
Modeling a Landing Gear System in Event-B

Amel Mammar1 and Régine Laleau2

1 Institut Mines-Télécom/Télécom SudParis, CNRS UMR 5157 SAMOVAR, France
amel.mammar@telecom-sudparis.eu

2 Université Paris-Est, LACL, IUT Sénart Fontainebleau, France
laleau@u-pec.fr

Abstract. This paper describes the Event-B modeling of the landing
gear system of an aircraft whose the complete description can be found
in [3]. This real-life case study has been proposed by the ABZ’2014 track
that takes place in Toulouse, the European capital of the aeronautic in-
dustry. Our modeling is based on the Parnas and Madey’s 4-Variable
Model that permits to consider the different parts of a system. These
parts are incremently introduced using the Event-B refinement tech-
nique. The entire development has been carried out under the Rodin
toolset. To validate and prove the different components, we use the Ate-
lier B, SMT and ML provers which are plugged to Rodin.

1 General Overview of the System

The objective of the landing gear system is to permit a safe extension/retraction
of the gears when the plane is going to land/fly. Each gear is placed in a
landing-gear box equipped with a door that must be open when a gear is ex-
tending/retracting and closed when it becomes completely extended/retracted
and locked. To this aim, the controller (See Figure 1) reads, periodically through
a set of sensors, the states of the different elements (doors, gears, handler, etc.)
and sends orders to a set of electro-valves that make, for instance, the gears ex-
tend/retract or the doors open/close. More details will be introduced throughout
the modeling of this system.

Controller

Electro-Valves

StartStimulation/
StopStimulation

Doors/Gears 
Cylinders

handler
Pilot Interface

Fig. 1. The overall structure of the landing gear system

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 80–94, 2014.
c© Springer International Publishing Switzerland 2014



Modeling a Landing Gear System in Event-B 81

To model this system in Event-B [2], we suggest following the classification of
modeling variables according to the four-variable model of Parnas and Madey
[8]. We distinguish two groups of variables environment and controller variables:

1. Environment variables : represent the status of the elements outside the con-
troller. Two kinds of variables are distinguished:

– Monitored variables: the values of these variables are not calculated by
the controller but can be monitored. For example, the actual states of
the doors/gears.

– Controlled variables: the values of these variables are determined by the
controller. For example, the status of the valves and the lights.

2. Controller variables : denote values inside the controller system. Mainly, they
represent the values of some elements as seen by the controller but also the
different orders it sends.
– Inputs : the values stored in the controller and provided by some sensors.

For example, door openi[x], handlei, gear extendedi[x], etc.
– Outputs : they are the orders sent by the controller toward the different en-

vironmental elements. For example, general EV, retract EV , gears ma
neuvring, anomaly, etc.

The system can be seen as continuously executing the following sequence of
actions:

Do
Read Inputs from some sensors
Process Inputs
Produce outputs

Until a failure is detected

In the following sections, we are going to develop the modeling of this system in
six main steps:

1. Modeling the monitored variables : we describe the behavior of the physical
components like the doors, the gears, cylinders, but also the handler, the
switch and the shock absorbers. The variables modeling these components
are suffixed with “ p” because they represent their actual (physical) status
(See Section 3).

2. Modeling the controlled variables : we describe in this phase the behavior of
the valves that permit to act directly on the doors, gears and cylinders (See
Section 4). We also describe the behavior of the lights that inform the pilot
about the status of the system in general. Again, the variables modeling
these components are suffixed with “ p” because they represent their actual
status (See Section 4).

3. Modeling the controller/output variables : we describe how the controller
reads information from the sensors, sends orders to the valves and how it
updates the values of the lights (See Section 5).

4. Modeling timing aspects : to facilitate the design, we have chosen to elaborate
a first modeling of the system without considering any timed constraints. The
timed aspects are taken into account later by refinement (See Section 6).



82 A. Mammar and R. Laleau

5. Modeling the failure cases : in this step, we take into account the system’s
anomalies caused by failures on the different elements of the system (See
Section 7).

6. Finally, we describe how properties are verified (See Section 8).

In each of the previous steps, the different elements are gradually introduced
thanks to the Event-B refinement mechanism. The next section gives a brief
description of the Event-B method together with its refinement technique.

2 Event-B Method

Event-B [2] is the successor of the B method [1] permitting to model discrete
systems using mathematical notations. The complexity of a system is mastered
thanks to the refinement concept that allows to gradually introduce the differ-
ent parts that constitute the system starting from an abstract model to a more
concrete one. An Event-B specification is made of two elements: context and
machine. A context describes the static part of an Event-B specification; it con-
sists of constants and sets (user-defined types) together with axioms that specify
their properties. The dynamic part of an Event-B specification is included in a
machine that defines variables and events. The possible values that the variables
hold are restricted using an invariant written using a first-order predicate on the
state variables. An event can be executed if it is enabled, i.e. all the conditions,
named guards, prior to its execution hold. Among all enabled events, only one
is executed. In this case, substitutions, called actions, are applied over variables.
The execution of each event should maintain the invariant. To this aim, proof
obligations are generated for each event. To discharge these proof obligations,
the Rodin1 platform offers an automatic prover but also the possibility to plug
additional external provers like the SMT and Atelier B provers.

3 Modeling the Monitored Variables

In the system, we have the followingmonitored variables: gears, doors, doors/gears
cylinders, handler, hydraulic circuit and switch. These elements are introduced
according to the following refinement strategy:

– Initial model (Component Gears): we start by describing the behavior of the
gears, that can be made extended or not, since this is the main objective of
the system.

– 1st refinement (Component GearsIntermediateStates): we refine the state
where a gear is not extended by distinguishing two different sub-states: re-
tracted or partly-extended.

– 2nd and 3rd refinements (Components Doors and DoorsIntermediateStates):
like for the gears, we describe the state of a door as open or not, then we
add an intermediate state to model a partly-open door.

1 http://www.event-b.org/install.html

http://www.event-b.org/install.html


Modeling a Landing Gear System in Event-B 83

– 4th refinement (Component Cylinders): in this step, we introduce the cylin-
ders that allow the motion of the doors and gears.

– 5th refinement (Component HandlerSwitchShockAbsorber): we model in this
phase the handler, the analogical switch, the hydraulic circuit and the shock
absorbers.

In the following sub-sections, we detail each step.

3.1 Gears Modeling: The Initial Model and the First Refinement

We first introduce a context with set PositionsDG representing the three possible
cases for gears/doors/etc.: front, left or right. Then, we define a Boolean variable
gear extended p to formalize whether a gear is extended or not:

inv1: gear extended p ∈ PositionsDG → BOOL

To make the gears extended or not, we define the following two events:
Make GearExtended Start GearRetracting

ANY po WHERE ANY po WHERE
po ∈ PositionsDG ∧ po ∈ PositionsDG ∧
gear extended p(po)=FALSE gear extended p(po)=TRUE

THEN THEN
gear extended p(po) :=TRUE gear extended p(po):=FALSE

END END

When a gear is not extended, it can be retracted or partly-extended. So, we refine
the previous specification by introducing a new Boolean variable gear retracted p
that is true if the gear is entirely retracted. This variable is defined by two invari-
ants (inv2) and (inv3), where (inv3) states that a gear cannot be extended and
retracted at the same time:

inv2: gear retracted p ∈ PositionsDG → BOOL
inv3: ∀po.(po ∈ PositionsDG ⇒

¬(gear extended p(po) =TRUE ∧gear retracted p(po) =TRUE))

Consequently, the event Make GearExtended is refined by adding the guard (gear
retracted p(po) =FALSE), and we define the two following new events to make a
gear start extending (it becomes no longer retracted) or complete its closing.

Start GearExtending Make GearRetracted
ANY po WHERE ANY po WHERE

po ∈ PositionsDG po ∈ PositionsDG
gear retracted p(po) =TRUE gear extended p(po) =FALSE

THEN gear retracted p(po)=FALSE
gear retracted p(po):=FALSE THEN

END gear retracted p(po):=TRUE
END

3.2 Doors Modeling: The Second and Third Refinements

In this part, we present the modeling of the doors. To this aim, we have proceeded
like for the gears by defining two levels. In the first level, we define a new variable
door open p to know if a door is open or not. Then, we refine, in the second level,
the state where a door is not open by adding a new variable door closed p to
state if the door is closed or partly-open.



84 A. Mammar and R. Laleau

– the third refinement: we define the variable door open p and express an in-
variant to state that when a gear is partly-extended then all the doors are
open. In other words, it is not possible to start the extending/retracting of
a gear until all the doors are open.

inv4: door open p ∈ PositionsDG → BOOL
inv5: ∃po.(po ∈ PositionsDG ∧gear extended p(po) = FALSE∧

gear retracted p(po) = FALSE) ⇒ door open p =PositionsDG×{TRUE}

In order to preserve invariant (inv5), we refine the events
Start GearExtending and Start GearRetracting by adding the guard
(door open p =PositionsDG× {TRUE}). We also define two events to make
a door open and start closing.

Make DoorOpen Start DoorClosing
ANY po WHERE ANY po WHERE

door open p(po) =FALSE door open p(po) =TRUE
THEN (gear extended p =PositionsDG × {TRUE} ∨

door open p(po):=TRUE gear retracted p =PositionsDG× {TRUE})
END THEN

door open p(po):= FALSE
END

– the fourth refinement: in this level, we define the variable door closed p and
express that a door cannot be open and closed at the same time:

inv6: door closed p ∈ PositionsDG → BOOL
inv7: ∀po.(po ∈ PositionsDG ⇒

¬(door open p(po) =TRUE ∧door closed p(po) =TRUE)

In order to preserve invariant (inv7), we refine the event Make DoorOpen by
adding the guard (door closed p(po) = FALSE). We also define two new events
to make a door start opening (it becomes no longer closed) or accomplish its
closing.

Start DoorOpening Make DoorClosed
ANY po WHERE ANY po WHERE

door closed p(po) =TRUE door closed p(po) =FALSE
THEN door open p(po) =FALSE

door closed p(po):=FALSE THEN
END door closed p(po):=TRUE

END

3.3 Cylinders Modeling: The Fourth Refinement

The motion of the gears and the doors is performed by a set of cylinders. A
door (resp. gear) cylinder is locked when the door is closed (resp. extended or
retracted). Of course, before starting moving, the cylinder, associated with the
door/gear, should not be locked. So in the next refinement, we define two new
variables door cylinder locked p and gear cylinder locked p with the following
invariant:

inv8: door cylinder locked p ∈ PositionsDG → BOOL
inv9: gear cylinder locked p ∈ PositionsDG → BOOL
inv10: ∀po.(door cylinder locked p(po) =TRUE ⇒ door closed p(po) =TRUE)
inv11: ∀po.(gear cylinder locked p(po) =TRUE ⇒

(gear extended p(po) =TRUE ∨gear retracted p(po) =TRUE))
inv12: ∀po.(gear cylinder locked p(po) =FALSE ⇒ door open p=PositionsDG×{TRUE})



Modeling a Landing Gear System in Event-B 85

In order to satisfy (inv11), we have refined the events Start GearExtending
and Start GearRetracting by adding the guard (gear cylinder locked p(po) =
FALSE). Similarly, we have refined the event Start DoorClosing by adding the
guard (gear cylinder locked p =PositionsDG× {TRUE}) to make (inv12) satis-
fied. Finally, we have defined four new events to lock/unlock door/gear cylinders.
For the sake of space, we provide only those associated with gears.

UnlockGearCylinder LockGearCylinder
ANY po WHERE ANY po WHERE

po ∈ PositionsDG po ∈ PositionsDG
gear cylinder locked p(po) =TRUE gear cylinder locked p(po)=FALSE
gear extended p(po) =TRUE ∨ gear extended p(po) =TRUE ∨
gear retracted p(po)=TRUE gear retracted p(po) =TRUE
door open p =PositionsDG × {TRUE} THEN

THEN gear cylinder locked p(po) :=TRUE
gear cylinder locked p(po) :=FALSE END

END

3.4 Handler/Switch/Shock Absorbers/Hydraulic Circuit Modeling:
The Fifth Refinement

In this step, we continue the modeling of the monitored variables by introducing
the handler, the analogical switch, the shock absorbers and the hydraulic circuit.
First, we extend the context by defining two new sets PositionsHandler and
PositionsSwitch to denote respectively the possible positions for the handler,
up and down, and for the switch, open, closed. So, we define two Boolean vari-
ables handler p and analogical switch p to model the position of the handler
and the switch respectively. Since the analogical switch closes each time the han-
dler changes its position, we add a Boolean variable handle which memorizes
the handler shift. The events we define for the handler are: PutHandlerUp and
PutHandlerDown. For instance, under the guard handler p = down, the event
PutHandlerUp sets the variable handler p to up and assigns TRUE to the variable
handle.

To model the physical behavior of the analogical switch depicted in Figure 2,
we define two additional Boolean variables Intermediate1 and Intermediate2
that cannot be true at the same time as follows:

inv13: ¬(Intermediate1 =TRUE ∧ Intermediate2 =TRUE)
inv14: (Intermediate1=TRUE ∨ Intermediate2 =TRUE) ⇒ analogical switch p = open

Each transition is translated into an event whose guard corresponds to its
source state and includes (handle=TRUE) if it is triggered by the handler shift.
The action of this event consists in assigning FALSE to the source state and TRUE

to the target one. For the sake of space, we only provide the Event-B translation
of two transitions.

close Switch HandleFromIntermediate2ToIntermediate1
WHEN WHEN

Intermediate1 =TRUE Intermediate2 =TRUE
THEN handle =TRUE

analogical switch p := closed THEN
Intermediate1 :=FALSE handle :=FALSE

END Intermediate2 :=FALSE
Intermediate1 :=TRUE

END



86 A. Mammar and R. Laleau

Open Intermediate2

Intermediate1 Closed

handle? handle?

handle?

C: currentTime =deadlineSwitch
A1: deadlineSwitch:=currentTime+(8-2/3*(deadlineSwitch-currentTime)

[C]

A1

[C]

A2: deadlineSwitch:=currentTime+200

A2

A2

A3: deadlineSwitch:=currentTime+12

A3
[C]

A4: deadlineSwitch:=currentTime+8

A4

Fig. 2. Physical behavior of the analogical switch

The hydraulic circuit is modeled with a Boolean variable
circuit pressurized p, and two events Unpressurise and Pressurise. For in-
stance, under the guard (circuit pressurized p=TRUE) , the event Unpressurise
sets the variable circuit pressurized p to FALSE. In addition, we have refined
each event related to the doors/gears/ motion and lock/unlock cylinders by
adding a guard (circuit pressu rized p = TRUE). Finally, we model gears shock
absorbers by a Boolean variable that gives for each position the state of its
associated shock absorber according to the following invariant stating that a
gear shock absorber is on ground only if its gear is extended:
inv15: ∀po.(po ∈ PositionsDG ∧ gear shock absorber p(po) =TRUE ⇒ gear extended p(po)=TRUE)

So, to preserve invariant (inv15), the event Start GearRetracting is refined
by adding an action that set the variable gear shock absorber p(po) to FALSE.
In addition, to make the state of a shock absorber evolve, we have defined two
new events: a first to set it to FALSE and a second to TRUE under the guard that
its gear is extended.

4 Modeling the Controlled Variables: The Sixth
Refinement

This section deals with the modeling of valves and lights that are controlled
by the system (Component ValvesLights). We describe how a valve becomes
active/not active and how a light becomes on/off. Each valve is modeled
with a Boolean variable (general EV p, open EV p, close EV p, extend EV p,
retract EV p) and two events to make it active or not. For the sake of space, we
describe the events that activate the open door valve and deactivate the extend
valve; the others are very similar.

MakeOpenDoorValveActive MakeExtendValveActive
WHEN WHEN

open EV p= FALSE extend EV p= FALSE
circuit pressurized p= TRUE circuit pressurized p= TRUE

THEN THEN
open EV p:= TRUE extend EV p:= TRUE

END END



Modeling a Landing Gear System in Event-B 87

In addition, we refine each event related to the motion of doors/gears by
adding a guard to specify that the corresponding valve is active and its opposite
is deactivated. For instance, we refine the event Start GearExtending by adding
the guard (extend EV p = TRUE ∧ retract EV p = FALSE). We also refine the
events related to lock/unlock door/gear cylinders by adding the adequate guard.
For instance, we refine the event LockGearCylinder by adding the guard:

(gear extended p(po) =TRUE ∧ extend EV p= TRUE) ∨
(gear retracted p(po) = TRUE ∧ retract EV p=TRUE)

Finally, we refine the event Pressurise HydrolicCircuit (resp.
Unpressurise HydrolicCircuit) by adding the guard (general EV p =
TRUE) (resp. general EV p = FALSE).

The lights are dealt with similarly to the valves. We model each of them by
a Boolean variable (greenLight p, orangeLight p, redLight p) and define two
events for green and orange lights; one to set the light on and the other to set it
off. For the red light, only the event that makes it on is defined since this state
is kept forever.

5 Modeling the Controller/Output Variables: The
Seventh Refinement

In this section, we describe how the controller takes its decisions about the
setting of the light and the activation/deactivation of the valves according to
the information it gets from the sensors that it periodically reads (Component
Sensor). To do that, the controller reads the status of the handler, the switch,
the hydraulic circuit, the doors and the gears2. So, we introduce for each of
these elements a new variable that represents its state as seen by the controller.
Such variables are suffixed by ” ind” and are of the same type and have the
same constraints as their associated variables suffixed by ” p”. For instance, a
door cannot be seen open and closed at the same time. The controller acquires
information from the sensors as follows:

ReadInput
ANY

handler sensor value , analogical switch sensor value, circuit pressurized sensor value,
gear extended sensor valueF, gear extended sensor valueL, gear extended sensor valueR,

. . .
WHERE

handler sensor value ∈ PositionsHandler
. . .

gear extended sensor valueF ∈ BOOL ∧
gear extended sensor valueF=TRUE ⇒

gear extended(front)=TRUE ∧ gear cylinder locked p(front)=TRUE
. . .

THEN
handler sensor ind:=handler sensor value

. . .
gear extended sensor p:= {front 
→ gear extended sensor valueF,

left 
→ gear extended sensor valueL,right 
→ gear extended sensor valueR}
. . .

END

2 In this paper, we make the assumption that there is a unique sensor on each of these
elements.



88 A. Mammar and R. Laleau

The key point of the event ReadInput is that each sensor does not give
information that goes against the security of the system (the sensors are
intrinsically safe), that means that if it says that a door/gear is {open,
close}/{extended/retracted} then it is really the case. If the sensor is faulty,
it should say: I do not know!, that is, it will return FALSE for the doors and the
gears. From these inputs, the controller takes decisions about sending orders to
the valves. Each order to a valve is modeled by a Boolean variable (general EV ,
close EV , etc.) such that:

inv16: ¬(open EV =TRUE ∧ close EV=TRUE)//Req R41

inv17: ¬(extend EV=TRUE ∧ retract EV=TRUE)//Req R42

inv18: (open EV =TRUE ∨ close EV =TRUE ) ⇒ general EV =TRUE
inv19: (extend EV =TRUE ∨ retract EV =TRUE) ⇒ open EV =TRUE//inv18 + inv19 = R51

For instance, the controller sends orders to the general and extend valves as
follows:

– when the analogical switch is closed, it sends a start stimulation to the
general valve if it reads that the handler is up (resp. down) but the gears
are not locked up (resp. down). It should also maintain the stimulation of
the general valve if the open/close valve is still stimulated. The event that
model starting/stopping the stimulation of the general valve is as follows:

OutputGeneralValve
ANY general EV value WHERE

general EV value =bool((analogical switch ind =closed
∧ ((handler ind=down ∧ gear extended �=PositionsDG × {TRUE}) ∨

(handler ind=up ∧ gear retracted ind �= PositionsDG × {TRUE}))) ∨
(open EV =TRUE ∨ close EV =TRUE)

general EV �= general EV value THEN
general EV := general EV value

END

– if the open door valve is stimulated and the doors are seen open, it sends a
stimulation order to the extend valve if it sees that the handler is down but
one of the gear is not extended and locked in the down position, otherwise
it stops it:

OutputExtendGearValve
ANY extend EV value WHERE

extend EV value =bool(handler ind =down ∧
gear extended ind �= PositionsDG×{TRUE} ∧
open EV =TRUE ∧ retract EV =FALSE ∧
door open ind=PositionsDG×{TRUE}) ∧
extend EV �= extend EV value THEN
extend EV := extend EV value

END

Similarly to the valves, the controller sends orders to the lights. At this level,
we only introduce the order to the green and orange lights; the red one is achieved
later when we model failures. For instance, when the controller sees the gears
extended and locked, it sends order gears locked down as follows:

gears locked down :=bool(gear extended sensor valueF =TRUE ∧
gear extended sensor valueL =TRUE ∧
gear extended sensor valueR =TRUE)

In this step, we refine each event related to making a valve active/not active by
adding a guard to specify that its related order has been sent from the controller.
We also refine the event acting on the lights by adding a guard that expresses
that the setting order has been received from the controller.



Modeling a Landing Gear System in Event-B 89

6 Introducing Timing Aspects: The Eighth Refinement

In this system, timing aspects are four folds: (1) the analogical switch takes
time to move from open to close and vice versa (2) the start/stop stimulation of
valves should be separated by some time, (3) the valves take time to be active, the
cylinders take time to move and be locked/unlocked, (4) the controller has to read
some inputs at given moments to be sure that the system behaves correctly as
expected or not. In this section, we deal with the first three aspects (Component
TimedAspects) and postpone the last one to the next section. Let us notice that
real-time cannot be explicitly modeled in Event-B, thus we approximate it by
using discrete time: a natural variable currentT ime represents the current time.

6.1 Timing Constraints on the Analogical Switch

To introduce timing constraints on the switch, we add a natural variable
deadline Switch that represents the deadline at which the switch changes its
state according to Figure 2. To move from a state to another, currentT ime
should be equal to deadlineSwitch, then the deadline is updated adequately.
For instance, the event HandleFromIntermediate2ToIntermediate1 is re-
fined by adding the action deadlineSwitch := currentT ime + (8 − (2/3) ×
(deadlineSwitch − currentT ime))3. Similarly, the event close Switch is re-
fined by adding the guard currentT ime = deadlineSwitch and action
deadlineSwitchcurrentT ime+ 200.

6.2 Timing Constraints on the Start/Stop Stimulation of Valves

In this system, the time between starting the stimulation of the general valve
and the others should be separated by at least 2 u.t (units of time). Since
the open valve is the first to stimulate just after the general valve, it is suf-
ficient to respect this time between them. Similarly, the time between stop-
ping the stimulation of the general valve and the others should be separated
by at least 10 u.t. Since the open/close valve is the last valve that stops
stimulation just before stopping the general valve, it is sufficient to respect
this time only between them. In addition, the stimulation of contrary orders
should be separated by at least 1 u.t. So, we have defined five natural variables
allowedStopGeneralEv, allowedStartOpenEV , allowedStartCloseOpenEV ,
allowedStartExtedEV and allowedStartRetractEV that are updated as fol-
lows: when the general (resp. open, close, extend, retract) valve is stim-
ulated, then the variables allowedStartOpenEV and allowedCloseOpenEV
(resp. allowedCloseOpenEV , allowedStartOpenEV , allowedStartRetractEV ,
allowedStartExtedEV ) are updated with the adequate value. In ad-
dition, when open (resp. close) valve is stopped then the variable
allowedStopGeneralEv is also updated with the adequate value. So, the event

3 Since, the type Real is not provided in Event-B, all computations are done in fixed-
point arithmetic with a scale of 10.



90 A. Mammar and R. Laleau

OutputGeneralValve has been refined by adding the guard (currentT ime
≥ allowedStopGeneralEv) and actions:

allowedStartOpenEv:={FALSE 
→ TRUE 
→ currentT ime + 2,TRUE 
→ FALSE 
→ 0}
(general EV 
→ general EV value)

6.3 Timing Constraints on the Activation of the Valves

A valve takes some time to be active/not active after starting/stopping its stim-
ulation. So, we have associated with each kind of valves (general, door, gear)
a natural variable that states the time at which the valve can be active/not
active. For instance, we have defined for the extend/retract valves the vari-
able deadlineStimulationRetractExtendEv that is updated to the adequate
time when the controller sends an order for these valves, and it is reset to 0
when the valve becomes active/not active. Basically, we have refined the event
OutputExtendGearValve by adding the action:

deadlineStimulationRetractExtendEv :={FALSE 
→ TRUE 
→ currentT ime + 10
TRUE 
→ FALSE 
→ currentT ime+36}(extend EV 
→ extend EV value)

Finally, we have refined the events that make the extend/retract valve ac-
tive/not active by adding the guard (currentT ime = deadlineStimulation
RetractExtendEv) and action (deadlineStimulationRetractExtendEv := 0)
to reset the deadline after executing the event.

6.4 Timing Constraints on Cylinders

The gears/door cylinders take some time to lock/unlock but also to move from
high to down and vice versa. To consider the time taken by a gear cylinder to
lock/unlock, we have defined a variable deadlineUnlockLockGearsCylinders.
This variable is set by events that make extend and retract valves ac-
tive in order to launch the deadline for unlocking the cylinders, and
the events Make GearExended and Make GearRetracted to launch the
deadline for locking the cylinders. Similarly, we have defined a vari-
able deadlineGearsRetractingExtending to consider the time tacken by
the gear to move from down to up and vice versa. So, the event
MakeExtendValveActive is refined by adding the guard (currentT ime =
deadlineStimulationRetractExtendEv) and the two following actions that per-
mit to reset the deadline and to set the moment at which the gear cylinders
become unlocked.

deadlineStimulationRetractExtendEv := 0
deadlineUnlockLockGearsCylinders := PositionsDG × {currentT ime + 4}

In addition, we refine the event Start GearExtending by adding the action:
deadlineGearsRetractingExtending(po) :=

{front 
→ currentT ime + 12, left 
→ currentT ime + 16, right 
→ 16}(po)

and the guard (deadlineUnlockLockGearsCylinders(po) = 0). Finally to make
the time progress, we have defined the event passingTime that increases the
variable currentT ime when there is at least one non-null deadline. The time
progresses by an amount step without exceeding any non-null deadline in order
to avoid the starvation problem. More details can be found at:

http://www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html

http://www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html


Modeling a Landing Gear System in Event-B 91

7 Introducing Failures: The Ninth Refinement

7.1 Modeling Failures

So far, we have considered all the physical elements as working correctly as
expected. However in practice, each of them can fail: the switch, the cylinders and
the valves can fail at any time. To take such failures into account, we have added
for each of these elements an event that makes it fail (Component Failures). For
example, for the switch and the door cylinders, we have defined the two following
events where the variables analogical switch fail and door cylinder fail denote
Boolean variables that say respectively whether the switch or a door cylinder
has failed:

MakeSwitchFail MakeDoorCylinderFail
WHEN analogical switch fail =FALSE ANY po WHERE po ∈ PositionsDG THEN

analogical switch fail :=TRUE door cylinder fail(po) :=TRUE
END END

Consequently, we refine each event related to the behavior of the switch, the
valves and the cylinders by adding a guard stating that the element change
its status only if it has not failed. For instance, we have added the guard
(door cylinder fail(po) :=FALSE) for the events Make DoorOpen, Start Door-

Opening, Start DoorClosing, etc.

7.2 Detecting Anomalies

As stated in the previous section, physical elements can fail. The controller does
not have any information about that but it can deduce it by monitoring the status
of the switch, the doors, and the gears. In fact, if the controller sends an order to
stimulate the open valve but the doors are not seen open after a given time, then
it can assert that a problem has happened (in at least one physical element) by
displaying the anomaly information to the pilot. To this aim, the controller has
to read, through the sensors, the status of these elements at well-defined times.
For instance, the controller has to verify that the switch is closed 10 u.t after
the handler has changed its position otherwise an anomaly is detected. To model
that, we add a natural variable nextInputReadForOpenSwitch that memorizes
the time at which the controller must not see the switch open. This variable is
updated by the event ReadInput which we refine by adding the following action:

nextInputReadForOpenSwitch :=
{FALSE 
→ nextInputReadForOpenSwitch, TRUE 
→ currentTime+10}

(bool(handler ind �= handler sensor value))

As for other deadlines, to avoid the starvation problem, we refine the event
passingTime by adding a guard stating that if nextInputReadForOpenSwitch
is not null then the time can progress but without exceeding it. In addition,
the event ReadInput resets the variable nextInputReadForOpenSwitch when
this deadline is reached and the verification performed. So, we add the following
actions to the event ReadInput:



92 A. Mammar and R. Laleau

nextInputReadForOpenSwitch :=
{FALSE 
→ nextInputReadForOpenSwitch, TRUE 
→ 0}

(bool(currentT ime = nextInputReadForOpenSwitch))
anomaly :=bool(currentT ime = nextInputReadForOpenSwitch ∧ analogical switch ind = open)

The other anomalies on the doors, the gears, the hydraulic circuit are dealt
with similarly. In addition, we have refined the event ReadInput and the events
sending orders to the valves by adding the guard (anomaly = FALSE) in
order to stop the system. Indeed according to the description of the system, the
anomaly message has to be maintained forever. From a modeling point of view,
we introduce a deadlock such that no operation becomes possible.

8 Properties Verification: The Tenth Refinement

Most properties to verify are temporal properties that refer to several moments
of the system. A model checker like ProB [7] would be very useful for such
purpose. Nevertheless, we have chosen to stay in a same framework of proof
by modeling them as invariants (Component PropertyVerification). Moreover to
distinguish the specification of the system from the verification of properties, we
have created a new refinement level that defines such properties as invariants.
For the sake of space, this paper illustrates the verification of the properties
through one example, the verification of the other properties can be found at:

http://www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html

R74. If one of the three gears is not seen locked in the down position more than
10 seconds after stimulating the outgoing electro-valve, then the Boolean output
normal mode is set to false.

To specify this property, we have defined a new variable TimeStimulationExten-
dRetractEv to memorize the time at which the extend/retract valve is stimulated.
This variable is set by the event OutputExtendGearValve by adding the action
(T imeStimulationExtendRetractEv := currentT ime). Then, the property is
specified as follows:

(currentT ime > TimeStimulationExtendRetractEv + 100 ∧ extend EV = TRUE) ⇒
(anomaly = TRUE ∨ gear extended ind = PositionsDG × {TRUE})

To discharge this invariant, the following intermediate lemmas have been
added:

(currentT ime > TimeStimulationExtendRetractEv + 100 ∧ extend EV=TRUE)⇒
nextInputReadForGearEndExtendingRetracting = 0

(nextInputReadForGearEndExtendingRetracting = 0 ∧ extend EV = TRUE) ⇒
(anomaly = TRUE ∨ gear extended ind =PositionsDG × {TRUE})

The first invariant ensures that the time does not progress beyond the deadline
(T imeStimulationExtendRetractEv + 100) without reading the state of the
gears since the variable nextInputReadForGearEndExtendingRetracting is
reset when the gears are read. The second one states that the controller sets
the variables anomaly and gear extended ind correctly when the deadline is
reached. Table 1 gives the results of the verification activities.

http://www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html


Modeling a Landing Gear System in Event-B 93

Table 1. Verification results

Requirement Verified? Method Comment

R11 � Animation Proof seems to be too hard since it needs several
intermediate lemmas.

R12 � Animation Proof seems to be too hard since it needs several
intermediate lemmas.

R21 � Proof It is verified from the instant where the controller
sees the position of the handler down

R22 � Proof It is verified from the instant where the controller
sees the position of the handler up

R31 � Proof It is not valid on the physical elements since the
controller can start extending/retracting the
gears when the doors are actually open but the
close valve does not stop completely. Thus, we
express it according to the internal variables.

R32 � Proof It is not valid on the physical elements since the
controller can start opening/closing the
doors when the gears are actually extended/
retracted but the extend/retract valve does not
stop completely. Thus, we express it according to
the internal variables.

R41, R42, R51 � Proof

R61, R62, R63, R64 � Proof

R71, R72, R73, R74 � Proof

9 Conclusion: Limits and Future Work

In this paper, we have presented a modeling of a landing gear system in the formal
languageEvent-B.To this aim,we have proceeded into 3main phases: (1)modeling
the systemwithout timed concerns and possible failures; (2) taking timed concerns
into account; (3) considering the possible faults on the different elements of the
system. From a design point of view, the main difficulty was to define a method
to tackle the complexity of the case study. The combination of the four-variable
model of Parnas and of the Event-B refinement process has proved very relevant
for this type of problem. The former allows to classify the variables that represent
the system and its environment and the latter allows to gradually introduced these
variables. This approach has been used by Butler [4] but with a very simple case
study. Contrary to Butler’s work, we have chosen to consider time constraints later
in the design, since it seemed to us simpler for the proof activity. Finally, failures
have been introduced at the end of the process following the idea of considering
first the nominal system behavior as advised by [6,9]. From a technical point of
view, we have defined 66 variables and 48 events split into 10 refinement levels
that give rise to 285 proof obligations, 72% of which have been discharged auto-
matically; we have accomplished the remaining proofs interactively thanks to the
Atelier B, SMT and ML provers which are Rodin plugins. We think the modeling
can be improved if Event-B and the Rodin framework, under which this develop-
ment has been achieved, offer real-time aspects. In addition, it would be interesting



94 A. Mammar and R. Laleau

to deeper study the use of one of the structuring mechanisms proposed for Event-
B: decomposition [10] or modularization [5], in order to structure the specification
into logical units.

As stated before, regarding the description of the case study, we make the
assumption that each sensor is unique and not triplicated. This is not a strong
assumption and does not affect the modeling; it can be easily relaxed by only
adapting the event ReadInput. For the handler for instance, we will define two
functions handler sensors and handler sensors valid to memorize the values
of the sensors and its validity:

handler sensors ∈ 1..3 −→ BOOL ∧ handler sensors valid ∈ 1..3 −→ BOOL

Then, the event ReadInput is updated as follows (value TRUE (resp. FALSE)
represents position up (resp. down)):
ANY handler ind value, handler sensor valid value WHERE

handler ind value =
((card(handler sensor valid−1[{TRUE}])=3 ∧

((handler sensor(1) =TRUE ∧ (handler sensor(2)=TRUE ∨ handler sensor(3) =TRUE)) ∨
∨ (handler sensor(2)=TRUE ∧ handler sensor(3)=TRUE)))

∨ (card(handler sensor valid−1[{TRUE}])=2 ∧
card(handler sensor[handler sensor valid−1[{TRUE}]])=1)))

handler sensor valid value=. . .THEN
handler ind:={TRUE 
→ up, FALSE 
→ down}(handler ind value)
handler sensor valid := handler sensor valid value

. . .

References

1. Abrial, J.-R.: The B-book, Assigning Programs to Meanings, pp. I–XXXIV, 1–779.
Cambridge University Press (2005)

2. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering, pp. I–
XXVI, 1–586. Cambridge University Press (2010)

3. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: Boniol, F. (ed.)
ABZ 2014 Case Study Track. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

4. Butler, M.: Using Event-B Refinement to Verify a Control Strategy, Working Paper.
ECS, University of Southampton (2009)

5. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,
Latvala, T.: Supporting reuse in event B development: Modularisation approach.
In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010.
LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010)

6. Jeffords, R.-D., Heitmeyer, C.-L., Archer, M., Leonard, E.-I.: Model-Based
Construction and Verification of Critical Systems using Composition and Partial
Refinement. Formal Methods in System Design 37(2-3), 265–294 (2010)

7. Leuschel, M., Butler, M.-J.: ProB: An Automated Analysis Toolset for the B
Method. STTT 10(2), 185–203 (2008)

8. Lorge Parnas, D., Madey, J.: Functional Documents for Computer Systems. Sci.
Comput. Program. 25(1), 41–61 (1995)

9. Miller, S.-P., Tribble, A.-C.: Extending the Four-Variable Model to Bridge the
System-Software Gap. In: Proceedings of the 20th Digital Avionics Systems Con-
ferene (DASC 2001), Daytona Beach, Florida (2001)

10. Silva, R., Pascal, C., Hoang, T.-S., Butler, M.: Decomposition tool for Event-B.
Softw., Pract. Exper. 41(2), 199–208 (2011)


	Modeling a Landing Gear System in Event-B
	1 General Overview of the System
	2 Event-B Method
	3 Modeling the Monitored Variables
	3.1 Gears Modeling: The Initial Model and the First Refinement
	3.2 Doors Modeling: The Second and Third Refinements
	3.3 Cylinders Modeling: The Fourth Refinement
	3.4 Handler/Switch/Shock Absorbers/Hydraulic Circuit Modeling: The Fifth Refinement

	4 Modeling the Controlled Variables: The Sixth Refinement
	5 Modeling the Controller/Output Variables: The Seventh Refinement
	6 Introducing Timing Aspects: The Eighth Refinement
	6.1 Timing Constraints on the Analogical Switch
	6.2 Timing Constraints on the Start/Stop Stimulation of Valves
	6.3 Timing Constraints on the Activation of the Valves
	6.4 Timing Constraints on Cylinders

	7 Introducing Failures: The Ninth Refinement
	7.1 Modeling Failures
	7.2 Detecting Anomalies

	8 Properties Verification: The Tenth Refinement
	9 Conclusion: Limits and Future Work
	References




