augmentation with IV on 
left BOT and (d). video augmentation with IV on right BOT. 

Two EV specimens, S1a and S2a, were used as control (i.e. preoperative images 
were available offline but not integrated to the robotic system) in order to simulate cur-
rent standards of practice. The clinician was given access to view preoperative CBCTs, 
with visible tumors and surface landmark fiducials on offline monitors displaying the 
reconstructed volumes in MPR (Multi-Planar Reconstruction) views. Scenarios S1b and 
S2b served to gauge user experience and feedback on proposed features of the video 
augmentation software on simple EV specimens prior to testing on comprehensive IV 
models. Experiments comparing video to fluoroscopic augmentation were conducted 
on IV specimens, which provided a realistic, oropharyngeal workspace. While both 
S1c and S2c used fluoroscopic augmentation, the S2c setup included the capability to 
enlarge (4x) regions of interest.  
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Table 1. Experimental Scenarios 
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Measurements of the specimen resected from all eight robotic experiments are 
summarized in Table 2 and Fig. 4 show photographs and corresponding postoperative 
slices/volumes of the resected tumors (blue in ‘Volumes’ column) and their intersec-
tion with an ideal margin (yellow in ‘Volumes’ column). Resection ratios (volume of 
margin resection/volume of ideal spherical margin) in order from high to low was 
achieved with S2d (1.00), S2b (0.87), S1d (0.81), S1b (0.71), S2c (0.58) and S1c 
(0.44), respectively. The challenging environment of a featureless ex vivo model, 
compared to a realistic in vivo model is substantiated with the superior results ob-
tained comparing in vivo to ex vivo experiments which used the same video-based 
augmentation for image guidance. Improvements achieved by S2d, in reference to 
S1d (similarly from S2b to S1b) can be attributed to the addition of margin overlay 
and intraoperative tracking of the resected volume. S1c and S2c, scenarios that uti-
lized fluoroscopic overlays had the advantage of precise tool to tumor distances, but 
were restricted to a single x-ray (2D) plane.  

The margin/specimen ratio on S1c and S2d was large secondary to posterior 
placement of the IV mock tumor and the custom resection fiducial mandated inclu-
sion with the resection specimen. Most IV specimens in general required longer dis-
sections, resulting in smaller ratios as compared to EV, due to volumes removed for 
arterial control and workspace limitations of the transoral access. 

In addition to resection ratios, two forms of accuracy are of interest here: 1). Projec-
tion Distance Error (PDE) – the 2D pixel distance between projected overlay and the true 
image location of the object 2). Tool Tracking Error (TTE) – the 3D position [mm] of the 
tool tip compared. Mean PDE, from point-based manual registration, has been previously 
established at 2 mm using an anthropomorphic skull phantom [9]. During video-based 
image guidance for S2 visual estimates of tool tracking error (distance of virtual to true 
tool tip in video) for S2d, was observed to be 5 mm (mean), 10 mm (max).   

Table 2. Experimental results 

 

5 Discussion 

This is a proof-of-concept study that assessed the value of augmenting the surgeon’s 
endoscopic view with CBCTA data with the goal of improving surgical accuracy  
and optimizing margins.  Though limited by a single, experienced TORS surgeon  
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performing the resections, results demonstrate the value of augmented endoscopy by 
improved margin status.   

In these experiments, video-based augmentation (S1b, S2b, S1d, S2d) achieved supe-
rior tumor resection compared to fluoroscopy-based guidance (S1c, S2c). The im-
provements by S2d compared to S2c can be attributed to the supplementary guidance 
with margin delineation. However, superior results achieved by S1 scenarios, where 
overlays did not include margins, emphasize a disadvantage for 2D fluoroscopy, com-
pared to 3D video augmentation, and the significance of the method of integration be-
tween supplemental navigational information and the primary visual field. Rendered 
through TilePro® (i.e. visible in the SCC), unlike the proposed video augmentation sys-
tem, the fluoroscopic overlays were shown below the native stereo endoscopy. Informal 
surveys and similar work for monocular video augmentation in skull base surgery [7] 
have suggested advantages of guidance through augmentation [14] of the primary, “nat-
ural” window. Improvements from S1c to S2c support a necessity to be able to enlarge 
regions of interest in order to take further advantage of the sub-millimeter resolution of 
2D X-rays. The EV phantoms presented an abnormally challenging environment con-
sisting of a featureless tongue volume. As the IV resection proceeded dental, oropha-
ryngeal and neurovascular anatomies serve as landmarks, while our simulated control 
EV models only provided superficial features (surface fiducials).  

Despite encouraging results achieved by the proposed video augmentation system, 
issues of robustness and accuracy remain. Video augmentation registered initially is 
reliable on approach, however during intraoperative resection, overlaid models should 
be updated to reflect surgical deformations. Intraoperative resected volume updates 
based on custom fiducials was susceptible to failure when the fiducial was not posi-
tioned orthogonally to the endoscope. For improvements on robustness we are look-
ing to incorporate Kalman filters and prior state information from tool tracking. In 
addition a 5 mm (mean) TTE, not acceptable for TORS applications, can be improved 
through intraoperative fluoroscopy, using 2D3D registration to correct for kinematic 
inaccuracies, tissue deformation and external forces. Comprehensive phantom studies 
quantifying TTE and techniques for improvement is currently underway.  

6 Conclusions and Future Work 

Experimental results show the feasibility and advantages of guidance through video 
augmentation of the primary stereo endoscopy as compared to control and alternative 
navigation methods. The small number of experiments conducted is a recognized 
limitation of the work presented, however future work will not only investigate me-
thods to update navigational information after tissue deformation but will optimize the 
workflow such that more TORS surgeons can be included, a more realistic  
tongue/tumor model will be incorporated, and increased iterations will improve the 
validity of our model. 
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Robotic Device for Acquisition of Wide and High
Resolution MRI Image Using a Small RF Coil

Kohei Miki and Ken Masamune

Graduates School of Information Science and Technology, The University of Tokyo, Japan

Abstract. This paper proposed a prototype of wide and high resolution MRI ac-
quisition system for MRI-guided surgery. Currently, MRI-guided neurosurgical
procedures are performed in an operating room with open MRI, and intraopera-
tive MR images are provided with real time rich biological information. However,
the low resolution of the MR images is still problem and it is difficult to deter-
mine precise boundary of the tumor and normal tissue especially when using a
low tesla open-type MRI. To solve this problem, a method to acquire wider and
higher resolution MR images using a small RF coil is proposed. The outer diam-
eter of the RF coil is 8 mm and its inductance and resistance of the RF coil were
1.0 μH and 2.0 Ω. To receive MRI signals with high efficiency, 1 DOF bending
mechanism, which is mounted on the distal tip of the MRI signal receiver, was
developed to control the orientation angle of the RF coil. Bending the distal tip of
MRI signal receiver, the transmission efficiency of MRI signals is kept high and
SNR of MR images was kept high. The SNR of MR images using MRI signal
receiver was 11.3 and the voxel size of MR images is 0.5 × 0.5 × 1.0mm3. We
successfully obtained clear MR images of okra and the voxel size of MR images
is 0.5× 0.5× 1.0mm3. These results show that the MRI signal receiver is useful
to acquire wide and high-resolution MR images.

1 Introduction

Magnetic resonance imaging (MRI) can provide high-resolution 3D or 2D images and
it is non-invasive medical diagnostic imaging. MRI is able to monitor organ shape,
blood flow, and brain function. Currently, MRI-guided procedures are performed in an
operating room with open MRI, and intraoperative MR images are provide the real time
rich anatomy and function information of the body [1–3]. Intraoperative MRI images
can provide brain deformation and residual tumor, and resection rate of the tumor is
improved significantly [4]. However, the resolution of the MR images when using a
low tesla open type MRI still be low. Resection rate of infiltrative tumor still not be
high because it is difficult to identify precise boundary of infiltrative tumor and normal
tissue. To solve the problem, it is necessary to improve the resolution of MR images.
When acquiring high resolution MR images, signal to noise ratio (SNR) of MR images
decrease. SNR of MR images can be enhanced when using a small RF coil. Therefore,
to improve the resolution of MR images, a method to improve SNR of MR images is
proposed using a small RF coil. Another problem with open MRI is strong gradient
non-linearity, which cannot be resolved using the proposed method.

D. Stoyanov et al. (Eds.): IPCAI 2014, LNCS 8498, pp. 51–60, 2014.
c© Springer International Publishing Switzerland 2014
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Massin and colleagues report magnetic resonance images using high-Q factor mi-
crofabricated planar coils [5]. Dave and colleagues report an MR-compatible endo-
scope with integral coil system [6]. Badilita and colleagues report 3D microcoils for
microscale MRI applications [7]. However, the MR imaging area of small RF coil is
very narrow and sensitivity of the RF coil depends on the angle of magnetic field and
the RF coil.

To acquire wide and high resolution MR images using small RF coil, a manipula-
tor to approach the RF coil to the target area and control orientation angle of the RF
coil in MRI operating room is required. Currently, MR-guided surgical manipulator is
developed extensively [8, 9]. MR-compatible is required for a manipulator used in the
MRI operating room. MR-compatible must meet following requirements: 1) it is safe
in the MRI environment, 2) its use in the MR environment does not affect MR imaging
quality, and 3) it operates as designed in the MR environment [10].

This paper reports development of a MRI signal receiver and performance evaluation
of the MRI acquisition system. To approach RF coil to target area using manipulator
which equipped with the receiver, RF coil is attached the distal tip of cylindrically-
shaped device. To control orientation angle of the RF coil, bending mechanism is
mounted on the distal tip of MRI signal receiver.

2 MRI Signal Receiver

2.1 Design of a Small RF Coil

To design a flat spiral coil for MRI signal receiver, we calculated the electrical charac-
teristics of the coil. Because MRI signal is a high frequency, the characteristics of the
high-frequency circuit have to be considered [11]. Frequency of the nuclear magnetic
resonance (NMR) signal is given by

f0 =
ω0

2π
= γH0 (1)

where γ is gyromagnetic ratio, H0 is magnetic field intensity, and ω0 is the angular
frequency of the NMR. Frequency of the NMR signal is called larmor frequency. MRI
used for the measurement of MR images is 0.2 T vertical magnetic filed open-type MRI
(AIRIS Mate; Hitachi medico). Gyromagnetic ratio of hydrogen atoms is γ = 42.58
MHz/T. From Eq.(1), when hydrogen atom is measured with 0.2 T open-MRI, larmor
frequency is 8.5 MHz. In the high frequency circuit, coil can be regarded as equivalent
circuit consisting of inductance L and resistance RL (Fig.1). Impedance of the coil ZL

is shown in the following equation:

ZL = RL + jXL (2)

where RL is the real part of the impedance, and XL = ω0L is the imaginary part of the
impedance. Flat spiral coil inductor L and resistance RL is given by

L =
1

25.4

N2A2

80A− 11Di
(3)
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L RL

Fig. 1. High-frequency Equivalent Circuit of Coils

Table 1. Designed Value of the RF Coil

Outer Diameter [mm] 8
Inner Diameter [mm] 6
Wire Diameter [mm] 0.05

Number of Turns 9
Inductance [μm] 1.00
Resistance [Ω] 2.04

A =
Do +Di

4
(4)

RL = ρ
l

S
=

ρN(Do −Di)

2d(w − d)
(5)

where Do is outer diameter of the coil, Di is inner diameter of the coil, w is wire
diameter, N is the number of turns of the coil, l = (πN(Do −Di))/2 is wire length,
S = πd(ω − d) is wire section area, and d is the skin depth. High frequency current
flows mainly at the skin of the wire. When the frequency is 8.5 MHz, the skin depth of
copper conductor is 22.7 μm. Table 1 shows design value of the RF coil. The inductance
and the resistance of the RF coil is 1.0 μH and 2.0 Ω.

2.2 Design of MRI Signal Receiver

To transmit MRI signal efficiently, it is necessary to match the impedance of the MRI
signal receiving circuit and MRI. The MRI signal receiving circuit consisting variable
capacitor is connected to RF coil and the impedance of MRI signal receiving circuit is
match to the impedance of MRI Zc at 8.5 MHz (Fig.2). The tuning capacitor C1 and
the matching capacitor C2 is shown in the following equation:

C1 =
ΔB

2πf0
(6)

C2 =
1

2πf0ΔX
(7)

ΔB =
XL

R2
L +X2

L

−

√
RL

Zc(R2
L +X2

L)
−
(

RL

R2
L +X2

L

)2

(8)
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Coil

Matching Capacitor

Tuning
Capacitor

C1

C2
L

RL

Fig. 2. Impedance Matching Circuit

RF Coil

Impedance
Matching Circuit40mm

Fig. 3. The MRI Signal Receiver

ΔX =

√
Zc(R2

L +X2
L)

RL
− Z2

c (9)

A MRI signal receiver was developed using a 3D printer and φ10 mm acrylic pipe
was connected to the end of the MRI signal receiver (Fig.3). Impedance matching circuit
is mounted within the MRI signal receiver and RF coil is attached the distal tip of acrylic
pipe. Sensitivity of the RF coil depends on the angle between the RF coil and magnetic
field. MRI signal ξ0 is given by

ξ0 = ω0B1M

(
1 +

ω2
0 + r20
c2

)
exp(jω0t) (10)

where ω0 is the angular frequency of the NMR, B1 is the magnetic field at the center
of the RF coil, M is the bulk nuclear magnetic moment, r0 is the radius of the coil, and
c is the speed of light [12]. The vertical component of the magnetic field is B1(φ) =
B1sin(φ), and MRI signal is ξ(φ) = ξ0sin(φ). φ is the angle of magnetic field and the
RF coil. Sensitivity of the RF coil is highest when the angle of magnetic field and the RF
coil is 90◦. To control the angle of magnetic field and the RF coil, bending mechanism
is mounted on the distal tip of MRI signal receiver (Fig.4). Bending mechanism is a 1-
DOF linkage mechanism. The linkage mechanism converses linear slide motion using
linear actuator into bending motion of the distal tip. The range of bending motion is
−20◦ ∼ +20◦.



Robotic Device for Acquisition of Wide and High Resolution MRI Image 55

Fig. 4. Bending Mechanism of the MRI Signal Receiver

3 Experiment

3.1 SWR

To evaluate the transmission efficiency, we measured the impedance of the MRI signal
receiving circuit using a vector network analyzer and calculated the standing wave ratio
(SWR) of the MRI signal receiver. SWR indicates the relationship between the traveling
wave and the reflected wave in the AC circuit and means the reception efficiency in the
high-frequency circuit. SWR is shown in the following equation:

SWR =
1 + Γ

1− Γ
(11)

Γ =

∣∣∣∣Z − Zc

Z + Zc

∣∣∣∣ (12)

where Z is measuring impedance of MRI signal receiving circuit, Zc is the impedance
of MRI, and Γ is reflection coefficient. Fig.5 shows the results of SWR of the MRI
signal receiver. Left is SWR of MRI signal receiver when the frequency of signal is 8
- 9 MHz and the angle of distal tip is 0◦. Right is SWR of MRI signal receiver when
frequency is angle is−20◦ ∼ +20◦ and the frequency of signal 8.5 MHz. The minimum
value of SWR is 1.04 ± 0.01 when the angle of distal tip is −10◦ and the maximum
value of SWR is 1.02 ± 0.01 when the angle of distal tip is 10◦. When SWR is 1.04,

Fig. 5. SWR of MRI Signal Receiver. Left: SWR when frequency is 8 - 9 MHz and angle is 0◦.
Right: SWR when frequency is angle is −20◦ ∼ +20◦ and frequency 8.5 MHz.
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transmitting efficiency of MRI signal receiving circuit is 99.97 %. The result shows
that transmission efficiency of MRI signals is high and the reduction of transmission
efficiency by bending of the distal tip is very few. Transmission efficiency can be kept
high regardless of the angle of magnetic field and the RF coil.

3.2 SNR Measuring Experiment

We measured the SNR of MR images of phantom using the MRI signal receiver with
0.2 T open MRI. Fig.6 shows the SNR measuring setup. Aqueous solution of nickel
chloride is filled into the phantom. Aqueous solution of nickel chloride is used MRI
phantom for performance evaluation of the open type MRI. Table 2 (a) shows imaging
parameters of SNR measuring experiment. Measured voxel size of MR images is 0.5×
0.5×1.0mm3 and slice plane is transverse plane. The signal region is 8 mm circle region
at the center of MR images and the noise region is 11.7 mm circle at four corners of
the MR images (Fig.7). The signal intensity is the average signal intensity of signal
region and the noise intensity is the average signal intensity of noise region. SNR of
MR images is given by the ratio of signal intensity to noise intensity. The SNR of MR
images using the MRI signal receiver were 11.3 with the voxel of 0.5× 0.5× 1.0mm3.
The SNR of the MR images by the MRI signal receiver and MR images by medical
coil, the improvements of SNR are 3 times.

Phantom

Coil

Phantom
40mm

Fig. 6. MR Images of Phantom Acquisition Setup

Table 2. Imaging Parameters of MRI

(a) (b)
Imaging Sequence Spin-Echo Sequence
TR (Repetition Time) [msec] 250
TE (Echo Time) [msec] 22
NSA (Number of Signals Averaged) 16
Slice Thickness [mm] 1
Field of View [mm2] 80× 80
Frequency 160 80
Phase 160 80
Voxel Size [mm3] 0.5× 0.5× 1.0 1.0 × 1.0 × 1.0
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10mm

Fig. 7. The MR Image of Phantom

3.3 Sensitivity of the RF Coil Experiment

Sensitivity of the RF coil depends on the angle between the RF coil and magnetic field.
We measured the SNR of MR images using MRI signal receiver with 0.2 T open MRI.
Fig.8 shows experiment setup. Table 2 (b) shows imaging parameters. Measured voxel
size of MR images is 1.0×1.0×1.0mm3 and slice plane is transverse plane. The angle

θ
Magnetic

Field

Open MRI

φ

Fig. 8. Sensitivity of the RF Coil Measuring Setup. Left: the angle between the RF coil and
magnetic field. Right: the angle of distal tip of MRI signal receiver.

Fig. 9. SNRs of MR Images using MRI Signal Receiver
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between MRI signal receiver and magnetic field θ is 0◦, 10◦, and 20◦. When the angle
between MRI signal receiver and magnetic field θ �= 0◦, the angle of distal tip of MRI
signal receiverφ is 0◦, and equal to the angle between MRI signal receiver and magnetic
field θ. Fig.9 shows the results. SNR of MR images reduced with the increasing the
angle between MRI signal receiver and magnetic field θ. Compared θ �= 0◦ to θ = φ,
SNR of MR images was improved 13.7 % at θ = 10◦, and 47.1 % at θ = 20◦.

3.4 Image Acquisition Experiment

We measured MR images of okra. Fig.10 shows measuring of Okra images setup.
Table 2 (a), (b) shows imaging parameters. Measured voxel size of MR images is
0.5× 0.5× 1.0mm3 and 1.0× 1.0× 1.0mm3. Slice plane is transverse plane and sagit-
tal plane. Fig.11 shows MR images of okra. Direction of transverse plane is equal to
cross-sectional of okra. Top left is transverse plane at 0.5×0.5×1.0mm3, bottom left is
sagittal plane at 0.5×0.5×1.0mm3, top right is transverse plane at 1.0×1.0×1.0mm3,
and bottom left is sagittal plane at 1.0× 1.0× 1.0mm3. We can identify the inner struc-
ture of okra at 0.5 × 0.5 × 1.0mm3 that it is difficult to identify from MR images by
medical.

OkraCoil
5mm

Fig. 10. MR Images Acquisition Setup

2mm

2mm

2mm

2mm

Fig. 11. MR Images of Okra. Top Left: TRS 1.0×1.0×1.0[mm3], Bottom Left: SAG 1.0×1.0×
1.0[mm3], Top Right: TRS 0.5× 0.5× 1.0[mm3], Bottom Right: SAG 0.5× 0.5× 1.0[mm3].
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4 Discussion and Conclusion

The paper proposed high resolution MR images acquisition system using the flat spiral
coil and develop MRI signal receiver mounting the RF coil and the MRI signal receiving
circuit. The outer diameter of the RF coil is 8 mm and its inductance and resistance of
the RF coil were 1.0 μH and 2.0 Ω. The bending angle of distal tip is −20◦ ∼ +20◦.

SWR is less than 1.04 when the frequency of signal 8.5 MHz and transmitting effi-
ciency of MRI signal receiving circuit is 99.97 %. Transmission efficiency can be kept
high regardless of the angle of magnetic field and the RF coil. The SNR of MR images
using the MRI signal receiver was 11.3 with the voxel size of 0.5 × 0.5 × 1.0mm3.
Comparing MR images by the MRI signal receiver and MR images by medical coil,
the improvements of SNR are 3 times. When SNR of MR images is more than 10, we
were able to observe structure of imaged object. So, we were able to observe structure
of imaged object using MRI signal receiver with the voxel size of 0.5× 0.5× 1.0mm3.
However, SNR of the transverse plane away from coil 2mm is 5.8 and we cannot ob-
serve structure of imaged object. Precise positioning is required for acquisition high
resolution MR images. To keep the angle between the RF coil and magnetic field is 90◦

using bending of the distal tip, the SNR of MR images is improved when the angle be-
tween MRI signal receiver and magnetic field θ �= 0◦. The use of MRI siganal receiver
using small RF coil, SNR of MR images can be enhanced and we successfully obtained
clearly MR images of okra with the voxel size of 0.5 × 0.5 × 1.0mm3. These results
show that the MRI signal receiver is useful to acquire wide and high-resolution MR
images.

In future work, we developed 5 DOF coil positioning manipulator to ensure good
SNR from the whole imaged volume. Controlling the position and orientation angle of
the RF coil using manipulator, high resolution MR images is acquired with MRI signal
receiver.
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Abstract. An iterative approach to building a surrogate-driven mo-
tion model exclusively from cone-beam CT projections is presented. At
each iteration the motion model is updated via an analytical expression
derived from an optical flow-based approach, with corresponding im-
provements in the motion compensated reconstruction. The differences
between the actual and estimated motion, as seen in the projections,
are incorporated into a modified CBCT reconstruction. The correlations
between these differences and the surrogate signals used in the motion
model are also taken into account in determining the motion model up-
dates. The updates are then composed with the previous estimate of the
motion model and set as the new estimate of the motion model. New
updates to this new estimate can then be calculated.

The motion model could be used to better understand respiratory
motion immediately prior to a fraction of radiotherapy treatment, or to
monitor key regions of interest during tracked treatments. This method
would also be a promising candidate to adapt an older model built during
planning to the day of treatment. The local, voxel-wise updates to the
model can account for large inter-fraction changes, specific to the day of
treatment.

Results on a simulated case are presented, derived from an actual
patient dataset undergoing radiotherapy treatment for lung cancer. With
the fitted motion, simulated projections of the animated patient volume
were seen to be more similar to the actual projections than projections
of the static patient volume. When compared with the actual motion,
the mean L2-error over the entire patient was reduced to 0.46 mm.

1 Introduction

State-of-the-art radiotherapy (RT) rely on accurate identification of targets prior
to and during treatment [1]. In treatments such as stereotactic ablative RT
(SABR), the dose is delivered in fewer fractions (3-5), with a high dose per
fraction. It is important to take tumour respiratory motion into consideration
during these treatments [2]. A common approach is to use 4DCT planning scans
to identify the extent of respiratory motion and add a margin onto the delineated
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tumour region. Gated and tracked [3,4] RT treatments account for respiratory
motion by delivering dose at select parts of the breathing cycle or tracking the tu-
mour throughout the breathing cycle, respectively. By accounting for respiratory
motion of the tumour, gated and tracked approaches would allow a reduction in
current margins, potentially allowing increased dose on the tumour region whilst
further sparing the healthy region around the tumour. These approaches, how-
ever, rely on accurate identification of the tumour region throughout treatment.
In addition, knowledge of organs at risk (OAR) respiratory motion would allow
the impact on the OAR of adjustments to the dose delivery to also be modelled.

In this work, we propose a method to completely build a surrogate-driven
motion model from a cone-beam CT (CBCT) scan. For the surrogate (indicator
of respiratory state) we measure the skin surface displacement within a pre-
defined region above the treatment couch. Previous work has included fitting
a model of tumour motion directly to a CBCT scan [5,6]. This approach was
recently extended to a whole patient motion model [7]. In this work, we build
the motion model exclusively from the CBCT by extending an optical-flow-based
approach. A novel method to determine voxel-wise updates to the motion model
is presented. A modified CBCT reconstruction is proposed, which measures the
differences between the actual and current estimate of the motion, and how
these differences correlate to the surrogate signals of the motion model. From
these reconstructions, the current estimate of the motion can be updated via
an analytical expression. It is envisaged that this approach be used to assess
respiratory motion immediately prior to treatment, particularly in situations
where large inter-fraction variations are expected. These could include weight
loss, tumour shrinkage or lung region collapse. Results on a simulated case are
presented.

2 Methods and Materials

2.1 Motion Model

Presuming a motion-free image of the patient, Vref , is available, it can be de-
formed to account for respiratory motion:

Vn(x) = Vref (x+ Fn(x)) . (1)

x ∈ ΩCBCT , where ΩCBCT is the (3D) region imaged during the CBCT scan
and n is an index corresponding to the time of each CBCT projection.

Fn is parameterised by a motion model which can take into account hysteresis
and variations in length and depth of breathing cycle:

Fn (x) = snΨ1 (x) + ṡnΨ2 (x) , (2)

where sn and ṡn are the scalar surrogate signal associated with the nth pro-
jection, and its rate of change, respectively. Ψ1 and Ψ2 are the motion model
deformation fields, which determine a spatially-dependent, linear relationship to
sn and ṡn respectively.
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As with previous work [6], the authors opt to use the Align RT camera system
(Vision RT, London, UK) to produce the surrogate signal. The optical stereo-
camera system is used to produce high-resolution surface images of the patient’s
chest. A region of the patient chest (enclosing parts of the thorax and abdomen)
is chosen and the average height above the treatment couch within this box is
used as the raw surrogate signal. After calculating the derivative trace, both
traces are then normalised (mean subtracted; divided by standard deviation)
giving the final surrogate traces.

2.2 Determining Ψ1 and Ψ2

If the motion free image of the patient were known, a Taylor expansion can be
used to approximate the first order correction, δF est

n , to an estimated deforma-
tion field, F est

n :

(3)Vn(x) = Vref

(
x+ F est

n (x) + δF est
n (x)

)
≈ V est

n (x) +∇V est
n (x) · δF est

n (x).

In terms of updates to the motion model, the first order correction can be written:

δF est
n = snδΨ1 + ṡnδΨ2. (4)

Note that δΨ1 and δΨ2 are defined in the space of Vn. Substituting the motion
model updates (4) into (3), and rearranging:

(5)Vn − V est
n ≈ ∇V est

n · (snδΨ1 + ṡnδΨ2) .

A demons optical flow approach [8] can then be used to specify the form of
the motion model deformation fields Ψ1 and Ψ2:

snδΨ1 + ṡnδΨ2 ≈ ∇V est
n

(∇V est
n )

2

(
Vn − V est

n

)
. (6)

Updates to each motion model deformation field are desired. This is achievable
by exploiting the covariance between the surrogate signals. First multiply both
sides of (6) by sn, sum over all n and divide by the number of patient states
seen over the CBCT scan (i.e. number of projections), N :

var(s)δΨ1 + covar(s, ṡ)δΨ2 ≈ 1

N

∑
n

∇V est
n

(∇V est
n )2

sn(Vn − V est
n ), (7)

where var(s) = 1
N

∑
n s

2(n), covar(s, ṡ) = 1
N

∑
n s(n)ṡ(n). Because the sur-

rogate signals have been normalised (mean subtracted; standard deviation di-
vided), var and covar are Pearson correlation coefficients and can be simplified:
var(s) = 1 and covar(s, ṡ) � 1. The latter simplification comes from the approx-
imation of independence between the surrogate signals. The proposed approach
could still be used without this approximation, but an additional set of linear
equations would need to be solved. Note that satisfying independence could be
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used as a condition for choosing a suitable set of surrogate signals. The simplified
form of (7) is:

δΨ1 ≈ 1

N

∑
n

∇V est
n

(∇V est
n )2

sn
(
Vn − V est

n

)
. (8)

By approximating the sum of all patient states seen over the CBCT by a
Feldkamp-Davis-Kress (FDK) CBCT reconstruction [9,10], it is possible to ap-
proximate the right side of (8) using an FDK reconstruction [11], giving:

δΨ1 ≈ 1

N

∑
n

∇V est
n

(∇V est
n )2

snP
†
n

(
pn − Pn(V

est
n )
)
, (9)

where pn are the CBCT projections, Pn the projection operator and P † the FDK
back-projection operator. A similar equation results for δΨ2 by multiplying (6)
by ṡn instead of sn:

δΨ2 ≈
1

N

∑
n

∇V est
n

(∇V est
n )2

ṡnP
†
n

(
pn − Pn(V

est
n )
)
. (10)

The approximation is essentially using the reconstruction of the differences (in
projection space) as an approximation to the average differences in 3D space.
The multiplication by the the surrogate is additionally determining which of the
differences are correlated with changes in the surrogate signal. As an analogy, if
the projections were simply of the animated patient volume, this approximation
would correspond to the assumption that the reconstruction is an estimate of
the average of all the states seen over the CBCT in 3D space.

2.3 Iterative Approach

In practice, Vref is not accurately known, as this would require knowledge of the
exact respiratory motion from which to perform a motion compensated recon-
struction (MCR). In this work, an iterative approach is taken, with improving
estimates of the motion model deformation fields and MCR with each iteration.
Starting with a zero motion assumption (i.e. Ψ1 = Ψ2 = 0), perform an MCR,
V 0, and set it to Vref . The updates to the motion model deformation fields δΨ0

1

and δΨ0
2 are then calculated, and the fields updated via:

Ψ1
i = Ψ0

i + δΨ0
i for i = 1, 2. (11)

The updated motion model deformation fields can then be used to determine
the updated MCR and the procedure repeated.

For this work, a fixed number of iterations was set. Ten iterations were run
with the updated motion model deformation fields having Gaussian smoothing

applied prior to composition. To reduce calculation time,
V est
n

(V est
n )2

was approxi-

mated by a Gaussian blurred Vref , as
Vref

(Vref )
2 , allowing it to be moved outside the

summation in (9,10) and applied in one step. The Gaussian blurring applied was
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the same as that used to smooth the motion model deformation fields. To ensure
that the optical flow equation is not unstable at small values of∇V est

n , updates to

δΨ1 and δΨ2 were set to zero if (∇Vref )
2 +
(

1
N

∑
n ṡnP

†
n (pn − Pn(V

est
n ))

)2
< ε,

where ε was empically set to 5× 10−5.

2.4 Simulated Data

The method was tested on a simulated case, built from the 4DCT of an actual
patient undergoing radiotherapy treatment. End exhale was registered to each
of the seven other phases of the 4DCT and used to determine a transformation
to average 4DCT space. Registrations were used to determine transformations
from end-inhale to end-exhale, and from mid-exhale to mid-inhale. These trans-
formations were used to determine Ψ1 and Ψ2. The end-exhale phase, moved to

Fig. 1. Coronal (top) and sagittal (bottom) slices, intersecting the tumour region, of
MCRs before (left) and after (right) fitting the motion model
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average 4DCT space was then animated using Ψ1, Ψ2 and an actual patient sur-
rogate trace. The accompanying CBCT geometry information for the respiratory
trace was used to simulate a CBCT of the animated volume.

3 Results

After motion correction, improvements in the quality of the MCR were seen.
Figure 1 shows coronal slices through the tumour region of the patient volume
before and after motion correction. The regions of greatest improvement were in
the diaphragm and tumour region. The ribs were also seen to have fewer streak
artefacts, especially in the SI direction.

CBCT projections of the animated MCR with the fitted motion were seen to
be more similar to the actual projections, than projections of the unanimated
no motion reconstruction. Over all the projections, the sum of squared differ-
ences (SSD) error was reduced by 12%, from 1.6 × 109 to 1.4 × 109. This also
corresponds with an improvement in similarity between actual and fitted motion
model deformation fields, compared to assumming no motion. L2-norm errors
were calculated for each voxel, between the estimated displacements (at the time
of each projection) from the fitted model and the ground truth. Over the whole
patient, mean L2-norm errors decreased from 1.4 to 0.46 mm. In the (manually
segmented) tumour region, the mean L2-norm error was decreased from 4.2 to
2.6 mm. A movie of the original (left) and simulated (right) CBCT projections
with the fitted motion have been included as supplementary material.

4 Conclusions and Future Work

An iterative approach to build a surrogate-driven motion model entirely from
CBCT is presented. This approach could be used to reduce respiratory artefacts
in CBCT reconstructions, and as an intensity-driven way to estimate patient
motion when only the CBCT scan is available. Although an error reduction was
seen over the whole patient and within the tumour region, further strategies to
improve upon this will be explored. The authors plan to improve this method in
multiple areas, including better defined termination conditions and improving
the accuracy of the update. The latter improvement would be via the incorpo-
ration of a motion corrected reconstruction into the update. The authors are
also planning to investigate a more physically justified basis for the direction-
vector updates (i.e. alternatives to

∇Vref

(∇Vref )2
). In its current form, the algorithm

takes approximately 10 minutes per iteration. With targeted use of GPU-based
acceleration, the authors hope to more than half this figure.
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Vascular 3D+T Freehand Ultrasound Using

Correlation of Doppler and Pulse-Oximetry Data
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Abstract. We present a new system to acquire and reconstruct 3D free-
hand ultrasound volumes from arbitrary 2D image acquisitions over time.
Motion artifacts are significantly reduced with a novel gating approach
which correlates pulse oximetry data with Doppler ultrasound. The re-
construction problem is split into a ray-based sample selection on a per-
scanline basis and a backward algorithm which is based on the concept
of normalized convolution. We introduce an adaptive derivation of time-
domain interpolation from the correlated pulse-oximetry and Doppler
signals as well as an ellipsoid kernel size for spatial interpolation based
on the physical resolution of the ultrasound data. We compare pulse-
oximetry to classical ECG gating and further show the suitability of our
normalized pulse signal for 3D+T reconstructions. The ease of use of the
setup without the need of uncomfortable triggering via ECG provides
the ability to use 3D+T ultrasound in every day clinical practice.

Keywords: freehand ultrasound, vascular, 4D, cardiac pulse phase,
doppler, correlation, adaptive, reconstruction.

1 Introduction

Ultrasound imaging is an essential part of clinical imaging and plays a crucial
role in diagnosis of cardiovascular diseases. Three dimensional (3D) ultrasound
imaging is already used in obstetrics for diagnosis of facial abnormalities and
has high potential for vascular imaging [4]. While 2D matrix array probes are
providing 3D and 4D (3D+T) ultrasound information in realtime [10], they are
- as conventional 1D array probes - limited in their field of view with respect to
transducer design. Freehand ultrasound as an alternative or add-on technique
allows the acquisition of high quality 3D ultrasound of steady anatomy; providing
an extended field-of-view [11] and thus enables a better overview for physicians.
For vascular applications though, the data is acquired over a certain period of
time, in which the anatomy changes due to pulsating blood flow.

One major area where avoiding these artifacts is of crucial importance is 3D
and 4D volume reconstruction (compounding). The goal here is to interpolate the
acquired, irregulary sampled data onto a regular spatial 3D grid to enable an ex-
traction of diagnostic indices (e.g. vessel volume from a segmentation) and visual-
ization of the data in 3D. We propose the use of a fingertip pulse oximetry device,
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in addition to a 3D freehand ultrasound setup, recording B-Mode and Doppler ul-
trasound data, to reconstruct 3D volumes for desired cardiac pulse phases. This of-
fers the possibility to accurately reconstruct pulse phase information while avoid-
ing the cumbersome placement of electrodes for ECG gating, which is not appli-
cable in many every-day screening applications with short investigation periods.
Pulse oximeters are used as a standard tool in hospitals and allow the monitor-
ing of the patient’s oxygen saturation and heart frequency by analyzing the light
absorption due to oxygenated red blood cells through thin tissue (i.e. finger or
earlobe). However, as the sensors are measuring the local pulsation, which is not
synchronous to cardiac excitation due to different patient anatomy, the signals
cannot be used for interpolation without a reference to the ultrasound data.

Fig. 1. The experimental setup consists of a combined pulse oximetry / ECG device,
an open-access ultrasound system and two electomagnetic trackers mounted on the
ultrasound probe. For ECG gating, three electrodes (left bottom) have to be mounted
on three torso positions to retrieve a ECG curve, while for pulse-oximetry (left top),
only a fingertip is required.

To provide high-quality reconstructions and make full use of the discussed sys-
tem setup we propose a novel approach to correlate pulse oximetry with Doppler
ultrasound information. This allows an automatic and accurate calibration of the
pulse oximetry sensor individually for every acquisition. Thus, the pulse oxime-
try data can be used as a reference for constructing normalized pulse phase
signals. The reconstruction of 3D+T volume data from single ultrasound scan-
lines is computed using a concept similar to normalized convolution [8] for 0− th
order interpolation. We propose the selection of samples for the reconstruction
of every voxel based on an ellipsoid region defined by the US properties around
every sample in a backward transformation step. Therefore, we are able to split
the sample-selection from the voxel interpolation to reconstruct smooth volumes
with respect to the local spatial resolution of the original ultrasound sample
data. We compare pulse-oximetry to ECG gating and further demonstrate the
advantages of using adaptive time-domain interpolation for the application of
carotid artery freehand ultrasound.
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2 Related Work

Although ECG can be used to accurately detect cardiac phases for freehand
ultrasound [2], the equipment needed is relatively cumbersome and consequently
several alternative methods were developed relying on the ultrasound data only.
First approaches based on filtering of intermediate signals containing cardiac
information calculated from intensity values [13] or via the centroid algorithm
[6] demonstrated good performances but needed either user input or were limited
to certain areas. Further approaches based on phase correlation [12] and manifold
learning with Laplacian eigenmaps [14] were successfully applied to US data for
detection of both cardiac and respiratory motion. However, most of the proposed
image-based methods rely on a constant pulse frequency for detection [13, 6, 12]
and provide rough estimates of cardiac pulse phases [13, 6, 12, 14] which could
introduce artifacts in 4D reconstruction with time-domain interpolation.

3D volume reconstruction methods can be grouped into pixel-based meth-
ods, voxel-based methods and function-based methods [11]. Pixel-based methods
transform pixel values with a forward transformation into corresponding voxels.
Voxel-based methods traverse every voxel and map back corresponding pixel val-
ues. Function-based methods estimate an interpolation function from the input
data and evaluate the function at a regular grid. Recent advances in reconstruc-
tion methods also led to improvements by modeling US statistics in a physical
way by using Nakagami distributions [7]. Although these methods provide vo-
lumetric data of exceptional quality, the computational demands prevent their
application in time-critical applications. In [1] a similar reconstruction approach
is used to carry out interpolation in the spatio-temporal (4D) domain. However
they apply interpolation only in forward direction and do not consider adaptive
interpolation in both spatial and temporal domain.

3 Methods

Our goal is to obtain an instensity value I(vi, φ) for every voxel vi ∈ V in
the Cartesian equidistant volume V ∈ R

3 for a given timepoint φ in the car-
diac pulse phase. We separate the ultrasound sample selection in spatial and
temporal domain from the actual voxel reconstruction, as a sample selection in
voxel coordinates (i.e. searching for the k nearest neighbours in the 4D volume)
would ignore the physical and temporal information of our acquisition. Instead,
we supply temporal and spatial weights for every sample-voxel relation to the
reconstruction step. These weights are defined based on either the (temporal)
pulse phase information, or the (spatial) ultrasound beam information. There-
fore, the reconstruction approach is split into three parts: i) the retrieval of a
normalized pulse phase signal for every acquisition; ii) a physics-based selection
of ultrasound samples contributing to each voxel; and iii) the reconstruction of
the final voxel intensity value from the selected samples.
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3.1 Retrieval of Normalized Pulse Signal

We aim to reconstruct 4D data for different points within the cardiac pulse phase
and thus introduce a fingertip pulse oximetry device as a reference sensor in the
setup, which provides a measure of the oxygen saturation throughout the cardiac
pulse phase. As pulse oximetry values are influenced by the percentage of blood
that is loaded with oxygen [3], the measured signal changes during cardiac pulse
phases and is related to changes in vessel diameter caused by volume-deviations.
This is exactly what we are aiming for as changes in vessel diameter are the
cause of ”pulsatile” artifacts in ultrasound acquisitions. Consequently, the pulse-
oximetry signal can not only be used for gating, as it is currently also done with
ECG, but also to reconstruct a normalized pulse shape signal. This shape signal
can then be used directly within the reconstruction.

In order to be able to utilize the pulse oximetry signal, we first have to carry
out a calibration to the ultrasound data, as due to different anatomy and pulse-
wave-velocities, the temporal offset between fingertip and target ultrasound lo-
cation will vary among different acquisitions. For vascular applications, a second
signal containing pulse phase information can be retrieved from the Doppler ul-
trasound components belonging to non-stationary, moving scatterers within the
volume of interest. These components can be identified as the sum of all non-
zero Doppler data components after clutter filtering of the ultrasound ensemble,
where stationary and slowly moving components are removed from the signal.
By having two signals containing pulse information, we can automatically map
US data to cardiac pulse phases for individual acquisitions without any precon-
ditions of a constant pulse frequency or the absence of arrhythmia. To enable
a direct correlation, we extract an arterial flow velocity signal - corresponding
to Doppler signals - from the pulse oximetry data by taking the gradient of the
signal [3] (see Fig. 2a). Consequently, the time offset od→p between the corre-
sponding data can be retrieved by finding the maximum cross-correlation of both
real signals as:

od→p = argmax
l

K−l−1∑
k=0

dk+l ∗ p′k w.r.t. p′k =
∂pk
∂k

, (1)

with p′k and dk+l representing the pulse derivative and shifted Doppler data with
offset l respectively. Based on the calibration, we can use the pulse-oximetry
signal to reconstruct a normalized pulse shape signal p̄. Therefore, we first auto-
matically detect the set of M pulse periods [m1, . . . ,mM ] in the pulse oximetry
signal corresponding to the sets of pulse samples pmi→j = [pi; pj] as follows. As
the distance j − i between the peaks varies even within one acquisition, we use
the average peak-to-peak distance D = mean(j − i) ∀i, j with 0 ≤ i < j ≤ K
to map all pulse periods pi→j to the same interval

pmi→j = pi . . . pj → p1 . . . pD. (2)

To preserve the shape of every pulse signal in an optimal way, we use cubic
spline interpolation to conduct this mapping to the normalized pulse shapes.
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To reconstruct a normalized pulse shape p̂ from m = 1 . . .M − 1 pulse periods
pi→j , we use a weighted average of all normalized pulse shapes, where the weight
is defined by the deviation of the original shape period length to the average
peak-to-peak distance

p̂ =
1

Ω

∑
∀m∈M

wm · pmi→j (3)

wm = 1− |D − (j − i)|
D

, Ω =
∑

∀m∈M

wm. (4)

The normalized pulse phase signal p can then be retrieved by mapping p̂ to every
peak-to-peak interval of M accordingly by spline-interpolation. Figure 2b shows
an example for resulting normalized pulse phases from given input data.

(a) Signal Calibration (b) Normalized Pulse Signal

Fig. 2. Left: arterial flow signal extracted from pulse oximetry (blue, dashed) used for
time calibration with the Doppler signal (green, solid). Right: normalized pulse phase
p (blue, solid) retrieved from Doppler data (green solid) and pulse oximetry (blue,
dashed) for a freehand scan of the carotid artery.

3.2 Ultrasound Sample Selection

Before reconstructing a final intensity value, we have to select and weight con-
tributing samples for every voxel based on spatial and temporal constraints.
Every sample has a position sj , normalized pulse value p̄j and an intensity value
I(sj). We first select samples for every voxel based on the voxel position in the
sample coordinates. To do so, we set an ellispoid around every sample, repre-
senting its corresponding influence region

Gs(vi, sj) =

⎧⎨
⎩K(vi, sj) if

(v
sj
i,x−sj,x)

2

d2
mx

+
(v

sj
i,y−sj,y)

2

d2
my

+
(v

sj
i,z−sj,z)

2

d2
mz

≤ 1

0 otherwise,
(5)

where sj is the position of sample j in volume coordinates and v
sj
i the i-

th voxel position in coordinates of sample j. The maximum spatial distances
dmx, dmy, dmz to the sample location are set according to the axial, lateral and
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elevational resolution of the ultrasound data, defined by the transducer and
acquisition properties [9] given by our US system (see Sec 3.4). We define the
spatial weight of every US sample with respect to a target voxel based on the
voxel position in relation to a three-dimensional exponential decay centered at
the sample position sj,x, sj,y, sj,z of the current scanline ray sample j

K(vi, sj) =
1

(2π)
3
2 |B| 12

e−
1
2 (v

sj
i −sj)

TB−1(v
sj
i −sj), B = diag(σ2

x, σ
2
y, σ

2
z). (6)

The spatial variances are set to σx = 1
2dmx, σy = 1

2dmy, σz = 1
2dmz to assure the

ellipsoid cut-off at 2σ (95.4%). By specifying these distances based on the phys-
ical properties, only samples fullfilling these prior information are contributing
to the final voxel intensity.

For the temporal selection of samples, weights are retrieved from a linear
decay, according to the distance of the normalized pulse phase sample point
0 ≤ φ ≤ 1 to the desired reconstruction point φ with

Gt(pj , φ) =

{
1− |pj−φ|

dmt
if |pj − φ| ≤ dmt

0 otherwise
, (7)

which enables a reconstruction for any pulse point φ throughout the cardiac
pulse phase.

3.3 Normalized Backward Reconstruction

In order to obtain the final intensity value I(vi, φ) from our (sparse) set of sam-
ples, we make use of the concept of normalized convolution. Therefore, we mod-
ifiy the orginal concept [8] and apply it as a backward-transformation. By doing
so, we can incorporate our spatial and temporal weights directly, while for a
forward normalized convoluation, the weights would be retrieved from the con-
volution of the sample space with a fixed kernel, which would be unrelated to the
ultrasound physics. We calculate the cumulative intensities Icum(vi, φ) and cer-
tainties Ccum(vi, φ) by traversing all input samples S = {s1, . . . , sj , . . . , sN}, sj ∈
R

3 for every voxel as

Ccum(vi, φ) =
∑
∀j∈S

Gs(vi, sj) ·Gt(pj , φ) · C(sj) (8)

Icum(vi, φ) =
∑
∀j∈S

Gs(vi, sj) ·Gt(pj , φ) · I(sj) · C(sj). (9)

Here, C(sj) ∈ [0 . . . 1] is a given certainty value for every input sample sj , rep-
resenting the reliability of the underlying data sample and Gs and Gt are the
spatial and temporal weighting functions. Once all voxels have been traversed,
Ccum(vi, φ) states the total certainty of the individual voxels. It is noteworthy
that |Gs(vi, sj)| ≤ 1

(2π)3/2σxσyσz
for a single sample contributing to the surround-

ing voxels, thus Ccum(vi, φ) is not limited to a specific value range. Consequently,
the final volume intensity values can be reconstructed as:
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I(vi, φ) =
Icum(vi, φ)

Ccum(vi, φ)
. (10)

3.4 Experimental Setup Protocol

All experiments in this work were carried out with an open access ultrasound sys-
tem (Aurotech ultrasound AS, model MANUS) with a linear array probe (128 ele-
ments - single element width 0.27mm, height 4mm, focal depth 30mm, 45 aperture
elements) operating at 8MHz. For every dataset, pulse-oximetry as well as ECG
data was acquired synchroneously with a combined POX-ECG system (Medlab
GmbH, model P-OX100). An overview of the whole system is shown in Fig. 1.

ECG Cross-Validation: As ECG gating still is mostly considered as the only
alternative to achieve an accurate pulse gating, we validated our calibrated pulse-
oximetry signals versus ECG slopes. For 6 subjects, 2 records each were acquired.
As the total blood volume in the fingertip is influenced by the relative position
of the finger w.r.t. the heart, signals could change for varying positions. In our
experimental setup the overall patient position (lying on table, similar to conven-
tional ultrasound examinations) was kept constant throughout the experiments,
but the position of the fingertip changed for the two recordings to analyze POX
signal changes. For the first records, the fingertip was placed at a relaxed position
at the table, while for the second recordings the patients had to lift their fingers
as high as possible. Scans of about 10s were acquired for each position. Subse-
quently, automatic pulse-oximetry to ultrasound calibration was carried out and
additionally, a vessel-tracking method based on [5] employed to the ultrasound
data to extract a vessel lumen diameter signal from the recorded 2D frames as
an index of vessel expansion and compression. For validation, the pulse peaks
were extracted manually from the ECG, the lumen diameter and our normalized
pulse signals to compare the distances between the diameter signal and the ECG
and POX signals respectively.

Evaluation of Resolution-Preserving Reconstruction: Without time-
domain interpolation, cardiac pulsation will either cause the appearance of a
”pulsating” vessel in the 3D volume for low frame density or a loss of contour
sharpness in regions where deformation is visible throughout the cardiac cycle.
The consequence is that a potential diagnostic value would be falsified and the ro-
bustness and accuracy of image processing methods affected in general. Thus we
evaluate the suitability of our novel normalized pulse phase signal for both cases
and compare it to i) a constant volume without time-domain consideration; ii) a
linear monotonic increasing pulse phase signal between subsequent pulse peaks,
and iii) a linear pulse signal from mininmum to maximum peaks and vice versa.
As before, scans of 6 volunteers were conducted, where for every subject both a
slow (mean length 58.48s) and a fast scan (mean length 22.32s) of the carotid
artery was acquired. For all datasets, volumes were reconstructed with a spacing
of 0.25mm for the four compared methods. The maximum temporal distance
dmt was decreased stepwise to dmt = [ 12 , . . . ,

1
20 ] =

1
2ns

, ns = 1 . . . 10, which is
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equivalent to a subdivision of each cardiac pulse phase in ns steps. We compare
how well the original US data is preserved in the reconstructed 3D volumes by
evaluating the Mean Squared Error (MSE) of the reconstructed volumes ∈ [0, 1]
with respect to the input samples at their corresponding locations.

4 Results and Discussion

The results for the POX-ECG validation of all compared distances are shown
in Table 1. It can be seen that i) the peak to peak distance of the normalized
pulse signal is almost identical to the ECG data (mean distance of 1.2ms), and
ii) the calibrated pulse signals have a mean deviation to the extracted diameter
signal of −34ms. As the temporal resolution of the diameter signal extracted
from the ultrasound data is low compared to the other signals (12Hz compared
to 100Hz for POX and ECG signals), a standard deviation approximately equal
to the ultrasound sampling period (83.3ms) is considered as optimal, which is
facilitated by the standard deviation of the peak-to-peak distances in the vessel
diameter signal (104.9ms). As the deviation of the normalized pulse peaks is
perfectly within this range, the extracted ultrasound signal is the limiting factor
to the general accuracy. This suggests that the pulse oximetry signal is well-
suited for gating of ultrasound acquisitions.

Table 1. Signal pulse period results. Shown are the peak distances between the pulse
oximetry and ECG signal, as well as the distance from the pulse oximetry and ECG
signals respectively to the vessel diameter signal.

Distance Comparison
Finger Position

Relaxed Lifted
μ[s] σ[s] μ[s] σ[s]

Δ Area - 0.1049 - 0.1023
Δ p to ECG 0.0009 0.0187 0.0016 0.0229
Δ p to Area -0.0341 0.0774 -0.0285 0.0799
Δ ECG to Area -0.2178 0.0858 -0.1349 0.1348

Results for the evaluation fo the time interpolation scheme are shown in Fig.
3 for all methods. When comparing slow and fast ultrasound scans, it becomes
clear that for the fast scans, the input ultrasound information is preserved best
without time domain consideration. Disregard of the pulse information is still
not recommendable, as this would potentially distort diagnostic values extracted
from the volume datasets. For both slow and fast scans it can be observed that
our normalized pulse phase provides the lowest errors for the different number
of time steps and further preserves the input information better as a static
reconstruction for slow scans. This preservation is visualized in Fig. 4, where a
reconstruction without considering pulse information is compared to our method
considering pulse information. For the former, edges are appearing less sharp
and details get lost by using all input samples from different pulse phases for the
reconstruction. With our method, details and edges are preserved much better.
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Beyond that also a time-domain analysis is enabled by having distinct volume
datasets for every point along the cardiac pulse phase.
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(b) Slow Scans

Fig. 3. Reconstruction sample preservation. Shown is the mean MSE averaged over
all fast/slow scans. The black solid line equals the baseline error without time-domain
consideration. Compared is our method (blue, solid) to the linear pulse phase (red,
dotted) and the min-to-max linear (green, dash-dotted).

Fig. 4. Reconstruction for different pulse phases. Shown are cross-sectional slices
through the vessel for min./max. vessel expansion, a volume without consideration
of pulse data (constant) and overlaid contours for min./max. expansion.

Setup Robustness: In respect of the presented experiments, we did not notice
significant distortions of the pulse oximetry signals as long as the patients did
not move their fingers during acquisition. However, as opposed to pulse oximetry,
for placement of the ECG electrodes, full attention was necessary in all experi-
ments to provide useful signals. Thus we suggest that especially for time-critical
situations, our technique could be a promising and robust alternative to classical
gating. However to confirm these assumptions w.r.t to a direct clinical applica-
tion, a thorough validation of the presented system is neccessary; especially in
regard to different patient conditions (e.g. arrythmia or calloused finger skin)
and working environments with possible distortions such as operating lights.

5 Conclusion

We presented a new system to reconstruct 3D+T volume data from freehand
ultrasound in combination with a pulse oximetry sensor. We introduced a novel
method for correlating pulse oximetry with Doppler ultrasound, enabling an
accurate time-calibration on a per-record basis. We further showed how a nor-
malized pulse phase signal can be defined based on the pulse oximetry data to
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be used directly within time-domain interpolation. The setup can be used to re-
construct 3D volume data for cardiac pulse phases superior compared to today’s
freehand approaches and delievers improved capabilities for vascular ultrasound
reconstruction compared to classical ECG gating. Furthermore, the uncomfort-
able use of ECG electrodes can be circumvented, which allows a more extensive
use of 3D+T in every-day clinical scenarios.
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Abstract. Acute coronary syndrome represents a leading cause of death.
Events are triggered by rupture of atheromatic plaques, as a result of
disruption of the overlying fibrous cap. Pathological studies have shown
that cap thickness is a critical component of plaque stability. Therefore,
assessment of fibrous cap thickness could be a valuable tool for esti-
mating the risk of future events. To aid preoperative planning and peri-
operative decision making, intracoronary optical coherence tomography
imaging can provide very detailed information about arterial wall struc-
ture. However, manual interpretation of the images is laborious, subject
to variability, and therefore not always sufficiently reliable for immediate
decision of treatment. We present a novel semi-automatic computerized
interventional imaging tool to quantify coronary fibrous cap thickness in
optical coherence tomography. The most challenging issue when estimat-
ing cap thickness is caused by the diffuse nature of the anatomical ablu-
minal interface to be detected. Our method can successfully extract the
fibrous cap contours using a robust dynamic programming framework
based on a geometrical a priori. Validated on a dataset of 90 images
from 11 patients, our method provided a good agreement for minimum
cap thickness with the reference tracings performed by a medical expert
(35.7 ± 33.3 μm, R=.68) and was similar to inter-observer reproducibil-
ity (35.2 ± 33.1 μm, R=.66), while being significantly faster and fully
reproducible. This tool demonstrated promising performances and could
potentially be used for online identification of high risk-plaques.

Keywords: Coronary artery, Optical coherence tomography, Interven-
tional imaging, Thin-cap fibroatheroma, Contour segmentation, Dynamic
programming, Preoperative planning.

1 Introduction

Cardiovascular diseases represent the leading cause of mortality in industrial-
ized countries and are responsible of one third of all global deaths worldwide [1].
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Acute coronary syndrome (ACS) is the most severe manifestation of atheroscle-
rotic disease and is associated with high mortality and morbidity. Pathological
studies have shown that the main cause of ACS is acute coronary thrombosis,
which is mainly due to plaque rupture [2]. Plaques that bear morphological re-
semblance to ruptured plaques are called “high-risk” or “vulnerable” plaques
and are characterized by a large lipid necrotic core, an overlying thin fibrous
cap (FC), and dense macrophage infiltration (Fig. 1a) [3]. These plaques are
also called thin cap fibroatheromas (TCFA) and are considered the precursor
phenotype of plaque rupture. Among the aforementioned morphological char-
acteristics, FC thickness is considered the most critical component of plaque
stability (i.e. thinner caps being more vulnerable), and the threshold of 65 μm
has been widely adopted to identify high risk lesions [4]. Therefore, identification
and quantification of vulnerable plaques in vivo prior to the occurrence of events,
towards the objective of an appropriate surgical treatment such as percutaneous
coronary intervention (e.g. balloon angioplasty or stent placement), represents
a major clinical challenge.

Intravascular optical coherence tomography (OCT) is a novel biomedical imag-
ing modality that enables detailed visualization of tissues with a near-histology
resolution [5]. The main underlying principle of OCT is based on the emission
and reception of near-infrared light (center wavelength of 1280− 1350 nm). In
a similar fashion as intravascular ultrasound, the entire inner circumference of
the vessel is investigated by the probe rotating along its axis and acquiring a
so-called A-line signal for each angular step. The intensity and echo time of all
A-lines are then converted into a gray-scale representation that corresponds to a
cross-sectional image of the investigated biological tissues (Fig. 1b). This emerg-
ing technology allows minimally invasive acquisition of three-dimensional in vivo
data (i.e. a stack of consecutive cross-sectional images along the length of the
assessed artery segment) at very high spatial resolution (10− 20 μm). OCT has
been demonstrated to be well suited for accurate characterization of the struc-
ture of arterial wall most superficial layers, indicating the degree of subclinical
atherosclerotic lesion formation [6]. OCT is the only in vivo imaging modality
that can accurately assess FC thickness, the most critical component of plaque
stability, and thus can be potentially used for in vivo identification of high-risk
plaques in preoperative planning [7].

Although OCT images are acquired online during intervention, quantification
of FC thickness in fibroatheromas is currently performed manually offline [8, 9].
This operation is hampered by two major drawbacks, as manual image analysis is
generally i) cumbersome and time consuming, and ii) subject to a certain degree
of variability in between different analysts [6, 7]. Therefore, the clinical need of
immediate and reliable information often remains unsatisfied. Moreover, actual
segmentation of the abluminal interface of a fibrous cap remains a challenging
task, as the necrotic-core containing fibroatheromas consists in progressively
unravelling tissues and are visualized in OCT as a signal-poor region with diffuse
contours and high signal attenuation (Fig 1a,b) [9].
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In the objective to tackle these issues and permit fast and accurate FC quantifi-
cation in the intervention room, several teams recently developed various (semi)
automated computerized methods to quantify FC thickness. Approaches based on
pixel classification using the attenuation coefficient of the backscattered light have
been proposed [10–12]. These techniques could successfully identify and locate dif-
ferent types of tissues, among which fibroatheromas, however they are not devised
to provide information regarding the actual delineation of anatomical interfaces.
Another approach, based on contour segmentation bymeans of dynamic program-
ming, was proposed to specifically assess FC thickness [13]. This seminal study
demonstrated that dynamic programming could accurately and robustly extract
the fibroatheromas interfaces and quantify cap thickness, however the proposed
scheme relied solely on pixel intensity and did not exploit the information that
can be provided by a geometrical a priori feature.

The aim of the present study is to propose and evaluate a tool designed to
quantify FC thickness of fibroatheromas in intracoronary OCT. The context of
our work relates to peri-operative decision making rather than patients screening:
the severity of the case is averred and invasive imaging is required. The principal
contribution of this work is a robust segmentation method devised to extract the
diffuse abluminal interface of FC. The introduced framework is semi-automatic,
and based on a contour segmentation approach that previously showed success-
ful results on the common carotid artery wall in B-mode ultrasound [14]. The
accuracy of the present method was validated in a set of cross-sectional OCT
images acquired in vivo from 11 different patients, and demonstrated a simi-
lar accuracy compared to the tracings manually performed by two experienced
analysts.

2 Material and Methods

We present here in detail our method devised to extract the contours of both
luminal and abluminal interfaces to assess FC thickness. Our framework is based
on three principal phases, namely i) a manual initialization aiming to indicate
the presence of the fibrous tissues to be analyzed, ii) the automatic delineation
of the luminal interface in the objective to localize the wall contour, and iii) the
automatic extraction of the abluminal interface, which is subsequently exploited
to assess the actual cap thickness. An overview of the method is presented in
Figure 1.

2.1 Initialization and Lumen Segmentation

Our framework starts with the user manually performing a quick and simple
initialization phase. For a given pullback, this operation consists in visually de-
tecting the presence of a necrotic core covered by a FC and indicating its location.
More specifically, the user first selects a set of consecutive frames to be analyzed,
then, for each frame, a region of interest (ROI) encompassing the FC (Fig. 1a,b).
This task is performed in a simple and easy way, thanks to a convenient graphical
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Fig. 1. Segmentation framework. (a) Cartoon depicting the region of interest (ROI,
dashed lines) encompassing the fibrous cap. (b) OCT image of an in vivo human coro-
nary artery, in Cartesian coordinates, with the resulting luminal (cyan line) and ablu-
minal (magenta line) segmentation contours. (c) Smoothed ROI in polar coordinates,
with the luminal contour (cyan line). (d) Cost image C. (e) Transformed sub-image CT .
(f) Cumulated cost C, with the optimal path (magenta line). (g) Resulting abluminal
segmentation contour.

interface allowing the user to browse through the pullback. After this operation
has been performed, the region shadowed by the guidewire is easily masked out
using an approach similar to the one proposed in [13], then the luminal interface
is automatically and accurately extracted, using an adapted version of the tool
Creaseg [15], based on geodesic active contours [16] minimizing a gradient-based
functional.

2.2 Abluminal Interface Segmentation

We now describe the major contribution of our work, namely the contour seg-
mentation of the back-end of the cap. To this purpose, active contours do not
provide satisfactory results, as this technique strongly depends on the initial
location of the curve, which remains in this case challenging to determine as
the location of the back-end of the cap is unknown. Instead, we present a
more robust scheme that is independent from initialization and is based on dy-
namic programming. The contour extraction of the abluminal interface separat-
ing FC tissues from the necrotic core is performed in 4 steps, as described below.
These operations are realized in the polar domain, within the previously selected
ROI, and rely on the a priori information provided by the luminal contour
segmentation.
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Gradient Detection. The first step consists in locally enhancing the regions
of the image showing an intensity transition from high (bright fibrous tissues)
to low (dark lipid pool) values (Fig. 1c,d). We start by smoothing the image
using a Gaussian filter of standard deviation σ to attenuate the degrading noise.
Then, the gradient is extracted by means of solving the linear equation that
corresponds to the fitting of a degree 1 polynomial onto the intensity profile of
the ROI. Each A-line is thus scanned with a sliding window of length L. Finally,
a cost function C is built by normalizing the gradient image to the positive
interval [0, 1]. In this image C, the points most likely to represent the location
of the abluminal interface correspond to the points with the lowest cost.

Spatial Transformation T . The aim of the spatial transformation T is to
generate a sub-image CT in which the luminal interface corresponds to a straight
vertical line in the polar domain (Fig. 1e). The cost function C is thus shifted
line-by-line to match the axial origin with respect to the luminal contour rather
than to the probe location. The rationale of our approach is based on the fact
that, as the FC thickness does not undergo large variations within adjacent sites,
we can exploit a strong geometrical a priori. In the transformed sub-image CT ,
the abluminal contour that needs to be extracted is henceforth expected to
correspond to a nearly-vertical structure.

Dynamic Programming. We now address the issue of determining, among
all the potential candidate contours, the one that best describes the actual lo-
cation of the anatomical interface. Towards this objective, we propose a specific
implementation of a dynamic programming framework based on front propa-
gation [17]. Dynamic programming is an efficient method to find the globally
optimal solution in combinatory analysis. In our case, we use this strategy to
determine the path that runs in the sub-image CT from top-to-bottom with the
minimum cumulated cost. The global cumulated cost C takes into account both
the image feature (i.e. strong negative intensity gradient locally correspond-
ing to a low cost in CT ) and a smoothness constraint (i.e. the shape a priori
that describes a nearly vertical structure). Therefore, high cost values as well
as non-vertical displacement are penalized when generating the cumulated cost
function C, as detailed in Equation 1 (Fig. 1f).

C(r, θ + 1) = min
dr∈{−N,...0,...N}

⎧⎨
⎩C(r + dr, θ) + CT (r, θ + 1)

√
1 +

(
dr

N

)2
⎫⎬
⎭ , (1)

with (r, θ) the horizontal (axial) and vertical (lateral) coordinates, dr the hori-
zontal displacement of the path between two consecutive points, N the number
of horizontally reachable neighbors per side, and the uppermost line of C ini-
tialized to zero. The optimal path with the lowest cumulated cost is determined
by a classical gradient-descent approach by back-tracking the decreasing values
in C from the bottom border to the top (Fig. 1f). This dynamic programming
scheme is performed twice, that is top-to-bottom, then bottom-to-top, the overall
optimal path being finally selected.
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Inverse Transformation T -1. In the last step of the segmentation process, the
actual location of the abluminal interface in the original image is determined by
applying the corresponding inverse spatial transformation T -1 onto the extracted
optimal path (Fig. 1g).

3 Experiments

3.1 Data Collection and Study Population

The OCT imaging database of Thoraxenter, Erasmus MC (Rotterdam, The
Netherlands) was screened for native coronary artery OCT pullbacks containing
fibroatheromas. Fibroatheromas were defined as necrotic core containing regions
with the maximum circumferential extent (arc) exceeding one quadrant of the
cross-section. Pullbacks were acquired in the catheterization laboratory of Eras-
mus MC for clinical indications, using the C7XR frequency-domain system and
the Dragonfly intracoronary imaging catheter (Lightlab/St Jude, Minneapolis,
MN, USA). Image acquisition was performed with a previously described non-
occlusive technique [9]. Briefly, after positioning the OCT catheter distally to
the segment of interest, it was pulled back automatically at 20 mm/s with simul-
taneous contrast infusion through the guiding catheter by a power injector (flush
rate 3−4 ml/s). Images were acquired at the rate of 105 frames/s (corresponding
to 54000 A-lines/s), over a total length of 54 mm along the vessel, resulting in a
stack of 271 frames. The central bandwidth of the near-infrared light was 1310
nm, and the spatial resolution of the system was 20 μm and 30 μm in the axial
and lateral directions, respectively. The depth of the scan range was 4.3 mm,
and acquired images were sampled at 504 × 968 pixels per frame, with a pixel
size of 4.5 μm.

3.2 Image Analysis Procedure

For each analyzed pullback, an expert O1 selected a series of consecutive images
where a necrotic core with an overlying FC could be observed visually. Definition
of image features identifying a necrotic core was signal-poor regions with diffuse
contours and high signal attenuation [9]. Subsequently, O1 indicated, in each
selected frame, the limits of the ROI encompassing the FC (Fig. 1a,b). All that
information was stored, and used by our automatic method, the expert O1, as
well as an additional analyst O2 to perform, blinded from the results of others,
the contour extraction of the TCFA. All tracings realized by the human analysts
were performed in the Cartesian domain via an effective graphical interface
that was developed in-house for this purpose. The two experts are specialists
in vascular imaging and OCT (5+ years of experience). They received identical
instructions, were shown examples of expected segmentation results, and were
trained on the new segmentation software during 1 month before the trial.
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3.3 Parameters Settings

Our method was applied on all images with the following heuristically-determined
(i.e. by selecting the optimal configuration out of 12) parameters settings: stan-
dard deviation of the Gaussian filter, σ = 18 μm (in both axial and lateral
directions), length of the gradient filter, L = 185 μm, number of horizontally
reachable neighbors per side, N = 2.

3.4 Fibrous Cap Thickness Evaluation

The actual FC thickness was assessed in each analyzed image, for our automatic
method as well as the two experts O1 and O2. Thickness was defined as the axial
distance in between luminal and abluminal interfaces in the polar image. For each
image, cap thickness was evaluated using three different measurements, that is
i) as a vector describing each A-line of the ROI, ii) as the average thickness
value of the FC per frame, and iii) as the thinnest portion within the frame.

4 Results

Eleven patients (mean age 60.8±9.5 y.o., 9 males) suffering from coronary artery
disease were identified in the database and included in our study. The average
number of analyzed images per individual pullback was 8 ± 2 (range 5 − 10)
consecutive frames, with a total of 90 analyzed images.

For each frame, luminal and abluminal interfaces of the TCFA were automat-
ically extracted within the ROI defined by the expert O1 (Fig. 1a,b). Repre-
sentative examples of success and failure in contour extraction are displayed in
Figure 2. The two FC anatomical interfaces were successfully localized by our
method for all frames in 8 pullbacks among 11. In the remaining 3 pullbacks, our
method sometimes failed to localize the abluminal contour for a subset of frames.
The results of our segmentation method, compared to the tracings of both ob-
servers O1 and O2, are presented alongside to the corresponding inter-observer
variability in Table 1.

Quantification of FC thickness was derived from the segmented contours of
both luminal and abluminal interfaces. Including all the 90 images, the mean
cap thickness was 219.6 ± 85.3 μm for all A-lines, and 152.9 ± 63.5 μm for
the thinnest point of each frame, as measured by O1. Results provided by our

Table 1. Segmentation errors (mean ± SD) for extraction of the fibrous cap luminal
and abluminal interfaces

Errors (μm) Luminal Abluminal
Absolute Signed Absolute Signed

Auto vs O1 12.8 ± 17.2 2.7 ± 21.3 41.4 ± 53.9 -1.1 ± 68.0
Auto vs O2 16.2 ± 18.9 9.1 ± 23.1 38.8 ± 44.6 5.6 ± 58.9
O1 vs O2 10.8 ± 12.3 6.4 ± 15.1 35.3 ± 45.3 6.7 ± 57.0
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Table 2. Evaluation of fibrous cap thickness, with absolute error (mean ± SD), bias,
95% limits of agreement (Lim), and Pearson coefficient (R)

Errors (μm) Average (for all contours) Average (per frame) Minimum (per frame)
Absolute Bias Lim R Absolute Bias Lim R Absolute Bias Lim R

Auto vs O1 43.8 ± 54.0 -3.8 136.0 .65 34.6 ± 39.3 -17.2 97.2 .75 35.7 ± 33.3 1.4 95.9 .68
Auto vs O2 42.1 ± 46.3 -3.5 122.5 .66 34.9 ± 32.6 -13.2 90.2 .73 37.2 ± 38.8 3.2 105.4 .52
O1 vs O2 37.8 ± 45.4 0.3 115.8 .76 32.9 ± 32.0 4.0 89.9 .79 35.2 ± 33.1 1.8 94.8 .66

method were compared to those obtained with both experts O1 and O2, as well
as with the inter-observer variability, and showed an overall good agreement, as
presented in Table 2. Quantification of minimal cap thickness for each frame is
assessed by our method with a similar accuracy as the two experts O1 and O2

(Fig. 3a), and the discrepancy between our method and O1 is similar to the inter-
observer variability (Fig. 3b,c). It is noteworthy that, among the 12 evaluated
parameters settings, the worst case led to an average error of 71 ± 88 μm for
minimum cap thickness. We considered two groups depending on whether the
mean cap thickness was higher or lower than the overall median thickness value

Fig. 2. Results of our segmentation method on 6 frames from different pullbacks, for
successful contour extraction (a–c) and failures (d–f). For each example, the top, mid-
dle and bottom rows display the full image with the region of interest (ROI, white
square), and the luminal and abluminal segmentation results within the ROI, respec-
tively. Tracings realized by our method and observers O1 and O2 are represented by
magenta, green and yellow lines, respectively. For the 3 unsuccessful pullbacks, proba-
ble causes of failure are: (d) The intensity gradient presents several weak fronts. (e) The
two analysts disagree when identifying the abluminal interface, while our method esti-
mates a result closer to the contour proposed by O2. (f) Our method is attracted by a
bright spot caused by an image artifact, and fails to detect the abluminal contour.
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Fig. 3. Evaluation of the minimum cap thickness in all 90 frames with our method
(Auto) and the two expertsO1 and O2. (a) Box plot representing the absolute difference
of errors between our method and the experts, with the p-values resulting from the
Wilcoxon test. (b) Bland-Altman plot comparing the results of our method with O1.
(c) Bland-Altman plot for the inter-observer variability.

in all frames. In the group of thinner caps our method slightly overestimated the
cap thickness (mean error: 11.3± 44.9 μm), whereas in the group of thicker caps
there was a slight underestimation (mean error: −18.7± 67.1 μm). The present
implementation of our computerized method required on average 2 s to perform
the contour extraction of both interfaces of the FC and evaluate its thickness for
a single image, while the corresponding manual operation required on average
190 s. In both cases and additionally, the average time (per frame) required by
the user to define the ROI was 20 s.

5 Discussion and Conclusion

The proposed method was applied in vivo on 90 cross-sectional coronary OCT
images from 11 patients. In the context of assessing plaque stability and aiming
to quantify FC thickness, both luminal and abluminal anatomical interfaces
were extracted. The rationale of our study is supported by FC thickness being
considered to be the most critical component of plaque stability [4], as well as by
a recent longitudinal study demonstrating that lesion morphology was associated
with future events [18]. Clinical applicability of our approach is strengthened by
an overall good accuracy, provided in a clinically acceptable computation time,
via an efficient graphical user interface.

Comparing the results of our segmentation method with the reference trac-
ings realized manually by two experts, our framework demonstrated a successful
contour extraction of both interfaces in the majority of the pullbacks (8 out
of 11). However, matching of the abluminal contour between automated and
reference was sub-optimal in 3 cases with a variety of reasons accounting for
this discrepancy (e.g. presence of several weak gradient fronts, disagreement
between the two analysts, or bright spot caused by an image artifact). Never-
theless, the agreement between our segmentation method and reference tracings
was in any case similar to the inter-observer agreement, namely 12.8± 17.2 μm
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vs 10.8±12.3 μm and 41.4±53.9 μm vs 35.3±45.3 μm, for luminal and ablumi-
nal contours, respectively (Table 1). It is also noteworthy that both manual and
automated segmentation errors were roughly three times higher for abluminal
compared to luminal interfaces. This lower performance when segmenting the
abluminal interface can be explained by the fact that, by definition, a necrotic
core has as mild transition, contrary to the luminal interface or a calcific plaque
that show a sharp and well perceptible transition [9].

As for the actual FC thickness evaluation (Table 2), we observe that errors
introduced by our method remain relatively reduced considering the spatial res-
olution (i.e. 20 μm). Moreover, the accuracy of our method was systematically
similar to the inter-observer agreement. This finding tends to indicate that our
method performs at least as well as an experienced observer when assessing the
cap thickness. We also notice that the error generated by our method when es-
timating the global thickness (i.e. in each A-line of the analyzed ROI) is close
to the abluminal interface segmentation error (Table 1), namely 43.8± 54.0 μm
vs 41.4± 53.9 μm. This confirms that the most challenging issue to quantify FC
thickness is to localize with accuracy the abluminal interface. Furthermore, our
method demonstrated a better accuracy when quantifying, for each frame, the
thinnest portion of the tissues in comparison to the global thickness evaluation
of the whole cap, i.e. 35.7 ± 33.3 μm vs 43.8 ± 54.0 μm. According to our ex-
perience, thickest portions of the cap often present more fuzzy contours, while
thinnest portions, which also constitute a more valuable clinical information,
tend to present sharper and more defined contours. This is probably caused by
two principal reasons, namely i) the signal corresponding to deeper tissues is
subject to a greater attenuation, and ii) the lateral spatial definition decreases
along the distance from the probe in the Cartesian domain.

The error introduced by our method when assessing minimal cap thickness
was 35.7±33.3 μm, which is relatively large compared to the empirical threshold
of 65 μm used to identify rupture-prone sites [2]. Nevertheless, the inter-observer
variability also yielded a similar accuracy (35.2± 33.1 μm). Moreover, it is note-
worthy that the 65 μm threshold may be under-evaluated, as ex vivo tissues can
undergo a 20% shrinkage during histological preparation [9]. Indeed, recent in
vivo studies have shown that ruptured plaques in ACS are often associated with
a FC thickness of up to 100 μm [19], and that the best cut-off to predict rupture
was 151 μm for most representative FCs [20].

It is insightful to compare the results of our approach with the study presented
by Wang et al. [13], which is, to the best of our knowledge, the only one to
report a semi-automatic segmentation scheme dedicated to quantify FC thickness
in coronary OCT. That method demonstrated higher accuracy, with errors of
15.7± 23.4 μm, 25.3± 31.4 μm, and 27.3± 26.7 μm for luminal and abluminal
contour segmentation and FC thickness evaluation, respectively. Nevertheless,
the pertinence of such comparison is limited by the fact that our method was
applied onto a different dataset, using a different OCT scanner, and that the
protocol followed by the expert O1 to determine the FCs to be analyzed may
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also have differed. Moreover, the finding of a higher inter-observer variability as
well in our study could imply the presence of challenging cases in our dataset.

Our study presents several limitations that have to be considered. First, our
segmentation method is based on 2D cross-sectional images and does not exploit
the third dimension along the length of the artery. However, due to the low spa-
tial resolution along the z-axis (200 μm), we would not expect 3D segmentation
to greatly improve accuracy. Second, in this pilot study, training and testing
datasets are identical. We plan to address this in future work by gathering ad-
ditional pullbacks to build a testing dataset. Third, the selection of the actual
frames to be analyzed, as well as the delimitation of the ROI encompassing the
FC, were determined by the single analyst O1. We could expect that a different
expert would occasionally have selected different frames and/or ROI. However,
this would probably not have caused a large impact, as previous studies demon-
strated a good agreement in between analysts when selecting such lesions [13,20].
Finally, as the present work is focused on the proof of concept that FC thickness
can be assessed accurately for a given lesion, we did not investigate here the
influence of frame selection. This matter, as well as assessing human inter- and
intra-variability with a third analyst, will be assessed in future work. Further-
more, a study combining OCT and biplane angiography is also being conducted
by our team, aiming to investigate the association of wall shear stress with FC
thickness, to provide further information about plaque vulnerability during the
catheterization procedure.

In conclusion, we have proposed a semi-automated method to quantify TCFA
in intracoronary OCT, in the objective to assess rupture-prone plaques during
percutaneous interventions in the cathlab. The principal challenge of such task
is to extract with accuracy the abluminal interface of the FC, consisting of
progressively unravelling tissues with poorly defined contours. To cope with this
issue, we introduced a robust contour segmentation framework based on the
integration of a geometrical a priori within a dynamic programming scheme.
The proposed method was applied in vivo on 90 cross-sectional images from 11
patients, and compared to the reference contours realized by two analysts. Our
promising method performed as well as two expert analysts, and could constitute
a reliable tool for interventional planning and decision making.
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Abstract. Facet joint injections of analgesic agents are widely used to
treat patients with lower back pain, a growing problem in the adult
population. The current standard-of-care for guiding the injection is flu-
oroscopy, but has significant drawbacks, including the significant dose
of ionizing radiation. As an alternative, several ultrasound-guidance
systems have been recently proposed, but have not become the standard-
of-care mainly because of the difficulty in image interpretation by anes-
thesiologists unfamiliar with complex spinal sonography. A solution is to
register a statistical spine model, learned from pre-operative images such
as MRI or CT over a range of population, to the ultrasound images and
display as an overlay. In particular, we introduce an ultrasound-based
navigation system where the workflow is divided into two steps. Initially,
prior to the injection, tracked freehand ultrasound images are acquired
from the facet joint and its surrounding vertebrae. The statistical model
is then instantiated and registered to those images. Next, the real-time
ultrasound images are augmented with the registered model to guide the
injection. Feasibility experiments are performed on ultrasound data ob-
tained from nine patients who had prior CT images as the gold-standard
for the statistical model. We present three ultrasound scanning protocols
for ultrasound acquisition and quantify the error of our model.

Keywords: multi-vertebrae model, statistical pose+shape model, 3D
ultrasound, spine, registration.

1 Introduction

Lower back pain is one of the most common medical problems in the adult pop-
ulation. It is estimated that up to 80% of adults experience during a lifetime at
least one episode of back pain that is a major cause of disability [12]. Facet joint
injections of analgesic agents have been used for the patients not responsive to
conservative management. The current standard-of-care for guiding the injec-
tion is fluoroscopy, but has significant drawbacks, including the significant dose
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of ionizing radiation and the need for a specialized pain management clinic with
access to fluoroscopy equipment. As an alternative, several ultrasound-guidance
systems have been recently proposed [2, 7, 14–16], but have not become the
standard-of-care mainly because of the difficulty in image interpretation by anes-
thesiologists unfamiliar with complex spinal sonography. A possible solution to
this problem is to register a spine model to the ultrasound images and display
it as an overlay. Moore et al. introduced an ultrasound-guided system for facet
joint injections where the ultrasound transducer was tracked using an electro-
magnetic tracker [7]. They showed that integration of a virtual CT-based model
of the spine improved the accuracy in needle placement. To perform the inte-
gration, predefined landmarks on the model were found on the target using the
ultrasound, and a point-based registration was performed afterward. To visual-
ize both the target and the needle, the ultrasound transducer has to be oriented
in the same plane as the needle, but the ideal spine injection site are easily ob-
scured by the ultrasound transducer. To address this problem, Ungi et al. added
pre-operative ultrasound snapshots from the target to allow both the transducer
and the needle to be placed at the ideal puncture site, i.e., the skin point with
the shortest path to the target [15].

In the above-listed image-guided spine injection systems, models are extracted
from pre-operative images such as MRI or CT. However, such pre-operative
images are not usually available and expose the patient to ionizing radiation in
the case of CT. Hence, the use of statistical models is a reasonable alternative.

In this paper, we introduce an ultrasound-based navigation system where the
workflow is divided into two steps. Prior to the injection, tracked freehand ul-
trasound images are acquired from the facet joint and its surrounding vertebrae.
The statistical model is then registered to those images. Next, the real-time ul-
trasound images, augmented with the model, are displayed for needle-guidance.

Statistical shape models have been previously generated for the verte-
brae [1, 5, 10, 11]. Boisvert et al. studied the statistical variations of relative
pose of each two adjacent vertebrae separately. They performed shape analysis
of the entire vertebral column and proposed an algorithm for registration of their
pose model to radiograph images. Khallaghi et al. built separate shape models
for each vertebra and by incorporating a biomechanical model to constrain the
relative pose of adjacent vertebrae, registered the shape models to an ultra-
sound volume [5]. This approach has certain disadvantages. Mainly, separate
reconstruction of each vertebra neglects the many common shape characteristics
between different vertebrae of a given subject which may decrease the accuracy
of the registration and add to the computational time. To address these prob-
lems, we developed techniques for construction of a statistical multi-vertebrae
model with a separate statistical analysis of shape and pose of the vertebrae [10].
The pose statistical analysis in contrast to Boisvert et al. are performed on the
entire ensemble. We also proposed an algorithm for registration of the model to
3D ultrasound images with only a partial view of multiple vertebrae.

This paper has the following main contributions: first, we implement above
mentioned registration technique [10] in a parallelized scheme and adapt it with
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(a) Spinal injection guidance system

(b) Needle and transducer
orientation

(c) Navigation display

Fig. 1. a) System setup. b) Visualization of the needle and the transducer on the
subject’s back. c) Guidance system interface. Live ultrasound images are augmented
with the registered model, the needle and the transducer.

a navigation system that guides facet joint injections with tracked freehand 2D
ultrasound images. As opposed to our earlier work with 3D probes [10], the use of
tracked 2D probes is clinically more relevant due to their widespread availability
in anesthesiology clinics. Second, experiments are performed on ultrasound data
obtained from nine patients who had prior CT images as the gold-standard.
This is particularly helpful to determine the accuracy of the registration and the
final shape against CT images. Third, current study is performed on patients
scheduled for facet joint injections as apposed to our previous study which was
on healthy volunteers.

2 Methods

2.1 The Image-Guided System

Figure 1 shows the guidance system. Ultrasound images are tracked by an elec-
tromagnetic tracker (Ascension Technology Corporation, Shelburne, VT, USA)
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and are acquired using an Ultrasonix SonixTouch (Ultrasonix, Richmond, BC)
at 30 frames per second. A curvi-linear C5-2 transducer is used which contains a
built-in electromagnetic sensor at the tip. The probe is calibrated temporally and
spatially at different depths with an average RMS error of 0.94 mm. A reference
electromagnetic sensor is attached to the subject skin above the L1 vertebra.
The needle tip is also tracked using an electromagnetic sensor. For facet joint
injection, no loss-of-resistance is used to guide the placement of the needle, so
the EM sensor can be placed directly at the needle tip.

Figure 2 shows an overview of the software design. This software is written on
top of the open source library PLUS (Public Library for UltraSound) published
by the Perk Lab at Queen’s University, Canada [6]. PLUS provides access to
ultrasound images, tagged with corresponding transformations of the ultrasound
transducer, needle, and the reference sensor in real time. It also provides the
reconstruction of the ultrasound volume in real time. 3D Slicer (Harvard Medical
School, Boston, MA) is used as the interface for visualization and transmitting
the user requests to the plus server [3]. Previously developed application in 3D
slicer, called OpenIGTLink Remote, is used for communication with the PLUS
server [13].

Conventional 2D ultrasound is used to localize the L1 vertebra by counting-
up from the sacrum. The reference sensor is attached to the skin, 3.5 cm above
the spinous process of L1. The reference sensor was stabilized in a plastic holder
which determines the orientation of the sensor. Therefore, the tracker measure-
ments are mapped into approximately anterior-posterior, lateral, and superior-
inferior directions, respectively. Image acquisition for volume reconstruction of
the entire lumbar spine is started and terminated by a foot pedal. The ultra-
sound volume is reconstructed incrementally as the images are acquired. Next,
the user is asked to locate the L3 vertebra in the ultrasound volume using a sin-
gle click in the 3D Slicer interface. The alignment of the model to the volume is
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performed next, as detailed in the following section. Then, the system automat-
ically switches into real-time guidance by visualizing the live ultrasound images
and the needle together with the registered model. The accuracy of needle local-
ization with respect to the ultrasound is mainly determined by the EM-tracker
and ultrasound calibration. The EM system used in our research has a static
accuracy of 1.4 mm and 0.5 degrees RMS (Ascension Technology Corp, Milton,
VT). These should be considered lower limits, since accuracy in vivo will also
include some distortion of the EM field.

2.2 Construction of the Multi-vertebrae Model and Its Registration
to Ultrasound Volumes

We refer the reader to a detailed description of the model and its registration
to ultrasound volumes [10]. Here, we briefly describe the method. The statis-
tical multi-vertebrae shape+pose model is generated from a training set which
includes surface points of multiple vertebrae over a range of the population
(n=32). Pose statistics are separated from the shape statistics since they are not
necessarily correlated and do not belong to the same space [9]. Poses are pre-
sented by similarity (rigid+scale) transformations which form a Lie group where
linear analysis is not applicable. To address this issue, the transformations are
projected into a linear space by logarithmic mapping. Next, Principal Compo-
nent Analysis (PCA) is performed to extract main modes of variations of poses.
A separate PCA analysis is also used to compute the shape statistics. Note that
these analyses are performed on the entire ensemble (including all lumbar ver-
tebrae) which results in common statistics of multiple vertebrae. Such analyses
result in a mean shape, μs, a mean pose, μp, and their modes of variations, vks
and vkp . Linear combination of these modes of variations with the mean shape
and mean pose results in a new instance of the ensemble:

S = T (μs, μp, v
k
s , v

k
p , w

k
s , w

k
p), (1)

where wk
s and wk

p are the weights associated with the corresponding modes of
variations. Prior to the registration, ultrasound images are processed to enhance
the bone surface. We follow the technique proposed by Foroughi et al. where
pixels with large intensity and shadow beneath them are considered as bone
surface [4]. The registration of the model to enhanced ultrasound images is per-
formed using a GMM-based registration method. In this iterative technique, the
previously generated model boundary points are defined as the centroids of the
GMM. The target, i.e. the bone surface enhanced in ultrasound images, is con-
sidered to be an observation generated by the GMM. The registration is then
defined as estimation of proper weights of the modes of variations and a rigid
transformation applied to the entire ensemble, to maximize the probability of
the GMM centroids generating the target.

The algorithm is parallelized at CPU level, using the Intel Math Kernel Li-
brary (Intel, Santa Clara, CA, US). Using this parallelization, the registration,
together with the ultrasound pre-processing, takes approximately 10 seconds.
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3 Experiments

3.1 Initial Ultrasound Acquisition

Ultrasound images were acquired from a prone subject. To provide maximum
similarity to the supine position (subject’s posture during CT acquisition) with
respect to spine curvature, and also for the subject comfort, a small pillow was
placed under the abdomen. Prior to the data collection, brief sonographic study
was performed by the sonographer to tune the imaging parameters such as focus
and depth. The sonographer also examined the best possible probe trajectory
for data collection by marking the spinous processes of L1 and S1. For each
experiment, three different scans were performed and corresponding volumes
were reconstructed afterward (see Figure 3 for a graphical illustration):

1. Side-sweep scanning was collected from the subject’s top-left to bottom-left
and back to the top-right (∼ 30 seconds). The transducer angled toward
midline and in the transverse plane, 2 cm away from the midline.

2. Transverse midline volume was acquired from top to bottom in the transverse
plane (∼ 15 seconds).

3. Sagittal zigzag data collection was performed by moving the transducer lat-
erally in the sagittal plane (∼ 50 seconds).

For the remaining experiments, each of these tracked ultrasound images were
reconstructed into a volumetric representation [15].

The standard-of-care for the subjects in this study includes a CT-scan taken
several months before the injection session.

The bone surface was also manually segmented from each 2D ultrasound im-
age. The segmentation was then transformed to the subject’s coordinate space
using the calibration and tracking information. The result is a set of point re-
sembling the surface of the vertebrae in subject’s coordinate space. As expected,
only some of the posterior aspects of the vertebrae were visible, i.e. laminae,
transverse processes, spinous process, and posterior part of the vertebral body.

3.2 Accuracy Validation

For each registration of the model to ultrasound volumes, the following measure-
ments were made:

1. The RMS distance of the manually segmented ultrasound points to the
model. Although the manual segmentation does not provide a full repre-
sentation of the vertebrae, it is used to provide a measure of how well the
multi-vertebrae model is registered to the ultrasound features.

2. The RMS distance between the model and the manually segmented CT
images. This measure is calculated to estimate how well the patient-specific
shape of the vertebrae registered to the ultrasound data matches the patient’s
anatomy observed in CT images. To this end, each vertebrae of the regis-
tered model is separately aligned to the corresponding vertebrae from the
segmented vertebrae, using the coherent point drift registration method [8].
Then the RMS surface distance is reported as the shape error.
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Side sweep: sagittal slice and axial slice

Transverse midline: sagittal slice and axial slice

Sagittal zigzag: sagittal slice and axial slice

Fig. 3. Three different scans were performed on each subject

Experiments were also performed to measure the sensitivity of the algorithm
to the initial point selection, i.e. a point around the center of L3, which was
marked by the user. To this end, the model is manually well-aligned to the
target. The center of mass of the L3 vertebra in the model was extracted. Next,
a displacement ranging from 0 to 30 mm, in a random direction, was added to the
model, followed by registration. Initial displacements were divided into bins with
5 mm width. For each bin, five experiments were performed for each subject and
each ultrasound volume. The mean distance error between the registered model
surface to the manually segmented bone surface points in the ultrasound volumes
was reported.

4 Results

4.1 Model Construction

The training set for the statistical model was a set of segmented lumbar vertebrae
acquired in our previous studies for a total of 32. Manual CT segmentation was
performed interactively using ITK-SNAP (www.itksnap.org). 95% of the shape
and pose variations are captured by first 25 and 7 modes, respectively. The
model is capable of reconstructing an unseen observation with distance error
below 2 mm with using the first 20 modes of the variation.
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4.2 Registration of the Multi-vertebrae Model to Ultrasound
Images

Examples of the registration of the multi-vertebrae model to ultrasound volumes
are shown in Figure 4. Distance errors are given in Tables 1. The results for side
sweep are significantly better than the other two scans (p < 0.05), makes it
a preferred scanning protocol. An RMS error of 2.3 mm (maximum 8.4 mm)
is adequate for helping to correctly identify the key features in the ultrasound

Fig. 4. Example of the registered model to an ultrasound volume

Fig. 5. A comparison of registered model to ultrasound images and the model from
CT images. The registered model is highlighted in red and the white surface shows the
CT manual segmentation.

Table 1. RMS distance (in mm) between the segmented ultrasound and the registered
model. Results for side sweep are significantly better (p < 0.05).

side sweep transverse midline sagittal zigzag

RMS distance error 2.3±0.4∗ 3.2±0.9 3.0±0.5
Maximum distance error 8.9±4.2∗ 10.6±4.4 13.4±4.9

Table 2. RMS distance (in mm) between the shape of the manual segmentation of the
CT and the shape of the registered model to the ultrasound images

side sweep transverse midline sagittal zigzag

L2 1.3±0.3 1.3±0.3 1.3±0.3
L3 1.5±0.4 1.4±0.2 1.3±0.3
L4 1.5±0.4 1.5±0.4 1.5±0.4
L5 1.5±0.3 1.5±0.3 1.5±0.3
All 1.5±0.4 1.4±0.3 1.4±0.3
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image. The goal is to interpret the ultrasound and rely on the ultrasound
features, not solely the model.

The RMS distance errors between the manual segmentation of the CT and
the registered model is given in Table 2. Interestingly, there is no significant
differences between the ultrasound acquisition techniques. All vertebrae give
errors of ∼ 1.5 mm, suggesting that all registered models can accurately generate
patient specific vertebrae anatomical shapes.

Results on capture range experiment shows that the error remains the same
for variations under 10 mm. This covers a reasonable area (20 mm) within the
vertebrae, suggesting the method is robust to initialization errors.

5 Discussion and Conclusion

Our image-guided system can be considered as the evolution of the method pre-
sented by Moore et al. [7] and Ungi et al. [15] by providing the augmentation of
the ultrasound with a statistical model. Additionally, the alignment of the model
to the ultrasound volume requires minimal interaction, i.e. selection of the L3
vertebra in the ultrasound volume. In the two above mentioned studies, registra-
tion is performed by selection of multiple fiducials in both CT and ultrasound.
The registration technique used in this work is superior to the one presented by
Khallaghi et al. [5] in terms of computational time (10 seconds vs. 45 minutes).
Additionally, we validate our technique on in vivo data.

There are some limitations to this study. Mainly, the training data for re-
construction of the model are segmented vertebrae from the CT images, which
are all captured in a supine position. Therefore, the model may not be able to
capture all possible spine curvature especially the curvature, when ultrasound
and needle insertions are performed.

Future work will be focused on evaluation of the needle injection using this
image-guided system and its potential improvement over the conventional man-
ual or fluoroscopy-based technique.
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Abstract. Intramedullary nailing is the surgical procedure mostly used in 
fracture reduction of the tibial and femoral shafts. Following successful 
insertion of the nail into the medullary canal, it must be fixed by inserting 
screws through its proximal and distal locking holes. Prior to distal locking of 
the nail, surgeons must position the C-arm device and patient leg in such a way 
that the nail holes appear as circles in the X-ray image. This is considered a 
‘trial and error’ process, is time consuming and requires many X-ray shots. We 
propose an augmented reality application that visually depicts to the surgeon 
two ‘augmented’ circles, their centers lying on the axis of the nail hole, making 
it visible in space. After an initial X-ray image acquisition, real-time video 
guidance allows the surgeon to superimpose the ‘augmented’ circles by moving 
the patient leg; the result being nail holes appearing as circles. Our nail pose 
recovery was evaluated on 1000 random trials and we consistently recovered 
the nail angulation within 2.76 ± 1.66°. Lastly, in a preclinical experiment 
involving 7 clinicians, we demonstrated that in over 95% of the trials, the nail 
hole appeared as a circle using an initial X-ray image. 

Keywords: medical augmented reality, interlocking of intramedullary nailing, 
down-the-beam positioning, freehand distal locking, visualization, orthopedic 
and trauma surgery. 

1 Introduction 

Tibial fractures are among the most common lower limb injuries to be treated by an 
orthopedic & trauma surgeon. Today, the National Center for Health Statistics cites 
492,000 tibial fractures per year in the United States [1]. Intramedullary (IM) nailing is 
the surgical procedure mostly used in fracture reduction of the tibial and femoral shafts. 
Following successful insertion of the nail into the medullary canal, the nail must be 
fixed into position in order to prevent rotation or dislocation. This is achieved by 
inserting screws perpendicular to the nail through the provided proximal and distal 
locking holes inside the nail shaft. The intramedullary nail is then locked at its two 
extremities. The insertion of the screws near the entrance point (i.e. proximal) of the nail 
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is achieved using an aiming bow attached to the nail. In the distal part of the nail, 
interlocking is commonly performed freehand with a radiolucent drill attachment 
(Synthes Radiolucent Drive Mark II™ 511.300, Synthes GmbH, Switzerland). Various 
techniques and devices developed for facilitating interlocking procedures are reviewed 
in [2]. One of the more challenging tasks for surgeons is achieving the down-beam 
position of the nail where the distal holes appear as a circles prior to distal locking. 

1.1 Review of Literature 

Westphal et al. first introduced tele-manipulated robot-assisted drill guidance for 
interlocking of IM nailing which is based on 3D imaging data and automated X-ray 
image analysis. After final computations of drilling trajectory and planning, the 
average number of C-arm images required to achieve nail hole circles was four [3]. 
Two groups have attempted medical augmented reality systems for orthopedic and 
trauma surgery facilitating the surgical procedure. First, Navab et al. augment a 
regular mobile C-arm by a video camera for X-ray and video image overlay [4]. From 
a cadaver study, they report 3.7 ± 1.31 X-ray shots versus 4.25 ± 2.16 X-ray shots 
using conventional fluoroscopy in achieving nail hole circles. Lastly, solutions 
recovering the pose of the IM nail with a minimum of 2 X-ray shots have been 
presented— however they rely on external hardware and infrared optical trackers, as 
proposed by Leloup et al. [5] and Zheng et al. [6]. These are inspired solutions but are 
considered expensive and cumbersome by surgeons. The configuration of such 
systems is not trivial and its accuracy depends on the setup, as described in [7]. 
Moreover, given the small real-estate left in the operating room for supplemental 
equipment and lines of sight issues, a more compact and elegant solution is 
preferable. Commercial technology is also available. Chung et al. measure an 
electromagnetic field to locate the holes. Nevertheless, this requires special custom 
IM nails with embedded coils to generate the signal [8] and has not found acceptance. 

1.2 Contributions 

We propose a trivial video-guided process which would allow the intramedullary nail 
holes to appear as circles. It is an alternative to the intricate and time consuming ‘trial 
and error’ process surgeons undertake when repositioning both C-arm and patient leg. 
After the acquisition of a first X-ray image, our augmented reality solution provides 
real-time visualization in 3D space of two ‘augmented’ circles with their center lying 
on the axis of the hole. The surgeon can then move the patient leg under video 
guidance until the circles are superimposed in a down-the-beam position w.r.t the  
X-ray source center. We evaluated our nail pose recovery using computer synthetic 
data first, and followed the analysis with a preclinical study involving 7 clinicians.  

2 Nail Pose Recovery 

This section explains the methods used to recover the 6 DOF position of the nail from 
a single X-Ray image. The portion of the nail that is in the workspace of the surgeon 
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is the distal part with its two holes (labeled as proximal and distal to discern them). 
Our aim is to find the position of the nail holes axis, by finding the position of a 
virtual nail ‘tangent’ to its distal part. A 3D model of the IM nail is required for the 
procedure; we replicated one using the Open Source tool Blender. The nail is 
rendered with Coin3D, using a camera with parameters equal to our calibrated C-arm 
(details about calibration in [4]). The reference frame for the translation is the 
standard pinhole camera reference frame, as seen in Fig. 1-left. The origin is in the 
center of the viewport, with X pointing right, Y pointing down and Z away from the 
camera. We also assigned names to the Euler angles used to represent the rotation of 
the nail. The origin of the nail rotation is when the nail is aligned with the x axis (tip 
pointing to positive X) and with the holes aligned to the Z axis (down-the-beam). The 
rotation of the nail on the image plane (around the camera axis, Z) is named γ; its 
rotation along its own axis is named α, and the last angle (on the plane including the 
camera and the nail) is called β. It should be emphasized that the most important 
criteria for our application is finding the value of the angles α and β, and that our aim 
is to minimize them (that is, to align the nail holes with the camera axis). 

 

Fig. 1. (Left) The reference frame of the IM nail, and (Right) the preprocessed X-ray image 
with nail and distal holes contouring and tip extraction using OpenCV 

2.1 X-ray Image Processing and Segmentation 

In the interest of brevity, we omit the details of these steps and direct the reader to the 
OpenCV toolbox for implementation. All the values were experimentally found and 
proved to be robust for our hardware and its settings. 

X-ray processing: first a thresholding (t = 12) replaces the standard black image frame 
with a light background uniform to the average X-ray image (~ 150). A median 
blurring and a morphological closure follows (kernel dimension = 3) accounting 
against eventual smaller objects and artifacts present inside the X-ray image.  

Nail segmentation:  a second thresholding (t = 35) leaves just metallic objects in the 
image; the nail contour is then found among them by geometric constraints on its 
shape, that is, on its bounding box dimensions. The same process is repeated in 
finding the contours belonging to the nail holes among the contours included inside 
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the nail contour. The chosen criteria are: absolute dimensions, area, and 
perimeter/area ratio. If no holes are found a new X-ray must be acquired.  

Holes and nail tip: Square patches are extracted around the holes, aligned with the 
nail axis and positioned about the hole contour centroid. We fit ellipses to each hole 
and its dimensions and orientation are calculated (Fig. 1-right). Since the proportions 
of the IM nail are known, we can disambiguate the γ angle (which up to this point is 
known up to an 180° ambiguity) by searching for the nail tip, at the possible distances 
from the middle point of the two holes (2 possibilities), or from the only visible one (4 
possibilities, since we don't know what hole this is). A patch is extracted at each of 
these distances, and the Sobel operator is applied. If neighboring maxima are found 
on each row of the patch, we have found the tip of the nail and we know which hole is 
what (proximal or distal; relatively, since both are distal holes). Each visible hole is 
assigned a position given its distance from the nail tip.  

Intensity information: The following information is gathered for later use in the nail 
pose estimation algorithm: the background average color (as visible through the  
holes of the nail) is computed by averaging it over the central points of the visible 
holes, while the color of the nail is extracted from the middle point between the two 
holes, or next to the only visible hole. 

2.2 Nail Pose Estimation 

Once the nail is successfully identified in the X-ray image, we compute its position 
with respect to the camera. Our method works, even with a low signal-to-noise ratio, 
by finding the parameters that make the rendered image of the virtual 3D model of the 
nail (the DRR) similar to the shape visible in the X-ray image. We developed an 
incremental heuristic procedure that recovers parameters in the following order (and 
sets them as rendering parameters for estimation of the successive ones):  

• γ, directly measured after segmentation of the nail contour. 
• z, found by fitting the diameter of the rendered nail to the actual one from the 

X-ray; the apparent diameter of the nail on the image is inversely proportional 
to the distance to the camera. 

• (x, y), found by fitting the position of the rendered nail to the actual one. The 
position is computed as the middle point of the positions of both holes, or of 
the only visible hole. 

• (α, β), found by making the orientation and the minimum axis of the ellipse 
fitted to the most eccentric hole equal; at greater inclinations, the variation 
relative to increases of the angle result in greater variations of the image. 

The solution for each parameter is then found through a custom coarse gradient 
descent minimization. Each parameter in the above list is dependent on the preceding 
one, hence they are found in this order, assuming initial parameter values set to 0 and 
initial depth position z0 = 700. The assignment z0 = 700 makes the nail visible in our 
computer simulations and allows the algorithm to initialize. Alternatively, the C-arm 
device depth can be selected for z0.  
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This heuristic procedure works well for the first four parameters (x, y, z, γ) but proved 
not robust for the last two (α, β). Thus, we fell back to a more conventional algorithm 
that minimizes the Sum of Squared Differences (SSD) between the patches extracted 
around the real and virtual nail holes. The nail is rendered in the position composed by 
the four parameters already found heuristically (x, y, z, γ) and the last two angles α, β, in 
a range from ±40° with a step of 0.5°. This covers the part of the parameter space where 
the holes are still visible, as we found through inspection of the rendered images. It 
should be stressed that the first four parameters influence the shape of the holes, and so 
the first heuristic phase allows this second one to take place. 
 
Algorithm observations: The step size of 0.5° was experimentally selected for 
robustness as larger or smaller values miss the global minimum. This is due to the 
difficult nature of the problem. Contrary to intuition we were confronted with a non-
convex problem with the objective function having thousands of local minima across 
the search space. This is due to the image discretization: as found by inspection, a 
small rotation of the hole would change greatly its pixel values, and the ellipse fitted 
to it. No optimization library succeeded in minimization. This leads to a long 
execution time (150 s on our setup) which led us to investigate a completely heuristic 
solution in future work.  
 
Solution uniqueness: The final solution is not unique due to the symmetry of the IM 
nails. We obtain the magnitude and relative sign of α and β where Pose = (x, y, z, α, β, 
γ) gives an identical rendered image to Pose′ = (x, y, z,-α, -β, γ). To rectify this issue 
in clinical practice, we provide a user interface button that swaps the signs of the two 
angles instantaneously. A technician can invert manually the angles by clicking on the 
button and restarting the video guidance of the ‘augmented’ circles. This leads to a 
50% probability of a second X-ray acquisition to verify this case. 

3 The ‘Augmented’ Circles  

A trackable object is fixed to the leg of the patient in order to track the movements of 
the leg (and hence of the nail) after the acquisition of the first X-ray image. As in all 
orthopedic and trauma clinical applications, the leg is assumed to behave as a rigid 
object. Hence, the movement of the trackable object is considered rigidly linked to 
that of the nail. In our scenario, the trackable object consists of two sterile standard 
AR markers, inclined with respect to each other (see Fig. 2-right). This configuration 
is crucial in order to maintain a stable detection (i.e. the pose estimation of a marker 
when it is close to orthogonal to the camera principal axis is very poor). At each time 
instant during video guidance, the marker that is most inclined with respect to the 
camera axis is used for the computation of the position of the nail (we reused the 
tracking software discussed in [4]). The Graphical User Interface (GUI) showcased to 
the surgeon is composed of two ‘augmented’ circles, each containing a cross. This 
configuration was decided alongside the participating surgeons in our study.  
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The ‘augmented’ circles are rendered on a line that represents the axis of the hole(s) 
used to recover the position of the nail. When the circles are superimposed the IM 
distal holes are in down-beam position to the camera. Visually, the ‘augmented 
circles’ are approximately 3 cm apart and provides a clue to the surgeon on how the 
nail is oriented.  

4 Results and Discussion 

Computer Simulations: We performed 1000 random tests investigating the robustness 
of our algorithm for the critical nail angles α and β. The average error for angle α is 
1.3 ± 2.1° whereas the error for angle β is 2.0 ± 4.3°. We measured the contribution of 
both angles using the simultaneous orthogonal rotation angle (SORA) metric [10], 
which is a vector representing angular orientation. The SORA was 2.76 ± 1.66°. More 
than 92.3% of simulations showed β less than 5° compared to 97% of simulations for 
α. The 5° value represents the tolerance in rotations of the IM nail that surgeons 
would deem adequate for them to perform distal locking.  

Preclinical study: A total of 7 clinicians in the orthopedic and trauma surgery 
department of the Klinik und Poliklinik Innenstadt, Munich, were involved in the 
study (2 expert surgeons with vast experience in interlocking of intramedullary 
nailing procedures, 2 resident surgeons, and 3 last year medical students). An 
augmented reality fluoroscope [4] was used as the imaging device. A total of 105  
C-arm images with various nail inclinations were acquired using bone phantom. Each 
participant performed the ‘augmented’ circles technique 15 times. The average time 
to recover adequate distal holes was 12.7 seconds using an average 2.2 X-ray images 
total which includes the initial X-ray acquisition. We asked the participants to acquire 
an additional X-ray to confirm circles if they were not confident on the final 
orientation of the phantom bone after video guidance. We report a 95.2 % success rate 
for all trials. The 4.8 % failed cases are due to the nail not being segmented properly 
because of background clutter present in the X-ray image. Of the 100 successful trials, 
the UI button was activated in 59 cases to resolve nail ambiguity. Of these cases an 
additional X-ray image was acquired only twice.  

Fig. 2-left provides a visual scenario of the recovered distal holes using our 
method. The immediate feedback we received by the expert surgeons is that the 
method stands out for its simplicity, economy, robustness and convenience. In 
general, the operating room requires complicated workflows and the stressful ‘trial 
and error’ task of continuously repositioning the mobile C-arm and/or patient leg is 
circumvented through our proposed radiation free real-time video guidance. It is 
worth noting that the students totally relied on our AR visualization while the experts 
trusted more on their vast clinical experience and thus missed out on important 
information being depicted to them. The experts failed in their first attempts but then 
recovered their performance by trusting the ‘augmented’ circles visualization, 
realizing that they can use it in their favor.  
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Fig. 2. X-ray images taken prior to and after execution of the ‘augmented’ circles algorithm 

In future, we aim at switching to an RGB-D camera and affixing it to a C-arm 
device. This would provide depth information and additional clues to help resolve the 
nail pose uniqueness problem. Also, the estimated distances to the two extrema of the 
IM nail could be measured and the best fitting solution selected automatically. 
Regarding the ellipse fitting segmentation, the ideal solution would be developing a 
new algorithm with sub pixel precision that would smooth the variations of the 
features detected in X-ray. Our solution tracks the more inclined of the two AR 
markers in real-time with respect to the camera. Recently, a new type of marker has 
been developed that allows precise and stable pose estimation at any rotation with 
respect to a camera (and in particular for small ones). It is called ArrayMark, and 
applies moiré patterns to the surface of a square marker and makes a cross ‘+’ visible 
inside the marker, at a position dependent from the inclination of the marker (for 
small angles). Thus a single marker of these would be sufficient for our application. 
Lastly, the ‘augmented’ circles can be coupled to that of distal locking presented in 
[9]. In that work, only a single X-ray image showing adequate circles was required for 
successful distal locking. As such, we can potentially investigate a full proof 
augmented reality solution, quasi radiation-free, to complete the entire interlocking 
procedure.   

5 Conclusion 

Prior to distal locking of the intramedullary nail, surgeons must position C-arm and/or 
patient leg in such a way that the nail holes appear in a down-beam position in the  
X-ray image. We proposed an AR application that visually depicts to the surgeon two 
‘augmented’ circles − the nail and patient leg pose. Using solely video guidance, the 
surgeon superimposes the circles together to achieve adequate circles. We evaluated 
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our technique using computer simulations and synthetic bones and demonstrated the 
robustness of the technique by recovering in over 95% of cases and using at most 2 
X-ray images.  

References 

1. Online at,  
http://emedicine.medscape.com/article/1248857-overview#a0199 

2. Windolf, M., Schroeder, J., Fliri, L., Dicht, B., Liebergall, M., Richards, R.G.: Reinforcing 
the role of the conventional C-arm - a novel method for simplified distal interlocking. 
BMC Musculoskeletal Disorders 13(1), 8 (2012) 

3. Westphal, R., Winkelbach, S., Wahl, F., Gösling, T., Oszwald, M., Hüfner, T., Krettek, C.: 
Robot-assisted Long Bone Fracture Reduction. The International Journal of Robotics 
Research 28(10), 1259–1278 (2009) 

4. Navab, N., Heining, S.M., Traub, J.: Camera Augmented Mobile C-arm (CAMC): 
Calibration, Accuracy Study and Clinical Applications. IEEE Trans. Med. Imag. 29(7) 
(2009) 

5. Leloup, T., El Kazzi, W., Schuind, F., Warzée, N.: Novel Technique for Distal Locking of 
Intramedullary Nail Based on Two Non-constrained Fluoroscopic Images and Navigation. 
IEEE Trans. Med. Imaging 27(9), 1202–1212 (2008) 

6. Zheng, G., Zhang, X., Haschtmann, D., Gédet, P., Langlotz, F., Nolte, L.: Accurate and 
reliable pose recovery of distal locking holes in computer-assisted intra-medullary nailing 
of femoral shaft fractures: A preliminary study. Computer Aided Surgery 12(3), 138–151 
(2007) 

7. Liodakis, E., Chu, K., Westphal, R., Krettek, C., Citak, M., Gosling, T., Kenawey, M.: 
Assessment of the accuracy of infrared and electromagnetic navigation using an industrial 
robot: Which factors are influencing the accuracy of navigation? Journal of Orthopaedic 
Research 29(10), 1476–1483 (2011) 

8. Chung, T.-K., Chu, H.-J., Wong, T.-H., Hsu, W., Lee, M.-S., Lo, W.-T., Tseng, C.-Y.: An 
electromagnetic-induction approach for screw-hole targeting in interlocking-nail surgery. 
In: 2012 IEEE Sensors, pp. 1–4 (2012) 

9. Diotte, B., Fallavollita, P., Wang, L., Weidert, S., Thaller, P.-H., Euler, E., Navab, N.: 
Radiation-Free Drill Guidance in Interlocking of Intramedullary Nails. In: Ayache, N., 
Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 
18–25. Springer, Heidelberg (2012) 

10. Stančin, S.: Angle Estimation of Simultaneous Orthogonal Rotations from 3D Gyroscope 
Measurements. Sensors (2011), doi:10.3390/s110908536 



CT to US Registration of the Lumbar Spine:

A Clinical Feasibility Study

Simrin Nagpal1, Purang Abolmaesumi2, Abtin Rasoulian2, Tamas Ungi1,
Ilker Hacihaliloglu2, Jill Osborn3, Dan P. Borschneck4, Victoria A. Lessoway5,

Robert N. Rohling2, and Parvin Mousavi1

1 Queen’s University, Kingston, ON, Canada
2 The University of British Columbia, Vancouver, B.C., Canada

3 St. Paul’s Hospital, Vancouver, B.C., Canada
4 Kingston General Hospital, Kingston, ON, Canada

5 RDMS Department of Ultrasound, Women’s Hospital, Vancouver, B.C., Canada

Abstract. Spine needle injections are widely applied to alleviate pain
and to remove nerve sensation through analgesia and anesthesia. Cur-
rently, spinal injections are performed using either no image guidance
or modalities that expose the patient to ionizing radiation such as flu-
oroscopy or computed tomography (CT). Ultrasound (US) is being in-
vestigated as an alternative as it is a non-ionizing and more accessible
image modality. An inherent challenge to US imaging of the spine is the
acoustic shadows created by the bony structures of the vertebrae lim-
iting visibility. It is possible to enhance the anatomical information in
US through its fusion with a pre-operative CT. In this manuscript we
propose a clinical feasibility study involving a novel registration pipeline
to align CT and US images of the spine. This pipeline involves auto-
matic global and multi-vertebrae registration. We evaluate the proposed
methodology on five clinical data sets. The proposed method is able to
register the data sets from initial misalignments of up to 25 mm, with a
mean TRE of 1.17 mm, sufficient for many spine needle interventions.

Keywords: Registration, ultrasound, lumbar spine, multi-vertebrae.

1 Introduction

Spine needle injections are commonly used to deliver anesthesia and analgesia.
Facet joint injections are an example of a common spinal intervention to treat
chronic lower back pain [1]. Injections into this region are particularly challenging
due to the deep location and the narrow space of the joint, and proximity to
nerve tissue. These challenges make it difficult to provide accurate treatment to
the target area when the procedure is performed without guidance. The current
gold standard to guide the injection is fluoroscopy or intra-operative computed
tomography (CT), exposing the patient and the clinician to ionizing radiation.

Intra-operative ultrasound (US) guidance for spine needle procedures is an
attractive alternative as US is a non-ionizing and more accessible image modal-
ity compared to fluoroscopy or CT [2]. Using US guidance eliminates radiation
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associated with intra-operative CT or fluoroscopy. Additionally, US images can
be taken in any location, as opposed to specialized facilities required for CT or
fluoroscopy, improving the accessibility of spine needle interventions. US, how-
ever, has not become the standard-of-care for spine needle injections due to
the difficulty associated with its interpretation of anatomy. Specifically, acoustic
shadows from the bony structures of vertebrae limit the visibility of anatomi-
cal targets, such as facet joints in US images. To enhance the interpretation of
US images and provide improved guidance, three dimensional (3D) anatomical
information (e.g. from a pre-operative CT or a statistical shape model) can be
integrated with the intra-operative US images through image registration.

Over the past decade, several point-based methods for registration of CT and
US images of boney structures other than the spine have been presented in the
literature [3, 4, 6]. A challenge of those techniques has been to reliably extract the
bone surface from US images. Recently, local phase-based image processing of US
has shown great promise in the automatic enhancement of the US bone surface
[7]. To avoid US bone segmentation, intensity-based approaches to registration
are also used [8–10]. Our group has also proposed several techniques for the
registration of CT and US images [11, 12] based on a biomechanical model of
the spine to constrain the possible space of solutions for registration.

Despite this surge of interest, to date, reliable registration of CT and US
images of the spine for multiple vertebrae has not been effectively demonstrated,
in vivo. The closest work is by Winter et al. [9] but only for a single vertebra; this
approach does not consider the relative change in the pose of the vertebrae with
respect to each other that naturally occurs between CT and US data acquisition.
Since facet joints lay in the space between two adjacent vertebrae, a fast and
robust registration approach of multiple vertebrae is clinically desirable.

In this paper, we present a clinical feasibility study involving a novel reg-
istration approach that aligns pre-operative diagnostic CT and intra-operative
US images of multiple vertebrae. We validate the approach on data obtained
from five patients who were scheduled for a spine injection. The registration
approach involves both intensity and point based methods; it starts with global
registration of the spine followed by a multi-vertebrae point-based registration.

2 Materials and Methods

2.1 Data Acquisition

Human data sets of the lumbar spine are used to validate the proposed registra-
tion method. Following Institutional Research Ethics Board approval, subjects
provide informed consent to participate. Data is collected at St. Paul’s Hospital
in Vancouver, B.C., Canada. Only subjects with previous CT scans are recruited.
The population of subjects include female and male patients with ages between
28 and 49 years, and weights between 135 and 202 lbs. The anonymized CT im-
ages of patients in supine position, the standard–of–care positioning for spinal
CT, are provided as DICOM files by the hospital.
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Fig. 1. General overview of the CT to US registration workflow

An imaging protocol is created for freehand US data acquisition that mini-
mizes variability between subjects, and operators, and ensures setup time ad-
heres to clinical practice. A SonixTouch US scanner (Ultrasonix, Richmond,
B.C.) equipped with a magnetic tracker (Ascension DriveBay EM tracker,
Burlington, VT) and a C5-2 curvilinear transducer are used for US data ac-
quisition. An Ascension 800 EM tracking sensor, affixed to the patient’s skin
above the T12 vertebra is used as the patient coordinate reference. PLUS, an
open-source toolkit [13] is used for US and tracking data recording; US cali-
bration is performed using the N-wire method available in this toolkit as well.
Subjects are set in the prone position, with a pillow under their stomach. An
experienced sonographer scans the subjects and makes minor adjustments to
preset US imaging parameters including depth; the parameters are preset earlier
using a population of volunteers. The sonographer places marks on the skin sur-
face corresponding to the T12-L1 and L5-S1 intervertebral spaces to delineate
the US scanning region. Data is acquired by moving the US transducer slowly
and smoothly in a downward zigzag pattern while holding the imaging plane
sagittal, and maintaining contact with the subject’s skin. Scanning starts at the
left L1 transverse process, moving across to the right L1 transverse process. It
then moves down to display the right L2 transverse process and across in the
opposite direction, and continues in this zigzag manner to acquire US images of
the entire lumbar spine. An US volume is reconstructed using the PLUS toolkit,
where the pixel size in each dimension is taken into account. Only the portion of
the lumbar spine visible in pre-operative CT, is included in the final US volume.

2.2 Registration

Our proposed method involves intensity- and point-based registration of the bone
surfaces to harness the advantages of each method. The general overview of the
registration pipeline is illustrated in Fig. 1. In our workflow, pre-operatively, CT
volumes are automatically segmented [17]; in addition, points between adjacent
vertebrae are manually selected to constrain an intra-operative multi-body reg-
istration step. Intra-operatively, registration is performed without any manual
intervention. The registration is initialized given the transformation of the center
of geometry of the preprocessed CT volume (see below) to the center of geometry
of the preprocessed US volume, and assuming that this centre represents similar
structures in both image modalities. The method has the following major steps:
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Global Intensity-Based Registration: The General Registration (BRAINS)
module, within the open source software 3D Slicer (version 4.2), that employs
a rigid BRAINSFit algorithm with default parameters, is used to automatically
align preprocessed CT and preprocessed US [14] volumes. To enhance the CT
bone surface, images are filtered in the frequency domain using local phase image
processing [7]. Subsequently, a simple ray-casting is done in the posterior to
anterior direction such that the first bone pixel encountered for each column
is saved as bone and anything below that pixel is saved as background. The
ray-casting helps to remove the bright intensity values that exist in CT, but do
not exist in US, since US signals cannot propagate through the bone surface.
A sagittal CT slice from one patient overlaid with the enhanced bone surface
is seen in Fig. 2, left. The inverse Euclidean distance map is calculated on the
enhanced bone surface CT image by computing the distance between each pixel
and the nearest non-zero pixel of the image, in physical coordinates (mm). In
this map, the intensity values at the bone surface are maximized, and as the
distance increases from the CT bone surface, the intensity values decrease.

Local phase filtering of the US volume is performed to automatically enhance
the US bone surface relative to the soft tissue. In this approach the US images
are filtered with a Gradient Energy Tensor filter. The US local phase filtering
differs from the CT phase filtering in that multiple edge features (step edge, line,
corner, junction) have to be extracted due to the complex shape of the vertebrae’s
appearance in US. This method is intensity invariant; a detailed description of
its implementation along with robustness studies to noise are available in [7].
The filter parameters are chosen empirically using a small subset of in vivo
images to produce a good bone surface localization in the presence of speckle.
The parameters are then held fixed all throughout registration. A sagittal US
slice of a patient with enhanced bone surface overlaid is shown in Fig. 2, centre.

GlobalPoint-BasedRegistration: We use the CoherentPointDrift (CPD)[15]
to further adjust the result of registration in the previous step. CPD uses proba-
bility density estimation to find corresponding points between the CT and US and
has a closed-form solution. Myronenko, et al. have performed a comparison of the
performance of CPD with Iterative Closets Point (ICP) in the presence of outliers
and noise, and have demonstrated the robustness of CPD [15]. For each vertebrae
in CT data , the vertebrae are automatically labeled pre-operatively using [17].
We automatically extract a single pixel thick bone surface from phase filtered US
images by modifying an algorithm originally presented in [16]. In the original al-
gorithm, the US images are smoothed using Gaussian filtering; the bone surface
pixels are then enhanced by a combination of two main bone features: high acous-
tic impedance and acoustic shadowing. Continuity and smoothness of the bone
surface are established by minimizing a cost function using dynamic programming
[16]. Our modification makes this approach applicable to clinical patient data. In-
stead of using the intensity values from the smoothed US image, intensity values
from a phase filtered US image are used. This results in less noise in the segmented
bone surfaces, critical for an accurate point-based registration (Fig. 2, right).
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Fig. 2. (left) A sagittal CT slice with the phase filtered and raycasted bone surface
overlaid in yellow; (centre) Sagittal US slices with the phase filtered and raycasted
bone surface overlaid in yellow (centre) and with the single pixel bone surface (right)

Multi-vertebrae Point-Based Registration: Although vertebrae are rigid
bodies, the intervertebral discs are deformable. To account for possible curvature
changes of each vertebra along the lumbar spine, we present a novel multi-body
rigid CPD registration. At every iteration of the algorithm, each vertebra is
transformed individually. As a result, it is possible that they can be transformed
into a pose of the lumbar spine that is not physically possible. To overcome
this challenge, ten points are chosen pre-operatively on two adjacent vertebra in
the CT. Five points on the sagittal slices on the left of the spinous process and
five points on the right of the spinous process. Henceforward, these point sets
are referred to as springs, since although they are not mechanical springs, they
act to constrain the registration similarly to mechanical springs. The points are
placed at the midpoint of either the space between the vertebral bodies or the
space between the facet joint. Each point is then duplicated to act as a spring,
where one point belongs to the superior vertebrae’s side and the other point
belongs to the inferior vertebrae’s side. At each iteration, the springs points are
transformed according to the vertebrae they belong to. An example sagittal slice
where three points are chosen is shown in Fig. 3. The cost function for CPD,
E(t) (where t represents the transformation), has the form of a likelihood func-
tion of point correspondences between CT and US data, described as weighted
sum of distances [15]. Myronenko et al. have provided a closed form solution to
E(t); for multi-vertebrae registration, we add a regularization term, R(t) repre-
senting springs, to the cost function to achieve the form: E(t)+α ∗R(t). Here α
determines the contribution of the springs. It can be shown that α ∗R(t) can be
combined into E(t), and the closed form solution can be used to minimize the
new cost function. As such, in our registration algorithm, springs are integrated
into the existing probability density estimations and the cost function is not
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Fig. 3. Sagittal slice of a CT demonstrating three spring points between two vertebrae.
Two are at midpoint between vertebral bodies (red) and one is in the facet joint (green).

modified from CPD. Values of α between 2−3 to 27 were tested; a value of 25

provided the most accurate registration for all clinical data sets and was chosen.

2.3 Experiments

Since the CT scans are previously acquired, fiducial markers that are visible in
both CT and US cannot be used for gold standard evaluation. Instead, anatomi-
cal landmarks on the lamina of each vertebra are placed on the US images. Two
clinicians with spine anatomy expertise choose these anatomical landmarks and
we pool the data. We assume the CT and US to have optimal alignment fol-
lowing registration. To determine the accuracy and precision of the registration
method, the CT and the points representing the lamina landmarks are perturbed
by a transformation selected randomly from a uniform distribution of 5◦ rotation
about each axis and 5 mm translation along each axis. The transformation is
applied to the entire lumbar spine that is visible in the CT. The initial misalign-
ment is determined by calculating the target registration error (TRE) between
the original position of the lamina landmark points and the position of the land-
marks after the initial perturbation. To determine the capture range for the
registration pipeline, 20 tests are performed with misalignment errors randomly
generated within the range 0 - 25 mm. Registration is then performed and the
final TRE is calculated as the root mean square between the transformed lamina
landmark points and their original positions. A qualitative clinical validation is
also performed. Here, a point is added on the posterior dura between two ad-
jacent vertebra in the US images by both operators. This is where the clinician
aims their needle for spinal anaesthesia and thus provides a clinically relevant
validation. If the points selected are in the correct region after registering the
CT to the US, the registration is potentially suitable for spinal injection.

3 Results and Discussion

For three patient data sets L3, L4 and L5 vertebrae were available in the CT
volume for registration, while for the other two patients only L4 and L5 verte-
brae were available and used for registration. The mean TRE, maximum point
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Fig. 4. Final mean TRE (mm) versus initial TRE (mm) for all vertebrae following
random misalignment and CT to US registration. The subplots from top left to bottom
right correspond to results from patients 1 to 5, respectively.

distance and total success rate for each patient, following the capture range ex-
periments, is depicted in Table 1. The space within a facet joint is reported to
be between 2 to 4 mm; previous literature also define 2 to 4 mm as a clinically
acceptable accuracy for spinal injections [12]. In our manuscript, we set a more
stringent criteria by defining registration success as achieving a mean TRE of 2
mm or less. This provides a conservative estimate for clinical acceptability of our
proposed approach. Based on this definition and using Table 1, our average suc-
cess rate is 97%. The final TRE after each run of the capture range experiment
given the initial misalignment TRE for all patients is shown in Fig. 4. All re-
ported values are the average TRE for each individual vertebra. The mean TRE
is the average of the TRE values from the 20 runs of the capture experiments.
From Table 1, it is evident that the mean TRE is well below 2 mm.

Registration was performed on a Lenovo ThinkCenter, with Intel i5-3570
quad-core CPU and 16 GB of RAM. The runtime for each of the main
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Fig. 5. 3D rendering of CT vertebrae with points on the posterior dura between two
vertebrae in yellow (top right); transverse (top left), coronal (bottom right), and sagittal
(bottom left) planes showing US slices with CT contours overlaid for one patient

Table 1. Mean TRE (mm), maximum point distance (mm) and total success rate from
the CT to US registration for the five patients using the full registration pipeline

dataset mean TRE ± std (mm) max point distance (mm) success rate

Patient 1 1.66 ± 0.77 4.61 16/20
Patient 2 1.09 ± 0.32 3.51 20/20
Patient 3 1.07 ± 0.64 3.76 19/20
Patient 4 0.85 ± 0.01 0.90 20/20
Patient 5 1.18 ± 0.77 4.64 19/20

registration components of the pipeline are as follows: intensity-based (step
1), 5–20 sec, point-based (step 2), 25–45 sec, and Multi-vertebrae (step 3),
20–120 sec.

To provide qualitative validation on successful registration runs, contours of
the CT are overlaid on the sagittal, transverse and coronal planes of the US
(an example illustrated in Fig. 5). A 3D rendering of the CT with a point on
the posterior dura between each two adjacent vertebrae represents the target
area for spinal injections. This is placed by our two operators, and provides a
clinically relevant result to support quantitative validation. For all patients, the
CT contours align in all three planes and the points on the posterior dura are
all within the target area for spinal anesthesia (also seen in Fig. 5).

In preliminary analysis we evaluated the significance of the three major regis-
tration components. It was observed that both global intensity- and point-based
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registration steps are necessary for a robust registration especially in cases where
there is limited US bone visibility in the data, or one approach does not provide
a close initial alignment between the CT and US. We also studied the role of
springs to constrain the multi-vertebrae point-based registration. As vertebrae
are the rigid bodies transformed individually, registration can result in a pose of
the lumbar spine that is not physically possible. This includes having two verte-
brae intersect each other (collision). Indeed, our results show that, without the
springs, registration of CT and US images resulted in collision in some patients.
Capture range experiments when no springs are included to constrain registra-
tion, are performed. To determine if there is a significant difference in the TRE
using the complete registration pipeline versus one without springs, we use the
Wilcoxon Signed-Rank Test, where p < 0.01 is considered significant. TRE from
all but one patient were statistically significantly worse without using springs.

4 Conclusion and Future Work

We presented a clinical feasibility study involving a novel registration pipeline
for the lumbar spine that accurately aligns pre-operative CT to intra-operative
US using five clinical data sets. By aligning the CT with the US, anatomical
information that is not visible in US is provided to the clinician to guide spine
needle interventions. This removes exposure of the physician or patient to radia-
tion intra-operatively. To the best of our knowledge, this is the first work where
multiple vertebrae are registered between CT and US using clinical data.

The proposed registration pipeline shows great promise for guiding percuta-
neous spine procedures, but further improvements are needed for its clinical use.
The artificial springs are chosen manually pre-operatively; however, improve-
ments can be made to automate the artificial spring selection for more practical
use in the clinic. In addition, the spring parameter α value is set to a constant
for all spring points, but could be adaptively adjusted based on the position of
the springs on the vertebrae and their anatomical interpretation. Since the CPD
registration of individual vertebrae can be parallelized, we can potentially use
multi-CPU implementation with the Intel Math Kernel library to gain speed
ups of several orders of magnitude. Finally, the registration pipeline includes
multiple modules. For clinical applications, it is possible that a simpler pipeline
could be selected with only a subsection of these modules, and further steps are
only included when registration accuracy does not meet preset thresholds.
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Abstract. Approximately 20–30% of patients with focal epilepsy are medically 
refractory and may be candidates for curative surgery. Stereo EEG is the 
placement of multiple depth electrodes into the brain to record seizure activity 
and precisely identify the area to be resected. The two important criteria for 
electrode implantation are accurate navigation to the target area, and avoidance 
of critical structures such as blood vessels. In current practice neurosurgeons 
have no assistance in the planning of the electrode trajectories.  

To provide assistance a real-time solution was developed that first identifies 
the potential entry points by analysing the entry-angle, then computes the asso-
ciated risks for trajectories starting from these locations. The entry angle, the to-
tal length of the trajectory and distances to critical structures are presented in an 
interactive way that is integrated with standard electrode placement planning 
tools and advanced visualisation. We show that this improves the planning of 
intracranial implantation, with safer trajectories in less time.  

1 Introduction 

Approximately 20–30% of patients with focal epilepsy are medically refractory to 
treatment with anti-epileptic drugs. These patients are potential candidates for cura-
tive respective surgery [1]. The primary aim of epilepsy surgery is to remove the epi-
leptogenic zone—‘the minimum amount of cortex that must be resected (inactivated 
or completely disconnected) to produce seizure freedom’ [2]. The identification of the 
epileptogenic zone often requires the placement of intracranial electrodes to record 
where seizures start and rapidly propagate. Stereo-electroencephalography (SEEG) is 
the practice of recording electroencephalographic signals via depth electrodes that are 
surgically implanted into the brain tissue. The challenge in epilepsy surgery now is in 
the treatment of the more difficult patient groups (extratemporal non-lesional) where 
SEEG is increasingly utilised. This invasive investigation carries the risks of infec-
tion, haemorrhage and neurological deficit [3]. In the current work we only consider 
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SEEG electrode implantation where brain shift is anticipated to be negligible due to 
the borehole surgery approach. 

Preoperative planning of SEEG electrode placement is a necessary prerequisite to 
implantation. Important anatomical and functional landmarks of the brain (such as 
blood vessels, pial boundaries, nerve tracts, etc.) can be identified with advanced 
neuro-imaging and image-processing techniques. SEEG electrode trajectories are 
defined by a target area that has to be reached by the electrode and an entry point 
where the electrode penetrates the skull. Electrode arrangements are planned to 
achieve adequate cortical coverage and pass through safe, avascular planes. The large 
number of electrodes required in SEEG and the cumulative risk associated with this 
implies that assisted planning (AP) is the most useful in these clinical cases.  

Previous publications on pre-operative planning of depth electrode placement de-
scribe approaches to find the optimal path either automatically [4-6] or by assisting 
the decision making process of the neurosurgeon [7-9]. Another state of the art ap-
proach [10] proposed a system to assist planning at all stages of the planning from the 
selection of the target point to the selection of a safe entry point that minimizes the 
risk of hitting with vital structures. In all of these approaches the operator needs to 
select the target point precisely and the time required to compute the optimised paths 
is generally long. A recent article describes a high performance solution to enable 
quantitative estimation of the risk associated with a particular access path at interac-
tive rates. The authors employ Graphics Processing Units (GPUs) to achieve real-time 
speed and use risk maps visualisation to aid the planning process [11]. 

Here we present an advanced set of tools for computer-assisted planning of SEEG 
electrode placement that come as part of our surgical planning system EpiNavTM 
(CMIC, UCL, London, UK) that allows neurosurgeons to define safer trajectories in 
less time. EpiNavTM advances on previous work by offering improved real-time visual 
feedback to planning; including the addition of several vital structures (such as func-
tional brain regions) into the risk assessment and also factoring the entry angle of the 
trajectory line with the skull surface. 

2 Methods 

To enable a faster planning process and ensure safety of the resulting implantation 
plan the following conditions have to be met with the aid of the planning system: 

1. Critical structures have to be clearly identifiable (visualisation). 
2. None of the trajectories can intersect any critical tissue to avoid harm to the  

patient. 
3. The trajectory should be further from any critical tissue by a specified safety mar-

gin based on the accuracy of the surgical procedure of implanting the electrodes. 
4. The trajectory should be as short as possible. It is assumed here that only the tip of 

the electrode is meant to hit the target. At this stage we are not considering cases of 
multiple targets sampled by one electrode. 

5. The entry angle of the trajectory should be as close to 90 degrees as possible to  
allow robust implementation of the planned entry angle during the surgical  
procedure. 
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To achieve fast processing and real-time interaction EpiNavTM was developed us-
ing a cross platform C++ library NifTK (www.niftk.org) that is based on the Medical 
Imaging and Interaction Toolkit (MITK, www.mitk.org). Furthermore we employ a 
modern graphics card (GPU) and utilize the OpenCL library to enable parallel pro-
gramming. EpiNavTM can be installed on any recent PC that runs Mac OS X, Linux or 
Windows and has a GPU that is OpenCL 1.1 compatible. 

2.1 Critical Structures 

Identifying critical objects is key to successful estimation of a safe trajectory. The 
critical structures are imported into an interactive visualisation workstation using the 
functionality of EpiNavTM, then converted into 3D surface mesh objects and coloured 
using a colour scheme (See Fig. 3/a) as in our previous work [12]. The clinically rele-
vant landmarks are white matter tracts (e.g. cortico-spinal tract, optic radiation tract) 
derived from DTI data, lesions, eloquent cortex (e.g. language or motor areas) derived 
from fMRI, areas of ictal hyperperfusion derived from SPECT, areas of hypometabo-
lism derived from PET image, ictal or interictal EEG/MEG sources. Blood vessel 
images were acquired using CTA, 3D Phase Contrast MR imaging and in some cases 
ToF MR, then the vasculature was extracted using a custom tool. A surface represen-
tation of the skull is used to determine the accurate location of the entry points and to 
compute the entry angle of the trajectory. The skull surface is usually derived from 
CT, CTA or pseudo CT synthetized from an MR scan.  

2.2 Trajectory Planning 

The planning process starts with the selection of the target point. The target point can 
be placed by clicking on any location within the space of the reference image on one 
of the 2D or 3D views. If a detailed brain parcellation map is available it can be used 
to aid the target selection, by highlighting various anatomical regions of the brain. 
Entry points can only be placed onto the skull surface. In manual mode this is ensured 
by the entry point selection tool.  

2.3 Entry Points Search and Risk Analysis 

As soon as the target point is selected the system will analyse the topology of the 
critical structures and offer a set of entry points that represent minimal risk. The entry 
point search algorithm is a fully automatic method that is implemented on the GPU. It 
takes the skull mesh as the input and processes each of its vertices, so the sampling 
rate is defined by the number of vertices in the skull model. The algorithm takes into 
account the distance of the target point and the currently evaluated vertex (i.e. the 
length of the trajectory) and the entry angle of the trajectory starting from this vertex. 
From a surgical point of view the entry angle has to be as close to perpendicular as 
possible, otherwise it is not possible to drill the borehole through the skull. As the 
angle and length analysis is computationally inexpensive it is practical to perform it as 
the first step and disqualify entry points that are too far, or the entry angle is outside a 
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= − ∗ ℎ 

This formula yields risk values in the range of 0-1. The quality of the entry angle 
can be similarly evaluated  given the range of accepted values, as well as the 
length of the trajectory . These independent risk components can be combined 
by applying certain weight factors: = + + ,        ℎ  = 1   ∈ [0~1] 

This final metric  describes the overall quality of the trajectory. After every 
potential trajectory has been assessed the risk values are visualised in form of a risk-
map (Fig. 2.). The planning module will automatically suggest to use the trajectory 
that has the lowest risk value across the whole map. However, the surgeon can over-
ride this by modifying the entry point according to the risk map. 

The technical challenges of this work are related to the efficient parallel implemen-
tation of collision detection, proximity search and distance evaluations in OpenCL. To 
allow real-time performance a Bounding Volume Hierarchy (BVH) is built over the 
cells of critical structures, that is an acceleration data structure used to facilitate the 
fast traversal of large datasets containing 3D points. Discussion of the specific im-
plementation details will be presented in our future publication, however a good de-
scription of the use of BVH for proximity analysis using GPU hardware can be found 
here [11, 13, 14].  

2.4 Visualisation 

EpiNavTM provides the standard ortho-view (2D planes: axial, coronal, sagittal), com-
bined with 3D visualisation (volume / surface rendering) in a 2x2 layout. The “Probe 
Eye View” display and a “Distance Graph” widget are placed in a separate window. 
The Probe Eye View displays an oblique plane (2D) that is always perpendicular to 
the line of the trajectory (See Fig. 3/b). The distance graph widget (Fig. 3/c) provides 
the visual representation of the minimal distance information in form of a graph. The 
length of the graph (horizontal axis) corresponds to the length of the trajectory, while 
the height of the bars (vertical axis) represent the distance to the nearest critical struc-
ture for that particular point of the trajectory. The graph is re-scaled along the vertical 
axis to focus the representation on the critical sections (Risk Zone). 

EpiNavTM offers linked visualisation components (similarly to [10]) where the cur-
sor location is synchronised between all visualisation components. For example  
picking a surface point in the 3D window will update the position of all other views. 
Similarly, clicking on a point of the distance graph will update the slice positions in 
the 3 orthogonal plane views and will also update the displayed slice in the probe eye 
view. This behaviour allows the user to visually identify risky sections of the planned 
trajectory, by clicking on these sections on the risk display the associated 2D and 3D 
views will be presented for review. 
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3 Evaluation and Results 

3.1 Computational Performance 

To evaluate the efficiency each of the proposed methods were tested several times 
using different input data and the average execution time was recorded for each case. 
In the evaluation 4 surface meshes were used: skull surface (185k vertices); cerebro-
spinal tract (33k vertices); veins (91k vertices); arteries (70k vertices). The process 
times were recorded using OpenCL time events, including both the execution time of 
the OpenCL kernels, task executions scheduling and the time of data transfer between 
host and device. The desktop computer that was used in the tests has the following 
configuration: Intel XEON 16core CPU, 16 GB of RAM and an NVidia Quadro 
K2000 2 GB GPU. 

The first step of the risk analysis is the entry point search algorithm that aims to re-
duce the number of trajectory candidates. To test this the skull surface model was 
loaded and 10 historical electrode target points were selected. The average time to 
complete was measured to be 2.7ms, while the average reduction factor was 97%, 
resulting between 200-6000 entry point candidates. The next step is the construction 
of the BVH that only needs to be constructed once at the start. For the reference skull 
image (the largest mesh used in the test) the construction took 50ms on average. 

Table 1. Computation time of risk evaluation for software generated trajectories 

Total Num. of Trajectories Risk Evaluation (ms) 
1 1.3 
5 7.1 

50 13.4 
500 96.7 

5000 248.1 
 

To evaluate risk computation times various number of trajectories were generated 
by specifying a target point and assigning a number of random entry points. The com-
putation time was found to be a linear function of the number of trajectory candidates, 
for the expected maximal number of entry points (~6000) the AP module provides 
close to real time interactions with 4fps (Table 1). 

3.2 Neurosurgical Evaluations 

To evaluate the benefits of employing the new risk estimation, the risk map and dis-
tance graph, 30 electrode trajectories in 6 patients were evaluated, and their length 
(Fig. 5), angle of entry (Fig. 6) risk value (Fig. 7) were compared to results of non-
assisted planning. The analysis was performed using historical data, where the origi-
nal electrode trajectories were planned by expert neurosurgeons who relied only on 
traditional 2D visualisation. The average time to plan one electrode using the non-
assisted approach is estimated as 10-15 min based on our previous experience. The 
new trajectories were planned by a neurosurgeon using the computer assisted plan-
ning (AP), keeping the same target points for the purpose of comparison.  
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Fig. 5. Comparison of length. Values in blue represent trajectories that were planned without 
AP, while results in orange were acquired using the AP module.  

For each target point, the AP module analysed the topology of the critical struc-
tures to find potential entry points and computed the risks for them. Based on these 
risk values the system automatically offered an optimal entry for the new trajectory.  

 

Fig. 6. Comparison of entry angle. Values in blue represent trajectories that were planned with-
out AP, while results in orange were acquired using the AP module. 

The new trajectories were inspected by the surgeon to validate the safety profile and 
feasibility. The entry point has changed in all cases (Fig. 8), while the target point had to 
be adjusted in three cases (P2–T5, P3-T4, P5-T4) when it was placed too close to a 
critical structure originally (without assistance - Fig. 3/b), which made AP impossible.  

 

Fig. 7. Comparison of risk. Values in blue represent trajectories that were planned without the 
AP, while results in orange were acquired using the AP module.  
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The AP module provided a more feasible angle in all cases, while length of the tra-
jectory was shorter in 57 of the 60 cases. The overall risk was smaller in 57 of the 60 
cases using the AP, for the remaining 3 cases the risk was only marginally higher 
while both angle and length values were better. The general feedback from the sur-
geon was that the new system provides trajectories that are easier to implement in 
theatre and a lower risk profile by locating feasible entry points. The required plan-
ning time reduced to 2-3min per electrode, which is approximately the time it takes to 
thoroughly inspect the full length of the planned trajectory. 

 

Fig. 8. Change in the Trajectory. Green: Old path; Purple: New path from assisted planning. 
The increased distance to blood vessels can be observed. 

4 Conclusion 

We have demonstrated that EpiNavTM finds safer trajectories that are easier to imple-
ment and gives the surgeon greater confidence in individual electrode trajectory. The 
GPU based implementation enables real-time interaction and risk evaluation that re-
duces planning time and allows a more efficient clinical workflow. One limitation 
with assisted planning is the reliance on the quality of segmented surfaces that are 
used. As new imaging and segmentation tools become available, assisted planning 
will become increasingly reliable. Future work will concentrate on optimising elec-
trode efficiency by segmenting out grey and white matter, and by simulating electrode 
contacts. The user will then be able to combine safety, feasibility and efficiency 
scores to select the most appropriate trajectory. The next logical advance on assisted 
planning is to incorporate electrode arrangements instead of individual electrodes and 
to add a semi-automatic target placement by employing anatomical parcellation tools.  
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Abstract. In this paper, reconstruction of three-dimensional (3D)
patient-specific models of a hip joint from two-dimensional (2D) cali-
brated X-ray images is addressed. Existing 2D-3D reconstruction tech-
niques usually reconstruct a patient-specific model of a single anatomical
structure without considering the relationship to its neighboring struc-
tures. Thus, when those techniques would be applied to reconstruction
of patient-specific models of a hip joint, the reconstructed models may
penetrate each other due to narrowness of the hip joint space and hence
do not represent a true hip joint of the patient. To address this problem
we propose a novel 2D-3D reconstruction framework using an articu-
lated statistical shape model (aSSM). Different from previous work on
constructing an aSSM, where the joint posture is modeled as articula-
tion in a training set via statistical analysis, here it is modeled as a
parametrized rotation of the femur around the joint center. The exact
rotation of the hip joint as well as the patient-specific models of the joint
structures, i.e., the proximal femur and the pelvis, are then estimated
by optimally fitting the aSSM to a limited number of calibrated X-ray
images. Taking models segmented from CT data as the ground truth, we
conducted validation experiments on both plastic and cadaveric bones.
Qualitatively, the experimental results demonstrated that the proposed
2D-3D reconstruction framework preserved the hip joint structure and
no model penetration was found. Quantitatively, average reconstruction
errors of 1.9 mm and 1.1 mm were found for the pelvis and the proximal
femur, respectively.

Keywords: 2D-3D Reconstruction, articulated statistical shape model,
Femoroacetabular Impingement (FAI).

1 Introduction

Femoroacetabular impingement (FAI) is recognized as a cause of early osteoarthri-
tis and has therefore a major impact on a patient’s further life [1]. FAI as a clinical
diagnosis is estimated to exist within 10 − 15% of the adult population [2]. FAI
occurs in the hip joint and specifies the condition of too much friction between the
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femoral head and the acetabular rims. The abnormal friction will cause damage to
the structure on either or both parts of the joint. Computed tomography scans are
generally not acquired inFAI patients because of the high radiation. FAI is assessed
using two-dimensional (2D) X-ray images in clinical routine, although it is a three-
dimensional (3D) problem. Reconstructing of 3D patient-specific models from 2D
X-ray images will facilitate the diagnosis and surgical planning of FAI treatment.

Reconstructing patient-specific 3D surface models from 2D x-ray images is a
challenging task. A priori information is often required to handle this otherwise
ill-posed problem [3]. In this paper, we focus on using statistical shape models
(SSMs) learned from a given population data as the A priori information.

Existing SSM-based 2D-3D reconstruction techniques usually reconstruct a
patient-specific model of a single anatomical structure without considering the
relationship to its neighboring structures [4] [5] [7] [8] [9]. When those techniques
would be applied to reconstruction of patient-specific models of a hip joint,
the reconstructed models may penetrate each other due to narrowness of the
hip joint space and hence do not represent a true hip joint of the patient. To
address this problem we propose a novel 2D-3D reconstruction framework using
an articulated statistical shape model (aSSM).

There already exist attempts to use aSSM for 2D-3D reconstruction[10] [11],
3D ultrasound registation [12] and segmentation [13] [14]. Common to all these
works is that the postures between neighboring structures are modeled as artic-
ulation in a training set via statistical analysis. This may be true for anatomical
structures such as spine but it will not hold for structures such as the hip joint
as joint posture is usually not a patient-specific anatomical property [15].

Different from previous work on using aSSM for 2D-3D reconstruction, in this
paper we construct an aSSM of hip joint by performing statistical shape analysis
on a set of aligned training models to capture the pure shape variation, with-
out considering joint posture variation. As the hip joint can be approximately
modeled as a ball-and-socket joint, joint posture is then explicitly modeled as a
parametrized rotation of the femur around the joint center. The exact rotation
of the proximal femur as well as the patient-specific models of the neighboring
structures, i.e., the proximal femur and the pelvis, are then estimated by opti-
mally fitting the aSSM to a limited number of calibrated X-ray images. Although
a similar strategy in constructing an aSSM of the hip joint has been explored
in [15] for 3D image segmentation, this strategy has never been explored for
2D-3D reconstruction. Furthermore, no result was shown in [15] that their seg-
mented surface models had no penetration. In contrast, our experimental results
demonstrated that our aSSM-based 2D-3D reconstruction framework had the
advantage of preserving join structure and that the reconstructed surface mod-
els had no penetration.

The remainder of this paper is arranged as follows. Section 2 will describe
how to construct aSSM of the hip joint. Details about our aSSM-based 2D-3D
reconstruction framework will be presented in Section 3. Section 4 presents the
results of our validation experiments conducted on plastic and cadaveric bones,
followed by discussions and conclusions in Section 5.
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2 Construction of an aSSM of the Hip Joint

Statistical Model Definition
In order to build a SSM we assume a set of n aligned training shapes si, where i ∈
{0, 1, ..., n−1}. Each shape si is described by a vector containingm vertices: si =
{x0, y0, z0, x1, y1, z1, ..., xm−1, ym−1, zm−1}. By performing Principal Component
Analysis (PCA) on the training set, the shape varation can be described by a
linear model:

S(b) = s̄+

n−2∑
i=0

bipi (1)

where s̄ is the mean shape vector, pi the eigenvectors spanning the principal
directions of the shape space and b = (b0, b1, ..., bn−2) the shape coefficient vector.

aSSM Model Definition
A compound model was built containing two objects P and F and a rotation
center c. Whereas object P and F represents the pelvis- and femur-model respec-
tively. We denote a vertex in a shape instance S(b) as vj(b), j ∈ {0, 1, ...,m−1}.
vj(b) with j ∈ {0, 1, ..., u−1} belong to object P, whereas u denotes the number
of vertices of P. Object F’s vertices are vj(b); j ∈ {u, u+1, ...,m − 2} and the
joint center is defined as vc(b) and c = m− 1.
As we approximate the relation between the femur and the pelvis as a ball-
and-socket joint, the joint posture is explicitly parametrized by a rotation R of
object F around the joint center vc(b) which defines the relative transformation
of the femur to the pelvis. Furthermore, assuming a scaled rigid transformation
T between the shape space and the input image space, our parametrized aSSM
is described as S(b, T, R):

S(b, T, R) = (T ◦R(vc(b)))(S(b)) (2)

where R(vc(b)) describes the rotation of all vertices on the proximal femur
around the joint center vc(b) and will be only applied to those vertices vj(b); j ∈
{u, u+1, ...,m − 2} on the instantiated femoral object and T is the scaled rigid
transformation that will be applied to all vertices on the instantiated compound
model.

aSSM Model Construction
In order to model the shape variation, the correspondences between the training
shapes were established using a templating method [16]. To obtain the same
vertex ordering the training shapes were reconstructed from a single template
mesh by displacing its vertices to other shapes in the training set with a non-rigid
transformation. To build the template mesh, one of the CT volumes was selected
as the initial reference. Out of the reference volume data two surface meshes were
generated which were smoothed, decimated and remeshed in order to obtain an
equally distributed triangular mesh which acted as template mesh for the pelvis
and the femur individually. The non-rigid transformation was calculated using
the diffeomorphic demons algorithm [17]. For the model generation we used 26



Articulated Statistical Shape Model-Based 2D-3D Reconstruction 131

CT scans of the human hip containing the complete pelvis and the proximal
femur.

After correspondence establishment, all models, femurs and pelvises, were
stored in their original space and are thus still representing the original joint
configuration. We denote the unaligned training shapes as si, i ∈ {0, 1, ..n− 1}.
Vertices corresponding to object P are denoted as p = pi = vij ; j ∈ {0, 1, ..., u−1}
and for object F as f = fi = vij ; j ∈ {u, u+1, ...,m−2}. The joint center is defined
as c = ci = vic; c = m − 1. In a first step, we register the shape instances si to
the reference shape sref , based on only object P’s vertices, which results in the
transformation Ti. The equation

Ti = argminT ‖pref − (Ti · pi)‖2 (3)

has to be solved. The transformation Ti is applied to the shape instances si. In
a second step we find a transformation Ri for each shape instance si, which only
aligns object F’s vertices. Therefore we find a rigid transformation B by solving

Bi = argminB‖fref −B(Ti · pi)‖2 (4)

Afterwards the femur is shifted by a translation S in order to keep the joint
center Ti · ci as a fixed point of Ri, Ri(Ti · ci) = Ri · ci. Thus Ri can be written
as Ri = S ◦Bi.

In order to obtain the aSSM, PCA is computed on the shape instances
(Ti · pi, Ri(Ti · fi), Ti · ci). In order to get a smooth mean model, the pipeline
was passed twice. After the first iteration, the resulting mean model was taken
as reference for the second iteration. Again, to obtain a homogeneous mesh, the
reference surface was remeshed before applying the deformation field to it.

3 aSSM-Based 2D-3D Reconstruction Framework

The articulated 2D-3D reconstruction addresses the problem of reconstructing
the pelvis and the femur in 3D out of calibrated 2D X-ray images and at the
same time preserving the joint. The initial aSSM is defined by S(b, 0, 0) where we
define object P’s vertices belonging to the pelvis and are denoted as p(b). Object
F’s vertices belong to the femur and are denoted as f(b) whereas the joint center
is vc(b). As a feature-based 2D-3D reconstruction algorithm, we assume that
image contours have been extracted from the input X-ray images and all images
are calibrated in a common reference coordinate system called target space. The
semi-automatic contour extraction method as presented in our previous work
[3] is used in this work. 2D-3D correspondences between the 2D image contours
and the 3D apparent contours of our aSSM are established using the algorithm
introduced by Zheng et al.[7] such that we can convert a 2D-3D reconstruction
problem to a 3D-3D one, where each 3D point pair consists of one point on
the apparent contour of the instantiated aSSM and the other point calculated
as the closest point on the corresponding projection ray to the point on the
apparent contour. Assuming that the target points are denoted as p′ = {p′i =
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(x′
i, y

′
i, z

′
i); i = 0, 1, ..., k− 1} and f ′ = {f ′

i = (x′
i, y

′
i, z

′
i); i = 0, 1, ..., l− 1}, for the

pelvis and femur, respectively. k and l are the numbers of found correspondences
for the pelvis and femur, respectively.

The articulated 2D-3D reconstruction consists of five different steps:

1. Initial landmark based scaled rigid registration

2. Iterative scaled rigid registration of the pelvis

3. Iterative constrained registration of the femur

4. Instantiation of a compound model from the aSSM

5. Thin-Plate-Spline (TPS) based deformation of the instantiated compound
model

Initial Landmark Based Scaled Rigid Registration
In the initial step the aSSM is registered to the X-ray scene by a scaled rigid
transformation T0. The transformation is found based on selected and predefined
pelvic-landmarks on the X-ray images and on the aSSM, respectively. T0 is then
applied to the current shape instance S(b, T0, 0) = T0 · S(b, 0, 0).
Iterative Scaled Rigid Pelvis Registration
The scaled rigid registration is performed using an adapted iterative closest point
(ICP) algorithm presented in [7]. The transformation Tj+1 is calculated based
on object P’s vertices and applied to object P and F, where j ∈ {0, 1, ..., Q}
denotes the iteration step and Q is the maximum number of iterations.

The transformation for the pelvis is found minimizing the following function

Tj+1 = argminT ‖p′ − (p(b, T, 0))‖2 (5)

After the algorithm converges, the scaled rigid transformation T between the
shape space S(b, 0, 0) and the target space is computed.

Iterative Constrained Rigid Femur Registration
After the scaled rigid transformation, a constrained rotation is performed in
order to orient object F’s vertices to match to the target space. The rotation
is constrained around the instantiated joint center T · vc(b). To reconstruct the
femur orientation a transformation is calculated by solving

Rj+1 = argminR‖f ′ − f(b, T, R(T · vc(b)))‖2 (6)

After the algorithm converges, the constrained rotation R(T ·vc(b)) between the
transformed shape space S(b, T, 0) and the target space is computed.

Instantiation of a compound model from the aSSM
In order to calculate the shape parameters b of the aSSM the following equation
is solved:

bj+1 = argminb‖S(b, 0, 0)− Inv(p′, f ′)‖2 (7)

where Inv(p′, f ′) represents all inversely transformed target points. They are
transformed from the target space to the aSSM shape space using T and R(T ·
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vc(b)) computed in the last two steps. The instantiated compound model consists
of vertices for both pelvis and proximal femur objects.

Regularized Shape Deformation
The regularized shape deformation is adapted from [7] whereas for both models
the correspondences are set up individually but the TPS is solved using the
information of both point sets.

4 Experiments and Results

To evaluate the accuracy of the reconstructions we conducted three experiments
based on calibrated X-ray radiographs. Three bones, i.e., two cadaveric hips (we
named them as model #1 and #2 respectively) with each one cadaveric femur
and one plastic hip containing two femurs with metallic coating (we named these
two as model #3 and #4), are used in our experiment. Three X-ray images (AP,
Oblique, Outlet) were acquired for each of the four hip joints and used as input
for the reconstruction algorithms. All X-ray images were calibrated with the
method that we proposed before [18]. For model #1 we reconstructed the right
hip joint and for model #2 the left hip joint. For the plastic bone we did a
reconstruction of both left and right hip joints.

To validate the present method and to compare the performance of the present
method to our previous work [7] which we denoted as the individual SSM-based
2D-3D reconstruction, we acquired a CT scan for each bone which was then seg-
mented with Amira (VSG, FEI Company, Hillsboro, United States of America).
The segmented models were regarded as the ground truth. For both methods,
we used statistical shape models that were built from the same population con-
taining 26 human hips.

An example of the complete procedure of the aSSM-based reconstruction is
shown in Figure Figure 1.

In order to validate the reconstruction accuracy, the reconstructed models were
transformed into the ground truths coordinate system by performing a surface-
based rigid registration. For the reconstructed shape models based on the indi-
vidual SSM reconstruction we observed a mean surface distance error of 1.1mm
±0.04mm and 2.1mm ±0.3mm for the femur and the pelvis, respectively. For the
aSSM-based reconstruction we observed a mean surface distance error for the fe-
mur of 1.1mm ±0.2mm and 1.9mm ±0.2mm for the pelvis. Figure 2 shows the 5,
25, 75 and 95 percentile errors of both methods for all four hip joints.

Finally, in order to investigate the feasibility of our aSSM-based 2D-3D recon-
struction for FAI diagnosis, we visually observed the reconstructed joint in order
to check for joint space preservation. In order to observe if the joint spaces were
preserved and no penetration of the surfaces was present, we removed parts of
the surface and conducted a visual check as shown in Figure 3. For all reconstruc-
tions based on the individual SSM penetrating surfaces were observed, while for
all articulated SSM-based reconstructions the joint spaces were preserved. Using
an in-house developed program, we further computed the femoral head coverage
which is regarded as one of the important parameters for FAI diagnosis [19] and
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is computed as the ratio between the area of the upper femoral head surface
covered by the acetabulum and the area of the complete upper femoral head
surface. Comparison of the femoral head coverage for the ground truths and for
the reconstructions is shown qualitatively in Figure 4 and quantitatively in Table
1. The mean error of the femoral head coverage of the articulated reconstruction
is 3.8% ± 2.4% when compared to the ground truth.

5 Discussions and Conclusions

In this paper, we presented a novel 2D-3D reconstruction algorithm using ar-
ticulated statistical shape model and showed its application in reconstruction
patient-specific models of a hip joint. Our method has the advantage of pre-
serving hip joint structure and holds the potential to be used in challenging
femoroacetbular impingement diagnosis and surgical treatment applications.

One limitations of the present study is the relatively small number of cases
used in our validation experiment. Our future work will focus on conducting a
thorough investigation of the performance of the present method using clinical
datasets.

Fig. 1. Stages of the aSSM-based 2D-3D registration. yellow: pelvis contour, pur-
ple:pelvis silhouette,cyan:femur contour, red: femur silhouette, green: correspondence
lines. Top row: First three iteration steps of the scaled rigid pelvis registration. Middle
row: First three iteration steps of the constrained femur registration while keeping the
pelvis fixed. Bottom row: Left two images: Correspondences after instantiation step.
Right two images: After first and second TPS-based deformation.
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Fig. 2. The reconstructed surface distances from both algorithms compared to the
ground truths. F: Femur, P:Pelvis, B: individual SSM-based 2D-3D reconstruction
algorithm, A: aSSM-based 2D-3D reconstruction algorithm. For example, FB1 means
the boxplot results of the proximal femur of the model #1 when the individual SSM-
based 2D-3D reconstruction algorithm is used.

Fig. 3. Penetration verification. (a) Penetrating surfaces observed for the individual
SSM-based 2D-3D reconstruction. (b) No penetration can be found for the articulated
SSM-based reconstruction.

Table 1. Quantative comparison of femoral head coverage computed on CT
segmentation-based ground truth models and on models obtained with the present
aSSM-based 2D-3D reconstruction framework

Model CT [%] Reconstruction [%]

1 82.6 79.4
2 87.3 85.5
3 82.4 90.3
3 89.1 91.4

Mean 85.4 86.7
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Fig. 4. Femoral head coverage comparison. Coverage assessed on ground truth (a) and
on models obtained from the aSSM-based 2D-3D reconstruction (b).
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Abstract. Current methods for manual evaluation of surgical skill yield
a global score for the entire task. The global score does not inform surgi-
cal trainees about where in the task they need to improve. We developed
and evaluated a framework to automatically generate an objective score
for assessing skill in maneuvers (circumscribed segments) within a surgi-
cal task. We used an existing video and kinematic data set (with manual
annotation for maneuvers) of a suturing and knot-tying task performed
by 18 surgeons on a bench-top model using a da VinciR© Surgical System
(Intuitive Surgical, Inc., CA). We collected crowd annotations of prefer-
ences, for which of the maneuver in a presented pair appeared to have
been performed with greater skill and their confidence in the annotation.
We trained a classifier to automatically predict preferences using quanti-
tative metrics of time and motion. We generated an objective percentile
score for skill assessment by comparing each maneuver sample to all re-
maining samples in the data set. Accuracy of the classifier for assigning
a preference to pairs of maneuvers was at least 80.06% against a single
individual (with a larger training data set) and at least 68.0% against
each of the seven individuals (with a smaller training data set). Our re-
liability analyses indicate that automated preference annotations by the
classifier are consistent with those by the seven individuals. Trial-level
scores computed from maneuver-level scores generated using our frame-
work were moderately correlated with global rating scores assigned by an
experienced surgeon (Spearman correlation = 0.47; P-value < 0.0001).

1 Introduction

Robot-assisted laparoscopic (robotic) surgery is a widely used technique to treat
many conditions in several surgical disciplines [1]. Surgeons trained on other
techniques, such as laparoscopic or open surgery, experience a learning curve
while performing robotic surgery [2]. Thus, training for robotic surgical (techni-
cal) skills is essential to ensure that competent surgeons deliver safe and effective
patient care.

Robotic surgical skills among trainees are typically assessed for overall per-
formance of a task. For example, the Objective Structured Assessment of Tech-
nical Skills (OSATS) [3] and the Global Evaluative Assessment of Robotic Skills
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Fig. 1. Time to complete maneuvers in trials with low GRS (≤ 10; marked 0 on the
X-axis) and high GRS (≥ 27; marked 1 on the X-axis). Trial-level global scores do not
provide information on maneuver-level skill. Note: GRS ∈ [5, 30].

(GEARS) [4] include manual assessment on a few components to generate a
global rating score for the surgeons’ skill. Similarly, objective metrics such as
time to task completion, motion efficiency, etc., are computed using data from
the entire task for an overall assessment of skill [5,6].

Global assessment of skill, in the form of global rating scores, does not nec-
essarily measure performance on the components of the surgical task – referred
to as maneuvers1. For example, Fig. 1 illustrates that objective metrics for ma-
neuvers within a surgical task are similar for trials assigned high and low global
rating scores (GRS) using the OSATS approach. Global assessment of skill also
does not inform trainees about which part of the task they need to perform
better. Although targeted feedback, in the form of individualized coaching, is
considered an effective means to teach surgical skills [7], such individualized
training with targeted feedback by a supervising surgical educator within aca-
demic surgical training programs is inefficient and not feasible. Thus, there is
a pressing need for automated, objective measures of surgical skill that also
provide targeted feedback for individualized training.

Our goal was to develop and evaluate a framework for automated, objective
assessment of skill with which surgeons perform maneuvers. Previous research
that attempted skill assessment for segments within a task focused on surgical
gestures, which are atomic segments of surgical activity [8,9]. We exploit the
inherent structure of surgical activity (comprised of maneuvers, refer Fig. 2) to
develop objective measures of surgical skill at a component level, which can be
useful for targeted feedback and individualized skill acquisition.

Manual assessment of surgical skill for maneuvers is infeasible and of uncertain
validity. Each instance of a surgical task may include multiple maneuvers and
manually assigning a skill score to all maneuvers in every instance of a surgical
task in a data set can easily become a resource-intensive effort. In addition, our

1 maneuvers are components of a surgical task, wherein a series of actions are per-
formed to reach checkpoints on the task roadmap. Figure 2 shows the maneuvers
performed during a suturing and knot tying task.
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Fig. 2. Maneuver segments in a suturing and knot tying task. The circles indicate inter-
maneuver segments, wherein actions are performed to bring the tools into position for
starting the next maneuver.

attempts to manually assess surgical skill for maneuvers using GRS indicate that
maneuvers may contain insufficient information to make an overall assessment of
segment-level skill. To our knowledge, manually assigned GRS for maneuvers are
of unproven validity. Skill assessment based on relative rating is an alternative
to manual assessment of skill for maneuvers in a task. Ranking and scoring
items based on pairwise comparisons has been shown to yield reliable and valid
assessment of severity of disease [10], results for information retrieval [11], and
recommendations for movies [12,13]. We apply the relative rating approach to
generate an objective measure of surgical skill for maneuvers.

2 Methods

2.1 Framework

Our framework to apply relative rating of maneuvers to generate an objective
measure for maneuver-level surgical skill consists of the following components:
1) training an automated classification tool to assign preferences for pairs of
maneuvers; and 2) generating a quantitative skill score for each maneuver in a
task based on pairwise preferences assigned by the automated classification tool.
A flow diagram of the framework is shown in Fig. 3. Each of the components of
the diagram are described below.

Automated Classification Tool for Pairwise Preferences. To identify
which of the two maneuvers in a given pair is preferred, i.e., performed with
greater skill, we defined a classifier C as follows:
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Fig. 3. Our proposed framework to generate objective metrics to measure skill for
maneuvers in a surgical task

C(P1, P2) =

{
1 if P1 � P2

0 if P2 � P1

(1)

where � indicates preference such that P1 � P2 means that the maneuver listed
as P1 was performed with greater skill than the maneuver listed as P2.

We then computed a set of objective metrics using kinematic data describing
surgical tool motion for each maneuver in a pair to generate a feature vector
f(P ):

f(P ) = [T, PL,RA,MV ] (2)

where, T = time taken to complete the maneuver, PL = path length traversed
by the surgical tools, RA = area swept by the instrument wrist [14,15], and
MV = number of movements made by the surgical tools to perform the ma-
neuver. To count the number of movements, we applied a median filter to the
speed of surgical tool motion (window size = 9 frames), and used a previously
described definition for a movement [16], as an acceleration followed by a de-
celeration, i.e., a peak in speed. All four features we used have been shown to
be a valid measure of skill at the level of the entire surgical task [5,6]. To train
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the classifier, we provided it with a concatenation of pairs of feature vectors
[f(P1), f(P2)] corresponding to pairwise comparisons of the maneuvers. We used
a linear support vector machine (SVM) as the classification tool.

Quantitative Skill Score for Maneuvers. For a given maneuver, we ap-
ply the SVM trained as described above to compare it with all corresponding
maneuvers in the data set of the same type as the given maneuver. We then
compute a percentile score based on the number of maneuver samples that were
preferred over the given maneuver as follows:

Si =
1

n− 1

n∑
j=1
j �=i

C(Pi, Pj) (3)

where Si is the percentile score for the given maneuver i, n is the total number
of maneuvers in the data set of the same type as the given maneuver, Pi is the
given maneuver, and Pj is one of the other n− 1 samples of the same maneuver
type. Si is a measure of relative performance of the given maneuver compared
with all corresponding maneuvers in the data set. The score lies between an
interval of [0, 1], where a score of 1.0 means the maneuver was rated as having
been performed better than all other samples of the same type of maneuvers in
the data set.

2.2 Experiments

Data Set. We used kinematic data describing tool motion as 18 (14 novices and
4 experienced) surgeons performed a suturing and knot-tying task on a bench-
top model using the da Vinci R© Surgical System (dVSS; Intuitive Surgical Inc.,
Sunnyvale, CA). Each surgeon repeated the task in multiple sessions, performing
three instances (trials) of the task during each session. We captured the kine-
matics for a total of 135 trials from the dVSS [15]. We specified seven maneuvers
for the suturing and knot-tying task through consultations with an experienced
surgeon.

We annotated the data for skill and maneuver segments. An experienced sur-
geon, watched a combined video for all three trials of the task for each session,
and assigned a GRS using a 5-point Likert scale across 6 criteria from the OS-
ATS [3]. We extrapolated the session-level GRS to each trial in the session. Two
individuals, independent of each other, manually annotated video recordings of
the trials for start and end of maneuvers within the task, for a total of 1008
maneuvers in the 135 trials in our data set. For our experiments described be-
low, we used 502 maneuvers after omitting all maneuvers that were labeled as
incomplete and as inter-maneuver segments. We also grouped the maneuvers
into four categories as follows:

– Throw1 - for a suture throw performed in two steps, one for each edge of the
incision;
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– Throw2 - for a suture throw performed in one step, through both edges of
the incision;

– Knot1 - for the first instance of a knot in the task;
– Knot2 - for any knot in the task other than the first one.

We also manually annotated maneuvers for preferences. We randomly sampled
a subset of all possible pairwise combinations of maneuvers in our data set. We
displayed each pair of maneuvers in the random sample to the annotators and
asked them to select the maneuver with the better performance, and whether
they were confident in their choice. We did not specify explicit criteria for the
crowd to use for the annotation. We used two sources – a group of individuals
or a ‘crowd’ independently annotated 80 pairs of maneuvers (AC), and a single
individual annotated an additional 284 pairs of maneuvers (AI). We recruited
seven colleagues in our laboratory, including an expert surgeon, to provide the
crowd annotations (AC).

Training and Evaluation. As part of our experiment, we evaluated the relia-
bility and validity of automated preferences assigned by the SVM classifier and
the validity of objective skill scores generated using our framework. We used
the SVM implementation available in MATLAB (version 8.2.0, The Mathworks,
Inc., Natick, MA). We first trained a separate SVM classifier for each category
of maneuvers using the 364 pairs of maneuvers annotated in AI and AC . We
used a k-fold cross-validation setup leaving out a randomly selected 30% of the
maneuver pairs for testing in each of the 30 folds. Next, we trained a SVM clas-
sifier for each category of maneuvers using all 284 pairs of maneuvers in AI and
tested on the 80 pairs of maneuvers annotated in AC . We assessed reliability of
the classifier by computing a Fleiss’ kappa [17] as a measure of inter-annotator
agreement among all annotators, including and excluding the classifier, along
with its 95% confidence interval (95% CI). We examined whether the Fleiss’
kappa including the classifier was consistent with the 95% CI for the kappa com-
puted after excluding the classifier. We used only pairs of maneuvers that the
individuals marked as being confident about their preference. We assessed valid-
ity of preferences assigned by the classifier by computing the accuracy compared
against AC for each member in the crowd.

We also assessed validity of objective skill scores generated using our frame-
work. For this purpose, we used all data from AI and data from AC from the
same individual whose annotations are part of AI to yield a larger training data
set. Using this approach for our analysis of scores is unlikely to introduce bias
in our analyses on scores because the average accuracy for all member-pairs in
the crowd was similar to the average accuracy between the individual whose
annotations are part of AI and each member of the crowd.

For each maneuver performance Pi in our data set (P - set of all maneuver
performances), we removed all pairs from AI + AC containing Pi. The SVM
was trained on this data and used to compare Pi with all other Pj (j �= i)
belonging to the same maneuver category as Pi and marked as a ‘confident’
annotation by the annotator. A percentile score indicating skill was computed
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using Eq. (3). We do not have a ground truth for maneuver-level skill, with which
we could have correlated objective skill scores generated using our framework.
Thus, we adopted an alternative approach, where we used the scores for the
individual maneuvers in each trial to compute a score for the entire trial. We
then validated the trial-level score against manually assigned GRS for the trial.
To compute a score for the entire trial we created a vector of three values for
each trial - a combined score for maneuvers in categories 1 & 2 (average), a
score for maneuvers in category 3, and a score for maneuvers in category 4. If
a trial included multiple maneuvers in categories 3 or 4 then we averaged the
scores of maneuvers in each category. We trained a linear regression model where
GRS is predicted by the category-level scores in a k-fold cross-validation setup,
leaving out one trial in each of 135 folds. We computed a Spearman correlation
coefficient between the predicted scores for the trial and manually assigned GRS.

2.3 Results

Our initial k-fold cross-validation revealed that the trained classifier using data
from AI + AC was able to automatically annotate preferences with an average
accuracy of at least 80%.

Table 1. Accuracy of SVMs trained in a 30-fold cross-validation setup

Throw1 Throw2 Knot1 Knot2

Mean (std. dev.) 85.71 (6.91) 82.92 (6.95) 90.23 (3.52) 80.06 (5.88)

We observed moderate inter-rater agreement among manual preference anno-
tations provided by the crowd. The Fleiss’ kappa was 0.88 (95% CI = 0.85 to
0.91) among the crowd members using only preference annotations about which
the individuals expressed confidence. Including the classifier as another member
of the crowd did not seem to alter the inter-rater agreement; the Fleiss’ kappa
was 0.89 (95% CI = 0.87 to 0.92). The confidence intervals for the inter-rater
agreement among all the annotators, including and excluding the automated
classifier trained on AI indicate that the classifiers we trained for each maneu-
ver category may be considered a representative member of the crowd. Although
agreement among manual annotators was lower when we used all preference an-
notations (those for which the individuals did and did not express confidence)
with a Fleiss’ kappa of 0.42 (95%CI = 0.40 to 0.43), the classifier’s annotations
were still consistent with those from the crowd. We observed moderate to high
agreement between the single expert and rest of the members of the crowd on
average (84.36% for rankings with confidence and 74.38% for all rankings). We
also observed moderate accuracy in preferences assigned to pairs of maneuvers
between the automated classifier and each member of the crowd (Table 2).

Finally, we found that the overall trial-level score obtained as a linear combi-
nation of maneuver-level scores generated using our framework was moderately
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Table 2. Accuracy of automated classifier (averaged across the 4 maneuver categories)
against each member of the crowd

Crowd Member 1 2 3 4 5 6 7

Accuracy (%) 75.00 85.71 76.36 82.35 68.25 69.23 80.00

Fig. 4. Plot of predicted GRS for trial using a linear regression over maneuver per-
centile scores generated using our framework. The manual GRS using OSATS have
been scaled to the [0,1] interval.

correlated with manually assigned GRS (Figure 4). The correlation coefficient
between the two scores was 0.47 (P-value < 0.0001).

3 Discussion

We developed and evaluated a framework to use relative preferences assigned
by manual annotators to pairs of short segments in a surgical task (maneuvers),
and compute an objective measure of surgical skill with which the maneuver was
performed. Such segment-level skill assessment is necessary to provide automated
targeted feedback for individualized training and skill acquisition by surgical
trainees. Our analyses based on an existing data set show that a reliable and
valid classifier can be trained to automatically annotate the better-performed
maneuver in a pair of maneuvers, and can thus be scaled to large data set.
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Limitations of findings in our analyses described here pertain to aspects of
our data set and study design. Only a small fraction of trials in our data set
were performed by experienced surgeons (24/135); the rest were performed by
surgeons with none to little experience (111/135). Consequently, the scores gen-
erated using our framework are accurate but may not translate into relevant
feedback for trainees. The crowd that participated in our study included a single
expert surgeon. We are unable to say how the size, member constitution, or other
properties of the crowd affect reliability and validity of findings obtained from
applying our framework. Manually assigned GRS reflects a global assessment
of task performance by an experienced surgeon and includes elements such as
knowledge of task, respect for tissue, and forward planning. The objective skill
scores generated using our framework did not account for all items considered
when a surgeon manually assigns a GRS to a trial because of the few elements
in the feature vector f that we used to train the classifier.

Our work described in this manuscript leads to additional future research. A li-
brary of expert maneuver performances is required for our framework to generate
scores that provide relevant and meaningful feedback to trainees. Crowdsourcing
surgical skill assessment at the task-level is a recent phenomenon [18], and sensi-
tivity of the annotations to constitution and characteristics of the crowd remains
an open question. The constitution of the crowd that provides manual preference
annotations for the pairs of maneuvers may affect performance of our framework
and should be investigated in future research. To apply our framework as part
of a system to provide real-time assessment and targeted feedback to trainees,
the surgical task must be automatically and accurately segmented into its con-
stituent maneuvers. While previous research on recognition of surgical activity
has focused on atomic segments called gestures [9,19,20], our work illustrates the
need for reliable and accurate technology for automatic recognition of surgical
maneuvers.
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Abstract. Identifying and recognizing the workflow of surgical interven-
tions is a field of growing interest. Several methods have been developed
to identify intra-operative activities, detect common phases in the sur-
gical workflow and combine the gained knowledge into Surgical Process
Models. Numerous applications of this knowledge are conceivable, from
semi-automatic report generation, teaching and objective surgeon evalu-
ation to context-aware operating rooms and simulation of interventions
to optimize the operating room layout.

In this work we propose a method to utilize random decision forests
to detect surgical workflow phases based on instrument usage data and
other, easily obtainable measurements. While decision forests have be-
come a very versatile and popular tool in the field of medical image anal-
ysis, this is to the best of our knowledge its first application to surgical
workflow analysis.

Our method is in principle suitable for online usage and does not
rely on an explicit model or a strict temporal relationship between ob-
servations. With their structure, random forests are inherently suited for
multi-class detection and therefore for detection of workflow phases. Due
to the transparent nature of random forests, additional information may
also be obtainable in parallel to the phase detection.

1 Introduction

Nowadays, with the advancements in technology and medicine, the operating
room (OR) has become a much more complex working environment and there-
fore concepts such as context-aware ORs appeared. A key component towards
context-awareness is the analysis of the surgical workflow [1,2], which is a field
of growing interest.

Several methods have been developed to identify intra-operative activities, de-
tect common phases in the surgical workflow and combine the gained knowledge
into Surgical Process Models (SPMs) [3]. The signals that can be used for surgi-
cal phase determination are manyfold, varying from manual annotations by an
observer [4], to sensor data such as surgical tool tracking based on video images
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[5,6], intraoperative localization systems [7] or surgical robots [8]. Patient mon-
itoring systems used to acquire the vital signals of the patient during surgeries
can also be incorporated [7]. A recent methodological review of the literature
focusing on the creation and the analysis of SPMs can be seen by [9].

Many of the works in the literature rely on Dynamic Time Warping (DTW)
and derivations of Hidden Markov Model (HMM) algorithms for workflow de-
tection [5,6]. Decision forests are widely utilized in the field of medical image
analysis by now, but to the best of our knowledge have not yet been employed
for surgical workflow analysis.

We will explain the concept of random forests in section 2, describe our ac-
quired data and the results of our method on them in section 3, and finally
discuss our insights in 4.

2 Materials and Methods

2.1 Problem Statement

The phase recognition problem in a surgical workflow is modeled as a classi-
fication problem as follows. At a given time point t of an operation, the cur-
rent setting of the operating room is represented by a set of d real-valued
signals x(t) = [x1(t), . . . , xd(t)]. Based on these signals, our goal is to infer
the current phase of the worklow among a predefined set Y of possible la-
bels. In other words, we aim at finding a mapping f : R

d → Y such that
f(x(t)) = label of the phase at time t. We explicitly avoid usage of temporal
models, to enable our method to detect activity outside the regular workflow in
the future.

2.2 Random Forest Classifier

Since the number of possible phases is greater than 2, the previously described
problem is multi-class. We propose to infer our decision rule via a random forest
classifier [10] which naturally handles multiple outputs. A decision tree is a
hierarchical collection of nodes and a random forest is a set of T decorrelated
decision trees. Each tree (indexed by an integer τ ∈ {1, . . . , T }) performs, given
a feature vector x, a prediction fτ (x) ∈ Y . By averaging out the predictions over
all trees, one obtains for each label y a classwise posterior probability P (y|x)
stating how likely the label y is given the current signals.

P (y|x) = 1

T

T∑
τ=1

(fτ (x) = y) (1)

The final prediction of the ensemble classifier is defined as

f(x) = argmax
y∈Y

P (y|x) (2)

Note that such a combination of tree outputs outperforms each single tree
prediction by reducing the risk of overfitting.
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Fig. 1. Performance evaluation over different forest sizes

Training. We expose in this paragraph how the individual decision rule fτ of
each tree can be inferred from a set of labelled examples called training set.
A training set S = {(xi, yi) , i = 1 . . .N} is defined as N feature vectors xi for
which the label yi is known. In practice, a training set is obtained by labelling
several operation signals and aggregating them independently of their time point.
Each node contains an axis-aligned splitting rule σs,θ : Rd → {0, 1} defined as
σs,θ(x) = (xs ≤ θ), where s ∈ {1, . . . , d} is a signal index and θ a threshold.
At a root node, a randomly-chosen subset of splitting rules is drawn and their
ability to discriminate the different labels of the training set is evaluated through
an information gain criterion. The decision rule with the highest separation
capability is retained and the training set samples are sent to the left and right
child nodes according to the output of σ. This procedure is recursively repeated,
offering thereby a hierarchical series of splitting rules, until a stopping criterion
is satisfied. Each terminal node votes for the predominant class label among
the training samples that reached it. This defines a local prediction rule on the
subset of Rd defined by the splitting rules of all the parent nodes. More details
about random forests and their application to medical image analysis problems
can be found in [11].

Implementation and Parameters. We used the random forest implementation
of the open-source library OpenCV1. Maximal tree depth is an important pa-
rameter to influence the forest’s tendency to under- or overfit the data, next
to the number of randomly chosen features evaluated per node, while a higher
number of trees increases generalization. We chose a forest size of 50 trees with
a maximal tree depth of 4 nodes to achieve best results. Per node we evaluated a
number of features equal to the square root of the total amount of available fea-
tures (in our case

√
16 = 4). The performance improvement usually flattens out

after a certain number of trees (as can be seen in Fig. 1), but as our training and
testing times were very low (as described in 3.3), we chose a rather high number.
In order to counter single, time-consuming phases to dominate the training, we
balanced the class sizes by oversampling shorter phases.

1 http://opencv.org/

http://opencv.org/
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3 Experiments and Results

3.1 Medical Application

Laparoscopic cholecystectomy (removal of the gallbladder) was selected for this
study, because it is a highly standardized surgical operation. It is also previously
investigated in many other works of surgical process modeling and recognition
of phases, due to the advantages that it has a comparable easy workflow, it is a
procedure of short to medium OR time and it is done in large numbers per year
all over the world.

The intervention is performed under general anesthesia. Initially a small nee-
dle is inserted into the peritoneal cavity for inflating the abdomen with gas. This
provides room for easier viewing and for the surgical manipulations to be per-
formed. After that, at the same point, a small incision is made and a trocar, a
thin tube for easier exchange of the instruments and ensuring the gas-tightness,
is inserted. Via this first port, the telescope is introduced to visualize the in-
terior of the abdomen. After a test insertion with a hypodermic needle, three
other trocars are inserted under view of the laparoscopic camera. To get access
to the gallbladder, first a retraction device is inserted in the upper right trocar.
Then the right liver lobe is elevated. Finally, a grasping forceps is inserted into
the right lower and the dissection device in left lower trocar.

The primary step of the surgical procedure is to dissect the Calot’s triangle,
the area which includes the bile duct and the cystic artery. This is done by blunt
dissection with a forceps and cutting and coagulation current. If both structures
are clearly visible, each of them is clipped with three clips, followed by cutting
both structures between the clips with laparoscopic scissors.

The following step is dissection of the gallbladder, which is done by back and
forth touching of the areas between gallbladder and liver and applying cutting
and coagulation current.

To remove the dissected gall bladder a salvage bag is inserted into the ab-
domen, the gallbladder packed up into the bag and the bag extracted together
with the trocar. In case of big stones, the bag cannot be extracted through the
trocar incision. In that case, the calculi are extracted extracorporally out of the
salvage bag. Thus, the content of the bag is adequately reduced to pull it out.

Finally, the surgical area is explored again to detect and take care of bleedings.
A drainage is inserted through a trocar hole and all instruments are removed.
The trocars are extracted under visual control and the incisions are closed by
sutures.

During the procedure, in case of bleedings in the operation field, a device
which allows flushing and suction is used. Also controlling for bleedings after
extraction of the gallbladder is done with this device.

3.2 Data Acquisition

In order to evaluate the performance of our method, we conducted two ex-
periments. In the integrated OR with augmented sensor equipment [12] in the
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Fig. 2. Synchronized measurements recorded during one surgery

surgical department of our institution, we recorded a total of nine laparoscopic
cholecystectomy surgeries as described in 3.1 with synchronised sensor data. Our
measurements consisted of the weight of the irrigation and suction bags (Fig.
2(a)), the intra-abdominal CO2 pressure and the inclination of the surgical table
(Fig. 2(b)). Additionally all laparoscopic instruments were marked with RFID
tags, so we were able to collect binary usage data for each of the eight available
instruments [13]. We also recorded similar binary data for the two possible HF
modes (coagulating and cutting) that are available with all laparoscopic instru-
ments, and the state of both the room lights and the surgical lamp (Fig. 3). All
this data was collected with an average frequency of 7.6Hz. For four surgeries
a medical expert also labeled each sample of the datasets manually with the
corresponding surgical workflow phase.

We then used the labeled datasets to train and test the random forests for
detection of surgical workflow phases, and all nine datasets in a slightly adjusted
manner (as described in 3.4) to detect the states of the OR and surgical lights.
In both experiments we only used the raw, unfiltered measurements as features.

3.3 Phase Detection

We collected four surgeries with full sensor data and obtained labels for workflow
phases for all samples from a medical expert. We used a total of seven phases,
which are in their typical order:

1. Trocar placement
2. Preparation and exposition of duct and artery
3. Clipping and cutting of duct and artery
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Fig. 3. Synchronized binary signals recorded during one surgery

4. Detaching of gallbladder from liver bed

5. Retrieving gallbladder from body

6. Checking for and stopping of possible bleedings

7. Drainage, trocar removal and closing of wounds

We trained the random forest on all but one of the available datasets and
tested it on the remaining one. We did this so that every dataset was used for
testing once in leave-one-out-fashion, and calculated evaluation measures over
the combined classification results. The training took on average one minute on
a common laptop computer1 for three surgeries with a total of circa 45,000 raw
samples, testing of a single surgery with circa 15,000 samples was done in under
five seconds. Over all four combinations we achieved an accuracy of 68.78%, an
average recall over classes of 73.41% and an average Jaccard index of 58.64%.
More detailled performance values are given in table 1.

Table 1. Recognition rates for all seven workflow phases over four labeled surgeries

Phase Precision Recall Jaccard
Trocar placement 99.99% 99.52% 99.51%
Preparation 68.83% 79.36% 58.38%
Clipping 42.54% 40.50% 26.18%
Detaching gallbladder 77.89% 11.34% 10.98%
Retrieving gallbladder 98.06% 99.74% 97.81%
Stop bleeding 18.52% 83.49% 17.87%
Drainage and closing 99.85% 99.89% 99.73%

1 2.4GHz CPU, 8GB RAM
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Recognition rates covered the whole possible range, with over 99% precision
and recall for some labels (e.g. drainage and closing), while in some selected
surgeries detection of the clipping phase even failed completely (5% recall). But
as can be seen in the confusion matrix in table 2, the classification errors happen
in a strict subset of all phases.

Table 2. Confusion matrix for the recognition of seven workflow phases. Rows are
ground truth, columns are predictions.

Troc. Prep. Clip. Det. Retr. St. bl. Drng.
Trocar pl. 0.995 0.000 0.005 0.000 0.000 0.000 0.000
Preparation 0.000 0.794 0.093 0.016 0.000 0.098 0.000
Clipping 0.000 0.361 0.405 0.013 0.000 0.221 0.000
Detaching gb. 0.000 0.293 0.201 0.113 0.006 0.387 0.000
Retrieving gb. 0.000 0.000 0.002 0.000 0.997 0.000 0.001
Stop bleeding 0.000 0.012 0.105 0.001 0.047 0.835 0.000
Drainage 0.000 0.000 0.000 0.000 0.000 0.001 0.999

3.4 Light State Detection

As with every laparoscopic surgery, most work is done solely by observing the
surgical site indirectly through the laparoscopic camera. In order to avoid dis-
tractions and reflections on the monitor, all lights in the OR are turned off after
all trocars have been set, and turned on again when they are being removed.
As retrieval of the gallbladder is done externally, the surgical lamp is turned
on during that phase of the surgery, but turned off again afterwards. Currently
the non-sterile circulator nurse has to stop their current activities whenever the
lights have to be switched, move in the OR to turn the lights on or off, and
return to their work. As a hypothetical future application of our approach, we
tried to predict the light state based on the other, available data.

We adjusted all nine datasets by creating a new label for each sample based
on the state of both observed lights. As one combination never occured, we used
the three new labels:

1. Both room and table lights are on
2. Only the surgical lamp is on
3. No light is on

Then we removed the light signals from the datasets and trained and tested
the random forest (with tree depth 10) on the remaining signals. We achieved an
overall accuracy of 87.57%, an average recall of 75.44% and an average Jaccard
index of 64.20%. The values for each individual state are given in table 3(a), a
confusion matrix in table 3(b).
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Table 3. a) Recognition rates for light states over nine surgeries. b) Confusion matrix
for light states. Rows are ground truth, columns are predictions.

Prec. Recall Jaccard
both 77.43% 83.45% 67.12%
table 66.51% 48.89% 39.23%
none 91.29% 93.96% 86.23%

both table none
both 0.835 0.032 0.134
table 0.037 0.489 0.474
none 0.028 0.033 0.940

4 Discussion

The detection rates given in 3.3 and 3.4 are not optimal, but as the possible signal
values have a relatively high variation over different surgeries, more training data
is needed to cover this variability. With an accuracy of over 65% for seven labels
and an accuracy over 85% for three labels, the method provides very promising
first results.

An advantage of random forests over other methods is the fact that they are
inherently well suited for multi-class outputs. This combined with the fact that
no prior or implicit sequential model is required suggests that random forests
have various characteristics that can be exploited for surgical workflow detection.
As we calculate our features without temporal information it seems plausible that
workflow phases could be detected also in atypical order. It can be a subject of
further research to analyze the ability of random forests to do that, as well as
detect problems that happened during single surgeries and detect more low-level
activities by focusing on the mentioned properties.

While this was not yet employed in this paper, random forests also have the
ability to ignore missing features for individual samples by building a second,
surrogate criterion based on other features, which can be beneficial for our case.
Indeed, some of our input signals (described in more details in 3.2) are based
on surgical instruments equipped with RFID tags, and it occasionally happens
that a single instrument needs to be replaced during the course of a surgery,
in which case the replacement instrument is usually not marked with the same
RFID tag. These missing instrument signals can then be ignored to not disturb
the remaining classification.

Another interesting aspect of random forests that can be utilized is the pos-
sibility to estimate relative feature importance after training the forest. As sug-
gested by Breiman [10], random forests can be used to assess the importance of
each feature for classification by performing random permutations of each indi-
vidual feature value over samples and measuring the resulting loss of accuracy.
While attention is required as these numbers do contain a substantial level of
randomness, Figure 4 gives an example of this relative feature importance of
our trained phase detector. Some of the features with least importance can be
skipped to achieve comparable results, but more importantly it can be seen that
even features that appear to carry very little information can have a high impact
on the classification. Figure 2(b) shows an example: The table inclination itself
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does not change during the course of a surgery, but during some times the sensor
seems to produce severe noise. Closer inspection reveals that this noise happens
mainly and reliably during the phase of gallbladder detachment. The actual rea-
son for this correlation has to be investigated in the coming experiments, but is
actually secondary to this work. Based on these findings we suggest that an op-
erating room of the future should be generously equipped with various sensors,
as apparently even data sources with little obvious information can contribute
to other, context-sensitive and integrated systems.

Fig. 4. Relative importance of all available features after training on the fully labeled
datasets

5 Conclusion

In this work we trained random forests to detect either workflow phases or OR
light states based solely on simple measurements and instrument usage data.
Detection rates for both applications were promising. We also pointed out addi-
tional ways to exploit the methods and calculations done by random forests to
gain knowledge in parallel to the detection of workflow phases. For further steps
in this direction we plan to evaluate our method on more datasets with labeled
low-level activities, as well as compare it quantitatively with other standard
classifiers.
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Abstract. The rise of intraoperatively available information threatens
to outpace our abilities to process data and thus cause informational over-
load. Context-aware systems, filtering information to match the current
situation in the OR, will be necessary to reap all benefits of integrated
and computerized surgery. To interpret surgical situations, such systems
need a robust set of knowledge to make sense of intraoperative measure-
ments. Building on our own ontology for laparoscopy, we formalized the
workflow of laparoscopic adrenalectomies, cholecystectomies and pancre-
atic resections and developed a novel, rule-based situation interpretation
algorithm based on OWL and SWRL to recognize phases of these surg-
eries. The system was evaluated on ground truth data from 19 manually
annotated surgeries with an average recognition rate of 89%.

Keywords: Laparoscopic Surgery,Cognitive Surgery,Context-Awareness.

1 Introduction

The large amounts of information, provided by advancements in image guided
surgery, have great potential to improve surgical therapy. However, the rise of
available information threatens to outpace our capabilities to process and in-
terpret the data [1]. The point where data is ”physically available” but ”not
operationally effective” is quickly reached [2]. This is especially true for surgi-
cal interventions where large amounts of pre- and intraoperative information
(MRI/CT images, endoscopic data, device states etc.) are available and need
to be selectively considered when making decisions [4]. To cope with this, new
man-machine interaction techniques are necessary. A solution can be found in
context-aware systems which interpret the situation in the OR and display infor-
mation targeted for the current circumstances, thus picking out the important
bits from the wealth of data. The need for such adaptive interfaces in surgery
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has been emphasized by Kranzfelder et al. [5]. In the instance of laparoscopy, vi-
sualizations of tumors, vessels and other information can be selectively displayed
only when necessary.

In literature, different approaches to context-awareness can be found. Cur-
rently predominant is the use of machine learning techniques, like Hidden Markov
Models [6,7], Dynamic Time Warping [8] or statistical analysis [9]. Combinations
thereof are also successfully used [10,11]. Another approach is raw signal pro-
cessing. Blum et al. represent surgeries with snippets of signals [3]. Suzuki et al.
quantify motion using video file size and oral conversations in the OR, without
speech recognition for surgical phase detection [12]. Both approaches fail to in-
clude medical background-knowledge in a standardized, reusable way. Top-down
approaches, in contrast, aim to formalize medical knowledge generically [13]. De-
scription Logics (DL) [14] or UML [15] are used to this purpose. Combinations
of formalized and machine learning approaches have also emerged [16]. A related
field is the area of surgical evaluation, where similar methods are used to assess
the performance of the surgeon [17]. Lack of knowledge has been identified as
a major obstacle to discovering meaning in data [1]. We therefore believe that
a strong foundation of knowledge is key to attain situational awareness in the
sense of ”knowing what is going on, so you can decide what to do” [18].

Our contribution is the formalization of laparoscopic adreanectomies, chole-
cystectomies and pancreatic resections, as performed at the University Hospital
of Heidelberg, along with a novel mechanism for analyzing the resulting mod-
els for intraoperative context-awareness. Based on our ontology for laparoscopy,
used as a semantic vocabulary, we formalized phases of the surgeries and iden-
tified rules which govern the transitions between them. Lastly we developed a
mechanism, which allows rule-based situation interpretation. The system was re-
alized using DLs [19] in OWL (Web Ontology Language) and SWRL (Semantic
Web Rule Language)[20]. SWRL and our way of using it has not yet been ap-
plied to surgical phase recognition. Furthermore, we showed the effectiveness of
our approach for situation interpretation on 19 annotated surgeries. In contrast
to our previous work in context-awareness [21,22], we are no longer restricted
to reasoning over distance-based relations between instruments and anatomical
structures. Given input at the level of activities, the analysis is now performed
on all surgical activities, with the benefit of detecting all medically relevant
phases. Currently, this input is provided by manual annotation. The integration
of the widely recognized SWRL standard is also a great step towards future
interoperability and knowledge exchange with other systems.

2 Methods

We use DL to represent medical knowledge, inspired Neumann et al. [23]. Ac-
cording to the levels of granularity, as presented in [16], our system takes input of
surgical activities and interprets them to infer the current phase of the surgery.
In its intended use, the input is to be provided by intraoperative sensor analy-
sis [24]. Similar to [25], we define activities as a triple of the used instrument,
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the performed action and the organ acted upon. For instance, the grasping of
the splenic vein with a grasper is expressed as (Grasper, grasp, SplenicV ein).
Activity triplets offer great insight in the current situation and are very ex-
pressive. It has been shown that reduction to, for instance, the currently used
instrument can suffice to recognize certain phases. Yet complex scenarios require
more detailed situation features. Early tests on our data showed that restricting
the recognition to just the instrument is inadequate. Situations are described as
the set of activities currently occurring in the OR. The phase to be recognized,
in the case of a adrenalectomy for instance Resection or PortP lacement, is a
set of situations similar in the medical sense and in need of a common type
of assistance, e.g. a specific visualization. We call a description of the possible
sequences in which phases can occur chronologically a surgery plan. The result
of the situation interpretation is the recognized phase and we therefore use the
terms situation interpretation and phase recognition synonymously.

2.1 Formalization of Laparoscopic Adreanectomies,
Cholecystectomies and Pancreatic Resections

To formalize adreanectomies, cholecystectomies and pancreatic resections, we
devised a way to represent the surgery plan and intraoperative situations. It
is based on the ontology for laparoscopy, the foundational vocabulary for the
representation of the models. The approach is detailed in the following.

Ontology for Laparascopic Surgery. The purpose of the ontology is to repre-
sent all information necessary to interpret situations in a medically sound way. At
the activity level, this includes instruments, actions and anatomical structures.
Additionally, we model phases of the surgeries. In accordance to the ABox/TBox
paradigm of DL our TBox represents time-invariant, taxonomical knowledge
about objects and their relations, whereas the ABox represents dynamic knowl-
edge about specific, real-world occurances. In other words, the TBox represent
the terminology, whereas the ABox contains instances of these terms. The TBox
is a hierarchy of concepts connected with the is − a relation, denoted by �.
The main branches for medical knowledge are Fluid, Organ and Instrument.
All other concepts are nested there. For instance the left renal artery is in-
tegrated via LeftRenalArtery � Artery � V essel � Organ. Similarly, in-
struments are handeled. The l-hook cauter is expressed by LHookCcauter �
ElectricInstrument � SharpInstrument � Instrument. This way semantic
information, like organ types (blood vessel) and instument properties (sharp-
ness) are represented. The main branch for actions is surgicalAction. Actions,
like clip, cut or grasp, are subrelations of this concept. They are organized in
a meaningful, hierarchical structure. For instance, coagulate, cut and resect are
subsumed by cuttingAction. Overall, the ontology contains 26 relations and 130
concepts. All modeled knowledge is accessible to logical reasoning. The knowl-
edge acquisition technique we used to create the ontology is the ”Teach-Back
Method” [26]. The basic idea is to first let the medical experts explain the do-
main to the engineer, who then in turn teaches the information back, as he
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Fig. 1. Surgical phases for the laparoscopic interventions

understood it. Possible misconceptions and gaps in understanding are filled and
mutual understanding is assured. As the ontology editor, Protege [27] was used.

Formalization of the Surgery Plan. The relevant phases we identified are
shown in Fig.1, and the possible transitions between them in Fig.2. This in-
formal description is translated to OWL as follows. Phases are represented
as subconcepts of Phase, another branch of the ontology. To represent the
order in which phases can occur, i.e. the surgery plan, we use the relation
nextPossiblePhase and its inverse previousPhase. We call a transition between
phases p1 and p1 valid, if nextPossiblePhase(p1, p2) is asserted. Essentially,
nextPossiblePhase(p1, p2) encapsulates the knowledge, that p2 can occur right
after p1, representing a predecessor relationship. The surgery plan is then im-
plemented by creating instances of all phases of the surgery in the ABox and
connecting them with the nextPossiblePhase relation.

Formalization of Surgical Situations. To model the current situation in the
OR, the formalization of the surgery plan is augmented with new activities as
they occur. Activities are expressed by creating instances and asserting relations
between them. For example, the occurrence of a ligasure cutting the gastrocolic
ligament is expressed with Ligasure(aLigasure)∧GastrocolicLigament(aGl)∧
cut(aLigasure, aGl). Thereby the notation C(a) denotes that a is an instance of
concept C, and r(a, b) that relation r holds between instances a and b. Once the
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Fig. 2. Display of valid phase transistions

activity is over, it is removed from the ABox. Entire situations are expressed in
the ABox as sets of activities currently occurring in the OR.

2.2 Rules and their Application for Situation Interpretation

The idea behind our situation interpretation is to execute rules for each phase
whose condition is true once the phase is currently occurring in the OR. The
interpretation cycle is triggered at each beginning and end of an activity. The
rules check for two transition conditions. The first one, the validness, is about
whether the phase is possible considering the surgery plan, i.e. whether there is
a valid transition from the current phase. The second one, the phase specific,
checks whether the current situation contains an event typical for the phase, a
so called triggering event. These events are shown in Fig. 3. If both conditions
apply, the corresponding phase is assumed to be the current one.

To formalize these conditions, we use SWRL, an established standard for rule-
based reasoning, with a wealth of available tools for editing and execution. The
rules consist of an antecedent (body) and consequent (head). The head is asserted
in the ABox, given that the body is fulfilled. The body of all rules checks whether
both transition conditions are fulfilled, the head asserts that the phase under
consideration is occurring. The validness condition in SWRL is: Phase(?p) ∧
CurrentPhase(?current) ∧ nextPossiblePhase(?current, ?p). Intuitively this
means that the variable p must refer to an instance of Phase and current to an
instance of CurrentPhase. Furthermore, nextPossiblePhase must be asserted
between them. In other words, p refers to all phases for which the validness condi-
tion is fulfilled. To check the second condition, we need to see whether one of the
triggering events is present. In the case of the phase of port placement in a pan-
creatic resection, this would be: Port(?instrument) ∧ Abdomen(?structure) ∧
place(?instrument, ?structure). In other words, we check whether there are in-
stances instrument of Port being placed on a structure of concept Abdomen.
The other phase specific conditions are translated into SWRL syntax in the same
way. The overall body of a rule is the conjunction of both expressions.

The naive choice for the head of each rule would be CurrentPhase(?p).
However, the expressivity of SWRL is limited. Particularly, the monotonicity
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Pancreatic Resection
Phase
Start
Port placement
Mobilisation

Dissection

Resection

Closure
Drain

Triggering Activities
-
(Port, place, Abdomen)
(AtraumaticGrasper, grasp, GastrocolicLigament), (Instr, surgicalAction, splenocolicLigament),
(AtraumaticGrasper, grasp, GreaterOmentum), (SharpInstr, cuttingAction, GastrocolicLigament),
(SharpInstr, cuttingAction, Adhesion) 
(SharpInstr, cuttingAction, DorsalParietalPeritoneum), (Instrument, bluntDissect, DorsalParietalPeritoneum),
(AtraumaticGrasper grasp DorsalParietalPeritoneum), (BluntInstr, bluntDissect, SplenicArtery),
(SharpInstr, dissect, SplenicArtery), (Clip, clipping, SplenicArtery),
(Instr, knot, SplenicArtery), (BluntInstr, bluntDissect, SplenicVein),
(SharpInstr, dissect, SplenicVein), (Clip, clipping, SplenicVein), (Instr, knot, SplenicVein)
(SharpInstr, cuttingAction, Pancreas), (SharpInstr, cuttingAction, RetropancreaticTissue),
(SharpInstr, dissect, Pancreas), (SharpInstr, cuttingAction, Tumor),
(SharpInstr, cuttingAction, Cyst), (Stapler, resect, Pancreas), (NeedleHolder, suture, Pancreas),
(NeedleHolder, suture, Stomach), (SharpInstr, cuttingAction, SplenicArtery),
(SharpInstr, cuttingAction, SplenicVein)
(SpecimenBag, surgicalAction, Organ)
(Drainage, surgicalAction, organ)

Adrenalectomy
Phase
Start
Port placement
Mobilisation

Dissection
Resection 
Closure
Drain

Triggering Activities
-
(port, place, abdomen)
(SharpInstr, cuttingAction, Adhesion), (SharpInstr, mobilize, Liver),
(AtraumaticGrasper, lift, Liver), (AtraumaticGrasper, grasp, Adhesion),
(AtraumaticGrasper, grasp, GreaterOmentum), 
(SharpInstr, cuttingAction, SplenoralLigament), (SharpInstr, mobilize, Colon)
(SharpInstr, cuttingAction, GerotasFascia), (Instr, surgicalAction, DorsalParietalPeritoneum)
(SharpInstr, cuttingAction, AdrenalGland ), (Instr, surgicalAction, PerirenalFatTissue)
(SpecimenBag, surgicalAction, organ), (AtraumaticGrasper, puttingAction, ResectedTissue)
(Drainage, surgicalAction, organ)

Cholecystectomy
Phase
Start
Port placement
Mobilisation
Dissection

Resection cystic artery
Resection cystic duct
Resection gallbladder

Closure
Drain

Triggering Activities
-
(Port, place, Abdomen)
(AtraumaticGrasper, grasp, GallbladderFundus), (AtraumaticGrasper, grasp, GastrocolicLigament)
(AtraumaticGrasper, grasp ,HepatoduodenalLigament),
(AtraumaticGrasper, lift , HepatoduodenalLigament), (Instr, surgicalAction, CalotTriangle),
(SharpInstr, cuttingAction, HepatoduodenalLigament)
(SharpInstr, cut, CysticArtery), (Clip, clipping, CysticArtery)
(SharpInstr, cuttingAction, CysticDuct), (Clip, clipping, CysticDuct)
(SharpInstr, cuttingAction, GallbladderSerosa), (SharpInstr, dissect, GallbladderSerosa),
(SharpInstr, cuttingAction, Gallbladder), (SharpInstr, cuttingAction, GallbladderLiverbed)
(SpecimenBag, surgicalAction, Organ)
(Drainage, surgicalAction, organ)

Fig. 3. List of typical activties for phases (trigger activities)

of DL and SWRL requires that adding more information does not invalidate
previous reasoning results. Therefore, once a phase has been inferred to be a
CurrentPhase, no SWRL rules can change this. To counter this problem we
set the head of each rule to DetectedPhase(?p). After each interpretation cy-
cle the model is ”cleaned up” with means outside of SWRL. In the case of a
DetectedPhase being asserted, we use an outside program to remove the as-
sertion CurrentPhase of the current phase and make it a V isitedPhase to
mark that it did occur. Then, the DetectedPhase is asserted to be no longer a
DetectedPhase but of type CurrentPhase. This way, the representation is set
up for the next interpretation cycle. We take all phases of type CurrentPhase as
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the result of the interpretation. Initially, we mark Start as a CurrentPhase. The
process is illustrated in Fig. 4. As the technical solution for ABox representation,
reasoning and rule execution we use HermiT [28].

Fig. 4. Classification of phases with SWRL rules

3 Evaluation and Results

The evaluation of the system is based on ground truth data, i.e. manually an-
notated videos of surgeries with SWAN-Suite [29]. We recorded 11 pancreatic
resections, 3 cholecystectomies and 5 adrenalectomies surgeries and annotated
them with experienced clinicians who did not participate in the surgery. The
annotations consist of timed activities and phase transitions (Fig. 5). For the
evaluation, the annotations are played back in real-time to simulate results of
sensors. The situations are interpreted as described above and the recognized
phase is compared to the ground-truth. We consider two quality measures, the
recognition rate and confusion matrices (Fig. 6). We define the recognition rate
as the fraction of time, in which the system’s assessment is correct, i.e. matches
the ground truth. This is computed by comparing the interpretation result to
the ground truth at a frequency of over 100Hz. By design, the measure not only
represents if the situation was interpreted correctly, but also whether it hap-
pened in time. As for the confusion matrix, each element colorcodes the number
of times the phase in the row was recognized as the one in the column. Inci-
dentally, the diagonal entries represent the number of correct recognitions. Note
that absolute numbers without normalization are used.

Fig. 5. Annotation of surgical recordings
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Fig. 6. Confusion matrices and recognition rates

4 Discussion

The results show that our system is capable of providing context-awareness in
complex, realistic and medically relevant scenarios, given input at the level of
activities. The recognition rate is a valuable quality measure since it considers
timing and is indicative of the ability to reasonably asses the situation. This is
fundamental to bringing context-aware systems in the OR, where the medical
benefits can be evaluated. The confusion matrices show that situations are re-
liably, yet not perfectly, detected. Mistakes occur when an interrupted phase is
resumed. For instances, after a port is placed, the system, correctly recognizing
the port placement, waits for a triggering activity to fall back to the previous
phase. Also, sometimes the triggering activities are not specific enough and oc-
cur in several phases. Yet mostly, as shown by the recognition rates, correct
interpretations are given. Future work will include the comparison of our result
to related work. The major obstacle to this is high fragmentation in the field.
The use of different quality measures, surgery types and phase partitions as well
as closed-sourced implementation makes unbiased comparison difficult.

Also, the formalization of laparoscopic adreanectomies, cholecystectomies and
pancreatic resections is an important step toward semantification of surgical work-
flows. For context-aware system, it is vital to have a robust set of knowledge, as
emphasized in [5]. In contrast to other sciences, such as physics wheremathematics
has emerged as the main means of representation, the medical science still lacks a
generally agreed on formal method to represent knowledge. Most surgical knowl-
edge is contained in literature or passed down informally from experienced sur-
geons to novice ones. It is commonly inaccessible to computation. Ontologies can
be part of a solution in this regard. The formalization also helps in a practical way.
The encoding is human readable and can be verified directly.

This along with the evaluation results and evidence for rule-based deduction
in human cognition [30] shows that rules are likely to play an important role in
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context-aware systems. Yet knowledge acquisition can be difficult since numer-
ous rules must be formulated for rich scenarios. Also, the surgery needs to be
sufficiently standardized with few anomalies to expect. Furthermore, for practi-
cal application, inputs at the level of activities need to be generated by sensor
analysis. This is a difficult task for which systems like [24] are planned to be
used. However, it is likey that this will result in noisy data. To counter these
problems, a combination of the top-down approach with machine learning seems
promising. Future work will therefore focus on evaluating the robustness of the
rule-based approach and its combination with machine learning.

Acknowledgements. The present research was supported by the ”SFB TRR
125” funded by the DFG and the ESF of Baden-Wuerttemberg.
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for objective assessment of psychomotor skills in laparoscopic surgery. J. Surg.
Res. 171(1), 81–95 (2011)

18. Adam, E.C.: Fighter cockpits of the future. In: Proceedings of 12th IEEE/AIAA
Digital Avionics Systems Conference (DASC), pp. 318–323 (1993)

19. Baader, F., Calvanese, D., McGuiness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, Applications. Cambridge
University Press, Cambridge (2003) ISBN 0-521-78176-0

20. SWRL: A Semantic Web Rule Language Combining OWL and RuleMLW3C Mem-
ber Submission (2004)

21. Katic, D., Sudra, G., Speidel, S., Castrillon-Oberndorfer, G., Eggers, G., Dillmann,
R.: Knowledge-based Situation Interpretation for Context-aware Augmented Real-
ity in Dental Implant Surgery. In: Proc. Medical Imaging and Augmented Reality
(2010)
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Abstract. Tracking and body pose estimation of clinical staff have sev-
eral applications in the analysis of surgical workflow, such as radiation
monitoring, surgical activity recognition and the study of ergonomics.
The operating room is, however, a very complex environment for visual
tracking due to frequent illumination changes, clutter, similar color of
clinicians’ scrubs and limited sensor positioning. Furthermore, several
applications, such as radiation monitoring, require consistent and accu-
rate body part tracking over defined periods of time, which is a chal-
lenging task in the aforementioned conditions. In this paper, we tackle
the problem of pose estimation in the interventional room. We also pro-
pose a method to consistently track upper body parts in short sequences
by using RGBD data and discrete Markov Random Field (MRF) op-
timization over the complete set of frames. The proposed MRF energy
formulation enforces both body kinematic and temporal constraints in
order to cope with the natural ambiguities of tracking and with the fre-
quent failure of the underlying depth-based body part detector in such
conditions. We evaluate our approach quantitatively on seven manually-
annotated sequences recorded in the interventional room and show that
it can consistently track the upper-body of persons present in the room.

Keywords: Body pose estimation, clinician tracking, surgical workflow
analysis, Markov random field, RGBD images.

1 Introduction

Reliable pose estimation and tracking of clinical staff can benefit many appli-
cations for the interventional room, such as context-aware user interfaces [1, 2],
real-time recognition and monitoring of medical activities [3, 4], performance as-
sessment of the surgical team [5], radiation safety monitoring [6] and ergonomics
analysis [7].

Few approaches have been proposed for person tracking in the interventional
room due to the numerous difficulties impeding the installation of computer
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(a) (b)

Fig. 1. (a) Upper body kinematic tree consisting of 17 parts and rooted at the left
chest. (b) A typical interventional radiology room.

vision systems in such an environment (see figure 1(b)). First of all, because of
safety requirements and the presence of many articulated arms mounted on the
ceiling of the room, the options for camera positioning are very limited. Second,
the frequent changes of illumination, similar color of clothes and equipments and
the numerous occlusions present in the room make pose estimation and tracking
very challenging.

The current work is motivated by the increasing need for radiation monitoring
during X-ray based interventional procedures. A recent large consortium-based
study [8] showed that radiation exposure differs at different locations of the
staff’s bodies. Hence, the current practice of using a single dosimeter for radiation
monitoring does not provide accurate information about the radiation exposure
of different body parts. Since it would be impractical for the staff to wear a
multitude of dosimeters on a regular basis, especially on their head and arms,
there exists a need to complement these devices with a radiation awareness
system combining vision-based pose estimation with radiation simulation, as
presented in [6]. Computation of the radiation risk for each body part can be used
to generate exposure warnings and to perform statistical analysis in correlation
with the different activities performed during the procedure.

To make the aforementioned application possible, a pose estimation approach
yielding temporally consistent results during the short bursts of emission from
the X-ray device is necessary in order to accurately estimate accumulated radi-
ation per body part over time. We therefore focus, in this paper, on consistent
upper-body tracking of persons present in the interventional room during such
short sequences. Since the lower-body is generally less susceptible to movement
and is occluded by the apron or by the patient table, we exclude it from the
tracking approach. Because the light is often turned off during the use of the
X-ray device for better visualization of the X-ray images, we propose to use
the depth channel of an RGBD camera to capture the scene and perform the
pose estimation. This is in contrast to [6] who uses a 16 camera multi-view
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reconstruction system, based on background subtraction and shape from silhou-
ette, that is difficult to introduce into the interventional room.

There exists a large body of work on 2D and 3D human pose estimation and
person tracking in the computer vision community, targeting various applications
such as activity recognition, human-machine interactions, video surveillance or
virtual character animation. They rely on one or more visual sensors, such as
RGB, infrared or time-of-flight cameras. The interested reader is referred to [9]
for a more complete presentation of the literature. State-of-the-art human pose
estimation in RGB images is mainly addressed by part-based methods [10–12],
which combine various image cues, such as gradient, motion or color to detect
body parts. The part detector responses are then used to infer single frame
body pose according to an underlying body model. Temporal tracking addresses
on-line scenarios and makes use of previous frames and of models of dynamics
for better temporal estimation [12]. Few works however address the body pose
estimation problem as an optimization over the complete sequence. In [13], the
3D pose estimation is refined on a complete multi-camera sequence by iteratively
using action recognition for retrieving motion priors to restrict the space of
possible poses. In [11], a framework for 2D multiple person tracking in RGB
images is proposed to stitch short body trajectories to track pedestrians and
their body parts.

With the recent introduction of affordable RGB-Depth sensors, such as the
Microsoft Kinect, very successful approaches for 3D part detection and track-
ing have been proposed using the depth channel of the camera. [14] propose to
use random forests on depth images for either body part classification or direct
body joint regression after a background subtraction step. [15] uses an approach
inspired by [14] to classify the body parts without background subtraction. It
relies on an intermediate blob segmentation step and parses the detected parts
using dynamic programming for body skeleton estimation. The aforementioned
works focus on single-frame body pose estimation and do not enforce any tem-
poral consistency. Due to noise, motion, occlusions and camera positioning, part
detection and pose estimation are often inconsistent in consecutive frames.

In this paper, motivated by our radiation monitoring application which re-
quires consistent tracking during the short bursts of X-ray emission, we propose
to formulate the pose estimation problem as an optimization over the entire
sequence using Markov Random Fields (MRF). We propose a robust cost func-
tion that drives the skeleton towards the body parts using the part detector
[15] and also simultaneously enforces kinematic and temporal constraints in the
sequences. The cost function is then optimized using efficient discrete optimiza-
tion on the multi-label MRF. The approach is evaluated quantitatively on seven
manually-annotated videos recorded in two different interventional rooms.

2 Method

We define the upper body pose of a person using the positions of 17 body parts
as shown in figure 1(a). We follow the body kinematics to define a skeleton tree
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Fig. 2. (a,b,c) Example of data used in this paper: RGB image, depth image, BPD
response. (d) Overlay of the 3D upper-body skeletons on the reconstructed point cloud.

over these parts, rooted at the left chest. This is the same skeleton as the one
defined in [15], but restricted to the upper body and rooted at the left chest
instead of the neck.

Given a set of consecutive RGBD frames and upper body poses for the persons
in the first and last frames, our goal is to consistently estimate the pose of
the persons in the whole set of frames. We propose to cast the problem in a
multi-label MRF optimization framework: consistent pose estimation over the
complete set of frames is defined as an optimization problem in a MRF whose
nodes represent the body parts and whose labels encode 3D displacements. The
MRF graph G is constructed by connecting the upper body skeleton tree of
each person in consecutive frames, as shown in figure 3. G = (P , E), where P
is the set of nodes representing the upper body parts and E is the set of edges
defining the connection between each person’s body parts. Two types of edges
are to be considered: kinematic edges (Ek), connecting body parts in each frame,
and temporal edges (Et), connecting the same body parts in consecutive frames.
As a result, each person has a connected graph over the sequence. The pose
is then estimated by optimizing iteratively an energy function that models the
different constraints by using discrete optimization. This provides the final 3D
displacements of the parts from their initial positions.

A depth body part detector is used to compute the initial position and also to
drive the MRF optimization. The detector [15] is used and hereafter referred to
as BPD (body part detector). It computes part detections for each depth pixel
using random decision forests (see figure 2) and clusters the resulting detections
into blobs representing either body parts or background. This results in a list of
blobs per body part and frame. We associate a confidence value for each blob
by counting the number of pixels voting for the part within the blob and by
normalizing the values with the size of the largest blob in the frame correspond-
ing to the same part. This gives low confidence to the small blobs that occur
frequently in noisy data.

The blob list corresponding to left chest detections in all frames and the left
chest positions in the first frame are used to construct initial 3D trajectories
for all persons present in the video. A person trajectory is specified by the 3D
positions of the left chest in the frames. It is initialized at the position of the
left chest in the first frame. For the rest of the frames, the left chest blob with
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Fig. 3. MRF graph with kinematic and temporal edges over body parts

highest confidence in a sphere of radius θ centered at the previous position is
selected. If no chest is found, the previous position is considered for the frame.
The parameter θ is chosen to be the average 3D radius of the body trunk, so
that the 3D trajectories of different persons do not get mixed.

2.1 Part Position Initialization

The trajectories mentioned in the previous section only determine the positions
of the left chests in the frames. They are used together with the list of detected
parts in each frame to initialize the positions of all parts. In case the part detector
fails and does not provide any detection for some parts, we follow a default
kinematic model to initialize these positions. The positions of the upper body
parts corresponding to a person standing in an upright position with the arms
by the side of the body is used.

Given the detected parts and the position of the root part, two different
situations arise for each part: (1) one or more blobs are available: the blob with
highest confidence value within a neighborhood around the parent position is
used to set the position. As in the previous section, the average part size is used to
define the neighborhood; (2) no blob is available: its position is predicted relative
to its parent according to the default kinematic model. Parts are associated
following this procedure for each person in a greedy manner.

2.2 Optimization

The optimization is performed over the graphG = (P , E) defined over a complete
sequence of video frames. The proposed energy is defined as:

E(D) =
∑
p∈P

Vp(dp) + λk
∑

(p,q)∈Ek

V k
p,q(dp, dq) + λt

∑
(p,q)∈Et

V t
p,q(dp, dq), (1)

where D = {dp}p∈P is a global labelling indicating the displacement for each
node, dp is the 3D displacement offset for node p encoded as a discrete label, Vp(.)
are the unary potentials representing the data term, V k

pq(., .) and V t
pq(., .) are the

pairwise potentials and smoothness terms defined respectively on kinematic and
temporal edges and λk and λt are weighting coefficients. The superscripts k and
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t refer to kinematic and temporal edges. The two smoothness terms force the
parts to follow body kinematics and to move smoothly along the frames. The
data term incorporates the image evidence.

Due to the large search space in 3D, two different methods are compared to
sample the search space and define the label set L: dense sampling and sparse
sampling. L = L(n, s) depends on two parameters: n the number of samples in
each 3D direction and s the step size. In dense sampling, we sample the whole
cube, while in sparse sampling we only sample along seven 3D directions, namely
top-down, left-right, front-back and the four main cube diagonals [16].

Data Term. As mentioned above, the part detector clusters the depth image
into body parts and background blobs. This blob segmentation is used to define
the data term:

Vp(dp) =

{
M(C(dp)) if #(blobs(frame(p), label(p))) > 0

β otherwise
, (2)

where frame(p) returns the frame number of node p, label(p) is the part label
associated with the node, blobs(f, l) returns the list of blobs in frame f labelled
as part l, #(.) is the cardinality operator, C(dp) is the minimum cost defined
below, β is a constant cost for parts without detection, and M(.) is a robust
error function (ROEF) chosen as

M(x) =
x2

x2 + α2
. (3)

The function C(dp) computes the minimum cost of a 3D displacement dp:

C(dp) = min
b∈blobs(frame(p),label(p))

‖P (dp)− Centroid(b)‖ ∗ (γ − Conf(b)), (4)

where P (dp) is the 3D position of node p moved by an offset dp, ‖.‖ is the
�2-norm, and Centroid(b) and Conf(b) are respectively the centroid and the
confidence value of blob b. Since Conf(b) is between 0 and 1, to penalize larger
distance to the blob centroid, we avoid making this term zero by choosing γ > 1.

In eq. (2), the cost of moving a node by a specified offset is computed according
to the part detector’s response. If no detection is available for the part, a constant
cost is used. As a result, undetected parts are only adjusted by the kinematic
and temporal constraints.

Kinematic Term. The kinematic term defines the geometrical relationships
between parts:

V k
p,q(dp, dq) = |‖P (dp)− P (dq)‖ − μpq|, (5)

where (p, q) ∈ Ek, |.| is the absolute value operator and μpq is the mean dis-
tance between the parts p and q in the kinematic model. This term encodes the
kinematic dependency between parts. Since the positions are in 3D, it penalises
variations with respect to an average kinematic model.
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Table 1. Presentation of the dataset
(sequence IDs, number of frames, BPD
misdetection rates and room IDs)

ID #Frames #Pers. Misdet.(%) Room

S1 50 2 28 IR1
S2 100 2 29 IR2
S3 100 3 27 IR2
S4 110 3 32 IR2
S5 200 2 27 IR2
S6 200 2 47 IR1
S7 200 3 29 IR1

Table 2. Noisy initialization experiment.
Mean error in meter with std before and af-
ter optimization for right hip and all parts.

ID Initial Optim.

Right hip S1 1.02± 0.36 0.11 ± 0.05

All parts S1 1.86± 1.17 0.32 ± 0.31

Right hip S2 0.91± 0.36 0.16 ± 0.14

All parts S2 1.81± 1.21 0.31 ± 0.33

Right hip S3 0.94± 0.38 0.13 ± 0.13

All parts S3 1.87± 1.25 0.36 ± 0.38

Temporal Term. Temporal consistency of the body parts is enforced by

V t
p,q(dp, dq) = ‖P (dp)− P (dq)‖, (6)

where (p, q) ∈ Et. Here we assume that parts do not move very fast compared to
the acquisition rate of the camera. It would however be possible to incorporate
other types of dynamics if needed.

Optimization. Optimization is performed in several rounds by varying the pa-
rameters of the label set L(n, s) to cover a smaller search space at each iteration,
using the result of the previous optimization as new initialization. During op-
timization, the nodes in the first and last frames are kept constant using the
provided upper body poses for the persons in the first and last frames. The
FastPD algorithm [17] is used to perform the optimization in this paper.

3 Experiments

We evaluate our approach on seven RGBD sequences recorded in two different
interventional rooms using an Asus Xtion Pro Live camera. The sequences have
been recorded with a frame rate of 15fps and each sequence has a duration
between 3 and 13 seconds. Two to three persons are present per recording.
All sequences have been manually annotated to provide ground truth positions
for the skeleton body parts. Parts that are not visible due to occlusions have
been annotated too, using positions predicted by the annotator. This is an easy
task in case of self-occlusions that occur frequently for the arms. Annotation
during inter-person occlusions was also possible in these datasets because they
do not happen for long periods. The dataset is summarized in table 1. The BPD
misdetection rate is an indicator of the failure of the part detector. It indicates
the ratio of parts in the skeletons, for all persons and in the complete sequence,
that cannot be associated with any blob detection.

The proposed approach is evaluated using three experiments. The first exper-
iment compares the two 3D space sampling methods described in section 2.2.
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Fig. 4. Pose estimation error. (a) average error per sequence at initialization and after
optimization; (b) errors per part for sequence S2 (at initialization and after optimiza-
tion with and without robust error function) along with BPD misdetection rate.

The second experiment quantitatively evaluates the approach using the seven
annotated datasets. The third experiment assesses the impact of noise during
trajectory initialization by randomly drifting the parts away.

In all experiments, the discrete optimization step is iterated by shrinking the
sampling step size by 20% at each iteration until the radius of the 3D search space
covered by the labels becomes smaller than 5 centimeters. The initial radius of
the 3D search space is chosen to be 60 centimeters. The parameters used in all
experiments are θ = 0.4, λk = λt = 3, β = 5, α = 0.1, γ = 1.01. They have been
determined using grid search over a complete sequence (S1). Errors and positions
are expressed in meter. The accuracy is evaluated by computing the mean and
standard deviation of the 3D Euclidean distances between the optimized body
parts and the ground truth body parts in all frames.

Sampling Methods. The performance of the two 3D space sampling methods
was compared and evaluated on the sequences using different spatial step sizes
and iterative optimization as described above. The number of discrete labels
per direction was chosen so that the initial 3D space covered has a radius of
60 centimeters. These preliminary experiments yielded better results for the
dense sampling approach but no significant improvement for larger sets of labels.
Consequently, we choose to use the dense sampling L(1, 0.5) for the experiments
below. This corresponds to a set of 27 labels.

Quantitative Evaluation. The approach is evaluated on all annotated se-
quences. Results are displayed in Fig. 4(a). Mean and standard deviation of the
part localization errors are shown for each sequence before and after optimiza-
tion. The results are optimal for sequence S1 in the sense that the parameters
have been selected using grid search for this particular sequence. We see that
the optimization performs equally well on the other sequences using the same
parameters. In general, the mean error has decreased by over 30 percent and the
standard deviation (STD) is lowered. Even though sequences S4 and S6 have
the highest misdetection rate (see table 1), the optimization still reduces their
mean error and std significantly. This implies that the optimization has correctly
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guided the detected and undetected parts toward their correct positions by using
the image evidence and the kinematic and temporal constraints.

The mean error for each part is displayed in Fig. 4(b), for sequence S2, before
and after optimization along with the part misdetection ratio. The optimization
reduces the error considerably, especially for the parts with high misdetection
rates. The figure also compares the influence of the robust error function (ROEF)
used in the data term Vp. The ROEF largely reduces the error for parts with
high misdetection rates. The ROEF is steep in the interval [0, 2∗α] and is almost
flat in [4 ∗ α,∞]. Therefore, detections strongly attract close nodes but have a
negligible impact on far nodes. This is crucial to avoid misleading the undetected
parts, considering the high part misdetection rate in our multi-person scenarios.

Noise. The impact of noisy initialization is studied by adding random 3D dis-
placements to the initial part positions in all frames. The random displacements
are sampled from a uniform distribution with a magnitude of 50 centimeters. Two
cases are considered: noise is added to a single part (right hip) or to all parts at the
same time. Table 2 shows the mean and std of the error before and after optimiza-
tion. When noise is only added to the right hip, the results are reported for this
single part. Results are reported on sequences S1,S2 and S3 that have little BPD
noise to better identify the performance of our approach against initial noise. The
results show that the approach can recover from a large amount of noise.

4 Conclusions

In this paper, we propose an approach to track consistently the upper-body parts
of persons present in an interventional room over short RGBD sequences. Due to
the visual challenges posed by the interventional room, body part detectors often
fail to detect the body parts in individual frames. Consequently, we propose an
approach based on optimization over the complete set of frames to improve track-
ing. Our approach uses discrete optimization in an MRF framework. We propose
an energy function that incorporates both kinematic and temporal constraints
in addition to the image evidence. We evaluated this approach quantitatively on
seven manually-annotated RGBD sequences captured in two different interven-
tional rooms. In this data, the part tracking error is reduced in average by half.
The experiments also show robust results in the presence of multiple persons
and occlusions, even when the number of part misdetections is high.

Future work will focus on tracking the persons in longer sequences and on
improving the body part detectors. One approach in this direction will be to
train the detectors for the camera setup specific to this environment. We also
plan to incorporate an occlusion model and to use multiple RGBD cameras in
order to deal with challenging multi-person scenarios.
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Abstract. In computer-aided interventions, the visual feedback of the
doctor is vital. Enhancing the relevant object will help for the perception
of this feedback. In this paper, we present a learning-based labeling of
the surgical scene using a depth camera (comprised of RGB and depth
range sensors). The depth sensor is used for background extraction and
Random Forests are used for segmenting color images. The end result
is a labeled scene consisting of surgeon hands, surgical instruments and
background labels. We evaluated the method by conducting 10 simulated
surgeries with 5 clinicians and demonstrated that the approach provides
surgeons a dissected surgical scene, enhanced visualization, and upgraded
depth perception.

Keywords: visualization, medical augmented reality, machine learning,
multimodal image fusion, operating room.

1 Introduction

Humans boast a sophisticated cognitive system which takes approximately 15-
20 different psychological stimuli into account in order to perceive spatial re-
lationships between objects [1]. Nevertheless, in complex settings, such as the
operating room theatre, the cognitive system is challenged as clinicians are con-
fronted with information stemming from multiple sources when making surgical
decisions. Presenting all of the information in an effective manner is a difficult
task. Consequently, improving the understanding and perception of clinicians
towards their surgical environment becomes an important feedback for the suc-
cess of computer-assisted intervention applications (e.g. labeling the surgeons
action helps in workflow analysis [2], or improving surgeon visualization of fused
modalities helps successful patient outcomes).

This feedback can be provided by mixed and augmented reality (AR) visual-
izations for use in computer-assisted interventions. However, few of these systems
have been introduced for daily use into the operating room (OR). This may be
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the result of several factors: the systems are developed from a technical perspec-
tive, are rarely evaluated in the field, and/or lack consideration of the clinician
and the constraints of the OR [3].

As of late, the community did achieve success in deploying the first medi-
cal augmented reality technology (an AR mobile fluoroscope) within orthopedic
and trauma surgery rooms, and this recent introduction promises to support
surgeons in their understanding of the spatial relationships between anatomy,
implants and their surgical tools [4,5]. The output overlay of such a technology is
a uniform alpha-blending between the X-ray and optical images. The issue with
this blending type is that the understanding of the scene can be altered when the
field of view of the scene becomes highly cluttered (e.g. with surgical tools and
implants). It becomes increasingly difficult to rapidly recognize and differentiate
different structures in the fused image. Moreover, the clinicians depth perception
is altered as (i) the X-ray anatomy appears floating on top of the scene in the
optical image, (ii) hands and surgical instruments occlude the visualization, and
(iii) there is no correct ordering between structures in the fused images.

With these issues in mind, we note that all pixels in X-ray and optical images
do not have the same importance and contribution to the final blending (e.g. the
background is not important compared to the surgical tool). This observation
suggests extracting only relevant-based data according to pixels belonging to
background, tools and clinician hands [6]. The labeling of the surgical scene by
a precise segmentation and differentiation of its different parts allows a relevant
blending respecting the desired ordering of structures. A few attempts have been
endeavored, such as in [7]. In these early works, a Naive Bayes classification
approach based on color and radiodensity is applied to recognize the different
objects in X-ray and color images. Depending on the pair of pixels it belongs to,
each pixel is associated to a mixing value to create a relevant-based fused image.
While authors showed promising results, recognizing each object on their color
distribution is very challenging and not robust to changes in illumination.

Contribution: We introduce a surgical scene labeling paradigm based on ma-
chine learning and having as input both an optical and depth camera in a medical
AR setting. In our application, the depth is a useful hint for the segmentation and
ordering of hands and tools with respect to anatomy since the clinician performs
surgery over the patient. Thus, our visualization paradigm is founded on seg-
mentation consisting in modeling the background via depth data. We perform
in parallel color image segmentation via the state-of-the-art Random Forests.
To refine our segmentation method we use the GrabCut algorithm. Lastly, we
combine our background modeling and color segmentation in order to identify
the objects of interests in the color images and achieve successfully ordering of
structures. We conducted 10 simulated surgeries with 5 clinicians to showcase
our visualization results.
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2 Methods

A depth camera with an integrated optical camera (Asus Xtion Pro Live) is
affixed to a mobile C-arm fluoroscope above of the surgery workspace, giving
a general overview of clinician gestures and surgical tool manipulations. The
depth camera is positioned at its fabricated optimal visual focal length (70cm)
of the patient table. Since the camera has a visual view of the surgical scene it
is reasonable to assume that the hands and surgical instruments are on top of
or at the same level as the patient. The depth image is built-in registered to the
RGB camera therefore the image I and depth image D are defined on the same
domain Ω ∈ R

2 with I and D being defined respectively as I : σ −→ R
3 and

D : σ −→ R.

2.1 Identifying Objects of Interest in RGB-D

The objective is to dissect the surgical scene using the images from the RGB and
depth camera. We divide the scene into 3 classes C = {tool, hands, background}.
The surgeon actions via tools and hands are combined to form the foreground
class (closer to the camera). We use the depth image to create a background
model that will, for every frame, give a probability at a given pixel x, PD(f c|x)
of belonging to the background (f c, complement class of the foreground). With
the RGB images, the probabilities PI(c|x) of belonging to the tools, the sur-
geon hand or the background is obtained using Random Forests. Then, since
the modalities RGB and depth are independent (the color is not interfering on
the depth), we can decompose the joint distribution of a pixel belonging to
the foreground and to an object c PI,D(f, c|x) as

PI,D(f, c|x) = (1− PD(f c|x))PI(c|x) (1)

Background Extraction Using Depth Images. Background modeling has
been widely studied for performing background subtraction in color images in
tracking applications. In a fixed camera setup, the key idea is to learn a color
distribution for each pixel from a set of background images. As reported in [8],
several approaches have been proposed within the last decade for adaptive real-
time background subtraction based on running Gaussian averages, mixture mod-
els, kernel density estimation or the so-called Eigenbackground. In the present
work, we propose to learn a fixed background model using the depth image and
based solely on a set of acquired depth frames at the beginning of the surgery. A
fixed model is more suitable to our application since adaptive models presume
that foreground objects are moving fast, while in surgery, the object of interest
(hands or tools) may stay immobile the majority of the time. Formally, we con-
sider a set of N depth frames D accumulated at the beginning of the surgical
sequence, when no objects of interest are present in the scene. We consider the
background model at each pixel x ∈ Ω as a univariate gaussian model where the
mean and variance of this distribution are the values measured over the set of
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frames D at the pixel x ∈ Ω . Lastly, in the remaining images of the sequence
(objects of interests enter the scene), a background probability image is created
for each individual frame.

Segmentation by Random Forest of RGB Images. As reported in [9], ran-
dom forests have found a wide variety of applications in medical image analysis
such as anatomy localization, segmentation or lesion detection. As an ensemble
of decision trees, they provide piecewise approximations of any distribution in
high-dimensional space. In our case, we model the probability PI(c|x) x ∈ Ω
to belong to a class c ∈ C = {tool, hands, background}. The visual content of
a pixel x is defined by a feature vector X ∈ R

d. X encodes the mean intensity
value computed in d rectangular regions of different sizes in the neighborhood
of x in the color channels of the CIELab color space. Following a “divide” and
“conquer” strategy, each tree t, t ∈ {1, T }, first partitions the feature space
in a hierarchical fashion and then estimates the posterior probabilities in each
“cell” of this space. Given a training set of pixels from different color images
and their corresponding labels, a tree t aims at subdividing these data by using
axis-aligned splits in R

d so that consistent subsets are created in its “leaves” in
terms of their visual context and class information c. Each leaf of a tree models
“locally” the posterior probability P t

I (c|x), encoded as a class histogram, com-
puted from the set of observations reaching the leaf. At test time, the output of
the trees can be combined by using posterior averaging: PI(c|x) =

∑T
t=1 P

t
I (c|x).

Object Extraction. For each frame, the joint probability can be calculated
by multiplying the probability of belonging to the foreground PD(f |x) with the
probability of belonging to any class c PI(c|x). Finally, the class label ĉ of a pixel
is estimated by finding the class whose probability PI,D(f, c|x) is higher, such
as ĉ = argmaxc∈CPI,D(f, c|x).

Refinement Using GrabCut. Since the class estimations might be noisy, we
choose to refine the current extraction of interest objects by a segmentation
algorithm [10]. Known as GrabCut, this algorithm is an extension of the graph-
cut framework that uses an efficient iterative estimation and handles incomplete
labelling. GrabCut permits decreasing the labelling burden as it integrates 4
possible label classes: foreground, probably foreground, probably background,
background. For more details, we refer the reader to [10]. In our case, to refine
the extraction of tools in the frame, the pixels classified as tool by the Random
Forest are labelled as possible foreground, the rest is labelled as background.
GrabCut is then performed on the corresponding color frame using that labelling
to provide a finer extraction of the tool. The same step is renewed also for the
clinician’s actions. Even though this step requires additional computations, it
is fast and efficient, and permits to filter out some false positives or catch false
negatives that comes from missing depth values. At this step, the different parts
(background, clinician’s hands and tools) have been classified in the image. This
process is repeated for every frame of the video.
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2.2 Application Using an Augmented Reality Fluoroscopy

Identifying Object of Interest in X-ray. We consider an X-ray image J
that is co-registered to the color and depth images, with J : Ω −→ R. To improve
the alpha-blendings developed in [5,4], the segmentation in different clusters as
previously described is used. However, to further improve the visualization, we
also extract from the X-ray image J the objects of interest to the clinician (e.g.
bones, implants). This classification task will assign a label r ∈ {0, 1} for each
pixel x, where r = 1 if x belongs to a relevant structure or r = 0 if not. In
a probabilistic framework, we model the posterior distribution PJ (r|x) by us-
ing a random forest. Similarly, the visual context of each pixel x is described
by a feature vector X ∈ R

t, encoding mean radiodensity values computed in
t rectangular regions in its neighborhood. Once the forest has been trained by
using a set of annotated images, a new incoming X-ray can be labelled by using
r̂ = argmaxr∈{0,1}PJ(r|x). Once the labelling is done, we refine with Grab-
Cut the current segmentation. All the pixels classified as belonging as relevant
structure (r = 1) are labeled as possible foreground and the rest is labeled as
background.

Relevance-Based Image Fusion. The AR fluoroscopy technologies use an
uniform alpha-blending to overlay the color images and the X-ray where the
blending coefficient α is constant for all pixels. In this paper, we introduce a
pixel dependant α parameter that changes values according to its belonging to
an object of interest in the color image or in the X-ray image. Our new mixing
paradigm is:

Ioverlay(x) = α(x)I(x) + (1− α(x))J ′(x) (2)

where J ′ is the 3-channels grayscale image corresponding to J such J ′ = [J, J, J ].
Note that those values can be changed on the fly according to the will of the
clinician, the type of clinician and also the different phases of the surgery work-
flow. For example, the value for the hands and tools can be decreased to allow
the clinician to see the anatomy on the X-ray when performing distal locking on
an intramedullary nail.

3 Experiments and Results

3.1 Evaluation of the Objects Identification

To evaluate the object identification algorithm for color images, 10 different or-
thopedic surgery simulations using a surgical phantom have been performed.
Each simulation involves various clinician tasks and tools (clamps, screwdrivers,
hammer, radiolucent drill, and scalpel). Each surgical simulation acquisition con-
sisted of an average of 1000 frames. For the background modelling, the first 30
images (∼ 1 second) of each sequence have been used to compute the background
model.
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Object Identification Using Color Images. In each of the 10 sequences, 4
video frames have been annotated. To describe the visual context of each pixel in
the color image, 50 context features are extracted per CIElab channel. To tackle
the task of object identification, a random forest classifier consisting in 20 trees of
depth 15 is trained. After the first identification step, the GrabCut algorithm is
executed using 2 iterations to refine the classifier results. The medium- to larger-
sized surgical instruments are segmented very well. Minor segmentation errors
occur specifically for the tip of the clamp allowing us to conclude that the seg-
mentation algorithm needs further improvement to handle thin structures. The
clinician’s hands are globally well segmented over the various examples however
we observe in some cases a wrong segmentation for the fingers primarily due to an
aggressive GrabCut algorithm step that withdraws false positives, but also con-
siders as background the pixels where the probability classes are too ambiguous
to be considered as possible foreground. For quantitative results, we measure the
accuracy of the classification into a class c thanks to the precision P and recallR
measures over the annotated frames. We also calculate the DICE scoreD, a simi-
larity measure between the segmented class pixels and the annotated class pixels.
The precision is over 0.8 for the hand, foreground and background classes, with
a high score of 0.98 for the background, signifying that we have a good classifica-
tion of most of the pixels belonging to those classes. Regarding the surgical tools,
we achieve average precision with a value of 0.53 and a high standard deviation of
0.3. However, this global precision value can be decomposed to tool sizes as seen in
Figure 3. As previously mentioned, medium to larger sized tools are generally well
segmented. After further investigating our algorithm, the tools precision results
can be explained by the amount of images used for the training of the Random
Forest. Over the 38 training frames, each surgical tool appears in 5 images maxi-
mum and globally the presence of smaller tools in the training frames were much
lower than the medium to larger sized tools. Resolving these issues will undoubt-
edly increase the precision values. Lastly, the recall values are really good for hand,
foreground and background classes with values over 0.95, meaning that almost ev-
ery annotated pixels have been recovered in those classes. The recall is good also
for the surgical tool class. As a final note, a a clinician had their watch on and
due to its black color, this structure was classified as a tool. In surgery and under
sterile conditions, this issue would be resolved as the watch would be withdrawn.
The computation time is 1.5 seconds per frame.

3.2 Fusion with X-ray Images

For the classification, 20 X-ray shots have been annotated. 50 context features
are extracted by pixel, and the classifier consists in a random forest of 20 trees
with depth 15. Then, the GrabCut algorithm is performed using 2 iterations to
refine the segmentation of the object of interests.

Evaluation of Identification in X-ray Images. We use the same metrics
(precision and recall) as with the RGB images. The recall and precision of both
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background and foreground are close to 1, showing a good performance of the
segmentation algorithm.

Evaluation of Fusion Results. The visualization results of the fused
X-ray and RGB images are depicted in Figure 1. A qualitative evaluation of
the relevance-based blending visualization compared to the uniform blending
is performed. In total, 5 clinicians (3 experts surgeons and 2 last year medical
students) provide their feedback using the traditional 5-pt Likert scale question-
naire (1- strongly disagree, 2-disagree, 3-neutral, 4-agree, and 5-strongly agree).
Participants strongly agreed (4.6 ± 0.5) that the depth ordering is resolved using
our approach ( e.g. hands/tools first followed by patient/X-ray). Concerning the
visibility of the instrument tip or the implants in X-ray, the feedback is respec-
tively neutral (3.0 ± 1.4) and slightly positive (3.4 ± 1.1). Participants agreed

Fig. 1. Uniform and content-based visualizations over 6 frames
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(4.0 ± 1.4) that the overall perception of the visualization is improved. Finally,
all participants strongly agreed (4.6 ± 0.9) on the fact that they would prefer
our new visualization compared to classical alpha blending found in the majority
of registration algorithms in our community.

4 Conclusion

In this paper, we proposed a learning-based surgical scene labeling allowing
the improved understanding and perception of various tasks when compared to
the traditional alpha blending schemes. Our algorithm can detect the position
and shape of the surgeon hands as well as the used tools. Our results are very
promising for almost all objects, except smaller tools, but a more extended train-
ing phase should resolve this issue. We have demonstrated the applicability of
our visualization framework in the context of existing medical augmented real-
ity technologies. In future, our method can be extended to further applications
such as 3D tool template matching, tool tracking and workflow analysis. Lastly,
together with the IPCAI community, we hope to catalyze discussions on possible
ways in improving visualization schemes that enable algorithms to ”learn” what
the surgeon wants to see during the surgical workflow phases.
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Abstract. Minimally invasive surgery is an important breakthrough in
the domain of medicine. Not only does it improve the quality of surgery,
but the underlying digitization also provides invaluable information that
opens up many possibilities for teaching, assistance during difficult cases,
and quality evaluation. For instance, with a well-organized database,
professors are one click away from showing and comparing various sur-
gical procedures in their classes; surgeons can also retrieve and observe
a video segment of a specific surgical task performed by another surgeon
in varying conditions. However, to the best of our knowledge, database
organization is done manually by experts. Considering the large num-
ber of surgical videos recorded, manual annotation is a tedious task. In
this paper, we take the first step towards automatic surgical database
organization by introducing the laparoscopic video classification prob-
lem, which consists of automatically identifying the type of abdominal
surgery performed in a video. In spite of the visual challenges of such
videos, such as blank frames, rapid movement, and sometimes incom-
plete recording, we show that we can rely on visual features alone to
classify the videos with high accuracy. We use kernel Support Vector
Machines (SVMs) for this classification task and compare their perfor-
mance on different types of visual features. We also show that the result
can be improved by combining the visual features using Multiple Kernel
Learning approach. The classification pipeline demonstrates a classifica-
tion accuracy of 91.39% on a database of 151 abdominal videos totaling
over 200 hours of 8 different kinds of surgeries performed by 10 surgeons.

Keywords: Minimally invasive surgery, laparoscopic video classifica-
tion, support vector machine, multiple kernel learning.

1 Introduction

The domain of medicine has been radically improved by concurrent develop-
ments in technology. One of the most important innovations in medicine is min-
imally invasive surgery (MIS). Introducing a camera to the procedure makes
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it easy to record performed actions during the surgery in close-up view. These
recordings result in a rich video database with invaluable information about the
execution of surgeries in various configurations. Subsequently, there is a high
interest in incorporating this database into many applications. Here, we focus
on a database of abdominal surgical videos. With an automatic database organi-
zation, laparoscopic video retrieval systems can allow fellow surgeons to observe
different techniques for performing specific surgical tasks (e.g. intestinal stitch-
ing) in different surgical and/or patient conditions. For example, WebSurg [1],
a website that enables the users to browse various surgical videos, provides an
intuitive navigation system that permits the selection of the videos based on mul-
tiple categories, such as the type of surgery and the operated organ. It also offers
an intra-video navigation that allows users (e.g. surgeons) to go directly to the
surgical step that they want to observe in detail. All the videos in such systems
are typically annotated manually during the surgeries by an expert observer.
Yet, the rapid growth in the amount of the data overwhelms the feasibility of
manual annotation and thus demands a fully automatic system. In this paper,
as the first step towards a fully automatic system, we present an approach to
automatically classify laparoscopic videos into multiple types of surgeries.

Automatic laparoscopic video classification is not a trivial problem because
of various challenges. Visual challenges, such as the presence of smoke, specular
reflection, motion blur, and impurity on the lens are inevitable because they typ-
ically appear as the direct consequence of the surgical procedure. Furthermore,
the laparoscopic videos look very similar to one another since all of them are
from abdominal surgeries. In addition to these challenges, the system also has
to deal with massive amounts of data. For example, training centers, such as the
IRCAD, record about 70 surgeries per month. In this paper, we use 151 laparo-
scopic videos of 8 different kinds of surgeries (see Table 1). In terms of duration,
most of the laparoscopic videos are over an hour long on average, accumulating
to more than 14 million frames in our dataset.

Due to the nature of MIS, the camera is often taken out of the patient’s body,
typically due to impurity on the lens. Undeniably, this part of the recording
gives irrelevant, if not misleading, information about the surgery. Moreover, the
action of taking the camera out of the body is recurrent, so the amount of
irrelevant frames can build up to a very high number and impede the meaningful
representation of the video. In addition, the videos often contain blank frames
when the camera is disconnected. Thus, a notion of frame relevance needs to be
incorporated in the process to reject such video frames. In a recent work, Atasoy
et. al. [2] presented an approach to label informative frames for gastro-intestinal
endoscopy. They performed K-means clustering on the energy histogram from
the frequency domain and asked an expert to label the clusters. In more recent
work [3], a supervised method using color-based features to identify relevant
frames from laparoscopic videos is presented. However, both of these methods
use supervised approaches to solve the problem. We argue that this problem
can be tackled with a simpler approach and propose a simple RGB histogram
thresholding to reject irrelevant frames before the feature extraction process.
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In various visual-based classification tasks, many features have been repeat-
edly explored, such as color information, image gradients, and optical flow. In
this paper, we focus on several of them which we see as most suitable to the
characteristics of our data. Quite recently, the bag-of-visual-words (BoVW) ap-
proach has been used in most of whole-image categorization tasks and video
classification problems. Zapella et. al. [4] used BoVW to classify three surgical
gestures from short sequences (∼6-10 sec. per sequence) performed on suturing
pods. The success of BoVW approach in various tasks inspires us to apply the
same approach to solve laparoscopic video classification.

Along with the growth in computer-assisted intervention, the amount of work
directed to the processing of surgical videos is also increasing. However, most
works are directed to the recognition of surgical tasks in one kind of surgery
[5,6,7] and to the best of our knowledge, this paper is the first work to address
the laparoscopic video classification problem. Blum et. al. [6] presented a method
combining the visual information from laparoscopic videos and the signal from
surgical tools to train the classification model for segmenting cholecystectomy
surgical videos. Just by using the visual information on testing, they were able
to segment 7 videos of one type of abdominal surgery. More recently, Lalys et. al.
[7] proposed a framework that extracts multiple features to segment high-level
surgical tasks from video images of cataract surgeries. The features are catego-
rized into four different groups: shape, color, texture, and mixed information. It
is shown that the combination of the extracted features can carry out the surgi-
cal task segmentation on 20 cataract surgery videos. In this paper, we propose
a state-of-the-art pipeline to classify laparoscopic videos using visual features
only.

To carry out the classification, we use non-linear kernel Support Vector Ma-
chines (SVMs). In a recent work on surgical gesture classification, Zapella et. al.
[4] proposed a system that combines visual and kinematic features using multiple
kernel learning (MKL). It was shown that the classification over the combina-
tion of features gave better results compared to the classifications over individual
features. These results motivated us to combine our features using MKL.

In summary, the contribution of this paper is three-fold: (1) we introduce
the problem of laparoscopic video classification; this is the first milestone in
surgical video database organization; (2) we investigate various visual features
to propose a state-of-the-art pipeline based on MKL to automatically classify
laparoscopic videos; (3) we present the classification results over a large database
of abdominal surgeries.

2 Automatic Laparoscopic Video Classification

In this section, the laparoscopic video classification pipeline is described. It con-
sists of four main steps: frame rejection, feature extraction, BoVW histogram
representation, and MKL-based classification.
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2.1 Frame Rejection

The frame rejection is carried out by exploiting the properties of the RGB his-
togram. It is observed that when the camera is inside the patient’s abdomen,
the red color channel is particularly more dominant compared to the other color
channels. With that observation, a scalar value will then be computed to repre-
sent each color channel histogram in such a way that when the red scalar value
is in a certain range, the frame will be accepted and later on processed. Three
thresholds are set to perform the task: the minimum threshold for the level of
“redness”, and the lower and upper bounds of the brightness level. These thresh-
olds are set empirically based on our preliminary observations on a few videos.

2.2 Feature Extraction

We extract several features that can be categorized into three groups: color
information, salient points and image gradients.

Color Information. We choose color histograms in particular since they offer a
simple solution as image descriptors. Especially in laparoscopic videos, there ex-
ists significant contrast between human organs, surgical tools, and other objects
which contain discriminative information for surgery classification. Here, we ex-
tract two separate histograms as our features: Red-Green-Blue (RGB) (3 × 16
bins) from RGB space and Hue-Saturation (HS) (2× 36 bins) from HSV space.

Salient Points. In the topic of salient point detection, scale-invariant feature
transform (SIFT) [8] is undeniably the most successful keypoint detectors in the
computer vision community. The scale and rotation invariant characteristics of
the SIFT descriptor make it very robust in performing image matching tasks.
In addition, we also observed that SIFT could detect similar salient points from
video frames of the same surgery. Considering these facts, we include the SIFT
descriptor in our feature extraction process.

Image Gradients. Here, we focus on Histogram of Gradients (HOG) [9]. It
is similar to SIFT since they both compute image gradients. However, SIFT
computes the gradient on salient points, while HOG counts occurrences of gra-
dient orientation in a dense grid of uniformly spaced cells on the image and
normalizes them based on overlapping local block contrast. We are particularly
interested in this feature since SIFT only captures salient points on the frames
which might not include all the important information. A global descriptor, like
HOG, is required to extract all the possible information from the video frames.
In our method, the video frames are divided into 16 cells; a block is defined to
contain 2 × 2 cells and a 8-bin histogram of local gradients is computed from
every block; thus a frame is represented with a HOG feature vector of dimension
288.

2.3 Bag-of-Visual-Word Approach

In this paper, we propose to use the bag-of-visual-words (BoVW) model to rep-
resent the laparoscopic videos where every feature (mentioned in Subsection 2.2)
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has its own dictionary containing visual words. The idea of BoVW in our case
is to treat the video as a histogram of occurrence counts of the visual words.
Various algorithms have been explored to learn the best dictionary, such as
K-means clustering and K-SVD [10]. During our preliminary experiments, the
results showed that BoVW with K-means gives the best result in terms of clas-
sification accuracy. In K-means clustering, every feature vector f ∈ R

n will be
expressed in a sparse representation s ∈ R

K that is computed using the learnt
dictionary D ∈ R

n×K by solving

s∗ = argmin
s

‖f −Ds‖2 s.t. ‖s‖0 = 1, ‖s‖1 = 1, (1)

where ‖.‖p computes the lp-norm of the vector. Ultimately for all features, a

video is represented by a normalized histogram x =
∑N

i=1 si

‖∑N
i=1 si‖

2

.

2.4 Classification

Since laparoscopic video classification is a multi-class problem, we are using a
one-against-all SVM. With training instances X = [x1, . . . ,xM ], where xi is a
K-dimensional input vector and yi ∈ {−1,+1} is its corresponding class label,
a SVM finds the linear discriminant with the maximum margin which can be
expressed as

f (x) =

N∑
i=1

αiyik(xi,x) + b, (2)

where α is the Langrangian multiplier, b is the bias term of the separating
hyperplane, and k (·, ·) is the kernel function.

To combine all features, we build a single classification model by using Multi-
ple Kernel Learning (MKL) [11]. Given base kernels {km (·, ·)}Pm=1 for P features,
the goal of MKL is to compute an optimal combination

kη (x̃i, x̃j) = fη

({
km
(
xm
i ,xm

j

)}P
m=1

| η
)
, (3)

where fη is the function that combines the base kernels and is parameterized by

η, and x̃i = {xm
i }Pm=1 are the data instances containing all feature representa-

tions, so that xm
i ∈ R

Km is the i-th data for feature m.
In this paper, we use the VLFeat implementation [12] to compute the kernel

SVMs combined with the generalization of MKL approaches (GMKL) proposed
by Varma et. al. [13]. The GMKL is particularly interesting because it can learn
every possible combination that yields a positive definite kernel, instead of the
traditional MKL approaches that focus on learning a linear combination of the
base kernels.
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Table 1. Experimental setup: (a) list of the abdominal surgery classes in our dataset
along with their corresponding number of videos and average video length (±std) in
minutes; and (b) the configuration of dictionary learning for every feature

Surgery # Vid Length (min.)

Sigmoidectomy 18 106± 44

Eventration 21 79± 57

Bypass 21 120± 37

Hernia 34 53± 29

Cholecystectomy 25 68 + 42

Nissen Gerd 17 80± 31

Adrenalectomy 7 117± 43

Sleeve Gastrectomy 8 89± 15

Feature Dim. # Words

SIFT 128
500, 1K, 1.5K

HOG 288

RGB 48
100, 300, 500

HS 72

(a) (b)

3 Experimental Results

To test our method, we conducted an experiment with 8 different types of surg-
eries, consisting of 151 laparoscopic videos by 10 surgeons with a frame rate
of 25 frames per second (fps). The detail of our dataset is shown in Table 1-a.
Here, we sampled the videos at 1 fps due to redundant information. To build
the dictionaries for each feature, we took one video randomly from every class.
Since the SIFT feature gives many feature vectors for one frame while the other
features (i.e. HOG, RGB, and HS) give only one, we sampled 750 frames per
video (i.e. one frame every ∼6-10 seconds) to get the training data for SIFT
dictionary learning and used all frames to build the other dictionaries. We built
3 overcomplete dictionaries for each feature with different numbers of words, as
shown in Table 1-b.

Later, we compute our histogram representations of the videos for all features
and build classification models using SVM with the histogram intersection (HI)
and chi-square (χ2) kernels. All classification models are evaluated using leave-
one-out cross-validation, i.e. one video for testing and the rest for training.

Effect of Frame Rejection. In this experiment, we trained 6 dictionaries
for the SIFT feature. Three (i.e. 500-, 1K-, and 1.5K-word) of them incorporate
frame rejection and the rest do not. From Fig. 1-a, it can be seen that with frame
rejection, the number of frames that have to be processed decreases for more than
1K frames in average, which is equivalent to over 15 minutes of recording. The
frame rejection mechanism falsely identified frames as outside of the body when
they are too dark or too bright (bottom row of Fig. 1-c) and falsely identified
frames as inside of the body when the image satisfies the red tendency (bottom-
right of Fig. 1-d). However, the false negatives do not pose a problem since frames
with low or high brightness do not contain important information and the false
positives happen rarely thus will not hurt the performance of the classifiers. We
can see in Fig. 1-b that the performance of classification with frame rejection
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(a)

(b)

(c)

(d)

Fig. 1. Frame rejection results: (a) comparison of the average number of processed
frames for every surgery type; (b) comparison of the classifier accuracies, in percent
(%), with various rejection-kernel-word configurations; (c,d) frames that are classified
as (c) irrelevant and (d) relevant

outperforms the performance without frame rejection. The smallest and biggest
accuracy gaps (2.7% and 8.7%) are respectively given by the configuration of
1.5k words with HI kernel and the configuration of 1k words with χ2 kernel.
In all classification configurations, the frame rejection mechanism increases the
accuracy of the system, thus is used for the rest of the experiments.

Performance on Different Features. The accuracy of various classification
model configurations are shown in Fig. 2-a and confusion matrices corresponding
to the best word-kernel configuration for each feature independently are shown in
Fig. 2-(b-e). It can be seen that RGB and HS perform significantly worse than
SIFT and HOG. Despite their ability to capture the color information of the
video frames, RGB and HS fail to classify the videos correctly due to the highly
similar color information in all the videos. As shown in the confusion matrices of
the best case for classification using RGB and HS, the classification is scattered
all over the classes. However, we can say that they still contain discriminative
information since the accuracies from HS and RGB are better than chance.

In contrast, SIFT and HOG show good results with 87.41% accuracy in their
best word-kernel configuration. These features perform really well because they
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Feature # Words
Kernel

Lin χ2 HI

RGB
100 33.11 33.11 23.84
300 27.15 41.72 35.76
500 28.47 37.08 37.08

HS
100 26.49 35.09 34.43
300 33.77 45.03 37.08
500 30.46 37.74 35.76

SIFT
500 64,23 85.43 85.43
1K 64.23 86.75 87.41
1.5K 64.23 84.1 84.10

HOG
500 71.52 84.76 80.79
1K 74.83 87.41 86.09
1.5K 70.19 84.76 82.11
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Fig. 2. Classification results: (a) accuracies, in percent (%), using visual features with
various word-kernel configurations; (b-e) confusion matrices from the word-kernel con-
figurations that give the highest accuracy for (b) RGB, (c) HS, (d) SIFT, and (e) HOG.
The numbers on the diagonal indicate the recall for each class.

capture more essential and higher level information, which gives a better repre-
sentation of the video frames compared to color histograms.

From the confusion matrices, it can also be seen that the classification ac-
curacies for adrenalectomy and sleeve gastrectomy are lower compared to other
classes. This is expected due to the imbalanced dataset.

Effect of Kernel and Number of Words. In Fig. 2-a, it is shown that
the non-linear kernel performs significantly better than the linear one, which
confirms the claim stated in [14]. More specifically, SIFT performs the best
when combined with HI kernel, while the other features with χ2 kernel. We also
investigated the effect of number of words with respect to the performance of
classification. It is obvious that there is an optimal number of words for every
feature which is the middle value in our number of word ranges. Intuitively, if
the dictionary size is too small, the histogram loses its discriminative power; if
the dictionary size is too large, the histograms of videos from the same surgery
type will not match.

Performance of MKL. In this experiment, we tested two feature combina-
tions: SIFT-HOG and all four features. We constructed this scenario to see the
effect of incorporating color information into SIFT and HOG features, which
individually perform significantly better than the color histograms. For every
feature, we took the kernels from the classification configurations that give the
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Combination Accuracy

SIFT-HOG 89.40

All features 91.39
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Fig. 3. MKL classification results: (a) accuracy, in percent (%), of the classifiers; and
(b,c) confusion matrices from classification using (b) SIFT-HOG combination and (c)
all-feature combination

highest accuracy, as shown in bold in Fig. 2-a. Later, we input them as the base
kernels for the MKL approach.
By using the combination of SIFT and HOG features, the average accuracy is
increased to 89.4% and the recall for every class is more uniformly spread out,
i.e. all classes have above 80% recall. With the combination of all features, the
accuracy is increased by almost 2%. This may appear surprising since, individ-
ually, the color histograms did not perform up to par. However, as previously
stated, their performance is still better than chance, so they contain discrimina-
tive information that complement the SIFT and HOG features.

4 Conclusions

In this paper, we introduced the surgical video classification problem, which
consists of automatically identifying the type of a surgery solely based on the
endoscopic video. We proposed a state-of-the-art classification pipeline based on
Multiple Kernel Learning (MKL) and have shown that it can solve the problem
with high accuracy in spite of the various visual challenges present in the videos.
By combining all visual features using MKL, we demonstrated that an accuracy
of 91.39% can be reached on a dataset of 151 videos from 8 classes of abdominal
surgery.

These surgeries were performed by 10 different surgeons from the same surgi-
cal department. Further work should evaluate how the approach scales to larger
datasets by including surgeries from different hospitals. For classification, it
would also be particularly interesting to combine the video data with additional
signals that can be recorded from the surgical equipment.
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Abstract. In this paper, we present a novel method dealing with the
identification of boundary conditions of a deformable organ, a partic-
ularly important step for the creation of patient-specific biomechani-
cal models of the anatomy. As an input, the method requires a set of
scans acquired in different body positions. Using constraint-based finite
element simulation, the method registers the two data sets by solving
an optimization problem minimizing the energy of the deformable body
while satisfying the constraints located on the surface of the registered
organ. Once the equilibrium of the simulation is attained (i.e. the organ
registration is computed), the surface forces needed to satisfy the con-
straints provide a reliable estimation of location, direction and magnitude
of boundary conditions applied to the object in the deformed position.
The method is evaluated on two abdominal CT scans of a pig acquired
in flank and supine positions. We demonstrate that while computing a
physically admissible registration of the liver, the resulting constraint
forces applied to the surface of the liver strongly correlate with the loca-
tion of the anatomical boundary conditions (such as contacts with bones
and other organs) that are visually identified in the CT images.

1 Introduction

In the last decade the role of computer medical simulation in surgical training,
pre-operative planning and intra-operative guidance has increased considerably.
A key factor to the successful use of numerical simulation in medicine is the
ability to reproduce the complex behavior of anatomical structures. For soft tis-
sues, the models are usually based on elasticity theory, which provides powerful
means of modeling the behavior of soft tissues often displaying complex charac-
teristics such as incompressibility or viscoelasticity. Since the equations derived
in the theory of elasticity can be solved analytically only for extremely simple
scenarios, numerical methods such as the finite element (FE) method must be
employed to solve the problem over a discretized domain.

While an interesting body of research exists regarding domain discretization
and appropriate formulation of the physical behavior of living tissues, much
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less attention has been paid to correct modeling of boundary conditions which
influence the model significantly, as they directly determine the particular solu-
tion to the overall physical problem. In the domain of patient-specific medical
simulations, an attempt to fill this gap becomes really challenging: while the ge-
ometrical and physical properties of the living tissues can be obtained either via
medical imaging or rheology experiments, it is usually very difficult to obtain re-
liable data describing the interactions between different regions of living tissues,
since these can be given by a complex combination of bilateral constraints (rep-
resented for example by ligaments and connective tissues) or unilateral contacts
induced by tissue motion (such as respiratory motion, application of external
forces or displacements of organs during the surgery).

In this paper, we focus on identification of boundary conditions from medical
image data. We propose a method which, given two (or more) different config-
urations of the same three-dimensional deformable structure, is capable of (i)
registering the two volumes using a physically-admissible transformation, (ii)
providing a set of surface forces which correspond to the boundary conditions of
the object in the target configurations. Although our method requires a construc-
tion of a FE model (usually obtained via segmentation and mesh generation), to
our best knowledge, it is the first technique allowing for automatic identification
of boundary conditions from image data.

2 Related Work

The identification of boundary conditions (BCs) has been studied in the area
of structural analysis and computer-aided design. For example, in [1] BCs are
identified using a boundary stiffness matrix which is obtained as a solution of
characteristic equations formulated for different modes of the object. The char-
acteristic equations are non-linear and their number corresponds to the number
of boundary degrees of freedom. Nevertheless, it is supposed that the object is
modeled using linear elasticity and the BCs also behave linearly. In [2], accurate
determination of BCs including non-linear effects as friction and slip is presented
for 2D circular plate. In [3], the non-linear effects are also taken into account in a
method based on non-linear normal modes allowing also object with non-linear
response; the method is validated using a simple beam. While these methods
allow for a very accurate identification of BCs, they can be employed only in the
scenario where the objects have a simple and well-defined boundaries. Although
the non-linear effects are considered, the type of interactions is usually limited
to bilateral constraints with micro-slip. However, this is usually not the case in
medical simulations where objects having complex boundaries are involved in
different types of interactions including both bilateral and unilateral constraints
with and without friction (for example simulatio of abdominal organs).

In the case of soft-tissues, the currently used imaging modalities such as CT,
MRI and ultrasound allows for reconstruction of the geometry of the bodies in
the scanned volume. However, in order to obtain more information about the
motion of the tissues, at least two scans acquired in two different configurations
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are needed. Nevertheless, in this case, a registration has to be performed in or-
der to find a transformation between the two configurations. In the following we
briefly survey relevant methods presented in the area of deformable registration,
usually in context of preoperative planning and intra-operative guidance [4]. A
3D registration of intra-operative MR brain images is proposed in [5]: the model
is based on linear elasticity discretized by the finite element method. The method
is driven by active surface matching which deforms the boundary of brain in one
acquired image towards the boundary in the following scan. The image warping
based on finite element method is developed in [6]. The hyperelastic formula-
tion is employed and the warping is applied in several domains, e.g. to measure
strain in coronal artery or quantify morphology changes in mouse brain. A multi-
organ deformable image registration based on mechanical model simulated with
finite elements is developed in [7]. The model driven by surface deformation and
displacements of landmarks is used to analyze and predict the motion of abdom-
inal organ during respiration. Minimization of landmark displacements is used
to drive the deformable registration of mouse brain in [8]: several regularization
terms based on finite element formulation are compared including diffusion, lin-
ear and non-linear elasticity. In [9], the BCs are estimated by solving an inverse
problem optimizing for different explicitly chosen factors causing the brain shift.
While in this scenario, different a priori chosen distributions of various BCs are
evaluated as independent model solutions using the cost function, our method
is based on a direct solution of the constrained system where no assumptions
about the type and distribution of the BCs are made.

In [10], a model-based method using iterative closest point was presented for
registration of muscular structures. In [11] preoperative 3D CT images are reg-
istered to either 3D or 2D intra-operative scans. While the registration is driven
by optimization of similarity metrics (squared differences, mutual information
and correlation ratio are considered), the mechanical model based on linear elas-
ticity is used to regularize the solution. The method is tested on breast phantom.
Multi-modality registration for image-guided prostate intervention is described
in [12]: in the preoperative phase, a finite element patient specific model is built
using the preoperative MR data and a set of deformations corresponding to differ-
ent BCs and randomly sampled material properties are computed and evaluated
statistically using PCA.

Although the referenced methods often provide accurate and physically-
admissible transformation betweens the registered domains, to our best knowl-
edge, none of the methods allows for reliable identification of BCs without any
a priori assumptions about the BC type and placement.

3 Methodology

Our approach is based on the technique presented in [13] where the method is
used to compute a model-based registration between pre-operative data acquired
by 3D CT and intraoperative 2D MRI slices. The main contribution of this paper
is a generalization of the method so that given a discrete representation of the
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Fig. 1. The control points (grey) are as-
sociated to the closest point of the cu-
bic interpolation (blue) of the FE surface
(black). Constraints (red) are define along
the direction of the the segment connect-
ing the two models (green).

Fig. 2. Binding process (left) and con-
straint force evaluation (right) to regis-
ter a deformable object (blue) with the
control surface (brown). The Gauss-Seidel
algorithm iteratively activates (red) or de-
activates (gray) the constraints according
to the actual respective violations.

registered object in both configurations, the method provides automatically i)
physically-valid registration of the object in the two different configurations and
ii) identification of bilateral and unilateral boundary conditions applied to the
object in the target configuration.

3.1 Binding Process and Constraints Definitions

The method takes on one side the triangulated surface of the target and on
the other side the FE mesh in a different position. The iterative closest point
(ICP) method [14] is used to associate the set of control point (from the target
surface) with their respective closest points on the surface of the simulated FE.
The method is improved by using a cubic Bézier interpolation of the FE surface
as described in [15]. It provides a smooth description of the triangulation allow-
ing for a continuous sliding of the constraints between edges and triangles (see
Fig. 1), which helps to stabilize the registration. The barycentric coordinates of
the closest point on the cubic interpolation of the triangles are determined with
the Newton-Raphson algorithm.

At each time step, the control points qi are associated to their respective
closest points qs on the Bézier path. For each point qs, the normalns is evaluated
on the Bézier interpolation. A set of bilateral constraints is defined so that
the constraints be satisfied for qi located on the tangential plane given by ns.
This formulation allows the control points to “slide” on the surface of the FE
mesh in order to stabilize around the configuration minimizing the energy and
satisfying the constraints. Since the proximity-based information is formulated
in the contact space, it has to be mapped to the standard 3D space of the FE
mesh via a mapping matrix J linking the positions in the contacts space to the
3D space of the object (see [16]). For the violation of the constraints δ it holds:

δ = dot(qi − Jqs,nc). (1)
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3.2 Constraint-Based Simulation

The deformation of the tissue is modeled with linear tetrahedral finite elements
employing the co-rotational formulation [17]. While handling large displacements
properly, it is restricted to small strains. Constraints are imposed using the
Lagrange multipliers. Denoting the time as t, the governing differential equation
in a quasi-static scenario is given by:

f(qt) + f+ JTλ = 0 (2)

where f are external forces (such as gravity), f(qt) are the internal volume forces
at a given position q. JT and λ are respectively the Jacobian of the constraints
and the force used to drive the registration. This equation is solved with the
Schur complement method (see [16] for details). It involves mainly two steps: i)
during the free motion, a step of the simulation is computed without imposing
any constraints. This operation requires the solution of a sparse linear system
of equations which is done using conjugate gradients. ii) During the corrective
motion, the control points are binded to the closest surface and constraint forces
are evaluated to correct the free motion. The constraint forces are obtained by
solving a constrained problem W λ + δ = 0 where W is the Delassus opera-
tor [16], which defines the coupling of the constraints given by the domain of
the deformable body. The resulting contact forces λ are obtained with an iter-
ative approach based on the Gauss-Seidel method where constraints are treated
sequentially one at the time. Depending on the violation of the constraints, each
equation is either activated with a non-zero force or deactivated if the violation
is zero (see Fig. 2). As a result, only the constraints necessary to suppress the
violation are active, and λ minimizes the energy required to cancel the con-
straint violation δ. Therefore, when comparing to the penalty-based methods,
the actual approach employing the compliance (encoded in W) minimizes the
forces needed to impose the constraints, which in turn leads to a more accurate
identification of the boundary conditions.

4 Results

We now evaluate our method in several scenarios: first, we investigate two aca-
demic examples to demonstrate the efficiency and the accuracy of the method.
In the second part of the section we apply the method to a CT data of a female
pig liver in other to show an important match between the predicted surface
loads and real boundary conditions induced by the surrounding tissues.

4.1 Accuracy and Efficiency of the Method

For the sake of validation, the method is evaluated using data generated by a
simulation (denoted as direct) which takes an initial configuration of a simple-
shaped beam object and computes a target configuration induced by gravity and
interaction with other solid bodies. Beside the shape of the deformed object in
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Fig. 3. Deformable beam attached at both extremities under gravity: (a) von Mises
stress in the target configuration, (b) surface constraint forces corresponding to tar-
get configuration (red) and registered configuration (green). (c) box-and-whisker plot
showing the statistics of the von Mises stress error.

target configuration, the constraint forces computed by the direct simulation
are stored for the validation step. Next, the initial configuration of the beam is
registered to the target configuration using the method presented in section 3.
It should be emphasized that in this step, no information about the applied
forces and loads, boundary conditions and other solid objects involved in the
direct simulation is used and the only input of the procedure is the geometric
representation of the beam in initial and target configurations and its physical
parameters used in the direct simulation. As soon as the dynamic equilibrium
is achieved, the resulting registered configuration is stored together with the
constraint forces.

The validation consists of comparing (i) von Mises stress computed in the
nodes of the mesh and (ii) surface constraint forces obtained in the target con-
figuration and registered configuration. While the forces are compared visually,
the von Mises stress is evaluated for node n using a relative error En

σ =
|σn

r −σn
t |

σn
t

where σn
t is the nodal stress in target configuration and σn

r is the nodal stress
in the registered configuration. The vector of errors for each case is statistically
evaluated over the set of nodes, computing the mean Ēσ and maximum Êσ value
and displaying the standard box-and-whisker plot where values exceeding the er-
ror given by q3 + 1.5(q3 − q1), q1 and q3 being first and the third quartiles, are
considered as the outliers.

In the first scenario depicted in Fig. 3(a), the beam composed of 4350 elements
and 1080 nodes is deformed under gravity, being attached at both extremities
with fixed constraints which prevent the motion of all nodes located on the corre-
sponding faces of the object. The visualization of the constraint forces (Fig. 3(b)
shows a good match between the target and registered configuration. As for von
Mises stress error, Ēσ = 0.1%, Êσ = 14.6% and Fig. 3 shows 139 outliers (among
the 1080 nodes) with error exceeding 2.7%.

In the second scenario, the same beam is also subjected to the gravity, how-
ever, only one extremity is fixed. Moreover, the bottom face of the beam col-
lides with a supporting plane and a solid cube falls on its top face as shown in
Fig. 4a. Thus, the target configuration is a result of a complex set of bilateral
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Fig. 4. Deformable beam under gravity in interaction with supporting plane and the
cube: (a) von Mises stress in the target configuration, (b) surface constraint forces
corresponding to target configuration (red) and registered configuration (green), (c)
box-and-whisker plot showing the statistics of the von Mises stress error

and unilateral constraints. The visualization of surface forces reconstructed by
the registration method is shown in Fig. 4b. The statistical evaluation of von
Mises stress results in Ēσ = 8.5%, Êσ = 117.3% and Fig. 3c shows 62 outliers
(among 1080 nodes) with error exceeding 23.8%. Although the statistics of the
von Mises error shows worse results in the seconds case, the location of the sur-
face loads is predicted quite accurately and we assume that the differences in the
von Mises stress rather reflect different orientations of the loads, as indicated by
the arrows shown in Fig. 4c.

4.2 Estimation of Boundary Conditions of Living Tissues

The CT scans of a female pig in flank and supine positions were acquired with
SOMATOM® Definition AS 128 device. Semi-automatic segmentation of liver
were performed in both volumes using ITKSnap. In both volumes, surface mesh
was extracted from the segmented maps and in the case of supine data, also
the volume mesh was generated using CGAL library resulting in 6506 elements.
The method described in section 3 was applied to the discretized data to register
the shape of the liver from supine (source) to the flank (target) configuration and
to identify the boundary conditions once the equilibrium of the simulation was
attained. The deformation field given by the difference of source and registered
meshes was then used to warp the source image in order to perform the evaluation
of the registration. The surface forces were displayed to asses the method visually
as no ground truth exists in the case of medical data.

First, the visual comparison of one slide showing the source, warped and
target images is presented in Fig. 5. Moreover, the deformation field was used to
warp also the segmented maps, which enabled us to evaluate the segmentation
using Dice metric describing the overlap between two binary images. While the
Dice coefficient of 47% was computed for the overlap between the source (non-
registered) and target data, the coefficient attained 87% when registered and
target data were compared. Given the magnitude of initial deformation, the
registration clearly gives very good result both in term of quantitative and visual
comparison.
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(a) Source image (supine) (b) Warped image (c) Target image
(flank)

Fig. 5. Illustration of the accuracy of the registration for a cut in the source, warped
and target volume

The supine and flank configurations are displayed on Fig. 6ab showing an
important deformation of the liver and surrounding tissues due to the impor-
tant deformation of the rib cage. The overall image of the predicted surface
loads is given in Fig. 6b. First, it should be recalled that unlike the case in the
previous section, neither supine nor flank data provide the configuration which
corresponds to the rest position of the liver. In fact, this position is not known,
since in both supine and flank configuration, the liver is subjected to gravity and

(a) Supine position (b) Flank position

(c) Predicted surface loads (stomach) (d) Predicted surface loads (ribs)

Fig. 6. Evaluation of the method on porcine liver deformation induced by re-positioning
the pig from supine to flank positions (a,b). Details of predicted surface loads (c,d).
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to the surface loads induced by the surrounding objects. Therefore, rather than
identifying the absolute surface loads in the target configurations, a relative dif-
ference in loads applied in supine and flank configurations is obtained indicating
the change in boundary conditions. We believe that the estimation of absolute
surface loads could be obtained by comparing several different configurations,
where the influence of the applied loads and forces could be filtered.

Two details of predicted surface loads are shown in Fig. 6c and 6d. In the
first case, the loads that appeared due to the contact with stomach (visceral
surface) and diaphragm (diaphragmatic surface), in the other case, interaction
between the liver and stiff bodies of ribs are clearly indicated. Apparently, all
these loads can be logically justified due to the rotational movement of the liver
which occurred during the change of the pig’s position from supine to flank
configuration: while in the supine position, the lateral surfaces of the liver lobes
are not subjected to important contact loads, since the mass is pressing mainly
the posterior part of the organ against the spine, in the flank position, important
contacts occurs between the left part of the liver and the ribs.

5 Discussion and Conclusion

The precise estimation of boundary conditions in soft tissues plays a crucial role
in computer simulation-based planning and guidance. For example, in the case
of surgical navigation based on augmented reality, a biomechanical model can be
used to predict the actual position of the tumor inside the tissue. In this paper, we
propose a model-based method allowing for joint registration and prediction of
surface loads in the deformed configuration which can be directly used to identify
boundary conditions. The method was validated employing two scenarios with
a beam object, where the deformations were computed via simulation in order
to have both the deformed shape and surface loads in the target deformation.
The data was used as a ground truth and compared to the von Mises stress and
surface loads obtained in the registration process. The method was demonstrated
on a real medical data of female pig scanned in supine and flank positions in
order to induce important deformations of the abdominal cavity. To our best
knowledge, no attempt has been made so far to predict the surface loads inside
a living body using only the scanned images without any a priori assumption.
The evaluation has proven that the method is capable of predicting the difference
in surface loads applied to the liver and this data can be straightforwardly used
to identify boundary conditions in the target configuration.

We are aware of the fact that while different loading scenarios would further
increase the accuracy of our method, it requires multiple acquisitions which are
usually not available in humans. Nevertheless, while keeping in mind the patient
specific scenario, we would also like to employ an intra-patient evaluation based
on atlas, which could provide a base for the BC estimations (e.g. placement of
the ligaments and other connective tissues with lower intra-subject variance).
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Abstract. Liver resection is the main curative option for liver meta-
stases. While this offers a 5-year survival rate of 50%, only about 20% of
all patients are suitable for laparoscopic resection and thus being able to
take advantage of minimally invasive surgery. One underlying difficulty
is the establishment of a safe resection margin while avoiding critical
structures. Intra-operative registration of patient scan data may provide
a solution. However, this relies on fast and accurate reconstruction meth-
ods to obtain the current shape of the liver. Therefore, this paper presents
a method for high-resolution stereoscopic surface reconstruction at in-
teractive rates. To this end, a feature-matching propagation method is
adapted to multi-resolution processing to enable parallelisation, remove
global synchronisation issues and hence become amenable to a GPU-
based implementation. Experiments are conducted on a planar target
for reconstruction noise estimation and a visually realistic silicone liver
phantom. Results highlight an average reconstruction error of 0.6 mm
on the planar target, 2.4–5.7 mm on the phantom and processing times
averaging around 370 milliseconds for input images of size 1920 x 540.

1 Introduction

Resection of a segment or lobe of the liver in metastatic or primary liver cancer
is the main curative option. This is traditionally done in an open procedure,
resulting in a large wound on the patient’s abdomen to allow access for the
surgeon to palpate and identify important structures within the liver and distin-
guish normal liver from tumour. A minimally invasive approach instead might
reduce trauma, infection risk, post-operative pain and cosmetic issues. However,
difficulties in estimating a safe resection margin, proximity to blood vessels and
tumour size, etc deny more than 80% of patients this option. In order to in-
crease suitability for the laparoscopic approach, improved surgical guidance and
navigation is required.

To this end, robust registration methods are necessary that need as input a
physically-based deformable model of the liver [1] and an up-to-date estimate
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of the organ’s surface geometry serving as a deformation target [2,3]. Recon-
structing the organ surface in real-time and in sufficient detail is a challenging
problem due to view-dependent specular highlights and the relatively uniform
appearance of the liver. This also complicates registration because only a small
part of it is visible. Existing methods [4,5] use natural features like the falciform
ligament and inferior edges along liver segments. As the laparoscope is relatively
easy to navigate looking at these features, recovering their position and shape
from video should be possible using stereoscopic reconstruction methods.

In building a stereo-matching algorithm, a popular choice is to perform a
pyramidal search, reducing the necessary disparity search range. This is be-
cause larger features are captured in lower-resolution pyramid levels without
increasing the disparity range on that level [6]. A common approach is to fil-
ter and subsample the images into Gaussian pyramids first. Then find disparity
on low-resolution levels, upscale these to the next level and refine with higher-
resolution image data. This, however, easily breaks object boundaries and special
care must be taken to consider the effects of down-sampling [7]. Also, while this
approach appears to be easily parallelisable, the output degrades quickly. Other
recent methods allow real-time reconstruction from either low-resolution [8,9,10]
or high-definition video [11].

This paper proposes a stereo-matching strategy based on a coarse-to-fine pyr-
amidal approach, adapted from sequential local match-propagation [12]. Con-
trary to other approaches that process image pyramid levels in sequence and
upscale the results of a lower-resolution level to the next one, the proposed
novel approach traverses the pyramid vertically by starting on the pyramid tip
and traces out left-right matches to increasing image resolution. This vertical
propagation thereby enables correspondence search window sizes to be kept
small as a large high-resolution window is equivalent to a small low-resolution
one, similar to existing coarse-to-fine approaches. However, vertical propagation
also enables bounding of hot-loop data structures in size. This is a prerequisite
to efficient GPU-implementation where low-latency on-chip memory is scarce.
Multi-threaded operation follows naturally, allowing stereoscopic surface recon-
struction at interactive rates from high-resolution video. Recovering the shape of
the liver anatomy can then be used to register a deformable liver model, reducing
the time required for an initial registration, or updating an existing registration
during the procedure.

2 Method

Figure 1 depicts the processing pipeline of the proposed method for an integrated
system. After initial transfer of the laparoscopic video frames to GPU memory,
left and right channels are prepared for processing, followed by a matching kernel.
Highlighted core steps are described in more detail in the following sections.
Disparity filtering and triangulation follow standard procedures and are thus
not described further.
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Fig. 1. Pipeline of the proposed method in context for this application. The incoming
video frames are captured and transferred to GPU memory for stereoscopic matching
and other processing. The highlighted core steps are presented in this paper.

2.1 Frame Preparation

Prior to matching, frame preparation is necessary. Input images left I0 and right
I1 are cropped to a size that is a multiple of 32. This is necessary to ensure
a well-formed 2:1 image pyramid with sufficient levels. Cropping is centred so
that only a few pixels along the border, which rarely contain usable features,
are lost. Afterwards, the cropped RGBA images are converted to greyscale and
each resampled with a box filter into an image pyramid, P0 and P1 respectively,
at successively lower resolutions. For each level l of each pyramid P l, quantities
required for fixed-window-size zero-mean normalised cross correlation (ZNCC)
are precomputed. In addition, a bit mask is computed for textureless areas by
checking for a non-zero horizontal and vertical pixel gradient, preventing gross
mismatches in the correspondence propagation.

2.2 Match Propagation – Single-Threaded

While the proposed method is motivated by a multi-threaded GPU-amenable
design and implementation, it appears reasonable to describe the matching pro-
cess for a single thread first.

The overall left-to-right matching strategy takes advantage of an existing
match and propagates more matches around this initial “seed” position, avoid-
ing a large amount of false matches that could occur otherwise. Matching starts
from the lowest-resolution pyramid level l that is large enough to contain the
various pixel windows described below. At this resolution, the disparity for in-
tended stereoscopic cameras is sufficiently close to 1 or 2 pixels, removing the
need for explicit feature match initialisation between left and right views for the
initial seed. Thus, at the very beginning, an initial seed k := {x0, y0, x1, y1} is
set to the image centres. Figure 2 illustrates key elements.

Broadly speaking, each iteration of matching performs:

1. Generation of a list of candidate matches around the current seed.
2. Establishment of global uniqueness per level.
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3. Initialisation of a new seed for pyramid level l + 1 from the established
matches and jump to l + 1, starting at (1).

4. On the highest-resolution level, keep matching horizontally.
5. Once the list of candidate matches is exhausted, jump back to previous level

l − 1 and continue at (1).
More specifically, for step (1): Around each seed k, compute ZNCC [13] for a

c×c pixel sized correlation window C in P0 and P1, shifted by the neighbourhood
window N of up to n × n pixels in either dimension (allowing matching to skip
across poorly defined areas) in both left and right image simultaneously. In
the right image only, the correlation window is shifted by an additional search
window S of s × s pixels (this adapts the computed disparity to changes with
perspective). This produces a list of up to n × n × s × s left-right coordinate
pairs q := {x0, y0, x1, y1, b} ∈ Ql

0, each with a corresponding correlation b. If b is
smaller than a certain threshold b< then that entry is dropped.

Entries in Ql are sorted according to numerical value b, highest first. Each
entry is read, and its left-right-coordinates written to the disparity map d :=
{x0, y0, x1, y1} ∈ Dl (implemented as a 2-channel image, storing x1, y1 at each
x0, y0) for level l if no other match has been recorded for either x0, y0 or x1, y1
already. If instead an entry already exists in Dl then that particular q is removed
from Ql. Once Ql has been processed (leaving its entries intact; these will serve
as new seeds later), its top entry is used to initialise a new seed for level l+ 1 by
multiplying its coordinates by two (step (3) in the list above). Processing then
continues with step (1) again at the next level.

Once the highest-resolution level is reached, match propagation continues ho-
rizontally (step (4)). Eventually, the processing in step (1) will not add new
entries to Ql due to poor correlation between left and right pixel patches. At
this point, propagation stops at the current level and returns to l−1, continuing
with Ql−1 at step (1) where it left off (step (5) in the list above).

k

C

N
l

P0 P1

S

l+1

l+2

Match

Propagate

k

C Correlation window
N Neighbourhood search
k Seed
S Search window
l Pyramid level

Fig. 2. Illustration of how match propagation proceeds vertically across the pyramid.
Symbols are further explained in the text of Sec. 2.2.
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2.3 Multi-threaded Matching

The matching strategy described above can easily be run multi-threaded. In-
stead of a single starting position, many are chosen with pseudo-random offsets.
Each thread processes P0 and P1 from its assigned seed, independently of other
threads. However, as many threads would start off from effectively the same
starting conditions they would also produce exactly the same result yielding
no improvement in performance or match coverage. Therefore, divergence is
triggered by employing a “permissible thread map” T , a bitmap the size of the
input images, labelling each pixel for which thread is allowed to process it. The
map T is generated once at start-up time representing a simple block structure of
4 x 2 partitions, yielding 8 different blocks that map onto an 8-bit thread-ID bit
pattern. It is then filtered and downsampled into the remaining pyramid levels
T l by OR-ing thread-ID bits from the higher-resolution level, effectively blurring
the boundaries between blocks as the pyramid level resolution decreases.

A potential performance bottleneck is the priority queue Q used to store
match candidates. While each thread has its own instance per level, it is initially
unbounded in size, posing a challenge for an efficient GPU implementation where
access patterns to memory are critical. With the proposed method however,
it turns out that maximum observed queue sizes are short in practice, only
slightly larger than the number of newly arriving candidates in match-step (1).
Therefore, constraining the size of Q for each thread allows the fitting of hot
data in performance-critical shared memory and registers.

3 Experiments and Results

For all experiments described below, Table 1 lists the parameter values used for
the propagation. All experiments are performed on an NVIDIA Quadro K5000
card. Stereo-pairs were recorded with a Viking 3DHD Vision System Dual Chan-
nel 30º laparoscope (formerly Viking Systems, Inc., USA). It provides two SDI
outputs at 1080i at 59.9 Hz. The bottom field was discarded from both channels
as interlacing interferes heavily with matching. Intrinsic and extrinsic camera
calibration were determined using functions implemented in OpenCV. Video
frames were then undistorted. No further preprocessing was performed.

Table 1. Propagation parameters used for experimental results. They were determined
empirically.

Parameter Symbol(s) Value Units
Search window size S: s × s s = 3 pixels

Correlation window size C: c × c c = 5 pixels
Neighbourhood window size N : n × n n = 3 pixels

Correlation threshold b< b< = 0.6 —
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3.1 Plane Experiment

In stereo-matching, small errors can be amplified easily by the stereo-rig geo-
metry. This manifests in large spread in the z-coordinate. To assess this effect
in combination with the above mentioned laparoscope, a flat piece of paper was
printed with a noise pattern and filmed at an angle of approximately 30 degrees
by pointing the laparoscope straight down. The distance from lens to surface was
in the range of 4–7 cm. The resulting stereo-pair was then processed by sequen-
tial matching [12] (with a correlation window 19 x 19 pixels) and the proposed
method (with parameters in Table 1), yielding two disparity maps. Figure 3 il-
lustrates these. The disparity maps were triangulated into a point cloud using
previously obtained camera parameters, and a plane was fitted through each.
These planes serve as a silver standard regarding reconstruction noise: comput-
ing an RMS distance of reconstructed points to estimated plane yields 0.42 mm
for sequential and 0.67 mm for the proposed method.

(a) (b) (c)

(d) (e)

Fig. 3. Textured plane imaged at a 30 degree angle for estimating reconstruction noise.
(a) shows the left channel of the stereo pair used to reconstruct the disparity maps for
(b) the sequential method and (c) the proposed method. Brighter colour corresponds
to higher disparity. The corresponding point clouds and fitted planes are shown in (d)
and (e), respectively. The axis icon signifies the camera location.

3.2 Phantom Experiment

To evaluate the proposed method in a more realistic scenario, a flexible visually
realistic human liver phantom (Healthcuts, London, UK) was custom-made. It
consists of a deformable main organ body made of silicone and a rigid carbon
fibre base with nine rigid “prongs” holding the body in place, allowing it to be
taken off and put back on repeatably (Fig. 4a-b). The phantom was CT-scanned
at 0.98 x 0.98 x 0.6 mm voxel resolution, an ISO-intensity surface extracted using
Marching Cubes, and edited to remove irrelevant geometry.
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The endoscope was positioned at a surface distance of 4–7 cm, making sure
at least three prong tips were visible. The tips were marked in the left and right
images, triangulated to 3D and aligned to the CT-scan with a least-squares
optimisation. This registration was used as the gold standard location of the
phantom relative to the camera lens. The corresponding fiducial registration er-
ror (FRE) for this alignment is reported in Table 2. The silicone phantom was
then replaced onto the prongs and imaged. The left and right image were undis-
torted, and processed by the sequential method and the proposed one, yielding
a point cloud. For each point in the output point cloud, the closest distance to
the phantom surface was computed and aggregated into a root-mean-squared
error (RMSE) for each method. These steps were repeated for three individual
data sets, taken from different angles of the same phantom. Table 2 shows that
the proposed method produces slightly higher errors compared to the sequential
method, however at a fraction of the run time. Figure 4c-d show unfiltered re-
constructed point clouds, overlaying the two methods for comparison. The red
point cloud is the sequential method, and the yellow cloud the proposed method.
As can be seen, the latter is slightly more noisy. Most of these mismatches are
caused by view-dependent specular highlights, which the sequential method can
match around more easily as its propagation queue has a global view on all
possible match candidates.

All runtime measurements in Table 2 & 3 were conducted on a PC running
Windows 7, 16 GB RAM, NVIDIA Quadro K5000 with 4 GB RAM and Intel
Xeon E5-2609 at 2.4 GHz dual socket, four cores each.

Table 2. Reconstruction error on the liver phantom, using RMSE between reconstruc-
ted points and CT phantom surface as the metric. Input stereo pairs have a resolution
of 1920 x 540 pixels. The data set number refers to Fig. 4.

Data set Fiducial Registration Error Proposed GPU Sequential CPU [12]
1 1.3 mm 2.4 mm, 330 ms 1.8 mm, 2855 ms
2 2.1 mm 5.3 mm, 409 ms 4.5 mm, 3333 ms
3 2.6 mm 5.7 mm, 397 ms 2.5 mm, 2875 ms

Existing literature [11,8] compares reconstruction results on the Hamlyn Heart
phantom data set [12]. The proposed method reconstructs the surface with an
RMSE of 3.2 mm and an average error of 2.1 mm. In comparison, the sequential
method, as implemented, reconstructs an RMSE of 3.0 mm and an average error
of 2.1 mm (compared to 3.9 and 2.4 mm respectively, as reported previously [8]).

3.3 Runtime Evaluation

The proposed method has been integrated with the NVIDIA Digital Video
Pipeline, allowing direct transfer of SDI-supplied high resolution video to GPU
memory. Once stereoscopic video frames have arrived in texture memory as
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(c) (e)(d)

(a) (b)

1
2 3

1 2 3

Fig. 4. Silicone phantom of a human liver, manufactured to be visually realistic, with
carbon fibre prongs holding the deformable main body in position. (a) shows the main
body, mounted on its base; (b) shows the mesh derived from a CT-scan including
the prongs inside it. (c)-(d) show laparoscope images and corresponding unfiltered
reconstructions for three different view points, overlaying both sequential and parallel
method, displayed top-down.

RGBA arrays, the frame preparation process is started, followed by the match-
ing kernel described above. Table 3 shows average processing times on a NVIDIA
Quadro K5000 at different input resolutions. Timing resolution is in the order
of one millisecond. The frame preparation step is dependent only on image res-
olution, image content has no impact on timing, hence variation is effectively
zero given the timer resolution. The actual matching step however does depend
on image content as the presence of gradients determine propagation. The time
required to copy the result back to host memory is specifically excluded because
it is expected that a streamlined registration system will perform triangulation,
point cloud filtering, etc on the GPU too. Table 3 compares the runtime of the
sequential method on the aforementioned Xeon CPU, highlighting a performance
increase of 3–9 fold.
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Table 3. Runtime of the proposed algorithm, averaged over a number of different
sequences, compared to the sequential method. All reported times are in milliseconds,
with μ being the mean and σ the standard deviation.

Image size Prepare Match Total Seq. CPU Speed up
input cropped to μ σ time μ σ

360 x 288 352 x 288 1.1 73.2 11.3 74.3 253.6 8.4 3.4
1920 x 540 1920 x 512 4.9 373.9 45.6 378.8 2879.9 225.3 7.6
1920 x 1080 1920 x 1056 9.5 481.2 79.0 490.7 4447.9 260.4 9.1

4 Discussion and Conclusions

The proposed method is able to perform stereo-matching at interactive frame
rates with an accuracy suitable for laparoscopic applications. Contrary to many
existing methods, the proposed one does not rely on stereo-rectified images; it
performs a 2D search instead of a 1D search along the epipolar line. While this
increases processing cost significantly, it increases the number of successfully
matched pixels as each seed is free to propagate along image structures in any
direction. However, stepping the neighbourhood window N simultaneously for
both left and right ensures that matches will not criss-cross (observing a local
2D ordering constraint). Also, ZNCC is a very expensive cost function. However,
it was chosen for its robustness against radiometric changes between different
views. It was found to be reliable [13] on the Middlebury data set, however, not
the top performer. Contrary to a controlled lab environment, minimally invasive
surgery exhibits severe radiometric issues due to uncontrollable auto-gain in
the camera, non-uniform lighting and inter-tissue reflections. As the algorithm
is effectively a variant of winner-takes-all in the match propagation phase and
first-come-first-served with respect to multi-threading, its output depends on
timing and scheduling details. While this sounds bad from a computational point
of view, it has no impact in practice and relaxing a strict no-race-condition
requirement allows for significant improvements to execution speed. A particular
problem not addressed yet is related to object segmentation: the camera views
the abdominal cavity, possibly with many unrelated structures in view. This will
be addressed in future work.
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Abstract. Multispectral imaging is an optical modality that can pro-
vide real-time in vivo information about tissue characteristics and func-
tion through signal sensitivity to chromophores in the tissue. In this
paper, we present a deblurring strategy that enables imaging of dynamic
tissues at wavelengths where the required acquisition time can cause sig-
nificant motion blur and obscure the image. We use deconvolution for
spatially varying kernels to process multispectral information obtained
by using a novel laparoscopic imaging device. The trinocular design of the
system allows visible light images provide information about the tissue
morphology and motion that we use to construct a per pixel deformation
map. We demonstrate that with the proposed method the multispectral
image stack can be synthesised into a meaningful signal even in the pres-
ence of significant tissue motion. Experiments on synthetic data validate
the numerical properties of the method and experiments with ex vivo
tissue demonstrate the practical potential of the technique.

Keywords: Non-rigid Deblurring, Multispectral Imaging, Surgical
Imaging, Surgical Vision.

1 Introduction

Multispectral imaging captures sequential images, band filtered in the frequency
domain, that can be used to detect chromophores such as haemoglobin [1,2],
melanin and water [3] in order to perform tissue characterisation and functional
interrogation of the surgical site. The imaging technique is based on the acquisi-
tion of multiple images of a tissue sample at different illumination wavelengths
so that a complete spectral response can be built up for each pixel of the sample
projection. By modelling the interaction of light and the tissue, the spectral fea-
tures of interest can be observed and used to infer information about the sample.
Such real-time non-contact optical imaging can potentially provide an invaluable
clinical tool for intra-operative diagnosis and functional monitoring in a wide va-
riety of applications which require a quantitative knowledge of mesenteric oxy-
genation. Examples include the diagnosis or mesenteric ischaemia, assessment
of the bowel anastomosis to identify the risk of anastomotic dehiscence, bowel
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ischaemia surgery and transplanted organ viability or visualisation of the bile
duct [4].

Multispectral systems for minimally invasive surgery (MIS) are typically based
on a single optical channel laparoscope [5] and either rely on switching of the
illumination source or rely on an additional scope for visible white light visualisa-
tion, a full discussion can be found in [6]. More recently, a system was developed
by using a multiple optical channel laparoscope and a liquid crystal tunable filter
(LCTF)[4]. This integrated device is practical for clinical use through a single
trocar. Additionally the LCTF is capable of achieving a high spectral resolu-
tion (<10nm) and can be electronically-controlled, allowing on-demand access
to wavelengths of interest. However, the main drawback of LCTFs is their poor
transmission properties, which are wavelength-dependent and can require a long
exposure time to acquire an image that has sufficient source signal to identify
the sample’s spectral response. As a result the acquisition of a complete stack of
multispectral images may take several hundred milliseconds or longer. This poses
a challenge because during surgery physiological motion can deform the tissue
and the laparoscope can move causing misalignment of the multispectral data
and significant motion blur in certain spectral ranges. In order to provide a cor-
rect signal response from the multispectral stack the images need to be processed
for removing motion blur and an attractive approach is to use computational
deblurring methods.

Image deblurring can recover detail in scenes imaged under motion by using
deconvolution as an inverse problem with optional priors. The Richardson Lucy
(RL) algorithm[7,8] is one of the most established approaches requiring a known
point spread function (PSF). Semi-blind methods incorporate priors [9] however
often this makes optimisation non-convex. Blind deblurring using natural image
statistics is also possible [10], [11] but a major challenge for in vivo multispec-
tral images is the lack of constraints to anatomical structural correspondence.
Stochastic deconvolution [12] allows for better correspondence utilising a know
spatially varying point spread functions (SVPSF), as well as being able to in-
clude arbitrary regularisation without the need for complex optimisation, at the
cost of a slower execution time. Multiple camera methods are able recover the
information from one or more cameras and use it to formulate the SVPSF in an-
other [13]. This can be achieved using optical flow to estimate a discrete SVPSF
to use as a seed for iterative optimisation [14]. The typical suggested extension
for deconvolution algorithms to the spatially varying case, is to perform the
same technique on a piecewise decomposition of the image into areas of simi-
lar motion [15]. This is not practical when a dense per-pixel SVPF is required
because for frequency domain approaches it introduces a further order of com-
plexity. Extending convolution deblurring methods to utilise an unique per-pixel
SVPSF also presents a significant computational challenge and requires exces-
sive memory storage for the individual blur kernels. Therefore, currently there
are significant difficulties for existing methods to computationally deblurr im-
ages from MIS which contain non-rigid motion and deformation combined with
complex reflectance functions.
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In this paper, we propose an efficient pixel parallel deblurring technique which
can accommodate SVPSF and be implemented taking advantage of modern par-
allel computing architectures. We demonstrate how this approach can be used
to improve the signal in multispectral imaging using a custom trinocular chan-
nel laparoscope. To our knowledge, this is the first deblurring technique applied
to multispectral surgical imaging and the proposed method further generalises
to allow for completely non-rigid scene deformation. We evaluate the numerical
performance of the proposed algorithm on synthetic data with known ground
truth and we present promising results on ex vivo tissue within a controlled
laboratory experimental environment.

2 Methods

2.1 Multispectral Trinocular Laparoscope

The multispectral trinocular laparoscope used for this study is shown in Figure 1.
The scope delivers colour stereo images at a resolution of 1024×768 pixels using
two IDS Imaging, uEye 2230-C cameras. The wide-angle central channel of the
scope is routed through a LCTF (Varispec, CRI, Inc) to a monochrome camera
(Thorlabs DCU 223M). The LCTF has a spectral range running from 400-720
nm with a resolution of 10 nm. The multispectral camera was synchronised
with the LCTF so that a given wavelength range, decomposed into contiguous
non-overlapping 10 nm bands, is captured such that each image corresponds
to a single band. Due to the low transmission of the LCTF, a long integration
time is required for the multispectral camera, making this the speed-limiting
element. For the in vivo experiment, the integration time and gain were set to
1000ms and 25 respectively for the multispectral camera, and 90 ms and 20 for
the stereo cameras.1 We create an efficient deblurring processing step that runs

Fig. 1. Clockwise from left. The front of the laporoscope and the three camera mul-
tiplex; the experimental configuration; a sample from a typical capture data set for a
single multispectral stack, with corresponding stereo RGB.

1 Further details of scope design and configuration are found in [15].
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simultaneous with the image capture, operating on each of the multi spectral
images utilising scene flow information recovered from the stereo cameras.

2.2 Non-blind Deconvolution

Using a non-blind deconvolution process requires prior knowledge of the defor-
mation to construct the spatially varying blurring function. We obtain scene
flow using the white light stereo RGB channels of the trinocular laparoscope,
and project this into the image plane of the multispectral camera. Subsequently,
our deconvolution method is an extension of the RL algorithm which can be
expressed using blurring by convolution [16,17] as follows:

I(n+1) =

{{
B

I(n) ⊗ k

}
⊗ k̂

}
I(n) (1)

such that for a 2D PSF k with an index space Ω ⊆ R
2+, the inverse point spread

function k̂ is
k̂(x) = k(max(Ω)− x),x ∈ Ω.

The formulation of Equation 1 can be extended to the spatially varying case by
generalising to per-pixel level kernels. However, a standard pixel-wise convolution
model for blur will become unstable for SVPSFs as illustrated in Figure 2 and
for an extreme case in Figure 3 [18][19]. This stems from the non-symmetrical
nature of the forward blurring kernel compared to the inverse blurring operation.
Additionally, there is also a high computational cost for calculating blur kernels
at every point in the image. This is particularly restrictive for real-time applica-
tion and cannot trivially be solved by pre-computing all kernels, as storing them
in memory rapidly becomes impractical even for low resolution images. To over-
come this limitation, in this study we use a generalisation of the RL algorithm
and propose a new non-symmetric blur method that directly utilises the source
deformation field via successive re-sampling.

2.3 Generalised Richardson Lucy

The RL algorithm can be expressed as an error metric and an iteration update
with the blur model formulation independent of the algorithm. This follows from
Equation 1, for which the blur model is the convolution operator and as such is
equivalent to the original summation based expression of the RL algorithm. The
generalisation is to exchange the convolution model for an alternative equivalent
blur model, an appropriate accumulative blur model may be selected to replace
the convolution operation[19].
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Generalised Richardson Lucy Algorithm

1 f o r observed blurred image B

2 L_est = B

3 f o r i to i_max

4 # calculate an error image from the current estimate

5 B_est = Blur(L_est)

6 err = B./Best

7 # accumulate the error to contributor locations

8 err_b = invBlur(err)

9 L_est = err_b.* L_est

2.4 Re-sampling Blur

We propose using a blur method that warps a sampling grid, repeatedly
re-sampling the grid locations, incrementally deformed by a spatially varying de-
formation field. The sampling grid is used to accumulate samples from a source
image to form the blurred image. The method follows from the PSF generation
method of [18] where blur kernels are rendered by drawing line segments of a
motion path weighted by the relative time duration the segment corresponds to.
Using the same approach we propagate a sampling point sn through a deforma-
tion field D and instead of drawing the trace of this sampling point into a kernel
we use it to accumulate successive samples from the source image. To create the
blurred image B from input image I, we calculate the value at bi ∈ B as

bi = Δ

N∑
n=0

I(sn) (2)

where Δ = 1
N , and sn is the sampling position calculated recursively as

sn+1 = sn +ΔtD(sn) (3)

with s0 initialised as the coordinate location of bi and t as the length of exposure.
B-Spline sampling is used to sample the deformation D(sn) and input I(sn) for
each location sn. In order to integrate this blur model with the generalised
RL algorithm an inverse blurring function can be expressed by negating the
deformation fields. To avoid zigzag drift, as shown in Figure 3 as an artefact
of rotational blur, we modify the update for sn to use a weighted filter over a
neighbourhood centred at sn. So for filter f with indexing space Ω, the update
equation for sn becomes:

sn+1 = sn +

Ω∑
x

f(x)ΔtD(sn + x) (4)

In our use case we found that a discretized zero mean Gaussian filter with σ =
0.5 gave sufficient drift stabilisation for most of our synthetic and experimental
test cases. For more extreme deformations it may be appropriate to use more
specialised particle filters to better track the sampling locations.



Deblurring Multispectral Laparoscopic Images 221

Fig. 2. Left to right top to bottom: ground truth with overlaid realistic deformation
field; tissue imaged under simulated spatially varying motion as defined by the defor-
mation field; deblurring using typical [14] spatially varying extension of the Richardson
Lucy algorithm; deblurring using our proposed re-sampling blur model method

3 Experiments and Results

3.1 Synthetic

Synthetic data was generated by blurring multispectral images of ex vivo tissue
with known deformation fields to assess our proposed method against the stan-
dard RL with ground truth. Various deformation fields could then be applied
to the images to explore the stability of the algorithm under different simulated
conditions. For simulated motion levels representative of physiological motions
that are observed in surgery our method performed better than RL as shown in
Figure 2. Our results contain fewer artefacts arising from incorrect error accumu-
lation. Additionally, our proposed method performed well even on particularly
challenging blur such as large rotations for which standard convolution based RL
performs very unstably and our proposed method proved to be robust even for
many iterations. The rotational experiment also clearly demonstrates how im-
proving the tracking of the sampling grid translates directly to an improvement
in the stability of the algorithm.

We compare the results in the frequency domain (Figure 4) and our deblurred
results have a similar frequency profile to that of the ground truth, where as the
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Fig. 3. Comparative stability of different blur models using the Richardson Lucy decon-
volution algorithm, on a large synthetic rotational blur. Left to right top to bottom;
ground truth; 10 iterations of standard convolution blur model (where inverse blur-
ring is achieved by convolving with the reverse indexed froward kernel) with per-pixel
kernels[18]; 500 iterations of deconvolution using re-sampled accumulation at 500 itera-
tions; 500 iterations of deconvolution using Gaussian filtered re-sampled accumulation

blurred data has significantly more weighting to the lower frequencies as ex-
pected. Furthermore by looking at how the PSNR for the frequency domain
varies, over scale space, we see that the proposed method improves on the stan-
dard RL, and blurred results, by recovering finer image structures at the trade
off of less large scale accuracy. Frequency domain comparisons were chosen be-
cause they would be more sensitive to errors often created by RL deconvolution
such as ringing artefacts typically introduced during deblubrring.

3.2 Ex-vivo

To evaluate our method on laboratory data we performed experiments using both
a reference macbeth colour chart and ex vivo porcine stomach tissue samples.
The tissue samples were mounted onto a computer controlled translation stage
(Velmex BiSlide) whose motion was programmed using LabView. The trinocular
cameras were used to perform synchronized imaging of the samples while the
stage was in motion. By positioning the plane of translation non-parallel to the
imaging plane of the camera a large spatially varying projective motion could be
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Fig. 4. Left and centre; a comparison of the absolute difference in the frequency do-
main against ground truth for re sampled blur model and blurred respectively, positive
quadrant. Right; a comparison of PSNR across scale space for convolution model de-
blurring; re-sampled deblurring and input blurred image for reference, illustrating how
re-sampled blur model more accurately recovers fine scale details.

generated. The multispectral stacks were registered using the method of [15] and
points of interest identified by making reference to the associated RGB camera
data, patches around these positions were then extracted from the multi-spectral
images.

For the tissue samples, haemoglobin concentration [15], were then calculated
at each pixel by minimising⎡

⎢⎣ xλ0

...
xλn

⎤
⎥⎦ =

⎡
⎢⎣
ελ0

HbO2
ελ0

Hb 1
...

ελn

HbO2
ελn

Hb 1

⎤
⎥⎦
⎡
⎣HbO2

Hb
D

⎤
⎦ (5)

where xλ is the reflectance observed at a given wavelength, ελHbO2
and ελHb are

respectively the extinction coefficients for oxy and de-oxy haemoglobin [20] re-
spectively. Solving for Hb and HbO2, allowing for a constant dampening from
diffusion D, enables an estimate of the total haemoglobin to be made by sum-
ming the oxy and de-oxy components. For the colour chart reconstruction of the
spectral response at each pixel was compared to that of a static reference.

We compared the result of reconstructing the total haemoglobin measure for
patches without preprocessing against preprocessing by deblurring using our
proposed re-sampled blur model. Figure 5 shows two selected feature points ob-
served in the data and compares the results of total haemoglobin reconstruction,
that indicates a greater degree of structural cohesion when using deblurring.

For 100 pixels PSFs deblurring our images (1024x768) took approximately
5 minutes, this could be improved by taking advantage of optimised texture
sampling routines available on most graphics cards. Memory usage is efficient
since deformation is stored as a field instead of per-pixel kernels, allowing for
easy GPU implementation. This is important because uncompressed per-pixel
floating point 40×40 kernels would require over 6GB for all kernels for a one
megapixel image.
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Fig. 5. Total haemoglobin reconstruction at two locations. i) reconstruction performed
without prior deblurring, ii) reconstruction with prior deblurring, iii) corresponding
RGB information.

4 Discussion

In this study we have shown that incorporating a spatially varying blur model
with the generalised RL algorithm provides an accurate and computationally
efficient deblurring of multispectral images even with non-uniform blur. Current
limitations are that characteristic artefacts the RL approach appear when very
hard edges are visible in the image such as near surface vessels but it may
possible to dampen the expression of these artefacts [21]. The atomic design of
our algorithm allows for implementation on parallel computing architectures and
with optimization we believe that near real-time performance is possible which
is critical for translating the proposed computational method to practice.
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1 Centre for Medical Image Computing,
University College London, London, UK

m.kochan.12@ucl.ac.uk
2 National Hospital for Neurology and Neurosurgery,

UCLH NHS Foundation Trust, London, UK
3 Dementia Research Centre, Institute of Neurology,

University College London, London, UK
4 Department of Clinical and Experimental Epilepsy, Institute of Neurology,

University College London, London, UK

Abstract. Intraoperative MRI is a powerful modality for acquiring
structural and functional images of the brain to enable precise image-
guided neurosurgery. In this paper, we propose a novel method for sim-
ulating main magnetic field inhomogeneity maps during intraoperative
MRI-guided neurosurgery. Our method relies on an air-tissue segmenta-
tion of intraoperative patient specific data, which is used as an input to
a subsequent field simulation step. The generated simulation can then
be used to enhance the precision of image-guidance. We report results
of our method on 12 patient datasets acquired during image-guided neu-
rosurgery for anterior lobe resection for surgical management of focal
temporal lobe epilepsy. We find a close agreement between the field in-
homogeneity maps acquired as part of the imaging protocol and the
simulated field inhomogeneity maps generated by the proposed method.

Keywords: image-guided neurosurgery, interventional MRI, inhomo-
geneity field map simulation.

1 Introduction

Anterior temporal lobe resection (ATLR) is an effective treatment for refractory
temporal lobe epilepsy. However, resective surgery may result in severe compli-
cations such as contralateral superior visual field deficit (VFD) that restricts the
seizure-free patient from returning to regular activity. Magnetic resonance imag-
ing (MRI) is the preferred modality for imaging soft-tissue brain morphology
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and function for diagnosis and postoperative follow-up. Additionally, interven-
tional MRI (iMRI) can potentially be used to enhance the precision of patholog-
ical tissue resection while minimizing the damage to healthy brain structures.
By preserving critical brain tissues, the patients may benefit from improved
outcomes and quality of life.

Image-guided neurosurgery for ATLR is an established surgical specialisation
but localization accuracy can be adversely affected by intraoperative physiome-
chanical deformation of the soft tissue, generally referred to as brain shift, which
can be caused by cerebrospinal fluid (CSF) drainage, tissue retraction, brain
swelling and the resection itself [1]. Imaging using iMRI can provide valuable
information about the anatomy, which can be used to compensate for brain shift
by registering preoperative and intraoperative images. Recently, Daga et al. [2]
have proposed multimodal co-registration of anatomical T1-weighted MRI im-
ages paired with fractional anisotropy maps (DWI-FA) derived from diffusion-
weighted imaging (DW-MRI) image sets, as a means of estimating brain shift.
This approach takes into account the locations of white matter tracts that are
not discernible visually nor on the T1-weighted anatomical scans. However, DW-
MRI image sets are acquired using the echo planar imaging (EPI) MRI pulse
sequence, which suffers from severe geometric distortion, caused by the very lim-
ited acquisition bandwidth of EPI in the phase-encode (PE) dimension of the
image. Severe distortion occurs in EPI images even due to small inhomogeneity
in the main magnetic field B0 on the order of several ppm.

The first source of B0 inhomogeneity is due to hardware constraints and can
be reduced (shimmed) to several ppm by means of superconducting shim coils [3].
The second source of B0 field inhomogeneity is due to perturbation of the mag-
netic field by non-uniform geometric distribution of magnetic susceptibility in
the imaged volume. This inhomogeneity is largest near air-tissue boundaries,
such as the sinuses, the petrous part of the temporal bone [4], and the resection
cavity itself. The susceptibility-related inhomogeneity is shimmed using a set of
room-temperature (RT) shim coils. However, imperfect shimming and higher-
order perturbations result in residual inhomogeneity. The distortion of the EPI
image associated with this residual inhomogeneity is called the susceptiblity arte-
fact. A popular approach to correct for the susceptibility artefact is to acquire
the residual inhomogeneity field maps using a specific MR pulse sequence [4].
However, the acquired inhomogeneity field maps differ from the true field maps
due to low SNR near air-tissue boundaries (e.g. the resection margin) and due
to MR signal dropout (e.g. close to head-holder attachment pins) [5]. In iMRI
guided neurosurgery, the diversions from true field maps can adversely affect
image guidance accuracy.

In this paper, we propose to simulate a field map from T1-weighted and T2-
weighted iMRI images acquired as part of a standard iMRI scanning protocol.
Previously, Jenkinson et al. [6] demonstrated a perturbation method to calculate
a B0 inhomogeneity field from air-tissue segmentation derived from computed
tomography (CT) images. Poynton et al. [5] demonstrated that non-surgical T1-
weighted images can be segmented into air and tissue classes using a probabilistic
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CT atlas, and reported that a subsequent application of the method [6] results
in close overall agreement between the acquired and simulated field maps. How-
ever, we observe that a probabilistic atlas is not suited to the segmentation of
intraoperative iMR images that contain air-filled craniotomy and resection areas
of variable shape that depend on the surgery and patient morphology. Instead,
we employ an expectation-maximization (EM) based segmentation method in-
formed by priors derived from a synthetic CT image. We compute the synthetic
CT from the intraoperative T1-weighted image and a database of MR/CT pair
templates. We subsequently feed the air-tissue segmentation into the method [6].
The field map simulation is evaluated by comparison with field maps acquired
during iMRI guided ATLR neurosurgery for 12 cases. The proposed method
generates field maps in close agreement with the acquired field maps.

This result has the potential to lead to improvements in EPI image correction
and image guidance for neurosurgery. Additionally, the proposed method can also
be used to correct distortion in historical intraoperative EPI datasets, which did
not include field map acquisition as part of the acquisition protocol.

2 Methods

2.1 Field Map in Terms of Voxel Displacement

Let the magnetic field at point x be B0 +ΔB0(x) [T] where B0 is the homoge-
neous field and ΔB0(x) is the inhomogeneity field map, which can be equivalently

expressed as γΔB0(x) [rad/s] or γΔB0(x)
2π [Hz]. For the purposes of image cor-

rection, one is interested in the millimetre displacement along the phase encode
direction that the inhomogeneity causes to an EPI image. The displacement can
be calculated based on theory in [4,7]. Consider the acquisition of a single EPI
slice with matrix size N ×N and voxel dimensions rFE in the frequency encode
(FE) direction and rPE in the phase encode (PE) direction, respectively. The
EPI slice is reconstructed by the inverse Fourier transform of the MR signal.
In the PE direction, the MR signal sampling rate is N

Tacq
[Hz], where Tacq is

the signal acquisition time. The reconstructed image resolution in the PE di-
rection is N

NTacq
= 1

Tacq
[Hz/pixel] or Tacq [pixel/Hz]. Since the PE gradient is

used to encode position along the PE direction, the above offset corresponds to
a distortion along the PE direction of size:

dPE(x) =
γΔB0(x)

2π
TacqrPE . (1)

In this study, the EPI image correction itself was only performed for visual
confirmation (Figure 2), by converting the field map into a vector displace-
ment/deformation vector field and subsequently resampling the image using
cubic spline interpolation [8].

2.2 Field Map Acquisition

Fieldmap acquisitionwas based on themethod introduced in [4], whereby the field
map is dependent on phase difference map between the phase components of MR
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images acquired during two MR signal echoes, separated by echo difference time
TED. The phase difference corresponds to spin phase evolution during TED but is
modulo-2π phase-wrapped due to unknown number of elapsed revolutions. Addi-
tionally, the phase difference signal is noisy in low spin-density areas (air and bone)
and has lowSNRnear air-tissue boundaries.Therefore, to recover the inhomogene-
ity γΔB0(x), we used a novel phase-unwrapping algorithmbased on a probabilistic
model spatially constrained by means of a Markov random field (MRF) formula-
tion, as presented in [8]. We de-meaned the recovered phase difference map, since
the recovered phase difference necessarily has an arbitrary constant component.

2.3 Air-Tissue Segmentation

The magnetic susceptibility values for soft tissue (≈ −9.1 × 10−6) and bone
(≈ −11.4×10−6) are similar, but both are significantly different from that of air
(≈ 0.4× 10−6) [5]. Therefore, we need a binary labelling of the head into tissue
and air. For each subject, a segmentation was performed on the sum of the T1-
and T2-weighted iMRI image (a pseudo spin density image). In this image, the
soft tissues (grey and white matter, the eyes) were grey, CSF and fat tissue were
bright, and air and bone were black.

For the air-tissue segmentation, we used a segmentation algorithm based on
an expectation-maximization (EM) intensity model spatially regularized using
an MRF [9]. Tissue was segmented into three partial volume classes: air, bone
and soft tissue (Figure 1, centre right) and later the bone and soft tissue classes
were combined into the tissue class. Each class had its associated spatial prior
map. The spatial prior maps were calculated from a closed skull synthetic CT.
In CT, each of the 3 classes has a unique intensity range and therefore, the CT
was intensity-transformed using 2 sigmoid functions that acted as separators to
select tissue based on intensity. During the EM segmentation, full MRF strength
was chosen to enforce the presence of air in the resection area (as opposed to
soft tissue) and of air in the craniotomy area (as opposed to bone).

The closed skull synthetic CT image was constructed from the T1-weighted
iMRI image following the method described by Burgos et al. [10]. The method
relies on a database consisting of 6 pairs of co-registered T1-weighted MR / CT
images from healthy subjects. Each MR image from the database was non-rigidly
registered to the intraoperative iMRI image so that each CT could be propagated
into the iMRI space. The resampled CT images were fused together using a
voxel-wise rank-based weighting scheme (Figure 1, centre left).

The intraoperative field of view contains the cranial part of the head, but does
not include the head below the nose level. The later field map simulation step (as
described in Section 2.4) assumes that no tissue is present outside of the air-tissue
segmentation volume that has a significant contribution to the field distribution
inside the volume. Therefore, an approximated lower head tissue volume was
constructed in a volume inferior to the iMRI (Figure 1, right). To construct the
lower head tissue volume, the affine registration from the CT synthesis step was
reused to resample the MR templates into the target volume, and the resampled
volumes intensity transformed using a sigmoid function and averaged.
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Fig. 1. Air-tissue segmentation. Left: a T1-weighted intraoperative image. The section
runs through a plane close to the anatomical coronal plane (head at angle due to
intraoperative orientation). Middle left: an accompanying synthetic CT. Middle right:
the result of the segmentation (red for air, green for soft-tissue, blue for bone). Right:
the final air-tissue segmentation (black for air, white for tissue) with the fitted lower
head volume.

2.4 Field Map Estimation

The field map estimation follows from [6] and models the first order perturbations
of the main magnetic field. The susceptibility χ can be expanded as χ = χ0+δχ1,
where χ0 is the magnetic susceptibility of air, δ is the susceptibility difference
between air and brain tissue and χ1 is a binary variable describing the tissue
type. The first order perturbations of the z-component of the main magnetic
field (B1

z) can be written in terms of the main magnetic field (B0
z):

B1
z =

χ1

3 + χ0
B0

z − 1

1 + χ0

((∂2G

∂z2

)
∗ (χ1B

0
z )

)
(2)

where G is the Green’s function G(x) = (4πr)−1 and r =
√
x2 + y2 + z2. Note

that the expression is simplified considerably due to the fact that we only have a
non-zero component in the longitudinal axis (z-direction) of the main magnetic
field.

The convolution H(x) for a single voxel with the resolution (a, b, c) for a
constant field along the z-axis is given by:

H(x) =
(∂2G

∂z2

)
∗ (χ1B

0
z) =

∑
i,j,k∈(−1,1)

(ijk)F

(
x+

ia

2
, y +

jb

2
, z +

kc

2

)
(3)

where F (x) = 1
4π arctan(xyzr ).

Due to the linearity of Equation (2), the single voxel solutions can be added
together to compute the total field:

B1
z(x) =

∑
x′

χ1x
′H(x− x′) (4)
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where x′ are the voxel locations and x is the point where the field is evaluated.
This can be implemented using the 3D Fast Fourier Transform.

Although this approach simulates the field distribution due to the main coil,
MRI scanners also contain room-temperature (RT) shim coils, whose purpose
is to decrease the inhomogeneity in the imaged volume. The RT shim coils are
wound to form magnetic fields that follow first- and second-order spherical har-
monics, S(x) = [x, y, z, z2− (x2 + y2)/2, xz, yz, x2− y2, 2xy](x), where x = 0 at
the magnet isocentre [11]. The field in the scanner becomes B1

z(x)− Sθ, where
the coefficients θ = [θ1, θ2, . . . , θ8]

T are proportional to the currents in the shim
coils, which are dynamically optimized by the scanner during image acquisition
based on the field in the imaged volume [11]. In this simulation, we approximate
the shim currents as a linear combination that minimizes the inhomogeneity
field across the field of view, as used in [5]. We perform a least-squares fit of the

spherical harmonics to determine θ̂ = argminθ(B
1
z(x)− Sθ).

3 Results

The proposed algorithm was validated on 12 datasets that were acquired using
interventional MRI during ATLR procedures. Validation was done as part of an
audit to assess the usability of simulated field maps in a clinical scenario. The
images were acquired using a 1.5T Espree MRI scanner (Siemens, Erlangen,
Germany) designed for interventional procedures. The intraoperative protocol
included a T1-weighted FLASH image (TR = 5.25 ms, TE = 2.5 ms, flip angle
= 15◦, 0.547 × 0.547 × 1.25 mm grid of 512 × 512 × 176 voxels) and a T2-
weighted turbo spin echo image (TR = 3200 ms, TE = 510 ms, flip angle =
120◦, 1.0 × 1.0 × 1.0 mm grid of 256 × 256 × 176 voxels), a DW-MRI dataset
of 65 diffusion-weighted images acquired using a single shot EPI sequence with
GRAPPA-based parallel imaging (acceleration factor of 2, 2.5 × 2.5 × 2.5 mm
grid of 84 × 84 × 49 voxels, readout time 35.52 ms) and a field map acquired
using a gradient-recalled echo pulse sequence (2.91667× 2.91667× 2.9 mm grid
of 72× 72× 43 voxels, echo time difference of 4.76 ms).

The DW-MRI dataset for each subject was corrected as per Section 2.1 using
the acquired field map and the proposed simulated field map, respectively. An
example for a subject is shown in Figure 2.

The most direct validation of the simulated field map would be to compare
DWI images corrected using acquired and simulated field maps, respectively,
against anatomical landmarks identified on the intraoperative T1-weighted
images, which are not affected by the susceptibility artefact (Figure 2). However,
due to the low resolution and low signal-to-noise ratio of DW-MRI, the land-
marks are challenging to identify reliably and repeatably. Since there is no way
of measuring the true field maps in vivo, we compared the simulated field maps
to the acquired field maps (Figure 3). The field maps were expressed in mm of
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Fig. 2. Detail of correction for the susceptibility artefact. Left: an intraoperative T1-
weighted image unaffected by the distortion. The section runs through a plane close to
the anatomical axial plane (head at angle due to intraoperative orientation). A brain
surface outlined using a surface extractor2 is shown for reference (red outline). Middle
left: an uncorrected “b0” DW-MRI image (an image for which no diffusion gradients
are applied). Arrows point at an area of severe susceptibility distortion. Middle right:
the “b0” image corrected using the acquired field map. Right: the “b0” image corrected
using the simulated field map.

Table 1. Quantification of absolute difference (in mm) between the correction dis-
placement in the phase encode direction as predicted by the proposed simulated field
map and the acquired field map, respectively, for the 12 subjects. Only voxels within
brain mask are considered. The mean, standard deviation, median, and 90th, 95th and
99th percentile values are reported. The bottom row contains column averages.

Mean ( std ) Median P90 P95 P99

0.86 ( 1.13 ) 0.57 1.83 2.64 5.34
1.16 ( 1.50 ) 0.68 2.68 3.78 7.15
0.98 ( 1.37 ) 0.55 2.30 3.36 6.29
0.89 ( 1.29 ) 0.48 2.08 3.03 5.97
1.00 ( 1.37 ) 0.63 2.16 3.19 6.24
0.77 ( 1.03 ) 0.50 1.60 2.25 4.74
0.93 ( 1.17 ) 0.60 1.98 2.80 5.67
0.94 ( 1.41 ) 0.49 2.12 3.21 7.06
1.35 ( 1.84 ) 0.80 2.94 4.22 9.03
1.06 ( 1.47 ) 0.65 2.36 3.33 6.83
1.23 ( 1.84 ) 0.60 2.99 4.33 9.50
0.95 ( 1.39 ) 0.56 2.10 3.13 6.44

1.01 ( 1.40 ) 0.59 2.26 3.27 6.69
0
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Mean Std. dev. Median P90 P95 P99

Absolute field map difference [mm]

displacement along the PE direction, as these are the units significant to the
correction. Next, we calculated statistics for the difference between the simu-
lated and acquired field maps. The results for the 12 subjects are reported in
Table 1. For most of the brain, there is a close agreement. However, the differ-
ences follow a long-tailed distribution, so that in some areas, there are larger
disagreements.

2 As included in NiftyView (http://cmic.cs.ucl.ac.uk/home/software)
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Fig. 3. Field maps expressed as mm of displacement along the phase-encode direction.
The view is centered at the resection area of surgery. First row: A phase-wrapped ac-
quired field map for a representative subject, showing a step change in phase value close
to the resection margin. Second row: The acquired field map after phase-unwrapping.
Only the volume inside the brain mask, as employed by the phase-unwrapping algo-
rithm, is shown. Third row: A corresponding simulated field map (considered only
inside the brain mask for fair comparison). Last row: The voxel-wise absolute differ-
ence between the simulated and the phase-unwrapped acquired field maps. Left to
right: coronal, sagittal and axial sections, not coincident with anatomical planes due
to intraoperative orientation of the head.

4 Discussion

Across the subjects, the simulated and acquired field maps on average differ
by 1.01 ± 1.40 mm in the brain volume. This is within the voxel size of the
DWI dataset (2.5 mm, which is typical for DW-MRI datasets). This number
also has to be evaluated with respect to a desired resection accuracy, which
is patient and surgeon specific and difficult to define. We believe that 1 mm
resection accuracy in areas of low difference is clinically useful. However, since
the difference between field maps follows a long-tailed distribution, we attempt
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to interpret the values of the field maps in areas of more significant difference to
deduce where the simulated field maps are more correct, and vice versa.

We observe that the simulated field map is more positive in the vicinity of the
resection area. We hypothesize that this could be due to an accumulated error
in phase-unwrapping caused by the low SNR in this area and hence due to an
underestimated acquired field map.

We observe that near the regions of signal dropout, as visible near the head-
holder attachment pins, the simulated field map is more positive than the ac-
quired field map. This is in line with the expectation to see a reduced phase
evolution in regions of signal dropout and hence due to an underestimated
acquired field map.

We also observe that, conversely, near the petrous part of the temporal bone
in both hemispheres and anteriorly in the frontal lobe, the simulated field maps
are 2–3 mm above the acquired field maps. This likely occurs because the pro-
posed segmentation method overestimates the size of the air-filled cavities. This
overestimation is caused by the high penalty imposed on the bone class in the
EM/MRF segmentation step, which had been empirically found to be necessary,
to robustly segment the craniotomy area as completely air-filled, when relying
on the EM/MRF algorithm alone. Therefore, if it was possible to introduce a
method to segment the resection cavity and the craniotomy area robustly, the
penalty on bone in the the EM/MRF algorithm could be relaxed and the over-
estimation of the simulated field map could be reduced.

5 Conclusion

In summary, field map simulation is important for iMRI guided neurosurgery
and in this study we have proposed a method that can achieve a close agree-
ment between the simulated and acquired field maps for 12 patients. We suggest
that in the future, simulated field maps could be used to regularize the phase-
unwrapping of intraoperatively acquired field maps.

While our results are promising, a significant obstacle for intraoperative use
of the proposed method is the computational time required to simulate the
field map, currently above 20 minutes (Intel Core i5 @ 3.30 GHz). Therefore, a
possible future work would be to explore methods to speed up the CT synthesis
and field map calculation, for instance using GPU hardware.
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Abstract. Compounding 2D ultrasound sweeps into 3D volumes is, due
to its cost- and time-efficiency, of great clinical significance in both diag-
nostic and interventional imaging. However, today’s algorithms restrict
the sweeps to have homogeneous pressure and a linear trajectory, which
limits their use in clinical applications such as breast or musculoskeletal
ultrasound where artifacts occur due to soft and uneven surfaces. In this
work, we present two techniques to resolve those restrictions by using
an orientation-driven approach, first compensating for probe pressure
changes and then resolving ambiguities in regions, where multiple ultra-
sound frames from different acoustic windows overlap. After clustering
incoming frames by orientation, we determine the final voxel intensities
based on per-pixel uncertainty information. Qualitative and quantita-
tive evaluation of our methods shows that these techniques provide re-
constructions of superior quality for ultrasound sweeps of inhomogeneous
pressure and twisted trajectories. Furthermore, we propose optimizations
in the implementation of these techniques towards real-time applications,
interactively updating and refining the reconstructed volume.

1 Introduction

Ultrasound spatial compounding is the reconstruction of 3D volumes from 2D
ultrasound sweeps and has the potential to replace or extend current standard
clinical procedures for several applications, such as breast cancer diagnosis and
musculoskeletal (MSK) applications. Here, X-Ray does not only have the draw-
back of using ionizing radiation but also shows weak tissue contrast. MR imaging
is rather slow, expensive and additionally restricts the patient to be in a position
that might not be suited well for diagnostics. In contrast, ultrasound is relatively
low-cost, portable, real-time capable and offers good soft tissue contrast.

Recent advances in tracking calibration and compounding algorithms have led
to a significant increase in image quality of ultrasound compounding: Current
ultrasound probe calibration methods achieve millimeter tracking-accuracy and
the various spatial compounding algorithms offer different tradeoffs between al-
gorithm complexity and quality of the compounded volume. As a consequence,
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ultrasound compounding is making its way into commercial products shaping
the term 3D freehand ultrasound.

So far however, the term 3D freehand ultrasound promises more than it actu-
ally can deliver, since current methods implicitly assume constraints such as con-
stant probe pressure and/or constant motion of the ultrasound transducer along
a linear path. While this may be negligible for applications such as carotid ultra-
sound where the anatomy is easily accessible, breast and MSK applications have
highly curved surfaces requiring reconstruction of twisted sweep trajectories.

Curved sweeps lead to a challenging issue during the spatial compounding
process because some of the acquired ultrasound frames may overlap with each
other. Due to the dynamics and high complexity of the ultrasound image forma-
tion being dependent on incident angle, probe pressure and patient positioning,
ultrasound may yield different information (i.e. image intensities) for the same
point within the anatomy if scanned from different perspectives or at different
times. Our orientation-driven methods handle these ambiguities to result in more
accurate 3D reconstructions than current state-of-the art methods.

2 Related Work

In [1] Solberg et al. provide an overview on different 3D ultrasound compounding
techniques and identify three different classes of algorithms:

Pixel-based methods traverse the pixels in each 2D ultrasound frame, trans-
form the pixel location into voxel coordinates and write the pixel’s intensity
information into the initially empty volume. Since multiple pixels might con-
tribute to a single voxel, the final voxel value may be determined by averaging
or using the maximum intensity of all contributing pixels.

Voxel-based methods work the other way around by traversing the voxel grid
of the target volume and are thus also referred to as backward-warping methods.
For each voxel, they compute the corresponding pixels of the nearby ultrasound
frames and use a weighting function based on intensity and/or distance to de-
termine the final voxel value. Wein et al. show in [2] that voxel-based methods
yield superior quality and smaller computation time than pixel-based meth-
ods. Furthermore, backward-warping algorithms can easily be used to compute
multi-planar reconstructions (MPR) from the original ultrasound images with-
out computing the reconstructed volume before.

Finally, function-based methods estimate the coefficients for a set of locally
supported basis functions to approximate the input data. These functions are
then evaluated on the voxel grid to reconstruct the compounded volume [3,4].
Klein et al. [5] propose to use radio frequency (RF) data instead of reconstructed
B-mode images and a finite mixture model to obtain reconstructions of higher
quality and address the view-dependency of ultrasound. While these methods
yield 3D ultrasound reconstructions of very high quality, they are currently not
feasible for clinical practice due to being computationally expensive.

To compensate for probe pressure changes, Treece et al. use an image-based
non-rigid registration technique [6]. By computing the line-wise maximum
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normalized correlation between two adjacent B-mode images and applying a
monotonicity constraint they estimate the deformation in depth introduced by
the probe pressure. To avoid drift in the registration they constrain the registra-
tion results to the tracking. However, regularization will fail in case of inaccurate
calibration of the ultrasound probe, especially in the error-sensitive rotational
part.

3 Methods

3.1 Inter-frame Registration and Pressure Compensation

To correct for errors and inaccuracies in the tracking data (e.g. due to inaccurate
calibration or patient movement), as well as for artifacts due to probe pressure
changes, we propose an orientation-driven inter-frame registration technique:

Similar to Treece et al. [6], we perform an intensity-based registration between
adjacent ultrasound frames. Using a simple and thus real-time capable pixel-
wise uphill search evaluating the SSD, each ultrasound frame is registered to its
surrounding frames independently in terms of in-plane translation and in-plane
rotation. However, we perform the regularization by registering each ultrasound
frame to a window W of surrounding frames. This ensures to compensate for
drift independently of the tracking calibration accuracy.

Since the correlation between two ultrasound frames does not only depend
on their proximity but also on their orientation to each other [7], we determine
the weights for the frames in W by a combination of a Gaussian kernel of size
N and a term C, which describes the orientation-based correlation between two
images. For a given reference patch P and equally sized moving patch P ′ the
windowed SSD (wSSD) is given by

wSSDP,P ′,N (i) =
∑
p∈P,
p′∈P ′

N∑
n=−N

C(i, i+ n) · e
n2

2σ2 ·
(
Ii(p)− Ii+n(p

′)
)2

(1)

where i is the index of the reference frame and Ii(p) denotes the image intensity
of ultrasound frame i at the position p. The correlation term C(i, j) for frames
i and j is defined by the cosine distance of their normals ni, nj to model the
decreasing correlation between frames of increasing orientation difference:

C(i, j) := 1− 2

π
· acos

(
ni · nj

‖ni‖‖nj‖

)
(2)

To compensate for probe pressure artifacts, our method applies the above
inter-frame registration technique not only to a single patch, but to a grid of
independent patches of 1cm× 1cm size. Since we expect the deformation to be
orthogonal to the skin surface, our model allows free in-plane movement of the
patches to be flexible enough to allow both linear and curvilinear probes. After
computing the transformation for each patch as above, we set the transformation
of the central patch as rigid part and the difference to the other patches as
deformation field. The results can be seen in Fig. 1.
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(a) No pressure compensation (b) With pressure compensation

Fig. 1. Reconstruction of an abdominal phantom scan with probe pressure changes:
(a) MPR through the compounded volume without applying our pressure compen-
sation technique; (b) the same MPR through the compounded volume with pressure
compensation applied

3.2 Compounding of Non-homogeneous Sweeps

In a tortuous acquisition sweep parts of the ultrasound frames overlap and may
show different information for the same anatomy depending on the viewing angle.
Here, classical ultrasound compounding techniques with averaging or distance-
based weighting fail in correctly reconstructing such regions:

Given a set of ultrasound frames from different angles that all intersect near
our target voxel to reconstruct as depicted in Fig. 2. Standard compounding
algorithms such as [2] take the closest pixels in each ultrasound frame and de-
termine the final voxel intensity based on a weighting function usually preferring
closer pixel over pixels being farther away, hence the closest ultrasound frame
has the highest influence. If we now consider a neighbor voxel, the closest frame
may have a completely different orientation and thus show different informa-
tion (due to the view dependency of ultrasound). This yields to artifacts in the
compounded volume as depicted in Fig. 3a.

Furthermore, distance-based weighting can lead to incorrect reconstruction
since the distance of the frame to the voxel has no correlation with the amount
of information present in this pixel (i.e. level of uncertainty/noise). For instance,
it may ignore a pixel being farther away but having low uncertainty and instead
prefer a high uncertainty pixel (i.e. noise) because it is closer to the voxel.

Our orientation-driven ultrasound compounding technique tackles these issues
by exploiting additional uncertainty information using a two-step approach. Our
method assumes that for each ultrasound pixel with intensity Ii, we also have
an uncertainty value ui that we later use for weighting the image intensities.
While the actual method is independent from it, we use for our implementation
the attenuation maps proposed by Karamalis et al. [8]. Even though they model
ultrasound physics only to a limited amount, their attenuation maps can be
interpreted as uncertainty information.

Clustering of the Ultrasound Sweep by Direction: As a first step, we
perform a hierarchical clustering to identify tortuous sweep trajectories and re-
gions of overlapping ultrasound frames. This partitions the ultrasound sweep
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v1 v2

Frames from direction 1

f1

f2
Frames from direction 2

f3

f4

Fig. 2. Illustration of artifacts occurring in distance-weighted compounded regions
where multiple ultrasound frames from different angles intersect. The intensity of voxel
v1 will be mainly influenced by the information of frame f3 while the intensity of
neigbour voxel v2 will be mainly influenced by the information in frame f1. Since
the frames travel through different acoustic windows, the information at this spatial
location may significantly differ.

(a) No Clustering (b) Clustering by normal direction

Fig. 3. Effect on the clustering of ultrasound frames by normal direction: (a) shows a
compounding of a twisted ultrasound sweep with artifacts caused by the filtering based
on the distance to the voxel. (b) shows a compounding of the same sweep with our
clustering technique applied.

trajectory into parts where the frames have homogeneous orientation without
requiring us to predefine the number of clusters. We apply an average group
linkage algorithm using cosine distance to the normals of the ultrasound frames
Eq. (2). This yields a set of sub-sweeps meeting the usual restriction of being
contiguous and uniformly oriented.

A backward-warping algorithm then compounds each cluster c into a 3D vol-
ume applying our pressure compensation method as discussed in Section 3.1.
Since the ultrasound frames of each cluster are guaranteed to have the same
orientation and are thus travelling through the same acoustic window, we can
safely assume the distributions of uncertainty within the frame to be homoge-
neous within nearby frames. We compute the intensity for voxel x as

Ic(x) =

∑
i∈S Ii · d−μ

i∑
i∈S d−μ

i

(3)
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where S is the set of frame pixels close to the compounded voxel x, di the
Euclidean distance of pixel i to the compounded voxel and μ > 1 a smoothness
parameter ensuring that Ic(x) approximates the original data for di → 0 [9].
Furthermore, we propagate the uncertainty to the 3D volume using the same
weighting:

Uc(x) =

∑
i∈S ui · d−μ

i∑
i∈S d−μ

i

(4)

Uncertainty-Based Fusion of the Compounded Clusters: Since ultra-
sound image formation is a highly non-linear process and the pixel-based un-
certainty values ui are relative to the image content and thus not necessarily
comparable between different frames, we perform the uncertainty-based fusion
in a second step to avoid artifacts such as the ones depicted in Fig. 3a. In this
second step our method fuses clusters into the final 3D volume based on the prop-
agated uncertainty values. Let C be the set of clusters, then the final intensity
I at voxel x is given by

I(x) =

∑
c∈C(1− Uc(x))Ic(x)∑

c∈C 1− Uc(x)
(5)

4 Implementation

Our implementation of orientation-driven ultrasound compounding employs sev-
eral optimizations to allow real-time applications such as an interactive update
and refinement of the compounded volume: The regularized inter-frame regis-
tration needs only a limited number of frames lookahead (i.e. size of the regu-
larization window) and can hence be performed on-line as well as the clustering
by orientation, which simply starts a new cluster as soon as the cosine distance
is beyond the threshold.

Our incremental compounding adapts the two-step compounding of multiple
clusters to an in-place algorithm. Instead of reconstructing a separate volume for
each cluster, we use a single volume as accumulation buffer. The reconstructed
voxels of each cluster can be incrementally added by rewriting equation 5 to a
recurrence scheme, to gain a significantly lower complexity and memory foot-
print: Given the voxel intensity Ii−1 and uncertainty Ui−1 of the previous runs
and Ic, Uc of the current run, we define the new intensity Ii and uncertainty Ui

as:

Ii =
Ui−1Ii−1 + (1− Uc)Ic

Ui−1 + (1− Uc)
, Ui = Ui−1 + (1− Uc) (6)

The incremental compounding technique is further accelerated by using an in-
termediate lookup structure for the backward-warping: Each ultrasound frame
is sampled into a lower resolution brick structure using a scanline voxelization
technique as an efficient sampling method. Similar to scanline rasterization in
Computer Graphics, we compute the coordinates of the four corners of the frame,
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v0 = (x0, y0, z0)

v1 = (x1, y1, z1)

v2 = (x2, y2, z2)

v3 = (x3, y3, z3)

y1, z1)

v3 = (x3, y3, z3)

v = (x y z )

v2 = (x2,

E02

E01

E23

E13

Fig. 4. Illustration of the scanline voxelization scheme (for simplicity in 2D): Starting
at the bottom-most scanline around v0, we compute the left-most and right-most voxel
covered by the ultrasound frame. Using the slope of the edges E02 = E13 and E01 = E23

we can incrementally compute the start- and end-voxel for the next scanline by simple
additions. The increments have to be changed when advancing beyond v1 resp. v2
(advancing to middle/top part).

define a scanline axis and sort the corners along the axis. Exploiting the rect-
angularness of the image, we can compute the increments (i.e. slopes) along the
other two axes for one step along the scanline axis. Iterating brick-wise along the
scanline axis, we can compute all bricks touched by the frame using simple ad-
ditions as depicted in Fig. 4. The brick structure can then be used to accelerate
the lookup of all ultrasound frames close to a voxel.

5 Evaluation and Results

To evaluate our methods, we used an ACUSON S2000TM ultrasound machine
equipped with an Acuson 9L4 linear transducer and Ascension trakSTARTM2
electromagnetic tracking hardware being calibrated as described in [10].

To confirm the physically correct reconstruction of anatomy, we acquired ul-
trasound sweeps of an abdominal phantom including a tumor target of spherical
shape as depicted in Fig. 1. We computed 50 MPRs of arbitrary orientation
through the target and compared the maximum diameter with measurements
acquired from CT: The reconstructed ultrasound volume yielded an average tar-
get diameter of 14.63± 0.48 mm compared to 14.5± 0.84 mm in CT. Since the
target is positioned relatively close to the surface, it can be scanned from dif-
ferent directions and is prone to deformation, hence being a relevant scenario to
evaluate our method.

The effects of our inter-frame registration and pressure compensation tech-
nique can be observed in Fig. 1 showing the reconstructions of an ultrasound
sweep through the abdominal phantom: Due to the probe pressure changes the
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MPR through the reference volume (a) shows deformation of the originally round
target. Our techniques restore the original shape, seen in (b) showing the same
MPR through the volume compounded with pressure compensation.

Figure 3 shows the effect of our clustering technique when reconstructing a
twisted ultrasound sweep of human shoulder. Due to the overlapping frames
the baseline compounding in (a) shows artifacts because the closest frames for
neighboring voxels may be acquired from different angles. The reconstruction
in (b) uses our clustering technique to avoid overlapping frames and the occur-
ring artifacts and additionally exploits uncertainty information when fusing the
clusters so that unreliable intensities do not bias the final result.

Table 1. NCC and log-scale SNR in the overlapping region after registering the
two compounded volumes of two sweeps with perpendicular trajectories of the same
anatomy

Baseline [2] Our technique
NCC SNRdB NCC SNRdB

Phantom / constant pressure 0.90 19.39 0.94 23.16
Phantom / pressure changes 0.81 13.02 0.94 22.47

In-vivo leg / constant changes 0.72 9.21 0.76 11.69
In-vivo leg / pressure changes 0.67 8.53 0.75 11.03

For quantitative evaluation we acquired pairs of overlapping sweeps with per-
pendicular main trajectory of both phantom and in-vivo data. After compound-
ing the sweeps into separate 3D volumes using our methods, we applied a 3D-3D
rigid registration using the tracking data as initialization. Expecting our tech-
niques to yield better matching volumes, we compared their differences in the
overlapping region with the baseline method (standard backward-compounding
and no pressure compensation as described in [2]). With the average of the two
volumes as expected result for a correct reconstruction, we quantify their differ-
ence in Normalized Cross-Correlation (NCC) and log-scale Signal to Noise Ratio
(SNRdB), for which define the signal as average of the volumes and the noise
as RMS of the differences (Table 1). The sweeps with pressure changes show a
significant improvement in terms of increase in both NCC and SNRdB when our
technique is applied. Furthermore, when comparing constant pressure with pres-
sure changes, our technique shows significantly less drop of the measures. The
slight improvements for the sweeps acquired with constant pressure are mainly
due to the inter-frame registration correcting for the tracking error. Since the
sweeps are acquired with perpendicular trajectories and the volumes therefore
show different interpretations of the underlying data, no algorithm yields a per-
fect match. Furthermore, the in-vivo sweeps are expected to have lower similarity
since they show by far less homogeneous anatomy. Figure 5 shows the difference
images for the second phantom sweep.
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(a) Baseline (b) Our Technique

Fig. 5. Illustration of our evaluation method: First two images show the MPRs for each
perpendicular sweep, the third one shows the squared difference of their intensities after
3D-3D rigid registration. (a) traditional backward-compounding fails to align the dif-
ferent structures; (b) our technique yields alignment of all structures. The quantitative
results are shown in Table 1.

6 Discussion and Conclusion

In this work, we presented a novel orientation-driven approach to allow 3D free-
hand ultrasound for a broader range of clinical applications. Typical acquisition
sweeps in breast or musculoskeletal (MSK) ultrasound have pressure changes,
back- and forth or twisting motion, which are not handled well by current state-
of-the-art methods yielding artifacts for regions where the frames overlap. We
cluster the ultrasound frames based on orientation and proximity and thereby
guarantee that no frames in a cluster overlap. We further use per-pixel uncer-
tainty information when fusing the clusters into the compounded volume, which
yields more accurate reconstructions in places where we have information from
different acoustic windows, because intensities from uncertain regions do not
affect reliable intensities. Our method for probe pressure compensation uses a
similar inter-frame registration approach as [6] but also incorporates the orien-
tation of the frames to each other and uses a regularization independent from
the tracking calibration quality.

Since the evaluation of our methods shows very good results for the recon-
struction of non-homogeneous ultrasound sweeps, the question arises why our
two-step compounding approach of first clustering by frame orientation and then
fusing based on uncertainty information is superior to a classical one-step ap-
proach. We assume that the low signal-to-noise ratio of ultrasound, its high view-
dependency and thus very limited consistency in time and movement sets the
main challenge when compounding non-homogeneous ultrasound sweeps. Our
orientation-driven two-step compounding technique introduces an additional in-
terpolation step and thus compensates better for those highly non-linear effects.
By exploiting uncertainty information we ensure that this additional interpo-
lation does not impair the final image quality but even improves the result in
regions where we have inconsistent image information from different acoustic
windows. Also other applications [11] have shown the benefit of this uncertainty
based approach to information fusion.
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3D freehand ultrasound has a wide band of applications in both diagnostic
and interventional imaging. Our work allows high quality reconstructions also
in applications such as breast or MSK where soft and uneven surfaces lead to
sweeps of non-homogeneous pressure and non-linear trajectory. Our implemen-
tation shows optimizations to stream-line our methods to allow real-time appli-
cations where the compounded volume gets updated and refined interactively
during the acquisition, providing the clinician with direct feedback. Hence, we
believe that our orientation-driven methods will have a significant impact in
bringing ultrasound compounding further to clinical applications.
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Abstract. Image fusion of liver 2DX-ray images andpre or peri-operative
3D reconstructions can add valuable contextual information during image
guided interventions. Such image fusion requires 2D/3D registration. In
abdominal interventions, such as TACE of liver tumors, the initial align-
ment may be invalidated by e.g. breathing motion. We present a method
thatmaintains the alignment between 3DRotationalAngiography (3DRA)
and 2D X-ray, using the catheter position. To this end, we use the catheter
in the 2D X-ray and the blood vessels in the 3DRA, then fuse 2D/3D us-
ing the knowledge that the catheter is inside the vessels. The registration
is performed in two steps: First, we use a shape constraint to determine the
most likely catheter positions inside the blood vessel tree. Next,we perform
a rigid registration and take the best transformation over all previous se-
lected catheter positions. The method is evaluated on phantom, clinical
and simulated data.

Keywords: 2D/3D,Rigid, Catheter, Registration, Guidance,X-ray,Flu-
oroscopy, 3DRA, Abdominal, TACE, Liver, Breathing, Compensation.

1 Introduction

Minimally invasive procedures are more and more common in medical inter-
vention. They enable procedures with minimal trauma for the patient. Image
guidance is essential for minimally invasive procedures. However, common in-
terventional modalities, such as intra-operative 2D X-ray imaging and 2D/3D
ultrasound have limitations: X-ray imaging using ionizing radiation is a projec-
tion technique, and requires contrast agent to visualize vasculature. Ultrasound
imaging is operator-dependent, and hard to interprete. Integration of informa-
tion from 3D (pre or peri-operative) modalities to improve the image guidance
may therefore be a useful strategy in minimally invasive interventions. This re-
quires fusion of the intra-operative images with the pre or peri-operative images,
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which is often performed using image registration. After an initial alignment of
the 3D image to the interventional situation, patient motion or breathing may
invalidate the alignment. The purpose of our work is to develop and evaluate a
method to maintain this alignment in TACE procedures.

Transcatheter Arterial ChemoEmbolization (TACE) is a minimal invasive pro-
cedure to treat liver cancer (mostly Hepatocellular Carcinoma). In these proce-
dures, a catheter is navigated towards a tumor via the femoral and hepatic artery,
after which chemotherapeutic agents are injected. Currently, the interventionist
guides the catheter using single plane 2D X-ray (fluoroscopy), mainly visualiz-
ing only the catheter (Fig. 1). Frequently, angiographies (2D X-ray imaging with
contrast agent injection) are acquired to visualize the arteries. CTA is used pre-
operatively to visualize the tumors and feedings arteries. The navigation of the
catheter using only 2D fluoroscopy is hampered by the inability to continuously
visualize the arterial tree.

Fig. 1. (left) TACE overview. (right) Fluoroscopy example.

Fusion of the tumor and arterial tree from CTA (or from 3DRA) may greatly
facilitate the navigation of the catheter to the tumor. There have been many
reports on 2D/3D registration approaches to integrate 3D information in X-ray
guided interventions. These approaches were described for example for abdom-
inal [1–3], cardiac [4, 5] and neuro-vascular [6] cases (see [7, 8] for a thorough
review). Most methods proposed for abdominal applications perform 2D/3D
registration with single plane or bi-plane 2D intra-operative angiography and
3D pre-operative CTA [1–3]. [9] developped a semi-automatic respiratory mo-
tion tracking method using a small part of the catheter. In [6, 9], peri-operative
3DRA was used instead of pre-operative CTA, to register with 2D X-ray im-
ages using the calibrated geometry of the C-arm. Thus, the initial alignment is
accurate and based only on the C-arm position, which is known.

Our method is also based on this initial alignment. However in abdominal
intervention, breathing, patient and table motion lead to misalignments. We
propose a novel approach for maintaining the registration and thus a spatially
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aligned roadmap. Such an approach may facilitate catheter navigation and re-
duce contrast agent use during intervention. Unlike most methods, 2D angiogra-
phies are not required and registration is performed for each frame independently
and fully automatically. Our method uses the centerlines of the arterial tree that
are extracted from a 3DRA image (acquired at the start of the intervention),
and the complete cathether shape/position from the single plane fluoroscopic
images. The registration uses the projection of the 3D blood vessel tree with
the extracted 2D catheter shape (Fig. 2). In this work, we focus on keeping the
2D/3D alignment up-to-date. Both the arterial tree extraction (which is rela-
tively easy given the high contrast in the 3DRA), and the real-time catheter
detection, which may still be challenging [10] are not discussed here.

Fig. 2. Global overview

2 Methods

The registration method consists of two stages. The first stage uses a shape
constraint to rank the potential vessels in the blood vessel tree to locate the
most likely position of the catheter. The second stage aligns the catheter in 2D
with the potential vessels that result from the previous stage. In the following,
we give definitions, followed by the details of each stage.

2.1 Definitions

We define the following coordinate systems (CS) for our setup in the intervention
room:

– CSw, the world 3D CS, located at the iso-center of the C-arm, and oriented
along the C-arm in its default position

– CSdetector, the detector 3D CS (X-ray image plane)
– CSfluoro, is the 2D CS of the fluoroscopic image
– CS3DRA, 3D CS of the 3DRA
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Accordingly, the following coordinate transforms are defined:

– Tdetector←w, transform matrix from the world 3D CS to the detector 3D CS
– Tproj, cone-beam projection matrix from CSdetector to CSfluoro

– Tw←3DRA, transform matrix from the 3DRA 3D CS to the world 3D CS
– Tmotion, transform matrix of the breathing and the patient motion in the

world 3D CS, CSw

Tdetector←w and Tproj are assumed to be known for the X-ray images because
of the known geometry and orientation of the C-arm. Tw←3DRA is the identity
because the 3D acquisition is around the iso-center of the C-arm. Tmotion will be
the result of our registration.

It then follows that a 3D point in the 3DRA, pCS3DRA , can be projected on
CSfluoro using the following equation (in homogeneous coordinates):

pCSfluoro
= Tproj.Tdetector←w.Tmotion.Tw←3DRA.pCS3DRA (1)

The catheter is defined as an ordered set of N points:

C2D = {c1, c2, ...ci, ..., cN}
where ci ∈ R

2 is a 2D point at the center of the catheter in CSfluoro. Note that
c1 is the tip of the catheter.
The blood vessel tree extracted from 3DRA is represented as a directed tree:

G3D = (V,E)

where V is the set of 3D points of the centerlines in CS3DRA and E the set of
directed edges between points.

2.2 Vessel Selection Based on Shape Similarity

Given the complexity of the blood vessel tree, we first select the most likely
matching vessels for registration. To achieve this, we rank all possible vessels of
G3D. One vessel is a set of points starting from any location in the tree G3D to
its root. The ranking is based on shape similarity between the 2D catheter and
the 2D projection of the 3D blood vessel path; we use the following metric for
the shape similarity S:

S =

∫ l

0

−→
C 2D(u).

−→
f (S3D(u))du (2)

where l is the length of the 2D catheter, S3D is one vessel from G3D and f is the
2D projection f = Tproj.Tdetector←w.Tw←3DRA.

This shape similarity metric integrates the ‘alignment’ of both structures
(based on the dot-product of their direction vectors). The resulting value is
in the range [0, l], and a high value implies a good match. This metric is not
robust to large rotational motions, as those will change the orientation. As we
are focusing on correcting for breathing motion, we expect the rotational mo-
tion to be small, and thus this metric should be sufficient. After computing the
shape similarity for all possible vessels, the K best ranking vessels are used in
the subsequent registration.
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2.3 Rigid 2D/3D Registration with Forward Projection

To match the 2D catheter with the vessels, we need to find the rigid transform
Tmotion in CSw that yields the best match with the 2D catheter in CSfluoro. We
decompose the transformation as follows:

Tmotion = Tw←detector.Ttranslation.Tdetector←w.Trotation

where Trotation is a rotation matrix with three unknowns (Euler angles, α, β and
γ) and Ttranslation is a translation matrix with three unknowns (x, y, z), where the
translations are aligned with CSdetector. A translation along the projection axis
in CSdetector will only have a very minor effect in the projection. We therefore
exclude z from the registration parameters, leaving us with a five degrees of
freedom transformation.

The distance metric we use is based on the distances in CSfluoro. It is the sum
of the minimal distance between each point of the catheter and any point of the
current 3D selected vessel:

Dist(c, S, t) = min
s∈S

||c− f(s, t)|| (3)

where c ∈ R
2, S is a vessel, t is a rigid transformation matrix and f(s, t) =

Tproj.Tdetector←w.t.Tw←3DRA.s.
The final transformation is the one with the smallest cumulative distance metric.

Tmotion = arg min
t∈T

∑
c∈C2D

Dist(c, Ssel
3D, t) (4)

where T is the set of possible rigid transformation matrices and Ssel
3D is one of

the K best ranking selected vessels from G.

We apply a brute force search for the optimum over the five unknowns search
space, which is feasible as the search space is small in case of breathing motion.
The registration is performed among the K selected vessels and we keep the one
with the smallest distance metric.

3 Experiments and Results

To evaluate the accuracy and the robustness of our method, we propose three
experiments: one on phantom data, one with clinical data and the last one with
clinical data and simulated catheter positions (therefore with a ground truth).

3.1 Parameters

We set the intervals of our brute force search to ±50 mm (with 0.2 mm step) for
x and y and ±7◦ (with 0.05◦ step) for α, β and γ. These intervals are sufficiently
large to capture breathing motion. K is set to 5. The computation time is less
than one minute for each frame.
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3.2 Phantom Acquisition

In the first experiment, we evaluate the method in the context of ideal data.
To this end, we used two rigid phantoms (Fig. 3): a heart phantom with coro-
nary arteries and one made of copper wire. We acquired 3DRA images of these
phantoms and subsequently we acquired fluoroscopic images: 10 and 21 im-
ages for the heart and copper phantom, respectively. Each image has a different
C-arm angle either in propeller or in roll positions. The intervention table and the
phantoms were fixed, thus the relation between the 3DRA and the fluoroscopy
is given by the positioning information of the C-arm system. Next, we registered
the X-ray images to the 3DRA. In order to provide an impression of the reg-
istration accuracy, for each frame, the median of the remaining distances (Eq.
3) is presented in Fig. 3 : Dist(c, Sbest

3D , Tmotion) for each c ∈ C2D where Sbest
3D is

the best registered vessel from the K best ranking selected vessels. As we do not
use calibrated angles of the C-arm, we observe an offset before the registration.
The offset is much larger with the second phantom. This is caused by different
C-arm motions (roll and propeller) during 3DRA and fluoroscopy acquisition.

Fig. 3. (left) 3DRAs and fluoroscopies of both phantoms. (right) Medians of the dis-
tances between 2D catheter points and 2D projected 3D vessels points, for every seg-
mented frames.

3.3 Clinical Data

In the next experiment we evaluate the performance of the method with clin-
ical data. To this end, we retrospectively acquired image data from 13 TACE
procedures. For each TACE procedure, we have one 3DRA acquired during the
inhalation phase when the catheter is in the left or right hepatic artery and sev-
eral (from 1 to 15) X-ray sequences. In total, we acquired 101 X-ray sequences.
In each sequence, we segmented the catheter manually in three frames: one in
inhale, one in exhale and one in-between. We applied our registration approach
on each of these 303 frames, using the C-arm information and the initial position
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of the 3DRA. We report the median of the distances between the catheter points
and the best vessel points (Eq. 3), and also visually inspected the results.

Figure 4 shows the results of the registration on clinical data. In all except two
cases, the median of the distances, for each patient, is below 1 mm. In the case
of one patient, the 3DRA image is of low quality, and parts of the vasculature
are missing, especially the hepatic and aorta. For the other patient with a larger
median distance, the 3DRA acquisition was not correctly centered on the liver,
so part of the hepatic and aorta are not in the 3DRA. We obtained the following
medians of the average of the distances (Eq. 3): 1.35 mm, 1.45 mm and 1.78 mm
for ’inhale’, ’in-between’ and ’exhale’, respectively. Unlike medians in Fig. 4,
averages point out differences between the breathing states. The medians of the
average of the distances close to the tip (10% of the catheter) are: 1.46 mm,
1.59 mm and 1.54 mm. When we visually checked the registrations, in 71%
of the cases, the correct vessel was registered (Fig. 5). In the other cases, the
registration was incorrect: 58% due to 3DRA misacquisition and 20% due to
large catheter deformation.

Fig. 4. Medians of the distances between 2D catheter points and 2D projected 3D
vessels points, for every segmented frames

3.4 Clinical Data with a Simulated Catheter

Finally, we used the same clinical images to generate synthetic data for which we
have a ground truth. We used all clinically acquired 3DRAs, but instead of us-
ing fluoroscopies and a manually segmented catheter, we annotated an artificial
catheter in the 3DRA vasculature (using the registered vessel from previous re-
sults of clinical data) and then project it as 2D curve onto the fluoroscopic im-
age, using the C-arm settings. To achieve this, we used the set of frames at inhale
(101 images). Additionally, we simulated the stretching behaviour of the catheter
by applying a Gaussian kernel smoothing on the 3D annotated catheter curve
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Fig. 5. Registration of the catheter (red) and the best registered vessel (green). (top)
Successful registrations. (bottom) Missed registrations. (bottom-left) 3D arterial tree
segmentation misses too many vessels (aorta and hepatic artery). (bottom-middle) 3D
arterial tree misses the aorta. (bottom-right) The distance metric does not take into
account the vessel continuity.

Table 1. Parameter randomizations of the simulations

Slight Moderate Large

Translation x (in mm) [-30, 30] [-30, 30] [-30, 30]
Translation y (in mm) [-20, 20] [-40, -20]∪[20, 40] [-50, -40]∪[40, 50]
Translation z (in mm) [-30, 30] [-30, 30] [-30, 30]
Rotation α, β, γ (in ◦) [-6, 6] [-6, 6] [-6, 6]
Catheter smoothing σ [1, 5] [5, 10] [10, 15]

Fig. 6. (left) Medians of the distances between 2D catheter points and 2D projected 3D
vessels points, for every segmented frames, after registration. (right) Distance between
the real tip and the registered tip after registration.

and we applied different random translations and rotations for the transformation
Tmotion. We performed three simulations (slight, moderate and large) of breathing
and deformations (Table 1). Breathing is done along the axis y.
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Table 2. Percentage of tips inside the registered vessel

No catheter deformation With catheter deformation

Slight Moderate Large Slight Moderate Large

88% 89% 92% 82% 89% 81%

As we know the exact position of the catheter, we can compute the distance
between the real 2D catheter position and the 2D catheter position obtained
by applying the registration result Tmotion, and for the tip as well. Figure 6
shows these distances. We also report whether the registered vessel contains the
catheter (Table 2).

4 Discussion

We presented and evaluated a method that is able to maintain alignment of
liver vascular roadmaps in the presence of patient breathing, using a vessel se-
lection and rigid registration approach. We evaluated the method on phantom,
clinical and simulated data. The median distances between catheter and vessel
centerlines are below 1 mm for most cases. For the simulated data, the median
of the tip position accuracy is below 2 mm, except when the catheter has a large
deformation. Most of the registrations have small (< 1 mm) median distances,
which demonstrates that the approach we propose is feasible. In addition, the
third experiment, where the catheter does not exactly match the vasculature,
demonstrated that the method is robust to deformations and relatively large
displacements. However, the last experiment also demonstrated that a large de-
formation may lead to incorrect vessel selection. Furthermore, this experiment
indicated that registration distance below 1 mm does not imply a tip position
below 1 mm. Failure in accurate registration for the real patient data was often
caused by insufficient quality (missing vessels) of the 3DRA data. This underlines
the need of adequate imaging for our proposed approach.

Based on these results, we are considering several improvements. Firstly,
adding temporal and contextual knowledge may reduce large misregistrations
caused by incorrect vessel selections. Indeed, a catheter is more likely to be
in the vessel that was used in previous registrations, especially in the case of
slight catheter movement. Secondly, during the procedure, as the tip position
is more important than the proximal part of the catheter, more weighting the
registration result close to the tip may be relevant to improve the accuracy of
the roadmap near the tip. Utilizing temporal information may also be beneficial
here. Also, a real-time method should be achieved with advanced optimizers, the
use of GPU and also by downsampling the catheter and blood vessel resolution.
Lastly, in the future, we plan to investigate non-rigid registration as well, to
address those cases where the rigid registration fails to completely capture the
breathing effects. It should yield better accuracy in case of deformation caused
by catheter stiffness and breathing.
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To conclude, we presented a method that allows performing continuous reg-
istration of a 3D vascular roadmap to 2D fluoroscopic images, based on the
extracted vascular tree and the catheter position. We evaluated the feasibility of
our approach on phantom, clinical and simulated data, demonstrating an overall
median registration error less than 1 mm.
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Abstract. In conventional prostate biopsy for cancer diagnosis, the 2D
nature of ultrasound (US) guidance limits targeting accuracy and does
not allow a 3D record of core locations. Several research groups are in-
vestigating the use of an electromagnetically tracked US transducer to
reconstruct a volumetric scan. Unfortunately, the tracking measurements
contain significant errors that affect spatial accuracy. We propose a new
filter-based framework of speckle tracking for enchantment of prostate
volume reconstruction based on speckle/noise extraction and provide its
theoretical basis. A gamma multiplicative noise model is considered and
a probability patch-based non-local means (PPB-NLM) filter is used for
the task of speckle extraction. The spatial variation of the beam pro-
file is also incorporated using a linear regression model of the beam.
Validation tests are first performed on tissue samples obtained ex vivo
using a linear motor stage and an optical tracker as gold standards. Fur-
ther validation is performed on the gastrocnemius muscle in vivo. We
then demonstrate the performance of the tracking system on prostate
scans obtained in vivo. The results show that the proposed approach pro-
duces visually continuous anatomical boundaries in reconstructed 3D US
volumes of the prostate.

Keywords: Sensorless freehand ultrasound, prostate biopsy, speckle
tracking.

1 Introduction

Prostate Cancer (PCa) is the second most prevalent cancer and the third cause of
cancer mortality in North American men [1, 2]. The current clinical standard for
PCa diagnosis is histological analysis of Transrectal Ultrasound (TRUS) guided
biopsy samples. The 2D nature of the conventional biopsy limits targeting ac-
curacy and does not allow a 3D record of core locations. To alleviate this issue,
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several groups have proposed 3D targeted biopsy, where the biopsy targets and
extracted cores are recorded in the space of a TRUS volume acquired prior to
the start of the procedure [3–5]. TRUS volume reconstruction is generally ac-
curate using a 3D TRUS transducer [3]; however, such transducers are not part
of a typical standard-of-care. When a 3D TRUS volume is reconstructed from a
swept 2D TRUS, the best results have been reported with a sophisticated me-
chanical stabilizer [4]. The simplest, least expensive solution that is closest to the
current standard-of-care, is to use a magnetically tracked, freehand 2D TRUS
transducer (Fig. 1a) [5, 6]. In our experience with such magnetically tracked
TRUS transducers, we still observe significant spatial reconstruction errors, due
to a combination of tracking inaccuracy from proximal metal objects such as
the bed, calibration inaccuracy, and shifts in organ position. We propose to sup-
plement magnetic tracking with speckle tracking, thereby taking advantage of
the speckle pattern within the anatomy to create a more geometrically correct
volume.

Conventional speckle tracking has been previously used to increase the reli-
ability and accuracy of electromagnetic tracking [7] and to improve the result
of multi-modal 3D US to CT registrations of spine [8]. However, the rarity of
Fully Developed Speckle (FDS) in real tissue is among the major causes of in-
accuracy in conventional speckle tracking methods. The fundamental basis of
most correlation-based speckle tracking holds true only for non-coherent speckle,
known as FDS. The rarity of such patterns reduces the accuracy of the eleva-
tion displacement estimation. Previous methods addressed this issue by using
a heuristic approach for correction of coherency [9] and learning the pattern of
decorrelation for real tissues [10]. To overcome the limitations of heuristic and
learning-based approaches, we previously proposed a generalized closed-form for-
mulation for the correlation of the non-coherent part of every patch in the [11].
In spite of promising results, the computational cost of our previous approach
hinders its clinical applications. Using the same processing hardware as [11], the
proposed method performs about three times faster. It is also possible to increase
the speed more by a block-wise implementation of PPB-NLM filter. Moreover,
EM estimations of PDFs as used in [11] are prone to local minima; however,
NLM filters have shown superior results in noise estimation.

In this work, we propose a novel method of speckle tracking based on noise
extraction by means of a denoising filter. The first advantage of the filter-based
approach is the rapid processing of the image using a pre-defined speckle model.
Another advantage is to use full and partially developed speckle information
extracted throughout the entire image, which reduces drift in pose transform
calculations. A third advantage is that our our filter-based approach is designed
to work with both RF data and B-mode US images, which expands the range of
systems and clinical applications. We incorporate this speckle tracking method
into 3D TRUS reconstruction by using the magnetic tracking information of free-
hand 2D TRUS images as the initial guess. We demonstrate that such integra-
tion of the two tracking technologies can reduce some of the visible misalignment
errors in the reconstructed prostate volume.
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Fig. 1. Image acquisition and speckle tracking framework. (a) Speckle extraction from
the US image (b) Elevation displacement estimation. In this figure we demonstrate the
correlation curve by which the elevation distance is estimated given a measured noise.
The different fitted ρ models on the measured correlation coefficients of US noise for
the prostate data are shown. (c) Transform estimation. The scattered points show the
3D position of patch centers in the reference frame (red) and the adjacent frame.

2 Methods

If we consider speckle/noise extraction as the estimation of the space-varying
parameters of noise, given the noise model, the separation of the coherent and
non-coherent parts of US is equivalent to denoising. Several US denoising filters
have been introduced in the literature [12]. Here, we require a method of denois-
ing that is spatially local and incorporates the statistical noise model. Hence,
we use a probabilistic patch-based generalization of the non-local means filter to
estimate the space-varying parameters the speckle/noise [13] (Fig. 1a). We also
use a position dependent beam profile in the calculation of correlation coefficient
to improve the accuracy of speckle tracking [11] (Fig. 1b).

2.1 Beam Profile Modeling for Speckle Tracking

US 2D registration-based speckle matching and the cross correlation of US RF
signals have shown their ability to measure the in-plane displacement [14]. The
main challenge for 3D US speckle tracking is the estimation of out-of-plane dis-
placement. The finite width of the US beam profile creates overlapping resolution
cells for two adjacent US patches along the elevation direction, which is used to
estimate the out-of-plane displacement. The amount of this overlap contributes
to the correlation value of speckle patterns in two consecutive US frames. Based
on linear systems theory, the resulting autocorrelation of the echo signal as a
function of displacement can be written as:

R(ΔX) = Rm(ΔX) ∗ g(−ΔX) ∗ g∗(ΔX). (1)

where Rm is the autocorrelation function of the physical variation in the scat-
terer field of the medium and ΔX is the 3D translation vector. g is the Point
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Spread Function (PSF) of the transducer and g∗ is the complex conjugate of
g. Theoretically, the scatterer field of FDS has a delta correlation function. As
a result, the correlation value of two FDS patches is only related to the con-
volution of two PSFs. It is conventional to use the Gaussian approximation for
the correlation coefficient; however it is shown that the closed-form Pearson’s
correlation coefficient equals [11] (Fig. 1b):

ρ =
3σ2

2
(
1− sinc(2Δy

σ )

(πΔy)2
, (2)

where Δy is the elevation displacement and σ is the resolution cell width of the
US beam. To compensate for the spatial changes of beam profile, we modelled σ
as a linear regression of the position parameters and the elevation displacement:

σ = σ0 + ar + bθ + cΔy, (3)

where r is the radius and θ is the angle in the polar coordinate of a curvilinear
probe that we used in vivo. The resolution cell width increases along the axial
direction, r, which is responsible for the lower resolution at the lower parts of
the US image. The US profile is almost constant in the lateral direction, θ. Δy
dependency compensates the deviation of correlation curve from the theoretical
function [11]. We used Levenberg-Marquart algorithm to solve Δy.

2.2 Speckle Extraction

In the Goodman’s speckle noise model, the US signal is considered as the mul-
tiplication of the square root of the desired signal (Z) and the noise (N):

A =
√
N
√
Z. (4)

The noise part, can be modeled as an L-look FDS noise following the gamma
distribution with the scale parameter of 1

L and the shape parameter of L:

pN(n) =
LL

Γ (L)
nL−1e−nL, (5)

where Γ () is the Gamma function.
Under the gamma distribution assumption,

√
N follows Nakagami distribu-

tion with shape parameter L and unit spread parameter. Using the closed-form
formula of the nth order moment of the multiplication of two independent Nak-
agami random variables, we may derive the mean (μm) and the autocorrelation
function (Rm) of two closely positioned frames as follows:

μm = μ√
Z (

Γ (L+ 1
2 )

Γ (L+ 1)
)(
1

L
)0.5︸ ︷︷ ︸

a

, (6)

Rm(Δy) =< Z ><
√
N1N2 >=

{
μz : Δy = 0
a2μz : Δy �= 0

, (7)
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where <> represents the expected value of the random variable and μ√
Z is the

average of the desired signal square root.
By rewriting Rm(Δy) as μZ

[
(1− a2)δ(Δy) + a2

]
, using (6) and (7), and

following the same calculation presented in [11], after some arithmetic:

ρ =
μZ(1 − a2)σ(

1−sinc( 2Δy
σ )

(πΔy)2 ) + a2σ2√
z

μZ(1 − a2) 2
3σ + a2σ2√

z

, (8)

where μZ and σ√
z are the mean and standard deviation of the desired signal Z.

The desired signal Z, is the intended output of any denoising filter. For the
purpose of speckle tracking, a method of denoising is of interest that considers
the distribution of the uncorrelated noise in its model and it is capable of space-
varying noise estimation. A probability-based NLM filter, which outperforms
other state-of-the-art denoising algorithms [13], serves the purpose best.

In the NLM denoising approach, the desired signal Z is estimated based on
the weighted average of the neighboring pixels [12]:

Ẑs =

∑
t w(s, t)A

2
t∑

t w(s, t)
. (9)

where Ẑ is the estimated signal, and s, t indicate the location of the two neigh-
boring patches.

The definition of the weights is the key in the success of NLM filters. Since the
posterior distribution of the US amplitude, A, in (4) has a closed-form (10), a
Bayesian approach can be followed to derive the Weighted Maximum Likelihood
Estimation (WMLE) of Z.

p(A|Z) =
2LL

Γ (L)ZL
A2Le−

LA2

Z . (10)

In the case of L-look FDS noise the WMLE of the weights can be found iteratively
as follows [13]:

w(s, t)i = exp(
∑
k

(
1

h̃
log(

As,k

At,k
− At,k

As,k
) +

L

T

|Ẑi−1
s,k − Ẑi−1

t,k |2

Ẑi−1
s,k Ẑi−1

t,k

)), (11)

where ĥ = h
2L−1 and h, T can be considered as dual parameters to balance the

trade-off between the noise extraction and the fidelity of the estimate.

2.3 Transform Estimation

Theoretically, by having the out-of-plane distances of at least three correspond-
ing points between two frames, it is possible to solve for the three degrees of
freedom of the out-of-plane motion, i.e. elevation displacement, tilt, and yaw
angles. The sign of the elevation displacement is determined by the electromag-
netic tracker in this work; however, approaches proposed in [15] and [16] can be
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followed to solve for direction ambiguity. We first determine the in-plane motion
between pairs of patches by performing a sub-pixel cross correlation-based regis-
tration. Then to solve for the correspondent elevation displacement of each pair,
the Pearson’s correlation coefficient of the extracted noise, ρ, is measured using
the following formulation (Note that given ρ, the out-of-plane displacement, Δy,
is determined using (2)):

ρ =

∑
i (Is(i)− Īs)

∑
i (Ik(i)− Īk)√∑

i (Is(i)− Īs)2
∑

i (Ik(i)− Īk)2
, (12)

where I is the intensity of the pixels and Ī is the average intensity over the patch.
In the experiments, 364 overlapping patches of size 6×8 mm with ≈ 3000 pixels
in each patch were used. We used unit quaternions to estimate the 3D rigid
body transformation (Fig. 1c). The transformation is first estimated using all the
patches. The patches with the center point residual error of more than 0.5 mm
were considered as outliers and discarded, and the transformation is calculated
again. It is possible to find the transformation between any given frame and the
first frame ( T1 n) by multiplying the transformations from the consecutive pairs
of frames as in (13). Therefore, the whole volume can be constructed relative to
the first frame:

T1 n = T1 2 T2 3 . . . Tn−1
n. (13)

3 Experiments and Results

In a one-time calibration step, the sigma function parameters were estimated
from turkey, chicken and beef tissue samples in vitro. The tissues were placed
on a linear motion stage and were moved in 0.1 mm steps relative to the trans-
ducer. Three subsets of 40 frames were captured for each sample type. Sigma
function parameters were estimated using the known elevation distance between
the parallel frames and they were averaged (intra-tissue) for each sample type.
To access the tissue independency, the coefficient of variation is calculated over

Table 1. Accumulated drift and RMS error in the
out-of-plane parameters compared to tracker over
100 frames

Patient1 Patient2 Patient3

Midpoint (mm)
Drift -3.2 4.8 0.8
RMS 1.93 2.96 1.1

Tilt (degree)
Drift 2 0.1 6.6
RMS 1.28 1.11 4.7

Yaw (degree)
Drift 2.95 1.1 1.2
RMS 0.73 0.39 0.75

Table 2. Sigma
variations at differ-
ent depths

Mean STD

Top 0.58 0.11

Middle 0.71 0.07

Bottom 0.90 0.06
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Fig. 2. (a) CV plot of the sigma parameter. Inter-tissue measurements for (b) the
elevation distance estimation and (c) the ratio of displacement error.

different axial and elevation distances. The overall variation is less than %12
over tissue types and the variation is smaller around axial focus (30 mm), as
expected (Fig. 2a). Table. 2 shows the total sigma variations for different tissue
types at three different depths of 1, 3, and 6 cm for an elevation displacement
of 0.5 mm. Small variations confirm the tissue independency of the method. In
the subsequent experiments, the inter-tissue average of the sigma parameters are
used for the in vivo speckle tracking.

The accumulative elevation distance and the measured elevation error over the
true value of displacement are shown in Fig. 2b, 2c. Since it is possible to use the
information all over the image in the proposed method, the drift is minimal. The
changes of the beam profile that are not captured in the model cause relatively
larger Standard Deviations (STD). One way to decrease the error STD is to limit
the range of estimation to the focal zone [11].

A practical factor that affects the elevation displacement estimation is the
presence of out-of-plane rotation, i.e. tilt and yaw. In our in vivo experiments,
the relative out-of-plane rotations were less than 0.5◦ and hence, the influence of
that on the decorrelation is likely small. However, to evaluate the performance of
the proposed method, we performed a set of experiments on beef tissue samples
similar to [17] with relative tilt and yaw angles of 1◦. To avoid sign ambiguity,
elevation distances more than 0.3 mm are considered. Fig. 3a, 3b show the
results. For the yaw rotation the drift is negligible for smaller distances, but
tilt rotation causes underestimation in the elevation measurements. The results
agree with previous research [17]. A freehand feasibility experiment was first
performed on human gastrocnemius muscle, where the tracking information was
obtained from an optical tracker as gold standard. The mean and variation of
the estimations are smaller for smaller displacements. However, the aggregation
of the displacements all over the image will reduce the transform estimation
error. Weighted aggregation based on the displacement reliability estimation is
the subject of future research (Fig. 3c).

Prostate B-mode images were acquired during freehand TRUS-guided prostate
biopsy sessions. An EC9-5 endocavity transducer (Ultrasonix Corp., Richmond,
Canada) with a built-in electromagnetic sensor was used. A reference electro-
magnetic sensor was placed close to the pelvic bone, which provided the patient
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Fig. 3. The ratio of the measured displacement error to the true elevation separation
for (a) 1◦ yaw and (b) 1◦ tilt rotation on beef tissue (c) freehand in vivo human
gastrocnemius muscle

coordinate system. In this paper, three patients have been processed out of 11
patients scanned to date. For each patient, we analyzed 100 consecutive B-mode
images obtained while the transducer was moved freehand in a transverse sweep
from apex to base. The approximate size of the prostate region covered by this
sweep is half of the prostate length.

We used the initial information of the magnetic tracker for the first frame in
the sweep, and calculated the relative transformation of the rest of the frames
based on the proposed speckle tracking approach. The errors in the estimation
of the out-of-plane parameters (tilt, yaw and midpoint elevation displacement),
were measured and compared to the electromagnetic tracker over the entire
sweep (Table 1). The error drift shows that our proposed approach generally
follows the magnetic tracking transformation even after 100 frames.

Fig. 4. Reconstructed volumes over 100 frames from smoothed magnetic tracker data
(top row) and the proposed approach (bottom row) for three patients
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Fig. 5. Coronal resclice of the reconstructed volumes from smoothed magnetic tracker
data (top row) and the proposed approach (bottom row)

To reduce the impact of drift on the overall 3D reconstruction accuracy, while
taking advantage of the speckle tracking information, we updated the transfor-
mation obtained using the speckle tracking with the magnetic tracker informa-
tion every 25 frames, and smoothed the transformation parameters in quaternion
space by an averaging window of size 5. A volume was then reconstructed from
the acquired transforms. Fig. 4 and 5 show the reconstructed volumes using mag-
netic tracking, where the transformations were smoothed with a low-pass filter,
and the volumes obtained with our proposed combination of speckle tracking
and magnetic tracking. Comparison of the reconstructed volumes show smooth
boundaries and less visual discontinuity with our proposed method.

4 Discussion and Conclusion

In this work, a novel method of speckle tracking based on denoising is pro-
posed and its theoretical basis is provided. A probability-based NLM filter is
used to extract speckle information from the US image enabling B-mode speckle
tracking. Using the extracted speckle, it is possible to estimate the out-of-plane
displacement for any given patch in the image with very low drift. A closed-form
regression model is used for the correlation function to approximate the devia-
tions of beam profile more accurately. We validate the approach using ex vivo
data, and in vivo data from three patients who underwent prostate biopsy. 3D
TRUS volumes were reconstructed from the prostate of those patients. When
compared to the magnetic tracker, results show visual improvement in the re-
constructed boundaries of the prostate. Future work will focus on the integration
of this approach with a targeted prostate biopsy system.
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Abstract. A new hyperspectral imaging system has been designed for integra-
tion in the operating room to detect anatomical tissues hardly noticed by the 
surgeon’s naked eye. This LCTF-based spectral imaging system is operative 
over visible and near infrared range (400-1100 nm). After spectral calibration 
and spatial registration, the tricky process consists in reducing the huge amount 
of acquired data and removing redundancy without losing valuable information. 
Band transformation and selection methods are applied on both labeled and un-
labeled tissues to extract relevant information to be displayed on surgeon’s 
RGB monitor. Visualization processing involving global and local contrast en-
hancement is then performed. To provide a reference for evaluation, surgeon’s 
perception of the scene is also simulated based on retina cell spectral responses. 
Experiments on pig ureter hyperspectral datasets reveal that band selection me-
thods are the most effective on this type of intervention, providing sharp inter-
pretation and accurate visualization of the biological tissues. 

Keywords: Hyperspectral imaging, dimensionality reduction, visualization, 
contrast enhancement, operating room, surgical intervention.  

1 Introduction 

Hyperspectral imaging (HSI) consists of hundreds of images taken in narrow and 
adjacent spectral bands. Stacked into three-dimensional hyperspectral (HS) data 
cubes, they provide both spectral and spatial information of the imaged scene. In the 
last decades, HSI was involved in remote sensing but its efficiency is now experi-
mented successfully in many emerging applications fields. Recently, HS are involved 
in medical applications [1– 4]. Although rich spatial and spectral information is pro-
vided by the HS sensors, processing of this huge amount of data may be troublesome 
and leads to high computational cost. Dimensionality reduction is a crucial step in HS 
data analysis in order to alleviate the computational burden, to avoid the dimensio-
nality curse and to reduce the redundant and correlated information without  
losing valuable details that are needed for further processing like classification, target 
detection, visualization, etc. 

There are numerous dimensionality reduction techniques that can be classified into 
two main categories: the band transformation also called feature extraction methods 
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and the band selection methods. Band transformation techniques project the original 
HS information onto a space of lower dimension so that a new transformed and re-
duced data set is generated. While, band selection methods select the relevant range of 
wavelengths to obtain a subset data from the initial HS information. 

In previous works, both of these methodologies are used to reduce the dimensio-
nality of the HS data cube. Band transformation techniques can be either linear  
methods [5] including Principal Component Analysis (PCA) [6], Independent Com-
ponent Analysis (ICA) [7] and projection pursuit [8] or non linear methods [9] includ-
ing Locally Linear Embedding (LLE) [10] and Isomap [11]. A comparative study of 
these techniques was carried out in [12] and concluded that PCA outperforms the 
other methods in different investigated tasks. Several other studies focused on band 
selection methods [13, 14]. Band selection methods can be roughly categorized into 
three groups, i.e. statistics techniques [15, 16], information-based methods [17, 18] 
and signal processing techniques [19, 20]. Sometimes the dimensionality reduction is 
performed by changing the space representation through derivative [14] or wavelet 
transform [21]. One drawback of the band transformation approach is the loss of some 
important and critical information that could be compromised and distorted since the 
data are transformed. However they are less time-consuming methods compared to 
band selection methods. Both methods can be carried out depending on the specific 
pointed applications of the HSI. 

In this paper, we transposed HSI band selection and band transformation methods 
commonly used in remote sensing to the medical field in order to detect some vital 
anatomical and hardly noticeable tissues that must be not damaged like the ureter. Our 
purpose is to enhance the surgeon’s visualization when operating. Consequently, the 
HS data cube processing should be fast enough synthesized and resumed graphically 
on a RGB screen. The remainder of this paper is organized as follow. In section 2, we 
begin by describing the HSI prototype used for data acquisition. Then, the performed 
band selection and band transformation methods are detailed and the visualization 
enhancements are described in section 3. In the next section, the performance of the 
dimensionality reduction methods are compared and evaluated. Finally, the  
experimental results are presented and discussed. 

2 Data Acquisition 

Prior to this study, a HSI prototype was developed. It is operative in the visible (VIS) 
and short-wavelength near infrared (SNIR) spectral ranges (400-1100 nm). The acqui-
sition of HS images is based on liquid crystal tunable filters (LCTF). The HSI proto-
type consists of an illumination system, a spectral imager and a computer with data 
acquisition software. The illumination system consists of focused and powerful halo-
gen lighting. The spectral imager is composed of two LCTFs with programmable 
bandwidth (Varispec, CRI VIS-10-20 and SNIR-7-20): the VIS LCTF operates  
in 400-720 nm and the SNIR one operates in 650-1100 nm, a high sensibility  
monochromatic CCD camera (Lumenera LM165) and a 35 mm focal length lens. 
After HS system hardware integration, software was developed to control the camera 
and the LCTFs allowing an automatic HS image sequence acquisition. The 141 bands 
(1392 x 1040 pixels) of the HS data cube were acquired in nearly 2 min. For next 
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surgical operation on patients, this duration will certainly be reduced after finding the 
best relevant three wavelengths. 

Designing a HS system is a complicating process of selecting optical, electronic 
and mechanical elements. Thus, a spatial and spectral calibration steps are necessary 
to characterize the overall system performance and each of its components [22]. The 
true spectral reflectance values were calculated for each pixel location in the HS im-
ages. The spectral reflectance value is defined as the ratio of the reflected light power 
and the illuminating light power per unit area of the object surface [23]. However, 
when taking into account the exposure time corresponding at each wavelength λ and 
the dark current of the sensor element at each exposure time, the spectral reflectance 
value is computed using the equation (1).  
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Where R is the scene spectral reflectance image, I is the raw image, D is the dark 
current image, W is the white reference image and s is the spectral reflectance value 
of the spatially homogeneous standard reflectance target which is accurately known 
through manufacturer data sheet. The respective tW and tI are the exposure time  
applied for standard reflectance target and raw image.  

Our main objective is to acquire HS images in the context of surgical interventions in 
order to discriminate between different tissues and to explore some anatomical struc-
tures. After consulting a panel of surgeons, the ureter detection problem has been found 
to occur in frequent interventions, so that HIS could provide valuable display enhance-
ment and pig has been selected as a model for the first preclinical experimentations. 

3 Hyperspectral Data Processing 

3.1 Dimensionality Reduction 

The dimensionality reduction aims to reduce the huge amount of acquired data and 
the redundancy between the spectral bands without losing valuable information. In 
this paper, band transformation and band selection methods performance has been 
compared, without and then with a priori, knowledge on tissues in the scene contents. 
A rigid affine registration between HS images acquired in visible and in near infrared 
spectral ranges was initially performed. The shift noticed in the images was occurred 
because of LCTF module interchanging and the animal’s breathing.  

• Without Knowledge on Tissues 
Band transformation method: PCA [6] is one of the most popular and very frequently 
used techniques for dimensionality reduction. This method performs an orthogonal 
linear transformation and projects the original data to a lower dimensional space of 
uncorrelated attributes called Principal Components (PC) based on the bands cova-
riance matrix. The generated outputs of PCA are eigenvalues and a set of vectors of 
coefficients, one for each new dimension. The eigenvalues represent the degree of 
variance represented by each PC. They also indicate the amount of valuable informa-
tion in the new dimension. The coefficients denote the influence of the original  
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dimensions regarding to the new one. Generally, the first few PCs contain the most 
valuable information. However, the higher-order ones would be expected to include 
little variance. Therefore, the first few PCs are expected to represent the global  
variability in the image scene.  

Band selection methods: Statistic methods aim to preserve the maximum variability 
(information) in the image. They are based on second-order statistics such as correla-
tion and variance which are used to investigate redundancy between HS images. They 
used to assign spectral bands according to their information content. The Optimum 
Index Factor (OIF) [24] method aims to select the best three bands combination ac-
cording to their respective variance and correlation allowing to visualize maximum 
details in a HS cube. OIF method was used for remote sensing applications [15, 16, 
25]. In fact, the highest values of OIF correspond to the three bands combination with 
the most information content. It is defined in equation (2).The Sheffield index (SI) 
[26] criterion is another band selection method that measures the contained informa-
tion in bands combination. It is defined as the covariance matrix determinant of the 
selected subset (equation (3)).  
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Where n is the total number of bands, σi is the variance of the ith band, ρ j is the  
correlation coefficient of the jth band and M is the covariance matrix. 

• With Knowledge on Tissues 
Band transformation method: Knowing the spectral signatures of the ureter and its 
bounding tissues (equation 1), a supervised PCA was carried out. Unlike PCA stated 
earlier, PCA Sup was applied only on a region of interest containing the target tissue 
instead of the whole scene. The first three PCs were extracted and mapped to generate 
the resulting RGB image.  

Band selection method: the spectral signatures of ureter and its surrounding tissue were 
extracted and plotted (Fig. 1). The band selection was performed in the spectral range of 
the spectrum where the gap between spectral signatures was maximized. The spectral 
bands were ranked according to their reflectance gap values. The first three bands were 
selected to construct the resulting RGB image. This method is referred for us Ref Gap. 

3.2 Visualization Enhancement 

Visualization of the huge data acquired in HSI is not a straightforward issue. Actually, 
the information content was reduced using the dimensionality reduction approach and 
the generated RGB image must be displayed on standard screens in order to have 
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consistent meanings with the human visual perception system. First of all, the CMF-
based True Color, as opposed to the false color or pseudocolor image, was created 
from the Color Matching Functions (CMF) which model the tri-stimulus human per-
ception of colors. The resulting image represents an approximation of how the human 
eye would ideally visualize the corresponding scene. We used this image as a  
reference image (Fig.1 middle).  

Two contrast enhancement approaches were carried out on the resulting RGB im-
age: a global contrast enhancement approach and a local one. The first approach was 
performed by adjusting image intensity values. This approach mapped the intensity 
values in the grayscale image to new values such that 1% of data is saturated at low 
and high intensities of the input image. We used imadjust and stretchlim algorithms 
from Matlab library (MathWorks Inc.) in order to automatically find limits to contrast 
stretching image. The second approach aimed to locally enhance contrast. It is based 
on the Contrast-Limited Adaptive Histogram Equalization (CLAHE) method, a more 
advanced version of histogram equalization. Rather than on the entire image, CLAHE 
operates on small regions in the image, called tiles, making the assumption that the 
image varies significantly over its spatial extent. Each tile's contrast is enhanced, so 
that the histogram of the output region approximately matches the histogram shape of 
a uniform distribution. The neighboring tiles are then combined using bilinear inter-
polation to eliminate artificially induced boundaries [27]. CLAHE was applied to the 
resulting RGB images in both CIELAB and HSV color spaces. 

    

Fig. 1. Left: RGB image acquired by a standard digital camera. Middle: simulated CMF-based 
True Color image. The ureter is shown by yellow dashed lines and arrow and two surgical 
clips. Right: spectral signature of the ureter (solid line) and its surrounding tissue (dashed line). 

4 Evaluations and Experimental Results  

4.1 Entropy, Correlation and Naturalness Measures 

The intrinsic properties of the dimensionality reduction methods mentioned above 
were evaluated using entropy, correlation, and natural rendering measures in order to 
denote the overall quality of the resulting RGB image. 

The entropy, defined in equation (4), was computed to characterize the information 
content of all pixels of each RGB components. Hence, entropy measures the abun-
dance of information contained in the image. The normalized correlation metric is a 
statistical measure that was estimated to denote quantitatively the similarity between 
images. The average correlation coefficient (ACC) between the resulting three RGB 
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channels was calculated using the equation (5). The Natural Rendering (NR) of the 
resulting RGB image is evaluated and compared with the simulated true color image 
which is used as a ground truth for naturalness. We used the mutual information com-
puted independently over the three components of the CIELAB color space as in  
equation (6). The NR metric was also used in [28].  

 ( ) ( ) log ( )
x

H X p x p x= −  (4) 

 
3

1

1
.

3 i
i
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=

=   (5) 
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a b
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Where p(x) is the probability of pixel value x. iρ is the pair-wise correlation coeffi-

cient between the resulting RGB bands. MIL, MIa, MIb are the mutual information in 
the L*, a* and b* dimensions respectively. 

Table 1 shows the entropies of each RGB components. It is obvious that the entro-
py that reveals the information contents is larger for the band selection methods com-
paring to band transformation methods. For instance, the mean value of the entropies 
for Ref Gap method is 7.203 while it is 3.583 for PCA Sup method. However, Ref Gap 

method had the highest correlation coefficient (ACC = 0.881) which explains the 
nearly grey-level image generated (Fig.2). Obviously, Band transformation methods 
such as PCA provide the lowest correlated bands (ACC = 0.037) since the RGB im-
age is created from the first three PCs that must be linearly uncorrelated. It is worth 
mentioning that the average mean of entropy and the ACC values were respectively 
6.001 and 0.31 for the true color image. Moreover, it can be noticed from Table 1 that 
band selection methods had the best natural rendering rate compared to band trans-
formation methods. This indicator emphasizes the easy interpretation of the resulting 
RGB images inasmuch as they provide the closest natural effect as well as the  
CMF-based true color image which refers to the human perception (Fig. 2).  

Table 1. Entropy, average correlation coefficient and natural rendering measures 

  Entropy 
ACC NR Band 

1 
Band 
2 

Band 
3 

OIF 5.561 6.995 7.265 0.306 9.227 
SI 6.875 7.194 6.928 0.606 8.393 

PCA 5.729 4.693 5.839 0.037 7.748 
PCA 
Sup 

3.520 3.419 3.810 0.362 8.035 

Ref 
Gap 

7.239 7.273 7.097 0.881 8.446 
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Fig. 2. Resulting RGB images of the surgical scene. The ureter is shown by yellow arrow. 
From top to bottom: SI, OIF, Ref Gap, PCA, PCA Sup. From left to right: Before contrast en-
hancement, global contrast enhancement, local contrast enhancement in HSV space, local con-
trast enhancement in CIELAB space. 

4.2 Contrast Measure 

The contrast was measured in a region of interest containing the ureter and its sur-
roundings in CIELAB color space. It was evaluated after performing an edge detec-
tion approach using Sobel edge detector. This method aims to reveal the features in 
the image at which the intensity changes sharply, so that it characterizes specific fea-
tures and relevant information in the scene. The contrast value of the true color image 
is 29.695. It is noteworthy from Table 2 that the contrast enhancement results in better 
image visualization for all the tested methods, since the ureter and its surroundings 
contrast values had increased after performing a contrast enhancement. Certainly, 
local contrast enhancement using CLAHE method had achieved higher contrast val-
ues compared with global contrast enhancement using histogram stretching. This is  
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Table 2. Global and local contrast measures 

  Before 
contrast 

Global 
contrast 

Local contrast 

HSV  CIELAB 

OIF 24.597 25.895 51.826 52.711 

SI 29.246 39.826 47.545 57.425 

PCA 12.772 13.805 10.115 27.937 

PCA Sup 12.162 18.559 21.033 29.808 

Ref Gap 28.113 30.883 53.571 56.360 

 
due to the partitioning of the image into small tiles which improved specific and mea-
ningful features in the resulting RGB image. There is no doubt that carrying out local 
contrast enhancement in CIELAB was more efficient than in HSV color spaces since 
the former is a perceptually uniform space relative to human vision. Promising results 
for band selection methods are also shown especially for SI method in which the con-
trast value was increased nearly twice compared to the contrast value in the true color 
image that should perceive the surgeon’s naked eye.  

5 Discussion and Conclusion  

HSI is an emerging technology recently introduced in medical applications inasmuch 
as it provides a powerful tool for noninvasive tissue analysis. In this paper, we have 
investigated HSI in order to enhance surgeon’s visual skills in operating room when 
dealing with some hardly noticeable tissues such as ureter. Two different categories of 
dimensionality reduction methods were initially performed. Then, comparative per-
formance evaluation was carried out in order to assess information level, indepen-
dence and natural rendering of the resulting RGB image bands.  

Experimental results reveal that band selection methods provide higher information 
content compared with band transformation methods but lower correlation may be 
observed between transformed bands. In order to grade these methods on a single 
scale, we suggested evaluating their efficiency on the resulting tissue detection capa-
bility, measured by several contrast indicators which provide an acceptable trade-off 
to compute contrast enhancement. Consequently, band selection methods will be de-
finitively preferred, especially SI method which preserves maximum information, 
obtains the highest contrast values and outperforms for natural rendering based on the 
true color image visualized by the surgeon’s naked eye. A convenient reason to rely 
on band selection methods in this medical context is also the better preservation of the 
physical meaning of the structures which simplifies scene interpretation. Otherwise 
the surgeon may be easily confused by this new imaging modality, especially with 
false color display. More accurate contrast measure will be performed on the image 
perceived by the eye instead of the displayed one. Another interesting conclusion 
from this preclinical study is that the best three wavelengths selected to discriminate 
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ureter from bounding tissues are situated in the near infrared spectral range (625 nm, 
700 nm, 995 nm). This strengthens our intention to explore farther infrared spectral 
range (900 – 1700 nm) with an InGaAs camera. Further promising investigations will 
also focus on advanced band selection methods to alleviate the computational burden.  
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