The Landing Gear Case Study in Hybrid Event-B

Richard Banach

School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.
banach€cs.man.ac.uk

Abstract. A case study problem based on a set of aircraft landing gear is ex-
amined in Hybrid Event-B (an extension of Event-B that includes provision for
continuously varying behaviour as well as the usual discrete changes of state).
Although tool support for Hybrid Event-B is currently lacking, the complexity
of the case study provides a valuable challenge for the expressivity and mod-
elling capabilities of the formalism. The size of the case study, and in particular,
the number of overtly independent subcomponents that the problem domain con-
tains, both significantly exercise the multi-machine and coordination capabilities
of Hybrid Event-B, requiring the use of novel coordination mechanisms.

1 Introduction

This paper reports on a treatment of the landing gear case study using Hybrid Event-B.
Hybrid Event-B [4] is an extension of the well known Event-B framework, in which
continuously varying state evolution, along with the usual discrete changes of state,
is admitted. There is a prima facie case for attempting such an exercise using Hybrid
Event-B, since aircraft systems are replete with interactions between physical law and
the engineering artifacts that are intended to ensure appropriate aircraft behaviour. In
the case of landing gear systems specifically, a good idea of the real complexity of such
systems can be gained from Chapter 13 of [16].

Given that landing gear is predominantly controlled by hydraulic systems (see Chap-
ter 12 of [16]), it might be imagined that the requirements for the present case study [6],
would feature relevant physical properties quite extensively. Hybrid Event-B would be
ideally suited to describe the interactions between these and the control system — for
example on the basis of the theory and models detailed in [10,1,11]. However, it is clear
that the requirements in [6] have been heavily slanted to remove such aspects almost
completely, presumably because the overwhelming majority of tools in the verification
field would not be capable of addressing the requisite continuous aspects. Instead, the
relevant properties are reduced to constants (perhaps accompanied by margins of vari-
ability) that delimit the duration of various physical processes, these being relevant to
a treatment centred on discrete control events. Such an approach reduces the modelling
workload, but the penalty paid for it is the loss of the ability to justify the values of these
constants during the verification process, whether this be on the basis of deeper theory
or of values obtained from lower level phenomenological models.

Despite this reservation, a small number of simple continuous behaviours are left
within the requirements in [6], these being confined to simple linear behaviours of some

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 126-141, 2014.
(© Springer International Publishing Switzerland 2014



The Landing Gear Case Study in Hybrid Event-B 127

parts of the physical apparatus. Yet, these are enough to demonstrate many essential
capabilities of the Hybrid Event-B formalism in dealing with continuous phenomena
and their interaction with discrete events.

The reduced workload of the restricted requirements was in fact welcome, since
the limited resources available for the present work meant that a treatment including
all failure modes could not be included. However, the nominal regime study that is
presented here is sufficient to bring out the main benefits of the approach, and some
comments on the failure cases are included in the latter parts of this paper.

Since there is presently no specific tool support for Hybrid Event-B, our case study
is primarily an exploration of modelling capabilities. As explained below, a major ele-
ment of this is the challenge of modelling physically separate components in separate
machines, and of interconnecting all these machines in ways appropriate to the do-
main, all supported by relevant invariants. This requires novel machine interconnection
mechanisms, introduced for pure Event-B in [2]. The suitability of proposals for such
mechanisms can only be tested convincingly in the context of independently conceived
substantial case studies like this one, so it is gratifying that the mechanisms exercised
here fare well in the face of the complexities of the given requirements.

The rest of this paper is as follows. Section 2 briefly overviews the landing gear re-
quirements. Section 3 gives an overview of Hybrid Event-B, while Section 4 covers the
case of multiple machines and our modelling strategy for complex systems. A descrip-
tion of our development appears in Section 5. Section 6 summarises the lessons learned
from this exercise and concludes.

2 Landing Gear Overview

The landing gear case study is presented in [6]. Here we give the gist of it, focusing on
features of most interest to the Hybrid Event-B treatment. Fig. 1, reproduced from [6],
shows the architecture of the system.

The sole human input to the system is the pilot handle: when pulled up it
instructs the gear to retract, and when pulled down it instructs the gear to extend. The
signal from the handle is fed both to the (replicated) computer system and to the analog-
ical switch, the latter being an analogue device that gatekeeps powerup to the hydraulic
system, to prevent inappropriate gear movement even in the case of computer malfunc-
tion. In a full treatment, including faulty behaviour, there are further inputs from the
sensors, which can behave in an autonomous manner to introduce faults. But in our
purely nominal treatment, sensor behaviour is a deterministic consequence of other ac-
tions, so does not constitute independent influence from the environment. A further
point concerns the shock absorber sensors, which are modelled using a guard rather
than as inputs. The relevant issue is discussed at the beginning of Section 5.

The analogical switch passes a powerup command from the computers to the gen-
eral electro-valve. ! This pressurises the rest of the landing gear hydraulic system, ready
for specific further commands to manipulate its various parts, these being the doors of
the cabinets that contain the gear when retracted, and the gear extension and retrac-
tion mechanisms themselves. Beyond this, both the analogical switch and the output

! As a rule, commands from the two computers are ORed by the components that obey them.



128 R. Banach

Towards the

Digital part

From discrete sensors (gear extended /
not extended, gear retracted / not
retracted, door closed / not closed, door
open/ not open, ...)

General electro-valve

Analogical switch Aircraft hydraulic

Front door Right door Left door

cu cylinder cylinder cylinder
Electro-valve
(open doors)
extension
circuit)

Electro-valve (retract gears)

Orders to electro-valves

(retraction
circuit)

Front gear
extension cylinder
circuit)

Electro-valve
(extend gears)

Right gear
cylinder

Left gear
cylinder

Fig. 1. Architectural overview of the landing gear system, reproduced from [6]

of the general electro-valve are monitored by (triplicated) sensors that feed back to the
computer systems, as is discernible from Fig. 12.

What is particularly interesting about the system so far, is that the arrangement of
these various interconnections between system components is evidently quite far from
the kind of tree shape that facilitates clean system decomposition. Thus, the handle is
connected to the computers, and the handle is connected to the analogical switch. But
the analogical switch is also connected to the computers, so ‘dividing’ the computers
from the analogical switch in the hope of ‘conquering’ structural complexity will not
work, and obstructs the clean separation of proofs into independent subproofs concern-
ing analogical switch and computers separately. This poses a major challenge for our
modelling methodology, and gave rise to the need for new interconnection mechanisms,
discussed in Section 4.

Beneath the level of the general electro-valve, it is a lot easier to see the system as
comprised of the computers on the one hand, and the remaining hydraulic components
on the other, connected together in ways that are tractable when the new interconnection
mechanisms are available.

3 Hybrid Event-B, Single Machines

In this section we look at Hybrid Event-B for a single machine. In Fig. 2 we see a
bare bones Hybrid Event-B machine, HyEvBMch. It starts with declarations of time

2 A large number of other sensors also feed back to the computers, but this not relevant to the
point we are making just now.



The Landing Gear Case Study in Hybrid Event-B 129

MACHINE HyEvBMch e e
TIME ¢ MoEv PLiEv

CLOCK clk STATUS ordinary STATUS pliant
PLIANT 1,y ANY i?,1, 0! INIT iv(x, , t, clk)
VARIABLES u WHERE WHERE grd(u)
INVARIANTS grd(x,y,u,i?, 1,1, clk) ANY i?,1,0!
x,y,u € R,R,N THEN COMPLY
EVENTS X, y,u, clk,o! :| BDApred(x,y, u,
INITIALISATION BApred(x,y,u,i?,1,0!, i?,1,0!,1t, clk)
STATUS ordinary t,clk, X',y u', clk”) SOLVE
WHEN END Dx =
t=0 d(x,y,u,i?,1,0!, ¢, clk)
THEN y, o0l =
clk, x,y,u := 1,x0,y0, Uo E(x,u,i?, 1,1, clk)
END END
. END

Fig. 2. A schematic Hybrid Event-B machine

and of a clock. In Hybrid Event-B, time is a first class citizen in that all variables are
functions of time, whether explicitly or implicitly. However time is special, being read-
only. Clocks allow more flexibility, since they are assumed to increase like time, but
may be set during mode events (see below). Variables are of two kinds. There are mode
variables (like ©) which take their values in discrete sets and change their values via
discontinuous assignment in mode events. There are also pliant variables (such as x, y),
declared in the PLIANT clause, which typically take their values in topologically dense
sets (normally R) and which are allowed to change continuously, such change being
specified via pliant events (see below).

Next are the invariants. These resemble invariants in discrete Event-B, in that the
types of the variables are asserted to be the sets from which the variables’ values at any
given moment of time are drawn. More complex invariants are similarly predicates that
are required to hold at all moments of time during a run.

Then, the events. The INITIALISATION has a guard that synchronises time with the
start of any run, while all other variables are assigned their initial values as usual.

Mode events are direct analogues of events in discrete Event-B. They can assign all
machine variables (except time itself). In the schematic MoEv of Fig. 2, we see three
parameters i?, [, 0!, (an input, a local parameter, and an output respectively), and a guard
grd which can depend on all the machine variables. We also see the generic after-value
assignment specified by the before-after predicate BApred, which can specify how the
after-values of all variables (except time, inputs and locals) are to be determined.

Pliant events are new. They specify the continuous evolution of the pliant variables
over an interval of time. The schematic pliant event PliEv of Fig. 2 shows the struc-
ture. There are two guards: there is iv, for specifying enabling conditions on the pliant
variables, clocks, and time; and there is grd, for specifying enabling conditions on the
mode variables. The separation between the two is motivated by considerations con-
nected with refinement.

The body of a pliant event contains three parameters i?, [, 0!, (again an input, a local
parameter, and an output) which are functions of time, defined over the duration of the
pliant event. The behaviour of the event is defined by the COMPLY and SOLVE clauses.
The SOLVE clause specifies behaviour fairly directly. For example the behaviour of
pliant variable y and output o! is given by a direct assignment to the (time dependent)



130 R. Banach

value of the expression E(. . .). Alternatively, the behaviour of pliant variable x is given
by the solution of the first order ordinary differential equation (ODE) Dx = ¢(...),
where D indicates differentiation with respect to time. (In fact the semantics of the
y,0! = E case is given in terms of the ODE Dy, Do! = DE, so that x, y and o!
satisfy the same regularity properties.) The COMPLY clause can be used to express any
additional constraints that are required to hold during the pliant event via its before-
during-and-after predicate BDApred. Typically, constraints on the permitted range of
values for the pliant variables, and similar restrictions, can be placed here.

The COMPLY clause has another purpose. When specifying at an abstract level, we
do not necessarily want to be concerned with all the details of the dynamics — it is
often sufficient to require some global constraints to hold which express the needed
safety properties of the system. The COMPLY clauses of the machine’s pliant events
can house such constraints directly, leaving it to lower level refinements to add the
necessary details of the dynamics.

Briefly, the semantics of a Hybrid Event-B machine is as follows. It consists of a set
of system traces, each of which is a collection of functions of time, expressing the value
of each machine variable over the duration of a system run. (In the case of HyEvBMch,
in a given system trace, there would be functions for clk, x, y, u, each defined over the
duration of the run.)

Time is modeled as an interval 7 of the reals. A run starts at some initial mo-
ment of time, 7y say, and lasts either for a finite time, or indefinitely. The duration
of the run 7T, breaks up into a succession of left-closed right-open subintervals: 7 =
[to...t1),[t1...12),[f2...13),.... The idea is that mode events (with their discontinu-
ous updates) take place at the isolated times corresponding to the common endpoints
of these subintervals #;, and in between, the mode variables are constant and the pliant
events stipulate continuous change in the pliant variables.

Although pliant variables change continuously (except perhaps at the f;), continuity
alone still admits a wide range of mathematically pathological behaviours. To eliminate
these, we insist that on every subinterval [f;...#1) the behaviour is governed by a
well posed initial value problem D xs = ¢(xs...) (Where xs is a relevant tuple of pliant
variables and D is the time derivative). ‘Well posed’ means that ¢(xs . . .) has Lipschitz
constants which are uniformly bounded over [f; . . . #;;1) bounding its variation with re-
spect to xs, and that ¢(xs . . .) is measurable in . Moreover, the permitted discontinuities
at the boundary points #; enable an easy interpretation of mode events that happen at #;.

The differentiability condition guarantees that from a specific starting point, #; say,
there is a maximal right open interval, specified by f\ax say, such that a solution to the
ODE system exists in [#; . . . fmax ). Within this interval, we seek the earliest time f;11
at which a mode event becomes enabled, and this time becomes the preemption point
beyond which the solution to the ODE system is abandoned, and the next solution is
sought after the completion of the mode event.

In this manner, assuming that the INITIALISATION event has achieved a suitable
initial assignment to variables, a system run is well formed, and thus belongs to the
semantics of the machine, provided that at runtime:



The Landing Gear Case Study in Hybrid Event-B 131

e Every enabled mode event is feasible, i.e. has an after-state, and on its comple- (1)
tion enables a pliant event (but does not enable any mode event).>

e Every enabled pliant event is feasible, i.e. has a time-indexed family of after- (2)
states, and EITHER:

(i) During the run of the pliant event a mode event becomes enabled. It pre-
empts the pliant event, defining its end. ORELSE
(ii) During the run of the pliant event it becomes infeasible: finite termination.
ORELSE
(iii)) The pliant event continues indefinitely: nontermination.

Thus in a well formed run mode events alternate with pliant events. The last event
(if there is one) is a pliant event (whose duration may be finite or infinite). In reality,
there are a number of semantic issues that we have glossed over in the framework just
sketched. We refer to [4] for a more detailed presentation.

We point out that the presented framework is quite close to the modern formulation
of hybrid systems. See eg. [15,12] for representative modern formulations, or [8] for a
perspective stretching further back.

4 Top-Down Modelling of Complex Systems, and Multiple
Cooperating Hybrid Event-B Machines

The principal objective in modelling complex systems in the B-Method is to start with
small simple descriptions and to refine to richer, more detailed ones. This means that, at
the highest levels of abstraction, the modelling must abstract away from concurrency.
By contrast, at lower levels of abstraction, the events describing detailed individual
behaviours of components become visible. In a purely discrete event framework, like
conventional Event-B, there can be some leeway in deciding whether to hold all these
low level events in a single machine or in multiple machines — because all events
execute instantaneously, isolated from one another in time (in the usual interpretation).

In Hybrid Event-B the issue is more pressing. Because of the continuous behaviour
that is represented, all components are always executing some event. Thus an inte-
grated representation risks hitting the combinatorial explosion of needing to represent
each possible combination of concurrent activities within a separate event, and there is
a much stronger incentive to put each (relatively) independent component into its own
machine, synchronised appropriately. Put another way, there is a very strong incentive
to not abstract away from concurrency, an impulse that reflects the actual system ar-
chitecture. In Hybrid Event-B, there is thus an even greater motivation than usual for the
refinement methodology to make the step from monolithic to concurrent convincingly.

This is accomplished by using normal Hybrid Event-B refinement up to the point
where a machine is large enough and detailed enough to merit being split up. Then, the
key concept in the decomposition is the INTERFACE. This is adapted from the idea in
[9] to include not only declarations of variables, but of the invariants that involve them,

3 If a mode event has an input, the semantics assumes that its value only arrives at a time strictly
later than the previous mode event, ensuring part of (1) automatically.



132 R. Banach

INTERFACE Level7 AnSw IF

READS Level7 Comp IF /\; sens AnSw; € {OPEN, CLOSED}
REFERS Level7 Comp IF /\; AnSwClosed = sens AnSw; = CLOSED
CLOCK clk AnSw /\; ~AnSwClosed = sens AnSw; = OPEN
VARIABLES answ2genev = cmp2answi V cmp2answa

AnSwClosed, sens AnSw; answ2genev = AnSwClosed
PLIANT INITIALISATION

answ2genev BEGIN
INVARIANTS clk AnSw := BIGT

AnSwClosed € BOOL AnSwClosed := FALSE

answ2genev € BOOL ||; sens AnSw; := OPEN

(AnSw CLOSED INIT < clk AnSw < answ2genev = FALSE

AnSw CLOSED FIN) = AnSwClosed END
=(AnSw CLOSED INIT < clk AnSw < END

AnSw CLOSED FIN) = —AnSwClosed

Fig. 3. Level 7 interface for the analogical switch, from the case study

and their initialisations. A community of machines may have access to the variables
declared in an interface if each machine CONNECTS to the interface. All events in the
machines must preserve all of the invariants in the interface, of course. An important
point is that all invariants involving the interface’s variables must be in the interface.

Well, not quite all; an exception is needed. Invariants of the form U(u) = V(v),
where variables u# and v belong to different interfaces, are also allowed. Such cross-
cutting invariants (which we call type 2 invariants, t2is) are needed to express fun-
damental dependencies between subsystems which are coupled in a nontrivial manner
(such couplings invariably arise in multicomponent systems). In a t2i, the u and v vari-
ables are called the local and remote variables respectively. By convention a t2i resides
in the interface containing its local variables.

Fig. 3 shows an example of the preceding taken from the landing gear case study. It is
an interface, Level7 AnSw IF, primarily intended for some variables of the Analogical
Switch. It contains some, by now, familiar ingredients, such as a clock clk AnSw, and
some mode and pliant variables, AnSwClosed, sens AnSw;, answ2genev. These model
the state of the analogical switch, the state of its sensors, and the signal from the switch
to the general electro-valve. It also contains statements READS Level7 Comp IF and
REFERS Level7? Comp IF.

The first of these says that the interface contains a t2i (specifically answ2genev =
cmp2answy V cmp2answs) for which the local variables (i.e. answ2genev) are found in
Level7 AnSw IF, and the remote variables (i.e. cmp2answ1, cmp2answo) are found in
Level? Comp IF, which is another interface, predominantly concerned with variables
(and their invariants) belonging to the computer systems.

The second expresses the converse idea, namely that there is a t2i in Level7 Comp IF
for which the local variables are in Level7 Comp IF, and the remote variables are in
Level7 AnSw IF.

By restricting to t2is as the only means of writing invariants that cross-cut across two
interfaces (and, implicitly, across the machines that access them), we can systematise,
and then mechanise, the verification of such invariants. Thus, for a 2i U(u) = V(v)
it is sufficient for events that update the u variables to preserve —U (if it is true in the
before-state) and for events that update the v variables to preserve V (if it is true in the
before-state). A more comprehensive treatment of the notion of interface used here ap-
pears in [2].



The Landing Gear Case Study in Hybrid Event-B 133

As well as sharing variables via interfaces, multi-machine Hybrid Event-B systems
need a synchronisation mechanism — one that is more convenient than creating such a
thing ab initio from the semantics. For this the shared event paradigm [7,14] turns out
to be the most convenient. In this scheme, identically named (mode) events in two (or
more) machines of the system are deemed to be required to execute simultaneously. In
practice, it means that for each such event, its guard is re-interpreted as the conjunction
of the guards of all the identically named events. Below, in Section 6, we say rather
more more about mode event synchronisation. In particular, we point out the need for
a more flexible method of identifying events which are to be synchronised than pure
name identity. (In fact, a more flexible mechanism has been implemented in the Rodin
Tool [13] than is described in the literature. However, we stick, for simplicity and com-
parability with the published literature, to the simple and static identical name scheme.)

5 Model Development

Having discussed the technical preliminaries, in this section, we overview the devel-
opment of the landing gear case study. To clarify some minor inconsistencies in the
spec [6], we assume that the pilot controls the gear via a handle for which handle UP
means gear up, and handle DOWN means gear down. We also assume that in the initial
state the gear is down and locked, since the aircraft does not levitate when stationary
on the ground, presumably. Connected with this requirements aspect is the absence of
provision in [6] of what is to happen if the pilot tries to pull the handle up when the
aircraft is not in flight. Presumably the aircraft should not belly-flop to the ground, so
we just incorporate a suitable guard on the handle movement events, based on the value
of the shock absorber sensors. This leaves open the question of what actually happens
if the pilot pulls the handle up when the plane is on the ground. Does the handle resist
the movement, or does gear movement remain pending until released by the state of the
shock absorber sensors, or ...?

This issue, in turn, raises a further interesting question. Although the fact just pointed
out causes no special problem for an event-by-event verification strategy like the B-
Method, the absence of any explicit requirement that allows the shock absorber to
change value, would be equivalent to the aircraft never leaving the ground, leading to
the absence of nontrivial traces for a trace based verification strategy to work on (unless
suitable additional events were introduced into the model, just for this purpose).

Pursuing the technical strategy discussed earlier, implies that in the final development,
each component that is identifiable as a separate component in the architectural model,
should correspond to amachine inits ownright. Thus, at least, the pilot subsystem (handle
and lights), the two computers, the analogical switch, the general electro-valve, and the
individual movement electro-valves (and their associated hydraulic cylinders), should
all correspond to separate machines at the lowest level of development. The nontriv-
ial interdependencies between these subsystems give rise to enough cross-cutting type
2 invariants between the corresponding machines to thoroughly exercise the modelling
capabilities of our formal framework.

A further technical goal in this development is, as far as possible, to use variables that
correspond directly to quantities discussed in the requirements document. The aim is to



134 R. Banach

strive for the closest possible correspondence between requirements and formal model,
in the belief that this improves the engineering process. Allied to this is the fact that the
present work is the most complex case study attempted in Hybrid Event-B to date, so,
a certain amount of experimentation was carried out during the case study in order to
evaluate different modelling approaches to various features found in [6]. Consequently,
the same kind of situation is not always approached in the same way.

5.1 The Nominal Regime

With these remarks made, we turn to the development itself. This is too big to include
in full here of course; the details can be found at [3]. In this section we summarise the
essentials, pausing to discuss interesting issues as they arise.

We focus on the nominal regime. For the faulty regime, see below. Adhering to the
vision of the B-Method, the development starts very simply, and proceeds to add detail
via layers of refinement. As different parts of the system require different numbers of
refinement steps in order to reach their final degree of detail, in [3], the various syn-
tactic constructs are labeled with a level number, and the caption accompanying each
construct states which constructs constitute the system at the current level of develop-
ment.

Level 0 gives the simplest, pilot-level view of the system, and consists of just one
machine: LevelO PilotAndLightsNominal. There are mode events for raising and lower-
ing the handle, and for switching the green and orange lights on and off (the red light is
ignored in the nominal regime). For example:

PilotGearUP
ANY in?
WHERE in? = pilotGearUP X A handle = DOWN
THEN handle := UP
END

This is identical to normal Event-B, aside from the input parameter in?, which is re-
quired to be pilotGearUP X, and which is furthermore unused in the event. The expla-
nation for this is that while in normal Event-B, events are assumed to execute lazily,
i.e. not at the very instant they become enabled (according to the normal interpretation
of how event occurrences map to real time), in Hybrid Event-B, mode events execute
eagerly, i.e. as soon as they are enabled (in real time).

This is because physical law is similarly eager: if a classical physical system reaches
a state in which some transition is enabled, it is overwhelmingly the case that energetics
and thermodynamics force the transition to take place straight away. Hybrid Event-B,
in being designed to model physical systems, must therefore conform to this. As a
consequence, typical Event-B models, in which a new after-state immediately enables
the next transition, would cause an avalanche of mode event occurrences if interpreted
according to Hybrid Event-B semantics.

To avoid this, and yet to allow modelling convenience in Hybrid Event-B, the unde-
sirable avalanche of mode event occurrences is avoided at runtime by building a delay
into the semantics. The delay lasts as long as a required input parameter remains absent,
and the semantics assumes that the input does not arrive until after some positive (but
otherwise unspecified — unless more precisely constrained in the guard) period of time
has elapsed.



The Landing Gear Case Study in Hybrid Event-B 135

There is also a default pliant event PliTrue to define behaviour between occurrences
of the mode events. It merely stipulates COMPLY INVARIANTS.

Level 1 is a simple refinement of level 0, and just introduces some additional vari-
ables. Aside from minor details of syntax, it is just a discrete Event-B refinement of
LevelQ PilotAndLightsNominal to Levell PilotAndLightsNominal.

Level 2 begins the process of splitting things into smaller components. The level
I machine is split into Level2 PilotNominal and Level2 CompNominal. Each event of
Levell PilotAndLightsNominal is split into a pair of synchronised events in the two
machines. The former reflects the pilot’s view, in which the pilot is responsible for han-
dle events (so the earlier in? = pilotGearUP X goes into the Pilot machine), and the
computer is responsible for the lights events (so the inputs for those events go into the
Comp machine). The rationale for the latter is that the occurrences of the lights events
depend on as yet absent Comp details, so at this level of abstraction, they just appear as
spontaneously generated events from Comp’s environment, to be eventually refined to
the deterministic behaviour of a more complete computing machine. The relationship
between Level2 PilotNominal and Level2 CompNominal is mediated by an interface,
Level2 Comp IF, which contains all the variables shared by the two machines. The
decomposition of the level 1 machine into the two level 2 machines plus their inter-
face constitutes a ‘textbook’ example of doing decomposition according to the scheme
described earlier.

The next few levels are concerned with reconciling the pilot’s view of a singular
computing system behaviour with the reality of the duplicated computing modules of
the architecture of Fig. 1. Again, while the system description is still small, a ‘text-
book’ approach to the issue is taken. What we mean by this is that there will be a
machine depicting a singular computing system behaviour for the pilot, connected with
two actual computing modules which will be successively refined to include further im-
plementation detail. The textbook approach to this is to refine the Level2 CompNominal
machine to a machine, Level3 CompNominal that: firstly, duplicates the computer initi-
ated events (to model potential asynchrony of the two computing modules*); secondly,
replicates the relevant variables so that each representative machine will have its own
copy of each relevant variable. This situation is supported by an enriched interface
Level3 Comp IF. That done, at level 4, we can decompose Level3 CompNominal into
Leveld CompNominal (expressing the pilot’s view), and Leveld CompiNominal and
Leveld CompaNominal (the two ‘real’ computing modules-to-be).

The main outcome of this approach is to convince us of its extreme verbosity as a
way of modelling the ‘OR’ of the two computing modules’ commands whenever they
must send a command to any external component. In the remainder of the development,
such verbosity is avoided by having the receiving component simply react to the OR of
the received signals in the guards of its events, even though this is slightly inaccurate
architecturally (since, in reality, the OR is calculated outside the relevant component).

The next step is to introduce the analogical switch, whose functioning takes time,
for which the Levelb AnalogicalSwitchNominal machine introduces a clock, clk AnSw.
The analogical switch is open by default. When stimulated by a handle event, it takes

* We allow for potential asynchrony, even though in our idealised modelling sphere, both com-
puting modules will follow exactly the same trajectory.



136 R. Banach

Ve~ N\

0  CLOSED_INIT CLOSED_FIN OPEN clk_AnSw

Fig. 4. The analogical switch machine’s transitions when interrupted by a fresh handle event

some time to close (from 0 till CLOSED INIT), then stays closed for a while (from
CLOSED INIT till CLOSED FIN), then takes some time to open once more (from
CLOSED FIN till OPEN). Fig. 4 indicates what happens to the clock value when a
fresh handle event occurs before the previous sequence has completed. The handle
events that intiate these activities are synchronised with the pilot’s handle events (in
machine Level5 PilotNominal, which is a copy of Level2 PilotNominal but including
these additional synchronisations). This in order to model the fact that —according to
the architecture of Fig. 1— the pilot’s handle events reach the analogical switch directly,
and not via the computing modules.

Thus far, the development is relatively tree-shaped. Practically speaking, this means
that there is no need for nontrivial invariants involving variables that are not declared in
the same place. For a development of modest size, it is always possible to arrange things
so that this holds. However, as the size of the development increases, the prescience
needed to arrange the development so that this remains true, and the need to appropri-
ately separate concerns, both render this desire unrealistic. We see this in concrete terms
in our development at level 6, which is concerned with introducing the analogical switch
sensors. For clarity, these are introduced in a separate step to that which introduces the
analogical switch itself. Since the analogical switch is by now in a separate machine
from the computing modules, any invariant involving the sensors and computing vari-
ables becomes a cross-cutting t2i. This applies to A; gearsMoving, = sens AnSw; =
CLOSED which states that various landing gears do not start moving until the the
analogical switch is sensed to be closed. This t2i appears in the Level6 Comp IF in-
terface, using the t2i machinery discussed above. This necessitates a partitioning of
Levelb AnalogicalSwitchNominal in that a new interface, Level6 AnSw IF is needed to
house some of the Level5 AnalogicalSwitchNominal variables, so as to conform to the
syntactic conventions for t2is, yielding also machines Level6 AnalogicalSwitchNominal
and Level6 CompiNominal.

A similar process can be followed for introducing the general electro-valve. This is
carried out at level 7, rather as for the analogical switch at level 5. What is interest-
ing though, for the general electro-valve, is that the requirements [6] do specify some
continuous behaviour for this component, albeit that this is simple linear behaviour.
The opportunity is taken here to model this using nontrivial pliant events in machine
Level7 General EV Nominal. For instance, the growth of pressure in the door and gear
movement circuits is given by:

PressurelncreasingOrHIGH
INIT answ2genev
SOLVE
D genEVoutput = PressurelncRate X bool2real((genEVoutput < HIGH) N answ2genev)
END



The Landing Gear Case Study in Hybrid Event-B 137

This says that the time derivative of genEVoutput is constant as long as genEVoutput
does not exceed HIGH and the control signal answ2genev is true. Once genEVoutput =
HIGH is reached, the derivative drops to zero and so genEVoutput remains constant.

Level 8, which introduces the sensors for the general electro-valve, is as interesting
as level 7. The general electro-valve sensors only signal HIGH when genEVoutput ac-
tually reaches HIGH. This leads to a multi-step refinement of the level 7 pliant event
PressurelncreasingOrHIGH. A first pliant event models the increasing episode during
which the derivative is nonzero, and a second pliant event models the constant episode
during which genEVoutput remains at HIGH. The two pliant events are separated by
a mode event PressureHIGH reached, that turns the sensors to HIGH. A similar state
of affairs holds for the pressure decreasing regime, when the answ2genev signal goes
false.

Even more interesting is the fact that due to pilot initiated handle events, the ana-
logical switch’s behaviour may be restarted before a previous behaviour has completed,
leading to two possible mode events in the general electro-valve that synchronise with
the analogical switch closure event: one for the normal case when the general electro-
valve is depressured AnSw CLOSED INIT reached 1 S, and another for when it is al-
ready pressured-up AnSw CLOSED INIT reached 2 S.

And even more interesting than that, is the fact that the timing of pilot initiated handle
events may be such that mode event AnSw CLOSED INIT reached 2 S is scheduled
to occur at exactly the same moment as the mode event that naturally separates the
increasing and HIGH episodes in the general electro-valve, PressureHIGH reached.
The guards and actions of the two mode events are identical, which would cause trouble
with respect to the semantics, were it not for the fact that one of the mode events is a
synchronised event and the other is not.

Normally, the unproductive complications of such coincidences in the semantics are
avoided in Hybrid Event-B by assuming in the semantics that inputs do not arrive at
times which clash with other mode events (see the earlier discussion in Section 4). But
the case we are discussing is not like this since the coincidence occurs as a consequence
of an earlier mode event that is quite innocent. Clearly such coincidences are not stat-
ically computable in general, so cannot be avoided by some kind of static definition
in the semantics. Then, rather than complicate the modelling as we have done in the
present case study, a possible way forward is as follows.

During design and development, we neglect the possible existence of these issues of
undesired coincidence of mode events. In an environment with proper tool support for
Hybrid Event-B, the potential coincidences will invariably generate some unprovable
necessary conditions for semantic soundness. These conditions can then be added as
further hypotheses in a domain theory, leading to closure of the previously open proofs.
Provided such conditions only occupy a portion of the parameter space that is of zero
measure, no harm would be done to any practical implementation, since no practical
implementation that behaves in a stable way can hit a portion of the parameter space of
Zero measure.

We proceed to level 9. Now that the general electro-valve can be powered up and
down, this level introduces the individual movement electro-valves, and implicitly, the
hydraulic cylinders that they manipulate. Each of the four movement electro-valves and



138 R. Banach

’

/ : Gear Retract : \ \\\

LY . Ry

0 . Door Open Door Close ///L‘lk_H(mlH‘?
: 1

Gear Start Moving Gear Stop Moving

Gear Extend
Fig. 5. The approximate timing diagram for the level 10 computing machine

cylinders gives rise to a new machine. Also there is Level9 HydraulicCylinders EV IF,
a new interface that links them all to the computing modules. New synchronised events
in the computing modules and electro-valve/cylinder machines command the initia-
tion of the operation of the movement hydraulic cylinders, and timed events monitor
the completion of the relevant operations via the relevant battery of sensors, given the
variability in completion time described in [6]. All four operations are similar, so only
one has been modelled in detail in [3]. The cross-cutting t2is that couple variables in
Level9 HydraulicCylinders EV IF to those in the computing interface Level9 Comp IF
are handled in the by now familiar way.

Up to now, the impetus for executing any particular event that is potentially available
in a machine has come from the environment, via the technique of using an external
input that is created for that sole purpose. (Where there are synchronised families of
events, one of them is allocated the external input and the rest are synchronised with it.)
The final step in modelling the nominal regime is to remove this artifice, and replace
it with explicit timing constraints. This is the job of level 10. Note that explicit timing
information is already included in subsystems for which the description is relatively
complete, such as the analogical switch, and the the general and movement electro-
valves, so this development step only concerns the computing modules.

It was tempting to try to introduce the computing module timing constraints in a step
by step fashion. However, it was soon realised that the complexity and interconnected-
ness of the constraints was such that a stepwise approach would need to allow guard
weakening as well as guard strengthening. Since Event-B is not geared for guard weak-
ening, the idea was abandoned in favour of a monolithic approach that introduced all of
the timing machinery in one go.

Fig. 5 outlines the behaviour of the computing module’s clock clk Handle, when the
handle is manipulated during the course of gear extending or retracting. Unlike Fig. 4
though, where the behaviour illustrated is close to what the model describes (since the
analogical switch just responds to handle events in a self-contained way), Fig. 5 ne-
glects important detail. For example, consider a PilotGearUP S event while the gear
is extending. Then, the retracting sequence has to be executed but only from the point
that extending has reached. So first, clk Handle is changed to stop the gear extending
command. Then, clk Handle is changed to a time sufficiently before the gear retracting



The Landing Gear Case Study in Hybrid Event-B 139

command time that hydraulic hammer> has subsided. Once it is safe to activate the gear
retracting command, the gear retracting command is activated, and then clk Handle is
changed again to advance the clock in proportion to the undone part of the gear extend-
ing activity. In effect, we use clk Handle intervals as part of the state machine control-
ling the behaviour of the computing modules (along with additional internal variables).
This proves especially convenient when the state transitions involved concern delays be-
tween commands that need to be enforced in order to assure mechanical safety (e.g. the
hydraulic hammer case, just discussed). Such details are not visible in Fig. 5, but make
the design of the level 10 events quite complicated. This completes our development of
the nominal regime.

5.2 The Faulty Regime and the Imperative Closed Loop

Although we do not cover the faulty regime in detail in this study, we
now indicate briefly how it would go in the context of a fuller Hybrid
Event-B development. The structuring given by the nominal regime gives
a good basis for considering the faulty regime. A great help here is the
fact that the faults described in [6] are basically all stuck at faults. To
inject such faults into a nominal model is easy and systematic. For each
potentially failing component we introduce a fault variable, and we ad- Fig. 6.
ditionally guard each preexisting event on the fault variable’s falsehood. The Tower
Furthermore, we introduce an event in the relevant machine to sponta- Pattern
neously make the fault variable true.

Having built up the nominal regime, the faulty regime would be constructed by re-
trenching the various nominal machines to include the needed faults in the manner just
described. A great added benefit of this is that the suite of invariants built up for the
nominal regime need not be changed in the face of stuck at faults — retrenchment
allows the invariants to be violated, after which further nominal behaviour ceases.

In a multistage development like the present one, the nominal and faulty versions
would be related by Tower Pattern theorems such as can be seen in [5]. Fig. 6 shows the
general scheme. The top-down nominal refinement-based development we have done
appears as the bold left line, descending vertically through levels of abstraction as we
have described. The faulty regime then takes a horizontal development step to the right,
and builds up the analogous refinement chain bottom-up. This is indicated by the bold
dashed line segments.

The ultimate product of an exercise like the present one, is to produce an iterative
closed loop controller in a suitable imperative language, so that the control is reduced
to the instructions of a suitable embedded processor. The modelling in this case study
has not been carried that far, but we explain now why it would be easy to do.

We would just need a straightforward refinement. The reason for this is that the only
continuous behaviour that is relevant to the case study is linear with respect to time

[
[
[URESR S S - ]

5 Hydraulic hammer is the term for the collection of transient shock waves that propagate round
the hydraulic system when relatively abrupt changes are inflicted on its control surfaces (i.e. the
pistons in the various cylinders), and which are typically damped using a relatively elastic
hydraulic accumulator somewhere in the hydraulic circuit in order to avoid damage to the
hydraulic circuit components.



140 R. Banach

(whether this concerns a clock variable, or some other physical variable). Being linear,
the behaviour becomes completely predictable over the duration of a sampling period.
The needed refinement would thus need to simply replace the continuous behaviour
of the pliant event that ran during the sampling period with a (continuous) skip, and
augment the mode event that ran at the end of the sampling period with a discrete update
that expressed the calculated changes in pliant variables over the sampling period just
elapsed. The semantics of Hybrid Event-B would ensure that a straightforward retrieve
relation was provable regarding this change of representation (see [4] for examples).
This is indicated by the lowest vertical bold line segment in Fig. 6.

6 Review, Lessons Learned, and Conclusions

In the last few sections, we have overviewed the landing gear case study, and tackled
the modeling challenges of capturing the resulting development using Hybrid Event-B.
Although we restricted to the nominal regime, this provided a sufficient challenge to the
modelling capabilities of Hybrid Event-B to reassure us of its suitability for this kind of
system. In fact, with the nominal regime done, we were able to indicate that the faulty
regime could be handled quite straightforwardly. A number of lessons emerged from
this modelling exercise, which we summarise now.

[1] Doing an exercise like the present one by hand is really tricky. Almost every
re-reading of some fragment of the development revealed another bug (although typi-
cally, such bugs would be easily picked up mechanically). Proper machine support is
obviously vital when doing such a development in anger.

[2] Using a component’s clock as an adjunct to its state machine proved very con-
venient in combination with conventional state variables. Modelling mechanical safety
delays using pure state machine techniques would have made the state machines much
more cumbersome. Simply adjusting the clock to allow a safety margin of time to elapse
before the next required action was an elegant solution.

[3] The possibility of using t2is as a tool for breaking up complex architectures into
more digestible components, while maintaining interdependencies, proved vital. This
generic pattern showed itself to be both sufficiently expressive that needed dependencies
could be captured, and sufficiently well structured that mechanisation across multiple
machines and interfaces is feasible.

[4] Composition/decomposition mechanisms based on event name identity are inad-
equate to express the more dynamic synchronisations needed by complex system ar-
chitectures. As noted already, the current Rodin Tool implementation of synchronised
events goes beyond static event name identity, a need vividly illustrated in our case
study.

[5] The tension between describing components as self-contained machines, utilis-
ing their own naming conventions as standalone entities, contrasts with the approach of
regarding them ab initio as elements of the full system, adhering to system-wide nam-
ing conventions. In general, the synchronisation mechanisms referred to in [4] need
to be combined with sufficiently flexible instantiation mechanisms to enable a proper
component based approach to be pursued.

The need for the more flexible mechanisms mentioned in the last two points above
is already apparent in some of the synchronisations used in the case study here, where



The Landing Gear Case Study in Hybrid Event-B 141

it already proved impossible to do the needed job using purely static mechanisms. Such
challenges, and others (for example, how to model edge-triggered behaviour in a for-
malism based primarily on states, or the more intensive use of input and output vari-
ables rather than shared variables), provide good inspiration for the further fine-tuning
of the multi-machine version of the Hybrid Event-B formalism. Such insight will pro-
vide valuable guidance for subsequent tool building effort.

References

10.
11.
12.

. Akers, A., Gassman, M., Smith, R.: Hydraulic Power System Analysis. CRC Press (2010)
. Banach, R.: Invariant Guided System Decomposition. These proceedings
. Banach, R.: Landing Gear System Case Study in Hybrid Event-B Web Site (2013),

http://www.cs.man.ac.uk/“banach/some.pubs/
ABZ20l1l4LandingGearCaseStudy/LandingGearCaseStudy.html

. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core Hybrid Event-B: Adding Continu-

ous Behaviour to Event-B (2012) (submitted)

. Banach, R., Jeske, C.: Retrenchment and Refinement Interworking: the Tower Theorems.

Math. Struct. Comp. Sci. (to appear)

. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: ABZ 2014 Case Study Track.

CCIS, vol. 433, pp. 1-18. Springer, Heidelberg (2014)

. Butler, M.: Decomposition Structures for Event-B. In: Leuschel, M., Wehrheim, H. (eds.)

IFM 2009. LNCS, vol. 5423, pp. 20-38. Springer, Heidelberg (2009)

. Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and Tools for

Hybrid Systems Design. Foundations and Trends in Electronic Design Automation 1, 1-193
(2006)

. Hallerstede, S., Hoang, T.S.: Refinement by Interface Instantiation. In: Derrick, J., Fitzgerald,

J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS,
vol. 7316, pp. 223-237. Springer, Heidelberg (2012)

Ionel, I.: Pumps and Pumping. Elsevier (1986)

Manring, N.: Hydraulic Control Systems. John Wiley (2005)

Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
Springer (2010)

. RODIN Tool, http://www.event-b.org/, http://www.rodintools.org/,

http://sourceforge.net/projects/rodin-b-sharp/

. Silva, R., Pascal, C., Hoang, T., Butler, M.: Decomposition Tool for Event-B. Software Prac-

tice and Experience 41, 199-208 (2011)

. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer

(2009)

. U.S. Department of Transportation, Federal Aviation Administration, Flight Standards Ser-

vice: Aviation Maintenance Technician Handbook — Airframe (2012),
http://www.faa.gov/regulations policies/handbooks manuals/
aircraft/amt airframe handbook/


http://www.cs.man.ac.uk/~banach/some.pubs/ABZ2014LandingGearCaseStudy/LandingGearCaseStudy.html
http://www.cs.man.ac.uk/~banach/some.pubs/ABZ2014LandingGearCaseStudy/LandingGearCaseStudy.html
http://www.event-b.org/
http://www.rodintools.org/
http://sourceforge.net/projects/rodin-b-sharp/
http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_airframe_handbook/
http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_airframe_handbook/

	The Landing Gear Case Study in Hybrid Event-B
	1 Introduction
	2 Landing Gear Overview
	3 Hybrid Event-B, Single Machines
	4 Top-Down Modelling of Complex Systems, and Multiple Cooperating Hybrid Event-B Machines
	5 Model Development
	5.1 The Nominal Regime
	5.2 The Faulty Regime and the Imperative Closed Loop

	6 Review, Lessons Learned, and Conclusions
	References




