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Abstract. Capabilities of domestic service robots could be further improved, if the
robot is equipped with an ability to recognize activities performed by humans in its
sensory range. For example in a simple scenario a floor cleaning robot can vacuum
the kitchen floor after recognizing human activity “cooking in the kitchen”. Most
of the complex human activities can be sub divided into simple activities which can
later used for recognize complex activities. Activities like “take meditation” can be
sub divided into simple activities like “opening pill container” and “drinking wa-
ter”. However, even recognizing simple activities are highly challenging due to the
similarities between some inter activities and dissimilarities of intra activities which
are performed by different people, body poses and orientations. Even a simple hu-
man activity like “drinking water” can be performed while the subject is in different
body poses like sitting, standing or walking. Therefore building machine learning
techniques to recognize human activities with such complexities is non trivial. To
address this issue, we propose a human activity recognition technique that uses 3D
skeleton features produced by a depth camera. The algorithm incorporates impor-
tance weights for skeleton 3D joints according to the activity being performed. This
allows the algorithm to ignore the confusing or irrelevant features while relying on
informative features. Later these joints were ensembled together to train Dynamic
Bayesian Networks (DBN), which is then used to infer human activities based on
likelihoods. The proposed activity recognition technique is tested on a publicly avail-
able dataset and UTS experiments with overall accuracies of 85% and 90%.

1 Introduction

Recent advancements in robotics technologies have introduced low cost domestic
robots that can vacuum the floor while residents are away or provide company for
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less mobile or elderly people. It is argued that the success of such domestic ser-
vice robots can be significantly enhanced by the ability of robots to understand the
human activities and to respond them accordingly. Such capabilities will enable
robots to make more human like decisions without explicitly being ordered to carry
out a certain task. It will also allow the robot to seamlessly integrate with human
interactions.

Our research focus is to develop robotic technologies to help and promote inde-
pendent living for elderly people. It is motivated by the growing number of older
people around the world and difficulty of finding enough care staff. In general el-
derly people gradually lose their cognitive ability to keep track of daily activities.
In this context, an assistive robot that can recognize human daily activities will be
immensely helpful. For example, an elderly person could be reminded of taking
medications in appropriate times and could follow it up until the activity has been
completed. In addition, the robot may detect abnormal conditions such as some-
one laying on the floor or sleeping longer than usual and notify the appropriate
personnel.

Detection of human activities is challenging due to several reasons. The first
reason is related to noisy sensory inputs, and the second reason is related to the
difficulty of modeling highly ambiguous actions. Moreover human activities are
performed in different body poses and orientations with inter subject variations.
Therefore, video-based human action recognition has unwarranted complexity and
limited accuracy.

Recent trend in human activity recognition research is to use low cost RGB-D
cameras like Microsoft KinectTM . These cameras are capable of generating skele-
ton model of a human with 15 body joints positions and their orientation. In this
research our intention is to use these skeleton features to extract relatively unam-
biguous features to model human activities.

In our previous work [9], we have developed human activity recognition model
that used Gaussian mixture based HMM. However, its recognition accuracy is
severely compromised, if the actions are performed with different body poses. For
example “drinking water” activity can be performed while the person is in differ-
ent body poses such as sitting, standing or even while walking. This is due to the
incorporation of all the features, including non informative and ambiguous ones.
However, if we could devise a methodology for identifying the most informative
features for a given activity, then it will be better positioned at handling actions
done with different body poses.

This paper presents a novel human action recognition approach that uses only
3D skeleton features produced by a depth camera. Each activity was modelled as
a Dynamic Bayesian Network (DBN) in which each joint node is probabilistically
weighted according to the importance of that joint to the activity being modelled.
These joint weights together with their observation probability ensembles, form a
model for each activity. Joint weights are calculated by training HMM for each case
of a given activity and estimating the dissimilarity measure between such trained
models. The model is firstly evaluated on a publicly available benchmark dataset:
Cornell activity Detection Dataset [11]. Then it was tested with our experiments
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which shows that proposed method is able to achieve higher recognition accuracies
even with higher intra-activity variations of 3D skeleton features.

2 Related Works

Human activity detection is not a new research area that has been looked into by
various researchers. In [12] human activities are classified as either normal or ag-
gressive by using a mobile robot and a 3D sensory tracker system. Other researchers
have utilized human activity detection to learn and imitate humans activities [2][5].
In [4], audio-based human activity recognition using non-markovian ensemble vot-
ing technique is presented. Applicability of this method is limited by the inherent
distinguishable sounds associated with activities. Therefore such a system may only
be used as a complement to the existing sensory systems.

It is common knowledge that knowing the 3D joint position is helpful for activ-
ity recognition. Multi-camera motion capture (MOCap) systems [13] has also been
used for activity detection but requires markers attached to joints with a highly cali-
brated camera system. Therefore, such a system is infeasible to be used in practical
robotic scenarios. With the invention of low cost depth cameras, several researchers
have used RGB-D skeleton data to recognize activities. In [11] two-layered max-
imum entropy Markov model with a set of sub-activities is used to detect human
activities. There, both the skeleton and 3D point cloud data are used extracting 715
features. However, the algorithm is heavily dependent on a particular sequence of
sub activities to form human activities. This can have adverse influence on the gen-
eralization aspect due to the individual differences in carrying out activities.

In [13] actionlet ensemble model for human activity detection with depth cam-
eras are proposed. The actionlets are proposed to compensate intra-class variations
caused by human activities. This approach mainly differs form ours in many ways.
Their actionlets only comprises of different combination of joints, whereas our ap-
proach assigns probabilistic weighting for each skeleton joint. Therefore our action
ensembles contain more meaningful information than actionlets. Secondly our ap-
proach only relies on universal skeleton features whereas actionlet based approach
uses depth data associated with each joint position, called Local Occupancy Pattern
(LOP). But these LOP features would depend on the objects that the subject inter-
acts with. Therefore it may have difficulty in dealing with a subject performing an
activity using different object sizes and shapes.

Use of probabilistic graphical models is one of the most popular techniques that
has been used by automatic human activity detection. In [1] researchers used cou-
pled HMM to detect human two hand activities and some others utilized motion tem-
plate together with HMM to recognize human activities [6]. But these researchers
didn’t incorporate all the joint information in their models. However most of the
human daily activities are too complex to recognize by only observering few joint
features. Therefore those techniques would fail to recognize human daily activities
with high intra-activity variations.
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The paper is organized as follows. Sect. 3 describes overall activity detection
model which is the core of our proposed approach. It details the algorithm we used
to calculate joint confidence weights followed by the Dynamic Bayesian Network
(DBN) that incorporates joint ensembles. Sect. 4 describes the implementation of
the proposed approach and training of DBNs for activity detection. Experimental
results are discussed in Sect. 5 followed by the conclusions in Sect. 6.

3 Activity Recognition Model

Fig. 1 Block diagram of the recognition process

Fig. 1 shows the overall process which is utilized in the proposed human activity
detection method. First we identify joint ensembles and their associated weights for
each and every activity in the data-set. Then we train separate Dynamic Bayesian
Networks (DBN) by incorporating joints weights for each activity in the data-set.
Once a new sequence of skeleton features has been captured, the previously trained
models produce likelihood estimation, from which the maximum is selected.

3.1 Learning Action Ensembles

We represent each activity as weighted joint ensembles to better characterize intra
class (same activity done with different body poses) variations of human activities.
This allows us to identify common joint movements associated with each intra-
class activity. The approach can be justified by the fact that all 14 skeleton joints do
not contribute equally to a particular human activity. For example, for the activity
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“drinking water” most descriptive skeleton features would be 3D joint skeleton data
of hands and the head. Therefore more weight may be assigned to joint positions
of hand and head for the activity “drinking water”. Following section describes the
learning mechanism that has been utilized to identify joint ensembles and their as-
sociated weights for each activity in the data set.

3.1.1 Calculating Joint Confidence Weights

In the proposed algorithm weighted joint ensembles are denoted as W j
a , where

jεJ = { j1, j2, ..., jn} and aεA = {a1,a2,a3..am}. Here J is the set of skeleton joints
and A is the set of all activities in the dataset and m is the number of activities. In
addition the weights of each joint are constrained as in (1) to give probability value
for each joint.

n

∑
j=1

W j
a = 1 (1)

We assumed each joint is independent of each other when calculating joint
weights for a given activity. For the person pn , joint jn and for the activity an,
we can denote the set of k observation sequence as Opn

Jn
= {O1,O2,O3, ...,Ok} . For

each subset of observation sequences S ⊂ Opn
Jn

, what we are interested in knowing
is the similarity or the likelihood between the observation sequences. When calcu-
lating the likelihood of each observation sequence tempo-spatial movement of the
joint need to be considered. In order to calculate the likelihood between observation
sequences, we should be able to build models that efficiently represent observation
sequences. Hidden Markov Models (HMM) have shown a great deal of success to
model sequential data [10] and therefore, intra activity likelihood is calculated based
on a HMM by training each joint and subsequent testing.

Fig. 2 (x,y,z) positions of
the right hand with respect
to the torso, when the ac-
tion “drinking water” is
performed



400 L. Piyathilaka and S. Kodagoda

Fig. 2 shows position information (with reference to torso) of the right-hand’s
wrist joint when “drinking water” activity is performed. It shows few distinguish-
able clusters. In addition, within each of these clusters, few sub clusters can also be
observed. This is due to the variation caused when the subject performs the same ac-
tivity in different poses. Although unimodal Gaussians are used in HMM to model
continuous data, it is not capable of capturing multimodal nature of the joint move-
ments and hence in this research we implemented HMM based on Gaussian Mixture
Models (GMM) in order to calculate joint likelihoods.

In GMM based HMM, observation probability given states s can be modelled
with weighted sum of M component Gaussian densities as,

bs(O) =
M

∑
i=1

wig(x|μi,Σi) (2)

where x is a 3-dimensional continuous-valued joint position vector , wi, i = 1, ...,M,
are the mixture weights, and g(x|μi,Σi), i = 1, ...,M are the component Gaussian
densities. Each component density is a 3-variate Gaussian function with mean of μi

and covariance matrix of Σi.
GMM based HMM was trained for each joint with every observation sequence for

a given activity. Given such two HMMs, λ1 and λ2, our interest is to find similarities
from which the weights can be estimated: for higher similarities higher weights are
assigned where as for less similarities lower weights are assigned. This concept of
model dissimilarity can be generalized by defining the distance measure D(λ1,λ2),
between two HMMs as ,

D(λ1,λ2) =
1
T
[logP(Oλ2 |λ1)− logP(Oλ2|λ2)] (3)

where Oλ2 = O1,O2,O3..OT is a sequence of observations generated by model λ2

[10]. Equation (3) is a measure of how well λ1 matches observations generated by
model λ2, relative to how well model λ2 matches observations generated by itself.
The dissimilarity measure discussed above is none-symmetric. Therefore for better
representation (4) can be symmetrized by

Ds(λ1,λ2) =
Ds(λ1,λ2)+Ds(λ2,λ1)

2
(4)

Finally, to estimate weights W j
a associated with a given activity following steps

have been followed.
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for activity a=1 to A do
for Observation o=1 to O do

Train GMM based HMM λ a
j (o) for each joint j

end
for joint j=1 to J do

• For all S ⊂ Λ = {λ a
j (1),λ

a
j (2).....λ

a
j (n)}

s.t N(S)=2, calculate dissimilarity measure
Da

j(n) by (4) where 1 ≤ n ≤Cn
3 .

• Calculate total dissimilarity for joint j as Da
jtotal

= ∑
Cn

3
n=1 Da

j(n)

• Assign weight for the joint as W j
a = 1

Da
jtotal

end

Normalize all joint weiights s.t ∑n
i=1 W j

a = 1 to assign probability value for weights.
end

Algorithm 1. Learning action ensemble joint weights

3.2 DBN for Action Recognition

Once joint weights are known, we can effectively model each activity by a Dy-
namic Baysian Network (DBN) as shown in Fig. 3. A DBN is a directed acyclic
graph, which represents the conditional independencies and the conditional proba-
bility distributions of each node [7]. Shaded nodes represent the observed continu-
ous 3-dimensional joint positions (Jt

j where 1 ≤ j ≤ 14, 1 ≤ t ≤ T ) and transparent
squares represent the discrete hidden nodes. We have incorporated joint weights to
the observation probability by an exponents as shown in (7). We assumed each hu-
man activity is a collection of different poses that evolves over time. Therefore, in
the proposed model, top hidden node represents pose class and the middle hidden
nodes represent mixture weight components. Pose classes are not directly observed
as opposed to the joint positions, which can be directly measured from RGB-D
camera’s skeleton information.

The proposed DBN can be parameterized by three probabilities A,B and π as
follows. First we define individual pose states as S = {S1,S2, ...,SN}, the state at
time t as qt and K as the number of states. In the proposed model ai, j is the state
transition probability from state i to state j and bt(i) represents the probability of the
observation Ot given the ith state of the pose nodes. Then initial state distribution,
π = {πi} can be defined as

πi = P(qi = Si), 1 ≤ i ≤ N (5)

The observation probability distribution can be defined as, B = {bt(i)} where

bt(i) = P(Ot |qt = Si), 1 ≤ i ≤ K,1 ≤ t ≤ T (6)

Ot is the joint observation at time t.
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Fig. 3 Graphical representation of the proposed DBN. Square nodes represent discrete hid-
den nodes and round nodes represent observed continuous 3-dimensional joint positions. Dot-
ted ellipses that encircle observations represent weights associated with each joint.

The observation probability with joint weight W j
a that represents contribution of

that joint to the activity, can be modeled as

bt(i) =
J

∏
j=1

�
Mn

i

∑
m=1

wj
i,mN(O j

t ,μn
i,m,Σ

j
i,m)�W j

a (7)

where J represents the total number of joints, O j
t the observation vector of the jth

node at time t, M j
i is the number of mixture components in the joint j and state i,

and μ j
i,m, Σ j

i,m, wj
i,m are the mean, covariance matrix, and mixture weight for the jth

joint, ith state, and mth Gaussian mixture component, respectively.
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Finally the state transition probability distribution can be defined as A = {ai, j}

ai, j = P(q(t+1) = S j|qt = Si),1 ≤ i, j ≤ K (8)

4 Implementation

The proposed activity recognition model has been implemented using the Bayes
Net Toolbox (BNT) for Matlab [8] which is public domain toolkit for modelling
Dynamic Bayesian Networks.

4.1 Training Dynamic Bayesian Network

It is a standard practice to use expectation maximization (EM) algorithm to train pa-
rameters when a DBN contains any hidden nodes [3]. However it is well known that
EM algorithm only converges to a local optimum solution. Therefore initial param-
eters of the model needed to be carefully chosen in order to get good classification
results. In our proposed DBN for activity recognition we used an efficient method
to initialize the parameters as explained in our previous research [9].

4.2 Activity Recognition

Once a HMM is trained for each action class, we need to select the most likely activity
given an observation sequence. Given the observation sequence O = O1,O2, ...,Ot ,
and model λ = (A,B,π) we calculated P(O/λ ), the probability of the observation
sequence once the model is given(likelihood). Then the activity with the maximum
likelihood is selected as the most probable activity. The log-likelihood calculation
is done using the forward algorithm [10] for HMM that enabled us to recognize
activities in real-time.

5 Experiments

First we tested our activity recognition model on the publicly available Cornell
Activity Dataset 60 [11] to validate the model. Then we carried out our own ex-
periments on activities with high intra class variations to test the performance of
the model to intra activity variations. The empirical results show that proposed
framework is capable of recognizing even highly similar activities with reasonable
accuracy.
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Fig. 4 Confusion matrix for Cornell activity60 dataset

5.1 Model Validation through Cornell Activity Dataset

The Cornel activity [11] is consists of 14 activities carried out by four different
individuals performing an activity once. Therefore, it is to be noted that the intra-
activity complexity is limited to the variation among subjects.They have used the
Microsoft Kinect RGBD sensor to record both depth and skeleton data of human
daily activities done in a indoor environment. Data has been collected with four
different people: two male and two females, recorded for about 45 seconds with
each person, without compromising to any occlusion of arms and body. Therefore
full skeleton was always observed throughout the activity. With this dataset, 2-fold
cross validation testing has been carried out i.e we trained our model on two people
and tested on others. Our experiments recorded precision and recall accuracies of
90% and 89% respectively. The confusion matrix is shown in Fig. 4. These results
are in general better than the results obtained by [11] as can be seen from the Table 1.

5.2 UTS Experiments

There are few publicly available datasets that include skeleton data, which can be
used in activity detection. However, they offer very limited intra-activity variations.
The concept of weighted joint ensembles can be better explained and tested with a
data set which has higher intra-activity variations.

Therefore, we have collected a dataset (UTS-Skeleton3D) consisting of 3D skele-
ton data. Fig. 5 shows the hardware set-up of the robot that we developed to aid our
experiments. It consists of a RGB-D sensor mounted on a AmbigobotTM mobile
robotic platform. RGB-D sensor is mounted on a Pan-Tilt module. The robot, Pan-
Tilt Module and the RGB-D sensor are interfaced by Robotic Operating System
(ROS) and its drivers.
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Fig. 5 Hardware set-up of the Robot

Fig. 6 Samples from our data set. (1) Applying Cream, (2) Brushing Teeth, (3) Combing, (4)
Drinking, (5) Eating, (6) Stirring, (7) Opening a pill container, (8) Phone Call

The experimental dataset consists of 8 highly similar activities: applying cream
on the face, brushing teeth, combing, drinking water, eating cereals, phone call,
stirring and opening a pill container in a domestic environment. Four subjects were
used to collect the data in which each activity is performed in three different body
poses like, “sitting”, “standing” and “walking”. All together there are 96 samples
of activities in the experiments. Each subject performed the activity about 45-60
seconds and data is recorded from different camera angles with a Microsoft Kinect
sensor. Initially we recorded each joint’s 3-D position and orientation with respect
to the sensor. Later we transformed the data w.r.t the torso coordinates to alleviate
the effects of the sensor location

First we have calculated joint weights associated with each activity in the dataset
by using the algorithm described in the Sect. 7. Fig. 7 shows the joint weights as-
signed for each activity in the dataset. The radius of the dark circle at each joint is
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proportional to the probabilistic weight assigned by the algorithm. We trained sepa-
rate models for right-handed people and left-handed people. Therefore each activity
is consisted of two models and likelihood calculations were done for each model,
once observation sequence is received. From the Fig. 7 it is clear that proposed algo-
rithm is capable of identifying importance of joints for a given activity. For example,
the activity “ applying cream on the face” has higher probability weights assigned to
hand, forearms, and head while relatively low probability values has been assigned
to other joints.

Fig. 7 Learnt weighted joint ensembles for right handed person. The radius of the circle at
each joint is proportional to the joint weight.

Once joints weighs have been calculated, the DBN was trained for each activity
with their associated joints weights ensembles. K-fold cross validation was used
for testing, i.e we left out one sample activity and trained model and weights on
others. Left out sample was then used as the activity to be detected. Same procedure
was followed for all activity samples in the dataset. Confusion matrix of the test
is shown in the Fig. 8. As can be seen, it has a very high rate of activity detection
accuracies. It seems the “phone call” activity was slightly confused with “drinking
water” activity. This is due to high similarity of the hand movements when these
activities are performed and skeleton tracker often fails to track the hand when it is
moving very close to the human body. “Stirring” is slightly confused with “Eating
cereal” since “Eating cereal” often includes the “Stirring” as a sub activity of it. The
proposed method was able to achieve recall and precision accuracies of 85% and
86% respectively. This is a high detection rate given the high intra-class complexity
of the dataset. As it can be seen from Table 1 there is a significant improvement of
detection rate when joint weighted ensembles are introduced to the DBN, in UTS
experiments. This is because UTS experiments contain highly similar activities with
very high intra-activity variation.
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Fig. 8 Confusion matrix for UTS experiments

Table 1 Recognition Accuracy Comparison for Different Datasets

Dataset DBN only Proposed Method
UTS Experi-
ments

Recall 66% Precision 69% Recall 85% Precision 86%

Dataset Maximum Entrophy
Markov Model [11]

Proposed Method

Cornel activity
60

Recall 57% Precision 69% Recall 90% Precision 89%

6 Conclusions

In this paper, we presented weighted joint ensembles based human activity recogni-
tion system using skeleton features generated from an inexpensive RGB-D sensor.
In the proposed technique, joint weights model the importance of that particular
joint to the activity. Then we trained a DBN for each activity in the datasets and
maximum log-likelihood estimation is calculated in-order to select the most proba-
ble model for a given sequence of observations. The proposed algorithm was tested
with a challenging publicly available dataset and through UTS experiments with
very promising accuracies. More importantly, it is shown that the proposed model is
robust to intra-activity variations when people perform the same activity in different
body poses.
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In a real situation, the humans perform activities in a continuous way. There-
fore future work involves detecting end of the activity to improve the model to a
long term activity recognition system. In addition currently we are using supervised
learning techniques to recognize activities that were previously seen. The reliabil-
ity of the system can be further improved if the system can detect the difference
between a new activity and a previously trained activity.
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