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1 Introduction

In the wake of the big crisis one has witnessed a significant increase in the spreads
between LIBORs of different tenors as well as the spread between a LIBOR and the
discount curve (LIBOR-OIS). This has led to the construction of multicurve models
where, typically, future cash flows are generated through curves associated to the
underlying rates, but are discounted by another curve.

The majority of the models that have been considered reflects the usual classical
distinction between

(i) short rate models;
(ii) HJM setup;
(iii) BGM or LIBOR market models.

By analogy to credit risk we may call the first two categories of models as bottom-up
models, while the third one could be classified as top-down. In addition, methodolo-
gies have appeared that are related to foreign exchange.

Here we consider only the first two setups. We begin by discussing some
issues arising with the HJM methodology and concentrate then on short rate mod-
els. The third setup (top-down) is mainly present in work by F. Mercurio and
co-authors (see e.g. Mercurio (2010a, b)), but also in other recent work such
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as Keller-Ressel et al. (2013). There are advantages and disadvantages with each
setup. Among the possible advantages of short rate models is the fact that they lead
more easily to a Markovian setting, which is convenient for various calculations (see
Crépey et al. (2013b)). On the other hand, one of the major advantages of HJM over
a direct short rate modeling is that the model is automatically calibrated to the initial
term structure. Short rate models in a multi-curve setup have already appeared in the
literature, e.g. Kijima et al. (2009), Kenyon (2010), Filipović and Trolle (2013).

To present the basic ideas in a simple way, here we consider a two-curve model,
namely with a curve for discounting and one for generating future cash flows. The
choice of the discount curve is not unique; we follow the common choice of consid-
ering the OIS swap curve. For the risky cash flows without collateral we consider a
single LIBOR (i.e. for a given tenor structure).

We present an approach for the pricing of some basic LIBOR-related derivatives,
namely FRAs and CAPs (linear/nonlinear) and consider only clean valuation for-
mulas, namely without counterparty risk. Although real pricing problems require a
more global approach (see e.g. the discussions in Fuji et al. (2009, 2011), Piterbarg
(2010), Crépey et al. (2013a) as well as in recent work by D. Brigo and co-authors
such as Pallavicini and Brigo (2013), Brigo, Morini and Pallavicini (2013)), clean
valuation formulas are nevertheless useful for various reasons: as pointed out in
Crépey et al. (2013b), market quotes typically reflect prices of fully collateralized
transactions so that clean price formulas may turn out to be sufficient for calibra-
tion also when using the model to compute possible value adjustments; furthermore
(see Crépey et al. (2013b)), TVA adjustments are often computed on top of clean
prices. Concerning methodology, since our approach is of the bottom-up type that
considers short rate modeling, we heavily exploit the advantages of an affine term
structure. This is in contrast with top-down approaches, where (seeMercurio (2010a,
b)) log-normal models are common (see however Keller-Ressel et al. (2013) and
Grbac et al. (2014) for affine LIBOR models with general distributions in a multic-
urve context).

Traditionally, interest rates are defined to be coherent with the bond prices
p(t, T ), which represent the expectation of the market concerning the future value
of money. For the discrete compounding forward LIBORs, which we denote here by
L(t; T, S), this leads to (t < T < S)

L(t; T, S) = 1

S − T

(
p(t, T )

p(t, S)
− 1

)
(1)

which can also be justified as representing the fair value of the fixed rate in a FRA
on the LIBOR. Since we consider only a single LIBOR that corresponds to a given
tenor structure, we assume S = T + � (for tenor �). In this way one obtains a
single curve for the term structure. The actual LIBOR rates, which in what follows
we shall denote by L̄(t; T, T + �), are determined by the LIBOR panel that takes
into account various factors such as credit risk, liquidity, etc. (see the discussion in
Filipović and Trolle (2013)). Following some of the recent literature, in particular
Crépey et al. (2012) (see also Kijima et al. (2009)), we keep the formal relationship
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(1) between LIBOR rates and bond prices, but replace the risk-free bond prices
p(t, T ) by fictitious “risky” bond prices p̄(t, T ) that are supposed to be affected by
the same factors as the actual LIBORs and that, analogously to the risk-free bond
prices, we define then as

p̄(t, T ) = E Q

⎧⎨
⎩exp

⎡
⎣−

T∫
t

(ru + su)du

⎤
⎦ | Ft

⎫⎬
⎭ (2)

where rt is the classical short rate, whereas st represents the short rate spread (hazard
rate in case of only default risk). Notice that in this way the spread is introduced from
the outset. Notice also that the fictitious bond prices p̄(t, T ) are not actual prices.

Since in what follows we are interested in FRAs and CAPs that are based on the
T −spot LIBOR L̄(T ; T, T + �), we actually postulate the relationship (1) only at
the inception time t = T . Our starting point is thus the following relationship

L̄(T ; T, T + �) = 1

�

(
1

p̄(T, T + �)
− 1

)
(3)

where we have taken into account the fact that also for the “risky” bonds we have
p̄(T, T ) = 1.

In addition to the pricing of FRAs and CAPs in our two-curve setup, our major
goal here is to derive a relationship between theoretically risk-free and actual FRAs
(possibly alsoCAPs) thereby exhibiting an adjustment factor which plays a role anal-
ogous to that of the quanto adjustments in the pricing of cross-currency derivatives
or the “multiplicative forward basis” in Bianchetti (2012).

2 The Model

2.1 Preliminary Considerations

We start with some comments concerning HJM-like approaches to better motivate
our short rate approach. Given the bond price processes p(t, T ) and p̄(t, T ), in
order to apply an HJM-approach, we need to introduce corresponding forward rate
processes f T (t) and f̄ T (t) that lead to a forward rate spread expressed as gT (t) :=
f̄ T (t) − f T (t). One then also obtains corresponding short rates and a short rate
spread, namely rt = f t (t), r̄t = f̄ t (t), st = gt (t) = r̄t − rt . Notice that a
consistent model should lead to p̄(t, T ) ≤ p(t, T ), which implies f̄ T (t) ≥ f T (t)
or, equivalently gT (t) ≥ 0 ∀t < T ≤ T̄ , where T̄ is a given maximal maturity.

An extensive study within the multicurve HJM approach has appeared in Crépey
et al. (2012). The driving random process is a Levy and a corresponding HJM drift
condition is derived. Conditions are given for the non-negativity of rates and spreads;
explicit formulas are obtained for various interest rate derivatives. What may not be
fully satisfactory in Crépey et al. (2012) is that:
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(i) some difficulties arise when dealing not only with credit risk, but also other risks
such as liquidity. In particular, when looking for a condition that corresponds to
the defaultable HJM drift condition;

(ii) a fictitious default has to be considered explicitly (with pre default bond prices).

The study inCrépey et al. (2012) is continued in the recent paperCrépey et al. (2013b)
with the main purpose of taking into account also counterparty risk and funding costs
and of determining various valuation adjustments on top of the clean prices. The
methodology in Crépey et al. (2013b) is again based on an HJM approach, but with
explicit ingredients for the induced short rate models in order to obtain a Markovian
structure and to be able to actually perform the value adjustment calculations. In
particular, the authors in Crépey et al. (2013b) use a Levy Hull & White extended
Vasicek model for rt and introduce an additional factor that can be interpreted as
representing a short rate spread. In this latter sense it becomes analogous to the
approach to be presented here.

Another HJM-based approach, limited to default risk, appears in Chiarella et al.
(2007) with emphasis on obtaining Markovian models with state dependent volatili-
ties. The driving processes are of the jump-diffusion type. The difficulties here appear
to be given by the fact that, for convenient specifications of the volatilities, one obtains
deterministic short rate spreads. For more general, stochastic volatilities the authors
obtain only approximate Markovianity. These difficulties have been overcome in the
subsequent paper Chiarella et al. (2010), where the authors obtain finite-dimensional
Markovian realizations also with stochastic spreads and, in addition, obtain a cor-
relation structure between credit spread, interest rate and the stochastic volatility.
When trying to extend their approach to a multi curve setting, beyond that implied
by credit risk alone, there appear though some computational difficulties due to the
stochastic volatility.

Before coming now to describing our short rate model, we recall some basics
concerning FRAs. We start from the

Definition 2.1 A FRA (forward rate agreement) is an OTC derivative that allows
the holder to lock in at t < T the interest rate between the inception date T and the
maturity T + � at a fixed value K . At maturity T + �, a payment based on K is
made and one based on L̄(T ; T, T + �) is received.

We shall denote the value of the FRA at t < T by FRAT (t, K ). In our two-curve
risky setup, the fair price of a FRA in t < T with fixed rate K and notional N is

FRAT (t, K ) = N�p(t, T + �)ET +�
[
L̄(T ; T, T + �) − K | Ft

]
= N p(t, T + �)ET +�

[
1

p̄(T,T +�)
− (1 + �K ) | Ft

] (4)

where ET +� denotes expectation under the (T + �)− forward measure QT +�.
Notice that the simultaneous presence of p(t, T + �) and p̄(t, T + �) does not
allow for the convenient reduction of the formula to a simpler form as in the one-
curve setup.
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2.2 Description of the Model Itself

For the short-rate model approach we shall have to start by modeling directly the
short rate rt and the short rate spread st and we do it under the standard martingale
measure Q (to be calibrated to the market) for the risk-free money market account
as numeraire. In order to account for a possible (negative) correlation between rt

and st we introduce a factor model: given three independent affine factor processes
� i

t , i = 1, 2, 3 let
{

rt = �2
t − �1

t
st = κ�1

t + �3
t

(5)

where κ is a constant that measures the instantaneous correlation between rt and st

(negative correlation for κ > 0). This setup could be generalized in various ways,
in particular by using more factors to drive st . In view of the existing literature
one could, instead of using an affine model structure as we do it here, consider
e.g. ambit-type processes as presented in Corcuera, Farkas, Schoutens and Valkeila
(2013). Such a model, which is not of the semimartingale type, allows also for
analytical computations and gives the possibility to take into account long-range
dependence. Remaining within the pure credit risk setting where, see the comment
after (2), the spread is given by the default intensity, some of the factors affecting the
spread could be given a specific meaning as in Douady and Jeanblanc (2002) where,
using an HJM-type approach, the authors consider a spread field process with one
of the variables representing the rating of the issuer. The approach in Douady and
Jeanblanc (2002) could possibly be generalized also to the present setting.

A common approach tomodeling the factors in an affine context is to assume them
of the type of a square root diffusion. This guarantees positivity of the spread, but the
negative correlation comes at the expense of possibly negative interest rates (even if
only with small probability). With such a model, by passing to the (T +�)−forward
measure, one can compute the value of a FRA and of the fair fixed rate.

For various reasons, in particular in view of our main goal to obtain an adjustment
factor, it is convenient to be able to have the same factor model for FRAs with
different maturities. We therefore aim at performing the calculations under a single
reference measure, namely the standard martingale measure Q. More precisely, for
the factor processes we assume the following affine diffusions under Q that are of
the Vasicek type, namely

⎧⎨
⎩

d�1
t = (a1 − b1�1

t )dt + σ 1 dw1
t

d� i
t = (ai − bi� i

t )dt + σ i
√

� i
t dwi

t , i = 2, 3
(6)

where ai , bi , σ i are positive constants with ai ≥ (σ i )2/2 for i = 2, 3, and wi
t

independent Wiener processes. We have chosen a Vasicek-type model for simplicity,
but the results below can be easily extended to the Hull and White version of the
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Vasicek model. Notice that the factor �1
t may take negative values implying that,

not only rt , but also st may become negative (see however later under “comments
on the main result”). Results completely analogous to those that we shall obtain here
for the above pure diffusion model may be derived also for affine jump-diffusions at
the sole expense of more complicated notation.

3 Main Result (FRAs)

3.1 Preliminary Notions and Results

Recalling the expression for a FRA under the forward measure, namely

FRAT (t, K ) = N p(t, T + �)ET +�

[
1

p̄(T, T + �)
− (1 + �K ) | Ft

]
, (7)

one has that the crucial quantity to compute is

ν̄t,T := ET +�

[
1

p̄(T, T + �)
| Ft

]
(8)

and that the fixed rate to make the FRA a fair contract at time t is

K̄t := 1

�
(ν̄t,T − 1) (9)

In the classical single curve case we have instead

νt,T := ET +�

[
1

p(T, T + �)
| Ft

]
= p(t, T )

p(t, T + �)
(10)

being p(t,T )
p(t,T +�)

an Ft—martingale under the (T + �)—forward measure. The fair
fixed rate in the single curve case is then

Kt = 1

�

(
νt,T − 1

) = 1

�

(
p(t, T )

p(t, T + �)
− 1

)
(11)

and notice that, in order to compute Kt , no interest rate model is needed (contrary to
K̄t ).
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Due to the affine dynamics of � i
t (i = 1, 2, 3) under Q, we have for the risk-free

bond

p(t, T ) = E Q
{
exp

[
−

T∫
t

rudu

]
| Ft

}
= E Q

{
exp

[
T∫
t
(�1

u − �2
u )du

]
| Ft

}

= exp
[
A(t, T ) − B1(t, T )�1

t − B2(t, T )�2
t

]
(12)

The coefficients satisfy

⎧⎪⎪⎨
⎪⎪⎩

B1
t − b1B1 − 1 = 0, B1(T, T ) = 0

B2
t − b2B2 − (σ 2)2

2 (B2)2 + 1 = 0, B2(T, T ) = 0

At = a1B1 − (σ 1)2

2 (B1)2 + a2B2 , A(T, T ) = 0

(13)

leading, in particular, to

B1(t, T ) = 1

b1

(
e−b1(T −t) − 1

)
. (14)

For the risky bond we have instead

p̄(t, T ) = E Q
{
exp

[
−

T∫
t
(ru + su)du

]
| Ft

}

= E Q
{
exp

[
−

T∫
t
((κ − 1)�1

u + �2
u + �3

u )du

]
| Ft

}

= exp
[
Ā(t, T ) − B̄1(t, T )�1

t − B̄2(t, T )�2
t − B̄3(t, T )�3

t

]

(15)

This time the coefficients satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B̄1
t − b1 B̄1 + (κ − 1) = 0, B̄1(T, T ) = 0

B̄2
t − b2 B̄2 − (σ 2)2

2 (B̄2)2 + 1 = 0, B̄2(T, T ) = 0

B̄3
t − b3 B̄3 − (σ 3)2

2 (B̄3)2 + 1 = 0, B̄3(T, T ) = 0

Āt = a1 B̄1 − (σ 1)2

2 (B̄1)2 + a2 B̄2 + a3 B̄3 , Ā(T, T ) = 0

(16)

leading, in particular, to

B̄1(t, T ) = 1 − κ

b1

(
e−b1(T −t) − 1

)
= (1 − κ) B1(t, T ) (17)
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From the above 1st order equations it follows that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B̄1(t, T ) = (1 − κ) B1(t, T )

B̄2(t, T ) = B2(t, T )

Ā(t, T ) = A(t, T ) − a1κ
T∫
t

B1(u, T )du

+ (σ 1)2

2 κ2
T∫
t
(B1(u, T ))2du − (σ 1)2κ

T∫
t

B1(u, T )du

−a3
T∫
t

B̄3(u, T )du

(18)

Letting then

Ã(t, T ) := Ā(t, T ) − A(t, T ) (19)

we obtain

p̄(t, T ) = exp
[

Ā(t, T ) − B1(t, T )�1
t − B2(t, T )�2

t

− B̄3(t, T )�3
t + κ B1(t, T )�1

t

]

=p(t, T ) exp
[

Ã(t, T ) + κ B1(t, T )�1
t − B̄3(t, T )�3

t

]
(20)

so that, putting for simplicity B̃1 := B1(T, T + �), one may write

p(T, T + �)

p̄(T, T + �)
= exp

[
− Ã(T, T + �) − κ B̃1�1

T + B̄3(T, T + �)�3
T

]
. (21)

3.2 The Result Itself

We introduce the

Definition 3.1 We call adjustment factor the process

AdT,�
t := E Q

{
p(T, T + �)

p̄(T, T + �)
| Ft

}
, (22)

and shall prove the following

Proposition 3.1 We have
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ν̄t,T = νt,T · AdT,�
t · exp

[
κ

(σ 1)2

2(b1)3

(
1 − e−b1�

) (
1 − e−b1(T −t)

)2]
(23)

with two adjustment factors on the right, of which the first one can be expressed as

AdT,�
t = e− Ã(T,T +�)E Q

{
e−κ B̃1�1

T +B̄3(T,T +�)�3
T | Ft

}
:= A(θ, κ,�1

t , �3
t )

(24)

with θ := (ai , bi , σ i , i = 1, 2, 3).

One may notice the analogy here with the multiplicative forward basis in Bianchetti
(2012).

As a consequence of the previous proposition we have the following relation
between the fair value K̄t of the fixed rate in an actual FRA and the fair value Kt in
a corresponding riskless one:

Corollary 3.1 The following relationship holds

K̄t =
(

Kt + 1

�

)
· AdT,�

t · exp
[
κ

(σ 1)2

2(b1)3

(
1 − e−b1�

) (
1 − e−b1(T −t)

)2] − 1

�
(25)

Notice that the factor given by the exponential is equal to 1 for zero correlation, i.e.
for (κ = 0).

3.3 Comments on the Main Result

3.3.1 Comments Concerning the Adjustment Factors

An easy intuitive interpretation of the main result can be obtained in the case of
κ = 0 (independence of rt and st ): in this case we have rt + st > rt implying
p̄(T, T + �) < p(T, T + �) so that AdT,�

t ≥ 1 (the exponential adjustment factor
is equal to 1). As expected, from Proposition 3.1 and Corollary 3.1 it then follows that

ν̄t,T ≥ νt,T , K̄t ≥ Kt (26)

To gain some intuition for the cases when κ �= 0, let p̄κ(t, T ), ν̄κ
t,T , AdT,�,κ

t
denote the given quantities by stressing that the correlation parameter has value κ .
Notice that p(t, T ) and thus also νt,T do not depend on κ . Consider then the case
κ > 0, which is the standard case implying negative correlation between rt and st .
(The case κ < 0 is analogous/dual). For illustrative purposes we distinguish between
the two events {�1

t > 0, ∀t ∈ [T, T + �]}, {�1
t < 0, ∀t ∈ [T, T + �]} where the

latter occurs only with small probability (in reality, �1
t will be positive for certain

values of t and negative for the remaining ones).
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On {�1
t > 0, t ∈ [T, T + �]} we now have

p̄κ(T, T + �) < p̄0(T, T + �)

⇒ ν̄κ
t,T > ν̄0t,T ⇒ ν̄κ

t,T /νt,T > ν̄0t,T /νt,T
(27)

Recalling then

ν̄κ
t,T = νt,T · AdT,�,κ

t · exp
[
κ

(σ 1)2

2(b1)3

(
1 − e−b1�

) (
1 − e−b1(T −t)

)2]
(28)

the last inequality in (27) can be seen to be in line with the fact that, in this case, in
(28) the exponential factor is >1 and AdT,�,κ

t > AdT,�,0
t (recall Definition 3.1).

On the other hand, on {�1
t < 0, t ∈ [T, T + �]}, we have

p̄κ(T, T + �) > p̄0(T, T + �) ⇒ ν̄κ
t,T /νt,T < ν̄0t,T /νt,T (29)

This inequality can be seen to be in line with the fact that, here, AdT,�,κ
t < AdT,�,0

t ,
but the exponential factor is still >1. This can nevertheless be explained by noticing
that, in this case, rt is relatively large and rt + st is closer to rt (may be even <rt ).
This implies a push of ν̄κ

t,T /νt,T towards smaller values than in the previous case.

3.3.2 Comments Concerning the Use of the Results for Calibration

For what concerns calibration of our model to FRA and other available market data,
notice that the coefficients a1, a2, b1, b2, σ 1, σ 2 can be calibrated in the usual way on
the basis of the observations of default-free bonds p(t, T ) (if we had a Hull &White
extension of our Vasicek-typemodel (6) then also for this model the calibration could
be performed as in the standard case). To calibrate a3, b3, σ 3, notice that, contrary to
p(t, T ), the “risky” bonds p̄(t, T ) are not observable (relation (3) does not imply a
unique inverse relationship to determine p̄(t, T ) from observations of the LIBORs).

One can however observe Kt = 1
�

(
p(t,T )

p(t,T +�)
− 1

)
as well as the “risky” FRA

rate K̄t . Recalling then Corollary 3.1 and the fact that AdT,�
t = A(θ, κ,�1

t , �3
t ),

notice that, having calibrated ai , bi , σ i (i = 1, 2), from the observations of Kt and
K̄t one could thus calibrate a3, b3, σ 3 as well as κ . If there is a way to determine
directly AdT,�

t (e.g. by observing the FRA rates for uncorrelated rt and st ), then
the relationship between Kt and K̄t as expressed in Corollary 3.1 would allow to
calibrate separately κ . We furthermore recall that, as pointed out in Crépey et al.
(2013b), calibration of clean prices is sufficient alsowhen using themodel to compute
possible value adjustments.
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3.4 Proof of the Main Result

Since the quantities of interest, namely ν̄t,T and νt,T were defined under the forward
measure (see (8) and (10)), as a first step we perform a change from the forward
measure QT +� to the standard martingale measure Q. To this effect, putting bt :=
exp

[∫ t
0 rudu

]
, the density process for changing from Q to QT +� is Lt = p(t,T +�)

p(0,T +�)bt
.

We can thus write

ν̄t,T = ET +�
{

1
p̄(T,T +�)

| Ft

}
= L−1

t E Q
{

LT +�

p̄(T,T +�)
| Ft

}

= 1
p(t,T +�)

E Q

{
exp[−

T∫
t

rudu] p(T,T +�)
p̄(T,T +�)

| Ft

} (30)

Recalling the expression for p(T, T + �)/ p̄(T, T + �) (see (21)) this becomes

ν̄t,T = 1

p(t, T + �)
E Q

{
e
−

T∫
t

ru du
· exp

[
− Ã(T, T + �) − κ B̃1�1

T + B̄3(T, T + �)�3
T

]
| Ft

}

= 1

p(t, T + �)
exp

[
− Ã(T, T + �)

]
E Q

{
eB̄3(T,T +�)�3

T | Ft

}
(31)

· E Q

⎧⎪⎨
⎪⎩e

−
T∫
t
(−�1

u +�2
u )du

e−κ B̃1�1
T | Ft

⎫⎪⎬
⎪⎭

To proceed, consider the process Ft given by the last factor in (31), namely

Ft := E Q

⎧⎨
⎩e

−
T∫
t
(−�1

u +�2
u )du

e−κ B̃1�1
T | Ft

⎫⎬
⎭ (32)

Due to the affine dynamics of � i
t , i = 1, 2, and the independence of �1

t and �2
t ,

we may write

Ft := E Q

⎧⎨
⎩e

T∫
t

�1
u du

e−κ B̃1�1
T | Ft

⎫⎬
⎭ E Q

⎧⎨
⎩e

−
T∫
t

�2
u du | Ft

⎫⎬
⎭

= exp
[
α1(t, T ) − β1(t, T )�1

t

]
exp

[
α2(t, T ) − β2(t, T )�2

t

]
(33)

where the coefficients satisfy
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β1
t − b1β1 − 1 = 0, β1(T, T ) = κ B̃1

β2
t − b2β2 − (σ 2)2

2 (β2)2 + 1 = 0, β2(T, T ) = 0

α1
t = − (σ 1)2

2 (β1)2 + a1β1, α1(T, T ) = 0

α2
t = a2β2, α2(T, T ) = 0

(34)

Recalling also (12)–(14), the solutions of the system (34) can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1(t, T ) = 1
b1

[
(b1κ B̃1 + 1)e−b1(T −t) − 1

]
= B1(t, T ) + κ B̃1e−b1(T −t)

β2(t, T ) = B2(t, T )

α1(t, T ) = (σ 1)2

2

T∫
t
(β1(u, T ))2du − a1

T∫
t

β1(u, T )du

= (σ 1)2

2

T∫
t
(B1(u, T ))2du − a1

T∫
t

B1(u, T )du

+ (σ 1)2

2 (κ B̃1)2
T∫
t

e−2b1(T −u)du

+ κ B̃1(σ 1)2
T∫
t

B1(u, T )e−b1(T −u)du − a1κ B̃1
T∫
t

e−b1(T −u)du

α2(t, T ) = −a2
T∫
t

B2(u, T )du

(35)
Consequently

Ft = exp
[

(σ 1)2

2

T∫
t
(B1(u, T ))2du − a1

T∫
t

B1(u, T )du

−a2
T∫
t

B2(u, T )du − B1(t, T )�1
t − B2(t, T )�2

t

]

· exp
[

(σ 1)2

2 (κ B̃1)2
T∫
t

e−2b1(T −u)du − a1κ B̃1
T∫
t

e−b1(T −u)du

−κ B̃1e−b1(T −t)�1
t

]

· exp
[
κ B̃1(σ 1)2

T∫
t

B1(u, T )e−b1(T −u)du

]

= p(t, T ) · exp
[

(σ 1)2

2 (κ B̃1)2
T∫
t

e−2b1(T −u)du − a1κ B̃1
T∫
t

e−b1(T −u)du

−κ B̃1e−b1(T −t)�1
t

]

· exp
[
κ B̃1(σ 1)2

T∫
t

B1(u, T )e−b1(T −u)du

]

(36)
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On the other hand, recalling (21), one obtains

E Q
{

p(T,T +�)
p̄(T,T +�)

| Ft

}

= e− Ã(T,T +�)E Q
{

eB̄3(T,T +�)�3
T | Ft

}
E Q

{
e−κ B̃1�1

T | Ft

} (37)

where, due to the affine dynamics of �1
t , we may write

E Q
{

e−κ B̃1�1
T | Ft

}
= exp

[
ᾱ(t, T ) − β̄(t, T )�1

t

]
(38)

with ᾱ(·) and β̄(·) satisfying
{

β̄t − b1β̄ = 0, β̄(T, T ) = κ B̃1

ᾱt = a1β̄ − (σ 1)2

2 (β̄)2, ᾱ(T, T ) = 0
(39)

so that

β̄(t, T ) = κ B̃1e−b1(T −t)

ᾱ(t, T ) = −a1κ B̃1
T∫
t

e−b1(T −u)du + (σ 1)2

2 (κ B̃1)2
T∫
t

e−2b1(T −u)du
(40)

and, consequently,

E Q
{

e−κ B̃1�1
T | Ft

}
= exp

[
−κ B̃1e−b1(T −t)�1

t

]

exp

[
−a1κ B̃1

T∫
t

e−b1(T −u)du + (σ 1)2

2 (κ B̃1)2
T∫
t

e−2b1(T −u)du

]
(41)

Combining (31) with (36) as well as with (37) together with (41), we obtain

ν̄t,T = 1
p(t,T +�)

exp
[
− Ã(T, T + �)

]
E Q

{
eB̄3(T,T +�)�3

T | Ft

}
· Ft

= p(t,T )
p(t,T +�)

E Q
{

p(T,T +�)
p̄(T,T +�)

| Ft

}

· exp
[
κ(σ 1)2 B̃1

T∫
t

B1(u, T )e−b1(T −u)du

]
.

(42)

The result then follows noticing that

B̃1

T∫
t

B1(u, T )e−b1(T −u)du = 1

2(b1)3

(
1 − e−b1�

) (
1 − e−b1(T −t)

)2
. (43)
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4 Aspects of CAP Pricing

4.1 Preliminary Comments

This part is related to work in progress, but we want nevertheless to present some
ideas on how our results obtained for FRAs (linear derivatives) can be extended to
nonlinear derivatives. To discuss a specific case, we concentrate here on the pricing
of a single Caplet, with strike K , maturity T on the spot LIBOR for the period
[T, T + �]. Using the forward measure QT +�, its price in t < T is then given by

CaplT,�(t) = �p(t, T + �)ET +�
{(

L̄(T ; T, T + �) − K
)+ | Ft

}

=p(t, T + �)ET +�

{(
1

p̄(T, T + �)
− K̃

)+
| Ft

}
(44)

with K̃ := 1 + �K .
As model, we may use the same “ risky” short rate model as for the FRAs that

we may consider as already calibrated (for the standard martingale measure Q). It
may thus suffice to derive just a pricing algorithm that need not also be used for
calibration. The most convenient way to price a Caplet is, as in (44) and as we do it
below, to compute the expectations under the forward measure. Notice however that
expectationswith respect to a forwardmeasure can be easily computed by performing
a change to the standardmartingale measure (see e.g. (30)), namely the one for which
we may already have calibrated the model. Besides pricing, it may be desirable to
obtain also here an “adjustment factor”.

4.2 A Possible Pricing Methodology

For the pricing, in the forward measure, we may use Fourier transform methods as
in Crépey et al. (2012) and Crépey et al. (2013b) thereby representing the claim as

(
eX − K̄

)+
with X := − log p̄(T, T + �) (45)

We then need only to compute themoment generating function of X , which is a linear
combination of the factors (this computation is feasible thanks to the affine structure)
and use the Fourier transform of f (x) = (

ex − K̄
)+

, which is well-known.
Notice that one could possibly also apply a Gram-Charlier expansion as in Kijima

et al. (2009).
With the Fourier transform method the price in t = 0 of the Caplet can then be

obtained in the form (see Crépey et al. (2013b))
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Capl(0, T, T + �) = p(0, T + �)

2π

∫
K̃ 1−iv−R M̄T +�

X (R + iv)

(R + iv) (R + iv − 1)
dv (46)

where M̄T +�
X (·) is themoment generating function of X under the (T +�)—forward

measure and R is such that M̄T +�
X (R+iv) is finite. This moment generating function

can be computed for each of the various forward measures in terms of the Q—
characteristics of the factors, analogously to the computations in Sect. 3.4 (see, in
particular, (30)). From these computations one can also see that the Radon-Nikodym-
derivative to change from Q to QT +� can in fact be expressed in explicit form
and it preserves the affine structure, see Corollary 10.2 in Filipović (2009) (For a
recent account on conditions for an absolutely continuous measure transformation
to preserve the affine structure see Fontana and Montes (2014)).

If MT +�
X (z) is the moment generating function of X with p(T, T + �) instead

of p̄(T, T + �), then

M̄T +�
X (z) = MT +�

X (z)A(z; θ, κ,�1
0 , �

2
0 , �

3
0 ) (47)

where A(z; θ, κ,�1
0 , �

2
0 , �

3
0 ) = ET +�

{(
MT +�

X (z)
)−1

ez X
}

. Now, from the

expression for p(t, T ) in (12) we obtain

MT +�
X (z) = ET +�

{
ezX

}
= ET +�

{
e−z log p(T,T +�)

}

= ET +�
{
exp

[
−z A(T, T + �) + zB1(T, T + �)�1

T + zB2(T, T + �)�2
T

]}
(48)

On the other hand, from the expression for p̄(t, T ) in (15) (see also the variant in
(20), where the parameter κ appears explicitly) we obtain

A(z; θ, κ,�1
0 , �

2
0 , �

3
0 ) =

(
MT +�

X (z)
)−1

ET +�
{
e−z log p̄(T,T +�)

}
= ET +�

{
exp

[−z Ā(·) + z B̄1(·)�1
T + z B̄2(·)�2

T + z B̄3(·)�3
T

]} (49)

where (·) stands for (T, T +�).Given the affinenature of the factors, both expressions
in (48) and (49) can be explicitly computed as a function of the parameters of the
model and the initial values �1

0 , �
2
0 , �

3
0 of the factors, as expressed by the symbol

A(z; θ, κ,�1
0 , �

2
0 , �

3
0 ).Wemay now consider A(z; θ, κ,�1

0 , �
2
0 , �

3
0 ) as adjustment

factor for this nonlinear example given by the Caplets. It is not as explicit as the
adjustment factor for the FRAs in (23) and (25) and we are presently working on
obtaining a more explicit form also in this case.
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