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Abstract. The multicore era has increased the need for highly parallel
software. Since automatic parallelization turned out ineffective for many
production codes, the community hopes for the development of tools
that may assist parallelization, providing hints to drive the paralleliza-
tion process. In our previous work, we had designed Tareador, a tool
based on dynamic instrumentation that identifies potential task-based
parallelism inherent in applications. Also, we showed how a program-
mer can use Tareador to explore the potential of different parallelization
strategies. In this paper, we build up on our previous work by automating
the process of exploring parallelism. We have designed an environment
that, given a sequential code and configuration of the target parallel ar-
chitecture, iteratively runs Tareador to find an efficient parallelization
strategy. We propose an autonomous algorithm based on simple metrics
and a cost function. The algorithm finds an efficient parallelization strat-
egy and provides the programmer with sufficient information to turn that
parallelization strategy into an actual parallel program.
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1 Introduction

For decades, microprocessors have been improving their performance following
Moore’s law without requiring major changes in the applications. In essence,
the performance improvements relied on both architectural techniques that im-
prove ILP (instruction-level parallelism) and compilers that optimize the code
for each target architecture. Unfortunately, the improvements achieved by ILP
had entered stagnation.

On the other hand, multicore processor architectures are now the norm in
high-performance processors. Multicore processors have introduced the need to
re-design applications in order to utilize the increasing number of available cores.
Applications that before were running sequentially, now must be parallelized in
order to efficiently harness the full potential of multicore processors. However,
parallelizing existing applications is not an easy task. As the software community
struggles to fulfill this demand, the gap between parallel hardware and sequential
software keeps growing.
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It is believed that neither the compiler nor the hardware itself will auto-
matically detect and exploit the parallelism needed to feed current and future
multi-/many-core architectures. Despite decades of research efforts [4,1,16] on
auto-parallelization, and the inclusion of auto-parallelization features in some
commercial compilers [2], the experience have shown that they have very lim-
ited applicability. In the current scenario, in which systems (from mobile to desk-
top/laptop and servers) are based mostly on parallel architectures, programmers
must use explicit parallel programming techniques.

To help in the process of parallelization, the community has developed several
tools to assist the parallelization process (see Section 7). These tools usually tar-
get a specific parallel programming model or language and/or impose constraints
of the possible strategies to explore (e.g. loops).

In our prior work, we proposed Tareador [15] as a tool to analyze the potential
parallelism inherent in applications. We also described an iterative top-down
trial-and-error process to find suitable parallelization strategies. However, the
presented process relied strongly on programmer’s experience to guide the search.

In this paper, we propose an automatic exploration of parallelization strate-
gies. Our goal is to formalize the programmers experience into an autonomous
algorithm that can find an effective task decomposition of a sequential code.
More specifically, our work provides the following contributions:

1. Definition of a set of metrics and heuristics that drive the automatic
exploration of parallelization strategies. Our heuristics mandate the policy
of refining decomposition in order to increase parallelism, as well as the end
of the iterative exploration. The proposed metrics are parameterizable so
they can be customized according to the targeted sequential code.

2. Design of an environment that leverages Tareador to automatically ex-
plore parallelism in sequential codes. The designed tool-chain iteratively tests
various task decompositions, illustrating a reasonable exploration path for
exposing parallelism inherent in the code. Furthermore, the environment
offers visualization of the parallel execution of the tested decompositions.

The paper is organized as follows. Section 2 briefly summarizes the Tareador
environment. Section 3 describes the proposed algorithm (metrics and heuristics)
that autonomously explores task decomposition strategies and Section 4 presents
the implemented environment. In Section 5 we present the results obtained for a
set of simple applications, while in Section 6 we discuss how our approach could
be applied to realistic workloads. Finally, Section 7 describes some related work
and environments and Section 8 concludes the paper.

2 Background: Tareador

Tareador [15] is a tool for assisted parallelization of sequential applications. Using
the Tareador API, the programmer annotates the sequential code to propose a
task decomposition. Then, the tool (implemented as a Valgrind [12] plugin)
dynamically instruments the code in order to collect all memory accesses within
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(a) Input code (b) task graph (c) Paraver views

Fig. 1. Tareador instrumentation

each specified task. Based on the collected accesses, Tareador derives the data
dependencies among the tasks and estimates the potential parallelism of the
task decomposition. In our prior work [15] we demonstrated how a programmer
can use Tareador to iteratively explore the task decomposition space and find
a decomposition that exposes sufficient parallelism to efficiently deploy multi-
core processors. Depending on the application (granularity of tasks, number of
dependencies, ...), Valgrind instrumentation introduces the slowdown of 200x-
1000x compared to the native sequential execution of the target application.

Tareador provides to a programmer a simple and flexible API to propose how
a sequential code could be decomposed into tasks. Namely, the programmer in-
vokes tareador start task to mark the beginning of a task, and tareador end task
to mark the end of a task. The interface allows specification of any arbitrary
task decomposition, even if the targeted code is badly structured or recursive
(nesting of tasks is supported). No other refactoring of the targeted sequential
code is needed. Figure 1a illustrates a simple code with Tareador annotations.

As an evaluation of the proposed decomposition, Tareador provides to the pro-
grammer two outputs: the dependency graph of all tasks; and the simulation of
the potential parallel execution. Figure 1b shows the task graph for the previous
example: a node represents a dynamic task instance and an edge represents a de-
pendency between two task instances. In this example, the graph suggests to the
programmer that there is potential concurrency only between task comp A and
task comp B. Moreover, Figure 1c shows the timeline for the simulated parallel
execution on a target processor with 2 cores. The upper timeline (horizontal axis
is time) shows which task executes on each core and the lower timeline shows
the number of active cores throughout the simulated execution. The same colors
are used to represent matching tasks in the graph and in the timeline, helping
the programmer to identify potential bottlenecks in the current task decompo-
sition (for example, in this case to observe the load imbalance that occurs in the
parallel execution of tasks comp A and comp B).
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Fig. 2. Algorithm for exploring parallelization strategies

3 Automatic Exploration of Parallelization Strategies

The automatic exploration of parallelization strategies is based on: evaluating
parallelism of various decompositions; collecting key parameters that identify
the parallelization bottlenecks; and refining decompositions in order to increase
parallelism. The search algorithm is illustrated in Figure 2. The inputs of this
algorithm are the original unmodified sequential code and the number of cores
in the target platform. The search algorithm passes through the following steps:

1. Start from the most coarse-grain task decomposition, i.e. the one that con-
siders the whole main function as a single task.

2. Perform an estimation of the potential parallelism of the current task de-
composition (the speedup with respect to the sequential execution).

3. If the exit condition is met (Heuristic 2 ), finish the search.
4. Else, identify the parallelization bottleneck (Heuristic 1 ), i.e. the task that

should be decomposed into finer-grain tasks.
5. Refine the current task decomposition in order to avoid the identified bot-

tleneck. Go to step 2.

In the following sections, we further describe the design choices made in de-
signing the mentioned heuristics. Nevertheless, first we must define a more pre-
cise terminology. Primarily, we must make a clear distinction between a task
type (function that is encapsulated into task) and a task instance (dynamic
instance of that function). For instance, if function compute is encapsulated into
a task, we will say that compute is a task type, or just a task. Conversely, each

void A() {
B();
C();

}

i t i () {

01
02
03
04
05
06 int main () {

A();
}

06
07
08

A
break A

C

break BB

C

break C

Sequentialcode

potential
tasks D1 D2 D3 D4

Fig. 3. Iterative refinement of decompositions
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instantiation of compute we will call a task instance, or just an instance. A
task instance is atomic and sequential, but various instances (of same or different
task type) can execute concurrently among themselves.

Also, we will often use a term breaking a task to refer to the process of
transforming one task into more fine-grain tasks. For example, Figure 3 illus-
trates decomposition refining in a case of a simple code. The process starts with
the most coarse-grain decomposition (D1) in which function A is the only task.
By breaking task A, we obtain decomposition D2 in which A is not a task and
instead its direct children (B and C) become tasks. If in the next step we break
task B, assuming that B contains no children tasks, B will be serialized (i.e. B
is not a task anymore and its computation becomes a part of the sequential exe-
cution). Similarly, the next refinement serializes task C and leads to the starting
sequential code. At this point, no further refinement is possible, so the iterative
process naturally stops.

3.1 Heuristic 1: Which Task to Break

In the manual search for an efficient decomposition, the programmer decides
which task is the parallelization bottleneck. The practice shows that the bottle-
neck task is often one of the following:

1. the task whose instances have long duration, because a long instance
may cause significant load imbalance.

2. the task whose instances have many dependencies, because an in-
stance with many dependencies may be a strong synchronization point.

3. the task whose instances have low concurrency, because an instance
with low concurrency may prevent other instances to execute in parallel.

Our goal is to formalize this programmer experience into a simple set of metrics
that can lead an autonomous algorithm for exploring potential task decomposi-
tions. The goal is to define a cost function for task type i as:

ti = li(pl) + di(pd) + ci(pc) (1)

where li, di and ci are functions that calculate the partial costs related to tasks’
length, dependencies count and concurrency level. On the other hand, parame-
ters pl, pd and pc are empirically identified parameters that tune the weight of
each partial cost within the overall cost. The rest of this section further describes
the operands from Equation 1.

Metric 1: Task Length Cost. A task type that has long instances is a poten-
tial parallelization bottleneck. Thus, based on the length of instances, we define
a metric called length cost of a task type. Length cost of some task type is pro-
portional to the length of the longest instance of that task. Therefore, if task i
has instances whose lengths are in the array Ti, the length cost of task i is:

li = max(t), t ∈ Ti (2)
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Furthermore, we define a normalized length cost of task i as:

li(p) =
(li)

p

N∑

j=1

(lj)
p

, 0 ≤ p ≤ ∞, 1 ≤ i, j ≤ N (3)

where the control parameter p is used to tune the distribution of normalized
costs (explained later in this section).

Metric 2: Task Dependency Cost. A task type that causes many dependen-
cies is another potential parallelization bottleneck. Thus, based on the number of
dependencies (sum of incoming and outgoing dependencies), we define a metric
called dependency cost of a task type. Dependency cost of some task is propor-
tional to the maximal number of dependencies caused by some instance of that
task. Therefore, if task i has instances whose numbers of dependencies are in the
array Di, the dependencies cost of task i is:

di = max(z), z ∈ Di (4)

Furthermore, using a control parameter p, we define the normalized dependency
cost of task i as:

di(p) =
(di)

p

N∑

j=1

(dj)p
, 0 ≤ p ≤ ∞, 1 ≤ i, j ≤ N (5)

Metric 3: Task Concurrency Cost. A task type that has low concurrency
is another potential parallelization bottleneck. Concurrency of some instance is
determined by the overall utilization of the machine during the execution of
that instance. Thus, we define concurrency cost of some task to be inversely
proportional to the average number of cores that are efficiently utilized during
the execution of that task. Therefore, if task i has task instances which run for
time Ti,j while there are j cores efficiently utilized, the concurrency cost of task
i is:

ci =

cores∑

j=1

Ti,j

j

cores∑

j=1

Ti,j

(6)

Again, using a control parameter p, we define the normalized concurrency cost
of task i as:

ci(p) =
(ci)

p

N∑

j=1

(cj)p
, 0 ≤ p ≤ ∞, 1 ≤ i, j ≤ N (7)
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Control Parameter p. Introduction of the parameter p provides the mech-
anism for controlling the mutual distance of the normalized costs for different
tasks. For instance, let us assume that the application consists of two task in-
stances, A and B, where A is two times longer than B. If the control parameter
pl is equal to 1, the normalized length costs for tasks A and B are 0.67 and
0.33, respectively. However, if the control parameter pl is equal to 2, the costs
for tasks A and B become 0.8 and 0.2, respectively.

Therefore, by changing parameter p of some metric, we can control the impact
of that metric on the overall cost. For example, if the control parameter for length
cost is 0, all task types will have the same normalized length cost, independent
of the length of task instances. Thus, the length of tasks would have no impact
on the overall cost. On the other hand, if the control parameter for length cost is
infinite, the task type with the longest instance will have the normalized length
cost of 1, while all other task types will have the normalized length cost of 0.
This way, the impact of the task length on the overall cost would be maximized.

3.2 Heuristic 2: When to Stop Refining the Decomposition

The algorithm also needs a condition to stop the iterative search. Iterative search
leads to fine grain decompositions that instantiate a very high number of tasks.
An excessive number of tasks causes a very complex and computation intensive
evaluation of the potential parallelism. Thus, to make the complete automatic
search viable, we must adopt the exit condition that will prevent processing
unnecessary decompositions.

To construct the Heuristic 2, we must create a system for rating the quality of
a decomposition. Our basic rating system consists of two rules. First, out of all
tested decompositions, the optimal decomposition is the one that achieves the
highest parallelism. Second, if the optimal decomposition achieves the parallelism
of sopt and instantiates topt tasks, and some other decomposition i achieves the
parallelism of si and instantiates ti tasks, the relative quality of decomposition
i compared to the optimal decomposition is:

Qualityi =

(
si
sopt

)

·
(
topt
ti

)exp tasks

, 0 ≤ exp tasks ≤ 1 (8)

Thus, the relative quality of some decomposition drops as the achieved paral-
lelism drops and as the number of instantiated tasks increases. Furthermore, the
parameter exp tasks serves to tune the impact of the number of instantiated
tasks.

Finally, Heuristic 2 mandates that the iterative search stops if the current
decomposition has relative quality lower than some threshold value:

Qualityi < (Qthreshold)
cores
sopt , 0 ≤ Qthreshold ≤ 1 (9)

The right side of this expression increases with the increase of the parallelism
of the optimal task decomposition. Thus, if the optimal parallelism is close to
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Fig. 4. Environment to automatically explore possible task decompositions

the theoretical maximum (number of cores in the target machine), finding a
better decomposition is unlikely, so the algorithm should not tolerate high quality
degradations. On the other hand, if the optimal found parallelism is far from the
theoretical maximum, the algorithm should be more aggressive in finding a better
decomposition, and therefore allow high degradations of quality.

4 Designed Environment

Our environment for automatic exploration of task decompositions (Figure 4)
consists of: Tareador, Paramedir and the Driver. In addition, a source-to-source
translator automatically annotates all potential tasks in the code (main function,
each function call and each loop). Tareador [15] evaluates the potential parallel
execution of a task decomposition. Paramedir [9], the non-graphical user in-
terface to the Paraver [14] analysis tool, extracts performance metrics of the
simulated parallel execution. Finally, the Driver is a glue that integrates all the
mentioned tools in a common environment. Its important to stress that the most
computation intensive processing (Valgrind instrumentation) is performed only
once, and then the generated logs are used offline to test various task decompo-
sitions. The following paragraph describes this integration in more detail.

The main functionality of the Driver is to guide the iterative decomposition
refinement. In each iteration, Driver specifies a list of tasks that compose the
current task decomposition. Initially the list contains only the main function of
the program. The Driver automates the process of exploring potential decompo-
sitions by guiding the environment through the following steps:

1. Generate execution logs: use Valgrind to dynamically instrument the
application and derive memory usage logs.
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2. Select the starting decomposition: put the whole main into one task.
3. Estimate the parallelism of the current decomposition: run Tareador

to generate traces that describe parallelism of the current decomposition.
4. If the exit condition is fulfilled, finish: if the Quality of the current

decomposition is unsatisfactory (Heuristic 2), end the search.
5. Else, identify the parallelization bottleneck: process the traces with

Paramedir to derive metrics that identify the bottleneck task (Heuristic 1).
6. Refine the current decomposition to increase parallelism: break the

bottleneck task into its children tasks, if any. Update the list of tasks that
should be included in the next decomposition.

7. Proceed to the next iteration: go to step 3.

5 Experiments

Our experiments explore possible parallelization strategies for four well-known
applications (Jacobi, HM transpose, Cholesky and LU factorization). We select
a homogeneous multi-core processor as the simulated target platform. The goal
of our experiments is to show that the proposed search algorithm, metrics and
heuristics can find decompositions that provide sufficient parallelism.

Table 1. Empirically identified parameters of the automatic search

pl pd pc exptasks Qthreshold

1 1 3 log101.5 0.75

Table 1 lists the empirically identified values for the parameters defined in
Section 3. As already mentioned, the total cost function is a sum of length,
dependency and concurrency cost (Equation 1). Moreover, since our initial ex-
periments showed that concurrency criterion prevails very rarely, we decided to
increase the weight of the concurrency cost. Furthermore, in Equation 8, we set
the parameter exptasks so that the increase of task instances by a factor of 10 is
equivalent to the decrease of speedup by a factor of 1.5 . Finally, in Equation 9,
parameter Qthreshold was set empirically to allow sufficient quality degradation
for a flexible search.

5.1 Illustration of the Iterative Search

This subsection illustrates our algorithm on a couple of small examples. We
start from the example presented in Section 2. Table 2 enlists the tasks costs for
example from Figure 1. Since tasks comp B is the longest (Figure 1c), it gets the
highest length cost. On the other hand, because of their very short length, tasks
init and sum get very low length costs. The Table also shows that all tasks have
the same dependency cost. This is because, for each task, the sum of incoming
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…

for (long j = 0; j < DIM; j++)  
{

f (l k 0 k< j k++)

D1 D2 D3 D4 D5 D6
task decompositions

02
03
04
05
06 for (long k= 0; k< j; k++)   

{
for (long i = j+1; i < DIM; i++)  
{

sgemm_tile( &A[i][k][0], &A[j][k][0], &A[i][j][0], NB);
}

}

for (long i = 0; i < j; i++)

06
07
08
09
10
11
12
13
14

1 1 1 11

for (long i = 0; i < j; i++)
{

ssyrk_tile( A[j][i], A[j][j], NB);
}

spotrf_tile( A[j][j], NB);

for (long i = j+1; i < DIM; i++)
{

14
15
16
17
18
19
20
21
22

2 2 2

3

2

333 3

2
1

{
strsm_tile( A[j][j], A[i][j], NB);

}

}

22
23
24
25
26
27

4 4 4 44

Fig. 5. Cholesky: decomposition of the code into tasks

and outgoing dependencies is equal to 2 (Figure 1b). Figure 1c also explains the
tasks’ concurrency costs. Since during the whole execution of task comp A both
cores are utilized, this task has the lowest concurrency cost. On the other hand,
during the execution of tasks init and sum there is only one core active, so
these tasks have the highest concurrency cost. Finally, task comp B obtains the
highest total cost of 0.90. Thus, in this example, our algorithm would identify
comp B as the bottleneck task, dominantly following the length criterion.

The second illustration of the algorithm uses the example of parallelizing
Cholesky sequential code on a simulated machine with 4 cores. Figure 5 presents
(on the left) the code of Cholesky and illustrates (one the right) how the code
can be encapsulated into tasks for various decompositions (D1-D6). Note that
marked task types (boxes with numbers) may generate multiple task instances,
and that the code outside of marked tasks belongs to the master task (sequen-
tial part of execution that spawns worker tasks). Table 3 shows the speedup
achieved in each decomposition and the costs that guide the iterative search.
The algorithm starts from the most coarse-grain decomposition D1 that puts

Table 2. Tasks costs for the example from Figure 1

init comp_A comp_B sum

0.03 0.25 0.42 0.70 0.39 0.25 0.05 0.69 0.54 0.25 0.11 0.90 0.04 0.25 0.42 0.71

)1(il )1(id )3(ic it )1(il )1(id )3(ic it )1(il )1(id )3(ic it )1(il )1(id )3(ic it



166 V. Subotic et al.

Table 3. Cholesky: task costs (Heuristic 1)

decomposition speedup task #1 task #2 task #3 task #4

D1 1.00 1.00 1.00 1.00 3.00

D2 1.30 0.51 0.21 0.24 0.96 0.29 0.25 0.12 0.67 0.03 0.13 0.15 0.31 0.17 0.41 0.49 1.06

D3 1.49 0.59 0.44 0.48 1.51 0.34 0.18 0.22 0.74 0.04 0.18 0.27 0.48 0.03 0.21 0.03 0.27

D4 2.30 0.42 0.25 0.04 0.71 0.49 0.24 0.50 1.22 0.05 0.24 0.42 0.70 0.04 0.28 0.04 0.36

D5 3.41 0.72 0.27 0.11 1.10 0.12 0.17 0.13 0.43 0.09 0.25 0.61 0.95 0.07 0.30 0.15 0.52

D6 3 64 0 31 0 21 0 13 0 65 0 30 0 17 0 22 0 70 0 22 0 25 0 50 0 97 0 17 0 36 0 14 0 68

)1(il )1(id )3(ic it )1(il )1(id )3(ic it )1(il )1(id )3(ic it )1(il )1(id )3(ic it

D6 3.64 0.31 0.21 0.13 0.65 0.30 0.17 0.22 0.70 0.22 0.25 0.50 0.97 0.17 0.36 0.14 0.68

the whole execution into one task. There is only one task (#1, lines 3-26), which
is automatically the critical task that needs to be broken. Refining D1 generates
decomposition D2 that achieves the speedup of 1.30 (Table 3) and consists of 4
different task types (Figure 5): #1 that covers the first loop; #2 that covers the
second loop; #3 that covers function spotrf tile; and #4 that covers the third
loop. Heuristic 1 identifies task #4 (lines 21-24) as the most critical, mostly
due to its high concurrency cost. Thus, the following decomposition (D3) breaks
the task #4 and obtains the parallelism of 1.49. In D3, the algorithm identifies
task #1 (lines 6-12) as the bottleneck (due to its high length). Further itera-
tions of the algorithm pass through decompositions D4, D5 and D6 that provide
speedups of 2.30, 3.41 and 3.64, respectively.

5.2 Results

This subsection presents the results obtained by applying our algorithm on a set
of applications. For each application, we present four plots that illustrate the
process of automatic task decomposition. The first plot presents the parallelism
of all tested decompositions – the speedup over the sequential execution of the
application. The second plot shows the number of task instances generated by
each decomposition. Also, the first two plots show the parallelism and the number
of instances in the reference task decomposition (the decomposition selected and
implemented by an expert OmpSs[6] programmer). The third plot presents the
cost distribution for the bottleneck task of each iteration. Finally, the fourth plot
shows the most dominant cost for the bottleneck task.

The proposed search algorithm finds decompositions with very high paral-
lelism, often finding the decomposition manually selected by an expert pro-
grammer. The algorithm finds the reference decomposition for Jacobi and HM
transpose (Figures 6 and 7) in iterations 4 and 5, respectively. In these two
applications, the algorithm bases its decisions mainly on the length criterion.
The algorithm also finds the reference decomposition for Cholesky in iteration 7
(Figure 8). However, in order to get to this decomposition, the algorithm refines
decompositions based on the concurrency criterion in iterations 3 and 5. In all
three applications, soon after finding the reference decomposition, the algorithm
passes through decompositions that activate the mechanism for stopping the
search (Heuristic 2).
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Fig. 6. Jacobi on 4 cores
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Fig. 7. HM transpose on 4 cores
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Fig. 8. Cholesky on 4 cores
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Sparse LU (Figure 9), as the most complex of the studied applications, demon-
strates the power of our search. Compared to the previous codes, Sparse LU
forces the algorithm to use various bottleneck criteria through the exploration
of decompositions. It is interesting to note that the search finds a wide range of
decompositions (iterations 17-28) that provide higher parallelism than the refer-
ence decomposition. In this case, it is unclear which of these decompositions is
the optimal one. Quantitative reasoning suggests that the optimal task decom-
position is the one that provides highest parallelism with the lowest number of
created task instances. Following this reasoning, the optimal decomposition (it-
eration 22) achieves the speedup of 3.98 with the cost of 301 instantiated tasks
(note the sudden drop in the number of task instances). On the other hand,
qualitative reasoning suggests that, within a set of decompositions that provide
a similar parallelism generating a similar number of instances, the optimal de-
composition is the one that is the easiest to express using semantics offered by
the target parallel programming model. For example, our algorithm may find a
decomposition that extracts very irregular parallelism that cannot be expressed
using a fork-join programming model. In that case, it is programmers responsi-
bility to, out of few offered efficient task decompositions, identify the one that
can be straightforwardly implemented using a specific programming model.

It is also interesting to study how the algorithm adapts to the target parallel
machine. Changing the parallelism of the target machine changes the simulation
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Fig. 10. Sparse LU on 8 cores
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of the parallel execution of the tested decomposition. Thus, changes the nor-
malized concurrency cost, while dependency and length cost remain the same.
Figures 10 and 11 illustrate potential decompositions for Sparse LU for exe-
cuting on machines with 8 and 16 cores. In the experiments with 8-core target
machine (Figures 10), the reference OmpSs decomposition achieves the speedup
of 7.1 at the cost of generating 316 task instances. The automatic search finds
a wide range of decompositions (iterations 21-30) that provide slightly higher
parallelism than the reference decomposition. On the other hand, in the exper-
iments with 16-core target machine (Figures 11), the reference decomposition
achieves the speedup of 8.85 (316 instances). The algorithm finds only five de-
compositions (iterations 21-25) that provide higher parallelism than the default
decomposition. It is also interesting to note that in the experiment with 16-core
target machine, the algorithm more often refines the decomposition using the
concurrency criterion. This happens because, despite the fine granularity of de-
compositions, the algorithm cannot find decomposition with parallelism close to
the theoretical maximum of 16 (number of cores in the target machine).

6 Discussion: Biting the Bullet of Real Workloads

This paper demonstrates that our automatic technique can find significant par-
allelism in a few small applications. In this section, we discuss techniques to
extend scalability and applicability of our approach, and therefore allow pro-
cessing realistic workloads.

Scalability of our approach concerns the execution time of the automatic
search. Valgrind dynamic instrumentation presents the most computation inten-
sive part of our technique. However, we already significantly reduced the impact
of dynamic instrumentation, by implementing the workflow in which dynamic
instrumentation is done only once, and then the generated logs are used offline
to browse various task decompositions. Currently, we are further tackling this
overhead by porting the dynamic instrumentation from Valgrind to LLVM [10].
LLVM allows us more optimized dynamic instrumentation, as well as bypassing
some part of instrumentation from run-time to compile-time. Our initial studies
estimate that LLVM migration could accelerate the dynamic instrumentation by
a factor of 5-10x. Also, in the part of offline decomposition exploration, we are
studying various divide-and-conquer techniques. These techniques let us evaluate
parallelism of smaller sections of execution (with lower number of task instances),
and then combine these partial results to reconstruct the total execution.

On the other hand, applicability of our approach concerns analyzing codes
that are not parallelization friendly. In some applications, parallelism can-
not be exposed just by decomposing the application into loops and functions. In
these cases, our approach first must identify memory objects whose access pat-
terns impede automatic parallelization. The tool should also pinpoint the culprit
code sections, and advice the programmer how to change problematic memory
access patterns. Once the programmer changes the problematic access patterns
in the sequential application, the application should become more parallelization
friendly, and automatic parallelization should achieve better results.
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7 Related Work

Numerous tools to assist parallelization have been proposed in the past years
both from the academia and the industry. Regarding tools proposed by the
academia, the ones closest to the environment that has been proposed in this pa-
per are Embla, Kremlin, and Alchemist. In particular, Embla [11] is a Valgrind-
based tool that estimates the potential speed-up for Cilk programs. On the other
hand, Kremlin [8] identifies regions of a serial program that can be parallelized
with OpenMP and proposes a parallelization planner for the user to parallelize
the target program. Finally, Alchemist [17] identifies parts of code that are suit-
able for thread-level speculation. The major drawbacks of these tools are that
they are limited to fork-join parallelism and that they offer very little qualitative
information about the target program (no useful visualization support).

On the other side, the industry have also been recently developing their so-
lutions for assisted parallelization. For example, Intel’s Parallel Advisor [5] as-
sists parallelization with Thread Building Blocks (TBB) [13]. Parallel Advisor
provides timing profile that suggests to the programmer which loops should be
parallelized. Critical Blue provides Prism [3], a tool to do “what-if” analysis that
anticipates the potential benefits of parallelizing certain parts of the code. Vector
Fabrics provides Pareon [7], another tool for “what-if” analysis to estimate the
benefits of parallelizing loop iterations. All the three mentioned tools provide
rich GUI and visualization of the potential parallelization. However, none of the
tools offers automatic exploration of parallelization strategies. Moreover, they
do not provide any API to automate the search for the optimal parallelization
strategy as the one proposed in this paper.

8 Conclusions and Future Work

In this paper, we have proposed a technique to automate the exploration of paral-
lelization strategies based on a task decomposition approach. We have presented
an effective search algorithm that aims to find an efficient task decomposition of
codes. We have defined a set of key metrics and heuristics that lead the iterative
process of refining task decomposition in order to increase the parallelism of the
code. The metrics collect information such as the length (duration) of the tasks,
the dependencies among tasks and tasks’ concurrency level. A cost function that
takes into account these metrics has been proposed to guide the parallelization
process. In our experiments, we demonstrate that our search algorithm is able
to find task decompositions that provide enough parallelism in the application
to fully utilize the target multicore processor architecture.

As future work, we have identified the need to include a new metric that eval-
uates the cost of expressing a decomposition using the syntax (and constraints)
offered by the target parallel programming model (for example, traditional fork-
join, dataflow, ...). The automatic search should be able to quantify how ex-
pressible (or viable) a decomposition could be and to use this information to
guide the search. The result would be an efficient task decomposition that can
be straightforwardly expressed using a specific programming model.
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