
Chapter 3
Robustness of Mixture IRT Models to Violations
of Latent Normality

Sedat Sen, Allan S. Cohen, and Seock-Ho Kim

Abstract Unidimensional item response theory (IRT) models assume that a single
model applies to all people in the population. Mixture IRT models can be useful
when subpopulations are suspected. The usual mixture IRT model is typically
estimated assuming normally distributed latent ability. Research on normal finite
mixture models suggests that latent classes potentially can be extracted even in the
absence of population heterogeneity if the distribution of the data is nonnormal.
Empirical evidence suggests, in fact, that test data may not always be normal. In this
study, we examined the sensitivity of mixture IRT models to latent nonnormality.
Single-class IRT data sets were generated using different ability distributions
and then analyzed with mixture IRT models to determine the impact of these
distributions on the extraction of latent classes. Preliminary results suggest that
estimation of mixed Rasch models resulted in spurious latent class problems in the
data when distributions were bimodal and uniform. Mixture 2PL and mixture 3PL
IRT models were found to be more robust to nonnormal latent ability distributions.
Two popular information criterion indices, Akaike’s information criterion (AIC) and
the Bayesian information criterion (BIC), were used to inform model selection. For
most conditions, the performance of BIC index was better than the AIC for selection
of the correct model.

3.1 Introduction

Item response theory (IRT) models have been designed to describe the relationship
between observed item responses and latent variables (Embretson and Reise 2000).
The successful applications of standard IRT models depend on several assump-
tions such as unidimensionality, invariance, local independence, and monotonicity
(Reckase 2009). For instance, one set of item characteristic curves (ICCs) can be
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used to describe the relationship between item responses and the underlying latent
trait by assuming that all individuals come from a single homogeneous population.
However, other modeling approaches may be more appropriate when there are
subgroups of respondents with different response-trait relationships. Several models
have been developed to overcome violations of standard IRT models including
multidimensional IRT models (Reckase 2009), multiple group IRT models (Bock
and Zimowski 1997), and mixture IRT (MixIRT) models (Rost 1990; Mislevy
and Verhelst 1990). MixIRT models, for example, may be more useful when the
invariance assumption is violated (von Davier et al. 2007).

The popularity of MixIRT models has increased with the applications of these
models to many psychometric issues such as detecting test speededness (Bolt et al.
2002; Wollack et al. 2003; Yamamoto and Everson 1997) and differential item
functioning (Cohen and Bolt 2005; Cohen et al. 2005; Samuelsen 2005), identifying
different personality styles (von Davier and Rost 1997), and identifying solution
strategies (Mislevy and Verhelst 1990; Rost and von Davier 1993), as well as
classifying response sets (Rost et al. 1997).

The MixIRT model is based on finite mixture models (Titterington et al. 1985).
Finite mixture models are used in a number of latent variable models including
latent class analysis (LCA; Clogg 1995), structural equation models (Arminger et al.
1999; Jedidi et al. 1997), growth mixture models (GMMs) (Li et al. 2001), and
factor mixture analysis (FMA; Lubke and Muthén 2005). Typically, finite mixture
models are used to explain the underlying heterogeneity in the data by allocating
this heterogeneity to two or more latent classes. One problem with the application
of these models is that the extracted classes may not always reflect the heterogeneity
in the population (Bauer and Curran 2003). It may be possible to obtain some
extraneous classes as an artifact of misspecification. For instance, Bauer and Curran
(2003) demonstrated that nonnormality in the data can lead to identification of
spurious latent classes even in the absence of population heterogeneity (McLachlan
and Peel 2000; Bauer and Curran 2003). Similar situations have been observed in
mixture Rasch models when model specific assumptions are violated (Alexeev et al.
2011).

In contrast to application of multiple group IRT models, the number of groups (or
classes) may not be known a priori in exploratory applications of mixture models.
In a typical exploratory approach to determine the number of latent classes, several
models may be fit to the data. The model with the best fit is often selected based
on some statistical criteria (e.g., information criterion indices). Since the extracted
classes are latent (i.e., unobserved), one can never be sure about the true number
of latent classes. Thus, identification of the correct number of latent classes has
become a longstanding and unresolved issue in finite mixture models research. This
issue has been studied for a number of latent variable models (Alexeev et al. 2011;
Bauer 2007; Bauer and Curran 2003) or model selection statistics (Li et al. 2009;
Nylund et al. 2007; Tofighi and Enders 2007; Wall et al. 2012).

Bauer and Curran (2003) examined the effect of nonnormality on the detection of
the number of latent classes in GMMs. Data were generated for single-class data sets
with normal and nonnormal distributions and then analyzed with one- and two-class
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solutions. Results indicated that a one class solution was a better fit for normal data
and a two class solution (i.e., a spurious class) was a better fit for nonnormal data.
Results further suggested that data with nonnormal distributions may cause over-
extraction of latent classes even in a single homogeneous population.

Tofighi and Enders (2007) investigated the performances of nine different fit
indices (information criteria and likelihood based statistics) within the context of
GMMs. They showed that the sample-size adjusted BIC (SABIC; Sclove 1987) and
the Lo–Mendell–Rubin (LMR; Lo et al. 2001) likelihood ratio test are promising
in determining the number of classes. Similarly, Nylund et al. (2007) compared the
performances of information criteria and hypothesis tests using the likelihood ratio
test with three different mixture models: LCA, factor mixture models (FMMs), and
GMMs. Results indicated that the bootstrap likelihood ratio test (BLRT) performed
better than LMR or likelihood-ratio tests for determining the correct number of
classes in the LCA models with continuous outcomes, the FMM and the GMM
models. Results also showed that the Bayesian information criterion (BIC; Schwarz
1978) was superior to Akaike’s information criterion (AIC; Akaike 1974) and con-
sistent AIC (CAIC; Bozdogan 1987) for all three types of mixture model analyses.
Li et al. (2009) examined the performances of five fit indices for dichotomous
mixture Rasch, 2-parameter (2PL), and 3-parameter logistic (3PL) IRT models using
an MCMC algorithm. Results of a simulation study showed that in most conditions
BIC performed better than the deviance information criterion (Spiegelhalter et al.
1998), AIC, pseudo Bayes factor (PsBF), and posterior predictive model checks
(PPMC).

Alexeev et al. (2011) investigated the effects of violation of the Rasch model
assumption of equal discriminations on detection of the correct number of latent
classes in a mixture Rasch model. Spurious latent classes were observed when data
generated with a single-class 2PL IRT model were analyzed with a mixture Rasch
model. Results showed further that even a single item with a high discrimination
could result in detection of a second class even though the data were generated to
be a single class.

Even small departures from model assumptions may have an effect on the number
of latent classes detected as well as on model parameter estimates (Alexeev et al.
2011; Bauer 2007; Bauer and Curran 2003). Although latent nonnormality has been
investigated in the context of IRT (Bock and Aitkin 1981; Seong 1990; Woods 2004;
Zwinderman and Van den Wollenberg 1990), similar work has not been reported
with MixIRT models. As was shown for the GMM (Bauer and Curran 2003), it
is important to know whether the nonnormality may be responsible for generating
additional latent classes in MixIRT models. The purpose of this study, therefore,
was to examine the impact of distributional conditions on the extraction of latent
classes. We do this in the context of MCMC estimation with dichotomous MixIRT
models.
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3.2 Method

A Monte Carlo simulation study was conducted to investigate the following research
question: Is the accuracy of detection of latent classes affected by using a normal
prior on ability parameters when the latent ability distribution is nonnormal?

3.2.1 Simulation Design

The following conditions were simulated: Sample size (600 and 2,000 examinees),
test length (10 and 28 items), and five ability distributions (bimodal symmetric,
normal, platykurtic, skewed, and uniform). Data were simulated for each of the three
dichotomous IRT models × 3 MixIRT models × 2 latent class models (LCMs; one-
and two-classes) × 2 sample sizes × 2 test lengths × 5 ability distributions = 360
conditions. Twenty-five replications were generated for each condition.

Examinee ability parameters were simulated for normal, skewed, platykurtic,
bimodal symmetric, and uniform distributions. For the normal distribution condi-
tion, ability parameters were randomly sampled from a standard normal distribution
with unit variance (i.e., N(0, 1)). Skewed and platykurtic data were generated
using the power method proposed by Fleishman (1978). Skewness and kurtosis
values were 0.75 and 0.0 for skewed data and 0.0 and −0.75 for platykurtic data,
respectively. These values were selected to represent typical nonnormality situations
as described by Pearson and Please (1975) for skewness less than 0.8 and kurtosis
between −0.6 and 0.6. For the uniform condition, ability parameters were randomly
drawn from Uniform(−2, 2). The ability parameters for the bimodal symmetric
condition were randomly drawn from a combination of two normal distributions:
N(−1.5, 1) and N(1.5, 1). All of the conditions were generated using a program
written in R (R Development Core Team 2011). Graphical representations of the
four nonnormal generating distributions are presented in Fig. 3.1. A standard normal
distribution curve is superimposed on each figure for reference. It should be noted
that these are actual generating distributions for ability parameters.

Generating item parameters were obtained for the Rasch model, 2PL and 3PL
IRT model estimates using data from the Grade 9 mathematics test of the Florida
Comprehensive Assessment Test (FCAT; Florida Department of Education 2002)
using MULTILOG 7.03 (Thissen 2003). Estimated item parameters for these three
models are presented in Tables 3.1 and 3.2 (a—slope parameter, b—threshold
parameter, and c—guessing parameter).
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Fig. 3.1 Generating distributions for ability parameters

Table 3.1 Item parameters used for data generation for ten-item condi-
tion

Rasch model 2PL model 3PL model
Item b a b a b c

1 −1.83 0.91 −1.84 0.91 −0.37 0.53

2 −0.07 0.93 −0.07 1.17 0.69 0.30

3 −0.15 1.21 −0.13 1.23 0.39 0.24

4 0.90 0.84 0.94 0.91 1.23 0.16

5 −0.38 0.94 −0.37 0.66 −0.06 0.12

6 −0.59 1.14 −0.51 0.75 −0.37 0.06

7 0.98 0.76 1.14 0.76 1.38 0.14

8 0.51 1.06 0.45 1.58 0.88 0.22

9 0.99 0.34 2.37 3.87 1.67 0.28

10 0.19 1.27 0.15 1.05 0.46 0.14
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Table 3.2 Item parameters
used for data generation for
28-item condition

Rasch model 2PL model 3PL model
Item b a b a b c

1 −1.72 1.05 −1.66 1.45 −0.45 0.50

2 −0.09 0.88 −0.10 1.96 0.76 0.31

3 −0.16 1.24 −0.16 2.10 0.40 0.24

4 0.81 0.72 1.04 1.62 1.35 0.19

5 −0.37 0.93 −0.39 1.14 0.05 0.16

6 −0.57 1.28 −0.50 1.35 −0.34 0.06

7 0.91 0.72 1.16 1.31 1.40 0.15

8 0.45 1.07 0.42 2.82 0.88 0.22

9 0.91 0.38 2.08 3.97 1.67 0.26

10 0.16 1.27 0.12 1.85 0.48 0.15

11 0.69 0.67 0.95 2.42 1.34 0.25

12 0.42 0.94 0.43 2.26 0.93 0.23

13 0.93 0.69 1.26 3.61 1.35 0.22

14 1.22 0.98 1.24 2.67 1.29 0.14

15 0.31 0.94 0.32 1.66 0.81 0.20

16 1.19 0.92 1.25 2.88 1.30 0.16

17 0.27 1.18 0.23 2.47 0.72 0.22

18 −1.54 1.61 −1.15 1.59 −1.15 0.03

19 −0.39 1.69 −0.32 1.83 −0.15 0.06

20 −0.41 1.46 −0.35 1.77 −0.03 0.14

21 −0.34 1.01 −0.34 1.27 0.12 0.17

22 −0.30 1.22 −0.28 2.84 0.46 0.32

23 0.18 1.87 0.08 2.45 0.30 0.09

24 0.09 0.76 0.13 2.03 0.97 0.32

25 0.10 0.70 0.15 1.01 0.72 0.18

26 −0.31 1.01 −0.31 1.12 −0.09 0.08

27 −0.33 0.91 −0.35 0.93 −0.32 0.00

28 −0.47 1.43 −0.39 1.83 −0.01 0.17

3.2.2 Model Framework

The three dichotomous MixIRT models investigated in this study are described
below. These models can be viewed as straightforward extensions of traditional
Rasch, 2PL and 3PL IRT models, respectively. First, the mixed Rasch model (MRM;
Rost 1990) is described below. This model is a combination of two latent variable
models: a Rasch model and a LCM. MRMs explain qualitative differences according
to the LCM portion of the model and quantitative differences according to the Rasch
model portion of the model. The assumption of local independence holds for the
MRM as it does for the LCM and Rasch model. In addition, the MRM assumes
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that the observed item response data come from a heterogeneous population that
can be subdivided into mutually exclusive and exhaustive latent classes (Rost 1990;
von Davier and Rost 2007). The conditional probability of a correct response in the
MRM can be defined as

P(xi j = 1) = Pi j =
G

∑
g=1

πg
exp(θ jg −βig)

1+ exp(θ jg −βig)
, (3.1)

where xi j is the 0/1 response of examinee j to item i (0 = incorrect response, 1 =
correct response), πg is the proportion of examinees for each class, θ jg is the ability
of examinee j within latent class g, and βig denotes difficulty of item i within latent
class g. As proposed in Rost (1990), certain constraints on item difficulty parameters
and mixing proportions are made for identification purposes so that ∑i βig = 0 and
∑G

g πg = 1 with 0 < πg < 1.
The probability of a correct response in a mixture 2PL (Mix2PL) IRT model can

be written as

P(xi j = 1) = Pi j =
G

∑
g=1

πg
exp[αig(θ jg −βig)]

1+ exp[αig(θ jg −βig)]
, (3.2)

where αig denotes the discrimination of item i in class g. In the Mix2PL model,
both the item difficulty and item discrimination parameters are permitted to be
class-specific. Similarly, the mixture 3PL (Mix3PL) IRT model is assumed to
describe unique response propensities for each latent class. This model also allows
item guessing parameters to differ in addition to item difficulty and discrimination
parameters. As for the MRM and Mix2PL model, each latent class also can have
different ability parameters. The probability of a correct response for a Mix3PL
model can be described as

P(xi j = 1) = Pi j =
G

∑
g=1

πg

(
γig +(1− γig)

exp[αig(θ jg −βig)]

1+ exp[αig(θ jg −βig)]

)
, (3.3)

where γig is guessing parameter for item i in class g. The MixIRT models have been
applied in a number of studies (e.g., Cohen and Bolt 2005; Li et al. 2009).

3.2.3 MCMC Specification

As is the case with traditional IRT models, MixIRT models can also be estimated
either using MLE or MCMC methods in the Bayesian context. MLE algorithms
are applied in several software packages including Latent GOLD (Vermunt and
Magidson 2005), mdltm (von Davier 2005), Mplus (Muthén and Muthén 2011),
R (psychomix package; Frick et al. 2012), and Winmira (von Davier 2001). MCMC
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estimation is possible using the WinBUGS computer software (Spiegelhalter et al.
2003), Mplus and proc MCMC in SAS (v. 9.2; SAS Institute, Cary, NC, USA).
MRM estimations can be obtained using any of these software packages. The
Mix2PL IRT model can be fit using the Latent GOLD, Mplus and WinBUGS
programs, however, only the WinBUGS program has the capability at this time of
estimating the Mix3PL IRT model. Thus, the computer software WinBUGS was
used in this study for estimating all the models to be studied. In this study, the Rasch
model, 2PL and 3PL IRT models were generated to have one class. In order to see
whether a two-class solution (i.e., a spurious class situation) will fit where a one-
class model was simulated, each MixIRT model was fitted with one- and two-class
solutions.

MCMC estimation model specifications are described below including spec-
ifications of priors and initial values. In two-group model estimations, 0.5 was
used as initial values for the mixing proportions. The starting values for all other
parameters were randomly generated using the WinBUGS software. The following
prior distributions were used for the MRM:

βig ∼ Normal(0, 1),
θ j ∼ Normal(μ(θ),1),
μ(θ)g ∼ Normal(0, 1),
g j ∼ Bernoulli(π1,π2),

(π1,π2)∼ Dirichlet(.5, .5),

where θ j represents the ability parameter for examinee j, βig is the difficulty
parameter of item i within class g, and c j = {1,2} is a class membership parameter.
Estimates of the mean and standard deviation for each latent class, μg and σg, can
also be estimated via MCMC. As in Bolt et al. (2002), σg was fixed at 1 for both
groups. A Dirichlet distribution with 0.5 for each parameter was used as the prior
for πg for the two-group models. In addition, a prior on item discrimination was
used in the Mix2PL and Mix3PL models. A prior on guessing parameter was also
used in the Mix3PL. These two priors are defined as follows:

αig ∼ Normal(0,1)I(0,),

γig ∼ Beta(5,17).

An appropriate number of burn-in and post burn-in iterations needs to be determined
in order to remove the effects of starting values and obtain a stable posterior
distribution. Several methods have been proposed to determine the convergence
assessment and the number of burn-in iterations. The convergence diagnostics by
Gelman and Rubin (1992) and Raftery and Lewis (1992) are currently the most
popular methods (Cowles and Carlin 1996). In this study, convergence diagnostics
were assessed with these two methods using the R package called convergence
diagnosis and output analysis for MCMC (CODA; Plummer et al. 2006). For the
MRM conditions, 6,000 burn-in iterations and 6,000 post-burn-in iterations were
used based on the diagnostic assessment. For the Mix2PL IRT model conditions,
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7,000 burn-in iterations and 7,000 post burn-in iterations were used, and 9,000 burn-
in iterations and 9,000 post burn-in iterations were used in all Mix3PL IRT model
conditions.

3.2.4 Model Selection

For traditional IRT models, model selection is typically done using likelihood ratio
test statistics for nested models and information criterion indices for nonnested
models. Since MixIRT models are nonnested models, only information criterion
indices can be used to determine the correct number of latent classes. Several
information criterion indices have been proposed with different penalization terms
on the likelihood function. AIC and BIC indices and their extensions (i.e., SABIC
and CAIC) are often used to select the best model from among a set of candidate
models based on the smallest value obtained from the same data. In this study, only
AIC and BIC indices were used. These two indices are discussed below. AIC can be
calculated as

AIC =−2logL+2p, (3.4)

where L is the likelihood function and p is the number of estimated parameters
calculated as follows:

p = m∗ I ∗ j+m∗ j−1, (3.5)

where m can have values from 1 to 3 for the MRM, Mix2PL, and Mix3PL IRT
models, respectively, I denotes the number of items, and j is the number of latent
classes. For example, j = 2 is used for a two-class MixIRT solution. AIC does not
apply any penalty for sample size and tends to select more complex models than BIC
(Li et al. 2009). As can be seen below, the BIC index applies a penalty for sample
size and for the number of parameters. As a result, BIC selects simpler models
than AIC. The BIC has been showed to perform better than AIC for selection of
dichotomous MixIRT models (Li et al. 2009; Preinerstorfer and Formann 2011).
BIC can be calculated as follows:

BIC =−2logL+ p∗ log(N), (3.6)

where L is the likelihood of the estimated model with p free parameters and log(N)
is the logarithmic function of the total sample size N. It should be noted that the
likelihood values in these equations are based on ML estimation. Since we used
MCMC estimation, the likelihood values in these equations were replaced with the
posterior mean of the deviance D(ξ ) as obtained via MCMC estimation (Congdon
2003; Li et al. 2009) where ξ represents all estimated parameters in the model.
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3.2.5 Evaluation Criteria

Recovery of item parameters was assessed using root mean square error (RMSE)
which is computed as follows:

RMSE(βi) =

√
∑I

i=1 ∑R
r=1(βi − β̂ir)2

RI
, (3.7)

where βi and β̂i are generating and estimated item difficulty parameters for item
i, respectively. I is the number of items and R is the number of replications.
This formula was also used for calculation of the RMSE for item discrimination
and item guessing parameters. In order to make an accurate calculation, the
estimated parameters were placed on the scale of the generating parameters using
the mean/mean approach (Kolen and Brennan 2004). It should be noted that item
parameter estimates from one-class mixture IRT solutions were used to calculate the
RMSE between the generated single-class IRT data sets. In addition, a percentage
of correct detection of simulated latent classes was calculated based on smallest
AIC and BIC indices for each condition. The proportion of correct detections for
the single-class condition was used as the percentage of correct identification.

3.3 Results

As mentioned earlier, each data set was generated to have one class. The data
generated by the Rasch model were fitted with the MRM and the data generated
by 2PL and 3PL IRT models were fitted with Mix2PL and Mix3PL IRT models,
respectively. These three models were fit with one-class and two-class models using
standard normal priors on ability parameters for each simulation condition. The
mean RMSE values of item parameters for each condition were calculated and
are given in Tables 3.3, 3.4, and 3.5. The proportion of correct positives for the
three MixIRT models was calculated based on minimum AIC and BIC between
one-class and two-class solutions. For instance, the number of classes for the given
data set was defined as correct when the information index for a one-class solution
was smaller than that of two-class solution. These proportions are presented in
Tables 3.6, 3.7, and 3.8 for each condition. Condition names given in the first column
of Tables 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8 include model name, number of items,
and number of examinees. For example, the condition Rasch10600 indicates a data
condition generated with the Rasch model for ten items and 600 examinees.

Table 3.3 summarizes the mean RMSE values of item difficulty parameters for
three MixIRT models. Mean RMSE values of item difficulty parameter for MRMs
were found to be less than 0.10 for most of the conditions. RMSE values were
around 0.15 in only three of the bimodal data conditions. As shown in Table 3.3,
mean RMSE values of the Mix2PL and Mix3PL IRT models were larger than those
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Table 3.3 Mean RMSE values of item difficulty parameters over 25
replications

Condition Bimodal Normal Platykurtic Skewed Uniform

Rasch10600 0.164 0.093 0.083 0.087 0.095

Rasch28600 0.146 0.089 0.091 0.093 0.095

Rasch102000 0.149 0.077 0.085 0.074 0.088

Rasch282000 0.097 0.051 0.050 0.050 0.057

2PL10600 0.337 0.187 0.196 0.179 0.199

2PL28600 0.280 0.131 0.135 0.133 0.131

2PL102000 0.364 0.111 0.136 0.109 0.161

2PL282000 0.286 0.072 0.072 0.077 0.107

3PL10600 0.777 0.391 0.371 0.363 0.387

3PL28600 0.675 0.204 0.206 0.214 0.290

3PL102000 0.776 0.333 0.341 0.339 0.426

3PL282000 0.617 0.132 0.137 0.183 0.230

Table 3.4 Mean RMSE values of item discrimination parameters over
25 replications

Condition Bimodal Normal Platykurtic Skewed Uniform

2PL10600 1.677 0.148 0.144 0.155 0.298

2PL28600 1.524 0.131 0.129 0.138 0.275

2PL102000 1.778 0.086 0.098 0.088 0.357

2PL282000 1.813 0.071 0.069 0.078 0.368

3PL10600 1.220 0.574 0.538 0.515 0.522

3PL28600 1.125 0.730 0.744 0.470 0.545

3PL102000 1.280 0.448 0.503 0.511 0.471

3PL282000 2.176 0.417 0.440 0.452 0.452

for the MRM. Mean RMSE values appear to increase as the complexity of model
increases. RMSEs for the Mix2PL IRT model condition with 28 items and 2,000
examinees, however, were less than 0.11 for all except the bimodal symmetric
distribution. For the Mix2PL analyses, mean RMSE values seemed to decrease
as the number of examinees increases. The mean RMSE values for the bimodal
distribution were relatively higher for the Mix3PL IRT model. Mean RMSE values
were around 0.30 for normal, platykurtic, skewed, and uniform distributions. These
results are consistent with previous simulation studies with MixIRT models (Li et al.
2009).

Mean RMSE values for item discrimination parameter estimates for the Mix2PL
and Mix3PL IRT models are presented in Table 3.4. As expected, RMSE values
for the Mix2PL and Mix3PL IRT models for the bimodal symmetric distribution
were the largest. Those for the uniform distribution were the second largest.
Mean RMSE values appeared to be smaller for all of the Mix2PL conditions
for the normal, platykurtic, and skewed distributions. Mean RMSE values for the
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Table 3.5 Mean RMSE values of item guessing parameters over 25
replications

Condition Bimodal Normal Platykurtic Skewed Uniform

3PL10600 0.096 0.089 0.088 0.092 0.089

3PL28600 0.061 0.063 0.058 0.073 0.653

3PL102000 0.092 0.085 0.086 0.093 0.093

3PL282000 0.039 0.047 0.049 0.074 0.048

Table 3.6 The correct positive rates for MRM analyses over 25 replications

Bimodal Normal Platykurtic Skewed Uniform
Condition AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

Rasch10600 0 0 2 25 6 23 0 19 0 2

Rasch102000 1 13 0 19 0 22 0 14 0 0

Rasch28600 0 0 20 25 20 25 15 25 10 25

Rasch282000 3 15 7 25 4 25 1 21 0 0

Mix3PL IRT model condition also decreased as the number of examinees increased,
although there was no clear pattern as the number of items increased. Table 3.5
summarizes mean RMSE values for the guessing parameter estimates. For most of
the conditions, mean RMSE values appeared to decrease as the number of items
and the number of examinees increased. Mean RMSE values for item guessing
parameters were relatively lower than those for item difficulty and discrimination
parameters. This is because the item guessing parameter estimates are always
between zero and one. Thus, the recovery of item guessing parameters is often easier
than the recovery of other item parameters, particularly discrimination parameters.

Table 3.6 summarizes the correct positive rates for MRM analyses. As shown
in Table 3.6, the BIC index performed well in the MRM analysis under normal,
platykurtic, and skewed conditions. However, the proportions of correct positives
for the BIC index for the bimodal and uniform conditions were low except in the
28 items and 600 examinees condition. The performance of AIC was lower than
BIC for the MRM analyses. AIC did not provide high correct identification rates in
the normal distribution conditions. Both AIC and BIC showed good performance in
data conditions with 28 items and 600 examinees except for bimodal data. In most
of the other simulation conditions, the correct positive rate for AIC index was very
low and close to zero.

Table 3.7 presents the correct positive rates for Mix2PL IRT model analyses. For
almost all conditions, the correct positive rates of the BIC index were found to be
almost perfect except for the skewed data conditions. Although the results of the
AIC index in the Mix2PL IRT model analyses provided higher correction rates than
that of the MRM analyses, the overall performance of AIC index was worse than
BIC results. Correct positive rates for AIC ranged from 0 to 10 in more than half
of the conditions. Based on the results from AIC index, latent nonnormality causes
spurious latent class in Mix2PL IRT model estimation. However, results based on
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Table 3.7 The correct positive rates for Mix2PL analyses over 25 replications

Bimodal Normal Platykurtic Skewed Uniform

Condition AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

2PL10600 5 25 9 25 7 25 1 16 7 25

2PL102000 6 24 2 22 6 25 0 2 2 17

2PL28600 25 25 25 25 24 25 10 25 19 25

2PL282000 18 25 12 22 21 25 0 10 2 25

Table 3.8 The correct positive rates for Mix3PL analyses over 25 replications

Bimodal Normal Platykurtic Skewed Uniform

Condition AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

3PL10600 15 25 17 25 13 25 14 25 6 25

3PL102000 2 25 3 24 3 22 23 24 2 17

3PL28600 25 25 25 25 25 25 25 25 25 25

3PL282000 17 25 23 25 16 25 21 25 5 25

the BIC index did not show strong evidence for existence of spurious latent class in
Mix2PL IRT model estimation with nonnormal latent distributions.

Table 3.7 presents the correct positive rates for Mix3PL IRT model analyses.
In all distribution conditions, BIC supported selection of one class in 100 % of the
replications at all three sample size × two test length conditions. Only the conditions
with ten items and 2,000 examinees yielded lower results in terms of the BIC
index. The number of correct selections was higher for AIC for the Mix3PL model
compared to the previous models. Consistent with the previous results, however,
the number of correct selections by AIC was lower than for BIC. Further, AIC had
problems with selecting the correct model in most of the uniform data conditions.
AIC failed to detect the correct model for the ten items and 2,000 examinees one-
class condition. It appears that the Mix3PL IRT models were more robust to latent
nonnormality than either the MRM or Mix2PL IRT models based on results for both
the AIC and BIC.

3.4 Discussion

The two-class MixIRT model was consistently judged to be a better representation
of the data than the one-class model when the data were analyzed with the MRM
under both bimodal and uniform data conditions. As expected, MRM analyses of
the data with normal and typical nonnormal ability distributions (i.e., skewed and
platykurtic) did not show any over-extraction. Both of the indices provided similar
results; however, the overall performance of AIC was worse than the BIC.

The results of the Mix2PL and Mix3PL analyses showed similar patterns. For
most of the conditions, nonnormality did not appear to lead to over-extraction with
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either the Mix2PL or MiX3PL IRT models. These results were not consistent with
the results of the MRM analyses. However, the relative performance of fit indices in
the Mix2PL and Mix3PL IRT model analyses was consistent with the analyses of
MRM in that the AIC selected solutions with two-classes more than BIC. This also
was consistent with previous research on model selection that found AIC to select
more complex model solutions.

Results suggested that latent nonnormality may be capable of causing extraction
of spurious latent classes with the MRM. More complex models, however, such
as the Mix2PL and Mix3PL appeared to be more robust to latent nonnormality in
that both tended to yield fewer spurious latent class solutions. With respect to the
penalty term used in the information indices considered here, the more parameters
added to the model, the larger the penalty term. In addition, the performance of
the information indices used to determine model fit also may be a function of the
underlying distribution of the data. Thus the interpretability of the latent classes in
any model selected also needs to be considered in determining model selection.
Relying only on statistical criteria may not always yield interpretable solutions.
Results in this study suggested that it may be misleading, even under the most ideal
conditions, to use the AIC index for identifying number of latent classes. Thus,
the solution accepted should be expected to have sufficient support not only from
statistical criteria but also from the interpretability of the classes. Further research
on the impact of different nonnormal distributions would be helpful, particularly
with respect to more extreme skewness and kurtosis conditions that can sometimes
arise in highly heterogeneous populations. The skewed and platykurtic data sets
in this study were limited to typical nonnormality conditions. It may be useful to
investigate the effects of extreme violations of normality on detection of the number
of latent classes.
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