
123

Frédéric Boniol
Virginie Wiels
Yamine Ait Ameur
Klaus-Dieter Schewe (Eds.)

Case Study Track, Held at the 4th International Conference
on Abstract State Machines, Alloy, B, TLA, VDM, and Z
Toulouse, France, June 2–6, 2014, Proceedings

ABZ 2014:
The Landing Gear
Case Study

Communications in Computer and Information Science 433

Communications
in Computer and Information Science 433

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, India

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Takashi Washio
Osaka University, Japan

Xiaokang Yang
Shanghai Jiao Tong University, China

Frédéric Boniol Virginie Wiels
Yamine Ait Ameur Klaus-Dieter Schewe (Eds.)

ABZ 2014:
The Landing Gear
Case Study
Case Study Track,
Held at the 4th International Conference
on Abstract State Machines,
Alloy, B, TLA, VDM, and Z,
Toulouse, France, June 2-6, 2014
Proceedings

13

Volume Editors

Frédéric Boniol
ONERA/DTIM, Toulouse, France
E-mail: frederic.boniol@onera.fr

Virginie Wiels
ONERA/DTIM, Toulouse, France
E-mail: virginie.wiels@onera.fr

Yamine Ait Ameur
INP-ENSEEIHT/IRIT, Toulouse, France
E-mail: yamine@enseeiht.fr

Klaus-Dieter Schewe
Software Competence Center Hagenberg, Austria
E-mail: kd.schewe@scch.at

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-319-07511-2 e-ISBN 978-3-319-07512-9
DOI 10.1007/978-3-319-07512-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014939449

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Case studies have played an essential role in the history of formal methods. They
have allowed us to illustrate the application of formal techniques for modelling
and verification so as to compare different methods in terms of expressivity,
performance, and ease of use. They have also permitted us to enact the progress
made by these methods. As formal methods have made much progress over the
years, our aim at ABZ 2014 was to propose a complex case study, representative
of industrial needs.

The proposed case study, a landing gear system for an aircraft, is very rich.
It is composed of three parts: the pilot interface, the mechanical and hydraulic
parts, and the digital part. The case study is thus not restricted to software, but
involves complex system modelling (behavior of gears, doors, cylinders, electro-
valves). The software part is in charge of controlling gears and doors, but also
of monitoring the system and informing the pilot in case of an anomaly. Re-
quirements to be verified on the system include normal mode and failure mode
requirements. In both categories, requirements finely combine functional prop-
erties and timing constraints. This case study is indeed complex, both to model
and to verify. Furthermore, it was not a priori a state-based oriented case study
and a question was to see how the ABZ formal methods could accommodate this
kind of system.

We were very happy that the case study attracted a lot of interest. The
11 selected papers use different formal techniques: B, ASM, Fiacre. They also
propose different kinds of verification: proof, model checking, test generation,
run-time monitoring, and simulation. The papers did not necessarily model all
aspects of the case study, but the proposed modelling and analyses were very
interesting.

In addition to the submissions, a lot of interest was expressed in this case
study. We had a lively and stimulating track during the 4th edition of the ABZ
2014 conference in Toulouse, with fruitful discussions around the results ob-
tained and the difficulties encountered, which fostered further modelling and
verification.

This ABZ 2014 case study would not have succeeded without the deep in-
vestment and involvement of the Program Committee members who contributed
by reviewing and selecting the best contributions. This event would not exist if
the authors and contributors did not submit their proposals. We extend our
thanks to all of them: reviewers, authors, Program Committee members, and
Organizing Committee members.

A special thanks to Jean-Raymond Abrial and Egon Börger for their interest
in the case study and the stimulating exchanges we had about it.

VI Preface

The EasyChair system was set up for the management of ABZ 2014 support-
ing the submission, review, and volume preparation processes. It proved to be a
powerful framework.

Finally, ABZ 2014 received the support of several sponsors, among them
Airbus, CNES, CNRS, CS, CRITT Informatique, ENSEEIHT Toulouse, FME,
IRIT, INP Toulouse, Midi Pyrénées Region, ONERA, SCCH, and Université
Paul Sabatier Toulouse. Many thanks for their support.

June 2014 Frédéric Boniol
Virginie Wiels

Yamine Ait Ameur
Klaus-Dieter Schewe

Organization

Program Committee

Jean-Raymond Abrial Consultant, France
Yamine Ait Ameur IRIT/INPT-ENSEEIHT, France
Richard Banach University of Manchester, UK
Eerke Boiten University of Kent, UK
Frédéric Boniol ONERA, France
Michael Butler University of Southampton, UK
Egon Börger Università di Pisa, Italy
Ana Cavalcanti University of York, UK
David Deharbe Universidade Federal do Rio Grande do Norte,

Brazil
John Derrick University of Sheffield, UK
Juergen Dingel Queen’s University, UK
Kerstin Eder University of Bristol, UK
Roozbeh Farahbod SAP Research, Germany
Mamoun Filali-Amine IRIT-Toulouse, France
John Fitzgerald Newcastle University, UK
Marc Frappier University of Sherbrooke, Canada
Vincenzo Gervasi University of Pisa, Italy
Dimitra Giannakopoulou NASA Ames, USA
Uwe Glässer Simon Fraser University, Canada
Stefania Gnesi ISTI-CNR, Italy
Lindsay Groves Victoria University of Wellington, New Zealand
Stefan Hallerstede University of Düsseldorf, Germany
Klaus Havelund California Institute of Technology, USA
Ian J. Hayes University of Queensland, Australia
Rob Hierons Brunel University, UK
Thai Son Hoang Swiss Federal Institute of Technology Zurich,

Switzerland
Sarfraz Khurshid The University of Texas at Austin, USA
Regine Laleau Paris Est Creteil University, France
Leslie Lamport Microsoft Research, USA
Peter Gorm Larsen Aarhus School of Engineering, Denmark
Thierry Lecomte ClearSy, France
Michael Leuschel University of Düsseldorf, Germany
Yuan-Fang Li Monash University, Australia

VIII Organization

Zhiming Liu United Nations University - International
Institute for Software Technology, Macao

Tiziana Margaria University of Potsdam, Germany
Atif Mashkoor Software Competence Center Hagenberg,

Austria
Dominique Mery Université de Lorraine, LORIA, France
Stephan Merz Inria Lorraine, France
Mohamed Mosbah LaBRI - University of Bordeaux, France
Cesar Munõz NASA Langley, USA
Uwe Nestmann Technische Universität Berlin, Germany
Chris Newcombe Amazon.com, USA
Jose Oliveira Universidade do Minho, Portugal
Luigia Petre Åbo Akademi University, Finland
Andreas Prinz University of Agder, Norway
Alexander Raschke Institute of Software Engineering and Compiler

Construction, Germany
Elvinia Riccobene DTI - University of Milan, Italy
Ken Robinson The University of New South Wales, Australia
Thomas Rodeheffer Microsoft Research, USA
Alexander Romanovsky Newcastle University, UK
Thomas Santen European Microsoft Innovation Center,

Aachen, Germany
Patrizia Scandurra DIIMM - University of Bergamo, Italy
Gerhard Schellhorn Universität Augsburg, Germany
Klaus-Dieter Schewe Software Competence Center Hagenberg,

Austria
Steve Schneider University of Surrey, UK
Colin Snook University of Southampton, UK
Jing Sun The University of Auckland, New Zealand
Mana Taghdiri KIT, Germany
Margus Veanes Microsoft Research, USA
Marcel Verhoef Chess, The Netherlands
Friedrich Vogt University of Technology Hamburg-Harburg,

Germany
Laurent Voisin Systerel, France
Qing Wang Information Science Research Centre,

New Zealand
Virginie Wiels ONERA, France
Kirsten Winter University of Queensland, Australia

Organization IX

Additional Reviewers

Arcaini, Paolo
Attiogbe, Christian
Barbosa, Haniel
Coleman, Joey
Colvin, Robert
Couto, Lúıs Diogo
Cunha, Alcino
Ernst, Gidon
Esparza Isasa, José Antonio
Fantechi, Alessandro
Gervais, Frederic
Herbreteau, Frédéric
Iliasov, Alexei
Kossak, Felix

Ladenberger, Lukas
Leupolz, Johannes
Macedo, Nuno
Mammar, Amel
Nalbandyan, Narek
Neron, Pierre
Pfähler, Jörg
Sandvik, Petter
Senni, Valerio
Singh, Neeraj
Tarasyuk, Anton
Tounsi, Mohamed
Treharne, Helen
Yaghoubi Shahir, Hamed

Table of Contents

The Landing Gear System Case Study . 1
Frédéric Boniol and Virginie Wiels

Aircraft Landing Gear System: Approaches with Event-B to the
Modeling of an Industrial System . 19

Wen Su and Jean-Raymond Abrial

Modeling and Analyzing Using ASMs: The Landing Gear System Case
Study . 36

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene

Context-Aware Verification of a Landing Gear System 52
Philippe Dhaussy and Ciprian Teodorov

Validation of the ABZ Landing Gear System Using ProB 66
Dominik Hansen, Lukas Ladenberger, Harald Wiegard,
Jens Bendisposto, and Michael Leuschel

Modeling a Landing Gear System in Event-B . 80
Amel Mammar and Régine Laleau

Offline Model-Based Testing and Runtime Monitoring of the Sensor
Voting Module . 95

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene

Model-Checking Real-Time Properties of an Aircraft Landing Gear
System Using Fiacre . 110

Bernard Berthomieu, Silvano Dal Zilio, and �Lukasz Fronc

The Landing Gear Case Study in Hybrid Event-B . 126
Richard Banach

Landing Gear System: An ASM-Based Solution for the ABZ Case
Study . 142

Felix Kossak

Co-simulation Environment for Rodin: Landing Gear Case Study 148
Vitaly Savicks, Michael Butler, and John Colley

XII Table of Contents

Modeling an Aircraft Landing System in Event-B . 154
Dominique Méry and Neeraj Kumar Singh

Author Index . 161

The Landing Gear System Case Study

Frédéric Boniol and Virginie Wiels

ONERA, 2 av. E. Belin, BP 74025, F-31055 Toulouse France
{firstname.name}@onera.fr

1 Introduction

This document presents a landing gear system. It describes the system and
provides some of its requirements. We propose this case study as a benchmark
for techniques and tools dedicated to the verification of behavioral properties of
systems.

The landing system is in charge of maneuvering landing gears and associ-
ated doors. The landing system is composed of 3 landing sets: front, left and
right. Each landing set contains a door, a landing-gear and associated hydraulic
cylinders. A simplified schema of a landing set is presented in Figure 1.

Fig. 1. Landing set

The system is controlled digitally in nominal mode and analogically in emer-
gency mode. In this case study, we do not consider the emergency mode. How-
ever, in order to allow the pilot to activate the emergency command, the system
has to elaborate health parameters for all the equipments involved in the landing
gear function. This health monitoring part is in the scope of the case study.

In nominal mode, the landing sequence is: open the doors of the landing gear
boxes, extend the landing gears and close the doors. This sequence is illustrated
in Figure 2. After taking off, the retraction sequence to be performed is: open
the doors, retract the landing gears and close the doors.

This system is representative of critical embedded systems. The action to be
done at each time depends on the state of all the physical devices and on their
temporal behavior. When considering such systems, the challenge is firstly to

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 1–18, 2014.
c© Springer International Publishing Switzerland 2014

2 F. Boniol and V. Wiels

Fig. 2. The landing sequence

model and to program the software part controlling the landing and the retrac-
tion sequence, and secondly to prove safety requirements taking into account the
physical behavior of hydraulic devices.

The document is organized as follows:

– Section 2 describes the architecture of the system;
– Section 3 describes the behavior of the hydraulic equipment;
– Section 4 specifies the expected behavior of the system, i.e. the behavior to

be implemented by the control software;
– Section 5 presents the requirements of the system, that is the set of properties

to be satisfied by the computing units of the system.

2 Architecture of the System

As shown in Figure 3, the landing gear system is composed of three parts:

– a mechanical part which contains all the mechanical devices and the three
landing sets,

– a digital part including the control software,
– and a pilot interface.

2.1 The Pilot Interface

To command the retraction and outgoing of gears, an Up/Down handle is pro-
vided to the pilot. When the handle is switched to “Up” the retracting landing
gear sequence is executed, when the handle is switched to “Down” the extending
landing gear sequence is executed.

The pilot has a set of lights giving the current position of gears and doors,
and the current health state of the system and its equipments. These lights are:

– one green light: “gears are locked down”,
– one orange light: “gears maneuvering” ,
– one red light: “landing gear system failure”,

No light is on when the gears are locked up. In case of failure, the pilot can
manually activate the emergency hydraulic circuit. The expected consequence of
this action is to lock the gears in the down position. In case of success and if the
corresponding sensors are still working, the green light “gears are locked down”
must be on.

Landing Gear System 3

Fig. 3. Global architecture

2.2 The Mechanical and Hydraulic Parts

The architecture of the hydraulic part is described in Figure 4. As stated pre-
viously, the system is composed of three landing sets: front, left and right sets.
Each set has got:

– a landing gear uplock box,
– and a door with two latching boxes in the closed position.

The landing gears and doors motion is performed by a set of actuating cylin-
ders. The cylinder position corresponds to the door or landing gear position
(when a door is open, the corresponding cylinder is extended). The landing sys-
tem has the following actuating cylinders:

– For each door, a cylinder opens and closes the door.
– For each landing gear, a cylinder retracts and extends the landing gear.

Hydraulic power is provided to the cylinders by a set of electro-valves:

– One general electro-valve which supplies the specific electro-valves with hy-
draulic power from the aircraft hydraulic circuit.

– One electro-valve that sets pressure on the portion of the hydraulic circuit
related to door opening.

– One electro-valve that sets pressure on the portion of the hydraulic circuit
related to door closing.

– One electro-valve that sets pressure on the portion of the hydraulic circuit
related to landing gear extending.

– One electro-valve that sets pressure on the portion of the hydraulic circuit
related to the landing gear retracting.

Each electro-valve is activated by an electrical order coming from the digital
part. In the specific case of the general electro-valve, this electrical order goes
through an analogical switch in order to prevent abnormal behavior of the digital
part (e.g. abnormal activation of the general electro-valve).

Note that the three doors (resp. gears) are controlled simultaneously by the
same electro-valve. Put differently, it is not possible to control the doors (resp.
gears) separately.

4 F. Boniol and V. Wiels

Front door
cylinder

Right door
cylinder

Left door
cylinder

Aircraft hydraulic
circuit

General electro-valve

Electro-valve (close doors)

Electro-valve
 (open doors)

Electro-valve (retract gears)

Electro-valve
(extend gears)

Front gear
cylinder

Right gear
cylinder

Left gear
cylinder

O
rd

er
s

to
 e

le
ct

ro
-v

al
ve

s

From discrete sensors (gear extended /
not extended, gear retracted / not
retracted, door closed / not closed, door
open / not open, …)

Discrete sensor (pressure OK / not OK)

(retraction
circuit)

(retraction
circuit)

(extension
circuit)

(extension
circuit)

Analogical switch

Towards the
cockpit

Fig. 4. Architecture of the hydraulic part

Asetofdiscrete sensors informthedigital part about the state of the equipments:

– Front / right / left gear is locked / not locked in the extended position.
– Front / right / left gear is locked / not locked in the retracted position.
– Front / right / left gear shock absorber is on ground / in flight.
– Front / right / left door is in open / not open position.
– Front / right / left door is locked / not locked in the closed position.
– The hydraulic circuit (after the general electro-valve) is pressurized / not

pressurized.
– The analogical switch between the digital part and the general electro-valve

is closed / open.

In order to prevent sensor failures, each sensor is triplicated (i.e. each sensor is
divided into three independent micro-sensors). It delivers simultaneously three
discrete values describing the same situation (for instance “the left gear is locked
in retracted position”).

The behavior of the physical equipment involved in the hydraulic architecture
is described in Section 3.

Landing Gear System 5

Computing
module 2

Computing
module 1

Towards the electro-valves

Computing
module 1

From the
discrete
sensors

Towards the cockpit handle

Fig. 5. Digital architecture

2.3 The Digital Part

The digital part is composed of two identical computing modules (see Figure
5). Each one executes in parallel the same control software. This software is in
charge of controlling gears and doors, of detecting anomalies, and of informing
the pilot about the global state of the system and anomalies (if any). It is part
of a retroaction loop with the physical system, and produces commands for the
distribution elements of the hydraulic system with respect to the sensors values
and the pilot orders. The two computing modules receive the same inputs. These
inputs are (remember that all the inputs are triplicated):

– handlei ∈ {up, down} i = 1, 2, 3
handlei characterizes the position of the handle. If the handle is UP (resp.
DOWN), then handlei = up (resp. handlei = down).

– analogical switchi ∈ {open, closed} i = 1, 2, 3
analogical switchi characterizes the position of the analogical switch: open
or closed. See section 3.1.

– gear extendedi[x] ∈ {true, false} i = 1, 2, 3, x in {front, right, left}
– gear retractedi[x] ∈ {true, false} i = 1, 2, 3, x in {front, right, left}

gear extendedi[x] is true if the corresponding gear is locked in the extended
position and false in the other case.
gear retractedi[x] is true if the corresponding gear is locked in the retracted
position and false in the other case.
See section 3.3 and Figure 11.

6 F. Boniol and V. Wiels

– gear shock absorberi[x] ∈ {ground,flight} i = 1, 2, 3, x in {front, right, left}
gear shock absorberi[x] is returned by a sensor implemented directly on the
corresponding gear (see Figure 11). It is true if and only if the aircraft is on
ground.

– door closedi[x] ∈ {true, false} i = 1, 2, 3, x in {front, right, left}
– door openi[x] ∈ {true, false} i = 1, 2, 3, x in {front, right, left}

door closedi[x] is true if and only if the corresponding door is locked closed.
door openi[x] is true if and only if the corresponding door is locked open.
See section 3.3 and Figure 12.

– circuit pressurizedi ∈ {true, false} i = 1, 2, 3
circuit pressurizedi is returned by a pressure sensor on the hydraulic circuit
between the general electro-valve and the maneuvering electro-valve (see Fig-
ure 4). circuit pressurizedi is true if and only if the pressure is high in this
part of the hydraulic circuit.

The total amount of input discrete values received by each computing mod-
ule is 54 (3 handle, 3 analogical switch, 9 gear extended, 9 gear retracted, 9
gear shock absorber, 9 door closed, 9 door open and 3 circuit pressurized).

From these inputs, each module computes 5 electrical orders for the electro-
valves:

– general EVk ∈ {true, false} k = 1, 2
– close EVk ∈ {true, false} k = 1, 2
– open EVk ∈ {true, false} k = 1, 2
– retract EVk ∈ {true, false} k = 1, 2
– extend EVk ∈ {true, false} k = 1, 2

where “EV” stands for “Electro-Valve” and k stands for the number of the con-
sidered computing module. These corresponding electrical orders outgoing from
the two modules are physically produced on the same electrical line. The im-
plicit composition of two outputs is an electrical “OR” as shown in Figure 5. For
instance, let us consider the general EV parameter. If the two modules produce
the same value on general EV1 and general EV2, then this value is produced to
the general electro-valve. Otherwise, if only one of them is true (because of a
failure somewhere in the digital part), then the value true is produced to the
electro-valve, even if it is not the correct value. The problem will anyway be
detected at the next cycle when the module that produced the false value will
detect an unexpected behavior with respect to its own orders. Then it will inform
the pilot of a potential anomaly in the system.

Similarly the two modules produce global boolean state variables to the cock-
pit:

– gears locked downk ∈ {true, false} k = 1, 2
– gears maneuveringk ∈ {true, false} k = 1, 2
– anomalyk ∈ {true, false} k = 1, 2

Landing Gear System 7

These outputs are synthesized by each module from sensors data and from the
situation awareness. Similarly to electrical orders provided to the electro-valves,
the boolean state variables from the two modules are composed following a logi-
cal “OR” operation. If gears locked downk (for some k) is sent to the pilot inter-
face with the value true, then the green light “gears are locked down” is on. If
gears maneuveringk (for some k) is sent to the pilot interface with the value true,
then the orange light “gears maneuvering” is on. If anomalyk (for some k) is sent
to the pilot interface with the value true, then the red light “landing gear system
failure” is on. The specification of the digital part is described in Section 4.

The output interface of each module is synthesized on Figure 6.
general_E

V
k

close_E
V

k

open_E
V

k

retract_E
V

k

extend_E
V

k

Computing
module k

gears locked dow
n

k

gears_m
aneuvering

k

anom
aly

k

Fig. 6. Electrical outputs of the computing module k (k = 1, 2)

3 Behavior of the Hydraulic Equipment

3.1 The Analogical Switch (between the Digital Part and the
General Electro-Valve)

The aim of this switch is to protect the system against abnormal behavior of
the digital part. In order to prevent inadvertent order to the electro-valves, the
general electro-valve can be stimulated only if this switch is closed. The switch
is closed each time the “Up/Down” handle is moved by the pilot, and it remains

8 F. Boniol and V. Wiels

handle

outin

state

Analogical switch

Fig. 7. Interface of the analogical switch

handle?
x := 0.8

[x==0] x := 20

[x==0]
x := 1.2

handle?
x := 20

[x==0]

handle?
x := 0.8

[x==0] x := 20

x==0]
x := 1.2

?
8

[x 0] x : 20

[x
x

handle?
x := 20

[x==0] [x==0]

failure failure

handle?
x := 0.8-2x/3

Fig. 8. Physical behavior of the analogical switch

closed 20 seconds. After this duration, the switch automatically becomes open.
In the closed position, the switch transmits the electrical order from the digital
part to the general electro-valve. In the open position, no electrical order is sent
to the electro-valve. In that case, the oil pressure in the hydraulic circuit becomes
down.

Because of inertial reasons, the transition from the two states closed and open
takes a given amount of time:

– from open to closed: 0.8 second,
– from closed to open 1.2 seconds,

In addition to this normal behavior, the analogical switch can fail. We consider
only permanent failures: the switch remains blocked in the closed or in the open
position. A failure can occur at any time.

The global behavior of the switch, including failures, is specified by the model
of Figure 7 and the hierarchical hybrid automaton of Figure 8. In this specifi-
cation, in stands for the input value of the switch. In the global architecture
of Figure 4, the in port of the analogical switch is connected to the general EV
output of the digital part (i.e., in = general EV). The variable out stands for the
electrical output of the switch. It is connected to the electrical port of the general
electro-valve. The variable state is the logical output of the switch. It belongs to

Landing Gear System 9

the set {open, closed}. It is connected to the input port analogical switch of the
digital part. Note that this output value is triplicated as explained in section 2.3.
The event handle? stands for the detection of a movement of the pilot handle.
This event is received each time the pilot moves the handle. And finally x is an
internal continuous variable that evolves according to the differential equation
in each state. The aim of this variable is to count the time in each state. For
instance, in the state Open, x does not evolve, state is set to open, and out is set
to 0 whatever the value of in. When handle is received, x is set to 0.8, the state
Intermediate1 is reached and x begins to decrease. The values of state and out
remain unchanged. 0.8 seconds later, x reached the null value. The transition
from Intermediate1 to Close is fired and x is set to 20. state is now set to closed
and out is set to in. And so on. The initial state of the automaton is Open.

Note that the switch is independent from the digital part.

3.2 Electro-Valves

All the electro-valves are supposed to have the same behavior. As shown in Figure
9, an electro-valve is an hydraulic equipment which has got two hydraulic ports
Hin (hydraulic input port) and Hout (hydraulic output port), and an electrical
port (E ∈ {true, textitfalse). Its behavior depends on the value of the electrical
order connected to E.

E
(input

electrical
order)

Hin (hydraulic input pressure)

Hout (hydraulic output pressure)

Electro-
valve

E
input

Hin (hy

Fig. 9. An electro-valve equipment

– if E = false (the voltage of the electrical order is down), then Hout = 0 (no
pressure on the hydraulic output side, the hydraulic circuit is open);

– if E = true (the voltage of the electrical order is high), then Hout = Hin
(the hydraulic circuit is closed);

Note that the electrical order must be sustained to true (i..e, at the high voltage)
to maintain the electro-valve in the closed position. Put differently, the electrical
order is not a discrete event, but can be seen as an analogical signal.

Because of inertial reasons, we suppose that from the open position to the
closed position, the pressure grows up continuously from 0 to Hin. In this case
study we suppose that the pressure grows up linearly, and that the total duration
of the transition phase is 1 second. In the same way, the pressure goes down
continuously from Hin to 0. We suppose that the pressure goes down linearly,
and that the total duration of the transition phase is 3,6 seconds.

In addition to this normal behavior, any electro-valve can fail. We consider
only permanent failures: the electro-valve remains blocked in the closed or the
open state. A failure can occur at any time.

10 F. Boniol and V. Wiels

3.3 Cylinders

Cylinders are pure hydraulic equipments. As shown on Figure 10, they begin
to move when they receive hydraulic pressure, and they stop to move when the
pressure goes down or when they reach the end of their race.

hydraulic pressure

no hydraulic pressure

y p no hydraulic pressure

 hydraulic pressuredraulicdraulic pressupressu

Fig. 10. Extension and retraction of a cylinder

Gear Cylinders. Gear cylinders are locked in high or down position by means of
a latching box mechanism (the latching boxes are physically on the gears, one
for each position). When a gear cylinder is locked in high (resp. down) position
and when it receives pressure from the high (resp. down) hydraulic circuit,

– first it is unlocked from the high (resp. down) position
– then it moves to the down (resp. high) position
– and finally it is locked in the down (resp. high) position.

The behavior of the gear (including the values returned by the gear position
sensors) is described on Figure 11.

Gear[x]

Up-latching box (in
locked position)

gear_retracted[x]
= true

gear_extended[x]
= false

]ear[x]]]]]

G
ear[x] cylinder

Down-latching box
(in unlocked
position)

G

= false

G
ear[x] cylinder

[
]

y

gear_shock_
absorber[x]

(a) gear in the retracted po-
sition

Gear[x]

Up-latching box (in
unlocked position)

gear_retracted[x]
= false

gear_extended[x]
= false

Geaar

Up-la

Gea

G
ear[x] cylinder

Down-latching box
(in unlocked
position)

= false

G
ear[x] cylinder

[
]

y

gear_shock_
absorber[x]

(b) gear in the intermediate
position

Gear[x] Up-latching box (in
unlocked position)

gear_retracted[x]
= false

gear_extended[x]
= true

]][x]]

G
ear[x] cylinder

[
]

y

Down-latching box
(in locked
position)

= true

gear_shock_
absorber[x]

(c) gear in the extended po-
sition

Fig. 11. Integration Gear - cylinder for the block x ∈ {front, right, left} (the door is
not represented)

Landing Gear System 11

Door[x] Latching
boxes (in
locked
position)

D
oor[x] cylinder

[
]

yy

door_closed[x]
= true

door_opened[x]
= false

(a) door in the closed posi-
tion

Door[x]

Latching
boxes (in
unlocked
position)

D
oor[x] cylinder

D
oor[xx] cylinder

x

door_closed[x]
= false

door_opened[x]
= false

LatL
boxb
unlou
bb

(b) door in the intermediate
position

Door[x]

Latching
boxes (in
unlocked
position)

D
oor[x] cylinder

door_closed[x]
= false

door_opened[x]
= true

Lat
box
unlo
pos

(c) door in the open position

Fig. 12. Integration Door - cylinder for the block x ∈ {front, right, left} (the gear is
not represented)

Door Cylinders. Door cylinders are locked (by means of two latching boxes on
each door) only in closed position. Doors are maintained open by maintaining
pressure in extension circuit. When a door cylinder is locked in closed position
and when it receives pressure from the extension hydraulic circuit,

– first it is unlocked from the closed position
– then it moves to the open position
– and finally it is maintained in the open position as long as the pressure is

maintained in the hydraulic extension circuit.

The behavior of the door (including the values returned by the door position
sensors) is described on Figure 12.

Temporal Behavior for the Cylinders. All these operations are done automati-
cally with the hydraulic pressure only. No electrical part is involved in cylinders.
These operations take a certain amount of time, depending on the position of
the cylinder in the aircraft and in the hydraulic circuit. The durations are given
in the array below. The values are only mean values. The true durations can
vary around these values up to 20%.

duration (in seconds) front front right right left left
of . . . gear door gear door gear door

unlock in down position 0.8 - 0.8 - 0.8 -
from down to high position 1.6 1.2 2 1.6 2 1.6

lock in high position 0.4 0.3 0.4 0.3 0.4 0.3
unlock in high position 0.8 0.4 0.8 0.4 0.8 0.4

from high to down position 1.2 1.2 1.6 1.5 1.6 1.5
lock in down position 0.4 - 0.4 - 0.4 -

Note that it is possible to stop and to inverse the motion of any cylinder at
any time.

12 F. Boniol and V. Wiels

An example of the front-gear movement is given on Figure 13. This scenario
is based on the mean values given in the previous table. Let us suppose that the
front gear is locked in the extended position when the pressure arrives in the
retraction circuit (first red arrow on the left). Then the gear is unlocked 0.4s
later. It goes up during 1.6s. And finally it is locked in the retracted position
2.4s after the arrival of the pressure in the hydraulic circuit. Let us consider now
that the pressure arrives in the extension circuit. The gear is unlocked 0.8s later.
It begins moving down. Let us suppose now that the pressure is stopped. Then
the cylinder stops as well in the current position. If the pressure arrives again in
the retraction circuit, the gear goes up immediately from this current position
at normal speed. In the same way, the last part of the scenario describes the
extension phase without any interruption.

In addition to this normal behavior, any cylinder can fail. We consider only
permanent failures: the cylinder remains blocked in the last position (down, high,
or between these two positions). Any failure can occur at any time.

4 Software Specification

The aim of the software part of the system is twofold:

1. to control the hydraulic devices according to the pilot orders and to the
mechanical devices positions;

2. to monitor the system and to inform the pilot in case of anomaly.

The first objective is described in section 4.1. The second one is described in
section 4.3.

4.1 Expected Scenarios in Normal Mode

When the command line is working (in normal mode), the landing system reacts
to the pilot orders by actioning or inhibiting the electro-valves of the appropriate
cylinders. Two basic scenarios are considered: the outgoing sequence, and the
retraction sequence.

Outgoing Sequence. The outgoing of gears is decomposed in a sequence of ele-
mentary actions. When the gears are locked in retracted position, and the doors
are locked in closed position, if the pilot sets the handle to “Down”, then the
software should have the following sequence of actions:

1. stimulate the general electro-valve isolating the command unit in order to
send hydraulic pressure to the maneuvering electro-valves,

2. stimulate the door opening electro-valve,
3. once the three doors are in the open position, stimulate the gear outgoing

electro-valve,
4. once the three gears are locked down, stop the stimulation of the gear out-

going electro-valve,
5. stop the stimulation of the door opening electro-valve,

Landing Gear System 13

0

90

Gear angle (in degrees: 0 = extended position, and 90 = retracted position)

Time (in seconds)

0.4s 1.6s 0.4s

U
nl

oc
k

ph
as

e

4s

L
oc

k
ph

as
e

Move
phase

0.40 44

A
rr

iv
al

 d
at

e
of

 th
e

pr
es

su
re

 in
 th

e
re

tr
ac

tio
n

ci
rc

ui
t

.4s4s4

T
he

 g
ea

r
in

 lo
ck

ed
 in

re

tr
ac

te
d

po
si

tio
n

0

L
k

h

(i dondondd

0.8s 2s 0.8s

U
nl

oc
k

ph
as

e

L
oc

k
ph

as
e

Move
phase

0 s

meme

0 8s0 0 8ss

A
rr

iv
al

 d
at

e
of

 th
e

pr
es

su
re

 in
 th

e
ex

te
ns

io
n

ci
rc

ui
t

T
he

 g
ea

r
in

 lo
ck

ed

in
 e

xt
en

de
d

po
si

tio
n

0.8s

U
nl

oc
k

ph
as

e

Move
phase

0 8s
A

rr
iv

al
 d

at
e

of
 th

e
pr

es
su

re
 in

 th
e

ex
te

ns
io

n
ci

rc
ui

t

e
e

N
o

pr
es

su
re

 in
 th

e
re

tr
ac

tio
n

ci
rc

ui
t

A
rr

iv
al

 d
at

e
of

 th
e

pr
es

su
re

 in

th
e

re
tr

ac
tio

n
ci

rc
ui

t

T
he

 g
ea

r
in

 lo
ck

ed
 in

 e
xt

en
de

d
po

si
tio

n

L
oc

k
ph

as
e

0.4s

Fig. 13. Example of the front gear angle evolution (angle of the gear w.r.t the vertical:
0 (resp. 90) corresponds to the down (resp. up) position)

6. stimulate the door closure electro-valve,
7. once the three doors are locked in the closed position, stop the stimulation

of the door closure electro-valve,
8. and finally stop stimulating the general electro-valve.

Retraction Sequence. In the same way, the retraction of gears is decomposed in
a sequence of elementary actions. When the gears are locked in down position,
and the doors are locked in closed position, if the pilot sets the handle to “Up”,
then the software should have the following sequence of actions:

1. stimulate the general electro-valve isolating the command unit, in order to
send hydraulic pressure to the maneuvering electro-valves,

2. stimulate the door opening electro-valve,
3. once the three doors are in the open position, if the three shock absorbers

are relaxed, then stimulate the gear retraction electro-valve and go to step
4, else (if one of the three shock absorbers is not relaxed) go to step 5,

4. once the three gears are locked up, stop the stimulation of the gear retraction
electro-valve,

5. stop the stimulation of the door opening electro-valve,
6. stimulate the door closure electro-valve,
7. once the three doors are locked in the closed position, stop the stimulation

of the door closure electro-valve,
8. and finally stop stimulating the general electro-valve.

14 F. Boniol and V. Wiels

The previous sequences should be interruptible by counter orders (a retrac-
tion order occurs during the let down sequence and conversely) at any time. In
that case, the scenario continues from the point where it was interrupted. For
instance, if an outgoing sequence is interrupted in the door closure phase (step
6 of the outgoing sequence) by an “Up” order, then the stimulation of the door
closure electro-valve is stopped, and the retraction sequence is executed from
step 2: the door opening electro-valve is stimulated and the doors begin opening
again. Afterwards, the scenario continues up to the final step or up to a new
interruption.

Interaction with the Cockpit. Each control software k ∈ {1, 2}1 computes the
three state booleans gears locked downk, gears maneuveringk and anomalyk.

– gears locked downk = true if and only if the three gears are seen as locked in
extended position (sensor gear extended[x] = true ∀x ∈ {front, right, left}).

– gears maneuveringk = true if and only if at least one door or one gear is
maneuvering, i.e., at least one door is not locked in closed position or one
gear is not locked in extension or retraction position.

– anomalyk is specified in section 4.3.

4.2 Timing Constraints

Because of hydraulic constraints, timing constraints must be satisfied by the
control software.

Electro-Valve Stimulation. Because of inertia of the oil pressure,

– stimulations of the general electro-valve and of the maneuvering electro-valve
must be separated by at least 200ms,

– orders to stop the stimulation of the general electro-valve and of the maneu-
vering electro-valve must be separated by at least 1s.

Contrary Orders. Because of inertia of the oil pressure,

– two contrary orders (closure / opening doors, extension / retraction gears)
must be separated by at least 100ms.

4.3 Health Monitoring and Expected Scenarios in Case of
Inconsistency

The second objective of the control software is to detect anomalies and to inform
the pilot. Anomalies are caused by failures on hydraulic equipment, electrical
components, or computing modules.

1 Remember that the digital part of the system is composed of two computing modules,
each of them implements an instance of the control software.

Landing Gear System 15

Generic Monitoring. Each sensor is triplicated. The first activity of the control
software is to select one of these three values. Let us call X a sensor and Xi(t)
i = 1, 2, 3 the three values of X received at time t:

– If at t the three channels are considered as valid and are equal, then the
value considered by the control software is this common value.

– If at t one channel is different from the two others for the first time (i.e.,
the three channels were considered as valid up to t), then this channel is
considered as invalid and is definitely eliminated. Only the two remaining
channels are considered in the future. At time t, the value considered by the
control software is the common value of the two remaining channels.

– If a channel has been eliminated previously, and if at t the two remaining
channels are not equal, then the sensor is definitely considered as invalid.

An anomaly is detected each time a sensor is definitely considered as invalid.

Analogical Switch Monitoring

– If the analogical switch is seen open 1 second after the handle position has
changed, then the switch is considered as invalid.

– If the analogical switch is seen closed 1.5 second after a time interval of 20
seconds during which the handle position has not changed, then the switch
is considered as invalid.

In these two cases, an anomaly is detected.

Pressure Sensor Monitoring

– If the hydraulic circuit is still unpressurized 2 seconds after the general
electro-valve has been stimulated, then an anomaly is detected in the hy-
draulic circuit.

– If the hydraulic circuit is still pressurized 10 seconds after the general electro-
valve has been stopped, then an anomaly is detected in the hydraulic circuit.

Doors Motion Monitoring

– if the control software does not see the value door closed[x] = false for all
x ∈ {front, left, right} 7 seconds after stimulation of the opening electro-valve,
then the doors are considered as blocked and an anomaly is detected.

– if the control software does not see the value door open[x] = true for all
x ∈ {front, left, right} 7 seconds after stimulation of the opening electro-
valve, then the doors are considered as blocked and an anomaly is detected.

– if the control software does not see the value door open[x] = false for all
x ∈ {front, left, right} 7 seconds after stimulation of the closure electro-valve,
then the doors are considered as blocked and an anomaly is detected.

– if the control software does not see the value door closed[x] = true for all
x ∈ {front, left, right} 7 seconds after stimulation of the closure electro-valve,
then the doors are considered as blocked and an anomaly is detected.

16 F. Boniol and V. Wiels

Gears Motion Monitoring

– if the control software does not see the value gear extended[x] = false for all
x ∈ {front, left, right} 7 seconds after stimulation of the retraction electro-
valve, then the gears are considered as blocked and an anomaly is detected.

– if the control software does not see the value gear retracted[x] = true for all
x ∈ {front, left, right} 10 seconds after stimulation of the retraction electro-
valve, then the gears are considered as blocked and an anomaly is detected.

– if the control software does not see the value gear retracted[x] = false for all
x ∈ {front, left, right} 7 seconds after stimulation of the extension electro-
valve, then the gears are considered as blocked and an anomaly is detected.

– if the control software does not see the value gear extended[x] = true for all
x ∈ {front, left, right} 10 seconds after stimulation of the extension electro-
valve, then the gears are considered as blocked and an anomaly is detected.

Expected Behavior in Case of Anomaly. Whenever an anomaly is detected, the
system is globally considered as invalid. The data anomalyk = true is sent to
the pilot interface (where k is the part number of the module that has detected
the anomaly). This message is then maintained forever. The effect of this action
is to put on the red light “landing gear system failure”.

Otherwise (no anomaly ever happened), the data anomalyk = false is sent
and maintained to the pilot interface. The effect of this action is to keep off the
red light “landing gear system failure”.

5 Requirements / Properties

The requirements to be proved on the system are divided into two parts: normal
mode requirements, and failure mode requirements

5.1 Normal Mode Requirements

Requirement R1

– (R11) When the command line is working (normal mode), if the landing gear
command handle has been pushed DOWN and stays DOWN, then the gears
will be locked down and the doors will be seen closed less than 15 seconds
after the handle has been pushed;

– (R12) When the command line is working (normal mode), if the landing gear
command handle has been pushed UP and stays UP, then the gears will be
locked retracted and the doors will be seen closed less than 15 seconds after
the handle has been pushed.

Note that a weaker version of these two requirements could be considered as
well. This weaker version does not take into account quantitative time.

– (R11bis) When the command line is working (normal mode), if the landing
gear command handle has been pushed DOWN and stays DOWN, then
eventually the gears will be locked down and the doors will be seen closed;

Landing Gear System 17

– (R12bis) When the command line is working (normal mode), if the landing
gear command handle has been pushed UP and stays UP, then eventually
the gears will be locked retracted and the doors will be seen closed.

Requirement R2

– (R21) When the command line is working (normal mode), if the landing gear
command handle remains in the DOWN position, then retraction sequence
is not observed.

– (R22) When the command line is working (normal mode), if the landing gear
command handle remains in the UP position, then outgoing sequence is not
observed.

Requirement R3

– (R31) When the command line is working (normal mode), the stimulation
of the gears outgoing or the retraction electro-valves can only happen when
the three doors are locked open.

– (R32) When the command line is working (normal mode), the stimulation of
the doors opening or closure electro-valves can only happen when the three
gears are locked down or up.

Requirement R4

– (R41) When the command line is working (normal mode), opening and clo-
sure doors electro-valves are not stimulated simultaneously.

– (R42) When the command line is working (normal mode), outgoing and
retraction gears electro-valves are not stimulated simultaneously.

Requirement R5

– (R51)When the command line is working (normal mode), it is not possible
to stimulate the maneuvering electro-valve (opening, closure, outgoing or
retraction) without stimulating the general electro-valve.

5.2 Failure Mode Requirements

Requirement R6

– (R61) If one of the three doors is still seen locked in the closed position more
than 7 seconds after stimulating the opening electro-valve, then the boolean
output normal mode is set to false.

– (R62) If one of the three doors is still seen locked in the open position more
than 7 seconds after stimulating the closure electro-valve, then the boolean
output normal mode is set to false.

– (R63) If one of the three gears is still seen locked in the down position
more than 7 seconds after stimulating the retraction electro-valve, then the
boolean output normal mode is set to false.

– (R64) If one of the three gears is still seen locked in the up position more
than 7 seconds after stimulating the outgoing electro-valve, then the boolean
output normal mode is set to false.

18 F. Boniol and V. Wiels

Requirement R7

– (R71) If one of the three doors is not seen locked in the open position more
than 7 seconds after stimulating the opening electro-valve, then the boolean
output normal mode is set to false.

– (R72) If one of the three doors is not seen locked in the closed position more
than 7 seconds after stimulating the closure electro-valve, then the boolean
output normal mode is set to false.

– (R73) If one of the three gears is not seen locked in the up position more than
10 seconds after stimulating the retraction electro-valve, then the boolean
output normal mode is set to false.

– (R74) If one of the three gears is not seen locked in the down position
more than 10 seconds after stimulating the outgoing electro-valve, then the
boolean output normal mode is set to false.

Requirement R8

– (R81) When at least one computing module is working, if the landing gear
command handle has been DOWN for 15 seconds, and if the gears are not
locked down after 15 seconds, then the red light ”landing gear system failure”
is on.

– (R82) When at least one computing module is working, if the landing gear
command handle has been UP for 15 seconds, and if the gears are not locked
retracted after 15 seconds, then the red light ”landing gear system failure”
is on.

Aircraft Landing Gear System:
Approaches with Event-B
to the Modeling of an
Industrial System

Wen Su1 and Jean-Raymond Abrial2

1 School of Computer Engineering and Science, Shanghai University
wsu@shu.edu.cn

2 Marseille, France
jrabrial@neuf.fr

Abstract. This paper describes the modeling, done using the Event-B
notation, of the aircraft landing gear case study that is proposed in a
special track of the ABZ’2014 Conference. In the course of our devel-
opment, we discovered some problems in our initial modeling approach.
This has led us to propose a second approach and then a third one. Each
approach is more efficient than the previous one in terms of proof obli-
gations (roughly speaking: 2000, 1000, 500). All this will be described in
this paper. We also try to go beyond this specific case study and give
some thoughts about large industrial modeling.

1 Introduction

This case study was proposed by Frédéric Boniol and Virginie Wiels (both from
ONERA-DTIM) [4]. We found their description to be extremely well written. It
is worth noticing it, as it is usually not the case in similar industrial systems.
Their description of the aircraft landing gear is a prerequisite for the reading of
this paper: we are not going to repeat it here. However, we decided to remove
some parts of their case study, not because we found them to be not important,
nor because we do no know how to model them, rather because we found that
the modeling of them will not bring anything new with regards to some other
parts we cover. In section 4 we make precise which parts have been omitted in
our models.

Another prerequisite for reading this paper is a small knowledge of Event-B.
As for the case study, we do not present any introduction to Event-B in this
paper. There exist many introductions to Event-B in various papers [2,6].

We also recommend reading this paper together with the formal developments
we have done with the Rodin Platform. These developments can be accessed in
the following website [1]. The Rodin Platform can be freely downloaded together
with the ProB and AnimB plug-ins (model-checker and animators) [9,8].

The paper is organized as follows. Section 2 is a general introduction to mod-
eling. In Section 3, we introduce our methodology under the form of systematic

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 19–35, 2014.
c© Springer International Publishing Switzerland 2014

20 W. Su and J.-R. Abrial

steps. Section 4 contains the precise requirements of what we take into account
in our models. Sections 5, 6 and 7 contain the formal models of our three dif-
ferent approaches. Due to the lack of space, each of these three sections only
contains a general introduction describing the modeling technique we use. This
is followed by a conclusion and criticisms concerning the approach. As already
mentioned, interested readers can access the precise formal developments where
we have many explanations on the technical aspects of our approaches. Section
8 is a short conclusion together with the presentation of some future work in
this area.

2 Purpose of Modeling

Before engaging in the modeling of a large embedding system like the one pro-
posed in this case study, it is useful to make the purpose of modeling very precise.
This view of modeling corresponds to our strong belief in this activity: it can
be different to what can be encountered in the literature [7]. Here are a few
elementary ideas about the purpose of modeling:
– Modeling is quite different from programming. It does not replace program-

ming. It is performed before programming as a “blueprint” like the ones that
can be found in other engineering disciplines.

– Within a model, we can formalize directly some of the properties of our fu-
ture system. These properties are not an afterthought as is the case with
programming. The proof of such properties are far easier to perform in this
early stage than in the final program.

– Before the formal modeling, we must define precisely the requirements of the
system under development. One purpose of modeling is thus to ensure that
every requirement has been taken into account. But modeling also helps to
identify the missing requirements, expected behavior, desired safety prop-
erties, and crystal clear specification of the system. In short, we can use
modeling for making the requirements more precise.

– In modeling, we have a view of the system under study that is larger than
that of the software alone. In fact, the software is only one (sometimes small)
part of the complete system. Thus, we shall cover the software but also the
environment within which this software is going to evolve.

– We shall not show the model directly to the “client” : he might have some
difficulties understanding the mathematics used in the model. But, thanks
to the animation of the model (using ProB or AnimB), we obtain a cheap
executable prototype of the system. This is what we may show to the client.
In view of this prototype execution, he can then decide to remove, modify,
or add some requirements.

– Finally, the model helps us to prepare for a real implementation of the future
software of the system and also make clear what we have to assume from
the environment.

Aircraft Landing Gear System 21

3 Methodology

Our approach is based on Event-B [2]. It is to be used together with the Rodin
Platform [9]. We emphasize the usage of refinements and that of formal proofs
in order to guarantee that some important properties of the system hold in all
circumstances. But this is not sufficient to ensure that we can successfully solve
the problem at hand. Facing a system like the one described in this case study
raises many questions which cannot automatically find a solution with Event-B
or, we think, with any other formal modeling approach: modeling is not an easy
engineering task that can be solved by applying blindly some recipe. Here are a
few questions:

– Where do we have to start from?
– Shall we work from inside-out or from outside-in? (that is, starting by mod-

eling the software first and then the environment, or the other way around)
– How much of the environment do we have to incorporate in our model?
– When do we have to introduce the software module?
– How to handle timing constraints (leading to the discovery of anomalies)?
– Shall we use some traces to ensure a correct behavior?
– How to be sure that we do not forget any requirement?

It is not easy to answer these questions because there are certainly no definitive
answers: they can be different from one project to the next. Even sometimes
several distinct answers are possible (as is the case with the second question).
All this can be seen in this paper where three distinct approaches are proposed:
each of them present different answers to these questions. So, rather than trying
to give definitive answers which is not possible, we propose a light methodology
(already mentioned in [10]) made of several steps within which these answers
can be given and discussed:

1. Informal Requirements. Give informal requirements to the system (this
is done in section 4). During the requirement definitions, we use the require-
ment tool ProR [8,5].

2. Refinement Strategy. Give a refinement strategy explaining what is done
in each refinement and check that all requirements are taken into account
(this is done in sections 5.2, 6.2, and 7.2).

3. Formal Model. Develop the formal model by means of several refinements
without forgetting to perform all proofs, in particular the partial deadlock
freeness proofs (this can be seen on the website [1]). During the formal
developments, we use the model-checker of ProB [8] and also the animators
of ProB and AnimB.

22 W. Su and J.-R. Abrial

4 Requirements

4.1 Introduction

As was announced in the introduction, we simplified some properties proposed
in the case study or we omitted some of them. Here are these properties.

We simplified the timing constraints by just taking them in the anomalies occur-
ing if the reaction of the system is too slow after some electro-valves stimulations
(this is summarized in section 4.8 where various inconsistencies are described).

We omitted completely the redundancies of the inputs (three wires that are
chosen by a majority voting) because it was not clear for us how the software
can make the difference between a wire sending “false” and a broken wire. Like-
wise, we did not introduce two identical pieces of software running in different
computers. Again, it was not clear to us how these distinct software could detect
that they are delivering different outputs. In all these cases of redundancies, the
timing constraints we take into account will anyway detect some inconsistencies
if the response of the environment is too slow or simply missing.

The architecture of the system we are going to model is the one presented
in the figure below. It is a simplification of a similar figure that can be seen in
the case study document. Here we have omitted the hydraulic parts: we connect
directly each electro-valve to the corresponding part of equipment.

G: General Electro-valve
O: Opening electro-valve P: Hydraulic pressure
C: Closing electro-valve D: Doors
R: Retracting electro-valve G: Gears
E: Extending Electro-valve

4.2 Labeling

The various requirements that can be seen in the next section are numbered and
labeled. Here are the labels we use:

Aircraft Landing Gear System 23

– For functional requirements: FUN
– For environment assumptions: ENV
– For anomaly requirements: ANM

4.3 Basic Elements

In this first section of the requirements, we describe the main elements of the
system: gears, doors, and software. We also mention the two modes of the system
and the limit of its behavior (when it stops because of some inconsistencies).

The system has three landing sets situated in the ENV-1
front, the left, and the right part of the aircraft

Each landing set contains a gear that can be ENV-2
retracted, extended, or maneuvered

Each landing set also contains a door that can be ENV-3
open, closed, or maneuvered

The system is controlled by a piece of software ENV-4

The system can be in two modes: nominal or emergency FUN-1

The emergency mode can be detected by the software FUN-2
(see ANM-1 to ANM-7)

In emergency mode, the system stops FUN-3

4.4 The Pilot Interface and Main Functions of the System

In this section of the requirements, we describe how the extension and retraction
of the gears are performed after some action of the pilot on the handle at his
disposal. We also indicate how the pilot is informed about the state of the system.

The pilot has a handle with two positions: UP and DOWN ENV-5

When gears are retracted and the handle is going from FUN-4
UP to DOWN, the extending sequence is performed

24 W. Su and J.-R. Abrial

The extending sequence is the following: open FUN-5
doors, extend gears, close doors

When gears are extended and the handle is going from FUN-6
DOWN to UP, the retracting sequence is performed

The retracting sequence is the following: open FUN-7
doors, retract gears, close doors

At any time during a door/gear maneuver, this
maneuver can be stopped and reversed by the FUN-8
pilot moving the handle in the other direction

We have three lights in the cockpit: green, orange, and red ENV-6

Gears extended, the green light is lit FUN-9

Gears maneuvering, the orange light is lit FUN-10

In emergency mode the red light is lit FUN-11

4.5 The Mechanical and Hydraulic Parts

Here we give some information about the electro-valves situated in between the
software and the basic equipment described in section 4.3.

There are 5 electro-valves (one general and four specific):
- one general electro-valve providing or removing
pressure in the hydraulic circuit ENV-7

- two electro-valves opening or closing doors
- two electro-valves retracting or extending gears

Each electro-valve can be ON or OFF ENV-8

When the general electro-valve is ON stimulated, the pressure ENV-9
will be eventually provided in the hydraulic circuit

When the general electro-valve is OFF stimulated, the ENV-10
pressure will be removed from the hydraulic circuit

Aircraft Landing Gear System 25

When the status of the handle is changed, the general FUN-12
electro-valve is set to ON if it is OFF

When a gear operation is complete the general FUN-13
electro-valve is set to OFF

A specific electro-valve can be set to ON only when ENV-11
the pressure in the hydraulic circuit is provided

When the door closing or opening electro-valves are ON ENV-12
stimulated then the doors will be eventually closed or open

When the gear retracting or extending electro-valves are ON
stimulated then the gears will be eventually retracted or ENV-13
extended

4.6 The Analogical Switch

An important characteristic of the equipment is the switch situated between the
general electro-valve and the software.

Within the connection between the software and the ENV-14
general electro-valve, there is an analogical switch

The analogical switch can be closed or open ENV-15

If not already closed, the analogical switch is mechanically ENV-16
closed each time there is a change in the handle by the pilot

40 seconds after the last handle change, the ENV-17
switch is mechanically turned open

Only when the switch is closed can the software send ENV-18
information successfully to the general electro-valve

26 W. Su and J.-R. Abrial

4.7 The Software Input and Outputs

Here we summarize the inputs and outputs of the software.

The software receives the following inputs:
- one from handle
- one from analogical switch
- one from circuit pressurized ENV-19
- three from gear extension
- three from gear retraction
- three from door closed
- three from door opened

The software sends the following outputs:
- one to the general electro-valve
- one to the close door electro-valve ENV-20
- one to the open door electro-valve
- one to the retraction electro-valve
- one to the extension electro-valve

The software sends the following outputs to the cockpit:
- gears maneuvering (then: orange light on) ENV-21
- gears locked down (then: green light on)
- anomaly (then: red light on)

4.8 Cases of Inconsistencies

In this section of the requirements, we show the various timings implying some
anomaly in the behavior of the system.

Analogical switch still opened 160ms after stimulation ANM-1

Circuit still unpressurized 2 seconds after stimulation ANM-2

Circuit still pressurized after 10 seconds after stimulation ANM-3

Doors still closed 7 seconds after stimulation ANM-4

Doors still opened 7 seconds after stimulation ANM-5

Gears not retracted 10 seconds after stimulation ANM-6

Gears not extended 10 seconds after stimulation ANM-7

Aircraft Landing Gear System 27

4.9 Summary of Requirements

Here is a summary of the requirements and assumptions we are going to consider
in our approaches:

– 21 Environnement assumptions (ENV)
– 13 Functional requirements (FUN)
– 7 Anomaly requirements (ANM)

– 41 Total

5 First Approach

Reading this section (and the following two as well) will be made easier by
consulting the formal developments made with the Rodin Platform. This devel-
opments are available from the following website [1].

5.1 Introduction

In this approach (the first one we developed), we initially apprehend the system
from outside in, starting by modeling the environment first and then the software.
In other words, we introduce the software after some refinements only. We apply
here a systematic approach that is usually very successful in the modeling of
embedded systems.

This approach consists in first determining what are the basic equipment of
our system. In our case, we have three main devices: the handle, the doors, and
the gears. In this system, we have three doors and three gears, but at the initial
level of abstraction we consider them globally as if there were a unique gear
and a unique door. Such abstract door and gear are data-refined in the last two
refinements to be three gears and three doors.

In a first abstraction, we express the degree of freedom of each device inde-
pendently of others. For instance, the doors can be closed, or in the process of
opening, or open, or finally in the process of closing.

Then we explain in a refinement what are the relationship between these
devices. In fact, each device is not free as mentioned in the abstraction: it is
constrained by others. For instance, the gears can be extending or retracting
only when the doors are open. Likewise, starting the opening of the doors is
constrained by a change in the handle position. At this level of abstraction, each
device is directly influenced by others: we have no intermediate agent doing that
job. It is as if each device were mechanically connected to others in order to
influence them or be influenced by them.

In a subsequent refinement, we introduce the software. Devices are again inde-
pendent, but the introduced piece of software contains the intelligence that influ-
ence their behavior. At this level of abstraction the software is directly connected
to the devices. Of course, the software has to be aware of the state of each device
and it has to send some commands to each of them: this is done by means of mes-
sages received from and sent to the devices. For example, in the following figure we

28 W. Su and J.-R. Abrial

can see how the boolean messages door_opn and door_cls are elaborated by the
environment (plain lines) and received by the software (dashed lines).

The non-vertical plain lines are due to the fact that the equipment (here the
doors) take a certain time to move.

So far, our approach is quite general and can be applied to many similar em-
bedded systems. In the next refinement, we become more specific: we introduce
some intermediate pieces of equipment (in our case, the electro-valves) that are
situated in between the software and the devices. The electro-valves transmit
to the devices some hydraulic power able to move them. Some other peculiarity
due to the hydraulic technology are introduced in a subsequent refinement (the
general electro-valve).

It is fundamental to ensure that our embedded system behave in a correct
fashion. The problem is to detect that some incorrect behavior has occurred.
The most common way to do this is to check that each device responds to
the stimulation of the software within a certain pre-defined time: the hydraulic
technology implies that each device take a certain maximum predefined time to
move. This is the purpose of the next refinement. Here we apply a technique
that we already developed for modeling hybrid systems in [11] and [3].

5.2 Refinement Strategy

The general explanations given in the previous section aremade more precise in the
following refinement list. We have an initial model followed by nine refinements:

0. Free movements of handle, doors and gears

1. Synchronizing handle with doors and gears

2. Controlling doors and gears by means of the software

3. Introducing boolean wires

4. Introducing door Electro-Valves and gear Electro-Valves

5. Introducing general Electro-Valve

6. Introducing timing constraints

7. Introducing lights in the cockpit

8. Introducing three doors

9. Introducing three gears

Aircraft Landing Gear System 29

The following table summarize the connections between the refinement strat-
egy and the requirements defined in section 4: this ensures, a priori, that all
requirements are indeed covered by our approach.

Refinement Environment Function Anomaly

0 ENV-1(p),2,3, - -

1 ENV-5 FUN-4(p),5(p),6(p),7(p),8(p) -

2 ENV-4,19(p) FUN-4,5,6,7,8 -

3 ENV-19(p) - -

4 ENV-7(p),8(p),12,13,20(p) - -

5 ENV-7-11,14-16,17(p),18,20 FUN-12,13 -

6 - FUN-1,2,3 ANM-1-7

7 ENV-6,21 FUN-9,10,11

8 ENV-1(p),19(p) - -

9 ENV-1,19 - -

(p) means the related requirement is PARTIALLY taken into account.

5.3 Problems Encountered with This Approach

The main problem we had in this development was the mastering of partial
deadlock freeness. This property is the following: when no elementary operation
can be performed any more (pressurizing, depressurizing, moving doors, moving
gears, etc) then the system must have reached a stable state (gear and handle
being coherent) where the only possible operation is that of the pilot changing the
handle position. Notice that this partial deadlock freeness property is stronger
than pure deadlock freeness where it is shown that some events can always be
enabled (that is, the system is not blocked).

Another interesting property of such a system is reachability. In this case, it
consists in proving that the pilot can always extend or retract the gears provided
no handler modification is performed for a sufficiently large time. We develop a
specific modeling to prove this property: it can be seen on the website [1].

At each refinement step, we tried to prove this property but it happened to be
rather difficult: not difficult to prove when true but difficult to make it true.The
difficulty is essentially due to the fact that the direction of the handle can be
modified in the middle of doors or gears movements (even in the middle of a
hydraulic circuit pressurizing or depressurizing, or in the middle of the opening
of the analogical switch).

In order to solve this partial deadlock freeness problem, many intermediate
events were added in the software and to the environment. This was done in
a rather unsystematic way (a kind of hacking) and generated many additional
proof obligations. This resulted eventually in 2258 proof obligations that were,
fortunately, all proved automatically. But all this was clearly very unsatisfactory,
so we decided to start a new development with a slightly different approach.

30 W. Su and J.-R. Abrial

6 Second Approach

6.1 Introduction

In this second approach, we consider three physical “devices”: the hydraulic circuit
(whose state is pressurized or depressurized), the gears (whose state is retracted
or extended), and the doors (whose state is open or closed). Any modification in
the state of these devices takes a certain time. As a consequence, we always con-
sider two environment events for such modifications: that is a “begin modification”
and “end modification”. More precisely, we have events “beg_prs”, “end_prs” (for
hydraulic circuit pressurization), “beg_opn”, “end_opn” (for door opening), etc.

Events “begin modification” are initiated by the software stimulating some
electro-valves: general_EV, open_EV, retract_EV, extend_EV, or closed_EV.
Whenan environment event “endmodification” occurs (always after the occurrence
of a corresponding “begin modification” event), the environment sends an informa-
tion to the software, which can then stimulate the next electro-valve, and so on.

At this level of abstraction, besides the electro-valves needed to open or close
the doors, and the ones needed to retract or extend the gears, we suppose to have
two “electro-valves” for pressurizing (pressurize_EV)ordepressurizing (depressur-
ize_EV) thehydraulic circuit.This is introduced inorder tounify the electro-valves
treatments. But, of course, this is only an abstraction. In reality, the pressurization
and depressurization is not done by two electro-valves but by one only: the general
electro-valve (general_EV). These two abstract “electro-valves”, pressurize_EV
and depressurize_EV, are data-refined to general_EV in the last refinement.

More precisely, the software contains the following events: act1, act2, . . . , act6.
Such software events stimulate the environment by means of some electro-valves.
In response to this, the environment send messages to the software telling it that
the corresponding device has change state. Then the software stimulates the next
electro-valve, and so on. Here are the details of the electro-valve stimulations by
the software:

no EV

act1 : sending pressurized_EV
receiving response

act2 : sending open_EV
receiving response

act3 : sending retract_EV or extend_EV
receiving response

act4 : sending closed_EV
receiving response

act5 : sending depressurize_EV
receiving response

act6 : no EV

Aircraft Landing Gear System 31

At any moment, the software can also send to the environment the stimulation
of an electro-valve which happen to be the “reverse” electro-valve of the one
it last sent. These events are the following: chg2, chg3, . . . , chg6. For example
the event ch3 is possibly sent by the software after the event act2 that sent
“open_EV” to the environment: in this case, the event chg3 send the “reverse”
electro-valve, that is “close_EV”. We have similar behavior with other chg events.
This “reverse” electro-valve can be received by the environment just before the
occurrence of an event “begin modification”, or after it but before the occurrence
of the corresponding “end modification”, or finally, just after it. Depending on
these cases, the reaction of the software and that of the environment will be
different. The following tables show how the software and the environment events
interact:

ext = TRUE

ENVT SOFT
act1

↙ chg2 → act6
beg_prs

↓ chg2 → end_dpr
end_prs → act2 chg2 → beg_dpr

↙ chg3 → act5
beg_opn

↓ chg3 → end_cls
end_opn → act3 chg3 → beg_cls

↙ chg4 → act4
beg_rtr

↓ chg4 → end_ext
end_rtr → act4 chg4 → beg_ext

↙ chg5 → act3
beg_cls

↓ chg5 → end_opn
end_cls → act5 chg5 → beg_opn

↙ chg6 → act2
beg_dpr

↓ chg6 → end_prs
end_dpr → act6 chg6 → beg_prs

ext = FALSE

ENVT SOFT
act1

↙ chg2 → act6
beg_prs

↓ chg2 → end_dpr
end_prs → act2 chg2 → beg_dpr

↙ chg3 → act5
beg_opn

↓ chg3 → end_cls
end_opn → act3 chg3 → beg_cls

↙ chg4 → act4
beg_ext

↓ chg4 → end_rtr
end_ext → act4 chg4 → beg_rtr

↙ chg5 → act3
beg_cls

↓ chg5 → end_opn
end_cls → act5 chg5 → beg_opn

↙ chg6 → act2
beg_dpr

↓ chg6 → end_prs
end_dpr → act6 chg6 → beg_prs

Here is an illustrating examples with the event chg3 (sending “close_EV”): the
effect of this event can be received BEFORE beg_opn (opening has not started
yet), AFTER beg_opn and BEFORE end_opn (opening has started but is not
finished yet) or AFTER end_opn (opening is finished). If the new electro-valve
stimulation (close_EV) is received before the doors start to open, then the next
step for the software consists in depressurizing (since the software still believe
that the doors are closed). This corresponds to the following trace:

act1→ beg_prs→ end_prs→ act2→ chg3→ act5→ beg_dpr→ end_dpr

32 W. Su and J.-R. Abrial

If the change occurs while the doors are opening (but the doors are not com-
pletely open yet), then the next step in the environment consists in closing the
door and then depressurizing. Here is the corresponding trace:

act1→ beg_prs→ end_prs→ act2→ beg_opn→ chg3→ end_cls→ act5→
beg_dpr→ end_dpr

If the change occurs once the doors are open, then the next steps consist for the
environment to start closing the doors, then closing them, and then depressur-
izing. Here is a final trace:

act1→beg_prs→end_prs→act2→beg_opn→end_opn→chg3→beg_cls→
end_cls→ act5→ beg_dpr→ end_dpr
An important idea in this new approach is to consider the problem of partial

deadlock freeness right from the beginning. With the systematic treatment we
have briefly explained, this is done now in a very systematic fashion.

6.2 Refinement Strategy

From the third refinement step on, the strategy is the same as in the previous
approach:

0. Introducing the connection between the software and the environment
1. Introducing the handle
2. Introducing analogical switch
3. Introducing timing constraints
4. Introducing lights in the cockpit
5. Introducing three doors
6. Introducing three gears
7. Refining Electro-valves

Again, the following table summarize the connections between the refinement
strategy and the requirements defined in section 4: this ensures, a priori, that
all requirements are indeed covered by our approach.

Refinement Environment Function Anomaly

0 ENV-1(p),2-4,7(p),9(p)-13(p),19(p),20(p) FUN-4-8,12(p),13(p) -

1 ENV-5 - -

2 ENV-14,15,16,17(p),18,19(p) - -

3 EVN-17 FUN-1,2,3 ANM-1-7

4 ENV-6,21 FUN-9,10,11 -

5 ENV-1(p),19(p) - -

6 ENV-1,19 - -

7 ENV-7-13,20 FUN-12,13 -

(p) means the related requirement is PARTIALLY taken into account.

Aircraft Landing Gear System 33

6.3 About This Approach

This approach has far less proof obligations than the previous one: 1099 only.
Moreover, we now completely master the partial deadlock freeness. However we
found that many invariants and events are very similar. So, we think that it
could be further simplified. This is the purpose of the next approach.

7 Third Approach
7.1 Introduction

In this approach, the idea is to tabulate the behavior of the system. For this,
we introduce three constants “tables”: the relation N (for next), the function R
(for reverse) and the function T (for timing). The relation N defines the order
in which the various electro-valves have to be stimulated by the software:

N = { no_ev �→ prs_ev, prs_ev �→ opn_ev, opn_ev �→ rtr_ev,
rtr_ev �→ cls_ev, opn_ev �→ ext_ev, ext_ev �→ cls_ev,
cls_ev �→ dpr_ev, dpr_ev �→ no_ev }

The function R determines which electro-valves the software has to stimulate in
case of a modification of the handle position during a move:

R = { prs_ev �→ dpr_ev, dpr_ev �→ prs_ev, opn_ev �→ cls_ev,
cls_ev �→ opn_ev, rtr_ev �→ ext_ev, ext_ev �→ rtr_ev }

The function T determine the various timings to be checked depending on the
stimulated electro-valve:

T = { prs_ev �→ 2000, opn_ev �→ 7000, rtr_ev �→ 10000,
ext_ev �→ 10000, cls_ev �→ 7000, dpr_ev �→ 10000 }

7.2 Refinement Strategy

The refinement strategy is similar to that used in the previous approach.

7.3 About This Approach

The tabulation done in this approach is very efficient with regards to the number
of proof obligations: we have 341 of them only. The events (in the software or in
the environment) appear to be generic events interpreting tables N , R, and T .
This technique is very interesting as it is now very easy to extend the system by
just modifying the tables, and this without modifying the events.

34 W. Su and J.-R. Abrial

8 Conclusion

In this paper, we presented three modeling approaches to the “Aircraft Landing
Gear” case study. We could have presented the last one only (the more efficient)
but it seemed to us that, from a methodological point of view, it was quite
interesting to show how we progressed in this project. It is also interesting to
motivate the fact that there is not a unique way to develop the model of a
relatively large industrial system.

In a system like this one, there are many actions that are performed in par-
allel with others: the software works in parallel with the environment, the pilot
can modify the handle position in parallel with the hydraulic equipment, the three
doors as well as the three gears are all moved simultaneously. Have we taken this
into account in our modeling? The answer is positive. By introducing some “begin
modification”-“end modification” events, we state implicitly that between them,
other events can occur. For instance, when the three doors are opening (between
event “beg_opn” and “end_opn”), the pilot can change the position of the handle
resulting in the occurrence of events “chg_...” (this is explained in Section 6).

The main original impulse to our development of several models was the
problem of partial deadlock freeness. In fact, this problem is very important for
complex embedded systems like the one we study here. Clearly, the presence of
deadlocks in certain circumstances can have terrible consequences (think of the
pilot being suddenly unable to extend the landing gears). All this motivates us
to pursue further some practical investigations in this domain, in particular the
question of the relationship between deadlock freeness and refinement. Next is
a quick description of this question.

Unlike invariants which are maintained from an abstraction to its refinement,
deadlock freeness is not maintained: it is quite possible to have an abstraction
that is deadlock free whereas its refinement is not, this is due essentially to guard
strengthening occurring in refinements. Moreover, deadlock freeness proofs are
usually a bit complicated because they involve the disjunction of all the event
guards. So, such complicated proofs have to be redone within each refinement. An
interesting problem is that of doing such new deadlock freeness proofs by taking ac-
count of the fact that deadlock freeness has already been proved in the abstraction.
In other words, can we only do a simple additional proof in a refinement instead a
completely new proof? We shall study this in some further work.

Acknowledgements. We would like to thank the anonymous reviewers for their
helpful feedback. Wen Su was supported in part by the Open Project of Shang-
hai Key Laboratory of Trustworthy Computing (No. 07dz22304201303). Jean-
Raymond Abrial was partly funded by FP7 ADVANCE Project (No. 287563).

References

1. http://www.lab205.org/case-landing
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press (2010)

http://www.lab205.org/case-landing

Aircraft Landing Gear System 35

3. Abrial, J.-R., Su, W., Zhu, H.: Formalizing hybrid systems with Event-B. In:
Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178–193. Springer, Heidelberg
(2012)

4. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: Boniol, F. (ed.)
ABZ 2014 Case Study Track. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

5. Hallerstede, S., Jastram, M., Ladenberger, L.: A method and tool for tracing re-
quirements into specifications. Science of Computer Programming, 36 (2013)

6. Hoang, T.S., Fürst, A., Abrial, J.-R.: Event-B patterns and their tool support.
Software and System Modeling 12(2), 229–244 (2013)

7. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Prentice Hall (2004)

8. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

9. Rodin, http://www.event-b.org/
10. Su, W., Abrial, J.-R., Huang, R., Zhu, H.: From requirements to development:

Methodology and example. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS,
vol. 6991, pp. 437–455. Springer, Heidelberg (2011)

11. Su, W., Abrial, J.-R., Zhu, H.: Complementary methodologies for developing hy-
brid systems with Event-B. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS,
vol. 7635, pp. 230–248. Springer, Heidelberg (2012)

http://www.event-b.org/

Modeling and Analyzing Using ASMs:

The Landing Gear System Case Study

Paolo Arcaini1, Angelo Gargantini1, and Elvinia Riccobene2

1 Dipartimento di Ingegneria, Università degli Studi di Bergamo, Italy
{paolo.arcaini,angelo.gargantini}@unibg.it

2 Dipartimento di Informatica, Università degli Studi di Milano, Italy
elvinia.riccobene@unimi.it

Abstract. The paper presents an Abstract State Machine (ASM) spec-
ification of the Landing Gear System case study, and shows how the
ASMETA framework can be used to support the modeling and analysis
(validation and verification) activities for developing a rigorous and cor-
rect model in terms of ASMs. We exploit the two fundamental concepts
of the ASM method, i.e., the notion of ground model and the refinement
principle, and we achieve model development and model analysis by the
combined use of formal methods for specification and for verification.

1 Introduction

The Abstract State Machine (ASM) method is a system engineering method
that guides the development of software and embedded hardware-software sys-
tems seamlessly from requirements capture to their implementation. Within a
precise but simple conceptual framework, the ASM method allows a modeling
technique which integrates dynamic (operational) and static (declarative) de-
scriptions, and an analysis technique that combines validation (by simulation
and testing) and verification methods at any desired level of detail. The method
has been successfully applied in different fields as: definition of industrial stan-
dards for programming and modeling languages, design and re-engineering of
industrial control systems, modeling e-commerce and web services, design and
analysis of protocols, architectural design, language design, verification of com-
pilation schemes and compiler back-ends, etc.

ASMs are an extension of Finite State Machines, obtained by replacing un-
structured control states by states comprising arbitrarily complex data [7]. The
method has, therefore, a rigorous mathematical foundation [9], but a practitioner
needs no special training to use the method since ASMs can be correctly under-
stood as pseudo-code or virtual machines working over abstract data structures.

We here propose an ASM specification of the Landing Gear System (LGS),
proposed in the ABZ conference as a real-life case study [5] with the aim of
showing how different formal methods can be used for the specification, design
and development of a complex system.

The ASM modeling process is based on the concept of a ground model repre-
senting a precise but concise high-level formalization of the system, and on the

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 36–51, 2014.
c© Springer International Publishing Switzerland 2014

Modeling and Analyzing Using ASMs:The Landing Gear System Case Study 37

refinement principle that allows to capture all details of the system design by a
sequence of refined models till the desired level of detail.

After a brief introduction to ASMs in Section 2, Section 3 presents the mod-
eling approach, and it also overviews a variety of model analysis activities that
can be performed by using the ASMETA framework [4,12], a set of tools for the
ASMs.

Section 4 reports the results of the modeling activity, and of the model val-
idation and verification performed at each level of refinement. We start from a
ground model that is the description of the core system, namely one landing
set whose behavior is captured in terms of user input and doors’ and gears’ al-
leged state. Then we refine the model by adding the actuators’ behavior in terms
of electro-valves’ and cylinders’ operations; subsequently the sensors are added.
The system with one landing component is then generalized to a system with
three landing sets, and in the last refinement the health monitoring is included.

Section 5 discusses the strengths and the weaknesses of the approach, and
outlines some future research directions. Since no other solutions of modeling
and analysis of the LGS case study are available at the moment of writing this
paper, we are not able to report any related work. Of course, many successful
applications exist in literature regarding the use of the ASMs for complex system
modeling and analysis. Due to their multiplicity, we prefer to refer to [9] for a
complete introduction on the ASM method and the presentation of the great
variety of its successful applications.

2 Abstract State Machines

Abstract State Machines (ASMs), whose complete presentation can be found
in [9], are an extension of FSMs, where unstructured control states are replaced
by states with arbitrary complex data. The states of an ASM are multi-sorted
first-order structures, i.e., domains of objects with functions and predicates de-
fined on them. ASM states are modified by transition relations specified by
“rules” describing the modification of the function interpretations from one state
to the next one. There is a limited but powerful set of rule constructors that al-
low to express guarded actions (if-then), simultaneous parallel actions (par) or
sequential actions (seq). Appropriate rule constructors also allow nondetermin-
ism (existential quantification choose) and unrestricted synchronous parallelism
(universal quantification forall).

An ASM state s is represented by a set of couples (location, value). ASM
locations, namely pairs (function-name, list-of-parameter-values), represent the
abstract ASM concept of basic object containers (memory units). Location up-
dates represent the basic units of state change and they are given as assignments,
each of the form loc :� v, where loc is a location and v its new value.

Functions are classified as derived, i.e., those coming with a specification or
computation mechanism given in terms of other functions, and basic which can be
static (never change during any run of the machine) or dynamic (may change as
a consequence of agent actions or updates). Dynamic functions are distinguished

38 P. Arcaini, A. Gargantini, and E. Riccobene

betweenmonitored (only read by the machine and modified by the environment),
and controlled (read and written by the machine).

A computation of an ASM is a finite or infinite sequence s0, s1, . . . , sn, . . . of
states of the machine, where s0 is an initial state and each sn�1 is obtained from
sn by simultaneously firing all the transition rules which are enabled in sn. The
(unique) main rule is a transition rule and represents the starting point of the
computation. An ASM can have more than one initial state. It is possible to
specify state invariants.

3 Modeling Process and Supporting Tools

The process of requirements capture results in constructing rigorous ground mod-
els which are precise but concise high-level system blueprints (“system con-
tracts”), formulated in domain-specific terms, using an application-oriented lan-
guage which can be understood by all stakeholders. The developer starts from
the textual description of the informal requirements, and an ASM model is de-
veloped simply translating the text in terms of transition rules capturing the
behavior of the system at a very high level of abstraction. This sketchy first
model is usually neither “correct” nor “complete”. Rather, it tries on purpose
to expose errors, ambiguities, or incompletenesses in the original text. Correct-
ness can be achieved through an iterative process reasoning on requirements till
producing a ground model.

From the ground model, by step-wise refined models, further details are added
to capture the major design decisions and provide descriptions of the complete
software architecture and component design of the system. In this way the com-
plexity of the system can be always taken under control, and it is possible to
bridge, in a seamless manner, the gap between specification and code.

Still from its ground level, a model can be validated and verified. Model vali-
dation should be applied at the early stages of the system development, in order
to ensure that the specification really reflects the user needs and statements
about the system, and to detect faults in the specification as early as possible
with limited effort. Validation should precede the application of more expen-
sive and accurate methods, like formal requirements analysis and verification of
properties, that should be applied only when a designer has enough confidence
that the specification captures all informal requirements.

Tools allowing different forms of model analysis can surely help the devel-
oper in reaching model correctness. For the ASM method, the ASMETA (ASM
mETAmodeling) framework1 [4,12] provides basic functionalities for ASM mod-
els creation and manipulation (as editing, storage, interchange, access, etc.), as
well as advanced model analysis techniques (as validation, verification, testing,
model review, requirements analysis, runtime monitoring, etc.). The tools are
strongly integrated in order to permit reusing information about models during
several development phases.

1 http://asmeta.sourceforge.net/

http://asmeta.sourceforge.net/

Modeling and Analyzing Using ASMs:The Landing Gear System Case Study 39

The concrete syntax AsmetaL is available for model editing. Model simulation
is possible using AsmetaS [11]. The tool allows invariant checking to guarantee
that the executed model always satisfies given properties, consistent updates
checking for revealing inconsistent updates, random simulation where random
values for monitored functions are provided by the environment, and interactive
simulation when required inputs are provided interactively during simulation.

A more powerful validation approach is based on scenario construction by the
ASM validator AsmetaV [10]. The validator is based on the AsmetaS simulator
and on the Avalla modeling language. This last provides constructs to express
execution scenarios in an algorithmic way as interaction sequences consisting of
(a) actions committed by the user to set the environment, to check the machine
state, and to ask for the execution of certain transition rules, and (b) the reaction
of the machine to make one (or a sequence of) step(s) in response of the user
actions.

A further validation technique is model review which aims at determining if
a model not only fulfills the intended requirements, but it is of sufficient quality
to be easy to develop, maintain, and enhance. Model review allows to identify
defects early in the system development, reducing the cost of fixing them, so it
is useful to apply this technique on models just sketched. The AsmetaMA tool [2]
permits automatic review of ASMs. Typical vulnerabilities and defects a devel-
oper can introduce during the modeling activity using the ASMs are checked as
violations of suitable meta-properties. The violation of a meta-property means
that some attributes (minimality, completeness, redundancy, etc.) are not guar-
anteed and indicates the presence of actual faults, or only of potential faults.

Formal verification of ASMs is possible by means of AsmetaSMV [1]. This tool
takes in input models written in AsmetaL and maps them into specifications
for the model checker NuSMV. AsmetaSMV supports both the verification of
Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) formulas.

Tools for model-based testing and runtime verification are available in the
ASMETA framework; we do not use them in this work, since we do not have any
implementation to test. However, such techniques are explained and used in a
separate paper regarding the sub-case study of the voting system of sensors [3],
for which a Java implementation was developed.

3.1 Model Refinement

For complex systems, the complete specification can be reached by step-wise
refinement, namely by a chain of models each of which is proved to be a correct
refinement of the previous one. According to the notion of ASM refinement
method presented in [6,8], to refine an ASM M to an ASM M�, the following
items must be defined:
– a notion of refined state;
– a notion of states of interest and of correspondence between M -states S and

M�-states S� of interest, i.e., the pairs of states in the runs one wants to
relate through the refinement, including usually the correspondence of initial
and (if there are any) of final states;

40 P. Arcaini, A. Gargantini, and E. Riccobene

Fig. 1. Models chain

– a notion of abstract computation segments τ1, . . . , τm, where each τi repre-
sents a single M -step, and of corresponding refined computation segments
σ1, . . . , σn, of single M

�-steps σj , which in given runs lead from correspond-
ing states of interest to (usually the next) corresponding states of interest;

– a notion of locations of interest and of corresponding locations, i.e., pairs of
(possibly sets of) locations one wants to relate in corresponding states;

– a notion of equivalence � of the data in the locations of interest; these
local data equivalences usually accumulate to a notion of equivalence of
corresponding states of interest.

According to this scheme, an ASM refinement allows one to combine a change
of the signature (data refinement) with a change of the control (operation refine-
ment), while many notions of refinement in the literature keep these two features
separated.

Once the notions of corresponding states and of their equivalence have been
determined, one can define that M� is a correct refinement of M as follows:

Definition 1. Fix a notion � of equivalence of states and of initial and final
states. An ASM M� is a correct refinement of an ASM M if and only if for
each M�-run s�1 , s

�

2 , . . . , there is an M -run s1, s2, . . . and sequences i0 � i1 �
. . . , j0 � j1 � . . . such that i0 � j0 � 0 and Sik � S�jk for each k and either
– both runs terminate and their final states are the last pair of equivalent states;

or
– both runs and both sequences i0 � i1 � . . . , j0 � j1 � . . . are infinite.

The states Sik and S�jk are the corresponding states of interest. They represent
the end points of the corresponding computation segments (those of interest) for
which the equivalence is defined in terms of a relation between their correspond-
ing locations (those of interest).

4 Models Chain of the LGS

In the following sections we present the five steps of the refinement process
for modeling the case study2. Fig. 1 depicts the relationship existing between
the models and, for each model, the system elements introduced with respect to
the previous model. We start from the high level description (ground model) of

2 All the models are available online at
http://fmse.di.unimi.it/sw/landingGearSystem.zip

http://fmse.di.unimi.it/sw/landingGearSystem.zip

Modeling and Analyzing Using ASMs:The Landing Gear System Case Study 41

asm LandingGearSystemGround

signature:
enum domain HandleStatus = {UP | DOWN}
enum domain DoorStatus = {CLOSED | OPENING | OPEN | CLOSING}
enum domain GearStatus = {RETRACTED | EXTENDING | EXTENDED |

RETRACTING}
dynamic monitored handle: HandleStatus
dynamic controlled doors: DoorStatus
dynamic controlled gears: GearStatus

definitions:
rule r closeDoor =

switch doors
case OPEN: doors := CLOSING
case CLOSING: doors := CLOSED
case OPENING: doors := CLOSING

endswitch

rule r retractionSequence =
if gears != RETRACTED then

switch doors
case CLOSED: doors := OPENING
case CLOSING: doors := OPENING
case OPENING: doors := OPEN
case OPEN:

switch gears
case EXTENDED: gears := RETRACTING
case RETRACTING: gears := RETRACTED
case EXTENDING: gears := RETRACTING

endswitch
endswitch

else
r closeDoor[]

endif

rule r outgoingSequence =
if gears != EXTENDED then

switch doors
case CLOSED: doors := OPENING
case OPENING: doors := OPEN
case OPEN:

switch gears
case RETRACTED: gears := EXTENDING
case EXTENDING: gears := EXTENDED
case RETRACTING: gears := EXTENDING

endswitch
endswitch

else
r closeDoor[]

endif

invariant over gears, doors:
(gears = EXTENDING or gears = RETRACTING) implies
doors = OPEN

invariant over gears, doors:
doors = CLOSED implies
(gears = EXTENDED or gears = RETRACTED)

main rule r Main =
if handle = UP then

r retractionSequence[]
else

r outgoingSequence[]
endif

default init s0:
function doors = CLOSED
function gears = EXTENDED
’

Code 1. Ground model

the system core, i.e., one landing set whose behavior is captured in terms of user
input and doors’ and gears’ alleged state. Then we refine the model by adding
the behavior of the actuators: electro-valves and cylinders. In the third step the
sensors are added. The fourth refinement generalizes the system, moving from
one landing component to a system with three equal landing sets. In the last
refinement, the health monitoring is included.

For the first two refinement steps we prove that a model is a correct refinement
of the more abstract one. For the further levels, the proof technique is similar
and it has been skipped. On the ground model we apply different validation
techniques (simulation, scenario construction, model review) that, due to lack
of space, are not repeated in the other levels. If a refinement step is proved
correct, all the properties already verified in the high-level model do not need
to be verified again in the refined model. However, since the refinement process
was guided by the requirements, and each refinement introduces new elements
in the model, new properties regarding the newly added requirements have been
added and verified at each suitable level.

4.1 Ground Model

In the first model we have only modeled the doors and the gears and how their
status changes. The model does not contain valves, cylinders, sensors, and the
health monitoring. The complete ground model in shown in Code 1. Function
doors represents the status of the doors that can be OPEN, CLOSED, OPENING

42 P. Arcaini, A. Gargantini, and E. Riccobene

rule r retractionSequence =
if gears != RETRACTED then

switch doors
...
case OPEN:

switch gears
case RETRACTING: gears := EXTENDED //error. It should be RETRACTED
...

Code 2. Wrong ground model – Error in r retractionSequence

or CLOSING. Function gears represents the status of the gears that can be
EXTENDED, RETRACTED, RETRACTING or EXTENDING.

The state transitions are driven by the value of the monitored function handle.
As long as the handle is UP, the retraction sequence [5] is executed, and, instead,
as long as the handle is DOWN, the outgoing sequence [5] is executed. Let’s see,
as an example, how the retraction sequence works: so we assume that, in each
state, the handle is UP. In the initial state, the doors are CLOSED and the gears
are EXTENDED; then the doors start OPENING. When the doors become OPEN,
the gears start RETRACTING. When the gears become RETRACTED, the doors

start CLOSING. The retraction sequence terminates with the doors CLOSED and
the gears RETRACTED. The outgoing sequence behaves similarly. Note that, a
retraction (resp. an outgoing) sequence can be always interrupted by switching
the value of the handle; in this case, an outgoing (resp. a retraction) sequence
begins, starting from the status of the doors and the gears reached in the
previous sequence.

An invariant checks that, if the gears are moving (i.e., they are EXTENDING

or RETRACTING), the doors must be OPEN; another invariant checks that, if the
doors are CLOSED, then the gears must be stopped (i.e., they are EXTENDED or
RETRACTED).

Model Review. As first validation activity, we have checked the model with the
model advisor. The first model we wrote actually contained an error, as shown
in Code 2. Indeed, during a retraction sequence, the gears became EXTENDED

instead of RETRACTED. The model advisor has discovered two meta-property
violations (among the seven proposed in [2]):
– MP5 requires that, for every domain element e, there exists a location which

has value e. In the faulty model, MP5 is violated since element RETRACTED
of domain GearStatus is never used.

– MP6 requires that every controlled location can take any value in its codomain.
In the faulty model, MP6 is violated since function gears does not take the
value RETRACTED of its codomain.

Obviously, both meta-property violations are caused by the same error in the
model. Note that behavioral faults often reveal themselves as stylistic defects
and therefore they can be captured by the model advisor.

Simulation. By simulation we were able to identify the state in which the erro-
neous rule was executed. Fig. 2 shows the simulation trace of the wrong ground

Modeling and Analyzing Using ASMs:The Landing Gear System Case Study 43

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 0 (monitored)>

handle=UP

</State 0 (monitored)>

<State 1 (controlled)>

doors=OPENING

gears=EXTENDED

</State 1 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 1 (monitored)>

handle=UP

</State 1 (monitored)>

<State 2 (controlled)>

doors=OPEN

gears=EXTENDED

</State 2 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 2 (monitored)>

handle=UP

</State 2 (monitored)>

<State 3 (controlled)>

doors=OPEN

gears=RETRACTING

</State 3 (controlled)>

Insert a symbol ofHandleStatus

in [UP, DOWN] for handle:

UP

<State 3 (monitored)>

handle=UP

</State 3 (monitored)>

<State 4 (controlled)>

doors=OPEN

gears=EXTENDED

</State 4 (controlled)>

Fig. 2. Simulation of the wrong ground model

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 0 (monitored)>

handle=UP

</State 0 (monitored)>

<State 1 (controlled)>

doors=OPENING

gears=EXTENDED

</State 1 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 1 (monitored)>

handle=UP

</State 1 (monitored)>

<State 2 (controlled)>

doors=OPEN

gears=EXTENDED

</State 2 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 2 (monitored)>

handle=UP

</State 2 (monitored)>

<State 3 (controlled)>

doors=OPEN

gears=RETRACTING

</State 3 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 3 (monitored)>

handle=UP

</State 3 (monitored)>

<State 4 (controlled)>

doors=OPEN

gears=RETRACTED

</State 4 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 4 (monitored)>

handle=UP

</State 4 (monitored)>

<State 5 (controlled)>

doors=CLOSING

gears=RETRACTED

</State 5 (controlled)>

Insert a symbol of HandleStatus

in [UP, DOWN] for handle:

UP

<State 5 (monitored)>

handle=UP

</State 5 (monitored)>

<State 6 (controlled)>

doors=CLOSED

gears=RETRACTED

</State 6 (controlled)>

Fig. 3. Simulation of the correct ground model – Complete retraction sequence

scenario lgsGround1
load LandingGearSystemGround.asm

set handle := UP;
step
check doors = OPENING and gears =EXTENDED;
’

set handle := UP;
step
check doors = OPEN and gears =EXTENDED;

set handle := UP;
step
check doors = OPEN and gears =RETRACTING;

set handle := UP;
step
check doors = OPEN and gears =RETRACTED;
’
’
’
’

Code 3. Scenario reproducing the simulation that leads to the error

model. During an interactive simulation, at each step the user is asked for the
values of the monitored functions (in this case the function handle).

Fig. 3 shows the simulation, over the correct ground model, of the complete
retraction sequence described previously.

Scenario-Based Validation. We have then built a scenario describing the sim-
ulation that brings to the execution of the erroneous rule shown in Code 2; a
scenario permits to automatize the execution of a run that must be executed
more than once. Code 3 shows the scenario in which, before each step, the value
of the monitored function handle is set to UP, and, after the simulation step, the
values of functions doors and gears are checked. The scenario execution consists
in a simulation, similar to that seen in Fig. 2. However, the simulation is not
interactive, since the values of the monitored functions are set according to the
values specified in the scenario. Moreover, the scenario execution also checks for
the specified properties. Fig. 4 shows the output of the scenario execution over

44 P. Arcaini, A. Gargantini, and E. Riccobene

<State 1 (controlled)>

doors=OPENING

gears=EXTENDED

handle=UP

</State 1 (controlled)>

"check succeeded: doors = OPENING and gears = EXTENDED"

<State 2 (controlled)>

doors=OPEN

gears=EXTENDED

handle=UP

</State 2 (controlled)>

"check succeeded: doors = OPEN and gears = EXTENDED"

<State 3 (controlled)>

doors=OPEN

gears=RETRACTING

handle=UP

</State 3 (controlled)>

"check succeeded: doors = OPEN and gears = RETRACTING"

<State 4 (controlled)>

doors=OPEN

gears=EXTENDED

handle=UP

</State 4 (controlled)>

"CHECK FAILED: doors = OPEN and gears = RETRACTED at step 4"

Fig. 4. Execution of the scenario shown in Code 3 over the wrong ground model

the faulty ground model; we can notice that, in the fourth step, the specified
property has been violated. We have later executed the scenario over the correct
model and all the checks have been successful. Scenarios may be thought as use
cases that drive the development of the model in a sort of Behaviour-Driven
Development: a model is enhanced and/or fixed until all the scenarios execute
without failures.

Model Checking. In the ground model we have been able to verify four normal
mode requirements among those reported in the case study: R11bis, R12bis, R21,
and R22. For example, requirement R11bis requires that, when the command line
is working (normal mode), if the landing gear command handle has been pushed
DOWN and stays DOWN, then eventually the gears will be locked down and the
doors will be seen closed.

We have verified the following four CTL properties:

ag(ag(handle = DOWN) implies af(gears = EXTENDED and doors = CLOSED)) //R11bis
ag(ag(handle = UP) implies af(gears = RETRACTED and doors = CLOSED)) //R12bis
ag(ag(handle = DOWN) implies ax(ag(gears != RETRACTING))) //R21

ag(ag(handle = UP) implies ax(ag(gears != EXTENDING))) //R22

4.2 First Refinement: Adding the Electro-Valves and the Cylinders

In this model we have refined the ground model by adding the representation
of the electro-valves and of the cylinders. Code 4 shows the new elements intro-
duced in the model. We have added the functions for the general electro-valve
(generalEV) and the electro-valves related to the opening/closing of the doors
(openDoorsEV and closeDoorsEV) and the retracting/extending of the gears
(retractGearsEV and extendGearsEV), that represent the actuators of the sys-
tem. These functions have been declared controlled.

Functions cylindersDoors and cylindersGears represent the status of cylin-
ders that move the doors and the gears. The functions have been declared as
derived, since they can be defined in terms of the values of functions doors and
gears. For example, the cylinders of the doors are extended/retracted when the
doors are open/closed, and extending/retracting when the doors are opening/-
closing. A similar relation exists between the gears and their cylinders.

Modeling and Analyzing Using ASMs:The Landing Gear System Case Study 45

asm LandingGearSystemWithCylAndValves

signature:
...
enum domain CylinderStatus =
{CYL EXTENDING | CYL RETRACTING |
CYL RETRACTED | CYL EXTENDED}
derived cylindersDoors: CylinderStatus
derived cylindersGears: CylinderStatus
dynamic controlled generalEV: Boolean
dynamic controlled openDoorsEV: Boolean
dynamic controlled closeDoorsEV: Boolean
dynamic controlled retractGearsEV: Boolean
dynamic controlled extendGearsEV: Boolean

’
’
’
’
’

definitions:
function cylindersDoors =

switch doors
case OPEN: CYL EXTENDED
case OPENING: CYL EXTENDING
case CLOSING: CYL RETRACTING
case CLOSED: CYL RETRACTED

endswitch

function cylinderGearStatus = ...
’
’
’
’
’
’
’
’
’

rule r closeDoor =
switch doors

case OPEN:
par

closeDoorsEV := true
doors := CLOSING

endpar
...

rule r retractionSequence =
if gears != RETRACTED then

switch doors
case CLOSED:

par
generalEV := true
openDoorsEV := true
doors := OPENING

endpar
...

Code 4. Model with cylinders and electro-valves

Model Review. The model advisor signals that functions cylindersDoors and
cylindersGears are useless, since they are never used (never read). Indeed, we
have added the cylinders only for documentation purposes, but they could be
omitted from the model, since their status is given by a straightforward relation
with the status of the doors/gears.

Correctness of the Model Refinement. Let us call M the ground model Landing-
GearSystemGround andM� the refined model LandingGearSystemWithCylAnd-
Valves. At M -level, the locations of interest are those for functions doors and
gears, which have corresponding locations for the same function names at level
M� (since the refinement simply extends the signature of machine M). Two
states s � S and s� � S� are equivalent, i.e., s � s�, iff �doors�s � �doors�s� �
�gears�s � �gears�s� . In order to prove the correctness of the refinement, we
apply Def. 1.

Let s�0 , s
�

1 , . . . , s
�

n be anM� run. Let us consider the sequence t � ��handle�s�0
,

�handle�s�1
, . . . , �handle�s�n�1

	. If we apply sequence t to M , we obtain a run

s0, s1, . . . , sn such that si � s�i ,
i � 0, . . . , n.

Model Checking. In this model, we have been able to verify the normal mode
requirementsR31,R32, R41, R42, andR51. For example, requirementR31 requires
that, when the command line is working (normal mode), the stimulation of the
gears outgoing or the retraction electro-valves can only happen when the three
doors are locked open.

We have verified the following four CTL properties:

ag((extendGearsEV or retractGearsEV) implies doors = OPEN) //R31

ag((openDoorsEV or closeDoorsEV) implies
(gears = RETRACTED or gears = EXTENDED)) //R32

ag(not(openDoorsEV and closeDoorsEV)) //R41

ag(not(extendGearsEV and retractGearsEV)) //R42

ag((openDoorsEV or closeDoorsEV or extendGearsEV or retractGearsEV)
implies generalEV) //R51

46 P. Arcaini, A. Gargantini, and E. Riccobene

asm LandingGearSystemWithCylValvesAndSensors

signature:
...
dynamic monitored gearsExtended: Boolean
dynamic monitored gearsRetracted: Boolean
dynamic monitored doorsClosed: Boolean
dynamic monitored doorsOpen: Boolean

definitions:

rule r closeDoor =
switch doors

case CLOSING:
if doorsClosed then

par
generalEV := false
closeDoorsEV := false
doors := CLOSED

endpar
endif

...

rule r retractionSequence =
if gears != RETRACTED then

switch doors
case CLOSED:

par
generalEV := true
openDoorsEV := true
doors := OPENING

endpar
case OPENING:

if doorsOpen then
par

openDoorsEV := false
doors := OPEN

endpar
endif

...

invariant over doorsClosed, doorsOpen: not(doorsClosed and doorsOpen)
invariant over gearsExtended, gearsRetracted: not(gearsExtended and gearsRetracted)
’
’

Code 5. Model with cylinders, electro-valves, and sensors

4.3 Second Refinement: Adding the Sensors

The model presented in this section extends the model described in Section 4.2 by
adding the modeling of the sensors. Code 5 shows the new elements introduced
in the model. Four boolean monitored functions are used to indicate whether
the gears are extended (gearsExtended) or retracted (gearsRetracted), and
whether the doors are closed (doorsClosed) or open (doorsOpen). In ASMs,
monitored functions represent quantities that are not determined by the system,
but that come from the environment ; usually, they are used in transitions rules
(e.g., in the guard of a conditional rule or in the right part of an update rule) to
modify the state of the system. For this reason, we chose to model the sensors
as monitored functions, because, in the landing gear system, the sensors can be
seen as inputs that determine the status of the system: for example, whenever
the sensor gearsExtended is seen turned on, the gears are considered extended
by the system.

In this model, we have refined some rules by adding the reading of sensors.
Some update rules have been guarded by conditional rules checking the value of
the monitored functions; for example, we can see in Code 5 that, if the doors

are CLOSING, they become CLOSED only if the sensor doorsClosed is turned on
(i.e., the guard of conditional rule is true).

In this paper, we do not model the sensor voting module, that is modeled
and analysed in [3]. Moreover, we assume that impossible combinations of sen-
sor values (e.g., both sensors doorsClosed and doorsOpen turned on) cannot
appear. In order to check that only admissible combinations of sensor values
are provided by the environment, we add to the model two invariants specify-
ing that doorsClosed and doorsOpen cannot be turned on together, and that
gearsExtended and gearsRetracted cannot be turned on together (see Code 5).
An alternative solution could be to make the model more robust, by accepting
any combination of sensor values, but modifying the ASM state only upon the
observation of correct combinations: this would require to make the guards of
the transition rules more complex.

Modeling and Analyzing Using ASMs:The Landing Gear System Case Study 47

asm LandingGearSystemWithCylValvesAndSensors3LS

signature:
...
enum domain LS = {FRONT | LEFT | RIGHT}
dynamic monitored gearsExtended: LS �> Boolean
dynamic monitored gearsRetracted: LS �> Boolean
dynamic monitored doorsClosed: LS �> Boolean
dynamic monitored doorsOpen: LS �> Boolean
derived gearsExtended: Boolean
derived gearsRetracted: Boolean
derived doorsClosed: Boolean
derived doorsOpen: Boolean

definitions:
function gearsExtended =

(forall $s in LS with gearsExtended($s))

function gearsRetracted =
(forall $s in LS with gearsRetracted($s))

function doorsClosed =
(forall $s in LS with doorsClosed($s))

function doorsOpen =
(forall $s in LS with doorsOpen($s))

...

Code 6. Model with cylinders, electro-valves, and sensors – Three landing sets

Correctness of the Model Refinement. Let us call M the model LandingGear-
SystemWithCylAndValves andM� the refined model LandingGearSystemWith-
CylValvesAndSensors. At M -level, the locations of interest are those as in
the previous refinement. Two states s and s� are equivalent, i.e., s � s�, iff
�doors�s � �doors�s� � �gears�s � �gears�s� . Let updLocs�s�i 	 be the set of
locations that are non-trivially updated in state s�i (so having a different value in
state s�i�1). In order to prove the correctness of the refinement, we apply Def. 1.

Let s�0 , s
�

1 , . . . , s
�

n be an M� run; we say that a state s�i is of interest if i �
0�doors � updLocs�s�i�1	�gears � updLocs�s�i�1	. Given the sequence of states
of interest s�j0 , s

�

j1
, . . . , s�jm , such that j0 � 0 and j0 � j1 � . . . � jm � n, we build

the sequence t � ��handle�s�j1�1
, �handle�s�j2�1

, . . . , �handle�s�jm�1
	. If we apply

sequence t to M , we obtain a run s0, s1, . . . , sm such that si � s�ji ,
i � 0, . . . ,m.

Model Checking. The introduction of the sensors do not require to verify any
further requirement.

4.4 Third Refinement: Adding the Three Landing Sets

The model presented in this section extends the model described in Section 4.3
by adding the modeling of the three landing sets. Code 6 shows the new el-
ements introduced in the model and how some functions have been modified.
The enumerative domain LS represents the three landing sets (FRONT, LEFT,
and RIGHT). The sensors have been refined by explicitly modeling, for each
sensor type, the sensor on each landing set; four new unary monitored func-
tions with domain LS have been added to the model. For example, the unary
monitored function gearsExtended represents the three sensors associated with
the three landing sets, that detect the extension of the gears: specifically, each
location of the function (gearsExtended(FRONT), gearsExtended(LEFT), and
gearsExtended(RIGHT)) is a sensor of a landing set.

The 0-ary functions that in the previous model (Section 4.3) are declared
as monitored, in this model are declared as derived, because now their value
depends on the value of the corresponding unary functions having the same
name. Indeed, each derived function describes if all the corresponding sensors
on the three landing sets are turned on, or if at least one is turned off.

48 P. Arcaini, A. Gargantini, and E. Riccobene

asm LandingGearSystemWithHealthMon3LS

signature:
...
derived aGearExtended: Boolean
derived aGearRetracted: Boolean
derived aDoorClosed: Boolean
derived aDoorOpen: Boolean
derived greenLight: Boolean
derived orangeLight: Boolean
derived redLight: Boolean
dynamic monitored timeout: Boolean
dynamic controlled anomaly: Boolean

definitions:
function aGearExtended = (exist $s in LS with gearsExtended($s))
function aGearRetracted = (exist $s in LS with gearsRetracted($s))
function aDoorClosed = (exist $s in LS with doorsClosed($s))
function aDoorOpen = (exist $s in LS with doorsOpen($s))

function greenLight = (gears = EXTENDED)
function orangeLight = (gears = EXTENDING or gears = RETRACTING)
function redLight = anomaly
...

rule r healthMonitoring =
if timeout then

if (openDoorsEV and not(doorsOpen)) or
(closeDoorsEV and aDoorOpen) or
(retractGearsEV and aGearExtended) or ...
anomaly := true

endif
endif

main rule r Main =
if not(anomaly) then

par
if handle = UP then

r retractionSequence[]
else

r outgoingSequence[]
endif
r healthMonitoring[]

endpar
endif

default init s0:
function anomaly = false
...

Code 7. Model with cylinders, electro-valves, and sensors – With failure mode

Note that AsmetaL permits function overloading, i.e., having different func-
tions with the same name, but a different arity and/or a different domain.

Correctness of the Model Refinement. The proof of the correctness of the model
refinement is straightforward, and it should be done as seen for the two previous
models.

Model Checking. The introduction of the three landing sets do not require to
verify any further requirement.

4.5 Fourth Refinement: Adding the Health Monitoring System

The model presented in this section extends the model described in Section 4.4,
by adding the modeling of the health monitoring system (Section 4.3 of the case
study in [5]). We only consider the doors motion monitoring and the gears motion
monitoring. A possible way to model the monitoring of the sensors is described
in [3]. Since the analogical switch and the pressure sensor are not considered in
this work, we do not model their monitoring.

Code 7 shows the new elements introduced in the model. The health mon-
itoring is executed by rule r healthMonitoring that, whenever a timeout has
occurred, checks that the values of the sensors are as expected. The detection of
an anomaly in the system is modeled by the update to true of the boolean func-
tion anomaly; in the main rule, the system is executed only if there is no anomaly
(i.e., anomaly is false). The timeout is modeled through the boolean monitored
function timeout. Note that, at this level of abstraction, we do not need to explic-
itly handle the time, neither to distinguish between different time intervals: it is
sufficient to know if, in a given system configuration, the maximum allowed time
interval, after which the system configuration should be observed changed, has
elapsed. For example, if the electro-valve responsible for the opening of the doors

Modeling and Analyzing Using ASMs:The Landing Gear System Case Study 49

is turned on and the doors are not open (openDoorsEV and not(doorsOpen)), if
the timeout has elapsed, then an anomaly has been detected3.

In the monitoring rules, sometimes we need to know if, given a sensor type, at
least one single sensor is turned on. For example, one monitoring rule states that
if the control software does not see the value door openx� � false for all x �
�front, left, right� . . . ; in order to implement this rule, we must check if at least
one door is open, but this can not be inferred through function doorsOpen. In
order to model this kind of rules, we have introduced in this model the functions
aDoorOpen, aDoorClosed, aGearExtended, and aGearRetracted that signal if
there is at least one of the corresponding sensors turned on.

Correctness of the Model Refinement. The proof of the correctness of the model
refinement is straightforward.

Model Checking. In this model, we have been able to verify the failure mode
requirements R61, R62, R63, R64, R71, R72, R73, and R74. For example, require-
ment R61 requires that, if one of the three doors is still seen locked in the closed
position more than 7 seconds after stimulating the opening electro-valve, then the
boolean output normal mode is set to false.

We have verified the following eight CTL properties:

ag((openDoorsEV and aDoorClosed and timeout) implies ax(ag(anomaly))) //R61

ag((closeDoorsEV and aDoorOpen and timeout) implies ax(ag(anomaly))) //R62

ag((retractGearsEV and aGearExtended and timeout) implies ax(ag(anomaly))) //R63

ag((extendGearsEV and aGearRetracted and timeout) implies ax(ag(anomaly))) //R64

ag((openDoorsEV and not(doorsOpen) and timeout) implies ax(ag(anomaly))) //R71

ag((closeDoorsEV and not(doorsClosed) and timeout) implies ax(ag(anomaly))) //R72

ag((retractGearsEV and not(gearsRetracted) and timeout) implies ax(ag(anomaly))) //R73

ag((extendGearsEV and not(gearsExtended) and timeout) implies ax(ag(anomaly))) //R74

5 Discussion and Conclusion

The paper presents an ASM specification of the Landing Gear System case
study [5]. The modeling process exploits the two fundamental concepts of the
ASM method, i.e., the concept of ground model and the refinement principle.

The use of the refinement approach helped us to manage the complexity of the
case study and to achieve the verification of the given requirements. Actually the
refinement was guided by the requirements to be verified, since they gave the hint
on how to proceed in adding details at each refinement step. Indeed, every refine-
ment step came with a set of suitable novel properties to be verified. Even though,
thanks to the proof of refinement correctness, properties already verified at a given
step were guaranteed in the refined steps, we have kept the whole set of properties
and verified them by model checking at each step.

Among the possible views proposed in the informal requirements – functional,
architectural, real time, reliability, etc. – we do not cover real time aspects.

3 In the case study, this behavior is described as follows: if the control software does not
see the value door closed�x� � false for all x � �front, left, right� 7 seconds after
stimulation of the opening electro-valve, then the doors are considered as blocked and
an anomaly is detected.

50 P. Arcaini, A. Gargantini, and E. Riccobene

Although reactive timed ASMs [13] have been proposed for dealing with time in
ASMs, they are not supported by our tools for model analysis. This is the reason
why, for properties R1 (see Section 5.1 in [5]), we verified the weaker version.
We modeled the time passing by means of a suitable monitored function timeout
which was enough for achieving the automatic verification of all the properties
regarding failure mode requirements (see Section 5.2 of [5]).

From the functional view, we abstracted from the analogical switch and the
pressure sensor, while, from the architecture view, we simplified the digital ar-
chitecture by only considering one computing module. Both abstractions are
not due to limitations of the method, but simply to the lack of space. Both
these functional and architectural abstractions are, however, straightforward to
detail. Abstracting from the analogical switch and the pressure sensor also in-
fluenced the modeling of the health monitoring. Therefore, regarding the system
reliability, we did not deal with scenarios involving these two devices.

In the specification presented here, also the model of the sensor voting is
missing. Indeed it has been considered as case study in a separate paper [3] to
present two approaches for checking the implementation conformance: an offline
model-based testing approach and an online runtime monitoring approach.

By using the simulator and the validator for scenarios construction, we were
able to reproduce the expected scenarios of the LGS operating in normal mode
(see Section 4.1 in [5]), even if this simulation is not reported here.

The model development and the model analysis have been made possible by
the combined use of formal methods for modeling and for verification. In fact,
the behavioral specification is expressed in terms of ASMs, while the verification
of the properties, as well as other forms of model analysis (e.g., model review),
is conducted by the use of the NuSMV model checker. The advantage, in our
case, is that all methods are integrated in the same framework, ASMETA, so
the user does not need to worry about translating the ASM specification into
the language of the model checker. The mapping from an ASM model into a
NuSMV model is automatic and the CTL properties can be directly expressed
as part of the ASM model itself.

What is missing in the method, apart from the real time aspects, is a mechan-
ical support by theorem provers for verifying the refinement correctness, and the
definition of refinement patterns that could be useful to guide the refinement
process. For this case study, the refinement steps were suggested by the proper-
ties to verify and the refinement correctness was proved by hand. These topics
will be arguments for future research, as well as the possibility to integrate the
ASM method with other approaches, as the Event-B, that are better structured
in this respect.

References

1. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: A way to link high-level
ASM models to low-level NuSMV specifications. In: Frappier, M., Glässer, U.,
Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 61–74.
Springer, Heidelberg (2010)

Modeling and Analyzing Using ASMs:The Landing Gear System Case Study 51

2. Arcaini, P., Gargantini, A., Riccobene, E.: Automatic Review of Abstract State
Machines by Meta Property Verification. In: Muñoz, C. (ed.) Proceedings of the
Second NASA Formal Methods Symposium (NFM 2010), pp. 4–13. NASA (2010)

3. Arcaini, P., Gargantini, A., Riccobene, E.: Offline model-based testing and runtime
monitoring of the sensor voting module. In: Boniol, F. (ed.) ABZ 2014 Case Study
Track. CCIS, vol. 433, pp. 95–109. Springer, Heidelberg (2014)

4. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Software: Practice and Experience 41,
155–166 (2011)

5. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: Boniol, F. (ed.)
ABZ 2014 Case Study Track. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

6. Börger, E.: The ASM refinement method. Formal Aspects of Computing 15,
237–257 (2003)

7. Börger, E.: The ASM method for system design and analysis. A tutorial introduc-
tion. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 264–283.
Springer, Heidelberg (2005)

8. Börger, E.: Construction and analysis of ground models and their refinements as
a foundation for validating computer based systems. Formal Aspects of Comput-
ing 19, 225–241 (2007)

9. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer (2003)

10. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A Scenario-Based Vali-
dation Language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 71–84. Springer, Heidelberg (2008)

11. Gargantini, A., Riccobene, E., Scandurra, P.: A Metamodel-based Language and
a Simulation Engine for Abstract State Machines. J. Universal Computer Sci-
ence 14(12), 1949–1983 (2008)

12. Gargantini, A., Riccobene, E., Scandurra, P.: Model-Driven Language Engineer-
ing: The ASMETA Case Study. In: Int. Conf. on Software Engineering Advances,
ICSEA, pp. 373–378 (2008)

13. Slissenko, A., Vasilyev, P.: Simulation of Timed Abstract State Machines with
predicate logic model-checking. J.UCS 14(12), 1984–2006 (2008)

Context-Aware Verification

of a Landing Gear System

Philippe Dhaussy and Ciprian Teodorov

UEB, Lab-STICC Laboratory UMR CNRS 6285
ENSTA Bretagne, France

{firstname.name}@ensta-bretagne.fr

Abstract. Despite the high level of automation, the practicability of
formal verification through model-checking of large models is hindered
by the combinatorial explosion problem. In this paper we apply a novel
context-aware verification technique to the Landing Gear System Case
Study (LGS) [2]. The idea is to express and verify requirements rel-
ative to certain environmental situations. The system environment is
decomposed into several independent scenarios (contexts), which are suc-
cessively composed with the system during reachability analysis. These
contexts are specified using a language called CDL (Context Description
Language), based on activity and message sequence diagrams. The prop-
erties to be verified are specified with observer automata and attached
to specific regions in the context. This approach enables an automated
context-guided decomposition of the verification into smaller problems,
hence effectively reducing the state-space explosion problem. In the case
of the LGS this technique enabled the fully-automated decomposition of
the verification into 885 smaller model-checking problems.

Keywords: formal verification, context-aware model-checking, OBP,
observer-automata.

1 Introduction

Software verification is an integral part of the software development lifecycle, the
goal of which is to ensure that software fully satisfies all the expected require-
ments. Reactive systems are becoming extremely complex with the huge increase
in high technologies. Among reactive systems, the asynchronous systems com-
municating by exchanging messages via buffer queues are often characterized by
a vast number of possible behaviors. To cope with this complexity, manufac-
turers of industrial systems make significant efforts in testing and simulation to
successfully pass the certification process. Nevertheless revealing errors and bugs
in this huge number of behaviors remains a very difficult activity. An alterna-
tive method is to adopt formal methods, and to use exhaustive and automatic
verification tools such as model-checkers.

Model-checking algorithms can be used to verify requirements of a model
formally and automatically. However, because of the internal complexity of the

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 52–65, 2014.
c© Springer International Publishing Switzerland 2014

Context-Aware Verification of a Landing Gear System 53

developed systems, model-checking can lead to an unmanageable large state-
space, a problem known as the state-space explosion problem [6,16]. Numerous
techniques, such as symbolic model-checking [4], and partial-order reduction [20],
have been proposed to reduce the impact of this problem effectively pushing the
limits of model-checking further and further.

In this paper, we use a novel technique, dubbed context-aware verification
[10], to model and analyze the Landing Gear System Case Study LGS [2]. This
technique proposes to reduce the set of possible behaviors (and thus the state-
space) by closing the system-under-study (SUS) with a well defined environment
(context). In the context of embedded reactive systems, the environment of each
system is finite and well known. Hence, we claim that the explicit and formal
specification of this context enables at least three different state-space reduction
axes: a) the environment can be decomposed in contexts, thus isolating different
operating modes; b) each individual context can automatically be subdivided
in independent verification problems; c) the requirements, specified as observer
automata, are focused on specific environmental conditions.

For the LGS , we have modeled one top-level context which was automatically
decomposed into 885 isolated smaller scenarios, enabling us to iteratively per-
form reachability analysis on each of them. Even though, some of these scenarios
fail due to the state-space explosion problem we show that our context-aware
verification approach pushes the limits of reachability analysis, enabling an auto-
matic divide-and-conquer approach to model-checking. Because the limited size
of this paper, we briefly present the SUS modeling and requirement specifica-
tion, we deliberately focus the presentation on our context-guided state-space
reduction technique.

Paper Organization. Section 2 presents the related techniques addressing the
state-space explosion problem. Section 3 overviews the principles of our approach
for context-aware formal verification. The LGS model is presented, in Section
4, along with the results obtained with OBP Observation Engine. Section 5
concludes this study giving some future research directions.

2 Related Work

Model checking is a technique that relies on building a finite model of a system of
interest, and checking that a desired property, typically specified as a temporal
logic formula, holds for that model. Since the introduction of this technology in
the early 1980s [18], several model-checker tools have been developed to help the
verification of concurrent systems [15,1].

However, while model-checking provides an automated rigorous framework for
formal system validation and verification, and has successfully been applied on
industrial systems it suffers from the state-space explosion problem. This is due
to the exponential growth of the number of states the system can reach with
respect to the number of interacting components. Since its introduction, model
checking has progressed significantly, with numerous research efforts focused on

54 P. Dhaussy and C. Teodorov

reducing the impact of this problem, thus enabling the verification of ever larger
systems. Some of these approaches focus on the use of efficient data-structures
such as BDD [4] for achieving compact state-space representation, others rely on
algorithmic advancements and the maximal use of the available resources such
as external memories [11]. To prune the state-space, techniques such as partial-
order reduction [14,17,20,14] and symmetry reduction [7] exploit fine-grain tran-
sition interleaving symmetries and global system symmetries respectively. Yet
other approaches, like bounded model-checking [5] exploit the observation that
in many practical settings the property verification can be done with only a
partial (bounded) reachability analysis.

The successful application of these methods to several case studies (see for
instance [3] for aerospace examples) demonstrates their maturity in the case of
synchronous embedded systems. However, even though these techniques push the
limits of model-checking ever further, the state-space explosion problem remains
especially in the case of large and complex asynchronous systems.

Besides the previously cited techniques that approach the property verifica-
tion problem monolithically, compositional verification [13] focus on the analysis
of individual components of the system using assume/guarantee reasoning (or
design-by-contract) to extract (sometimes automatically) the interactions that
a component has with its environment and to reduce the model-checking prob-
lem to these interactions. Once each individual component is proved correct the
composition is performed using operators that preserve the correctness.

Our approach can be seen as a coarse-grain compositional verification, where
instead of analyzing the interactions of individual components with their neigh-
boring environment we focus on the interactions of the whole system with its
surrounding environment (context). Conversely to ”traditional” techniques in
which the surrounding environment is often implicitly modeled in the system
(to obtain a closed system), we explicitly describe it separately from the model.
By explicitly modeling the environment as one (or more) formally defined con-
text(s) and composing it with the system-under-study we can conduct the full
system verification. Using the ”context” knowledge the verification problem is de-
composed, following a fully automatic divide-and-conquer algorithm, in smaller
problems (with smaller state-space) which are analyzed independently.

3 Context-Aware Model-Checking

In this section, we present a formal verification approach that aims primar-
ily at reducing the state-space explosion problem in the context of exhaustive
verification through model-checking. This approach, dubbed context-aware
model-checking, focuses on the explicit modeling of the environment as one or
more contexts, which then are iteratively composed with the system-under-study
(SUS). The requirements are associated and verified in the contexts that corre-
spond to the environmental conditions in which they should be satisfied, and au-
tomated context-guided state-space reduction techniques can be used to further

Context-Aware Verification of a Landing Gear System 55

push the limits of reachability analysis. All these developments are implemented
in the OBP Observation Engine[9] and are publicly available1.

When verifying properties, through explicit-state model checking, the system
explores all the behaviors possible in the SUS and checks whether the verified
properties are true or not. Due to the exponential growth of system states rel-
ative to the number of interacting components, most of the time the number
of reachable configurations is too large to be contained in memory. Besides us-
ing techniques like the ones described in Sec. 2, to alleviate this problem the
system designers manually tune the SUS to restrict its behaviors to the ones
pertinent relative to the specified requirements. This process is tedious, error
prone and poses a number of methodological challenges since different versions
of the SUS should be kept sound, in sync and maintained. To address these is-
sues, we propose to restrict model behavior by composing it with an explicitly
defined environment that interacts with the SUS. The environment enables a
subset of the behavior of the model. This technique reduces the complexity of
the exploration by limiting its scope to a reduced set of behaviors related to
specific environmental conditions. Moreover, this approach solves the method-
ological issues, since it decouples the SUS from its environment, thus allowing
their refinement in isolation.

CDL

OBP
explorer

System
model

Properties:
invariants,
observers

Labeled
transition

system

Fiacre

CDL

Context Results

(a) Global view

System
model

CDL

Properties1

Context1

Labeled
transition

system

Partial result1

Labeled
transition

system

Partial result2

Labeled
transition

system

Partial resultN

CDL

Properties2

Context2

CDL

PropertiesN

ContextN OBP
explorer

OBP
explorer

OBP
explorer

(b) Context decomposition

Fig. 1. Context-aware model-checking

Fig. 1a shows a global overview of the OBP Observation Engine. The System
model representing the SUS is described using the formal language Fiacre [12],
which enables the specification of interacting behaviors and timing constraints
through a timed-automata based approach. The surrounding environment and
the requirements are specified with the Context Description Language (CDL).
The CDL formalizes the environment through a number of contexts that interact
asynchronously with the SUS. Moreover, the CDL enables the specification of
requirements through properties that are verified by OBP Observation Engine.
These properties expressed through property-pattern definitions[10] are based on
events (eg. variable x changed) and predicates which are composed to express
either invariants or observers. It should be noted that most of the safety proper-
ties that we are studying can be expressed using observer automata, moreover in

1 OBP Observation Engine website: http://www.obpcdl.org

http://www.obpcdl.org

56 P. Dhaussy and C. Teodorov

[19] the authors present an automated approach for reducing liveness checking
to safety verification by observer-based model instrumentation.

TheOBP Observation Engineverifies the given set of properties with a reacha-
bility strategy using a breath-first-search algorithm on the implicit graph induced
by the parallel composition of the SUS with the context. During the exploration
the Observation Engine captures the occurrences of events and evaluates the
predicates after the atomic execution of each transition. It then updates the
invariants and the status of all observers involved in the run, thus effectively
performing an exhaustive state-space analysis. A report is generated, at the end
of the exploration, showing the truth values of all invariants and the status
of the attached observers. Moreover, the resulting Labelled Transition System
(LTS) can be queried to find either the system states invalidating a given in-
variant or to generate a counter-example based on the success/reject state of
a given observer, hence effectively guiding the user through the process of the
SUS evaluation against the given requirements.

Environment Modeling with CDL Formalism

In the context of reactive embedded systems, the environment of each component
of the system is often well known. It is therefore more effective to identify and
better express this environment than trying reduce the state-space of the SUS.
However, it should be noted that the proof relevance is based on the following
hypothesis: It is possible to specify the sets of bounded behaviors in a complete
way. Even though this can be seen as a strong hypothesis we argue that it
expresses no more than the following well accepted idea: A software system can
be correctly developed only if we know the constraints of its use. So, we suppose
that the designer is able to identify the perimeter (constraints, conditions) of
the SUS and all possible interactions between it and its environment. Another
important observation is that the properties are often related to specific use
cases (such as initialization, reconfiguration, degraded modes). Therefore, it is
not necessary for a given property to take into account all possible behaviors of
the environment, but only the ones concerned by the verification.

To formalize the context specification in [8] we introduced the CDL formal
language to capture the interactions with the environment. A CDL2 model de-
scribes the surrounding environment of a SUS and the properties to be checked
in this environment. The interleaving of context actors described by a CDL spec-
ification generates a graph representing all executions of the environment actors,
which can be fed as input to traditional model-checkers, see [8] for more details.

Moreover, if all the identified contexts are finite and acyclic (there are no in-
finite loops in the interaction between the system and its environment) then the
interleaved context graph is also finite and acyclic. This is the case with many com-
mand systems or communication protocols. Based on this observation we have de-
veloped a powerful context-guided state-space reduction technique which relies
on the automated recursive partitioning (splitting) of a given context in indepen-

2 For the detailed syntax, see www.obpcdl.org

www.obpcdl.org

Context-Aware Verification of a Landing Gear System 57

Contexti
Global

Contexti

split

Properties
i

Systemmodel

OBP
explorer

OBP
explorer

OBP
explorer

OBP
explorer

Pa
rt

ia
l r

es
ul

t 4

Pa
rt

ia
l r

es
ul

t 3

La
be

le
d

tr
an

si
tio

n
sy

st
em

Pa
rt

ia
l r

es
ul

t 1

Pa
rt

ia
l r

es
ul

t 2

unfold
interleave

(a) Acyclic context splitting

S || Ci21

ok

S || Ci22

ok

S || Ci311

ok
S || Ci312

ok
S || Ci313

ok

System Model (S) || Contexti (Ci)

S || Ci1

ok
S || Ci2

fail
S || Ci3

fail

S || Ci31

fail
S || Ci32

ok

(b) Decomposition of reachability
analysis for S||Ci

Fig. 2. Context-guided state-space reduction and verification

dent sub-contexts. This technique, schematically presented in Fig. 2a, is system-
atically applied by OBP Observation Enginewhen a given reachability analysis
(S||Ci in Fig. 2b) fails due to lack of memory resources to store the state-space.
After splitting contexti, the sub-contexts are iteratively composed with the model
for exploration, and the properties associated with contexti are checked for all
sub-contexts. Therefore, the global verification problem for contexti is effectively
decomposed intoKi smaller verification problems. Hence, verifying the properties
on all these Ki problems is equivalent to verifying them on the initial system.

Context-aware reduction of system behavior is particularly interesting in the
case of complex embedded system, such as avionics, since they exhibit clearly
identified operating modes with specific properties associated with these modes.
Unfortunately, only few existing approaches propose practical ways to precisely
capture these contexts in order to reduce formal verification complexity and thus
improve the scalability of existing model checking approaches. Moreover, a clear
methodology that formalizes the context coverage with respect to the full system
behavior and assist the user on initial context specification is required for these
techniques to be used on industrial-scale critical systems.

4 Case-Study: The Landing Gear System

In this section we apply our context-aware verification approach to the LGS case-
study [2] of the ABZ 2014 conference. Before presenting our results, we overview
the LGS modeling using the fiacre language, the environment specification using
CDL, and we introduce two properties which should be verified on the system.

4.1 Modeling the SUS

The FIACRE LGS model, presented in Fig. 3a, is composed of two parts: a
model of the software part, and a model of the physical part, communicating

58 P. Dhaussy and C. Teodorov

through urgent signals. The environment of the LGS is composed of two agents:
the pilot sending handle events to change the handle position (from down to
up or vice-versa), and a a virtual agent called Perturbator injecting failures in
the physical components (Fig. 3b). The interactions from the environment (i.e.,
handle and failures) are managed by a specific component called Dispatcher.
Inputs are received through a FIFO channel and are dispatched immediately to
the software part (handle) and to each physical component (failures). Outputs
(i.e., the lights status) are modeled through global variables set by the software
part.

Pilot

Perturbatorrrurrb

Fiacre LGS

Dispatcher

Software Part Physical Part
Orders

Sensors

Lights

Fa
ilu

re
s

Handle

FailuresHandle

(a) Global view

LGSPilot Perturbator

handle

handle

handle

asboF

geboF

handle

handle

handle

asboF

geboFg

rurrb
par

(b) LGS Context Interactions

Fig. 3. Landing gear system model

The physical part is the parallel composition of 12 instances of the following
FIACRE processes: a) Analog Switch, implementing the behavior of the analog
switch; b) General EV, implementing the behavior of the general electro-valve;
c) a generic process Generic EV, implementing the behavior of one electro-valve;
d) a generic process Gear, implementing the behavior of one gear; e) a generic
process Door, implementing the behavior of one door. Table 1 shows the number

Table 1. Fiacre processes for the Physical Part

Analog Switch General EV Generic EV Gear Door
of states 18 34 24 23 20

of instances 1 1 4 3 3

of states of each of these processes along with the number of times each one is
instantiated in the model.

Each process is a FIACRE automaton. As illustration, Fig. 4 shows the au-
tomaton of the process AnalogSwitch composed of 18 states. This process im-
plements a loop from open to closed and from closed to open through numerous
intermediate states including timers as required in the general description of the
case study. The two final states at the right of the automaton implements the
failure state blockedOpen to blockedClosed. These states are reached from any-
where in the automaton whenever a failure event is received from the Perturbator
through the Dispatcher.

Context-Aware Verification of a Landing Gear System 59

init i1 open

closed2

e1_iC2O

closed2->iClosed

blockedOpen

blockedClosed

iO2Copen->iOpen

e1_bC

open->bClosed

e1_bO

open->bOpen

iOpen->bOpen

iOpen->bClosed

closed1->closed2

closed1->bOpen

closed1->bClosed

closed1

closed2->closed1
closed2->bOpen

iClosed->iOpen

iClosed->bClosed

iClosed->bOpen

i2

e1_C1
iOpen->closed1

e2_bC

e2_bO

e2_C1

e2_iC2O

iC2O

iClosed->open

Fig. 4. Automaton of the Analog Switch process

Similarly, the software part is the parallel composition of 8 instances of the
following FIACRE processes: a) a generic process Door sensor synthesis, which
computes the door state (closed, open, or intermediate) from the values returned
by the sensors; b) a generic process Gear sensor synthesis, which computes the
gear state (retracted, extended, or intermediate) from the values returned by the
sensors; c) EV Manager, which executes the extension and retraction sequences
according to the handle position and the values returned by the sensors; d) Status
Manager, which computes the status (on or off) of the three lights in the cockpit.
Table 2 shows the number of states of each of these processes along with the
number of times each one is instantiated in the model.

Table 2. Fiacre processes for the Software Part

Door sensor synth. Gear sensor synth. EV Manager Status Manager
of states 8 8 52 10

of instances 3 3 1 1

The FIACRE model of the LGS described in the previous paragraphs has
more than 3,000 lines of code, and it is available at http://www.obpcdl.org

along with the OBP Observation Enginetoolset.

Assumptions and Restrictions. With respect to the general description of the
case study, two more restrictions have been introduced:

1. Firstly, we consider only one software module (and not two as required in
the general description), which is assumed failure-free.

2. Secondly, we consider only one failure-free wire for each sensor (and not
three as required in the general description). Put differently, we suppose that
sensors are safe, i.e., without any failure mode. Nevertheless, we assume that
all the physical equipment can fail at anytime. However, failures are assumed
to be permanent, such that if a equipment (a gear for instance) becomes
blocked, then it remains blocked forever.

Except these restrictions, all the other specification have been taken into
account. Particularly the timing constraints: the automata of the gears, doors,

http://www.obpcdl.org

60 P. Dhaussy and C. Teodorov

electro-valves, and analog-switch implement the timed behavior as required in
the general description. Similarly, the EV-manager allows the pilot to change
the sequence (from retraction to extension or vice-versa) at anytime during the
sequence. Finally, EV-manager monitors the physical equipment through the
electrical values returned by the sensors. Whenever one of these values is not
equal to the one expected by the software part (for instance the right door is
still seen closed 7 seconds after activation of the opening electro-valve), then an
anomaly state is reached and the red light is turned on.

4.2 Modeling the Context

As mentioned in the previous section the environment of the LGS is composed
of the interleaved actions of two context actors, namely the pilot sending up/-
down commands through its handle, and a virtual actor (named Perturbator)
introducing failures into the system. Using the CDL formalism the pilot behavior
is represented through an activity composed of a sequence of handle events sent
to the Dispatcher process (see first two lines of Listing. 1).

Table 3. Overview of the considered failures along with the affected components

analog switch general EV
door electro-valves gear electro-valves

extension retraction extension retraction

Opened Closed Opened Closed Opened Closed Opened Closed Opened Closed Opened Closed

asboF asbcF gboF gbcF deboF debcF drboF drbcF geboF gebcF grboF grbcF

exclusive exclusive exclusive exclusive exclusive exclusive

door gear

Front Left Right Front Left Right

fdF ldF rdF fgF lgF rgF

The Perturbator actor encodes all considered failure configurations composed
of sequences of 1 up to 3 failures taken from the total 18 failures that have been
identified, see Table 3 for the complete list of the failures classified according
to the affected component. It should be noted that between the first 12 failures
there are groups of 2 exclusive failures (ex. the analog-switch cannot be blocked
in the opened and closed state at the same time). Taking these exclusion rules
into account it follow that there are 885 possible failure configurations as follows:
a) 18 possible configurations with 1 failures. b) 147 possible configurations with
2 failures (and 6 excluded failures). c) 720 possible configurations with 3 failures
(and 96 excluded failures). Each of these failure scenarios as encoded as a CDL
activity (Listing 1 lines 5–6), named FailureContextxk, where x ∈ [1 . . . 3] is the
number of failures and k is the id of a given configuration from the set of the
ones possible with x failures (ex. k ∈ [1 . . . 147], for x = 2). The Perturbator
actor is then represented as a CDL activity that non-deterministically chooses
one of these failure configuration to play, see lines 8–11 in Listing 1.

The CDL specification of the global environment, Listing 1 lines 13–16, con-
sists of the initialization of the SUS (line 15) followed by the asynchronous

Context-Aware Verification of a Landing Gear System 61

interleaving of the Pilot events with the Perturbator failure sequences. Note
also the association of the properties to be verified (described in the following
paragraphs) with the context (lines 14).

Listing 1. Overview of the CDL environment description

1 event Handle i s {send HANDLE to {Dispatcher}1}
2 activity PILOT i s { event Handle ; event Handle ; event Handle}
3

4 event asboF i s {send ASBO FAILURE to {Dispatcher}1}
5 activity Fai lureContext1k i s { event kth f a i l u r e }
6 activity Fai lureContext2..3k i s {
7 · · · // a l l permutations of the kth 2(or 3) f a i l u r e s }
8 activity Perturbator i s {
9 Fai lureContext11 [] · · · [] Fa i lureContext118

10 [] Fa i lureContext21 [] · · · [] Fa i lureContext2147
11 [] Fa i lureContext31 [] · · · [] Fa i lureContext3720 }
12

13 cdl s c e n a r i o 8 8 5 f a i l u r e c o n f i g u r a t i o n s i s {
14 properties oR1 , oR2 // re ference to the observers for R1 , and R2

15 in i t i s { a c t i n i t } // i n i t i a l i z a t i o n sequence
16 main i s { PILOT | | Perturbator } // scenario }

4.3 Specifying the Properties

To illustrate the property specification aspects of the CDL language, let us con-
sider the following two requirements:

– Requirement R1: The red light should always be off.
– Requirement R2: At the end of each Pilot interaction the green light

should be on.

Listing 2. CDL-based property specification

1 predicate pRed i s { {SYS}1 : r e d l i g h t=t rue }
2 event ev t r ed i s { pRed becomes t rue }
3 · · ·
4 property oR1 i s { s t a r t −− / / ev t red / −> r e j e c t }
5 property oR2 i s {
6 c lock ck ;
7 s t a r t −− / / ev t orange / ck := 0 −> maneuvering ;
8 maneuvering −− / / ev t green / ck := −1 −> su c c e s s ;
9 s t a r t −− ck >= 15000 / / / ck := −1 −> r e j e c t ;

10 }
In CDL, R1 is an observer that reaches the reject state when the red light

turns on, line 4 in Listing 2. The {SY S}1 prefix indicates the fiacre compo-
nent where the red light variable is defined. The second requirement, R2, is
represented using an observer automaton that follows the system execution and
produces a success event whenever the green light is turned on before the ck
deadline. The observer declaration (line 5) is introduced with the property key-
word and defines a transition from the start state to the maneuvering state

62 P. Dhaussy and C. Teodorov

initializing the timer ck when the evt orange is present, a transition from the
maneuvering state to the success state (disabling the timer), and a transition
from the start state to the reject state if the timer expired. These observers are
references in the context in which they should be checked and composed with
the system during reachability analysis.

4.4 Experimental Results

This section presents some experimental results obtained using our context-
aware verification approach [9] on the LGS . All results where obtained using
OBP v.1.4.5 on a 64-bit Linux machine that has 64GB of memory.

states # transitions failure

asboF asbcF gboF gbcF drboFdebcFdeboF drbcF geboF gebcF grboF grbcF fdF fgF

50
200
800

3200
12800

50
200
800

3200
12800

50
200
800

3200
12800

1 gear

2 gears

3 gears

Fig. 5. Reachability analysis results for one/two/three-gear(s) LGS with 1 failure in-
jected interleaved with 3-handle interactions (results in thousands). The black bars
indicate the state-space explosion cases, showing the number of states/transitions ex-
plored before failure.

While the environment model presented in Sec. 4.2 considers only a single top-
level context, our explicit-context modeling approach also enables the analysis of
partial system behavior, for instance, by simply running the automatic context
split on the Perturbator actor we obtain the set of simpler environments that
does not take into account the possible model failures. Considering such a context
in which the Pilot actor sends 3-handle interactions followed by the injection
of 2 failures (drboF , fdF) by the Perturbator in a 3 gear system we get a
state-space of 1,451,144 states and 4,969,518 transitions in 2,598 sec. However,
just by adding one more failure (geboF), at the end of the preceding sequence
of interactions, the exploration fails (due to lack of memory) after analyzing
1,908,556 states and 6,484,681 transitions.

Even though we could not analyze the whole LGS system using the current
version ofOBP Observation Engine, we have been able to analyze a large number
of reachable states of the system. In Fig. 5 we show the results obtained on a

Context-Aware Verification of a Landing Gear System 63

Table 4. Number of sub-context and state-space approximation with respect to the
number of gears after two context splitting step

1 gear 2 gears 3 gears
split 1 391 606 885
split 2 1936 3100 4632

state-space aprox. 1.13× 108 5.55 × 108 6.72× 109

Cumulated result for 1 failure with 3 pilot interactions (3-handle)

of sub-contexts 14 16 18
states 2 328 635 14 156 119 26 585 225

transitions 5 766 682 53 104 972 98 135 315
time (sec.) 2 387 16 942 46 216

simplification of the model using all 1 failure configurations introduced in Table
3 (the ldF , lgF , rdF , rgF are not included in the Fig. since the 1-gear case
does not include them, however the results are comparable with fdF and fgF).
Compared to the 1-gear case in the second case the size of the obtained LTS is
in average 4.63X(6.44X) bigger in terms of states(transitions), with the deboF
giving a 10X(15.5X) bigger LTS. It is interesting to note that if in the case of the
2-gear case we reduce the number of Pilot interactions to one (1-handle) the size
of the resulting LTS drops in average (over the 16-failure cases) by 86.5X(98.4X)
states(transitions), with a peak in the case of the gboF failure which gives a
146X(174X) smaller system. In the second and third case it should be noted
that the 64GB memory space on our machine did not suffice for exploring the
context injecting some failures, like gebcF and grbcF failures. 3 Table 4 shows the
number of elementary sub-contexts after one and respectively 2 automatic split
levels. The state-space approximation line provides a rough optimistic prediction
of the number of reachable states by multiplying the lowest number of states
presented in Fig. 5 by the number of sub-context after the second split. The
lowest half of Table 4 shows the cumulated results, in terms of LTS size and size,
of the exploration of the 1-failure 3-handle contexts shown in Fig. 5.

In Fig. 6 we show a visual representation of the LTS obtained for 3-gear/2
Pilot interactions without failures4. Two distinct operating modes of the LGS
system are shown: at the left we can identify the initialization sequence of the
LGS comprising of 7,348 states and 30,605 transitions, while at the right the
behavior of the system during a down/up gear sequence is exposed.

Our splitting technique did not suffice for completing the reachability analysis
of a 3-gear/3-Pilot interactions with failures. However, we argue that despite this
setback, the context-aware verification approach introduces a new state-space re-
duction axis complementary with more holistic approaches such as partial-order
reduction [20], and symmetry-reduction [7]. Moreover, the possibility to partially

3 It should be noted that the instantiation of the model with 1, 2 or 3 gears is can be
seen also as a partitioning of the verification on the model-side as opposed to the
context-side.

4 The layout is obtained using Grapviz sfdp layout using a simple linear color scheme
where the shorter transitions are red while the longer ones are blue.

64 P. Dhaussy and C. Teodorov

Fig. 6. LGS behaviors during a gear down/up sequence (no failures)

analyze the system gives valuable insights on particular context-dependent be-
haviors enabling the designer to better focus its verification efforts.

5 Conclusion and Perspectives

In this paper, we apply a novel context-aware verification technique to the Land-
ing Gear System. This approach based on Fiacre and CDL languages and in the
OBP Observation Engineto OBP proposes to reduce the set of possible behav-
iors (and thus the state-space) by closing the system-under-study with a well
defined environment (context). For LGS we have modeled one top-level con-
text which was automatically decomposed into 885 isolated smaller scenarios,
enabling us to iteratively perform reachability analysis on each of them. Even
though, some of these scenarios fail due to the state-space explosion problem,
we show that our context-aware verification approach pushes the limits of reach-
ability analysis, enabling an automatic divide-and-conquer approach to model-
checking. We are currently working on improving our context-aware verification
approach by providing a clear methodological framework that formalizes the
context coverage with respect to the full system.

Acknowledgments. We wish to thank Dr Frederic Boniol for his valuable and
constructive suggestions related to this paper.

References

1. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal — a
Tool Suite for Automatic Verification of Real–Time Systems. In: Alur, R., Sontag,
E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer,
Heidelberg (1996)

Context-Aware Verification of a Landing Gear System 65

2. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: Boniol, F. (ed.)
ABZ 2014 Case Study Track. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

3. Boniol, F., Wiels, V., Ledinot, E.: Experiences using model checking to verify real
time properties of a landing gear control system. In: Embedded Real-Time Systems
(ERTS), Toulouse, France (2006)

4. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: 5th IEEE Symposium on Logic in Computer
Science, pp. 428–439 (1990)

5. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Methods in System Design 19(1), 7–34 (2001)

6. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2),
244–263 (1986)

7. Clarke, E., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic
model checking. Formal Methods in System Design 9(1-2), 77–104 (1996)

8. Dhaussy, P., Boniol, F., Roger, J.-C.: Reducing state explosion with context mod-
eling for model-checking. In: 13th IEEE International High Assurance Systems
Engineering Symposium (Hase 2011), Boca Raton, USA (2011)

9. Dhaussy, P., Boniol, F., Roger, J.C., Leroux, L.: Improving model checking with
context modelling. Advances in Software Engineering ID 547157, 13 pages (2012)

10. Dhaussy, P., Pillain, P.-Y., Creff, S., Raji, A., Le Traon, Y., Baudry, B.: Evaluating
context descriptions and property definition patterns for software formal validation.
In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 438–452.
Springer, Heidelberg (2009)

11. Edelkamp, S., Sanders, P., Šimeček, P.: Semi-external LTL model checking. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 530–542. Springer,
Heidelberg (2008)

12. Farail, P., Gaufillet, P., Peres, F., Bodeveix, J.P., Filali, M., Berthomieu, B., Ro-
drigo, S., Vernadat, F., Garavel, H., Lang, F.: FIACRE: an intermediate language
for model verification in the TOPCASED environment. In: European Congress on
Embedded Real-Time Software (ERTS), SEE, Toulouse (January 2008)

13. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

14. Godefroid, P.: The Ulg partial-order package for SPIN. In: SPIN Workshop (1995)
15. Holzmann, G.J.: The model checker SPIN. Software Engineering 23(5), 279–295

(1997)
16. Park, S., Kwon, G.: Avoidance of state explosion using dependency analysis in

model checking control flow model. In: Gavrilova, M.L., Gervasi, O., Kumar, V.,
Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS,
vol. 3984, pp. 905–911. Springer, Heidelberg (2006)

17. Peled, D.: Combining Partial-Order Reductions with On-the-fly Model-Checking.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

18. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1982)

19. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state
spaces. Electronic Notes in Theoretical Computer Science 149(1), 79–96 (2006)

20. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) APN 1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)

Validation of the ABZ Landing Gear

System Using ProB�

Dominik Hansen, Lukas Ladenberger, Harald Wiegard,
Jens Bendisposto, and Michael Leuschel

Universität Düsseldorf Institut für Informatik,
Universitätsstr. 1, D-40225 Düsseldorf

{hansen,ladenberger,wiegard,bendisposto,leuschel}@cs.uni-duesseldorf.de

Abstract. In this paper we present our formalisation of the ABZ land-
ing gear case study in Event-B. The development was carried out using
the Rodin platform and mainly used superposition refinement to struc-
ture the specification. To validate the model we complemented proof with
animation and model checking. For the latter, we used the ProB ani-
mator and model checker. Graphical representation of the model turned
out to be crucial in the development and validation of the model; this
was achieved using a new version of BMotion Studio integrated into
ProB 2.0.

1 Introduction

The “classical” B-method [1] and its successor the Event-B method [2] are re-
finement based formal methods. While the B-method is geared towards software
development, the Event-B method is more tailored towards systems modelling.
Refinement can be used to structure the development and proofs, and allows in-
troducing complexity gradually. In Event-B the concept of refinement has been
considerably extended: events can be added, extended, split up or merged, pa-
rameters can be refined, removed or added, witnesses can be provided for au-
tomatic refinement proofs, event termination (convergence) can be proven or
delayed to other refinement layers, etc. Model structuring, on the other hand,
is much simpler in Event-B than in classical B: at one particular refinement
level an Event-B model consists of a main machine which contains variables and
events and a series of contexts which contain constants and sets. Composition
and decomposition notions have been developed [10] for Event-B, but are not
part of the core Event-B method and we have not used them in our case study.

In this paper, we present our results and experiences in formalising and vali-
dating the ABZ case study [6] in Event-B. To carry out the study, we have chosen
the Rodin [3], ProB [9] and BMotion Studio [8] tools. The tools are tightly in-
tegrated. Rodin enables the use of the Event-B method and supports rigorous

� The work in this paper is partly funded by ADVANCE, an European Commission
Information and Communication Technologies FP7 project.

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 66–79, 2014.
c© Springer International Publishing Switzerland 2014

Validation of the ABZ Landing Gear System Using ProB 67

reasoning by formal proving. ProB can animate and modelcheck Event-B mod-
els, as well as provides a lot of features, for instance the inspection of the desired
behaviour of a model. BMotion Studio is a framework for creating visualizations
for formal models.

Structure of the Paper. Sect. 2 describes the Event-B model of the landing
gear system and its refinement hierarchy. In Sect. 3 we demonstrate different
approaches to validate our model. Sect. 4 describes the graphical representation
of the model and outlines its use and benefits. Finally, Sect. 5 contains the
conclusion and discusses future work.

Additional Material. For more information and resources, we refer the reader
to our website:

http://stups.hhu.de/ProB/index.php5/ABZ14

The website contains the model, visualization, and video material.

2 The Event-B Model and Its Refinement Hierarchy

In this section, we describe our Event-B model of the landing gear system. This
section may give the impression that the development was a linear process; in
reality we started several times from scratch and adapted prior refinements.
Initially, we also experimented with a classical B model, where structuring is
easier but the stricter refinement concept makes environment modelling more
difficult. We specify both the digital part and the environment in the same
Event-B model. Hence, we obtain a integrated view of the system where we try
to make a clear separation between both parts. Each event is associated either
with the digital part or with the environment. The same applies to the variables,
except for some shared variables (sensors and digital orders) which are used for
the interaction of both parts. Fig. 1 shows the interaction of the digital part and
its environment. The figure may look like a clone of a picture from the original
case-study specification, but it is actually part of the interactive visualization of
our model.

2.1 Door and Landing Gear

We start by specifying the mechanical part of the landing gear system. The top-
level abstraction of our development only models one door and one landing gear.
The door is represented as a variable with the following possible states:

– closed
– door moving
– open

http://stups.hhu.de/ProB/index.php5/ABZ14

68 D. Hansen et al.

Fig. 1. Interaction of the digital part and the environment

Validation of the ABZ Landing Gear System Using ProB 69

The states of the landing gear variable are:

– retracted
– gear moving
– extended

In addition, we define events to change the states of these variables as illus-
trated in Fig. 2. Thus, at this point we only forbid direct jumps from closed (or
retracted) to open (or extended) or back. We do not define a fixed sequence of
states, and the behaviours of the gear and the door are fully independent of each
other.

closed

open

door_moving

retracted

extended

gear_moving

Fig. 2. Possible Door and Landing Gear States and Transitions

2.2 Electro-valves

In the first refinement step we add hydraulic elements to our specification. For
each valve except for the general valve1 we add a variable with the possible
states valve open and valve closed. We define events to change the state of
each valve. Moreover, we connect the behaviour of the door and the gear to the
states of the corresponding valves. This is done by adding additional guards to
the events that change state of the door and the gear. For example, the event
that moves the door from the closed position to the moving positing can only be
executed if the variable open door valve has the state valve open. No movement
of the door/gear is possible if two contrary valves (e.g. open door valve and
close door valve) are simultaneously open. In this case the door/gear remains
in its current position.

2.3 Outputs of the Digital Part

Next, we connect the electric orders of the digital part to the electro-valves of
the hydraulic part. The electric orders are modelled as boolean variables. In
this refinement we only regard the electric orders stimulating the electro-valves
introduced in the last refinement step. We add events to change the states of
electric orders. Now, we only allow a behaviour of the electric-valves if the corre-
sponding orders come from the digital part. Moreover we forbid stimulating two
contrary orders (open door/close door, extend/retract gear) simultaneously by
adding additional guards to the events. We specify the requirement R4 explicitly
as these two invariants:
1 The general valve is introduced in a later refinement step.

70 D. Hansen et al.

invariants
R41: ¬(open EV = TRUE ∧ close EV = TRUE)
R42: ¬(retract EV = TRUE ∧ extend EV = TRUE)

Note that the electric orders only enable events that change the states of the
valves and do not execute them. This is important in order to later introduce
failing electro-valves.

2.4 Controller Sensors

In this refinement step we introduce the input sensors of the digital part. We
abstract the sensors by only considering the common value of the different chan-
nels. We add the following sensors:

– door closed
– door open
– gear extended
– gear retracted

The sensors are set by the events which change the state of the door and the
gear. They directly reflect the state of the mechanical part but it would also
be possible to introduce new events to update the sensor states according to
their mechanical counterpart. After this refinement the controller only allows
moving orders to the gear when the door is open, i.e. the door open sensor is
TRUE (R31). Analogously, the controller only allows moving orders for the door
when the gear is extended or retracted (R32). These requirements are modelled
as guards.

2.5 Controller Behaviour

In this refinement we define the sequence of output orders produced by the
digital part. We abstract the digital part to consist of one controller producing
the synthesized outputs of both computing modules. The sequence executed by
the controller depends on the handle that can be moved by the pilot. We add a
variable representing the handle and an event to change the state of the handle
from up to down and vice versa. The handle event can be executed at any time.
Moreover, the shock absorber sensor affects the behaviour of the controller. There
must not be an order to retract the gear if the shock absorber is not relaxed,
i.e., the aircraft is landed.

It is not difficult to define the uninterrupted outgoing and retraction sequence.
However, allowing an interruption of the sequences by a counter order of the
handle at any time makes this refinement step complex and tricky. We managed
this by using some additional internal variables and adding guards to the events
which change the states of the output orders. For example, the electric order
towards the retraction valve can not occur if the handle is in the down position
(R21) and the order towards the extension valve can not occur if the handle is
in the up position (R22).

Validation of the ABZ Landing Gear System Using ProB 71

2.6 Analogical Switch and General Electro-valve

The analogical switch is intended to prevent the hydraulic part against abnormal
behaviour. We add a variable for analogical switch and two events to change its
state from open to closed and back. Moreover, we need an internal controller
variable to record a handle movement and add this boolean variable as guard to
the event which closes the switch. The general electro-valve is needed to supply
the other electro-valves with hydraulic power from the aircraft hydraulic circuit.
We add a variable for the electrical order (general EV) coming from the digital
part and events to change its state. The order for the general electro-valve must
occur before the controller can produce an order to the other electro-valves.
Hence, we add guards to all events which stimulate the other electro-valves. The
following invariants ensure this behaviour:

invariants
R511: open EV = TRUE =⇒ general EV = TRUE
R512: close EV = TRUE =⇒ general EV = TRUE
R513: extend EV = TRUE =⇒ general EV = TRUE
R514: retract EV = TRUE =⇒ general EV = TRUE

Furthermore we add a variable for the general electro-valve and events to
change it state. A behaviour of the gear/door can only occur if the general
electro-valve and the corresponding maneuvering valve is open.

2.7 Cockpit Lights

Besides the orders to the hydraulic part, the controller produces three further
output signals to the cockpit:

– gears locked down
– gears maneuvering

– anomaly

We add three boolean variables to represent these output signals and events
to change it state. The two signals representing the state of gear can be eas-
ily computed by regarding the input sensors from the mechanical part. The
gears locked down output directly correspond to the gear extended input sen-
sor. The gears maneuvering output equals TRUE if the gear extended and
gear retracted sensors are both FALSE.

In this refinement we abstract all possible inconsistent behaviours by one
anomaly variable. We introduce a single event to set the variable to TRUE
(without any guards). This event represents that the controller has detected an
inconsistent behaviour.

In addition to the signals produced by the controller, we add three variables to
represent the signal lights in the cockpit. The events to switch the lights on/off
are connected to the output signals of the controller.

72 D. Hansen et al.

2.8 Further Refinement Steps

Several further refinement steps are needed to cover the complete specification
of the landing gear system. For example, a further refinement step should in-
troduce time and timing constraints. We experimented by introducing discrete
time and an environment event (tick) incrementing the time. This approach
works well from a theoretical point of view. Whenever an event with a time-
based requirement is executed, the current time is saved in a designated vari-
able. When the handle is pushed up, the current time will be saved to the
variable timerHandleUp. This variable will be set to −1 if the handle is moved
down. This allows us to formulate liveness conditions such as the requirement
R1 (stronger version) as an invariant:

invariants
R11s: anomaly = FALSE ∧ timerHandleUp > −1∧

time ≥ timerHandleUp + 150 =⇒
gear retracted = TRUE ∧ door closed = TRUE

However, in practice, it is very complex to introduce timers for each timing
constraint of the specification. Hence, we did not finished this refinement step
due to the lack of time. Another refinement step should break up the abstractions
we did so far (e.g. triplicating the sensors). We stopped at this point by getting
a sufficient model to control the graphical visualization we made. Moreover, our
model allows us to validate some of the “normal mode” requirements of the
specification.

3 Validating the Model

This section describes validations carried out using ProB. In that setting the
graphical visualization of the landing gear system was important. The latter is
described separately in Sect. 4.

3.1 Invariants

As already mentioned, the requirements R4 and R5 are specified as invariants
on different refinements levels. Our approach to validate an invariant is as fol-
lows: Before proving the invariants, we always run the model checker ProB.
Sometimes the model checker provides us with a counter-example violating an
invariant. In such cases we revisited and fixed our model by adding or modifying
some guards. Moreover, we used another feature of ProB which is called con-
strained based model checking. In this mode of operation,ProB does not explore
all reachable states starting from the initial state(s), but checks whether apply-
ing a single operation can result in an invariant violation independently of the
particular initialization of the Event-B machine. If the constraint based checker
finds a counter-example, this indicates that the model may contain a problem.
The sequence of operations discovered by the constraint based checker leads from

Validation of the ABZ Landing Gear System Using ProB 73

a valid state (satisfying the invariant) to a invariant violation, meaning that the
B machine may have to be corrected. The valid state is not necessarily reach-
able from a valid initial state. However, this situation indicates that it will be
impossible to prove the machine using the Event-B proof rules.

If ProB does not provide a counter-example we start proving the invariants.
For the invariants specified in our final model the Rodin’s provers are able to
automatically discharge all generated proof obligations.

3.2 Animation and Model Testing

The animation feature of ProB had a major impact on our modelling process.
Each time we added some new events to our Event-B model we ran the an-
imator to check the new behaviour. To validate the complex behaviour of the
controller (Sec. 2.5) we automated this approach. We used the animator to create
valid traces (sequence of executed events) of the controller interacting with the
environment. For example, we animated the complete outgoing and retraction
sequence by letting the environment react in regular way. Additionally, we create
traces by interrupting both sequences at each position by a counter order of the
handle. All traces were saved and used as regression tests to validate further
modifications of the model.

3.3 Temporal Formulas

The requirements R11 and R12 (weaker version) describe a temporal behaviour
of the system. The desired goal is to show that if the handle is pushed up/down
the end of the retraction/extension sequence will be reached. Normally we would
write such a liveness condition using the following simple LTL pattern:

�(t ⇒ �g)

where t is a trigger (handle movement) and g is the goal state which should be
finally reached (gear are retracted/extened and the door is closed). However on
the path from the handle movement to the end of the corresponding sequence
several conditions must to be ensured. For example the handle must stay in its
position and no anomaly should occur. To ensure these conditions we use a more
complex LTL pattern:

�(t ⇒ ((g R s) ⇒ �g))

In this pattern, we only regard the paths (after the handle movement) that
satisfy the condition s. The condition s must be satisfied only until the goal
state is reached. Therefore the goal predicate releases (R) the condition s. Note
that the release operator does not require that the goal state is finally reached.
For example, the whole LTL formula for R12 is as follows:

74 D. Hansen et al.

�(handle = up ⇒
(((gear retracted = TRUE ∧ door closed = TRUE)

R (handle = up ∧ gear shock absorber = flight ∧ anomaly = FALSE))
⇒ �(gear retracted = TRUE ∧ door closed = TRUE)))

In contrast to invariants, LTL formulas are not automatically satisfied by fur-
ther refinement steps and we have to re-check them at each level. Sometimes this
requires some additional conditions such as fairness for certain events. We use the
LTL model checker of ProB to validate the LTL formulas for the requirements
R11 and R12.

3.4 Relative Deadlock Freedom and Determinism Checking

The classical deadlock notion is not very useful for our model as the environment
contains events that are always enabled. Instead we developed and used a new
feature of ProB to check if a controller event is always possible. The feature is
called relative deadlock checking and is able to only regard a certain selection
of events. We checked the refinement described in Sect. 2.3 for relative deadlock
freedom. In this refinement step, the controller does not have to wait for an
environment behaviour, hence a controller event should always be possible.

Another important point is that the controller should behave in a determin-
istic way. In our model the controller behaviour is divided into several events.
Therefore we have to ensure that for the same inputs the controller always pro-
duces the same outputs. To verify this, we developed and used another new
feature of ProB checking that only one controller event is enabled at the same
time (see Fig. 3). More formally, the user selects a set of events e1, . . . , ek and
the ProB model checker verifies that for every reachable state exactly one event
ei is enabled. We believe that this feature will be of interest for other Event-B
system developments. In particular, it would have been handy for the case study
reported in [7].

4 Graphical Visualization

To visualize our model we used the new version of BMotion studio in ProB 2.0.
We have not yet released ProB 2.0 officially, but the source code is available
from [4]. Nightly builds are available from a Rodin updatesite [5]. One of the
main differences between the current ProB Plug-in for Rodin and ProB 2.0 is
that the latter is no longer based on Eclipse but rather uses standard Browser
technology as its GUI. This allows to integrate ProB into a wide range of tools.
Rodin is one of them but it is also possible to integrate ProB into a regular
website or a presentation tool.

Another very important difference between ProB 2.0 and its predecessor
is the tight integration with the Groovy scripting language. ProB 2.0 is imple-
mented as if it was a library for Groovy. Basically everything from the constraint
solver to the user interface is exposed to the scripting language. This makes it
very easy to programatically control ProB 2.0.

Validation of the ABZ Landing Gear System Using ProB 75

Fig. 3. Controller Violation Search Dialog

The graphical interface consists of HTML, CSS and optionally JavaScript.
This makes the user interface very flexible and compositional. We can design
and implement each bit of the application separately and compose them in ways
that are almost arbitrary. For the Rodin integration we bundle information into
components, that are then displayed inside an Eclipse view. For instance, one
component consists of the list of events that can be executed in a given state
and some control buttons to execute random animation steps and to go back
and forth in time. This component is shown in the Events view within Rodin.

The new version of BMotion Studio [8] is just a view like every other view. It
translates a state into a graphical representation. Once an animation is started,
BMotion Studio is notified about every state change and then updates the graph-
ical representation according to the state of the animation.

Originally BMotion Studio [8] was developed as a separate plug-in for Rodin.
It used the Eclipse Graphical Editing Framework (GEF) to provide an editor to
create visualizations of a model. While this was a very convenient approach to
create simple visualizations, the visual editor makes it hard to create complex
visualizations. For instance, creating a large table or a railroad track layout is
very cumbersome.

BMotion Studio for ProB 2.0 follows the same principles as ProB 2.0. Most
parts of BMotion Studio are accessible via the Groovy scripting language. Addi-
tionally the user interface can make use of JavaScript. This makes is much easier
to create complex or dynamic visualizations. A track layout, for example, can be
created by any graphic program that is able to produce a SVG vector graphic.
One advantage of the SVG format is that it is very easy to manipulate graphical
components.

76 D. Hansen et al.

4.1 Visualization of the Landing Gear System

Our landing gear visualization consists of two parts, a graphical part, and an
observer part. Simple SVG widgets, like shapes represent the different aspects
of the architecture of the hydraulic part of the landing gear system as shown
in Fig. 1. The observer part acts as the link between the formal model and
the graphical part. It defines expressions and predicates written in B that are
evaluated by ProB in the current state of the simulation. The results of the
expressions and predicates are used by the observers to update the visualization.
For instance, the colour of the lines that represent the electric orders to the
elector-valves is switched from red to green and from green to red whenever
the corresponding variable is set to true or false respectively. This is shown in
Fig. 1, where the electric order to the open door electro valve is coloured in
green whereas the other electric orders are coloured in red. The blue coloured
lines represent the current circulation of pressure.

Another example is the position of the door cylinder: It is shifted in respect of
the state of the door (closed, door moving and open). In Fig. 1 the door cylinder
illustrates the door moving state. We also created a separate view of the physical
environment as shown in Fig. 4 that represents beside the state of the cylinders,
the current state of the physical door and gear.

The strict separation into a graphical part and an observer part makes the
visualization reusable for other Event-B or even Classical B models of the landing
gear system. Indeed, to adapt the visualizations for a different formal model one
simply has to change the the observer part of the visualization, but not the
graphical part.

Fig. 4. Visualization of the physical environment

In addition, the visualization is subdivided into components, where each com-
ponent reflects a specific refinement level of the model. A component is only
displayed if the corresponding refinement level is part of the running simulation.
The visualization shown in Fig. 1 illustrates the last refinement step that is de-
scribed in Sect. 2.7. In that sense the visualization is created to be extensible,
for instance with new refinement levels.

Validation of the ABZ Landing Gear System Using ProB 77

env_start_open_door()

env_open_door()

env_close_valve_open_door()

env_start_close_door()

env_close_door()

env_close_valve_close_door()

Fig. 5. Physical door behaviour while simulating retraction sequence

The visualization can be used for different purposes. For instance, BMotion
Studio is able to replay user defined traces within the visualization. This feature
helped us to check whether the two basic scenarios: the outgoing sequence and
the retraction sequence are realized accurately in our model. Beside analysing
the two basic scenarios, we also used this feature to replay traces that lead to
invariant violations found by ProB. A stepwise visualization of door behaviour
while simulating the retraction sequence is demonstrated in Fig. 5. It was also
used to communicate the model between the people involved in this case study.

78 D. Hansen et al.

5 Conclusion

In this paper we presented our Event-B model of the ABZ landing gear case
study. By using refinement we were able to add stepwise more details to our
model and make a formal development of system manageable. Even if our model
does not cover the complete specification of the system, we were able to validate
some “normal mode” requirements of the system. For example, our model is
capable to perform the full landing gear retraction and extension sequences,
both of which can be reversed at any moment in time.

Our main goal was to verify that our toolchain is able to deal with the case
study. We used the following techniques to validate our model:

– Model checking
– Constraint based model checking
– Proving
– LTL model checking
– Animation based simulation
– Trace checking
– Determinism checking
– Relative deadlock checking

Initiated by the requirements of the case study, we developed a determinism
checker and relative deadlock checker. We believe these new ProB features are
also useful for future projects.

We used BMotion Studio to create a visualization of the model that was
crucial in the development and validation of the model. Conversely, we used the
case study to experiment with the development version of BMotion Studio and
ProB 2.0.

Although developing a visualization required extra effort, the benefits of the
visualization were tremendous. The visualization helped to get a common un-
derstanding about the model. It revealed problems and errors in the model. The
arrangement of the visualization into different refinement steps allowed us to
hide some of the complexity of the system and to focus on a specific problem.
We strongly believe that the ability to animate and visualize the system is cru-
cial for correctness and for reducing modelling effort when developing non-trivial
formal models.

6 Possible Future Work

As part of the research project Advance we have developed a co-simulation
framework that allows to use ProB together with another simulator for con-
tinuous systems. The framework uses the Functional Mock-up Interface (FMI)
standard to exchange information between the simulators. We could use the
framework to simulate the controller of the landing gear system in ProB and
the environment (or parts of it) in another simulator, e.g. Dymola.

Another interesting work would be to use our visualizations for formalisations
of the other case study solutions, including those that are specified in CSP, TLA+

Validation of the ABZ Landing Gear System Using ProB 79

or Z. The visualization could be also enhanced with interactive components
(e.g. buttons) to drive the simulation.

Acknowledgements. We are grateful to Stefan Hallerstede for various dis-
cussions and support in developing the formal Event-B model. Finally, we are
thankful to anonymous referees for their useful feedback.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press (2010)
3. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool en-

vironment for Event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 588–605. Springer, Heidelberg (2006)

4. Bendisposto, J., Birkhoff, M., Clark, J., Dobrikov, I., Fontaine, M., Fritz, F.,
Goebbels, R., Hansen, D., Kantner, P., Koerner, P., Krings, S., Ladenberger, L.,
Luo, L., Leuschel, M., Plagge, D., Spermann, C.: ProB 2.0 source code,
http://github.com/bendisposto/prob2

5. Bendisposto, J., Birkhoff, M., Clark, J., Dobrikov, I., Fontaine, M., Fritz, F.,
Goebbels, R., Hansen, D., Kantner, P., Koerner, P., Krings, S., Ladenberger, L.,
Luo, L., Leuschel, M., Plagge, D., Spermann, C.: ProB 2.0 Update Site for Rodin,
http://nightly.cobra.cs.uni-duesseldorf.de/experimental/updatesite/

6. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: Boniol, F. (ed.)
ABZ 2014 Case Study Track. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

7. Gmehlich, R., Grau, K., Hallerstede, S., Leuschel, M., Lösch, F., Plagge, D.: On
fitting a formal method into practice. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 195–210. Springer, Heidelberg (2011)

8. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B Models with
B-Motion Studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009.
LNCS, vol. 5825, pp. 202–204. Springer, Heidelberg (2009)

9. Leuschel, M., Butler, M.J.: ProB: An automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

10. Silva, R., Butler, M.: Shared event composition/decomposition in Event-B. In:
Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS,
vol. 6957, pp. 122–141. Springer, Heidelberg (2011)

http://github.com/bendisposto/prob2
http://nightly.cobra.cs.uni-duesseldorf.de/experimental/updatesite/

Modeling a Landing Gear System in Event-B

Amel Mammar1 and Régine Laleau2

1 Institut Mines-Télécom/Télécom SudParis, CNRS UMR 5157 SAMOVAR, France
amel.mammar@telecom-sudparis.eu

2 Université Paris-Est, LACL, IUT Sénart Fontainebleau, France
laleau@u-pec.fr

Abstract. This paper describes the Event-B modeling of the landing
gear system of an aircraft whose the complete description can be found
in [3]. This real-life case study has been proposed by the ABZ’2014 track
that takes place in Toulouse, the European capital of the aeronautic in-
dustry. Our modeling is based on the Parnas and Madey’s 4-Variable
Model that permits to consider the different parts of a system. These
parts are incremently introduced using the Event-B refinement tech-
nique. The entire development has been carried out under the Rodin
toolset. To validate and prove the different components, we use the Ate-
lier B, SMT and ML provers which are plugged to Rodin.

1 General Overview of the System

The objective of the landing gear system is to permit a safe extension/retraction
of the gears when the plane is going to land/fly. Each gear is placed in a
landing-gear box equipped with a door that must be open when a gear is ex-
tending/retracting and closed when it becomes completely extended/retracted
and locked. To this aim, the controller (See Figure 1) reads, periodically through
a set of sensors, the states of the different elements (doors, gears, handler, etc.)
and sends orders to a set of electro-valves that make, for instance, the gears ex-
tend/retract or the doors open/close. More details will be introduced throughout
the modeling of this system.

Controller

Electro-Valves

StartStimulation/
StopStimulation

Doors/Gears
Cylinders

handler
Pilot Interface

Fig. 1. The overall structure of the landing gear system

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 80–94, 2014.
c© Springer International Publishing Switzerland 2014

Modeling a Landing Gear System in Event-B 81

To model this system in Event-B [2], we suggest following the classification of
modeling variables according to the four-variable model of Parnas and Madey
[8]. We distinguish two groups of variables environment and controller variables:

1. Environment variables : represent the status of the elements outside the con-
troller. Two kinds of variables are distinguished:

– Monitored variables: the values of these variables are not calculated by
the controller but can be monitored. For example, the actual states of
the doors/gears.

– Controlled variables: the values of these variables are determined by the
controller. For example, the status of the valves and the lights.

2. Controller variables : denote values inside the controller system. Mainly, they
represent the values of some elements as seen by the controller but also the
different orders it sends.
– Inputs : the values stored in the controller and provided by some sensors.

For example, door openi[x], handlei, gear extendedi[x], etc.
– Outputs : they are the orders sent by the controller toward the different en-

vironmental elements. For example, general EV, retract EV , gears ma
neuvring, anomaly, etc.

The system can be seen as continuously executing the following sequence of
actions:

Do
Read Inputs from some sensors
Process Inputs
Produce outputs

Until a failure is detected

In the following sections, we are going to develop the modeling of this system in
six main steps:

1. Modeling the monitored variables : we describe the behavior of the physical
components like the doors, the gears, cylinders, but also the handler, the
switch and the shock absorbers. The variables modeling these components
are suffixed with “ p” because they represent their actual (physical) status
(See Section 3).

2. Modeling the controlled variables : we describe in this phase the behavior of
the valves that permit to act directly on the doors, gears and cylinders (See
Section 4). We also describe the behavior of the lights that inform the pilot
about the status of the system in general. Again, the variables modeling
these components are suffixed with “ p” because they represent their actual
status (See Section 4).

3. Modeling the controller/output variables : we describe how the controller
reads information from the sensors, sends orders to the valves and how it
updates the values of the lights (See Section 5).

4. Modeling timing aspects : to facilitate the design, we have chosen to elaborate
a first modeling of the system without considering any timed constraints. The
timed aspects are taken into account later by refinement (See Section 6).

82 A. Mammar and R. Laleau

5. Modeling the failure cases : in this step, we take into account the system’s
anomalies caused by failures on the different elements of the system (See
Section 7).

6. Finally, we describe how properties are verified (See Section 8).

In each of the previous steps, the different elements are gradually introduced
thanks to the Event-B refinement mechanism. The next section gives a brief
description of the Event-B method together with its refinement technique.

2 Event-B Method

Event-B [2] is the successor of the B method [1] permitting to model discrete
systems using mathematical notations. The complexity of a system is mastered
thanks to the refinement concept that allows to gradually introduce the differ-
ent parts that constitute the system starting from an abstract model to a more
concrete one. An Event-B specification is made of two elements: context and
machine. A context describes the static part of an Event-B specification; it con-
sists of constants and sets (user-defined types) together with axioms that specify
their properties. The dynamic part of an Event-B specification is included in a
machine that defines variables and events. The possible values that the variables
hold are restricted using an invariant written using a first-order predicate on the
state variables. An event can be executed if it is enabled, i.e. all the conditions,
named guards, prior to its execution hold. Among all enabled events, only one
is executed. In this case, substitutions, called actions, are applied over variables.
The execution of each event should maintain the invariant. To this aim, proof
obligations are generated for each event. To discharge these proof obligations,
the Rodin1 platform offers an automatic prover but also the possibility to plug
additional external provers like the SMT and Atelier B provers.

3 Modeling the Monitored Variables

In the system, we have the followingmonitored variables: gears, doors, doors/gears
cylinders, handler, hydraulic circuit and switch. These elements are introduced
according to the following refinement strategy:

– Initial model (Component Gears): we start by describing the behavior of the
gears, that can be made extended or not, since this is the main objective of
the system.

– 1st refinement (Component GearsIntermediateStates): we refine the state
where a gear is not extended by distinguishing two different sub-states: re-
tracted or partly-extended.

– 2nd and 3rd refinements (Components Doors and DoorsIntermediateStates):
like for the gears, we describe the state of a door as open or not, then we
add an intermediate state to model a partly-open door.

1 http://www.event-b.org/install.html

http://www.event-b.org/install.html

Modeling a Landing Gear System in Event-B 83

– 4th refinement (Component Cylinders): in this step, we introduce the cylin-
ders that allow the motion of the doors and gears.

– 5th refinement (Component HandlerSwitchShockAbsorber): we model in this
phase the handler, the analogical switch, the hydraulic circuit and the shock
absorbers.

In the following sub-sections, we detail each step.

3.1 Gears Modeling: The Initial Model and the First Refinement

We first introduce a context with set PositionsDG representing the three possible
cases for gears/doors/etc.: front, left or right. Then, we define a Boolean variable
gear extended p to formalize whether a gear is extended or not:

inv1: gear extended p ∈ PositionsDG → BOOL

To make the gears extended or not, we define the following two events:
Make GearExtended Start GearRetracting

ANY po WHERE ANY po WHERE
po ∈ PositionsDG ∧ po ∈ PositionsDG ∧
gear extended p(po)=FALSE gear extended p(po)=TRUE

THEN THEN
gear extended p(po) :=TRUE gear extended p(po):=FALSE

END END

When a gear is not extended, it can be retracted or partly-extended. So, we refine
the previous specification by introducing a new Boolean variable gear retracted p
that is true if the gear is entirely retracted. This variable is defined by two invari-
ants (inv2) and (inv3), where (inv3) states that a gear cannot be extended and
retracted at the same time:

inv2: gear retracted p ∈ PositionsDG → BOOL
inv3: ∀po.(po ∈ PositionsDG ⇒

¬(gear extended p(po) =TRUE ∧gear retracted p(po) =TRUE))

Consequently, the event Make GearExtended is refined by adding the guard (gear
retracted p(po) =FALSE), and we define the two following new events to make a
gear start extending (it becomes no longer retracted) or complete its closing.

Start GearExtending Make GearRetracted
ANY po WHERE ANY po WHERE

po ∈ PositionsDG po ∈ PositionsDG
gear retracted p(po) =TRUE gear extended p(po) =FALSE

THEN gear retracted p(po)=FALSE
gear retracted p(po):=FALSE THEN

END gear retracted p(po):=TRUE
END

3.2 Doors Modeling: The Second and Third Refinements

In this part, we present the modeling of the doors. To this aim, we have proceeded
like for the gears by defining two levels. In the first level, we define a new variable
door open p to know if a door is open or not. Then, we refine, in the second level,
the state where a door is not open by adding a new variable door closed p to
state if the door is closed or partly-open.

84 A. Mammar and R. Laleau

– the third refinement: we define the variable door open p and express an in-
variant to state that when a gear is partly-extended then all the doors are
open. In other words, it is not possible to start the extending/retracting of
a gear until all the doors are open.

inv4: door open p ∈ PositionsDG → BOOL
inv5: ∃po.(po ∈ PositionsDG ∧gear extended p(po) = FALSE∧

gear retracted p(po) = FALSE) ⇒ door open p =PositionsDG×{TRUE}

In order to preserve invariant (inv5), we refine the events
Start GearExtending and Start GearRetracting by adding the guard
(door open p =PositionsDG× {TRUE}). We also define two events to make
a door open and start closing.

Make DoorOpen Start DoorClosing
ANY po WHERE ANY po WHERE

door open p(po) =FALSE door open p(po) =TRUE
THEN (gear extended p =PositionsDG × {TRUE} ∨

door open p(po):=TRUE gear retracted p =PositionsDG× {TRUE})
END THEN

door open p(po):= FALSE
END

– the fourth refinement: in this level, we define the variable door closed p and
express that a door cannot be open and closed at the same time:

inv6: door closed p ∈ PositionsDG → BOOL
inv7: ∀po.(po ∈ PositionsDG ⇒

¬(door open p(po) =TRUE ∧door closed p(po) =TRUE)

In order to preserve invariant (inv7), we refine the event Make DoorOpen by
adding the guard (door closed p(po) = FALSE). We also define two new events
to make a door start opening (it becomes no longer closed) or accomplish its
closing.

Start DoorOpening Make DoorClosed
ANY po WHERE ANY po WHERE

door closed p(po) =TRUE door closed p(po) =FALSE
THEN door open p(po) =FALSE

door closed p(po):=FALSE THEN
END door closed p(po):=TRUE

END

3.3 Cylinders Modeling: The Fourth Refinement

The motion of the gears and the doors is performed by a set of cylinders. A
door (resp. gear) cylinder is locked when the door is closed (resp. extended or
retracted). Of course, before starting moving, the cylinder, associated with the
door/gear, should not be locked. So in the next refinement, we define two new
variables door cylinder locked p and gear cylinder locked p with the following
invariant:

inv8: door cylinder locked p ∈ PositionsDG → BOOL
inv9: gear cylinder locked p ∈ PositionsDG → BOOL
inv10: ∀po.(door cylinder locked p(po) =TRUE ⇒ door closed p(po) =TRUE)
inv11: ∀po.(gear cylinder locked p(po) =TRUE ⇒

(gear extended p(po) =TRUE ∨gear retracted p(po) =TRUE))
inv12: ∀po.(gear cylinder locked p(po) =FALSE ⇒ door open p=PositionsDG×{TRUE})

Modeling a Landing Gear System in Event-B 85

In order to satisfy (inv11), we have refined the events Start GearExtending
and Start GearRetracting by adding the guard (gear cylinder locked p(po) =
FALSE). Similarly, we have refined the event Start DoorClosing by adding the
guard (gear cylinder locked p =PositionsDG× {TRUE}) to make (inv12) satis-
fied. Finally, we have defined four new events to lock/unlock door/gear cylinders.
For the sake of space, we provide only those associated with gears.

UnlockGearCylinder LockGearCylinder
ANY po WHERE ANY po WHERE

po ∈ PositionsDG po ∈ PositionsDG
gear cylinder locked p(po) =TRUE gear cylinder locked p(po)=FALSE
gear extended p(po) =TRUE ∨ gear extended p(po) =TRUE ∨
gear retracted p(po)=TRUE gear retracted p(po) =TRUE
door open p =PositionsDG × {TRUE} THEN

THEN gear cylinder locked p(po) :=TRUE
gear cylinder locked p(po) :=FALSE END

END

3.4 Handler/Switch/Shock Absorbers/Hydraulic Circuit Modeling:
The Fifth Refinement

In this step, we continue the modeling of the monitored variables by introducing
the handler, the analogical switch, the shock absorbers and the hydraulic circuit.
First, we extend the context by defining two new sets PositionsHandler and
PositionsSwitch to denote respectively the possible positions for the handler,
up and down, and for the switch, open, closed. So, we define two Boolean vari-
ables handler p and analogical switch p to model the position of the handler
and the switch respectively. Since the analogical switch closes each time the han-
dler changes its position, we add a Boolean variable handle which memorizes
the handler shift. The events we define for the handler are: PutHandlerUp and
PutHandlerDown. For instance, under the guard handler p = down, the event
PutHandlerUp sets the variable handler p to up and assigns TRUE to the variable
handle.

To model the physical behavior of the analogical switch depicted in Figure 2,
we define two additional Boolean variables Intermediate1 and Intermediate2
that cannot be true at the same time as follows:

inv13: ¬(Intermediate1 =TRUE ∧ Intermediate2 =TRUE)
inv14: (Intermediate1=TRUE ∨ Intermediate2 =TRUE) ⇒ analogical switch p = open

Each transition is translated into an event whose guard corresponds to its
source state and includes (handle=TRUE) if it is triggered by the handler shift.
The action of this event consists in assigning FALSE to the source state and TRUE

to the target one. For the sake of space, we only provide the Event-B translation
of two transitions.

close Switch HandleFromIntermediate2ToIntermediate1
WHEN WHEN

Intermediate1 =TRUE Intermediate2 =TRUE
THEN handle =TRUE

analogical switch p := closed THEN
Intermediate1 :=FALSE handle :=FALSE

END Intermediate2 :=FALSE
Intermediate1 :=TRUE

END

86 A. Mammar and R. Laleau

Open Intermediate2

Intermediate1 Closed

handle? handle?

handle?

C: currentTime =deadlineSwitch
A1: deadlineSwitch:=currentTime+(8-2/3*(deadlineSwitch-currentTime)

[C]

A1

[C]

A2: deadlineSwitch:=currentTime+200

A2

A2

A3: deadlineSwitch:=currentTime+12

A3
[C]

A4: deadlineSwitch:=currentTime+8

A4

Fig. 2. Physical behavior of the analogical switch

The hydraulic circuit is modeled with a Boolean variable
circuit pressurized p, and two events Unpressurise and Pressurise. For in-
stance, under the guard (circuit pressurized p=TRUE) , the event Unpressurise
sets the variable circuit pressurized p to FALSE. In addition, we have refined
each event related to the doors/gears/ motion and lock/unlock cylinders by
adding a guard (circuit pressu rized p = TRUE). Finally, we model gears shock
absorbers by a Boolean variable that gives for each position the state of its
associated shock absorber according to the following invariant stating that a
gear shock absorber is on ground only if its gear is extended:
inv15: ∀po.(po ∈ PositionsDG ∧ gear shock absorber p(po) =TRUE ⇒ gear extended p(po)=TRUE)

So, to preserve invariant (inv15), the event Start GearRetracting is refined
by adding an action that set the variable gear shock absorber p(po) to FALSE.
In addition, to make the state of a shock absorber evolve, we have defined two
new events: a first to set it to FALSE and a second to TRUE under the guard that
its gear is extended.

4 Modeling the Controlled Variables: The Sixth
Refinement

This section deals with the modeling of valves and lights that are controlled
by the system (Component ValvesLights). We describe how a valve becomes
active/not active and how a light becomes on/off. Each valve is modeled
with a Boolean variable (general EV p, open EV p, close EV p, extend EV p,
retract EV p) and two events to make it active or not. For the sake of space, we
describe the events that activate the open door valve and deactivate the extend
valve; the others are very similar.

MakeOpenDoorValveActive MakeExtendValveActive
WHEN WHEN

open EV p= FALSE extend EV p= FALSE
circuit pressurized p= TRUE circuit pressurized p= TRUE

THEN THEN
open EV p:= TRUE extend EV p:= TRUE

END END

Modeling a Landing Gear System in Event-B 87

In addition, we refine each event related to the motion of doors/gears by
adding a guard to specify that the corresponding valve is active and its opposite
is deactivated. For instance, we refine the event Start GearExtending by adding
the guard (extend EV p = TRUE ∧ retract EV p = FALSE). We also refine the
events related to lock/unlock door/gear cylinders by adding the adequate guard.
For instance, we refine the event LockGearCylinder by adding the guard:

(gear extended p(po) =TRUE ∧ extend EV p= TRUE) ∨
(gear retracted p(po) = TRUE ∧ retract EV p=TRUE)

Finally, we refine the event Pressurise HydrolicCircuit (resp.
Unpressurise HydrolicCircuit) by adding the guard (general EV p =
TRUE) (resp. general EV p = FALSE).

The lights are dealt with similarly to the valves. We model each of them by
a Boolean variable (greenLight p, orangeLight p, redLight p) and define two
events for green and orange lights; one to set the light on and the other to set it
off. For the red light, only the event that makes it on is defined since this state
is kept forever.

5 Modeling the Controller/Output Variables: The
Seventh Refinement

In this section, we describe how the controller takes its decisions about the
setting of the light and the activation/deactivation of the valves according to
the information it gets from the sensors that it periodically reads (Component
Sensor). To do that, the controller reads the status of the handler, the switch,
the hydraulic circuit, the doors and the gears2. So, we introduce for each of
these elements a new variable that represents its state as seen by the controller.
Such variables are suffixed by ” ind” and are of the same type and have the
same constraints as their associated variables suffixed by ” p”. For instance, a
door cannot be seen open and closed at the same time. The controller acquires
information from the sensors as follows:

ReadInput
ANY

handler sensor value , analogical switch sensor value, circuit pressurized sensor value,
gear extended sensor valueF, gear extended sensor valueL, gear extended sensor valueR,

. . .
WHERE

handler sensor value ∈ PositionsHandler
. . .

gear extended sensor valueF ∈ BOOL ∧
gear extended sensor valueF=TRUE ⇒

gear extended(front)=TRUE ∧ gear cylinder locked p(front)=TRUE
. . .

THEN
handler sensor ind:=handler sensor value

. . .
gear extended sensor p:= {front
→ gear extended sensor valueF,

left
→ gear extended sensor valueL,right
→ gear extended sensor valueR}
. . .

END

2 In this paper, we make the assumption that there is a unique sensor on each of these
elements.

88 A. Mammar and R. Laleau

The key point of the event ReadInput is that each sensor does not give
information that goes against the security of the system (the sensors are
intrinsically safe), that means that if it says that a door/gear is {open,
close}/{extended/retracted} then it is really the case. If the sensor is faulty,
it should say: I do not know!, that is, it will return FALSE for the doors and the
gears. From these inputs, the controller takes decisions about sending orders to
the valves. Each order to a valve is modeled by a Boolean variable (general EV ,
close EV , etc.) such that:

inv16: ¬(open EV =TRUE ∧ close EV=TRUE)//Req R41

inv17: ¬(extend EV=TRUE ∧ retract EV=TRUE)//Req R42

inv18: (open EV =TRUE ∨ close EV =TRUE) ⇒ general EV =TRUE
inv19: (extend EV =TRUE ∨ retract EV =TRUE) ⇒ open EV =TRUE//inv18 + inv19 = R51

For instance, the controller sends orders to the general and extend valves as
follows:

– when the analogical switch is closed, it sends a start stimulation to the
general valve if it reads that the handler is up (resp. down) but the gears
are not locked up (resp. down). It should also maintain the stimulation of
the general valve if the open/close valve is still stimulated. The event that
model starting/stopping the stimulation of the general valve is as follows:

OutputGeneralValve
ANY general EV value WHERE

general EV value =bool((analogical switch ind =closed
∧ ((handler ind=down ∧ gear extended �=PositionsDG × {TRUE}) ∨

(handler ind=up ∧ gear retracted ind �= PositionsDG × {TRUE}))) ∨
(open EV =TRUE ∨ close EV =TRUE)

general EV �= general EV value THEN
general EV := general EV value

END

– if the open door valve is stimulated and the doors are seen open, it sends a
stimulation order to the extend valve if it sees that the handler is down but
one of the gear is not extended and locked in the down position, otherwise
it stops it:

OutputExtendGearValve
ANY extend EV value WHERE

extend EV value =bool(handler ind =down ∧
gear extended ind �= PositionsDG×{TRUE} ∧
open EV =TRUE ∧ retract EV =FALSE ∧
door open ind=PositionsDG×{TRUE}) ∧
extend EV �= extend EV value THEN
extend EV := extend EV value

END

Similarly to the valves, the controller sends orders to the lights. At this level,
we only introduce the order to the green and orange lights; the red one is achieved
later when we model failures. For instance, when the controller sees the gears
extended and locked, it sends order gears locked down as follows:

gears locked down :=bool(gear extended sensor valueF =TRUE ∧
gear extended sensor valueL =TRUE ∧
gear extended sensor valueR =TRUE)

In this step, we refine each event related to making a valve active/not active by
adding a guard to specify that its related order has been sent from the controller.
We also refine the event acting on the lights by adding a guard that expresses
that the setting order has been received from the controller.

Modeling a Landing Gear System in Event-B 89

6 Introducing Timing Aspects: The Eighth Refinement

In this system, timing aspects are four folds: (1) the analogical switch takes
time to move from open to close and vice versa (2) the start/stop stimulation of
valves should be separated by some time, (3) the valves take time to be active, the
cylinders take time to move and be locked/unlocked, (4) the controller has to read
some inputs at given moments to be sure that the system behaves correctly as
expected or not. In this section, we deal with the first three aspects (Component
TimedAspects) and postpone the last one to the next section. Let us notice that
real-time cannot be explicitly modeled in Event-B, thus we approximate it by
using discrete time: a natural variable currentT ime represents the current time.

6.1 Timing Constraints on the Analogical Switch

To introduce timing constraints on the switch, we add a natural variable
deadline Switch that represents the deadline at which the switch changes its
state according to Figure 2. To move from a state to another, currentT ime
should be equal to deadlineSwitch, then the deadline is updated adequately.
For instance, the event HandleFromIntermediate2ToIntermediate1 is re-
fined by adding the action deadlineSwitch := currentT ime + (8 − (2/3) ×
(deadlineSwitch − currentT ime))3. Similarly, the event close Switch is re-
fined by adding the guard currentT ime = deadlineSwitch and action
deadlineSwitchcurrentT ime+ 200.

6.2 Timing Constraints on the Start/Stop Stimulation of Valves

In this system, the time between starting the stimulation of the general valve
and the others should be separated by at least 2 u.t (units of time). Since
the open valve is the first to stimulate just after the general valve, it is suf-
ficient to respect this time between them. Similarly, the time between stop-
ping the stimulation of the general valve and the others should be separated
by at least 10 u.t. Since the open/close valve is the last valve that stops
stimulation just before stopping the general valve, it is sufficient to respect
this time only between them. In addition, the stimulation of contrary orders
should be separated by at least 1 u.t. So, we have defined five natural variables
allowedStopGeneralEv, allowedStartOpenEV , allowedStartCloseOpenEV ,
allowedStartExtedEV and allowedStartRetractEV that are updated as fol-
lows: when the general (resp. open, close, extend, retract) valve is stim-
ulated, then the variables allowedStartOpenEV and allowedCloseOpenEV
(resp. allowedCloseOpenEV , allowedStartOpenEV , allowedStartRetractEV ,
allowedStartExtedEV) are updated with the adequate value. In ad-
dition, when open (resp. close) valve is stopped then the variable
allowedStopGeneralEv is also updated with the adequate value. So, the event

3 Since, the type Real is not provided in Event-B, all computations are done in fixed-
point arithmetic with a scale of 10.

90 A. Mammar and R. Laleau

OutputGeneralValve has been refined by adding the guard (currentT ime
≥ allowedStopGeneralEv) and actions:

allowedStartOpenEv:={FALSE
→ TRUE
→ currentT ime + 2,TRUE
→ FALSE
→ 0}
(general EV
→ general EV value)

6.3 Timing Constraints on the Activation of the Valves

A valve takes some time to be active/not active after starting/stopping its stim-
ulation. So, we have associated with each kind of valves (general, door, gear)
a natural variable that states the time at which the valve can be active/not
active. For instance, we have defined for the extend/retract valves the vari-
able deadlineStimulationRetractExtendEv that is updated to the adequate
time when the controller sends an order for these valves, and it is reset to 0
when the valve becomes active/not active. Basically, we have refined the event
OutputExtendGearValve by adding the action:

deadlineStimulationRetractExtendEv :={FALSE
→ TRUE
→ currentT ime + 10
TRUE
→ FALSE
→ currentT ime+36}(extend EV
→ extend EV value)

Finally, we have refined the events that make the extend/retract valve ac-
tive/not active by adding the guard (currentT ime = deadlineStimulation
RetractExtendEv) and action (deadlineStimulationRetractExtendEv := 0)
to reset the deadline after executing the event.

6.4 Timing Constraints on Cylinders

The gears/door cylinders take some time to lock/unlock but also to move from
high to down and vice versa. To consider the time taken by a gear cylinder to
lock/unlock, we have defined a variable deadlineUnlockLockGearsCylinders.
This variable is set by events that make extend and retract valves ac-
tive in order to launch the deadline for unlocking the cylinders, and
the events Make GearExended and Make GearRetracted to launch the
deadline for locking the cylinders. Similarly, we have defined a vari-
able deadlineGearsRetractingExtending to consider the time tacken by
the gear to move from down to up and vice versa. So, the event
MakeExtendValveActive is refined by adding the guard (currentT ime =
deadlineStimulationRetractExtendEv) and the two following actions that per-
mit to reset the deadline and to set the moment at which the gear cylinders
become unlocked.

deadlineStimulationRetractExtendEv := 0
deadlineUnlockLockGearsCylinders := PositionsDG × {currentT ime + 4}

In addition, we refine the event Start GearExtending by adding the action:
deadlineGearsRetractingExtending(po) :=

{front
→ currentT ime + 12, left
→ currentT ime + 16, right
→ 16}(po)

and the guard (deadlineUnlockLockGearsCylinders(po) = 0). Finally to make
the time progress, we have defined the event passingTime that increases the
variable currentT ime when there is at least one non-null deadline. The time
progresses by an amount step without exceeding any non-null deadline in order
to avoid the starvation problem. More details can be found at:

http://www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html

http://www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html

Modeling a Landing Gear System in Event-B 91

7 Introducing Failures: The Ninth Refinement

7.1 Modeling Failures

So far, we have considered all the physical elements as working correctly as
expected. However in practice, each of them can fail: the switch, the cylinders and
the valves can fail at any time. To take such failures into account, we have added
for each of these elements an event that makes it fail (Component Failures). For
example, for the switch and the door cylinders, we have defined the two following
events where the variables analogical switch fail and door cylinder fail denote
Boolean variables that say respectively whether the switch or a door cylinder
has failed:

MakeSwitchFail MakeDoorCylinderFail
WHEN analogical switch fail =FALSE ANY po WHERE po ∈ PositionsDG THEN

analogical switch fail :=TRUE door cylinder fail(po) :=TRUE
END END

Consequently, we refine each event related to the behavior of the switch, the
valves and the cylinders by adding a guard stating that the element change
its status only if it has not failed. For instance, we have added the guard
(door cylinder fail(po) :=FALSE) for the events Make DoorOpen, Start Door-

Opening, Start DoorClosing, etc.

7.2 Detecting Anomalies

As stated in the previous section, physical elements can fail. The controller does
not have any information about that but it can deduce it by monitoring the status
of the switch, the doors, and the gears. In fact, if the controller sends an order to
stimulate the open valve but the doors are not seen open after a given time, then
it can assert that a problem has happened (in at least one physical element) by
displaying the anomaly information to the pilot. To this aim, the controller has
to read, through the sensors, the status of these elements at well-defined times.
For instance, the controller has to verify that the switch is closed 10 u.t after
the handler has changed its position otherwise an anomaly is detected. To model
that, we add a natural variable nextInputReadForOpenSwitch that memorizes
the time at which the controller must not see the switch open. This variable is
updated by the event ReadInput which we refine by adding the following action:

nextInputReadForOpenSwitch :=
{FALSE
→ nextInputReadForOpenSwitch, TRUE
→ currentTime+10}

(bool(handler ind �= handler sensor value))

As for other deadlines, to avoid the starvation problem, we refine the event
passingTime by adding a guard stating that if nextInputReadForOpenSwitch
is not null then the time can progress but without exceeding it. In addition,
the event ReadInput resets the variable nextInputReadForOpenSwitch when
this deadline is reached and the verification performed. So, we add the following
actions to the event ReadInput:

92 A. Mammar and R. Laleau

nextInputReadForOpenSwitch :=
{FALSE
→ nextInputReadForOpenSwitch, TRUE
→ 0}

(bool(currentT ime = nextInputReadForOpenSwitch))
anomaly :=bool(currentT ime = nextInputReadForOpenSwitch ∧ analogical switch ind = open)

The other anomalies on the doors, the gears, the hydraulic circuit are dealt
with similarly. In addition, we have refined the event ReadInput and the events
sending orders to the valves by adding the guard (anomaly = FALSE) in
order to stop the system. Indeed according to the description of the system, the
anomaly message has to be maintained forever. From a modeling point of view,
we introduce a deadlock such that no operation becomes possible.

8 Properties Verification: The Tenth Refinement

Most properties to verify are temporal properties that refer to several moments
of the system. A model checker like ProB [7] would be very useful for such
purpose. Nevertheless, we have chosen to stay in a same framework of proof
by modeling them as invariants (Component PropertyVerification). Moreover to
distinguish the specification of the system from the verification of properties, we
have created a new refinement level that defines such properties as invariants.
For the sake of space, this paper illustrates the verification of the properties
through one example, the verification of the other properties can be found at:

http://www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html

R74. If one of the three gears is not seen locked in the down position more than
10 seconds after stimulating the outgoing electro-valve, then the Boolean output
normal mode is set to false.

To specify this property, we have defined a new variable TimeStimulationExten-
dRetractEv to memorize the time at which the extend/retract valve is stimulated.
This variable is set by the event OutputExtendGearValve by adding the action
(T imeStimulationExtendRetractEv := currentT ime). Then, the property is
specified as follows:

(currentT ime > TimeStimulationExtendRetractEv + 100 ∧ extend EV = TRUE) ⇒
(anomaly = TRUE ∨ gear extended ind = PositionsDG × {TRUE})

To discharge this invariant, the following intermediate lemmas have been
added:

(currentT ime > TimeStimulationExtendRetractEv + 100 ∧ extend EV=TRUE)⇒
nextInputReadForGearEndExtendingRetracting = 0

(nextInputReadForGearEndExtendingRetracting = 0 ∧ extend EV = TRUE) ⇒
(anomaly = TRUE ∨ gear extended ind =PositionsDG × {TRUE})

The first invariant ensures that the time does not progress beyond the deadline
(T imeStimulationExtendRetractEv + 100) without reading the state of the
gears since the variable nextInputReadForGearEndExtendingRetracting is
reset when the gears are read. The second one states that the controller sets
the variables anomaly and gear extended ind correctly when the deadline is
reached. Table 1 gives the results of the verification activities.

http://www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html

Modeling a Landing Gear System in Event-B 93

Table 1. Verification results

Requirement Verified? Method Comment

R11 � Animation Proof seems to be too hard since it needs several
intermediate lemmas.

R12 � Animation Proof seems to be too hard since it needs several
intermediate lemmas.

R21 � Proof It is verified from the instant where the controller
sees the position of the handler down

R22 � Proof It is verified from the instant where the controller
sees the position of the handler up

R31 � Proof It is not valid on the physical elements since the
controller can start extending/retracting the
gears when the doors are actually open but the
close valve does not stop completely. Thus, we
express it according to the internal variables.

R32 � Proof It is not valid on the physical elements since the
controller can start opening/closing the
doors when the gears are actually extended/
retracted but the extend/retract valve does not
stop completely. Thus, we express it according to
the internal variables.

R41, R42, R51 � Proof

R61, R62, R63, R64 � Proof

R71, R72, R73, R74 � Proof

9 Conclusion: Limits and Future Work

In this paper, we have presented a modeling of a landing gear system in the formal
languageEvent-B.To this aim,we have proceeded into 3main phases: (1)modeling
the systemwithout timed concerns and possible failures; (2) taking timed concerns
into account; (3) considering the possible faults on the different elements of the
system. From a design point of view, the main difficulty was to define a method
to tackle the complexity of the case study. The combination of the four-variable
model of Parnas and of the Event-B refinement process has proved very relevant
for this type of problem. The former allows to classify the variables that represent
the system and its environment and the latter allows to gradually introduced these
variables. This approach has been used by Butler [4] but with a very simple case
study. Contrary to Butler’s work, we have chosen to consider time constraints later
in the design, since it seemed to us simpler for the proof activity. Finally, failures
have been introduced at the end of the process following the idea of considering
first the nominal system behavior as advised by [6,9]. From a technical point of
view, we have defined 66 variables and 48 events split into 10 refinement levels
that give rise to 285 proof obligations, 72% of which have been discharged auto-
matically; we have accomplished the remaining proofs interactively thanks to the
Atelier B, SMT and ML provers which are Rodin plugins. We think the modeling
can be improved if Event-B and the Rodin framework, under which this develop-
ment has been achieved, offer real-time aspects. In addition, it would be interesting

94 A. Mammar and R. Laleau

to deeper study the use of one of the structuring mechanisms proposed for Event-
B: decomposition [10] or modularization [5], in order to structure the specification
into logical units.

As stated before, regarding the description of the case study, we make the
assumption that each sensor is unique and not triplicated. This is not a strong
assumption and does not affect the modeling; it can be easily relaxed by only
adapting the event ReadInput. For the handler for instance, we will define two
functions handler sensors and handler sensors valid to memorize the values
of the sensors and its validity:

handler sensors ∈ 1..3 −→ BOOL ∧ handler sensors valid ∈ 1..3 −→ BOOL

Then, the event ReadInput is updated as follows (value TRUE (resp. FALSE)
represents position up (resp. down)):
ANY handler ind value, handler sensor valid value WHERE

handler ind value =
((card(handler sensor valid−1[{TRUE}])=3 ∧

((handler sensor(1) =TRUE ∧ (handler sensor(2)=TRUE ∨ handler sensor(3) =TRUE)) ∨
∨ (handler sensor(2)=TRUE ∧ handler sensor(3)=TRUE)))

∨ (card(handler sensor valid−1[{TRUE}])=2 ∧
card(handler sensor[handler sensor valid−1[{TRUE}]])=1)))

handler sensor valid value=. . .THEN
handler ind:={TRUE
→ up, FALSE
→ down}(handler ind value)
handler sensor valid := handler sensor valid value

. . .

References

1. Abrial, J.-R.: The B-book, Assigning Programs to Meanings, pp. I–XXXIV, 1–779.
Cambridge University Press (2005)

2. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering, pp. I–
XXVI, 1–586. Cambridge University Press (2010)

3. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: Boniol, F. (ed.)
ABZ 2014 Case Study Track. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

4. Butler, M.: Using Event-B Refinement to Verify a Control Strategy, Working Paper.
ECS, University of Southampton (2009)

5. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,
Latvala, T.: Supporting reuse in event B development: Modularisation approach.
In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010.
LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010)

6. Jeffords, R.-D., Heitmeyer, C.-L., Archer, M., Leonard, E.-I.: Model-Based
Construction and Verification of Critical Systems using Composition and Partial
Refinement. Formal Methods in System Design 37(2-3), 265–294 (2010)

7. Leuschel, M., Butler, M.-J.: ProB: An Automated Analysis Toolset for the B
Method. STTT 10(2), 185–203 (2008)

8. Lorge Parnas, D., Madey, J.: Functional Documents for Computer Systems. Sci.
Comput. Program. 25(1), 41–61 (1995)

9. Miller, S.-P., Tribble, A.-C.: Extending the Four-Variable Model to Bridge the
System-Software Gap. In: Proceedings of the 20th Digital Avionics Systems Con-
ferene (DASC 2001), Daytona Beach, Florida (2001)

10. Silva, R., Pascal, C., Hoang, T.-S., Butler, M.: Decomposition tool for Event-B.
Softw., Pract. Exper. 41(2), 199–208 (2011)

Offline Model-Based Testing and Runtime

Monitoring of the Sensor Voting Module

Paolo Arcaini1, Angelo Gargantini1, and Elvinia Riccobene2

1 Dipartimento di Ingegneria, Università degli Studi di Bergamo, Italy
{paolo.arcaini,angelo.gargantini}@unibg.it

2 Dipartimento di Informatica, Università degli Studi di Milano, Italy
elvinia.riccobene@unimi.it

Abstract. Formal specifications are widely used in the development of
safety critical systems, as the Sensor Voting Module of the Landing Gear
System. However, the conformance relationship between the formal spec-
ification and the concrete implementation must be checked. In this paper,
we show a technique to formally link a Java class with its Abstract State
Machine formal specification, and two approaches for checking their con-
formance: an offline model-based testing approach and an online runtime
monitoring approach.

1 Introduction

For safety critical components, formal verification and validation of models must
be combined with the validation of the implementation. The user wants to gain
confidence that the system has been implemented as specified, i.e., it conforms
to its requirements. Indeed, regardless the correctness of the model (guaranteed
by formal verification, simulation and so on), the implemented system must be
validated itself. As aptly stated by Ed Brinksma in his 2009 keynote at the Dutch
Testing Day and Testcom/FATES, “Who would want to fly in an airplane with
software proved correct, but not tested?”.

We here focus on the model-driven design and validation of the sensor voting
module (SVM) in a landing gear system [7]. A sensor voting system, similar to
that presented in our case study, is verified in [16] using the UML Verification
Environment. In this paper, we describe the validation activity of a Java imple-
mentation of the SVM, using the Abstract State Machines (ASMs) as formal
language. For a complete description of the modeling of the whole landing gear
system case study using ASMs through the ASMETA framework, we refer to [5].

In this paper, we first introduce the SVM case study, and give a brief in-
troduction to two conformance validation techniques, model-based testing and
runtime monitoring, reporting some related literature (Section 2). Then, we show
the ASM model for the SVM and which activities the designer should perform,
even before the conformance checking is started, to be sure that the model is
correct (Section 3.1). We then implement the SVM in Java (Section 3.2) and
we validate it against the ASM model. We describe how the formal specification

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 95–109, 2014.
c© Springer International Publishing Switzerland 2014

96 P. Arcaini, A. Gargantini, and E. Riccobene

Fig. 1. Sensor Voting Module Interface

can be linked with the implementation (Section 3.3), and then we present the
application of model-based testing (Section 4) and of runtime monitoring (Sec-
tion 5) to the case study. Finally, we compare the strengths and the weaknesses
of the two approaches through some experiments (Section 6), and conclude the
paper in Section 7.

2 Background

2.1 The Sensor Voting Module

The Landing Gear System (LGS) has proposed in the ABZ conference as a real-
life case study [7] with the aim of showing how different formal methods can be
used for the specification, design and development of a complex system.

In the LGS the state of the equipments (i.e., doors and gears) is computed
by a set of discrete sensors; the digital part of the landing gear system takes
decisions and sends commands (e.g., stimulating the electro-valves) relying on
the sensor values. In order to prevent sensor failures, each sensor value is based
on the values of three micro-sensors [7]; a sensor receives the values of the three
micro-sensors from three channels. The duty of the Sensor Voting Module (SVM)
is to select one of these three values according to the following policy.

Let X be a sensor and Xi(t) (i = 1, 2, 3) the values for X received at time t:
– If at t the three channels are considered as valid and are equal, then the

value considered by the control software is this common value.
– If at t one channel is different from the two others for the first time (i.e.,

the three channels were considered as valid up to t), then this channel is
considered as invalid and is definitely eliminated. Only the two remaining
channels are considered in the future. At time t, the value considered by the
control software is the common value of the two remaining channels.

– If a channel has been previously eliminated, and if at t the two remaining
channels are not equal, then the sensor is definitely considered as invalid.

We can represent an SVM by the black box reported in Fig. 1. It has three
inputs corresponding to the three channels for the sensor and two outputs: one
that represents the value of the sensor and one that informs whether the sensor
is valid or invalid.

2.2 Model-Based Off-line Testing

Model-based conformance testing [13,17] of reactive systems consists in taking
benefit from the model for mechanizing both test data generation and verdicts

Offline Model-Based Testing and Runtime Monitoring of the SVM 97

computation (i.e., to solve the oracle problem). In off-line approaches, test suites
are pre-computed from the model and stored under a format that can be later
executed on the System Under Test (SUT). The model can be used both to
guide the test generation, in order to discover which aspects of the model must
be covered, and to decide when to stop testing, when coverage of the model has
reached a certain level.

A classical technique to generate tests from models exploits the use of model
checkers. In this case, the model of the system is translated to the language of
the model checker, and a suitable property (also called trap property) is proved
false by the model checker by means of a counterexample. This counterexample
represents a possible system behavior and it can be translated to a test through
a concretization process.

MBT for ASM. For ASMs, we have developed a tool, called ATGT [11], which
is capable of generating tests from ASMs following several testing criteria [10],
like rule coverage, update rule coverage, parallel rule coverage, etc.

For example, a test suite satisfies the rule coverage criterion if, for every rule
ri, there exists at least one state in a test sequence in which ri fires and there
exists at least one state in a test sequence (possibly different from the previous
one) in which ri does not fire.

2.3 Runtime Monitoring

According to [14], runtime monitoring (also runtime verification) is “the disci-
pline of computer science that deals with the study, development, and application
of those monitoring techniques that allow checking whether a run of a system
under scrutiny satisfies or violates a given correctness property”.

The aim of runtime monitoring is to check that the observed executions of a
system ensure some correctness properties. Runtime monitoring is a lightweight
verification technique that, considering the ability to detects faults, can be clas-
sified halfway between those techniques that try to ensure universal correctness
of systems – as model checking and theorem proving – and those techniques like
testing that ensure the correctness only for a fixed set of executions.

The main difference with techniques like model checking is that, whereas
these techniques check all possible executions of a program, runtime monitoring
only checks those executions that are actually performed by the program un-
der scrutiny. So, it is possible that, although the program contains a fault, its
executions never produce a failure that evidences that fault.

The main difference with testing, instead, is that the number of executions
over which the program is checked is not fixed. Sometimes, runtime monitoring
is seen as the process of testing the system forever [14], since, as in testing, the
actual output is checked with respect to an expected output (usually described
by an oracle), but, unlike testing, every execution of the system is checked.

Finally, whereas traditional validation and verification activities are only exe-
cuted offline, i.e., before the deployment, runtime monitoring can also be
executed online, i.e, after the deployment of the program.

98 P. Arcaini, A. Gargantini, and E. Riccobene

In order to describe the expected correctness properties, several formalisms
have been used in literature as, for example, temporal logics [12,6], extended
regular expressions [8], and Z specifications [15].

Coma: Conformance Monitoring between ASMs and Java. In [3] we
propose CoMA, runtime Conformance Monitoring of Java code by ASM speci-
fications. The CoMA monitor allows online monitoring, namely it considers ex-
ecutions in an incremental fashion. It takes as input an executing Java software
system and an ASM formal model. The monitor observes the behavior of the
Java system and determines its correctness w.r.t. the ASM specification working
as an oracle of the expected behavior. While the software system is executing,
the monitor checks conformance between the observed state and the expected
state.

2.4 Comparing Offline Testing and Runtime Monitoring

Offline testing is much simpler than runtime monitoring: once the tests are gen-
erated, they can be easily reused as long as the model does not change. The test
generation time may be an issue, especially if the model is large and the model
checker takes a lot of resources for test generation; however, efficient test genera-
tor tools can generate tests also for big models. Once the tests are obtained, they
can be launched and, if the SUT passes all the tests, the tester can be confident
that the implementation is correct and therefore the system can be deployed.

However, the system could strongly depend on the environment in which it
is executed [9]. If such environment is not available at testing time or, although
available, it is not practically possible to interact with it (because maybe too
much time consuming), testing the system could become difficult. In unit testing
this problem is sometimes mitigated by using mock objects that mimic the be-
havior of the environment: nonetheless, if the actions of the environment are not
fully predictable, also using mock objects could be not useful. Moreover, safety-
critical systems as medical devices, aircraft flight controls, nuclear systems, etc.,
although tested and verified deeply, could require an additional degree of confi-
dence that they behave as expected. Runtime monitoring here acts as a double
check that everything goes well [14].

Furthermore, in the presence of nondeterministic systems, an MBT approach,
as that described in Section 4, is not suitable because it is not able to correctly
judge the implementation output: the implementation could deviate from a test
case, taking a different but valid execution path, and the test case would falsely
fail. For such kind of systems, a runtime monitoring approach able to deal with
nondeterminism, as that described in Section 5, can also benefit the testing [4].

3 Specification and Implementation of the SVM

The following sections describe the ASM model (Section 3.1) and the Java im-
plementation (Section 3.2) for the SVM. The ASM and the Java implementation

Offline Model-Based Testing and Runtime Monitoring of the SVM 99

have been developed independently: once we have agreed upon the interface, one
author has developed the ASM and another one the Java code. In this way, the
two artifacts may be quite different. Finally, Section 3.3 describes how to link
the Java code with the ASM; such linking will be exploited in Section 4 and
Section 5 for the testing and the runtime monitoring of the implementation.

3.1 ASM Model of the SVM

Code 1 reports the ASM model. The signature of the ASM contains the enumer-
ative domain Channel representing the three input channels of the sensor; one
unary monitored function channel represents the signals coming from the three
channels. The controlled unary function validCh keeps track if each channel is
still valid; in the initial state all the channels are valid. The output value of the
sensor is computed by the machine and recorded with the function sensor, while
its validity is simply defined as a derived function valid, which is true if there
exist two different channels still valid.

In the main rule, if the sensor is not valid, the machine state is no longer
updated. Otherwise, if the sensor is valid, the following rules are called:

– r allValidChannels checks if all the channels are still valid and, in this case, it
controls if the values of the three channels are equal. Since the comparison
is performed by considering each pair of channels, r allValidChannels calls
r threeValidChannels three times, in order to actually compare each pair ($vc1
and $vc2); if they are equal, it also checks the third channel ($vc3) and, if
necessary, it updates its validity. The sensor value is updated to the majority
value of the three channels.

– r twoValidChannels checks if two channels are still valid, in case the third
channel ($nvc) is no longer valid; the rule is called three times, one for each
pair of channels. The sensor value is updated only if the two valid channels
are equal.

Note that the specification can be easily extended in case there are more than
three channels.

Model Validation. We have performed the following preliminary activities
over the ASM model using the framework ASMETA1, in order to be sure that
the model exactly captures the intended behavior of the system. In fact, in model-
based testing and in runtime monitoring, it is of extreme importance that the
models are correct, otherwise faults in the model jeopardize the entire activity
of the implementation validation.

Simulation. Through simulation with the ASM simulator AsmetaS, we have
simulated the scenarios of a channel becoming invalid and then the entire sensor
becoming invalid. Simulation is useful to gain confidence that the specification
actually captures the intended behavior. The simulator, at each step, checks

1 http://asmeta.sourceforge.net/

http://asmeta.sourceforge.net/

100 P. Arcaini, A. Gargantini, and E. Riccobene

asm SensorVotingModule

signature:
enum domain Channel = {ONE | TWO | THREE}
dynamic monitored channel: Channel −> Boolean
dynamic controlled validCh: Channel −> Boolean
dynamic controlled sensor: Boolean
derived valid: Boolean

definitions:
function valid =

(exist $c1 in Channel, $c2 in Channel with $c1!=$c2 and validCh($c1) and validCh($c2))

rule r threeValidChannels($vc1 in Channel, $vc2 in Channel, $vc3 in Channel) =
if channel($vc1) = channel($vc2) then

par
sensor := channel($vc1)
if channel($vc1) != channel($vc3) then

validCh($vc3) := false
endif

endpar
endif

rule r allValidChannels =
if (forall $c in Channel with validCh($c)) then

par
r threeValidChannels[ONE,TWO,THREE]
r threeValidChannels[TWO,THREE,ONE]
r threeValidChannels[THREE,ONE,TWO]

endpar
endif

rule r twoValidChannels($nvc in Channel, $vc1 in Channel, $vc2 in Channel) =
if not(validCh($nvc)) then

if channel($vc1) = channel($vc2) then
sensor := channel($vc1)

else
par

validCh($vc1) := false
validCh($vc2) := false

endpar
endif

endif

invariant over validCh: size({$c in Channel | validCh($c) : $c}) != 1

main rule r Main =
if valid then

par
r allValidChannels[]
r twoValidChannels[ONE,TWO,THREE]
r twoValidChannels[TWO,THREE,ONE]
r twoValidChannels[THREE,ONE,TWO]

endpar
endif

default init s0:
function validCh($c in Channel) = true

Code 1. ASM specification of the SVM

that all the specified invariants are satisfied. In the model (before the main
rule), we have introduced an invariant specifying that it is not possible that only
one single channel is valid. The requirements indeed specify that at least two

Offline Model-Based Testing and Runtime Monitoring of the SVM 101

rule r twoValidChannels($vc1 in Channel, $vc2 in Channel, $vc3 in Channel) =
if not(validCh($vc1)) then

if channel($vc2) = channel($vc3) then
sensor := channel($vc2)

else
par

validCh($vc1) := false //error
validCh($vc2) := false

endpar
endif

endif

Code 2. Faulty model – Error in the rule r twoValidChannels

channels must be valid, otherwise the entire sensor must be considered invalid
(i.e., all the channels must be considered invalid).

Model Advisor. During the development of the model, we have applied the
model advisor [2], a tool we developed for looking for common errors that are
usually introduced in the model development using ASMs. The model advisor
has discovered an error in the model. Code 2 shows the faulty implementation
of rule r twoValidChannels. The model advisor signals that, when the update
validCh($vc1) := false is executed, the location validCh($vc1) is always yet false.
Indeed, the model is faulty and the location that should be updated to false
is validCh($vc3). We have fixed the error, and we have given more meaningful
names to the rule parameters, as shown in Code 1.

Formal Property Verification. We have been able to formally prove some prop-
erties by using the model checker AsmetaSMV [1]. The first property simply
checks that the specified invariant is satisfied in all the states. Indeed, by default
AsmetaSMV translates each invariant ϕ in the Computation Tree Logic (CTL)
formula ag(ϕ).
The following temporal properties have also been proved:
– Once the sensor becomes invalid, then it will always remain invalid in the

future:
CTLSPEC ag(not(valid) implies ag(not(valid)))

– There exists a path in which the sensor eventually becomes invalid:
CTLSPEC ef(not(valid))

– There exists a path in which the sensor always remains valid:
CTLSPEC eg(valid)

3.2 Java Implementation

Code 3 shows the Java implementation of the SVM. The method computeSen-
sorValue, given the values of the three parameters s1, s2, and s3 (representing
the input channels), updates the value of the sensor and marks if the sensor is no
more valid (field sensorValid). The boolean array chValid records which channels
are still valid. Two methods return the values of fields value and sensorValid.

102 P. Arcaini, A. Gargantini, and E. Riccobene

@Asm(asmFile = ”models/SensorVotingModule.asm”)
public class Sensor {

private boolean value;
private boolean sensorValid;
private boolean[] chValid;

@StartMonitoring
public Sensor() {

sensorValid = true;
chValid = new boolean[]{true, true, true};

}

@RunStep
public void computeSensorValue(@Param(func = ”channel”, args={”ONE”}) boolean s1,

@Param(func = ”channel”, args={”TWO”}) boolean s2,
@Param(func = ”channel”, args={”THREE”}) boolean s3) {

if (sensorValid) {
if (chValid[0] && chValid[1] && chValid[2]) {

if (s1 == s2 && s2 == s3) {
value = s1;

} else if (s1 != s2 && s2 == s3) {
chValid[0] = false; // first channel invalid
value = s2;

} else if (s2 != s1 && s1 == s3) {
chValid[1] = false; // second channel invalid
value = s3;

} else {
chValid[2] = false; // third channel invalid
value = s1;

}
} else if (!chValid[0]) {

if (s2 == s3)
value = s2;

else
sensorValid = false;

} else if (!chValid[1]) {
if (s1 == s3)

value = s1;
else

sensorValid = false;
} else if (!chValid[2]) {

if (s1 == s2)
value = s2;

else
sensorValid = false;

}
}

}

@MethodToFunction(func = ”sensor”)
public boolean getValue() {

return value;
}

@MethodToFunction(func = ”valid”)
public boolean isValid() {

return sensorValid;
}

}

Code 3. Java implementation of the SVM

3.3 Linking Java Code and ASM Specifications

Linking a Java code with its ASM formal specification permits to establish a
conformance relation between the ASM and the implementation. In the follow-
ing, we provide an informal description; a complete description of the technique
with all the formal definitions can be found in [3].

We use Java annotations to establish this link; Java annotations are meta-
data tags that can be used to add some information to code elements as class
declarations, field declarations, etc. In addition to the standard ones, annotations
can be defined by the user similarly as classes. For our purposes, we have defined

Offline Model-Based Testing and Runtime Monitoring of the SVM 103

a set of annotations [3]. The retention policy (i.e., the way to signal how and when
the annotation can be accessed) of all our annotations is runtime: annotations
can be read by the compiler and by any program through reflection. In the
tools developed for supporting our model-based testing and runtime monitoring
approaches, we read the annotations in order to discover the relation between
the ASM and the Java code.

In order to link a Java class with its corresponding ASM specification, first
the class must be annotated with the annotation @Asm, having the path of the
ASM model as string attribute (asmFile). The Java class Sensor (Code 3) is
linked to the ASM specification SensorVotingModule (Code 1).

Then the class data must be connected with the signature of the ASM. A
field of the Java class can be connected with a function/location of the ASM,
through the field annotation @FieldToFunction; the annotation has a manda-
tory attribute func for specifying the function name, and an optional attribute
args, for specifying the arguments’ values (if one wants to connect the field to
a specific location). Moreover, it is also possible to link a pure method2 with a
function/location, using the method annotation @MethodToFunction, having the
same attributes of @FieldToFunction. In the presented case study, pure meth-
ods getValue and isValid are respectively linked to functions sensor and valid.

Linked fields (those annotated with @FieldToFunction) and linked methods
(those annotated with @MethodToFunction) constitute the observed Java state.
In the case study, the observed Java state is given by the methods getValue and
isValid.

Finally, the execution of the Java code must be linked with an execution (i.e.,
a run) of the ASM. The annotation @StartMonitoring is used to select one
constructor3 which builds the desired observed initial state of the object. The
annotation @RunStep, instead, permits to identify the method (called changing
method) that changes the observed state, i.e., the values of the linked fields
and the return values of the linked pure methods4. Both linked constructors
and linked methods can have some parameters, that can be linked to the ASM
as well. The annotation @Param can be used to link parameters to monitored
functions/locations of the ASM; it has a mandatory attribute func to specify
the name of a monitored function of the ASM model, and an optional attribute
args to specify the function arguments. In the case study, the parameters of
method computeSensorValue are linked to the locations of function channel.

2 Pure methods are side effect free methods with respect to the object/program state.
They return a value but do not assign values to fields.

3 We do not consider the default constructor. If the class does not have any constructor,
the user has to specify an empty constructor and annotate it with @StartMonitoring.

4 The user can identify several changing methods, but, in this case, each changing
method must be linked with a different monitored value by the two annotation
attributes setFunction, specifying the name of a 0-ary monitored function of the
ASM model, and toValue, specifying a value of the function codomain. setFunction
should have the same value in all the annotations, while toValue must assume dif-
ferent values.

104 P. Arcaini, A. Gargantini, and E. Riccobene

State and Step Conformance. The linking previously described allows the
following notion of conformance between an instance OC of a class C and the
ASM specification ASMC linked to C.

Definition 1. State conformance. We say that a state sJ of OC conforms
to a state sA of ASMC , i.e., conf(sJ , sA), if all the observed elements of C
(fields annotated with @FieldToFunction and methods annotated with @Method-

ToFunction) have values in OC conforming to the values of the functions in
ASMC linked to them.

Intuitively, the Java state and the ASM state are conformant, if the values
of the linked fields and the values returned by linked methods are equal to the
values of the corresponding functions/locations.

Definition 2. Step conformance. Given the execution of a changing method
m (i.e., a method annotated with @RunStep) and a step of simulation of the ASM,
we say that the Java step (sJ , s

′
J) and the ASM step (sA, s

′
A) are conformant

if conf(sJ , sA) and conf(s′J , s
′
A).

ASMC sA
simulation step �� s′A

OC sJ

conf

��

invocation of changing method m �� s′J

conf

��

Intuitively, a Java object is step conformant with the corresponding ASM
specification, if their states are conformant before and after the changing method
execution and the ASM simulation step.

4 Offline Testing

4.1 Test Generation

We have used ATGT to generate tests from the SVM model, using the basic
rule coverage (BRC) and the update rule coverage (URC). BRC requires that
every rule is executed at least once, while URC requires that every update is
executed at least once without being trivial, i.e., by actually changing the value
of the location that it updates. For every coverage goal (e.g., a rule to execute
in BRC), ATGT computes a test predicate which is a predicate over the state
of the machine, representing the condition that must be reached to cover that
particular goal. For instance, the basic rule coverage of the update rule in the
inner conditional rule of rule r threeValidChannels is specified by the following
test predicate.

BR r threeValidChannels TTT21:
valid and (validCh(ONE) and validCh(TWO) and validCh(THREE)) and
(channel(ONE) = channel(TWO)) and (channel(ONE) != channel(THREE))

Offline Model-Based Testing and Runtime Monitoring of the SVM 105

ATGT has derived, for the entire specification, 38 test predicates (20 for the
BRC and 18 for the URC). For every test predicate tp, ATGT has built, if
possible, an abstract test sequence, which is a valid sequence of states, leading
to a state where tp becomes true. ATGT exploits the SPIN model checker and
its capability to produce counterexamples upon property violations. If a test
predicate cannot be covered, we say that it is unfeasible and it means that there
is no valid system behavior that can cover that case. Unfeasible test predicates
must be discarded and no longer considered. For the SVM, we found no unfeasible
test predicates.

In order to reduce the test suite size, ATGT can perform a coverage eval-
uation of the tests, by checking if a test sequence, generated for a test predi-
cate, unintentionally covers also other test predicates. Without coverage evalua-
tion, ATGT produces 38 test sequences, while, with coverage evaluation, ATGT
produces only 11 test sequences.

4.2 Test Concretization

We devise a novel technique that derives a concrete Java test, consisting of a
sequence of method calls with suitable checks (i.e., asserts), from each abstract
test sequence ATS ; in this work, we automatically build JUnit tests. The test
concretization leverages the linking between the Java class and the ASM (see
Section 3.3) and the definitions of state conformance (Def. 1) and step confor-
mance (Def. 2).

First, it identifies the constructor annotated with @StartMonitoring, builds
an instance of the class, and associates it to the reference variable sut. For
example, given a class C whose constructor without parameters is annotated
with @StartMonitoring, the produced statement is C sut = new C();

If the constructor has some parameters, these must be annotated with @Param.
The technique identifies the actual parameters to use in the object instantiation
by reading, in the first state of the abstract test sequence, the values of the
monitored functions that are linked with the parameters.

The procedure that identifies the inputs in the ATS and maps them in
method invocations with values for their parameters exploits the Java anno-
tations @RunStep and @Param. For each state of the ATS, the method annotated
with @RunStep is called5. The (possible) actual parameters in the method invo-
cation are fixed by the values of the monitored functions/locations linked in the
@Param annotations of the method formal parameters. For instance, the formal
parameters s1, s2 and s3 of changing method computeSensorValue are connected
to the monitored locations channel(ONE), channel(TWO), and channel(THREE).

After each method invocation and after the object instantiation, the oracle is
built, exploiting the annotations @FieldToFunction and @MethodToFunction.
For each state of the ATS :
5 If there are several changing methods, the value v of the monitored function/loca-
tion linked in the @RunStep annotations identifies what method must be called (the
method having value v in the annotation argument toValue). In our case study, since
only method computeSensorValue is annotated with @RunStep, it is always called.

106 P. Arcaini, A. Gargantini, and E. Riccobene

−−−− state 0 −−−−−
−− controlled −−
valid = true
−− monitored −−
channel(ONE) = false
channel(TWO) = false
channel(THREE) = true
−−−− state 1 −−−−−
−− controlled −−
sensor = false
valid = true

(a) Abstract test sequence

@Test
public void test() {

// state 0
Sensor sut = new Sensor();
assertEquals(true, sut.isValid());
sut.computeSensorValue(false, false, true);
// state 1
assertEquals(false, sut.getValue());
assertEquals(true, sut.isValid());

}

(b) JUnit test case

Fig. 2. Example of test concretization for BR r threeValidChannels TTT21

– given a function/location linked with an annotation, we obtain its value v
from the ATS ;

– if the annotation annotates a field f , we build an assertion as follows:
assertEquals(v, sut.f);

– if the annotation annotates a pure method m, we build an assertion as fol-
lows:
assertEquals(v, sut.m());

Fig. 2 shows the translation of the ATS built for covering the test predicate
BR r threeValidChannels TTT21 (Fig. 2a) in a JUnit test case (Fig. 2b).

5 Runtime Monitoring

Although a model-based testing approach as that described in Section 4 can give
enough confidence that the implementation is correct, for safety-critical systems
as the sensor voting module, we may want to continue checking the conformance
of the implementation with respect to its specification also after the deployment.

We propose CoMA [3], a runtime monitoring approach for Java code using
ASMs. The schema of the proposed runtime framework is shown in Fig. 3. The
monitor is composed of: an observer that evaluates when the Java (observed)
state is changed (1), and leads the abstract ASM to perform a machine step
(2), and an analyzer that evaluates the step conformance between the Java ex-
ecution and the ASM simulation (3). When the monitor detects a violation of
conformance, it reports the error. It can also produce a trace in form of coun-
terexample, which may be useful for debugging. Note that the use of CoMA can
be twofold, since also faults in the specification can be discovered by monitor-
ing the software. For instance, by analysing and re-executing counterexamples,
faults in the model can be exposed.

The technique exploits the linking described in Section 3.3 and the definitions
of state conformance (Def. 1) and step conformance (Def. 2). In the following,
we give the definition of runtime conformance.

Offline Model-Based Testing and Runtime Monitoring of the SVM 107

Fig. 3. The CoMA runtime monitor for Java

Definition 3. Runtime conformance. We say that C is runtime conforming
to its specification ASMC if the following conditions hold:
1) the initial state s0J of the computation of OC conforms to one and only one

initial state s0A of the computation of ASMC , i.e., ∃! s0A initial state of ASMC

such that conf (s0J , s
0
A);

2) for every Java step (sJ , s
′
J) induced by the execution of a changing method

m, ∃! (sA, s′A) step of ASMC with sA the current state of ASMC , such that
the two steps are conformant.

The runtime framework has been implemented using AspectJ. By means of an
aspect, AspectJ allows to specify different pointcuts, i.e., points of the program
execution one wants to capture. For each pointcut, it is possible to specify an
advice, i.e., the actions that must be executed when a pointcut is reached (before
or after the execution of the code specified by the pointcut). In our runtime
framework, we have defined some pointcuts for identifying the instantiation of a
class under monitoring (when a constructor annotated with @StartMonitoring

is called) and the execution of a changing method (i.e., a method annotated
with @RunStep). Moreover, for each pointcut we have defined an advice actually
implementing the monitoring:
– when a monitored object is instantiated, the corresponding advice creates

an instance of the ASM simulator AsmetaS;
– when a changing method is executed, the corresponding advice forces a step

of simulation of the ASM, and it checks the conformance between the ob-
tained Java state and the ASM states that can be reached in one step.

6 Experimental Comparison

We have executed the 38 Junit tests, obtained as explained in Section 4, and
applied CoMA, as explained in Section 5. In CoMA, we have simulated the
environment by instantiating 10 times a new sensor and computing 10 times
the sensor value by the method computeSensorValue, passing three random
values as inputs for the three channels. We have measured the code coverage
by EclEmma and the mutation score by PIT6. In both cases, we found line and
branch code coverage of 100%, and mutation score of 57 killed mutants over 74.

6 http://www.eclemma.org/ and http://pitest.org/

http://www.eclemma.org/
http://pitest.org/

108 P. Arcaini, A. Gargantini, and E. Riccobene

The not killed mutants involve code inserted by AspectJ and are not relevant
for the case study. We can state that both techniques are equivalent regarding
detecting faults inserted by the standard PIT mutation operators. However, we
have simulated a delayed short circuit fault that causes isValid to return true
after 5 times it is called. We have modified the code as follows:

int nvCount = 0;
boolean isValid() {

return valid | nvCount++ > 5;
}

The tests produced from the specification do not detect this fault, since the
rule coverage of the specification does not imply the coverage of this faulty be-
havior in the implementation. However, monitoring the code with CoMA exposes
the failure by any run in which valid becomes false and isValid is called at least
5 times. In general, we can assume that unforeseen and unspecified anomalous
behaviors of the implementation are better detected by runtime monitoring than
by MBT.

7 Conclusions

We have presented the model-driven development and validation activity of a
critical module in the Landing Gear System. We have applied the formal method
of ASMs from the design to the conformance checking of the implementation.
We have presented two methodologies for actual system validation (model-based
testing and runtime monitoring) and briefly compared them.

References

1. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: A way to link high-level
ASMmodels to low-level nuSMV specifications. In: Frappier, M., Glässer, U., Khur-
shid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 61–74.
Springer, Heidelberg (2010)

2. Arcaini, P., Gargantini, A., Riccobene, E.: Automatic Review of Abstract State
Machines by Meta Property Verification. In: Muñoz, C. (ed.) Proceedings of the
Second NASA Formal Methods Symposium (NFM 2010), pp. 4–13. NASA (2010)

3. Arcaini, P., Gargantini, A., Riccobene, E.: CoMA: Conformance monitoring of Java
programs by Abstract State Machines. In: Khurshid, S., Sen, K. (eds.) RV 2011.
LNCS, vol. 7186, pp. 223–238. Springer, Heidelberg (2012)

4. Arcaini, P., Gargantini, A., Riccobene, E.: Combining model-based testing and run-
time monitoring for program testing in the presence of nondeterminism. In: IEEE
Sixth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 178–187 (2013)

5. Arcaini, P., Gargantini, A., Riccobene, E.: Modeling and analyzing using ASMs:
The Landing Gear System case study. In: Boniol, F. (ed.) ABZ 2014 Case Study
Track. CCIS, vol. 433, pp. 36–51. Springer, Heidelberg (2014)

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Transactions on Software and Methodology (TOSEM) 20 (2011)

Offline Model-Based Testing and Runtime Monitoring of the SVM 109

7. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: Boniol, F. (ed.)
ABZ 2014 Case Study Track. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

8. Chen, F., D’Amorim, M., Roşu, G.: A formal monitoring-based framework for
software development and analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.)
ICFEM 2004. LNCS, vol. 3308, pp. 357–372. Springer, Heidelberg (2004)

9. Colin, S., Mariani, L.: Run-time verification. In: Broy, M., Jonsson, B., Katoen,
J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems.
LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005)

10. Gargantini, A., Riccobene, E.: ASM-Based Testing: Coverage Criteria and Auto-
matic Test Sequence Generation. J. Universal Computer Science 7, 262–265 (2001)

11. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to Generate Testsfrom
ASM Specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263–277. Springer, Heidelberg (2003)

12. Havelund, K., Roşu, G.: Efficient monitoring of safety properties. International
Journal on Software Tools for Technology Transfer 6, 158–173 (2004)

13. Hierons, R., Derrick, J.: Editorial: special issue on specification-based testing. Soft-
ware Testing, Verification and Reliability 10(4), 201–202 (2000)

14. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of
Logic and Algebraic Programming 78(5), 293–303 (2009)

15. Liang, H., Dong, J., Sun, J., Wong, W.E.: Software monitoring through for-
mal specification animation. Innovations in Systems and Software Engineering 5,
231–241 (2009)

16. Mrugalla, C., Robbe, O., Schinz, I., Toben, T., Westphal, B.: Formal verification of
a sensor voting and monitoring UML model. In: Houmb, S.H., Jürjens, J., France,
R. (eds.) Proceedings of the 4th International Workshop on Critical Systems De-
velopment Using Modeling Languages (CSDUML 2005), Technische Universität
München (September 2005)

17. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann (2006)

Model-Checking Real-Time Properties
of an Aircraft Landing Gear System Using Fiacre�

Bernard Berthomieu1,2, Silvano Dal Zilio1,2, and Łukasz Fronc1,2

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract. We describe our experience with modeling the landing gear
system of an aircraft using the formal specification language Fiacre. Our
model takes into account the behavior and timing properties of both
the physical parts and the control software of this system. We use this
formal model to check safety and real-time properties on the system but
also to find a safe bound on the maximal time needed for all gears to
be down and locked (assuming the absence of failures). Our approach
ultimately relies on the model-checking tool Tina, that provides state-
space generation and model-checking algorithms for an extension of Time
Petri Nets with data and priorities.

1 Introduction

We describe our experience with modeling the landing gear system of an air-
craft using the formal specification language Fiacre [1]. This case study has
been submitted as a problem to be solved by the participants of the Case
Study Track at the 4th International ABZ Conference. Our answer to this chal-
lenge is based on the use of a model-checking tool for an extension of Time
Petri Nets with data and priorities. All the requirements were checked using
a dense (continuous) time model, without resorting to discrete time verifica-
tion methods. The Fiacre models used in this study are available online at
http://projects.laas.fr/fiacre/examples/landinggear.html.

The purpose of the control system is to manage and monitor the hydraulic
and mechanical parts operating the movement of the gears—and their associated
doors—on a modern aircraft: activation of the electrical and hydraulic power;
opening of the locks and doors; extension or retraction of the gears; . . . A full
description of the system is given in [2].

The control (digital) part of the system is fairly complex, since there are
several subsystems involved—each associated with their own set of timing
constraints—and many safety requirement to be satisfied. Some of these re-
quirements are quite straightforward, like for instance that “gears should not
be extended if the doors are closed”, but other requirements depend on the ar-
chitecture of the system. For instance that “the controller should not attempt
to power the doors without first stimulating the general electro-valves” or that
� This work was partly supported by the ITEA2 Project OpenETCS.

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 110–125, 2014.
c© Springer International Publishing Switzerland 2014

http://projects.laas.fr/fiacre/examples/landinggear.html

Model-Checking Real-Time Properties 111

“stimulation of the electro-valves should be separated by at least 200ms”. An-
other source of complexity stems from the multiple redundancies put in place as
a contingency in case of mechanical failure. Actually, one of the main tasks of
the control system is to identify the occurence of failures in order to warn the
pilot of any anomalous behavior. This is a major safety requirement, since the
pilot should be warned as soon as possible that he needs to engage his emergency
extension system.

Our formal model takes into account the behavior and timing properties of
the mechanical and control parts of the system, both in its normal and failure
mode of operation. We study several versions of the model, each of growing com-
plexity, by strengthening our assumptions on the system. The different versions
are used to check safety and real-time properties on the system but also to find
a safe bound on the maximal time needed for all gears to be down and locked
(assuming the absence of failures). Therefore we experiment here with another
interesting application of model-checking, that is as a tool for architecture ex-
ploration (dimensioning).

This case study is interesting for several reasons. First, it is well-suited for
component-based modeling languages (since the description is highly modular)
and it is a good example for real-time verification methods (since the specification
has plenty of timing constraints). Also, a similar case study was used by Boniol
et al. in 2006 [3], where they compared the use of several model-checking tools:
a majority of tools based on the synchronous language Lustre, and one tool,
Uppaal, based on timed automata. It is interesting to revisit these results that
are nearly ten years old.

2 Fiacre and Tina

We describe the language and tools used to check the behavior of the system.
Our approach is based on Fiacre (http://www.laas.fr/fiacre/), a specification
language designed to represent compositionally both the behavioral and timing
aspects of embedded and distributed systems for the purposes of formal verifica-
tion or simulation. The language comes equipped with a set of dedicated tools,
such as a compiler to the input format of the model-checking tool Tina [4].

2.1 The Fiacre Language

Fiacre is a modeling language for behavioral verification, with a textual notation,
in the vein of Promela or BIP. It can be used for model-checking but is not tied to
any particular toolset. The language supports two of the most common coordina-
tion paradigms: communication through shared variable (shared-memory) and
synchronization through synchronous communication ports (message-passing).
A formal definition of the language is given in [5].

Fiacre programs are stratified in two main notions: processes, which are well-
suited for modeling structured activities, and components, which describe a
system as a composition of processes, possibly in a hierarchical manner.

http://www.laas.fr/fiacre/

112 B. Berthomieu, S. Dal Zilio, and Ł. Fronc

We give a simple example of a Fiacre specification in Fig. 1. It is the model of
a computer mouse driver with double-click. A more complex example of Fiacre
process, extracted from the case study, is given in Fig. 4. The behavior of the
computer mouse is to emit the event double if it receives more than two click
events in strictly less than one unit of time (u.t.). Note that the semantics of
the language is based on a dense, “dimensionless”, notion of time. This approach
is consistent with several of the state space abstraction techniques used in our
tools [6]. Indeed, the “geometric methods” based on the use of Difference Bound
Matrices (DBM) are insensitive to the scaling of time (this is not true for methods
based on a discrete time approach that may also be used in Tina).

process Push [click : none ,
single : none ,
double : none ,
delay : none] is

states s0, s1, s2

var dbl : bool := false

from s0 click; to s1

from s1
select

click; dbl := true; loop
[] delay; to s2
end

from s2
if dbl then double
else single end;
dbl := false; to s0

component Mouse [click : none ,
once : none ,
twice : none] is

port delay : none in [1,1]

priority delay > click

par
Push [click , once , twice , delay]

end

// -------------------------------------

component Main is

port click , once , twice , thrice : none

par
once → Mouse [click , once , twice]

|| once → Mouse [once , twice , thrice]
end

Fig. 1. A double-click example in Fiacre

Processes: a process is defined by a set of parameters and control states, each
associated with a set of complex transitions (introduced by the keyword from).
The initial state of a process is the state corresponding to the first from declara-
tion. Complex transitions are expressions that declare how variables are updated
and which transitions may fire.

Expressions are built from deterministic constructs available in classical pro-
gramming languages (assignments, conditionals, sequential composition, . . .);
non-deterministic constructs (such as external choice, with the select operator);
communication on ports; and jump to a state (with the to or loop operators). For
example, in Fig. 1, we declare a process named Push with four communication
ports (click to delay) and one local boolean variable, dbl. Ports may send and
receive typed data. The port type none means that no data is exchanged; ports of
type none simply act as synchronization events. Regarding complex transitions,
the expression for s1, for instance, declares two possible behaviors when in state

Model-Checking Real-Time Properties 113

s1: first, on a click event, set dbl to true and stay in state s1; second, on a delay
event, change to state s2.

Data variables are not restricted to simple boolean values. The language pro-
vides rich datatypes, such as natural numbers, arrays, queues, records, . . . For
instance, in the model of the landing gear system (see Sect. 3), we use records
and arrays of booleans to represent the signals from the replicated sensor probes.
The language is strongly typed, meaning that type annotations are exploited in
order to guarantee the absence of unchecked run-time errors.

Components: a component is built from the parallel composition of processes
and/or other components, expressed with the operator par P0 || . . . || Pn end.
Components are the unit for process instantiation and for declaring ports and
shared variables. The syntax of components allows to associate timing con-
straints with communications and to define priority between communication
events. The ability to express directly timing constraints in programs is a distin-
guishing feature of Fiacre. For example, in the declaration of component Mouse
(see Fig. 1), the port statement declares a local event delay with a punctual
timing constraint [1, 1]. As a consequence, a transition from state s1 to s2 in the
mouse cannot be delayed more than one unit of time. A behavior similar to the
synchronization on a local, time-constrained port like delay (basically a time-
out) can be obtained using the expression wait [1, 1]. Additionally, the priority
statement asserts that a transition on event click cannot occur if a transition
on delay is also possible.

2.2 Behavioral Verification with Tina

Tina [4], the TIme Petri Net Analyzer, provides a software environment to edit
and analyze Time Petri Nets and their extensions. It is particularly well suited
to the verification of systems subject to real time constraints, such as the landing
gear system studied in this paper. The core of the Tina toolset is an exploration
engine used to generate state space abstractions that are fed to dedicated model
checking and transition system analyzer tools. The front-ends to the exploration
engine convert models into an internal representation — the abstract Time Tran-
sition Systems (TTS) — that is an extension of Time Petri Nets (TPN) handling
data and priorities [7]. We can use the frac compiler to convert Fiacre description
into TTS and therefore to model-check Fiacre specifications.

We give the graphical representation of a TTS in Fig. 2. This example corre-
sponds to the interpretation of the Fiacre process Push from the computer mouse
example of Sect. 2.1. A TTS can be viewed as a Time Petri Net where transi-
tions are decorated with guards and actions on data variables; the pre and act
expressions inside dotted rectangles. Data is managed within the act and pre
expressions and refer to a fixed set of variables that form the store of the TTS.
In comparison with a TPN, a transition in a TTS is enabled if there is both:
(1) enough tokens in the places of its pre-condition; and (2) the predicate pre is
true. When a transition fires, the store is updated atomically by executing the
corresponding action act. For example, when the token reaches the place s2 in

114 B. Berthomieu, S. Dal Zilio, and Ł. Fronc

the TTS of Fig. 2, we use the value of dbl to test whether we should signal a
double click or not. We can also see in this example the use of read arcs and
priorities between transitions (dashed arrow between transitions).

s0

click

s1 [1; 1]

delay

s2

double

pre: dbl == true

act: dbl := false

click
act: dbl := true

single

act: dbl := false

pre: dbl == false

Fig. 2. Interpretation of the process Push in TTS

Time Transition Systems is the low level formalism used for model-checking.
State space abstractions are vital when dealing with timed systems, such as
TTS, that have in general infinite state spaces (because we work with a dense
time model). Tina offers several abstract state space constructions that preserve
specific classes of properties like absence of deadlocks, reachability of markings,
linear time temporal properties, or bisimilarity.

In the case of the landing gear, most of the requirements can be reduced to
safety properties, that is, checking that some bad state cannot occur. In this case,
we do not need to generate the whole state class graph of the system and we
can use “more aggressive” abstractions. Tina implements two main state-space
abstraction methods, a default method that preserves the set of states and traces
of the system, and a method that preserves the states but not the traces. While
this abstraction gives an over-approximation of the set of execution traces of
the system, it is often much more efficient than the default exploration mode.
This second method can be used in Tina with the command line options -M or
-E. The state-space abstraction corresponding to -M usually has a better space
complexity than -E, but the latter is necessary when using models that have
priorities between transitions.

For more complex properties, Tina provides several back-ends to convert its
output into physical representations readable by external model checkers. In the
context of this study, we need to check LTL properties in the case of failure
mode requirements. Broadly speaking, we need to check that, after the failure
of a mechanical part (the system is in a fail state), every event that triggers
the part (say evt) will eventually lead to the anomaly being detected (the probe

Model-Checking Real-Time Properties 115

normal_mode is set to false). Since the system stays in a fail state when it reaches
it, this property could be defined as follows in LTL:

[]((fail /\ evt) => <>(not normal_mode)) .

We can use selt, the model-checker distributed with the Tina toolbox, to check
this kind of properties on a Fiacre model. It is a model-checker for an enriched
version of State/Event-LTL, a linear time temporal logic supporting both state
and transition properties. For the properties found false, we can compute a timed
counter example and replay it in a TTS simulator.

3 Model of the Landing Gear System

We take benefit from the compositional and hierarchical nature of Fiacre to
model the landing gear system. Each component described in the informal spec-
ification [2] is encoded using a Fiacre component and we use the instantiation
mechanism to efficiently model the redundancies and symmetries of the system.

The digital and mechanical parts are all modeled using separate components.
Only the pilot interface remains implicit as a set of shared boolean variables
that can be triggered by the component modeling the system’s environment. We
also assume that two separate stimuli from the environment cannot occur in less
than 100ms. This value of 100ms is taken from the timing constraints information
provided by the landing gear specification document (Sect. 4.2 of [2]), namely
that “two contrary orders (closure / opening doors, extension / retraction gears)
must be separated by at least 100ms”. The document does not specify any timing
constraints on the movement of the handle or, equivalently, on the reactivity of
the pilot/environment. We chose to apply the same constraints of 100ms here to
avoid unrealistic scenarios in which the handle could be moved infinitely often
in a finite amount of time.

The whole model—when taking into account the maximal level of details—
amounts to about 1200 lines of Fiacre. Most of it was programmed in the course
of one week by a model-checking specialist that was novice with Fiacre. When
compiled into a Time Transition System (see Sect. 2.2) we obtain a net with
about 100 places and 150 transitions. These numbers give a rough idea of the
complexity of the “coordination” aspect of the system. Concerning the functional
complexity of the model, we have about 60 variables in the resulting TTS, but
many of these variables are correlated (at least in normal mode, because of
the redundancies). This is close to the 54 discrete sensor values declared in the
specification and the 5 electrical outputs (called electrical orders in the specifi-
cation [2]) emitted by each computing module.

We describe the structure of the Fiacre specification starting from the data
types used in the model. The main data types are almost word for word those
given in the informal specification of the system. Different parts of the system
interact using electrical orders, hydraulic pressure or sensors. Our model repre-
sents this information as boolean values. For example we observe the presence
or absence of hydraulic pressure but not its transition phase (growing up / going

116 B. Berthomieu, S. Dal Zilio, and Ł. Fronc

down). However the time needed by this transition phase is always taken into
account and adequately modeled in different parts.

To simplify the model, we also use arrays of sensors for closed/open door
sensors, extended/retracted gear sensors and gear shock absorbers sensors. This
allows to reduce the number of variables handled by different processes and to
reduce the code size of our model without modifying the generated state space.

3.1 Digital Part

No timing constraints are given on the speed of the digital part of the system.
(Actually, the description of the system is quite heavily oriented toward a syn-
chronous architecture rather than, say, a time-triggered one.) Since the speed of
digital signals is incommensurate with the speed of mechanical parts, we have
chosen a null response time for every interaction with the digital part. Thus the
digital component computes new outputs instantaneously each time a sensor
value changes. However, electro-valve order delays are considered (we adopt the
same timing constraints than in the use case specification, see Sect. 4.2 of [2]):

– the simulation of the general electro-valve and the maneuvering electro-
valves must be separated by 200ms;

– orders to stop the general electro-valve and the maneuvering electro-valves
must be separated by 1s;

– two opposite electro-valve orders must be separated by 100ms.

The digital part is modeled using two instances of the same computing module
component and an electrical “OR” process making the composition of computing
modules orders. To keep the model simple, each computing module is divided in
four processes: the computing process responsible for detecting failures and or-
dering electro-valves; a process handling general electro-valve timing constraints;
and two processes handling contrary orders and their timing constraints. This
architecture has been faithfully mimicked in our model even if it is redundant in
the normal operation mode given the 100ms delay between stimuli and because
both computing processes should behave in the same manner. We illustrate the
structure of a computing module component in Fiacre in Fig. 3. (The whole
model uses two copies of this component).

3.2 Hydraulic Part

The hydraulic part is modeled using a component handling doors and gears
circuits. The component is composed of two electro-valves and three cylinders;
each part in the hydraulic architecture (valve, cylinder, . . .) is modeled using a
Fiacre process. The timing constraints used in the Fiacre processes are the one
given by the specification (see e.g. Sect. 3.2 of [3]). For instance, an electro-valve
changes its state from open to close in 1 second and from close to open in 3,6
seconds. The process for the cylinders is parametric and configured based on
specification times. As for electro-valves, each cylinder motion can be reversed

Model-Checking Real-Time Properties 117

computing process

contrary order
process

contrary order
process

generalEV order
process

. . .

. . .

open EV close EV expand EV retract EV general EV

manuvering gears down anomaly

sensorsto pilot interface

open EV close EV expand EV retract EV general EV

to hydraulic part and analogical switch

Fig. 3. Computing module implementation

at any time. We consider the whole extension or retraction time in each case and
take into account the 20% time variation mentioned in the specification (Sect.
3.3 of [2]). The main simplification with regards to the specification is that we do
not discretize the behavior of the valve and always consider the worst possible
execution time. In the experimental results section of this paper (see Sect. 4), we
also give some results on a “discrete” version of the model where we record the
progress of the cylinders between a closing and opening requests and follow the
physical behavior defined by the specification (see e.g. Fig. 8 of [2]). The discrete
model use a sampling time of 100ms between every event. The size of the state
space for this discrete model is quite big when compared to our abstracted model.

We used model-checking to compute the worst-case gear retraction time in our
system. This time obtained with the discrete version of the model is the same
than with our abstract version; actually we obtain a value that is marginally
higher with the discrete model due to an accumulation of errors originating
from the “time quantum”.

118 B. Berthomieu, S. Dal Zilio, and Ł. Fronc

3.3 Analogical Switch

The analogical switch is responsible for interfacing digital orders with the general
electro-valve and protecting it from erratic orders. It is enabled each time the
handle is moved. We model the closing and the opening of the switch by waiting
a certain fixed amount of time (taken from the specification), that is, we do
not discretize the state of the switch and always use the worst-case time when
changing state.

We list the Fiacre process corresponding to the analogical switch process
in Fig. 4. The process AnalogicalSwitch is parametrized with variables shared
between processes which are used to update sensor states or pass electrical orders.
We consider that these operations are immediate and thus are seen as shared
boolean variables in our model. The values of these probes are used as guards
on the transitions of the process (using the operator on).

The Fiacre process directly implements the state diagram for the analog switch
that is given in Fig. 8 of the specification [2]. For instance we use the same
names for the different states of the switch: open, intermediate1, closed and
intermediate2. The last transition from state closed (line 33 of the code) models
the fact that, when the switch is closed, the input of the electro-valve (the value
of out_EV) should be equal to the output of the digital module (in_EV). This
transition is implicit in the state diagram of [2]. Actually, the transition was
missing in initial versions of our model and this modeling error raised no obvious
inconsistencies during model-checking. The missing behavior was spotted by a
reviewer familiar with the landing gear system. This is proof that subtle errors
in modeling can be introduced when we use an informal language to describe
the behavior of a system, like with the choice of graphical notation in [2].

3.4 Handling Failures

The physical parts in the system have multiple ways to fail. In our model, we
only consider cylinder failures by allowing gear and door cylinders to get stuck
in their current position indefinitely. We also assume that a part cannot leave a
failure state once it has entered it (no transient failure). We consider only one
possible type of failure at a time since adding all the possible cases—and all
their combinations—could lead to an intractable model.

To address failure mode requirements, we have added failure handling mech-
anisms in each computing module, allowing to detect failures and to notify the
pilot. In the current model, the only notification mechanism is to set the shared
variable normal_mode to false. This is done by watching sensor states with ade-
quate timeouts. We focused on failures induced by the requirements R7� which
are stronger than R6�, however requirements R6� could be easily implemented
(we use the notation R6� to stand for requirements R61 to R64). So, requirements
R6� and R8� were not addressed but could be added with no effort. We made
this choice to limit state space sizes.

Model-Checking Real-Time Properties 119

1 process AnalogicalSwitch(&handle : sensor ,
2 &in_EV : electrical_order ,
3 &out_EV : electrical_order ,
4 &analogical_switch : sensor) is
5 states open , intermediate1 , closed , intermediate2
6 var last_handle : bool := HANDLE_DOWN
7
8 from open
9 wait [0,0];

10 on (handle.value <> last_handle); // handle state has changed
11 last_handle := handle.value;
12 to intermediate1 // move to state intermediate1
13

14 from intermediate1
15 wait [0 ,800]; // wait 800ms... then deliver power
16 out_EV := in_EV;
17 analogical_switch.value := SWITCH_CLOSED;
18 to closed // move to state closed
19
20 from closed
21 select
22 wait [20000 ,20000]; // wait 20s but only if...
23 on (handle.value = last_handle); // handle did not move
24 // then cut power and start intermediate2
25 analogical_switch.value := SWITCH_OPEN;
26 out_EV := false;
27 to intermediate2
28 [] wait [0,0];
29 on (handle.value = last_handle); // if handle did not move ...
30 on (out_EV <> in_EV); // but the input value had changed
31 out_EV := in_EV; // update the output
32 loop // stay in this state without but do not reset
33 [] wait [0,0];
34 on (handle.value <> last_handle);
35 // otherwise if handle state has changed ...
36 // reset immediately this state
37 last_handle := handle.value;
38 out_EV := in_EV;
39 to closed
40 end
41

42 from intermediate2
43 select
44 wait [0,1200]; // wait 1.2s if handle did not move
45 on (handle.value = last_handle);
46 analogical_switch.value := SWITCH_OPEN;
47 to open // move to state open
48
49 [] wait [0,0]; // otherwise if handle did move
50 on (handle.value <> last_handle);
51 last_handle := handle.value;
52 to intermediate1 // move to state intermediate1
53 end

Fig. 4. The AnalogicalSwitch Process in Fiacre (see Fig. 8 of [2]). Full model available
at http://projects.laas.fr/fiacre/examples/landinggear.html.

http://projects.laas.fr/fiacre/examples/landinggear.html

120 B. Berthomieu, S. Dal Zilio, and Ł. Fronc

3.5 Optimizations

Because model checking is highly sensitive to state space explosion, our model
embeds a certain number of optimizations. The electrical orders, hydraulic pres-
sure, and sensors are abstracted to boolean values, so we can control the number
of operations involved when a value changes. For example, we will trigger a
component from the digital part of the system (a computing module) only when
the change in its input probes leads to a change in the values that it writes.
This is useful because it helps reduce the number of transitions in our system.
Also, one can remark that computing modules are fully symmetric. Therefore, in
normal mode, we will always observe the same values twice; once for each copy
of the module. To avoid this unnecessary source of interleaving, we have added
priorities between copies of the same component.

Priorities have also been added between the components of the hydraulic
system so as to fix an arbitrary order between operations of the electro-valves and
cylinders. This optimization is correct because all these devices are independent;
hence we limit the interleaving between independent actions but do not rule out
any possible scenario.

4 Experimental Results

We follow a methodology similar to the one adopted by Boniol et al. in a pre-
vious experiment with model-checking of a landing gear control system [3]. We
define several versions of our model that corresponds to different abstractions
or optimizations on the system. We define three sets of assumptions and, by
combining these parameters, consider different cases of growing complexity.

Parameter V. We consider two configurations for the gear-door sets, a version
with only one gear-door set (denoted V1) and a complete version, with all
three gear-door sets (V3).

Parameter H. We consider several versions for the environment that stimu-
lates the pilot handle. The most general case where the only constraint on
handle movements is a 100ms delay between two stimuli is denoted H2. We
also consider simpler scenarios where the pilot can move the handle at most
k times. This assumption is denoted H1(k).

Parameter N/F. We use the notation N for models that are restricted to the
normal mode, where no failures can happen, and the notation F for models
that include failures.

With these parameters defined, it is possible to refer to a version of the model
with a triplet, for instance (V1, H1(2), N). This is the simplest possible, mean-
ingful case: only one gear-door set; two actions on the handle; and no failures.
The most complex case is (V3, H2, F).

Because of the complexity of the system, we considered only cylinder failures.
Since we only consider cylinder failures, we do not duplicate the computing
component in the digital part, however we provide a version of our model allowing

Model-Checking Real-Time Properties 121

this duplication. For checking behavioral properties, we assume that, in the initial
state of the system, gears are extended and doors are opened. We also assume
that gear absorbers are always relaxed, i.e. we assume that the plane is flying.

4.1 Normal Mode Requirements

The properties corresponding to normal mode requirements (see [2]) can be
expressed as reachability properties. Indeed checking requirements R2�, R3�,
R4�, R5� corresponds to looking for a state were some condition is not satisfied,
and requirement R1� can be expressed with an observer of the system (waiting
15s) and a reachability condition. This allows for efficient verification using the
faster state-space abstraction of Tina (option -E) that preserves reachable states
without building the whole class graph.

All these properties are expected to be true on our model. This is the worst
possible case when checking reachability since it means that we need to generate
the whole set of reachable states of the system. We give below the computation
times and the memory usage for generating the whole state graph. We also
give the complexity using the number of “markings” and “classes” that have
been generated in each case. A marking corresponds to a particular value for
every variable and state for each process in the system. A class adds timing
constraints on the possible transitions enabled from a marking (hence there
are always more classes than markings.) Markings are enough to decide the
requirements R1� to R5�, but we need to compute a set of classes in order to
compute an exact set of reachable markings.

Normal mode state space computation times and memory usage
H2 H1(10) H1(11) H1(12) H1(13) H1(14)

V1
time 41s 56s 71s 88s 105s 123s

memory 24MB 47MB 54MB 62MB 69MB 76MB

V3
time 262s 248s 331s 415s 507s 602s

memory 127MB 202MB 241MB 282MB 323MB 364MB

Normal mode markings and classes sizes
H2 H1(10) H1(11) H1(12) H1(13) H1(14)

V1
markings 16 · 103 56 · 103 63 · 103 71 · 103 79 · 103 86 · 103

classes 153 · 103 252 · 103 303 · 103 356 · 103 411 · 103 468 · 103

V3
markings 90 · 103 242 · 103 283 · 103 325 · 103 367 · 103 409 · 103

classes 979 · 103 1 125 · 103 1 409 · 103 1 701 · 103 2 015 · 103 2 333 · 103

We can observe that the infinite behavior scenario (H2) is easier to handle
than bounded ones when the bound is at least 10 handle moves for V1 and 11
handle moves for V3. This is mainly due to the fact that bounding the number
of interactions is performed by implementing a counter that may increase the
number of reachable states.

For our next experiment, we study the requirement R11 and try to find the
smallest time, say tmin, for the gears to be fully extended and locked in open

122 B. Berthomieu, S. Dal Zilio, and Ł. Fronc

position. This property can be reduced to a simple reachability property since
there is a specific state, si, in the process modeling the pilot behavior that is
reached when the pilot stay idle for a time tmin. Indeed, it is enough to check
that there are no states where the pilot is in si and the gears are not fully open.
The following table gives the computation time and memory usage for different
value of tmin, for the configuration (N,H2, V3) (no failures, no assumptions
on pilot behavior, and the complete gear-door sets). The best time for which
the property is true is 8.5s. We can observe that the computation time is
much smaller for values below this threshold since the property is false in this
case (and the state space exploration can be stopped). So, the computation is
quasi-immediate when the time bound is below the 8.5s threshold but the whole
state space needs to be computed above it.

Checking requirement R11 on (N,H2, V3) for different time limits tmin

tmin 15s 9s 8.5s 8.4s
result valid valid valid falsified
time 268s 268s 268s 2s

memory 127MB 127MB 127MB 5MB

We also considered a discretized version of our model where all intermedi-
ate movement states were computed, for example the cylinder extension ratio,
and where we used the exact (hybrid) physical behavior given in the specifica-
tion. This discretization was made using a sampling time of 100ms. Because of
the number or possible combinations of cylinders, analogical switch and electro-
valves, the number of states grow much faster than with our abstract (non dis-
crete) version. Actually the discretized version was our first attempt, because we
initially believed that it was giving more precise bounds. However, the 100ms
sampling time was not enough to provide better results than the non discrete
version. With the discrete version, the configurations (N,H1(5), V1) and above
were not computable in reasonable times (less than 8 hours).

Normal mode state space computation times and memory usage (discrete)
H1(2) H1(3) H1(4)

V1
time 17s 804s 19 887s

memory 33MB 1 132MB 8 982MB

Normal mode markings and classes sizes (discrete)
H1(2) H1(3) H1(4)

V1
markings 158 · 103 5 097 · 103 112 094 · 103

classes 217 · 103 8 648 · 103 202 266 · 103

These experiments show the interest of having different kind of abstractions
implemented in the same tool (like having different symbolic methods available).
The most complex configuration we tried to analyze with the default options
of Tina (that preserves linear time properties) is (N,H2, V3). We stopped the
analysis after 36 hours of computation and more than 2 billion state classes.

Model-Checking Real-Time Properties 123

The same model can be analyzed with the time-abstracted semantics (option -M)
in two hours (7355s), then with the same option and after removing duplication
of the digital component in 422s. Our results also show the interest of priorities to
reduce the state space size. For instance, after adding priorities between indepen-
dent devices and removing duplication of the digital component, we can analyze
the same system in 262s (option -E). To see the impact of different optimizations
we considered a smaller case (N,H1(8), V3) with different configurations and all
without computing module duplication, the results are shown in the table below.

Impact of optimizations on markings and classes.
(N,H1(8), V3) -E priorities only no priorities

time 119s 5 237s 12 383s
memory 126MB 2 204MB 5 467MB

markings 160 · 103 160 · 103 292 · 103
classes 619 · 103 54 342 · 103 108 302 · 103

4.2 Failure Mode Requirements

As mentioned in section 3.4, we focused on requirements R7�: “If one of the
three doors is not seen locked in the open position more than 7 seconds after
stimulating the opening electro-valve, then the boolean output normal mode is
set to false”. To check that we satisfy these requirements we need to consider
LTL formula.

We can express the requirement R71 quite naturally using LTL: after a failure
(fail_c1), if at least one door is closed (not open_d1) and we later try to
stimulate the opening electro-valve (<>open_EV) then the boolean normal_mode
is eventually set to false.

[]((fail_c1 /\ (not open_d1) /\ (<>open_EV)) => <>(not normal_mode)).

We can observe that the 7 seconds delay does not appear explicitly in the
formula. Indeed, this delay is part of the behavior of the digital module. This
formula is false when checked on the model. After looking at the counter-example
provided by the model-checker, we find that the problematic scenario corre-
sponds to a situation where the pilot continuously moves the handle, waiting
less than 7 seconds between each movement. We can modify the property in
order to rule out this scenario; i.e. ask that the pilot does not move the handle
up. We solve this issue by adding an idle state to our pilot that can be reached
after moving the handle. If this idle state is reached then the pilot will not move
the handle again. With this new state added, the correct formula is

[]((pilot_idle /\ handle_down /\ fail_c1 /\ (not open_d1)
/\ (<>open_EV)) => <>(not normal_mode)).

We were not able to model-check the system with the configuration H2. Even
if the number of reachable states remains quite small in this case, the number
of classes is too large to address it in reasonable time. We give below the results
obtained with a “bounded” pilot (H1(k)) and an incomplete or full gear-door set
(configurations with V1 or V3).

124 B. Berthomieu, S. Dal Zilio, and Ł. Fronc

Failure mode, time and memory usage results for bounded scenarios
H1(3) H1(4) H1(5) H1(6)

V1
time 2s 7s 15s 32s

memory 7MB 17MB 34MB 54MB

V3
time 70s 304s 968s 2418s

memory 169MB 611MB 1 544MB 2 925MB

Failure mode, markings and classes counts for bounded scenarios
H1(3) H1(4) H1(5) H1(6)

V1
markings 12 · 103 30 · 103 54 · 103 83 · 103

classes 17 · 103 49 · 103 108 · 103 200 · 103

V3
markings 317 · 103 1 153 · 103 2 822 · 103 5 073 · 103

classes 458 · 103 1 725 · 103 4 967 · 103 10 847 · 103

4.3 Comparaison with a Previous, Similar Study

A similar case study was used by Boniol et al. in 2006 [3], where they compared
the use of several model-checking tools: a majority of tools based on the syn-
chronous language Lustre, and one tool, Uppaal, based on timed automata. It is
interesting to revisit these results that are nearly ten years old. This comparison
is not very significant though. Indeed, even if the specification used in our work
derives from the use case of [3], it is not clear if they are totally equivalent. Also,
we do not know what optimizations were used in the other models. In particular,
our use of an abstract (non discrete) behavior for the analog switches and the
cylinders may account for most of our good results.

In the study of [3], no tools were able to deal with the failure mode require-
ments. For the nominal case, the most complex problem configuration studied
is equivalent to (N , H2, V3) with our notation. With this configuration, Lustre-
SMV requires 414MB of memory and 16mn 40s to compute its result. We give
the running time for information only, since it is not meaningful to compare
computers that are ten years apart. On the opposite, the memory consumption
offers a more reliable point of comparison. Using Tina on our model for (N , H2,
V3) we need only 127MB and 5mn.

Uppaal, that is based on timed automata, provides the formalism that is the
closest to Time Petri Nets from all the tools considered in this study. At the time,
Uppaal gave no results on the configuration with three gears. On a configuration
with only one gear, equivalent to (N , H2, V1) with our notation, it takes 761MB
and nearly 6 hours to return a result. Unfortunately we do not have access to the
model and do not know the number of states that were generated, so we cannot
use this information as a basis for our comparison. This can be compared to the
24MB of memory that are needed in our experiment (and 41s, with the same
caveat than previously).

Model-Checking Real-Time Properties 125

5 Conclusion

We have illustrated the use of Fiacre for checking the real-time properties of a
fairly large and complex real-life case study. We have provided a formal model
that is as faithful as possible to the informal, reference specification, at the risk
of obtaining intractable model-checking problems. This model could be further
optimized in order to obtain better computation times when checking a specific
set of properties, for example by reducing the inherent level of redundancies
when it does not modify the behavior of the system. Nonetheless, even without
further optimizations, it is possible to check most of the requirements that are
part of the specification.

Other solutions for checking larger, more complex configurations of our model
are worth pursuing. A first possibility will be to take benefit from the symmetries
of the system (for instance, the two rear gears are interchangeable). Another
solution will be to simplify the transient transitions of the model, that is the
internal, instantaneous transitions that are only used for modeling purpose and
have no “physical meaning” in the system. This simplification can be compared
to what we already obtain by adding priorities between independent devices, but
would be more efficient and simpler to define at the model level. Unfortunately,
our toolset does not provide this optimization. A first investigation (by reducing
the state class graph afterward) show that, this way, we could reduce the memory
usage by a factor of about 20.

References

1. Berthomieu, B., Bodeveix, J.P., Farail, P., Filali, M., Garavel, H., Gauffilet, P.,
Lang, F., Vernadat, F.: Fiacre: an intermediate language for model verification in
the topcased environment. In: Embedded Real Time Software (ERTS) (2008)

2. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: Boniol, F. (ed.)
ABZ 2014 Case Study Track. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

3. Wiels, V., Boniol, F., Ledinot, E.: Experiences in using model checking to verify real
time properties of a landing gear control system. SIA/Articles Techniques (2006)

4. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool Tina – construction of abstract
state spaces for Petri Nets and time petri nets. International Journal of Production
Research 42 (2004)

5. Berthomieu, B., Bodeveix, J.P., Filali, M., Garavel, H., Lang, F., Peres, F., Saad,
R., Stoecker, J., Vernadat, F.: The syntax and semantics of fiacre. Repport LAAS
N 07264 (2007)

6. Berthomieu, B., Vernadat, F.: State Space Abstractions for Time Petri Nets. In: Lee,
I., Leung, J.Y.-T., Son, S. (eds.) Handbook of Real-Time and Embedded Systems.
CRC Press, Boca Raton (2007)

7. Abid, N., Dal Zilio, S., Le Botlan, D.: A formal framework to specify and verify
real–time properties on critical systems. International Journal of Critical Computer-
Based Systems 5, 4–30 (2014)

The Landing Gear Case Study in Hybrid Event-B

Richard Banach

School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.

banach@cs.man.ac.uk

Abstract. A case study problem based on a set of aircraft landing gear is ex-
amined in Hybrid Event-B (an extension of Event-B that includes provision for
continuously varying behaviour as well as the usual discrete changes of state).
Although tool support for Hybrid Event-B is currently lacking, the complexity
of the case study provides a valuable challenge for the expressivity and mod-
elling capabilities of the formalism. The size of the case study, and in particular,
the number of overtly independent subcomponents that the problem domain con-
tains, both significantly exercise the multi-machine and coordination capabilities
of Hybrid Event-B, requiring the use of novel coordination mechanisms.

1 Introduction

This paper reports on a treatment of the landing gear case study using Hybrid Event-B.
Hybrid Event-B [4] is an extension of the well known Event-B framework, in which
continuously varying state evolution, along with the usual discrete changes of state,
is admitted. There is a prima facie case for attempting such an exercise using Hybrid
Event-B, since aircraft systems are replete with interactions between physical law and
the engineering artifacts that are intended to ensure appropriate aircraft behaviour. In
the case of landing gear systems specifically, a good idea of the real complexity of such
systems can be gained from Chapter 13 of [16].

Given that landing gear is predominantly controlled by hydraulic systems (see Chap-
ter 12 of [16]), it might be imagined that the requirements for the present case study [6],
would feature relevant physical properties quite extensively. Hybrid Event-B would be
ideally suited to describe the interactions between these and the control system — for
example on the basis of the theory and models detailed in [10,1,11]. However, it is clear
that the requirements in [6] have been heavily slanted to remove such aspects almost
completely, presumably because the overwhelming majority of tools in the verification
field would not be capable of addressing the requisite continuous aspects. Instead, the
relevant properties are reduced to constants (perhaps accompanied by margins of vari-
ability) that delimit the duration of various physical processes, these being relevant to
a treatment centred on discrete control events. Such an approach reduces the modelling
workload, but the penalty paid for it is the loss of the ability to justify the values of these
constants during the verification process, whether this be on the basis of deeper theory
or of values obtained from lower level phenomenological models.

Despite this reservation, a small number of simple continuous behaviours are left
within the requirements in [6], these being confined to simple linear behaviours of some

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 126–141, 2014.
c© Springer International Publishing Switzerland 2014

The Landing Gear Case Study in Hybrid Event-B 127

parts of the physical apparatus. Yet, these are enough to demonstrate many essential
capabilities of the Hybrid Event-B formalism in dealing with continuous phenomena
and their interaction with discrete events.

The reduced workload of the restricted requirements was in fact welcome, since
the limited resources available for the present work meant that a treatment including
all failure modes could not be included. However, the nominal regime study that is
presented here is sufficient to bring out the main benefits of the approach, and some
comments on the failure cases are included in the latter parts of this paper.

Since there is presently no specific tool support for Hybrid Event-B, our case study
is primarily an exploration of modelling capabilities. As explained below, a major ele-
ment of this is the challenge of modelling physically separate components in separate
machines, and of interconnecting all these machines in ways appropriate to the do-
main, all supported by relevant invariants. This requires novel machine interconnection
mechanisms, introduced for pure Event-B in [2]. The suitability of proposals for such
mechanisms can only be tested convincingly in the context of independently conceived
substantial case studies like this one, so it is gratifying that the mechanisms exercised
here fare well in the face of the complexities of the given requirements.

The rest of this paper is as follows. Section 2 briefly overviews the landing gear re-
quirements. Section 3 gives an overview of Hybrid Event-B, while Section 4 covers the
case of multiple machines and our modelling strategy for complex systems. A descrip-
tion of our development appears in Section 5. Section 6 summarises the lessons learned
from this exercise and concludes.

2 Landing Gear Overview

The landing gear case study is presented in [6]. Here we give the gist of it, focusing on
features of most interest to the Hybrid Event-B treatment. Fig. 1, reproduced from [6],
shows the architecture of the system.

The sole human input to the system is the pilot handle: when pulled up it
instructs the gear to retract, and when pulled down it instructs the gear to extend. The
signal from the handle is fed both to the (replicated) computer system and to the analog-
ical switch, the latter being an analogue device that gatekeeps powerup to the hydraulic
system, to prevent inappropriate gear movement even in the case of computer malfunc-
tion. In a full treatment, including faulty behaviour, there are further inputs from the
sensors, which can behave in an autonomous manner to introduce faults. But in our
purely nominal treatment, sensor behaviour is a deterministic consequence of other ac-
tions, so does not constitute independent influence from the environment. A further
point concerns the shock absorber sensors, which are modelled using a guard rather
than as inputs. The relevant issue is discussed at the beginning of Section 5.

The analogical switch passes a powerup command from the computers to the gen-
eral electro-valve. 1 This pressurises the rest of the landing gear hydraulic system, ready
for specific further commands to manipulate its various parts, these being the doors of
the cabinets that contain the gear when retracted, and the gear extension and retrac-
tion mechanisms themselves. Beyond this, both the analogical switch and the output

1 As a rule, commands from the two computers are ORed by the components that obey them.

128 R. Banach

��������	�
���

Front door

cylinder

Right door

cylinder

Left door

cylinder

Aircraft hydraulic

circuit

General electro-valve

Electro-valve (close doors)

Electro-valve

 (open doors)

Electro-valve (retract gears)

Electro-valve

(extend gears)

Front gear

cylinder

Right gear

cylinder

Left gear

cylinder

O
rd

e
rs

 t
o

 e
le

c
tr

o
-v

a
lv

e
s

From discrete sensors (gear extended /

not extended, gear retracted / not

retracted, door closed / not closed, door

open / not open, …)

Discrete sensor (pressure OK / not OK)

�	������

(retraction

circuit)

(retraction

circuit)

(extension

circuit)

(extension

circuit)

Analogical switch

��������

Towards the

cockpit

Fig. 1. Architectural overview of the landing gear system, reproduced from [6]

of the general electro-valve are monitored by (triplicated) sensors that feed back to the
computer systems, as is discernible from Fig. 12.

What is particularly interesting about the system so far, is that the arrangement of
these various interconnections between system components is evidently quite far from
the kind of tree shape that facilitates clean system decomposition. Thus, the handle is
connected to the computers, and the handle is connected to the analogical switch. But
the analogical switch is also connected to the computers, so ‘dividing’ the computers
from the analogical switch in the hope of ‘conquering’ structural complexity will not
work, and obstructs the clean separation of proofs into independent subproofs concern-
ing analogical switch and computers separately. This poses a major challenge for our
modelling methodology, and gave rise to the need for new interconnection mechanisms,
discussed in Section 4.

Beneath the level of the general electro-valve, it is a lot easier to see the system as
comprised of the computers on the one hand, and the remaining hydraulic components
on the other, connected together in ways that are tractable when the new interconnection
mechanisms are available.

3 Hybrid Event-B, Single Machines

In this section we look at Hybrid Event-B for a single machine. In Fig. 2 we see a
bare bones Hybrid Event-B machine, HyEvBMch. It starts with declarations of time

2 A large number of other sensors also feed back to the computers, but this not relevant to the
point we are making just now.

The Landing Gear Case Study in Hybrid Event-B 129

MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x, y
VARIABLES u
INVARIANTS

x, y, u ∈ R,R,N
EVENTS

INITIALISATION
STATUS ordinary
WHEN

t = 0
THEN

clk, x, y, u := 1, x0, y0, u0
END

.

.
MoEv

STATUS ordinary
ANY i?, l, o!
WHERE

grd(x, y, u, i?, l, t, clk)
THEN

x, y, u, clk, o! :|
BApred(x, y, u, i?, l, o!,
t, clk, x′, y′, u′, clk′)

END
.

.
PliEv

STATUS pliant
INIT iv(x, y, t, clk)
WHERE grd(u)
ANY i?, l, o!
COMPLY

BDApred(x, y, u,
i?, l, o!, t, clk)

SOLVE
D x =
φ(x, y, u, i?, l, o!, t, clk)

y, o! :=
E(x, u, i?, l, t, clk)

END
END

Fig. 2. A schematic Hybrid Event-B machine

and of a clock. In Hybrid Event-B, time is a first class citizen in that all variables are
functions of time, whether explicitly or implicitly. However time is special, being read-
only. Clocks allow more flexibility, since they are assumed to increase like time, but
may be set during mode events (see below). Variables are of two kinds. There are mode
variables (like u) which take their values in discrete sets and change their values via
discontinuous assignment in mode events. There are also pliant variables (such as x, y),
declared in the PLIANT clause, which typically take their values in topologically dense
sets (normally R) and which are allowed to change continuously, such change being
specified via pliant events (see below).

Next are the invariants. These resemble invariants in discrete Event-B, in that the
types of the variables are asserted to be the sets from which the variables’ values at any
given moment of time are drawn. More complex invariants are similarly predicates that
are required to hold at all moments of time during a run.

Then, the events. The INITIALISATION has a guard that synchronises time with the
start of any run, while all other variables are assigned their initial values as usual.

Mode events are direct analogues of events in discrete Event-B. They can assign all
machine variables (except time itself). In the schematic MoEv of Fig. 2, we see three
parameters i?, l, o!, (an input, a local parameter, and an output respectively), and a guard
grd which can depend on all the machine variables. We also see the generic after-value
assignment specified by the before-after predicate BApred, which can specify how the
after-values of all variables (except time, inputs and locals) are to be determined.

Pliant events are new. They specify the continuous evolution of the pliant variables
over an interval of time. The schematic pliant event PliEv of Fig. 2 shows the struc-
ture. There are two guards: there is iv, for specifying enabling conditions on the pliant
variables, clocks, and time; and there is grd, for specifying enabling conditions on the
mode variables. The separation between the two is motivated by considerations con-
nected with refinement.

The body of a pliant event contains three parameters i?, l, o!, (again an input, a local
parameter, and an output) which are functions of time, defined over the duration of the
pliant event. The behaviour of the event is defined by the COMPLY and SOLVE clauses.
The SOLVE clause specifies behaviour fairly directly. For example the behaviour of
pliant variable y and output o! is given by a direct assignment to the (time dependent)

130 R. Banach

value of the expression E(. . .). Alternatively, the behaviour of pliant variable x is given
by the solution of the first order ordinary differential equation (ODE) D x = φ(. . .),
where D indicates differentiation with respect to time. (In fact the semantics of the
y, o! = E case is given in terms of the ODE D y,D o! = DE, so that x, y and o!
satisfy the same regularity properties.) The COMPLY clause can be used to express any
additional constraints that are required to hold during the pliant event via its before-
during-and-after predicate BDApred. Typically, constraints on the permitted range of
values for the pliant variables, and similar restrictions, can be placed here.

The COMPLY clause has another purpose. When specifying at an abstract level, we
do not necessarily want to be concerned with all the details of the dynamics — it is
often sufficient to require some global constraints to hold which express the needed
safety properties of the system. The COMPLY clauses of the machine’s pliant events
can house such constraints directly, leaving it to lower level refinements to add the
necessary details of the dynamics.

Briefly, the semantics of a Hybrid Event-B machine is as follows. It consists of a set
of system traces, each of which is a collection of functions of time, expressing the value
of each machine variable over the duration of a system run. (In the case of HyEvBMch,
in a given system trace, there would be functions for clk, x, y, u, each defined over the
duration of the run.)

Time is modeled as an interval T of the reals. A run starts at some initial mo-
ment of time, t0 say, and lasts either for a finite time, or indefinitely. The duration
of the run T , breaks up into a succession of left-closed right-open subintervals: T =
[t0 . . . t1), [t1 . . . t2), [t2 . . . t3), The idea is that mode events (with their discontinu-
ous updates) take place at the isolated times corresponding to the common endpoints
of these subintervals ti, and in between, the mode variables are constant and the pliant
events stipulate continuous change in the pliant variables.

Although pliant variables change continuously (except perhaps at the ti), continuity
alone still admits a wide range of mathematically pathological behaviours. To eliminate
these, we insist that on every subinterval [ti . . . ti+1) the behaviour is governed by a
well posed initial value problem D xs = φ(xs . . .) (where xs is a relevant tuple of pliant
variables and D is the time derivative). ‘Well posed’ means that φ(xs . . .) has Lipschitz
constants which are uniformly bounded over [ti . . . ti+1) bounding its variation with re-
spect to xs, and that φ(xs . . .) is measurable in t. Moreover, the permitted discontinuities
at the boundary points ti enable an easy interpretation of mode events that happen at ti.

The differentiability condition guarantees that from a specific starting point, ti say,
there is a maximal right open interval, specified by tMAX say, such that a solution to the
ODE system exists in [ti . . . tMAX). Within this interval, we seek the earliest time ti+1

at which a mode event becomes enabled, and this time becomes the preemption point
beyond which the solution to the ODE system is abandoned, and the next solution is
sought after the completion of the mode event.

In this manner, assuming that the INITIALISATION event has achieved a suitable
initial assignment to variables, a system run is well formed, and thus belongs to the
semantics of the machine, provided that at runtime:

The Landing Gear Case Study in Hybrid Event-B 131

• Every enabled mode event is feasible, i.e. has an after-state, and on its comple-
tion enables a pliant event (but does not enable any mode event).3

(1)

• Every enabled pliant event is feasible, i.e. has a time-indexed family of after-
states, and EITHER:

(i) During the run of the pliant event a mode event becomes enabled. It pre-
empts the pliant event, defining its end. ORELSE

(ii) During the run of the pliant event it becomes infeasible: finite termination.
ORELSE

(iii) The pliant event continues indefinitely: nontermination.

(2)

Thus in a well formed run mode events alternate with pliant events. The last event
(if there is one) is a pliant event (whose duration may be finite or infinite). In reality,
there are a number of semantic issues that we have glossed over in the framework just
sketched. We refer to [4] for a more detailed presentation.

We point out that the presented framework is quite close to the modern formulation
of hybrid systems. See eg. [15,12] for representative modern formulations, or [8] for a
perspective stretching further back.

4 Top-Down Modelling of Complex Systems, and Multiple
Cooperating Hybrid Event-B Machines

The principal objective in modelling complex systems in the B-Method is to start with
small simple descriptions and to refine to richer, more detailed ones. This means that, at
the highest levels of abstraction, the modelling must abstract away from concurrency.
By contrast, at lower levels of abstraction, the events describing detailed individual
behaviours of components become visible. In a purely discrete event framework, like
conventional Event-B, there can be some leeway in deciding whether to hold all these
low level events in a single machine or in multiple machines — because all events
execute instantaneously, isolated from one another in time (in the usual interpretation).

In Hybrid Event-B the issue is more pressing. Because of the continuous behaviour
that is represented, all components are always executing some event. Thus an inte-
grated representation risks hitting the combinatorial explosion of needing to represent
each possible combination of concurrent activities within a separate event, and there is
a much stronger incentive to put each (relatively) independent component into its own
machine, synchronised appropriately. Put another way, there is a very strong incentive
to not abstract away from concurrency, an impulse that reflects the actual system ar-
chitecture. In Hybrid Event-B, there is thus an even greater motivation than usual for the
refinement methodology to make the step from monolithic to concurrent convincingly.

This is accomplished by using normal Hybrid Event-B refinement up to the point
where a machine is large enough and detailed enough to merit being split up. Then, the
key concept in the decomposition is the INTERFACE. This is adapted from the idea in
[9] to include not only declarations of variables, but of the invariants that involve them,

3 If a mode event has an input, the semantics assumes that its value only arrives at a time strictly
later than the previous mode event, ensuring part of (1) automatically.

132 R. Banach

INTERFACE Level7 AnSw IF
READS Level7 Comp IF
REFERS Level7 Comp IF
CLOCK clk AnSw
VARIABLES

AnSwClosed, sens AnSwi

PLIANT
answ2genev

INVARIANTS
AnSwClosed ∈ BOOL
answ2genev ∈ BOOL
(AnSw CLOSED INIT < clk AnSw <

AnSw CLOSED FIN) ⇒ AnSwClosed
¬(AnSw CLOSED INIT ≤ clk AnSw ≤

AnSw CLOSED FIN) ⇒ ¬AnSwClosed
.

.
/\/\/\i sens AnSwi ∈ {OPEN, CLOSED}
/\/\/\i AnSwClosed ⇒ sens AnSwi = CLOSED
/\/\/\i ¬AnSwClosed ⇒ sens AnSwi = OPEN
answ2genev ⇒ cmp2answ1 ∨ cmp2answ2

answ2genev ⇒ AnSwClosed
INITIALISATION

BEGIN
clk AnSw := BIGT
AnSwClosed := FALSE
||i sens AnSwi := OPEN
answ2genev := FALSE

END
END

Fig. 3. Level 7 interface for the analogical switch, from the case study

and their initialisations. A community of machines may have access to the variables
declared in an interface if each machine CONNECTS to the interface. All events in the
machines must preserve all of the invariants in the interface, of course. An important
point is that all invariants involving the interface’s variables must be in the interface.

Well, not quite all; an exception is needed. Invariants of the form U(u) ⇒ V(v),
where variables u and v belong to different interfaces, are also allowed. Such cross-
cutting invariants (which we call type 2 invariants, t2i s) are needed to express fun-
damental dependencies between subsystems which are coupled in a nontrivial manner
(such couplings invariably arise in multicomponent systems). In a t2i, the u and v vari-
ables are called the local and remote variables respectively. By convention a t2i resides
in the interface containing its local variables.

Fig. 3 shows an example of the preceding taken from the landing gear case study. It is
an interface, Level7 AnSw IF, primarily intended for some variables of the Analogical
Switch. It contains some, by now, familiar ingredients, such as a clock clk AnSw, and
some mode and pliant variables, AnSwClosed, sens AnSwi, answ2genev. These model
the state of the analogical switch, the state of its sensors, and the signal from the switch
to the general electro-valve. It also contains statements READS Level7 Comp IF and
REFERS Level7 Comp IF.

The first of these says that the interface contains a t2i (specifically answ2genev ⇒
cmp2answ1 ∨ cmp2answ2) for which the local variables (i.e. answ2genev) are found in
Level7 AnSw IF, and the remote variables (i.e. cmp2answ1, cmp2answ2) are found in
Level7 Comp IF, which is another interface, predominantly concerned with variables
(and their invariants) belonging to the computer systems.

The second expresses the converse idea, namely that there is a t2i in Level7 Comp IF
for which the local variables are in Level7 Comp IF, and the remote variables are in
Level7 AnSw IF.

By restricting to t2is as the only means of writing invariants that cross-cut across two
interfaces (and, implicitly, across the machines that access them), we can systematise,
and then mechanise, the verification of such invariants. Thus, for a t2i U(u) ⇒ V(v)
it is sufficient for events that update the u variables to preserve ¬U (if it is true in the
before-state) and for events that update the v variables to preserve V (if it is true in the
before-state). A more comprehensive treatment of the notion of interface used here ap-
pears in [2].

The Landing Gear Case Study in Hybrid Event-B 133

As well as sharing variables via interfaces, multi-machine Hybrid Event-B systems
need a synchronisation mechanism — one that is more convenient than creating such a
thing ab initio from the semantics. For this the shared event paradigm [7,14] turns out
to be the most convenient. In this scheme, identically named (mode) events in two (or
more) machines of the system are deemed to be required to execute simultaneously. In
practice, it means that for each such event, its guard is re-interpreted as the conjunction
of the guards of all the identically named events. Below, in Section 6, we say rather
more more about mode event synchronisation. In particular, we point out the need for
a more flexible method of identifying events which are to be synchronised than pure
name identity. (In fact, a more flexible mechanism has been implemented in the Rodin
Tool [13] than is described in the literature. However, we stick, for simplicity and com-
parability with the published literature, to the simple and static identical name scheme.)

5 Model Development

Having discussed the technical preliminaries, in this section, we overview the devel-
opment of the landing gear case study. To clarify some minor inconsistencies in the
spec [6], we assume that the pilot controls the gear via a handle for which handle UP
means gear up, and handle DOWN means gear down. We also assume that in the initial
state the gear is down and locked, since the aircraft does not levitate when stationary
on the ground, presumably. Connected with this requirements aspect is the absence of
provision in [6] of what is to happen if the pilot tries to pull the handle up when the
aircraft is not in flight. Presumably the aircraft should not belly-flop to the ground, so
we just incorporate a suitable guard on the handle movement events, based on the value
of the shock absorber sensors. This leaves open the question of what actually happens
if the pilot pulls the handle up when the plane is on the ground. Does the handle resist
the movement, or does gear movement remain pending until released by the state of the
shock absorber sensors, or ...?

This issue, in turn, raises a further interesting question. Although the fact just pointed
out causes no special problem for an event-by-event verification strategy like the B-
Method, the absence of any explicit requirement that allows the shock absorber to
change value, would be equivalent to the aircraft never leaving the ground, leading to
the absence of nontrivial traces for a trace based verification strategy to work on (unless
suitable additional events were introduced into the model, just for this purpose).

Pursuing the technical strategy discussed earlier, implies that in the final development,
each component that is identifiable as a separate component in the architectural model,
should correspond to a machine in its own right. Thus, at least, the pilot subsystem (handle
and lights), the two computers, the analogical switch, the general electro-valve, and the
individual movement electro-valves (and their associated hydraulic cylinders), should
all correspond to separate machines at the lowest level of development. The nontriv-
ial interdependencies between these subsystems give rise to enough cross-cutting type
2 invariants between the corresponding machines to thoroughly exercise the modelling
capabilities of our formal framework.

A further technical goal in this development is, as far as possible, to use variables that
correspond directly to quantities discussed in the requirements document. The aim is to

134 R. Banach

strive for the closest possible correspondence between requirements and formal model,
in the belief that this improves the engineering process. Allied to this is the fact that the
present work is the most complex case study attempted in Hybrid Event-B to date, so,
a certain amount of experimentation was carried out during the case study in order to
evaluate different modelling approaches to various features found in [6]. Consequently,
the same kind of situation is not always approached in the same way.

5.1 The Nominal Regime

With these remarks made, we turn to the development itself. This is too big to include
in full here of course; the details can be found at [3]. In this section we summarise the
essentials, pausing to discuss interesting issues as they arise.

We focus on the nominal regime. For the faulty regime, see below. Adhering to the
vision of the B-Method, the development starts very simply, and proceeds to add detail
via layers of refinement. As different parts of the system require different numbers of
refinement steps in order to reach their final degree of detail, in [3], the various syn-
tactic constructs are labeled with a level number, and the caption accompanying each
construct states which constructs constitute the system at the current level of develop-
ment.

Level 0 gives the simplest, pilot-level view of the system, and consists of just one
machine: Level0 PilotAndLightsNominal. There are mode events for raising and lower-
ing the handle, and for switching the green and orange lights on and off (the red light is
ignored in the nominal regime). For example:

PilotGearUP
ANY in?
WHERE in? = pilotGearUP X ∧ handle = DOWN
THEN handle := UP
END

This is identical to normal Event-B, aside from the input parameter in?, which is re-
quired to be pilotGearUP X, and which is furthermore unused in the event. The expla-
nation for this is that while in normal Event-B, events are assumed to execute lazily,
i.e. not at the very instant they become enabled (according to the normal interpretation
of how event occurrences map to real time), in Hybrid Event-B, mode events execute
eagerly, i.e. as soon as they are enabled (in real time).

This is because physical law is similarly eager: if a classical physical system reaches
a state in which some transition is enabled, it is overwhelmingly the case that energetics
and thermodynamics force the transition to take place straight away. Hybrid Event-B,
in being designed to model physical systems, must therefore conform to this. As a
consequence, typical Event-B models, in which a new after-state immediately enables
the next transition, would cause an avalanche of mode event occurrences if interpreted
according to Hybrid Event-B semantics.

To avoid this, and yet to allow modelling convenience in Hybrid Event-B, the unde-
sirable avalanche of mode event occurrences is avoided at runtime by building a delay
into the semantics. The delay lasts as long as a required input parameter remains absent,
and the semantics assumes that the input does not arrive until after some positive (but
otherwise unspecified — unless more precisely constrained in the guard) period of time
has elapsed.

The Landing Gear Case Study in Hybrid Event-B 135

There is also a default pliant event PliTrue to define behaviour between occurrences
of the mode events. It merely stipulates COMPLY INVARIANTS.

Level 1 is a simple refinement of level 0, and just introduces some additional vari-
ables. Aside from minor details of syntax, it is just a discrete Event-B refinement of
Level0 PilotAndLightsNominal to Level1 PilotAndLightsNominal.

Level 2 begins the process of splitting things into smaller components. The level
1 machine is split into Level2 PilotNominal and Level2 CompNominal. Each event of
Level1 PilotAndLightsNominal is split into a pair of synchronised events in the two
machines. The former reflects the pilot’s view, in which the pilot is responsible for han-
dle events (so the earlier in? = pilotGearUP X goes into the Pilot machine), and the
computer is responsible for the lights events (so the inputs for those events go into the
Comp machine). The rationale for the latter is that the occurrences of the lights events
depend on as yet absent Comp details, so at this level of abstraction, they just appear as
spontaneously generated events from Comp’s environment, to be eventually refined to
the deterministic behaviour of a more complete computing machine. The relationship
between Level2 PilotNominal and Level2 CompNominal is mediated by an interface,
Level2 Comp IF, which contains all the variables shared by the two machines. The
decomposition of the level 1 machine into the two level 2 machines plus their inter-
face constitutes a ‘textbook’ example of doing decomposition according to the scheme
described earlier.

The next few levels are concerned with reconciling the pilot’s view of a singular
computing system behaviour with the reality of the duplicated computing modules of
the architecture of Fig. 1. Again, while the system description is still small, a ‘text-
book’ approach to the issue is taken. What we mean by this is that there will be a
machine depicting a singular computing system behaviour for the pilot, connected with
two actual computing modules which will be successively refined to include further im-
plementation detail. The textbook approach to this is to refine the Level2 CompNominal
machine to a machine, Level3 CompNominal that: firstly, duplicates the computer initi-
ated events (to model potential asynchrony of the two computing modules4); secondly,
replicates the relevant variables so that each representative machine will have its own
copy of each relevant variable. This situation is supported by an enriched interface
Level3 Comp IF. That done, at level 4, we can decompose Level3 CompNominal into
Level4 CompNominal (expressing the pilot’s view), and Level4 Comp1Nominal and
Level4 Comp2Nominal (the two ‘real’ computing modules-to-be).

The main outcome of this approach is to convince us of its extreme verbosity as a
way of modelling the ‘OR’ of the two computing modules’ commands whenever they
must send a command to any external component. In the remainder of the development,
such verbosity is avoided by having the receiving component simply react to the OR of
the received signals in the guards of its events, even though this is slightly inaccurate
architecturally (since, in reality, the OR is calculated outside the relevant component).

The next step is to introduce the analogical switch, whose functioning takes time,
for which the Level5 AnalogicalSwitchNominal machine introduces a clock, clk AnSw.
The analogical switch is open by default. When stimulated by a handle event, it takes

4 We allow for potential asynchrony, even though in our idealised modelling sphere, both com-
puting modules will follow exactly the same trajectory.

136 R. Banach

CLOSED_INIT CLOSED_FIN OPEN0

• • • ••

clk_AnSw

Fig. 4. The analogical switch machine’s transitions when interrupted by a fresh handle event

some time to close (from 0 till CLOSED INIT), then stays closed for a while (from
CLOSED INIT till CLOSED FIN), then takes some time to open once more (from
CLOSED FIN till OPEN). Fig. 4 indicates what happens to the clock value when a
fresh handle event occurs before the previous sequence has completed. The handle
events that intiate these activities are synchronised with the pilot’s handle events (in
machine Level5 PilotNominal, which is a copy of Level2 PilotNominal but including
these additional synchronisations). This in order to model the fact that —according to
the architecture of Fig. 1— the pilot’s handle events reach the analogical switch directly,
and not via the computing modules.

Thus far, the development is relatively tree-shaped. Practically speaking, this means
that there is no need for nontrivial invariants involving variables that are not declared in
the same place. For a development of modest size, it is always possible to arrange things
so that this holds. However, as the size of the development increases, the prescience
needed to arrange the development so that this remains true, and the need to appropri-
ately separate concerns, both render this desire unrealistic. We see this in concrete terms
in our development at level 6, which is concerned with introducing the analogical switch
sensors. For clarity, these are introduced in a separate step to that which introduces the
analogical switch itself. Since the analogical switch is by now in a separate machine
from the computing modules, any invariant involving the sensors and computing vari-
ables becomes a cross-cutting t2i. This applies to /\/\/\i gearsMovingk ⇒ sens AnSwi =
CLOSED which states that various landing gears do not start moving until the the
analogical switch is sensed to be closed. This t2i appears in the Level6 Comp IF in-
terface, using the t2i machinery discussed above. This necessitates a partitioning of
Level5 AnalogicalSwitchNominal in that a new interface, Level6 AnSw IF is needed to
house some of the Level5 AnalogicalSwitchNominal variables, so as to conform to the
syntactic conventions for t2is, yielding also machines Level6 AnalogicalSwitchNominal
and Level6 CompkNominal.

A similar process can be followed for introducing the general electro-valve. This is
carried out at level 7, rather as for the analogical switch at level 5. What is interest-
ing though, for the general electro-valve, is that the requirements [6] do specify some
continuous behaviour for this component, albeit that this is simple linear behaviour.
The opportunity is taken here to model this using nontrivial pliant events in machine
Level7 General EV Nominal. For instance, the growth of pressure in the door and gear
movement circuits is given by:

PressureIncreasingOrHIGH
INIT answ2genev
SOLVE
D genEVoutput = PressureIncRate × bool2real((genEVoutput < HIGH) ∧ answ2genev)

END

The Landing Gear Case Study in Hybrid Event-B 137

This says that the time derivative of genEVoutput is constant as long as genEVoutput
does not exceed HIGH and the control signal answ2genev is true. Once genEVoutput =
HIGH is reached, the derivative drops to zero and so genEVoutput remains constant.

Level 8, which introduces the sensors for the general electro-valve, is as interesting
as level 7. The general electro-valve sensors only signal HIGH when genEVoutput ac-
tually reaches HIGH. This leads to a multi-step refinement of the level 7 pliant event
PressureIncreasingOrHIGH. A first pliant event models the increasing episode during
which the derivative is nonzero, and a second pliant event models the constant episode
during which genEVoutput remains at HIGH. The two pliant events are separated by
a mode event PressureHIGH reached, that turns the sensors to HIGH. A similar state
of affairs holds for the pressure decreasing regime, when the answ2genev signal goes
false.

Even more interesting is the fact that due to pilot initiated handle events, the ana-
logical switch’s behaviour may be restarted before a previous behaviour has completed,
leading to two possible mode events in the general electro-valve that synchronise with
the analogical switch closure event: one for the normal case when the general electro-
valve is depressured AnSw CLOSED INIT reached 1 S, and another for when it is al-
ready pressured-up AnSw CLOSED INIT reached 2 S.

And even more interesting than that, is the fact that the timing of pilot initiated handle
events may be such that mode event AnSw CLOSED INIT reached 2 S is scheduled
to occur at exactly the same moment as the mode event that naturally separates the
increasing and HIGH episodes in the general electro-valve, PressureHIGH reached.
The guards and actions of the two mode events are identical, which would cause trouble
with respect to the semantics, were it not for the fact that one of the mode events is a
synchronised event and the other is not.

Normally, the unproductive complications of such coincidences in the semantics are
avoided in Hybrid Event-B by assuming in the semantics that inputs do not arrive at
times which clash with other mode events (see the earlier discussion in Section 4). But
the case we are discussing is not like this since the coincidence occurs as a consequence
of an earlier mode event that is quite innocent. Clearly such coincidences are not stat-
ically computable in general, so cannot be avoided by some kind of static definition
in the semantics. Then, rather than complicate the modelling as we have done in the
present case study, a possible way forward is as follows.

During design and development, we neglect the possible existence of these issues of
undesired coincidence of mode events. In an environment with proper tool support for
Hybrid Event-B, the potential coincidences will invariably generate some unprovable
necessary conditions for semantic soundness. These conditions can then be added as
further hypotheses in a domain theory, leading to closure of the previously open proofs.
Provided such conditions only occupy a portion of the parameter space that is of zero
measure, no harm would be done to any practical implementation, since no practical
implementation that behaves in a stable way can hit a portion of the parameter space of
zero measure.

We proceed to level 9. Now that the general electro-valve can be powered up and
down, this level introduces the individual movement electro-valves, and implicitly, the
hydraulic cylinders that they manipulate. Each of the four movement electro-valves and

138 R. Banach

0

•• •

•

•

clk_Handle

Gear Extend

Gear Retract

Door CloseDoor Open

• •

Gear Start Moving Gear Stop Moving

Fig. 5. The approximate timing diagram for the level 10 computing machine

cylinders gives rise to a new machine. Also there is Level9 HydraulicCylinders EV IF,
a new interface that links them all to the computing modules. New synchronised events
in the computing modules and electro-valve/cylinder machines command the initia-
tion of the operation of the movement hydraulic cylinders, and timed events monitor
the completion of the relevant operations via the relevant battery of sensors, given the
variability in completion time described in [6]. All four operations are similar, so only
one has been modelled in detail in [3]. The cross-cutting t2is that couple variables in
Level9 HydraulicCylinders EV IF to those in the computing interface Level9 Comp IF
are handled in the by now familiar way.

Up to now, the impetus for executing any particular event that is potentially available
in a machine has come from the environment, via the technique of using an external
input that is created for that sole purpose. (Where there are synchronised families of
events, one of them is allocated the external input and the rest are synchronised with it.)
The final step in modelling the nominal regime is to remove this artifice, and replace
it with explicit timing constraints. This is the job of level 10. Note that explicit timing
information is already included in subsystems for which the description is relatively
complete, such as the analogical switch, and the the general and movement electro-
valves, so this development step only concerns the computing modules.

It was tempting to try to introduce the computing module timing constraints in a step
by step fashion. However, it was soon realised that the complexity and interconnected-
ness of the constraints was such that a stepwise approach would need to allow guard
weakening as well as guard strengthening. Since Event-B is not geared for guard weak-
ening, the idea was abandoned in favour of a monolithic approach that introduced all of
the timing machinery in one go.

Fig. 5 outlines the behaviour of the computing module’s clock clk Handle, when the
handle is manipulated during the course of gear extending or retracting. Unlike Fig. 4
though, where the behaviour illustrated is close to what the model describes (since the
analogical switch just responds to handle events in a self-contained way), Fig. 5 ne-
glects important detail. For example, consider a PilotGearUP S event while the gear
is extending. Then, the retracting sequence has to be executed but only from the point
that extending has reached. So first, clk Handle is changed to stop the gear extending
command. Then, clk Handle is changed to a time sufficiently before the gear retracting

The Landing Gear Case Study in Hybrid Event-B 139

command time that hydraulic hammer5 has subsided. Once it is safe to activate the gear
retracting command, the gear retracting command is activated, and then clk Handle is
changed again to advance the clock in proportion to the undone part of the gear extend-
ing activity. In effect, we use clk Handle intervals as part of the state machine control-
ling the behaviour of the computing modules (along with additional internal variables).
This proves especially convenient when the state transitions involved concern delays be-
tween commands that need to be enforced in order to assure mechanical safety (e.g. the
hydraulic hammer case, just discussed). Such details are not visible in Fig. 5, but make
the design of the level 10 events quite complicated. This completes our development of
the nominal regime.

5.2 The Faulty Regime and the Imperative Closed Loop

Fig. 6.
The Tower
Pattern

Although we do not cover the faulty regime in detail in this study, we
now indicate briefly how it would go in the context of a fuller Hybrid
Event-B development. The structuring given by the nominal regime gives
a good basis for considering the faulty regime. A great help here is the
fact that the faults described in [6] are basically all stuck at faults. To
inject such faults into a nominal model is easy and systematic. For each
potentially failing component we introduce a fault variable, and we ad-
ditionally guard each preexisting event on the fault variable’s falsehood.
Furthermore, we introduce an event in the relevant machine to sponta-
neously make the fault variable true.

Having built up the nominal regime, the faulty regime would be constructed by re-
trenching the various nominal machines to include the needed faults in the manner just
described. A great added benefit of this is that the suite of invariants built up for the
nominal regime need not be changed in the face of stuck at faults — retrenchment
allows the invariants to be violated, after which further nominal behaviour ceases.

In a multistage development like the present one, the nominal and faulty versions
would be related by Tower Pattern theorems such as can be seen in [5]. Fig. 6 shows the
general scheme. The top-down nominal refinement-based development we have done
appears as the bold left line, descending vertically through levels of abstraction as we
have described. The faulty regime then takes a horizontal development step to the right,
and builds up the analogous refinement chain bottom-up. This is indicated by the bold
dashed line segments.

The ultimate product of an exercise like the present one, is to produce an iterative
closed loop controller in a suitable imperative language, so that the control is reduced
to the instructions of a suitable embedded processor. The modelling in this case study
has not been carried that far, but we explain now why it would be easy to do.

We would just need a straightforward refinement. The reason for this is that the only
continuous behaviour that is relevant to the case study is linear with respect to time

5 Hydraulic hammer is the term for the collection of transient shock waves that propagate round
the hydraulic system when relatively abrupt changes are inflicted on its control surfaces (i.e. the
pistons in the various cylinders), and which are typically damped using a relatively elastic
hydraulic accumulator somewhere in the hydraulic circuit in order to avoid damage to the
hydraulic circuit components.

140 R. Banach

(whether this concerns a clock variable, or some other physical variable). Being linear,
the behaviour becomes completely predictable over the duration of a sampling period.
The needed refinement would thus need to simply replace the continuous behaviour
of the pliant event that ran during the sampling period with a (continuous) skip, and
augment the mode event that ran at the end of the sampling period with a discrete update
that expressed the calculated changes in pliant variables over the sampling period just
elapsed. The semantics of Hybrid Event-B would ensure that a straightforward retrieve
relation was provable regarding this change of representation (see [4] for examples).
This is indicated by the lowest vertical bold line segment in Fig. 6.

6 Review, Lessons Learned, and Conclusions

In the last few sections, we have overviewed the landing gear case study, and tackled
the modeling challenges of capturing the resulting development using Hybrid Event-B.
Although we restricted to the nominal regime, this provided a sufficient challenge to the
modelling capabilities of Hybrid Event-B to reassure us of its suitability for this kind of
system. In fact, with the nominal regime done, we were able to indicate that the faulty
regime could be handled quite straightforwardly. A number of lessons emerged from
this modelling exercise, which we summarise now.

[1] Doing an exercise like the present one by hand is really tricky. Almost every
re-reading of some fragment of the development revealed another bug (although typi-
cally, such bugs would be easily picked up mechanically). Proper machine support is
obviously vital when doing such a development in anger.

[2] Using a component’s clock as an adjunct to its state machine proved very con-
venient in combination with conventional state variables. Modelling mechanical safety
delays using pure state machine techniques would have made the state machines much
more cumbersome. Simply adjusting the clock to allow a safety margin of time to elapse
before the next required action was an elegant solution.

[3] The possibility of using t2is as a tool for breaking up complex architectures into
more digestible components, while maintaining interdependencies, proved vital. This
generic pattern showed itself to be both sufficiently expressive that needed dependencies
could be captured, and sufficiently well structured that mechanisation across multiple
machines and interfaces is feasible.

[4] Composition/decomposition mechanisms based on event name identity are inad-
equate to express the more dynamic synchronisations needed by complex system ar-
chitectures. As noted already, the current Rodin Tool implementation of synchronised
events goes beyond static event name identity, a need vividly illustrated in our case
study.

[5] The tension between describing components as self-contained machines, utilis-
ing their own naming conventions as standalone entities, contrasts with the approach of
regarding them ab initio as elements of the full system, adhering to system-wide nam-
ing conventions. In general, the synchronisation mechanisms referred to in [4] need
to be combined with sufficiently flexible instantiation mechanisms to enable a proper
component based approach to be pursued.

The need for the more flexible mechanisms mentioned in the last two points above
is already apparent in some of the synchronisations used in the case study here, where

The Landing Gear Case Study in Hybrid Event-B 141

it already proved impossible to do the needed job using purely static mechanisms. Such
challenges, and others (for example, how to model edge-triggered behaviour in a for-
malism based primarily on states, or the more intensive use of input and output vari-
ables rather than shared variables), provide good inspiration for the further fine-tuning
of the multi-machine version of the Hybrid Event-B formalism. Such insight will pro-
vide valuable guidance for subsequent tool building effort.

References

1. Akers, A., Gassman, M., Smith, R.: Hydraulic Power System Analysis. CRC Press (2010)
2. Banach, R.: Invariant Guided System Decomposition. These proceedings
3. Banach, R.: Landing Gear System Case Study in Hybrid Event-B Web Site (2013),

http://www.cs.man.ac.uk/˜banach/some.pubs/
ABZ2014LandingGearCaseStudy/LandingGearCaseStudy.html

4. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core Hybrid Event-B: Adding Continu-
ous Behaviour to Event-B (2012) (submitted)

5. Banach, R., Jeske, C.: Retrenchment and Refinement Interworking: the Tower Theorems.
Math. Struct. Comp. Sci. (to appear)

6. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: ABZ 2014 Case Study Track.
CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

7. Butler, M.: Decomposition Structures for Event-B. In: Leuschel, M., Wehrheim, H. (eds.)
IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009)

8. Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and Tools for
Hybrid Systems Design. Foundations and Trends in Electronic Design Automation 1, 1–193
(2006)

9. Hallerstede, S., Hoang, T.S.: Refinement by Interface Instantiation. In: Derrick, J., Fitzgerald,
J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS,
vol. 7316, pp. 223–237. Springer, Heidelberg (2012)

10. Ionel, I.: Pumps and Pumping. Elsevier (1986)
11. Manring, N.: Hydraulic Control Systems. John Wiley (2005)
12. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer (2010)
13. RODIN Tool, http://www.event-b.org/, http://www.rodintools.org/,

http://sourceforge.net/projects/rodin-b-sharp/
14. Silva, R., Pascal, C., Hoang, T., Butler, M.: Decomposition Tool for Event-B. Software Prac-

tice and Experience 41, 199–208 (2011)
15. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer

(2009)
16. U.S. Department of Transportation, Federal Aviation Administration, Flight Standards Ser-

vice: Aviation Maintenance Technician Handbook — Airframe (2012),
http://www.faa.gov/regulations policies/handbooks manuals/
aircraft/amt airframe handbook/

http://www.cs.man.ac.uk/~banach/some.pubs/ABZ2014LandingGearCaseStudy/LandingGearCaseStudy.html
http://www.cs.man.ac.uk/~banach/some.pubs/ABZ2014LandingGearCaseStudy/LandingGearCaseStudy.html
http://www.event-b.org/
http://www.rodintools.org/
http://sourceforge.net/projects/rodin-b-sharp/
http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_airframe_handbook/
http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_airframe_handbook/

Landing Gear System: An ASM-Based Solution

for the ABZ Case Study

Felix Kossak

Software Competence Center Hagenberg GmbH,
Softwarepark 21, 4232 Hagenberg, Austria

felix.kossak@scch.at

http://www.scch.at

Abstract. We present an ASM model for the case study given as a
challenge for the ABZ’14 conference, which specifies the digital part of a
landing gear system for aircraft. We strove to make the formal model well
understandable for humans. We note inconsistencies, ambiguities and
gaps in the case study and summarise our experiences during modelling
and the proof of safety properties.

Keywords: Formal specifications, Rigorous specifications, Abstract
state machines, ASMs, Safety-critical software.

1 Introduction

We herewith present experiences while working on a solution to the case study
by Boniol and Wiels given as a challenge for the ABZ’14 conference [1], which
specifies the digital part of a landing gear system for aircraft. Our model is
based on abstract state machines (ASMs) as presented in [2]. Throughout this
paper, we will refer to the cited case study document by Boniol and Wiels
as the “requirements document”, and by default, page numbers refer to this
requirements document.

We strove to make the formal specification well understandable for humans
and traceable with respect to the requirements document. We use the same
terms as given in the case study document whenever possible, and in general,
we use long and telling identifiers. However, expecting all stakeholders to have
a technical background, we assume them to be familiar with e.g. the usual set
notation.

During our work on the model and the proofs, we have noted several inconsis-
tencies or ambiguities in the requirements document, which we state in Section
2 on Specification Issues.

In Section 3, we present the basic design ideas behind an ASM ground model
for the software, i.e. the digital part of the landing gear system. The full model
is available in [3]. Several safetey requirements according to pp. 18-19 were man-
ually proven and one requirement was refuted; the proofs and the refutation are
also available in [3].

In the final section, we state our experiences collected while creating the ASM
model and proving requirements.

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 142–147, 2014.
c© Springer International Publishing Switzerland 2014

http://www.scch.at

Landing Gear System 143

2 Specification Issues

Formal specifications are made in order to avoid inconsistencies, ambiguities, and
gaps. Thus a major part of specification work consists in the detection, documen-
tation, and communication of such deficiencies in a given informal requirements
document.

We found a few issues in the requirements document of the case study which
would, in a real-life scenario, require discussions with representatives of the cus-
tomer. These regard ambiguities or confusing wording as well as obvious errors.
We summarise these issues in this section. A more detailed discussion can be
found in [3].

2.1 Normal and Emergency Mode

We found the requirements document confusing regarding “normal” (or “nom-
inal”?) mode and “emergency mode”. And while the document states that “In
this case study, we do not consider the emergency mode” (p. 1), there is an
output variable “anomaly” to be set and the requirements require to set an out-
put variable “normal mode” to false in certain cases (see p. 19, “Failure mode
requirements”).

We interpret the remark on p. 3 (top), “... the green light ... must be on”, such
that the monitoring part of the specified system should still work even in case of
“failure” (if possible). On the other hand, one can assume that the controlling
part should not do anything anymore, i.e. should not send any commands to any
valves anymore. In order to continue operating in principle while not sending any
further commands, however, it is necessary to know whether the emergency mode
is active or not, for which we use the variable “normal mode”, as mentioned. We
interpret “failure” as synonymous with “anomaly”.

2.2 Synchronous Parallelism

Two computing modules shall run “in parallel” (p. 5). However, it is not explic-
itly stated whether they shall be executed synchronously or asynchronously. We
assume that they shall be executed asynchronously.

2.3 Obvious Errors in Monitoring Specification

We found two obvious errors in Section 4.3 of the requirements document on
health monitoring, regarding gears motion monitoring (p. 17):

– In the first list item, it surely must read, “if the control software does not
see the value gear extended [x] = false [...] after stimulation of the retraction
electro-valve [...]”, instead of gear retracted.

– In the third list item, it must likewise read, “if the control software does not
see the value gear retracted [x] = false [...] after stimulation of the extension
electro-valve [...]”, instead of gear extended.

144 F. Kossak

Furthermore, under Gears motion monitoring (p. 17), in the second, third,
and fourth item, it is stated that “the doors are considered as blocked” when
obviously it must read, “the gears are considered as blocked”.

2.4 Inconsistencies in Timing

On p. 9 of the requirements document, it is stated that the analogical switch can
take up to 0.8s (i.e. 800ms) to close. However, according to p. 16, an anomaly
shall be detected already 160ms after the handle position has changed. We con-
sider Section 4 of the requirements document to be authoritative (and Section 3
to be primarily informative), thus we assume 160ms.

2.5 Miscellaneous

In Section 5 (Requirements / Properties) of the requirements document (pp. 18–
19), we encounter a “command button” which can be pushed “DOWN” or “UP”.
We assume that this is synonymous to the “handle” as mentioned e.g. on p. 2
or on p. 6.

In Section 3 of the requirements document, on p. 11, it is stated that “door
cylinders are locked [...] only in closed position.” This is corroborated on p. 5
(Section 2). However, on p. 6, we read that “door openi[x] is true if and only if
the corresponding door is locked open”. Likewise, in Section 5 (Requirements),
e.g. in (R31) (p. 18), there is talk of “when the three doors are locked open”. In
this paper, we consider “open” and “locked open” as synonymous in the context
of doors.

3 A Ground Model for the Software

We developped an ASM ground model for the digital part of the landing gear sys-
tem which is detailed in a technical report [3]. We laid an emphasis on traceability
and general understandability, having experienced that lack of understandability
for lay people, including domain experts, managers and potentially also lawyers,
is a major deterrent for the use of formal methods in practice. Therefore we
also use long names for rules, functions, and local variables rather than single
letters or short abbreviations – except from abbreviations used consistently in
the requirements document as well (such as “EV” for “electro-valve”). However,
as a compromise with the need for brevity and a clear structure, we use common
set and set operator notation, assuming that the major stakeholders in this case
have a technical background.

The main part of the “normal mode” specification is given as enumerated lists
of steps, for the “outgoing” and “retraction” sequences, respectively (pp. 14–15).
To render our model fully traceable, we have decided to retain the structure
given in the requirements document, including the step numbers. This led to
admittedly long rules, in which the transitions between possible states of the
landing gear are explicitly reflected, including transitions between the outgoing
and retraction sequences. A snippet from one such rule may illustrate this:

Landing Gear System 145

rule OutgoingSequence(moduleNumber) =
if EvaluateSensor(moduleNumber, handle) = down and

EvaluateSensor(moduleNumber, analogical switch) = closed then
if state(moduleNumber) ∈ {lockedRetracted,

retract 8 generalEValveOpening} then
parallelblock
CloseGeneralEV(moduleNumber)
state(moduleNumber) := extend 1 1 generalEValveClosing

endparallelblock
else if state(moduleNumber) =

extend 1 1 generalEValveClosing then
...

Apart from the given number of steps and some necessary intermediate steps
– we have to distinguish between e.g. “opening” and “open” states – the number
of possible transitions from an outgoing state to a retraction state contribute
to the length of the rules (almost 3 pages in LNCS format per rule). Note that
even the first step of the outgoing sequence can be made starting from an inter-
mediate step of the retraction sequence. However, the original structure of the
requirements is clearly visible this way.

An alternative for so long rules would have been a graphical notation for
control-state ASMs as introduced in [2]. However, when you have a graph with
33 nodes and some 55 edges, one would need a large sheet of paper to keep this
legible (including sensible state names), and even then it must be questioned
whether this would yield more overview. Additionally and more generally, while
a graph may indeed give a better overview in many cases, we think that it can
be more easily misinterpreted when it comes to details, and it is much easier
to accidentally overlook a part of it and forget to implement it. Therefore we
decided against this option.

The monitoring part is much easier to modularise:

rule MonitorSystem(moduleNumber) =
parallelblock

CheckSensors(moduleNumber)
CheckAnalogicalSwitch(moduleNumber)
CheckPressureSensor(moduleNumber)
CheckDoorsMotion(moduleNumber)
CheckGearsMotion(moduleNumber)

endparallelblock

A further note may be due on the modelling of temporal behaviour. Accord-
ing to the requirements document, only linear behaviour has to be modelled,
which we do by simply subtracting points of time which are set using a moni-
tored function “now”. We think a näıve reliance on some system time to provide
“now” is absolutely sufficient for the specification of the given requirements, and
no further constraints are required. In such a closed system, we regard system
time as a primitive available for the specification language. Constraints (axioms)

146 F. Kossak

concerning the “Time” universe may be required for the use of certain tools (in
particular, theorem provers), but not for manual proving as we undertook.

4 Experiences and Conclusion

Modelling. Modelling the use case as an ASM was straight-forward, basically
starting with the specification of the two different control sequences (pp. 14–15
of the requirements document) and then using stepwise refinement for larger
steps and checks and later to include timing constraints as well as extra action
required for health monitoring. Due to the flexibility of the ASM method and
language, we met no method-specific obstacles.

Modelling temporal behaviour posed no problem in the given case due to
assumed linear behaviour, as already mentioned in Section 3. (Non-linear be-
haviour would certainly pose a considerable challenge.)

We believe that we could also demonstrate that an ASM-based specification
can be made well understandable also for people who are not familiar with this
method or other rigorous software specification methods, or software develop-
ment in general.

The lack of a general (i.e. not tool-specific) editor which can do at least simple
syntax checks and identifier management was felt, but it was not seriously imped-
ing work. In one case, however, a syntax checker would have prevented an error
in the model which we only detected later when we were proving requirements.

Note that we advise against writing specifications in the language of a tool
such as CoreASM due to (a) the restrictions of the specific language and (b) tool-
specific overhead which is not necessary for human understanding and actually
can be a bit irritating for non-expert stakeholders. Furthermore, a specification
is typically part of a contract and should therefore be available in usual and
printable document form. We have argued this case in detail in [4]. (This does
not invalidate tools for other purposes, however, including validation!)

Errors in the Case Study. As can be seen in the section on Specification Is-
sues, we have detected several obvious errors, inconsistencies and ambiguities in
the original requirements document, even without interaction with other stake-
holders. This is a common experience for us and once again documents one of
the many advantages of formal specifications – in this case, of the process of
preparing a formal specification. Even though it is not unlikely that a devel-
oper would have discovered these errors as well, it is much less likely that the
necessary changes would have found their way into the specification, leading to
a (possibly even undocumented) inconsistency between specification and imple-
mentation. Moreover, in a real-life setting, a developer might find it much more
difficult to contact a relevant person of the customer than a specifier during the
specification process.

Proving. We kept to manual proving. Proving (or refuting) a normal mode re-
quirement was straight-forward, manually parsing (i.e., simulating) the relevant

Landing Gear System 147

steps of the ASM. Manual proving went relatively fast, probably much faster
than if we had used an automated theorem prover (even when we do not count
the necessary translation into a respective language). The longest proof which
we performed, of (R41), took us about two working days (leading to more than
11 pages of output); the other proofs took considerably less time.

Proving a failure mode requirement was more complex, as several different
parts of the ASM model are relevant: Amongst others, it is necessary to pick
relevant lines somewhere within the very long rules OutgoingSequence and Re-
tractionSequence as well as look at a rule in the Monitoring subsection and
auxiliary rules in both the Control and Auxiliary Subrules subsections. Doing
this manually is certainly prone to error, and will also make it hard for reviewers
to check. And while it can be doubted that a tool could provide more oversight
in a printed proof, it could certainly help to avoid errors such as missed, relevant
lines in the model and make it easier to trace the proof for those who have the
tool available.

It will be very interesting to compare such manual proofs with automated
or tool-checked proofs of the same problems, especially with respect to time
and legibility. For comparison, compiling the complete model for both control
and monitoring as well as the proofs of requirements (R11bis), (R21), (R22),
(R31), (R41), (R61), and (R71) and the refutation of (R11) (cf. pp.18–19 of the
requirements document) took us estimatedly a bit more than one person month.

Conclusion. We have shown that the given case study can be modelled and
verified with ASMs without tool support within reasonable time and effort,
although tool support would have been helpful to some degree.

Acknowledgement. This publication has been written within the project “Ver-
tical Model Integration”. The project Vertical Model Integration is supported
within the program “Regionale Wettbewerbsfähigkeit OÖ 2007-2013” by the
European Fund for Regional Development as well as the State of Upper Austria.

References

1. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: Boniol, F. (ed.)
ABZ 2014 Case Study Track. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

2. Börger, E., Stärk, R.: Abstract State Machines - A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

3. Kossak, F.: Landing gear system: An ASM-based solution for the ABZ 2014 case
study. Technical Report SCCH-TR-1401 with the complete model and proofs (2014),
http://www.scch.at/en/rse-news/landing_gear

4. Kossak, F., Mashkoor, A., Geist, V., Illibauer, C.: Improving the understandability
of formal specifications: An experience report. In: Salinesi, C., van de Weerd, I.
(eds.) REFSQ 2014. LNCS, vol. 8396, pp. 184–199. Springer, Heidelberg (2014)

http://www.scch.at/en/rse-news/landing_gear

Co-simulation Environment for Rodin:

Landing Gear Case Study

Vitaly Savicks, Michael Butler, and John Colley

University of Southampton, United Kingdom

Abstract. This work in progress presents a prototype multi-simulation
environment for the Rodin platform that enables import, co-modelling
and co-simulation of dynamic models and formal Event-B specifications,
which can help in the design of mixed discrete-event/continuous-time sys-
tems. The proposed solution is based on the Functional Mock-up Inter-
face standard and ProB animator for Event-B. The involved technologies
and co-simulation semantics are explained, followed by a demonstration
of preliminary results, obtained from a landing gear case study.

1 Introduction

Hybrid system models are a mixture of discrete-event and continuous-time com-
ponents that can be domain specific and therefore require different development
tools [1]. At the same time the complexity of systems, in particular within a
safety-critical domain, demands the application of formal methods [2]. Both
challenges can be addressed by integrating the existing technologies [3]. We pro-
pose a simulation-based collaborative approach that combines the Event-B [4]
development in the Rodin platform [5] and co-simulation with tool-independent
physical components via the FMI interface [6]. The approach is demonstrated on
a landing gear example, modelled in Event-B and Modelica [7], and co-simulated
in the tool.

2 Modelica and FMI

TheModelica language and the Functional Mock-up Interface standard for Model
Exchange and Co-simulation are designed to facilitate tool integration and inter-
operability. While the Modelica language provides an object-oriented equation-
based notation that is natural for describing physical processes in a structural
way, the FMI interface enables the exchange and co-simulation of models from
any tool that supports the standard by exporting them as a shared library (FMU)
with a common interface and model description format. The co-simulation of ex-
ported FMI units is performed by the master algorithm that must be designed
by the simulation host.

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 148–153, 2014.
c© Springer International Publishing Switzerland 2014

Co-simulation Environment for Rodin 149

3 Rodin Multi-simulation

Our co-simulation environment RMS (Rodin Multi-Simulation) provides a
generic master algorithm and an extensible simulation component meta-model
that currently implements Event-B and FMI components, which map to Event-
B machines and FMI units, respectively. The environment allows diagrammatic
composition of components via input/output ports and visualised simulation,
coordinated by the master and executed in fixed-size simulation steps (com-
munication points), which is a standard simulation approach. The simulation
semantics of Event-B components is defined by the IO events, executed at the
beginning of a simulation step to read the inputs, a sequence of proceeding
events that master selects non-deterministically, and Wait events that mark the
end of the step. The simulation of Event-B is performed via master by the ProB
animator [8].

4 Landing Gear Experiment

RMS environment has been exercised on a landing gear system [9] that consists of
a cockpit interface, a discrete controller and a continuous mechanical/hydraulic
plant. The task of the system is to control the manoeuvring of landing gears
based on the input from the cockpit and the sensors of the plant. The initial
experiment uses a simplified version of the original specification, in a sense that it
omits the triplication of each sensor and implements a single control module and
a single manoeuvring sequence, i.e. gear extension. The plant (analogical switch,
electro-valves and landing gear/door hydraulic cylinders) has been modelled in
Modelica (Figure 1) and exported from the Dymola tool [10] as an FMU.

Fig. 1. Modelica model of the mechanical/hydraulic plant

150 V. Savicks, M. Butler, and J. Colley

In the model of Figure 1 there are Open, Close, Extend and Retract electro
valves for the hydraulic supply to the doors and the gears, hydraulic cylinders for
each of the doors and gears along with a source of hydraulic pressure, a general
supply valve, and sensor and actuator ports. The behaviour of each component is
defined by equations in Modelica. For example, an electro valve has the following
specification:

model ElectroValve

parameter Real closingTime = 1.0 "Closing duration";

parameter Real openingTime = 3.6 "Opening duration";

protected

parameter Real Rmax = 1.0 "Max opening";

parameter Real dRcl = Rmax/closingTime "dR when closing";

parameter Real dRop = -Rmax/openingTime "dR when opening";

Real R(start = 0.0) "Current opening (0-open, 1-closed)";

discrete Real dR(start = 0.0);

equation

Hout = Hin*R;

der(R) = dR;

algorithm

// closing/opening event

when E then

dR := dRcl;

elsewhen not E then

dR := dRop;

end when;

// limiter of the R value

when R <= 0 or R >= Rmax then

dR := 0;

end when;

end ElectroValve;

The controller was initially modelled in Modelica and StateGraph2 [11], and
later in Event-B as a deterministic state machine (Figure 2) via the Statema-
chines plug-in for Rodin [12]. The sExtending state of the state machine comprises
three parallel regions that model the state of the general electro-valve (top), doors
(middle) and gears (bottom), and are synchronised by sensor-triggered transi-
tions, such as stopExtending. The latter, for example, corresponds to the following
Event-B event:

event stopExtending

where

sDO = TRUE

sGE = TRUE

gearsExtended = TRUE // gears are extended (from sensor)

then

sDO := FALSE

sGE := FALSE

sDelayDC := TRUE

Co-simulation Environment for Rodin 151

Fig. 2. State machine of the manoeuvring controller in Event-B

0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

OpenDoorsEV.Hout CloseDoorsEV.Hout ExtendGearsEV.Hout

FrontDoor.Position FrontGear.Position

0 2 4 6 8 10 12 14 16

0

1

handle generalEV openEV closeEV extendEV

Fig. 3. RMS simulation results (time = 17s, step = 0.1s)

sStopGE := TRUE

openEV := FALSE // stop opening door

extendEV := FALSE // stop gear extension

timerDC := 1 // start the 0.1s ’contrary order’ delay (open/close door)

end

Being the proof of concept the initial model does not yet incorporate safety
and timing invariants and does not use the refinement. Refinement of state ma-
chines would allow us to refine the controller model towards an implementation
and verify its correctness using the Rodin provers.

152 V. Savicks, M. Butler, and J. Colley

The cockpit and plant FMUs and the Event-B controller have been composed
and successfully simulated in the RMS environment, demonstrating the expected
behaviour when compared to a purely physical simulation in Modelica. The
obtained results in terms of the controlled and monitored signals are illustrated
in Figure 3, which shows the dynamic behaviour of the physical components
(Open, Close and Extend electro valve output pressure, door and gear cylinder
position) and how the dynamics changes in response to actuation signals from
the Event-B controller. For instance, it is possible to observe a delay between the
generalEV signal and the output pressure growth in the OpenDoorsEV, caused
by the 0.8s transition duration from open to closed of the analogical switch.

5 Conclusion and Further Work

The presented work demonstrates the feasibility of a generic integration and
co-simulation of Event-B formal models and multi-domain physical models that
is aimed at combining formal verification and simulation-based analysis of hy-
brid systems. Our future R&D steps include a stronger formal analysis of the
co-simulation semantics [13], development of an adaptive and deterministic mas-
ter algorithm [14–16] and comparison of the proposed solution with traditional
simulation approaches on a number of case studies, including the complete spec-
ification of the landing gear system.

Acknowledgement. This work is part of the ADVANCE Project (Advanced
Design and Verification Environment for Cyber-physical System Engineering)
funded by the European Commission (http://www.advance-ict.eu).

References

1. Lee, E.A.: Cyber physical systems: Design challenges. In: International Sympo-
sium on Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC) (May 2008) (invited paper)

2. Gnesi, S., Margaria, T.: Formal Methods for Industrial Critical Systems. Wiley
Online Library (2013)

3. Marwedel, P.: Embedded and cyber-physical systems in a nutshell. DAC. COM
Knowledge Center Article 20(10) (2010)

4. Abrial, J.: Modeling in Event-B: System and software engineering. Cambridge Uni-
versity Press (2010)

5. Abrial, J., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in Event-B. International Journal on
Software Tools for Technology Transfer (STTT) 12(6), 447–466 (2010)

6. Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauß, C., Elmqvist, H., Jung-
hanns, A., Mauss, J., Monteiro, M., Neidhold, T., et al.: The Functional Mockup
Interface for tool independent exchange of simulation models. In: Modelica 2011
Conference, pp. 20–22 (March 2011)

7. Fritzson, P., Engelson, V.: Modelica — a unified object-oriented language for sys-
tem modeling and simulation. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp.
67–90. Springer, Heidelberg (1998)

http://www.advance-ict.eu

Co-simulation Environment for Rodin 153

8. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
International Journal on Software Tools for Technology Transfer 10(2), 185–203
(2008)

9. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: Boniol, F. (ed.)
ABZ 2014 Case Study Track. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

10. Brück, D., Elmqvist, H., Mattsson, S.E., Olsson, H.: Dymola for multi-engineering
modeling and simulation. In: Proceedings of Modelica (2002)

11. Otter, M., Malmheden, M., Elmqvist, H., Mattson, S.E., Johnsson, C.: A new
formalism for modeling of reactive and hybrid systems. In: Proceedings of the 7th
International Modelica Conference, Linköping University, pp. 364–377. Electronic
Press (2009)

12. Savicks, V., Snook, C., Butler, M.: Event-B wiki: Event-B Statemachines (2011),
http://wiki.event-b.org/index.php/Event-B_Statemachines

13. Gheorghe, L., Bouchhima, F., Nicolescu, G., Boucheneb, H.: Formal definitions of
simulation interfaces in a continuous/discrete co-simulation tool. In: Seventeenth
IEEE International Workshop on Rapid System Prototyping, pp. 186–192 (June
2006)

14. Hines, K., Borriello, G.: Dynamic communication models in embedded system co-
simulation. In: Proceedings of the 34th Annual Design Automation Conference,
pp. 395–400. ACM (1997)

15. Schierz, T., Arnold, M., Clauß, C.: Co-simulation with communication step size
control in an FMI compatible master algorithm. In: 9th International Modelica
Conference, Munich (2012)

16. Broman, D., Brooks, C., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wetter,
M.: Determinate composition of FMUs for co-simulation. In: 2013 Proceedings of
the International Conference on Embedded Software (EMSOFT), pp. 1–12. IEEE
(2013)

http://wiki.event-b.org/index.php/Event-B_Statemachines

Modeling an Aircraft Landing System in Event-B

Dominique Méry1,� and Neeraj Kumar Singh2

1 Université de Lorraine, LORIA, BP 239, Nancy, France
Dominique.Mery@loria.fr

2 McMaster Centre for Software Certification, Hamilton, ON, Canada
singhn10@mcmaster.ca

Abstract. This paper presents a stepwise formal development of the landing sys-
tem of an aircraft. The formal models include the complex behaviour, temporal
behaviour and sequence of operations of the landing gear system. The models are
formalized in Event-B modeling language, and then the ProB model checker is
used to verify the deadlock freedom and to validate the behaviour requirements by
animating the formalized models. This case study is considered as a benchmark
for techniques and tools dedicated to the verification of behavioural properties of
the complex critical systems.

Keywords: Landing System, Verification, Validation Refinement, Event-B.

1 Introduction

We present the stepwise formalization of the benchmark case study [1] landing system
of an aircraft that is proposed in the ABZ’2014 Conference. The current work intends
to explore problems related to modeling the sequence of operations of landing gears
and doors associated with hydraulic cylinders under the real-time constraints and to
evaluate the refinement process. A detailed version [2] of this paper includes formally
proved Event-B models. Since the requirement for the length of this paper is limited
at most 6 pages, we invite readers to use detailed version of this paper to understand
the formal development and related refinements of the case study [2]. To understand
the development of the case study, readers must require some basic knowledge of the
Event-B, which is available in several publications [3–5].

2 Abstraction of the Landing System as an Automaton

The development is progressively designing the landing system by integrating obser-
vations and elements of the document [1]. We decompose the full development into
sequences of refinement steps corresponding to our understanding of the system. The
general process starts by a very abstract model and starts by an observation of the be-
haviour of the landing system. What is the goal of the system under modeling? The
system is controlling mechanical parts of the landing system and the global resulting

� This work was supported by grant ANR-13-INSE-0001 (The IMPEX Project
http://impex.loria.fr) from the Agence Nationale de la Recherche (ANR).

F. Boniol et al. (Eds.): ABZ 2014 Case Study Track, CCIS 433, pp. 154–159, 2014.
c© Springer International Publishing Switzerland 2014

Modeling an Aircraft Landing System in Event-B 155

system should satisfy some requirements. Since we are using Event B for modeling the
global system, so events will be used for formalizing the mechanical, hydraulic, and
digital components including pilot interface. The construction of the final model starts
by developing a first automaton (see Fig. 1) which expresses all the possible behaviours
of the system in normal mode. In Fig. 1, the dashed and plain arrows present the dis-
tinction between two different types of actions. The dashed arrows indicate an action of
the system, and the plain arrows show an action of the pilot. A sequence of refinement
models (M1, M2, M3) lead to a general automaton that models the possible behaviours
of the global system. A list of required properties (R11, R11bis,R12, R12bis, R22, R21)
is checked in this abstract development when pilot does not take any action for modi-
fying gear states. It should be noted that the ProB model checker is used for deadlock
checking, and all the generated proof obligations are automatically discharged using
Rodin prover. ProB allows us to validate the behavioural requirements of all the models
through animation.

In the following section, we develop the subsequent refinement models by introduc-
ing numerous new features and associated components like electro-valves and cylinders
including sensors, timing requirements and anomaly detection to formalize the global
system requirements.

3 Chain of Refinements

3.1 Adding Sensors and Computing Module

In this refinement M4, we model the sensors reading, computing module and failure
detection. We introduce the management of sensors by considering the collection of
values of sensors and an abstract expression of the computing modules for analysing
the sensed values. Moreover, the sensed values are also used for anomaly detection in
the system. These sensors are introduced to sense current activities or states of various
components of the landing system, such as handle, analogical switch, gear extended,
gear retracted, gear shock absorber, door open, door closed, and circuit pressurized.
These sensors are triplicated in order to prevent sensor failures. We define each sen-
sor by a function from 1..3 into the sensors values. All these sensors are introduced
in previously defined events corresponding to the components. A list of new events
is introduced for modeling the system requirements. These new events are Analogi-
cal switch closed and Analogical switch open to update the general switch for pro-
tecting the system against abnormal behaviour of the digital part, Circuit pressurized
to manage the sensor of the pressure control, Computing Module 1 2 to model in a
very abstract way for computing and updating of electro-valve variables using sensors
values, and Failure Detection to detect any failure in the system. A list of safety prop-
erties is also introduced in this refinement in order to correct sensing and to guarantee
for capturing the system requirements.

3.2 Managing Electro-Valves

In this refinement, we explore an idea for formalizing the behavior of physical me-
chanical systems like electro-valves. An electro-valve is an hydraulic equipment which

156 D. Méry and N.K. Singh

Fig. 1. State-based Automaton for the first sequence of refinements

contains two hydraulic ports (hydraulic input and output ports), and an electrical port
with the current order (True, False). The behavior of the electro-valve depends on the
value of the electrical order (E). These electro-valves produces some electrical outputs
that are used to control other physical components like cylinders. Cylinders are pure
hydraulic equipments, which can move when hydraulic pressure will be received, and
it can stop to move when the pressure goes down. The moving behaviour of cylinders
is controlled by the electro-valves. There are five electro-valves: general EV, close EV,
open EV, retract EV, and extend EV. All these electro-valves are described formally in
M5, where a new event Update Hout presents an abstraction for calculating the cur-
rent output states of electro-valves corresponding to the computing module outputs and
hydraulic input pressure.

3.3 Integrating Cylinders Behaviours

Cylinders are hydraulic equipments. There are two types of cylinders (gear and door
cylinders), which are used to control the movement of the gears and doors of the

Modeling an Aircraft Landing System in Event-B 157

landing system. In this refinement M6, the next step is to integrate the cylinders
behaviour according to the electro-valves circuit and to control the system process
by computing the global state of the system using sensors values. Moreover, we
strengthen the guards of events opening and closing doors and gears using cylinders sen-
sors and hydraulic pressure (opening doors DOWN, opening doors UP,
closing doors UP, closing doors DOWN, unlocking UP, locking UP, unlocking
DOWN, locking DOWN, retracting gears, retraction, extending gears,
extension). However, after introducing the cylinders, we emphasis to maintain the
sequential dynamic behaviours between components (i.e. electro-valves and sensors)
using some control or flag variables. For instance, an event CylinderMovingOrStop
models the change of the cylinders according to the pressure, when it is in cylinder
state, and it leads to a next state which activates the computing modules.

3.4 Failure Detection

This is an important phase of refinements that allows to identify a list of anomalies by
measuring the sensors values. The model M7 models the detection of different possi-
ble failures. Page 16 and page 17 of the case study have given a list of conditions for
detecting anomalies: Analogical switch monitoring, Pressure sensor monitoring, Doors
motion monitoring, Gears motion monitoring, Expected behavior in case of anomaly.
The decision is to refine the event Failure Detection into six events that model the
different cases for failure detection: Failure Detection Generic Monitoring, Failure
Detection Analogical Switch, Failure Detection Pressure Sensor, Failure
Detection Doors, Failure Detection Gears, Failure Detection Generic Moni-
toring. However, we have also strengthened the guards of perviously defined events
opening doors DOWN, opening doors UP, closing doors UP, closing doors
DO-WN, unlocking UP, locking UP, unlocking DOWN, locking DOWN by adding
a condition anomaly = FALSE.

3.5 Timing Requirements

In this refinement, we introduce the timing requirements and health monitoring pro-
cess of the landing system. Moreover this refinement step also enrich the previously
defined events through introduction of the timing constraints and other requirements to
realize the concrete behavior of the system. To introduce the temporal requirements,
we use the existing timing pattern [6], where a detailed description is described. The
time pattern [6] provides a way to add timing properties. The pattern adds an event
tic tock simulating the progression of time. Timing properties are derived from the
document [1]. The timing requirements are defined for handle changing, electro-valve
simulation, cylinders moving, and monitoring the health of gears motion, doors mo-
tion, analogical switch, generic switch, pressure circuit, etc. We agree with possible
discussions on the modeling of time but it appears that further works are required to get
a better integration of a more real time approach. However, we think that the current
model M8 is an abstraction of another automaton with real time features [7].

158 D. Méry and N.K. Singh

3.6 Adding Lights

The last refinement of our development introduces the pilot interface. The pilot has a set
of lights to indicate the current positions of gears and doors including the health of the
system. The required inputs for these light are coming from the computing module that
monitor the health of the system. The main outputs of computing module are anomaly,
gears maneuvering, and gears locked down that directly connect to the light switches for
indicating the various situations. These lights are green, red and orange. The green light
indicates that gears are locked down, the red light shows that landing gear system fail-
ure, and the orange light indicates gears maneuvering. A list of events and safety prop-
erties are introduced to formalize the pilot interface: pilot interface Green light On
(green light is on; when gears locked down is true); pilot interface Orange light On
(orange light is on, when gears maneuvering is true); pilot interface Red light On (red
light is on, when anomaly is detected (true)); pilot interface Green light Off (green
light is off, when gears locked down is false); pilot interface Orange light Off (or-
ange light is off, when gears maneuvering is false); pilot interface Red light Off (red
light is off, when anomaly is detected (false)).

4 Conclusion

Validation and verification are processed by using the ProB tool [8] and Proof Statistics.
Validation refers to gaining confidence that the developed formal models are consistent
with the requirements, which are expressed in the requirements document [1]. The land-
ing system specification is developed and formally proved by the Event-B tool support.
The developed formal models are also validated by the ProB tool through animation and
model checker tool support of the abstract and successive refined models under some
constraints. These constraints are the selection of parameters for testing the given mod-
els, and avoiding the failure of the tool during animation or model checking. However,
we use this tool on abstract and all the refined models to check that the developed spec-
ification is deadlock free from an initial model to the concrete model. Due to specific
constraint of ProB (i.e. state explosion), we have used ProB to animate and to vali-
date the behavioural requirements only for three models M1, M2 and M3. The model
M4 and later models were not animatable due to introduction of several new variables,
where specification states grow quickly.

The Table-1 expresses the proof statistics of the development in the Rodin tool.
These statistics measure the size of the model, the proof obligations are generated
and discharged by the Rodin platform, and those are interactively proved. The com-
plete development of landing system results in 529(100%) proof obligations, in which
448(84,68%) are proved completely automatically by the Rodin tool. The remaining
81(15,31%) proof obligations are proved interactively using Rodin tool. In the models,
many proof obligations are generated due to introduction of new functional and tem-
poral behaviors. In order to guarantee the correctness of these functional and temporal
behaviors, we have established various invariants in the stepwise refinements. Most of
the proofs are automatically discharged and the interactively discharged proof obliga-
tions are discharged by simple sequence of using automatic procedures of Rodin.

Modeling an Aircraft Landing System in Event-B 159

Table 1. Table of requirements satisfied by models and proof statistics

Model Requirements Total PO Auto Man
M1 R11, R11bis,R12, R12bis 10 10 0
M2 R11, R11bis,R12, R12bis 33 33 0
M3 R11, R11bis,R12, R12bis, R22, R21 44 44 0
M4 R11, R11bis,R12, R12bis, R22, R21 264 252 12
M5 R11, R11bis,R12, R12bis, R22, R21 19 19 0
M6 R11, R11bis,R12, R12bis, R22, R21 49 20 29
M7 R11, R11bis,R12, R12bis, R22, R21 1 0 1
M8 R11, R11bis,R12, R12bis, R22, R21 56 23 33
M9 R11, R11bis,R12, R12bis, R22, R21 9 3 6
Total R11, R11bis,R12, R12bis, R22, R21 529 448 81

The current version of the development is the nth version. The document describes
a concrete system with sensors, mechanical parts and digital parts. The first attempt by
one of the authors was to propose a sequence of refined models, which was closest to
the description of requirement documents [1]. Then we try to have a global view of the
system and to provide a very abstract initial model. In the second round of derivation of
models, we got a wrong model, since we did not take into account the counter orders.
Finally, the diagram of the Fig. 1 summarizes main steps of the system. From this
model, we decide to make elements more concrete and we introduce sensors, computing
modules and other required components. The timing requirements are added in the pre-
last model M8 which is then equipped by lights in the model M9 as pilot interface.
Our models are still refinable due to some abstract representation of system behaviours.
In future, our plan is to consult with domain experts to revisit this case study and to
identify possible modeling techniques considering refinement strategy for developing
such type of a large complex critical system.

References

1. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: Boniol, F. (ed.) ABZ 2014
Case Study Track. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014)

2. Méry, D., Singh, N.K.: Modelling an Aircraft Landing System in Event-B (Full Report). Re-
search report, MOSEL - LORIA, Department of Computing and Software - McMaster Uni-
versity (April 2014), http://hal.inria.fr/hal-00971787/PDF/full.pdf

3. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn. Cambridge
University Press, New York (2010)

4. Cansell, D., Méry, D.: The Event-B Modelling Method: Concepts and Case Studies. In: Logics
of Specification Languages, pp. 33–140. Springer (2007)

5. Singh, N.K.: Using Event-B for Critical Device Software Systems. Springer-Verlag GmbH
(2013)

6. Cansell, D., Méry, D., Rehm, J.: Time constraint patterns for event b development. In: Julliand,
J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 140–154. Springer, Heidelberg
(2006)

7. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
8. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S., Mandrioli,

D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)

http://hal.inria.fr/hal-00971787/PDF/full.pdf

Author Index

Abrial, Jean-Raymond 19
Arcaini, Paolo 36, 95

Banach, Richard 126
Bendisposto, Jens 66
Berthomieu, Bernard 110
Boniol, Frédéric 1
Butler, Michael 148

Colley, John 148

Dal Zilio, Silvano 110
Dhaussy, Philippe 52

Fronc, �Lukasz 110

Gargantini, Angelo 36, 95

Hansen, Dominik 66

Kossak, Felix 142

Ladenberger, Lukas 66
Laleau, Régine 80
Leuschel, Michael 66

Mammar, Amel 80
Méry, Dominique 154

Riccobene, Elvinia 36, 95

Savicks, Vitaly 148
Singh, Neeraj Kumar 154
Su, Wen 19

Teodorov, Ciprian 52

Wiegard, Harald 66
Wiels, Virginie 1

	Preface
	Organization
	Table of Contents
	The Landing Gear System Case Study
	1 Introduction
	2 Architecture of the System
	2.1 The Pilot Interface
	2.2 The Mechanical and Hydraulic Parts
	2.3 The Digital Part

	3 Behavior of the Hydraulic Equipment
	3.1 The Analogical Switch (between the Digital Part and the General Electro-Valve)
	3.2 Electro-Valves
	3.3 Cylinders

	4 Software Specification
	4.1 Expected Scenarios in Normal Mode
	4.2 Timing Constraints
	4.3 Health Monitoring and Expected Scenarios in Case of Inconsistency

	5 Requirements / Properties
	5.1 Normal Mode Requirements
	5.2 Failure Mode Requirements

	Aircraft Landing Gear System: Approaches with Event-B to the Modeling of an Industrial System
	1 Introduction
	2 Purpose of Modeling
	3 Methodology
	4 Requirements
	4.1 Introduction
	4.2 Labeling
	4.3 Basic Elements
	4.4 The Pilot Interface and Main Functions of the System
	4.5 The Mechanical and Hydraulic Parts
	4.6 The Analogical Switch
	4.7 The Software Input and Outputs
	4.8 Cases of Inconsistencies
	4.9 Summary of Requirements

	5 First Approach
	5.1 Introduction
	5.2 Refinement Strategy
	5.3 Problems Encountered with This Approach

	6 Second Approach
	6.1 Introduction
	6.2 Refinement Strategy
	6.3 About This Approach

	7 Third Approach
	7.1 Introduction
	7.2 Refinement Strategy
	7.3 About This Approach

	8 Conclusion
	References

	Modeling and Analyzing Using ASMs:The Landing Gear System Case Study
	1 Introduction
	2 Abstract State Machines
	3 Modeling Process and Supporting Tools
	3.1 Model Refinement

	4 Models Chain of the LGS
	4.1 Ground Model
	4.2 First Refinement: Adding the Electro-Valves and the Cylinders
	4.3 Second Refinement: Adding the Sensors
	4.4 Third Refinement: Adding the Three Landing Sets
	4.5 Fourth Refinement: Adding the Health Monitoring System

	5 Discussion and Conclusion
	References

	Context-Aware Verificationof a Landing Gear System
	1 Introduction
	2 Related Work
	3 Context-Aware Model-Checking
	4 Case-Study: The Landing Gear System
	4.1 Modeling the SUS
	4.2 Modeling the Context
	4.3 Specifying the Properties
	4.4 Experimental Results

	5 Conclusion and Perspectives
	References

	Validation of the ABZ Landing GearSystem Using ProB
	1 Introduction
	2 The Event-B Model and Its Refinement Hierarchy
	2.1 Door and Landing Gear
	2.2 Electro-valves
	2.3 Outputs of the Digital Part
	2.4 Controller Sensors
	2.5 Controller Behaviour
	2.6 Analogical Switch and General Electro-valve
	2.7 Cockpit Lights
	2.8 Further Refinement Steps

	3 Validating the Model
	3.1 Invariants
	3.2 Animation and Model Testing
	3.3 Temporal Formulas
	3.4 Relative Deadlock Freedom and Determinism Checking

	4 Graphical Visualization
	4.1 Visualization of the Landing Gear System

	5 Conclusion
	6 Possible Future Work
	References

	Modeling a Landing Gear System in Event-B
	1 General Overview of the System
	2 Event-BMethod
	3 Modeling the Monitored Variables
	3.1 Gears Modeling: The Initial Model and the First Refinement
	3.2 Doors Modeling: The Second and Third Refinements
	3.3 Cylinders Modeling: The Fourth Refinement
	3.4 Handler/Switch/Shock Absorbers/Hydraulic Circuit Modeling: The Fifth Refinement

	4 Modeling the Controlled Variables: The Sixth Refinement
	5 Modeling the Controller/Output Variables: The Seventh Refinement
	6 Introducing Timing Aspects: The Eighth Refinement
	6.1 Timing Constraints on the Analogical Switch
	6.2 Timing Constraints on the Start/Stop Stimulation of Valves
	6.3 Timing Constraints on the Activation of the Valves
	6.4 Timing Constraints on Cylinders

	7 Introducing Failures: The Ninth Refinement
	7.1 Modeling Failures
	7.2 Detecting Anomalies

	8 Properties Verification: The Tenth Refinement
	9 Conclusion: Limits and Future Work
	References

	Offline Model-Based Testing and RuntimeMonitoring of the Sensor Voting Module
	1 Introduction
	2 Background
	2.1 The Sensor Voting Module
	2.2 Model-Based Off-line Testing
	2.3 Runtime Monitoring
	2.4 Comparing Offline Testing and Runtime Monitoring

	3 Specification and Implementation of the SVM
	3.1 ASM Model of the SVM
	3.2 Java Implementation
	3.3 Linking Java Code and ASM Specifications

	4 OfflineTesting
	4.1 Test Generation
	4.2 Test Concretization

	5 Runtime Monitoring
	6 Experimental Comparison
	7 Conclusions
	References

	Model-Checking Real-Time Properties of an Aircraft Landing Gear System Using Fiacre
	1 Introduction
	2 Fiacre and Tina
	2.1 The Fiacre Language
	2.2 Behavioral Verification with Tina

	3 Model of the Landing Gear System
	3.1 Digital Part
	3.2 Hydraulic Part
	3.3 Analogical Switch
	3.4 Handling Failures
	3.5 Optimizations

	4 Experimental Results
	4.1 Normal Mode Requirements
	4.2 Failure Mode Requirements
	4.3 Comparaison with a Previous, Similar Study

	5 Conclusion
	References

	The Landing Gear Case Study in Hybrid Event-B
	1 Introduction
	2 Landing Gear Overview
	3 Hybrid Event-B, Single Machines
	4 Top-Down Modelling of Complex Systems, and Multiple Cooperating Hybrid Event-B Machines
	5 Model Development
	5.1 The Nominal Regime
	5.2 The Faulty Regime and the Imperative Closed Loop

	6 Review, Lessons Learned, and Conclusions
	References

	Landing Gear System: An ASM-Based Solutionfor the ABZ Case Study
	1 Introduction
	2 Specification Issues
	2.1 Normal and Emergency Mode
	2.2 Synchronous Parallelism
	2.3 Obvious Errors in Monitoring Specification
	2.4 Inconsistencies in Timing
	2.5 Miscellaneous

	3 A Ground Model for the Software
	4 Experiences and Conclusion
	References

	Co-simulation Environment for Rodin:Landing Gear Case Study
	1 Introduction
	2 Modelica and FMI
	3 Rodin Multi-simulation
	4 Landing Gear Experiment
	5 Conclusion and Further Work
	References

	Modeling an Aircraft Landing System in Event-B
	1 Introduction
	2 Abstraction of the Landing System as an Automaton
	3 Chain of Refinements
	3.1 Adding Sensors and Computing Module
	3.2 Managing Electro-Valves
	3.3 Integrating Cylinders Behaviours
	3.4 Failure Detection
	3.5 Timing Requirements
	3.6 Adding Lights

	4 Conclusion
	References

	Author Index

