
Chapter 15
Assessing Differential Item Functioning
in Multiple Grouping Variables with Factorial
Logistic Regression

Kuan-Yu Jin, Hui-Fang Chen, and Wen-Chung Wang

Abstract Differential item functioning (DIF) can occur among multiple grouping
variables (e.g., gender and ethnicity). For such cases, one can either examine DIF
one grouping variable at a time or combine all the grouping variables into a single
grouping variable in a test without a substantial meaning. These two approaches,
analogous to one-way analysis of variance (ANOVA), are less efficient than an
approach that considers all the grouping variables simultaneously and decomposes
the DIF effect into main effects of individual grouping variables and their inter-
actions, which is analogous to factorial ANOVA. In this study, the idea of factorial
ANOVA was applied to the logistic regression method for the assessment of uniform
and nonuniform DIF, and the performance of this approach was evaluated with
simulations. The results indicated that the proposed factorial approach outperformed
conventional approaches when there was interaction between grouping variables;
the larger the DIF effect size, the higher the power of detection; the more DIF items
in the anchored test, the worse the DIF assessment. Given the promising results, the
factorial logistic regression method is recommended for the assessment of uniform
and nonuniform DIF when there are multiple grouping variables.

Keywords Differential item functioning • Logistic regression • Uniform differ-
ential item functioning • Nonuniform differential item functioning

Many tests and inventories have been developed to measure latent traits in the
human sciences and to compare inter-individual differences. A major concern
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that arises under such group comparisons is whether or not test items reflect
the same latent dimensions across all groups of examinees, termed measurement
equivalence or measurement invariance (Candell and Hulin 1986; Drasgow 1987).
A lack of measurement invariance leads to a problematic situation where examinees
having the same underlying ability but belonging to different groups have different
probabilities of success on an item. Thus, the test favors one or more groups of
examinees but disadvantages others. Measures are not comparable across groups,
and test fairness is threatened.

Assessment of differential item functioning (DIF) is a routine practice to
investigate measurement invariance at the item level, especially for large-scale
assessment programs such as the Program for International Student Assessment and
the Trends in International Mathematics and Science Study. DIF refers to examinees
with the same ability level from different groups having different probabilities
of pass or endorsing an item. In the framework of item response theory (IRT),
an item shows DIF if its response functions are not identical across groups. The
psychometric properties differ across groups, and the differences in the measures
across groups do not reflect true differences.

Most DIF studies focus on the difference between a reference group (e.g.,
majority) and a focal group (e.g., minority). Latent traits of the two groups of
examinees are placed on the same metric based on an anchored test, and then the
responses to a studied item are examined for DIF. Sometimes, more than two groups
of examinees may be involved, such as in cross-cultural and cross-ethnic research
(Iwata et al. 2002). In such cases, a group (e.g., white Americans) is selected to
serve as the reference group, so the other focal groups can be compared against
the reference group, one focal group at a time. This procedure is analogous to the
independent-samples t-test. Just as the one-way ANOVA is statistically superior
to multiple independent-samples t-tests, simultaneous DIF analysis across multiple
groups has been found to be statistically more efficient than multiple two-group DIF
analyses (Güler and Penfield 2009; Kim et al. 1995; Penfield 2001).

Specifically, Kim et al. (1995) developed the Qj statistic using the vectors of item
parameter estimates. If the vectors differ significantly across groups, then the item
characteristic functions differ across groups, and the item is deemed to exhibit DIF.
Being an IRT-based method, the Qj statistic requires large sample sizes for stable
item parameter estimation. To resolve this problem, Penfield (2001) proposed a non-
IRT-based method: the generalized Mantel–Haenszel (MH) statistic (Somes 1986;
Zwick et al. 1993). Simulation results confirmed that both methods yielded well-
controlled Type I error rates and high power rates, but they differed in computation
time and sample size requirements.

When DIF analysis is to be conducted on multiple grouping variables (factors),
such as gender (two levels) and ethnicity (three levels), two approaches are often
adopted: The first approach is to consecutively conduct DIF analysis, one grouping
factor at a time. For example, one can conduct a gender DIF analysis, followed by an
ethnicity DIF analysis. The second approach is to combine these two grouping fac-
tors into a pseudo-grouping factor with six levels and to implement the procedures
proposed by Kim et al. (1995) or Penfield (2001). The first approach, analogous to
conducting one-way ANOVA procedures consecutively, aims to evaluate whether
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there is a gender DIF or an ethnicity DIF. The second approach, also analogous
to one-way ANOVA, creates a pseudo-grouping factor that often lacks substantial
meaning. Both approaches are less statistically efficient than factorial ANOVA,
where all grouping factors are simultaneously considered and the “total” DIF effect
is partitioned into main effects of individual grouping factors and their interaction
effects, such as a main effect of gender, a main effect of ethnicity, and an interaction
effect between gender and ethnicity.

Factorial DIF analysis procedures in the framework of Rasch models have
been proposed and proven to be effective in DIF assessment (Wang 2000a, b)
and outperform conventional consecutive DIF analyses when an interaction exists
between grouping factors (Chen et al. 2012). Embedded in the framework of
Rasch models, such factorial procedures are parametric and not applicable to the
assessment of nonuniform DIF. In this study, we adopt the logic of factorial DIF
analysis and apply it to a nonparametric approach—the logistic regression (LR)
method (Swaminathan and Rogers 1990)—which is applicable to both uniform and
nonuniform DIF.

The LR method is one of the most widely used nonparametric approaches in DIF
assessment (Kim and Oshima 2013; Li et al. 2012). It is simple, easy to implement,
and does not require a large sample size or a specific form of item response
functions. It can be easily implemented in common computer packages such as
SPSS, SAS, or Matlab, or free software such as R. The LR method works equally
as well as the MH method in uniform DIF assessment, and outperforms the MH
method in nonuniform DIF assessment (Narayanan and Swaminathan 1994, 1996;
Swaminathan and Rogers 1990). Often, a raw test score is treated as a matching
variable to place examinees from different groups on the same metric, so studied
items can be assessed for uniform or nonuniform DIF. Compared to IRT-based
DIF assessment methods, disadvantages of the LR method include inflated Type
I error rates when different groups of examinees have very different mean ability
levels (Güler and Penfield 2009; Narayanan and Swaminathan 1996) and its poor
performance when the underlying IRT model is a multiparameter logistic model
(Bolt and Gierl 2006; DeMars 2010).

Given the importance of factorial DIF analysis and the simplicity and popularity
of the LR method in uniform and nonuniform DIF assessment, this study develops
the factorial logistic regression (FLR) method to assess DIF effects when there
are multiple grouping factors. Its performance in DIF assessment is evaluated and
compared to other LR methods via two simulation studies. In the following sections,
we introduce the key ideas of the FLR method, present the results of the simulation
studies, draw conclusions, and give suggestions for future studies.

15.1 The FLR Method

Let Tn denote the raw test score for person n. Let Xn be an indicator of group
membership for person n; for example, Xn = 1 if person n belongs to the reference
group, and Xn = -1 if person n belongs to the focal group. Let Pn be the probability of
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success on the studied item for person n. When the studied item is to be assessed for
DIF, one can formulate the log-odds (or logit) of a correct answer over an incorrect
answer as:

log

(
Pn

1−Pn

)
= τ0 + τ1Tn + τ2Xn + τ3XnTn, (1)

where τ0 - τ3 are the regression coefficients for the studied item. If τ2 or τ3 is not
zero, then the item is deemed to exhibit DIF. Normally, if τ3 is not zero, then the
item is deemed to exhibit nonuniform DIF; if τ3 is zero but τ2 is not, then the item
is deemed to exhibit uniform DIF (Narayanan and Swaminathan 1994).

When there is one grouping factor and it has more than two groups (g= 1, . . . ,G),
one can create a set of G - 1 dummy variables to represent the group membership:
Xn

′= (Xn1, . . . , Xn(G− 1)). For example, if there are three groups, two dummy
variables, X1 and X2, can be created. If examinee n is in group 1, then Xn1 = 1,
Xn2 = 0; in group 2, Xn1 = 0, Xn2 = 1; in group 3, Xn1 = -1, Xn2 = -1. That is,

Xn
′ =

⎡
⎣ 1 0

0 1
−1 −1

⎤
⎦ , (2)

where the two columns stand for X1 and X2, and the three rows stand for the three
groups. Equation (1) can then be extended as follows:

log

(
Pn

1−Pn

)
= τ0 + τ1Tn +τ2

′Xn +τ3
′XnTn, (3)

where τ0, τ1, τ2, and τ3 are the regression coefficients for the studied item. For the
three groups, Eq. (3) becomes

log

(
Pn

1−Pn

)
= τ0 + τ1Tn + τ21Xn1 + τ22Xn2 + τ31Xn1Tn + τ32Xn2Tn, (4)

where τ2
′= (τ21, τ22), τ3

′= (τ31, τ32), and Xn
′= (Xn1, Xn2). If τ3 is not a zero

vector, then the item is deemed to exhibit nonuniform DIF; if τ3 is a zero vector but
τ2 is not, then the item is deemed to exhibit uniform DIF.

The interpretation of τ2 and τ3 is analogous to that in standard logistic
regression. Take the design matrix in Eq. (3) as an example. When there is no
nonuniform DIF (i.e., τ3 = 0), then Eq. (4) becomes

Group 1 (X1 = 1, X2 = 0) : log

(
Pn

1−Pn

)
= τ0 + τ1Tn + τ21, (5)
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Group 2 (X1 = 0, X2 = 1) : log

(
Pn

1−Pn

)
= τ0 + τ1Tn + τ22, (6)

Group 3 (X1 =−1, X2 =−1) : log

(
Pn

1−Pn

)
= τ0 + τ1Tn − τ21 − τ22. (7)

If τ2
′= (τ21, τ22)= (0.4,− 0.3), then for examinees with an equal ability level,

the log-odds (logit) of group 1 examinees will be 0.8 higher than that of group 3
examinees, and the log-odds (logit) of group 2 examinees will be 0.6 lower than
that of group 3 examinees.

Next, suppose there is more than one grouping factor. For illustrative simplicity,
let there be two grouping factors, A (e.g., gender) and B (e.g., ethnicity), and let
each factor have two levels (e.g., male and female; white and black), so that in total
there are four groups of examinees (e.g., white male, white female, black male, and
black female). Let X1 be the dummy variable for factor A, and X2 be the dummy
variable for factor B. To account for the interactions between factors A and B, one
additional dummy variable is needed: X1X2. Thus, a 4 by 3 matrix can be created:

Xn
′ =

⎡
⎢⎢⎣

1 1 1
−1 1 −1

1 −1 −1
−1 −1 1

⎤
⎥⎥⎦ , (8)

where the three columns stand for X1, X2, and X1X2, and the four rows stand for
the four groups. That is, Xn1 = 1, Xn2 = 1, Xn1Xn2 = 1 if examinee n is in group 1
(white male); Xn1 = -1, Xn2 = 1, Xn1Xn2 = -1 if in group 2 (white female); Xn1 = 1,
Xn2 = -1, Xn1Xn2 = -1 if in group 3 (black male); Xn1 = -1, Xn2 = -1, Xn1Xn2 = 1 if in
group 4 (black female). When the general form of Eq. (3) is applied, one has:

log

(
Pn

1−Pn

)
= τ0 + τ1Tn + τ21Xn1 + τ22Xn2 + τ23Xn1Xn2

+ τ31Xn1Tn + τ32Xn2Tn + τ33Xn1Xn2Tn, (9)

in which τ2
′= (τ21, τ22, τ23), τ3

′= (τ31, τ32, τ33), and Xn
′= (Xn1, Xn2, Xn1Xn2).

With the design matrix in Eq. (8), τ21 depicts the main effect of factor A on
uniform DIF, τ22 depicts the main effect of factor B on uniform DIF, τ23 depicts the
interaction effect of factors A and B on uniform DIF, τ31 depicts the main effect of
factor A on nonuniform DIF, τ32 depicts the main effect of factor B on nonuniform
DIF, and τ33 depicts the interaction effect of factors A and B on nonuniform DIF.
When there is no nonuniform DIF, Eq. (9) becomes
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White Male (X1=1, X2=1, X1X2=1) : log

(
Pn

1−Pn

)
=τ0+τ1Tn+τ21+τ22+τ23,

(10)

White Female(X1=−1, X2=1, X1X2=−1): log

(
Pn

1−Pn

)
=τ0+τ1Tn−τ21+τ22−τ23,

(11)

Black Male(X1=1,X2=−1,X1X2=−1) : log

(
Pn

1−Pn

)
=τ0+τ1Tn+τ21−τ22−τ23,

(12)

Black Female(X1=−1,X2=−1, X1X2=1) : log

(
Pn

1−Pn

)
=τ0+τ1Tn−τ21−τ22+τ23,

(13)

If τ2
′= (τ21, τ22, τ23) = (0.4, − 0.3, 0.2), then it can be shown that, on average,

males have a logit 0.8 higher than that of females; white people have a logit 0.6
lower than that of black people; and white males and black females have a logit 0.4
higher than that of white females and black males. A similar interpretation applies
to τ3.

The use of design matrices like Eq. (8) enables users to decompose uniform DIF
and nonuniform DIF into a main effect of factor A, a main effect of factor B, and
an interaction effect between factors A and B. Furthermore, Eq. (9) can be easily
generalized to cover more than two grouping factors, which can be categorical or
continuous, as in factorial ANOVA or ANCOVA (analysis of covariance).

The likelihood ratio test can be adopted to statistically test whether the τ2 and
τ3 vectors are zero. By comparing the likelihood ratio of Eqs. (14) and (3), one can
test whether the studied item has DIF:

log

(
Pn

1−Pn

)
= τ0 + τ1Tn, (14)

against a chi-square distribution with degrees of freedom of the length of τ2 and τ3.
Likewise, one can compare the likelihood ratio of Eqs. (15) and (3) to test whether
the studied item has nonuniform DIF:

log

(
Pn

1−Pn

)
= τ0 + τ1Tn +τ2

′Xn, (15)
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against a chi-square distribution with degrees of freedom of the length of τ3. When
τ3 is a zero vector, it is desirable to test whether this item has uniform DIF, which
can be done by comparing the likelihood ratio of Eqs. (14) and (15) against a chi-
square distribution with degrees of freedom of the length of τ2. All these equations
and likelihood ratio tests can be easily implemented on commercial programs such
as SPSS and SAS, or free software such as R.

In the following simulation studies, we were particularly interested in two
questions: (a) Could the FLR method detect uniform DIF effectively under different
conditions, as compared to traditional LR methods? and (b) Could the FLR method
detect nonuniform DIF effectively under different conditions, as compared to
traditional LR methods? Each question was answered by a simulation study. In both
simulation studies, there were two grouping variables and each had two levels.

15.2 Simulation Study 1: Uniform DIF

15.2.1 Design

Let the two grouping variables be denoted A and B. Let X1 be the dummy variable
for factor A, X2 be the dummy variable for factor B, and X1X2 be the dummy variable
for factors A and B. The design matrix was identical to that in Eq. (5). Each of the
four groups of examinees had a sample size of 125, and their ability levels were
generated from N(0, 1). There were 21 items in the test, in which items 1–20 were
treated as an anchored test to place all the examinees from different groups on the
same scale, so that item 21 could be detected for DIF. The item responses followed
the Rasch model. There were three independent variables: (a) percentage of DIF
items in the anchored test, 0, 10, and 20 % DIF items in the 20-item anchored
test; (b) DIF size in the studied item, 0, 0.2, 0.4, and 0.6 logits; and (c) DIF source,
consisting of main effect of factor A, main effects of factors A and B, the interaction
effect, main effect of factor A and the interaction effect, and main effects of factors
A and B and the interaction effect. Let the difficulty parameter be b when an item did
not have DIF. It became b± 0.2, b± 0.4, and b± 0.6 for the four groups, according
to the design matrix in Eq. (5) when the DIF size was 0.2, 0.4, and 0.6, respectively.
Although an anchored test should preferably include exclusively DIF-free items, in
reality, DIF items may be included in an anchored test. Inclusion of DIF items often
results in poorer DIF assessment (Narayanan and Swaminathan 1996; Rogers and
Swaminathan 1993). Scale purification procedures for logistic regression methods
have been developed (French and Maller 2007). However, this study did not consider
scale purification because its major purpose was to evaluate the FLR method and
others, even when the anchored test included DIF items.

A total of 76 conditions were examined with 1,000 replications under each
condition. Each simulated dataset was analyzed with the following four methods:
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1. The LR-A method in which DIF analysis was conducted to assess DIF of
grouping variable A;

2. The LR-B method in which DIF analysis was conducted to assess DIF of
grouping variable B;

3. The LR-AB method in which DIF analysis was conducted to assess DIF of
grouping variables A and B consecutively; and

4. The proposed FLR method.

Although there were two grouping variables and DIF analysis should be con-
ducted on both variables (meaning that the LR-A and LR-B methods were not
applicable in practice), the LR-A and LR-B methods were adopted, by which the
LR-AB and FLR methods can be compared. The nominal level of hypothesis testing
was set at 0.05. Note that in the LR-AB method there were two hypothesis tests, so
the Bonferroni adjustment was applied.

The outcome variables were the Type I error rate and the power rate. The
empirical Type I error rate (false positive rate) was computed as how many times
in the 1,000 replications a DIF-free studied item (DIF size= 0) was mistakenly
declared as having DIF; and the empirical power rate (true positive rate) was
computed as how many times in the 1,000 replications a DIF item was correctly
detected as having DIF.

It was expected that (a) when the anchored tests did not contain any DIF items,
all four methods would yield well-controlled Type I error rates; (b) when the
anchored tests contained DIF items, the performance of these four methods would
be degraded; (c) the FLR method would have higher power than the other methods
when the DIF source contained the interaction of factors A and B; and (d) the larger
the DIF size, the higher the power rate.

15.2.2 Results

15.2.2.1 Empirical Type I Error Rates

When the anchored test did not contain any DIF items, the empirical Type I error
rates were 0.058, 0.058, 0.053, and 0.047 for the FLR, LR-AB, LR-A, and LR-B
methods, respectively. All methods yielded well-controlled Type I error rates, as
expected. When the anchored test contained 10 % DIF items, as shown in the upper
panel of Table 15.1, the Type I error rates were inflated, especially when the DIF
size was large. In addition, it was evident that the LR-AB and FLR methods were
more adversely affected than the LR-A and LR-B methods by the inclusion of DIF
items in the anchored test. When the anchored test contained 20 % DIF items, as
shown in the lower panel of Table 15.1, the inflation in the Type I error rates was
even worse than it was in the condition of 10 % DIF items. For example, when the
DIF source contained the interaction between factors A and B and the DIF size was
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large, the FLR method yielded a Type I error rate of 0.077 when there were 10 %
DIF items in the anchored test, and 0.235 when there were 20 % DIF items. Thus,
the second expectation was supported, too.

15.2.2.2 Empirical Power Rates

First, consider the case where the anchored test did not contain any DIF items. As
shown in the upper panel of Table 15.2, when the DIF source contained exclusively
the interaction between factors A and B, only the FLR method yielded high power
rates: 0.462, 0.971, and 1.000 when the DIF size was small (0.2 logits), medium (0.4
logits), and large (0.6 logits), respectively, whereas the other three methods yielded
power rates between 0.033 and 0.050. A close inspection of the panel revealed that
the FLR method substantially outperformed the other three methods as long as the
DIF source contained the interaction. When the DIF source contained exclusively
the main effect of factor A, the LR-A method had the highest power rates, and the
LR-B had the lowest power rates. It was also very clear that the larger the DIF size,
the higher the power rate.

Second, consider the case in which the anchored test contained 10 or 20 %
(uniform) DIF items, as shown in the middle and lower panels. Take the power rates
when the anchored tests did not contain any DIF items as a reference. Across the 15
conditions (5 DIF sources by 3 DIF sizes), the mean power rate was increased by 1,
2, 5, and 2 %, for the FLR, LR-AB, LR-A, and LR-B methods, respectively, when
the anchored tests contained 10 % DIF items, and increased by 4, -5, -4, and 2 % for
the four methods, respectively, when the anchored tests contained 20 % DIF items.
It appears that the inclusion of 10 or 20 % (uniform) DIF items in the anchored test
did not substantially affect the power rates of these four methods.

15.3 Simulation Study 2: Nonuniform DIF

15.3.1 Design

This simulation study focused on the assessment of nonuniform DIF. Item responses
were simulated according to the three-parameter logistic model. The settings were
identical to those in Simulation Study 1, except (a) the discrimination parameters
were generated from a log-normal distribution with mean of 0 and variance
of 0.1, and the guessing parameters were fixed as 0.2 for all items; (b) the
DIF occurred only on the discrimination parameters across different groups of
examinees, and the DIF size on a logarithm scale was set at 0, 0.13, 0.26, and
0.39, representing DIF-free, small, medium, and large DIF effects, respectively.
Let the discrimination parameter be a when an item did not have DIF. It became
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log(a)± 0.13, log(a)± 0.26, log(a)± 0.39, for the last three groups according to the
design matrix in Eq. (8) when the DIF size was 0.13, 0.26, and 0.39, respectively.
Note that the difficulty parameter did not exhibit DIF.

15.3.2 Results

15.3.2.1 Empirical Type I Error Rates

The Type I error rates were 0.054, 0.048, 0.052, and 0.044 for the FLR, LR-AB,
LR-A, and LR-B methods, respectively, suggesting a very good control. As shown
in Table 15.3, when the anchored test contained 10 or 20 % DIF items, the Type
I error rates for the four methods were still very close to their expected value of
0.05. A comparison of the Type I error rates in Tables 15.1 (uniform DIF) and 15.3
(nonuniform DIF) reveals that the inclusion of uniform DIF items (with difference
in the difficulty parameters across groups) in the anchored test had a more adverse
effect on the DIF assessment than the inclusion of nonuniform DIF items (with
difference in the discrimination parameters across groups). This was mainly because
the inclusion of uniform DIF items in the anchored test would deteriorate the
correspondence between the raw test score used in the LR methods and the ability
level simulated from IRT models, whereas the correspondence was not substantially
affected by the inclusion of nonuniform DIF items. Note that including DIF items
with difference in both the difficulty and discrimination parameters across groups
(referred to as nonuniform DIF items in the literature) would also exhibit an adverse
effect.

15.3.2.2 Empirical Power Rates

The upper panel of Table 15.4 shows the power rates of the four methods when
the anchored test did not contain any DIF items. When the DIF source contained
exclusively the interaction between factors A and B, only the FLR method yielded
high power rates: 0.084, 0.186, and 0.538 when the DIF size on the discrimination
parameter was small (0.13), medium (0.26), and large (0.39), respectively; whereas
the other three methods yielded power rates between 0.036 and 0.055. The panel
also shows that the FLR method substantially outperformed the other three methods
as long as the DIF source contained the interaction. When the main effect of factor
was the only DIF source, the LR-A method had the highest power rates, and the
LR-B had the lowest power rates. Furthermore, the larger the DIF size, the higher
the power rate.

The middle and lower panels of Table 15.4 show the power rates of the four
methods where the anchored test contained 10 or 20 % (nonuniform) DIF items,
respectively. Take the power rates when the anchored tests did not contain any DIF
items as a reference. Across the 15 conditions (5 DIF sources by 3 DIF sizes), the
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mean power rate was increased by -2, -5, -5, and -2 % for the FLR, LR-AB, LR-A,
and LR-B methods, respectively, when the anchored tests contained 10 % DIF items,
and increased by 1, -5, 2, and -5 % for the four methods, respectively, when the
anchored tests contained 20 % DIF items. Thus it can be concluded that the inclusion
of 10 or 20 % nonuniform DIF items in the anchored test did not substantially affect
the Type I error rates or power rates of these four methods.

Conclusion and Discussion
DIF assessment may be conducted across several grouping factors. In addition
to detecting whether an item has DIF, it is also informative to account for
DIF source: whether the DIF came from a specific grouping factor or from
their interactions. In this study, we incorporated a factorial procedure on the
commonly used logistic regression method. The use of design matrices, like
those commonly used in factorial ANOVA, enables the decomposition of DIF
source into main effects of individual grouping factors and their interaction
effects. The parameters in the FLR methods can be interpreted as they are in
standard logistic regression. Furthermore, being a nonparametric method, the
FLR method is simple to implement and fast to converge, and does not require
specification of an item response model or a large sample.

Two simulation studies were conducted to evaluate the performance of the
FLR in the detection of uniform and nonuniform DIF, as compared to three
other LR methods. The simulation results demonstrate the superiority of the
FLR method over the LR-A, LR-B, and LR-AB methods when there was
an interaction effect between grouping factors. In reality, interactions among
grouping factors can occur and their magnitude may be too large to neglect. In
such cases, among the four methods investigated in this study, only the FLR
method can yield a higher power of detection. We also investigated whether
the FLR method would be adversely affected by including 10 or 20 % DIF
items in the anchored test. The results showed a small deflation in the mean
power rates, but a substantial inflation in Type I error rates when the anchored
test had uniform DIF items with large DIF sizes. The adverse effect was less
obvious when the DIF items in the anchored test had different discrimination
parameters but the same difficulty parameters across groups.

In this study, all groups were simulated to have an equal mean ability (i.e.,
no impact). In reality, different groups may have different means (i.e., with
impact). It has been shown that the LR method yields inflated Type I error
rates and deflated power rates when there is a large impact (Bolt and Gierl
2006; Güler and Penfield 2009). The test raw scores do not match ability
levels and thus, the approach fails to place different groups on the same scale
for DIF assessment, when groups have very different means. Roussos and
Stout (1996) suggest a longer anchored test for large impacts. Even so, the

(continued)
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advantages of the FLR method over the LR method would remain unchanged
even with large impacts.

This study has implications for DIF research methodology and enables
practitioners to assess DIF sources for future item revision. The FLR method
can be generalized to assess DIF in polytomous items. Future studies can
evaluate the FLR method under different conditions of test lengths, sample
sizes, and combinations of uniform and nonuniform DIF items. It is also
important to evaluate the FLR method when there is an impact, or when tests
consist of both dichotomous and polytomous items.
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