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Abstract. In this paper, a reliable road/obstacle detection with 3D point cloud for
intelligent vehicle on a variety of challenging environments (undulated road and/or
uphill/ downhill) is handled. For robust detection of road we propose the followings:
1) correction of 3D point cloud distorted by the motion of vehicle (high speed and
heading up and down) incorporating vehicle posture information; 2) guideline for
the best selection of the proper features such as gradient value, height average of
neighboring node; 3) transformation of the road detection problem into a classifica-
tion problem of different features; and 4) inference algorithm based on MRF with
the loopy belief propagation for the area that the LIDAR does not cover. In experi-
ments, we use a publicly available dataset as well as numerous scans acquired by the
HDL-64E sensor mounted on experimental vehicle in inner city traffic scenes. The
results show that the proposed method is more robust and reliable than the conven-
tional approach based on the height value on the variety of challenging environment.

1 Introduction

The accurate perception of the environment is a very important step to drive au-
tonomously for an intelligent vehicle, namely the detection of road area and obsta-
cle. The road and obstacle detection are being nearly performed by using a various
kind of sensors. Many teams participating in the DARPA Urban Challenge have
nearly performed based on the data acquired by 2D range sensors for road region
and obstacle detection [17, 10, 1, 2] . However, these sensors scan the environment
along a plane within a limited viewing angle, thus the objects above or below this
plane cannot be detected. A number of approaches focused on the use of vision
exclusively have been studied for decades [18],[12]. The fusion of the range and
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vision data that allows a richer description of the world have been developed
[5],[14]. Recently, a three-dimensional range-scanner which provides 3D point
cloud instead of 2D slice of the environment have been commercially introduced.
Although there has been an overwhelming amount of work on perception in 2D and
2.5D, but the problem of perception in 3D has been addressed by comparatively
fewer researchers yet. One of its main reasons is the enormous amount of data pro-
vided by 3D sensors. The amount of data in a single scan of 3D sensor is usually
several times larger than that of a 2D scan. Therefore, how to build consistent and
efficient 2D representations out of 3D range data is important for the sensor data
processing as well as road/obstacle detection. Improving on earlier these work, the
main contribution of this paper is a method for efficient road detection based on
MRF with LBP(Loopy Belief Propagation). We also employ a cylindrical 2D grid
map with the different size of cell corresponding to the distance from vehicle. Be-
sides, our objective is to present a method that can detect accurately drivable road
and obstacle regions in a variety of challenging environment such as undulated road,
uphill/downhill, rolling /pitching of the host vehicle as shown in Fig. 1.

In our work, the 3D range data is acquired by a Velodyne HDL-64E sensor as
shown in the Fig.1-(b), which is mounted on the top of the vehicle, it is covering
a total vertical range of approximately 25 degrees. To obtain data from the whole
environment, the laser scanner rotates at a speed of 10 Hz. A data packet from
the LIDAR consists of the rotational angle of the scanner itself, the range and the
intensity measurement of each laser. From this data, a complete scan of the environ-
ment can be computed. By the way, the motion of vehicle itself would affect these
3D data information as the sensor is mounted moving on the vehicle. To remove
the distortion that is caused by the movement of the vehicle during one revolution,
the paper presents the strategy that involve in correction process through estimating
the posture of vehicle. The paper is organized as follows. In the next section we
give an outline of relevant works, followed by the detailed description of our ap-
proach. Experimental results are given in section 5. Section 6 concludes this paper
and provides a perspective for future research in this area.

Fig. 1 (a)Uphill road.(b) 3D point clouds acquired by Velodyne LIDAR.
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2 Previous Works

With range scanning devices becoming standard equipment in mobile robotics, the
task of 3D scan segmentation and classification is one of increasing practical rel-
evance. Typical algorithms for road and obstacle detection with 3D LIDAR are as
follows: One of the most widely used method is the projection of 3D point clouds
on the assumed or estimated ground plane and finds similar x-y coordinates whose
height exceeds a given threshold value. This is represented by a grid in which each
cell contains only one height by selection of the average, max, min height of the
sensor data located in each grid cell [16],[15]. One of the advantages is that the sev-
eral sensors can be fused easily and that mapping is straightforward. Many teams
participating in the DARPA Urban Challenge successfully applied this method.
However, the difficulty of road detection has still in sloped terrains or the situa-
tions with big rolling/pitch angle of the host vehicle. Both Leonard et al.[8] and
Himmelsbach et al.[7] describe a method that identifies points in the point clouds
that are likely to be on the ground, and then fit a ground model through those ground
points. And other points above the ground model are deal with as obstacle point.
Douillard et al.[3] proposes a strategy that utilizes ground models of non-constant
resolution either providing a continuous probabilistic surface or a terrain mesh built
from the structure of a range image. Moosmann et al.[11] proposes graph-based ap-
proach to segment ground and objects from 3D LIDAR scans using a novel unified,
generic criterion based on local convexity measures. Guo et al.[6] use a graph-based
approach for 2D road representation of 3D point clouds with respect to the road to-
pography. The method describes also the gradient cues of the road geometry to con-
struct a MRF and implements a belief propagation (BP) algorithm to classify the
road environment into four categories, i.e. the reachable region, the drivable region,
the obstacle region and the unknown region. However their method uses only gradi-
ent value for labeling so that it cant sometimes be distinguished the ground and the
roof of vehicle. Li and Li[9] proposes a method of Four Directions Scan Line Gradi-
ent Criterion (4DSG) that is calculated the gradient with neighboring points. These
features can not only reflect the flatness of pavement, but also reflect the distinguish-
ing feature of point cloud on curbs in four directions. Bohren et al.[1] addresses a
method that road points can also be detected based on the reflectivity of the ground
in the Velodyne scans. However, such approach can only work well under good con-
ditions so that their road/obstacle detection has to be supplemented by other sensor.
The outline of our work can be show in the Fig.2. The proposed approach differs
from previous related work. Main contributions that we propose are as follow

• Unlike most of the previous works, we focus on the correction of distorted 3D
point cloud occurred by motion of vehicle (high speed/ move up and down) in
practical road situation.

• We employ the approach that 3D point clouds are projected on the grid map in
the cylindrical coordination. We have considered the fact that the point cloud
by Velodyne sensor will be gradually sparse from near to far and the dramatic
change happens between adjacent beams can reveal the vertical change of the
environment along the circular direction as shown in Fig.2-(b).
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Fig. 2 Illustration of our method.(a) 3D point clouds aquired by Velodyne LIDAR. (b) cylin-
drical grid map. (c) extraction of feature values in each cell. (d) multi-labeling and classifica-
tion with LBP.

• We propose a robust method of road detection with 3D data in undulated road
such as down/uphill by the best selection of the proper features such as gradient
value, height average of neighboring node as shown in Fig.2-(c).

• We formulate the road detection problem based on MRF with the loopy belief
propagation to find the different regions with different classes as shown in Fig.2-
(d).

3 3D Points Representation and Grid Map Building

3.1 Correction of Distorted 3D Point Cloud by Considering
Vehicle Motion

As shown in Fig.3, the Velodyne LIDAR that is mounted on the top of the vehi-
cle uses 64 lasers, which cover in different vertical angle, and it can also provide
360 degrees field of view for surrounding environment with more than 1.3 mil-
lion points per second. The LIDAR returns deliver spherical point coordinates so
it needs to transformation that data into Cartesian space. To do the transformation,
we have to consider calibration parameters such as distance correction factor �r,
vertical/horizontal correction angle � /0v,�θ ,rotation angle ϕ ,measured distance r
and vertical/ horizontal offset rv,rh,
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The 3D point cloud computation in the cartesian coordinates is as below

p(x,y,z) =

⎛
⎝

(r+Δr) · cos(ϕ +Δθ ) · cos(Δφ)+ rh · cos(ϕ)
(r+Δr) · sin(ϕ +Δθ ) · cos(Δφ)+ rh · sin(ϕ)

d · sin(ϕ +Δθ )− rv

⎞
⎠

T

(1)

Here, we have to consider that the scanner takes a no negligible amount of time to
complete one rotation, so the observed 3D point clouds with LIDAR are distorted by
the motion of the vehicle. For instance, if the speed of vehicle runs as about 100km/h
(27.8 m/s) in the highway, it would be unfortunately given the distorted information
past 2.7 meter on the every scan due to the fact that the scanner is rotating with
a frequency of 10 Hz(0.1s). Furthermore, we should consider the situation that the
vehicle passes over speed bumper with big rolling/pitch angle and then the front road
is classified as obstacle due to the downward pitching of the vehicle. We are able to
solve these problems by using information about the ego-motion of the car. In other
word, the resulting frame is an approximation of how the environment would have
looked like if the car had not moved.

To correct the distorted laser measurement by the vehicle’s movement, we utilize
a GPS/INS unit that provides highly the accurate motion information of the vehicle.
Each laser measurement i during one revolution is referenced with respect to vehicle
position and orientation Ot+i from the start of a sensor revolution, and afterwards
transformed such that the coordinates are referenced with respect to Ot+Δ t at the end
of the revolution. For transformation with rotation R̃ and translation−→T for each data,
the undistorted coordinates pi

Ot+Δt
of a point pi

Ot
referenced with respect to Ot+Δ t as

shown in Fig.3 can be calculated as follow as

pi
Ot+Δt

= R̃(pi
Ot
−−→

T ) (2)

3.2 Grid Map Building

The 3D point clouds which obtained by Velodyne LIDAR need to expensive costs
to deal a large amount of data for real time processing, in our work we try to re-
duce it with using a 2.5D ego-centered cylindrical grid. Some relative works use
the rectangular grid map projected by 3D point cloud points. Others approaches use

Fig. 3 Correction of dis-
torted 3D point cloud by
estimation the motion of
vehicle



54 J. Byun et al.

a mesh-grid map which directly is decomposed of a neighborhood graph from a
scanner. Here, we focus on considering the manner a LIDAR scan, we know that
it can give a different density of point depend on distance from vehicle despite the
Velodyne sensor can take 3D scans of environment and provide millions of points
per second. The points cloud will be gradually sparse from the near to the far. So
we set two direction as direction and circular direction in cylindrical coordination.
We can know that the gradient value is dramatically changed at some place for ob-
ject/structure along the circular scan direction. Therefore, it is can be separated the
coverage area with more high resolution along the circular direction than radial di-
rection as shown in the Fig.4

4 Feature Extraction and Road Classification

4.1 Features(Gradient Value and Height) Extraction

We assume that the road surface is continuous and there is high correlation between
neighborhood data. Therefore, given the world coordinates of the 3D point clouds,
the gradient value at each node can be computed by using known neighboring nodes.
To get the gradient value at each node as shown in Fig. 4, we need to height of
neighboring nodes along the radial direction and circular direction. This gradient
value Gm (p) can reflect the geometrical character of roads. To obtain neighbor-
hood points, it searches for closest nodes that have height values in four directions
along the radial axis and circular axis respectively. We denote them as zc1

m ,zc2
m ,zr1

m ,zr2
m

,where c means circular direction and r is radial direction.
The gradient of radial direction can be computed as

Gr
m (p) =

zr1
m − zr2

m

‖Pr1 −Pr2‖ (3)

Next, the gradient of circular direction can also be computed as

Gc
m (p) =

zc1
m − zc2

m

‖Pc1 −Pc2‖ (4)

where p is referred in the cylindrical coordinate. The gradient value is described by

Gm (p)=
√

Gr
m (p)2 +Gc

m (p)2 (5)

The height average of neighborhood nodes can be described as follows

H (p)=
1
n
(∑

n
Zn ) (6)

where Zn is an average of height value on the neighborhood nodes surrounding
current node p. Finally, we describe a feature function as follow



Drivable Road Detection with 3D Point Clouds Based on the MRF 55

g(p)=αG∗
m (p) ·H (p)∗ (7)

The α is weight constant ane G∗
m (p) and H (p)∗ are normalized with Gm (p) and

H (p).

4.2 Classification Based on MRF

The goal of this step is to find the different regions with different classes and infer-
ence the area that the LIDAR does not cover. We take a graph-based approach for
classification. Let G = (V,E) be an undirected graph with nodes vi ∈ V , the set of
elements to be segmented, and edges (vi,v j) ∈ E in corresponds to pairs of neigh-
boring nodes. Each edge has a weight w(vi,v j) which is a non-negative measure of
the dissimilarity between neighboring elements vi and v j. We present the classifica-
tion problem as LBP approach for performing inference on MRF as formed by the
standard 4-connected neighborhood system since it models the spatial interactions
present in the scene so that the labels of the points are determined jointly.

Let P be a set of node in the cylindrical grid map and L be as set of labels. The
labels correspond to quantities that we want to estimate at the each node, such as
gradient value and height average of neighborhood. A labeling f assigns a label
f (vi) ∈ L to each node vi ∈V . We assume that the labels should vary slowly almost
everywhere but may change dramatically at some places such grids along object
boundaries. The quality of a labeling is given by an energy function,

E ( f )= ∑
(vi ,v j)∈E

V
(

f (vi ), f (v j )
)
+ ∑

(vi)∈V

D( f (vi )) (8)

Where E are the edges in the four-connected grid graph. V
(

f (vi ), f (v j )
)

is the

cost of assigning labels f (vi ) and f (v j ) to two neighboring nodes, and it is referred
to as the discontinuity cost. D( f (vi )) is the cost of assigning label f (vi ) to node
vi, which is referred to as the data cost.

Finding a labeling that minimizes this energy corresponds to the maximum a
posteriori (MAP) estimation for MRF in the form of Eq.8. Normally this algorithm
is defined in terms of probability distributions, but an equivalent computation can be

Fig. 4 The computation of
gradient with neighboring
nodes
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performed with negative log probabilities, where the max-product becomes a min-
sum. We use this formulation because it is less sensitive to numerical artifacts, and
it uses the energy function definition more directly.

The max-product BP Algorithm works by passing message around the graph
defined by the four-connected grid. Each message is a vector of dimension given
by the number of possible levels. Let mt

viv j
be the message that node vi sends to a

neighboring node v j at time t. When using negative log probabilities all entries in
m0

viv j
are initialized to zero, and at each iteration new messages are computed in the

following way,

mt
viv j

(
f (v j)

)
=min f (vi)

⎛
⎝V

(
f (vi), f (v j)

)
+D( f (vi))+ ∑

N(vi)v j

mt−1
viv j

(
f (v j)

)⎞⎠

(9)
Where N (vi)\v j denotes the neighbors of vi other than v j. After T iterations a
belief vector is computed for each node,

bvj

(
f (v j )

)
=Dvj ( f (vi ))+ ∑

p∈N(v j)

mT
viv j

(
f (v j )

)
(10)

Finally, the f ∗v j
label that minimizes bvj

(
f (v j )

)
individually at each node is se-

lected.
In the work, the labels correspond to different gradient value and height average

that should be assigned to grids in the map. Thus the data costs can be defined as

D( f (vi )) = min(‖|g(vi)|− f (vi)‖ ,τ) (11)

We use a truncated step function for the data cost, τ is a truncation value, g(vi) is
the feature of node vi.The truncation makes the data cost robust to abnormally large
feature values.

Another class of cost functions is based on the degree of difference between la-
bels. The cost of assigning a pair of labels to neighboring node is generally based on
the amount of difference between these quantities. In order to allow for discontinu-
ities, as the values are not smoothly changing everywhere, the cost function should
be robust, becoming constant as the difference become large. So it can be used the
truncated linear model, where the cost increases linearly based on the distance be-
tween the labels f (vi ) and f (v j ) up to some level,

V
(

f (vi ), f (v j )
)

= min
(

s
∥∥∥ f (vi )− f (v j )

∥∥∥ ,d
)

(12)

Where s is the rate of increase in the cost, and d controls when the cost stops
increasing.
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Fig. 5 An experimental
vehicle with 3D Velodyne
sensor

5 Experimental Result

We have evaluated the proposed algorithm using both a publicly available dataset[4],
[13] as well as numerous scans acquired by the HDL-64E sensor mounted on an
experimental vehicle(Hyun-dai Sorrento) in inner city traffic scenes as shown Fig.6.
As no ground truth information is available, a qualitative performance evaluation is
conducted.

For cylindrical grid map, we use Δθ = 0.5 andΔr = 0.2m(range : 0 ∼ 30m)
and Δr = 0.5m(range : 30 ∼ 60m) and Δr = 1m(outo f 60m)throughout all exper-
iments. For classification based on MRF, we set 10 as number of labels and the
truncation value were respectively fixed to τ = 5 and d = 3.

Since the classification of the 3D point clouds in normal road environment is well
demonstrated. So we focus on a variety of challenging environment. Fig.7 shows ex-
ample result of a slope road, an uphill road and a downhill road, which substantiated
that the proposed method is more robust and reliable than the conventional approach
based on the height.

As visible in the first column, though the road is able to show normally flat in
Fig7 (a), we can see that laser returns corresponding to the area are irregular as
Fig.7 (e). As shown in Fig.7 (i), the conventional approach based on the height can
give the wrong result that drivable space is as obstacle region, as indicated by the
red circle in the figure. Whereas the proposed approach successfully classify the
slope area as the drivable with feature values such as gradient and average height of
road space as shown in Fig.7 (m). Furthermore, the spatial interactions based on the
smoothness term in the MRF can also ensure the local consistency in such scenarios
so that all of the rough region will be classified into to same category, even when
some of the gradient are abnormal due to noise. Besides, we can see in the second
column, when our vehicle drives on the slope road which is more high right than
the left side, we can see that the result of the convention approach misrecognizes
partially some road and some vehicles as obstacles indicated by the red circle in the
Fig.7 (j). But our proposed method gives the robust result of detection according
to this height variance of road because of shown in the Fig.7 (n). Also we can see
that some area that the LIDAR does not cover is interpolated by inference algorithm
based on MRF with the loopy belief propagation through the comparison of area
indicated by the red circle in the Fig.7 (k) and in the Fig.7 (o). As shown in the
fourth column, it is caused misunderstanding that there is a big obstacle in front of
vehicle on the road by the conventional approach based on the height in the Fig.7
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Fig. 6 Classification result of a variety of environment(flat road, slope road, down hill ,up-
hill,), the pictures of environment(first row), the 3D point clouds by LIDAR , the result of
conventional approach (third row), the result of our proposed work(fourth row)
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(l). However the proposed approach successfully classified the road as the drivable
space since our feature values are in the drivable space for vehicle in the Fig.7 (p).

6 Conclusion

In this paper, we have presented a robust method of road detection with 3D point
clouds on the challenging road environments such as down/uphill, sloped road. Our
first contribution is correction of 3D point cloud distorted by the motion of vehicle
incorporating vehicle posture information. Our second contribution is guideline for
the best selection of the proper features such as gradient value, height average of
neighboring node. Our third contribution is transformation of the road detection
problem into a classification problem of different features. Our fourth contribution
is inference algorithm based on MRF with the loopy belief propagation for the area
that the LIDAR does not cover. In experiments, we use a publicly available dataset as
well as numerous scans acquired by the HDL-64E sensor mounted on experimental
vehicle in inner city traffic scenes. The results proved that the proposed method is
more robust and reliable than the conventional approach based on the height on the
variety of challenging environment. Our future work will focus on the detection of
dynamic road environment with the supervised/unsupervised learning approach and
the fusion of the LIDAR and vision data.
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