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Abstract. Smell sensors in mobile robotics for odor source localization are get-
ting the attention for researches around the world. To solve the problem, it must
be considered the environmental model and odor behavior, the perception sys-
tem and the algorithm for tracking the odors plume. Current algorithms try to
emulate the behavior of the animals known by its capability to follow odors.
Nevertheless, the odor perception systems are still in its infancy and far to be
compared with the biological smell sense. This is why, an algorithm that consid-
ers the perception system capabilities and drawbacks, the environmental model
and the odor behavior is presented on this work. Besides, an artificial intelligent
technique (Genetic Programming) is used as a platform to develop odor source
localization algorithms. It is prepared for different environment conditions and
perception systems. A comparison between this improved algorithm and a pair of
basic techiques for odor source localization is presented in terms of repeatability.
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1 Introduction

Smell sensors are being developed to distinguish all types of odors, intensities and con-
centrations. Odor source localization algorithms should be useful with any kind of odor
sensors arrays and a good signal analysis that improve the measurement. The applica-
tions could be the detection of toxic gas leaks, the fire origin of a disaster, search and
rescue operations, etc.

Smell sensors implemented on mobile robots started in 1984 with the use of chemical
sensitive robots in the nuclear industry [1]. There are many algorithms used to support
and increase the efficiency of odor source localization.These are most commonly clas-
sified by the terms of chemotaxis and anemotaxis depending on the environment and the
capabilities of the odor sensors. Chemotaxis is used when the orientation and movement
of the agent (mobile robot) is based on the chemical gradient of the environment [2]. On
the other hand, anemotaxis, instead of following the gradient, considers the direction or
current of a fluid [3,4] and the agent moves through it.

Some other algorithms for odor source localization that include predefined airflow
models, different environment conditions, different types of odor sources and obstacle
maps are described in [5,6,7,8].
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The principal disadvantage of this algorithms is the sensorial system itself. The
chemical reactions change the sensor in a way that the recovery to its original state is
slow [9]. In this research, genetic programming is used to evolve a solution considering
the capabilities of the perception system, as well as its limitations. The work is based
on the assumption that the direction from where an odor is coming can be obtained us-
ing the difference between a pair of nostrils as it was implemented on [10]. The results
show that the algorithm obtained by this technique improves the achievement rate of
common algorithms based on chemotaxis. It decreases the time to complete the task
and increases repeatability.

This document is organized as follows. First, the complete definition of the problem
is presented in section 2. In section 3 the theoretical analysis is shown. In section 4
is discussed the implementation and experimental set up. The preliminary results are
shown in section 5. Finally, in section 6 the conclusions and future work are presented.

2 Problem Definition

There are three problems that need to be analyzed when solving the task of tracing odor
sources with a robot: characterize the dynamic behavior of the atmosphere and odors;
adequately perceive this environment so that the information can be useful for future
analysis and the algorithm or technique to locate the odor source using this information.

Currently, techniques and nature-based algorithms emulate the behavior of some an-
imals, such as casting, and sweeping spiral [11]. However, currently available sensors
differ from the characteristics of the biological sensors that these animals have. This oc-
curs basically because their brain does not only use this ability, but gathers information
from all other sensors. This is the way in which the animals learned how to locate the
odor. When a try of simulate this localization technique with a robot is done, the results
are not the most optimal because the odor source is not located with high accuracy or
requires a lot of task time to be reached.

However, if the 3 sub-problems are seen as one, considering the limitations of the
sensors (desaturation time, concentration difference between sources, reaction time),
features based on nature that must have at least, the mathematical model of it, a new
technique with better results can be obtained by means of genetic programming. This
task can be achieved regardless the information from other sensors such as
anemometers.

In this research is presented the development of a genetic program (GP) that pro-
duces an odor tracking algorithm that integrates the simulation of a system device with
the capability of directionality and the odor propagation model as the environmental
conditions.

3 Theoretical Analysis

Different techniques for odor source localization can be used depending on the envi-
ronment conditions and the perception system. Moreover, there are different config-
urations for the implementation of chemical sensors. The most commonly used into
mobile robots are: directly exposed, continually exposed and cyclic exposed. The first
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one refers to the placement of the sensor without isolation. Monroy et al. are using a
complete inverted sensor model [12] to obtain an estimation of the odor. The sensor is
placed into the robot without isolation.

The second configuration is considered when airflow is induced directly to the sen-
sors placed into an isolated chamber. In [13] are using a pair of chambers. An inlet
pipe samples the surroundings by an airflow generated by a micro-pump emulating the
inhalation stage of the ventilation process. Similar approaches [6,2,14] produce and di-
rect airflow into an inlet through the sensors. When a constant odor source is present,
as a gas leak, the sensors are being continually exposed to the odor no having time to
recover its original state. In the other hand, cyclic exposed [15] refers to the use of a
chamber with the capability of isolate the sensors from the environment for a certain
time and prepare it for a new measurement.

Then, the development of algorithms for odor source localization must take in care
the characterisitcs of both, environment and sensor model to achieve a better behavior.
This way, the drawbacks of the physical implementation can de reduced. By genetic
programming, these can be taken into consideration to produce an algorithm specific
for the environment and perception system used. In this section, the environmental and
sensor models in which the GP is based, will be explained.

3.1 Environmental Model

The propagation of odor molecules in the environment occurs in two different ways.
When no airflows are present, the propagation is done by diffusion in a radial manner.
On the other hand, when airflow is present, the propagation is done by advection in a
laminar way.

In [16], diffusion is described as the process by which matter is transported from one
part of a system to another due to molecular motions. Each molecule presents a random
motion, and the set of random movements of all molecules results in the mix of the so-
lute. The microscopic behavior however, is not what determines the odor trail. Instead,
the random walk of molecules take place from a high concentration region to a low
concentration region, depending on the concentration gradient, trying to homogenize
the environment.

The general form for the diffusion equation is for a three-dimensional system is
represented by

∂C
∂t = D(∂

2C
∂x2 + ∂2C

∂y2 + ∂2C
∂z2 ).

As a first approximation, in this research a constant diffusion source will be used as the
environment condition.

3.2 Nose Model

The perception system considered for this work is based on [9,10], which implements a
bio-inspired nose system with the capability of determine the direction from where an
odor is coming. It is achieved by the use of a pair of notrils divided by a septum. In the
inhalation process, the nose is able to concentrate the odor molecules near the sensorial
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system and at exhalation, the nose desaturates the sensors. This design complements
the sensor model from [6,12] by including the cyclic behavior of a sensor placed into a
chamber.

The model emulates the complete ventilation process, where different variables can
be adjusted: the saturation level (Rmax), the time constants of rise (τr), retaining the air
(τa), and decay (τd), the time before the sensor started to respond (ts), the time of the
rising period (Δtr), and the time of the sampling period (Δta).

In real applications, the smell process is cyclic, which means that the actual reading
of the sensors depends on the last measurement. The model that represents this design
into a continuous odorous environment is divided in two stages. For inhalation

ri(t) = re(t− 1) + (Rmax − re(t− 1))(1 − exp(− (t−ts)
τr

),

and for exhalation

re(t) =
re(t−1)−ri(t)(exp(− (t−ts−Δtr−Δta)

τd
)

1−exp(− (t−ts−Δtr−Δta)
τd

)
,

where ri(t) and re(t) are the concentration values during inhalation and exhalation at
the actual ventilation cycle. Consequently, re(t − 1) is the concentration value of the
last cycle. So, after each cycle the initial reference is updated by

re(t− 1) = re(t).

Based on this design with the presented behavior, the modeling and simulation of its
physical properties can be used to obtain an algorithm developed to work specifically
taking advantage of its features.

4 Implementation and Experimental Set-Up

Three algorithms of odor source localization are compared. The first is the one used by
Rozas [17]. The second is going to be called for this purpose as “ the basic algorithm”. It
was designed using ascend gradient method. The third is the one obtained by evolution.
Them are going to be described in this section.

As the physical implementation requires a controlled environment for multiple char-
acterization experiments and because the odor is extracted hardly from this environment
to have exactly equal initial conditions, the experiments take a lot of time. Due this rea-
son, a simulation environment was developed using NetLogo [18] to run any kind and
quantity of experiments.

In the environmental model designed, the diffusion rate and the wind can be con-
trolled varying the direction and the intensity or speed. The initial position, concentra-
tion and quantity of the sources can be also controlled. The sources can be spraying the
odor at constant time intervals or can be always spreading it.

This environment simulates the diffusion through the air from a source as well as the
interaction of the robot with the source considering the mathematical model described
in section 3.2. The selected environment was a fixed odor source that diffuses through
the air and a mobile robot capable of measuring the concentration difference at two
emulated nostrils positioned 45◦ and −45◦ respectively and 1 unit distance from the
center of the robot. The three algorithms are represented as syntax trees, just as in
genetic programming, using the same platform for all simulations.
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4.1 Rozas Algorithm

The first robot implemented for odor source localization was presented by Rozas et
al. [17] in 1991. The algorithm was design to follow odor gradients by taking spatial
measurements at different times, thus, by chemotaxis. The algorithm used is shown in
Fig. 1.

Fig. 1. Odor source localization algorithm implemented in [17] using chemotaxis

4.2 Basic Algorithm

It is a variation of the gradient descend method. The difference between two nostrils is
used to detect the direction of the odor source and the step size of the robot, looking
for the maximum concentration. The routine consists in two operating timed cycles:
the aspiration process and the robot movement. In the aspiration process, each time the
system inhales, the robot acquires odor concentration data through its sensors and saves
it into the memory (Mem) of the adquisition system. In the other hand, the robot move-
ment cylce starts by waiting certain time for measurement (tm). Then, the average of
the data accumulated by inhalation during this time lapse (ti) is obtained. After that, it
calculates its new direction and aligns with it. The direction of turn is limited by a maxi-
mum angle (θmax). Finally, it moves s steps forward. A threshold (thr) is implemented
to consider the uncertnainty between nostrils when the source is near to the front face
of the robot. In that case the robot moves s

k , where k is an experimental constant. The
algorithm is shown in Fig. 2. This routine continues until the robot reaches a saturation
value and is considered to have arrived, or exceeding a preset time limit. It is important
to consider that the measurements used to obtain the direction are only those when the
system is between inhaling and exhaling. The measurements at exhalation are ignored.

4.3 Genetic Programming

Based on the understanding of that the bio-inspired nose has limitations, it can be no-
ticed that a basic algorithm as presented before may not be the best solution. However,
knowing the mathematical model and operation of the system, by means of genetic pro-
gramming an adequated localization algorithm was evolved taking into account these
constraints.
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Fig. 2. Algorithm for reactive gradient ascend. The robot turns according to its measurement.

4.4 Parameters

NetLogo has an interface that communicates with Matlab and allows to exchange data
between the two applications. The purpose of this integration is the use of genetic pro-
gramming managed by this software whose experiments can be simulated by means of
NetLogo. Matlab is responsible for the creation of the new generations based on the
fitness while NetLogo runs the experiments an asigns the fitness on each candidate.

As in robotics, for this application the terminals are the actions of the robot [19,20].
The set of terminals for the GP was composed by:

– Move, Jump. Robot moves forward one or two steps respectively
– Measureminus. Robot average all measurements during last tm
– Measurediff. Robot considers last measurement during last tm
– MeasureTurn. Robot waits for sampling time and obtaines a measurement, then it

turns depending on the nostril’s difference.
– Turnmeasured. Robot turns in the direction calculated.
– Turn90. Robot turns 90◦ to left or right depending on last measurement.
– Turn45. Robot turns 45◦ to left or right depending on last measurement.
– Turnrandom. Robot turns random in a range of −90◦ to 90◦.
– Turnrandom45. Robot turns 45◦ in a random direction.
– HoldOn. Robots waits 1 time step.
– Goback. Robot turns 180◦ and moves forward one step.

The function set is composed by PROGN2, PROGN3 and IF(a,b ). PROGN are the
simplest nodes which are used for connecting parts of program together. It returns two
or tree subtrees respectively in sequence. In the other hand, IF returns a when the tresh-
old is reached and b otherwise.

The fitness function that evaluates each candidate is divided in 5 parameters:

– Distance reached (ΔD). At the end of the experiment, it evaluates how close or
far the robot ends of the source relative to its initial position. Its range varies from
−0.754 to 1, where 1 is better.
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– Time Used (tu). It is the time the robot takes to reach the source (texp) normalized
by tmax, which is the time out of the experiment. Its range varies from 0 to 1, where
0 is better.

– Facing to Source (fs). Considering that the robot’s field of view (FoV) is at front,
it refers to the percentage of times the robot’s FoV is facing to the source. The FoV
is considered 45◦. Its range varies from -1 to 0, where 0 is better.

– Getting closer (Nc). It evaluates the percentage of movements when the robot was
actually moving closer to the source. Its range varies from -1 to 0, where 0 is better.

– Arrived (εa). It is an additional 0.05 evaluation if the source has been reached.

Considering Di as the inital distance from the robot to the source, Df the final distance
and Dmax the maximum initial distance, these parameters can be obtained as:

ΔD =⎧
⎪⎨

⎪⎩

−0.75 if (Df−Di)
Dmax

< −0.75

(Df−Di)
Dmax

otherwise
, εa =

{
0.05 if robot reaches the source
0 otherwise

,

tu =
texp

tmax
, fs =

headings
time steps of experiment , Nc =

times robot is moving closer
time steps of experiment .

Finally, the fitness of each candidate (fn) is the weighted sum of these parameters:

fn = ΔD × 0.5 + (1− tu)× 0.2 + fs × 0.25 +Nc × 0.05 + εa .

The weights of each parameter were calculated running 200 experiments of 10 different
algorithms obtained by Genetic Programming. The results are presented in Table 1. The
weights for each parameter were adjusted comparing the fitness versus: the quantity of
experiments that at the end of the experiment reached the source, got closer to the
source, or got lost (out of the experimental area). The trend lines for each comparison
were adjusted trying to reach a r-squared bigger than 0.5 indicating a lineal tendency.
Fig. 3 show the results using the weights mentioned before.

Fig. 3. Comparison between fitness and principal objectives of algorithm
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Table 1. Comparison results of between 10 algorithms. 8 of them obtained by GP at different
generations

Ended Didn’t Ended Ended Fitness Normalized

Closer Arrived Arrived Farther Out of area (-135 to 150) Fitness

a1 133 20 113 67 0 -13.51 0.426
a2 52 23 29 148 66 -70.62 0.226
a3 142 116 26 58 45 3.87 0.487
a4 113 98 15 87 62 2.12 0.481
a5 68 49 19 132 94 -48.5 0.304
a6 4 3 1 196 94 -120.02 0.053
a7 138 118 20 62 53 2.42 0.482
a8 97 13 84 84 0 -4.82 0.457
a9 137 119 18 63 44 5.08 0.492

a10 7 5 2 193 117 -105.12 0.105

5 Experimental Results

Using genetic programming, a better algorithm was obtained. The probabilities for
crossover and mutation were 0.5 and 0.05 respectively. These were defined with this
values because even when the objective is to look for new and different algorithms, it
is trying not to lose important information at the same time. The roulette technique was
used as the selection method. The number of candidates was 100 and the routine was
evolved during 40 generations. The best algorithm obtained was a variation of gradient
ascend, were instead of constant k = 2 was k = 1 and instead of save the measurements
during tm the algorithm waits until the inhalation cycle have finished. Fig. 4 represents
the algorithm.

Fig. 4. Best so far algorithm at last generation. The robot waits for inhalation and then samples
the odor. It turns and moves depending on this measurement.
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Finally, the sintax trees compared were:

– Rozas. “progn2(evalcircle,if(goback,antmove))”
– Basic. “progn3(measureminus,HoldOn,if(progn3(turnmeasured,jump,move),move))”
– GP1. “progn2(HoldOn,if(progn2(MeasureTurn,jump),move))”

Table 2 show the results. It can be seen that in Rozas algorithm, around 60% of
the experiments (candidates) finished closer to the source relative to its initial position.
Nevertheless just 10% of the experiments reached the source. The impact of this algo-
rithm is that none of the candidates ended out of the experimental area unlike Basic and
GP1. However, around 30% ended farther. In the other hand, GP1 shows an important
increment in fitness, basically because the candidates that reached the source represent
almost 60% of the total amount and just as in Rozas, only 30% ended farther.

Table 2. Comparison results between three different algorithms

Ended Didn’t Ended Ended Fitness Normalized

Closer Arrived Arrived Farther Out of area (-135 to 150) Fitness

Rozas 133 20 113 67 0 -13.51 0.426
Basic 56 25 31 144 46 -6.95 0.449
GP1 137 119 18 63 44 5.08 0.492

6 Conclusion and Future Work

A GP development was presented in this work for an odor plume tracking algorithm.
Thanks to the obtained results, it can be said that, genetic programming is a powerful
tool to develop odor source localization algorithms. A better solution was presented
showing that the uncertainty of achievement was decreased.

Considering the capabilities of the perception system and the odor propagation model,
the platform is prepared to run for several environments with different characteristics
and perception systems. The next step is to find an algorithm in an environment where
airflow is present, regardless the use of another kind of sensors. It must be compared
with the common algorithms used in the literature. Then, the inclusion of obstacles and
dynamic sources would be an interesting approach.
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México and to EvoVisión Team from CICESE that are providing the tools and expertise
for this research.

References

1. Larcombe, M., Halsall, J.: Robotics in nuclear engineering: Computer-assisted teleoperation
in hazardous environments with particular reference to radiation fields, vol. 9312. Graham &
Trotman (1984)



330 B. Lorena Villarreal, G. Olague, and J.L. Gordillo

2. Neumann, P.P., Hernandez Bennetts, V., Lilienthal, A.J., Bartholmai, M., Schiller, J.H.: Gas
source localization with a micro-drone using bio-inspired and particle filter-based algorithms.
Advanced Robotics 27(9), 725–738 (2013)

3. Kowadlo, G., Russell, R.A.: Robot odor localization: A taxonomy and survey. The Interna-
tional Journal of Robotics Research 27(8), 869–894 (2008)

4. Ishida, H., Tanaka, H., Taniguchi, H., Moriizumi, T.: Mobile robot navigation using vision
and olfaction to search for a gas/odor source. Autonomous Robots 20(3), 231–238 (2006)

5. Cabrita, G., Sousa, P., Marques, L.: Odor guided exploration and plume tracking: Particle
plume explorer. In: Proceedings of the 5th European Conference on Mobile Robots (ECMR
2011), pp. 183–188 (2011)

6. Lilienthal, A., Duckett, T.: A stereo electronic nose for a mobile inspection robot. In: Pro-
ceedings of the IEEE International Workshop on Robotic Sensing (ROSE 2003) (2003)

7. Loutfi, A., Coradeschi, S., Lilienthal, A., Gonzalez, J.: Gas distribution mapping of multiple
odour sources using a mobile robot. Robotica 27, 311–319 (2009)

8. Ramirez, A., Lopez, A., Rodriguez, A., de Albornoz, A., De Pieri, E.: An infotaxis based
odor navigation approach. In: Biosignals and Biorobotics Conference (BRC). ISSNIP, pp.
1–6 (2011)

9. Villarreal, B.L., Gordillo, J.L.: Perception model for the aspiration process of a biologically
inspired sniffing robot. In: 2013 18th International Conference on Methods and Models in
Automation and Robotics (MMAR), pp. 334–339 (August 2013)

10. Villarreal, B.L., Hassard, C., Gordillo, J.L.: Finding the direction of an odor source by using
biologically inspired smell system. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández,
R. (eds.) IBERAMIA 2012. LNCS, vol. 7637, pp. 551–560. Springer, Heidelberg (2012)

11. Vickers, N.J.: Mechanisms of animal navigation in odor plumes. The Biological Bul-
letin 198(2), 203–212 (2000)
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