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Preface

The MDEF Workshop has been held at the University of Urbino since 2000. The
2014 Workshop is particularly dedicated to Carl Chiarella for his 70th birthday. As
the second home (along with the University of Bielefeld, another second home),
Carl visited Urbino in 1998 for the first time and the visit has become an almost
annual event since then. In order to commemorate the occasion, a number of Carl’s
colleagues from around the world gladly agreed to contribute chapters to a special
book dedicated to this event. The book is the outcome of this process. It contains
the latest developments in nonlinear economic dynamics, financial market mod-
eling, and quantitative finance, the three most active research areas Carl has been
involved in.

This book is a collection of essays written by colleagues of Carl Chiarella in
honour of his 70th birthday. Most of the authors have been collaborating with Carl
in the past. We would first of all like to thank Laura Gardini and Gian Italo Bischi
for stimulating discussion on the initiation of this special book and suggestion to
dedicate it to Carl’s 70th birthday in the 2014 MDEF Workshop. We would also
like to express our gratitude to all contributors and in particular those who have
collaborated with Carl, as well as to the referees involved in the review process.
Finally, we would like to acknowledge the assistance of Kai Li who has worked on
the book under much pressure.

Born in March 1944 in Sydney, Carl realized in his final high school years that
he wanted to do something in life that would involve the use of mathematics,
although that ‘‘something’’ would involve economics and finance was totally
absent from his mind then. After completing his B.Sc. (Hons.) from the University
of Sydney in 1965, Carl completed an M.Sc. at the University of Sydney in 1967, a
Ph.D. at the University of New South Wales in 1969 in applied mathematics, and
wrote a thesis on nuclear reactor physics. After spending two years at the Uni-
versity of Nancy as a postdoc Carl returned to Australia in 1971, and joined the
School of Mathematical Science at University of Technology, Sydney (UTS). He
has built his entire subsequent career at UTS since then (apart from a three year
spell at the University of New South Wales from 1986 to 1989).

From his teenage years, Carl had an interest in the origins of the economic
cycle. Despite heavy teaching load, Carl managed to pursue his long held interest
in economics and completed a Master of Commerce in 1977 and a second Ph.D. in
Economics at the University of New South Wales in 1988. His Ph.D. thesis was on
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the nonlinear viewpoint in economics. The thesis led to his first book, The Ele-
ments of a Nonlinear Theory of Economic Dynamics, published in the Springer-
Verlag Lecture Note Series in 1990. In 1989, Carl was appointed as a Professor in
the School of Finance and Economics at UTS, a position that he still occupies.
Apart from his early work on nuclear reactor theory, Carl has made numerous
scientific achievements and important contributions to the economics and finance
area, in particular to nonlinear dynamic economic, financial market modeling, and
option pricing.

As a mathematical economist, Carl has a strong research interest in modeling
key economic adjustment processes as nonlinear dynamical systems. Carl’s earlier
work on chaotic economic dynamics in 1980s, in particular The Cobweb Model:
Its Instability and the Onset of Chaos published in Economic Modeling in 1988
and The Dynamics of Speculative Behaviour, published in Annals of Operations
Research in 1992, have been pioneering contributions in this area, which had
profound influence on many researchers in this field. Carl has made a significant
contribution to at least two areas of dynamic economic modeling. The first is on
out-of-equilibrium models of macroeconomic dynamics. It develops a systematic
approach to the disequilibrium tradition of macroeconomic dynamic analysis,
leading to nine jointly authored books (with Peter Flaschel and others) on inte-
grated Keynesian dynamic macroeconomic models, including three with Cam-
bridge University Press and three with Springer-Verlag. The other is on financial
market models with heterogeneous boundedly rational economic agents, showing
that price movements of financial assets are the result of nonlinear dynamic
feedback processes driven by the interaction of investors with heterogeneous
beliefs and bounded rationality.

Through his many conferences and visits, the University of Urbino and the
University of Bielefeld have become second home for Carl. Carl’s visits to Urbino
started in 1998 and have become regular since then. The attraction of Urbino for
Carl is not only the glorious history, beautiful palaces, and churches, but also a
group of brilliant researchers around Laura and Gian Italo in the theory of non-
linear dynamical systems. Through the Vienna Workshops on Economic
Dynamics initiated by Gustav Feichtinger, Carl established his intensive research
collaboration with the research groups around Peter Flaschel, Willi Semmler, and
Volker Böhm in Bielefeld. Carl’s collaborations with these groups belong to the
highlights of his career.

As one of the main organizers of the annual Quantitative Methods in Finance
conference at UTS since 1997, Carl has made a significant contribution to
American option pricing, where he has mainly contributed to the development and
numerical implementation of various solution methods. He has also been active in
pricing interest rate derivative securities along two directions. The first is to
implement on market data the various interest rate term structure and interest rate
derivative pricing models that have been developed over the last two decades
using nonlinear filtering and Bayesian updating methods. The second consists in
finding improved computational procedures within the stochastic calculus frame-
work of the term structure and option prices by allowing the volatility function of
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the Heath–Jarrow–Morton model to depend on the forward rate, and allowing for
jump-processes in the underlying forward rate dynamics of this framework.

Carl has published more than 15 books and 200 papers, supervised more than
10 Ph.D. students, been involved in more than 30 research projects including the
Australian Research Council (ARC) Discovery Grants. He was the Co-Editor of
the Journal of Economic Dynamics and Control from 2004 to 2012 and has been
Associate Editor of many leading finance and economics journals, including
Journal of Economic Behavior and Organization, Macroeconomic Dynamics,
Computational Economics, Studies in Nonlinear Dynamics and Econometrics,
European Journal of Finance, Quantitative Finance, and Asia-Pacific Financial
Markets. Of course, this is not a full list of Carl’s numerous scientific achieve-
ments. The papers in this book deal with some of the many research topics Carl has
addressed in many of his papers and books. They reflect the breadth of topics Carl
has worked on during his career. We are grateful for the inspiration his work has
given to all of us over so many years. Indeed his work inspires a new generation to
further develop this exciting and challenging research agenda.

Bologna, April 2014 Roberto Dieci
Sydney Xue-Zhong He
Amsterdam Cars Hommes

Preface vii
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Introduction

Roberto Dieci, Xue-Zhong He and Cars Hommes

The book opens with two brief articles summarising Carl’s view on a broad range
of research-related issues, mostly concerning the role of mathematical modelling
in Economics and Finance. Both articles were originally published in Italian in the
Springer journal “Lettera Matematica Pristem”. The first article is the result of an
interview given by Carl to Gian Italo Bischi—one of Carl’s collaborators from the
‘Urbino group’—during the annual meeting of AMASES (Italian Association for
Mathematics Applied to Economics and Social Science) in Lecce, in September
2007. Besides some biographical details, the interview focuses on Carl’s prominent
research themes, on some issues related to the use of mathematical modelling in
social sciences, on alternative approaches to economic modelling such as Econo-
physics and Agent-Based models, on Carl’s direct experience (as a world traveller)
of research organisation and funding in Italy, Europe, USA, Australia and so-called
Asian emerging countries. The second chapter authored by Carl himself, is a brilliant
discussion of the debates that have gone on amongst economists in the past century
about what is the correct approach to modelling economic behaviour, of the future
of Mathematical Economics and of the possible impact of the recent economic crisis
on economic theorising.

The second part of the book containing six chapters deals with Nonlinear Eco-
nomic Dynamics, the area of Economic Theory that mostly attracted Carl’s interest

R. Dieci
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40126 Bologna, Italy
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2 R. Dieci et al.

since the beginning of his scientific career. The first two chapters stand in the tradition
of the joint work of Carl with many co-authors in the field of disequilibrium macro-
economic dynamics, which typically deals with high-dimensional nonlinear dynamic
models in continuous time. Matthieu Charpe, Peter Flaschel, Christian R. Proaño
and Willi Semmler incorporate the basic elements of a firms’ debt-finance model
into a larger scale disequilibrium macroeconomic framework along the lines of
Chiarella et al. (2005). In a fully interdependent macro-model they investigate both
analytically and through numerical simulation the feedback impact of endogenously
generated debt of firms on aggregate economic activity, on investors’ confidence and
on the stability of the economic system. The chapter by Toichiro Asada deals with
the impact of macroeconomic stabilization policies under a Minsky-type “financial
instability” hypothesis, again using the analytical framework of high-dimensional
nonlinear Keynesian macrodynamic models. The chapter starts from a two-dimen-
sional fixed price model without active stabilisation policy and considers, as exten-
sions of this core version, a four-dimensional model of monetary stabilisation policy
with flexible prices and a six-dimensional case with a monetary and fiscal policy
mix. Besides providing a number of theoretical results concerning the stability of
the steady state of the economy (depending on the fiscal and monetary parameters,
and central bank’s credibility), the chapter offers an economic interpretation of the
main feedback mechanisms operating in the dynamic models. The next two chapters
deal more closely with the bifurcations and the cyclical and complex dynamics that
may emerge from traditional economic models when standard rationality and full-
information assumptions are abandoned in favour of agents’ bounded rationality and
the use of simple rules of thumb in making decisions, which often results in nonlin-
earities. This is a research field in which Carl has made important contributions. The
chapter by Anna Agliari, Laura Gardini and Iryna Sushko is inspired by Carl’s early
work (Chiarella 1990) on the issue of so-called dynamic instability of saddle-point
type under perfect foresight, discussed within a continuous-time model of monetary
dynamics (Sargent and Wallace 1973). A key feature of Carl’s version of the mone-
tary model was the assumption of a nonlinear S-shaped demand function, justified by
realistic portfolio rules adopted by economic agents. Building on earlier work in col-
laboration with Carl (Agliari et al. 2004), the authors consider a discrete-time version
of the perfect-foresight model with a similar (log) money demand function, linear
within a ‘normal’ range of the expected inflation rate, and constant outside this range.
As a result, the price dynamics of the physical good is described by a piecewise-linear
one-dimensional map having two “kink points”. Bounded cyclical orbits of any period
and even chaotic dynamics may appear if the demand function is sufficiently sloped
and price reacts slowly to excess money demand. The study is based on advanced
and up-to-date analytical and numerical methods for piecewise linear models. Akio
Matsumoto and Ferenc Szidarovszky build a dynamic monopoly model in which a
bounded rational monopolist has partial and delayed information about the inverse
demand function. In order to deal with this kind of uncertainty and to react smoothly
to sudden market changes, the monopolist adopts a ‘gradient’ output decision rule
based on average past data. After the benchmark case of fixed delay, the authors
investigate the case of continuously distributed delays, under different weighting
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functions of past data. Unlike the case of static rational monopoly, cyclic dynamics
can emerge from a quite simple economic structure in this case. In particular, the
parameter representing the length of the delay has a threshold value above which
stability is lost via a Hopf bifurcation. The bifurcation boundary in the parame-
ter space is investigated analytically and numerically, under different time averaging
patterns. The last two chapters in this part are concerned with the joint impact of non-
linearity and stochastic factors in macroeconomic dynamics, which also represents a
major topic among Carl’s research interests in recent years. The chapter by Simone
Landini, Mauro Gallegati, Joseph E. Stiglitz, Xihao Li and Corrado Di Guilmi
develops an Agent-Based Model (ABM) of an economy with heterogeneous and
interacting firms subject to financial constraints. It focuses on the macro effects
of firms’ learning and decision process, according to the notion of “social atom”
(Buchanan 2007). In a nonlinear stochastic environment, the aggregate observables
generated by the ABM are analysed by means of master equations and combina-
torial master equations. The chapter is concerned with the dominance and survival
of firms’ behavioural rules, and the role played by “financial fragility” in a com-
plex environment. It is found that financially fragile firms—the most active ones in
learning—contribute more to growth and determine periods of expansion sustained
by credit supply but, at the same time, their behaviour may compromise system
stability. Besides providing insights into an alternative micro-foundation of macro-
models, the chapter offers a new interpretation of system phase transitions. Reiner
Franke starts from recent empirical evidence against the hypothesis of normal dis-
tribution of aggregate output, and reconsiders this issue for quarterly US output data
using a number of statistical tests, among which is the “shape parameter” of the
exponential power distribution, the two polar values of which constitute the normal
and the Laplace distribution with its fatter tails. It turns out that evidence against
normality of output growth rates is weaker than one might expect, once a structural
break between the periods of Great Inflation (GI) and Great Moderation (GM) is
properly taken into account. However, if the Laplace can be rejected in favour of
normality in one subsample (GI), in the other subsample (GM) normality is rejected
and the Laplace cannot be ruled out. The chapter provides new empirical results and
methodological insights on the important issues of nonlinearity and non-normality
of economic time series.

The third part of the book focusses on Financial Market Modelling, one of the
main areas of Carl’s work. The first two chapters present agent-based models of
financial markets with limit order books, extending some of Carl’s earlier work on
this topic in Chiarella et al. (2009). Giulia Iori and Polina Kovaleva consider an ABM
of an order-driven market in which agents hold heterogeneous beliefs and study
the interrelations between pre-trade quote transparency and stylised properties of
order-driven markets. Their ABM is able to replicate stylised facts such as negative
skewness of stock returns and clustered volatility when book depth is visible to
traders. Full quote transparency contributes to convergence in traders’ actions, while
partial transparency restrictions may lead to long-range dependencies. Daniel Ladley
and Paolo Pellizzari study optimal trading strategies in order book-based continuous
double auction markets. Their framework is still analytically tractable and optimal
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trading strategies can be identified using numerical techniques. They find that the
optimal strategies are well approximated by linear strategies using only the best
quotes. This study illustrates that, in complex markets, optimal behaviour may be
well approximated by simple (linear) heuristics, a major theme in Carl’s work. The
following chapter by Wai-Mun Chia, Mengling Li and Huanhuan Zheng, studies
regime switching models in foreign exchange markets and fits in a rapidly growing
literature on estimating heterogeneous agent models (HAMs), an area where Carl
has made major contributions, e.g. recently in Chiarella et al. (2012). Three different
empirical models are compared, endogenous switching with fractions determined by
relative performance, endogenous switching based on macroeconomic fundamentals
and models with heterogeneous beliefs based on a Markov-switching process. In-
sample and out-of-sample forecasting are compared across these different HAMs
using monthly AUD/USD exchange rate data. The last two chapters in this part of
the book are concerned with time series modelling and empirical analysis of financial
markets. Andreas Röthig and Andreea Röthig study the time-varying cross-market
trading activities of speculators in US currency futures markets, extending earlier
work in Röthig and Chiarella (2011). They investigate linkages between speculative
activities in different currency futures markets. The results show positive responses
of total/long/short speculative activities in the GBP, CAD and JPY futures markets
to an increase in total/long/short speculation in the CHF futures markets, indicating
the presence of cross-market herding activities. These cross-market linkages between
speculative activities are relatively stable over time from 1994–2013 and therefore do
not suggest that changes in regulation or new market participants or trading strategies
had a significant and lasting impact on cross-market speculative activities. The final
chapter in this part of the book, by Ramaprasad Bhar and A.G. Malliaris, deals with
the Stochastic Discount Factor (SDF) methodology as a general empirical framework
for asset pricing. In particular, the authors suggest a multifactor model for the SDF
taking both macroeconomic fundamental factors, such as the yield curve, the VIX
index and a measure for trading liquidity, as well as behavioural factors into account to
identify significant determinants of the daily equity premium. The chapter proposes
to include momentum return as a behavioural factor in the SDF and offers a way to
address this issue empirically. The chapter also shows how copula methods can be
used in this context to overcome analytical complexities for software implementation
in defining the dependence between asset returns and the SDF. These five chapters
illustrate the broad contributions of Carl to Financial Market Modelling.

The fourth part of the book consisting of seven chapters focusses on Quanti-
tative Finance, another main area of Carl’s work. The first two chapters develop
a new framework for risk management of interest-rate products, extending some
of Carl’s earlier work on this topic in Chiarella and Kwon (2003), Chiarella
et al. (2007) and Chiarella et al. (2010). To develop a new methodology for
risk management of interest-rate sensitive products, Masaaki Kijima and Yukio
Muromachi present a risk evaluation model for interest-rate sensitive products
within the no-arbitrage framework. They first consider a yield-curve model under
the observed probability measure, based on the results of the principal compo-
nent analysis (PCA), to generate future scenarios of interest rates, and then iden-
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tify market prices of risk for the pricing of interest-rate derivatives under the
risk-neutral measure at any future time. Thus risk measures such as Value-at-
Risk (VaR) of portfolios with interest-rate sensitive products can be evaluated
through simple Monte Carlo simulation. They also show, however, that some
market models often used in practice are not consistent with the no-arbitrage
paradigm. Motivated by a significant increase in the spread between LIBORs of
different tenors as well as the spread between LIBOR and the discount curve during
the financial crisis, Laura Morino and Wolfgang J. Runggaldier extend Carl’s work
(Chiarella et al. 2007, 2010) beyond a pure credit risk setting to a more general post-
crisis multicurve set-up. While Carl’s work follows an HJM-based approach, here the
authors use a short rate modelling with a short rate spread and consider a two-curve
model with one curve for discounting (OIS swap curve) and one for generating future
cash flows (LIBOR for a give tenor). The clean-valuation approach of pricing FRAs
and CAPs without counterparty risk exhibits an “adjustment factor” when passing
from the one-curve to the two-curve setting. The bottom-up short rate modelling
where the short rate and a short rate spread are driven by affine factors allows for
correlation between short rate and short rate spread as well as to exploit the convenient
affine structure methodology. The next two chapters contribute to price American
call option and futures price volatility with the framework of stochastic volatility, two
areas Carl has made a significant contribution, see for example, Chiarella and Kwon
(2001), Chiarella et al. (2009, 2010, 2013) and Adolfsson et al. (2013). To price an
American call option when the underlying dynamics follow the Heston’s stochastic
volatility and the Cox-Ingersoll-Ross (CIR) stochastic interest rate, Boda Kang and
Gunter H. Meyer formulate the call as a free boundary PDE problem on a finite
computational domain with appropriate boundary conditions. Comparing with finite
difference approximation, they find that the time discrete method of lines is accurate
and efficient in producing option prices, early exercise boundaries and option hedge
ratios such as delta and gamma. Using a continuous time forward price model with
stochastic volatility, Les Clewlow, Boda Kang and Christina Sklibosios Nikitopou-
los introduce three distinct volatility structures to capture the impact of long-term,
medium-term and short-term futures price volatility in commodity futures markets.
They then use an extensive 21-year database of commodity futures prices to estimate
the model for six key commodities: gold, crude oil, natural gas, soybean, sugar and
corn. They identify the shape and the persistence of each volatility factor, their con-
tribution to the total variance, the extent to which commodity futures volatility can
be spanned and the nature of the return-volatility relation. In the next chapter, based
on the structural relationships in the electricity market, John Breslin, Les Clewlow
and Chris Strickland develop a general framework for the modelling of Australian
electricity market risk. The framework is consistent with temperature and load mean
forecasts, market forward price quotes, the dependence of load on temperature and
the dependence of price on load. The model uses basic building blocks of an HJM
form for which Carl has contributed important results. The model can be used not
only for accurate evaluation of the market risk of an electricity generation and retail
company, but also for the valuation of electricity market derivatives and assets. They
demonstrate the application of the framework to the Australian National Electricity
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Market. In the following chapter, Mark Craddock presents a tractable solution to the
Yakubovich parabolic PDE ut = x2uxx + xux − x2u, which arises in a number of
financial mathematical problems such as Asian option pricing, the Hartman-Watson
law and pricing zero coupon bonds in the Dothan model. After deriving the heat ker-
nel for the PDE, Mark uses the Fourier sine transform to reduce the kernel to a simple
form, which may be explicitly evaluated as a series of error functions. Some finan-
cial applications are then discussed. In the final chapter, by applying the approach
of changing numeraire, Gerald Cheang and Gim-Aik Teh extend the European call
option pricing formula in the literature to the case when both stock prices and inter-
est rates are driven by jump-diffusion processes. The pricing model is an extended
Merton jump-diffusion stock price model with a stochastic interest rate term struc-
ture that is an HJM-type model with jumps. The approach does not require Fourier
transforms as used in the existing literature. It allows us to price the option when the
bond price dynamics is also discontinuous. When the jump-sizes are fixed instead,
then they get the special case of the HJM model with fixed jumps as in Chiarella and
Nikitopoulos Sklibosios (2003).
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Part I
Carl Chiarella: An Interview

and Some Perspectives



An Interview to Carl Chiarella,
an Italo-Australian Globe Trotter Who Studies
Dynamic Models for Economics and Finance

Gian Italo Bischi

Gian Italo. Carl, what caused the shift of your researches from mathematical
modelling in nuclear physics to economics and finance?

Carl. From about my teenage years I had an interest in trying to understand the
origins of the economic cycle, I often wondered about their causes. This interest was
probably driven by the fact that both my grandfathers had emigrated to Australia
from Italy in the mid-1920s, in good economic times that soon turned into the great
depression. They experienced quite a deal of hardship during this period, experiences
that were shared by both my parents who arrived in Australia as teenagers in the
1930s. So it was probably quite normal that these personal experiences, as well as
the impact of the depression on the broader society, formed part of family discussions
as I was growing up. Of course such stories could be repeated by many young people
growing up during the 1950s. I was also aware of the earlier depression in Australia
in the 1890s and of earlier recessions during the nineteenth century in Britain. I
was fascinated by the fact that the economic cycle was a constantly recurring event,
and often pondered as to its causes, though at that time without doing any formal
modelling. As my high-school years unfolded I found that I had an aptitude for
mathematics and physics and, after considering engineering studies, decided to major
in applied mathematics at university. It would be nice for the purposes of this story
to recount that I studied applied mathematics with a view to eventually working in
finance and economics, but that was not at all the case. Young people of my generation
gifted in mathematics were naturally led to careers in the sciences. For this reason
I decided to write my mathematics Ph.D. in the area of nuclear reactor physics, the
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problems and mathematics used interested me and the skills I developed seemed to
promise to some sort of “useful” career. After returning to Australia from France in
1971 after a two-year post-doctoral scholarship at l’Université de Nancy, I took a
job as a Lecturer in Mathematics at the University of Technology, Sydney. After two
years, I felt sufficiently on top of my teaching duties to finally undertake studies in
economics, in which I had always retained an interest. After doing the basic first-year
economics course, and doing quite well, I was admitted into a course work master’s
degree in Economics. It was during the undertaking of this course that I came into
contact with a couple of professors who inspired my interest in several of areas of
economics and finance and who “took me under their wings” so to speak. The path to
a second PhD in Economics followed quite naturally after that. I have written in more
detail elsewhere how my particular interests in finance and economics developed.1

Gian Italo. There are no doubts about the fact that mathematical models are useful
in physics and engineering; however, many economists are quite sceptic about their
effectiveness in economics and social sciences, as they consider them more similar to
academic exercises than useful tools for solving real problems. What is your opinion?

Carl. The question of the utility of mathematical models in the social sciences
has probably been debated for some time, but I would say that as far as their use in
economics and finance is concerned the debate is over, and the use of mathematical
models is here to stay. This is probably due to a number of factors. First, a maturing
of expectations of what one can achieve with mathematical models in economics
and finance. The initial early hope was that economics and finance could become
predictive sciences in the same way as celestial mechanics can predict perfectly the
motion of the planets (actually not perfectly as we know that relativity corrections are
necessary to predict perfectly for some planets). We now understand that the science

1 C. Chiarella “My chaotic career—from billiard balls to economic dynamics and financial mar-
kets”, Chaos, Solitons and Fractals 29 (2006) 517–519—special issue on ‘Dynamic Modelling in
Economics and Finance’ in honour of Professor Carl Chiarella, edited by Bischi G.I. and I. Sushko..
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of economics and finance is more like medical science. My doctor can inform me
about all the risk factors I should be wary of if I want to avoid, say heart disease. But
she cannot predict when, if at all, heart problems will start to occur if I choose to
ignore her good advice. Indeed, she cannot even guarantee that I will not have heart
problems even if I do follow her advice. There is nevertheless no call that the study of
medical science should be abandoned because it cannot give us perfect predictions
of the outcomes of following certain medical advice. So in economics and finance
we have come to appreciate that perfect prediction is impossible, in part because
the economy is too complex with many feedback loops, and is buffeted by many
stochastic factors that it will never be possible to model. Economic science can tell
us the general tendency of the economy if for example interest rates are increased or
decreased, what are the essential feedback chains in the economy, how they operate
and which parameters we need to tie down empirically to know the direction of
certain effects, in financial markets we appreciate (at least by and large) that we
cannot predict the market movements, but we can quantify and minimise the risk of
our exposure to such movements. Indeed, if ever we could predict the movements of
financial markets their very nature would any way change as they are institutions that
have been established in order to allow society to deal with the inherent uncertainty
and risks of the movements of the prices of risky assets.

Gian Italo. Can you give some examples of dynamic models you studied for which
you are particularly proud because they gave important suggestions to policy makers,
economists or financial operators?

Carl. I would cite two areas of dynamic economic modelling about which I am par-
ticularly pleased if not to say proud. The first is my work on macrodynamic modelling
which has its roots in my economics Ph.D. thesis (though the ideas were germinating
in my head from my initial studies of economics), but took on a new dimension when
I started collaborating with Peter Flaschel in the early 1990s. Our recent book “A
Disequilibrium Theory of the Business Cycle”, joint with Reiner Franke, brings a
lot of this work together and to the point where it could be taken by policy econo-
mists and developed into useful policy models. This work will be on-going for some
time yet as we refine the basic model, do better estimations and calibrations, carry
out policy experiments and so forth, but this book marks an important milestone in
this long research agenda. The other area is my work on financial market models
of heterogeneous boundedly rational economic agents. This developed out of my
dissatisfaction with the standard paradigm of homogeneous rational representative
agents, which I believe cannot even serve as a benchmark model for what goes on
in real markets. From my original paper “The Dynamics of Speculative Behaviour”
published in 1992 (but actually written in 1989) work on this topic has been intense
with my UTS colleague (and former Ph.D. student) Tony Xue-Zhong He, Roberto
Dieci (Bologna) and Laura Gardini (Urbino) being my principal co-authors. We have
recently been joined by Min Zheng whose skills with the theory of random dynami-
cal systems is helping us to elucidate the interaction of the nonlinear and stochastic
elements, both of which I think are important in understanding how the interactions
among heterogeneous agents bring about the type of price and return behaviour we
observe in financial markets, such as fat tails, volatility clustering and so forth. The
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work on deterministic effects has reached a mature stage with the publication of
“Heterogeneous Expectations and Speculative Behavior in a Dynamic Multi-Asset
Framework”, (joint with Tony He and Roberto Dieci), and “Asset Price and Wealth
Dynamics in a Financial Market with Heterogeneous Agents” (joint with Roberto
Dieci and Laura Gardini). The work on the nonlinear and stochastic elements using
the theory of random dynamical systems has just started with the working paper “The
Stochastic Price Dynamics of Speculative Behaviour” and this will be a major focus
of research effort in the coming few years.

Gian Italo. What do you think about the approach known as “Econophysics”?
Economists seem to be a bit reluctant to accept this kind of approach.

Carl. First of all let me say that I dislike the term econophysics as it does not
describe the new ideas and concepts that physicists are bringing to economic analysis.
The term already creates a separation that I feel makes communication difficult.
Recently, in my capacity as one of the editors of the Journal of Economic Dynamics
and Control I was asked to oversee a special issue on econophysics (that I think
has just recently appeared) with Doyne Farmer and Thomas Lu as guest editors. I
suggested that the title of the special issue be “Applications of Statistical Physics to
Economics and Finance” as I felt that the use of techniques and concepts from that
discipline were the main ideas that were being used in the economics and finance
context. I think there are a number of reasons why the econophysics community has
had a minimum impact in economics. First of all there is the communication barrier,
the physicists are really writing for other physicists who have developed an interest
in economics and finance so they do not try to translate their language into that used
by economists. As a result it is very difficult for economists to gain any message
from this literature. Second, and this is also related to the communication barrier
problem, economists have gained the impression (rightly or wrongly) that physicists
have come down from the mount to teach them how to use advanced mathematical
tools, whereas economists have been borrowing mathematical tools and concepts as
needed from a range of disciplines over the last six decades. To see this one only
needs to consider the use in economic analysis of the theory of nonlinear dynamical
systems, stochastic differential equations, stochastic optimal control theory, Monte
Carlo simulation methods, the numerical solution of partial differential equations;
many of these tools had their origins in physics, and economists feel they have not
been laggards in adapting them to the needs of economic analysis as required. Third,
it seems to me that economists have a higher standard of empirical analysis, so
economists remain unconvinced by the type of empirical analysis one encounters in
the econophysics literature. It is my fourth point that I believe is at the root of the
fact that economists ignore the econophysics literature, and this is to do with the
concepts of equilibrium and disequilibrium. Mainstream economists have become
firmly wedded to the notion that the economic system is in an equilibrium state, by
which they usually mean a stable fixed point of some dynamical system. Physicists see
disequilibrium as the more normal state of affairs since this is what they are used to in
physics, and so they frequently seek to model the economic process in disequilbrium
terms, for instance using concepts from statistical physics. It may further be added
that econophysicists seem to not accept the notions of rational expectations and the
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representative agent which are regarded almost as an article of religious faith by
some mainstream economists. Those who know my work will know that I also share
the view of the econophysicists concerning the representative agent and the rational
expectations paradigm, and I think the use of concepts from statistical physics to
model the interaction of heterogeneous agents similar to an ensemble of particles in
physics should (and is indeed already) provide a fruitful avenue for research.

Gian Italo. Carl, you spend a lot of time to travel all around the world to meet
research collaborators, and when you are in Sydney you often invite researchers to
visit your department. Do you think that these travels are still useful for making
research even if Iinternet connections and email are so diffused, easy and cheap?

Carl. It is certainly the case that I spend many short but intense periods with
my various research collaborators either at my home institution UTS or visiting the
universities of my colleagues. We also collaborate very much and very effectively by
email, skype and telephone. However, I find that the really significant progress on a
joint research project comes about when the co-authors are sitting around the same
desk staring at and thinking about difficult aspects of some question on a piece of
paper or a white board. Also, often the conversations over a coffee or a meal together
on such occasions lead to some breakthroughs. Finally, I often think that just the fact
that we have gone to so much trouble to be working together for such a short period
forces the pace so to speak and leads to a lot of progress in a short period of time.

Gian Italo. Can you make some comparisons among the different ways to organise
research in the universities and research institutions in Europe, USA and Asian
emerging countries?

Carl. Interestingly I would say that the actual way of doing research on the part
of the scholar is universal, and is the same in all the countries I have visited and
where I have collaborators. What I have observed differs a lot is the infrastructure
support within which the scholar finds himself/herself working, such as the teaching
load, support to travel to conferences, general support (computers, libraries etc.), and
availability of research grant funding, and more importantly, whether the bureaucratic
structures in the universities are aiding or hindering the research enterprise. The views
that I have formed are just personal impressions that I hasten to add are not backed
up by hard statistics. I would say overall it is best in the USA on pretty well all of
the fronts I have mentioned, it is also quite good in Japan though I personally find
their bureaucratic structures somewhat Byzantine. In Europe, it may be hard to make
a general statement, in some countries (e.g. the Scandinavian countries, the UK and
Holland) support seems quite good, but in other countries it could be much better
(e.g. France, Italy and Germany), certainly in these latter countries the bureaucratic
structures are tending more towards the hinderance side of things. Speaking more
broadly for a moment, in my view the difficulties of research support in Europe
transcend the bigger question that I think is starting to be debated in several European
countries as to whether the university system should remain very open or become
more selective. In my own country I would say we are somewhere between the
European and North Amrerican situation, support is reasonable but could be better.
Probably the more market-oriented approach pursued since the late 1980s is pushing
us more towards the North American situation. The countries where I have seen the
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biggest changes with respect to research support are the emerging countries of Asia,
such as Singapore, mainland China, Taiwan and Hong Kong (I mention these last
three separately only because their developments have followed quite different paths
over the last 60 years). I recall visiting one of the universities in Singapore in the early
1970s, and was very conscious of the fact that they lagged behind universities in the
USA, Europe and Australia. I have spent three periods at a university in Singapore
since 2000, and I have become very conscious of how far they have progressed.
There has been a tremendous investment in teaching and research infrastructure, and
there is a real desire on the part of key decision-makers for the Singapore universities
to be ranked among the top in the world. Indeed, that is already happening if one
takes seriously the rankings one reads about in major international newspapers and,
whatever one may think about these rankings (and I have my doubts on several
counts), they are nevertheless indicating certain trends that cannot be ignored. There
is also a similar trend with universities in China, Hong Kong and Taiwan. I recently
read in a major international publication that ranks universities globally a prediction
that within the next decade the top universities in Asia will surpass the top European
universities. I would have to say that based on my personal observations this is a
forecast with which I would tend to agree. This fact will come as a surprise to many
Europeans who may still think of these countries as emerging, whereas on many
counts they have already emerged.

Gian Italo. How did you start your contacts with Italian researchers? What is
your opinion about the level of research here in Italy?

Carl. I have already described in the Chaos, Solitons and Fractals (see footnote 2)
article how I became aware of some very interesting and good quality research
being done in Italy through the AMASES association, and I published a paper in the
AMASES journal2 in 1985. A contingent of Italians came to the first QMF conference
organised annually at UTS, and it was through them that I established contact with
Laura Gardini that led to my first visit to Urbino (of which there have been many
since) in 1998. The initial contact has led to the blossoming of many research flowers,
I will here just highlight the collaborations with Laura herself, Roberto Dieci and
Anna Agliari. I also have contacts with the group around Mauro Gallegati in Ancona,
the Cagliari-Genoa group around Michele Marchesi and Silvano Cincotti, the group
around Matteo Marsili at ICTP in Trieste, and more recently the group in Siena
around Alessandro Vercelli and Serena Sordi whom I will visit after the AMASES
meeting in Lecce. I think the level of research in Italy is quite high in certain areas,
especially in nonlinear dynamics and in particular its applications to economics and
finance. I never cease to be amazed at the quality of research in Italy given the many
impediments against which the Italian researchers have to struggle. I have already
alluded to the general problems in responding to the previous question, but in addition
they often have to cope with holding a position in towns far from where their families
live (because it takes so long to get a permanent position), quite heavy teaching loads

2 The AMASES journal is now known as “Decisions in Economics and Finance”, published by
Springer.
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and rather patchy infrastructure support. I think the fact that high quality research
can be maintained may be due to the long tradition of good research in Italy and the
fact that Italian researchers seem to network quite well. Nevertheless, I think it is
not a good sign for the future of Italian research that I find many good young Italian
researchers working not only in the US, but also in the other European countries that
give much better support to research.



What’s Beyond? Some Perspectives
on the Future of Mathematical Economics

Carl Chiarella

There is no more difficult, and some might say futile, task than that of trying to
predict the future as one is almost certainly bound to be wrong. This aphorism is
doubly true in economics as economists themselves remain divided over what is the
correct approach to modelling economic behaviour. So perhaps it is best that I start
by discussing this point first of all.

The great debates that have gone on among economists for much of the past
century have been reflected in many of the essays in this special issue, but let me
state what I see as the main issue. This point is important since the mathematical
economic tools that one needs to develop are different depending on which economic
paradigm one adopts. Early in the development of economic theory economists felt
that the discipline required some guiding principle, just as in the classical physics
of the nineteenth century there was the principle of least action. The principle in
economics that is supposed to be the force driving individuals is that of expected
utility maximisation, with utility functions being rooted in the five axioms of choice.
However, in order to calculate expected utility the economic agent needs to have
some concept of the probability distribution of future outcomes in the economy. To
handle this issue in a way that eliminates any arbitrary specification of expectations,
some economists in the late 1960s and early 1970s proposed the notion of rational
expectations. According to this postulate agents know the true distribution and indeed
the laws of motion driving the state variables of interest. Thus was born the rational
representative economic agent who is able to perform a very precise decision calculus
because it is able to calculate (at least in theory) all required quantities.
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The rational economic agent, efficient markets view (known as the neoclassical
model) has come to dominate economic theorising, at least in North American uni-
versities and some universities in Europe and some parts of Asia that seek to mimic
American style institutions. The fundamental reason for this dominance was the per-
ceived failure of the previously dominant Keynesian viewpoint of the late 1940s, the
1950s and the 1960s, which was deemed to be ineffective in face of the period of
economic stagnation that gripped the major industrial economies from around the
mid-1970s. Keynesian ideas in turn had displaced the previously dominant classical
viewpoint in the 1930s after it was perceived to be the cause of policies that led to
the great depression, an economic event which had a profound impact on economic
thought at the time and for many decades subsequently. It is still too early to tell
whether the current economic crisis will have the same profound impact upon eco-
nomic theorising. This at least seems likely given the fact that in order to manage the
crisis the world’s major economic institutions have been forced to adopt policies that
run counter to the currently dominant paradigm, and indeed those policies have very
much a Keynesian flavour about them. Throughout the period of the development of
the neo-classical school of thought during the 1970s and 1980s there nevertheless
continued a tradition that did not consider economic agents as totally rational, omni-
scient decision-makers nor markets as perfectly efficient. Rather it posited economic
agents as boundedly rational and having limited computational power; it also allowed
for the view that markets are not self-regulating. This view became properly articu-
lated from the early 1990s with seminal works like those by Kirman (1992), (1993)
or Day and Huang (1990), and has developed into a number of related directions; see
for example the survey articles of Hommes (2006), Lebaron (2006), Chiarella et al.
(2009b) and the books of Aoki and Yoshikawa (2007), Chiarella et al. (2009a) and
Delli Gatti et al. (2008).
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One reason why the two different viewpoints on economic life lead to different
styles of mathematical economics is that each viewpoint has a different concept of
the long-run outcome of economic activity. The neoclassical view sees the economy
as arriving at some equilibrium at which all necessary economic relationships (such
as budget constraints) are satisfied. This approach is very much rooted in methods of
optimisation and general equilibrium theory and indeed the term dynamic stochastic
general equilibrium theory has been coined to describe this general approach. The
reader may consult Stokey and Lucas (1989) and Ljungqvist and Sargent (2000) for
a good overview of what this approach involves. The mathematical workhorses in
this approach are Markov chains, stochastic linear difference equations and dynamic
programming. The main object of analysis becomes the so-called stochastic Euler
equations which are essentially stochastic difference equations expressing the first
order condition of optimality for the dynamic programming problem of interest.
These equations link quantities of interest at two successive time periods via an
expectation operator (and hence the need for some theory about expectations, which
as stated earlier for the neoclassical approach is that of rational expectations). Imple-
mentation of this approach involves one in practical issues of dynamic programming
algorithms, such as the curse of dimensionality, the best approach to discretisation
of the state space and ways to approximate the value function.

Many details and references can be found in the book by Ljungqvist and Sargent.
At a conceptual level one is dealing with general equilibrium theory, rational expecta-
tions, overlapping generations and game theory. Despite its use of the term “dynamic”
this overall approach is essentially a static one, since it posits the economy as arriving
at some steady-state situation which is perturbed by external random factors, to which
the economic agents are reacting optimally, and hence, the strong focus on tools of
optimisation theory and practice. One reason that the neoclassical view focuses on
stable equilibrium situations is almost by assumption as the rational expectations
assumption puts the economic system on a stable path by construction—any paths
that lead to a consideration of instability are simply ruled out as impossible out-
comes. This is the case for example with the employment of the so-called jump
variable technique that in the face of a saddle point solution (that occurs naturally
in many models of rational expectations) assumes that somehow the economy will
manage to put itself onto the stable branch of the saddle; though the mechanism by
which this can come about is never explained. Broadly speaking one may regard sto-
chastic dynamic general equilibrium theory as the latest manifestation of Walrasian
economics. The alternative view based on boundedly rational economic agents is
in contrast a disequilibrium theory as it allows for a much wider range of possible
equilibrium outcomes than simply a fixed point. The wider range of equilibrium
outcomes includes limit cycles, strange attractors, multiple basins of attraction. If
one also allows for the influence of external noise factors then one has noisy ver-
sions of all of these possibilities. At a mathematical level one is dealing with random
nonlinear dynamical systems. While I have depicted the boundedly rational agent
view as if it were one coherent overall theory, it in fact involves many different sub-
themes and I should stress that the broad classification is my own and several people
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working in some of the sub-fields that I mention may not agree entirely with this
classification. I have already pointed out a characteristic feature of this alternative
approach is disequilibrium. This comes about because the underlying models allow
for nonlinear elements, and so the loss of local stability does not necessarily entail
some unacceptable divergent outcome. Economically, apart from allowing the wider
range of equilibrium outcomes referred to earlier, this class of models makes room
for financial markets that are not always efficient. The issue of market efficiency
had almost become an article of faith in neoclassical economics, with the belief that
markets are self-correcting and the role of government was at most one of a light
touch regulator. Mathematically, one needs to deal with the full array of methods
developed over recent decades for the analysis of nonlinear dynamical systems, a
good account of which can be found in Puu (2000) for deterministic models. For an
example of the developing use of random nonlinear models in economics the reader
may consult Chiarella et al. (2009).

Let me spend a paragraph describing some of the major themes that have developed
under the boundedly rational economic agent paradigm. First, there is the expres-
sion in the modern theory of nonlinear dynamics of the classical Keynesian system,
updated in light of developments in economic theory since the mid-1970s (when
most American schools started to abandon this approach); a good representation of
this approach and the mathematical tools involved (mainly the theory of nonlinear
dynamical systems) is contained in Chiarella et al. (2008). A very ambitious research
agenda that has developed in recent years consists in treating economic agents as
particles in statistical physics, and overcomes the aggregation problem1 by using
the master equation to statistically aggregate the agents and describe their aggregate
behaviour via statistical distributions. The best expression of this approach is given
by Aoki and Yoshikawa (2007), and how it can be applied to macroeconomic ques-
tions of relevance to current debates is demonstrated by Delli Gatti et al. (2008).
For a nice overview of the mathematical tools involved, which are essentially ideas
adapted from statistical physics, we refer the reader to Landini and Uberti (2008).
Certainly, this approach is in stark contrast to the approach based on equilibrium
theory as it is an attempt to apply to economics the ways developed in statistical
mechanics to analyse systems in a permanent state of disequilibrium. In the view of
this writer this attempt could mark an important paradigm shift for economic the-
ory. It is too early to tell whether it will have the impact on economic theory that it
should. Certainly, the current financial crisis has given great impetus to the search
for alternative economic paradigms, as the current one has been found to be sorely
inadequate to explain the crisis or to propose appropriate policy advice. But the pull
of the general equilibrium viewpoint remains very strong in economics, and only

1 Economists have long struggled with the aggregation problem without really finding a satisfactory
solution. The basic problem is to determine the aggregate behaviour of the economy by aggregating
the optimal behaviour of each economic agent. The difficulty of carrying out such a procedure is
one reason for the dominance of the representative economic agent paradigm. Although we should
point out that in recent years there have been attempts to incorporate heterogeneous agents into the
neoclassical paradigm (den HaanW 2010).
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the writer of a similar survey article two decades hence will really be able to make
a pronouncement on the outcome of this struggle between paradigms. Certainly we
live in interesting times.
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Expectations, Firms’ Indebtedness
and Business Fluctuations in a Structural
Keynesian Monetary Growth Framework

Matthieu Charpe, Peter Flaschel, Christian R. Proaño and Willi Semmler

1 Introduction

In recent times, and especially since the recent global financial crisis, there has been
a renewed interest in understanding the interplay between the financial markets and
the macroeconomy, as well as the role played therein by the expectations of the
different agents in the economy. As the role of both equity and debt financing has not
only increased especially in the United-States since the late 1980s, and since both
equity and debt issuance have become more volatile as well as correlated to each
other, understanding the interaction between the firms’ indebtedness levels and the
dynamics of the economy remains a central question in economic research.1

In the literature numerous and quite heterogeneous approaches to this topic have
been developed over time, and many such approaches are directly linked to the
assessment of the efficiency of financial markets. For instance, while according to
the Modigliani and Miller (1958) theorem the value of a firm would be unaffected by
its financing structure if capital markets are frictionless, in theoretical studies along

1 On more empirical grounds, recent work by Covas and Den Haan (2012) has stressed the fact
that the relative importance of these two types of financing depends on the firm’s size, with
small firms and start-ups being more reliant on equity finance, and large and more established
firms being more debt-finance oriented.
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the lines of Minsky (1975, 1982), high debt-asset ratios may reflect a dangerous
liability structure of firms, increasing the risk of bankruptcy and developing fragile
macroeconomic dynamics.

Already in the 1980s, early attempts were made to fully endogenise debt-financing
in an interdependent economic system. For example, while in Foley (1986, 1987)
borrowing, lending and capital outlays of firms are essentially determined by endoge-
nously determined profit rate and liquidity, in Taylor (1985) and Taylor and O’Connell
(1985), the savings generated by the rentier households, as already suggested by
Kalecki, are channeled through the banking system to investing firms. However,
despite the fact that this class of models develops rich macroeconomic dynamics—
including financial instability as studied by Minsky in his financial crisis theory—the
role of firms’ indebtedness and debt payment commitments is not fully worked out
given the partial nature of those frameworks.

In this contribution we incorporate the main elements of the small-scale firms’
debt-finance model by Franke and Semmler (1989) into a medium-scale disequilib-
rium macroeconomic framework along the lines of Chiarella et al. (2005). In a fully
interdependent model incorporating investing firms, savings of rentier households,
commercial banks and the government, the endogenously generated debt of firms
(created through borrowing) feeds back dynamically to the investment behaviour of
firms, their borrowing of funds, the asset market, the interest rate and the expected
rate of return (representing the confidence of investors with regard to future devel-
opment). The impact of debt-financing of firms on aggregate economic activity will
be studied within this context.

The remainder of this chapter is organised as follows: In Sect. 2, after describing
briefly the main features of the Franke and Semmler (1989) framework, we discuss a
medium-scale macroeconomic model which incorporates these features into a much
richer Keynesian disequilibrium framework. We then investigate the dynamics of the
resulting model by means of numerical simulations in Sect. 3. Finally, we draw some
concluding remarks and mention the possible lines of future research in Sect. 4.

2 A Medium-Scale Keynes-Metzler Macroeconomic
Framework of Firms’ Indebtedness and Business
Fluctuations

The main objective of this contribution is to integrate the approach of Franke and
Semmler (1989) towards financial markets, debt-financing of firms and expectations
about the future state of the economy into a medium-scale macroeconomic framework
of the Keynes–Metzler variety along the lines of Chiarella et al. (2005).

In a nutshell, the theoretical framework originally proposed by Franke and
Semmler (1989) studies the complex macroeconomic dynamics resulting from a
debt-financing strategy by the entrepreneurial sector in a closed economy and the
state of confidence in the economy, and therefore, on the general expectations of
the economic agents with respect to the current and future performance of the econ-
omy. The modelling strategy is as follows: In the first step, Franke and Semmler
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characterise the short-run equilibrium in goods and financial markets using a slight
modification of a framework already employed several times in the literature (see e.g.
Taylor and O’Connell (1985), Foley (1986, 1987)) and investigate the short-run sta-
bility properties of the resulting equilibrium. In this context, the ratio of indebtedness
of firms and the economy’s “state of confidence” are considered to be exogenously
given. Further, in a second step the debt-to-capital ratio and the state of confidence
are then endogenised through the formulation of behavioural equations concerning
their evolution over time based on the assumption of continuous market clearing in
the goods and financial markets.

Concerning the latter dynamic variable, Franke and Semmler (1989) assume that
it evolves over time according to

ψ̇ = v(ρ − r, λ), v1 > 0, v2 < 0, (1)

where ρ represents the actual real rate of profit and λ the firms’ debt-to-capital
ratio, i.e. λ = Λ/(pK ), where Λ represents the firms’ aggregate debt level, p
the aggregate price level and K the capital stock level. Accordingly, the state of
confidence in the economy depends negatively on the firms’ debt-to-capital ratio,
and positively on the differential between the actual profit rate and the real rate of
interest, as originally proposed by Kalecki (1937) [84–95] in the following manner:
“…the rate of investment decision is an increasing function of the gap between the
prospective rate of profit and the rate of interest” and the difference between the
“prospective rate of profit, and the rate of interest, is equal to the risk incurred”.

The growth rate of the firms’ indebtness is assumed to be a positive function of
the difference between the expected profit rate and the current rate of interest, and a
negative function of the debt-to-capital ratio,

Λ̇/Λ = b(ρe − r, λ), b1 > 0, b2 < 0, (2)

where the expected rate of profit is defined through

ρe = ρ + ψ. (3)

In contrast, the growth rate of the capital stock K̇/K = I/K (where I repre-
sents aggregate investment) is assumed to be driven solely by the relative expected
profitability, i.e.

K̇/K = g(ρe − r), g1 > 0, g2 < 0. (4)

Since λ̂ = Λ̂ − p̂ − K̂ , the resulting 2D nonlinear system of differential equations
of the Franke and Semmler (1989) framework is given by:

λ̇ = (b(ρ + ψ − r, λ)− g(ρ + ψ − r)) · λ (5)

ψ̇ = c(ρ − r, λ) (6)
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under the assumption that p̂ = 0, and where we rewrite Eq. (1) again here for
expositional clarity.

While different assumptions on the diverse reaction functions b( · ), g( · ) and
c( · ) make it possible to generate quite differentiated and complex dynamics, in
Franke and Semmler (1989) essentially three types of scenarios are investigated.
Two of them exhibit local (if not global) stability with respect to a unique long-run
equilibrium of steady growth. The other one, the most interesting case, generates
persistent fluctuations in the debt-to-capital ratio and the state of confidence in the
economy tending to a closed orbit (so that a growth cycle results).

The Franke and Semmler (1989) framework is capable of delivering valuable
insights on the interaction between the firms’ indebtedness levels, the economy’s
state of confidence and macroeconomic activity. However, it contains still various
assumptions, such as the continuous goods market equilibrium and the exogenously
given labour share, which are not only unlikely on empirical grounds, but also at odds
with a truly Keynesian framework from a theoretical point of view. Accordingly, in
the following we incorporate their approach into a medium-scale macroeconomic
framework along the lines of Chiarella et al. (2005).

The household sector is assumed to comprise two different types of agents: work-
ers and asset holders. Workers are assumed to consume all their labour income,
while asset holders are assumed to consume only a fraction of 1 − sc. Under the
assumption that all interest payments to banks are transferred to the household sec-
tor (and more specifically to the asset holders), the aggregate household consumption
is determined by

C = ωLd + (1− sc)(ρK + rΛ/p), (7)

where ω denotes the real wage w/p, Ld the labour demand (which equals the actual
level of employment given the underutilisation macroeconomic regime assumed
here), K the capital stock, r the rate of interest, Λ the total level of the house-
holds’ interest bearing deposits and p the aggregate price level. Further, the rate of
profit ρ is defined as

ρ = (Y d − δK − ωLd − rλK )/K , (8)

where Y d represents the aggregate demand level, as usual defined as

Y d = C + I + G + δK , (9)

where I represents aggregate net investment, G aggregate government expenditures
and δ the depreciation rate of capital.

The households’ (meaning, asset holders’) real savings are allocated in new money
holdings Ṁ , new loans to the entrepreneurial sector Λ̇ and new equity holding Ė ,

Sp = sc(ρK + rΛ/p) = (Ṁ + Λ̇+ pe Ė)/p. (10)
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Accordingly, the households’ financial wealth (consisting of course only of asset
holders’ wealth) consists of money holdings, debt claims and equities (all expressed
here in nominal terms), i.e.

W = M +Λ+ pe E . (11)

Concerning the firms’ behaviour, labour demand Ld is assumed to be fully deter-
mined by the aggregate output level Y (see Eq. (17)), where x = const. is the average
labour productivity, i.e.

Ld = Y d/x . (12)

Further, aggregate net investment I is assumed to depend not only on the difference
between the expected profit rate and the rate of interest (as in Eq. (4)), but also on the
deviation of the capacity utilisation u from its normal level ū, and the trend growth
of investment γ = const. (which for simplicity is assumed to equal the growth rate
of the population), namely

I = i1(ρ
e − (r − πe))K + i2(u − u)K + γ K , (13)

where u = Y/Y p, with Y p = y p K and y p = Y p/K = const. representing the
potential output-capital ratio. Further, Eq. (14) represents the budget restriction of
firms, which states that net investment is either financed by new borrowing or by
issuing new equities, i.e.

I = (Λ̇+ pe Ė)/p. (14)

with K̂ = K̇/K = I/K being the growth rate of capital by definition.
Total aggregate investment includes net investment, the replacement of depreci-

ated capital and the actual change in the firms’ inventories N , i.e.

I a = I + δK + Ṅ , (15)

where Ṅ results from the discrepancies between actual output Y and actual aggregate
demand Y d , i.e.

Ṅ = Y − Y d = S f . (16)

As extensively discussed in Chiarella and Flaschel (2000) and Chiarella et al.
(2005), in an uncertain environment, firms have to decide on production before
actual sales are known. Accordingly, actual aggregate output equals the expected
output level Y e plus the additional change in actual inventories, i.e.

Y = Y e +I . (17)
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with the change in the desired level of inventories N d being assumed to be determined
through

I = γ N d + βγ (N d − N ), (18)

where

N d = βγ d Y e, (19)

as in Chiarella et al. (2005). Further, the evolution of Y e is assumed to be given by:

Ẏ e = γY e + βye (Y d − Y e). (20)

Accordingly, the expected output level is determined in an adaptive manner by aggre-
gate demand Y d , as well as by the trend population growth γ .

The firms’ pursued debt policy is described by Eq.(21), according to which the
growth rate of debt financing of firms depends positively on the expected rate of profit
(in nominal terms), negatively on interest payments (in capital stock terms) rλ.2

Λ̇ = d(ρe + πe, rλ) ·Λ, with d1 > 0, d2 < 0 (21)

For the sake of simplicity, the government’s behaviour is described in a very par-
simonious manner. Real government expenditures are proportional to net investment
and are totally money financed, so that government dissavings equal the current
government expenditures as formulated in Eqs. (22)–(24), i.e.3

G = φ I, φ = const. (22)

Ṁ = pG (23)

Sg = −G, (24)

Turning next to the asset markets we first of all consider the balance sheets of the
economy and their aggregation towards the determination of the nominal wealth of
asset owning households, as shown in Table 1.

The scheme illustrated in Table 1 is based on the assumption that there are no
currency holdings of the public that holds (and use) liquidity in the form of interest-
free demand deposits (with no fixed multiplier relationship connecting M and Λo,
orΛo and Λr ).4 Interest bearing deposits of the public, by contrast, are not “liquid”
and they exhibit a fixed price (as a deposit) and as the result of market interaction a
variable rate of interest r . Further, it is assumed that this rate only holds ex ante (as a

2 Equity financing is therefore considered here as a residual in the present formulation of the firms’
behaviour.
3 We assume in addition that initial conditions for the application of these rules are such that we
get from (22)–(24) the stock relationship M = φpK .
4 Money receipts—injections of new money—are assumed to be immediately channeled to the
banks and held there as demand or time deposits.
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Table 1 The asset markets structure of the economy

Assets Liabilities

Central banks High powered money M Deposits of commercial banks Λc

Commercial banks Bank reserves Λc Interest free deposits of the public Λo

Bank loans to firms Λr Interest bearing deposits of the public Λr

Firms Value of capital stock pk K Loans from banks Λ
Value of equity stock pe E

Asset owners Interest free deposits Λo Nominal wealth W
Interest bearing deposits Λr

Equities pe E

market clearing signal), while the ex post rate includes profits or losses of commercial
banks rΛ−rΛr which are distributed as windfall profits to asset owning households
(ra = rΛ/Λr ). Commercial banks are thus pure intermediaries (which hold the high-
powered money—issued by way of the government expenditure rule—as reserve for
transaction processes) with no costs of production, no investment and no income,
since the interest they receive from firms rΛ is completely distributed to asset owning
households.

The above scheme implies for the nominal wealth of households the identity:

W = M +Λ+ pe E = Λo +Λr + pe E = M + pk K ,

and for its intended and realised change (at current market prices):

pSp = Λ̇o + Λ̇r + pe Ė = Ṁ + Λ̇+ pe Ė,

which explains the use of the wealth concept employed above and the allocation rule
for the savings plans made by households.

On the basis of these identities we can now describe the reallocation of wealth
that takes place in each moment of time (before the trading of any flows) by means of

pe E = e(ρe + πe, r)W, e1 > 0, e2 < 0, (25)

Λo = do(ρe + πe, r)W, do
1 < 0, do

2 > 0, (26)

Λr = dr (ρe + πe, r)W, d1 < 0, d2 > 0, (27)

with e( · ) + do( · ) + dr ( · ) = 1, and e( · ), do( · ) and dr ( · ) ≥ 0. The portions
of nominal wealth that are desired to be held as equities, interest-free and interest-
bearing deposits depend on two rates of return: the expected nominal rate of profit
ρe + πe and the current market rate of interest r .5

5 As we assume that the two types of deposit holdings, and their particular composition does not
feed back into the rest of the economy’s structure, both of them will be neglected in the following.
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As in Franke and Semmler, equity prices are determined by the canonical equation

pe E = (ρe + πe)pK

r
. (28)

Accordingly, as in Franke and Semmler (1989), we assume here the rate of interest
and the equity prices are jointly determined by Eqs. (25) and (28), and thus that they
adjust automatically to guarantee asset market equilibrium in every moment in time.6

In contrast, the composition ofΛo +Λr = M +Λ is chosen so as to be in line with
the above allocation rules for these two asset demands.

Expressed in a different way the equilibrium situation on the markets for financial
assets can also be derived and described as follows. The condition that the equity
market clears is equivalent to assuming the following condition for interest-free and
interest bearing deposits

M +Λ = (do(ρe + πe, r)+ dr (ρe + πe, r))pW

and to assume that the interest rate on the latter deposits adjusts in order to get
this equality between the high-powered money plus loans to firms and total deposit
demand. The interest rate determination is thus described here through market forces,
but is of course the same as the one we have determined through equity market
equilibrium described by Eq. (25). Again the division of deposits in interest-free and
interest-bearing deposits is made on the basis of the rates r and ρe + πe and is of
no consequence for the working of the economy. The public is therefore completely
free to choose the degree of liquidity of its financial assets.

Concerning the determination of wage and price inflation, and thus of the real
wage, following the work by Flaschel and Krolzig (2006), the wage and price infla-
tion rates are assumed to be determined by the disequilibrium situations in the labour
and goods markets, cross-over expectational terms and the medium-term inflationary
climate, i.e.

ŵ = βw(e − ē)+ κw p̂ + (1− κw)π
e (29)

p̂ = βp(u − ū)+ κpŵ+ (1− κp)π
e (30)

π̇e = βπ1( p̂ − πe)+ βπ2(M̂ − γ − πe) (31)

where e = Ld/L = Y/(x L) represents the economy’s employment rate, and πe the
medium-run inflationary climate in the economy.

6 Since we make use of Metzlerian delayed output adjustment in place of an IS-equilibrium condi-
tion, we cannot assume as Franke and Semmler (1989) that the actual rate of profit automatically
adjusts to bring about equilibrium in the goods markets.
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3 The Model in Intensive Form

Since the current model describes the dynamics of a growing economy, it is conve-
nient to express the main dynamic equations of the model in intensive form. Accord-
ingly, aggregate demand per unit of capital (see Eqs. (7), (13), (22) and (9)) is given by

yd = vy + (1− sc)[ρ + rλ] + (1+ φ)(i1(ρ + ψ − r + πe))

+ i2(u − ū)+ γ + δ, (32)

where v = ω/x is the wage share and ρ = (1 − v)y − δ − rλ is the profit rate in
intensive form terms. It should be pointed out that this expression would give rise to
the same type of IS-equation as employed in Franke and Semmler (1989) [p. 45] if
goods’ market equilibrium was assumed in place of the inventory adjustment process
assumed here. The IS-equation that is implicitly contained in our model is therefore
very close to the form used by Franke and Semmler (1989), who however use a
different measure for relative profitability in the investment demand function, and
who set i2 and γ equal to zero.

The condition for asset market equilibrium given by Eq. (25) can be rewritten in
intensive form as:

ρe + πe = e(ρe + πe, r)(ρe + πe + r), (33)

by making use of pe E/(pK ) = (ρe + πe)/r as given by Eq. (28), see also Franke
and Semmler (1989) [p. 43].

The complete model in intensive form is given by the following system of non-
linear dynamical equations:

ω̂ = κ[(1− κp)βw(e − ē)+ (κw − 1)βp(u − ū)], (34)

l̂ = −i1(ρ + ψ − r + πe)− i2(u − ū), (35)

m̂ = φg/m − πe − γ − κ[βp(u − ū)+ κpβw(e − ē)] + l̂, (36)

π̇e = βπ1κ[βp(u − ū)+ κpβw(e − ē)] + βπ2(φg/m − γ − πe), (37)

ẏe = βye (yd − ye)+ γ ye, (38)

ν̇ = y − yd − (i1(ρ + ψ − r + πe)+ i2(u − ū)− γ )ν, (39)

λ̂ = d(ρ + ψ, (r − p̂)λ)− πe − κ[βp(u − ū)+ κpβw(e − ē)] − γ + l̂, (40)

ψ̇ = c(ρ + ψ − r + πe), λ), (41)

where u = Y/Y p = y/y p, l = L/K , m = M/(pK ), ye = Y e/K , ν = N/K , and
y = yd + ν.

As Franke and Semmler (1989) provide a detailed analysis of the temporary
equilibrium positions and their evolution in time, and the properties of macroeco-
nomic models similar to the one discussed here have also been extensively studied
in Chiarella and Flaschel (2000), Chiarella et al. (2005) and other related work, in
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this paper we will focus primarily on numerical simulation of particular submodules
of this extended framework, namely the interaction between debt-to-capital ratio λ,
the state of confidence ψ (the two dynamical variables considered by Franke and
Semmler (1989)) and the real wage ω in the following section, and leave the analysis
of the complete macroeconomic framework for future research.

4 Numerical Analysis

As mentioned above, in this section we consider by means of numerical simulations
only a subsystem of the complete macroeconomic framework consisting of the core
dynamical variables λ,ψ and ω. The investigation of the full model must here be left
for future research. Note however that the Metzlerian quantity dynamics as well as
the price inflation dynamics have been studied extensively in the work of Chiarella,
Flaschel, Franke and Semmler on various levels of their integration into larger models
of disequilibrium macro-dynamics.

As previously mentioned, in Franke and Semmler (1989) goods market equilib-
rium is assumed, as well as a constant wage share. Further, they neglect the dynamics
of factor proportions l since there is no feedback of this magnitude into the rest of the
dynamics due to the irrelevance of the rate of employment and the rate of capacity
utilisation (wages and prices do not change).

By settingβw = βp = 0, andπe = 0, we can modify our more general framework
to reflect these assumptions.

Under the assumption that firms can automatically adjust their production to the
exact level of aggregate demand, so that y = yd in each moment in time goods
market equilibrium (in intensive form) is then given as

y = 1

(1− v)(sc − (1+ φ)i1)− i2/y p

((1+ φ)i1(−δ − rλ+ ψ − r)− i2ū + γ + scδ) (42)

Concerning the determination of the rate of interest through asset market equilibrium,
for the sake of simplicity we assume that e( ·, ) is such that

r = εψ(ψ − ψo)− ελ(λ− λo). (43)

On the basis of such temporary equilibrium position the evolution of the dynam-
ically endogenous variables λ and ψ which gives rise to an autonomous differential
equation system in these variables can then be considered under appropriate assump-
tions for the solution of the goods and asset markets.

The dynamical equations of the model are in the considered special situation:

λ̇ = [d(ρ + ψ, λ)− (i1(ρ + ψ − r)+ i2(y/y p − ū)+ γ )− p̂]λ, (44)

ψ̇ = c(ρ − r, λ), (45)
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Table 2 Parameter values
Steady state values
sc = 0.3 y p = 0.4 uo = 0.91 δ = 0.01 γ = 0.02 io = 0.089
φ = 0.0 λo = 0.3 ψ = 0.1389 x = 5 ωo = 3.33
Behavioural parameters
i1 = 0.0581 i2 = 0.2 αd1 = 0.25 αd2 = 0.01 βψ = 0.2 βλ = 0.1

βu = 0.2 βv = 0.1

ω̂ = κ[(1− κp)βw(e − ē)+ (κw − 1)βp(u − ū)]. (46)

This dynamical model is basically the model that is investigated in Franke and
Semmler (1989) from the analytical as well as from the numerical point of view.
Differences to our formulation concern our additional investment term i2(·), and
thus the somewhat different specifications that are used for the functions d(·), c(·)
here, and the endogenisation of the rate of profit through aggregate demand-driven
business dynamics and dividends, as well as of the real wage in a dynamic set-up.
The general model thus exhibits in its analytical core a financial dynamic—based on
an IS-LM theory of the rate of profit and the rate of interest—which is capable of
generating persistent fluctuations around a well-defined steady state.

Table 2 summarises the parameter values used in the following simulations.
Figure 1 illustrates the dynamic adjustments of the 3D dynamical system given by

Eqs. (44)–(46) to an exogenous one-time positive shock to the steady-state debt-to-
capital ratio. As it can be clearly observed, the fact that λo > λ for one period leads
to the emergence of long-lasting fluctuations in all model variables. In the imme-
diate periods after the shock, aggregate output—and capacity utilisation—increases
through the expansion of aggregate investment, which leads to a higher state of con-
fidence in the economy and to a subsequent increase in the firms’ indebtedness. As
real wages are procyclical (a result of the special choice of the parameter in the real
wage equation), the increase in output leads to an increase in the real wage, which
in turn would lead ceteris paribus to a decrease in the profit rate.

This and more information can also be retrieved from the 2D cycles depicted in
Fig. 1. On the one hand, as the capacity utilisation-real wage cycle shows, there is
a clockwise movement (where capacity utilisation is depicted in the x-axis and the
real wage in the y-axis) which clearly demonstrates the procyclical behaviour of the
real wage, increasing when u increases and vice versa. However, it is also interesting
to note that given the error-correction terms present in both wage and price Phillips
curves, the real wage tends to fall when v ≥ vo and vice versa. This interaction
generates the well-known cyclical behaviour in the real wage, and would, if labour
productivity was endogenised as procyclical, generate anticyclical movements of the
labour share, as discussed for example in Flaschel (2014).

The dynamics with the most pronounced procyclicality are the interaction between
the capacity utilisation and the state of confidence in the economy. This is particularly
interesting as this is an emergent feature of the model which results truly from the
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Fig. 1 Dynamic adjustments of the 3D model after an exogenous 10 % increase in the debt-to-
capital ratio

interaction of all model variables and not simply by a particular specification of one
of the variables.

5 Concluding Remarks

In this contribution we have incorporated the main elements of the small-scale firms’
debt-finance model by Franke and Semmler (1989) into a medium-scale disequilib-
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rium macroeconomic framework along the lines of Chiarella et al (2005). We illus-
trated by means of a simple numerical simulation of the resulting framework—which
featured investing firms, savings of rentier households, commercial banks and the
government—the dynamic feedback mechanisms of endogenously generated debt
of firms (created through borrowing) into the investment behaviour of firms, their
borrowing of funds, the asset market, the interest rate and the expected rate of return
(representing the confidence of investors with regard to future development).

The theoretical framework we developed in this contribution is rich enough to
allow for far more complex analytical and numerical investigations. For instance,
one could investigate in detail how the model’s local stability is affected by increases
in certain parameters such as the rentiers’ savings rate or the reactive of aggregate
investment with respect to expected profitability. Also, a proper empirical analysis
of the current framework which would also take into account the possibility time-
and/or regime-dependent nature of various key parameters of the model seem like a
promising next step of research.
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Mathematical Modelling of Financial
Instability and Macroeconomic Stabilisation
Policies

Toichiro Asada

1 Introduction

Minsky’s (1975, 1982, 1986) “financial instability hypothesis” implies that the
financially dominated capitalist economy is inherently unstable. His hypothesis has
been neglected for a long time by the mainstream economists, although it had a
considerable influence among the heterodox economists such as Post Keynesians.1

But, the situation dramatically changed soon after the worldwide financial crisis
that was initiated by the so-called “subprime mortgage crisis” in 2007 in the United
States. Since then, Minsky’s hypothesis was “rediscovered” by some mainstream
economists such as Krugman.2

Minsky distinguishes three forms of investment financing, that is, “hedge finance”,
“speculative finance”, and “Ponzi finance”. He defines these three financing forms
as follows.

“If realized and expected income cash flows are sufficient to meet the payment
commitments on the outstading liabilities of a unit, then the unit will be hedge
financing. However, the balance-sheet cash flows from a unit can be larger than the
expected income receipt so that the only way they can be met is by rolling over or
even increasing debt; units that roll over debt are engaged in speculative finance and
those that increase debt are engaged in Ponzi finance.” (Minsky 1986, p. 203)

Minsky provides a description of the business cycle of the financially dominated
capitalist economy that is based on the endogenous changes of these three financing

1 For the Post Keynesian-oriented theoretical literature on Minsky’s financial instability hypoth-
esis, see, for example, Asada’s (2001, 2004, 2012), Asada et al. (2010), Keen (2000), Nasica
(2000), Pally (1996) and Semmler (ed.) (1989).
2 See, for example, Eggertsoon and Krugman (2012) and Krugman (2012).
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forms, that is, Hedge finance→Speculative finance→Ponzi finance→Hedge finance
and so on, which is called the “Minsky cycle”.

By the way, it is important to note that Minsky did not think that such an inherent
instability of the financially dominated capitalist economy is uncontrollable by the
government and the central bank. In fact, he stressed that it is important to “stabilize
an unstable economy” by means of the proper macroeconomic stabilisation policies
by the government and the central bank.3

In this paper, we consider how to stabilise an unstable economy theoretically by
using the analytical framework of “high dimensional nonlinear Keynesian macrody-
namic model” that was developed by Asada et al. (2003, 2010) and Chiarella et al.
(2005).4 In Sect. 2, we formulate the basic Minskian two-dimensional fixed price
model of financial instability without active macroeconomic stabilisation policy. In
Sect. 3, we consider an extended flexible price four-dimensional model with central
bank’s monetary stabilisation policy. In Sect. 4, we study a further extended flexible
price six-dimensional model of the macroeconomic stabilisation policy by means
of monetary and fiscal policy mix. Finally, in Sect. 5, we provide an intuitive eco-
nomic explanation of the analytical results. Some complicated mathematical proofs
are relegated to the appendices.

2 Basic Model: Two-dimensional Model with Fixed Prices

The basic model that is the starting point of our analysis consists of the following
system of equations.5

ḋ = φ(g)− s f (r − id)− (g + π)d; 0 < s f < 1 (1)

ẏ = α(c + φ(g)+ v − y); α > 0 (2)

ġ = g(r, ρ − πe, d); gr = ∂g/∂r > 0, gρ−πe = ∂g/∂(r − πe) < 0, gd = ∂g/∂d < 0
(3)

c = (1− s1){y − r + (1− s f )r − τ(y)} + (1− s2)id + (1− s3)ρb;
0 < τy = τ ′(y) < 1, 0 < s1 < 1, 0 < s2 ≤ 1, 0 < s3 ≤ 1

(4)

r = P/K = βY/K = βy; 0 < β < 1 (5)

i = ρ + ζ(d) = i(ρ, d); ζ(d) ≥ 0, id = ζ ′(d) > 0 for d > 0 (6)

3 See Minsky’s (1986) and Asada et al. (2010).
4 The “high dimensional” dynamic model means the dynamic model with many (at least three)
endogenous variables.
5 This model is essentially based on Asada’s (2001) formulation.
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m = l(y, ρ); ly = ∂l/∂y > 0, lρ = ∂l/∂ρ < 0 (7)

π = πe = 0 (8)

ρ = constant > 0 (9)

v = constant > 0 (10)

The meanings of the symbols are as follows. D = stock of firms’ nominal private
debt. p = price level. K = real capital stock. d = D/(pK ) = private debt-capital
ratio. π = ṗ/p = rate of price inflation. πe = expected rate of price inflation.
g = K̇/K = rate of capital accumulation. φ(g) = adjustment cost function of
investment that has the properties φ′(g) ≥ 1, φ′′(g) > 0, which was introduced
by Uzawa’s (1969). P = real profit. r = P/K = rate of profit. i = nominal rate
of interest that is applied to firms’ private debt. ρ = nominal rate of interest of
the government bond. ρ − πe = expected real rate of interest of the government
bond. s f = firms’ internal retention rate that is assumed to be constant. Y = real
output (real national income). y = Y/K = output-capital ratio, which is a surrogate
variable of the “rate of capital utilization” and the “rate of labor employment”. G =
real government expenditure. v = G/K = government expenditure-capital ratio.
B =stock of nominal government bond. b = B/(pK ) = government bond-capital
ratio. α = quantity adjustment speed of the disequilibrium in the goods market. C =
real private consumption expenditure. c = C/K = private consumption expenditure-
capital ratio. T = real tax. τ = T/K = tax-capital ratio. s1 = average saving
rate out of wage and profit income after tax that is assumed to be constant. s2 =
average saving rate out of interest on private debt that is assumed to be constant.
s3 = average propensity to save out of interest on public debt that is assumed to be
constant.β = P/Y = share of profit in national income that is assumed to be constant
(0< β <1). M = nominal money stock. m = M/(pK ) =money stock-capital ratio.
L = real money demand. l = L/K = money demand-capital ratio.

We can derive Eq. (1) as follows. The dynamic law of motion of the firms’ private
debt can be expressed by

Ḋ = φ(g)pK − s f (r pK − i D). (11)

On the other hand, by differentiating the definitional equation d = D/(pK ) by time,
we have

ḋ/d = Ḋ/D − ṗ/p − K̇/K = Ḋ/D − π − g. (12)

Substituting Eq. (12) into Eq. (11), we obtain Eq. (1). Equation (2) describes the
Keynesian quantity adjustment process of the disequilibrium in the goods market,
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which is called the dynamic multiplier process.6 Equation (3) is the Keynesian type
investment function that includes the Fisher (1933) debt effect.7 Equation (4) is the
standard Keynesian type consumption function. In fact, it is assumed that

C = (1− s1){W + (1− s f )P − T } + (1− s2)i D + (1− s3)ρB, (13)

Y = W + P (14)

where W is the pre tax real wage income and P is the pre tax real profit. From
these equations we have Eq. (4).8 Equation (5) simply says that the share of profit
in national income β = P/Y is fixed, which is supposed to be determined by the
“degree of monopoly” in the sense of Kalecki (1971). Equation (6) captures the
fact that i the interest rate of the “risky assets”, will be higher than ρ, the interest
rate of the “safer asset”, and the difference between them will reflect the degree of
risk. Equation (7) is the equilibrium condition for the money market. The function
l(y, ρ) is the standard Keynesian real money demand function due to Keynes (1936).
Equations (8)–(10) imply that the price level is fixed and both of monetary and fiscal
policies are inactive. These assumptions will be relaxed step by step in the subsequent
sections.

We can rewrite the system of Eqs. (1)–(10) as follows:

ḋ = φ(g(βy, ρ, d))− s f {βy − i(ρ, d)d} − g(βy, ρ, d)d = f1(d, y) (15)

ẏ = α[(1− s1){(1− s f β)y − τ(y)} + (1− s2)i(ρ, d)d + (1− s3)ρb
+φ(g(βy, ρ, d))+ v− y] = α f2(d, y, b)

(16)

m = l(y, ρ) (17)

In this section, we assume that
s3 = 1 (18)

for simplicity of the analysis. In this case, Eqs. (15) and (16) consist of the two-
dimensional subsystem of dynamic equations with respect to d and y that is inde-
pendent of Eq. (17). In such a case, Eq. (17) has the only role to determine the

6 E = φ(g)K is the real investment expenditure including the adjustment cost, so that E/K = φ(g)
is the real investment expenditure including the adjustment cost per capital stock. In this formulation,
international trade is neglected for simplicity.
7 Asada’s (2001) derived this type of investment function from the firms’ profit maximisation
behaviours by using both Kalecki’s (1937) hypothesis of increasing risk of investment and Uzawa’s
(1969) hypothesis of increasing adjustment cost of investment, which is called “Penrose effect”.
8 In this formulation, it is assumed that the household is the creditor to both of firms and the
government. Furthermore, it is assumed for simplicity that τ = T/K is independent of id and
ρb but it solely depends on y. Incidentally, a possible formulation of the consumption function is
C = (1− s1){W + (1− s f )(P − i D)+ i D − T } + (1− s3)ρB. In this particular case, we have
s2 = 1− (1− s1)s f in Eq. (13).



Mathematical Modelling of Financial Instability 45

endogenous movement of the variable m, which does not feedback to other subsys-
tem. In other words, this is a decomposable system.

We assume that this system has an equilibrium solution (d∗, y∗) > (0, 0) such
that ḋ = ẏ = 0. The Jacobian matrix of this system at the equilibrium point becomes
as follows:

J1 =
[

f11 f12
α f21 α f22

]
(19)

where

f11 = ∂ f1/∂d = {φ′(g)︸ ︷︷ ︸
(+)
−d} gd︸︷︷︸

(−)
−g + s f ( id︸︷︷︸

(+)
d + i), (20)

f12 = ∂ f1/∂y = β{(φ′(g)︸ ︷︷ ︸
(+)
−d) gr︸︷︷︸

(+)
− s f }, (21)

f21 = ∂ f2/∂d = (1− s2)( id︸︷︷︸
(+)

d + i)+ φ′(g)︸ ︷︷ ︸
(+)

gd︸︷︷︸
(−)

, (22)

f22 = ∂ f2/∂y = (1− s1)(1− s f β − τy)+ β φ′(g)︸ ︷︷ ︸
(+)

gr︸︷︷︸
(+)
−1, (23)

f11 f22 − f12 f21 = −φ′(g)︸ ︷︷ ︸
(+)

gd︸︷︷︸
(−)
{(1− s1) τy︸︷︷︸

(+)
+s1(1− s f β)}

+ (1− s2)( id︸︷︷︸
(+)

d + i)(βs f − d gr︸︷︷︸
(+)

)+ β φ′(g)︸ ︷︷ ︸
(+)

gr︸︷︷︸
(+)

{−g + (s f + s2 − 1)( id︸︷︷︸
(+)

d + i)}

+ {−g + s f ( id︸︷︷︸
(+)

d + i)}{(1− s1)(1− s f β − τy︸︷︷︸
(+)

)− 1}.

(24)

Now, let us assume as follows.

Assumption 1 Assume

f11 < 0, f12 > 0, f21 < 0, f22 > 0, f11 f22 − f12 f21 > 0.
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These inequalities will in fact be satisfied if φ′(g) and |gd | are sufficiently large at
the equilibrium point. Under Assumption 1, we have the following proposition.9

Proposition 1 There exists a parameter value α0 > 0 that satisfies the following
properties

(1) The equilibrium point of the dynamic system (15)–(18) is locally stable for all
α ∈ (0, α0).

(2) The equilibrium point of the dynamic system (15)–(18) is locally totally unstable
for all α ∈ (α0,+∞).

(3) There exist the non-constant closed orbits around the equilibrium point for some
range of the parameter value α that is sufficiently close to α0.

Proof See Asada (2001).
Proposition 1 (3) means that the endogenous fluctuations occur for some inter-

mediate range of the parameter value α. We can consider that this is a mathemati-
cal expression of the “Minsky cycle” that was proposed by Minsky’s (1975, 1982,
1986).10

3 An Extension: Four-Dimensional Model of Monetary
Stabilisation Policy with Flexible Prices

In the model of the previous section, it is assumed that the price level is fixed and
the central bank’s monetary policy is totally inactive. In this section, we relax these
assumptions. We replace the Eqs. (8) and (9) in the previous section with the following
equations:

π = ε(y − ȳ)+ πe; ε > 0, ȳ > 0 (25)

ρ̇ =
{
β1(π − π̄)+ β2(y − ȳ) if ρ > 0

max[0, β1(π − π̄)+ β2(y − ȳ)] if ρ = 0
; β1 > 0, β2 > 0 (26)

π̇e = γ [ξ(π̄ − πe)+ (1− ξ)(π − πe)]; γ > 0, 0 ≤ ξ ≤ 1 (27)

9 In the models in this paper, the “jump variables” are not allowed for unlike the mainstream “New
Keynesian” dynamic models that are represented by Woodford (2003), Galí (2008) and others,
but it is assumed that all initial conditions of the endogenous variables are historically given. This
means that we adopt the traditional notion of the local stability/instability that is popular in the “Old
Keynesian” dynamic models represented by Tobin (1994) as well as the “Post Keynesian” models.
That is to say, (1) the equilibrium point is considered to be locally stable if all characteristic roots
have negative real parts, and (2) it is considered to be locally unstable if at least one characteristic
root has positive real part, and (3) it is considered to be locally totally unstable if all characteristic
roots have positive real parts. As for the critical assessment of “New Keynesian” dynamic models,
see, for example, Asada (2013); Asada et al. (2006, 2010); Chiarella et al. (2013); Flaschel et al.
(2008) and Mankiw (2001).
10 In fact, the point α = α0 is the Hopf Bifurcation point (Gandolfo 2009 p. 481).
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Eq. (25) is the quite standard “expectation-argumented price Phillips curve”. Equa-
tion (26) formalises an interest rate monetary policy rule by the central bank, which
is a variant of the “Taylor rule” type monetary policy that considers both of the
rate of inflation and the level of real output, which is a surrogate variable of labour
employment.11 In this formulation, the zero bound of the nominal interest rate is
explicitly considered. We can consider that this is a type of the flexible inflation
targeting monetary policy rule, and π̄ is the target rate of inflation that is set by the
central bank. Equation (27) is a mixed type inflation expectation hypothesis. This is
a mixture of the “forward looking” and the “backward looking” (adaptive) inflation
expectations. In case of ξ = 0, it is reduced to π̇e = γ (π − πe), which is a purely
adaptive inflation expectation hypothesis. On the other hand, in case of ξ = 1, it is
reduced to π̇e = γ (π̄−πe), which means that the publics’ expected rate of inflation
gravitates towards the target rate of inflation that is set and announced by the central
bank. We can consider that the parameter value ξ is a measure of the “degree of the
credibility” of the central bank’s inflation targeting, so that we call it the “credibility
parameter”.

The model in this section can be reduced to the following system of equations12

ḋ = φ(g(βy, ρ − πe, d))− s f {βy − i(ρ, d)d}
− {g(βy, ρ − πe, d)d + ε(y − ȳ)+ πe}d = F1(d, y, πe, ρ) (28)

ẏ = α[(1− s1){(1− s f β)y − τ(y)} + (1− s2)i(ρ, d)d + (1− s3)ρb

+ φ(g(βy, ρ − πe, d))+ v − y] = αF2(d, y, πe, ρ, b) (29)

π̇e = γ [ξ(π̄ − πe)+ (1− ξ)ε(y − ȳ)] = F3(y, πe) (30)

ρ̇ = F4(y, πe) =
{
β1(π

e − π̄)+ (β1ε + β2)(y − ȳ) if ρ > 0

max[0, β1(π
e − π̄)+ (β1ε + β2)(y − ȳ)] if ρ = 0

(31)

m = l(y, ρ) (32)

Also in this section, we assume that s3 = 1 for simplicity. In this case, the subsystem
(28)–(31) becomes an independent four-dimensional system of dynamic equations
with respect to d, y, πe and ρ. In such a case, the role of Eq. (32) is only to determine
the value of m endogenously.

11 For the original exposition of the “Taylor rule”, see Taylor (1993).
12 Equations (29) and (30) imply that ẏ is a decreasing function of ρ −πe, and π̇e is an increasing
function of y. In other words, this model is immune from the notorious “sign reversals”, which
are the peculiar characteristics of the “New Keynesian” dynamic model. See, for example, Asada
(2013), Asada et al. (2006, 2010), Mankiw (2001).
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We can express the equilibrium solution (d∗, y∗, πe∗, ρ∗,m∗) that satisfies the
condition ḋ = ẏ = π̇e = ρ̇ = 0 as follows if we neglect the non-negative constraint
of ρ.

F1(d
∗, ȳ, π̄ , z∗ + π̄) = 0 (33)

F2(d
∗ ȳ, π̄ , z∗ + π̄) = 0 (34)

π∗ = πe∗ = π̄ (35)

y∗ = ȳ (36)

ρ∗ = z∗ + π̄ (37)

m∗ = l(ȳ, z∗ + π̄) (38)

where z∗ is the equilibrium real interest rate of the government bond. We can deter-
mine the equilibrium values (d∗, z∗) from a system of the simultaneous Eqs. (33)
and (34). Incidentally, ρ∗ becomes positive if and only if the inequality

π̄ > −z∗ (39)

is satisfied. We assume that this inequality is satisfied. In fact, we assume that π̄ > 0
and z∗ > 0.

Next, let us study the local stability/instability of the equilibrium point. The
Jacobian matrix of the system (28) - (31) at the equilibrium point becomes as follows:

J2 =

⎡
⎢⎢⎣

F11 F12 F13 F14
αF21 αF22 αF23 αF24

0 γ ε(1− ξ) −γ ξ 0
0 β1ε + β2 β1 0

⎤
⎥⎥⎦ , (40)

where F11 = ∂F1/∂d = f11−π̄ , F12 = ∂F1/∂y = f12+εd, F21 = ∂F2/∂d = f21,
F22 = ∂F2/∂y = f22, where f11, f12, f21,and f22 are defined by Eqs. (20)–(23) in
the previous section.

Let us suppose that Assumption 1 in the previous section is satisfied. Then, we
obtain the following set of relationships:

F11 = f11︸︷︷︸
(−)
− π̄︸︷︷︸

(+)
< 0, F12 = f12︸︷︷︸

(+)
+εd > 0, F21 = f21︸︷︷︸

(−)
< 0, F22 = f22︸︷︷︸

(+)
> 0,

(41)

F11 F22 − F12 F21 = ( f11 f22 − f12 f21)︸ ︷︷ ︸
(+)

− π̄︸︷︷︸
(+)

f22︸︷︷︸
(+)
−εd f21︸︷︷︸

(−)
. (42)
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Other partial derivatives become as follows:

F13 = ∂F1/∂π
e = −{φ′(g)︸ ︷︷ ︸

(+)
−d} gρ−πe︸ ︷︷ ︸

(−)
−d, (43)

F14 = ∂F1/∂ρ = {φ′(g)︸ ︷︷ ︸
(+)
−d} gρ−πe︸ ︷︷ ︸

(−)
+s f d, (44)

F23 = ∂F2/∂π
e = −φ′(g)︸ ︷︷ ︸

(+)
gρ−πe︸ ︷︷ ︸
(−)

> 0, (45)

F24 = ∂F2/∂ρ = φ′(g)︸ ︷︷ ︸
(+)

gρ−πe︸ ︷︷ ︸
(−)
+(1− s2)d + (1− s3)b, (46)

F11 F23 − F13 F21 = φ′(g)︸ ︷︷ ︸
(+)
[gρ−πe︸ ︷︷ ︸
(−)
{(g + π̄)− (1− s f − s2)( id︸︷︷︸

(+)
d + i)} + d gd︸︷︷︸

(−)
]

+(1− s2)( id︸︷︷︸
(+)

d + i)(1− gρ−πe︸ ︷︷ ︸
(−)

),

(47)

F11 F24 − F14 F21 = −φ′(g)︸ ︷︷ ︸
(+)

gρ−πe︸ ︷︷ ︸
(−)
{(g + π̄)− (1− s f − s2)( id︸︷︷︸

(+)
d + i)}

+ [{φ′(g)︸ ︷︷ ︸
(+)
−d} gd︸︷︷︸

(−)
−(g + π̄)

+ s f ( id︸︷︷︸
(+)

d + i)]{(1− s2)d + (1− s3)b}

+ (d gρ−πe︸ ︷︷ ︸
(−)
−s f d)(1− s2)( id︸︷︷︸

(+)
d + i). (48)

We assume that the following assumption as well as Assumption 1 in the previous
section are satisfied.

Assumption 2 Assume F13 > 0, F14 < 0, F24 < 0, F11 F22 − F12 F21 > 0,
F11 F23 − F13 F21>0, F11 F24 − F14 F21 > 0.

These inequalities will be satisfied if φ′(g), |gρ−πe |, and id are sufficiently large
at the equilibrium point, ε is sufficiently large and 1− s f − s2 > 0.

The characteristic equation of the dynamic system (28)–(31) at the equilibrium
point becomes

2(λ) ≡ |λI − J2| = λ4 + b1λ
3 + b2λ

2 + b3λ+ b4 = 0, (49)
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where

b1 = −traceJ2 = − F11︸︷︷︸
(−)
−α F22︸︷︷︸

(+)
+γ ξ, (50)

b2 = sum of all principal second order minors of J2

= α (F11 F22 − F12 F21)︸ ︷︷ ︸
(+)

−γ ξ F11︸︷︷︸
(−)
+αγ {ξ F22︸︷︷︸

(+)
−ε(1− ξ) F23︸︷︷︸

(+)
}

− α(β1ε + β2) F24︸︷︷︸
(−)

, (51)

b3 = −sum of all principal third order minors of J2

= α[−γ F24︸︷︷︸
(−)
{ε(1− ξ)β1 + ξ(β1ε + β2)} + (β1ε + β2) (F11 F24 − F14 F21)︸ ︷︷ ︸

(+)
+ γ ε(1− ξ) (F11 F23 − F13 F21)︸ ︷︷ ︸

(+)
+γ ξ (F11 F22 − F12 F21)︸ ︷︷ ︸

(+)
] > 0, (52)

b4 = detJ2 = αγ {(β1ε + β2)ξ + β1ε(1− ξ)} (F11 F24 − F14 F21)︸ ︷︷ ︸
(+)

> 0. (53)

It is well known that a set of necessary (but not sufficient) conditions for the local
stability of the equilibrium point of the dynamic system (28)–(31) is given by the
following set of inequalities (cf. Asada et al. 2010, Mathematical appendix p. 416).

b j > 0 for all j ∈ {1, 2, 3, 4} (54)

The following “instability proposition” is a direct corollary of this fact.

Proposition 2 (Instability Proposition) Suppose that the parameter values α, β1
andβ2 are fixed at any positive levels. Furthermore, suppose that (1) the “credibility”
parameter of the central bank’s inflation targeting (ξ) is close to zero (including
the case of ξ = 0), and (2) the adjustment speed of the inflation expectation (γ )
is sufficiently large. Then, the equilibrium point of the dynamic system (28)–(32)
becomes locally unstable.

Proof Suppose that ξ = 0. In this case, Eq. (51) becomes

b2 = α{(F11 F22 − F12 F21)︸ ︷︷ ︸
(+)

−γ ε F23︸︷︷︸
(+)
−(β1ε + β2) F24︸︷︷︸

(−)
}. (55)
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Then, we have b2 < 0 for all sufficiently large values of γ > 0, which violates one
of the necessary conditions for local stability (54). It must be noted that we have
b2 < 0 for all sufficiently large values of γ > 0 even if 0 < ξ < 1, as long as ξ is
sufficiently close to zero, by continuity. �

On the other hand, we have the following “stability proposition” in contrast to the
above “instability proposition”.

Proposition 3 (Stability Proposition) Suppose that (1) the adjustment speed of
the goods market disequilibrium (α) is sufficiently small, and (2) the “credibility”
parameter of the central bank’s inflation targeting (ξ) is close to 1 (including the
case of ξ = 1). Then, the equilibrium point of the dynamic Eqs. (28)–(32) is locally
stable.

Proof Suppose that ξ = 1. Then, the Jacobian matrix (40) becomes

J2 =

⎡
⎢⎢⎣

F11 F12 F13 F14
αF21 αF22 αF23 αF24

0 0 −γ 0
0 β1ε + β2 β1 0

⎤
⎥⎥⎦ (56)

In this case the characteristic Eq. (49) becomes as follows:

2(λ) ≡ |λI − J2| = |λI − J3|(λ+ γ ) = 0, (57)

where

J3 =
⎡
⎣ F11 F12 F14
αF21 αF22 αF24

0 β1ε + β2 0

⎤
⎦ (58)

and

|λI − J3| = λ3 + w1λ
2 + w2λ+ w3 = 0, (59)

w1 = −traceJ3 = − F11︸︷︷︸
(−)
−α F22︸︷︷︸

(+)
, (60)

w2 = sum of all principal second-order minors of J3
= α{(F11 F22 − F12 F21)︸ ︷︷ ︸

(+)
−(β1ε + β2) F24︸︷︷︸

(−)
} > 0, (61)

w3 = −detJ3 = α(β1ε + β2) (F11 F24 − F14 F21)︸ ︷︷ ︸
(+)

> 0, (62)
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w1w2 − w3 = α{( F14︸︷︷︸
(−)

F21︸︷︷︸
(−)
−α F22︸︷︷︸

(+)
F24︸︷︷︸
(−)

)(β1ε + β2)

+ (− F11︸︷︷︸
(−)
+α F22︸︷︷︸

(+)
) (F11 F22 − F12 F21)︸ ︷︷ ︸

(+)
.

(63)

The characteristic Eq. (57) has a negative real root λ4 = −γ < 0, and other three
roots are determined by Eq. (59). If α is sufficiently small, we have

w j > 0 for all j ∈ {1, 2, 3} and w1w2 − w3 > 0, (64)

which means that all of the Routh-Hurwitz conditions for stable roots of Eq. (59) are
satisfied (cf. Gandolfo 2009, Chap. 16). In this case, all roots of the characteristic
Eq. (57) have negative real parts. This conclusion in case of ξ = 1 is unchanged even
if 0 < ξ < 1, as long as ξ is sufficiently closed to 1, by continuity. �

Propositions 2 and 3 imply that the increase (the decrease) of the
“credibility” parameter of the central bank’s inflation targeting (ξ) has a stabilis-
ing effect (a destabilising effect) of the macroeconomic system. Suppose that the
equilibrium point of the dynamic system (28)–(32) is locally unstable in case of
ξ = 0, and it becomes locally stable in case of ξ = 1. Then, there exists at least
one “bifurcation point” ξ0 ∈ (0, 1) at which the switch between “unstable” region
and the “stable” region occurs by continuity. It is clear that the real part of at least
one characteristic root of Eq. (49) must become zero at the bifurcation point. On the
other hand, it follows from Eqs. (49) and (53) that

2(0) = | − J2| = det J2 = b4 > 0, (65)

which means that the characteristic Eq. (49) cannot have the real root such that λ = 0.
This means that the characteristic Eq. (49) has at least a pair of pure imaginary roots
at the bifurcation point ξ = ξ0. This means that the endogenous cyclical fluctuations
occur at some range of the parameter value ξ that is sufficiently close to ξ0.

4 A Further Extension: Six-Dimensional Model
of Monetary and Fiscal Stabilisation Policy Mix
with Flexible Prices

In the models of the previous sections, it was assumed that the government expendi-
ture capital ratio (v) is fixed. In this section, we relax this assumption, and study the
effect of the monetary and fiscal stabilisation policy mix. In the Eqs. (28)–(32), v is
no longer constant, and we add the following equations:

M/(pK ) = m(ρ)H/K = l(y, ρ) = φ(ρ)y; mρ = dm/dρ > 0,



Mathematical Modelling of Financial Instability 53

ϕρ = dϕ/dρ < 0, (66)

pT + Ḃ + Ḣ = pG + ρB, (67)

v̇ = β3[θ(ȳ − y)+ (1− θ)(b̄ − b)] = F5(y, b); β3 > 0, 0 < θ < 1, (68)

where M = m H = nominal money stock, H = nominal high-powered money that is
issued by the central bank, m = money multiplier> 1, b̄ = the target value of b that
is set by the government. We assume that the private firms and the government are the
debtors and the households are the creditors. Equation (66) is the LM equation that
describes the equilibrium condition for the money market. The function l(y, ρ) =
ϕ(ρ)y is a particular form of the standard Keynesian real money demand function.
We can rewrite this equation as

h = ψ(ρ)y; h = H/(pK ), ψ(ρ) = ϕ(ρ)/m(ρ), ψ ′(ρ) = dψ/dρ < 0. (69)

In our model which supposes that the central bank controls the nominal rate of interest
(ρ), the high-powered money-capital ratio (h) becomes an endogenous variable that
is determined by Eq. (69). Equation (67) is the budget constraint of the “consolidated
government” that includes the central bank. This equation means that the government
expenditure including the interest payment of the government bond (pG+ρB)must
be financed by (1) tax pT, (2) bond financing (Ḃ), or (3) money financing by the
central bank (Ḣ).13 Equation (68) formalises the government’s fiscal policy rule.
This equation means that the changes of the real government expenditure respond to
both of the real national income (employment) and the level of the public debt. The
parameter θ is the weight of the employment consideration rather than the public
debt consideration in government’s fiscal policy.

Differentiating the definitional equation b = B/(pK ) with respect to time and
substituting Eq. (67) into it, we obtain14

ḃ

b
= Ḃ

B
− ṗ

p
− K̇

K
= pG + ρB − pT − Ḣ

B
− π − g(βy, ρ − πe, d). (70)

We can rewrite this equation as

ḃ = v − τ(y)− Ḣ

pK
+ {ρ − π − g(βy, ρ − πe, d)}b; τ = T/K = τ(y). (71)

13 Also in the models of the previous sections, the definitional Eq. (67) must be satisfied, but this
equation has no impact on the dynamics of the main variables in the models of the previous sections
as long as s3 = 1.
14 Note that we have K̇/K = g(βy, ρ − πe, d) from the investment function that is formulated in
Sect. 2.
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This equation plays an important role in the dynamic of the public debt accumulation.
If we neglect the impacts of the change of b on the changes of the variables such as
v, y, Ḣ/(pK ) etc., we have

∂ ḃ/∂b = ρ − π − g. (72)

Therefore, the inequality

real interest rate of government bond = ρ − π < g
= real rate of capital accumulation

(73)

or equivalently,

nominal interest rate of government bond ρ < g + π
= nominal rate of capital accumulation

(74)

is a stabilizing factor of the system, and the opposite inequality is a destabilizing
factor of the system. The (partial) stabilising condition (73) or (74) is called the
“Domar condition” after Domar’s (1957).15

Next, differentiating the definitional expression h = H/(pK ) with respect to
time, we obtain the following expression.

Ḣ

pK
= (π + K̇

K
)h + ḣ = {π + g(βy, ρ − πe, d)}h + ḣ (75)

On the other hand, differentiating Eq. (69) with respect to time and substituting
Eqs. (29) and (31) in Sect. 3, we obtain

ḣ = ψ ′(ρ)︸ ︷︷ ︸
(−)

yρ̇ + ψ(ρ)ẏ = ψ ′(ρ)︸ ︷︷ ︸
(−)

F4(y, π
e)+ ψ(ρ)αF2(d, y, πe, ρ, v, b). (76)

Substituting Eqs. (25), (69), (75), and (76) into Eq. (71), we obtain the following
equation that governs the dynamic of the variable b.16

ḃ = v − τ(y)− {ε(y − ȳ)+ πe + g(βy, ρ − πe, d)}ψ(ρ)y − ψ ′(ρ)︸ ︷︷ ︸
(−)

yF4(y, πe)

−ψ(ρ)αF2(d, y, πe, ρ, v, b)+ {ρ − ε(y − ȳ)− πe − g(βy, ρ − πe, d)}b
= F6(d, y, πe, ρ, v, b)

(77)

15 There is a slight difference between the original “Domar condition” and our “Domar condition”.
In Domar’s (1957) original model, the dynamic stability of the ratio B/(pY ) rather than the ratio
b = B/(pK ) is studied, so that in original Domar model, g is not K̇/K but it is Ẏ/Y .
16 This means that the equilibrium condition for the money market (69) affects other parts of the
system through Eq. (77) so that the dynamic system in this section is no longer the decomposable
system.
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Equations (28)–(31) with variable v and b together with Eqs. (68) and (77) constitute
a complete system of six-dimensional nonlinear differential equations.17 We can
summarise the system in this section as follows.18

ḋ = F1(d, y, πe, ρ) (78)

ẏ = F2(d, y, πe, ρ, v, b) (79)

π̇e = F3(y, π
e) (80)

ρ̇ = F4(y, π
e) (81)

v̇ = F5(y, b) (82)

ḃ = F6(d, y, πe, ρ, v, b) (83)

The equilibrium solution of this system (d∗, y∗, πe∗, ρ∗, v∗, b∗) that satisfies
ḋ = ẏ = π̇e = ρ̇ = v̇ = ḃ = 0 can be expressed by the following system of
equations.

F1(d
∗, ȳ, π̄ , ρ∗) = 0 (84)

F2(d
∗, ȳ, π̄ , ρ∗, v∗, b̄) = 0 (85)

πe∗ = π∗ = π̄ , y∗ = ȳ, b∗ = b̄ (86)

v∗ = τ(ȳ)+ {π̄ + g(β ȳ, ρ∗ − π̄ , d∗)}ψ(ρ∗)ȳ
+{g(β ȳ, ρ∗ − π̄ , d∗)+ π̄ − ρ∗}b̄ = v∗(d∗, ρ∗, ȳ, π̄ , b̄)

(87)

The system of simultaneous Eqs. (84), (85) and (87) determines the equilibrium
values (d∗, ρ∗, v∗). We assume that there exists the unique equilibrium point that
satisfies

d∗ > 0, ρ∗ > 0, v∗ > 0. (88)

In addition to Assumptions 1 and 2 in the previous sections, let us assume as follows.

Assumption 3 Assume

0 < ρ∗ − π̄ < g(β ȳ, ρ∗ − π̄ , d∗).

This assumption implies that the equilibrium real interest rate of the government
bond is positive and the “Domar condition” (73) is satisfied at the equilibrium point.

17 Unlike the previous sections, we do not necessarily assume that s3 = 1 in this section.
18 This six-dimensional system is a generalised version of the five-dimensional system that is
formulated by Asada (2013), which does not consider the explicit dynamic of the variable d.
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Next, let us consider the local stability/instability of the equilibrium point. We
can express the Jacobian matrix of the dynamic system (78)–(83) at the equilibrium
point as

J4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

F11 F12 F13 F14 0 0
αF21 αF22 αF23 αF24 α α(1− s3)ρ

∗
0 γ ε(1− ξ) −γ ξ 0 0 0
0 β1ε + β2 β1 0 0 0
0 −β3θ 0 0 0 −β3(1− θ)

F61 F62 F63 F64 F65 F66

⎤
⎥⎥⎥⎥⎥⎥⎦
, (89)

where Fi j (i, j = 1, 2, 3, 4) are the same as those in the previous section, and other
relevant partial derivatives at the equilibrium point become as follows.19

F61 = ∂F6/∂d = − gd︸︷︷︸
(−)
{ψ(d∗)ȳ + b̄} − ψ(ρ∗)α F21︸︷︷︸

(−)
> 0, (90)

F64 = ∂F6/∂ρ = − gρ−πe︸ ︷︷ ︸
(−)
{ψ(ρ∗)ȳ + b̄} − {π̄ + g(β ȳ, ρ∗ − π̄ , d∗)}ψ ′(ρ∗)︸ ︷︷ ︸

(−)
ȳ

− ψ(ρ∗)α F24︸︷︷︸
(−)

> 0, (91)

F65 = ∂F6/∂v = 1− ψ(ρ∗)α, (92)

F66 = ∂F6/∂b = ρ∗ − π̄ − g(β ȳ, ρ∗ − π̄ , d∗) < 0, (93)

F14 F61 − F11 F64 = −s f d[ gd︸︷︷︸
(−)
{ψ(d∗)ȳ + b̄+φ′(g)︸ ︷︷ ︸

(+)
} + ψ(ρ∗)α{(1− s2)( id︸︷︷︸

(+)
d + i)]

+ {φ′(g)︸ ︷︷ ︸
(+)
−d}[− gρ−πe︸ ︷︷ ︸

(−)

ψ(ρ∗){(1− s2)( id︸︷︷︸
(+)

d + i)+ φ′(g)︸ ︷︷ ︸
(+)

gd︸︷︷︸
(−)
}

+ gd︸︷︷︸
(−)

(g + π̄) ψ ′(ρ∗)︸ ︷︷ ︸
(−)

ȳ]

+ {−(g + π̄)+ s f ( id︸︷︷︸
(+)

d + i)}[gρ−πe︸ ︷︷ ︸
(−)

{ψ(ρ∗)ȳ + b̄} + (g + π̄) ψ ′(ρ∗)︸ ︷︷ ︸
(−)

ȳ].

(94)

Now, we shall assume that the following inequality is satisfied.

19 The values of F62 and F63 are irrelevant for our purpose.
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Assumption 4 Assume

F14 F61 − F11 F64 > 0

This inequality will be satisfied if φ′(g), |gρ−πe |, |gd | and |ψ ′(ρ∗)| are suffi-
ciently large at the equilibrium point. The characteristic equation of this system at
the equilibrium point becomes

4(λ) ≡ |λI − J4| = λ6 + d1λ
5 + d2λ

4 + d3λ
3 + d4λ

2 + d5λ+ d6 = 0, (95)

d1 = −traceJ4, (96)

d j = (−1) j (sum of all principal jth order minors ofJ4) ( j = 2, 3, 4, 5), (97)

d6 = detJ4. (98)

It is worth noting that the conditions

d j > 0 for all j ∈ {1, 2, · · · , 6} (99)

are the necessary (but not sufficient) conditions for the local stability of the equilib-
rium point of the dynamic system (78)–(83) (cf. Gandolfo 2009, Chap. 16).

Under assumptions 1–4, we can prove the following two propositions.20

Proposition 4 (Instability Proposition) Suppose that the following conditions are
satisfied.

(1) The credibility parameter of the central bank’s inflation targeting (ξ) is close to
zero.

(2) The adjustment speed of the inflation expectation (γ ) is sufficiently large.
(3) The monetary policy parameters (β1) and (β2) are close to zero.
(4) The fiscal policy parameter that describes the weight of employment considera-

tion (θ) is close to zero.

Then, the equilibrium point of the dynamic system (78)–(83) becomes locally unsta-
ble.

Proof See Appendix 1.

Proposition 5 (Stability Proposition) Suppose that the following conditions are
satisfied.

(1) The adjustment speed of the goods market disequilibrium (α) is sufficiently small.

20 It is worth noting that Assumptions 3 and 4 are not necessary for the proof of Proposition 4,
but it is only used for the proof of Proposition 5.
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(2) The credibility parameter of the central bank’s inflation targeting (ξ) is close to
1 (including the case of ξ = 1).

(3) The monetary policy parameters β1 and β2 are non-negative and at least one of
them is positive.

(4) The fiscal policy parameter θ is less than 1, but it is close to 1.
(5) The average propensity to save out of the interest on the public debt (s3) is close

to 1 (including the case of s3 = 1).

Then, the equilibrium point of the dynamic system (78)–(83) becomes locally stable.

Proof See Appendix 2.

Proposition 4 means that the “Domar condition” (Assumption 3) is by no means
the sufficient condition for the local stability of the equilibrium point of the full
six-dimensional system in this section, but it is only a partial stability condition.

5 Concluding Remarks: Economic Interpretation
of the Analytical Results

In this final section, we shall provide an intuitive economic interpretation of the
analytical results, which are presented in the previous section.

Proposition 4 means that the equilibrium point of the system (78)–(83) tends to
become dynamically unstable if (1) the central bank’s monetary policy is inactive and
the central bank’s inflation targeting is incredible, and (2) the real government expen-
diture responds sensitively to the amount of the outstanding public debt rather than the
real national income (employment). This proposition characterises an inappropriate
fiscal and monetary policy mix. We can illustrate this destabilising cumulative dis-
equilibrium process by the following two coexisting positive feedback mechanisms
y ↓⇒ y ↓ and b ↑⇒ b ↑.21

y ↓⇒ τ ↓⇒ b ↑⇒ v ↓⇒ (effective demand per capital stock) ↓⇒ y ↓, (F M1)

b ↑⇒ v ↓⇒ {y ↓, τ ↓, H/(pK ) ↓} ⇒ b ↑ .(F M2)

In this depression process, the decrease of the government expenditure-capital ratio
and the increase of the public debt-capital ratio coexist, and the actual and the
expected rates of inflation continue to decline. In this process, the nominal inter-
est rate of the government bond slowly declines and at last, it will reach to its lower

21 Suppose that the central bank’s monetary policy is inactive so that both of the monetary policy
parameters β1 and β2 are sufficiently small. In this case, the movement of the nominal interest rate
of the government bond ρ becomes so sluggish that h = H/(pK ) moves to the same direction as
that of the movement of y like (F M2) (see Eq. (69) in the text). This means that the central bank
continues to reduce the high-powered money-capital ratio in the process of depression, which has
the pro-cyclical destabilising effect.
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bound. This theoretical scenario is quite consistent with the so-called “lost twenty
years” of the Japanese economy that is characterised by the deflationary depression.22

On the other hand, Proposition 5 means that the equilibrium point of the system
(78)–(83) tends to be dynamically stable if (1) the central bank’s inflation targeting
is credible, and (2) the real government expenditure responds sensitively to the real
national income(employment) rather than the amount of the outstanding public debt,
under certain additional conditions. This proposition characterises an appropriate
fiscal and monetary policy mix.

We can schematically represent the stabilising negative feedback mechanism of
the government’s fiscal policy y ↓⇒ y ↑ that responds sensitively to the real national
income(employment) rather than the amount of the outstanding public debt as fol-
lows.

y ↓⇒ v ↑⇒ (effective demand per capital stock) ↑⇒ y ↑ . (F M3)

The central bank’s active monetary policy that accompanies the “credible” infla-
tion targeting will enhance this stabilising negative feedback mechanism. We can
consider that this is the rationale of new macroeconomic policy in Japan called
“Abenomics” that was initiated by Abe administration in 2013.23

Acknowledgments This research was financially supported by the Japan Society for the Promo-
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Research Foundation at Private Universities, 2013 - 2017.

Appendix 1: Proof of Proposition 4

Suppose that ξ = β1 = β2 = θ = 0. In this case, we have

d2 = sum of all principal second-order minors of J4
= −γαε F23︸︷︷︸

(+)
+A, (100)

where A is independent of the value of γ . This means that we have d2 < 0 for all
sufficiently large values of γ , which violates one of the necessary conditions for local
stability (99). By continuity, this conclusion applies even if the parameters ξ , β1, β2,
and θ are positive, as long as they are sufficiently small. �

22 For the “lost twenty years” of the Japanese economy, see Krugman (1998) and Asada (2013).
23 For the detailed exposition of “Abenomics”, see General Introduction of Asada (2013).
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Appendix 2: Proof of Proposition 5

Step 1. Suppose that ξ = s3 = 1. In this case, the characteristic Eq. (95) becomes

4(λ) ≡ |λI − J4| = |λI − J5|(λ+ γ ) = 0, (101)

J5 =

⎡
⎢⎢⎢⎢⎣

F11 F12 F14 0 0
αF21 αF22 αF24 α 0

0 β1ε + β2 0 0 0
0 −β3θ 0 0 −β3(1− θ)

F61 F62 F64 F65 F66

⎤
⎥⎥⎥⎥⎦ (102)

Equation (101) has a negative real root λ6 = −γ and other five roots are determined
by the equation

5(λ) ≡ |λI − J5| = 0. (103)

Step 2. Next, suppose that θ = 1. In this case, Eq. (103) is reduced to

5(λ) = |λI − J6|(λ− F66) = 0, (104)

J6 =

⎡
⎢⎢⎣

F11 F12 F14 0
αF21 αF22 αF24 α

0 β1ε + β2 0 0
0 −β3 0 0

⎤
⎥⎥⎦ . (105)

Equation (104) has a negative real root λ5 = F66 and other four roots are determined
by the following equation.

6(λ) = |λI − J6| = (λ3 + z1λ
2 + z2λ+ z3)λ = 0, (106)

z1 = − F11︸︷︷︸
(−)
−α F22︸︷︷︸

(+)
, (107)

z2 = α{(F11 F22 − F12 F21)︸ ︷︷ ︸
(+)

− F24︸︷︷︸
(−)

(β1ε + β2)+ β3} > 0, (108)

z3 = α{− F11︸︷︷︸
(−)

β3 + (β1ε + β2) (F11 F24 − F14 F21)︸ ︷︷ ︸
(+)

} > 0, (109)

z1z2 − z3 = α{(− F11︸︷︷︸
(−)
−α F22︸︷︷︸

(+)
) (F11 F22 − F12 F21)︸ ︷︷ ︸

(+)
−αβ3 F22︸︷︷︸

(+)
+(β1ε + β2)( F14︸︷︷︸

(−)
F21︸︷︷︸
(−)
+α F22︸︷︷︸

(+)
F24︸︷︷︸
(−)

)}. (110)
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Equation (106) has a real root λ4 = 0, and other three roots are determined by the
equation

7(λ) ≡ λ3 + z1λ
2 + z2λ+ z3 = 0. (111)

Step 3. It is easy to see that all of the following Routh-Hurwitz conditions for stable
roots of Eq. (111) are satisfied if α is sufficiently small (cf. Gandolfo 2009 Chap. 16).

z j > 0 ( j = 1, 2, 3), z1z2 − z3 > 0 (112)

Hence, we have just proved the following result. “Suppose that θ = 1. Then, the
characteristic Eq. (103) has a real root λ4 = 0 and other four roots of this equation
have negative real parts under the conditions (1) and (3) of Proposition 5.” This
means that Eq. (103) has at least four roots with negative real parts under the con-
ditions (1) and (3) of Proposition 5 even if 0 < θ < 1, as long as θ is sufficiently
close to 1 by continuity. On the other hand, in case of 0 < θ < 1, we have

5(0) = −
5∏

j=1

λ j = | − J5| = −detJ5 (113)

= α(β1ε + β2)β3(1− θ){F65 (F11 F24 − F14 F21)︸ ︷︷ ︸
(+)

+ (F14 F61 − F11 F64)︸ ︷︷ ︸
(+)

},

and F65 becomes positive if α is sufficiently small. Therefore, Eq. (113) becomes
positive so that we have

∏5
j=1 λ j < 0 if 0 < θ < 1 and α is sufficiently small. This

means that all roots of Eq. (103) have negative real parts under the conditions (1),
(3), and (4) of Proposition 5

Step 4. We have just proved the following result. “Suppose that ξ = s3 = 1. Then,
all of six characteristic roots of Eq. (95) in the text have negative real parts under the
conditions (1), (3), and (4) of Proposition 5.” By continuity, this conclusion applies
even if 0 < ξ < 1 and 0 < s3 < 1, as long as they are sufficiently close to 1. This
proves Proposition 5. �
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Bifurcation Structure in a Model of Monetary
Dynamics with Two Kink Points

Anna Agliari, Laura Gardini and Iryna Sushko

1 Introduction

Carl Chiarella in his Ph.D. thesis (Chiarella, 1990) approached the so-called dynamic
instability problem related to linear macro-economic models where the perfect fore-
sight assumption leads to a saddle point equilibrium. To avoid that the economy
ends up on a divergent path the early researchers proposed the adoption of the jump-
variable technique, which relied upon the presumed full-knowledge by agents of
their economic environment. It was assumed that, armed with this knowledge and
realizing that the given initial values placed them on a divergent path, the agents
would calculate the required change in initial values that would place the economy
on the stable branch of the saddle point, from where it would move towards the
equilibrium point. If there were some unanticipated changes in some underlying
economic parameter (e.g. change in the money supply) that moved the economy to
a new equilibrium point, then the agents would calculate the new jump required in
order to arrive on the stable branch of the new saddle point.

Chiarella commented such a technique by saying that “it is not possible to find any
satisfactory economic justification for such jumps”1 and proposed to introduce some
non-linearity in the models. In particular, he started from a historical continuous-time
model proposed by Sargent and Wallace (1973) and assumed a non-linear money

1 We can add that even mathematical justification for such jumps can not be found.
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demand function based on simple portfolio considerations. So doing, the economy
is stabilised, with prices tending either to the steady-state point or to a relaxation
cycle. He also proposed a discrete version of the same model in order to show
that even more complex dynamics can be generated by the basic model of monetary
dynamics with perfect foresight. A full analysis of the discrete time model is given in
Agliari et al. (2004) where, working in a generic context, it is proved that relaxation
cycles may appear and the existence of chaotic dynamics is conjectured.

In this paper, we consider again the discrete version of the Sargent and Wallace
model with perfect foresight. We shall show that periodic or complex dynamics may
appear even if the linearity of the money demand function is preserved, at least in a
certain range. To obtain that, we consider a piecewise linear demand function having
the same properties assumed in Chiarella (1990) and we obtain that the monetary
dynamics are described by a one-dimensional (1D for short) map having two kink
points.

The aim of the study is to describe the possible attractors of the map f and the
parameter regions corresponding to their existence, so emphasizing once more the
Chiarella’s understanding. We also take the occasion to show how piecewise linear
models offer a large variety of dynamic behaviours, quite simple to identify and
describe analytically.

2 The Monetary Dynamics Model

Economic agents are assumed to allocate their wealth between a physical good and
money. The good price adjusts with a lag to excess money demand. Consequently,
the evolution of price over time is described by a discrete non-linear model given by

pt+1 = pt + α (m − pt − D(Et (πt+1))) , (1)

where p is the logarithm of the price level, m is the logarithm of the money supply
(here assumed constant) and Et (πt+1) is the expected rate of inflation made at
time t . The parameter α > 0 is the speed at which prices respond to money market
disequilibrium and the function D (.) is the logarithm of the demand for real money
balances.

To close the model given in (1), we shall consider the perfect foresight case, in
which agents are assumed to be able to forecast at time t the exact value of the future
inflation rate

Et (πt+1) = pt+1 − pt . (2)

The perfect foresight hypothesis leads to a 1D map in implicit form for pt+1, namely

pt+1 = αm + (1− α)pt − αD(pt+1 − pt ), (3)

obtained by substituting (2) in (1).
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In Chiarella (1990), due to portfolio considerations, a non-linear money demand
function satisfies

Assumption 1

(i) D′ (x) < 0,
(ii) limx→−∞ D (x) = D1 and limx→∞ D (x) = −D2, where D1 and D2 are

positive constants.

The existence of the two asymptotes ensures that agents shift their portfolio allocation
between money and the physical good towards the physical good (money) as expected
inflation tends to +∞ (−∞), while (i) is a standard assumption which conveys the
losing of purchasing power of real money when the inflation rate increases. Without
loss of generality, choosing a convenient unit of measure for price, it is also satisfied

Assumption 2

(iii) D (0) = 0.

This assumption implies that the equilibrium price is p∗ = m.
The map (3) with Assumption 1 has been studied in Agliari et al. (2004), where

it is shown that only if 1 + αD′ (0) ≥ 0 the price forward dynamics is univocally
defined by the model. Under such an assumption, it is proved that, in the general
framework, the equilibrium price can be destabilised, when α = 2

(
1+ αD′ (0)

)
,

and either cycles or complex dynamics can emerge.
In this paper, we assume a piecewise linear money demand, decreasing over a

‘normal’ range (−aR, aL) and constant when the expected inflation rate is beyond
these bounds. This means that D is a piecewise linear function given by

D (π) =
⎧⎨
⎩

aR
1−μ
α

if π < −aR,

− 1−μ
α
π if −aR ≤ π ≤ aL ,

−aL
1−μ
α

if π > aL ,

(4)

where aR > 0, aL > 0 and μ < 1. The particular choice of the slope of the
linear branch allows us to simplify the analysis, the parameter μ being in one-to-
one correspondence with D′ (0). Substituting the money demand function (4) in the
perfect foresight model (3) we obtain

pt+1 =
⎧⎨
⎩
αm + (1− α) pt − aR (1− μ) if pt+1 − pt < −aR,

αm + (1− α) pt + (1− μ) (pt+1 − pt ) if −aR ≤ pt+1 − pt ≤ aL ,

αm + (1− α) pt + aL (1− μ) if pt+1 − pt > aL .

Now, it is straightforward to observe that if μ ≥ 0 the dynamics of the price can be
made explicit. We limit our analysis to such a case, considering the map

pt+1 =

⎧⎪⎨
⎪⎩
(1− α) pt + αm − aR (1− μ) if pt > m + aR

α
μ,(

1− α
μ

)
pt + αm

μ
if m + aR

α
μ ≤ pt ≤ m − aL

α
μ,

(1− α) pt + αm + aL (1− μ) if pt < m − aL
α
μ.

(5)
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Before analyzing the monetary dynamics, we observe that the money supply
parameter m only affects the values of price sequences but not their long run behav-
iours. Indeed we can prove, through the translation xt = pt −m, that the map (5) is
topologically conjugated to the map

xt+1 =

⎧⎪⎨
⎪⎩
(1− α) xt + aL (1− μ) if xt < − aL

α
μ,(

1− α
μ

)
xt if − aL

α
μ < xt <

aR
α
μ,

(1− α) xt − aR (1− μ) if xt >
aR
α
μ.

(6)

It is easy to observe that for μ ≥ α the map (6) is increasing and x∗ = 0 is its unique
stable steady state. Hence, if the money demand function slowly declines with the
inflation rate (with slope larger than 1 − 1

α
) the price monotonically converges to

p∗ = m. A second simple situation occurs when α ≥ 1. In such a case the price
quickly adjusts to the market disequilibrium and the only possible attractors are either
x∗ = 0 or a cycle of period 2 (α > 2μ), since (6) is a decreasing map.

More interesting is the case μ < α < 1. Indeed, as we shall see in the following
section, a rich variety of dynamics of the map (6) can be detected.

3 Bifurcation Structure of the Parameter Space

So, let us consider the family of 1D piecewise linear maps as defined in (6) which
we rewrite, for our convenience, as a map f : R→ R given by

f : x �→ f (x) =

⎧⎪⎨
⎪⎩

fL(x) = (1− α)x + aL(1− μ), x < dL ,

fM (x) =
(

1− α
μ

)
x, dL ≤ x ≤ dR,

fR(x) = (1− α)x − aR(1− μ), x > dR,

(7)

where
dL = −aL

μ

α
, dR = aR

μ

α

are the border points, and α, μ, aL , aR are real parameters. We restrict our analysis
to the following parameter region:

P = {p : 0 < α < 1, 0 < μ < α, aL > 0, aR > 0} , (8)

where p = (α, μ, aL , aR) denotes a point in the parameter space. Our aim is to study
the bifurcation structure of the region P , that is, to describe possible attractors of
the map f and the parameter regions corresponding to their existence. To this end,
we apply to the map f the results stated in Panchuk et al. (2013), which are related
to a generic 1D continuous piecewise linear map with two border points [see also
Maistrenko (1995)].
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3.1 Preliminaries

The map f is given by the linear functions fL , fM and fR defined in intervals
denoted IL , IM and IR , respectively, where IL = (−∞, dL), IM = [dL , dR] and
IR = (dR,∞). The simplest properties of the map f which are satisfied for p ∈ P ,
where P is given in (8), are the following:

• the map f is a bimodal map with maximum point x = dL < 0 and minimum
point x = dR > 0 (see Fig. 1);
• the slopes of the outermost branches of f are equal, positive and less than 1, thus,

all the orbits of f are bounded;
• the fixed point x = x∗ = 0, associated with the middle branch fM , is the unique

fixed point of the map f ;
• for p ∈ PM where

PM = {p ∈ P : α < 2μ} ,

the fixed point x∗ is globally attracting;
• forα = 2μ the fixed point x∗ undergoes degenerate flip bifurcation (DFB for short)

at which eigenvalue of x∗ equals−1 and there is an interval I around x∗ such that
any point of I , except for the fixed point x∗, is 2-periodic, where I = [dL , fM (dL)]
for aL < aR, I = [ fM (dR), dR] for aL > aR and I = IM for aL = aR .

Considering the regime in which the fixed point x∗ is repelling, that holds for
α > 2μ, we can define an invariant absorbing interval J of map f , inside which
the map may be defined either by two adjacent branches, or by all three branches.
Namely, there are the following three possibilities:

1. If p ∈ D1 where

D1 =
{

p ∈ P : 2μ < α <

(
aR

aL
+ 1

)
μ, aL < aR

}
, (9)

then fM (dL) < dR , f 2
M (dL) < dL so that J = [

f 2
M (dL), fM (dL)

]
. The map

f in J is reduced to a skew tent map defined by the branches fL and fM

(see Fig. 1a). The dynamics of the skew tent map has been studied by many
authors, and the bifurcation structure of its parameter space is nowadays com-
pletely described (see, e.g. Takens (1987), Ito et al. (1979), Maistrenko et al.
(1993), Avrutin et al. (2014)). With regard to map f these results are summarised
in the next section.

2. If p ∈ D2 where

D2 =
{

p ∈ P : 2μ < α <

(
aL

aR
+ 1

)
μ, aR < aL

}
, (10)

then fM (dR) > dL , f 2
M (dR) > dR so that J = [

fM (dR), f 2
M (dR)

]
. The map

f in J is reduced to a skew tent map defined by the branches fM and fR (see
Fig. 1b), so that the qualitative dynamics are the same of the previous case.
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Fig. 1 Invariant absorbing interval J of the map f at aL = 0.1, aR = 0.8, α = 0.6, μ = 0.1 in
(a), aL = 0.8, aR = 0.1, α = 0.6, μ = 0.1 in (b) and aL = 0.8, aR = 0.4, α = 0.4, μ = 0.03
in (c)

3. If p ∈ D3 where

D3 =
{

p ∈ P : α > μ

(
max

{
aL

aR
,

aR

aL

}
+ 1

)}
, (11)

then fM (dL) > dR, fM (dR) < dL and, thus, J = [ fM (dR), fM (dL)], in which
case all the three branches of map f are defined in J, that is, f is bimodal in J (see
Fig. 1c). A piecewise linear bimodal map has been studied by other researchers
(see, e.g. Maistrenko (1995), Panchuk et al. (2013)), however, its attractors and
related parameter regions have not yet been completely described. The known
results are applied to the map f given in (7).

Before the detailed description of the cases listed above, we note that for aL = aR

(in which a case map f is symmetric with respect to the origin) the dynamics of f
are quite simple. It is easy to show that an attractor of f is either the attracting fixed
point x∗ (for α < 2μ) or an attracting 2-cycle (for α > 2μ) with one point belonging
to the interval IL and one point belonging to IR .

In the case of different values aL 
= aR, interchanging aL and aR in (7) we get a
map which is topologically conjugate to f via x := −x (as, for example, the maps
shown in Fig. 1a, b). From this fact, it follows that the bifurcation structure of the
parameter space of map f is symmetric with respect to aL = aR, and we can restrict
our investigation to the case aL < aR .

Let {xi }ni=1 be the periodic points of a cycle of map f of period n. To denote this
cycle, we use its symbolic representation σ = s1s2...sn , obtained associating to each
point xi the symbol si ∈ {L ,M, R} depending on the partition IL , IM or IR which
the point xi belongs to.

Let Pσ denote the region in the parameter space related to existence and stability of
the cycle with symbolic sequence σ . Our aim is to describe attracting cycles of map f
and the related parameter regions which we call periodicity regions. The boundaries
of a periodicity region can be related either to stability loss of the cycle due to its
eigenvalue crossing ±1 [we recall that such bifurcations are degenerate for a piece-
wise linear map, see Sushko and Gardini (2010)], or to appearance/disappearance of



Bifurcation Structure in a Model of Monetary Dynamics 71

Fig. 2 2D bifurcation diagram of the map f in the (α, μ)-parameter plane for aL = 0.1 and
aR = 0.8

the cycle due to a border collision bifurcation [see Nusse and Yorke (1995)], which
we denote BCB for short. Recall that if some point of a cycle collides with a border
point and neither period nor stability of the cycle changes after the collision, we
say that this cycle undergoes persistence border collision, while a border collision
bifurcation occurs when a qualitative change in the dynamics is observed after the
collision.

Figure 2 shows a 2D bifurcation diagram in the (α, μ)-parameter plane for fixed
values aL = 0.1 and aR = 0.8, where some periodicity regions corresponding to
attracting cycles of different periods n, for n ≤ 30, are shown by different colors
according to the color bar. White region is related either to higher periodicity or to
chaotic attractors. Note that the cycles with the same period but different symbolic
sequences are shown by the same color. Given that aL < aR, the region D1 defined
in (9) is not empty, being confined by two boundaries. The first boundary of D1 is

ψM : α = 2μ (12)

which is defined by the condition λM = (1 − α
μ
) = −1 and related to the DFB of

the fixed point x∗ already mentioned above (as we shall see, the equalityψM = φML
holds where the boundary φML is related to BCB of the 2-cycle ML). The second
boundary of D1 is

θ1 : α =
(

aR

aL
+ 1

)
μ (13)

which is defined by the condition fM (dL) = dR and corresponds to the contact
of the absorbing interval J = [

f 2
M (dL), fM (dL)

]
with the border point x = dR .
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The region D1 has the bifurcation structure of a skew tent map, which is described
in Sect. 3.2.

3.2 Region D1 : Skew Tent Map Bifurcation Structure

Let p ∈ D1 where D1 is defined in (9). As we already mentioned, in such a case the
map f in the absorbing interval J = [

f 2
M (dL), fM (dL)

]
is reduced to the skew tent

map defined by the linear branches fL and fM . Thus, the symbolic sequences of the
cycles of f include only the symbols L and M. It is known that only basic cycles
of the skew tent map can be attracting. Basic cycles of the map f in the considered
case have symbolic sequences MLn−1, n ≥ 2.

To obtain the boundaries of the periodicity region PMLn−1 first note that a cycle
MLn−1 may exist not only for p ∈ D1. It may happen that the map f is defined over
the absorbing interval by all three branches (that occurs for p ∈ D3), while the points
of a n-cycle are located in IL and IM only. In fact, the region PMLn−1 consists of
two parts, P I

MLn−1 and P II
MLn−1 , where P I

MLn−1 ∈ D1 and P I I
MLn−1 ∈ D3. The regions

P II
MLn−1 , n ≥ 2, are considered in the next section, while now we consider the regions

P I
M Ln−1 .

The bifurcation structure of the region D1 is illustrated by means of 2D and 1D
bifurcation diagrams in Figs. 3 and 4, respectively. Applying to the map f the results
known for the skew tent map [see Maistrenko et al. (1993), Sushko and Gardini
(2010), Avrutin et al. (2014)], we get that the periodicity region P I

MLn−1 , n ≥ 2,
is bounded from above by the curve φMLn−1 and from below by the curve ψMLn−1

defined as

φMLn−1 : μ = α2(1− α)n−2

(1− α)n−2(2α − 1)+ 1
, (14)

ψMLn−1 : μ = α(1− α)n−1

(1− α)n−1 + 1
, (15)

that is,

P I
MLn−1 =

{
p ∈ D1 : α(1− α)n−1

(1− α)n−1 + 1
< μ <

α2(1− α)n−2

(1− α)n−2(2α − 1)+ 1

}
.

The curve φM Ln−1 for n ≥ 3 is related to the fold BCB2 leading to the appearance
of the basic cycle MLn−1 and its complementary cycle M2Ln−2. The curve φML
(n = 2) is related to the birth of one cycle, the 2-cycle ML, moreover, φML = ψM

2 Border collision at which two fixed points (one attracting and one repelling, or both repelling)
simultaneously collide with the border point (from its opposite sides) and disappear after the collision
is called fold BCB. It is worth to emphasise that a fold BCB is not associated with an eigenvalue
passing through 1.
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Fig. 3 Skew tent map bifurcation structure of the region D1 defined in (9) in the (α, μ)-parameter
plane at aL = 0.1, aR = 0.8

(see (12)), that is, the BCB of the 2-cycle ML occurs simultaneously with the DFB
of the fixed point x∗. The curve ψMLn−1 is related to the DFB of the cycle MLn−1,

defined by the condition λMLn−1 = −1. Clearly, the region P I
MLn−1 for some fixed

n ≥ 3 is not empty if the intersection point of φMLn−1 and ψMLn−1 belongs to D1, so
that for fixed values of aL and aR, aL < aR, only a finite number of such regions
exist. For example, for aL = 0.1, aR = 0.8, as shown in Fig. 3 (see also Fig. 2),
there are only three regions P I

MLn−1 , namely, for n = 2, 3 and 4 (it is easy to show

that the region P I
ML always exists in D1).

Leaving the region P I
MLn−1 through the boundary ψMLn−1 , n ≥ 3, the parameter

point enters the region denoted Pn,2n corresponding to 2n-cyclic chaotic intervals
denoted Qn,2n (here the first index n means that this chaotic attractor is born due
to a DFB of the n-cycle, while 2n indicates that the chaotic intervals constituting

the attractor are 2n-cyclic). See, for example, the transitions ML2 ψML2⇒ Q3,6 and

ML3 ψML3⇒ Q4,8 in Fig. 4. The boundary γn between the regions Pn,2n and Pn,n,

defined by

γn : (1− α)2(n−1)
(

1− α

μ

)3

+ α

μ
− α = 0, (16)

is related to the first homoclinic bifurcation of the cycle MLn−1, causing the merging
bifurcation Qn,2n ⇒ Qn,n . We have that
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Fig. 4 1D bifurcation diagram of the map f at aL = 0.1,aR = 0.8, α = 0.48 andμ ∈ [0.053, 0.18]
related to the straight line with an arrow indicated in Fig. 3

Pn,2n =
{

p ∈ D1 : μ < α2(1− α)n−2

(1− α)n−2(2α − 1)+ 1
,

μ <
α(1− α)n−1

(1− α)n−1 + 1
, (1− α)2(n−1)

(
1− α

μ

)3

+ α

μ
− α > 0

}
.

See Fig. 3 where the regions P3,6 and P4,8 are indicated, and Fig. 4 in which the

transitions Q3,6
γ3⇒ Q3,3 and Q4,8

γ4⇒ Q4,4 can be observed. The boundary γ̃n

defined as

γ̃n : (1− α)n−1
(

1− α

μ

)2

− α

μ
+ α = 0, (17)

is related to the first homoclinic bifurcation of the cycle M2Ln−2, causing the expan-
sion bifurcation Qn,n ⇒ Q1, where Q1 =

[
f 2
M (dL), fM (dL)

]
. That is, it is a

bifurcation from n-cyclic chaotic intervals to a one-piece chaotic attractor. So,

Pn,n =
{

p ∈ D1 : μ < α2(1− α)n−2

(1− α)n−2(2α − 1)+ 1
,

(1− α)2(n−1)
(

1− α

μ

)3

+ α

μ
− α < 0,

(1− α)n−1
(

1− α

μ

)2

− α

μ
+ α < 0

}
.
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See the region P3,3 and P4,4 in Fig. 3, and the transitions Q3,3
γ̃3⇒ Q1 and Q4,4

γ̃4⇒ Q1
in Fig. 4.

Besides the bifurcation curves mentioned above, in the region D1 there is also a
set of curves denoted σ2i , i ≥ 0, given by

σ2i :
(
(1− α)δi

(
1− α

μ

)δi+1
)2

+
(
(1− α)/

(
1− α

μ

))(−1)i+1

−1 = 0, (18)

where δi = (2i − (−1)i )/3. The curve σ2i for i ≥ 1 corresponds to the first homo-
clinic bifurcation of the harmonic 2i -cycle (occurring when the image of the bor-
der point merges with the cycle for the first time), causing the merging bifurcation
Q2,2i+1 ⇒ Q2,2i , and the curve σ1 (i = 0) is related to the first homoclinic bifur-
cation of the fixed point x∗ leading to the merging bifurcation Q2,2 ⇒ Q1. See, for

example, the transitions Q2,4
σ2⇒ Q2,2 and Q2,2

σ1⇒ Q1 in Fig. 4. The region of exis-
tence of the chaotic attractor Q2,2i , i ≥ 1, is defined by two consecutive homoclinic
bifurcation curves and is given by

P2,2i =
⎧⎨
⎩p ∈ D1 :

(
(1− α)δi−1

(
1− α

μ

)δi
)2

+
(
(1− α)/

(
1− α

μ

))(−1)i

− 1 < 0,

(
(1− α)δi

(
1− α

μ

)δi+1
)2

+
(
(1− α)/

(
1− α

μ

))(−1)i+1

− 1 > 0, μ <
α(1− α)

2− α

}
.

Figure 5 shows an enlarged window indicated in Fig. 3, where the regions P2,2i ,
i = 1, 2, 3, 4, are marked. The curves σ2i ∈ D1 for i →∞ are accumulating to the
point (1−α, 1− α

μ
) = (1,−1), that is, to (α, μ) = (0, 0), as it can be seen in Fig. 5.

If we extract from the region D1 all the regions introduced above, that is, the
regions P I

MLn−1 , Pn,2n , Pn,n, n ≥ 2, and Q2,2i , i ≥ 1, together with their boundaries,
the rest of the parameter plane denoted P1 is related to a one-piece chaotic attractor
Q1. Note that only the boundary θ1 of the region D1 (see (13)) depends on the
parameters aL and aR, while all the other bifurcation curves in D1 do not depend on
these parameters.

In such a way, we have a complete description of the bifurcation structure of the
parameter region D1 given in (9). As remarked above, we have considered aL < aR .

If aL > aR a similar description can be given for the region D2 defined in (10), with
the only difference related to symbolic sequences of the cycles, in which the symbol
L is to be substituted by the symbol R.
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Fig. 5 Enlargement of the window indicated in Fig. 3

3.3 Bifurcation Structure of the Region D3

Let aL < aR and p ∈ D3 where D3 is defined in (11). It is not surprising that
comparing with the regions D1 or D2 the bifurcation structure of the region D3
is more richer (see, for example, Fig. 2), given that the map f is defined over the
absorbing interval J = [ fM (dR), fM (dL)] by all the three branches. In this case,
there is not yet such a complete description of the generic bifurcation structure of
the parameter space as we have for the skew tent map, especially concerning the
occurrence of chaotic attractors. As for the periodicity regions related to attracting
cycles, several substructures can be recognised. In particular, as discussed in Panchuk
et al. (2013), one can distinguish between period adding and fin structures. In the
following, we limit our description to the first one, and give a simple sketch of the
second one.

3.3.1 Period Adding Structure

Let us describe the period adding structure, also called Arnold tongues or mode-
locking tongues, being characteristic for a certain class of circle maps, discon-
tinuous maps defined by two increasing functions, etc. [see, e.g. Leonov (1959),
Keener (1980), Boyland (1986)]. The periodicity regions constituting this structure
are related to attracting n-cycles, n ≥ 2, whose points belong only to the intervals IL

and IR, that is, their symbolic sequences include only the symbols L and R. These
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regions are ordered in the parameter space according to the Farey summation rule
which is applied to the rotation numbers of the related cycles.

Following Leonov (1959) all the cycles associated with the period adding structure
are grouped into certain families, called complexity levels. The complexity level one
includes two families of basic cycles having the following symbolic sequences:

�1,1 =
{
LRn1

}∞
n1=1 , �2,1 =

{
RLn1

}∞
n1=1 . (19)

To get the symbolic sequences of the cycles of families of the complexity level two
we apply to the families �1,1 and �2,1 the symbolic replacements

κL
m :=

{
L → LRm

R→ RLRm , κ R
m :=

{
L → LRLm

R→ RLm , (20)

that is based on the map replacement technique [see Avrutin et al. (2010)]. Namely,
substituting in �1,1 at first each symbol L by LRm and each symbol R by RLRm

(replacement κL
m ), and then substituting in �1,1 the symbol L by LRLm and the

symbol R by RLm (replacement κ R
m ), where m = n2, we get, respectively, two

families of the complexity level two:

�1,2 =
{
LRn2

(
RLRn2

)n1
}∞

n1,n2=1 , �2,2 =
{
LRLn2

(
RLn2

)n1
}∞

n1,n2=1 .

Similarly, applying the replacements κL
m and κ R

m to �2,1 we get the symbolic
sequences of two more families:

�3,2 =
{
RLRn2

(
LRn2

)n1
}∞

n1,n2=1 , �4,2 =
{
RLn2

(
LRLn2

)n1
}∞

n1,n2=1 .

In short, this procedure can be written as �1,2 = κL
n2
(�1,1), �2,2 = κ R

n2
(�1,1),

�3,2 = κL
n2
(�2,1) and �4,2 = κ R

n2
(�2,1). In such a way we get four families of

complexity level two. Further, applying the replacements (20) with m = n3 to the
families of complexity level two we obtain 23 families � j,3, j = 1, . . . , 23, of
complexity level three, and so on. In this way, all the symbolic sequences of cycles
associated with the period adding structure are obtained.

Now let us turn to the boundaries the periodicity regions related to the cycles of
the map f associated with the period adding structure. Obviously, if the map f has
such a n-cycle, it is always attracting, with multiplier λ = (1 − α)n < 1. Thus, its
periodicity region can be confined only by the boundaries related to the BCBs, at
which a point of the cycle, the one which is nearest to the border point x = dL ,

collides with it, or a point which is nearest to the border point x = dR, collides
with it.

Consider first the basic cycles LRn1 and RLn1 belonging to the families �1,1 and
�2,1 of complexity level one. Using the results stated in Panchuk et al. (2013), we
get that the periodicity regions PLRn1 and PRLn1 are defined as
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Fig. 6 Periodicity regions PRLn , n = 1, ..., 7, and P I I
MLm , m = 1, 2, 3, in the (α, μ)-parameter

plane at aL = 0.1, aR = 0.8.

PLRn1 = {
p ∈ D3 : 1,1(a, μR, dR, n1) < μL < �1,1(a, μR, dL , n1)

}
,

PRLn1 = {
p ∈ D3 : 1,1(a, μL , dL , n1) > μR > �1,1(a, μL , dR, n1)

}
,

where
a = 1− α, μL = aL(1− μ), μR = −aR(1− μ), (21)

�1,1(a, b, d, n) = −ψ(a, n)b + ϕ(a, n)d,

1,1(a, b, d, n1) = − (a + ψ(a, n − 1)) b + aϕ(a, n)d,

ϕ(a, n) = 1− an+1

an
, ψ(a, n) = 1− an

(1− a)an
. (22)

The regions PRLn1 exist for aL < aR, and in the (α, μ)-parameter plane they originate
from the envelope curve θ1 given in (13) which bounds the region D1 (see Fig. 6 in
which the regions PRLn1 are shown for n1 = 1, ..., 7). The regions PL Rn1 exist for
aL > aR, originating from the envelope curve

θ2 : α =
(

aL

aR
+ 1

)
μ (23)

which bounds the region D2.

To get the periodicity regions of complexity level two, we apply the map replace-
ment technique to the periodicity regions of the complexity level one. For the cycles
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belonging to the families �1,2 and �2,2 we obtain that

PκL
n2
(L Rn1 ) = {p ∈ D3 : 1,2(a, μR, dR, n1, n2) < μL < �1,2(a, μR, dL , n1, n2)},

(24)
PκR

n2
(L Rn1 ) = {p ∈ D3 : 2,2(a, μR, dR, n1, n2) < μL < �2,2(a, μR, dL , n1, n2)},

(25)
respectively, where κL

n2
and κ R

n2
are defined in (20), a, μL , μR in (21), �1,2, 1,2,

�2,2 and 2,2 are defined as

�1,2(a, μR, d, n1, n2) =− ψ(a, n2)μR

− an2+1ψ(an2+2, n1)μR − ϕ(an2+2, an2+1, n1)d

an2(1+ ψ(an2+2, n1))
,

1,2(a, μR, d, n1, n2) = −an2+1
(
an2+1 + ψ(an2+2, n1 − 1)

)
μR

an2(1+ an2+1 + ψ(an2+2, n1)− 1)
− ψ(a, n2)μR

+ an2+2ϕ(an2+2, an2+1, n1)d

an2(1+ an2+1 + ψ(an2+2, n1)− 1)
,

�2,2(a, μR, d, n1, n2) = ϕ(an2+1, an2+2, n1)d − an2
(
1+ ψ(an2+1, n1)

)
μR

an2
(
a + ψ(a, n2)(1+ ψ(an2+1, n1))

) ,

2,2(a, μR, d, n1, n2) = aϕ(an2+1, an2+2, n1)d −
(
1+ an2+2 + ψ(an2+1, n1 − 1)

)
μR

a + ψ(a, n2)(1+ an2+2 + ψ(an2+1, n1 − 1))
,

where

ϕ(a, c, n) = 1− anc

an
, ψ(a, n) = 1− an

(1− a)an
. (26)

To get the periodicity regions for the cycles belonging to the families�3,2 and�4,2,
one has to exchange the indices L and R, as well as to change the inequality signs
to the opposite ones in (24) and (25), respectively, obtaining

PκL
n2
(RLn1 ) = {p ∈ D3 : 1,2(a, μL , dL , n1, n2) > μR > �1,2(a, μL , dR, n1, n2)},

PκR
n2
(RLn1 ) = {p ∈ D3 : 2,2(a, μL , dL , n1, n2) < μR < �2,2(a, μL , dR, n1, n2)},

In Fig. 6, besides the large periodicity regions Pn
RL of complexity level 1, a few small

regions are visible between each pair, close to the axis, which are of complexity level
two. Following similar procedure all the periodicity regions of the period adding
structure can be obtained.
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3.3.2 Fin Structure

Coming back to the 2D bifurcation diagram of the map f shown in Fig. 2, we can
notice that there are particular periodicity regions which are attached to the regions
belonging to the period adding structure described in the previous section. For exam-
ple, one can clearly see a 2 · 2-periodicity region attached to the region PRL, a 3 · 2-
periodicity region attached to the region PRL2 , two 4 · 2-periodicity regions attached
to the region PRL3 from its opposite sides, as well as 4 · 3-periodicity region, two
5 · 2-periodicity regions attached to the region PRL4 , as well as 5 · 3-periodicity
regions, and so on. These regions belong to so-called fin structure, which is formed
by the periodicity regions called n · k-fins, k ≥ 1, related to attracting cycles having
just one point in the interval IM and all the other points are in IL and IR . The region
of the period adding structure to which a fin is attached is called trunk region, and
its fin has the same complexity level as the complexity level of the trunk. In fact, the
periodicity region P I I

MLn−1 , n ≥ 2, mentioned in Sect. 3.2, is an n ·1-fin of complexity
level one of the trunk regions PRLn−1 (see Fig. 6).

As explained in Panchuk et al. (2013), for an n · k-cycle whose periodicity region
has the common boundary with the region PLRn−1 , the symbolic sequences of the
cycles in the fins are either MRn−1(LRn−1)k−1 or (LRn−1)k−1LRn−2 M , where k =
1, 2, .... Interchanging L and R in these sequences we get the symbolic sequences of
the cycles related to n · k-fins whose trunks are PRLn−1 regions. Each n · k-fin region
for k ≥ 2, n ≥ 2, has at most four boundaries, among which one is the common
BCB boundary with the related trunk region, one boundary is related to DFB of the
cycle (whose eigenvalue λn·k = (1− α)nk−1(1− α

μ
) is obviously negative) and two

other boundaries are related to BCBs. Each 1 ·n-fin region has only three boundaries,
namely, one DFB boundary and two BCB boundaries. The DFB boundary is defined
by the condition λn·k = −1,while BCB boundaries are obtained using skew tent map
as border collision normal form (for the details, we refer to Panchuk et al. (2013)).

In Fig. 2, one can see also periodicity regions issuing from the envelope curve
θ1 which are not related to the period adding structure. They are associated with
the stabilised cycles whose symbolic sequences are ordered according to the well-
known U-sequence (see Metropolis et al. (1973)). Complete description of the related
bifurcation structure is still an open problem.

4 Conclusion

The purpose of this paper is twofold. First, coherently with an early Chiarella’s work,
we show that in a monetary growth model with perfect foresight bounded trajectories
may appear even when the unique steady state is unstable. Second, we present quite
recent analytical and numerical methods to study piecewise linear models with two
kink points.

To achieve our goals we have considered a discrete version of the Sargent and
Wallace model and assumed a demand function linear decreasing over a ‘normal’

http://dx.doi.org/10.1007/978-3-319-07470-2_3
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range and constant outside, in the spirit of Chiarella (1990). We have shown that
when the slope of the demand function is sufficiently large in absolute value and
the speed of adjustment of the price to the market disequilibrium is smaller than 1
either cycles of any period or chaotic dynamics may be generated by the model. In
particular, we have described the bifurcation structure of the (α, μ) parameter plane.

Despite the simplicity of the model we consider, our study suggests that piecewise
linear models are a very flexible tool to describe different economic phenomena and
to obtain interesting analytical results.
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1 Introduction

In most traditional economic models, instantaneous and complete information has
been assumed. Recent research on the dynamic behaviour of the economic agents,
however, emphasises on their bounded rationality that arises when the agents have
only limited information in making their decisions. In this paper, we build a dynamic
monopoly model that accounts for such bounded rationality including partial and
delayed knowledge on the price function. Its main purpose is to improve the monopoly
theory by getting closer to the real world in which there are always uncertainty and
delays in obtaining information and implementing decisions. To this end, we get rid
of the questionable and unrealistic assumptions of the rational monopoly. Examining
analytically and numerically the delay effects upon local and global dynamic behav-
iour of the boundedly rational monopoly, we show how cyclic dynamics can emerge
from quite simple economic structures. Our analysis makes a sharp difference in
the way the rational monopoly behaves. The boundedly rational monopoly becomes
dynamic in nature because it gropes for its optimal choice by using data obtained
in market experience. On the other hand, the rational monopoly is static in nature
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because it can choose its optimal choices of price and quantity to maximise profit
with one shot.

In the existing literature two types of delays are usually examined: fixed time
delay and continuously distributed time delay (fixed delay and continuous delay
henceforth). The former is applicable in economic situations in which an institu-
tionally or socially determined fixed period of time delay is present for the agents
involved. The latter is appropriate for economic situations in which different lengths
of delays are distributed over the different agents. Uncertain delays can be modelled
by continuous delays, and the same types of models describe the situation when firms
want to react to the average past information instead of following a sudden market
change. In this way firms might avoid fluctuating output trajectories and therefore the
related additional cost. So the choice of the type of delays has situation-dependency
and results in the use of different analytical tools. In the cases of fixed delays, the
dynamic equations are delay differential equations where the characteristic equa-
tion is a mixed polynomial-exponential equation with infinitely many eigenvalues.1

The classical book by Bellman and Cooke (1956) offers the theory of such dynamic
models. Kuang (1993) gives good theoretical foundation and comprehensive sum-
mary of applications in population dynamics. In economic dynamics, Howroyd
and Russel (1984) construct two linear continuous time dynamic oligopoly mod-
els and examine the effect of the delay on stability. Fixed delay dynamics has been
investigated in various economic frameworks ranging from microeconomics (i.e.
oligopoly dynamics) to macroeconomics (i.e. business cycle). In the case of contin-
uous delays the dynamic equations are Volterra type integro-differential equations.
Cushing (1977) discusses the mathematical methodology dealing with such dynam-
ics. Invernizzi and Medio (1991) have introduced continuous delays into mathemat-
ical economics, and this methodology is later used to examine dynamic oligopolies
by Chiarella and Khomin (1996) and Chiarella and Szidarovszky (2001, 2004).
Recently, Matsumoto (2009) re-examined the classical Goodwin’s accelerator busi-
ness cycle by replacing fixed delay in the original model with continuous delay.
Dynamics generated by fixed delay and continuous delay are compared in Matsumoto
and Szidarovszky (2010) in which the Goodwin (2D) model, the Kaldor-Kalecki (3D)
model and the Cournot oligopoly (4D) model are examined.

Puu (1995) and, more recently, Naimzada and Ricchiuti (2008) conduct the
dynamic analysis of the boundedly rational monopoly with discrete timescale. Adopt-
ing a gradient rule in which production is increased if a change in profit is positive,
decreased if negative and constant if zero, we show numerically that, under dif-
ferent forms of the demand function, stability of the monopoly equilibrium can
be violated to chaos through the familiar period-doubling cascade. In our earlier
paper, Matsumoto and Szidarovszky (2012a), the monopoly dynamics is examined
in continuous-timescale with one and two fixed delays. A complete stability analysis
is given and it is demonstrated that in the case of locally unstable monopoly equi-
librium only simple dynamics (i.e., limit cycle) can be born when one fixed delay is

1 A dynamic equation with fixed delays can be called a mixed difference-differential equation.
However, Gandolfo (2009) points out that such terminology is somewhat dated.
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involved while complex dynamics are reached through a period-doubling bifurcation
when two fixed delays are involved. In this paper, the fixed delay is replaced with
a continuous delay and in addition to complete stability analysis, the asymptotic
behaviour of the equilibrium with fixed and continuous delays will be compared.

This paper is organised as follows. In the following section, we construct a gra-
dient dynamic model of boundedly rational monopoly. Then in Sect. 3, we analyti-
cally examine local dynamics and numerically show that the continuous delay has
a threshold value at which the monopoly equilibrium loses stability. In Sect. 4 we
introduce an adaptive expectation formation and demonstrate that stability switch
occurs twice, one switch to instability from stability for a small delay and the other
switch to stability from instability for a large delay. Concluding remarks are given
in Sect. 5.

2 Delay Monopoly

In this section, we construct a basic dynamic model of a boundedly rational monopoly
which produces output q with marginal cost c. The price function is linear

f (q) = a − bq, a, b > 0.

When the monopoly has only limited information on the price function, there are
several ways to deal with the behaviour under such circumstances. If it believes
in a misspecified price function and chooses its decision accordingly, then a self-
confirming stationary state may emerge which is different from the stationary state
with full information. Or if it does not know certain parameters of the price function,
although knowing that it is linear, then the monopoly uses a local linear approximation
of the price function based on its past output data to update its estimate.2 In this study,
assuming that the monopoly does not want to react to sudden market changes, then
instead of the most current marginal profit information, an average of past marginal
profits is used in the adjustment process. Because of the linearity of the price function,
it is equivalent to the use of an average of past output data qa . Then the corresponding
marginal profit is given as

dπ(qa)

dq
= a − c − 2bqa .

So the approximating gradient dynamics is

q̇(t)

q(t)
= α dπ(qa(t))

dq(t)
(1)

2 See Chap. 5 of Bischi et al. (2010) for stability/instability of economic models with misspecified
and uncertain price functions.
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with α being an adjustment coefficient. In (1), t denotes a point of continuous time
and the dot over a variable means a time derivative. This adjustment equation implies
that the growth rate of output is adjusted in proportion to the average past marginal
profit. In adjustments towards best responses, global information is required about
the price function, however, in applying gradient dynamics, only local information
is needed. The gradient dynamic equation (1) is rewritten as

q̇(t) = αq(t)
[
a − c − 2bqa(t)

]
. (2)

Since q(t) = qa(t) for all t holds at a stationary point, Eq. (2) has two stationary
points; a trivial point q(t) = 0 for all t and a non-trivial point

q M = a − c

2b

where a > c is assumed to ensure that the non-trivial point is positive. We call
q M a monopoly equilibrium. Dynamic behaviour of (2) depends on the formation
of the average output. In a dynamic model with continuous timescales, time delays
can be modelled with fixed delays or continuously delays. As mentioned in the
Introduction, Matsumoto and Szidarovszky (2012a) examined dynamic monopoly
with fixed delays. In this study, we adopt a single continuous delay and consider its
delay effects on the dynamics.3 Before proceeding, we briefly summarise the results
obtained in the dynamic monopoly with one fixed delay.

We assume qa(t) = q(t − τ) where τ > 0 denotes a fixed delay. That is,
a−c−2bq(t−τ) is the delayed information on the marginal profit. In many instances
the firm does not have instantaneous price and profit information, and implement-
ing output decisions usually needs time. So there is a time-gap between the time
when information is obtained and the time when decision is actually implemented.
Substituting q(t − τ) in equation (2) for qa(t) gives a nonlinear delay differential
equation,

q̇(t) = αq(t) [a − c − 2bq(t − τ)] . (3)

Linearising equation (3) and introducing the new variable, x(t) = q(t) − q M yield
the following linearised form:

ẋ(t) = −γ x(t − τ) with γ = α(a − c) > 0.

Substituting the exponential solutions x(t) = x0eλt into the linearised equation gives
the characteristic equation

λ+ γ e−λτ = 0. (4)

The sufficient condition for local asymptotic stability is that the real parts of the
eigenvalues are negative. It can be shown that the monopoly equilibrium is locally

3 Monopoly dynamics with multiple continuous delays is considered in Matsumoto and Szi-
darovszky (2012b).
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asymptotically stable for 0 < τ < τ ∗, locally unstable for τ > τ ∗ and undergoes a
Hopf bifurcation at τ = τ ∗ where a threshold value τ ∗ of delay is defined as

τ ∗ = π

2α(a − c)
. (5)

This curve, which is downward sloping with respect to γ = α(a − c), divides the
parameter space into stable and unstable regions. We call it the partition curve. The
monopoly equilibrium is locally stable below the partition curve, locally asymptoti-
cally unstable above and bifurcates to a limit cycle when it crosses the curve.

3 Dynamics with Continuous Delay

As mentioned earlier, continuous delay is an alternative approach to deal with delays.
Continuously distributed delays are the appropriate approach if the delay is uncertain,
or different lengths of delays are distributed over the different agents. A similar
situation occurs when the firm wants to react to average past information instead of
following sudden market changes which would lead to fluctuating output trajectories.
The gradient dynamics with a single continuous delay is given by the following two
equations:

q̇(t) = αq(t) [a − c − 2bqε(t)] ,

qε(t) =
t∫

0
W (t − s, τ,m)q(s)ds,

(6)

where the weighting function is defined as

W (t − s, τ,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

τ
e− t−s

τ if m = 0,

1

m!
(m

τ

)m+1
(t − s)me−

m(t−s)
τ if m ≥ 1,

(7)

in which m is a non-negative integer and τ is a positive real parameter, which is
associated with the length of the delay. The first equation of (6) implies that the
growth rate of output is proportional to the average past marginal profits. The second
equation indicates that the average output at time t is the weighted average of the
actual demand in the past. According to (7), the shape of the weighting function
is determined by the value of the shape parameter, m. For m = 0, weights are
exponentially declining with the most weight given to the most current data. For
m ≥ 1, zero weight is given to the most current data, rising to maximum at s = t−τ
and declining exponentially thereafter. The weights take a bell-shaped form which
becomes taller and thinner as m increases.
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To investigate local dynamics of this system in a neighbourhood of the equilibrium
point, we construct a linearised version. If the deviations of the actual and expected
outputs from the equilibrium value are denoted by xδ(t) = q(t)− q M and xεδ (t) =
qε(t)− q M , then the linearised system with continuous delay can be written as

ẋδ(t) = −γ xεδ (t),

xεδ (t) =
t∫

0
W (t − s, τ,m)xδ(s)ds,

(8)

where γ = 2αbq M . Substituting the second equation of (8) into the first yields the
following Volterra-type integro-differential equation:

ẋδ(t)+ γ
t∫

0

W (t − s, τ,m)xδ(s)ds = 0.

Looking for the solution in the usual exponential form xδ(t) = x0eλt and substituting
it into the above equation, we obtain

λ+ γ
t∫

0

W (t − s, τ,m)e−λ(t−s)ds = 0.

Introducing the new variable z = t − s simplifies the integral as

t∫
0

W (t − s, τ,m)e−λ(t−s)ds =
t∫

0

W (z, τ,m)e−λzdz.

By letting t →∞ and assuming that Re(λ)+ m
τ
> 0, we have

∞∫
0

1

τ
e−

z
τ e−λzdz = (1+ λτ)−1 if m = 0

and ∞∫
0

1

m!
(m

τ

)m+1
zme−

mz
τ e−λzdz =

(
1+ λτ

m

)−(m+1)

if m ≥ 1.
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That is,
∞∫

0

W (z, τ,m)e−λzdz =
(

1+ λτ
m̄

)−(m+1)

with

m̄ =
⎧⎨
⎩

1 if m = 0,

m if m ≥ 1.

Then the characteristic equation becomes

λ
(

1+ τ

m̄
λ
)m+1 + γ = 0. (9)

Expanding the characteristic equation presents the (m + 2)-th order polynomial
equation

a0λ
m+2 + a1λ

m+1 + · · · + am+1λ+ am+2 = 0

where the coefficients ak are given as

ak =
( τ

m̄

)m+1−k
(

m + 1
k

)
for 0 ≤ k ≤ m + 1

and
am+2 = γ.

In the case of the high-order polynomial equation, the Routh-Hurwitz theorem4

provides the necessary and sufficient conditions for all the roots to have negative real
parts. In order to apply the theorem, we first need to construct the Routh-Hurwitz
determinant:

Dm+2 = det

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 a0 0 0 · · · 0
a3 a2 a1 a0 · · · 0
a5 a4 a3 a2 · · · 0
a7 a6 a5 a4 · · · 0
· · · · · · · 0
0 0 0 0 0 am+2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Then the stability conditions are as follows:

(1) all coefficients are positive, ak > 0 for k = 0, 1, 2, . . . ,m + 2,
(2) the principal minors of the Routh-Hurwitz determinant are all positive,

D2
m+2 > 0, D3

m+2 > 0, . . . , Dm+1
m+2 > 0

4 See, for example, Gandolfo (2009) for this theorem.
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where Dk
m+2 is the kth order leading principal minor of Dm+2. Notice that

Dm+1
m+2 > 0 always leads to Dm+2

m+2 > 0 since am+2 = γ > 0.

Since it is difficult to obtain a general solution of Eq. (9), we draw attention to special
cases with m = 0, 1, 2, 3 and m → ∞ and examine stability of the monopoly
equilibrium analytically as well as numerically.

Case I-0: m = 0
Substituting m = 0 reveals that the characteristic equation (9) is quadratic, τλ2 +
λ + γ = 0 where all coefficients are positive. Its real roots are negative and the
real parts of the complex roots are also negative. Thus the monopoly equilibrium is
locally asymptotically stable for all τ > 0. Since the delay does not affect asymptotic
behaviour of the monopoly equilibrium, such a delay is called harmless.

Case I-1: m = 1
The characteristic equation (9) with m = 1 becomes cubic and its coefficients are all
positive

a0 = τ 2 > 0, a1 = 2τ > 0, a2 = 1 > 0, a3 = γ > 0.

According to the Routh-Hurwitz criterion, the following leading minor of D3 needs
to be positive for preserving stability of the equilibrium:

D2
3 =

∣∣∣∣a1 a0
a3 a2

∣∣∣∣ .

To obtain D2
3 = τ(2− τγ ) > 0, the delay τ should be less than the threshold value

τ ∗1 =
2

γ
. (10)

There is a possibility of the emergence of a limit cycle when loss of stability occurs at
τ = τ ∗1 . The Hopf bifurcation theorem comes in to provide the sufficient conditions
for it:

(H1) the characteristic equation of the dynamic system has a pair of pure imaginary
roots and has no other roots with zero real parts;

(H2) the sign of the real parts of these roots vary with a bifurcation parameter.

The D2
3 = 0 curve divides the parameter space into stable and unstable parts. Sub-

stituting a3 = a1a2/a0 into the characteristic equation gives the factored form

(a1 + a0λ)(a2 + a0λ
2) = 0.

We have therefore three characteristic roots, two purely imaginary roots and one real
and negative root,

λ1,2 = ±
√
−a2

a0
= ±i

1

τ
and λ3 = −a1

a0
= −2

τ
< 0.
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The first condition (H1) of the Hopf theorem is satisfied.
Next, we select the delay τ as the bifurcation parameter and consider the roots of

the characteristic equation as continuous functions of τ :

τ 2λ(τ)3 + 2τλ(τ)2 + λ(τ)+ γ = 0

Differentiating it with respect to τ gives

dλ

dτ
= − 2τλ3 + 2λ2

3τ 2λ2 + 4τλ+ 1
.

Substituting λ = i/τ , rationalising the right-hand side and noticing that the terms
with λ and λ3 are imaginary while the constant and the term λ2 are real yield the
following form of the real part of the derivative of λ with respect to τ :

Re

[
dλ

dτ

∣∣∣∣
λ= i

τ

]
= 1

5τ 2 > 0.

The last inequality indicates that the second condition (H2) is also satisfied. The real
parts of the complex roots change to positive from negative value resulting in the loss
of stability on the partition curve. Hence, the Hopf bifurcation theorem confirms the
birth of a limit cycle when stability is lost.

We numerically examine the analytical result just obtained. The dynamic system
under investigation is obtained by substituting m = 1 into (6),

q̇(t) = αq(t) [a − c − 2bqε(t)]

qε(t) =
t∫

0

(
1

τ

)2

(t − s)e− t−s
τ q(s)ds.

Differentiating the second equation with respect to t and introducing a new variable

q0(t) =
t∫

0

1

τ
e−

t−s
τ q(s)ds

transforms the dynamic system with continuous delay into a 3D system of ordinary
differential equations,

q̇(t) = αq(t)
[
a − c − 2bqε(t)

]
,

q̇ε(t) = 1

τ

(
q0(t)− qε(t)

)
,

q̇0(t) = 1

τ
(q(t)− q0(t)) .
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Fig. 1 Convergence to a limit cycle in the (q, qe, q0) space

We exploit the following parameter setting, a = 2, b = 1, c = 1, α = 1,5 and take
τ = 3 and the initial values of all variables to be q M − 0.1. Then simulating the 3D
system exhibits the birth of a limit cycle as shown in Fig. 1 where a black trajectory
starting at the black dot (i.e., positive initial point) converges to a red cycle in the
(q, qε, q0) space. We then summarise this result as follows: the monopoly equi-
librium point with m = 1 is destabilised through a Hopf bifurcation and, as it is
numerically confirmed, converges to a limit cycle when the delay τ is larger than the
critical value 2/γ .

Case I-2: m = 2
The characteristic equation (9) with m = 2 becomes quartic

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0

and its coefficients are all positive,

a0 = τ 3, a1 = 6τ 2, a2 = 12τ, a3 = 8, a4 = 8γ.

The principal minors of the Routh-Hurwitz determinant are D2
4 = 64τ 3 > 0 and

D3
4 = 32τ 3(16− 9γ τ). Then to obtain D2

3 > 0, the delay τ should be less than the
threshold value

5 This set of parameters is repeatedly used in the following numerical examples. Notice that γ = 1
under this set.
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τ ∗2 =
16

9γ
� 1.78

γ
. (11)

Thus, the equilibrium is locally asymptotically stable if τ < τ ∗2 and locally
unstable if τ > τ ∗2 . In the same way as in Case I-1, we can show the exis-
tence of a limit cycle at the critical value τ ∗2 . In particular, solving D3

4 = 0 or
a1a2a3 − (a0a2

3 + a2
1a4) = 0 for a4, substituting it into the characteristic equation

and factoring the resultant equation yield

(a3 + a1λ
2)(a1a2 − a0a3 + a2

1λ+ a0a1λ
2) = 0.

The solutions of a3 + a1λ
2 = 0 are purely imaginary,

λ1,2 = ±i
2

τ
√

3
,

and the other two characteristic roots are the solutions of the quadratic equation
(a1a2 − a0a3)+ a2

1λ+ a0a1λ
2 = 0,

λ3,4 = −9± i
√

15

3τ

whose real parts are negative. The first condition (H1) of the Hopf bifurcation theorem
is satisfied.

To confirm the second condition, we choose τ as the bifurcation parameter again
and differentiate the characteristic equation with respect to τ to have

dλ

dτ
= − 3τ 2λ4 + 12τλ3 + 12λ2

4τ 3λ3 + 18τ 2λ2 + 24τλ+ 8
.

Substituting λ = i 2
τ
√

3
and taking the real part, we have

Re

⎡
⎣ dλ

dτ

∣∣∣∣
λ=i 2

τ
√

3

⎤
⎦ = 6

19τ 2 �
0.316

τ 2 > 0.

We thereby confirm that the monopoly equilibrium with m = 2 is destabilised
through a Hopf bifurcation when the delay τ crosses the critical value τ ∗2 .

Case I-3: m = 3
The characteristic equation (9) is quintic and its coefficients are all positive,

a0 = τ 4, a1 = 12τ 3, a2 = 54τ 2, a3 = 108τ, a4 = 81, a5 = 81γ.

The first two principal minors of the Routh-Hurwitz determinant are positive,
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Fig. 2 Three partition curves and stability region under the fixed delay

D2
5 = 540τ 5 > 0 and D3

5 = 972τ 6(48+ γ τ) > 0.

The sign of the fourth order principal minor D4
5 = −6561τ 6(γ 2τ 2+ 336γ τ − 576)

is ambiguous. To obtain D4
5 > 0, the delay τ should be less than the threshold value

τ ∗3 =
24(5
√

2− 7)

γ
� 1.71

γ
. (12)

Although we omit the detail, we can also show that the continuous delay system (6)
with m = 3 can generate a limit cycle through a Hopf bifurcation in the same way
as in the previous cases when the monopoly equilibrium loses stability.6

The relations (5), (10), (11), and (12) define the partition curves of (γ, τ ) that
divide the (γ, τ ) space into stable and unstable parts. The three partition curves for
m = 1, 2, 3 and the stability (yellow) region with fixed delay defined by τγ < π/2
are depicted in Fig. 2. It can be seen that all curves are hyperbolic and are approaching
the red-coloured boundary of the stability region from above. In other words, the
stable region with continuous delay becomes smaller as the value of m increases
and converges to the region defined by the fixed delay when m tends to infinity. The
second result is natural if we notice the properties of the weighting function. The
weighting function for m ≥ 1 is a bell-shaped and becomes more peaked around
t − s as m increases. Furthermore, it tends to the Dirac delta function if m →∞. In

6 With tedious calculations, it may be possible to show the similar results in cases for m ≥ 4.
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consequence, for sufficiently large m, the weighting function may be regarded as very
close to the Dirac delta function and the dynamic behaviour under the continuous
delay is similar to that under the fixed delay. We can explain this phenomenon
mathematically by noticing that the characteristic equation (9) of the continuously
distributed case can be written as

λ+ γ
(

1+ τλ
m

)−m (
1+ τλ

m

)−1

= 0,

and as m →∞, the left-hand side converges to

λ+ γ e−λτ = 0.

This is the characteristic equation of the delay differential equation with a single
fixed delay and is identical to Eq. (4). In short, under continuous delay, although we
comprehensively use all delayed or past output data, the stability domain is sensitive
to the shape of the weighting function. Hence, we obtain the following two results:

Proposition 3.1 (1) The monopoly equilibrium of the continuously distributed single
delay model is always stable for any delays if m = 0 and is destabilised through a
Hopf bifurcation if m = 1, 2, 3; (2) The stability region decreases as m increases
(i.e., τ ∗ < τ ∗3 < τ ∗2 < τ ∗1 ) and converges to the stability region obtained under the
fixed delay when m goes to infinity (i.e. τ ∗m → τ ∗ as m →∞).

4 Delay Dynamics with Adaptive Expectation

In this section, we explore the effects caused by a different expectation formation
on monopoly dynamics. For this reason, we use adaptive expectation formation
defined as

qε(t) = ωqe(t)+ (1− ω)q(t)

qe(t) =
t∫

0
W (t − s, τ,m)q(s)ds

(13)

with 0 < ω ≤ 1. The expectation is formed with two steps: the weighted average of
the past data is calculated at the first step and then the expected demand is selected
at the second step, somewhere in between the current output level and the weighted
average level.7 If m ≥ 1, then zero weight is given to the most current data in the

7 Since the first equation of (13) can be rewritten as

qε(t)− q(t) = ω(qe(t)− q(t)),

it can be mentioned that the expected demand is formed in such a way that the expectation error is
proportional to the difference between the weighted average level and the current level.
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weighting function, and so the second term in the first equation of (13) gives a larger
weight to it taking a certain learning procedure based on past data at the second
stage. We examine in some detail the dynamic effects caused by a single delay with
the adaptive expectation formation. Following the method we take in the previous
section, the characteristic equation of the system (13) can be obtained as

λ

(
1+ λτ

m̄

)m+1

+ γ
[
ω + (1− ω)

(
1+ λτ

m̄

)m+1
]
= 0 (14)

which is reduced to Eq. (9) ifω = 1.To find how the shape of the weighting function,
W (t − s, τ,m), affects the dynamics of q M , we sequentially increase the value of
m from zero to five and then to infinity.

Case II-0: m = 0
Substituting m = 0 in Eq. (14) presents the form

λ(1+ λτ)+ γω + γ (1− ω)(1+ λτ) = 0

or
τλ2 + (1+ τγ (1− ω))λ+ γ = 0.

Since all coefficients are positive, there is no non-negative root and the real parts of
the complex eigenvalues are negative,

Re(λ±) = −1+ (1− ω)τγ
2τ

< 0,

implying that the equilibrium is locally asymptotically stable for all τ > 0. As in
Case I-0, the continuous delay is again harmless when the weight exponentially
declines (i.e. m = 0).

For m ≥ 1, expanding the characteristic equation (14) yields the polynomial
equation of degree m + 2

b0λ
m+2 + b1λ

m+1 + · · · + bmλ
2 + bm+1λ+ bm+2 = 0 (15)

where the coefficients are defined as

b0 = a0,

bk = ak + γ (1− ω)ak−1 for 1 ≤ k ≤ m,

bm+1 = am+1 + γ (1− ω)am,

bm+2 = γ
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with

ak =
( τ

m

)m+1−k
(

m + 1
k

)
for 0 ≤ k ≤ m + 1. (16)

Case II-1: m = 1
Equation (14) with m = 1 becomes cubic:

b0λ
3 + b1λ

2 + b2λ+ b3 = 0 (17)

where the coefficients are defined as

b0 = τ 2, b1 = 2τ + γ (1− ω)τ 2, b2 = 1+ 2τγ (1− ω) and b3 = γ.

All coefficients are positive, so the Routh-Hurwitz criterion implies that the
monopoly equilibrium is locally asymptotically stable if

D2
3 = det

(
b1 b0
b3 b2

)
> 0 (18)

where the determinant is written as

τ
(

2γ 2(1− ω)2τ 2 + (4γ − 5γω)τ + 2
)
.

Since τ > 0, this expression is positive if and only if

f (τγ ) = 2(1− ω)2(τγ )2 + (4− 5ω)τγ + 2 > 0. (19)

f (τγ ) is quadratic with respect to τγ and its discriminant has the form

D = ω(9ω − 8).

If ω < 8/9, then D < 0 so (19) always holds. If ω = 8/9, then the right-hand side
of (19) simplifies as

f (τγ ) = 2
(τγ

9
− 1

)2

so (19) holds if ω = 8/9 and τγ 	= 9. If ω > 8/9, then D > 0 and f (τγ ) has two
distinct real roots:

τγA = 5ω − 4−√ω(9ω − 8)

4(1− ω)2 and τγB = 5ω − 4+√ω(9ω − 8)

4(1− ω)2 .

f (0) > 0 and f ′(0) < 0 imply that both roots are positive. So the monopoly
equilibrium is locally asymptotically stable if ω > 8/9 and τγ < τγA or τγ > τγB .
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Fig. 3 Stability region with m = 1

These analytical results are graphically visualised in Fig. 3. The locus of b1b2 −
b3b0 = 0 is depicted as the blue–red curve passing through points A,C and B
and partitions the non-negative (ω, τγ ) plane into a stable (white) region and
an unstable (orange) region.8 The monopoly equilibrium is locally asymptotically
stable regardless of the value of τγ if ω < 8/9 or if ω = 8/9 and τγ 	= 9. Stability-
switch occurs twice if 8/9 < ω < 1.The vertical real line atω = ω̄ > 8/9 crosses the
partition curve at two points A and B whose ordinates are τγA and τγB, respectively.
The monopoly equilibrium loses stability at point A and regains stability at point B
when τγ increases from zero along the vertical line at ω = ω̄. For ω = 1, the
stability condition (19) is reduced to

−τγ + 2 > 0.

The monopoly equilibrium is locally stable if τγ < 2 and locally unstable if τγ > 2,
implying that the stability switch occurs only once at τγ = 2 for ω = 1. This is the
same as the result obtained in Case I-1 which is identical to Case II-1 when ω = 1.

The local behaviour of the equilibrium at points A and B has been already exam-
ined. However, global dynamic behaviour of the locally unstable equilibrium between
points A and B is still in question. To investigate such behaviour, we will show that
at these critical values Hopf bifurcation occurs giving the possibility of the birth of
limit cycles even under the adaptive expectation formation.

8 Notice that f (τγ ) = 0 generates equal roots at point C = (8/9, 9).
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We start with the first condition, (H1). The cubic characteristic equation (17) can
be factored when b1b2 − b0b3 = 0,

(b1 + b0λ)(b2 + b0λ
2) = 0.

This factorisation implies that there are a pair of purely imaginary roots and one
negative root. The two purely imaginary roots are given as

λ1,2 = ±
√
−b2

b0
= ±iβ

with

β =
√

1+ 2τγ (1− w)

τ

and the negative root by

λ3 = −b1

b0
= −2+ (1− w)τγ

τ
< 0.

The fulfilment of (H1) is confirmed.
In turn, we verify (H2). Selecting τ as the bifurcation parameter we might treat the

eigenvalue as a continuous function of τ, λ = λ(τ).Differentiating the characteristic
equation (17) with λ(τ) implicitly with respect to τ and arranging terms, we have

dλ

dτ
= − 2λ3τ + λ2(2+ 2τγ (1− ω))+ 2λγ (1− ω)

3λ2τ 2 + 2λ(2τ + γ (1− ω)τ 2)+ (1+ 2τγ (1− ω)) . (20)

At λ = iβ,

dλ

dτ
= (2τβ3 − 2βγ (1− ω))i + β2(2+ 2τγ (1− ω))

−2β2τ 2 + 2βi(2τ + γ (1− ω)τ 2)
,

where the relation (βτ)2 = 1+ 2τγ (1− ω) is used to simplify the denominator of
the above equation. Then the real part becomes

Re

[
dλ

dτ

∣∣∣∣
λ=iβ

]
= 1− γ 2τ 2(1− ω)2
β2τ 4 + (2τ + γ (1− ω)τ 2)2

,

with the positive denominator. It is easy to see that

τγA <
1

1− ω < τγB,

so
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Re

[
dλ

dτ

∣∣∣∣
λ=iβ

]
> 0 at point A and Re

[
dλ

dτ

∣∣∣∣
λ=iβ

]
< 0 at point B.

So at point A, the real part changes sign from negative to positive and at point B, from
positive to negative. This demonstrates that (H2) of the Hopf theorem is satisfied. So
Hopf bifurcation occurs at both points.

We next numerically examine the switching of stability and global behavior. The
dynamic system under the investigation (i.e. m = 1) is obtained as

q̇(t) = αq(t) [a − c − 2b (ωqε(t)+ (1− ω)q(t))]

qε(t) =
t∫

0

1

τ 2 (t − s)e− t−s
τ q(s)ds.

(21)

Differentiating the second equation with respect to t and introducing a new variable

q0(t) =
t∫

0

1

τ
e−

t−s
τ q(s)ds

transform the dynamic system with continuously distributed time delay into a 3D
system of the ordinary differential equations

q̇(t) = αq(t) [a − c − 2b (ωqε(t)+ (1− ω)q(t))] ,

q̇ε(t) = 1

τ
(q0(t)− qε(t)) ,

q̇0(t) = 1

τ
(q(t)− q0(t)) .

(22)

We use the same parameter setting (i.e. a = 2, b = 1, c = 1, α = 1) and the same
initial values (i.e., q(0) = qε(0) = q0(t) = q M − 0.1) as in Case I-1. Increasing the
value of τγ from τγA to τγB along the vertical line ω̄ = 0.91 in Fig. 3, we obtain
the bifurcation diagram shown in Fig. 4 where the local maximum and minimum are
plotted against each value of τγ . It can be seen that the monopoly equilibrium loses
stability bifurcating to a limit cycle when τγ arrives ar τγA. It is further seen that the
limit cycle expands, shrinks and then merges with the monopoly equilibrium when
τγ increases from τγA to τγB .We then summarise the results obtained in Case II-1
as follows:

Proposition 4.1 Under the cautious expectation formation, dynamics of the
monopoly equilibrium q M with τ > 0, m = 1 and 0 < ω ≤ 1 takes one of the
following alternative behaviour:
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Fig. 4 Bifurcation diagram along the ω = 0.91 line

(I) q M is locally asymptotically stable if 0 < ω < 8/9 regardless of the values of
τγ (i.e. the delay is harmless);

(II) q M bifurcates to a limit cycle at τγA(ω) and the limit cycle merges with the
monopoly equilibrium at τγB(ω) if 8/9 < ω < 1 where τγA(ω) and τγB(ω)

are the bifurcation values depending on ω (i.e., stability switch occurs twice);
(III) q M bifurcates to a limit cycle at τγ = 2 and never regains stability for τγ > 2

if ω = 1 (i.e. stability switch occurs once).

Case II-2: m ≥ 2
As in the same way as in Case II-1, we can check the stability condition, the birth of a
limit cycle and stability switch in the case of m ≥ 2. For example, the characteristic
equation (14) with m = 2 is quartic,

b0λ
4 + b1λ

3 + b2λ
2 + b3λ+ b4 = 0

and the stability conditions are given by

D2
4 = det

(
b1 b0
b3 b2

)
> 0 and D3

4 =
⎛
⎝ b1 b0 0

b3 b2 b1
0 b4 b3

⎞
⎠ > 0

where the coefficients are given by
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b0 = τ 3

8
, b1 = 3τ 2

4
+ τ

3γ (1− ω)
8

, b2 = 3τ

2
+ 3τ 2γ (1− ω)

4
,

b3 = 1+ 3

2
τγ (1− ω), b4 = γ.

Since all coefficients are positive and D3
4 > 0 implies D2

4 > 0, it remains to check
whether D3

4 can be positive. Notice that

D3
4 = α0(τγ )

3 + α1(τλ)
2 + α2(τγ )+ α3 (23)

where
α0 = (9ω − 8)(1− ω)2, α1 = −12(4− 9ω + 5ω2)

and
α2 = −12(8− 11ω), α3 = −64.

The locus of D3
4 = 0 divides the (ω, τγ ) plane into two subregions as shown in

Fig. 5 where the dark grey region is the unstable region for m = 1 and adding the
light grey region to it gives the unstable region for m = 2. The discriminant of the
cubic equation (23) has the form

Δ = 442368(1− ω)3ω2(5ω − 4)

which is obtained by substituting αi into the definition of the discriminant,

−4α0α
3
2 + α2

1α
2
2 − 4α3

1α3 + 18α0α1α2α3 − 27α2
0α

2
3 .

If ω < 4/5, then Δ < 0 implying D3
4 > 0 where D3

4 = 0 has a pair of conjugate
complex roots and one negative real root. If ω = 4/5, then Δ = 0 implying that
D3

4 = (10 − τγ )2(20 + τγ ) > 0 for τγ 	= 10 where (23) has equal roots at the
red point (4/5, 10) on the D3

4 = 0 locus. If ω > 4/5, then Δ > 0 implying that
D3

4 = 0 has three distinct real roots. Since Eq. (23) is cubic, it is possible to derive
explicit forms of the real roots. However, to simplify the analysis, we numerically
obtain the roots. Taking ω0 = 0.815(>4/5) in addition to the parametric setting, we
have two positive real roots, τγA � 5.42 at point A, τγB � 23.75 at point B and
one negative root. D3

4 ≤ 0 for τγ ∈ [τγA, τγB] which is an unstable interval and
D3

4 > 0 for 0 ≤ τγ < τγA or τγ > τγB . Stability switch occurs twice at τγ = τγA

and τγ = τγB . Further the cubic equation is reduced to a quadratic equation for
ω = 8/9 implying that the locus of D3

4 = 0 is defined only for ω < 8/9 when
τγ > 10 and asymptotic to the vertical line at ω = 8/9. If 8/9 < ω < 1, then
the cubic equation (23) has one positive root τγC for ω = ω1. It is confirmed that
D3

4 > 0 for τγ < τγC and D3
4 ≤ 0 otherwise. The equilibrium point switches to

be unstable at point C on the D3
4 = 0 locus when the delay is increased along the

vertical line at ω = ω1.
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Fig. 5 The partition curves with m = 1 and m = 2

We turn now to show that Hopf bifurcation can occur on the curve D3
4 = 0. When

D3
4 = 0 holds, the characteristic equation is factored as

(b3 + b1λ
2)(b1b2 − b0b3 + b2

1λ+ b0b1λ
2) = 0.

It is clear that the characteristic equation has a pair of purely imaginary roots,

λ1,2 = ±
√
−b3

b1
= ±iβ

with

β =
√

4(2+ 3γ (1− ω)τ)
6τ 2 + γ (1− ω)τ 3

and the real parts of other two roots are not zero. So condition (H1) is satisfied.
Assuming that the characteristic root depends on τ and then differentiating the

characteristic equation with respect to τ, we obtain the derivative:

dλ

dτ
= −

3τ 2

8 λ
4 +

(
3τ
2 + 3γ (1−ω)τ 2

8

)
λ3 +

(
3
2 + 3γ (1−ω)τ

2

)
λ2 + 3γ (1−ω)

2 λ

τ 3

2 λ
3 + 3

(
3τ 2

4 + γ (1−ω)τ 3

8

)
λ2 + 2

(
3τ
2 + 3γ (1−ω)τ 2

4

)
λ+ 3γ (1−ω)

2 + 1
.
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Fig. 6 Stability region and five partition curves

To determine stability switch, we evaluate the derivative at the purely imaginary
solution, λ = iβ. Thus

Re

(
dλ

dτ

∣∣∣∣
λ=iβ

)
= 3(2− (1− ω)τγ )

4+ τ 2(16β2 + 9γ 2(1− ω)2 + 12γ (1− ω)τ) .

We numerically confirm that the real part of the derivative is positive at point τγA

and negative at point τγB . So the second condition (H2) is also satisfied. Therefore,
Hopf bifurcation occurs at both critical points.

In the same way, it can be numerically confirmed that the stability condition is
given by Dm+1

m+2 > 0 for 2 ≤ m ≤ 5. In Fig. 6, five partition curves Dm+1
m+2 = 0 for

m = 1, 2, 3, 4, 5 are depicted. The rightmost curve is the locus of D2
3 = 0 (i.e.,

m = 1) and the leftmost curve is the locus of D6
7 = 0 (i.e., m = 5). The partition

curve shifts leftward with the increasing value of m. At the red dot on each curve,
equation Dm+1

m+2 = 0 has two real and equal roots.9 As is shown in Case II-1, it is
possible to show that for any m ≥ 3, stability switch can occur twice for ω greater
than the abscissa of the red point while the delay becomes harmless for smaller values
of ω.

9 The curves look like steeply shaped hypabolas. However, if we enlarge each curve in the neigh-
bourhood of its red point, then it can be found that the curves take the C-shaped profiles as the
curves in Figs. 3 or 5.
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Case II-3: m →∞
As m increases, the weighting function becomes more peaked around t− s and tends
to the Dirac delta function. Notice that when m goes to infinity, the first equation of
(21) is reduced to a delay differential equation,

q̇(t) = αq(t) [a − c − 2b (ωq(t − τ)+ (1− ω)q(t))] (24)

and the characteristic equation (14) converges to

λ+ γ (1− ω)+ γωe−λτ = 0

which is the characteristic equation of the delay differential equation (24). To verify
the possibility of stability switch for which the characteristic equation must have a
pair of purely imaginary conjugate roots, we can assume without loss of generality
that λ = iυ, υ > 0. By the real and imaginary parts, the characteristic equation is
divided into two equations

γ (1− ω)+ γω cos υτ = 0, υ − γω sin υτ = 0. (25)

By moving γ (1−ω) and υ to the right-hand sides of equations in (25), squaring and
adding them together, we obtain

υ2 = γ 2(2ω − 1)

which is defined only for ω > 1/2, otherwise no stability switch occurs. We then
think of the roots as continuous functions in terms of τ and then differentiate the
characteristic equation with respect to τ to obtain

(
dλ

dτ

)−1

= eτλ

γωλ
− τ
λ

and eτλ = − γω

λ+ γ (1− ω) .

Thus
d(Reλ)−1

dτ

∣∣∣∣
λ=iυ
= Re

(
dλ

dτ

∣∣∣∣
λ=iυ

)−1

= 1

υ2 + γ 2(1− ω)2 > 0

The last inequality implies that all the roots that cross the imaginary axis at iυ cross
from left to right as τ increases.

From (25), we have

γω cos υτ = −γ (1− ω), γω sin υτ = υ. (26)

Hence, there is a unique υτ , π/2 < υτ < π such that υτ makes both equations in
(26) hold. Using the first equation we derive the partition curve
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γ τ =
cos−1

(
−1− ω

ω

)
√

2ω − 1

which is defined for ω > 1/2. In Fig. 6, in addition to the five partition curves, the
downward sloping hyperbolic red partition curve of the fixed delay case is illustrated.
The red points have the same meaning as in Fig. 5. The monopoly equilibrium with the
fixed delay is locally asymptotically stable in the yellow region. We can summarise
three results obtained in Cases II-2 and II-3:

Proposition 4.2 In the case with τ > 0 and m ≥ 1, (1) increasing m has a destabil-
ising effect in the sense that it decreases the stability region; (2) the stability region
with continuously distributed time delay is larger than the one with fixed time delay
and the former converges to the latter as m goes to infinity; (3) the stability switch,
if possible, occurs twice, implying that the equilibrium is locally stable for smaller
or larger values of τγ while it bifurcates to a limit cycle for medium values.

5 Concluding Remarks

In this paper, a boundedly rational monopoly with a continuously distributed time
delay is examined. Constructing a gradient dynamic system where the rate of the
output change is proportional to the derivative of the expected profit, the following
results are analytically and numerically demonstrated.

In the case of a single continuously distributed delay, the asymptotic properties
of the monopoly equilibrium depend on the shape of the weighting function. If it
is exponentially declining, then the delay is harmless and in the case of bell-shaped
weighting functions, stability is lost when the delay parameter τ exceeds certain
threshold. This value is decreasing in the shape parameter m, implying that the sta-
bility region decreases in m. It is also demonstrated that as m tends to infinity, the
stability region converges to that with fixed delay. The cases of adaptive expecta-
tion were then examined, when the expectation is convex linear combination of the
delayed and the instantaneous data. We have shown that the case of m = 0 is harmless
again. If m > 0, then delay is harmless for small values of ω, and then the increas-
ing value of m has a destabilising effect and stability switch occurs twice implying
that the equilibrium is locally stable for small and large values of τγ while it bifur-
cates to a limit cycle for medium values. These behavioural differences between the
monopoly with continuous delay and the delay monopoly with adaptive expectation
are found in the different forms of the partition curves as depicted in Figs. 2 and 3.

In addition to analytic investigation, numerical simulation was used to illustrate
the theoretical findings and examining global asymptotic behavior.
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Learning and Macro-Economic Dynamics

Simone Landini, Mauro Gallegati, Joseph E. Stiglitz, Xihao Li
and Corrado Di Guilmi

1 Introduction

According to a substantial and growing stream of literature (Chiarella and He 2002;
Gaffeo and Delli Gatti 2008; Giansante et al. 2012; Gintis 2007, 2013; Kirman
2012; LeBaron 2002; Lengnick 2013; Markose 2005; Tesfatsion 2003; Tesfatsion
and Judd 2006), which aims to go beyond the representative agent-based modelling
(see Hartley 1997), the economy is conceived as an ensemble of many heterogeneous-
interacting-learning agents.

The present study focuses on the macro effects induced by learning. Such an
interest moves from Blume and Easley (1993): when learning is combined with
interaction and heterogeneity, both individual perceptions of the circumstances and
the circumstances change due to individual mutations. This feedback leads to periods
of dominance of certain behavioural species, which alternates through time along a
sequence of regime switching, i.e. changes in the configurations of the system over
a space of behavioural states, superimposing with phase transitions. The system can
therefore be understood as an ecology of learning strategies, coevolving and mix-
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ing through time, reshaping the system as a well-stirred mixture of heterogeneous
behavioural attitudes, realising states of dominance of given species as the economic
state of the system changes. This phenomenon of “regenerative coordination” (see
Landini et al. 2014) involves both individual and collective learning, together with
intermediate variants (see Vriend 2000) by allowing agents for learning in decision-
making, obeying a vital impulse for surviving and improving, regenerative coordina-
tion determines regime switching and phase transitions consistently with temporary
equilibria.

The research questions in the present chapter are the following: Allowing agents
for learning in choosing one among a set of differentiated behaviours, is there a
possibility for the emergence of a dominant behaviour? If yes, does this behaviour
dominate in the long run or can different regimes can alternate through time? What
determines such transitions? Are dominant behavioural regimes consistent with spe-
cific phases of the system? Are system’s phase transitions a cause or an effect (or
both) for the micro-learning behaviours superimposition?

The chapter is structured as follows. Section 2 introduces some ontological notes
on system’s constituents. Section 3 provides a detailed description of the microeco-
nomic model as the DGP of aggregate data. Section 4 introduces the behavioural rules
that agents can choose while learning. Section 5 deals with comments and interpre-
tation of the ABM-DGP outcomes. Section 6 concerns the inferential techniques to
describe the dynamics of system’s level observables providing insights regarding the
effect of learning in the financially constrained economy. Section 7 summarises the
main findings.

2 Few Ontological Notes

An agent is a “social atom” Buchanan (2007), a minimal (i.e. elementary) constituent
of the system able to learn how to behave at its best given the constraints in making
decisions. A social atom does not behave in the only way it can, as atoms do, but
mainly in the way it wants, when possible, to satisfy its vital impulse to survive
and improve. Social atoms have both anticipatory capabilities and backward looking
instruments; they are endowed with a set of information to operate “just in case”,
just like memory. Atoms do not decide whether to interact or not: if they are allowed
to interact the outcome is almost predictable. On the contrary, usually, a social atom
decides whether or not to interact and it can even choose the counterparts in interac-
tions, often with unpredictable outcomes. A social atom is an active (see Schweitzer
2003) and lively minimal cell with consciousness of its capabilities, feelings, desires,
preferences, needs, free will, regrets and a vital impulse to behave at the best it can
in order to stay alive and, possibly, improve its state.

Basically, the difference between complex adaptive agents in the ABM literature
and social atoms is that the latter does not solely behave adaptively by updating
their state, but they mainly behave proactively and evolve while upgrading their
state. Conscious of their capabilities, needs and limits, they involve learning as an
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anticipatory resource, which might also, but not only, involve adaptation: that is,
they do their best “today” to realise “tomorrow” what they want or needed, as firmly
as possible. This does not mean that they only forecast or play according to decoded
rationality. Of course they can, but the main character is that, due to a vital impulse
to survive and improve, learning is involved to reasonably choose among a wide set
of solutions, in order to progressively approach a (hopefully) long-lasting desirable
state. Obviously, the scenario can change and uncertainty is still a distinctive trait.
Nevertheless, the social atom aims at a certain degree of stability once a comfortable
condition realises, i.e. making revisions only when necessary, as the new basis to
evolve and upgrade. The “social” attribute for such atoms is therefore due to both
the intrinsic indispensable propensity to interact, in order to gather what they need
from the other heterogeneous atoms, and the learning activity which marks a relevant
difference with respect to (natural) atoms beyond a mere analogy with mechanical
systems of particles.

Heterogeneity and interaction are entangled categories: due to heterogeneity
agents are pushed to interaction, due to interaction outcomes agents increase their
degree of heterogeneity. Agents give rise to organised structures lumping about
a stereotyped agent or behaviour. A system is therefore a structure of within-
homogeneous and between-heterogeneous sub-systems. Two kinds of heterogeneity
and interaction are isolated. Heterogeneity can be weak (in endowments) or strong
(in behaviours). Interaction can be direct (between two or more agents) or indirect
(i.e. mean-field) when an agent interacts with a sub-system or when sub-systems
interact with each other.

The system is a stylised economy as in Greenwald and Stiglitz (1993) where firms
produce the same perishable good in a homogeneous market by using only labour
supplied at a fixed wage rate, with a financially constrained production function as
in Delli Gatti et al. (2010). When financial resources are not enough to pay the wage
bill, they borrow money from a bank, which charges a fixed rate of interest. The firm
is characterised by a few elements: a set of information Ω that it uses and produces
at the same time; a set of parameters Θ; a set of functions �. In this simplified
economy, there is only one state observable, which is the equity base A(i, t) ∈ �A+
as a measure of net worth: it characterises the agent’s degree of (weak) heterogeneity
in endowments.

The functions in the set � take the values of the equity and combine them by
means of parameters and other information from the environment: each of such
combinations defines a quantity and its functional.

The subclass Λ within the set � defines the behavioural rules. In a step-by-step
learning mechanism as in Landini et al. (2014), each agent tests all the members
λ ∈ Λ and chooses the optimal one λ∗ according to an evolutionary criterion or vital-
impulse, coupled with anticipatory capability: do the most reasonable choice, first to
stay alive and, then, to sensibly improve your well-being the way you want, if you can.
The chosen λ∗ is a mapping λ∗(.|Θ):Ω → �+ for the control parameter α(i, t) =
α(i, t)[λ∗] characterising the agent’s degree of (strong) behavioural heterogeneity
since, time by time, in the same or in a different state (way of being), an agent can
change its way of behaving. In short, agents can learn how to behave the best they
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can. Due to this, α(i, t) is called the learning parameter. The agent learns how to
properly set it to schedule its financially constrained level of desired output; due to
this, α(i, t) is defined as the scheduling function.1

The complement H = �\Λ defines all the other observables h ∈ H subclass, each
of these functions is a map hm(., .|Θ) ∈ H :�A+ ×Λ→ Hm ⊂ �. Once the control
parameter α(i, t) = α(i, t)[λ∗] is set, given (i.e. conditioned on) financial resources
(i.e. equity A(i, t)), the firm schedules its output (Q(i, t) = hQ(α(i, t)|A(i, t), β)),
which is the control variable. All the other quantities are instrumental to the update
of the equity for the next period. The firm’s activity is represented by the sequence
{hm |λ∗} of actions it performs given the decisions it makes: the outcomes represent
both ways of being and of behaving.

The parameter setΘ = Θ S∪ΘB contains the systemic parametersΘ S = (w, r) ∈
�2+, namely the wage rate and the rate of interest, and the behavioural parameters
ΘB = (β, γ, δ, ϕ) ∈ �5: basic elasticities (β, δ, ϕ) or scaling parameters (γ, ζ ).

3 The Micro-Model

Assume that the control parameter α(i, t) is set according to λ ∈ Λ, and that the
present period equity A(i, t) is updated from the previous period, which could be
characterised by a different λ′ ∈ Λ.2

The firm schedules the desired output3 level according to its financial resources

Q(i, t) = α(i, t)A(i, t)β, β ∈ (0, 1) (1)

to be realised according for the production function

Q(i, t) = (N (i, t)1/δ)/γ, γ ∈ (0, 1), δ > 0 (2)

which gives labour demand as a function of the scheduling (learning) function con-
ditioned on the current level of net worth (endowments)

1 This set-up looks similar to the classifier approach discussed in LeBaron (2002). However, as it
will be clearer from Sect. 4 onwards, the involved rules are not “current conditions in the market”
as states of the world, but agents’ ways of behaving characterising different species. Dynamic
conditions in the market are due to the realisations of the aggregate observables, to which the
agents contribute with differentiated behaviours. The change in such conditions motivates agents to
maintain or switch the actual way of being. Hence, the proposed modelling is less procedural and
more phenomenological. However, as the classifier approach of LeBaron (2002), this provides the
modeller a “large amount of power design”.
2 The present model follows Landini et al. (2014) introducing nonlinear bankruptcy costs.
3 Since, given financial resources, this level of output depends on the temporarily chosen rule λ, it
should more properly be written as Q(i, t)[λ] = α(i, t)[λ].A(i, t)β . This notation is a short hand
for the fact that, conditioned on the same equity (state variable), different rules provide different
levels of desired output (control variable). The learning mechanism will allow for the final choice.
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N (i, t) = (γ Q(i, t))δ = χα(i, t)δA(i, t)φ, χ = γ δ, φ = βδ (3)

This is how learning and endowments (i.e. strong and weak heterogeneity) enter
the model. Being w > 0 the constant wage rate, the wage bill is W (i, t) = wN (i, t).
The difference L(i, t) = W (i, t) − A(i, t) gives a credit flow revealing the state of
financial soundness: X (i, t) = 1 if L(i, t) ≥ 0. This is how learning and endow-
ments (i.e. strong and weak heterogeneity) enter the model. The difference gives
a credit flow revealing the state of financial soundness: if means the firm is not
self-financing (NSF), otherwise it is self-financing (SF). The SF firm deposits the
amount |L(i, t)| in the bank, without earning interest, the NSF firm borrows |L(i, t)|
from the bank, charged by a fixed interest rate r > 0, with financial commitments
F(i, t) = X (i, t)r L(i, t). Production costs are: means the firm is NSF, otherwise it is
SF. The SF firm deposits the amount in the bank without earning interest, the NSF firm
borrows from the bank charged by a fixed interest rate with financial commitments.
Production costs are: C(i, t) = W (i, t)+ F(i, t).

In general, the firm faces bankruptcy costs,

B(i, t) = X (i, t)ζQ(i, t)ϕ = X (i, t)ζα(i, t)ϕ A(i, t)η, ζ > 0, ϕ > 0, η = βϕ
(4)

but, if the firm is SF bankruptcy costs are null: X (i, t) = 0. Revenues are the
product of output and the individual price Y (i, t + 1) = p(i, t + 1)Q(i, t). For the
sake of simplicity, the market price is approximated as P(t + 1) = W (t)/Q(t),
being W (t) = w

∑
i N (i, t) the realised total demand, i.e. the aggregate value of

wage bills, and Q(t) = ∑
i Q(i, t) the output. The individual price is calculated

as a multiplicative shock on the market price p(i, t + 1) = u(i, t)P(t + 1), where
u(i, t) −→i.i.d. U (u, 2 − u) is an idiosyncratic shock such that E[p(i, t + 1)] =
P(t + 1).

Profit is the difference between revenues and production costs. The profit curve,
which accounts for bankruptcy costs only for NSF firms, is

Π̃(i, t + 1) = Π(i, t + 1)− B(i, t)

= p(i, t + 1)α(i, t)A(i, t)β − (1+ X (i, t)r)θα(i, t)δA(i, t)ϕ

− X (i, t)[ζα(i, t)φ A(i, t)η − r A(i, t)] (5)

in case of SF firms X (i, t) = 0 implies Π̃(i, t + 1) = Π(i, t + 1).
Finally, equity updates by accumulating profits with the present period equity:

A(i, t + 1) = A(i, t)+Π(i, t + 1).
Profit maximization. According to the shorthand notation (αt = α(i, t), at+k =

A(i, t+k), π̃t+1 = Π̃(i, t+1), xt = X (i, t), pt+1 = p(i, t+1)) set the following
implicit optimization problem (IOP) on the scheduling (learning) parameter:
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IOP:

⎧⎪⎨
⎪⎩
α∗t = arg maxO(αt ) = E{π̃(at , αt , pt+1|xt )}s.t.
c(αt ) = a(at , E{π̃(at , αt , pt+1|xt )} = at + O(αt ) = at+1 ≥ 0

αt ≥ 0

(6)

For the IOP to be well-posed, the objective function O(αt ) must be concave and
the constraint c(αt ) convex. To show the unconstrained first order conditions (uFOC)
are necessary and sufficient, apply the expectation on the profit function in (5). Hence
the uFOC are

∂αO(αt ) > 0⇒ Pt+1(αt a
β
t ) > (1+ xtr)δθ(αt a

β
t )
δ + xtϕζ(αt a

β
t )
ϕ (7)

which does not allow for a closed-form solution w.r.t. αt unless, beyond a suitable
ad hoc polynomial expression w.r.t. αt is set, a parametric constraint 0 < ω ≡ (δ =
ϕ) = 1 is assumed allowing for non-linear bankruptcy costs in (4). By using this
assumption in (7) it can be found that

0 < α∗t = α∗(at , Pt+1|xt ) =
[

Pt+1

ω(θ(1+ xtr)+ xtζ )

] 1
ω−1

a−βt

s.t. 0 < ω ≡ (δ = ϕ) = 1 (8)

which fulfils the third constraint in the IOP, while

∂αO(αt )

⎧⎪⎨
⎪⎩
> 0 iff αt ∈ (0, α∗t )
= 0 iff αt = α∗t
< 0 iff αt > α∗t

(9)

Equation (9) ensures that α∗t = α∗(at , Pt+1|xt ) is the always existing unique profit
maximizing global optimum point, which dynamically changes as the equity (at )
and the state of financial soundness (xt ) change under the effect of the market price
(Pt+1).

The IOP is a constrained problem, hence the constraint c(α∗t ) ≥ 0 must be fulfilled
to avoid next-period equity being negative, which implies bankruptcy. Due to the
vital-impulse of firms to stay alive and make profits to improve, this cannot be
rationally accepted. Therefore, even though the optimum point certainly exists, the
feasibility condition c(α∗t ) ≥ 0 must be met. Therefore, consider the constraint in
explicit form

c(αt ) = Pt+1αt a
β
t − (1+ xtr)[θαδt aφt − at ] − xt (ζα

ϕ
t aηt ) ≥ 0 (10)
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and substitute for 0 < ω ≡ (δ = ϕ) = 1 to get

c(αt ) = Pt+1αt a
β
t − (1+ xtr)[θαωt aβωt − at ] − xt (ζα

ω
t aβωt ) ≥ 0 (11)

which gives

c(αt ) = (αt a
β
t )

[
Pt+1 − (θ(1+ xtr)+ xtζ )(αt a

β
t )
ω−1

]
+ (1+ xtr)at ≥ 0 (12)

Simplifying for at gives

c(αt ) = (αt a
β−1
t )

[
Pt+1 − (θ(1+ xtr)+ xtζ )(αt a

β
t )
ω−1

]
+ (1+ xtr) ≥ 0 (13)

Substitution of (8) and multiplication by at leads to

c(α∗t ) =
[

Pt+1

ω(θ(1+ xtr)+ xtζ )

] 1
ω−1

(
ω − 1

ω

)
Pt+1 + (1+ xtr)at ≥ 0 (14)

If ω > 1 then c(α∗t ) ≥ 0 is always fulfilled,ω = 1 is not feasible. A solution can be
identified by relating equity and market price but it is not generic, although it considers
the specific situation of the firm (i.e. by means of at ) within its environment (i.e. by
means of Pt+1) both for SF and NSF (xt ). As discussed so far, the parabolic hypothesis
is needed in order to obtain a generic solution: as shown in Landini et al. (2014),
a sufficient condition for the profit curve to be parabolic is δ ∈ (0, 1/β) : β ∈ (0, 1).
The assumption therefore becomes stronger in order to obtain a closed-form feasible
solution: ω > 1/β :β ∈ (0, 1) ensures ω > 1 and c(α∗t ) ≥ 0.

The economic implication of the parabolic assumption 0 < 1/β < ω ≡ (δ =
ϕ) = 1:β ∈ (0, 1). Consider EN (αt ) = δ > 0 in (2) is the elasticity of labour
demand (3) w.r.t. the scheduling parameter. Consider EB(αt ) = ϕ > 0 as the
elasticity of bankruptcy costs (4) w.r.t. the scheduling parameter. Since bankruptcy
costs depend on labour demand through output scheduling (4), (1) and since labour
demand depends on scheduled output (3), (1), the assumption states that, for any
given level of equity and for any state of financial soundness, for a profit maximizing
firm a change in the scheduling parameter affects labour demand and this effect
transmits to bankruptcy costs with the same magnitude 0 < EN (αt ) = EB(αt ) ≡
ω = 1. As far as ω > 1/β, and EQ(at ) = β ∈ (0, 1) then EN (αt ) = EB(αt ) >

1/EQ(at ). Accordingly, the elasticities of labour demand and bankruptcy costs w.r.t
the scheduling parameter are inversely related to that of output w.r.t. equity: by tuning
the values of 0 < 1/β < ω ≡ (δ = ϕ) = 1 :β ∈ (0, 1), different scenarios follow.
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Table 1 Stereotyped behaviours taxonomy

Learning Interaction
None Micro Local Global

None λ1 elementary
Individual λ2 trend

followers λ3
profit
maximizers

λ4 micro-
imitators

Collective λ5 local imitators
λ6 best
performers
followers

λ7 average
followers

4 Behavioural Rules and Species in the Economy

The setΛ = {λk : k ≤ K }of scheduling rules4 forα(i, t) = α(i, t)[λk] is represented
in Table 1. The classification criteria follow two dimensions, making explicit the
strong heterogeneity for the possible behaviours.

Interaction can be indirect or direct. If it is indirect (i.e. mean-field) it is concerned
with the interaction of a single agent with a system. If it is global, the firm interacts
with the system as a whole. If it is local, the firm interacts with a sub-system charac-
terised by a given scheduling rule. If it is direct, it takes place between two agents.
As regards the learning side, if it is present in the specific rule, it can be collective,
so coupling with interaction, or individual, i.e. without interaction.

• Rule λ1—not interactive without learning: elementary. The learning parameter is
constant through time and homogeneous across firms using it.
• Rule λ2—not interactive with self-referential backward looking learning: trend

follower. It models the self-referential firms looking at their past periods without
care for the environment. This rule introduces some memory degree: the higher
the value of τ the longer the memory.
• Rule λ3—not interactive with self-referential, profit-maximizing learning: profit

maximizer. The firm looks at itself and, given its endowments, sets the output
scheduling parameter by choosing the value maximizing its expected profit.
• Rule λ4—micro-interaction with individual learning: micro-imitator. A firm i

directly interacts with a randomly sampled firm j . The firm i adopts the previous
period scheduling parameter value of the firm j if i’s profit growth rate was lower
than that of j . This introduces direct interaction as imitation. The imitator does
not look at the way the scheduling parameter is computed by its counterpart.

4 Some of the rules are specified in Landini et al. (2014). Rules 1 and 3 are preserved, rule 2 takes
the place of rule 4, rule 5 that of 6, rule 6 that of 7 and rule 7 that of 5. The change in positions is
due to the classifications criteria here involved, Table 1. Rule 4 is new and what was rule 2 has been
dropped. Rule 3 always concerns profit maximization but, here, it introduces nonlinear bankruptcy
costs. All rules obey the spanning–learning as described in the following.
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• Ruleλ5—local interaction with collective learning: local-imitator. A random sam-
ple of M firms in the same state of financial soundness is associated to a firm i ,
si = (i1, . . . , iM |X (i, t)). The firm sets its output scheduling parameter value
as the average value of parameters in its sample. Learning is collective in the
sense that information is drawn from a collection of firms and interaction is indi-
rect because the firm chooses by looking at the sub-system value of the output
scheduling parameter.
• Rule λ6—local interaction with collective learning: best performers follower.

Firms in the economy are split into NSF and SF. A firm looks at its own group,
uses the ratio of profit to equity to measure other firms’ performance and con-
siders as best performers those with a ratio higher than its own. The sample of
reference for a firm i is defined as s∗i = (i1, . . . , iM∗i |X (i, t) = X (i j , t)) where
[Π( j, t)/A( j, t)] > [Π(i, t)/A(i, t)] ∀ j : X ( j, t) = X (i, t). The firm calculates
its scheduling parameter value as the average value in its reference sample of best
performers. Differently from rule λ5, the dimension M∗i of the reference sample
in λ6 can change through time and firm by firm.
• Rule λ7—global interaction with collective learning: average follower. A firm i

sets its own output scheduling parameter at the average value in the system.

The learning mechanism considers the time spanning for learning: once the firm
has chosen the scheduling parameter according to a given rule, it keeps it unchanged
for more than one period. Before this, the firm tries all the rules at t + k and chooses
the one with the highest value of expected profit to increase the next period equity in
the attempt to improve the state of financial soundness. Since the scheduling para-
meter is used to programme the production in the next period, it has been considered
the firms are using this parameter value for T = 5 periods. The spanning–learning
test holds on [t + k, t + k + T ) and involves two activities. At t + k a rule is chosen
to be used from the beginning till the end of the period. At the end of the period, a
new decision is made and its outcome can be to maintain the rule previously chosen
or to adopt a different one. In any case, the scheduling parameter value will change
since the internal state of the firm has changed according to its financial resources
and to the state of the economy.

The credit flow values L = {L(i, t):i ≤ I } of firms in the economy can be
partitioned into several (H ) intervals to determine states of financial soundnessΣ =
{ςh :h ≤ H}. For the sake of simplicity H = 2 states are considered, that is,ς1 = NSF
if X (i, t) = 1 and ς0 = SF if X (i, t) = 0.

The space Ξ = Λ × Σ = {ζ j = (λk ∧ ςh) : j = H(k − 1) + h} defines
the species in the economy, both according to financial soundness and behavioural
attitudes. Therefore, being K = 7 and H = 2 there are J = KH = 14 species in the
system. With xi (λk ∧ςh; t) ≡ X j it is meant that, at time t , a randomly drawn agent
i is a firm of the species j since it is found in the h-th state of financial fragility.
The occupation number I j (t) = �{xi (λk ∧ ςh; ) : i ≤ I } counts how many firms
belong to the j-th state on Ξ . The total number of firms never changes, and the
vector I(t) = (Ii (t), . . . , IJ (t)) ∈ N ⊂ N

J
0 is the configuration of the system.
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5 Simulation Results

The following results are the outcomes of a 50 runs Monte Carlo simulation of the
ABM model with parameter setting: β = 0.5, γ = 1.9, δ = 1.4,w = 1, r =
0.05, ϕ = 1.4, ζ = 0.1 and τ = 3. Firms’ initial equity level is randomly drawn
from a uniform distribution with support between 0 and 20, and the shock in price u
is drawn from a uniform distribution with support between 0 and 2.

Figure 1 shows the aggregate time series from the ABM-DGP with a population
of N = 1,000 firms for T = 1,000 periods. On average, the economy is populated
with a share of 39 % of NSF firms and 61 % SF firms. NSF firms concentrate 26 %
of total equity while they realise 79 % of total output, since, on average, their output
scheduling parameter α is 10 times the SF one. As a consequence, NSF firms realise
62 % of total profit on average. On the other hand, SF firms possess 74 % of total
equity but they realise only 21 % of total output with 38 % of total profit on average.
As 39 % population of NSF firms own only 26 % of total equity, whereas 61 % of SF
firms own 74 % of total equity, NSF firms on average have smaller per-capita equity
than SF firms.

A dominant configuration is a ranking of the behavioural rules at period t , accord-
ing to the decreasing order of concentration of a given quantity Z on each learning
rule λ ∈ Λ.5 By considering the quantity to be the number of firms, Z = I , the
dynamics of the dominant configuration defines the diffusion-dominance. On the
other hand, by considering the quantity to be the equity, the output, the wage bill
or the profit (Z = A, Q,W,Π ) it defines the effects-dominance. Figure 2 shows
that the diffusion-dominance does not overlap with the effect-dominance. More-
over, firms with different financial fragility (NSF/SF) follow different patterns of
diffusion-dominance and effect-dominance.

Figure 1 also shows that the NSF scheduling parameter α6 is almost 10 times of
SF firms. NSF firms are more “aggressive" than SF ones because the vital impulse
of NSF firms pushes them mainly to recover their financial fragility by seeking for
profit-improving behavioural rules while SF firms are more prudent: the sounder the
financial health, the less the incentive to change.

A regime is a sub-period characterised by a given dominant configuration, either
in diffusion-dominance or in effect-dominance. A phase is a sub-period during
which a quantity Z , or its growth rate, is in a certain state with specific qualitative
characteristics such as expansion or contraction. Therefore, the system can go through
both regime and phase transitions. Due to the intrinsic complexity in the microscopic
behaviour (heterogeneity, interaction and learning) and the external effects from the
environment, it may happen that phases of the same type in different sub-periods are
synchronised with different types of regimes. For instance, as regards the SF bottom

5 For example, if the quantity Z = I is the number of firms, a dominant configuration like [7132645]
at period t shows that firms are most concentrated in rule 7 (average followers) at that period, the
second most concentrated is rule 1 (elementary) and so on.
6 The aggregate estimate of α has been computed using (1) with aggregate data solving the equation
for α , that is α(t) = Q(t)/A(t)β .
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Fig. 1 Monte Carlo simulation (50 runs of the ABM-DGP): HP-filtered aggregate quantities. The
time series for the scheduling parameter is found by solving (1) for aggregate quantities (output and
equity)

Fig. 2 Dominant configurations for NSF and SF: (I) is the diffusion-dominance

panel, Fig. 3 shows two expansion phases in sub-periods τ1 and τ2. Sub-period τ1 is
synchronised with the dominant configuration of [3654271] and [3652471], whereas
sub-period τ2 is synchronised with the configuration [6354271]. A possible reason
for this is that the micro-level structure changes with time. Therefore, a dominant
configuration in a high-performance phase in a given period can become dominated
in another high performance period because the conditions in the system are different.
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Fig. 3 NSF and SF diffusion-dominance (red-stairs) and output-phases (blue-line). Horizontal
lines the time average and confidence bands about the mean (+/− standard deviation)

Further investigation in Fig. 3 indicates that NSF firms behave differently from SF
ones in learning activities. NSF firms involve 48 dominant configurations, whereas
SF firms only 10. Moreover, NSF firms and SF firms do not share any dominant
configuration in common. Therefore, as social atoms, firms do not only change the
way of behaving but they also change the way of being.

Moreover, as Fig. 3 shows, the diffusion dominance regimes follow the output
phases trajectory with some delay at certain points in time. Basically, at the turning
point of the output dynamics, one can observe jumps or breaks in the configuration
dominance, after which the output phase keeps on growing or decreasing. Switches
in the behavioural rules still occur but they basically consist in recombination of
some dominant configuration. This is the effect of the regenerative-coordination:
when some regularity induced by agents behaviour faces a criticality, then there is
change in agents’ behaviour that destroys the previous setting and creates a new one
[see Landini et al. (2014)].

6 Macro-Dynamics

Agents’ behaviours allow for transitions in the two dimensions of the state space
Ξ = Λ × Σ : along the Σ-dim it concerns transitions over degrees of financial
fragility, along theΛ-dim it concerns the change in behaviour. As regards theΣ-dim,
between-transitions realise when a firm jumps from the NSF state to the SF state
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and vice versa. As regards the Λ-dim behavioural rule changes can be observed.
Consider then the case of a firm xi (λk ∧ ςh; t) ≡ X j .7 It then can happen that:
(a) xi (λk∧ςh′ ; t+1) ≡ X jh if it maintains the same behavioural rule while assuming
a different state of financial soundness; (b) xi (λk′ ∧ ςh; t + 1) ≡ X jk if it persists in
the same state of financial soundness while changing the behavioural rule; (c) xi (λk′ ∧
ςh′ ; t+1) ≡ X j ′ if it changes both the state of financial soundness and the behavioural
rule; (d) xi (λk∧ςh; t+1) ≡ X j if nothing has changed. The first three cases concern
movers, the last case concerns stayers.

Conditional transitions are analysed by means of the master equations techniques
discussed in Landini et al. (2014). Transitions are of two kinds. Financial fragility
state transitions (between-transitions) are xi (∗∧ςa; t)→ xi (∗∧ςb; t +1), without
care for the learning behaviour: such transitions are analysed by means of first master
equation to determine the evolution of occupation numbers in NSF and SF states.
This kind of master equation has been introduced in the economic literature by
Aoki (1996), Aoki (2002) and Aoki and Yoshikawa (2006), and applied to different
economic problems,8 none of them involving learning agents.

The second kind of transitions are the so-called within-transitions and is concerned
with transitions like xi (λh |ς; t) ≡ Xh → xi (λk |ς; t + 1) ≡ Xk . Transitions on
the rules space Λ are conditioned on the state of financial soundness. These kinds
of transitions have been introduced by developing combinatorial master equations
drawing techniques from stochastic kinetics of chemical reactions (see Gardiner and
Chaturvedi 1977; Gardiner 1985).

6.1 The Financial Soundness State Master Equation

Between-transitions xi (∗∧ςa; t)→ xi (∗∧ςb; t+1) consider NSF and SF firm shares
dynamics in the economy. Since only two alternative states of financial fragility are
present, the target density is assumed to be the NSF one, the SF concentration is
found by complement,

S1(t) = I (ς1; t) :=�t {X (i, t) = 1 : i ≤ I } : S0(t) = I − S1(t) (15)

The basic hypothesis is that of a regenerative-coordination: firms’ behaviours are
influenced by those macro-dynamic effects to which they contributed through the
channel of the market price (see 11).

A master equation in this case is a time-continuous, space-discrete differential
equation for the dynamics of the distribution of S1(t)

7 Differently from the ABM of Sect. 3, from hereon the symbol X refers to species and not to the
state of financial soundness, which is ς ∈ Σ .
8 Other references on this topic are Aoki (1996), Aoki (2002), Aoki and Yoshikawa (2006), Delli
Gatti et al. (2012), Guilmi (2008), Di Guilmi et al. (2010), Di Guilmi et al. (2012) and Landini and
Uberti (2008).
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d P(n, t)

dt
= [b(n − 1, t)P(n − 1, t)+ d(n + 1, t)P(n + 1, t)]
− [(b(n, t)+ d(n, t)P(n, t)] (16)

Equation (16) is a balance equation between inflows and outflows into and out
from the state value S1(t) = n. The underlying transitory mechanism is consistent
with a birth-and-death stochastic process. Except for very few cases, Equation (16)
does not admit a closed-form solution, hence some approximation methods9 are
needed. Following Delli Gatti et al. (2012), the van Kampen systematic method (see
Kampen 2007) is applied by assuming the following ansatz:

S1(t) = Iφ(t)+√Iε(t) (17)

Equation (17) transforms (16) into a system of coupled equations: namely a
Fokker-Planck equation w.r.t. to the distribution P̃(ε, t) of the spreading fluctua-
tion component ε(t) about the drifting trajectory φ(t), which is the expected share
of NSF firms, driven by an ordinary differential equation known as the macroscopic
equation. The solution of the macroscopic equation provides the dynamics of the
expected value of S1(t) while the solution of the Fokker-Planck equation gives the
distribution of fluctuations around this drift.10 The specification of the transition
rates according to the economic phenomenology of the ABM allows for an endoge-
nous description of fluctuations around the drift as the macroscopic outcomes of the
unobservable microscopic interactions.

The higher the market price growth rate the higher the probability of becoming
NSF, due to a decrease in output or due to a stimulus to increase profits, which
increases credit demand to increase output. Accordingly, it is assumed that the market
price plays the role of a pilot-quantity driving the dynamics of financial soundness
configurations. Therefore, being γt the change of the present period market price
with respect to its long-run dynamics, the death-and-birth rates are

ζ(t) = (1+ Er f (γt ))/2 ι(t) = 1− ζ(t): γt = P̂(t)/P̄ − 1 (18)

where Er f (γt ) is the error function: the death rate ζ is therefore the standard normal
c.d.f. at γt . The transition rates are then specified as

9 References Aoki (1996), Aoki (2002) and Aoki and Yoshikawa (2006) provide an introduction to
such methods. More advanced references are Gardiner (1985), Risken (1989) and Kampen (2007).
Analytic details on the method involved in the present chapter can be found in Landini et al. (2014),
Delli Gatti et al. (2010) and Di Guilmi et al. (2013) to which the reader is referred.
10 In general, this method suffers from some limitations, among others the relevant are: (a) the
Fokker-Planck equation is equivalent to that of a second order local approximation in the Kramers-
Moyal expansion if, according to Pawula’s theorem, no closed-form solution is feasible (see Delli
Gatti et al. (2012) and Risken (1989)), (b) the ansatz (17) is suitable for weak-noise unimodal
processes. In dealing with a macroscopic observable in large systems, such as the present case, the
consequences of such limitations are negligible.
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{
b(S1(t)− ϑ, t) = ζ(t) · [1− (S1(t)− ϑ)/I ]
d(S1(t)+ ϑ, t) = ι(t) · [S1(t)+ ϑ]/I

(19)

where terms in square brackets are introduced to account for the fact that an inflow
or an outflow depends on the size of the initial state.

Substituting (17) into (19), plugging the result into (16) and then computing the
needed derivatives, two main equations are found. The first is for the solution of the
macroscopic equation and is given by

φ(t) =
{

1+
(

1

φ0
− 1

)
exp[−t.B.Δ(t)]

}−1

:Δ(t) = ζ(t)− ι(t), B = 1 (20)

The second is the following Gaussian distribution with zero mean and variance:

ς2
ε (t) = ε2

eq(t)[1− exp(2.t.Δ′(t))] :Δ′(t) = ∂Δ(t)

∂φ
(21)

for the spreading fluctuation distribution, being ε2
eq(t) the temporary equilibrium for

the spread in the Fokker-Planck equation.
Figure 4 shows the dynamics of the share of NSF firms in the economy. This series

is highly coordinated with the dynamics of the market price (correlation: 0.9415).
This result confirms that the market price can be qualified as a pilot-quantity for
the master equation. The bottom panel shows the dynamics of the master equation
solution compared with the ABM outcome. In this case, the overlapping is evident
(correlation: 0.6770).

Figure 5 contrasts the ABM outcome with the master equation estimate of the NSF
firms share time series. A perfect correspondence is represented by a straight line
bisector of the plane, such that the picture represents the deviation from the optimal
result. The range of variation of the ABM data is from 32.68 to 42.31 % while the
master equation gives a wider interval, from 2.48 to 54.94 %. This is basically due to
the initial part of the estimated series. However, there are also intermediate points in
time where the estimate deviates from data. The small box represents the relationship
between the two series. By classifying periods for both time series in dates within
and outside their confidence bands and then computing the joint frequency, it has
been found that in the 57.7 % of the dates data points are within the inner box and that
the 13.9 % of the dates are outside the inner box. This proves the fitting capability of
the master equation: note that no adjustment parameters are introduced in the master
equation, which is just one equation while the outcome of the ABM-DGP is due to
I = 1,000 systems of equations like those presented in Sect. 3.

Despite this equation not embedding the learning mechanism, it accounts for its
effects in interpolating the ABM outcome. The solution of this master equation is
introduced into the second master equation for learning, determining a so-called
nested model. Moreover, even though ABM micro-data are available, they are not
used except for their aggregation which represents the benchmark. Therefore, the
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Fig. 4 Dynamics of the estimated share of NSF firms compared with ABM results. Time series
have been filtered using the Hodrick-Prescott filter to show the underlying trend components

Fig. 5 Superimposition of the ABM outcome with the master equation solution

method extends to situations in which only macro-data are available. Finally, no
assumption is made about the distribution of the stochastic process, but it is inferred
to be Gaussian and its dynamics is completely determined by transition rates. These
rates are phenomenologically specified on the ground of the consequences of the
economic theory implemented in the ABM. This stream of modelling is promising
in developing new micro-foundation approaches, joining numerical computation and
analytics.
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6.2 The Learning Master Equation

This section develops the learning phenomenology, described in Sect. 4 and imple-
mented in the ABM model, at a mean-field level to infer aggregate dynamics of
transitions over the spaceΛ. The aim is to model within-transitions over the space of
behavioural rules conditioned on a state of financial fragility: xi (λh |ς; t) ≡ Xh →
xi (λk |ς; t + 1) ≡ Xk .

Consider a sample firm randomly drawn from the ς ∈ Σ state (NSF or SF).
The firm schedules output according to (1) by setting α(i, t)[λ] according to some
behavioural ruleλ ∈ Λ: consider the sample firm as a stereotyped or mean-field agent,
i.e. a sub-system characterised by (λ|ς). To make the final choice, it faces K = |Λ|
rules to test: each scheduling parameter is due to a single behavioural rule and it leads
to a given level of profit {Π(i, t)[λ] :λ ∈ Λ}. A measure of profitability is needed to
mimic micro-decision making at macro-level, to compare rules’ profitability and to
specify a probability measure for each possible choice to be made.

Total profit of the sub-system ς ∈ Σ isΠ+(ς; τk) =∑
λ∈Λ |Π(λ|ς; τk)|, where

Π(λ|ς; τk) is the aggregate profit of state ς ∈ Σ behaving as λ ∈ Λ. Accordingly,
u(λ|ς; τk) = Π(λ|ς; τk)/Π+(ς; τk) :=uλ is the profit share associated to a given
rule. To estimate the switching probability, the sub-system characterised by that rule
is assumed to interact with all the others in a sequence of interactions Xh + {Xk}
each associated to a specific vector uhk = (uh, uk), where uh is the profit share
of the so-called effective agent Xh and uk is that of the so- called virtual agent
Xk : in the sequence Xh + {Xk} of interactions an initial effective agent is fixed
while virtual ones progressively change while testing all the rules. Since uhk =
(uh = ||uhk || cos θ, uk = ||uhk || sin θhk) then an isomorphic unit vector vhk =
uhk/||uhk || = (vh = cos θhk, vk = sin θhk) is associated on the unit circle, where
vh is the normalised profit of the effective agent and vk is the normalised profit of
the virtual agent in the specific interaction Xh + Xk . The specific interaction is now
uniquely characterised by the interaction angle θhk . According to a clockwise rotation
(ϑ = θ −π/4) an equivalent interaction vector is found Vhk = (Vh = cos θhk, Vk =
sin θhk), and Vh = cos θhk = (vh − vk)/

√
2 defines the profitability indicator. It

compares the effective and virtual profits on the unit circle and is employed in order
to estimate the probability for the sample firm in state (λh |ς) to switch into state
(λk |ς). This is the transition probability Pr{Xh → Xk} = rhk|k associated to the
interaction represented by the stenographic equation11 Xh + Xk = 2Xk :

11 A stenographic equation is a writing drawn from stochastic kinetics of chemical reaction (among
others see McQuarrie (1967), Nicolis and Prigogine (1977) to represent the interaction/reaction
of reactants into products in a chemical reaction). These processes are usually described in terms
of birth-and-death stochastic processes and this writing has been found very suitable to represent
learning at mean-field level as switching-maintenance mechanism. Further details can be found in
Landini et al. (2014).
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rhk|k = Zh

ϑhk∫
−π/2

cosϑ

2
dϑ |ϑhk=θhk−π/4 =

Zh

4
(1+ sin(θhk − π/4)) = r(θhk)

s.t. Zh = 4

(
K +

∑
k≤K

sin(θhk − π/4)
)−1

(22)

Its complement is the maintenance probability Pr{Xh → Xh} = rhh|k associated
to Xh + Xk = Xh + Xk . Hence, a specific interaction is a Bernoulli event

Xh + Xk →
{

2Xk : Pr{(λh |ς)→ (λk |ς)} = rhk|k
Xh + Xk : Pr{(λh |ς)→ (λh |ς)} = rhh|k

(23)

Since all the virtual-rules have to be tested while learning, the sequence of inter-
actions Xh + {Xk} determines two vectors, one for switching and the other for
maintenance probabilities for each specific interaction. Changing the effective agent
two other vectors are found. Once all the effective agents have been made interact-
ing with all the virtual agents, two matrices are quantified at each point in time:
Ws = {rhk|k : h, k ≤ K } and Wm = {rhh|k : h, k ≤ K }.

The aim is to evaluate the probability for an effective agent— xi (λh |ς; t) ≡
Xh—becoming a different agent—xi (λk |ς; t + 1) ≡ Xk—one period ahead. While
learning, i.e. along the sequence Xh + {Xk} of interactions, the sample effective
agent can temporarily switch or maintain its own rule in testing all the single rules
step-by-step, that is, starting as (λp|ς) it follows a learning path on to end up with its
final choice into being (λq |ς). Landini et al. (2014) develops in details this problem
and obtains analytic formulae to compute such probabilities12 in order to define a
time-dependent transition matrix Wς (t + 1) = {wς (h, k; t + 1):h, k ≤ K } where
wς (h, k; t + 1) = Pr{xi ((λh |ς); t) ≡ Xh → xi ((λk |ς); t + 1) ≡ Xk}. The matrix
Wς (t + 1) provides local dynamic transition rates from (λh |ς) to (λk |ς).

What happens at t+1 is determined by what happens at t , therefore the transition
mechanism is consistent with a Markov scheme. Accordingly, by defining zς (h, t) =∑

k =h wς (h, k, t), the holding time τk is exponentially distributed, Pr{τh < Δ} =
1− exp(−zς (h, t)Δ) = zς (h, t)Δ+ o(Δ), hence

{
Pr{xi (λk |ς) = Xk, t +Δ|xi (λh |ς) = Xh, t} = wς (h, k, t)Δ+ o(Δ)

Pr{xi (λh |ς) = Xh, t +Δ|xi (λh |ς) = Xh, t} = 1− zς (h, t)Δ+ o(Δ)
(24)

The probability of finding a sample agent in state (λk |ς) at time t > 0 with
initial condition at (λh |ς) is hς (h, k, t) = Pr{xi (λk |ς) = Xk, t |xi (λh |ς) = Xh, 0}.
According to Feller (1966), a dynamic model obeys a Kolmogorov equation

12 The interested reader is invited to follow Sect. 4 and Appendix C in Landini et al. (2014), for
which the present section is a synthesis of results.
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dhς (h, k, t)

dt
= −zς (h, t)hς (h, k, t)+

∑
k =h

wς (k, h, t)hς (h, k, t) (25)

which is a master equation representation (see Aoki (1996)) whose local transition
rates have the following generator square matrix:

Gς (t) = {gς (h, k, t)}: gς (h, k, t) =
{
−zς (h, t) = −∑

k =h wς (h, k, t): h = k

wς (h, k, t): h = k
(26)

allowing for a matrix representation of (25)

Ḣς (t) = Hς (t)Gς (t): Hς (0) = H0
ς (27)

where Hς (t) = {hς (h, k, t)}. ABM-DGP data make possible the estimation of the
time series of Wς (t) and Gς (t). The matrix Gς (t) is very stable about the time
average, therefore limT→∞

∑
t≤T Gς (t)/T = Ĝς (see Fig. 6) gives

Ḣς (t) = Hς (t)Ĝς : Hς (0) = H0
ς ⇒ Ĥς (t) = H0

ς . exp(t.Ĝς ) (28)

Assume then the economy is large enough to state the asymptotic convergence

p(λh |ς, t) = nh

Ŝς (t)
−→I→∞ lim

Δ→0
Pr{I (λh, t +Δ|ς)} ∀h ≤ K (29)

where nh is the h-th species concentration in the configuration vector Iς (t) =
{I (λh, t |ς) = nh :λh ∈ Λ} = n = (n1, . . . , nh, . . . , nK ) of the sub-system in the
state ς ∈ Σ of financial soundness and Ŝς (t) is the solution of the financial fragility
master equation obtained by substituting (20) and (21) into (17). Accordingly, (29)
nests13 the previous master equation into the solution of the following combinatorial
one.

The dynamic equation for the state probability in (29) is defined as follows:

p̂ς (t) = Ĥς (t).p0
ς s.t.

p0
ς = n0/Ŝς (0); I(0, ς) = n0 = (n1,0, . . . , nh,0, . . . , nK ,0)

′ (30)

13 This nesting approach moves a step further from Landini et al. (2014), which involves the
total number of NSF and SF firms as aggregate from the ABM-DGP. By substituting the solution
macroeconomic equation (20) into the ansatz (17), together with volatility from (21), both derived
from the solution of the master equation (16) for the distribution of agents on the space Σ , the
analytic estimators for the expected value of NSF/SF firms is at hand. By plugging this into the
estimator for expected concentrations of species on the space Λ conditioned on Σ , as found by
means of the Poisson representation in the following (35), the result is an analytic-endogenous
nested model for the distribution of agents on the space Ξ = Λ×Σ .
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Fig. 6 Estimates of the time averages for matrices Wς (t) and Gς (t)

hence
m̂ς (t) = p̂ς (t).Ŝς (t) = H0

ς . exp(t.Ĝς ).p0
ς (ς).Ŝς (t) (31)

defines the expected concentration of firms in each behavioural state λ ∈ Λ

conditioned on the state ς ∈ Σ financial soundness. In (Fig. 7) an aggregation of
(31) as regarding the NSF state is compared with the outcome of the aggregation
from the ABM simulation as given by (15) and with the outcome of (17) for the first
ME by using (20) and (21).

The trajectory (31) describes the expected changes on the rules space within
the sub-system characterised by ς ∈ Σ . Landini et al. (2014), by developing a
combinatorial master equation, find that m̂ς (t) is the estimator of the expected value
of a K -dim Poisson distribution as the solution of the combinatorial master equation.
It accounts for all the possible interactions to which the different species can give
rise, that is,

∑
k≤K

sc
k Xk ←→H+c

H−c

∑
k≤K

rc
k Xk or sc.L←→ rc.L ∀c ≤ C (32)
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Fig. 7 ABM concentration of NSF firms and aggregate expected values according to the nested
model of master equations

where sc = (sc
1, . . . , sc

k , . . . , sc
K ) and rc = (rc

1 , . . . , r
c
k , . . . , r

c
K ) are stoichio-

metric vectors and X = (X1, . . . , Xk, . . . , X K ) being sc
k and rc

k portions of the
Xk-concentration, i.e. portions of the nk agents, activated as reactants and prod-
ucts in the c-th interaction; the H±k are called rate constants and they represent direct
interaction “−→”, allowing for “switching”, and an inverse interaction “←−”, allow-
ing for “maintenance”, in the frame of the learning mechanism developed so far.

The master equation for (32) is

∂P(n, t)

∂t
=

∑
k≤K

∑
ϑ=0,1

(2ϑ − 1)[T−k (n+ ϑuk; t)P(n+ ϑuk, t)

+ T+k (n− ϑuk; t)P(n− ϑuk, t)] (33)

where ϑ = 0 means outflows and ϑ = 1 inflows, uc = rc − sc determines forward
jumps n −→ n+ uc and backward ones n −→ n− uc. Transition rates are

T+k (n− ϑuk; t) = H+k
∏
h≤K

(nh − ϑuk
h)!

(nh − ϑuk
h − sk

h)!

T−k (n+ ϑuk; t) = H−k
∏
h≤K

(nh + ϑuk
h)!

(nh + ϑuk
h − rk

h )!
(34)

They account for the combinatorial nature of the possible interactions the different
species can set up. Gardiner and Chaturvedi (1977) shows that the stationary solution
for this combinatorial master equation is (Fig. 8)
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Fig. 8 Expected configuration of the system, dynamics of NSF and SF shares estimated by the
master equation and output

Table 2 Expected concentrations time average and standard deviation in behavioural states

Time average λ1 λ2 λ3 λ4 λ5 λ6 λ7 Total
(standard deviation)

NSF 9.51 10.16 15.41 18.36 14.75 14.76 17.05 100
(8.67) (9.49) (12.56) (14.01) (11.39) (11.53) (13.40)

SF 7.67 11.27 19.40 19.25 17.84 15.96 8.61 100
(5.89) (9.49) (17.75) (15.97) (13.84) (11.99) (6.45)

Pe(n) =
∏
h≤K

e−mh
mnh

h

nh ! : mh =< nh > (35)

Table 2 shows the dominance of both among NSF and SF firms. In case of NSF
it is evident that λ4 � λ7 � λ3 � λ6 ≈ λ5 � λ2 � λ1 while for SF it follows
that λ3 ≈ λ4 � λ5 � λ6 � λ2 � λ7 � λ1. In both cases, the elementary rule is
expected to be the least preferred one. It is worth noting that NSF firms are likely to
be average followers, while SF firms seldom use this rule. In both states of financial
soundness, micro-imitation, due to direct interaction, is one of the mostly expected
behaviours: on expectation it is the most diffused rule for NSF and the second choice
for SF. SF firms are expected to be profit-maximisers or micro-imitators while NSF
are expected to be micro-imitators or average followers. This is interesting because
micro-imitation is concerned with direct interaction at micro-level while following
the average implies setting the scheduling parameter at the system level, that is the
most extensive kind of interaction: in a sense, these are the extrema in Table 1.
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This is the prediction of the mean-field nested model. For explanation, one should
consider the dynamics of these expected values compared with some system observ-
able, such as output considered as the control variable: indeed, output is under the
control of firms in learning how to set their output scheduling parameter.

Given the results detailed in Sect. 5 for output and profit for the different types
of firms, one can conclude that NSF firms are significantly more active and reactive
than the SF ones. In other words, their vital impulse in surviving and improving their
financial soundness is stronger than the one of SF firms, which seems to behave much
more prudentially in order to not harm their condition. More accurately, it should be
noted that, due to the positive equity constraint in profit maximisation, NSF firms
are closer to a lower bound rather than SF ones, which rationally use this rule as
first choice. Hence, when the standard assumption of rational profit maximisation
is not feasible because it is too costly, such firms reasonably choose other solutions
due to the bankruptcy risk. Nonetheless, NSF firms do not completely exclude profit
maximisation; indeed they are expected to involve it as a third choice.

Figure 8 shows the expected concentrations on the rules in the two states of
financial soundness (top panels), the financial soundness trajectory (middle panels)
and output dynamics in states of financial soundness (bottom panels). As regarding
the NSF sub-system, the left column of panels in Fig. 8 demonstrates that, for most of
the time, the output is within its confidence bands although with some fluctuations.
When the time series is above the upper limit (see around t = 300) the concentration
of NSF share of firms shows some peaks and it transmits to a higher concentration
of firms in the first two dominant rules, which are λ4 for micro-imitators and λ7
for average followers. In periods where the time series is below the lower limit, the
concentration of firms is almost uniform: this means that during such periods some
of the NSF jump to the SF state (see around t = 350). The expected improvement
for the system is not so evident. Even though it is clear that SF firms increase in
volume and that they concentrate on the SF dominant rule λ3 of profit maximisation,
the value of output is below the SF mean reference and within the bands.

This is because, as noted above, SF firms have a lower output performance due
to their prudential attitude and, moreover, the scheduling parameter of SF profit
maximisers is lower than the NSF counterpart. It cannot be therefore ascertained
that the system performs better with a higher concentration of SF firms (note that
around t = 350 there is more than 80 % of SF but the same observation also holds
around t = 75 or, less evidently, in other points in time). It can be concluded that the
learning activity of social atoms is important since it allows the financially weaker
firms to survive and improve more than the stronger ones.

The vital impulse of NSF firms is stronger than the SF ones. Therefore, if the
banking system meets the credit demand from NSF firms, the learning activity can
improve the performance of the system despite the increase in financial fragility.
Given the very simple banking system of this model the conclusions are not general
but nevertheless make possible an assessment of the effects of learning on macro-
dynamics.

Finally, there is evidence that the learning activity can be considered to be the
cause of phase transitions characterising the system (regenerative-coordination).
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Being imitation the most likely strategy, once some regularity stabilises the system
into a certain phase there can happen critical events pushing the more active firms
to change their behaviour and destroying that regularity they contributed to define,
suggesting other firms to follow them through direct interaction.

7 Concluding Remarks

The chapter introduces an original inferential methodology, providing some theo-
retical results. This work can be a step towards applying complex system theory for
a new micro-foundation of macro models when heterogeneity and interaction are
present. From the analytic point of view, some results are applicable for the study of
financial fragility. In this respect, it has been found that the more financially fragile
firms are the most active ones as they are pushed by the vital impulse to survive
and improve. On the contrary, financially robust firms behave in a very prudential
way. In particular, being the most active ones in learning, financially fragile firms are
those contributing more to growth. Their behaviours determine periods of expansion
when their financial needs are accommodated by the credit supply. Accordingly, a
higher share of financially fragile firms does not always compromise the system sta-
bility. On the other hand, when almost all firms are financially robust, the outcome is
sub-optimal. Indeed, in these periods growth is lower than during periods with high
financial fragility.

As an additional activity to the standard management of the firm, learning
improves the system performance because it offers more tools than the standard profit
maximisation perspective, which is rarely the dominant behaviour. Social atoms have
ambitions and stimuli, they try different possible paths to reach their target avoiding
failures by reasonably making decisions.

The macroscopic dynamics of the system is not predictable by only looking at
micro-behaviours. This is because, as typical for complex systems, aggregate emer-
gent phenomena occur at system level without a direct relationship with micro-events,
as in the case of “regenerative-coordination”, which manifests in the cyclical suc-
cession of regimes and phase transitions.

There are still open questions to answer in this research stream. Many improve-
ments are possible, either in modelling the learning activity or in the model for
approaching a more realistic or empirically based set-up. The main aim of the present
study is to set a theoretical and methodological basis to develop a new approach to
complex systems with “social atoms”.
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How Non-normal Is US Output?

Reiner Franke

1 Introduction

Macroeconomic variables or the shock processes that drive them are commonly
considered to be largely compatible with normal distributions. This supposition is
not just a semantic issue, for example in assessing whether or not our economic
system, occasional crises notwithstanding, is mainly well-behaved and the risk from
the random perturbations in it can be satisfactorily controlled. It is also an important
question in the academic field, where the flourishing business of the estimation of
DSGE models with its present predominance of likelihood techniques heavily rests
on the assumption of normally distributed innovations.

There have nevertheless been always some doubts about the prevalent view that
takes normality for granted, in the first instance with respect to output and employ-
ment variables (as far as the empirical side is concerned, the following will refer to
US data). Independently of discussions among heterodox theorists (like Blatt 1983),
concerns about asymmetry were already raised some 30 years ago. The possibly
best-known contribution at that time was Delong and Summers (1986) who, how-
ever, did not get much evidence for this. More recently, the tests by Bai and Ng (2005)
failed to establish significant support of skewness or excess kurtosis. In contrast to
these negative results, Christiano (2007) obtained significant excess kurtosis in the
residuals of an unconstrained estimated vector autoregression. Interestingly, on the
other hand, this did not prove sufficient to distort the Bayesian analyses that use the
normal likelihood.

Other work finds indications of non-normality, too, and tries to take them into
account in their theoretical models. De Grauwe (2012) concentrates on the kurtosis
of output and emphasizes that, despite the normal shock processes, the nonlinear
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mechanisms in his model are able to reproduce this feature with great success.1

While De Grauwe’s discussion remains more informal, Ruge-Murcia (2012) rig-
orously estimates the third-order approximation of a DSGE model by the simu-
lated method of moments, an approach that need not rely on normality assumptions.
Within this framework he can reject the null that productivity innovations are nor-
mally distributed in favour of the alternative that they follow an asymmetric Skew
normal distribution.2

Besides studying skewness and kurtosis, there is another approach that assesses
deviations of the empirical distribution in its entirety from normality. To this end,
the analysis refers to the class of the exponential power (or Subbotin) distributions.
Their general shape is governed by a parameter b, where b = 2 yields the nor-
mal distribution and lower values give rise to progressively fatter tails. An alterna-
tive benchmark is then b = 1, at which the Laplace distribution prevails.3 Several
papers by Fagiolo et al. (2007, 2008, 2009) claim it a universal phenomenon for
output growth rates that estimates of b are so low that normality has to be rejected.
Ascari et al. (2012) even raise this into the category of a stylized fact, i.e., a stan-
dard that macroeconomic models should seek to meet. Checking this with calibrated
versions of a Real Business Cycle and a New-Keynesian model, they find out that
the former can replicate this type of fat tails exogenously but not endogenously, and
the latter neither endogenously nor exogenously. Thus, this work raises a serious
criticism against the current practice of DSGE modelling.

The present paper sets in with the observation for US quarterly output data that
all of the studies revealing non-normality are based on samples covering 40 years
and more. While such a sample size is certainly desirable from an econometric
point of view, so many things have changed historically over this span of time that
also the economy may be suspected of having shifted from one regime to another.
Somewhat strangely, this possible problem is not touched upon in any of the studies.
After all, the distinction between the two periods of the Great Inflation (GI) and the
Great Moderation is a well-known topic in macroeconomics. In addition and more
specifically, McConnell and Perez-Quiros (2000) provided firm statistical evidence
of a structural break in the volatility of output growth around 1984.4

An obvious question thus arising is whether the features of non-normality can also
be detected in the two subsamples before and after the structural break, even though
with weaker rejections of normality because of the smaller samples. Regarding the
long sample period, one may furthermore ask if the non-normality, if it is found to
prevail at all, is perhaps spurious in the sense that it could be alternatively explained

1 The strong nonlinearities originate with the agents’ switching between different types of boundedly
rational expectations, which he puts forward as a pronounced alternative to DSGE modelling.
2 The moments themselves on which the model is estimated include the third-order moments of
hours worked and of the consumption and investment growth rates; see Ruge-Murcia (2012, p. 931,
Table 10).
3 It plays a prominent role in cross-sectional distributions of firm characteristics such as growth
rates and profit rates; see, e.g., Alfarano et al. (2012).
4 Which from a theoretical point of view might also be due to multiple equilibria.
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by the pooling of two samples, which are characterized by two normal distributions
with—according to the structural break—different dispersion. Apart from this, it may
be checked whether the different test statistics used in the aforementioned literature
all come to similar conclusions. In short, it is time that the issue of non-normality,
even if confined to the levels and growth rates of US output, was subjected to a careful
reconsideration. This is the purpose of the present paper.

The investigation is organized as follows. Section 2 presents five test statistics to
detect non-normality. On the one hand, these are the popular Jarque-Bera test and two
generalizations that take account of the serial correlation in the data. The other two
tests are concerned with the overall shape of the distributions, namely, the Anderson-
Darling test and the shape parameter of the exponential power distribution, which
has already been mentioned. The remaining sections deal with the quarterly data of
US output, where we focus on the growth rates of GDP and the output of the firm
sector after the often employed CBO output gap will have been found to offer less
prospects for non-normality.5 Three different samples are moreover considered: the
full sample of 47 years from 1960 on, and its decomposition into two almost equally
long subsamples.

Section 3 applies the five tests to the empirical data and to the residuals from
suitable autoregressions. While the conclusions drawn here are based on asymptotic
theory, Section 4 uses Monte Carlo (MC) experiments to learn more about the small
sample properties. Section 5 takes up the idea from above and indeed finds out that
the non-normality results in the full sample could be satisfactorily explained by two
estimated AR(p) processes over the two subsamples, the two normally distributed
innovations of which have distinctly different variances.

As we will learn that the only feature of possible non-normality in a subsample is a
low estimate of the shape parameter of the exponential power distribution, Sect. 6 puts
forward the alternative hypothesis that the growth rates follow a Laplace distribution.
This gives rise to the most pronounced result of our work: the Laplace can be safely
rejected in favour of normality in one subsample, and it cannot be rejected in the other.

Lastly, Sect. 7 is concerned with the precision with which the shape parameter
can be estimated. This issue is of particular relevance for models that may have the
ambition to reproduce this aspect of normality or non-normality. Section 8 concludes,
and an appendix contains several technical details.

2 Test Statistics to Detect Non-normality

There are various fields in applied macroeconomic research where it is of interest
whether a given realization of a stochastic process could have been obtained from
a normal distribution. The most common approach to checking the normality of
the marginal distribution of the data are procedures that test whether the third and

5 The CBO output gap is based on the Congressional Budget Office’s estimates of potential output.
See the appendix for the data source.
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fourth moments coincide with those of the normal distribution.6 Accordingly, let
a stationary univariate time series {xt }Tt=1 of length T be given with mean x̄ and
estimated standard deviation σ̂ . Its skewness S and kurtosis K are estimated as

Ŝ = μ̂3/ σ̂
3

K̂ = μ̂4/ σ̂
4 (1)

μ̂k = (1/T )
T∑

t=1

(xt − x̄)k , k = 2, 3, 4 (hence μ̂2 = σ̂ 2)

The normal distribution has S = 0 and K = 3. When K̂ is “sufficiently” larger than
3, the distribution of xt is said to exhibit excess kurtosis, or to have fat tails. It is also
well-known that reliable estimates of the kurtosis require a fairly large number of
observations, larger than the typical sample size of macroeconomic quarterly data.
For this reason and in order to limit the discussion, we focus on tests of the joint
hypothesis S = 0 and K = 3. Because of its simplicity the probably most popular
test statistic is that of Jarque and Bera (1980),

J B = T
[ Ŝ2

6
+ (K̂ − 3)2

24

]
= T

[ μ̂2
3

6 μ̂3
2

+ (μ̂4 − 3 μ̂2
2)

2

24 μ̂4
2

]
(2)

(the second expression is added for a better comparison with the generalised statistic
below). If the random variable xt is iid and normally distributed, JB is χ2-distributed
with two degrees of freedom. Thus, normality will be rejected at a 5 % significance
level if JB exceeds 5.99. (Throughout the paper, “significance” statements will be
based on this level.)

There are two problems with this straightforward rule. First, the small-sample
properties of the test are different from the asymptotic result. Second and more
seriously, most macroeconomic time series data violate the prerequisite of iid. In
the presence of serial correlation, however, the true asymptotic variances of S and
(K − 3) are no longer consistently estimated by the denominators of JB, which
implies that even asymptotically the rejection probabilities deviate from the desired
nominal levels.

We consider two approaches to remedy these distortions, both of which require
no deep assumptions on the true data generation process.7 The first approach, which
is borrowed from Lobato and Velasco (2004), modifies the variances 6 and 24 in (2)
directly by taking the autocovariances of the series into account. The main correction

6 There are nevertheless other probability distributions with the same two moments; see distribution
S4 in Bai and Ng (2005, p. 60), the skewness and kurtosis of which are reported in the first four
tables of this paper.
7 Vavra and Psaradakis (2011) provide a third and more ambitious generalisation of JB, which
is based on smoothed quantiles and also uses more robust measures of the skewness and kurtosis.
There is nevertheless no simple rule of thumb for the optimal specification of these quantiles (p. 14),
which is the reason why we better wait for additional experience with this method.
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terms are here F (3) and F (4) for the skewness and kurtosis statistics, respectively,
defined as F (k) = ∑∞

j=−∞ γ ( j)k with respect to the population autocovariances
γ ( j) of order j and k = 3, 4. For finite samples these sums can be estimated as

F̂ (k) =
T−1∑

j=1−T
γ̂ ( j) [ γ̂ ( j) + γ̂ (T−| j |) ]k−1

γ̂ ( j) = (1/T )
T−| j |∑
t=1

(xt − x̄) (xt+| j | − x̄)

(3)

(γ̂ (T ) is set equal to zero). Lobato and Velasco (2004, p. 676) establish that asymp-
totically, for weakly dependent processes and under the null hypothesis of normality,
their generalized Jarque-Bera statistic (GJB) is again χ2(2) distributed,8

G J B = T
[ μ̂2

3

6 F̂ (3)
+ (μ̂4 − 3 μ̂2

2)
2

24 F̂ (4)

]
d−→ χ2(2) (4)

This specification is indeed meaningful since F̂ (3) and F̂ (4) are ensured to be pos-
itive (p. 678). From a comparison of (2) and (4) it is furthermore easily seen that
asymptotically GJB reduces to JB if the stochastic process is iid, since in this case
γ̂ ( j)→ 0 for all j �= 0 in (3) and γ̂ (0) = σ̂ 2 = μ̂2. With positive serial correlation
in the first few lags of a time series, however, the denominator in GJB will be larger
than in JB, so that GJB will fall short of JB and the chances of rejecting normality
would decrease.

Also a converse conclusion holds true: under certain regularity conditions (tech-
nically requiring finite moments up to the sixteenth order) GJB diverges to infinity
if the null is violated, that is, if for the population moments μ3 �= 0 or μ4 �= 3μ2

2.
Hence, normality will be rejected with a probability tending to one as T →∞.

The second approach to correct the asymptotic variance of JB was proposed by
Bai and Ng (2005). This generalization is less closely related to JB than GJB. Rather,
the testing procedure is more similar to a GMM test of overidentifying restrictions,
though some subtle differences still remain. In detail, define

zt =

⎡
⎢⎢⎣

xt − x̄
(xt − x̄)2 − σ̂ 2

(xt − x̄)3

(xt − x̄)4 − 3σ̂ 4

⎤
⎥⎥⎦ , z̄ = (1/T )

T∑
t=1

zt

yT =
[

(1/
√

T )
∑

t (xt − x̄)3

(1/
√

T )
∑

t [ (xt − x̄)4 − 3σ̂ 4 ]
]

α̂ =
[−3σ̂ 2 0 1 0

0 −6σ̂ 2 0 1

]

8 The square for μ̂2 in the kurtosis expression is missing in the definition of their statistics SK and
G (Lobato and Velasco, 2004, pp. 674f), which is a typo.
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Φ̂ = Γ0 +
p∑

j=1

(1− j

p+1
) (Γ j + Γ ′j ) , p = [T 1/4]

Γ j = (1/T )
T− j∑
t=1

(zt − z̄)(zt+ j − z̄)′ , j = 0, 1, . . . , p

The (4×4)matrix Φ̂ is a Newey-West estimator of the long-run covariance matrix of
zt that uses the linearly declining weights of the Bartlett kernel, where the maximal
lag length [T 1/4] (the smallest integer greater than or equal to T 1/4) is determined
by a common rule of thumb (see Greene 2002, p. 267, fn 10).9 On this basis, Bai
and Ng (2005, p. 52) specify a statistic, which we denote BN, and (for any consistent
estimator of the covariance matrix of zt ) demonstrate that its distribution converges
to χ2(2):

B N = y′T (̂α Φ̂ α̂′)−1 yT
d−→ χ2(2) (5)

The tests so far were concerned with the values of the third and fourth moments
as they would be implied by the normal distribution. We are now turning to two
tests that seek to take account of the shape of the entire distribution. The first one
is the Anderson-Darling test. It is based on an evaluation of the squared differences
between the hypothesized and the empirical distribution, which however places more
weight on the observations in the tails of the distribution. In this respect it follows a
similar idea to the kurtosis. Generally, if F = F(x) is the hypothesised distribution
and FT = FT (x) the empirical cumulative distribution function, their distance is
measured as

T

∞∫
−∞

[FT (x)− F(x)]2
F(x) [1−F(x)] d F(x)

To apply this concept to the normal distribution and finite samples, the data must
first be transformed into the standardised values,

yt = (xt − x̄) / σ̂ , t = 1, . . . , T (6)

and arranged in ascending order, y1 ≤ y2 ≤ · · · ≤ yT . These yi enter the standard
normal cumulative distribution function,Φ = Φ(y), to set up the Anderson-Darling
test statistic AD.10 Together with a simple rule to reject normality at the 5 % signifi-
cance level, the prescription reads,

9 Lobato and Velasco (2004, p. 675) emphasise that their statistic (4) does not require the introduction
of a kernel function or such a user-chosen number.
10 It is well-known that Φ(·) has no closed-form analytical expression. The details of its numerical
approximation are given in the appendix.
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A2 = −T − 1
T

T∑
i=1
{ (2i−1) lnΦ(yi ) + [2(T−i)+ 1] ln[1−Φ(yi )] }

AD = A2
[

1 + 4
T − 25

T 2

]
; normality rejected if AD > 0.787

(7)

While the Anderson-Darling test statistic tells us when to reject normality, it does
not indicate along which dimension the empirical distribution may differ most from
normality. In this respect a parametric approach is more useful that includes the
normal distribution as a benchmark case; in particular, when it also provides infor-
mation about whether or to what extent the empirical distribution may exhibit fat-tail
behaviour. A flexible statistical tool for this is the family of the exponential power
(EP) densities, or the Subbotin density functions,

f (x; b, a,m) = 1

2a b1/2 Γ (1+1/b)
exp

{ −1

b

∣∣∣ x − m

a

∣∣∣b } (8)

where Γ (·) is the Gamma function.11 The three parameters identifying the EP distri-
butions are the location parameter m, the scale parameter a, and the shape parameter
b. The latter determines the fatness of the tails and is therefore of prime importance
to us. The bell shape of the normal density arises with b = 2, while for b→∞ the
distribution tends towards the uniform distribution with support [−a, a]. On the other
hand, as b decreases from the Gaussian benchmark, the shoulders of the distribution
become smaller and the tails become fatter. The benchmark of practical concern in
this direction is b = 1, which, in a semi-log diagram, yields the tent shape of the
Laplacian density (we will encounter it in Sect. 6, Fig. 1, further below).

Since b is a parameter characterising the global shape of the distribution, it can
be expected that it will also be a more robust measure of the fatness of tails than
the kurtosis. Theoretically, the kurtosis implied by an EP distribution is given by
K = K (b) = Γ (1/b) Γ (5/b) / [Γ (3/b)]2 (Chiodi 1995, Sect. 2). Even if one prefers
to refer to the kurtosis as a more familiar measure of fatness, this relationship may
be used as a check of the direct empirical calculation of K . To get a first impression
of its order of magnitude, vis-à-vis K = 3 for the normal distribution, the kurtosis
of the Laplace distribution rises to K = K (1) = 6.

There are several likelihood methods to estimate the parameters of an EP distribu-
tion.12 More convenient for us is a moment matching procedure proposed by Mineo
(1994, 2003). Based on a generalised index of kurtosis as it can be derived for EP
distributions, it permits an isolated estimation of b. For sample sizes of 100 or 200
observations it also appears to give the most accurate results (Mineo 2003, p. 118).

11 More general versions of (8) can also account for asymmetries; see, e.g., Bottazzi and Secchi
(2008), or Zhu and Zinde-Walsh (2009). We neglect this extension since skewness will not be much
of a problem for us, the convenient moment-based estimation approach of Eq. (9) below would no
longer be applicable to two shape parameters b1 and b2, and we feel that our samples are typically
too small for reliable results.
12 These estimations are not always without problems: for sample sizes less than 100 it may happen
that the likelihood function has no minimum within a reasonable range (Agró 1995, p. 527).
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Fig. 1 Estimated densities (EP/nonparametric densities: solid lines/dots)

The approach does not require the optimisation of an objective function, but only the
solution of an implicit equation in b, which is indicated by the exclamation mark in
the first equation:

σ̂

d̂

!=
√
Γ (3/b)Γ (1/b)

Γ (2/b)
, d̂ = (1/T )

T∑
t=1

|xt − x̄ |

iid normality rejected at 5 % level if b̂ <

{
1.578 for T = 190
1.456 for T = 95

(9)

The expression on the right-hand side of the first equation is the aforementioned
alternative index of kurtosis. It is strictly decreasing in b over a sufficiently wide
range, hence the equation has a unique root b̂.13 On the other hand, the left-hand side
of the equation shows that in the determination of b̂ only the second, and no longer
the fourth moment is involved, which confirms the expectation articulated above of
more robustness.

The simple rule for rejection in (9) is a one-sided test (we are not interested in
discriminating b = 2 against high values of b). The critical values are readily obtained
from 10,000 samples of T random draws from the standard normal. Computing the
estimate b̂ for each sample, it only remains to determine the 5 % quantile of this
collection. The specific values of T referred to will be the typical sample sizes in our
empirical analysis.

13 Estimation of b via the implicit equation in (9) is also mentioned in Bottazzi (2004, p. 4), the
manual on the software SUBBOTOOLS, which is online freely available at http://cafim.sssup.it/
~giulio/software/subbotools. It has, however, to be noted that in older versions—but no longer in the
current one—there are two misprints in his formula (the software source code in file subbofit.c,
on the other hand, is correct).

http://cafim.sssup.it/~giulio/software/subbotools
http://cafim.sssup.it/~giulio/software/subbotools
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It should finally be mentioned that Fagiolo et al. (2008) also experimented with
the Cauchy, the Student-t and the Lévy-Stable distribution as alternatives to fit fat-
and medium-tailed distributions of output growth data. They conclude, however, that
the EP density seems to outperform the other three density families.

3 Asymptotic Results for the Empirical Data

Our empirical study is concerned with quarterly output data of the US economy, both
in levels and first-differences. Regarding the former, we work with the CBO output
gap, while for the growth rates we do not only refer to real GDP (in chained 2005
dollars), but also to the output of the firm sector, which for many models appears
to be the more appropriate output concept.14 The growth rates are annualised and
denoted by “gGDP” and “gYF”, respectively, the gap series is referenced as “Gap”.

The data covers a period of not quite 50 years. It disregards the 1950s and begins
in 1960:Q1, and we let it end in 2007:Q2 before the first signs of the financial crisis
in the real sector.15 This amounts to a total of T = 190 quarters. Already on the basis
of general observations, a part of macroeconomic research divides such an interval
into two subsamples, which are commonly called the periods of the GI and the Great
Moderation (GM). Estimations are then interested in possible parameter shifts in
structural models, representing, for example, a different conduct of monetary policy
in the two subperiods. With respect to output there is also rigorous econometric work
showing a significant decline in its volatility. In fact, with quarterly growth rates from
1953:Q2 up to 1992:Q2, McConnell and Perez-Quiros (2000) reveal strong evidence
for one—and only one—structural break, where the most suitable point estimate for
the break date is 1984:Q1. We follow the upshot of their analysis and, maintaining
the expressions GI and GM, distinguish two subperiods of almost equal length, GI:
1960:Q1 – 1983:Q4 (T = 96 observations) and GM: 1984:Q1 – 2007:Q2 (T = 94).
The acronym for the full sample period is GIGM.16

The main part of Table 1 computes the test statistics from the previous section
for the three sample periods and the three original time series. They are recorded
in normal font size. If we first consider the full sample period then, as emphasised
by the bold face figures, it leaps to the eye that the five statistics lead to very differ-
ent conclusions concerning non-normality (also “NN” henceforth). One statistic (b̂)
recognises NN for all three series, and one (BN) rules it out for them. JB and AD
conclude NN in two but not identical cases, GJB concludes it in only one case. So not

14 In essence, the “firm sector” is non-financial corporate business. The data sources are given in
the appendix.
15 While a “black swan” event like the recent crisis in the financial sector is presumably conducive
to fat tails here and in the rest of the economy, we are more interested in the question whether
non-normality could have also prevailed under less extreme circumstances.
16 In the context of the so-called New Macroeconomic Consensus there is some discussion about
a shift in monetary policy as a major cause for the structural change. Here, however, we need not
speculate about this issue.
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Table 1 Test statistics (empirical series and residuals from AR(p) estimations)

GIGM GI GM
Gap gGDP gYF Gap gGDP gYF Gap gGDP gYF

JB: 7.69 11.86 3.42 1.44 0.17 0.62 0.77 1.84 0.58
24.73 27.91 6.87

GJB: 1.66 11.53 3.28 0.38 0.17 0.61 0.17 1.73 0.55
24.51 27.64 6.80

BN: 1.44 4.09 1.39 0.80 0.26 0.56 0.59 2.72 0.46
5.61 3.43 1.49

AD: 0.68 1.47 0.82 0.29 0.36 0.37 0.22 0.62 0.60
1.80 1.19 0.39

b̂: 1.45 1.18 1.43 2.07 1.91 1.84 2.54 1.29 1.40
1.09 1.25 1.57 1.56 1.90 1.93 1.56 1.95 1.68

Note Bold face figures indicate candidates for a rejection of normality. First row of a test statistic
refers to the empirical series, second row to the residuals from an AR(3) estimation (in case of the
CBO gap) or an AR(2) estimation (in case of the growth rates gGDP and gYF). Regarding the first
four statistics, the latter entries are omitted in GI and GM since they offer no clue to non-normality

only across the different types of test statistics, but also even within the class based on
skewness and kurtosis (JB, GJB and BN), the evidence is rather mixed. The different
outcomes illustrate that one should be cautious with claims of “non-normality” that
are referring to no more than one test statistic.

The results can be checked by purging the time series of their autocorrelation struc-
ture. Here, the data are conceived of as being generated by a convenient stochastic
process. General econometric studies often content themselves with AR(1) processes
for this purpose, while Christiano (2007) was more ambitious and employed a four-
lag VAR with seven variables (for monthly data, though). We believe that in the
present context the uncorrelated residuals from AR(p) estimations are good enough,
where for all three sample periods a lag length p = 3 is sufficient for the CBO
output gap, and p = 2 for the two growth rates (parsimony in the number of para-
meters is not important in this respect, but higher lags yield no further noteworthy
improvement in the fit).

The test statistics for these residuals are the entries in smaller font size in Table 1.
Regarding GIGM both can happen, that normality is accepted for the depurated
series and not for the original data (AD for gYF), and the other way around (in
several cases). Most remarkable are GJB and AD for the output gap, according to
which the innovations in the AR(3) process are strongly non-normal, while despite
the linear structure this property does not carry over to the data produced by these
shocks.

Almost any evidence of non-normality disappears when the shorter subperiods of
GI and GM are considered, which holds for the original and the AR-filtered series
alike. For all but the b̂-test, the statistics are far from their critical values. Only for
the two growth rates in GM (but not GI), values of b̂ are obtained that fall short of
the critical values given in Eq. (9). The low value of b̂ = 1.29 for gGDP is especially
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striking since the residuals from the AR(2) estimation are almost perfectly normal
according to this criterion.

4 Small-sample Results for the Empirical Data

The critical value for b̂ in (9), which in Table 1 lead us to a rejection of normality
for gGDP and gYF in GM, was established under the null hypothesis of independent
draws from a normal distribution. Since also for the uncorrelated AR(2)-residuals of
the series one fails to reject normality of the shape parameter, doubts may arise as
to whether the NN conclusion could be maintained once the serial correlation in the
original series is properly taken into account (even if it is not overly strong). Regarding
the conclusions from the four other test statistics, they are based on asymptotic theory
and one may ask for their small-sample properties. These questions bring us to the
second stage of the analysis, which is a battery of straightforward MC experiments.

To this end we take the AR(p) estimates of a time series and simulate this process
over the empirical sample size (after discarding a longer period at the beginning to
rule out any transient effects). The innovations are independently drawn from the
normal distribution with a variance equal to the estimation’s squared standard error.
This is repeated 10,000 times and for each of these MC samples the test statistics
are computed.

By construction, the statistics should diagnose normality. According to the asymp-
totic theory for JB, GJB, BN, AD and the iid assumption for b̂ in (9), the rules for
rejecting normality should be false in just 5 % of the 10,000 MC samples. Specif-
ically, we have here stylised but empirically relevant conditions on time series data
for which we can check how reliably this is done. In econometric terms, we can
determine the so-called size of the five tests, that is, the probability of committing a
type I error by rejecting normality when in fact this null hypothesis is true. This is
the first kind of results presented in Table 2, which are independent of the values for
the empirical test statistics in Table 1.

Related to this information are the quantiles of the collection of the simulated
statistics; the 95 % quantiles for JB, GJB, BN, AD and the 5 % quantile for b̂.
These critical values for rejection in small samples under the present circumstances
are reported in column crit in Table 2. The statistics emp of the empirical samples
(reproduced from Table 1) can now be directly compared to them for a definite
conclusion. In addition, we can compute what quantile q a value of emp constitutes
in the MC distribution and obtain the p-value of the corresponding test statistic from
it, which has the following interpretation: if instead of crit, the value emp of the
empirical statistic were employed as a benchmark for rejection, then for JB, GJB,
BN, AD the percentage p = 1 − q would be the error rate of falsely rejecting
normality, and for b̂ it would be p = q. Certainly, at this paper’s significance level
non-normality would only be concluded with a p-value of less than 5 %, and p-values
above 5 % would give us an idea of how safe we can feel when accepting normality.
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Table 2 Statistics from AR(p) simulations with normal innovations

Note Based on 10,000 MC samples for each series and subperiod. Size and p-values in per cent,
column “crit” indicates the critical quantiles of the MC distributions (95 and 5 %, respectively),
and “emp” the empirical statistics from Table 1

Table 2 is limited to the series and sample periods for which non-normality was
not outright denied by the tests in Table 1. To begin with the evaluation of the size in
Table 2, its values for the single statistics (except perhaps BN) are all satisfactorily
close to the nominal level of 5 % if we look at the two growth rates. By contrast,
there are dramatic deviations for JB and AD when these tests are applied to the CBO
output gap. Regarding JB, this is due to an increase of the asymptotic rejection level
from χ2(2) = 5.99 to a 95 % quantile of 17.71, for AD the previous standard level
of 0.787 increases here to 2.435. The decline of the 5 % level of b̂ from 1.578 (for
T = 190) to 1.394, which raises the size of this test to 12.1 %, is a weaker but still
unpalatable phenomenon. These deteriorations are mainly caused by the strong serial
correlation of 0.93 in the output gap, which of course are accounted for by the AR(p)
coefficients in the simulations. In comparison, the size effects from the correlation
between 0.23 and 0.30 in the growth rates appear rather unimportant.

The approach of capturing the autocorrelation structure of the output gap by the
Monte Carlo simulations has also consequences for the NN conclusions. Now, there
is no statistic left that would recommend a rejection of normality; only b̂ has a
p-value that is above but not too far away from the 5 % level. Therefore, to sum up
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our evidence concerning the CBO output gap, we do not have sufficient support of
any non-normal features in this series.17

Prospects of non-normality are better for the growth rates of output. Regarding
the full sample period, four of the five p-values reject normality for gGDP (even
strongly so), and normality of the firm sector growth rates is rejected by AD and b̂.
Regarding the GM subsample, recall that only the b̂ test provided evidence against
normality in Table 1. This tentative result is now fully confirmed by the Monte Carlo
experiment; cf. the bottom part of Table 2. The fact that here the three statistics
based on skewness and kurtosis do not offer the least clue against normality suggests
that the test based on the EP distributions measures something more general. Given
the p-values of 13.0 % and 13 % for AD, this test, which likewise considers the
shape of an entire distribution, seems to be somewhere in the middle between the
two principles. Hence, summarising claims of non-normal growth rates can only be
properly assessed with additional information about the particular specification of
their non-normality.

Finally, we can also try to make sense of the fact that for gGDP in GM the estimated
b̂ = 1.29 reveals a non-negligible non-normality, whereas the estimated innovations
are nearly normally distributed (b̂ = 1.95 in Table 1). With the linear AR(2) filter,
as we have just seen for b = 2, this should be an extremely rare event. A tentative
alternative conclusion could thus be that generally an AR(p) process, or even a
multivariate VAR, may not be a good hypothesis, and that the strong differences
in the two statistics are rather indicative of a strong nonlinear mechanism in this
sample period.

5 A Two-regime Monte Carlo Experiment

As already pointed out by McConnell and Perez-Quiros (2000), the unique struc-
tural break they identify consists of a significant decline in output volatility. This
phenomenon is also clearly visible in our three empirical series, even in time series
diagrams. Table 3 documents a decrease of about one-half from GI to GM not only
in the standard deviations of the empirical data, but also in the standard deviations
of the residuals from the AR(p) estimations. One needs no formal statistical tools
to classify this as a significant change. On the other hand, the changes in the mean
growth rates or the AR(p) slope coefficients are much more moderate.

Intuitively, if we have a time series with strong noise in the first half and weak
noise in the second half, one may suppose that this gives rise to a higher kurtosis,
since the higher values (in modulus) in the first half become a rarer event when
considering the full sample. The argument should be valid even if the random forces

17 This finding, in particular, means that De Grauwe’s (2012) reference to a non-normal output
gap, which he points out his model is successfully able to reproduce, is not warranted; not even if
one goes beyond his argumentation with the kurtosis or the Jarque-Bera statistic. So far, however,
this observation only indicates that the issue of “non-normality” requires further discussion of what
his model should more precisely achieve.
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Table 3 Standard deviations
of the empirical series and
their AR(p) residuals (upper
and lower row, respectively)

Gap gGDP gYF
GI GM GI GM GI GM

2.93 1.43 4.45 2.12 4.12 2.62
0.98 0.44 4.28 1.90 3.89 2.47

Table 4 Two-regime Monte Carlo simulations, pooling AR(p) from GI and GM

Gap gGDP gYF
crit emp p crit emp p crit emp p

JB : 65.48 7.69 49.9 50.49 11.86 45.5 22.25 3.42 46.9
GJB : 14.92 1.66 51.9 48.45 11.53 44.9 20.94 3.28 46.5
BN : 7.01 1.44 75.7 8.12 4.09 47.1 5.90 1.39 68.9
AD : 4.66 0.68 81.6 2.27 1.47 25.4 1.21 0.82 17.9
b̂ : 1.02 1.45 38.9 1.09 1.18 14.8 1.32 1.43 14.8

are normally distributed in each of the two subsamples, and a certain amount of
non-normality may also be indicated by other test statistics. The conjecture that a
structural change in the volatility may contribute to the non-normality results above
can, however, be readily checked by another Monte Carlo experiment.

Consider the GDP growth rates over GIGM and take the NN results based on JB,
GJB and AD in Table 2 as an example. The simulated data generation process was
an AR(2) over the full length of T = 190 quarters, where the normal innovations
yielded values of the test statistics that are in their vast majority below the empirical
estimates (conversely for the b̂ statistic). We now maintain the null hypothesis of
normal innovations but introduce the regime shift from GI to GM into the simulations.
That is, the first TG I = 96 periods of the simulation (again after a suitable transitory
period) adopt the AR(2) coefficients estimated over GI, and the second TG M = 94
periods use the coefficients as they have been estimated over GM. This, in particular,
includes the different variances for the normal random draws (which according to
Table 3 are equal to (4.28)2 and (1.90)2, respectively).

The question we then ask is whether or to what extent the structural break tends
to increase the simulated JB, GJB, AD statistics (and to decrease the values of b̂).
The answer in the middle of Table 4 is unambiguous. Compared to the experiment in
Table 2, we observe a drastic increase in the critical 95 % quantiles of these statistics
(and a sizeable decrease of the 5 % quantile of b̂). The quantiles even exceed the
corresponding empirical value (or fall short of it in case of b̂), with the consequence
that the p-values distinctly rise above the 5 % levels.

The same effects are obtained for the growth rate gYF and, for completeness, the
output gap. Overall, there is no single p-value lower than even 10 %. It can therefore
be said that the previous findings of non-normality over the full sample period may
be spurious; all evidence of non-normality could be explained by normal innovations
in a simple linear stochastic process once one takes account of the significant decline
in their volatility. While admittedly, the experimental design with the sudden change
at the break data is somewhat crude, the high p-values in Table 4 do not give us much
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reason to expect that a smoother transition from one regime to the other would lead
to an essential weakening of the conclusion.

6 The Laplacian as an Alternative Hypothesis

Because of the unconvincing evidence of non-normality over GIGM and since in the
subsamples GI and GM the only indicator of a possible non-normality is the shape
parameter b of the EP distribution, we will in the remainder of the paper be exclusively
concerned with this statistic. Given that for the growth rates in GM normality was
strongly rejected by the tests in Table 2, we may put forward an alternative hypothesis.
As mentioned above, already for systematic reasons the Laplace distribution with
b = 1 is usually considered to be a natural antithesis to the normal distribution
with b = 2. As furthermore the growth rate estimates b̂ = 1.29 and b̂ = 1.40 are
closer to 1 than to 2, b = 1 does not appear to constitute an unreasonable alternative
benchmark distribution.

Let us begin with a geometric account of the goodness-of-fit of the shape parameter
estimations for the growth rates in GI and GM. More specifically, we can also gain
an intuitive impression of how far their distributions are from the two benchmark
distributions. To this end, we draw the densities functions of the standardised GDP
growth rates z in the semi-log diagrams in Fig. 1, where with respect to the estimated
scale and location parameters â and m̂ and the original growth rates x = gGDP, the
standardised values are given by z = (x − m̂)/â.18 The diagrams for the firm sector
growth rates do not look very different, so Fig. 1 is sufficiently representative.

The left-hand panel in Fig. 1 deals with the GI subsample. The exponential power

density constituted by the estimated shape parameter b̂ = 1.91 is drawn as the
bold (red) line. The dots distributed around it are the density values of the T = 96
observations of this period. That is, we use a standard nonparametric approach to
compute a kernel density estimator f̂ = f̂ (z) of the empirical values of z and for
each observed zt plot the point (zt , f̂ (zt )).19 Over a wide range and especially in
the middle part, these points really nestle into the smooth curve of the theoretical
density function. The estimation thus inspires confidence, its outcome being more
than just the result of a somewhat abstract and technical concept.

The log-density of the normal distribution looks very similar to the EP density
with b = 1.91, which is the reason why it has been omitted in this diagram. The
other polar case of the Laplacian density, where b = 1, is the tent-shaped thin
solid line. Over most of the empirical range it yields a clearly worse fit. One might
nevertheless argue that it could perhaps provide better results for the moderate and
more extreme negative values of zt , which overall may even suggest an asymmetric
estimation approach (as it was hinted at in fn 11) with different values of b for

18 A prescription of how â and m̂ are obtained after b̂ has been estimated before can be found in
the Appendix.
19 We employ the Epanechnikov kernel for this purpose; see Davidson and MacKinnon (2004,
pp. 678–683) for the computational details.
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positive and negative values of z. Here, we mainly abstain from this idea since given
the relatively small sample size, this would also require an econometric discussion
of the risk of overfitting.

The right-hand panel in Fig. 1 presents the results for the GM period. The estimated
density function with b̂ = 1.29 spreads wider away from that of the normal distrib-
ution (the curve with b = 2 in the diagram), thus giving greater weight to the outer
regions. To some part this seems to be an implication of the sharper turnaround in the
centre; to another part the shallower slope of the points (zt , f̂ (zt )) with zt between
1 and 3 may contribute to it, although there are again no observations with |zt | ≥ 4.
Both the outer positive and negative points in the diagram indicate that now even the
Laplacian density would not accomplish too bad a fit.

The latter observation prompts the idea of investigating the Laplacian as a specific
alternative hypothesis to normality. More precisely, we can put forward b = 1 as
another null hypothesis and test it with similar Monte Carlo experiments to Table 2,
now with re-estimations of the b̂-statistic only. However, we wish to weaken the
underlying structural assumptions, that is, we no longer estimate an AR(p) process
(now with Laplacian innovations). Instead, we randomly draw directly from the
standardised Laplace distribution, though in such a way that also the empirical first-
order autocorrelation ρ is taken into account.20 Of course, the normal distribution
(b = 2) can be dealt with in the same way.

We run this experiment with the sample sizes T = 96 and T = 94 for GI and
GM, respectively, again 10,000 simulation runs for each case.21 Re-estimating the
shape parameter b̂ = b̂c for each such run c (c = 1, . . . , 10, 000), a distribution
{b̂c} is obtained to which we can relate the empirical estimate b̂ from above. The tests
that we thus carry out are one-sided. We reject normality if this b̂ is below the 5 %
quantile Q0.05 of the MC distribution under the null of b = 2, and we reject the
Laplacian if this b̂ is above the 95 % quantile Q0.95 of the distribution under the null
of b = 1. The p-values are determined accordingly.

The results presented in Table 5 leave us a clear and pronounced message. For both
growth rate series alike, as emphasised by the bold face figures, it can be concluded
that over the GI period the Laplacian is rejected and normality is accepted. By
contrast, over GM it is just the other way around: here normality is rejected and the
Laplacian is accepted, in the sense that it cannot be ruled out.

These results are based on the particular values of the autocorrelation in the
empirical data. Within the typical range of serial correlation in the quarterly growth
rates of aggregate output, however, the critical quantiles of the MC distributions {b̂c}
remain quite insensitive. Regarding the choice between the normal and the Laplace
distribution we can therefore conclude this subsection with putting forward a simple

20 This sampling could be viewed as an AR(1) process with Laplacian innovations, the variance
of which is linked to ρ (and, however, ρ only); see the Appendix for this and the generation of iid.
pseudo random numbers from an EP distribution. Considering the standardised Laplace distribution
suffices since the estimation of b is independent of the other parameters m and a.
21 Apart from the strong tendency towards normality documented in Table 1, subjecting the CBO
output to the same exercise is not very informative because its high autocorrelation of ρ = 0.93
leads to an extremely wide dispersion in the re-estimated values of b.
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Table 5 Testing the normal (b = 2) and the Laplace (b = 1) distribution

Note Each case based on 10,000 Monte Carlo samples of T random draws from the EP distribution
with shape b = 1 or b = 2, respectively, correlated with coefficient ρ (T being the empirical sample
size). Q0.05 and Q0.95 are the 5 and 95 % quantiles of the MC distribution of the re-estimated b̂.
p-values in per cent and for one-sided tests, that is, for b = 2 (b = 1) p is the percentage of values
in the MC distribution that are less than the empirical b̂ (larger than this b̂)

rule of thumb. Referring to a correlation coefficient ρ = 0.25 and a sample size
T = 95, it reads,

b̂ > 1.671 reject b = 1
b̂ < 1.438 reject b = 2
b̂ ∈ [1.438, 1.671] compatible with both b = 1 and b = 2

(10)

Perhaps easier to recall, we can also say that the inconclusive range is given by
1.55 ± 0.12, while above that interval normality may be accepted and below it a
Laplace distribution.

7 On the Precision of the Estimates
of the Shape Parameter

Regarding the stylised facts of the macro economy, a model may be judged by, inter
alia, how well its output growth rates are able to reproduce the empirical shape of the
EP distribution. In order to put the model’s degree of matching into perspective, we
need to know something about the precision of the estimation of b̂. Conventionally,
we thus ask for the standard error of b̂. Readily available for this is the asymptotic
variance, which can be explicitly computed as

Var(b̂) = b̂3

(1+1/b̂) Ψ ′(1+1/b̂) − 1
(11)
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where Ψ ′(·) is the trigamma function, that is the second derivative of the logarithm
of the Gamma function (Agró 1995, pp. 524f; Bottazzi and Secchi 2008, p. 5). As it
should be, Var(b̂) is independent of the location and scale of the distribution. On the
other hand, it changes with the level of the estimate. While the denominator in (11)
is rising with b̂, the increase in the numerator is stronger. Hence, the more normal
the distribution, so to speak, the higher the variance. These variations are sizeable.
For example, b̂ = 1 and b̂ = 2 give rise to a variance of 3.45 and 19.89, respectively,
meaning that the standard error more than doubles.

Now, one may be sceptical about employing (11), not only because of the relatively
small size of our samples, but also since it derives from the maximum likelihood
estimation of independent random draws from the EP distribution. In addition to
(11), we therefore make use of two bootstrap procedures to determine the confidence
intervals around b̂.

A first and obvious approach takes up the Monte Carlo experiments in the previous
section where 10,000 samples of autocorrelated data were generated under the null
hypothesis of b = 1 and b = 2. Here, we only have to replace these polar values with
the empirical estimates b̂. This procedure can be viewed as a parametric bootstrap.
The standard deviation of the collection of the re-estimated values {b̂c} gives us the
bootstrapped standard error, and suitable quantiles of it the lower-and upper-bounds
of a confidence interval.

The second approach is a nonparametric bootstrap that directly samples from
the empirical data set with its T observations. Because of the serial correlation,
three block bootstraps BB1, BB4 and BB10 are considered, which sample (with
replacement, of course) from the overlapping blocks of length 1 (the degenerate
case), 4 and 10, respectively. These frequency distributions are likewise referred to
as {b̂c}10,000

c=1 .
Table 6 reports some basic indicators of the dispersion of the bootstrap distri-

butions, namely, the 5 and 95 % quantiles and the standard deviation, that is the
bootstrapped standard error of the estimation. Once again, these statistics are com-
puted for GI and GM, and for the output growth rates of GDP and the firm sector.
What holds for all four cases is that the confidence intervals are not symmetric around
the estimated value of b: the positive deviations of b̂c from the estimate b̂ are larger
than the negative deviations. These distortions can be even so serious that the standard
errors would be misleadingly high. In the calculation of the latter we have therefore
truncated the b̂c at 5.

Concerning the question of whether the data could be compatible with the Laplace
distribution, the answer from the confidence intervals is strongly negative for the GI
period and weakly negative for GM. The normal distribution can be dismissed for the
GDP growth rates in GM if we consult the block bootstraps, but not if the parametric
bootstrap is employed. For gYF, none of the bootstrap distributions stays away from
b = 2. Generally, owing to the short sample periods, the precision of the estimations
is so limited that we have to be satisfied if at least one of the polar cases b = 1 or
b = 2 is ruled out. However, this may contradict the results from Table 5, which for
GM could not reject the hypothesis b = 1, whereas here the 5 % quantiles of {b̂c}
are bounded away from unity.
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Table 6 Dispersion statistics of the bootstrapped distributions {b̂c}

Note Sample size of the {b̂c}: 10,000. Q0.05 and Q0.55 are their 5 and 95 % quantiles, ser the
standard error, and emp the empirical estimate. PB is the parametric bootstrap with the empirical
autocorrelation, BBn the block bootstrap with block length n (n = 1, 4, 10), while σ
b is the standard
deviation that equates the normal density at its mode to the (estimated) density of BB10 at its mode

Because of the asymmetry already noted, the standard error has to be interpreted
with caution. On the other hand, such a statistic is not only a succinct informa-
tion, but also of practical use. In assessing the deviations of a model-generated b̂
from its empirical counterpart and making them comparable to the deviations of
other summary statistics (also called moments), these magnitudes have to be suit-
ably weighted; in particular, if, following Ruge-Murcia (2012) mentioned in the
Introduction, a model is estimated by the method of simulated moments. The com-
mon treatment here is a multiplication of the model deviation with the inverse of the
variance of the moment. This controls for the scale and the weight is proportionately
higher the higher the precision of the estimate, or the lower its variance.

A problem arises with asymmetric distributions like our bootstraps since then the
variance may imply a certain overstatement, such that the weight of this moment is
unduly low. To discuss this issue, consider the bold line of the distribution BB10
for gGDP over GI in Fig. 2 (BB10 is quite as good as any of the other bootstrap
distributions). The kind of asymmetry is clarified by the vertical dotted line, which
is the median of the distribution. The idea of the conventional weighting factor rests
on the supposition that the corresponding moment is nearly normally distributed
around b̂, at least in some neighbourhood of this estimate. If we try to approximate
such a distribution by a normal distribution around b̂ with the variance σ 2

BB10 of the
bootstrap, we see that it assigns probabilities that are far too low for values near b̂,
and too high for estimates less than 1.30 (roughly).
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Fig. 2 Bootstrapped density BB10 of the shape parameter estimate b̂ (‘bHat’). Note Bootstrap of
the GDP growth rates in GI. The dotted line indicates the median of BB10, the bold (red) bar at the
bottom the empirical estimate b̂

Table 7 Mode-consistent and asymptotic standard errors for b̂

b̂ : 1.00 1.29 1.40 1.84 1.91 2.00
σ
b : – 0.189 0.293 0.395 0.442 –√

Var(b̂) / T : 0.191 0.262 0.291 0.408 0.429 0.458

Note Underlying are T = 96 for b̂ = 1.84, 1.91 (GI), T = 94 for b̂ = 1.29, 1.40 (GM), and T = 95
for the benchmark cases b̂ = 1, 2.

Clearly, responsible for these distortions is too low a value of this normal density
function at b̂. A better approximation would be a normal distribution that is equally
high in the centre as BB10 at its mode. Accordingly, we specify σ
b as the value that

renders the density of N (b̂, (σ 
b )
2) at b̂ equal to the value of the estimated density

function of BB10 at its mode. Figure 2 illustrates that over the main range of BB10,
this normal distribution is indeed a suitable approximation. Hence, if reference is
made to a single standard error, this mode-consistent standard error σ
b appears to be
the most appropriate concept. Its values are shown as the boldface figures in Table 6,
certainly all of them being smaller than the standard deviations of the asymmetric
bootstrap distributions.

Even if the specification of σ
b is not backed up by rigorous econometric the-
ory, we believe that the intuitive argument of Fig. 2 makes good sense. To put the
results obtained for the mode-consistent standard errors into perspective, we should
nevertheless return to the asymptotic variance Var(b̂) in (11) and compare the corre-
sponding errors [Var(b̂)/ T ]1/2 to them. This is done in Table 7. It shows that three
of the four σ
b are amazingly close to the asymptotic standard errors. The difference

between the two statistics is larger for gGDP in GI, where b̂ = 1.29, but the ranking
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across the b̂ is still preserved. On the whole, the table suggests that despite the small
samples and the neglect of serial correlation, the asymptotic standard error is not so
unreliable after all. At least as far as the information content of a single statistical
number is concerned, one may thus save the effort of a bootstrapping procedure and
invoke (11) directly.

8 Conclusion

The primary motivation for this paper were recent claims in the literature that the
US output growth rates fail to be normally distributed. However, although all of
these studies have long sample periods of more than 40 years in common, none of
them mentions the possibility of a structural break that might or might not invalidate
the results. A straightforward Monte Carlo experiment could demonstrate that this
neglect is indeed unwarranted. Simulating two AR(p) processes for the two periods
of the GI and Great Moderation (GM) with their different variances of the—normally
distributed—innovations, the pasted growth rate series is typically found to exhibit
non-normal behaviour of the type measured in the empirical data. Therefore, as
long as no new and more sophisticated evidence is provided, the previous results of
non-normality appear to be spurious.

Correspondingly, we were then looking for non-normality within the two shorter
subsamples. Of the five test statistics that we considered, the only indication of non-
normality is the estimated shape parameter b̂ of the exponential power distribution
over GM, which distinctly falls short of the benchmark for normality, b = 2. Here,
it has to be noticed that this finding did not take the serial correlation in the data into
account, and that the estimated b̂ for the residuals of a suitable AR(p) process does
not essentially deviate from b = 2, or only moderately so. This suggests that if it is
normally distributed innovations that ultimately drive the economy, the transmission
mechanisms may be of a distinctly nonlinear nature. Alternatively, of course, there
may also be non-normalities in the shock processes themselves.

As a first and largely atheoretical step in this direction, we put forward the hypoth-
esis that the growth rates were obtained from a normal (b = 2) vis-à-vis a Laplace
(b = 1) distribution with its fatter tails, where both of them exhibit the empirical
autocorrelation. The p-values from this Monte Carlo experiment allowed us the inter-
pretation that normality prevailed in GI, whereas the Laplace distribution took over
in GM.

This is a nice and pronounced statement that has not been put up to discussion
before. On the other hand, it has to be admitted that the message cannot be fully
maintained from the perspective of the bootstrapped confidence intervals around the
estimated b̂. This qualification may be taken as a final example that any claim of non-
normality requires an additional discussion of the specific measurement approach,
in order to clarify the kind of statements that could be legitimately made. The main



156 R. Franke

problem that, however, remains is the limited number of empirical observations over
a structurally stable period of time that we have.22

Appendix

Data sources
The data of potential output are from the report “The Budget and Economic Outlook:
Fiscal Years 2012–2022” (January 2012), downloadable at http://www.cbo.gov/
publication/42912. Real GDP was obtained from the Bureau of Economic Analysis,
http://www.bea.gov/national/index.htm#gdp.

The firm sector output series was extracted from the databasefmdata.dat in the
zip file fmfp.zip, provided by Ray Fair for working with his macroeconometric
model. It is a plain textfile downloadable from http://fairmodel.econ.yale.edu/fp/
fp.htm. The acronym to identify the series is ‘Y’, as explained in Appendix A.4,
Table A.2., of the script Estimating How The Macroeconomy Works by R.C. Fair,
January 2004, which can be downloaded from http://fairmodel.econ.yale.edu/rayfair/
pdf/2003a.pdf .

Approximation of the standard normal cumulative distribution function
Let φ = φ(x) be the probability density function of the standard normal, φ(x) =
exp(−x2/2) /

√
2π , andΦ = Φ(x) the standard normal cumulative distribution func-

tion. Then according to Abramowitz and Stegun (1964, p. 932, algorithm 26.2.17),
up to an absolute error |ε(x)| < 7.5× 10−8, the latter is approximated as follows,

Φ(x) =
{

1− c if x ≥ 0
c if x < 0

where

c = φ(x) [ b1z + b2z2 + b3z3 + b4z4 + b5z5 ] + ε(x)

z = z(x) = 1 / ( 1+ b0 |x | )
b0 = 0.2316419 b1 = 0.319381530
b2 = −0.356563782 b3 = 1.781477937
b4 = −1.821255978 b5 = 1.330274429

Estimation of a and m for an exponential power distribution
Suppose that the shape parameter b has already been estimated before as described
by eq. (9) in the main text. Setting, in a ML estimation, the partial derivative of the
log-likelihood function with respect to m equal to zero, m̂ can then be obtained as
the solution of the implicit equation in m,

22 If one believes in non-normality as a stylised fact that a theoretical (stochastic) model should be
able to reproduce, one may require this feature for its long-run behaviour, but may also check its
small-sample properties—which preferably could be similarly weakly conclusive, or even incon-
clusive, as the empirical data.

http://www.cbo.gov/publication/42912
http://www.cbo.gov/publication/42912
http://www.bea.gov/national/index.htm#gdp
http://fairmodel.econ.yale.edu/fp/fp.htm
http://fairmodel.econ.yale.edu/fp/fp.htm
http://fairmodel.econ.yale.edu/rayfair/pdf/2003a.pdf
http://fairmodel.econ.yale.edu/rayfair/pdf/2003a.pdf
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T∑
t=1

|xt − m|b̂−1 sgn(xt − m) = 0

where sgn is the sign function, sgn(y) = 1 (0, −1) if y > 0 (y = 0 or y < 0,
respectively); cf. Mineo (2003, p. 112). On this basis, Chiodi (1988) has proposed
the following expression as an unbiased estimate of a,

â =
[ ∑T

t=1 |xt − m̂|b̂
T − b̂/2

]1/b̂

(quoted from Mineo and Ruggieri 2005, p. 4, Eq. (9)).

Random variates from EP distributions
In general, the generation of pseudo random numbers drawn from an EP distribution
involves draws from a Gamma distribution, which in turn requires some computa-
tional effort (see, e.g., Zhu and Zinde-Walsh 2009, p. 91, or Li (2011), Sect. 2, which
both allow for an asymmetric shape also). For the class of standardized distributions
with shape b > 1 (besides m = 0, a = 1), Chiodi (1995, Sect. 4) set up a faster
and easy-to-implement algorithms which has the advantage that it only needs the
generation of uniformly distributed random numbers. A random number z is here
generated in the following two stages23:

1. Repeat
draw U and V from the uniform distribution over [−1,+1]
and put W = |U |b + |V |b/(b−1)

until W ≤ 1 .
2. Put z = U · [−b ln(W )/W ]1/b .

While the procedure fails to be applicable to b = 1, we checked that it is robust and
works well for values of b arbitrarily close to unity. In our experiments with b = 1
it is thus perfectly sufficient to have recourse to the approximation b = 1.00001.

Of course, the draws thus obtained are iid. To take account of an autocorrelation
ρ put, in round t , zt = ρ zt−1 +

√
1− ρ2 z̃, where besides |ρ| < 1 it is supposed

that zt−1 is a draw from the previous round and z̃ a draw from the EP distribution,
both of them with the same variance σ 2. It is easily seen that then Var(zt ) = σ 2

and Corr(zt , zt−1) = ρ. It is well-known that for normal distributions, b = 2, zt

is normally distributed, too. We know of no mathematical proof that establishes the
analogous statement for general values of b. The property can, however, be confirmed
by simulation studies, even for b close to one, although (very) large samples are
required for a satisfactory convergence of the sample density function towards the
theoretical density (the smaller b or the higher ρ, the larger the samples).

23 The procedure can still be accelerated by suitable squeeze methods, at the price of a more
complicated computer code. Since the original version is already fast enough, this does not seem
worth the effort.
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Part III
Financial Market Modelling



Heterogeneous Beliefs and Quote
Transparency in an Order-Driven Market

Polina Kovaleva and Giulia Iori

1 Introduction

It has been repeatedly shown in the market microstructure literature that
trend-following strategies are common among traders. As Chiarella et al. (2009) have
vividly demonstrated, this behaviour of heterogeneous traders contributes substan-
tially to fat-tailed distribution of asset returns and long-term memory in volatility—
the phenomena that frequently emerges from empirical market data. In addition,
persistent patterns in order flow have been documented by Biais et al. (1995);
Bouchaud et al. (2002) and Ranaldo (2004). These market features, however, under-
mine market efficiency hypothesis and thus require thorough investigation of their
origins. The aim of this chapter is to explore the role of order book transparency in
the persistence of these stylised properties using an artificial double auction set-up.

This chapter contributes to the research on determinants of abnormal returns and
long-range dependencies in market data on the one hand, and the repercussions of
market transparency on the other (Lo 1991; Bouchaud et al. 2002; Lillo and Farmer
2004). In an extension of Chiarella et al. (2009) agent-based framework we associate
the chartist principle with the intertemporal demand and supply recorded in the limit
order book. We distinguish between three quote transparency regimes and evaluate
the consequent traders’ interactions. A related study has been realised by Yamamoto
(2011) who includes both chartist component based on returns and a probabilistic
mechanism that reproduces the reaction of traders to order book imbalances. In
contrast with the latter, our experiments suggest that order aggressiveness switching
mechanism implied by our model does not arise endogenously in a dark market.

P. Kovaleva (B) · G. Iori
Department of Economics, City University, Northampton Square, London EC1V 0HB, UK
e-mail: polina.kovaleva.1@city.ac.uk

G. Iori
e-mail: g.iori@city.ac.uk

R. Dieci et al. (eds.), Nonlinear Economic Dynamics and Financial Modelling, 163
DOI: 10.1007/978-3-319-07470-2_10, © Springer International Publishing Switzerland 2014



164 P. Kovaleva and G. Iori

In this chapter, we examine the role of transparency in generating stylised facts
from financial markets. The repercussions of quote transparency on market liquidity
and resilience, bid-ask spread and the price discovery process are addressed in a
companion paper (Kovaleva and Iori 2014).

The remainder of this chapter proceeds as follows. Section 2 outlines the expecta-
tions mechanism that traders use to formulate their orders. Section 3 defines market
specifications and provides the basic overview of market dynamics. Section 4 evalu-
ates the capability of our artificial market to reproduce empirical distribution of order
flows and asset returns for different degrees of transparency. Section 5 concludes and
points out the direction for future research.

2 The Model

Our model builds on the framework of Chiarella et al. (2009). We assume a double
auction market, for a single non-dividend paying stock, where NA heterogeneous
agents trade during a repeated number of rounds. In each time period t a random agent
i is called to trade. This agent formulates his order placement strategy by (i) relating
the current price of the asset to its fundamental value, (ii) analysing information
about the visible market depth and (iii) assuming some random component in the
asset returns. Traders are fundamentalists and expect in the long run (i.e. over a
period τ f ) the market to revert to trading at the fundamental price of the asset p f

t .
In the short run traders take into account the visible order imbalance to evaluate in
which direction the market is likely to move. The visible order imbalance Dlt here
is defined as the signed log difference between the total amount of stocks demanded
Qb

lt and offered Qa
lt at l best quotes at time t

Dlt = sgn
(

Qa
lt − Qb

lt

)
· ln

(
1−

∣∣Qa
lt − Qb

lt

∣∣
Qa

lt + Qb
lt

)
. (1)

If the combined volume of orders to buy is higher than the combined volume of
orders to sell, that is Dlt > 0, the trader expects a price increase, and vice versa.
We impose that the number of visible orders l, that traders use to assess the gap
between the demand and supply, describes the degree of market transparency.1 In
our analysis, we will distinguish between different levels of quote transparency
l = {∞, 5, 0}.

Finally, the trader faces an aggregate uncertainty factor ξt that we assume to be
normally distributed with zero mean and variance σ 2

ξ , ξ ∼ N (0, σ 2
ξ ). Overall, trader

1 Although in reality traders may extract additional value from the information on the visible quotes,
such as the ID of potential counterparties and guess any hidden volumes, we show below that even
tracking the buy-sell imbalance alone generates some interesting patterns.
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i builds his expectation of the return on the asset that can be achieved within his time
horizon τ i according to the following rule:

r̂ i
t,t+τ i = 1

νi
1 + νi

2 + ηi

[
νi

1
ln(p f

t /pt )

τ f
+ νi

2 D̄lt + ηiξt

]
, (2)

where D̄ is the average order imbalance over the past τ i periods, and the coefficients
νi

1 , νi
2 and ηi guide fundamentalist, imbalance and noise components of trader

i’s strategy, respectively. The projected rate of return r̂ i
t,t+τ i yields the maximum

expected price over τ i periods

p̂i
t+τ i = pt exp(r̂ i

t,t+τ i τ
i ). (3)

We assume that every trader in the market is risk-averse and holds a portfolio of
stocks Si

t and cash Ci
t , so that the wealth of trader i at time t is W i

t = Si
t pt + Ci

t .2

The optimal composition of the portfolio is determined via the maximisation of a
negative exponential utility function with a constant absolute risk-aversion ϕi =
ϕ(1+ νi

1)/(1+ νi
2), so that trader i’s demand for the stock at time t is given by:

π i
t (p) =

ln( p̂i
t+τ i /p)

ϕi V i
t p

, (4)

where V i
t is the variance of the spot returns V i

t = 1
τ i

∑τ i

j=1(rt− j − r̄ i
t )

2 with the

mean spot return r̄ i
t = 1

τ i

∑τ i

j=1 rt− j = 1
τ i

∑τ i

j=1 ln
(

pt− j
pt− j−1

)
. There exists price

p∗, a satisfaction level, that makes the current portfolio composition optimal, i.e.
π i

t (p
∗) = Si

t . If the current market price of the stock is above this level, then the
trader is willing to sell, otherwise, the trader intends to buy more stocks.

At each trading round the agent who is called to trade computes his range of
admissible prices. We assume that short selling and borrowing are not allowed. The
maximum, pM , and minimum, pm , prices at which a trader can place his order
are determined by his budget constraint. The trader is boundedly rational: he picks
randomly a price p from the current range of admissible prices. Then, depending
on the location of this price p relative to the satisfaction price p∗ and the best bid
bt and ask at quoted in the limit order book, the trader formulates his order. The
possible scenarios of the order placement are sketched in Fig. 1 with the precise
order classification in Table 1.

2 This model bears close resemblance to the framework described in Chiarella et al. (2009) with the
imbalance factor in place of chartist. For this reason we only delineate here the key aspects of the
traders’ decision-making routine, highlighting the role of order book imbalance. Interested readers
are referred to Chiarella et al. (2009) for the demand function derivations and further details on
order placement mechanism.
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Fig. 1 The topology of order
submissions: [pm , pM ] is the
range of admissible prices, p∗
is the satisfaction price, and bt
and at are the current best bid
and ask prices in the market,
respectively

pm

pm

p∗

p∗

pM

pM

bt

bt

at

at

pBL SM aSL pSL

pBL aBL BM pSL

Table 1 The resulting order submission for a randomly picked price p ∈ [pm , pM ] for tick sizeΔ

Buy Sell

Type Interval Price Size Type Interval Price Size

BM [max(at , pm +Δ); p∗] at π i
t (at )− Si

t SM [p∗;min(bt , pM )] bt Si
t − π i

t (bt )

aBL (max(bt , pm ); p π i
t (p)− Si

t aSL (min(bt , p∗); p Si
t − π i

t (p)

min(at , p∗)) min(at , pM ))

pBL
[

pm ;min(bt , p∗ −Δ)] p π i
t (p)− Si

t pSL
[
max(at , p∗ +Δ); pM

]
p Si

t − π i
t (p)

In our simulations, we distinguish between six classes of orders: a buy market
order (BM), or an intention to buy the asset at a price higher or equal to the current best
ask; a sell market order (SM), or an intention to sell the asset at a price lower or equal
to the current best bid; aggressive buy (aBL) and aggressive sell (aSL) limit orders
placed inside the current bid-ask spread; passive buy limit orders placed below the
current best bid (pBL), and passive sell limit orders placed above the best ask (pSL).

3 Order Book Simulations

In this section, we outline the main features of the simulations and provide a sum-
mary of numerical parameters. The core objective of this chapter is to study the
emergent properties in stock returns and order flow arising from the restricted access
to market depth information imposed on heterogeneous traders. In the simulation
analysis below we contrast three market specifications with full, intermediate and no
quote visibility.

We define two extreme cases: a transparent market (l = ∞), where traders are
aware of full order sizes and use entire order book to evaluate imbalance Dlt , and a
dark market (l = 0), where market depth is not publicly revealed and traders have
no resources to estimate the order imbalance.3 The latter specification serves as a
benchmark in our analysis. Naturally, in a transparent market agents observe the
depth of the entire limit order book before trading. While in certain markets such
an assumption is perfectly viable (e.g. NYSE OpenBook), many other exchanges

3 All agents have a zero weight of imbalance component νi
2 = 0,∀i in Eq. (2).
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(e.g. Tokyo Stock Exchange, Euronext Paris) confine the available information to
the five best quotes on each side of the limit order book at any time. As the third
environment, we consider a quasi-transparent market (l = 5), which accommodates
this restriction, but otherwise traders formulate their strategies according to the same
principle as in a transparent market.

We adopt the simulation parameters that match the baseline values in Chiarella
et al. (2009). There are NA = 5000 agents, who randomly arrive to the market and
execute trades according to time and price priority protocol. Their initial cash and
stock endowments are uniformly distributed on [0, 50] and [0, 50p0], respectively.
When called to trade, a trader formulates his strategy and overwrites his previous
unfilled order recorded in the book if any. The common risk aversion factor among
traders that participate in this market is 0.1. The trading horizons of agents are
driven by τ = 200, so that the average horizon is approximately two trading days
τd of 100 trading sessions each. The stock initially trades at p0 = £400 above its
fundamental value p f

0 = £300 and the price grid is determined by the minimum
tick sizeΔ = £0.005. We assume that the fundamental asset value follows a Wiener
process with zero drift and volatility σξ , where σξ = 0.001 is the dispersion of the
Gaussian noise term ξt . The expected mean reverting time to the fundamental value
in τ f = 20 days. The fundamental price, order imbalance and noise coefficients
are drawn from three independent exponential distributions for the entire population
of traders: νi

1 ∼ exp(1/σν1), ν
i
2 ∼ exp(1/σν2), η

i ∼ exp(1/ση), ∀i = 1, NA, and
remain constant over the course of trading. We select σν1 = 0.1, σν2 = 0.0037 and
ση = 0.01 in the baseline.

First hand graphical analysis of the transaction prices generated in three trading
environments (Fig. 2) reveals that transparency can introduce higher heterogeneity of
beliefs and thereby enhance the deviation from the fundamental asset value. Indeed,
there is a stark difference between price volatility in a dark market (Fig. 2c) com-
pared to both transparent and quasi-transparent market. This outcome is in line with
Verardo (2009) and Yamamoto (2011). The first two specifications, however, yield
very similar results.

In contrast with the observations of Chiarella et al. (2009), we do not detect
prolonged excursions of the transaction prices from the fundamental level, which
implies that chartist indicator based on imbalance rather than returns trend stabilises
market performance and assists price discovery. In addition, the returns series plotted
in Fig. 3 suggest that both transparent and quasi-transparent markets frequently move
to extremes.

4 Stylised Facts

Our point of interest is the ability of the market to reproduce phenomena frequently
detected in financial markets. In particular, we examine how the degree of market
transparency alters the likelihood of abnormal price fluctuations, path dependence
in order submissions and other memory properties.
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Fig. 2 Fundamental (blue
line) and transaction price
series sampled at daily
frequency under three
transparency regimes:
a transparent, b quasi-
transparent, c dark
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Fig. 3 Returns series sampled
at daily frequency under
three transparency regimes:
a transparent, b quasi-
transparent, c dark
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4.1 Abnormal Returns

The mean return is effectively zero under all specifications, whereas the diapason
of returns expands significantly once traders have the opportunity to account for a
limit order book depth to form their expectations of the future stock price (Table 2).
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Table 2 Summary statistics of returns and order flow under four transparency regimes

Variable Transparency regime

Transparent Quasi-transparent Dark

Returns Min −0.0541 −0.0528 −0.0215

Max 0.0500 0.0559 0.0246

Mean 0.0000 0.0000 0.0000

S.D. 0.0024 0.0024 0.0014

Skewness −0.1527 0.1850 0.2320

Kurtosis 33.7944 34.9786 18.8458

Order Flow No. of orders 96,982.5 97,005.3 96,966.1

Average order size 24.04 24.11 24.30

Average BM 28.10 28.10 29.20

Average BL 23.18 22.95 22.18

Average SM 30.41 30.67 32.05

Average SL 19.66 19.61 19.38

The results represent averages over 100 simulation runs

Analogously to the model of Chiarella et al. (2009), the reason for large price devi-
ation from the fundamental level in both the partially and fully transparent cases is
the antagonistic effect of fundamentalist and imbalance components that override
traders’ expectations once a big price change occurs. Both transparent and quasi-
transparent regimes lead to much greater amplitude of abnormal returns than a dark
regime. Of the former two regimes, the transparent microstructure produces mar-
ginally smaller price swings, as depicted in Fig. 2 as well as from the differences
between the maximum and minimum return in Table 2.

Though on average it is impossible to profit from trading in any of the considered
markets, the quasi-transparent market offers the highest, albeit still very close to fully
transparent case, probability of receiving abnormal returns as indicated by kurtosis.
Notably, only the transparent market embraces two empirical facts in the financial
markets: asymmetric chances of receiving positive versus negative returns and non-
trivial probability of abnormal returns. This is a convenient result since the model
of Chiarella et al. (2009), with chartist impact in place of order imbalance impact,
could not replicate the empirical negative skewness of returns.

4.2 Order Placement Patterns

In order to assess the coherence of our artificial stock market we investigate order flow
properties documented in the abundant research on this subject, including, among
others, the seminal paper of Biais et al. (1995) and empirical studies of Bouchaud
et al. (2002); Ranaldo (2004) and Lo and Sapp (2005) on the determinants of order
aggressiveness.

The general observation about the order placement is that the availability of infor-
mation about book depth has no discernible effect on order flow in a transparent or a
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Table 3 Unconditional order type probabilities from the artificial market, Australian Stock
Exchange and Paris Bourse

Order type Simulation results Australian Stock Exchange

Transparent Quasi-transparent Dark BHP NCP TLS Paris Bourse

BM 15.89 16.06 16.61 27.72 15.91 23.99 19.03

aBL 9.17 9.40 11.22 5.64 3.58 1.79 10.10

pBL 25.74 25.80 23.50 24.70 29.17 25.72 14.52

SM 15.51 16.09 17.09 18.28 13.81 22.40 34.23

aSL 9.18 9.46 11.06 4.28 4.52 1.29 9.37

pSL 24.51 23.19 20.53 19.38 33.01 24.81 12.96

The simulation results represent averages over 100 simulation runs

quasi-transparent market in that neither the cumulative number of submitted orders,
nor the average order size changes substantially. As indicated in Table 2, under these
two transparency regimes the average size of aggressive market orders diminishes,
albeit insignificantly, and is accompanied by a marginal increase in the average size
of passive limit orders relative to the order sizes in the dark market.

In terms of unconditional probabilities, as shown in the right column in Table 3,
most of the traders are liquidity providers in the environments with and without mar-
ket depth information. Notice, however, that the order flow is more symmetric in
the transparent case. Concerning the unconditional probabilities of six order types in
a quasi-transparent market, we compare the distribution to the empirical data from
Paris Bourse in Biais et al. (1995) and the Australian Stock Exchange in Hall and
Hautsch (2006), both of which allow reduced quote transparency. In the data from
Paris Bourse, the sellers, and most impatient ones, outnumber the buyers. On the con-
trary, out of five stocks from the Australian Stock Exchange analysed by Hall and
Hautsch (2006) buyers dominate in two markets compared to fairly symmetric order
flows in the other three, which we reproduce in Table 3 for our order classification.
In terms of order flow pattern and overall order flow aggressiveness the simulated
markets bear the closest resemblance to the market for News Corporation shares
(NCP): the proportions of buy and sell orders are symmetric with a large fraction of
passive limit orders. In their recent study of 100 stocks listed on INET in 2004, Has-
brouck and Saar (2009) find that not only limit orders compose the bulkiest part of
the order flow, but also tend to have larger size than market orders. However, in many
instances limit orders are cancelled within seconds after submission, and these fleet-
ing, or flash orders usually exceed in size the limit orders that remain patiently in the
book awaiting execution. This empirical evidence overturns the traditional treatment
of limit orders as passive liquidity provision strategies. Instead, such application of
big limit orders embodies aggressive liquidity-seeking behaviour that depletes the
order book and harms market liquidity. Therefore, given the bias of fleeting orders,
it is hard to retrieve the strength of liquidity streams from empirical data.

Further, the estimates in Table 3 indicate that the probability of market orders in a
quasi-transparent market increases accompanied by a small increase in the probability
of orders inside the spread, that is, aggressive limit buys (aBL) and sells (aSL). In
the study of Yamamoto (2011), where traders react to the order imbalance by means
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of a probabilistic switching mechanism, once the information about order volumes
recorded in the book becomes limited, the use of market orders slightly escalates
in comparison to a perfect transparency case. Similarly, in our framework, once
traders are constrained to observe only the best five quotes, market orders accrue a
slightly higher share in the order flow relative to perfect transparency. This partially
explains a little revival in trading activity: a higher number of marketable orders in
a quasi-transparent environment leads to a faster turnaround of assets.

We examine the order submission patterns to verify whether traders respond to the
observable state of the limit order book in line with the empirical inference. Using
order flow and transaction data from the Swiss Stock Exchange, a pure order-driven
electronic stock market, Ranaldo (2004) consolidated findings on the determinants
of order aggressiveness. In relation to the main variables in our model, we focus on
the following properties identified in Ranaldo (2004):

P1: The wider the spread is, the weaker will be the order aggressiveness.
P2: The higher the volatility is, the stronger will be the order aggressiveness.

P3a: The thicker the book on the buy (sell) side is, the stronger will be the order
aggressiveness of the incoming buyer (seller).

P3b: The thicker the book on the sell (buy) side is, the weaker will be the order
aggressiveness of the incoming buyer (seller).

In order to validate the capability of the artificial market to reproduce these properties
on aggregate, we compute the frequencies of all six order types submissions given
the value of the corresponding market parameter. For instance, for the bid-ask spread
variable we first count the frequencies of all order types submitted when the current
spread is tight, then order frequencies when the spread at the time of submission
is wide. Small and large sizes of the spread are defined against the average spread.
In each simulation run we calculate the probability of submitting a concrete order
when the parameter, e.g. the spread, is high minus the probability of the same order
submission when the value of this parameter is low. Therefore, a positive number
in Table 4 implies a higher probability of a given order type for a larger value of
the corresponding market parameter, i.e. spread, volatility and depth; a negative
number—a lower probability.

As reported in Table 4, we recover P1 and detect a negative correlation between
order aggressiveness and the spread size across all markets independently of the
transparency regime: as the spread widens, traders rely more on limit orders (the
probability of orders inside the spread increases, and outside the spread decreases)
and less on market orders. Condition P2 holds for sellers in all four cases, but not
for buyers. The asymmetry between the behaviour of patient buyers and sellers in
respect to volatility is caused by the CARA preferences.4 Conditions P3a and P3b,

4 Higher volatility does not affect the expectations of the trader directly, but alters the region of
admissible prices defined by pm and p∗. The subinterval of buy prices becomes shorter than the
subinterval of sell prices proportional to the total interval length pM − pm when the spot volatility
is high. Consequently, it is more likely that the current market price of the security lies in the
subinterval of selling prices (above p∗), and if the trader intends to purchase the asset, he submits
a passive buy limit order.
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Table 4 The changes in the probabilities of order types (in %) conditional on the market charac-
teristics given an increase in the corresponding market parameter

Factor Order type

Transparent BM aBL pBL SM aSL pSL

Spread −4.96 9.72 −4.65 −4.31 9.84 −5.65

Volatility −3.80 0.43 3.51 1.07 1.35 −2.57

Buy depth 4.77 −0.65 −3.77 −4.57 −1.74 5.96

Sell depth −4.30 −1.76 5.97 4.65 −0.75 −3.82

Quasi-transparent

Spread −5.54 9.92 −4.40 −4.15 10.37 −6.22

Volatility −4.13 0.31 3.81 1.28 1.58 −2.85

Buy depth 4.55 −0.40 −3.81 −4.07 −1.43 5.16

Sell depth −4.36 −2.04 6.36 4.53 −1.24 −3.25

Dark

Spread −6.29 12.45 −6.21 −5.08 12.38 −7.24

Volatility −3.80 0.63 3.06 1.47 1.47 −2.83

Buy depth 1.12 −1.27 0.23 0.32 −1.47 1.08

Sell depth 2.28 −1.70 −0.54 −0.69 −2.03 2.68

The results represent averages over 100 simulation runs

evidently, hold only when at least some market depth information is disclosed to
traders. For instance, both in transparent and quasi-transparent markets when the
total supply in the book, i.e. sell depth increases, the probability of an incoming
buy market orders and sell limit orders declines, whereas the buy limit order and
sell market order submissions become more likely. In this sense, accounting for
market depth provokes a feedback effect. In other words, in the transparent and
quasi-transparent cases, an incoming buyer has a higher probability to use a market
order when competition is tight, while an incoming seller has an increased chance
of trading via a passive limit order, as the demand for the asset increases.

Another aspect that characterises markets is path dependences in order submis-
sions. We analyse the order flow pattern using an approach similar to Biais et al.
(1995). In their empirical study of Paris Bourse data, Biais et al. (1995) uncovered a
number of important properties including the so-called diagonal effect, whereabout
orders of the same type tend to follow each other, so that the diagonal elements of
the conditional distribution matrix have the highest weights. Typical conditional dis-
tributions of orders in the four markets, including Biais et al. (1995) estimates, are
given in Table 5. Each estimate in this table stands for the number of times that the
order type in row i was submitted after the order type in column j throughout 1,000
trading days. Dividing frequencies in each row by the total number of orders of the
corresponding type, we convert to probabilities and then calculate a percentage devi-
ation of a conditional probability of a particular order type from the unconditional
probability of this order type. The last manipulation ensures comparability of the
diagonal effect strength across specifications. The same transformation is applied
to the Biais et al. (1995) data once their order types are regrouped to match our
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six types. Along each column, the most likely order sequence is printed in bold.
Although the diagonal effect may not be a universal property of real markets, it is
insightful to verify its relation to the degree of quote transparency. The described
evaluation method proves convenient for this purpose.

Overall, the diagonal effect is dissipated in our artificial marketplaces, unlike the
clear pattern in Biais et al. (1995) shown in the last panel in Table 5. This said, we
observe significant path dependence in market orders equally for buyers and sellers,
which is further facilitated when market transparency is higher. Series of passive
limit orders are slightly more rare, though such orders are still more likely to arrive
in batches rather than independently. In fact, empirical (Biais et al. 1995) and exper-
imental (Majois 2010) evidence reveals that most frequent sequences can appear
off the diagonal with a finer order classification. Chordia et al. (2002) document
that positive returns tend to be continued, whereas negative returns most frequently
provoke market reversals. This evidence corresponds to a weakening diagonal effect
in the domain of sellers: while buys—especially aggressive market orders—tend
to arrive one after the other and push the transaction price up, sell orders appear
to be less likely to cluster in this manner under transparent and quasi-transparent
regimes. The differences in estimated conditional order distributions in Table 5 sug-
gest that quote transparency generates significantly stronger regularities in market
order submissions, resulting in larger price impacts.

The justification of the diagonal effect, according to Biais et al. (1995), arises from
imitation among traders, strategic order splitting, or similar expectations. Although
disentangling these origins is a challenge, in a series of classroom experiments Majois
(2010) concludes that the diagonal effect stems from order splitting. Any conscious
imitation or strategic behaviour is redundant in our setting, hence the sole reason for
traders to copy each other is some kind of herding mechanism, enabled by matching
expectations. All traders possess the same market depth information and have iden-
tical fundamental asset valuation. On the other hand, an order placed by the previous
trader always affects the expectations of the one arriving after him by changing the
depth and possibly the distance to the fundamental price. In the case with visible
order imbalance all traders see the book and become more correlated in their actions,
resulting in convergent future price expectations and order placements across agents.
Therefore, in the absence of intentional imitation between market participants this
framework captures the similarities in traders’ order placements that translate into
more pronounced diagonal effect for higher transparency. Furthermore, this artificial
market reproduces fairly symmetric conditional distribution of order types alike Paris
Bourse data of Biais et al. (1995).

4.3 Memory Properties

Memory in the financial time series stipulates predictability of future market dynam-
ics, thereby creating a relevant argument for the discussion of market efficiency. We
investigate the memory effects in key variables, which have an immediate impact on
agents’ decision-making outcomes: returns, absolute returns and order imbalance.
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Fig. 4 Autocorrelation functions of a order imbalance, b returns, and c absolute returns series
estimated as averages over 100 simulation runs for each of the four specifications

Figure 4 depicts the autocorrelation functions in returns and imbalance for three
model specifications. The total order imbalance variable pertains a strong memory,
as Fig. 4a demonstrates. This observation is not surprising. It confirms that the order
book depth is sustainable and a single trade does not reverse or change significantly
the imbalance between buy and sell sides. The memory is most persistent for the
transparent market, but decays rather quickly in the dark market. Reducing market
transparency helps to diminish the long-term path dependence in the order imbal-
ance. Based on Ljung-Box test we find that serial autocorrelations in absolute returns
and in order imbalance remain statistically different from zero for all 100 included
lags and further. The simulation outcomes of Yamamoto (2011) also confirm sub-
stantial persistence in order imbalance both for transparent and quasi-transparent
market set-ups. Moreover, Lillo and Farmer (2004) detect long memory in the order
flow, particularly in the signs of submitted orders, for a range of stocks listed on the
London Stock Exchange and sampling years. This result is connected to our artifi-
cial markets in two ways. First, it justifies the autocorrelations in Fig. 4a. Consider,
for example, successive arrival of sell orders: limit orders add depth to the sell side
and increase the order book imbalance, as defined in Eq. (1), market orders absorb
the volume on the buy side which again has a positive impact on Dlt . Second, the
order signs memoryness echoes the discussion of the diagonal effect in submitted
order sequences. In their review of the statistical evidence on long memory in order
flow Mike and Farmer (2008) argue that long memory property in order signs has a
profound impact on price dynamics and induces a power law distribution with high
probabilities of extreme returns. They explain it by order splitting and other dynam-
ically optimised strategies, whereas in our set-up it is rather the unconscious herding
caused by matching price expectations that is responsible for the correlation in buy
and sell volumes.
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On the contrary, Fig 4b shows that there is no persistent correlation in returns
apart from the first few lags, which implies informational efficiency regardless of
the degree of market transparency. The negative autocorrelation in returns for small
lags is caused by the bid-ask bounce, generated by the impatient traders who demand
liquidity. This effect is the smallest for the dark market, which is explained by the
thicker limit order book in this set-up. The correlations beyond lag 4 are not econom-
ically significant, as the autocorrelations are smaller than the size of the spread, and
therefore cannot be exploited profitably. Naturally, the memory in returns dissipates
most quickly in the dark market since no trend-following mechanism is implicit in
traders’ behaviour in this case. Regarding the autocorrelation in absolute returns that
is usually interpreted as a proxy of volatility, Fig. 4c shows a positive dependence
in the absolute returns even for distant lags. Overall, the higher the transparency is,
the stronger will be the memory in absolute returns. However, the impact of restrict-
ing the info only to the five best quotes is somewhat ambiguous since it intensifies
the long memory in absolute returns compared to the full depth visibility case. The
combination of uncorrelated returns and significant positive dependence in absolute
returns quantifies the volatility clustering.5

Further, we apply the test that discards conveniently short period memory and
concentrate mainly on long-term correlations. We calculate the modified rescaled
range statistic, which is more appropriate in the context of stark departures from the
normal distribution in the data:

Q̃x,n(ω) = 1√
Vn(ω)

⎡
⎣ max

1≤k≤n

k∑
ik=1

(
xik − x̄n

)− min
1≤k≤n

k∑
ik=1

(
xik − x̄n

)
⎤
⎦ , (5)

where n < N is the subsample size drawn from N -observations sample, x̄n is
the subsample mean, Vn(ω) is the subsample autocovariance for lag ω. This sta-
tistic is adjusted to the subsample size to obtain the rescaled range coefficient
βx,n(ω) = ln Q̃x,n(ω)/ ln n. In case βn(ω) < 0.5, there is a mean reversion in
the data series. If βn(ω) > 0.5 there is a positive correlation in the data and a long
memory property.

Figure 5 depicts rescaled range coefficients for asset returns and absolute returns.
First, we monitor the evolution of memoryness in absolute returns for various time
horizons. The strong dependence in absolute returns plotted in Fig. 5a supports the
volatility clustering phenomena from real financial markets: there is a slow decay in
the serial correlation of the volatility of asset returns. As more lags ω are omitted,
the coefficient βn(ω) decreases and slowly approaches the benchmark level 0.5,
which indicates that memory of distant past absolute returns taken in isolation fades
away, hence the spot volatility of returns is independent in the long term. In other
words, periods of high volatility in returns are followed by periods of low volatility.

5 In terms of graphical analysis, Fig. 3a and b depict clustering in returns series under the transparent
and quasi-transparent regimes, compared to the more monotonous variability of returns in the dark
market in Fig. 3c.
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(a) (b)

(c)

Fig. 5 Modified rescaled range test coefficient of a absolute returns for various lags (error bars
computed over 100 simulations), b absolute returns in a transparent market with the optimal number
of discarded lags, and c returns in a transparent market with all lags included. The subsample size
is 5,000 time steps

The clustering is very poor in the dark market, which is indicated by low values of
β|r |,n(ω) even for small lags, in contrast with transparency regimes where all or part
of the book volume is revealed to traders.

Next, we investigate how the strengthσν2 of order imbalance component in traders’
price expectations affects the memoryness of returns and absolute returns.6 Since the
preliminary autocorrelation analysis revealed that the path dependence in returns is
short-lived, we calculate the rescaled range coefficients without omitting any lags.
Fig. 5b depicts the standard rescaled range coefficient for asset returns with all lags
included as a function of imbalance impact σν2 . We observe that when order imbal-
ance impact is meagre, the returns clearly exhibit a mean reversion pattern. This
includes the case of a dark market which corresponds to the first point on this
plot with σν2 = 0. However, some positive correlation emerges as the standard
deviation of imbalance weight of imbalance grows above 0.005. Regarding latent

6 The results across the two market specifications with some quote visibility are reasonably similar;
thus, we present just the estimates for the transparent case.
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volatility measured by the absolute returns, the short-term dependencies converge
to zero at the truncation lag ω = 15, according to Lo (1991) criterion. The graph
of modified rescaled range coefficient in Fig. 5c shows that even for low values of
imbalance component there is a long memory effect, albeit moderate. Higher weight
of imbalance in traders’ price predictions, at the same time, translates into more
persistent long range dependencies in the absolute returns, which match empiri-
cal findings Lo (1991). The inclusion of a sizable imbalance weight is therefore
an important aspect of this model, given that it allows to replicate more accu-
rately real market dynamics. In addition, this analysis highlights that the combi-
nation of baseline parameters for our artificial market implies memoryless returns
(the confidence interval of βr,5000(ω = 0) overlaps with 0.5 in this instance), and
strong long-term correlations in absolute returns (β|r |,5000(ω = 15) ≈ 0.62). The
model is also robust with respect to reasonable changes in σν2 , as follows from
Fig. 5b and c.

5 Conclusion

This chapter conducted an analysis of the impact that varying degrees of order book
depth transparency pertain for market performance. The evidence on benefits and
adverse effects caused by limited market transparency is gained in the artificial double
auction market simulations. Three distinct transparency regimes were included in
our analysis: a fully observable limit order book—a transparent market, a market
with visible orders restricted to five best quotes on each side of the book—a quasi-
transparent market, and a market with market depth unknown to traders—a dark
market.

The core implication of our agent-based model is that disclosing the information
about order book depth deteriorates efficiency of order-driven markets, as indicated
by the ascending memory properties of absolute returns. The transparency level
imposed by certain exchanges whereupon only several best orders on each side of
the limit order book are publicly displayed is controversial, since it further increases
volatility clustering. At the same time, an ability to evaluate the cleavage between
demand and supply available in the market gives the opportunity to earn higher return
for traders with diverse preferences and risk perceptions.

It follows from the experiments reported in this chapter that market depth mat-
ters for shaping its future dynamics. Inclusion of order book imbalance variable into
expectations allows to replicate the empirical conditional distribution of order flow.
In contrast with Chiarella et al. (2009) results, we observe that following the trend
in order book imbalance instead of past returns stabilises the price in the short term
and reproduces the negative skewness feature of returns. In the future analysis, we
intend to investigate how transparency regimes affect market quality indicators, such
as transaction costs, liquidity and speed of trading. In addition, the range of trans-
parency regimes can be expanded to incorporate more complex rules adopted in real
exchanges.
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The Simplicity of Optimal Trading in Order
Book Markets

Daniel Ladley and Paolo Pellizzari

1 Introduction

How should a trader optimally execute a trade? As academic understanding of
financial markets and the effect of their structure has grown this question has become
more nuanced and sophisticated. In early models, markets were assumed to have a
single price and react smoothly to changes in demand. In this context, the question
of optimal trading was often one of timing—when should a trader trade. As these
models became more sophisticated and market makers started to play a role, issues
such as order splitting and information hiding came to the fore. More recently with
the inclusion of architectures such as order books the question has acquired new
facets—not just when should a trader trade, but also at what price and with what
tool. Should a trader trade now with a market order? This guarantees trade at a speci-
fied, but potentially inferior, price. Or should they post a limit order in the belief that
prices will improve and that greater returns will be made? The ability of traders to
select the best order may potentially have a large effect on their profits. The size of
this effect is increasing as algorithmic trading aimed at picking off inefficient sub-
mission becomes more common. The trader’s choice will be contingent on their own
information, but importantly also the state of their environment—the order book.
How this information should be used and just which pieces are important, however,
is an open question.

In this paper, we investigate the importance and effect of information on trading
strategies and market dynamics. We draw conclusion from two models. The first
permits continuous prices, that is, there is no minimum tick size, and trading strategies
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are conditioned on the prices of the best bid and ask quotes. In this model, strategies
are optimised through the use of Evolution Strategies, an optimisation technique
based on evolution and adaptation of the most profitable strategies. In the second
model, traders submit orders on a discrete grid of ticks. Strategies are identified via
the algorithm of Goettler, Parlour and Rajan (2005) ensuring that they are optimal
for the specified game. We find that the amount of information traders use in their
strategies has little effect either on the dynamics of the market or on the behaviour
of the traders either under the optimal strategies or the linear approximations. We
conclude that optimal trading strategies in a microstructure context may be simpler
than believed and importantly may be characterised by a linear combination of the
information available at the best quotes. Further, we conclude from this that models
of financial markets do not need to concern themselves with interpreting the full
information set available to traders strategies. Indeed, restricting consideration to the
best quotes has little effect on results.

The dynamics of order book markets constitute complex situations through which
traders interact. Traders and academics, when analysing or modelling these markets,
are both faced with the task of combining large amounts of information to find
an optimal strategy. One reason for this is the complexity of the environment—
the amount of information available to traders in the book. Even under a Markov
assumption—that the entire payoff-relevant history may be captured by the current
state of the book—the information available is very substantial. Order books typically
constitute price grids. At each discrete price there may be any quantity available to
buy or sell (under the constraint that the highest buy price must be less than the
lowest sell price). As a result the size of the information space is potentially infinite.
Some of this information is undoubtedly more important than other pieces. Orders far
from the best prices are unlikely to result in trades, and therefore are potentially less
important. Their presence in the book, however, would have an effect on extreme
price movements, and therefore may not be ignored. As such, different pieces of
information will be more or less important and may have a smaller or larger effect on
trading behaviour. Constructing the strategy—the optimal mapping between states
and actions—in these markets is therefore a daunting task.

Since the relatively early stages of the academic microstructure literature models
have been constructed in an attempt to do this. Frequently, however, this requires
strong assumptions in order to maintain analytical tractability. For example Parlour
(1998) considers a book of only four ticks in which two have infinite liquidity, while
Rosu (2009) assumes continuous prices and time, permitting instantaneous revision
of quotes. There have also been attempts to model these markets and trading strate-
gies numerically. The simplest case is the literature on zero intelligence models,
for example, Ladley and Schenk-Hoppé (2009), in which traders ignore information
about the book and remove strategic considerations all together. While these models
allow the full market architecture and realistic order submissions, they completely
abstract from the central problem we are concerned with here. Other models such as
Chiarella, He and Pellizzari (2012) and Chiarella, Iori and Perello (2009) use exoge-
nously specified rules for determining the choice between market and limit order
submission and the appropriate price and quantity. These decisions are dependent on
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the traders demand and the best quotes in the market. They are restricted, however,
by the pre-specified functional structure—there is no guarantee (or claim) that these
strategies are optimal in this setting. A third avenue of research of particular interest
is in the papers of Goettler et al. (2005) and Goettler, Parlour and Rajan (2009),
which use the numerical technique of Pakes and McGuire (2001) to solve an order
book market game for a Markov perfect equilibrium in which the trading strategies
are optimal. While this may appear to solve the problem these techniques are still
numerical demanding. The algorithm attempts to identify the optimal response in
all relevant states in the state space. As the size of the order book (the number of
orders present) increase, however, this state space grows exponentially. As a result
this algorithm is only able to find optimal strategies under a constrained space—
either information must be discarded or this algorithm is restricted to books with a
relatively small number of ticks and with few orders present.

An important insight to this question is made by Bouchaud, Farmer and Lillo
(2009). In this paper, the authors discuss how there may frequently be gaps in the
order book—prices at which no orders are present. Even with these static gaps the
book may be considered to be dynamically complete, that is, orders will appear and
accumulate as they are needed—they are issued on the fly to provide liquidity. As
such, knowledge of many levels of the order book may not be fully revealing of
the state of the world if there are traders present within the market that will provide
liquidity when it is needed. Information beyond the best quotes may be unreliable.
Manahov, Soufian and Hudson (2013) consider a related problem in which traders
with different levels of cognitive abilities trade within financial markets. In this case,
cognitive ability is reflected by greater capacity for complex strategies and reasoning
through larger genetic programs. They find that more intelligent traders enhance
price discovery, but damage price stability and liquidity. It is, however, important to
emphasise that this study is concerned with the cognitive ability of traders and not
the information they have at hand or the size of the strategy space, as we focus on
here.

As is the case in many other works, we assume traders are risk neutral profit-
maximisers despite the fact that, as pointed out in Parlour and Seppi (2008), agents’
decisions should in the end be coherent with their portfolio and consumption choices,
which typically display risk-aversion. However, to keep the models numerically man-
ageable, we use reduced-form trading preferences and assume that trading benefits,
modelled through private values, proxy for the utility stemming from trading. See
the first section of the extensive survey by Parlour and Seppi for a thorough analysis
of this issue.

The paper is organised as follows. The next section gives details on the set-up of
the market, defines the strategies used by traders and the equilibrium concepts used
in this paper. Section 3 describes the two models of optimal trading in a continuous
double auction, based on the use of linear and Markov perfect equilibrium strategies.
Simulation results are presented in Sect. 4, which reports aggregate data on the order
book dynamic equilibria together with an illustration of the optimal strategy used by
traders. Some discussion and conclusive remarks end the paper.
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2 Set-up

We model a standard order book-based Continuous Double Auction (CDA) where
at each time step a single trader enters the market. The trader is randomly allocated
a type, buyer or seller with equal probability, and a positive reservation value v ∈ V
or positive cost c ∈ C for a single unit of the traded asset. We assume that V = C
and |V | = k, that is, that agents’ values and costs belong to the same set of k
discrete positive values. Additionally, values and costs are uniformly drawn from V
and C and are constant over time: vi ∈ V is the i-th buyer’s private valuation of
the asset, and can be thought as the maximum price he will rationally pay for the
asset. Symmetrically, c j ∈ C is the j-th seller’s private cost for the asset and can be
regarded as the minimum price at which he is rationally willing to sell the asset. We
will assume, as done frequently in other works, that every agent buys or sell a single
unit of the asset and, likewise, deal with cancellation in a simplified and standard
way: at the end of every time step each order stored in the book is cancelled1 with
(a small) exogenous probability Pc > 0 that is independent of time, state of the book
and of the specific agent acting in that period.

At any time t the book is a double sequence of outstanding unit orders

St = {0 ≤ ... ≤ b3t ≤ b2t ≤ b1t < a1t ≤ a2t ≤ a3t ≤ ...},

where b1t , b2t , ... and a1t , a2t , ... are the lists of buy and sell orders in the books. We
often omit the time index for simplicity. The highest bid b1 and lowest ask a1 are
referred as best bid and best ask, respectively. The distance a1 − b1 is referred to as
the spread.

Traders submit a single order when they enter the market. The quantity is fixed at
one unit, but the trader must decide the price computed using a function of the state of
the book and their valuation: without loss of generality we describe the model for the
i-th buyer (the situation for the sellers can be easily recovered, given the symmetry
of the environment). The bidding function (or strategy)

Bit = fi (a1t , b1t , Ii t )

provides the limit price Bit (a bid, in this case), given the values of the best quotes
a1t , b1t . The set Ii t contains all of the information available to the agent both public
and private. This set may include the state of the book and their private valuation/cost.
The submission of Bit changes the book and results in an immediate trade, a mar-
ketable order, if the bid is greater than or equal to the best ask, that is, Bit ≥ a1t .
In this case, the two agents involved in the transaction get the associated profits: the
buyer earns vi − a1t and the j-th seller, who issued a1t previously, is paid a1t − c j

where c j is his cost. The book is then updated so that the best ask a1,t+1 in the next
tick will be given by a2t . If instead Bit < a1t , the new order is inserted2 in the book,

1 We never cancel the order in the time step in which it is submitted.
2 We always use the standard price-time priority to break ties.
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maintaining its ordering, to be possibly used in future trades. Any profit occurring
after t is accrued in the same way to the parties with no time-discount. In particular,
if b1t < B1t < a1t the order is called price improving as it raises the current best
bid. Bids for which B1t ≤ b1t are less aggressive as the relative limit price is queued
after the best bid and, as a consequence, at least one trade is needed before execution
is possible.

Notice that in this set-up an immediate transaction may result from many different
orders. Indeed, any bid for which B1t ≥ a1t produces a transaction and gives the
very same profit, regardless of B1t . In other words, there are non-trivial subsets of
bidding functions that are formally different and provide different limit prices, but are
profit-equivalent. This is especially true for strategies that often generate marketable
orders, and has implications for the interpretation of the numerical results of the
following sections.

An equivalent description holds for the generic j-th seller whose limit ask is given
by C jt = g j (a1t , b1t , J jt ), where J jt is the information set available (to the seller)
at time t . We skip the details for brevity.

Agents are risk neutral and maximise the expected payoff (immediate or delayed),
selecting a strategy to issue orders (bids or asks). Once the rules for the auction regard-
ing cancellation and quantities, and the description of the agents are given, different
models are obtained specifying the features of the strategies and the information that
is processed. The i-th buyer will attempt to solve the problem

max
fi∈F

E[payi t |O−i , vi ], (1)

where payit is the random profit resulting from bidding what is prescribed by
fi (a1t , b1t , Ii t ) at time t ,F is the set of admissible bidding function and O−i denotes
the (fixed) strategies used by the other traders. To simplify notation, we omit O−i

and vi whenever this is not harmful. More formally:

payi t =
⎧⎨
⎩

vi − a1t if the order is immediately executed: Bit ≥ a1t ;
vi − Bit if the order is executed at some time t ′ > t : Bit < a1t ;
0 if the order is (randomly) cancelled before execution.

The expectation in (1) is taken over all the states of the book that can be faced at
t and over all the trajectories of states that can materialise for t ′ > t , starting from
the initial condition St at time t , under the use of strategies O−i . Unless unrealisti-
cally strong assumptions are made, the previous optimisation problem is analytically
intractable due to the path-dependency of the book and the intricacies of the auc-
tion mechanism. Finding a numerical solution of (1) is still a non-trivial task. This,
however, may be tackled in several ways, which will be detailed in what follows.

We will assume, hereafter, that all agents of the same type use the same strategy,
and are interested in the equilibrium situation in which no agent has the incentive
to change strategy given what other agents do. In detail, we aim at approximately
computing a set of bidding (asking) functions
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O∗ = { f ∗1 , ..., f ∗k , g∗1 , ..., g∗k }

such that for any buyer i = 1, ... , k, say, we have

E[payi t | f ∗i , O∗−i ] ≥ E[payi t | fi , O∗−i ],∀ fi ∈ F , fi �= f ∗i , (2)

where O∗−i are the strategies optimally played by all the other agents/types. The
intuition behind (2) is well known and requires an equilibrium to be a set of policies
in which no agent has the incentive to deviate if the other traders stick to their optimal
strategy.

3 The Models

In this section, we describe two models of traders’ behaviour in a CDA. Several
features of the auction (most notably, due to the “double” path dependency, uncertain
execution and random cancellation) and the strategic interplay of different types make
optimal decisions hard to select or even approximate.

The first model is arguably mimicking a minimal and memory less level of strategic
reasoning. Traders submit their orders only based on the best quotes at the time of
entering the market. Limit prices are simple weighted averages of a1 and b1 (plus a
constant). On the top of the best quotes, the information set available to any trader
is the empty set. A similar model was used in Pellizzari (2011).

The second model, see Pakes and McGuire (2001), Goettler et al. (2005) and
(2009), allows traders to make use of further information—the first l quotes on
either side of the book. The expected payoffs of all possible orders in each state of
the book are explicitly computed by estimating the execution probability of each
order submission (clearly, for marketable orders the execution probability is taken
to be 1). As such the profit maximising order may be selected and, effectively, the
price setting function may therefore be of arbitrary shape and complexity.

A more detailed description is given in the next subsections.

3.1 Linear Strategies

We assume that the bid/ask to be submitted by traders at time t is given by

Bit = fi (a1t , b1t , Ii ) = min(B, αi a1t + βi b1t + γi ), (3)

for buyers and

A jt = g j (a1t , b1t , J j ) = max(A, δi a1t + φi b1t + ηi ), (4)
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for sellers, where αi , βi , γi , δ j , φ j , η j are real constant to be determined and Ii =
J j = ∅,∀i, j . Essentially, all traders compute the limit price to submit by offsetting
a linear combination of the best ask and the best bid. Slightly abusing terminology,
we refer to these bidding functions as linear strategies in the following and notice
that f can be thought of as a function of the coefficients α, β, γ as well as a function
of the best bid and ask. We enforce a minimal level of rationality and assume that no
buyer bids more than some (large) constant price B and no seller’s ask is satisfied
with less than some (small) constant amount A, but we do not otherwise constraint
agents and they are free to pick any linear strategy even though, say, the resulting
bid may exceed the private valuation of the asset, and hence, successful execution
would cause a net loss. It is also clear from (3, 4) that bids and asks are continuous
real values: this is to be contrasted with values and costs that are discrete.

Using the previous linear formulation, we can describe the strategies of all traders
as vectors in R3 so that the bidding function (3) for the i-th type is determined by
xi = (αi , βi , γi ). Analogously, the asking function for the j-th seller can be thought
of as y j = (δi , φi , ηi ). Given a set of strategies for traders other than the i-th one:

O−i = {x1, ..., xi−1, xi+1, ..., xk, y1, ..., yk},

he will attempt to maximise the profits solving the problem

max
xi∈R3

E[payi |xi , O−i ].

A trading equilibrium is a set of triplets (strategies)

O∗ = {x∗i , y∗j , i, j = 1, ..., k}

such that

x∗i = arg max
x∈R3

E[payi |xi , O∗−i ],

for all buyers indexed by i = 1, ... , k and with an analogous property holding for
all sellers, j = 1, ... , k.

Numerically, the set of equilibrium strategies can be approximated by repeatedly
solving the optimisation problem for each type, assuming all the other agents stick
to their strategies, and running the algorithm over all types until “convergence is
reached”. The details of the method are outlined in Pellizzari (2011) and are based
on Evolution Strategies. This optimisation technique, thoroughly surveyed in Beyer
and Schwefel (2002), evolves the parameters of the population through a number of
generations in which the tentative bidding functions are mutated, evaluated, deter-
ministically ranked and discarded based on a fitness measure, before giving birth
to the next generation. It is of particular interest here that a meta-parameter related
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to the strength of innovation is endogenously evolved together with the unknown
parameters and can be used to gauge whether convergence has been successfully
reached.

3.2 Markov Perfect Equilibrium Strategies

The second model embodies a different approach in which beliefs of the probabilities
of order execution are explicitly calculated. An equilibrium in this framework is a set
of probabilities of execution for any limit order in any state of the book. Moreover,
we require such an assignment P of probabilities to be consistent, meaning that if
agents trade based on the beliefs P , the realised probability of execution is indeed
P , so that there is no discrepancy between beliefs and reality.

We assume that the bidding function fi takes values in V and that the l ≥ 1 best
quotes are known on each side of the market.3 We refer to l as to the information
level of the trader, with l = 1 being the situation in which no quotes other than the
best bid and ask are known. More formally, the i-th buyer’s bidding function is

fi : V 2l −→ V, (b1, ..., bl , a1, ..., al) �→ Bit ,

where the bid Bit maximises

P(Bit |St )payit ,

and P(Bit |Sit ) is the (perceived) probability that the order will be executed in state St

either immediately or after some time. In equilibrium, traders decide their bid based
on the belief P: V 2l+1 → [0, 1] representing the probability that an order Bit ∈ V
issued in state St ∈ V 2l at time t will be executed (before exogenous cancellation).

The probabilities are iteratively found as outlined in Pakes and McGuire (2001),
aiming at producing Pn → P for large n: for any bid b ∈ V and a state S, at the start
of the simulation we set ∀b, S, P0(b, S) = 1 and mb,S

0 = 1.
It is important that the initial probability P is optimistic to facilitate the exploration

of the parameter space. The counter m records the number of times a state has
been visited—here initialised to 1. The trader who arrives at the market in each
period selects the optimal order based on the current estimates of probabilities. Each
probability is updated each time step as follows. For a state in which an order executes:

Pt+1(b, S) = mb,S
t

mb,S
t +1

Pt (b, S)+ 1
mb,S

t +1
, mb,S

t+1 = mb,S
t + 1.

3 We also consider a special case where l = 0. In this case prices are selected at random uniformly
from the distribution (0, vi ) for buyers and (c j , A) for sellers. This constitutes a Zero Intelligence
(ZI) strategy as defined by Gode and Sunder (1993).
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For a state in which the order is cancelled: Pt+1(b, S) = mb,S
t

mb,S
t +1

Pt (b, S), mb,S
t+1 =

mb,S
t .

For states in which an order is neither cancelled nor executed: Pt+1(b, S) =
Pt (b, S), mb,S

t+1 = mb,S
t .

A number of algorithmic devices are used to improve speed and avoid premature
convergence.4

After running the model for T time steps we test for convergence in probabilities.
The model is run for a further X time steps during which the updating procedure
described above is not applied and probabilities are held constant. Through out this
period the number of times orders are submitted in each state and the number of
times those orders are executed are both recorded. At the end of the period for any
state in which more than 100 orders are submitted the realised probability of order
execution is compared with P(b, S), namely the probability of execution estimated
by the numerical algorithm. The average mean squared error over all such states is
calculated. If this value is less than 0.001 the model is said to be converged, that is,
the equilibrium has been identified. If this is not the case the model is run for a further
T time steps with probability updating and the model retested. This is repeated until
the model is converged. Once this is achieved statistics are collected from the model.

3.3 Further Comments

The two models reviewed in the previous section have some similarities, but are also
different in important aspects. Agents in both frameworks share a common set of
discrete values/costs and attempt to maximise the gain from trade in a risk-neutral
fashion. In the Markov Perfect Equilibrium model, traders must pick a bid/ask among
k possible prices (ticks), explicitly computing the expected profit of each option
available. The bidding function takes discrete values, but is not restricted in any
other way and, in particular, has the potential to reveal that optimal trading may be
characterised by some form of nonlinearity.

In contrast, agents using linear strategies can submit orders at any price and this
model is not endowed, as was the case for the Markov Perfect Equilibrium market,
with a natural tick-size. Hence, in the linear strategy equilibrium, the best quotes can
be arbitrarily close at times and this can possibly increase the liquidity and efficiency
of the trading process. The strategy of each type of buyer/seller is relatively simple
and depends only on three coefficients, whereas a full set of probabilities must be
known to take any trading decision in the other model. Importantly, the form of

4 Every 100,000 time steps we set mb,S
t = 1,∀b, S. Moreover, with probability pR rather than

submitting the utility maximising order a trader instead submits a randomly chosen order in the
current configuration. The effect of this is to help prevent local equilibrium. In particular, due to
poor early performance, certain actions may no longer be chosen, however, as strategies are refined
over time these orders may be once again acceptable. The random selection of these orders allows
them to be reintroduced to the strategy.
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Table 1 Values and description of the parameters used in the numerical simulations

Variable Description Value

V Buyer valuations {0.05, 0.10, ..., 0.90, 0.95}
C Seller valuations {0.05, 0.10, ..., 0.90, 0.95}
Pc Probability of cancellation 0.01
B Maximum bid 1.0
A Minimum ask 0.0
PR Probability to issue a random order 0.01
X Convergence assessment period 1,000,000
T Optimisation period 1,000,000,000

the bidding functions in the linear strategies market is rather restrictive, and the
possibility to devise or approximate any nonlinear trading scheme is ruled out. The
following section presents the results of a set of numerical simulations, and discusses
the extent to which the differences between the two models have an effect on the
book dynamics and traders’ actions or profits.

In both models traders are risk neutral. If the traders were risk averse they would
trade to minimise the risk of non-execution by placing fewer limit orders and more
market orders. This may not necessarily result in a wider spread as, being risk averse,
traders would place their orders less far back in the book. Hence, while the proportion
of equilibrium orders may be different, the effects of information levels demonstrated
in this paper are not likely to change.

4 Results

This section compares the book dynamics prevailing in equilibrium in the two strate-
gic models. For comparison, we also provide results obtained in a market populated
by non-strategic Zero Intelligence (ZI) traders.

The simulations are based on the parameter values listed in Table 1. Numerical
results for the linear strategy model are based on 20 independent simulations and
averages or other statistics are computed using an ensemble of 106,400 states of
the book.5 For the Markov perfect equilibrium model results are calculated over 20
repetitions for each information level and are averaged over 1,000,000 states of the
order book.

Table 2 shows the average state of the book under different models: together with
ZI traders (l = 0), we have considered three different information levels l and the
use of linear strategies.

5 States are obtained from 20 independent simulations of 7 days of trading. We approximate a
continuous flow of traders using a large population of 760 agents, 380 buyers and 380 sellers:
hence, statistics are based on 106, 400 = 20× 7× 760 states.
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Table 2 Summary statistics of the book under the four different information levels

Model ZI l = 1 l = 2 l = 3 Linear

Best bid 0.424 0.466 0.465 0.464 0.472
Best ask 0.576 0.534 0.534 0.536 0.524
Spread 0.152 0.068 0.069 0.071 0.051
Quantity at best bid 1.76 2.39 2.40 2.32 –
Quantity at best ask 1.76 2.42 2.44 2.40 –

The market populated by ZI traders is substantially different from any strategic
market, with much wider best quotes on average and an inflated spread. Clearly,
the lack of strategic considerations in this case results in too many orders being
randomly placed behind the best quotes and with a low probability of ending in a
trade. Conversely, any market populated by strategic traders shows a much narrower
spread, close to the gap between adjacent traders’ values or costs. There is virtually
no difference for different levels l of information and little practical discrepancy
between the set of the Markov equilibria and the linear strategies equilibrium. The
average equilibrium spread using linear strategies 0.051 compared to about 0.070 for
the other models (regardless of l), but it must be noticed that in the latter cases the
spread cannot be less than 0.05, as offers on opposite sides are discrete and cannot
overlap.6 As such the presence of a minimum price increment (tick) in the Markov
model has only a small effect on the equilibrium market behaviour.7

To understand why the information level has little effect on behaviour it is ben-
eficial to consider the problem faced by traders. In the model, in equilibrium, the
traders’ estimates of the probabilities of orders executing are always correct. For
a given state X in information level l this probability is the average, weighted by
frequency of occurrence, of all states that in information level l + 1 would map to
state X . For instance, consider the state X for l = 1 of {B1 = 0.4, A1 = 0.6} (i.e.
the best bid is 0.4 and the best ask 0.6). There are a large number of states in l = 2
which map to this, including {B1 = 0.4, A1 = 0.6, B2 = 0.3, A2 = 0.7}, {B1 =
0.4, A1 = 0.6, B2 = 0.3, A2 = 0.8}, {B1 = 0.4, A1 = 0.6, B2 = 0.3, A2 = 0.9}
etc. All of these states in l = 2 would be represented by X in l = 1. The greater
number of states allows traders to specify their strategy more finely, but they do not
measure the probability of execution over the set any more accurately. As such, there
may be some states where traders are more aggressive at l = 2 than they would be
in X at l = 1 and, similarly, some where they are less aggressive. The chosen action

6 The quantities at the best quotes for the linear model are not given as with continuous pricing
there is never more tha one order at this price.
7 The effect of the width of the price grid—the number of ticks in the market—was also considered.
Doubling the number of ticks in the price grid led to an increase in the spread of 50 % while
the quantities at the best quotes were found to be 50 % greater under the smaller set of prices.
Importantly, however, a larger price grid was found to have no effect on the behaviour of the model
across information levels, that is, for all information levels the spread and quantities available were
the same.
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Fig. 1 Example of time evolution of best bid and ask in equilibrium using linear strategies. Best
bid is given as a dashed line while the best ask is the solid line. Each time step corresponds to a
single trader entering the market

at level l = 1 may therefore be viewed as the payoff maximising action averaged
over all possible states at l = 2. This explains why the information level has little
influence on the aggregate behaviour being actions averaged across all states.

A snapshot of the best quotes realised with linear strategies is depicted in Fig. 1.
The graph shows that there is considerable variability in the trading session as well
as frequent periods in which the spread falls to minute levels (periods when the two
lines nearly intersect). This demonstrates why the average spread in the presence of
linear strategies is smaller than in the Markov perfect equilibria.

Table 3 shows the distribution of spreads for all the markets. Again the statistics
for the four markets with strategic traders are very similar. In all cases over half of the
time the best bid and ask are within one tick of the equilibrium price. In 90 % or more
of the cases the spread is within two ticks and in nearly all cases the spread is within
three ticks. In contrast, the ZI market shows much more variability in the spread. In
only 14 % of observations is the spread within one tick of the mid price indicating that
the market is much more volatile and less efficient. This indicates that for markets
populated by strategic traders the price is relatively stable and, importantly, there are
only a small number of market situations, which traders are faced with. As such the
degree of strategic sophistication traders’ require may be low.

Table 4 shows the relative shares of the type of orders submitted in different
markets. Again, the ZI results differ markedly from the ones of the strategic mod-
els: marketable orders are halved with respect to the other markets, few orders are
aggressively improving the extant quotes and, as a consequence, most of orders are
placed behind the best quotes. These results broadly match those highlighted by
Ladley and Schenk-Hoppé (2009) who found that the ZI model produced too few
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Table 3 Distribution of ranges of bid and ask spreads for traders using ZI, Markov (l = 1, 2, 3)
and linear strategic

0.45−0.55 0.40−0.60 0.35−0.65

0.45−0.55 0.14 0.28 0.39
ZI 0.40−0.60 0.28 0.49 0.65

0.35−0.65 0.39 0.65 0.85
0.45−0.55 0.61 0.79 0.80

l = 1 0.40−0.60 0.78 0.97 0.98
0.35−0.65 0.80 0.98 1.00
0.45−0.55 0.62 0.79 0.81

l = 2 0.40−0.60 0.78 0.95 0.97
0.35−0.65 0.81 0.97 0.99
0.45−0.55 0.62 0.78 0.81

l = 3 0.40−0.60 0.77 0.94 0.96
0.35−0.65 0.80 0.96 0.99
0.45−0.55 0.50 0.69 0.74

Linear 0.40−0.60 0.68 0.89 0.95
0.35−0.65 0.72 0.94 0.99

Rows correspond to bid price and columns to ask prices

Table 4 Distribution of types of orders under the four different information levels along with
number of cancellations and trades

Model ZI l = 1 l = 2 l = 3 Linear

Market orders 0.113 0.233 0.233 0.233 0.257
Price improving limit orders 0.073 0.108 0.104 0.109 0.181
Limit orders at best quote 0.045 0.162 0.167 0.161 –
Limit orders behind best quote 0.769 0.497 0.496 0.498 0.563

orders market orders and limit orders at the best quotes and too many behind the
best quotes relative to empirical data. In reality, as well as in this model, strategic
behaviour leads to fewer limit orders being wasted—being placed behind the best
quotes with little chance of execution. Sophisticated traders choose not to submit
these orders and submit price improving orders instead.

The market with linear strategies is slightly more efficient than the Markov mar-
kets, as seen in the fractions of market(able) orders, 25.7 %, as compared to 23.3 %.
This implies that the traded volume is almost 5 % bigger in the market with linear
strategies than in the Markov ones due to the smaller spread available in the first
market. As before, orders at the best quote are meaningless in the linear model. We
therefore, provide in the table only the share, 56.3 %, of non-improving orders for
the model with linear strategies. Despite some differences, all the strategic markets
are rather similar as shown by a more accurate comparison, say, between the linear
model and the one in which l = 3. The share 16.1 % of “at the best quote” orders
for the Markov model can be split in equal parts and tallied in the “improving” and
“behind the quotes” orders, respectively, assuming that with equal probability an
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Fig. 2 Trading behaviour of intra-marginal buyers and sellers facing best quotes 0.50 and 0.45.
Black (red) stars denote market orders submitted by sellers (buyers) and black (red) solid lines
show the median ask (bid) when limit orders are posted. The horizontal axis shows the costs for
sellers and 1 less the values for buyers

order at the best quote falls in either of the neighbouring category. In such a way
the fifth column of Table 4 would have 18.9 % of improving and 57.8 % of “behind
the best quote” orders, which should be compared to 18.1 and 56.3 % of the sixth
column, relative to the linear strategy equilibrium.

It is of interest to also look at the behaviour of the traders in equilibrium, par-
ticularly when they use linear strategies that are relatively simple. Recall that the
models contemplate heterogeneous agents with different values and costs: while
some may be strongly intra-marginal, feeling an intense pressure to finalise a trade
to get profits, others—the extra-marginal ones—will basically have no chance to
trade in equilibrium, being outstanding quotes at levels that do not make possible
execution at a profit compared to reservation values. Moreover, as hinted in Sect. 2,
even though different strategies are evolved in distinct simulations, they are however
almost perfectly profit-equivalent.

A way to represent what agents do is to show what they bid/ask facing some
frequently visited states of the book. We take the two symmetrical configurations
in which the best quotes are 0.50, 0.45 and 0.55, 0.50, respectively. Figures 2 and 3
depict the median of the limit orders posted by intra-marginal sellers and buyers
across all the simulations. When the best quotes are 0.50 and 0.45 (dashed in Fig. 2),
there is fierce competition among sellers who pushed the ask downwards to get closer
to the outstanding bid. On the one hand, the strongest sellers, with costs equal to 0.05
or 0.10, issue marketable orders hitting the best bid and cashing 0.45 for one unit of
the asset (see the black stars in the picture): they get less than the equilibrium price,
but trade is immediate and large profits are secured anyway. On the other hand, sellers
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Fig. 3 Trading behaviour of intra-marginal buyers and sellers facing best quotes 0.55 and 0.40.
Black (red) stars denote market orders submitted by sellers (buyers) and black (red) solid lines
show the median ask (bid) when limit orders are posted. The horizontal axis shows the costs for
sellers and 1 less the values for buyers

whose cost exceeds 0.10 prefer to post limit orders that are not immediately executed,
see the black solid line: in particular, we observe that the median order is improving
when c = 0.15, ..., 0.35 and behind the best quote when c = 0.40, 0.45, 0.50.

Buyers in Fig. 2 find an attractive (low) ask and the ones whose value is larger
or equal to 0.65 content themselves with a marketable order, see the red stars repre-
senting bids hitting the quote 0.50 and notice that the horizontal axis shows 1− v for
buyers. Agents with values v = 0.60, 0.55, 0.50 prefer to improve the outstanding
best bid in order to gain priority, see the red solid line.

Figure 3 almost perfectly matches Fig. 2, after swapping the roles of buyers and
sellers. Even when the depicted behaviour is distinct, this results in minute differences
in profits and even more so if one takes into account that the figures represent median
behaviours. Take, for instance, the seller whose cost is 0.35 in Fig. 3: he will decrease
the ask to 0.502, virtually zeroing the spread and securing for himself an expected
profit that is very similar to the one immediately cashed by the symmetric buyer
whose value is 0.65 in Fig. 2.

Overall, the pictures represents a rather sensible and, ex post, intuitive behaviour
on the part of traders: strongly intra-marginal agents typically trade immediately
using marketable orders, either because there is fierce competition on their side or
because the quote on the opposite side is (already) captivating. The weakly intra-
marginal traders improve the best quote to gain priority or patiently queue their
orders in the hope that future, less unbalanced, states of the book will make their
offers competitive.
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5 Conclusion

In this paper, we have used two models of order book markets to investigate the
importance of information and strategic sophistication. The results provide insights
into the effect and importance of information on optimal trading in order book-based
continuous double auctions. The statistical measures of market and trader behaviour
differed little across levels of information. These statistics, however, were very differ-
ent from those obtained under the zero-intelligence model where lack of knowledge
and the resulting random behaviour results in sub-optimal trading. We may therefore
conclude that the crucial piece of information for traders in constructing their optimal
strategy is knowledge of the best quotes. Further knowledge about the book conveys
no value in this context: intuitively, this may be related to the dynamic nature of the
book, where orders are likely to be added close to the best quotes as and if they are
needed. As Bouchaud et al. (2009) argue the book may be dynamically complete.

Key to the effect above is the finding that in equilibrium only a relatively small
number of order book states occur as shown by the large percentage of observation
in which the spread occupies a relatively narrow band around the equilibrium price.
As such the possible situations that traders must develop optimal responses for are
small in number. Traders strategies may therefore be relatively simple and easily
learnt. Moreover, the similarity between the optimal Markov strategies and the lin-
ear approximation indicates that optimal trading may be approximated by a simple
functional form further easing the cognitive burden placed on traders.

The work presented in this paper could be extended to consider more complex
market settings. In this paper, we have considered a relatively simple market—a
fixed equilibrium price, unit quantities and exogenous cancellation. All three of these
aspects could be made more sophisticated. A moving equilibrium price would exac-
erbate the risk for limit order submitters—increasing the chance of non-execution
or picking off if the price moved away from or towards the order. Non-unit orders
could increase the impact of a trader on the book as they would potentially be able
to remove liquidity at multiple price ticks. Endogenous cancellation and resubmis-
sion of orders would allow traders to adapt their order placement to the changing
state of the market. All three of these changes would possibly increase the value of
information beyond the first tick. It was surprising in the current setting that only the
first level of information was valuable. Identifying the requirements for this to be the
case more generally, however, would be a potentially valuable advance.
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Regime Switching Models in the Foreign
Exchange Market

Wai-Mun Chia, Mengling Li and Huanhuan Zheng

1 Introduction

A large number of studies have confirmed the application of heterogeneous
bounded-rational strategies based on technical and fundamental analysis in the
trading of financial assets by investment professionals. For instance, Boswijk et al.
(2007), Chiarella et al. (2012) and Yamamoto and Hirata (2013) have documented
the evidence of behavioural heterogeneity and the simultaneous presence of both
fundamentalists and chartists in the stock markets. Similar observation is also found
in the options market (Frijns et al. 2010) and the foreign exchange markets (Gilli and
Winker 2003; Westerhoff and Reitz 2005; Menkhoff et al. 2009; de Jong et al. 2010).
Such heterogeneity in investment behaviour is also supported by the experimental
evidence of Hommes (2011) and the questionnaire survey of Allen and Mark (1990),
Cheung and Chinn (2001) and Gehrig and Menkhoff (2004), among others. A more
comprehensive summary of these surveys can be found in the study of Menkhoff and
Taylor (2007).

W.-M. Chia
Division of Economics, Nanyang Technological University, 14 Nanyang Drive,
Singapore 637332, Singapore
e-mail: aswmchia@ntu.edu.sg

M. Li
Division of Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link,
Singapore 637371, Singapore
e-mail: mli6@e.ntu.edu.sg

H. Zheng (B)
Institute of Global Economics and Finance, The Chinese University of Hong Kong,
12 Chak Cheung street, Shatin N. T, Hong Kong
e-mail: arwenzh@gmail.com

H. Zheng
Department of Economics and Related Studies, The University of York,
Heslington, York YO10 5DD, UK

R. Dieci et al. (eds.), Nonlinear Economic Dynamics and Financial Modelling, 201
DOI: 10.1007/978-3-319-07470-2_12, © Springer International Publishing Switzerland 2014



202 W.-M. Chia et al.

Heterogeneity can either be cross-sectional where different types of investors
adopt different strategies or time-variant where the same investor can switch among
heterogeneous strategies over time (Boswijk et al. 2007; Chiarella et al. 2012;
Yamamoto and Hirata 2013). Accounting for such a switch in trading behaviour
is important in both theoretical and empirical work. Theoretically, Huang and Zheng
(2012) and Huang et al. (2010, 2012) show that, besides the cross-sectional hetero-
geneity, accounting for the regime-switching beliefs itself can improve the models
capability to generate financial market stylized facts that match well with actual
financial market data. Empirically, Manzan and Westerhoff (2005), De Grauwe and
Grimaldi (2006), de Jong et al. (2010) and Chiarella et al. (2012) show that models
with the regime-switching behaviour tend to outperform those without in terms of bet-
ter in-sample explanatory power and out-of-sample forecasting ability. Besides, these
models also demonstrate better predictive power than a simple foreign exchange rate
random walk model that outperforms many structural exchange rate models (Meese
and Rogoff 1983).

Existing regime-switching models that are used to estimate behavioural hetero-
geneity can be broadly classified into three categories according to their switching
mechanisms. The first category is pioneered by Boswijk et al. (2007, BHM hereafter)
where investors switch their strategies based on past performance. In the original work
of Boswijk et al. (2007), investors cluster evolutionarily to the strategy that gener-
ate higher past realised profits according to some discrete choice probability, with
root tracing back to Brock and Hommes (1998). Many empirical studies later fol-
low similar switching rule, but refer to various switching criteria based on backward
looking indicators. For example, in Manzan and Westerhoff (2007), investment deci-
sion is updated according to the deviation between actual and fundamental prices,
whereas studies by de Jong et al. (2010), Jongen et al. (2012) and ter Ellen et al.
(2013) assume that investors switch to strategies with relatively accurate past fore-
casting. This strand of regime-switching models is by far the most commonly applied
type of models in the current literature. The second strand of empirical models fol-
lows closely the work of Lof (2012) where investors update their trading strategies
according to business cycles. The switching rule is governed by a smooth-transition
function of some macroeconomic variables such as GDP growth rate, industrial pro-
duction and consumer price index. In this class of models, investors follow a chartist
strategy during economic expansion and switch to a fundamentalist strategy dur-
ing economic contraction. The third strand of models follows the work of Chiarella
et al. (2012) where the switching originates from the structural change in expectations
based on some unobserved conditions in the financial markets that are governed by a
Markov process. In this set up, investors initially play the same trading strategy, but
subsequently deviate from their original forecasting formula and switch completely
to a different strategy depending on the market conditions. Putting these together,
it is noted that behavioural heterogeneity can be cross-sectional and time-variant.
It can also arise within the same trading strategy. In the first and second types of
models, investors switch evolutionarily between trading strategies that are govern-
ment by some rule. In the third type of models, even though investors do not switch
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between strategies, strategy may switch according to different market conditions that
are governed by a Markov switching process.

Although there is clear evidence that the regime-switching models provide a good
empirical specification to estimate behavioural heterogeneity, it remains unclear as
in which type of switching mechanism performs better. In view of the lack of per-
formance comparison, in this chapter, we aim to compare different switching mech-
anisms and evaluate their performance in estimating the foreign exchange market.1

Specifically, we identify the comparative advantage of each switching mechanism in
terms of its goodness-of-fit, estimation efficiency and predictive power, using a frame-
work that is as simple as possible. In doing so, we first develop a benchmark model
that is sufficiently general to incorporate all the three types of switching mechanisms
while keeping other factors unchanged. We then estimate the three models separately.

We choose to compare the three switching mechanisms in the foreign exchange
market with the context of AUD/USD for several reasons. First, AUD/USD is the
fourth-most-traded currency pair, which accounts for 7 % of the global foreign-
exchange market (Economist 2013). The common practices of various types of traders
in such a market is relatively general and representative. Second, the Federal Reserve
of United States has kept the interest rate close to zero for more than five years, while
the interest rate in Australia has been high (its current interest rate is still 2.75 % after
several round of rate cuts), which makes this currency pair one of the most important
vehicle for carry trade. Third, to the best of our knowledge, no empirical literature
on behavioural heterogeneity has studied AUD/USD despite its importance in the
foreign exchange market. Our studies complement existing literature with the trading
behaviour on AUD/USD.

Using monthly data from January 2000 to June 2013, our empirical results suggest
that (1) behavioural heterogeneity can arise not only due to cross-sectional hetero-
geneity with investors taking different strategies or time-variant heterogeneity with
investors switching their strategies over time, but also within-group heterogeneity
when investors who stick to the same strategy shift their expectations over time; (2)
while strategy switching based on a smooth-transition function of various macro-
economic variables proposed by Lof (2012) provides the best in-sample explanatory
power and strategy switching based on past performance as in Boswijk et al. (2007)
exhibits better out-of-sample forecasting power, there is no significant evidence to
confirm any of these two switching mechanisms outperforms that of Chiarella et al.
(2012) in terms of forecasting accuracy.

The remaining of the chapter is organized as follows. Section 2 describes the
model. Section 3 presents the data and methodology. Section 4 discusses the esti-
mation results of the three models. Sections 5 and 6 compare the three models in
terms of their estimation efficiency and out-of-sample forecasting power, respec-
tively. Section 7 concludes.

1 Existing papers typically apply BHM to estimate HAMs, using various foreign exchange data. ter
Ellen et al. (2013) apply weekly survey data to estimate HAM with the BHM method. They find
existence of value traders and momentum traders as well as the switching between them. Perhaps
due to the monthly data that we have applied, we find no evidence of switching behaviour in the
AUD/USD exchange market with the BHM method.
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2 Model Specifications

Like many other asset markets, the foreign exchange market is also believed to
consist of investment professionals who use both fundamental and technical analysis
in their trading activities (Menkhoff and Taylor 2007). Many existing studies have
indeed confirmed the simultaneous presence of fundamentalists and chartists in the
foreign exchange market. These include the work of Cheung and Chinn (2011) and
Gehrig and Menkhoff (2004). Additionally, many researchers who incorporate fun-
damentalist and chartist strategies in their asset pricing models show that simulated
data in these models match with almost all stylised facts (De Grauwe and Grimaldi
2006; Huang et al. 2012). These models also provide empirical specifications that
outperform the commonly used random walk model (Chiarella et al. 2012; de Jong
et al. 2010). Motivated by these findings, we consider a foreign exchange market that
consists of both fundamentalists and chartists who submit their orders to a market
maker. The market maker then adjusts the exchange rate up or down according to
the size of aggregate order.

2.1 Benchmark Model

2.1.1 Fundamentalists

In the benchmark model, the fundamentalists perceive the deviation between spot
exchange rate St and fundamental exchange rate ut as a trading opportunity.
According to them, expected price movement is caused by the mispricing of either an
undervaluation or an overvaluation of a currency. While some of them believe in the
persistence of the mispricing in the short term, others may expect a reversion back
to its fundamental value. Together, their aggregate demand function is given by:

D f,t = αft (ut − St−1) , (1)

where αft measures the extent to which the fundamentalists act on their belief. With
αft > 0, the majority of the fundamentalists believe in the mean-reverting of price,
that is, they expect the currency to appreciate (depreciate) in the future if St−1 is
below (above) ut . In this case, the aggregate actions of the fundamentalists stabilise
the currency. With αft < 0, the majority of the fundamentalists believe that the spot
rate will continue to deviate from its fundamental, at least for a while. In this case,
the aggregate actions of the fundamentalists destabilise the currency and worsen the
deviation. Our specification of the fundamentalists is slightly different from the tra-
ditional definition, where they always trade to drive prices towards its fundamentals.
The traditional definition is a special case in our set-up.

There is a lack of consensus in estimating the fundamental value ut in the foreign
exchange market (Taylor 1995). While many theoretical works propose to estimate
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the fundamental exchange rate using monetary models based on money stock and
real income (Mark 1995), recent works suggest an extended framework that includes
money supply, output, interest rate, expected inflation and trade balance (Neely and
Sarno 2002).2 There is, however, no convention on estimating the corresponding
coefficients, such as the money-demand income elasticity. Therefore, these methods
that work well in the existing theoretical literature are not sufficient for our pur-
poses. Most of the foreign exchange rate determination models draw upon purchasing
power parity (PPP) and uncovered interest rate parity (UIP). However, the
calculation of true PPP value of an exchange rate is ambiguous and not straight-
forward (Ellen et al. 2013). Therefore, in our studies, we choose to proxy the fun-
damental exchange rate based on UIP, which requires only directly observable data
and is relatively easy to estimate. The application of UIP is also justified by the
observation that foreign exchange traders watch closely the interest rates movement
underlying the currency pairs (in our case, the federal funds rate in the United States
and the cash rate in Australia), the two most important indicators underlying UIP.
Specifically, we measure the fundamental foreign exchange rate for AUD/USD based
on the following equation:

ut+1 = St (1+ r AU
t /12)/(1+ rU S

t /12), (2)

where rU S
t is the annualised US money market rate and r AU

t is the annualised
Australia money market rate.

Fundamentalists who expect mean reversion are those who believe in UIP. They
will buy the currency of low-interest country and sell the currency of high-interest
country and anticipate the exchange rate of low-interest country to appreciate. These
are known as the UIP traders. On the other hand, for fundamentalists who expect the
price deviation to persist will sell the currency of low-interest country and buy the
currency of high-interest country. They will profit from the interest rate differential
as the exchange rate remains constant or depreciates. They are known as the carry
traders. Therefore, when the majority of the fundamentalists are UIP traders, αft > 0.
When carry traders form the majority, αft < 0. We distinguish the fundamentalists
as carry traders and UIP traders, beyond the archetypical specifications of funda-
mentalists in HAMs. This set up is in accordance with the importance of interest
differential as a determinant of the foreign exchange expectations, in addition to the
conventional fundamental and momentum considerations in other financial markets
(Jongen et al. 2012).

2.1.2 Chartists

The chartists in the model are those who conduct technical analysis to form their
expectation of future exchange rate. While there are many technical rules, the most
commonly applied rule is the momentum rule. Empirical studies have indeed con-

2 See Taylor (1995) for a survey on various models of foreign exchange rate determination.
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firmed the presence of such a trading rule. Besides, the momentum rule is found
to be relatively more profitable as compared to the other technical rules, such as
moving average (Jongen et al. 2012). Motivated by these findings, we assume that
the chartists form their expectation based on the most basic form of momentum rule
AR(1):

Ec,t (St ) = St−1 + βt (St−1 − St−2) , (3)

where βt is the extrapolation rate of the chartists and it measures the degree of
expected autocorrelation. When βt > 0, the chartists expect the price trend to persist
(bandwagon expectation). On the other hand, when βt < 0, the chartists expect the
past price trend to reverse (contrarian expectation). The aggregate demand of the
chartists is given by:

Dc,t = η[Ec,t−1(St )− St−1] = λt (St−1 − St−2) , (4)

where η > 0 is a parameter that measures the extent to which the chartists act on
their beliefs and the second line is obtained by letting λt = ηβt . Note that λt > 0
(λt < 0) if and only if βt > 0 (βt < 0).

2.1.3 The Market Maker

Within a market maker framework, the market maker collects orders from all traders
and subsequently quotes the spot exchange rate according to the aggregate demand
with a speed ofγ > 0. We useω f,t andωc,t to denote the market weights (or fractions)
of fundamentalists and chartists, respectively. The exchange rate is updated according
to the aggregate demand and a noise term εt , which can be written as:

	St = St − St−1

= γ (
ω f,t D f,t + ωc,t Dc,t

)+ εt

= γω f,tα f t (ut − St−1)+ γωc,tλt (St−1 − St−2)+ εt . (5)

where γ is the speed of exchange rate adjustment and the third line is obtained by
substituting D f,t and Dc,t from Eqs.(1) and (4).

In the following, we specify the three types of switching mechanisms separately.
In particular, the proportion of fundamentalists, ω f,t , and chartists, ωc,t , are mod-
elled to evolve according to different rules—switching based on past performance
(Boswijk et al. 2007) and switching based on macroeconomic fundamentals (Lof
2012), while the intensity of actions of fundamentalists and chartists, αt and λt , are
modelled to be contingent on the foreign exchange market state for the Markov-
switching beliefs (Chiarella et al. 2012).
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2.2 Strategy Switching Based on Past Performance

Following BHM, we assume that traders update their market weight every period
according to the most recent realised profits. The proportion of fundamentalists,ω f,t ,
and chartists,ωc,t , evolve according to a discrete choice model with multinomial logit
probabilities:

ω f,t = exp
(
ρπ f,t−1

)
exp

(
ρπ f,t−1

)+ exp
(
ρπc,t−1

) (6)

ωc,t = exp
(
ρπc,t−1

)
exp

(
ρπ f,t−1

)+ exp
(
ρπc,t−1

) = 1− ω f,t ,

where ρ is a scaled intensity of choice that measures the sensitivity to the relative
profitability of the trading rules, and π f,t−1 and πc,t−1 represent the most recent
realised return of fundamentalists and chartists, respectively. Specifically, the profits
of each fundamentalist and chartist can be described by:

π f,t = D f,t (St − St−1)

πc,t = Dc,t (St − St−1)
, (7)

To comply with BHM, we further assume that α f t ≡ α f and λt ≡ λ. This implies
that both fundamentalists and chartists maintain the same degree of acting on their
beliefs. In the BHM style of switching, Eq. (5) can be written as:

	St = St − St−1

= γα f exp
(
ρπ f,t−1

)
(ut − St−1)

exp
(
ρπ f,t−1

)+ exp
(
ρπc,t−1

) + γ λ exp
(
ρπc,t−1

)
(St−1 − St−2)

exp
(
ρπ f,t−1

)+ exp
(
ρπc,t−1

) + εt

= γα f (ut − St−1)

1+ exp
[
− ρ
γ
	St−1

(
γα f (ut−1 − St−2)− γ λ (St−2 − St−3)

)]

+ γ λ (St−1 − St−2)

1+ exp
[
ρ
γ
	St−1

(
γα f (ut−1 − St−2)− γ λ (St−2 − St−3)

)] + εt

(8)

While the time series of spot exchange rate St is directly observable, the
fundamental exchange rate ut is calculated based on Eq. (2). Other parameters to be
estimated are γ , α f , λ and ρ. To prevent under-specification, we estimate γα f , γ λ
and ρ/γ instead. As γ > 0 is only a scaling factor, it will not affect the statistical
significance of the estimation coefficients.
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2.3 Strategy Switching Based on Macro Fundamentals

Following Lof (2012), traders are assumed to update their strategy according to
macroeconomic fundamentals. The weight of fundamentalists,ω f,t , follows a logistic
smooth-transition regressive function (LSTR) of a lagged matrix of macroeconomic
fundamental variables Xt−1:

ω f,t = 1

1+ exp
[
τ (Xt−1 A − c)

] , (9)

where A is a column vector denoting the weight of the fundamental variables,
the parameter τ > 0 measures the sensitivity to the fundamental matrix, and c
is the threshold exceeding which the foreign exchange market will be dominated by
chartists. The model implies transitions between two regimes: the regime dominated
completely by fundamentalists, ω f,t = 1, which tends to occur when Xt−1 A < c
and the regime dominated completely by chartists, which tends to occur when
Xt−1 A > c. When Xt−1 A = c, fundamentalists and chartists share the market
equally. The selection of macroeconomic fundamental variables Xt−1 will be based
on a series of linearity tests. More details are discussed in the methodology section.

Following Lof (2012), we let α f t ≡ α f and λt ≡ λ. In Lof’s LSTR switching
model, Eq. (5) can be written as:

	St = γα f (ut − St−1)

1+ exp
[
τ (Xt−1 A − c)

] + γ λ exp
[
τ (Xt−1 A − c)

]
(St−1 − St−2)

1+ exp
[
τ (Xt−1 A − c)

] + εt .

(10)

As the time series of ut , St and Xt are directly observable, we can estimate the LSTR
for γα f , γ λ, A, c and τ .

2.4 Markov-Switching Beliefs

As in the financial market, the foreign exchange market is characterised by currency
appreciation with low volatility in a boom state, and currency depreciation with high
volatility in a bust state. Investors’ trading behaviour is likely to vary in different
states. Motivated by these observations, the beliefs of fundamentalists and chartists
as well as the noise term are modeled to be state-dependent.

Following Chiarella et al. (2012), λt (to be exact βt ) is assumed to be contingent
on the foreign exchange market state mt , which takes a discrete value of 0 or 1 so
that mt ∈ M = {0, 1}. The dynamics of the state aim at capturing the changes in the
market conditions through the observed prices. The state mt is modeled as a stationary
ergodic two-state Markov chain on M with transition probabilities given by:

P (mt = j |mt−1 = i,mt−2 = k, ...) = P (mt = j |mt−1 = i) = Pj,i (11)
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for i, j, k ∈ M , where Pj,i indicates the probability that state (regime) i transits to
state j for i, j ∈ {0, 1}. The transition probabilities are constants and satisfy the
conditions of

∑1
j=0 Pj,i = 1 and 0 ≤ Pj,i ≤ 1 for i = 0, 1. The state mt is a

random variable that is not directly observable. However, a filter estimate can be
computed from the time series of the exchange rate. Some filters, such as sequential
filter, are capable of performing accurate inferences of mt . It is therefore reasonable
to assume that investment professionals can estimate the state with high precision.
The regime-dependent α f t and λt are then given by:

α f t =
{
α f 0, mt = 0,

α f 1, mt = 1.
(12)

and

λt =
{
λ0, mt = 0,

λ1, mt = 1.
(13)

The noise term εt is assumed to be drawn from an N (0, σ 2
t ) distribution and σ 2

t is
regime-dependent, that is:

εt ∼
{

N (0, σ 2
0 ), mt = 0,

N (0, σ 2
1 ), mt = 1.

(14)

In Chiarella et al. (2012), the expectation formation process is regime-dependent,
but the fraction of fundamentalists and chartists are constant such that ω f,t ≡ ω f

andωc,t ≡ωc. Under the Markov regime-switching (MS) process, the price dynamic
function is given by:

	St = γω f α f t (ut − St−1)+ γωcλt (St−1 − St−2)+ εt .

The parameters estimated are γω f α f 0, γω f α f 1, γωcλ0, γωcλ1, σ0, σ1, P0,0
and P0,1.

3 Methodology and Data Description

3.1 Data

We use period average AUD/USD monthly exchange rate, Australia and US money
market rates from 2000:1 to 2013:6. The use of monthly data is consistent with most
literature in HAM for the foreign exchange market, for example, de Jong et al. (2010),
Jongen et al. (2012) and Spronk et al. (2013). Using data with lower frequency may
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smooth out much of the behavioural changes of the traders.3 Even though foreign
exchange rate data are available at high frequency, we use monthly data for two
reasons. The first is to avoid directly addressing issues arising from short-term noise
such as the day-of-the-week effect in exchange rate volatility (see Hsieh 1988).
The second is to link the decision-making process to macroeconomic data that are
typically available at a relatively low frequency.

Other data collected are potential transition variables, which are used in the LSTR
model. These include real effective exchange rate (REER), real GDP (GDP),4 unem-
ployment rate (UNE), real industrial production (IND), consumer price index (CPI),
money supply (M1), short-term (STY) and long-term (LTY) interest rates measured
by government bond yield. Among these variables, REER, GDP, IND, CPI and M1
are measured in month-on-month growth rates. Since nominal exchange rate is a
relative measure, we take country-on-country differences (Australian value minus
US value) of each potential transition variable.

The statistics of all these variables are summarised in Table 1. Figure 1 shows
the nominal exchange rate and its deviation from the fundamental value. Over the
sample period, the Australian dollar has in general appreciated strongly against the
US dollar and AUD/USD exchange rate has been around or below the fundamental
value, with two notable exceptions of continuing depreciation. Between 2000 and
2001, due to falling market confidence and rising concerns over political instability,
the Australian dollar fell to its lowest level since the currency was floated in 1983,
with large deviations from its fundamental value. The second notable depreciation
episode happened between August 2008 and March 2009 during the Global Financial
Crisis, where the nominal exchange rate exhibits unprecedent deviations from its
fundamental value.

The summary statistics suggest a large fluctuation in the AUD/USD exchange
rate with a minimum value of 0.929, and a maximum value of 1.996, and a standard
deviation of 0.315. Its maximum deviation from the fundamental exchange rate
is 0.218 and on average it has been below its fundamental value. This deviation
arises from the interest rate differences between the two economies. The Australia
average money market rate of 4.990 % has been more than twice of that of the US
2.225 %. The real effective exchange rate growth rates in Australia and the US exhibit
significant differences, with the maximum of 8 % and the minimum of−18 %. Such
differences are also observed in other variables, with industrial production and money
supply growth rates being more significant. All potential transition variables are then
standardised to accommodate the numerical estimation of the nonlinear model.

3 Some empirical studies with HAM also use annual data of the financial market indices. For
example, Boswijk et al. (2007) use annual S&P500 index since the index can be traced back to
1871, and thus, have a large sample even with annual data. However, Australia adopted a fixed
exchange rate regime prior to 1984. Therefore, using annual exchange rate data would largely
reduce our sample size and negatively affect the asymptotic properties of the estimates.
4 Since real GDP data is available at quarterly frequency only, we first calculate the quarterly growth
rate and then calculate the average monthly growth rate assuming a geometric growth pattern in
each quarter.
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Table 1 Summary statistics

Variable Mean Standard deviation Minimum Maximum

St 1.350 0.315 0.929 1.996
St − ut −0.006 0.044 −0.104 0.218
r AU

t 4.990 1.086 2.750 7.250
rU S

t 2.225 2.119 0.070 6.540
REER 0.297 3.098 −18.753 8.003
GDP 0.098 0.230 −0.372 0.775
UNE −0.941 2.096 −4.692 2.610
IND 1.405 2.949 −7.346 9.054
CPI 0.046 0.322 −0.805 1.494
M1 −0.003 2.142 −15.885 5.491
STY 2.217 1.185 −0.400 4.555
LTY 1.368 0.602 0.026 2.618

Notes all numbers are expressed in percentage, except St and St − ut
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Fig. 1 Nominal exchange rate and its deviation from fundamental exchange rate

3.2 Linearity Tests

To determine which set of variables are valid transition variables in the LSTR model,
following Luukkonen et al. (1988), linearity tests based on Taylor approximations
of the model are performed. The potential transition variables are divided into four
groups: (1) foreign exchange market indicators (REER); (2) business cycle indicators
(GDP, UNE, IND); (3) money supply (M1) and inflation rate (CPI); and (4) interest
rates (STY, LTY). First, we consider the univariate transition function and select the
variable that yields the strongest rejection of linearity. Next, we consider multivariate
transition functions with two, three and four transition variables, separately. Linearity
tests are performed on each possible set of two to four transition variables. We never
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Table 2 Estimation results
for the BHM model

Parameter γα f γ λ ρ/γ

Coefficient −2.225 0.723 17.571
p-value 0.270 0.000 0.738

include more than one variable from each of the four groups. This approach allows
us to avoid multicollinearity within the transition function since variables within
each group are likely to be highly correlated. Then, for each of the two-, three- and
four-transition-variable case, we choose the set of variables that yields the strongest
linearity rejection as the optimal set of transition variables. We select the set of
transition variables {REER, CPI, STY} from the linearity tests since it exhibits the
best goodness-of-fit.

4 Estimation Results

In this section, we present the estimation results from the proposed model with the
three types of regime switching, including (1) switching between strategies based on
past performance (BHM), (2) switching between strategies based on macroeconomic
fundamentals (LSTR) and (3) switching between regime-dependent beliefs (MS).

4.1 BHM Estimation Results

The parameter estimates for the BHM-type switching, defined by Eq. (8), are
presented in Table 2. The model is estimated by nonlinear least squares following
Boswijk et al. (2007). The logit switching rule in the BHM model essentially repre-
sents a special case of the generalised logistic smooth transition where the transition
variables are differences in the realised profits of fundamentalists and chartists. The
estimate of γα f is negative (−2.225). This implies that among the fundamentalists,
carry traders dominate the foreign exchange market. The estimate of γ λ is positive
(0.723). This suggests that among the chartists bandwagon expectations dominate.
The intensity of choice parameter ρ is not identified in the estimation procedure, but
is captured by ρ/γ (17.571). This is not statistically significant, suggesting that there
is no direct evidence of switching between the fundamentalists and the chartists based
on past performance. This implies that the relative profitability of the two trading
rules is not a significant strategy switch in the AUD/USD foreign exchange market.
However, this result does not exclude the possible switch driven by other mechanisms
(for example, LSTR and/or MS).5

5 No switching can be taken as a criteria to exclude a model since the existence of strategy switching
in the AUD/USD foreign exchange market is not a stylised fact. The relatively poor performance of
BHM in the AUD/USD foreign exchange market, however, cannot and should not be generalised
to the other financial markets. There is significant difference between equity market and foreign
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The upper panel of Fig. 2 plots the estimated evolution of the fraction of
fundamentalists and the AUD/USD exchange rate. The lower panel of Fig. 2 is a
scatter plot of the fraction of fundamentalists ω f,t against the relative profitability of
fundamentalism and chartism trading rules captured by γ	St−1[λt (St−2 − St−3)−
α f (ut−1 − St−2)]. As suggested by the estimated coefficients in Table 2, there is
no significant fluctuation in the fraction of fundamentalists, staying around 0.5. The
scatter plot is a relatively flat line, indicating that agents respond sluggishly to differ-
ences in performance. The negative slope of the scatter plot, albeit small in absolute
magnitude, somehow indicates that a positive difference in profits between chartism
and fundamentalism strategy results in a smaller fraction of fundamentalists. Around
the period of September 2008, the fraction of fundamentalists deviated from its mean
level, suggesting some switching from fundamentalists to chartists with the relative
appreciating US dollar.

4.2 LSTR Estimation Results

Following Lof (2012), we estimate the switching between strategies based on macro-
economic fundamentals, defined by Eq. (10), using nonlinear least squares, for each
set of transition variables separately. In the LSTR model with a multivariate transi-
tion function, τ , A and c cannot be all identified at the same time without further
restrictions. Therefore, we restrict the summation of the elements in A to be one
such that Xt−1 A represents the weighted sum of multiple transition variables. The
estimation results with three transition variables {REER, CPI, STY} are presented
since it has the best goodness-of-fit. The other linearity test results and estimation
results are discussed in the appendices.

Table 3 summarises the estimation results. The results identify two distinct regimes
with statistically significant γα f and γ λ. Since γα f < 0 (−19.553), among the
fundamentalists carry traders dominate. On the other hand, γ λ > 0 (0.370) suggests
that among the chartists bandwagon expectations dominate. These results are found
to be consistent with those estimated using the BHM model. The significance of
γα f and γ λ also implies the presence of between-group behavioural heterogeneity.
The intensity of choice parameter τ (−0.933) supports a smooth transition between
regimes, but this is found to be not significant. However, the insignificance of the
intensity of choice parameter with a large standard deviation is a common result
in switching-type regression models since large changes in τ only cause a small
variation of the fraction of fundamentalists ω f,t (see for example, Boswijk et al.
2007 and de Jong et al. 2010). Teräsvirta (1994) suggests that this effect is not
relevant as long as there is significant heterogeneity in the estimated regimes.

(Footnote 5 continued)
exchange market. For example, investors may hold the stock position for years, while currency
traders typically close their positions daily, which may result in that BHM can capture the switching
behaviour in stock market with yearly data while failing to capture the switching behaviour in foreign
exchange market even with monthly data.
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Fig. 2 Fraction of fundamentalists estimated from BHM

Table 3 Estimation results for the LSTR model

Parameter γα f γ λ τ

Coefficient −19.553 0.370 −0.933
p-value 0.000 0.000 0.605
Parameter a1 a2 a3 c
Coefficient 3.558 −0.283 −2.275 3.365
p-value 0.000 0.190 0.000 0.000

Notes a1, a2 and a3 are the coefficients of the transitions variables REER, CPI and STY, respectively

The interpretation of A = (a1, a2, a3)
T reveals that fundamentalists dominate

during the periods of relative lower growth in Australia compared to the US. Real
effective exchange rate growth (REER) has a positive coefficient a1 (3.558). This
implies that a relative economic downturn in Australia depreciates the Australia real
effective exchange rate and appreciates the US real effective exchange rate, and thus,
increases REER, causing an increase in the fraction of fundamentalists. Inflation rate
(CPI) has a negative but not significant coefficient a2 (−0.283). A lower inflation
rate in Australia indicates a relative economic downturn in Australia, and a larger
fraction of fundamentalists in this model. Also the short-term government bond yield
(STY) has a negative and significant coefficient a3 (−2.275). A relative low yield
on Australian government bonds (low-risk assets) implies high levels risk aversion,
and in this model a high fraction of fundamentalists. In summary, fundamentalism
is the dominant strategy during low economic growth periods in Australia.
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Fig. 3 Fraction of fundamentalists estimated from LSTR

The upper panel of Fig. 3 shows the plot of the fraction of fundamentalists and
the AUD/USD nominal exchange rate overtime. The lower panel of Fig. 3 is the
scatter plot of the fraction of fundamentalists ω f,t against the weighted sum of the
transition variables Xt−1 A. Most of the time, the economy is represented by both
fundamentalists and chartists, with ω f,t ranges between 0 and 1. Overtime, chartists
dominate since the fraction of fundamentalists are mostly below 0.5. The fraction
of fundamentalists increases when St goes down, that is, the US dollar depreciates
against the Australian dollar. In 2008, the market was dominated mostly by the
chartists for a prolonged period, when the US dollar appreciated substantially against
the Australian dollar. The scatter plot clearly shows a logistic curve, suggesting a
smooth transition between fundamentalists and chartists. The curve is more dense in
the lower part (below 0.5), indicating a relative smaller portion of fundamentalists
in the market.

4.3 MS Estimation Results

The Markov regime switching model, defined by Eqs. (12)–(14), is estimated using
maximum likelihood (Hamilton 1994, Chap. 22). The estimation results are sum-
marised in Table 4. We use state 0 to denote a boom state where the Australia dollar
is appreciating (decreasing St ) against the US dollar with a relatively low volatility
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Table 4 Estimation results for the MS model

Parameter γω f α f 0 γω f α f 1 γωcλ0 γωcλ1 σ0 σ1 P0,0 P0,1

Coefficient −2.231 2.043 0.223 0.439 0.029 0.062 0.986 0.069
p-value 0.010 0.592 0.021 0.007 0.000 0.000 0.000 0.167

(low risk) and state 1 to denote a bust state where the Australia dollar is depreciating
(increasing St ) against the US dollar with a relatively high volatility (high risk).

Since both γ and ω f are positive, γω f α f 0 < 0 and γω f α f 1 > 0 suggest that
α f 0 < 0 and α f 1 > 0. This implies the dominance of carry traders in the boom state
(state 0) and UIP traders dominate in the bust state (state 1). In bust state (state 1),
the large deviation of AUD/USD nominal exchange rate from its fundamental value
as shown in Fig. 1 fades away quickly, as the UIP traders who are dominating are
mean-reverting. As most of the sample period is covered by the boom state (state 0),
we should expect an overall dominance of carry traders from 2000:1 to 2013:6. This
is consistent with the observations from the estimation results of the BHM and LSTR
models. The positive estimates of γωcλ0 and γωcλ1 suggest that the chartists expect
the exchange rate movement to persist even though the intensity of the bandwagon
effect may be different. This finding is also consistent with the results estimated
based on the BHM and LSTR models. In the bust state, the degree of bandwagon
expectation is larger than that in the boom state, suggesting a more pessimistic
sentiment when the Australian dollar is depreciating against the US dollar. Both the
different behaviour among the fundamentalists and the different behaviour among
the chartists in different states provide evidence of within-group heterogeneity over
time. The regime-dependent standard deviations are estimated to be σ0 = 0.029
and σ1 = 0.062 in states 0 and 1, respectively. The volatility in bust state is twice
as much as that in the boom state, suggesting that the market is more sensitive to
external news/shocks, and thus, exhibits higher volatility in the bust state than in the
boom state.

The switching of the beliefs of the fundamentalists and chartists and the changing
market volatilities between the two states are indicated by the transition probabilities.
The fundamentalists do not fix their strategies over time. Instead, they switch from
UIP traders to carry traders or vice versa with a time-varying probability. Similarly,
the chartists adjust their degree of bandwagon expectation according to the market
condition, which can be differentiated by the state variable mt . In addition, the overall
market sensitivity to external news/shocks are conditioned on the state variable. The
results in Table 4 show that the probability of remaining in the boom state is 0.986
(P0,0), suggesting that the boom state is persistent on an average of 1/(1−P0,0) ≈ 71
months. It means that the probability for the fundamentalists to stay in the carry
trading strategy, the chartists to have a smaller degree of bandwagon expectation
and the market to be less volatile is 0.986. Given the two states identified, this also
means that the probability for the fundamentalists and chartists to switch their beliefs
from the boom state to the bust state is 0.014 (P1,0). Similarly, the fundamentalists
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Fig. 4 Smoothed transition probability

maintain their UIP trading strategies and the chartists maintain higher degree of
bandwagon expectation in the bust state with a probability 0.931 (P1,1), and switch
to the boom state with a probability of 0.069 (P0,1).

With the estimates of the transition probabilities, we can further calculate the
smoothed probability P(mt = j |p1, . . . , pN ) for each period, conditioning on the
whole price series {p1, . . . , pN } (for details of the algorithm, see Kim and Nelson
(1999)). Figure 4 shows the smoothed probability for α f t , λt and σt to fall into the
two states over the sample period of January 2000 to June 2013. The bust periods
corresponding to state 1 cover the 2000–2001 falling market confidence in Australia
and the 2008–2009 global financial crisis. The boom periods corresponding to state
0 include the time from late 2001 to early 2008, when the financial market was
prospering in Australia. Recently, after the Australian dollar depreciates to the bottom
in the late 2008, fundamentalists and chartists became optimistic with the global
recovery and switched their estimates from regime 1 to regime 0.

Overall, the MS estimation results provide evidence on the coexistence of
time-varying within-group heterogeneity and between-group heterogeneity. Most
interestingly, although the dates of domestic economic instabilities and financial
crises are not used in any way to estimate the parameters or form inference about
transition probabilities, the classified regimes match well with the market booms and
busts in actual episodes.
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Table 5 Goodness-of-fit and misspecification tests

Model Log-likelihood AIC Linearity LR Jarque-Bera AC(12) ARCH(12)

BHM 291.939 −3.567 0.729 0.000 0.129 0.214
LSTR 318.272 −3.855 0.000 0.000 0.570 0.010
MS 305.850 −3.677 0.000 0.691 0.315 0.334

5 Efficiency Tests

In this section, we apply several measures to evaluate the goodness-of-fit of the three
regime-switching models and aim to identify the most well-specified model. Table 5
presents the log-likelihood, Akaike Information Criterion (AIC),6 the p-values of
the linearity likelihood ratio test and the three misspecification diagnostics computed
from the model residuals. Following Deschamps (2008), the three misspecification
diagnostic tests are:

1. The Jarque-Bera statistic, used as an indicator of error non-normality;
2. A χ2-statistic for the nullity of the autoregression coefficients in an AR(12)

model of the residuals. This is used as an indicator of error autocorrelation, and
is denoted by AC(12).

3. An F-statistic for the nullity of the autoregression coefficients in an AR(12)
models of the squared residuals. This is used as an indicator of error conditional
heteroscedasticity, and is denoted by ARCH(12).

In terms of in-sample estimation, the log-likelihood and AIC suggest that the LSTR
model has a better fit than the BHM and MS models. The p-values for the likelihood
ratio tests strongly reject the null hypothesis of linearity in favour of the LSTR and
MS models. However, when comparing the BHM model with the linear model, the
results fails to reject the linearity. This finding is consistent with the BHM estimation
results that there is no significant switching between the chartists and fundamental-
ists. The estimated p-values of the Jarque-Bera statistics indicate non-normality of
residuals for the BHM and LSTR models. This result could be attributed to the differ-
ent volatilities of the foreign exchange market in different states, which are modelled
explicitly in the MS model, but not the BHM or the LSTR models. The estimated
p-values for error autocorrelation (AC(12)) and error conditional heteroscedasticity
(ARCH(12)) are all larger than 0.01, with the exception of that for ARCH(12) in
the LSTR model. Therefore, we conclude that there is weak evidence of conditional
heteroscedasticity in this model.

6 In comparing the in-sample fit, we use the AIC in addition to the log-likelihood. The advantage of
AIC is that it can deal with the trade-off between the goodness of fit of the model and the complexity
of the model. AIC not only rewards goodness of fit, but also includes a penalty that is an increasing
function of the number of estimated parameters. This penalty discourages over-fitting.
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6 Predictive Power

Besides the in-sample efficiency, another important criterion to evaluate the different
model specifications is the out-of-sample predictability. We compare the out-of-
sample forecasting accuracy of the three regime-switching models, by dividing the
data sample into two segments: one for the in-sample estimation and the other for the
out-of-sample comparison. Specifically, we use data from 2000:1 to 2012:5 to esti-
mate the models, on the basis of which we forecast the exchange rate from 2012:6 to
2013:6. The forecast series are then compared with the actual exchange rate as shown
in Fig. 5. The model with switching between strategies based on macroeconomic
fundamentals (LSTR) exhibits better forecasting accuracy in the short run (3-month
horizon). However, the other two regime-switching models (BHM and MS) tend to
outperform in a longer horizon. The regime-switching based on past performance
(BHM) gives the best out-of-sample prediction accuracy in the long run.

In the above exercises, the separation of the sample is somewhat arbitrary, a
natural question is whether the results are sensitive to the sample selection. As a
robustness check, we apply a rolling forecasting technique with a fixed sample size
and then compare the forecasting performance using the root-mean-squared forecast
error (RMSE) and mean absolute error (MAE) for different forecasting horizons.
The significance of the difference in forecasting differences is tested by the Diebold
and Mariano (1995) test statistic.

Specifically, for each regime-switching model, we calculate the h-months-ahead
forecasting error, for h = 1, 2, . . . , 12. The forecasting recursion is based on a
rolling estimation window with a fixed sample size, which is 108 (9 years of data) in
our practice. First, the model is estimated for the period 2000:1 to 2008:12, that is,
the first 108 observations (S1, S2, . . . , S108), and then obtain the first h-month-ahead
forecasts (Ŝ108+1, . . . , Ŝ108+h). Similarly, we obtain the second h-month-ahead fore-
casts (Ŝ109+1, . . . , Ŝ109+h) from observations (S2, S3, . . . , S109). Such a process is
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Table 6 Forecasting performance

Steps Panel A: ratio of RMSE’s Panel B: ratio of MAE’s Panel C: Diebold-Mariano
BHM BHM LSTR BHM BHM LSTR BHM BHM LSTR
/LSTR /MS /MS /LSTR /MS /MS /LSTR /MS /MS

1 1.396 0.928 0.665 1.515 0.937 0.618 3.506∗∗∗ −2.057∗∗∗ −3.175∗∗∗
2 1.267 0.913 0.720 1.222 0.944 0.772 1.181 −1.113 −1.165
3 1.087 0.872 0.802 0.968 0.912 0.942 0.375 −1.220 −0.707
4 0.980 0.833 0.850 0.922 0.881 0.955 −0.086 −1.220 −0.476
5 0.884 0.803 0.909 0.857 0.846 0.987 −0.509 −1.218 −0.265
6 0.855 0.778 0.910 0.777 0.798 1.026 −0.556 −1.218 −0.237
7 0.821 0.769 0.937 0.764 0.784 1.025 −0.739 −1.237 −0.169
8 0.787 0.763 0.969 0.767 0.768 1.001 −1.090 −1.230 −0.094
9 0.721 0.753 1.044 0.721 0.760 1.055 −2.215∗∗ −1.242 0.149
10 0.666 0.743 1.116 0.681 0.767 1.126 −6.296∗∗∗ −1.259 0.463
11 0.612 0.725 1.184 0.614 0.733 1.192 −3.465∗∗∗ −1.302 0.668
12 0.559 0.707 1.264 0.566 0.702 1.240 −27.52∗∗∗ −1.402 1.095

Notes *, ** and *** indicate significance at the 10, 5 and 1 % level, respectively

repeated until we obtain the last h-month ahead forecasts (Ŝ162−h+1, . . . , Ŝ162) from
observations (S55, S56, . . . , S162−h) (162 is the total number of observations in the
full sample). This recursion leads to a sequence of kh = 162−108+1−h = 55−h
density forecasts. Based on recursive forecasting, we calculate h-step-ahead RMSE
and MAE as:

RMSEh =
√∑t=162−h

t=108 (Ŝt+h − St+h)

kh
, MAE =

∑t=162−h
t=108 |Ŝt+h − St+h |

kh

Table 6 presents the RMSE’s (Panel A) and MAE’s (Panel B) of the three models
and the Diebold-Mariano test statistics (Panel C) for the 12 forecast horizons. Note
that the smaller the value of the RMSE and MAE, the better the forecasting accuracy.
Panel A contains the ratio of the RMSE of any two models. They are BHM versus
LSTR, BHM versus MS and LSTR versus MS. A ratio <1 (>1) indicates a better
forecasting performance for the model mentioned first (second). Panel C reports the
Diebold-Mariano test statistics of equality of forecasting performance. We use the
RMSE as loss function with a rectangular lag window with h − 1 sample autoco-
variances for the h-step-ahead forecast error. A negative (positive) number indicates
better performance for the model mentioned first (second).

The results in Panels A and B suggest that the LSTR model generally outper-
forms both the BHM model and the MS model in short-run forecasts (up to 3-month
horizon), while both the MS and BHM models outperform the LSTR model in the
medium to long run. The BHM model always performs better than the MS model in
terms of RMSE and MAE. For both the BHM and MS model, we observe that the
forecasting power of the model vis-à-vis the LSTR model generally improves as the
forecasting horizon increases. Similar observations are found in the the forecasting
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power of the model BHM vis-à-vis the MS model, although the improvement is
relatively smaller.

In terms of significant improvements as presented in Panel C, we observe a similar
pattern. In terms of the 1-month-ahead forecasts, the differences of the three models
are highly significant, where the LSTR model has the best performance while the
MS has the worst performance. The good performance of the LSTR model dies out
in the medium to long run. The BHM model performs significantly better than the
LSTR in 9- to 12-month step ahead forecasts. The BHM model is always doing better
than the MS model, however this difference is only significant for the 1-step-ahead
forecast.

7 Conclusion

We evaluate the performance of three switching mechanisms, developed by Boswijk
et al. (2007, BHM), Lof (2012, LSTR) and Chiarella et al. (2012, MS), in estimating
behavioural heterogeneity. The BHM switching mechanism highlights the impor-
tance of past performance in determining the dynamic weight of heterogeneous
trading rules. The LSTR switching model emphasizes the role of macroeconomic
fundamental in shaping the trading behaviour and affecting the choice of the trading
strategy. The MS model addresses how agents shift their expectations by extrapolat-
ing the financial market conditions from the price information and change their trad-
ing behaviour accordingly. Applying AUD/USD monthly exchange rate data from
2000:1 to 2013:6, we document empirical evidence on the comparative advantage
of the three switching models. While the LSTR model provides better in-sample
explanatory power than the other two, there is significant evidence to support the
performance of the BHM model in terms of its out-of sample forecasting accuracy.
There is, however, no significant evidence that either the BHM or the LSTR model
outperforms the MS model in terms of predictive power. All the three models have
consistently confirmed the presence of behaviour heterogeneity. More interestingly,
both the LSTR and the MS models highlight a significant dominance of carry traders
in the AUD/USD foreign exchange market.7 The carry traders sell the currency of
low-interest country and buy the currency of high-interest country expecting to profit
from interest rate difference. This finding is in line with other findings in literature
that the influence of carry traders on exchange rates is large and increasing (Galati
et al. 2007; Pojarliev and Levich 2011). The role of carry traders has also been high-
lighted by Spronk et al. (2013) using simulations to generate stylised facts observed
in empirical exchange rates.

In reality, the three different types of regime switching mechanisms can coexist.
In this chapter, we isolate the three types and investigate which type can fit the

7 The results however cannot rule out the presence of UIP traders. The BHM model also suggests the
dominance of carry traders, even though it is not statistically significant. The conclusion, however,
is restricted to AUD/USD exchange rate and hence should not be generalised.
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AUD/USD exchange rate data better. But this superiority is not in absolute terms and
we cannot rule out the coexistence of other types of switching in the market. The
relative good performance of the LSTR model suggests that agents in the AUD/USD
foreign exchange market are more responsive to the changes in the macroeconomic
fundamentals than to the past profit and to the market states.

Future research in this area may include an investigation of the other financial
markets, such as commodity market and stock market, in order to compare the rela-
tive performance of the three switching models in different markets. Another future
research direction would be to improve the empirical estimation of the fundamental
exchange rate, by taking into account the central bank’s monetary policy. Other pos-
sible directions include innovating a model, which is able to integrate the three types
of regime switching and check whether such an integration improves the overall
empirical performance.

Acknowledgments We thank the two anonymous referees for their helpful comments and sugges-
tions. All remaining errors and omissions are our own.
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Time-Varying Cross-Speculation in Currency
Futures Markets: An Empirical Analysis

Andreas Röthig and Andreea Röthig

1 Introduction

The past 20 years have seen significant changes in financial derivatives markets,
especially regarding new types of market participants and new trading strategies using
automated trading algorithms, but also regarding new regulation in the aftermath of
financial shocks and crises, which were at least to some extent blamed on or related
to financial derivatives. New traders such as index investors have entered derivatives
markets and today hold a significant portion of open positions in futures markets.
The rise of index traders is linked to new financial products, and in particular to
exchange traded funds, which allow traders to participate from the performance of a
benchmark or an index. These traders appear to constitute a new trader category since
they act generally long-term, passive and long only. In addition, two large financial
crises in 2001 and 2008 have rattled derivatives markets and led to a number of
international regulatory initiatives. The most important of these initiatives include
central clearing obligations and reporting to trade repositories which could have
lasting effects on transparency, trading behaviors of market participants as well as on
trading activities in general. Understanding the linkages between derivatives markets
in this changing environment is of utmost importance for market participants and
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regulators who are concerned with potential channels of contagion and systemic risk,
but also with financial stability in general.

Linkages between different markets are often analyzed using price data. Relations
between different price dynamics provide information about arbitrage opportunities,
the appropriateness of hedging strategies or about basis risk in derivatives markets. In
addition to price data, open position data for different types of traders are an important
source of information. For instance, hedgers link different markets, most commonly
the spot market for a specific asset with the respective derivatives market, in which the
spot position is hedged. In addition to this type of hedging, where only a single asset
type is involved, some hedging strategies involve several asset classes.1 For exam-
ple, a trader may decide to hedge an open spot position in a specific currency with
futures contracts in gold. With this cross-hedge, the trader links to some degree the
spot currency market to the gold derivatives market. Index traders by definition link a
number of markets since they trade a benchmark or an index which generally include
different assets. In addition, speculation plays a very important role, where specula-
tive activities may link different futures markets. Cross-market speculative activities
can arise from trading strategies involving fundamental and non-fundamental fac-
tors. Especially in currency futures markets, where market participants are generally
active in different currencies, fundamental factors (e.g. macroeconomic data) which
for example would show a weakening of the US dollar, could induce traders to simul-
taneously increase their positions in a number (or a portfolio) of different currencies,
such as the Swiss Francs (CHF), the British Pound (GBP), the Canadian Dollar
(CAD) and the Japanese Yen (JPY). While these fundamental factors should play a
dominant role in the medium to long term, non-fundamental factors, which include
overreaction to news, technical analysis and herding, could have a significant impact
on traders’ behavior over shorter horizons.2

Open interest data have been widely used since the mid-20th century to analyze
the functioning and stability of futures markets.3 The Commodity Futures Trad-
ing Commission’s (CFTC) Commitments of Traders (COT) reports provide weekly
information on reporting traders’ open positions in futures markets. The CFTC clas-
sifies these positions as either commercial or non-commercial. A position is classified
as commercial if the trader uses the futures contracts for hedging. The CFTC can
re-classify the trader if the futures position is not entered into, in order to offset spot
price risk. The distinction between speculation (i.e. non-commercials) and hedg-
ing might at times be fuzzy for specific markets.4 However, in general the CFTC
classification of traders’ open interest has been regarded as accurate, and the COT

1 See Fleming et al. (1998), Treepongkaruna and Gray (2009).
2 See Manzan and Westerhoff (2007), Reitz and Westerhoff (2007) and Westerhoff (2008).
3 See Houthakker (1957) and Working (1953), Working (1962).
4 Ederington and Lee (2002) report for example, that commercial traders in the heating oil futures
market might engage in speculation as well. However, Ederington and Lee (2002) note that the non-
commercials are indeed speculators who do not engage in hedging activities. Sanders et al. (2004)
stress that there are no obvious incentives for traders to self-classify as a speculator. Therefore,
reporting non-commercials most likely represent speculative positions.
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reports have been widely used in the literature.5 Most of the literature concentrates
on the relation between open interest and price dynamics. A number of studies for
example analyze the forecasting performance of different types of traders or traders’
impact on price volatility.6 In addition, the theories of normal backwardation and
hedging pressure can be investigated with open interest data.7 Recently, studies have
employed open interest data to analyze information flows and linkages between dif-
ferent types of traders. Röthig (2011) studies lead-lag relationships between hedging
and speculation in currency futures markets and finds that speculators lead hedgers in
these markets. Röthig and Chiarella (2011) find that non-reporting traders in currency
futures markets behave more like speculators, rather than like hedgers. Röthig (2012)
investigates the linkages between speculative activities in different currency futures
markets. Using fixed parameter VAR models and impulse response analysis, Röthig
(2012) shows that an increase in speculative activity in one currency futures mar-
ket generally leads to an increase in speculative activity in another currency futures
market. These empirical findings therefore point to cross-market herding activities
of speculators in currency futures markets.

The current study builds on this previous research by allowing for time-variation
in the response of speculative trading activity in one currency futures market to an
increase in speculative trading activity in another currency futures market. Based on
the findings of Röthig (2012) and the results of a number of bivariate fixed parame-
ter VAR models for different currency pairs (the results not shown in this paper),
we choose to analyze the impacts of an increase in speculative trading activity in
the CHF futures market on speculative activities in the GBP, CAD and the JPY
futures markets, using bivariate Bayesian time-varying VAR models. The investiga-
tion is carried out for (i) total speculation (long plus short speculative open interest),
(ii) long speculation, and (iii) short speculation over the time period from January
1994 to September 2013. The results point to positive responses of total/long/short
speculative activities in the GBP, CAD and JPY futures markets to an increase in
total/long/short speculation in the CHF futures market. This indicates the presence
of cross-market herding activities of speculators in these currency futures markets.
Moreover, the cross-market linkages between speculative activities are relatively sta-
ble over the time period from 1994 to 2013. For all pairs of speculative activities
investigated except one (CAD long), the signs and the durations of the responses to
an increase in speculative activity in the CHF futures market do not change substan-
tially over time. The results therefore do not suggest that changes in regulation, new
market participants or new trading strategies had a significant and lasting impact on
cross-market speculative activities in these futures markets.

5 See Wang (2003) for a survey of the literature.
6 See Adrangi and Chatrath (1998), Chatrath and Song (1999), Chatrath et al. (2003), Hartzmark
(1987), Sanders et al. (2007), Schwarz (2012), Stein and Hong (1990), Tornell and Yuan (2012)
and Wang (2002), Wang (2004).
7 See for example Bryant et al. (2006).
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The paper is organized as follows. In Sect. 2, the data and the estimation algorithm
are presented. Section 3 reports the results of the impulse response analysis. Section 4
concludes.

2 Data and Model Description

This study investigates the relation between changes (i.e. first differences) in spec-
ulative (i.e. non-commercial) open interest in the CHF, GBP, CAD and JPY futures
markets from 4 January 1994 to 17 September 2013.8 The effects of an increase in
speculative activity in the CHF futures market on speculative activities in the GBP,
CAD and the JPY futures markets are investigated using bivariate Bayesian VAR
models with time-varying parameters. The relations between (i) total speculation
(long plus short), (ii) long speculation, and (iii) short speculation are investigated.
The weekly open interest data are obtained from the CFTC COT report.9

The VAR model can be expressed as follows10:

Yt = ct +
L∑

l=1

Bl,t Yt−l + εt , (1)

where L denotes the lag length, εt is the error term with the covariance matrix
VAR(εt ) = R, and Yt is the vector of the variables. In contrast to a fixed parameter
VAR, this model allows for time variation in the parameters following the transition
equation

βt = βt−1 + et , (2)

withβt = {ct , B1,t , . . . , BL ,t } and the covariance matrix VAR(et ) = Q. We consider
time-varying VAR models with two lags. The choice of the lag lengths is based on
the Akaike, Hannan-Quinn and Schwartz information criteria, using fixed parameter
VAR models as guidance.

The models are estimated using Bayesian methods similar to those described in
Mumtaz and Sunder-Plassmann (2013). The first 64 observations of the sample are
used as a training sample to estimate a fixed parameter VAR model, which provides
initial starting values for the time-varying VAR model as well as for the prior dis-

8 In fact, the investigation uses data from 13 October 1992 to 17 September 2013. However, the
data from 13 October 1992 to 28 December 1993 are used as a training sample to obtain starting
values for the estimation algorithm.
9 The data are available on the CFTC’s website at www.cftc.gov. For more information on the COT
report, see Ederington and Lee (2002), Chatrath et al. (2003), Röthig (2007), Röthig and Chiarella
(2011).
10 The time series have been checked for stationarity and cointegration. Johansen tests show that
the time series in levels are not cointegrated. Augmented Dickey Fuller (ADF) test results suggest
that the time series in first differences are stationary.
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tributions of R and Q, which are both assumed to be inverse Wishart. The training
sample is then removed from the data and the remaining sample (4 January 1994 to
17 September 2013, 1029 observations) is used to estimate the time-varying VAR
models. The basic algorithm for the estimation of the parameters of the Bayesian
time-varying VAR model involves the sampling of the parameters from the condi-
tional posterior distribution H(β̃T \R, Q, Ỹt ), with β̃T = [vec(β1)

′, . . . , vec(βT )
′]

and Ỹt = [Y1, . . . ,YT ], using the Carter and Kohn (1994) algorithm. Conditional on
β̃T , the covariance matrices Q and R are sampled from their conditional posterior
distributions, which are both inverse Wishart. This study uses 110,000 Gibbs sam-
pling iterations of which the last 1000 are used for inference.11 The impulse response
functions are calculated for each point in time using in each case the median impact
value over the last 1000 samples, saved from the Gibbs sampling algorithm. This
approach therefore allows for the computation of the impulse responses to a shock
in speculative trading activity in CHF futures markets at each point in time and to
analyze whether the responses of speculative trading activities in GBP, CAD and
JPY futures markets have changed over the time period from 1994 to 2013.

3 Time-Varying Responses to a Shock to CHF Speculative
Activity

The impulse response functions presented in Fig. 1 show positive initial responses of
speculative activities in the GBP, CAD and JPY futures markets to a positive shock
to speculative activity in the CHF future market. These results hold true for total,
long and short speculation. In addition, the durations of the impacts of the shocks
appear to be similar for the different pairs of speculative activity. The responses to
the shocks tend to die out after about three to four time periods (i.e. three to four
weeks).

The Bayesian time-varying VAR analysis shows that this behavior does not seem to
change substantially over time. The impulse response functions show little evidence
of substantial variation over the time period from 1994 to 2013, especially regarding
the initial responses to the shocks. These initial responses are positive for all impulse
response functions over the entire time horizon, except for the response of CAD long
speculation to CHF long speculation between 1994 and the end of the 1990s. The
response of CAD long speculation changes from initially negative in the 1990s to
positive in the 2000s.

In addition, some impulse response functions show smaller changes over time.
The responses of CAD and JPY short speculation to a positive shock to CHF short
speculation are stronger and last longer in the second half of the sample, from about
2005 to 2013. This might indicate that the interrelations between speculators’ trading
activities in these markets have intensified to some extent. Overall however, these

11 For more information on the algorithm employed in this study, see Bianchi et al. (2009), Carriero
et al. (2013), Mumtaz and Surico (2012).
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Fig. 1 Impulse response functions for total (i.e. long plus short), long and short speculative open
interest: Effects of shock to CHF open interest on CAD, GBP and JPY open interest
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findings suggest that the linkages between speculative activities in these currency
futures markets are relatively stable over time.

4 Conclusion

This study investigates time variation in cross-market speculative activities in
currency futures markets from 1994 to 2013. Using a Bayesian VAR model with
time-varying parameters, the results point to positive relations between speculative
activities in the CHF futures market and speculative activities in the GBP, CAD and
JPY futures markets over the entire time period. The investigation was carried out
for total (i.e. long plus short), long and short speculative open interest. A positive
shock to total speculative activity in the CHF futures market leads to an increase of
total speculative activity in the other three futures markets. In the same way, positive
shocks to long and short speculative activities lead to increases in long and short
speculative activities in the other futures markets. The findings point to correlated
trades between speculators across different currency futures markets and, therefore,
to cross-market herding activities of speculators.

Regarding time variation, the findings suggest that the cross-market interrelations
between speculative activities in these markets are relatively stable over the entire
time period from 1994 to 2013. In only one case (CAD long) does the sign of the
initial response to the shock change from negative in the mid-1990s to positive after
the year 2000. In all the other cases investigated, the signs of the initial impact and
the durations of the impacts, which for all pairs of speculative activities are around
three to four weeks, do not change substantially over time. Changes in regulation,
new market participants and trading strategies do not seem to have had a significant
and lasting impact on cross-market speculative activities in these futures markets,
at least regarding the impact of speculative activities in the CHF futures market on
speculative activities in the CAD, GBP and JPY futures markets. In a way, this result
might be regarded as a sign of stability and maturity of these futures markets, and as
a sign of their resilience to economic and financial crises, to changes in composition
and behavior of market participants or to changes in regulation.
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Computational Issues in the Stochastic
Discount Factor Framework for Equity
Risk Premium

Ramaprasad Bhar and A. G. Malliaris

1 Introduction

Individual stock returns at daily frequency are very noisy. When daily returns are
aggregated in an index, such as the S&P 500 Index, we would expect such noisiness
to persist and even become much more complex. If noisiness is present in the daily
returns of an aggregate stock index, it is also there in numerous financial and economic
variables either in their levels such as interest rates, volatility indexes, inflation rates,
transactions volumes, or their returns as in the case of investing in foreign currencies
or commodities.

Can we, however, argue that at this frequency returns of the S&P 500 Index
contain no signals? Independent of our inability to decompose daily returns into the
sum of a signal and noise component, empirical evidence that stock returns are pro-
cyclical suggests that daily returns contain a signal component. The pro-cyclicality of
returns does not coincide precisely with the performance of the real economy since
returns are driven by future expectations and may anticipate turning points, often
by several months in advance. However, the overlap of good times in the economy
with higher than average returns as well as periods of bad times with below average
returns is sufficiently long to offset possible decoupling of returns and the state of
the macro-economy.

We are now ready to describe our goal of this research article: Numerous studies
have deliberated the determinants of excess equity returns also called the equity
premium defined as the difference between the S&P 500 Index and the risk free return
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of a 3-month Treasury Bill. We are interested in explaining equity premium at daily
frequency by studying drivers at the daily dimension. There are both fundamental
and behavioral variables that drive the daily equity premium. These include the
degree of uncertainty faced by investors and captured by the daily CBOE VIX and
the spread between the daily short-term 3-month T-Bill interest rate and the long-
term 10-year Note interest rate. This spread is usually called the yield curve and
captures among other variables, Central bank policy, inflationary expectations and
long-run growth prospects. To the VIX and yield curve we also add a measure of
trading liquidity that became important during the current global financial crisis.
This measure is a spread between the no risk Treasury Bill rate (T-Bill) and the low
risk Eurodollar rate. Another similar measure of liquidity is the spread between the
T-Bill and the LIBOR. To these three macroeconomic variables of daily frequency
we add a behavioral variable to be defined below and called momentum. We will
use these factors in the SDF framework to identify significant determinants of daily
equity premium.

This article concentrates on setting up the SDF model using the factors outlined
above and solves several implementation issues particularly with respect to the MAT-
LAB software environment. We leave the actual implementation to other empirical
researchers.

2 Bibliographical Review

Financial economists appear to agree that individual stocks are driven by news about
their cash flows. When we aggregate among numerous stocks that are included in a
certain index, such as the S&P 500 Index, this index moves by the news of cash flows
of the individual stock according to their weights. However, there are several other
factors that influence the aggregate index such as macroeconomic news about GDP
growth, inflation, Fed policies and several others. Yan (2010) explores theoretically
the behavior of individual and aggregate stock prices without any reference to the
size of the trading interval. He develops a dynamic general equilibrium model with
incomplete information and derives several important conclusions. In particular he
finds that the correlation between stock returns and earnings is, on average, positive
at the individual stock level but lower or even negative at the aggregate level. The
daily frequency approach of our paper does not allow us to include either quarterly
earnings or a monthly dividend yield which are the primary fundamental variables
for equities so we consider daily macroeconomic variables such as interest rates and
uncertainty.

The influence of interest rates, both short-term as Fed funds or T-Bills and
long-term 10-year Treasury Notes on stock market returns has been investigated
extensively. The relationships are complex and there are no definitive answers. For
example, Fed funds are almost exclusively determined by the Fed to reflect its deci-
sions on monetary policy. As it is well known Fed policy is driven by its dual mandate
to promote price stability and economic growth and thus Fed funds are determined
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by Taylor rules reflecting deviations of inflation and output from desirable targets.
However, the longer-run 10-year T-Notes rates are determined by market conditions
and incorporate both assessments of future inflation and real growth. Fed policies
such as the three rounds of quantitative easing since the spring of 2009, may impact
the 10-year T-Notes also.

The yield curve defined as the difference between the T-Note rate and T-Bill rate is
just one measurement across time and gives an estimate of inflationary expectations
that may be driven either by robust prospects of economic growth or inflation fears
generated by an easy monetary policy. These topics have been investigated recently
by Chen (2008), Craine and Martin (2003), Bernanke and Kuttner (2005), Caporale
and Caporale (2003), Rigobon and Sack (2003) and others.

Equity risk and volatility as a topic of research has also attracted a great amount of
interest. Standard CAPM models suggest that the risk premium is positively related
to market volatility. This theoretical principle is often confirmed but also rejected in
empirical studies which have motivated further theoretical hypotheses. One hypoth-
esis emphasizes the leverage effect that says that a drop in an equity price reduces
net worth and increases the debt to equity ratio, making the stock riskier that in
turn causes the equity risk premium to increase. A second hypothesis called the
volatility feedback effect argues that positive volatility shock increases the future
required return on equity and therefore stock prices are expected to fall. Campbell
and Hentschel (1992) find some evidence of a positive relation between the condi-
tional volatility and stock returns, while Low and Zhang (2005) and Zhao (2008)
found a negative correlation. Schwert (1989) finds that the leverage effects are more
pronounced during financial recessions while Bekaert and Wu (2000) find volatility
feedback effects dominate leverage effects.

Behavioral finance has offered valuable explanations on several asset pricing
puzzles and has earned an increasing rate of academic acceptance. For the pur-
pose of our hypotheses formulation we need to go beyond daily frequency macro-
economic variables and also consider the role of certain behavioral variables. In a
macroeconomic environment of rapid real economic growth with high employment
and low inflation causing real interest rates to be also low, stock price increases may
signal further increases, thus generating positive feedback. As investors observe pos-
itive fundamentals that persist, they gradually become overconfident that the recently
favourable macroeconomic regime will continue. Thus they extrapolate the limited
recent sample of favourable conditions into the distant future. This motivates them
to buy more and increases in return attract more buyers, thus generating a positive
momentum. During periods of asset booms, momentum builds up slowly over several
quarters. However, when sufficiently negative news occurs, reversals are most often
faster with sharper declines.

Prior to the emergence of behavioral finance, positive deviations of asset returns
from levels justified by fundamentals would produce arbitrage opportunities. Arbi-
trageurs acting rationally would sell short the overvalued asset and contribute to
eliminating deviations away from fundamentals. Behavioral finance authors have
produced numerous papers explaining the limits to arbitrage. For example Shleifer
and Vishny (1997) have argued that arbitrageurs face both fundamental risk as well as
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noise trader risk and these risks may discourage them from taking a position. What
if, future fundamentals improve from being good to becoming even better? What
if noise traders being overconfident continue to drive returns even higher? Shleifer
and Vishny argue convincingly that under certain reasonable conditions prices may
deviate from fundamentals for some time.

Chordia and Shivakumar (2002) consider the continuation of short-term returns
called momentum. They ask the question: are momentum returns due to investor irra-
tionality or can they be explained rationally. They show that certain lagged macro-
economic variables can explain future stock returns and payoffs from momentum
strategies disappear once stock returns are adjusted for their predictability.

A number of recent models show that both momentum and contrarian investor
behaviour may arise, be sustained in a financial market and may also be profitable
depending upon the horizon of the strategy. Barberis et al. (1998), Daniel et al.
(1998) and Hong and Stein (1999) each develop models of investor behaviour that
show how common psychological heuristics, if used by market participants, may lead
to both mean reverting and persistent patterns in asset prices. Goetzmann and Massa
(2002) carefully study both positive feedback (momentum) and negative feedback
(contrarian) behaviour for a large sample of individual investors with daily trading
activities.

Momentum trading is not without its share of efficient-markets-based explana-
tions. Conard and Kaul (1998) and Berk et al. (1999) have argued that stocks with
high (low) realized returns will be those that have high (low) expected returns, sug-
gesting that momentum strategy’s profitability is a result of cross-sectional variability
in expected returns due to macroeconomic variables such as dividend yields, default
spread, three month T-Bills and term structure spread.

This limited and selective bibliographical review supported by the integrative
and perceptive survey of Barberis and Thaler (2005) suggests that momentum in
the aggregate market in the form of temporary persistence of above average returns
during periods of boom and its eventual reversal during asset busts can be an important
behavioral variable to be included in the formulation of our hypotheses. Although
the concept of momentum in behavioral finance often describes continuation of
short-term returns for individual stocks, the idea is used here broadly to describe
continuation of short-term returns for the aggregate market.

3 Equity Risk Premium in Stochastic Discount Factor
Framework

In this section we briefly outline the basic concepts in the SDF framework. This
will help us to establish the econometric methodology for testing the influence of
the selected observable factors determining the equity premium observed at daily
frequency.

The SDF approach posits a very simple notion in asset pricing. It proposes that
the price of an asset at time t is the expected discounted value of the payoff from the
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asset in period t + 1. Discount factor is, therefore, stochastic and that encapsulates
all the uncertainties. One advantage in this approach is that we do not require the
knowledge of investors’ preferences. Various aspects of this framework have been
analyzed in detail in Smith and Wickens (2002). In addition, the celebrated book by
Cochrane (2005) relies solely on this methodology. In empirical asset pricing models
the researchers select the SDF as a function of observable factors as well as of model
parameters.

In order to formalize the concepts, we define, as the price of an asset at time t ,
Xt+1 is the payoff from the asset at time t + 1, Mt+1 is the discount factor for the
period t + 1, Et is the expectation operation at time t consistent with all available
information at that time. In general both Xt+1 and Mt+1 would be stochastic. The
SDF framework suggests the following pricing relation:

Pt = Et [Mt+1 × Xt+1], 0 ≤ Mt+1 ≤ 1. (1)

It is customary to express the above relationship in term of gross asset return Rt+1
as,

1 = Et [Mt+1 × Xt+1

Pt
] = Et [Mt+1 × Rt+1]. (2)

From standard statistical properties Eq. (2) may be expanded as:

Et [Mt+1 Rt+1] = Et [Mt+1] × Et [Rt+1] + σt,Mt+1,Rt+1, (3)

where, the symbol σt,x,y is used to denote covariance at time t between the two
variables x and y. Combining the Eqs. (2) and (3) we have,

Et [Rt+1] = 1− σt,Mt+1,Rt+1

Et [Mt+1] . (4)

Thus, Eq. (4) relates the covariance of the error terms in the joint process of Rt+1
and Mt+1 with the expected values. If the payoff at t + 1 is known with certainty,
then the return becomes the risk-free rate, (Rt+1 ≡ 1 + r f,t ), and the covariance
term becomes zero. If we assume that the payoff is $1 then Eq. (4) becomes,

1 = (1+ r f,t )Et [Mt+1]. (5)

Combining Eqs. (4) and (5) and denoting gross return Rt+1 as (1+ rt+1) yields,

Et [rt+1] − r f,t = −(1+ r f,t )σt,Mt+1,(rt+1−r f,t ). (6)

This is referred to as the no-arbitrage relation for all correctly priced securities
(see Smith and Wickens (2002) page 400 for details). Since the right hand side in
Eq. (6) is the risk premium, and we expect it to be positive, the covariance term must,
therefore, be non-positive.
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It is customary in SDF analysis to assume that the joint distribution of the gross
return and the discount factor is log-normal. This has come about due to some
empirical justification as well as the fact that the discount factor requires positive
support. With this assumption, we let mt+1 = ln Mt+1 and r ′t+1 = ln Rt+1, and by
applying Jensen’s inequality, we can express Eqs. (6) as, (see Smith and Wickens
(2002) page 402 for the steps),

Et [r ′t+1 − r f,t ] + 0.5σ 2
t,rt+1
= −σt,mt+1,r ′t+1

. (7)

Apart from the term representing time varying Jensen effect, Eq. (7) relates the
expected excess return or premium in terms of the covariance of the return with
the SDF.

Equation (7) is quite general and suggests that the risk premium is generated by the
asset specific covariance with the SDF. Cochrane (2005) points out that this analysis
can be used for both linear and nonlinear asset pricing models. The choice of the SDF
is important for different asset pricing applications and its generality is attributed to
the property that only the covariance is required. This also forces the researchers
to look for the correct specification of mt+1 = ln Mt+1. It is quite common in the
SDF framework for the researcher to specify an affine structure to the SDF in terms
of relevant observable variables. It is also clear that since risk is measured by the
covariance, the choice of variables and also observation frequency should be such
that there is enough time variation in the covariance structures. This implies that the
variables should exhibit conditional heteroscedasticity.

In this paper we use daily observations that exhibit high conditional heteroscedas-
ticity and we employ two observable variables to define the SDF so we can study
their impact on excess equity return. In this context, we express, (see also Kizys and
Spencer (2007)),

− mt+1 = β1x1 + β2x2, (8)

where, x1 and x2 are the two observable variables determining the SDF. Equation (7)
thus becomes,

Et [r ′t+1 − r f,t ] + 0.5σ 2
t,r ′t+1
= β1σt,x1,t+1,r ′t+1

+ β2σt,x2,t+1,r ′t+1
. (9)

With the above specification the sign of the parameters β1 and β2 would determine
how these observable variables affect the risk premium.

4 Observable Determinants for SDF

The SDF method has been employed in studying the effect of macroeconomic vari-
ables on equity premium. Kizys and Spencer (2007) discuss several research articles
in this context and the inflation and output growth variables feature prominently as
the choice of observable variables determining the SDF.
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The use of macroeconomic variables implies that the study is conducted with
monthly or quarterly observable frequency. In this study we are concerned in analyz-
ing the contribution to the equity risk premium at the daily frequency. This restricts
our choice of candidate observable variables for the SDF. Pena and Rodriguez (2006)
demonstrate the importance and the connection between the term spread and the stock
prices. This guides us to choose one of the observable variables to be the term spread,
measured by the difference between the yields on the 10-Year Treasury Notes and
T-Bill. We label this variable as st .

It also makes sense to investigate the power of output gap to explain equity pre-
mium since output gap is a prime business cycle indicator and does not depend on
the level of market prices. This has been done by Cooper and Priestley (2009). They
find that output gap has predictive power for equity premium for all the G7 countries.
Obviously, then the empirical investigation needs to be carried out in frequency com-
patible with business cycle. Cooper and Priestley work mainly in the linear regression
framework. We are not aware of such an investigation in the SDF framework. We
leave this for a future study.

With respect to our second observable variable determining the SDF we take
cue from the literature in behavioral finance. Shefrin (2008) provides an excellent
overview of the issues that arise in dealing with behavioral aspects of constructing
SDF. Investor’s behavioral aspects enter into the SDF framework via sentiment which
relates to a belief system. This should affect the way expectation is taken, e.g. with
reference to Eq. (9). If investor’s subjective belief matches with the objective reality
then the prices are said to reflect zero sentiment. Otherwise there will be non-zero
sentiment. Most studies in this area have focused on explaining the equity premium
puzzle by incorporating preference parameters in asset pricing model, as in Abel
(2002). Shefrin (2005) shows that historically investors have been predominantly
pessimistic, and that their pessimism was time varying as well.

In this paper, however, our objective is to choose another observable variable for
the SDF that has some behavioral aspect. We focus on the concept of momentum
return in the equity market. This simply states that the return performance in the
recent past would continue for some time in the future. We define a proxy for the
behavioral variable to represent recent performance or momentum return. We follow
the definition used in Koijen et al. (2008). In their continuous time set up for strategic
asset allocation problem, they allow the short-term performance of the equity market
as a weighted function of the past returns. Given that St represents the index level at
time t, then the momentum return gt is given by:

gt =
t∫

0

e−(t−u) dSu

Su
(10)

where e−(t−u) is the weighting scheme. Koijen et al. (2008) show that there is no
need to consider any more general weighting scheme since this simple approach is
capable of matching the short-term and long-term autocorrelations of stock returns.
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Since we are working in discrete time setting, the approximate discrete performance
variable corresponding to Eq. (10) is given below:

gt ≈
t∑

i=1

e−i rt−i+1. (11)

This completes our choice of observable variables as required by Eq. (8). In the next
section we show the empirical structures needed to implement Eq. (9) together with
the SDF specification given by Eq. (8).

5 Empirical Setup and Econometric Issues

As we are dealing with three observable series, that is, the equity risk premium,
the term spread and the performance variable representing momentum return, it is
straightforward to set up a Vector Auto-Regressive (VAR) framework to generate
conditional expectation. This also helps to incorporate feedback from conditional
variance and conditional covariance as needed by Eq. (9). The VAR coefficient matrix
may be constrained to impose the no-arbitrage condition suggested by the SDF based
pricing relation given in Eq. (6).

Another important aspect of the VAR specification is the conditional covariance
structure. The associated numerical computation of the likelihood function requires
the guarantee of positive definiteness of the covariance while the elements of this
matrix are unknown parameters. At the same time, a well documented empirical
finding in the finance literature is the asymmetric impact of news on the volatil-
ity transmission (see Bae and Karolyi (1994); Koutmos and Booth (1995) and
Booth et al. (1997)). The asymmetric phenomenon in combination with the observed
volatility clustering in equity market returns validates the use of an EGARCH frame-
work. The EGARCH model, as developed by Nelson (1991), captures the potential
asymmetric behavior of equity market returns and avoids imposing non-negativity
constraints in GARCH modelling—by specifying the logarithm of the variance. In a
univariate problem it is no longer necessary to restrict parameters in order to avoid
negative variances. We, therefore, need to be mindful of the efficacy of EGARCH
framework and the need for ensuring positive definiteness of the covariance matrix
in our problem.

Following the suggestions in Kizys and Spencer (2007), we define the VAR model
that captures the essence of our SDF based model as follows:

⎡
⎣ rt − r f,t

st
gt

⎤
⎦

︸ ︷︷ ︸
Yt

=
⎡
⎣ 0

a2,1
a3,1

⎤
⎦

︸ ︷︷ ︸
A

+
⎡
⎣ 0 0 0

b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

⎤
⎦

︸ ︷︷ ︸
B

Yt−1 +
⎡
⎣ γ1,1 γ1,2 γ1,3

0 0 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
B

Ωt

⎡
⎣ 1

0
0

⎤
⎦+ εt (12)

εt ∼ N (0,Ωt ). (13)
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By constraining the top element of the parameter vector, and the first row of the
parameter matrix we are implementing the no-arbitrage condition of the SDF pricing
relation, and the fact that the excess return or risk premium in the equity market is
not predictable by any of the lagged variables. The first row of the parameter matrix
captures the time varying Jensen effect as well as the time varying covariance effects.
The other two rows of this matrix are constrained to be zeros.

We next consider the full specification of the conditional variance as it ultimately
determines the time varying covariance that is essential for the SDF framework to
identify the influence of the conditioning variables on the equity premium. Following
Tsay (2002), we define the covariance matrix Ωt in Eq. (9) as:

Ωt =
⎡
⎣ 1 0 0

p2,1 1 0
p3,1 p3,2 1

⎤
⎦

︸ ︷︷ ︸
P

⎡
⎣q1,1,t 0 0

0 q2,2,t 0
0 0 q3,3,t

⎤
⎦

︸ ︷︷ ︸
Q

P ′ (14)

The attractive feature of this triangular decomposition is that we only need to ensure
only the diagonal elements of the matrix Q are positive for all time periods, and the
elements of the matrix P are unconstrained. This automatically ensures the complete
covariance matrix is positive definite. The full expanded form is given below:

Ωt =
⎡
⎢⎣

q1,1,t p2,1q1,1,t p3,1q1,1,t
p2,1q1,1,t p2

2,1q1,1,t + q2,2,t p2,1 p3,1q1,1,t + p3,2q2,2,t

p3,1q1,1,t p2,1 p3,1q1,1,t + p3,2q2,2,t p2
3,1q1,1,t + p2

3,2q2,2,t + q3,3,t

⎤
⎥⎦ . (15)

In addition to the above, the elements of the matrix P may be given economic
interpretation depending on the problem at hand, as we will see later.

To complete the specification we allow the diagonal elements of the
Q, q j, j , j = 1, 2, 3 to have the exponential GARCH form as:

ln q j, j,t = φ j,0 + φ j,1 ln(q j, j,t−1)+ φ j,2ε̂ j,t−1 + φ j,3

(
| ε̂ j,t−1 | −

√
2

π

)
, (16)

where ε̂ j,t−1 = ε j,t−1√
q j, j,t−1

, the standardized innovation for the j th element.

This EGARCH specification follows from Nelson (1991) and has been found
to be superior to a number of stochastic volatility model structures as studied by
Chernov et al. (2003). In the structural conditional variance Eq. (16), the parameter
φ j,0 represents the logarithm of the unconditional variance of the j th process and is
assumed constant. The parameterφ j,1 determines the influence of the past conditional
volatility on the current conditional volatility. For the conditional volatility process
to be stationary it is required that, | φ j,1 |< 1. The persistence of volatility may also
be quantified by examining the half-life, which indicates the time period required for
the shocks to reduce to one-half their original size. Defined as:
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HL = ln(0.5)

ln | φ j,1 | . (17)

The leverage effect is captured in two parts by the parameters, φ j,2 (sign effect)
and φ j,3 (size effect). If φ j,2 is negative then a negative realisation of standardised
innovation will increase volatility by more than a positive realisation of equal mag-
nitude. Similarly, if the past absolute value of standardised innovation is greater than
its expected value then the current volatility will rise. However, the resultant impact
of the size effect will be determined by the sign of the parameter φ j,3. The asym-
metric effect (Relative Asymmetry) of standardised innovations on volatility may be
measured by:

RA = | −1+ φ j,2 |
(1+ φ j,2)

. (18)

This quantity is greater than, equal to or less than one for negative asymmetry,
symmetry and positive asymmetry, respectively.

The conditional variance specification in Eq. (16) is quite flexible. Depending
on the problem being investigated, it allows us to incorporate additional exogenous
variables that may be influencing the time variation of the variance. For example, if
the conditioning variable in the SDF is related to business cycle e.g. output gap then
lagged inflation may be thought of as an explanatory variable in Eq. (16) determining
the conditional variance. This idea originates from the studies analysing impact of
inflation on real stock return as part of the variability hypothesis (see for example
Buono (1989)).

The variables selected for this exposition may be changed to test other candi-
dates based on different economic insight. The set up above is general enough to
accommodate such variations.

In the econometric set up discussed in this section, we do model time varying
correlations between the residuals of the VAR variables explicitly. In a multivariate
set up it is probably straightforward to include constant correlations. This also reduces
the computational complexity. However, once the triangular decomposition we have
used in defining the conditional covariance is estimated, we are able to infer time
variation of correlation. For example, with reference to Eq. (15), the conditional
correlation between excess return and term spread is given by:

ρt,Excess Re t,TermSpread = Ωt [1, 2]√
Ωt [1, 1]Ωt [2, 2] . (19)

In the same fashion the other conditional correlations may be inferred. For a sketch
of the proof that it lies between −1 and +1, (see Kizys and Spencer (2007)). Once
the model is estimated for a particular data set, the time variation of these conditional
correlations could be further analyzed for their economic significance.

From the estimated parameters of the model set up above, we can infer the equity
premium via the following equation:
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r pt = γ1,2 ×Ωt [2, 1] + γ1,2 ×Ωt [3, 1]. (20)

The approach outlined in this section delivers a multifactor model where the equity
premium is explained by lagged values of conditioning variables in the SDF set up.
This should allow empirical researchers to develop this further. In the next section we
will outline an alternative way to approach the empirical set up of the SDF framework.

6 Alternative Empirical Setup for SDF

The joint distribution of gross return and the SDF as shown in Eq. (2) is the basic
condition that needs to be correctly dealt with for any empirical testing based on
the SDF framework. Under the assumption joint log-normal distribution we have
linearized the expression by invoking Jensen’s inequality condition in term of covari-
ance between the SDF and the gross return. We use this as the starting point and in
Sect. 5 show the eventual econometric realization of the model in term of observable
determinants of the SDF.

In this section, we demonstrate an alternative approach that models the joint distri-
bution of the gross return and the SDF via copula. A copula is a distribution function
with known marginals. Copulas provide a more detailed description of the depen-
dency structure between two random variables, since they represent bivariate func-
tions that link marginal probability distributions (and density) functions of the random
variables to their joint probability distributions (and density) functions See for exam-
ple Durrani and Zeng (2007). Copulas, therefore, offer interesting insights into the
dependence structures between the distributions of random variables. Depending on
the available economic understanding, different copula function may be employed.

However, in this article we are going to focus on log-normal copulas to be
consistent with the earlier discussions. In order to keep the main part of the paper
straightforward for readers we place the mathematical details in the appendix follow-
ing Liu (2010). For empirical testing the researchers need to establish the correspon-
dence between the variables used in the appendix and the SDF set up. The functions
involved in the analytical structures in the appendix are easily implementable in
software like MATLAB.

7 Concluding Remarks

In this methodological essay on the SDF approach to asset pricing we have out-
lined the main ideas with reference to the econometric modeling of the equity risk
premium. In particular, we have shown how economically meaningful observable
determinants could be employed to generate the discount factor. This requires the
standard assumption of joint log-normal distribution of the discount factor and the
gross return. The econometric realization of the model and the related implementation
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issues are also discussed within the standard framework of EGARCH specification.
This is necessary to build the time variation of the covariance between the discount
factor and the equity premium.

In addition to this, we have contributed to the literature by introducing the copula
based dependence modeling. Although we have only analyzed bivariate log-normal
copula, the framework paves the way for empirical testing of other copula functions
that may be more appropriate in other situations. This copula based approach requires
computing double integrals, but we have shown how this may be simplified in the
log-normal case to single integrals. These are easily implemented in MATLAB with
the built-in functions available.

Appendix A: Bivariate Log-Normal Copula

The intrinsic relations between bivariate distributions and their marginal distributions
can be clearly characterised by copulas. The bivariate log-normal distributions play
important roles in areas other than being described here. In this appendix, log-normal
copula is derived. These formulas are in terms of the Gaussian Q-function, being
supported by MATLAB. Thus the copula evaluation process can be expedited both
analytically and numerically.

The bivariate log-normal probability density function for a pair of random vari-
ables X and Y , is given by (A.3), where (x, y) are transformed from bivariate normal
distribution variables (x ′, y′) as:

x = A exp(mx ′), (A.1)

y = B exp(ny′). (A.2)

With ρ as correlation between (x ′, y′) and (x > 0, y > 0, A > 0, B > 0):

fx,y(x, y) = 1

2mnπσXσY xy
√

1− ρ2
× exp

{ −1

2(1− ρ2)

[( ln(x/A)− mμX

mσX

)2
(A.3)

− 2ρ
( ln(x/A)− mμX

mσX

)( ln(y/B)− nμY

nσY

)
+

( ln(y/B)− nμY

nσY

)2
]}

Referring to (A.1) and (A.2), x and y are log-normal variables. With respect
to the SDF formulation, we may consider x as the SDF and y as the gross return
as discussed in Sect. 3. In this formulation, x ′ may be represented as a function of
observable determinants and similarly for y′. The additional parameters (A,m, B, n)
in (A.1) and (A.2) are used to make these transformations as general as possible.

The marginal PDFs associated with (A.3) take the following forms:
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fX (x) = 1

mxσX
√

2π
exp

[
− 1

2

(
ln(x/A)− mμX

mσX

)2]
, (A.4)

fY (y) = 1

myσY
√

2π
exp

[
− 1

2

(
ln(y/B)− nμY

nσY

)2]
. (A.5)

The corresponding marginal distributions are:

FX (x) = 1− Q

(
ln(x/A)− mμX

mσX

)
, (A.6)

FY (y) = 1− Q

(
ln(y/B)− nμY

nσY

)
. (A.7)

Here, Q(·) is referred to as the Gaussian Q-function with the following definition:

Q(z) = 1

2π

∞∫
z

exp
(
− t2

2

)
dt. (A.8)

With change of variable, the Gaussian Q-function may be written as (over finite
interval):

Q(z) = 1

π

π/2∫
z

exp
(
− z2

2 sin2 θ

)
dθ. (A.9)

here Q(·) is computable using MATLAB built in function. For specific values of
m(= 2) and n(= 2) the elements of the covariance matrix for the pair of random
variables X and Y are given below:

var(X) = A2 exp(4μX ) exp(4σ 2
X )[exp(4σ 2

X )− 1], (A.10)

var(Y ) = B2 exp(4μY ) exp(4σ 2
Y )[exp(4σ 2

Y )− 1], (A.11)

cov(X,Y ) = AB exp(2μX + 2μY ) exp(2σ 2
X + 2σ 2

Y )[exp(4ρσXσY )− 1]. (A.12)

From (A.6) and (A.7) we can write:

x = F−1
X (u) = A exp[mμX + mσX Q−1(1− u)] := a1, (A.13)

y = F−1
Y (w) = B exp[nμY + nσY Q−1(1− w)] := a2, (A.14)

where Q−1(·) is the inverse Gaussian Q-function and this is available as a built-in
function in MATLAB. Now, we are in a position to write the bivariate log-normal
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copula distribution function as follows:

C(u, w) = FXY [F−1
X (u), F−1

Y (w)] = FXY (a1, a2) =
a1∫

0

a2∫
0

fX,Y (x, y)dydx . (A.15)

The simplification of the double integral in (A.15) is at the core issue in empirical
implementation. The quantity fX,Y (x, y) is given by Eq. (A.3) and Liu (2010) shows
how to convert this to a single integral which can be readily implemented in MAT-
LAB. In this appendix we just quote the final expression for the copula distribution
function.

Cu,w = 1√
2π

Q−1(1−u)∫
−x

exp
(
− r2

2

)
Q

(ρr − Q−1(1− w)√
1− ρ2

)
dr (A.16)

(0 < u < 1, 0 < w < 1).

Liu (2010) suggests further avenue to reduce computational burden.
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Quantitative Finance



On the Risk Evaluation Method Based
on the Market Model

Masaaki Kijima and Yukio Muromachi

1 Introduction

Risk management of interest-rate sensitive products has become more important than
ever after the credit crunch, because the interest-rate market has changed drastically
and traditional methods cannot be applied to evaluate risks involved in those products.
For example, as many central banks have conducted the zero interest-rate policy
(ZIRP) in order to support banks and corporate firms through a monetary policy,
the low interest-rate environment has become common all over the world. Also,
the multi-curve pricing approach has been adopted in the OTC interest-rate market,
i.e. collateralised cash flows are discounted according to the OIS curve and non-
collateralised cash flows are discounted by the appropriate funding rate.1 Therefore,
it is important to develop new methodology for the risk evaluation purpose under
these circumstances. In this paper, we present a risk evaluation model for interest-rate
sensitive products within the no-arbitrage framework.

Under the low interest-rate environment, Kijima et al. (2014) develop a risk evalu-
ation methodology for mortgage-loan portfolios based on the single-factor quadratic
Gaussian (QG) model. They take the QG spot-rate model under the observed prob-
ability measure to generate future scenarios of interest rates, and find the change of
measure formula to derive the risk-neutral measure for evaluating future cash flows

1 See, e.g., Bianchetti (2013) and Kijima et al. (2009) for details.
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associated with the mortgage-loan portfolios.2 On the other hand, Kijima and Muro-
machi (2014) propose a simulation model to evaluate risks of interest-rate derivatives
under the multi-curve setting. They adopt the QG spot-rate model to generate future
scenarios of multi-curve interest rates that are consistent with the current multi-curve.
The change of measure formula is also derived for the pricing of derivative securities
at any future time within the no-arbitrage framework.

For the pricing of interest-rate derivatives, however, practitioners often use the
market models such as Heath et al. (1992) and Brace et al. (1997), because they
incorporate all current information in the yield curve, and arbitrage opportunities
among bonds of different maturities are precluded. In this paper, we adopt the market
model for risk evaluation purposes. To this end, we first consider a yield-curve model
under the observed probability measure to generate future scenarios of interest rates,
and then identify market prices of risk for the pricing of interest-rate derivatives
under the risk-neutral measure at any future time.

The problem of modelling the real-world evolution of the term structure within the
no-arbitrage framework has received little attention in the literature.3 Most models
of the term structure have been developed under the risk-neutral measure, simply
because the major concern is to price interest-rate derivatives. Recently, Norman
(2009) considers the problem of finding market prices of risk for the BGM model
(1997) under the risk-neutral measure that are consistent with the term structure
observed in the market. He proposes a form of the market prices of risk and illustrate
an econometric method for calibrating them to historical forward (LIBOR) rates. It
is shown through simulation studies that the model produces the yield curves with
sensible shapes even over a long horizon. In this paper, we take the opposite way
to address the risk evaluation problem for interest-rate sensitive products within the
no-arbitrage framework.

Namely, we start with a yield-curve modelling under the observed probability
measure based on the principal component analysis (PCA). Many empirical studies
report that the changes in the yield curve can be well explained by the dominant three
factors, i.e. the level, slope and curvature [see, e.g. Knez et al. (1994) for details].
Market participants have the consensus about this, and there is no other reason why
we take this well-known result as the starting block of our risk evaluation problem
for interest-rate sensitive products. We then investigate the conditions that market
prices of risk must satisfy in order to preclude arbitrage opportunities. The yield-
curve dynamics under the risk-neutral measure is given by the study of Brace et al.
(1997). Hence, we can simply use this result for the pricing of derivative securities.
Given the future scenarios of yield curve and the pricing results obtained so far in the
literature, the prices of interest-rate sensitive products are calculated at any future
time. Risk measures such as Value-at-Risk (VaR) of portfolios with interest-rate
sensitive products can be evaluated through simple Monte Carlo simulation.

2 See, e.g., Kijima and Muromachi (2000) for the general theory of risk evaluation methodology.
3 The primary concern of many econometric papers for the term structures such as Diebold and Li
(2006) is to provide point forecasts of yield-curve changes, not the arbitrage-free pricing. See also
Norman (2009) and references therein for such models.
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This paper is organised as follows. Section 2 starts with a yield-curve modelling
under the observed probability measure, based on the principal component analysis
(PCA). Some empirical results are reported for the cases that the PCA is applied to the
forward-rate curve itself, the log-forward rate curve, and the square root of forward-
rate curve. Section 3 investigates the conditions that market prices of risk must satisfy
in order to preclude arbitrage opportunities. Examples are given to demonstrate that
some market models often used in practice are not consistent with the no-arbitrage
paradigm. Section 4 describes how to use the Monte Carlo simulation for the risk
evaluation of interest-rate sensitive products. Finally, Section 5 concludes this paper.
Appendix A provides an approximation method to generate a short-rate process
under the risk-neutral measure. Throughout the paper, we assume that there exists
a risk-neutral probability measure Q. The observed probability measure is denoted
by P.

2 Yield-Curve Modelling under the Observed Measure

In this section, we construct a yield-curve model under the observed probability
measure P based on the principal component analysis (PCA). Let v(t, T ) be the
time-t price of the discount bond with maturity T , and let Dt (x) = v(t, t + x),
x > 0, denote the discount curve at time t . We want to generate the discount curve
at any future time.

To this end, we consider the (instantaneous) forward-rate curve Rt (x) defined by4

Rt (x) = − ∂

∂x
log Dt (x); Dt (x) = e

−
x∫
0

Rt (u)du
, x > 0, (1)

and suppose that Rt (x) follows the stochastic differential equation (SDE for short)

dRt (x) = μr (t, x)dt +
∑

i

σ r
i (t, x)dwi,t , t ≥ 0, (2)

for each x > 0 under the observed probability measureP, where wi,t are the indepen-
dent standard Brownian motions under P. The driftμr as well as the volatilities σ r

i is
smooth enough to satisfy the regularity condition in order to guarantee the existence
of Rt (x) for all x > 0. Note that we can recover the discount function Dt (x) at any
future time t from that of Rt (x).

In practice, it is well known that the changes in the forward-rate curve can be
well explained by the dominant three factors, i.e. the level, slope and curvature. Let

4 Norman (2009) considers a forward LIBOR rate of tenor δ and maturity T defined by
1

δ

(
v(t, T )

v(t, T + δ) − 1

)
, rather than the instantaneous forward-rate curve Rt (x), x > 0.
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us denote the factors by Fi (x), i = 1, 2, 3. Also, it seems reasonable to assume a
mean reversion process for the evolution of interest rates over a long period of time.
Therefore, a plausible specification of the forward-rate curve Rt (x) in the SDE (2)
is given by

dRt (x) = a(m(x)− Rt (x))dt + F1(x)dw1,t + F2(x)dw2,t + F3(x)dw3,t , t ≥ 0,
(3)

where the mean-reverting level m(x) is defined as the long-run average of the forward
rate Rt (x).5 The speed of mean reversion represented by the parameter a is assumed
to be independent of the term x just for the sake of simplicity.

The solution of the SDE (3) is given by

Rt (x) = m(x)+ (R0(x)−m(x))e−at +
3∑

i=1

Fi (x)

t∫
0

e−a(t−s)dwi,s, t ≥ 0, (4)

for each x > 0. Note that, if the initial curve R0(x), the mean-reverting level m(x),
and the factors Fi (x) are all continuous (differentiable, respectively), the solution
Rt (x) is also continuous (differentiable) in x for all t ≥ 0. Throughout the paper, we
use the model (3) as the basis of our risk evaluation methodology.

Note, however, that the right-hand side of (4) can be negative with positive prob-
ability. In order to avoid negative interest rates, some authors consider Lt (x) =
log Rt (x) and assume that

dLt (x) = a�(m�(x)−Lt (x))dt+F�1 (x)dw1,t+F�2 (x)dw2,t+F�3 (x)dw3,t , t ≥ 0.
(5)

Alternatively, consider the SDE

dyt (x) = −ay yt (x)dt + F y
1 (x)dw1,t + F y

2 (x)dw2,t + F y
3 (x)dw3,t , t ≥ 0, (6)

and define Rt (x) = (yt (x) + my(x))2. The latter model is a generalisation of the
quadratic Gaussian (QG) model considered in Kijima et al. (2014).

2.1 Principal Component Analysis

The models (3), (5) and (6) are directly connected to the principal component analysis
(PCA). Let R be the correlation matrix of some key forward rates, and let β j be its
j-th eigenvector. That is, we have

5 The formal derivation of (3) can be found in Jamshidian and Zhu (1997). In fact, they consider
the model (5) below with the forward price as the drift term, not the mean reversion drift.
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Fig. 1 Time series data of JGB forward rates (x = 1, 3, 5, 10 years)

Rβ j = η jβ j ,

where η j is the j-th eigenvalue. Since R is a symmetric, non-negative definite matrix,
we have η j ≥ 0 and the eigenvectors are orthogonal to each other. Assuming that η j

are non-increasing in j , the vector β j after normalisation (i.e. ‖β j‖2 = η j ) is called
the j-th principal component. The empirical analysis of historical yield-curve data
(i.e. under the observed probability measure P) demonstrates that all but the first
three principal components are small in magnitude.

In this subsection, we perform the PCA for the data of the forward rates of Japanese
government bond (JGB) at the end of months for the period of September, 1999–
January, 2013. Some selected forward rates Rt (x), x = 1, 3, 5, 10, during this period
are depicted in Fig. 1.6 The forward-rate dynamics Rt (x) for each x seems stationary
during this period.

Figure 2 reports the results of PCA; the top panel shows the PCA results for the
model (3), the middle panel for (5), and the bottom panel for (6), where we depict the
first three principal components. Surprisingly, the three components are very similar
for all the cases. Of course, this happens because the correlation matrices for the
three cases are very similar for the data period. The first component (level) is not
flat, because the yield curves under the ZIRP are typically S-shaped.7 The second
and third components are interpreted to be the slope and curvature as usual.

6 The data at the end of August, 2002 are deleted because Rt (1) was negative.
7 See Gorovoi and Linetsky (2004) and Kabanov et al. (2007) for spot-rate models that can fit the
S-shaped yield curves.
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Fig. 2 Dominant three components of forward rates movements. a Forward rates, b Log-forward
rates, c Square root of forward rates
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2.2 Estimation of Parameters

According to Jamshidian and Zhu (1997), the factors Fi (x) in the SDE (3) are related
to the principal components β j as

Fj (x) = σ(x)βx j , j = 1, 2, 3,

where σ(x) is the volatility of the forward rate Rt (x) and βx j is the x-th compo-
nent of the vector β j . The parameter a, the speed of mean reversion, as well as the
mean reverting level m(x) and the volatility σ(x) for each x can be estimated by
the ordinary GMM (generalised method of moments); see Kijima et al. (2014) for
details. Recall that a is independent of x for the sake of simplicity. As we shall see
later, however, the mean-reverting level m(x) must satisfy some conditions in order
to preclude arbitrage opportunities.

3 The Change of Measure

In this section, we consider the change of measure to derive the yield-curve dynamics
under the risk-neutral measure Q.

First, as in Brace et al. (1997), we assume that the forward rate Rt (x) follows the
SDE

dRt (x) = ∂

∂x

((
Rt (x)+ 1

2
σ 2(t, x)

)
dt +

∑
i

σi (t, x)dw∗i,t

)
(7)

under Q, for some volatilities σi (t, x) with σi (t, 0) = 0 for all i , where w∗i,t are the

independent standard Brownian motions under Q and σ 2(t, x) =∑i σ
2
i (t, x). From

(1), since

log v(t, T ) = −
T−t∫
0

Rt (u)du,

by differentiating both sides with respect to t , we obtain

d log v(t, T ) = Rt (T − t)dt −
T−t∫
0

[dRt (u)]du. (8)

By substituting (7) into (8), we then have
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d log v(t, T ) =
(

Rt (0)− 1

2
σ 2(t, T − t)

)
dt −

∑
i

σi (t, T − t)dw∗i,t .

It follows that

dv(t, T )

v(t, T )
= Rt (0)dt −

∑
i

σi (t, T − t)dw∗i,t , 0 ≤ t ≤ T, (9)

which implies that the denominated discount bond price is a martingale; hence, the
risk-neutrality of the measure Q is justified.

3.1 Forward-Rate Dynamics

Consider the model (2) under the observed probability measure P, and let λi (t) be
the market price of risk associated with wi,t , i.e.

dw∗i,t = dwi,t − λi (t)dt, i = 1, 2, . . . , n. (10)

The SDE (2) can be written as

dRt (x) = νr (t, x)dt +
∑

i

σ r
i (t, x)dw∗i,t , (11)

where
νr (t, x) = μr (t, x)+

∑
i

σ r
i (t, x)λi (t).

The next result provides a condition that assures the model (2) under P to be
consistent with the arbitrage-free model (7) under Q.

Theorem 3.1 The model (2) underP can be consistent with the arbitrage-free model
(7) under Q, if there exist λi (t), the market prices of risk, that satisfy the condition

∑
i

λi (t)σ
r
i (t, x) = ∂

∂x
Rt (x)− μr (t, x)+

∑
i

σi (t, x)σ r
i (t, x) (12)

for all x > 0, where

σi (t, s) =
s∫

0

σ r
i (t, u)du.

Proof By substituting (11) into (8), we have
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d log v(t, T ) =
⎛
⎝Rt (T − t)−

T−t∫
0

νr (t, u)du

⎞
⎠ dt −

∑
i

σi (t, T − t)dw∗i,t .

It follows that

dv(t, T )

v(t, T )
=
⎛
⎝Rt (T − t)−

T−t∫
0

νr (t, u)du + 1

2
σ 2(t, T − t)

⎞
⎠ dt

−
∑

i

σi (t, T − t)dw∗i,t , 0 ≤ t ≤ T, (13)

where
σ 2(t, T ) =

∑
i

σ 2
i (t, T ).

Therefore, the model (2) under P can be consistent with the SDE (7) only if

∑
i

λi (t)σi (t, T − t) = Rt (T − t)− Rt (0)−
T−t∫
0

μr (t, u)du + 1

2
σ 2(t, T − t)

is satisfied for all 0 ≤ t ≤ T . Differentiating both sides with respect to T , and then
replacing T − t by x , we obtain (12), completing the proof. �

Note that the market prices of risk, λi (t), are independent of x . The x terms on
the both sides of (12) must be matched by the remaining terms other than λi (t).

When the PCA model (3) is considered, the condition (12) can be rewritten as
follows.

Corollary 3.1 The PCA model (3) under P can be consistent with the arbitrage-free
model (7) under Q, if there exist λi (t), the market prices of risk, that satisfy the
condition

3∑
i=1

λi (t)Fi (xk) = ∂

∂x

(
m(xk)+ (R0(xk)− m(xk))e

−at)

+ a(R0(xk)− m(xk))e
−at +

3∑
i=1

Fi (xk)

xk∫
0

Fi (u)du (14)

+
3∑

i=1

( fi (xk)+ aFi (xk))

t∫
0

e−a(t−s)dwi,s, k = 1, 2, 3,

for all x1 < x2 < x3.
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Proof Consider the PCA model (3), and take x1 < x2 < x3. It follows from (12)
that

⎛
⎝ F1(x1) F2(x1) F3(x1)

F1(x2) F2(x2) F3(x2)

F1(x3) F2(x3) F3(x3)

⎞
⎠
⎛
⎝λ1(t)
λ2(t)
λ3(t)

⎞
⎠ (15)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂
∂x Rt (x1)− a(m(x1)− Rt (x1))+

3∑
i=1

Fi (x1)
x1∫
0

Fi (u)du

∂
∂x Rt (x2)− a(m(x2)− Rt (x2))+

3∑
i=1

Fi (x2)
x2∫
0

Fi (u)du

∂
∂x Rt (x3)− a(m(x3)− Rt (x3))+

3∑
i=1

Fi (x3)
x3∫
0

Fi (u)du

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for all x1 < x2 < x3. From (4), we have

∂

∂x
Rt (x) = ∂

∂x

(
m(x)+ (R0(x)− m(x))e−at)+

3∑
i=1

fi (x)

t∫
0

e−a(t−s)dwi,s,

where fi (x) = F ′i (x), which leads to the condition (14), completing the proof. �

Example 3.1 (Single-factor model) Consider the single-factor case, i.e. the model
(3) with n = 1. In this case, the condition (14) is reduced to

λ1(t) = 1

F1(x)

[
∂

∂x

(
m(x)+ (R0(x)− m(x))e−at)+ a(R0(x)− m(x))e−at

]

+
x∫

0

F1(u)du +
(

f1(x)

F1(x)
+ a

) t∫
0

e−a(t−s)dws,

and the right-hand side must be independent of x . Suppose that F1(x) = cebx for
some constants b and c. Then, the condition can be simplified as

∂

∂x

(
m(x)+ (R0(x)− m(x))e−at)+a(R0(x)−m(x))e−at+ c2

b
ebx
(

ebx − 1
)
= 0.

Given the initial forward-rate curve R0(x), the mean-reverting level m(x) can be
solved to satisfy the above equation. In particular, when R0(x) = m(x), we have

m(x) = R0(0)− c2

2b2

(
1− ebx

)2
, x ≥ 0.

The market price of risk λ1(t) becomes a deterministic function of time t only if
a + b = 0.
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3.2 The Log-Forward Rate Model

Next, we consider the model (5) under the observed probability measure P, whose
solution is given by

Lt (x) = m�(x)+ (L0(x)− m�(x))e−a�t +
3∑

i=1

F�i (x)

t∫
0

e−a�(t−s)dwi,s, t ≥ 0.

(16)
Let λi (t) be the market price of risk as in (10). Then, the SDE (5) can be written as

dLt (x) = a�(m�(t, x)−Lt (x))dt+F�1 (x)dw∗1,t+F�2 (x)dw∗2,t+F�3 (x)dw∗3,t , (17)

where

m�(t, x) = m�(x)+
∑

i

F�i (x)

a�
λi (t).

From (17), the forward rate Rt (x) = exp(Lt (x)) follows the SDE

dRt (x)

Rt (x)
=
(
νF (t, x)+ 1

2
σ 2

F (x)

)
dt +

3∑
i=1

F�i (x)dw∗i,t , (18)

where

νF (t, x) = a�(m�(t, x)− log Rt (x)), σ 2
F (x) =

3∑
i=1

(F�i (x))
2.

By substituting (18) into (8), we then have

d log v(t, T ) =
⎛
⎝Rt (T − t)−

T−t∫
0

νF (t, u)Rt (u)du − 1

2

T−t∫
0

σ 2
F (u)Rt (u)du

⎞
⎠ dt

−
3∑

i=1

σF R,i (t, T − t)dw∗i,t ,

where

σF R,i (t, s) =
s∫

0

F�i (u)Rt (u)du.
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It follows that

dv(t, T )

v(t, T )
= M�(T − t)dt −

3∑
i=1

σF R,i (t, T − t)dw∗i,t , (19)

where

M�(x) = Rt (x)−
x∫

0

νF (t, u)Rt (u)du − 1

2

x∫
0

σ 2
F (u)Rt (u)du + 1

2
σ 2

F R(t, x)

and

σ 2
F R(t, x) =

3∑
i=1

σ 2
F R,i (t, x).

Therefore, the model (5) under P can be consistent with the SDE (7) only if

3∑
i=1

λi (t)σF R,i (t, T − t) = Rt (T − t)− Rt (0)−
T−t∫
0

(
a�(m�(u)− log Rt (u))

)
Rt (u)du

− 1

2

T−t∫
0

σ 2
F (u)Rt (u)du + 1

2
σ 2

F R(t, T − t)

is satisfied for all 0 ≤ t ≤ T . Differentiating both sides with respect to T , and then
replacing T − t by x , we obtain

3∑
i=1

λi (t)F
�
i (x) =

∂Lt (x)

∂x
− a�(m�(x)− Lt (x))− 1

2
σ 2

F (x)+
3∑

i=1

σF R,i (t, x)F�i (x)

(20)
for all x > 0, by using the relationship between Lt (x) and Rt (x).

Note from (16) that

∂

∂x
Lt (x) = ∂

∂x

(
m�(x)+ (L0(x)− m�(x))e−a�t

)
+

3∑
i=1

f �i (x)

t∫
0

e−a�(t−s)dwi,s,

where f �i (x) = dF�i (x)/dx . By the same argument as in Sect. 3.1, it follows that the
condition (20) is equivalent to
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3∑
i=1

λi (t)F
�
i (xk) = ∂

∂x

(
m�(xk)+ (L0(xk)− m�(xk))e

−a�t
)

+ a�(L0(xk)− m�(xk))e
−a�t − 1

2
σ 2

F (xk)+
3∑

i=1

σF R,i (t, xk)F
�
i (xk)

+
3∑

i=1

( f �i (xk)+ a�F�i (xk))

t∫
0

e−a�(t−s)dwi,s (21)

for all x1 < x2 < x3. If this holds true, we can use both the PCA model (5) under
the observed probability measure P and the SDE (7) with σi (t, x) = F�i (x) under Q
as the forward-rate dynamics.

Example 3.2 (Single-factor model) Consider the single-factor case in the model (5).
In this case, the condition (21) is reduced to

λ1(t) = 1

F�1 (x)

[
∂

∂x

(
m�(x)+ (L0(x)− m�(x))e−a�t

)
+ a�(L0(x)− m�(x))e−a�t

]

− 1

2
F�1 (x)+ σF R,1(t, x)+

(
f �1 (x)

F�1 (x)
+ a�

) t∫
0

e−a�(t−s)dws,

and the right-hand side must be independent of x . Suppose that F�1 (x) = cebx for
some constants b and c. Then, the condition can be simplified as

∂

∂x

(
m�(x)+ (L0(x)− m�(x))e−a�t

)
+ a�(L0(x)− m�(x))e−a�t

− c2

2
e2bx + c2ebx

x∫
0

eLt (u)+budu = 0.

Since Lt (x) is a stochastic process, there does not exist a deterministic solution of
m�(x) for the non-trivial case (c �= 0).

3.3 The QG Model

Finally, we consider the model (6) under the observed probability measure P, whose
solution is given by

yt (x) = y0(x)e
−ay t +

3∑
i=1

F y
i (x)

t∫
0

e−ay(t−s)dwi,s, t ≥ 0. (22)
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As before, let λi (t) be the market price of risk. Then, the SDE (6) can be written as

dyt (x) = ay(ν y(t, x)− yt (x))dt +
3∑

i=1

F y
i (x)dw∗i,t , (23)

where

ν y(t, x) = 1

ay

3∑
i=1

F y
i (x)λi (t).

From (23), the forward rate Rt (x) = (yt (x)+ my(x))2 follows the SDE

dRt (x) =
[
2ay(yt (x)+ my(x))(ν y(t, x)− yt (x))+ σ 2

F (x)
]

dt (24)

+ 2(yt (x)+ my(x))
3∑

i=1

F y
i (x)dw∗i,t ,

where σ 2
F (x) =

∑3
i=1(F

y
i (x))

2. By substituting (24) into (8), we then have

d log v(t, T ) =
⎡
⎣Rt (T − t)−

T−t∫
0

2ay(yt (u)+ my(u))(ν y(t, u)− yt (u))du

−
T−t∫
0

σ 2
F (u)du

⎤
⎦ dt −

3∑
i=1

σFy,i (t, T − t)dw∗i,t ,

where

σFy,i (t, s) = 2

s∫
0

F y
i (u)(yt (u)+ my(u))du

= 2e−ay t

s∫
0

F y
i (u)y0(u)du + 2

s∫
0

F y
i (u)m

y(u)du

+ 2
3∑

j=1


i j (s)

t∫
0

e−ay(t−s)dwi,s

with


i j (s) =
s∫

0

F y
i (u)F

y
j (u)du.
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It follows that

dv(t, T )

v(t, T )
=
⎡
⎣Rt (T − t)−

T−t∫
0

2ay(yt (u)+ my(u))(ν y(t, u)− yt (u))du

−
T−t∫
0

σ 2
F (u)du + 1

2
σ 2

Fy(t, T − t)

⎤
⎦ dt −

3∑
i=1

σFy,i (t, T − t)dw∗i,t ,

where

σ 2
Fy(t, s) =

3∑
i=1

σ 2
Fy,i (t, s).

Therefore, the model Rt (x) = (yt (x)+my(x))2 with (6) under P can be consistent
with the SDE (7) only if

3∑
i=1

λi (t)σFy,i (t, T − t) = Rt (T − t)− Rt (0)+
T−t∫
0

2ay(yt (u)+ my(u))yt (u)du

−
T−t∫
0

σ 2
F (u)du + 1

2
σ 2

Fy(t, T − t)

is satisfied for all 0 ≤ t ≤ T . Differentiating both sides with respect to T , and then
replacing T − t by x , we obtain

2(yt (x)+ my(x))
3∑

i=1

λi (t)F
y

i (x) =
∂

∂x
Rt (x)+ 2ay(yt (x)+ my(x))yt (x)− σ 2

F (x)

+ 2(yt (x)+ my(x))
3∑

i=1

σFy,i (t, x)F y
i (x)

(25)

for all x > 0. Using Rt (x) = (yt (x)+my(x))2 and (22), we can rewrite the condition
(25) as

3∑
i=1

λi (t)F
y

i (x) =
∂

∂x
(yt (x)+ my(x))+ ay yt (x)− σ 2

F (x)

2(yt (x)+ my(x))

+
3∑

i=1

σFy,i (t, x)F y
i (x)
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= ∂

∂x

(
y0(x)e

−ay t + my(x)
)
+ ay y0(x)e

−ay t − σ 2
F (x)

2(yt (x)+ my(x))

+
3∑

i=1

σFy,i (t, x)F y
i (x)+

3∑
i=1

(
f y
i (x)+ ay F y

i (x)
) t∫

0

e−ay(t−s)dwi,s,

(26)

where f y
i (x) = dF y

i (x)/dx .

Example 3.3 (Single-factor model) Consider the single-factor case. In this case, the
condition (26) is reduced to

λ1(t) = 1

F y
1 (x)

(
∂

∂x

(
y0(x)e

−ay t + my(x)
)
+ ay y0(x)e

−ay t
)

+ 2e−ay t

x∫
0

F y
1 (u)y0(u)du + 2

x∫
0

F y
1 (u)m

y(u)du

− 1

2

⎛
⎝ y0(x)e−ay t + my(x)

F y
1 (x)

+
t∫

0

e−ay(t−s)dws

⎞
⎠
−1

+
(

f y
1 (x)

F y
1 (x)

+ 2
11(x)+ ay

) t∫
0

e−ay(t−s)dws . (27)

In the right-hand side of (27), the first, second and third terms are deterministic,
while the fourth and fifth terms are stochastic. Since the right-hand side of (27)
must be independent of x , it seems difficult to find the model which satisfies the
condition (27).

4 Monte Carlo Simulation

According to Kijima and Muromachi (2000), any risk evaluation model comprises
the following three components:

1. Generation of stochastic scenarios for uncertainty,
2. Valuation of the present values, and
3. Valuation of the future distribution.

The input data in the model are the present discount curve, either observed in the
market or evaluated if necessary, and parameters of the stochastic structure. In this
section, we consider the model (3) for the sake of simplicity, although the forward
rates become negative with positive probability.
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4.1 Generation of Scenarios

Suppose that the functions m(x), Fi (x), i = 1, 2, 3, as well as the parameter a in
the SDE (3) are all estimated and the current forward-rate curve R0(x) is observed.
Then, we have all the information needed to generate future scenarios of forward
rates. Let us denote the i th scenario by Ri

t (x), x > 0, at future time t > 0.

4.2 Valuation of Derivative Prices

In order to obtain the future derivative prices, we assume that the market prices of
risk λi (t) satisfying the condition (14) always exist. In other words, the change of
measure to derive the SDE (7) is always possible. Hence, at some future time u > 0,
given the scenario Ri

u(x) as the initial condition, the forward-rate dynamics after
time u can be generated by the SDE (7). Note that the scenario Ri

u(x) is generated by
(3) under the observed probability measure P, not under the risk-neutral measure Q.

Example 4.1 (Swap rate) Let t be some future time, and we simulate a scenario
Ri

t (x), x > 0, according to the SDE (3). Then, from (1), we obtain a scenario Dt (x),
x > 0, of the (secured) discount curve. The swap rate St (T ) with payment schedule
{Tk}, k = 1, 2, . . . , n, where Tn = T and δ = Tk − Tk−1, is determined as

St (T ) =
∑n

k=1 v(t, Tk)Lk(t)∑n
k=1 v(t, Tk)

, (28)

under the multi-curve environment, where Lk(t) denotes the (risky) forward LIBOR
at time t [see, e.g. Bianchetti (2013) for details]. Of course, if the forward LIBOR is
secured, we have

Lk(t) = 1

δ

(
v(t, Tk−1)

v(t, Tk)
− 1

)
, (29)

and the swap rate St (T ) is given by the well known telescopic form

St (T ) = v(t, T0)− v(t, Tn)

δ
∑n

k=1 v(t, Tk)
.

Note that, in order to generate future swap rate given by (28), we also need to generate
the forward LIBOR Lk(t) for any future time. This could be done by considering the
risky discount curve DL

t (x), x > 0, associated with the LIBOR interest rates. The
methodology is the same and omitted.

Example 4.2 (Caplet) Let Li (t) be the (secured) forward LIBOR defined by (29).
According to Brace et al. (1997), if we start from the model (7), the forward LIBOR
Li (t) follows the SDE



270 M. Kijima and Y. Muromachi

dLi (t)

Li (t)
= γ (t, Ti − t)dwTi+1

t

for some γ (t, x), where wTi+1
t denotes the standard Brownian motion under the

forward-neutral measure Q
Ti+1 [see, e.g. Kijima (2013) for details]. It is common

to assume for practitioners that γ (t, x) is a deterministic function. In this case, the
caplet price is given by the Black formula with the volatility νi (t), where

ν2
i (t) =

Ti∫
t

γ 2(s, Ti − s)ds.

Example 4.3 (Swaption) The swaption price can be evaluated by, e.g. a formula
given by Brace et al. (1997).

Example 4.4 (General Cash flow) Consider a mortgage loan and suppose that, as in
Kijima et al. (2014), the prepayment rate depends on the swap rate. More precisely,
let C(T ) = C(T, ST (τ )) be the (secured) cashflow caused by the prepayment at
future time T for some τ > T . The future swap rate can be generated as in Example
4.1 under P. However, in order to evaluate the cash flow within the no-arbitrage
paradigm, we need to discount it with respect to the short rate Rt (0) under Q. That
is, the present value of the cash flow is given by

PV(C) = E
Q

⎡
⎣exp

⎧⎨
⎩−

T∫
0

Rt (0)dt

⎫⎬
⎭C(T, ST (τ ))

⎤
⎦ ,

where EQ denotes the expectation under Q. Note that the short-rate dynamics Rt (0)
follows the SDE

dRt (0) = ∂

∂x

((
Rt (x)+ 1

2
σ 2(t, x)

)
dt +

∑
i

σi (t, x)dw∗i,t

) ∣∣∣
x=0

. (30)

Hence, in general, the evolution of the spot-rate process is non-Markovian with re-
spect to a finite-dimensional state space.8 This means that a significantly complex
computation scheme and a large memory storage space are required to price contin-
gent claims against the term structure. In Appendix A, we propose an approximate
scheme to generate the short rates.

8 See, e.g. Chiarella and Kwon (2003) and Inui and Kijima (1998) for finite-dimensional Markovian
HJM term structure models.
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5 Concluding Remarks

In this paper, we present a risk evaluation model for interest-rate sensitive products
within the no-arbitrage framework. A yield-curve dynamics is modelled, based on
the results of the principal component analysis (PCA), to generate future scenarios
of interest rates under the observed probability measure P. The market model is
adopted for the pricing of interest-rate derivatives under the risk-neutral measure Q

by identifying market prices of risk that are consistent with the yield-curve model.
Given the future scenarios of yield curve and the market prices of risk, the prices
of interest-rate sensitive products are calculated at any future time. Risk measures
such as Value-at-Risk (VaR) of portfolios with interest-rate sensitive products can
be evaluated through simple Monte Carlo simulation.

However, as shown by the single-factor examples, it seems difficult to judge
whether or not the given PCA model (under P) is consistent with the no-arbitrage
paradigm. One way to check it may be to determine the market prices of risk, λi (t),
and the mean-reverting level, m(x), approximately by assuming their parametric
forms, as in Norman (2009), and calibrating them to the market data. This method
may sound, because the mean level, m(x), and the latent factors, λi (t), are difficult to
estimate in a stable way. This is the subject left to the future research in conjunction
with empirical research.

Acknowledgments The authors are grateful for the research grant funded by the Grant-in-Aid (A)
(#26242028) from Japan’s Ministry of Education, Culture, Sports, Science and Technology.

Appendix: A Spot-Rate Model under Q

In this appendix, we explain how to generate the short rates Rt (0) under Q. To this
end, take h > 0 sufficiently small, and assume that

∂

∂x
Rt (x)

∣∣∣
x=0
= 1

h
[Rt (h)− Rt (0)].

Then, from (30), we have

dRt (0) =
(

1

h
[Rt (h)− Rt (0)] + 1

2

∂

∂x
σ 2(t, 0)

)
dt +

∑
i

∂

∂x
σi (t, 0)dw∗i,t (A.1)

and

dRt (h) =
(

1

h
[Rt (h)− Rt (0)] + 1

2

∂

∂x
σ 2(t, h)

)
dt +

∑
i

∂

∂x
σi (t, h)dw∗i,t .

Let St = Rt (h)− Rt (0), so that
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dSt =
(

1

2

∂

∂x

[
σ 2(t, h)− σ 2(t, 0)

])
dt +

∑
i

∂

∂x
[σi (t, h)− σi (t, 0)]dw∗i,t .

In particular, when σi (t, x) =
x∫

0
Fi (u)du as in the PCA model (3), we have

dSt =
3∑

i=1

⎛
⎝Fi (h)

h∫
0

Fi (u)du

⎞
⎠ dt +

3∑
i=1

[Fi (h)− Fi (0)]dw∗i,t .

Given the solution {St } at hand, it follows from (A.1) that

dRt (0) =
(

1

h
St + 1

2

∂

∂x
σ 2(t, 0)

)
dt +

∑
i

∂

∂x
σi (t, 0)dw∗i,t . (A.2)

Using (A.2), the spot rates Rt (0) can be generated approximately by Monte Carlo
simulation.
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On Multicurve Models for the Term
Structure

Laura Morino and Wolfgang J. Runggaldier

1 Introduction

In the wake of the big crisis one has witnessed a significant increase in the spreads
between LIBORs of different tenors as well as the spread between a LIBOR and the
discount curve (LIBOR-OIS). This has led to the construction of multicurve models
where, typically, future cash flows are generated through curves associated to the
underlying rates, but are discounted by another curve.

The majority of the models that have been considered reflects the usual classical
distinction between

(i) short rate models;
(ii) HJM setup;

(iii) BGM or LIBOR market models.

By analogy to credit risk we may call the first two categories of models as bottom-up
models, while the third one could be classified as top-down. In addition, methodolo-
gies have appeared that are related to foreign exchange.

Here we consider only the first two setups. We begin by discussing some
issues arising with the HJM methodology and concentrate then on short rate mod-
els. The third setup (top-down) is mainly present in work by F. Mercurio and
co-authors (see e.g. Mercurio (2010a, b)), but also in other recent work such
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as Keller-Ressel et al. (2013). There are advantages and disadvantages with each
setup. Among the possible advantages of short rate models is the fact that they lead
more easily to a Markovian setting, which is convenient for various calculations (see
Crépey et al. (2013b)). On the other hand, one of the major advantages of HJM over
a direct short rate modeling is that the model is automatically calibrated to the initial
term structure. Short rate models in a multi-curve setup have already appeared in the
literature, e.g. Kijima et al. (2009), Kenyon (2010), Filipović and Trolle (2013).

To present the basic ideas in a simple way, here we consider a two-curve model,
namely with a curve for discounting and one for generating future cash flows. The
choice of the discount curve is not unique; we follow the common choice of consid-
ering the OIS swap curve. For the risky cash flows without collateral we consider a
single LIBOR (i.e. for a given tenor structure).

We present an approach for the pricing of some basic LIBOR-related derivatives,
namely FRAs and CAPs (linear/nonlinear) and consider only clean valuation for-
mulas, namely without counterparty risk. Although real pricing problems require a
more global approach (see e.g. the discussions in Fuji et al. (2009, 2011), Piterbarg
(2010), Crépey et al. (2013a) as well as in recent work by D. Brigo and co-authors
such as Pallavicini and Brigo (2013), Brigo, Morini and Pallavicini (2013)), clean
valuation formulas are nevertheless useful for various reasons: as pointed out in
Crépey et al. (2013b), market quotes typically reflect prices of fully collateralized
transactions so that clean price formulas may turn out to be sufficient for calibra-
tion also when using the model to compute possible value adjustments; furthermore
(see Crépey et al. (2013b)), TVA adjustments are often computed on top of clean
prices. Concerning methodology, since our approach is of the bottom-up type that
considers short rate modeling, we heavily exploit the advantages of an affine term
structure. This is in contrast with top-down approaches, where (see Mercurio (2010a,
b)) log-normal models are common (see however Keller-Ressel et al. (2013) and
Grbac et al. (2014) for affine LIBOR models with general distributions in a multic-
urve context).

Traditionally, interest rates are defined to be coherent with the bond prices
p(t, T ), which represent the expectation of the market concerning the future value
of money. For the discrete compounding forward LIBORs, which we denote here by
L(t; T, S), this leads to (t < T < S)

L(t; T, S) = 1

S − T

(
p(t, T )

p(t, S)
− 1

)
(1)

which can also be justified as representing the fair value of the fixed rate in a FRA
on the LIBOR. Since we consider only a single LIBOR that corresponds to a given
tenor structure, we assume S = T + � (for tenor �). In this way one obtains a
single curve for the term structure. The actual LIBOR rates, which in what follows
we shall denote by L̄(t; T, T + �), are determined by the LIBOR panel that takes
into account various factors such as credit risk, liquidity, etc. (see the discussion in
Filipović and Trolle (2013)). Following some of the recent literature, in particular
Crépey et al. (2012) (see also Kijima et al. (2009)), we keep the formal relationship
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(1) between LIBOR rates and bond prices, but replace the risk-free bond prices
p(t, T ) by fictitious “risky” bond prices p̄(t, T ) that are supposed to be affected by
the same factors as the actual LIBORs and that, analogously to the risk-free bond
prices, we define then as

p̄(t, T ) = E Q

⎧⎨
⎩exp

⎡
⎣−

T∫
t

(ru + su)du

⎤
⎦ | Ft

⎫⎬
⎭ (2)

where rt is the classical short rate, whereas st represents the short rate spread (hazard
rate in case of only default risk). Notice that in this way the spread is introduced from
the outset. Notice also that the fictitious bond prices p̄(t, T ) are not actual prices.

Since in what follows we are interested in FRAs and CAPs that are based on the
T−spot LIBOR L̄(T ; T, T +�), we actually postulate the relationship (1) only at
the inception time t = T . Our starting point is thus the following relationship

L̄(T ; T, T +�) = 1

�

(
1

p̄(T, T +�) − 1

)
(3)

where we have taken into account the fact that also for the “risky” bonds we have
p̄(T, T ) = 1.

In addition to the pricing of FRAs and CAPs in our two-curve setup, our major
goal here is to derive a relationship between theoretically risk-free and actual FRAs
(possibly also CAPs) thereby exhibiting an adjustment factor which plays a role anal-
ogous to that of the quanto adjustments in the pricing of cross-currency derivatives
or the “multiplicative forward basis” in Bianchetti (2012).

2 The Model

2.1 Preliminary Considerations

We start with some comments concerning HJM-like approaches to better motivate
our short rate approach. Given the bond price processes p(t, T ) and p̄(t, T ), in
order to apply an HJM-approach, we need to introduce corresponding forward rate
processes f T (t) and f̄ T (t) that lead to a forward rate spread expressed as gT (t) :=
f̄ T (t) − f T (t). One then also obtains corresponding short rates and a short rate
spread, namely rt = f t (t), r̄t = f̄ t (t), st = gt (t) = r̄t − rt . Notice that a
consistent model should lead to p̄(t, T ) ≤ p(t, T ), which implies f̄ T (t) ≥ f T (t)
or, equivalently gT (t) ≥ 0 ∀t < T ≤ T̄ , where T̄ is a given maximal maturity.

An extensive study within the multicurve HJM approach has appeared in Crépey
et al. (2012). The driving random process is a Levy and a corresponding HJM drift
condition is derived. Conditions are given for the non-negativity of rates and spreads;
explicit formulas are obtained for various interest rate derivatives. What may not be
fully satisfactory in Crépey et al. (2012) is that:
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(i) some difficulties arise when dealing not only with credit risk, but also other risks
such as liquidity. In particular, when looking for a condition that corresponds to
the defaultable HJM drift condition;

(ii) a fictitious default has to be considered explicitly (with pre default bond prices).

The study in Crépey et al. (2012) is continued in the recent paper Crépey et al. (2013b)
with the main purpose of taking into account also counterparty risk and funding costs
and of determining various valuation adjustments on top of the clean prices. The
methodology in Crépey et al. (2013b) is again based on an HJM approach, but with
explicit ingredients for the induced short rate models in order to obtain a Markovian
structure and to be able to actually perform the value adjustment calculations. In
particular, the authors in Crépey et al. (2013b) use a Levy Hull & White extended
Vasicek model for rt and introduce an additional factor that can be interpreted as
representing a short rate spread. In this latter sense it becomes analogous to the
approach to be presented here.

Another HJM-based approach, limited to default risk, appears in Chiarella et al.
(2007) with emphasis on obtaining Markovian models with state dependent volatili-
ties. The driving processes are of the jump-diffusion type. The difficulties here appear
to be given by the fact that, for convenient specifications of the volatilities, one obtains
deterministic short rate spreads. For more general, stochastic volatilities the authors
obtain only approximate Markovianity. These difficulties have been overcome in the
subsequent paper Chiarella et al. (2010), where the authors obtain finite-dimensional
Markovian realizations also with stochastic spreads and, in addition, obtain a cor-
relation structure between credit spread, interest rate and the stochastic volatility.
When trying to extend their approach to a multi curve setting, beyond that implied
by credit risk alone, there appear though some computational difficulties due to the
stochastic volatility.

Before coming now to describing our short rate model, we recall some basics
concerning FRAs. We start from the

Definition 2.1 A FRA (forward rate agreement) is an OTC derivative that allows
the holder to lock in at t < T the interest rate between the inception date T and the
maturity T + � at a fixed value K . At maturity T + �, a payment based on K is
made and one based on L̄(T ; T, T +�) is received.

We shall denote the value of the FRA at t < T by FRAT (t, K ). In our two-curve
risky setup, the fair price of a FRA in t < T with fixed rate K and notional N is

FRAT (t, K ) = N�p(t, T +�)ET+� [
L̄(T ; T, T +�)− K | Ft

]
= N p(t, T +�)ET+�

[
1

p̄(T,T+�) − (1+�K ) | Ft

] (4)

where ET+� denotes expectation under the (T + �)− forward measure QT+�.
Notice that the simultaneous presence of p(t, T + �) and p̄(t, T + �) does not
allow for the convenient reduction of the formula to a simpler form as in the one-
curve setup.
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2.2 Description of the Model Itself

For the short-rate model approach we shall have to start by modeling directly the
short rate rt and the short rate spread st and we do it under the standard martingale
measure Q (to be calibrated to the market) for the risk-free money market account
as numeraire. In order to account for a possible (negative) correlation between rt

and st we introduce a factor model: given three independent affine factor processes
� i

t , i = 1, 2, 3 let
{

rt = �2
t −�1

t
st = κ�1

t +�3
t

(5)

where κ is a constant that measures the instantaneous correlation between rt and st

(negative correlation for κ > 0). This setup could be generalized in various ways,
in particular by using more factors to drive st . In view of the existing literature
one could, instead of using an affine model structure as we do it here, consider
e.g. ambit-type processes as presented in Corcuera, Farkas, Schoutens and Valkeila
(2013). Such a model, which is not of the semimartingale type, allows also for
analytical computations and gives the possibility to take into account long-range
dependence. Remaining within the pure credit risk setting where, see the comment
after (2), the spread is given by the default intensity, some of the factors affecting the
spread could be given a specific meaning as in Douady and Jeanblanc (2002) where,
using an HJM-type approach, the authors consider a spread field process with one
of the variables representing the rating of the issuer. The approach in Douady and
Jeanblanc (2002) could possibly be generalized also to the present setting.

A common approach to modeling the factors in an affine context is to assume them
of the type of a square root diffusion. This guarantees positivity of the spread, but the
negative correlation comes at the expense of possibly negative interest rates (even if
only with small probability). With such a model, by passing to the (T +�)−forward
measure, one can compute the value of a FRA and of the fair fixed rate.

For various reasons, in particular in view of our main goal to obtain an adjustment
factor, it is convenient to be able to have the same factor model for FRAs with
different maturities. We therefore aim at performing the calculations under a single
reference measure, namely the standard martingale measure Q. More precisely, for
the factor processes we assume the following affine diffusions under Q that are of
the Vasicek type, namely

⎧⎨
⎩

d�1
t = (a1 − b1�1

t )dt + σ 1 dw1
t

d� i
t = (ai − bi� i

t )dt + σ i
√
� i

t dwi
t , i = 2, 3

(6)

where ai , bi , σ i are positive constants with ai ≥ (σ i )2/2 for i = 2, 3, and wi
t

independent Wiener processes. We have chosen a Vasicek-type model for simplicity,
but the results below can be easily extended to the Hull and White version of the
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Vasicek model. Notice that the factor �1
t may take negative values implying that,

not only rt , but also st may become negative (see however later under “comments
on the main result”). Results completely analogous to those that we shall obtain here
for the above pure diffusion model may be derived also for affine jump-diffusions at
the sole expense of more complicated notation.

3 Main Result (FRAs)

3.1 Preliminary Notions and Results

Recalling the expression for a FRA under the forward measure, namely

FRAT (t, K ) = N p(t, T +�)ET+�
[

1

p̄(T, T +�) − (1+�K ) | Ft

]
, (7)

one has that the crucial quantity to compute is

ν̄t,T := ET+�
[

1

p̄(T, T +�) | Ft

]
(8)

and that the fixed rate to make the FRA a fair contract at time t is

K̄t := 1

�
(ν̄t,T − 1) (9)

In the classical single curve case we have instead

νt,T := ET+�
[

1

p(T, T +�) | Ft

]
= p(t, T )

p(t, T +�) (10)

being p(t,T )
p(t,T+�) an Ft —martingale under the (T +�)—forward measure. The fair

fixed rate in the single curve case is then

Kt = 1

�

(
νt,T − 1

) = 1

�

(
p(t, T )

p(t, T +�) − 1

)
(11)

and notice that, in order to compute Kt , no interest rate model is needed (contrary to
K̄t ).
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Due to the affine dynamics of � i
t (i = 1, 2, 3) under Q, we have for the risk-free

bond

p(t, T ) = E Q
{

exp

[
−

T∫
t

rudu

]
| Ft

}
= E Q

{
exp

[
T∫
t
(�1

u −�2
u )du

]
| Ft

}

= exp
[
A(t, T )− B1(t, T )�1

t − B2(t, T )�2
t

]
(12)

The coefficients satisfy

⎧⎪⎪⎨
⎪⎪⎩

B1
t − b1 B1 − 1 = 0, B1(T, T ) = 0

B2
t − b2 B2 − (σ 2)2

2 (B2)2 + 1 = 0, B2(T, T ) = 0

At = a1 B1 − (σ 1)2

2 (B1)2 + a2 B2 , A(T, T ) = 0

(13)

leading, in particular, to

B1(t, T ) = 1

b1

(
e−b1(T−t) − 1

)
. (14)

For the risky bond we have instead

p̄(t, T ) = E Q
{

exp

[
−

T∫
t
(ru + su)du

]
| Ft

}

= E Q
{

exp

[
−

T∫
t
((κ − 1)�1

u +�2
u +�3

u )du

]
| Ft

}

= exp
[
Ā(t, T )− B̄1(t, T )�1

t − B̄2(t, T )�2
t − B̄3(t, T )�3

t

]

(15)

This time the coefficients satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B̄1
t − b1 B̄1 + (κ − 1) = 0, B̄1(T, T ) = 0

B̄2
t − b2 B̄2 − (σ 2)2

2 (B̄2)2 + 1 = 0, B̄2(T, T ) = 0

B̄3
t − b3 B̄3 − (σ 3)2

2 (B̄3)2 + 1 = 0, B̄3(T, T ) = 0

Āt = a1 B̄1 − (σ 1)2

2 (B̄1)2 + a2 B̄2 + a3 B̄3 , Ā(T, T ) = 0

(16)

leading, in particular, to

B̄1(t, T ) = 1− κ
b1

(
e−b1(T−t) − 1

)
= (1− κ) B1(t, T ) (17)
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From the above 1st order equations it follows that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B̄1(t, T ) = (1− κ) B1(t, T )

B̄2(t, T ) = B2(t, T )

Ā(t, T ) = A(t, T )− a1κ
T∫
t

B1(u, T )du

+ (σ 1)2

2 κ2
T∫
t
(B1(u, T ))2du − (σ 1)2κ

T∫
t

B1(u, T )du

−a3
T∫
t

B̄3(u, T )du

(18)

Letting then

Ã(t, T ) := Ā(t, T )− A(t, T ) (19)

we obtain

p̄(t, T ) = exp
[

Ā(t, T )− B1(t, T )�1
t − B2(t, T )�2

t

− B̄3(t, T )�3
t + κB1(t, T )�1

t

]

=p(t, T ) exp
[

Ã(t, T )+ κB1(t, T )�1
t − B̄3(t, T )�3

t

]
(20)

so that, putting for simplicity B̃1 := B1(T, T +�), one may write

p(T, T +�)
p̄(T, T +�) = exp

[
− Ã(T, T +�)− κ B̃1�1

T + B̄3(T, T +�)�3
T

]
. (21)

3.2 The Result Itself

We introduce the

Definition 3.1 We call adjustment factor the process

AdT,�
t := E Q

{
p(T, T +�)
p̄(T, T +�) | Ft

}
, (22)

and shall prove the following

Proposition 3.1 We have
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ν̄t,T = νt,T · AdT,�
t · exp

[
κ
(σ 1)2

2(b1)3

(
1− e−b1�

) (
1− e−b1(T−t)

)2
]

(23)

with two adjustment factors on the right, of which the first one can be expressed as

AdT,�
t = e− Ã(T,T+�)E Q

{
e−κ B̃1�1

T+B̄3(T,T+�)�3
T | Ft

}
:= A(θ, κ,�1

t , �
3
t )

(24)

with θ := (ai , bi , σ i , i = 1, 2, 3).

One may notice the analogy here with the multiplicative forward basis in Bianchetti
(2012).

As a consequence of the previous proposition we have the following relation
between the fair value K̄t of the fixed rate in an actual FRA and the fair value Kt in
a corresponding riskless one:

Corollary 3.1 The following relationship holds

K̄t =
(

Kt + 1

�

)
· AdT,�

t · exp

[
κ
(σ 1)2

2(b1)3

(
1− e−b1�

) (
1− e−b1(T−t)

)2
]
− 1

�
(25)

Notice that the factor given by the exponential is equal to 1 for zero correlation, i.e.
for (κ = 0).

3.3 Comments on the Main Result

3.3.1 Comments Concerning the Adjustment Factors

An easy intuitive interpretation of the main result can be obtained in the case of
κ = 0 (independence of rt and st ): in this case we have rt + st > rt implying
p̄(T, T +�) < p(T, T +�) so that AdT,�

t ≥ 1 (the exponential adjustment factor
is equal to 1). As expected, from Proposition 3.1 and Corollary 3.1 it then follows that

ν̄t,T ≥ νt,T , K̄t ≥ Kt (26)

To gain some intuition for the cases when κ �= 0, let p̄κ(t, T ), ν̄κt,T , AdT,�,κ
t

denote the given quantities by stressing that the correlation parameter has value κ .
Notice that p(t, T ) and thus also νt,T do not depend on κ . Consider then the case
κ > 0, which is the standard case implying negative correlation between rt and st .
(The case κ < 0 is analogous/dual). For illustrative purposes we distinguish between
the two events {�1

t > 0, ∀t ∈ [T, T +�]}, {�1
t < 0, ∀t ∈ [T, T +�]} where the

latter occurs only with small probability (in reality, �1
t will be positive for certain

values of t and negative for the remaining ones).
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On {�1
t > 0, t ∈ [T, T +�]} we now have

p̄κ(T, T +�) < p̄0(T, T +�)
⇒ ν̄κt,T > ν̄0

t,T ⇒ ν̄κt,T /νt,T > ν̄0
t,T /νt,T

(27)

Recalling then

ν̄κt,T = νt,T · AdT,�,κ
t · exp

[
κ
(σ 1)2

2(b1)3

(
1− e−b1�

) (
1− e−b1(T−t)

)2
]

(28)

the last inequality in (27) can be seen to be in line with the fact that, in this case, in
(28) the exponential factor is >1 and AdT,�,κ

t > AdT,�,0
t (recall Definition 3.1).

On the other hand, on {�1
t < 0, t ∈ [T, T +�]}, we have

p̄κ(T, T +�) > p̄0(T, T +�) ⇒ ν̄κt,T /νt,T < ν̄0
t,T /νt,T (29)

This inequality can be seen to be in line with the fact that, here, AdT,�,κ
t < AdT,�,0

t ,
but the exponential factor is still>1. This can nevertheless be explained by noticing
that, in this case, rt is relatively large and rt + st is closer to rt (may be even <rt ).
This implies a push of ν̄κt,T /νt,T towards smaller values than in the previous case.

3.3.2 Comments Concerning the Use of the Results for Calibration

For what concerns calibration of our model to FRA and other available market data,
notice that the coefficients a1, a2, b1, b2, σ 1, σ 2 can be calibrated in the usual way on
the basis of the observations of default-free bonds p(t, T ) (if we had a Hull & White
extension of our Vasicek-type model (6) then also for this model the calibration could
be performed as in the standard case). To calibrate a3, b3, σ 3, notice that, contrary to
p(t, T ), the “risky” bonds p̄(t, T ) are not observable (relation (3) does not imply a
unique inverse relationship to determine p̄(t, T ) from observations of the LIBORs).

One can however observe Kt = 1
�

(
p(t,T )

p(t,T+�) − 1
)

as well as the “risky” FRA

rate K̄t . Recalling then Corollary 3.1 and the fact that AdT,�
t = A(θ, κ,�1

t , �
3
t ),

notice that, having calibrated ai , bi , σ i (i = 1, 2), from the observations of Kt and
K̄t one could thus calibrate a3, b3, σ 3 as well as κ . If there is a way to determine
directly AdT,�

t (e.g. by observing the FRA rates for uncorrelated rt and st ), then
the relationship between Kt and K̄t as expressed in Corollary 3.1 would allow to
calibrate separately κ . We furthermore recall that, as pointed out in Crépey et al.
(2013b), calibration of clean prices is sufficient also when using the model to compute
possible value adjustments.
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3.4 Proof of the Main Result

Since the quantities of interest, namely ν̄t,T and νt,T were defined under the forward
measure (see (8) and (10)), as a first step we perform a change from the forward
measure QT+� to the standard martingale measure Q. To this effect, putting bt :=
exp

[∫ t
0 rudu

]
, the density process for changing from Q to QT+� is Lt = p(t,T+�)

p(0,T+�)bt
.

We can thus write

ν̄t,T = ET+�
{

1
p̄(T,T+�) | Ft

}
= L−1

t E Q
{

LT+�
p̄(T,T+�) | Ft

}

= 1
p(t,T+�) E Q

{
exp[−

T∫
t

rudu] p(T,T+�)
p̄(T,T+�) | Ft

} (30)

Recalling the expression for p(T, T +�)/ p̄(T, T +�) (see (21)) this becomes

ν̄t,T = 1

p(t, T +�) E Q
{

e
−

T∫
t

ru du
· exp

[
− Ã(T, T +�)− κ B̃1�1

T + B̄3(T, T +�)�3
T

]
| Ft

}

= 1

p(t, T +�) exp
[
− Ã(T, T +�)

]
E Q

{
eB̄3(T,T+�)�3

T | Ft

}
(31)

· E Q

⎧⎪⎨
⎪⎩e
−

T∫
t
(−�1

u+�2
u )du

e−κ B̃1�1
T | Ft

⎫⎪⎬
⎪⎭

To proceed, consider the process Ft given by the last factor in (31), namely

Ft := E Q

⎧⎨
⎩e
−

T∫
t
(−�1

u+�2
u )du

e−κ B̃1�1
T | Ft

⎫⎬
⎭ (32)

Due to the affine dynamics of � i
t , i = 1, 2, and the independence of �1

t and �2
t ,

we may write

Ft := E Q

⎧⎨
⎩e

T∫
t
�1

u du
e−κ B̃1�1

T | Ft

⎫⎬
⎭ E Q

⎧⎨
⎩e
−

T∫
t
�2

u du | Ft

⎫⎬
⎭

= exp
[
α1(t, T )− β1(t, T )�1

t

]
exp

[
α2(t, T )− β2(t, T )�2

t

]
(33)

where the coefficients satisfy
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β1
t − b1β1 − 1 = 0, β1(T, T ) = κ B̃1

β2
t − b2β2 − (σ 2)2

2 (β2)2 + 1 = 0, β2(T, T ) = 0

α1
t = − (σ

1)2

2 (β1)2 + a1β1, α1(T, T ) = 0

α2
t = a2β2, α2(T, T ) = 0

(34)

Recalling also (12)–(14), the solutions of the system (34) can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1(t, T ) = 1
b1

[
(b1κ B̃1 + 1)e−b1(T−t) − 1

]
= B1(t, T )+ κ B̃1e−b1(T−t)

β2(t, T ) = B2(t, T )

α1(t, T ) = (σ 1)2

2

T∫
t
(β1(u, T ))2du − a1

T∫
t
β1(u, T )du

= (σ 1)2

2

T∫
t
(B1(u, T ))2du − a1

T∫
t

B1(u, T )du

+ (σ 1)2

2 (κ B̃1)2
T∫
t

e−2b1(T−u)du

+ κ B̃1(σ 1)2
T∫
t

B1(u, T )e−b1(T−u)du − a1κ B̃1
T∫
t

e−b1(T−u)du

α2(t, T ) = −a2
T∫
t

B2(u, T )du

(35)
Consequently

Ft = exp
[
(σ 1)2

2

T∫
t
(B1(u, T ))2du − a1

T∫
t

B1(u, T )du

−a2
T∫
t

B2(u, T )du − B1(t, T )�1
t − B2(t, T )�2

t

]

· exp
[
(σ 1)2

2 (κ B̃1)2
T∫
t

e−2b1(T−u)du − a1κ B̃1
T∫
t

e−b1(T−u)du

−κ B̃1e−b1(T−t)�1
t

]

· exp

[
κ B̃1(σ 1)2

T∫
t

B1(u, T )e−b1(T−u)du

]

= p(t, T ) · exp
[
(σ 1)2

2 (κ B̃1)2
T∫
t

e−2b1(T−u)du − a1κ B̃1
T∫
t

e−b1(T−u)du

−κ B̃1e−b1(T−t)�1
t

]

· exp

[
κ B̃1(σ 1)2

T∫
t

B1(u, T )e−b1(T−u)du

]

(36)
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On the other hand, recalling (21), one obtains

E Q
{

p(T,T+�)
p̄(T,T+�) | Ft

}

= e− Ã(T,T+�)E Q
{

eB̄3(T,T+�)�3
T | Ft

}
E Q

{
e−κ B̃1�1

T | Ft

} (37)

where, due to the affine dynamics of �1
t , we may write

E Q
{

e−κ B̃1�1
T | Ft

}
= exp

[
ᾱ(t, T )− β̄(t, T )�1

t

]
(38)

with ᾱ(·) and β̄(·) satisfying

{
β̄t − b1β̄ = 0, β̄(T, T ) = κ B̃1

ᾱt = a1β̄ − (σ 1)2

2 (β̄)2, ᾱ(T, T ) = 0
(39)

so that

β̄(t, T ) = κ B̃1e−b1(T−t)

ᾱ(t, T ) = −a1κ B̃1
T∫
t

e−b1(T−u)du + (σ 1)2

2 (κ B̃1)2
T∫
t

e−2b1(T−u)du
(40)

and, consequently,

E Q
{

e−κ B̃1�1
T | Ft

}
= exp

[
−κ B̃1e−b1(T−t)�1

t

]

exp

[
−a1κ B̃1

T∫
t

e−b1(T−u)du + (σ 1)2

2 (κ B̃1)2
T∫
t

e−2b1(T−u)du

]
(41)

Combining (31) with (36) as well as with (37) together with (41), we obtain

ν̄t,T = 1
p(t,T+�) exp

[
− Ã(T, T +�)

]
E Q

{
eB̄3(T,T+�)�3

T | Ft

}
· Ft

= p(t,T )
p(t,T+�) E Q

{
p(T,T+�)
p̄(T,T+�) | Ft

}

· exp

[
κ(σ 1)2 B̃1

T∫
t

B1(u, T )e−b1(T−u)du

]
.

(42)

The result then follows noticing that

B̃1

T∫
t

B1(u, T )e−b1(T−u)du = 1

2(b1)3

(
1− e−b1�

) (
1− e−b1(T−t)

)2
. (43)
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4 Aspects of CAP Pricing

4.1 Preliminary Comments

This part is related to work in progress, but we want nevertheless to present some
ideas on how our results obtained for FRAs (linear derivatives) can be extended to
nonlinear derivatives. To discuss a specific case, we concentrate here on the pricing
of a single Caplet, with strike K , maturity T on the spot LIBOR for the period
[T, T +�]. Using the forward measure QT+�, its price in t < T is then given by

CaplT,�(t) =�p(t, T +�)ET+� {(
L̄(T ; T, T +�)− K

)+ | Ft

}

=p(t, T +�)ET+�
{(

1

p̄(T, T +�) − K̃

)+
| Ft

}
(44)

with K̃ := 1+�K .
As model, we may use the same “ risky” short rate model as for the FRAs that

we may consider as already calibrated (for the standard martingale measure Q). It
may thus suffice to derive just a pricing algorithm that need not also be used for
calibration. The most convenient way to price a Caplet is, as in (44) and as we do it
below, to compute the expectations under the forward measure. Notice however that
expectations with respect to a forward measure can be easily computed by performing
a change to the standard martingale measure (see e.g. (30)), namely the one for which
we may already have calibrated the model. Besides pricing, it may be desirable to
obtain also here an “adjustment factor”.

4.2 A Possible Pricing Methodology

For the pricing, in the forward measure, we may use Fourier transform methods as
in Crépey et al. (2012) and Crépey et al. (2013b) thereby representing the claim as

(
eX − K̄

)+
with X := − log p̄(T, T +�) (45)

We then need only to compute the moment generating function of X , which is a linear
combination of the factors (this computation is feasible thanks to the affine structure)
and use the Fourier transform of f (x) = (

ex − K̄
)+

, which is well-known.
Notice that one could possibly also apply a Gram-Charlier expansion as in Kijima

et al. (2009).
With the Fourier transform method the price in t = 0 of the Caplet can then be

obtained in the form (see Crépey et al. (2013b))
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Capl(0, T, T +�) = p(0, T +�)
2π

∫
K̃ 1−iv−R M̄T+�

X (R + iv)

(R + iv) (R + iv − 1)
dv (46)

where M̄T+�
X (·) is the moment generating function of X under the (T+�)—forward

measure and R is such that M̄T+�
X (R+iv) is finite. This moment generating function

can be computed for each of the various forward measures in terms of the Q—
characteristics of the factors, analogously to the computations in Sect. 3.4 (see, in
particular, (30)). From these computations one can also see that the Radon-Nikodym-
derivative to change from Q to QT+� can in fact be expressed in explicit form
and it preserves the affine structure, see Corollary 10.2 in Filipović (2009) (For a
recent account on conditions for an absolutely continuous measure transformation
to preserve the affine structure see Fontana and Montes (2014)).

If MT+�
X (z) is the moment generating function of X with p(T, T + �) instead

of p̄(T, T +�), then

M̄T+�
X (z) = MT+�

X (z)A(z; θ, κ,�1
0 , �

2
0 , �

3
0 ) (47)

where A(z; θ, κ,�1
0 , �

2
0 , �

3
0 ) = ET+�

{(
MT+�

X (z)
)−1

ez X
}
. Now, from the

expression for p(t, T ) in (12) we obtain

MT+�
X (z) = ET+� {

ezX
}
= ET+� {

e−z log p(T,T+�)}

= ET+� {
exp

[
−z A(T, T +�)+ zB1(T, T +�)�1

T + zB2(T, T +�)�2
T

]}
(48)

On the other hand, from the expression for p̄(t, T ) in (15) (see also the variant in
(20), where the parameter κ appears explicitly) we obtain

A(z; θ, κ,�1
0 , �

2
0 , �

3
0 ) =

(
MT+�

X (z)
)−1

ET+� {
e−z log p̄(T,T+�)}

= ET+� {
exp

[−z Ā(·)+ z B̄1(·)�1
T + z B̄2(·)�2

T + z B̄3(·)�3
T

]} (49)

where (·) stands for (T, T+�). Given the affine nature of the factors, both expressions
in (48) and (49) can be explicitly computed as a function of the parameters of the
model and the initial values �1

0 , �
2
0 , �

3
0 of the factors, as expressed by the symbol

A(z; θ, κ,�1
0 , �

2
0 , �

3
0 ). We may now consider A(z; θ, κ,�1

0 , �
2
0 , �

3
0 ) as adjustment

factor for this nonlinear example given by the Caplets. It is not as explicit as the
adjustment factor for the FRAs in (23) and (25) and we are presently working on
obtaining a more explicit form also in this case.
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Pricing an American Call Under Stochastic
Volatility and Interest Rates

Boda Kang and Gunter H. Meyer

1 Introduction

The option pricing goes back to the seminal paper of Black and Scholes (1973)
which is pricing options under geometric Brownian motion (GBM) process. Since
then a vast amount of literature discussed the problem of pricing both European and
American options under GBM process.

However, derivative securities are commonly written on underlying assets with
return dynamics that are not sufficiently well described by the GBM process with
constant volatility. There have been numerous efforts to develop alternative asset
return models that are capable of capturing the leptokurtic features found in financial
market data, and subsequently to use these models to develop option prices that better
reflect the volatility smiles and skews found in market traded options. One of the
classical ways to develop option pricing models that are capable of generating such
behaviour is to allow the volatility to evolve stochastically, for instance according to
the square-root process introduced by Heston (1993) for which there are a number of
papers discussing the American option pricing problem using either the method of
lines and finite difference methods by Chiarella et al. (2009) or the integral transform
approach by Chiarella et al. (2010) and Adolfsson et al. (2013).

Since we consider the pricing of American-type options, the early exercise pre-
mium of the option depends on the cost of carry determined by interest rates. Conse-
quently, the volatility of interest rates does affect the decision to exercise this option
at any given point in time. Hence the American options of the type that we consider
in this chapter are sensitive not only to the volatility of the underlying but also to the
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risk-free interest rate, and this is the motivation for considering American options
under stochastic volatility and stochastic interest rates.

To the best of our knowledge, some authors discuss the American option pricing
problem under these dynamics. Boyarchenko and Levendorski (2013) formulate the
option pricing problem by a PDE approach and they calculate the option prices
with the help of an iteration method based on Wiener-Hopf factorisation. Medvedev
and Scaillet (2010) introduce a new analytical approach. After using an explicit and
intuitive proxy for the exercise rule, they derive tractable pricing formulae using a
short-maturity asymptotic expansion. Depending on model parameters, this method
can accurately price options with time-to-maturity up to several years. Chiarella and
Kang (2013) discuss the problem of pricing American compound option under this
dynamics using the sparse grid approach in which case it is hard to obtain a nice and
smooth early exercise boundary.

All of the above papers on price American put options instead of call options.
However, with non-zero dividend yield and a stochastic interest rate it is more chal-
lenging to compute accurate early exercise boundaries for a call because the contin-
uation region can become large when the interest rate moves further away from the
dividend yield.

Also, the way of handling the boundary conditions in Boyarchenko and Leven-
droski (2013), especially when v = 0 or/and r = 0, seems not appropriate from the
point of view of either finance or mathematics. In this chapter, we provide a complete
discussion of the proper boundary conditions which should be imposed on the partial
differential equation the option price satisfies.

The remainder of the chapter is structured as follows. Section 2 outlines the model
and proper boundary conditions for American option prices when the underlying asset
follows stochastic volatility and stochastic interest rate dynamics. Section 3 describes
a method of lines approach to find the prices, free boundaries and hedge ratios of
the American call option. In Sect. 4 we outline the basic idea of the sparse grid
approach and implement a combination technique on a sparse grid to find the price
profile of the American option. A number of numerical examples that demonstrate
the computational advantages of the method of lines approach are provided in Sect. 5
before we draw some conclusions in Sect. 6.

2 Problem Statement-American Call Option with Stochastic
Volatility and Stochastic Interest Rates

2.1 Model Description

Let C(S, v, r, t) denote the price of an American call option written on a stock of
price S at time t with maturity time T and strike price K . The variables v and r denote
the variance of the stock price return and the risk-free rate at time t , respectively.
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Analogous to the setting in Heston (1993) with addition of a stochastic interest
rate of the Cox-Ingersoll-Ross (CIR) type, the dynamics for the share price S under
the risk neutral measure is governed by the stochastic differential equation (SDE)
system1

d S = (r − q)Sdt +√vSd Z1, (1)

dv = κv(θv − v)dt + σv
√

vd Z2, (2)

dr = κr (θr − r)dt + σr
√

rd Z3, (3)

where Z1, Z2 and Z3 are standard Wiener processes and E(d Zi d Z j ) = ρi j dt, i =
1, 2; j = i + 1, . . . , 3 with E being the expectation operator under the risk neutral
measure. In Eq. (1), r is the risk-free rate of interest and q is the continuously com-
pounded dividend yield. In Eq. (2) the parameter σv is the so-called vol-of-vol (in
fact, σ 2

v v is the variance of the variance process v). The parameters κv and θv are,
respectively, the rate of mean reversion and long run variance of the process for the
variance v. In Eq. (3) the parameter σr is the volatility of the interest rate process
(in fact, σ 2

r r is the variance of the interest rate process r ). The parameters κr and θr

are, respectively, the rate of mean reversion and long run interest rate of the process
for the interest rate r . These parameters are under the risk-neutral measure and are
related to the corresponding quantities under the physical measure (that we denote
as κPv , θ

P
v , κ

P
r and θPr ) by two parameters that appear in the market prices of both

volatility risk and interest rate risk.2 We are also able to write down the above system
(1)−(3) using independent Wiener processes W1,W2 and W3 so that,

⎛
⎝ d Z1

d Z2
d Z3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

ρ12

√
1− ρ2

12 0

ρ13
ρ23−ρ13ρ12√

1−ρ2
12

√√√√1− ρ2
13 −

(
ρ23−ρ13ρ12√

1−ρ2
12

)2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎝ dW1

dW2
dW3

⎞
⎠ .

The price of an American call option under stochastic volatility and interest rate
at time t , C(S, v, r, t), can be formulated as the solution to a free boundary PDE
problem. We need to solve the PDE for the value of the call option C(S, v, r, t) given
as

1 Of course, since we are using a numerical technique we could in fact use more general processes
for S and v. The choice of the Heston processes is driven partly by the fact that this has become a
very traditional stochastic volatility model and partly because the transform methods do not easily
handle the more general variance processes.
2 In fact, if it is assumed that the market prices of risk associated with the uncertainty driving the
variance process and the interest rate process have the form λv

√
v and λr

√
r , respectively, where λv

is a constant (this was the assumption in Heston (1993)) and λr is a constant. In addition κPv , θ
P
v and

κPr , θ
P
r are the corresponding parameters under the physical measure. Then κv = κPv + λvσv, θv =

κP
v θ

P
v

κP
v +λvσv

; κr = κPr + λrσr , θr = κP
r θ

P
r

κP
r +λrσr

.
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KC − rC + ∂C

∂t
= 0, (4)

on the interval 0 ≤ t ≤ T and subject to the terminal condition

C(S, v, r, T ) = (S − K )+, (5)

the free (early exercise) boundary condition

C(d(v, r, t), v, r, t) = d(v, r, t)− K , (6)

and the smooth-pasting conditions

lim
S→d(v,r,t)

∂C

∂S
= 1, lim

S→d(v,r,t)

∂C

∂v
= 0, lim

S→d(v,r,t)

∂C

∂r
= 0, (7)

where S = d(v, r, t) is the early exercise boundary for the call option at time t ,
variance v and interest rate r . The set {S : S > d(v, r, t)} denotes the early exercise
region at time t where the call assumes its intrinsic value

C(S, v, r, t) = S − K .

In Eq. (4) the Kolmogorov operator K is given as

K = vS2

2

∂2

∂S2 +
σ 2

v v

2

∂2

∂v2 +
σ 2

r r

2

∂2

∂r2 + ρ12σvvS
∂2

∂S∂v
+ ρ13σr

√
rvS

∂2

∂S∂r

+ ρ23σvσr
√

vr
∂2

∂v∂r
+ (κr (θr − r)− λr r)

∂

∂r
+ (r − q) S

∂

∂S

+ (κv(θv − v)− λvv)
∂

∂v
, (8)

where λv and λr are the constants appearing in the equation for the market prices of
volatility risk and interest rate risk, which as stated in Footnote 2 are assumed to be
of the form λv

√
v and λr

√
r , respectively.

2.2 Boundary Conditions

Equation (4) is defined on 0 < S < d(v, r, t), 0 < v < ∞, 0 < r < ∞ and
0 < t < T but will be solved numerically on a bounded domain. We shall restrict
the “spatial” variables (S, v, r) to the set

D = {(S, v, r) : 0 < S < Smax, 0 < v < vmax, 0 < r < rmax}.
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In order to have a well-defined problem we need to impose boundary conditions on
Eq. (4) at the boundary ∂D of D.

We shall assume that Smax is chosen so large that d(v, r, t) < Smax,∀t ∈ (0, T ]
so that

C(Smax, v, r, t) = Smax − K . (9)

At S = 0, v = 0 and r = 0 the parabolic Eq. (4) is degenerate which limits what
boundary conditions can be set. Whether boundary conditions like Dirichlet data can
be imposed, or the differential equation has to hold at points of degeneracy on ∂D
is connected with the algebraic sign of the Fichera function for Eq. (4). A detailed
exposition of the general theory may be found in Oleinik and Radkevic (1973), and
its application to some pricing equations of finance is given in Meyer (2014). We
shall adapt the exposition of Meyer (2014) for the American call considered here.

To simplify the arguments we consider Eq. (4) at a fixed t and think of ∂C
∂t as a

known source term f (S, v, r). Then the theory of Oleinik and Radkevic (1973) has
to apply to the time independent (elliptic) equation

K C − rC = f (S, v, r). (10)

The matrix characterising Eq. (10) in (S, v, r)-space is

A = 1

2

⎛
⎝ vS2 ρ12σvvS ρ13σr

√
rvS

ρ12σvvS σ 2
v vS ρ23σvσr

√
vr

ρ13σr
√

rvS ρ23σvσr
√

vr σ 2
r r

⎞
⎠

At S = 0 the inward normal vector is n = (1, 0, 0)T . At v = 0 we have n = (0, 1, 0)T

and on r = 0 we have n = (0, 0, 1)T . We see that

〈An, n〉 = 0

on these three faces of ∂D, where 〈x, y〉 denotes the dot product. According to
Oleinik and Radkevic (1973) the Fichera theory applies. The Fichera function for
Eq. (10) is

h(S, v, r) =
{
(r − q)S − 1

2

[
2vS + ρ12σvS + ρ13σr

1

2

√
v

r
S

]}
n1

+
{
κvθv − (κv + λv)v− 1

2

[
ρ12σvv+ σ 2

v + ρ23σvσr
1

2

√
v

r

]}
n2

+
{
κrθr − (κr + λr )r − 1

2

[
ρ13σr

√
rv+ σ 2

r + ρ23σvσr
1

2

√
r

v

]}
n3,
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hence

h(0, v, r) = 0, h(S, 0, r) = κvθv − σ
2
v

2
, h(S, v, 0) = κrθr − σ

2
r

2
.

(i) The boundary condition at S = 0. According to Oleinik and Radkevic (1973) the
pricing Eq. (4) should hold at S = 0. But if the spot price reaches 0 then according
to Eq. (1) it will stay at 0 and the call will be worthless so that

C(0, v, r, t) = 0 (11)

which is a solution of Eq. (4) when S = 0 provided that any additional bound-
ary conditions imposed on Eq. (4) are consistent with Eq. (11). Looking ahead, the
commonly chosen boundary condition

Cv(S, vmax, r, t) = 0 (12)

is consistent with Eq. (11) but, as simulations with the Heston model reported in
Meyer (2014) indicate, may not be optimal compared to the Venttsel boundary con-
ditions discussed below.
(ii) The boundary condition at v = 0 and r = 0. At v = 0 the pricing Eq. (4) reduces
to

1

2
σ 2

r r
∂2C

∂r2 +(r−q)S
∂C

∂S
+κvθv

∂C

∂v
+(κr (θr−r)−λr r)

∂C

∂r
−rC+ ∂C

∂t
= 0. (13)

If h(S, 0, r) ≥ 0 then any solution of Eq. (4) with bounded derivatives would have
to satisfy Eq. (13) at v = 0. However, a calibration of the Heston model may lead to
parameters yielding h(S, 0, r) ≥ 0 or h(S, 0, r) < 0 (see, e.g. Kjellin and Lovgren
(2006)) and there does not seem to be any reason that the call price should change
discontinuously with respect to κv, θv and σv as the Fichera function changes its
algebraic sign. If one could impose Eq. (13) also when h(S, 0, r) < 0 one would
reasonably expect the solution of Eq. (4) to be continuous with respect to the financial
parameters as they cross the contour h(S, 0, r, κv, θv, σv) = 0 for fixed S and r .
The mathematical theory for well-posed parabolic problems cited in Meyer (2014),
although not applicable in full technical detail, suggests that this is possible. Since
the inward normal at v = 0 is n = (0, 1, 0)T we see that the convective terms of
Eq. (13) satisfy

〈((r − q)S, κvθv, κr (θr − r)− λr ), n >= κvθv〉0.

This condition implies that Eq. (13) is an admissible (Venttsel) boundary condition
for a non-degenerate diffusion equation regardless of the sign of the Fichera function.
We shall assume that the problem remains well-posed when Eq. (13) is imposed on
the degenerate diffusion Eq. (4) at v = 0.
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An analogous argument shows that the restriction of Eq. (4) to r = 0, i.e.

vS2

2

∂2C

∂S2 +
σ 2

v v

2

∂2C

∂v2 + ρ12σvvS
∂2C

∂S∂v
+ (r − q)S

∂C

∂S

+ (κv(θv − v)− λvv)
∂C

∂v
+ κrθr

∂C

∂r
+ ∂C

∂t
= 0, (14)

likewise is an admissible boundary condition for all v, S and financial parameters.
The numerical treatment of the boundary conditions (13) and (14) in an iterative

solution of the American call with finite differences is based on a very simple but
apparently effective numerical approximation which entirely avoids solving these
equations.

Suppose we choose uniform grids

0 = v0 < v1 < · · · < vM = vmax with �v = vm+1 − vm;

and

0 = r0 < r1 < · · · < rN = rmax with �r = rn+1 − rn;

and denote by Ck the numerical solution of Eq. (4) obtained in iteration k, We do not
compute a solution of Eq. (13) at v = 0 and of Eq. (14) at r = 0 in iteration k + 1.
Instead we impose the quadratic extrapolant of Ck through v1, v2 and v3 as Dirichlet
data at v = 0. Similarly, we impose the quadratic extrapolant through r1, r2 and r3
as data at r = 0. For a smooth function f (x) the quadratic extrapolant

fe(0) = 3 f (�x)− 3 f (2�x)+ f (3�x)

satisfies

fe(0)− f (0) = O(�x3)

and a Taylor expansion shows that

f (2�x)− fe(0)

2�x
= f ′(�x)+ O(�x2),

f (2�x)− 2 f (�x)+ fe(0)

�x2

= f ′′(2�x)+ O(�x2).

It follows that a finite difference approximation of Eq. (4) at v1 and r1 with extrapo-
lated values at v = 0 and r = 0 converges to a consistent approximation of Eqs. (13)
and (14) as v→ 0 and r → 0.
(iii) The boundary condition at v = vmax. On the computational boundary v = vmax
the Eq. (4) is not degenerate and the general theory cited in Meyer (2014) suggests
that



298 B. Kang and G. H. Meyer

vS2

2

∂2C

∂S2 +
σ 2

r r

2

∂2C

∂r2 + ρ13σr
√

rvmax S
∂2C

∂S∂r
+ (r − q)S

∂C

∂S
+ (κv(θv − vmax)− λvvmax)

∂C

∂v

+ (κr (θr − r)− λr r)
∂C

∂r
− rC + ∂C

∂t
= 0 (15)

is an admissible (Venttsel) boundary condition for C(S, vmax, r, t) provided

κv(θv − vmax)− λvvmax ≤ 0.

Equation (15) is defined for 0 < S < d(vmax, r, t), 0 < r < rmax, t ∈ (0, T ] and is
subject to the initial condition

C(S, vmax, r, T ) = (S − K )+

and the boundary conditions

C(0, vmax, r, t) = 0, C(d(vmax, r, t), vmax, r, t) = d(vmax, r, t)− K ,

CS(d(vmax, r, t), vmax, r, t) = 1.

At r = 0 we use the extrapolated solution described above. At r = rmax the pricing
Eq. (15) without the CSr and Crr terms provides an admissible Venttsel boundary
condition for Eq. (15).
(iv) The boundary condition at r = rmax. At r = rmax the (Venttsel) boundary
condition

vS2

2

∂2C

∂S2 +
σ 2

v v

2

∂2C

∂v2 + ρ12σvvS
∂2C

∂S∂v
+ (r − q)S

∂C

∂S
+ (κv(θv − v)− λvv)

∂C

∂v

+ (κr (θr − rmax)− λr rmax)
∂C

∂r
− rC + ∂C

∂t
= 0, (16)

for 0 < S < d(v, rmax, t), 0 < vmax < v is imposed on C(S, v, rmax, t).
It is consistent with the well-posedness of the call (4) on the finite computational

domain provided that

κr (θr − rmax)− λr rmax < 0.

C(S, v, rmax, t) assumes its intrinsic value at t = T , the value matching and smooth
pasting condition on the early exercise boundary d(v, rmax, t).

At S = 0 we set again C(0, v, rmax, t) = 0 while at vmax = v we impose Eq. (16)
without the ∂2C

∂S∂v and ∂2C
∂v2 terms. We also note that at (v, r) = (vmax, rmax)we impose

Equation (4) but retain only the ∂2C
∂S2 second derivative term.

In summary, we have for Eq. (4) a complete set of boundary conditions which
allows us to compute C(S, v, r, t) and d(v, r, t) for v ∈ [v1, vmax] and r ∈ [r1, rmax].
The boundary conditions are easy to implement simply by zeroing out terms in the
full pricing Eq. (4) depending on {vm, rn}.
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3 Method of Lines Implementation

In this section we discuss the implementation of the Method of Lines approach to
price the American call option under stochastic volatility and interest rates by solving
the PDE Eq. (4) subject to boundary conditions discussed above. The call was chosen
as the more difficult pricing problem compared to a put because the early exercise
boundary at expiration behaves like max{K , Kr/q} and can become large for large
rmax and small q. The application of the method of lines to pricing problems in
finance is discussed in detail in a forthcoming monograph (see Meyer (2014)).

The key idea behind the method of lines is to approximate the PDE with a system of
ordinary differential equations (ODEs), whose solution is more readily obtained using
numerical techniques. When volatility is constant, the system of ODEs is developed
by discretising the time derivative. For the PDE (4), we must also discretise the
derivative terms involving the variance, v and those involving the interest rate r , and
to cater for the fact that the option price and free surface also depend on both the
variance v and the interest rate r .

We begin by setting vm = m�v, rn = n�r , where m = 0, 1, 2, ... ,M, n =
0, 1, 2, . . . , N . Typically, we will set the maximum variance to be vM = 50 % and
the maximum interest rate to be rN = 25 % as well. Furthermore, we discretise the
time to expiry according to τl = l�τ , where τL = T . We denote the option price
along the variance line vm , the interet rate line rn and time line τl by C(S, vm, rn, τl) ≡
Cl

m,n(S), and set

V (S, vm, rn, τl) = ∂C(S, vm, rn, τl)

∂S
≡ V l

m,n(S), (17)

which is of course the option delta at the grid point.
We now select finite difference approximations for the derivative terms with

respect to v and r . For the second order term, at the grid point (S, vm, rn, τl) we
use the standard central difference scheme

∂2C

∂v2 =
Cl

m+1,n − 2Cl
m,n + Cl

m−1,n

(�v)2
,
∂2C

∂r2 =
Cl

m,n+1 − 2Cl
m,n + Cl

m,n−1

(�r)2
, (18)

and for the cross-derivative term at the grid point (S, vm, rn, τl) we use the central
difference approximation

∂2C

∂S∂v
= V l

m+1,n − V l
m−1,n

2�v
,
∂2C

∂S∂r
= V l

m,n+1 − V l
m,n−1

2�r
, (19)

∂2C

∂v∂r
= Cl

m+1,n+1 − Cl
m+1,n−1 − Cl

m−1,n+1 + Cl
m−1,n−1

4�v�r
. (20)



300 B. Kang and G. H. Meyer

Numerical simulations with MOL suggest that upwinding of first order derivatives is
not necessary. The results presented here were obtained with the central difference
quotients

∂C

∂v
= Cl

m+1,n − Cl
m−1,n

2�v
,
∂C

∂r
= Cl

m,n+1 − Cl
m,n−1

2�r
, (21)

while backward quotients are used at vmax and rmax.
Next we must select a discretisation for the time derivative. Initially we use a

standard backward difference scheme, given at the grid point (S, vm, rn, τl) by

∂C

∂τ
= Cl

m,n − Cl−1
m,n

�τ
. (22)

This approximation is only first order accurate with respect to time. For the case of
the standard American call option, Meyer and van der Hoek (1997) demonstrate that
the accuracy of the method of lines increases considerably by using a second order
approximation for the time derivative, specifically

∂C

∂τ
= 3

2

Cl
m,n − Cl−1

m,n

�τ
− 1

2

Cl−1
m,n − Cl−2

m,n

�τ
. (23)

Thus we initiate the method of lines solution using Eq. (22) for the first several time
steps, and then switching to Eq. (23) for all subsequent time steps.

Applying Eqs. (18)–(21) and the time discretisation to the PDE (4), we must now
solve a system of second order ODEs at each time step, variance grid point and
interest rate point. For the first three time steps, the ODE at the grid point v = vm ,
r = rn and τ = τl is

vm S2

2

d2Cl
m,n

dS2 + ρ12σvvm S
V l

m+1,n − V l
m−1,n

2�v
+ σ

2
v vm

2

Cl
m+1,n − 2Cl

m,n + Cn
m−1,n

(�v)2

+ (αv − βvvm)
Cl

m+1,n − Cl
m−1,n

2�v
+ ρ13σr

√
vmrn S

V l
m,n+1 − V l

m,n−1

2�r

+ σ
2
r rn

2

Cl
m,n+1 − 2Cl

m,n + Cn
m,n−1

(�r)2
+ (αr − βr rn)

Cl
m,n+1 − Cl

m,n−1

2�r

+ ρ23σvσr
√

vmrn
Cl

m+1,n+1 − Cl
m+1,n−1 − Cl

m−1,n+1 + Cl
m−1,n−1

4�v�r

+ (r − q)S
dCl

m,n

dS
− rCl

m,n −
Cl

m,n − Cl−1
m,n

�τ
= 0,

(24)

and for all subsequent time steps the ODE is
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vm S2

2

d2Cl
m,n

dS2 + ρ12σvvm S
V l

m+1,n − V l
m−1,n

2�v
+ σ

2
v vm

2

Cl
m+1,n − 2Cl

m,n + Cn
m−1,n

(�v)2

+ (αv − βvvm)
Cl

m+1,n − Cl
m−1,n

2�v
+ ρ13σr

√
vmrn S

V l
m,n+1 − V l

m,n−1

2�r

+ σ
2
r rn

2

Cl
m,n+1 − 2Cl

m,n + Cn
m,n−1

(�r)2
+ (αr − βr rn)

Cl
m,n+1 − Cl

m,n−1

2�r

+ ρ23σvσr
√

vmrn
Cl

m+1,n+1 − Cl
m+1,n−1 − Cl

m−1,n+1 + Cl
m−1,n−1

4�v�r

+ (r − q)S
dCl

m,n

dS
− rCl

m,n −
3

2

Cl
m,n − Cl−1

m,n

�τ
+ 1

2

Cl−1
m,n − Cl−2

m,n

�τ
= 0.

(25)

Equations (24) and (25) are solved for m = 1, . . . ,M, n = 1, . . . , N subject to

C1
m,n(0) = 0, C1

m,n(d
1
m,n) = d1

m,n − K ,
dC1

m,n

d S
(d1

m,n) = 1.

For m = 0 and n = 0 we have extrapolated values for C1
0,n and C1

m,0 and for m = M
and n = N selected terms in Eqs. (24) and (25) are dropped so that the boundary
pricing equations of Sect. 2.2 are obtained. Finally, to avoid the degeneracy of the
equations at S = 0, they are regularised with the substitution

vm S2

2
← max

{
10−5,

vm S2

2

}
.

(Alternatively, one could solve them on [S0, Smax] for some S0 > 0.)
The system (24) and (25) is solved with a line Gauss Seidel iteration. Starting with

an initial guess we solve in iteration k for each n the equations for m = 1, . . . ,M ,
using the latest available estimates for Cl

m+1,n , Cl
m−1,n , Cl

m,n+1, Cl
m,n−1, V l

m+1,n ,

V l
m−1,n , V l

m,n+1 and V l
m,n−1. The initial estimates for Cl

m,n and V l
m,n are simply Cl−1

m,n

and V l−1
m,n . Otherwise we use the latest estimates for Cl

m,n and V l
m,n found during

the current iteration through the variance lines. We iterate until the price profile
converges to a desired level of accuracy. We then proceed to the next time step.

The generic first order form for Eqs. (24) and (25) is the system of two scalar
equations

dCl
m,n

d S
= V l

m,n, (26)

dV l
m,n

d S
= Am,n(S)C

l
m,n + Bm,n(S)V

l
m,n + Pl

m,n(S), (27)
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where Pl
m,n(S) is a function of Cl

m+1,n , Cl
m−1,n ,Cl

m,n+1, Cl
m,n−1, V l

m+1,n , V l
m−1,n ,

V l
m,n+1, V l

m,n−1, Cl−1
m,n , Cl−2

m,n . We solve Eqs. (26)–(27) using the Riccati transform.3

The Riccati transformation is given by

Cl
m,n(S) = Rm,n(S)V

l
m,n(S)+W l

m,n(S), (28)

where R and W are solutions to the initial value problems

d Rm,n

d S
= 1− Bm,n(S)Rm,n(S)− Am,n(S)(Rm,n(S))

2, Rm,n(0) = 0, (29)

dW l
m,n

d S
= −Am,n(S)Rm,n(S)W

l
m,n − Rm,n(S)P

l
m,n(S), W l

m,n(0) = 0, (30)

and V is the solution to

dV l
m,n

d S
= Am,n(S)(R(S)V +W l

m,n(S))+ Bm,n(S)V

+ Pl
m,n(S), V l

m,n(b
l
m,n) = 1, (31)

where we denote the free boundary at grid point (vm, rn, τl) by d(vm, rn, τl) = dl
m,n .4

Since Rm,n is independent of τ , we begin by solving Eq. (29) and storing the solution.
Next we solve Eq. (30) for increasing values of S, ranging from 0 < S < Smax, where
we select Smax sufficiently large such that Smax > dl

m,n will be guaranteed. We then
step backward in S using the generated values of Rm,n and W l

m,n until we encounter
the value S∗ such that5

S∗ − K = Rm,n(S
∗)+W l

m,n(S
∗), (32)

and thus S∗ is the value of the free boundary at grid point (vm, rn, τl).6 Once dl
m,n has

been determined we then solve Eq. (31) starting at S = dl
m,n and sweeping backward

to S = 0. Finally we use the calculated values of Rm,n,W l
m,n and V l

m,n in Eq. (28)
to determine the option price at each grid point along the variance lines at time to
maturity τl .

An alternative way of solving the second order scalar equation (24) or (25) for
fixed (m, n) is with a finite difference method on a discrete grid {Si }. The resulting

3 The Riccati transform basically replaces a given differential system (here Eqs. (26) and (27)) with
an equivalent set of uncoupled equations of lower dimension (here Eqs. (29), (30) and (31) below).
4 All ODEs have been solved by use of the implicit trapezoidal rule, discussed for example by
Shampine (1994).
5 We test Eq. (32) at each grid point and find the grid points at which S− K − Rm,n(S)−W l

m,n(S)
changes sign. We then use Newton’s method to search for the value of S∗ by fitting a cubic spline
through four points around of this point.
6 We remind the reader that at S∗ the first of the free boundary conditions (7) becomes V l

m,n(S
∗) = 1.
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linear algebraic equation involves a tridiagonal matrix which can quickly be solved
with an implementation of Gaussian elimination known as the Thomas algorithm.
It is known that the Thomas algorithm converges to the Riccati transformation as
maxi (Si+1 − Si )→ 0.

Loosely speaking, the Riccati transformation is the closure of Gaussian elimina-
tion as �S → 0 in the finite difference approximation of Eq. (24). Conversely, the
numerical solution of the equations of the Riccati transformation corresponds to a
finite difference solution for Eq. (24). Solving the free boundary problem for Eq. (24)
or (25) with the trapezoidal rule applied to the Riccati transformation and search-
ing for a root of Eq. (32) is roughly equivalent to the Brennan Schwartz method for
Eq. (24) (for more details see Meyer (2014)).

4 Sparse Grid Implementation

In order to tackle the computationally demanding task of solving PDEs (4)−(6) with
free boundary features, we can also apply the sparse grid approach that turns out to
be quite fast and accurate. The sparse grid combination technique for solving PDEs
was first introduced by Griebel, Schneider and Zenger (1992) after which Reisinger
(2004) in his PhD thesis, Reisinger and Wittum (2007), Leentvaar and Oosterlee
(2008) and Leentvaar and Oosterlee (2008) discussed the application of this approach
to various option pricing problems. The combination technique requires the solution
of the original equation only on a set of conventional subspaces defined on Cartesian
grids specified in a certain way and a subsequent extrapolation step, but still retains
a certain order convergence.

In fact we can identify three desirable properties of the combined solution. First
of all, in comparison to the standard full grid approach the number of grid points can
be reduced significantly from O(2n·d) to O(2n · nd−1) at refinement level n in the
d- dimensional case, whereas the point-wise accuracy of the approximation to the
solution of the PDE is O(nd−1 · 2−n·p) which is only slightly worse than O(2−n·p).
Here, p includes the order of the underlying discretisation scheme, as well as the
influence of singularities. Furthermore, each of the Cartesian grids setting up the
sparse grid only consists of O(2n) nodes. Thus, the efficient usage of sparse grids
for the computational solution of the PDE greatly reduces storage requirements and
computing time at a moderate cost of accuracy.

Secondly, we have to point out the simplicity of the combination concept: we
have seen that the sparse grid combined solution represents a linear combination
of numerical solutions on Cartesian grids corresponding to the components of a
sparse grid at the same refinement level. Thus, the combination technique allows for
the integration of existing solvers for partial differential equations on traditional full
grids. In contrast to the discretisation on a real sparse grid, which requires hierarchical
data structures and thus specially designed solvers, the combined solution is built on
simple data structures and can be based on any “black box solver”. Only the final
linear combination of these simple solutions has to be newly implemented.
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From the combined solution as a linear combination of traditional full gridbreak
discretisations we can also deduce a further advantage of the combination technique.
Since the O(nd−1) problems solved on the Cartesian grids �l that set up the sparse
grids are independent of one another, these problems can be solved in parallel on
different workstations. Communication has to take place only at the end, where the
summation and the extrapolation by linear combination of the different solutions is
performed.

4.1 The Sparse Grid Combination Technique

We incorporate the techniques and algorithms used in Chiarella et al. (2010) and the
sparse grid approach to solve the linked PDE (4)−(6) with suitable initial, boundary
conditions.

In a general d− dimensional unit cube and the family of grids with grid sizes
h j = 2−l j in direction j , l j ∈ N0, we write the vector of grid sizes as h = 2−l with
l = (l1, . . . , ld) ∈ N

d
0 and denote the solution of the PDE on those grids by ch. The

sparse grid solution at level l is then defined as

cl =
l+d−1∑

k=l

al−k

∑
l1+···+ld=k

ch, (33)

with

ak = (−1)d−1−k
(

d − 1
k

)
, 0 ≤ k ≤ d − 1. (34)

In our case d = 3 hence we consider a truncated 3−dimensional cube � :=
[0, Smax] × [0, vmax] × [0, rmax] and a Cartesian grid with mesh size h j = 2−l j

(corresponding to a level l j ∈ N0) in the directions j = 1, 2, 3. The indices j = 1,
j = 2 and j = 3 represent the directions of the stock price S, the variance v and the
interest rate r respectively.

For a vector h = (h1, h2, h3) we denote by ch the representation of a function on
such a grid with points

xh = (i1 · h1, i2 · h2, i3 · h3), 1 ≤ i j ≤ N j , N j = 1/h j = 2l j , for j = 1, 2, 3.

For a given level l, the above grid consists all possible combinations of (l1, l2, l3)
with 0 ≤ l1, l2, l3 ≤ l. Hence, in total, there are (2l + 1)3 points in the grid. The
number of total points in the full grid increases significantly with the increase of the
level l. It will be quite expensive to solve the two-pass PDE system on the above full
grid. However, with the same level l, the sparse grid, will consist of the following
points:



Pricing an American Call Under Stochastic Volatility 305

0

5

0

0.5
0

0.1

0.2

r

(0  0  3)

S/K
v

0

5

0

0.5
0

0.1

0.2

r

(0  1  2)

S/K
v

0

5

0

0.5
0

0.1

0.2

r

(0  2  1)

S/Kv
0

5

0

0.5
0

0.1

0.2

r

(0  3  0)

S/K
v

0

5

0

0.5
0

0.1

0.2

r

(1  0  2)

S/K
v

0

5

0

0.5
0

0.1

0.2

r

(1  1  1)

S/K
v

0

5

0

0.5
0

0.1

0.2

r

(1  2  0)

S/K
v

0

5

0

0.5
0

0.1

0.2

r

(2  0  1)

S/K
v

0

5

0

0.5
0

0.1

0.2

r

(2  1  0)

S/K
v

0

5

0

0.5
0

0.1

0.2

r

(3  0  0)

S/K
v

Fig. 1 A sparse grid hierarchy of level 3 with respect to each combination. From left to right and
from top to bottom, these are (0, 0, 3), (0, 1, 2), . . . , (2, 1, 0), (3, 0, 0) respectively

xh = (i1 ·h1, i2 ·h2, i3 ·h3), 1 ≤ i j ≤ N j , N j = 1/h j = c j 2
l j , for j = 1, 2, 3,

satisfying l1 + l2 + l3 = l and where c j are some positive constants with the help of
which it is possible to construct a non-equidistant grid.

It is not hard to see that there are

(
l + d − 1

d − 1

)
choices of such combinations of

(l1, l2, l3) such that l1 + l2 + l3 = l. Figures 1, 2 and 3 provide an example of a
standard sparse grid hierarchy with level l = 3, l = 2 and l = 1 with respect to 10, 6
and 3 different combinations corresponding to each level respectively.

Obviously, the above grids share the common property that they are dense in one
direction but sparse in the other directions.

Let ch be the discrete vector of function values at the grid points of the standard
sparse grid. In general, ch is the finite difference solution to the PDE of interest on the
corresponding grid h. The solution can be extended to � by a suitable multi-linear
interpolation operator I 7 in the point wise sense according to

ch(S, v, r, τ ) = I ch,∀(S, v, r) ∈ �.

Next, we define the family C of solutions corresponding to the different sparse
grids (as in Fig. 1 for instance) by C = (C(i))i∈N3 with

C(i) := c2−i ,

7 A thorough error analysis of the multi-linear interpolation operator can be found in Reisinger
(2008) who gives a generic derivation for linear difference schemes through an error correction
technique employing semi-discretisations and obtains error formulae as well.
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Fig. 2 A sparse grid hierarchy of level 2 with respect to each combination. From left to right and
from top to bottom, these are (0, 0, 2), (0, 1, 1), . . . , (1, 1, 0), (2, 0, 0) respectively
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Fig. 3 A sparse grid hierarchy of level 1 with respect to each combination. From left to right, these
are (0, 0, 1), (0, 1, 0), (1, 0, 0) respectively

that is the family of numerical approximations (after proper interpolation) ch on
tensor product grids with hk = 2−ik . For example, the solution on the first grid in
Fig. 1 would be C(0, 0, 3) etc. The combination technique in Reisinger and Wittum
(2007) tells us that the solution cl (l is the level of the sparse grid) of the corresponding
PDE is
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cl =
∑

l1+l2+l3=l

C(l1, l2, l3)− 2 ·
∑

l1+l2+l3=l+1

C(l1, l2, l3)+
∑

l1+l2+l3=l+2

C(l1, l2, l3).

(35)
The above is a special case of Eqs. (33) and (34) when d = 3.

The procedure involves solving the PDE in parallel on each of the sparse grids of
level l, l + 1 and level l + 2 respectively. See Figs. 1, 2 and 3 for l = 1 and d = 3 as
an example. Thus we have

l+2∑
k=l

(
k + d − 1

d − 1

)
=

3∑
k=1

(
k + 2

2

)
= 3+ 6+ 10 = 19

which means that there will be 19 PDE solvers running simultaneously when l = 1.
The theory developed by Reisinger and Wittum (2007) shows that Eq. (35) combines
all solutions together to yield a more accurate solution to the PDE.

The essential principle of the extrapolation is that all lower order error terms
cancel out in the combination formula (35) and only the highest order terms

h2
1 · h2

2 · h2
3 = (2−l1 · 2−l2 · 2−l3)2 = 4−l

remain. Taking advantage of this cancelation mechanism, Eq. (35) is able to produce
quite accurate results fairly quickly. The details of the error analysis can be found
in Reisinger (2004) and Reisinger and Wittum (2007).8 We implement the above
sparse grid combination technique to solve the PDE (4) in order to obtain the desired
call option prices. We solve the PDEs (4)−(6) in each of the subspaces on a parallel
cluster, which makes the process very efficient.

4.2 Finite Difference Method with PSOR

In the implementation, a standard Crank Nicolson finite difference method with the
projected successive over-relaxation (PSOR) method has been applied to each of
the sparse grids in Figs. 1, 2 and 3 to work out the solution of PDEs (4)−(6) on the
grid points, solutions at other non-grid points are obtained by the same multi-linear
interpolation as in Reisinger (2008). The implementation of PSOR is detailed in this
section.

It is convenient to consider the time-to-maturity τ = T − t instead of time t . The
three space variables S, v, r and time-to-maturity τ are discretised according to,

8 The combination method requires, theoretically, smoothness of mixed derivatives of the solution.
This is obviously not the case here due to the non-smooth payoff. However, if the payoff is aligned
with the grid, which is the case in our problem, then good results have been observed for the com-
bination method (see Leentvaar and Oosterlee (2008)). This is probably due to the rapid smoothing
of the payoff in the first few time steps.
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Si = (i − 1) ·�S, i = 1, . . . , N1 + 1; v j = ( j − 1) ·�v, j = 1, . . . , N2 + 1;
(36)

rk = (k − 1) ·�r, k = 1, . . . , N3 + 1; τl = T − l�t, l = 1, . . . , Nτ ,
(37)

with N1, N2, N3 and Nτ are the number of grid points in the direction S, v, r and τ
respectively.

The option prices at the discrete points thus are

Cl
i, j,k = C(Si , v j , rk, τl).

Similar to the discussions in Ekstrom, Lotstedt and Tysk (2009), we use central
differences to approximate the first derivative in S direction and the second derivatives
in S, v, r directions in the PDE but use the forward and backward finite difference
approximations on the boundaries other than the time derivative in Eq. (4).

Since the coefficients of the second order derivative terms go to zero as v→ 0 and
r → 0, we use an upwinding finite difference scheme for the first order derivative
term, such that, at the grid point (Si , v j , rk, τl)we have with αv = κvθv, βv = κv+λv

and αr = κrθr , βr = κr + λr

∂C

∂v
=

⎧⎪⎪⎨
⎪⎪⎩

Cl
i, j+1,k − Cl

i, j,k

�v
if v ≤ αv

βv
,

Cl
i, j,k − Cl

i, j−1,k

�v
if v > αv

βv
.

∂C

∂r
=

⎧⎪⎪⎨
⎪⎪⎩

Cl
i, j,k+1 − Cl

i, j,k

�r
if r ≤ αr

βr
,

Cl
i, j,k − Cl

i, j,k−1

�r
if r > αr

βr
.

(38)

We treat two boundary conditions in the v directions simpler than those imple-
mented in the method of lines. In particular, for large values of v, we set ∂C/∂v = 0
along the variance boundary v = vM and when v is zero, we fit a quadratic poly-
nomial through the option prices at v1, v2 and v3, and then use this to extrapolate
an approximation of the price at v0. The boundary conditions for the interest rates,
when r = rM and r = 0 are handled in a very similar way as those for variance v.
This provides us with a satisfactory estimate of the price along v0 or/and r0 for the
purpose of generating a stable solution for small values of v and r .

We follow Ikonen and Toivanen (2007) to indicate which grid point values we
use to approximate the second order mixed-derivative in order to obtain non posi-
tive off-diagonal weights in the finite difference stencil, which makes the matrix an
M-matrix as much as possible. In fact, to simplify the algorithm and take consider-
ation of the correlations ρi j , in each two-dimensional space, we use a seven-point
stencil and the mixed derivatives when ρ12 ≤ 0 are approximated as
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∂C2

∂S∂v
≈ 1

2

(Cl
i+1, j+1,k − Cl

i, j+1,k − (Cl
i+1, j,k − Cl

i, j,k)

�S�v

+ Cl
i, j,k − Cl

i−1, j,k − (Cl
i, j−1,k − Cl

i−1, j−1,k)

�S�v

)

and when ρ12 > 0 we have

∂C2

∂S∂v
≈ 1

2

(Cl
i, j+1,k − Cl

i−1, j+1,k − (Cl
i, j,k − Cl

i−1, j,k)

�S�v

+ Cl
i+1, j,k − Cl

i, j,k − (Cl
i+1, j−1,k − Cl

i, j−1,k)

�S�v

)
.

The other mixed derivatives ∂2

∂S∂r and ∂2

∂v∂r are handled in a similar way depending
on the sign of the corresponding correlations.

Boundary conditions at the boundaries S = 0 and S = Smax for a call option are

Cl
1, j,k = 0, Cl

N1+1, j,k = Smax − K , ∀ j = 1, . . . , N2 + 1, k = 1, . . . , N3 + 1.

The spatial discretisation above leads to a semi-discrete equation which has the
matrix representation

∂C
∂τ
+ AC = 0 (39)

where A is a block tridiagonal (N1+1)(N2+1)(N3+1)×(N1+1)(N2+1)(N3+1)
matrix and C is a vector of length (N1 + 1)(N2 + 1)(N3 + 1).

Next, we implement a more general θ—scheme which includes the implicit (θ =
1), the Crank-Nicolson (θ = 1

2 ) and the explicit (θ = 0) approaches to discretise the
semi-discrete problem (39) as

(I + θ�τ A)C(l+1) = (I − (1− θ)�τ A)C(l), l = 0, . . . , Nτ − 1, (40)

where Nτ is the number of time steps and I is the identity matrix.
After the discretisation of the underlying PDE with three spatial variables an

approximate price of an American option can be obtained by solving a sequence of
linear complementarity problems (LCPs)

⎧⎨
⎩

BC(l+1) ≥ EC(l), C(l+1) ≥ g,(
BC(l+1) − EC(l)

)T (
C(l+1) − g

)
= 0,

(41)

for l = 0, . . . , Nτ −1. The matrices B and E in Eq. (41) are defined by the left-hand
and right-hand sides of Eq. (40) respectively. The initial value C(0) is given by the
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Table 1 Values of ω for different sparse grid are used for the American call option when l = 6

(l1, l2, l3) ω (l1, l2, l3) ω (l1, l2, l3) ω (l1, l2, l3) ω (l1, l2, l3) ω

(0, 0, 6) 1.6 (0, 1, 5) 1.3 (0, 2, 4) 1.1 (0, 3, 3) 1.1 (0, 4, 2) 1.3
(0, 5, 1) 1.6 (0, 6, 0) 1.8 (1, 0 ,5) 1.3 (1, 1, 4) 1.1 (1, 2, 3) 1.1
(1, 3, 2) 1.1 (1,4,1) 1.3 (1, 5, 0) 1.6 (2, 0, 4) 1.1 (2, 1, 3) 1.1
(2, 2, 2) 1.1 (2, 3, 1) 1.1 (4, 4, 0) 1.3 (3, 0, 3) 1.1 (3, 1, 2) 1.1
(3, 2, 1) 1.1 (3, 3, 0) 1.1 (4, 0, 2) 1.2 (4, 1, 1) 1.2 (4, 2, 0) 1.2
(5, 0, 1) 1.4 (5, 1, 0) 1.4 (6, 0 ,0) 1.7

discrete form g of the payoff function g of the option, so that the i th element of C(0)

is given as

C(0)
i = max(K − Si , 0). (42)

In order to avoid the oscillations that often occur with the CN scheme, we use the
implicit Euler scheme (θ = 1) for the first 3 time steps and then switch to the
CN scheme (θ = 1

2 ) in the rest of the time steps. We implemented a PSOR finite
difference scheme to solve the sequence (41) of LCPs efficiently.

In order to accelerate the convergence of the PSOR, we need to select the over-
relaxation parameter ω in the algorithm (see Sect. 6.2.3 in Kwok (2008). We notice
that we may not choose the same ω when we apply PSOR to different discretised
grids in Figs. 1, 2 and 3. Table 1 in the next section demonstrates how the optimal ω
should be chosen for different grids on a specific numerical example.

5 Numerical Examples

To demonstrate the performance of both the method of lines and the sparse grid
algorithm outlined in Sects. 3 and 4 we implement the methods for a given set of
parameter values. Those parameters are the same as the set of parameters used in
Medvedev and Scaillet (2010) for comparison purpose. The parameter values used
are listed in Table 2.

When implementing the method of lines we take the following case as an example
to show its convergence pattern. We use L = 50 time-steps, M = 50 volatility lines
and N = 50 interest rate lines, with maximum volatility vM = 50 % and maximum
interest rate rN = 25 %. We take a non-uniform grid in S, splitting the domain into
four intervals. Given that the strike price is K = 100, the maximum value for S is
set to 800, with a total of 8,000 grid points (denoted by Spts), distributed between
the four intervals such that there are 500 points for 0 ≤ S ≤ 50, 500 points for
50 ≤ S ≤ 100, there are 2000 points for 100 ≤ S ≤ 200, and finally 5,000 grid
points for 200 ≤ S ≤ 800.
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Table 2 Parameter values used for the American call option

Option parameter Value SV parameter Value SI parameters Value

q 0.06 θv 0.02 θr 0.04
T 0.5 κv 1.5 κr 0.3
K 100 σv 0.15 σr 0.1

λv 0.00 λr 0.00
ρ12 −0.50 ρ13, ρ23 0.5

The stochastic volatility (SV) and stochastic interest rate (SI) parameters are those used in Medvedev
and Scaillet (2010) to facilitate comparisons

Table 3 American call prices computed using the Method of Lines, the sparse grid (SG) with
(c1 = 16, c2 = 8, c3 = 4), PSOR in a fine grid with N1 = 1, 500, N2 = 100, N3 = 100 and
Nτ = 100. Parameter values are given in Table 2, with v0 = 0.04 and r0 = 0.04

Level S Runtime(sec)
l 80 90 100 110 120

1 0.0808 1.2257 5.8304 11.3672 20.1098 2.67
2 0.1265 1.1134 4.3254 11.3350 20.1497 7.72
3 0.1070 1.1128 4.6958 11.3235 20.1246 32.74
4 0.1071 1.1137 4.7455 11.3224 20.1238 170.73
5 0.1073 1.1157 4.7210 11.3246 20.1239 1509.24
6 0.1074 1.1160 4.6712 11.3248 20.1239 5305.76
MOL 0.1073 1.1160 4.6785 11.3248 20.1238 485.00
PSOR 0.1071 1.1151 4.6781 11.2249 20.1234 220824.00
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Fig. 4 Free boundary of American Call when r = 0.04 and r = 0.16

Table 3 shows the American call prices calculated from the Method of Lines,
different levels of the Sparse Grid approach and also PSOR with a pretty fine grid.
It is apparent that both the MOL and SG approach are efficient and accurate, but the
MOL not only produces prices but also early exercise boundaries as shown in Figs. 4,
5 and 6, and hedge ratios.
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Fig. 5 Free boundary of American Call when v = 0.04 and v = 0.36
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Fig. 6 Free boundary of American Call when τ = 0.5

A number of sample early exercise surfaces are provided in Figs. 4, 5 and 6,
generated using the method of lines. The value of the free boundary at expiry is
independent of v and r . The free surface, d(v, r, τ ), is an increasing function of v,
and along a given value of v we observe an early exercise boundary of the form
typically found for American call options. It is worth noting that the free surface
generated by the method of lines is smooth, a feature not often displayed in the free
boundary estimates generated using finite difference methods, such as Ikonen and
Toivanen (2004).

In order to assess how the maximal value of variance vmax and interest rates rmax
have influence on the free boundary of the American call option, especially when
the time to maturity is short, namely τ = 0.1, we plot in Fig. 7 the free bound-
aries s(0.04, r, 0.1) over [0, rmax] for rmax = 0.1, 0.08, 0.05 and s(v, 0.04, 0.1) over
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Fig. 7 The panel on the left-hand side shows the free boundary of American Call when v = 0.04
and τ = 0.1 with different rmax. In particular, rmax = 0.1 for the solid line, rmax = 0.08 for the
short dashes line and rmax = 0.05 for the long dashes line. The panel on the left-hand side shows
the free boundary of American Call when r = 0.04 and τ = 0.1 with different vmax. In particular,
vmax = 0.1 for the solid line, vmax = 0.08 for the short dashes line and vmax = 0.05 for the long
dashes line. The long dash curve coincides to plotting accuracy with the other two for r < 0.05

[0, vmax] for vmax = 0.1, 0.08, 0.05. The influence of vmax and rmax on the MOL
option prices C(S, v, r, t) of Table 3 is quite small but needs to be checked for dif-
ferent v and r . However, the proper vmax and rmax should be chosen if option prices
at other grid points of (v0, r0) need to be calculated.

In Sect. 4.2, we mentioned that the over-relaxation parameter ω is important to
the convergence of the sparse grid approach and it usually depends on the shape of
the grids as well. Table 1 illustrates this dependence in the case when l = 6. It can be
seen from the table that the parameter ω is usually higher for relatively less balanced
grids, such as, (0, 0, 6), (0 ,6, 0) etc., in which the calculation will take more time as
well.

6 Conclusion

We have studied the pricing of American call options by solving the corresponding
PDE using both the method of lines and a sparse grid approach and a benchmark
based on a PSOR approach.

It turns out that application of the method of lines approach is able to provide
fairly accurate and efficient not only prices but also early exercise boundaries and
hedge ratios, such as deltas and gammas for the American call option prices under
Heston with stochastic interest rates. The call prices, in particular the early exercise
boundaries, are hard to obtain when the interest rate is high relative to the convenience
yield q. It is certainly the advantage of the method of lines approach compared with
other methods, such as finite differences, to provide accurate, smooth early exercise
boundaries in an efficient manner.
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On the Volatility of Commodity Futures Prices

Les Clewlow, Boda Kang and Christina Sklibosios Nikitopoulos

1 Introduction

Commodity futures markets are playing a leading role in the current financial arena.
Commercial participants with physical positions in commodities have traditionally
been the main traders of commodity futures markets. However, a rapidly increasing
number of financially motivated traders such as hedge funds, institutional investors
and insurance companies have entered the markets and have been using commodi-
ties derivatives for portfolio diversification, and for hedging inflation and the weak
U.S. dollar (Tokic (2011)). Commodity markets have experienced noteworthy price
swings and significant volatility especially over the past decade. Consequently, the
analysis and the management of this volatility is of paramount importance.

In this chapter, a forward price model within the Heath et al. (1992) framework
for the entire term structure of futures prices is combined with a multi-factor stochas-
tic volatility model. The proposed three-factor model aims to capture the impact of
short-term, medium-term, as well as long-term futures price volatility by using expo-
nential decaying and hump-shaped stochastic volatility factors. For these volatility
specifications, the forward price model admits finite-dimensional realizations and is
affine in the state space. Consequently, the model is estimated by using an extended
dataset of futures prices for six major commodities traded on the CME, spanning
21 years from 1st January 1990 to 31st December 2010. Selecting the most liquid
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commodity futures markets, the following commodity futures prices are included in
the study; gold, crude oil, natural gas, soybean, sugar and corn.

The model is well suited to identify the shape, the persistence and the intensity
of each volatility factor. An exponential decaying volatility factor typically gauges
the impact of short-term variations, subject to the rate of the decay. A hump-shaped
volatility factor, in general, captures the impact of medium-term variations, subject to
the location of the hump peak. The volatility structure of an infinite maturity forward
price gauges the impact of long-term variation. The rate of mean reversion and the
volatility for each of the stochastic volatility factors are also assessed and indicate
the level of persistence and the intensity of each volatility factor. Furthermore, the
model determines the extent to which commodity futures volatility can be spanned
by futures contracts (i.e. hedged by futures contracts only), and the nature of the
return-volatility relation in commodity futures markets.

Forward price models such as Miltersen and Schwartz (1998), Clewlow and
Strickland (2000) and Miltersen (2003), as well as convenience yield models of
Gibson and Schwartz (1990) and Korn (2005) have studied commodity futures mar-
kets but they are restricted to deterministic volatility. Stochastic volatility models
have been proposed by Schwartz and Trolle (2009a) and Chiarella et al. (2013) and
have analysed crude oil futures market volatility, under exponential decaying and
hump-shaped volatility specifications, respectively. The contribution of this paper
rests on using three distinct volatility structures and aiming to analyze their nature
and assess their contribution.

The paper is organized as follows. Section 2 presents a Markovian affine forward
price model with stochastic volatility. Section 3 describes and analyses the commod-
ity futures price data used in the analysis and outlines the estimation method used to
estimate the model. Section 4 presents and discusses the results. Section 5 concludes.

2 A Markovian Commodity Futures Price Model

A filtered probability space (Ω,AT ,F0, P), T ∈ (0,∞) with F0 = (At )t∈[0,T ] is
assumed, satisfying the usual conditions.1 The uncertainty in the commodity futures
market is modelled via a generic stochastic volatility process V = {Vt, t ∈ [0, T ]}.
Let us denote as S(t,Vt) the spot commodity price at time t ≥ 0, and F(t, T,Vt) the
commodity futures price at time t , for delivery at time T , (for all maturities T ≥ t),
thus by definition, S(t,Vt) = F(t, t,Vt), t ∈ [0, T ]. Furthermore, no-arbitrage
arguments in commodity futures markets imply that the futures price process is
equal to the expected future commodity spot price under an equivalent risk-neutral
probability measure Q (see Duffie (2001)), namely

F(t, T,Vt) = EQ[S(T,VT)|At ].

1 The usual conditions satisfied by a filtered complete probability space are: (a) F0 contains all the
P-null sets of F and (b) the filtration is right continuous. See Protter (2004) for technical details.
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Consequently, the commodity futures price is a martingale under the risk-neutral
measure and the commodity futures price process should follow a driftless stochas-
tic differential equation under the risk-neutral measure. Accordingly, a three-factor
model is proposed of the form

d F(t, T,Vt)

F(t, T,Vt)
=

3∑
i=1

σi (t, T,Vt)dWi (t), (1)

where, W (t) = {W1(t),W2(t),W3(t)} is a three-dimensional Wiener process. The
F0-adapted futures price volatility processes σi (t, T,Vt) have the functional forms,
for all T > t ,

σ1(t, T,Vt) = κ1

√
V1

t ,

σ2(t, T,Vt) = κ2e−η2(T−t)
√

V2
t , (2)

σ3(t, T,Vt) = κ3(T − t)e−η3(T−t)
√

V3
t ,

with κi , (i = 1, 2, 3) and ηi , (i = 2, 3) constants. The volatility process Vt =
{V1

t ,V2
t ,V3

t } is a three-dimensional Heston (1993) type process such that

dVi
t = μi (νi − Vi

t)dt + εi

√
Vi

tdW V
i (t), (3)

where μi , νi , and εi are constants for i = 1, 2, 3, and W V (t) = {W V
1 (t),W V

2 (t),
W V

3 (t)} is the three-dimensional Wiener process driving the stochastic volatility
process Vt , for all t ∈ [0, T ]. The first volatility factor can be considered as the factor
capturing the volatility of the futures price returns with infinite maturity, thus repre-
senting the long-term volatility in commodity futures markets. The second volatility
factor predominantly gauges the volatility of the short-term futures price returns
as it allows a volatility structure that decays exponentially as the time to maturity
increases. The third volatility factor generates humps in the volatility structure, thus
reveals principally the impact of the volatility of medium-term futures prices. The
proposed volatility structure also allows each of these volatility factors to be driven by
a different stochastic volatility processes, consequently the proposed model has the
potential to capture the impact and the nature of market shocks to the entire volatility
term structure (including short-term, medium-term and long-term) and determine
their contribution to the total variance.

In addition, the following correlation structure of innovations between volatility
and futures price returns is assumed

EQ[dWi (t) · dW V
j (t)] = ρi dt, for i = j; and 0, for i �= j, (4)

where ρi are constants for i = 1, 2, 3. The correlation structure of innovations
between volatility and futures prices determines the extent to which the volatility risk
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can be hedged (spanned) by futures contracts. When the Wiener processes Wi (t) and
W V

i (t) are uncorrelated then the volatility risk is unhedgeable by futures contracts.
When the Wiener processes Wi (t) and W V

i (t) are correlated, then the volatility risk
can be partially hedged by futures contracts. Consequently, futures derivatives that
are sensitive to volatility, such as options on futures, cannot be completely hedged
by using only futures contracts. Furthermore, this modelling framework allows us to
assess the dynamic relationship between futures price returns and volatility changes.
A negative (positive) correlation implies a negative (positive) relation between price
returns and their volatility, a well-known empirical phenomenon termed as asym-
metric (inverted asymmetric) volatility. Yet again, the proposed model can capture
the volatility reaction of each of the volatility factors, as these factors are modelled
as separate identities.

For modelling convenience, we express the system of Eqs. (1) and (3) in terms of
independent Wiener process, such that

d F(t, T,Vt)

F(t, T,Vt)
=

3∑
i=1

σi (t, T,Vt)dW 1
i (t), (5)

dVi
t = μi (νi − Vi

t)dt + εi

√
Vi

t

(
ρi dW 1

i (t)+
√

1− ρ2
i dW 2

i (t)

)
, (6)

where W 1(t) = W (t) and W 2(t) are three-dimensional independent Wiener
processes. Accordingly, the volatility factors Vi

t with ρi = 0 carries a risk that
cannot be spanned by futures contracts alone and when ρi < 0 (ρi > 0) then the
volatility factor Vi

t has an asymmetric (inverted asymmetric) reaction.
It is well known that for general volatility specifications, the forward price model

for pricing the commodity futures (5) is Markovian in an infinite dimensional state
space. However, the volatility specifications (2) produce finite dimensional realisa-
tions of the forward price model, see Chiarella and Kwon (2001) and Björk et al.
(2004).

Theorem 1 Under the volatility specifications of (2), ln F(t, T,Vt) is affine in nine
state variables, as described below:

ln F(t, T,Vt) = ln F(0, T, V0)+
4∑

n=1

βn(T − t)φn(t)− 1

2

5∑
j=1

γ j (T − t)x j (t), (7)

where

β1(T − t) = κ1, γ1(T − t) = κ2
1,

β2(T − t) = κ2e−η2(T−t), γ2(T − t) = κ2
2e−2η2(T−t)
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β3(T − t) = κ3(T − t)e−η3(T−t), β4(T − t) = κ3e−η3(T−t),

γ3(T − t) = β3(T − t)2, γ4(T − t) = 2β3(T − t)β4(T − t), γ5 = β4(T − t)2.

The state variables φn(t), n = 1, . . . , 4 and x j (t), j = 1, . . . , 5 satisfy the
stochastic differential equations

dφ1(t) =
√

V1
t dW1(t),

dφ2(t) = −η2φ2(t)dt +
√

V2
t dW2(t),

dφ3(t) = −η3φ3(t)dt +
√

V3
t dW3(t),

dφ4(t) = (−η3φ4(t)+ φ3(t))dt,

dx1(t) = V1
t dt, (8)

dx2(t) =
(
−2η2x2(t)+ V2

t

)
dt,

dx3(t) = (−2η3x3(t)+ V3
t )dt,

dx4(t) = (−2η3x4(t)+ x3(t))dt,

dx5(t) = (−2η3x5(t)+ 2x4(t))dt,

subject to φn(0) = x j (0) = 0, for all n and j . The associated stochastic volatility
process Vt = {V1

t ,V2
t ,V3

t , } follows the dynamics (6).

Proof The technical details are summarized in the Appendix. �

The proposed model admits finite dimensional realizations within the affine class
of Duffie and Kan (1996) and it is consistent, by construction, with the currently
observed futures price curve; consequently, it is time-inhomogeneous. However for
estimation purposes, it is necessary to reduce the model to a time-homogeneous one
as presented in Sect. 3.2.

In addition, the market price of volatility risk is modelled with “complete” affine
specifications (see Doran and Ronn (2008) and Dai and Singleton (2000)) and more
specifically as

dW P
i (t) = dWi (t)+ λi

√
Vt

i dt, (9)

dW PV
i (t) = dW V

i (t)+ λV
i

√
Vt

i dt,
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for i = 1, 2, 3, where W P
i (t) and W PV

i (t) are Wiener processes under the physical
measure P. Next, the proposed model is estimated by fitting the model to commodity
futures prices of six key commodities: gold, crude oil, natural gas, soybean, sugar
and corn.

3 Data and the Estimation Method

3.1 Data

An extended dataset of six commodity futures prices provided by CME is used that
spans 21 years from 1st January 1990 to 31st December 2010. The selected com-
modities are the most actively traded commodities with crude oil leading the ladder,
following by gold, soybeans, natural gas, sugar and corn.2 Even though histori-
cal data for some of the commodities go back to 1970s, for consistency purposes,
our analysis is concentrated in the past 21 years for all commodities. Furthermore,
the selected commodities can be regarded as representative commodities within the
metal (including gold), energy (including crude oil and natural gas) and agricultural
(including soybeans, sugar and corn) commodities products.

Over this period, all commodity markets experienced extreme price movements
and volatility due to noteworthy financial market and macroeconomic events such as
the oil price crisis in 1990, the financial crisis in 2008, the crude oil bubble in 2008 and
the ongoing food crisis initiated in 2008. Throughout the sample period, the number
of available futures contracts for all commodities with positive open interest per day
has increased significantly as well as the maximum maturity of futures contracts
with positive open interest. For example, for crude oil, the open interest per day has
increased from 17 on the 1st of January 1990 to 67 on the 31st of December 2010
and the maximum maturity of crude oil futures contracts with positive open interest
has increased from 499 (calendar) days to 3,128 days.

As the number of available futures contracts per day is relatively large, for the esti-
mation analysis, the most liquid futures contracts are used, with liquidity measured
by the open interest. As contracts close to expiry have very low liquidity, the contracts
selected for the study here all have more than 14 days to expiry. Each commodity has
different available delivery months and their liquidity is concentrated on different
contracts. Thus, the available contract months and the liquidity for each commod-
ity are investigated, and the following selection per commodity has been made. For
crude oil, the first seven monthly contracts are used, near to the trade date, followed
by the three contracts which have either March, June, September or December expi-
ration months and then we include the next five December contracts. Therefore, the

2 Information on liquidity was collected by http://www.barchart.com, as well as by computing the
average open interest available on the data. For example, on Sept 9, 2013 volumes were; 261,394
for Oct 13 crude oil, 151,589 for Dec 13 gold, 112,208 for Nov 13 soybeans, 100,027 for Oct 13
natural gas, 90,026 for Oct 13 sugar and 89,000 for Oct 13 corn.

http://www.barchart.com
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number of crude oil futures contracts used on a daily basis ranges between 8 and 15.
As natural gas has continuous monthly contracts, a maximum of 15 monthly con-
tracts is selected (near to the trade date). For gold, the first three monthly contracts
are included, followed by the four contracts with expiration months of February,
April, June, August, October and December and finally four semi-annual contracts
with maturities of June or December. Consequently, the number of gold futures con-
tracts used on a daily basis varies between 8 and 11. For soybeans, the available
contract months are January, March, May, July, August, September and November,
therefore the first 15 contracts are used (near to the trade date), with these maturity
months. The available and more liquid contract months for sugar are March, May,
July and October, thus the first ten contracts are used, near to the trade date, for these
maturities. The corn futures more liquid maturities are March, May, July, September
and December thus all available maturities are included, with a maximum number
of contracts per day being 15. In accordance with the above selection, the longest
maturity, in terms of months, we have chosen for each commodity is 31 for gold,
126 for crude oil, 102 for natural gas, 60 for soybeans, 54 for sugar and 61 for corn.

It is worth noticing that for all commodities of interest the futures price surfaces
have changed significantly throughout the sample period with extreme price variation
over the last decade, as depicted in Fig. 1. This notable variation is also apparent
from the descriptive statistics presented in Tables 1 and 2 that display the statistical
features of the selected commodity futures price returns for 1 month and 12 month
futures contracts for the commodities of interest.

3.1.1 Number of Stochastic Factors

The number of driving stochastic factors affecting the evolution of the futures curve is
investigated by performing a principal component analysis (PCA) of the futures price
returns. Table 3 displays varying levels of contributions for different commodities
and Fig. 2 depicts the eigenvalues and associated volatility functions. Three factors
potentially can explain between 93 % (for natural gas) to 99 % (for crude oil) of the
total variation in futures returns. The proposed three-factor volatility structure (2)
aims to capture the impact of shocks in the entire term structure (from short-term
to long-term), and it could be represented by the three factors revealed by the PCA,
even though their nature is distinctively determined by the model.

3.1.2 The Discount Function

The discount function P(t, T ) is obtained by fitting a Nelson and Siegel (1987)
curve each trading day to LIBOR and swap data consisting of 1, 3, 6, 9 and 12 month
LIBOR rates and the 2 year swap rate, similar to Schwartz and Trolle (2009a).

Let f (t, T ) denote the time−t instantaneous forward interest rate to time T .
Nelson and Siegel (1987) parameterize the forward interest rate curve as
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Fig. 1 Commodity futures prices. The figure plots the prices of selected commodity futures con-
tracts from January 2, 1990 to December 31, 2010

f (t, T ) = α0 + α1e−θ(T−t) + α2θ(T − t)e−θ(T−t) (10)

from which LIBOR and swap rates can be priced. This also yields for zero-coupon
bond prices the expression

P(t, T ) = exp

{
−α0(T − t)− 1

θ
(α1 + α2)

(
1− e−θ(T−t)

)
+ α2(T − t)

}
. (11)
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Table 1 Descriptive statistics—gold, crude oil and natural gas

Maturity Gold Crude oil Natural gas

1 M 12 M 1 M 12 M 1 M 12 M

Mean 0.000220 0.000200 0.000291 0.000306 0.000185 0.000179

St. Dev. 0.011972 0.010799 0.026004 0.017870 0.037743 0.022392

Kurtosis 39.837774 28.133742 20.764654 8.156276 16.008901 19.721668

Skewness −0.124339 −0.162282 −0.893782 −0.298393 0.301666 −0.069086

The table displays the descriptive statistics for daily log returns of futures prices between January
2, 1990 and December 31, 2010 for gold, crude oil and natural gas

Table 2 Descriptive statistics—soybeans, sugar and corn

Maturity Soybeans Sugar Corn

1 M 12 M 1 M 12 M 1 M 12 M

Mean 0.000090 0.000084 0.000061 0.000225 0.000077 0.000096

St. Dev. 0.015746 0.013324 0.022504 0.014234 0.016618 0.012512

Kurtosis 12.025013 7.275205 12.437959 7.495627 21.100643 7.647190

Skewness −0.932488 −0.341833 −0.345857 −0.243873 −0.847868 −0.147756

The table displays the descriptive statistics for daily log returns of futures prices between January
2, 1990 and December 31, 2010 for soybeans, sugar and corn

Table 3 Accumulated percentage of factor contribution

Commodity One factor Two factors Three factors Four factors

Gold 0.9735 0.9810 0.9881 0.9926

Crude oil 0.9503 0.9825 0.9919 0.9957

Natural gas 0.7636 0.8625 0.9308 0.9666

Soybeans 0.8973 0.9413 0.9639 0.9798

Sugar 0.8788 0.9560 0.9832 0.9956

Corn 0.8764 0.9236 0.9487 0.9712

The table displays the accumulated percentage of PCA factor contribution towards each commodity
futures return variation. We found that three factors are able to explain most of the variations of the
futures returns for the commodities of interest

On each observation date, the parameters α0,α1,α2 and θ are recalibrated, by
minimizing the mean squared percentage differences between the model implied for-
ward rates (as described in (10)) and the observed LIBOR and swap curve consisting
of the 1, 3, 6, 9 and 12 month LIBOR rates and the 2 year swap rate on that date.

3.2 Estimation Method

The estimation approach is quasi-maximum likelihood in combination with the
Kalman filter. The model is cast into a state-space form, which consists of the
system equations and the observation equations. For estimation purposes, a time-
homogeneous version of the model (7) is considered, by assuming for all T ,
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Fig. 2 PCA results (Eigenvalues and volatility functions)

F(0, T ) = fo, where fo is a constant representing the long-term futures price (at
infinite maturity). This constant is an additional parameter that is also to be estimated.

The system equations describe the evolution of the underlying state variables. In
our case, the state vector is Xt = {Xm

t ,m = 1, 2, . . . , 12}, where Xt consists of the
12 state variables; x j (t), j = 1, . . . , 5,φn(t), n = 1, . . . , 4, and Vi

t, i = 1, 2, 3. The
continuous time dynamics (under the physical probability measure) of these state
variables are defined by Eqs. (6), (8) and (9). The corresponding discrete evolution
is
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Xt+1 = Φ0 +ΦX Xt + wt+1, wt+1 ∼ i id N (0, Qt ), (12)

where Φ0, ΦX and Qt can be computed in closed form.
From Eq. (7), log futures prices are linear functions of the state variables, thus the

observation equation based on (7) can describe the relationship between observed
futures prices and the state variables as

zt = h(Xt )+ ut , ut ∼ i id N (0,Ω). (13)

The loglikehood function is maximised by using the constrained optimization
routine “e04jy” in the NAG library. Several different initial hypothetical parameter
values are considered, first on monthly data, then on weekly data and finally on daily
data, aiming to obtain global optima.

4 Empirical Results

4.1 Parameter Estimation

Table 4 presents the parameter estimates of a three-factor stochastic volatility model.
Figures 3 and 4 depict the estimated deterministic part χi (t)of each volatility factorσi

(σi (t, T,Vi
t) = χi (t, T )

√
Vi

t) and the estimated time-series of volatility state factor

Vi
t.

3 Recall that the first volatility factor portrays the long-term volatility factor, while
the second volatility factor is exponential decaying (dies out as the time to maturity
increases) and is associated with short-term market uncertainty. The third volatility
factor is hump-shaped, (volatility increases with time to maturity to a peak level, then
decreases for longer times to maturity) and describes the medium-term volatility.

4.2 Gold Volatility

According to the parameter estimates for the gold futures market, see Table 4, only
the first volatility factor is significant in magnitude and in contribution. For the other
two factors, κi and νV

i are very close to zero, thus both the deterministic element
and the stochastic element of these volatility factors are very close to zero. Table 5
shows that the long-term volatility factor contributes 99.98 % of the total variance,
a result that is also consistent with PCA. The associated volatility state factor V1

t
is not persistent and reverts relatively quickly to the mean level (evidenced by the
high value of μi ) while its volatility is large, see also the top panels of Fig. 3. Thus,

3 In absolute terms, Vi
t is the variance process and

√
Vi

t is the volatility process.



326 L. Clewlow et al.

Table 4 Parameter Estimates

fo Factor κi ηi μi νi εi ρi λi λV
i

Metals

Gold

6.78 1 −0.4324 0.0000 −1.9822 0.0100 4.0110 0.8996 −3.0000−2.1974

2 −0.0109 4.9979 −1.6438 0.0305 1.3018−0.9127 2.9762 −2.9740

3 0.0308 4.8705 4.9083 0.0404 1.8998 0.9490 2.8698 −2.5760

Energy

Crude oil

4.50 1 0.0364 0.0000 3.4978 0.1015 0.0100 0.5411 3.0000 −0.6957

2 0.3735 0.3914 −2.0000 0.2624 5.0000 −0.8337−3.0000−1.1797

3 −0.0804 1.6611 5.0000 5.0000 0.0619 0.9500 −3.0000−1.6399

Natural gas

1.49 1 −0.2904 0.0000 −2.0000 0.9012 5.0000 0.3116 −3.0000−1.1331

2 0.6463 4.2571 5.0000 0.1914 5.0000 −0.9500−3.0000−2.8280

3 2.4848 5.0000 −2.0000 5.0000 5.0000 −0.5886−3.0000−0.9792

Agricultural

Soybeans

6.30 1 0.5595 0.0000 5.0000 0.0356 0.9964 0.7338 1.9856 1.4988

2 0.0448 4.9300 4.8135 0.0130 0.9412 −0.0797 0.2685 −2.4983

3 0.4287 2.8152 0.1185 4.8349 0.0100 −0.2922 0.2036 −0.8500

Sugar

1.94 1 0.2228 0.0000 −2.0000 0.5134 5.0000 −0.9155−3.0000−3.0000

2 0.0000 −1.6488−2.0000 0.1219 1.7671 −0.9221−2.9525−2.9494

3 1.0191 3.3670 0.0828 5.0000 5.0000 −0.9500 0.0642 −0.0199

Corn

6.47 1 −0.4188 0.0000 −0.0762 0.1527 5.0000 0.9500 3.0000 −2.5545

2 −0.0143 3.8723 −1.8526 0.1028 4.6859 −0.8463 0.1100 −0.8652

3 0.9395 1.3926 1.3400 0.0100 0.4731 0.9500 −3.0000−2.7719

The table displays the quasi maximum-likelihood estimates for the three-factor model specifications.
F is the homogenous futures price at time 0, namely F(0, t) = fo,∀t

the long-term volatility is the dominant volatility factor in the gold futures market.
Furthermore, the innovations of this volatility factor has a correlation of 0.9 with the
innovations of the gold futures price returns, implying that gold futures price volatility
can be mostly hedged by gold futures contracts. Moreover, the positive sign of the
correlation coefficient confirms the well-documented positive gold return-volatility
relation that in the spot gold market has predominantly been explained by the safe
haven effect, see Baur (2012).
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Fig. 3 Estimated volatility factors for metals and energy futures prices

4.3 Crude Oil Volatility

Table 4 demonstrates that all three volatility factors are important in the crude oil
futures market. More specifically, from Table 5, the exponential decaying and hump-
shaped volatility factors account for the majority of the volatility, with contributions
of 65.43 and 27.84 % to the total variance, respectively. The exponential decaying
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Fig. 4 Estimated volatility factors for agricultural futures prices

volatility state factor V2
t is more persistent (reverts slower to the mean) and far

more volatile compared to the hump-shaped state factor V3
t , see also the middle

panels of Fig. 3. Therefore, the short-term volatility is the more influential volatility
factor, followed by the medium-term and the long-term volatility factor. The corre-
lation coefficient between volatility and futures price returns are −0.8337 and 0.95,
respectively. These correlations imply that crude oil futures contracts can hedge more
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Table 5 Contribution and shape of volatility factors

Gold (%) Crude Oil (%) Natural Gas (%)

σ1 99.98 Long-term 6.73 Long-term 92.65 Long-term

σ2 0.01 Exp 65.43 Exp 1.36 Exp

σ3 0.01 Hump 27.84 Hump 5.99 Hump

Soybean Sugar Corn

σ1 79.54 Long-term 70.68 Long-term 93.34 Long-term

σ2 0.00 Exp 0.00 Exp 0.01 Exp

σ3 20.36 Hump 29.32 Hump 6.65 Hump

The table reports the contribution of each volatility factor to the total variance for the three-factor
model. The three volatility structures imposed by the model are long-term volatility (long-term),
exponential decaying volatility (exp), and hump-shaped volatility (hump)

efficiently medium-term crude oil futures volatility rather than short-term crude oil
futures volatility. The opposite signs of the correlation coefficients in these two dom-
inant volatility factors verify the mixed return-volatility relation, a positive return-
volatility relation as explained by the inventory effect, see Ng and Pirrong (1994)
and a negative return-volatility relation as explained by the volatility feedback effect,
see Salisu and Fasanya (2013).

4.4 Natural Gas Volatility

The parameter estimates for natural gas, see Table 4, demonstrate that the long-term
volatility factor dominates in the natural gas futures market. More specifically, from
Table 5, the first volatility factor contributes 92.65 % to the total variance. The second
most contributing factor is the hump-shaped volatility factor with 6 % to the total
variance. The leading volatility state factor V1

t is not persistent (reverts quickly to
the mean) and very volatile, see also the bottom panels of Fig. 3. Therefore, the long-
term volatility is the more influential volatility factor most likely due to the impact
of the seasonality associated with this commodity futures market. The correlation
coefficient between this volatility factor and futures price returns is 0.3116 implying
that natural gas futures contracts alone cannot hedge the natural gas futures volatility.
The positive sign of the correlation coefficient of the dominant volatility factor can
be explained by the inventory effect, see Ng and Pirrong (1994). Note that the other
two factors exhibit a negative return-volatility relation as it can be explained by the
volatility feedback effect, see Salisu and Fasanya (2013) but their contribution is
marginal.
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4.5 Soybean Volatility

From Table 5, two driving volatility factors are present, with the long-term volatility
factor contributing 79.54 % of total variance and the hump-shaped volatility factor
contributing 20.36 % of the total variance. The hump-shaped state factor V3

t is highly
persistent (reverts very slowly to the mean) and very volatile compared to the long-
term volatility state factor V1

t which is not as persistent and less volatile, see the top
panels of Fig. 4. The correlation coefficients are 0.7338 for the long-term volatility
factor and −0.2922 for the hump-shaped. Thus, soybean futures contracts alone
cannot hedge medium-term volatility, yet they can hedge more efficiently the long-
term volatility. Moreover, the more contributing long-term volatility factor involves
a positive return-volatility relation, while the hump-shaped volatility factor entails a
negative return-volatility relation.

4.6 Sugar Volatility

The analysis reveals two main driving volatility factors. The most contributing (with
70.68 % of total variance) is the long-term volatility factor and the second contributing
volatility factor (with 29.32 % of the total variance) is the hump-shaped volatility
factor, see Table 5. The long-term volatility state factor V1

t is not as persistent (reverts
quickly to the mean) but equally volatile compared to the hump-shaped state factor
V3

t , see also the middle panels of Fig. 4. The correlation coefficient between the
associated volatility factors and futures price returns are both negative and close to
−1, thus sugar futures contracts can hedge most of the sugar futures volatility, and a
negative return-volatility relation is implied.

4.7 Corn Volatility

The parameter estimates for corn from Table 4 demonstrate that the long-term volatil-
ity factor dominates in the corn futures market. More specifically, from Table 5, the
long-term volatility factor contributes 93.34 % to the total variance. The second con-
tributing factor is the hump-shaped volatility factor with 6.65 % to the total variance.
The leading volatility state factor V1

t is highly persistent (reverts slowly to the mean)
and very volatile, see also the bottom panels of Fig. 4. Therefore, the long-term
volatility is the more influential volatility factor in the corn commodity futures mar-
ket. The correlation coefficient between the associated volatility factors and futures
price returns are positive and high, thus corn futures contracts can hedge the corn
futures volatility. The positive sign of the correlation coefficient of the two domi-
nant volatility factors implies a positive return-volatility relation, see Ng and Pirrong
(1994) and relates to the inventory effect.



On the Volatility of Commodity Futures Prices 331

Jan90 Jan95 Jan00 Jan05 Jan10 Jan15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
RMSE − Gold

Time t

rm
se

Jan90 Jan92 Jan94 Jan96 Jan98 Jan00 Jan02 Jan04 Jan06 Jan08 Jan10 Jan12
0

0.02

0.04

0.06

0.08

0.1

0.12
RMSE − CrudeOil

Time t

rm
se

Jan90 Jan92 Jan94 Jan96 Jan98 Jan00 Jan02 Jan04 Jan06 Jan08 Jan10 Jan12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
RMSE − NaturalGas

Time t

rm
se

Jan88 Jan90 Jan92 Jan94 Jan96 Jan98 Jan00 Jan02 Jan04 Jan06 Jan08 Jan10 Jan12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
RMSE − Soybeans

Time t

rm
se

Jan88 Jan90 Jan92 Jan94 Jan96 Jan98 Jan00 Jan02 Jan04 Jan06 Jan08 Jan10 Jan12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
RMSE − Sugar

Time t

rm
se

Jan88 Jan90 Jan92 Jan94 Jan96 Jan98 Jan00 Jan02 Jan04 Jan06 Jan08 Jan10 Jan12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
RMSE − Corn

Time t

rm
se

Fig. 5 Model goodness of fit

4.8 Model Fit

For illustrative purposes, the RMSEs of the percentage differences between actual
futures prices and fitted futures prices to the proposed three-factor model are depicted
in Fig. 5. For all commodities, the overall goodness of fit is satisfactory with most
RMSE ranging between 2 and 4 % and occasionally reaching 10 % (only for natural
gas the maximum RMSEs reached occasionally 14 %). As natural gas futures prices
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are subject to strong seasonal effects, alternate model specifications—e.g. higher
dimensions of volatility factors, seasonal dynamics or regime switching volatility
schemes—would have the potential to better capture the natural gas futures price
dynamics. This also applies for the agricultural commodities, where the RMSEs are
relatively low because of persistent seasonality effects. For crude oil and gold, the
model fit is reasonable, with exceptional cases being associated with some major
socio-economic effects such as the Gulf war and Global Financial Crisis (GFC).

5 Conclusion

In this paper, a tractable forward price model with stochastic volatility is proposed
and an empirical study is carried out to analyze the volatility of the most liquid
commodity futures markets, including the gold, crude oil, natural gas, soybeans,
sugar and corn market. The model allows distinct volatility structures, including
exponential decaying, hump-shaped and infinite maturity and can potentially gauge
the impact of short-term, medium-term and long-term variation.

The study shows that for most of the commodities futures markets, at least two of
the volatility structures are present (with varying levels of persistence and intensity).
The long-term volatility is the dominant stochastic volatility factor for most com-
modities, except crude oil where exponential and hump-shaped volatility factors are
contributing more. The extent to which the volatility can be hedged by futures con-
tracts varies across commodities, with futures contracts being least capable to hedge
volatility in the crude oil futures market, natural gas futures market and soybeans
futures market.

Overall the proposed model provides a relatively good fit for these six com-
modities, even though the distinctive characteristics of each market is not properly
accounted for. A comparative investigation between models with different specifi-
cations and their fit performance will better reflect on the quality of the model fit, a
study that has been left for further research.

Under the proposed model, option prices can be obtained quasi-analytically, con-
sequently the model can also be estimated by fitting to commodity futures options.
Since options are volatility sensitive derivative instruments, this estimation study has
the potential to provide constructive and insightful findings about the volatility in
commodity futures markets, as well as volatility hedging effectiveness.
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Appendix: Proof of Theorem 1

We consider the process X (t, T ) = ln F(t, T,Vt), where the forward price dynamics
are given by (1) with the volatility specifications (2). Then an application of the Ito’s
formula derives

F(t, T,Vt) = F(0, T ) exp

⎡
⎣ 3∑

i=1

t∫
0

σi (s, T,Vs)dWi (s)− 1

2

3∑
i=1

t∫
0

σ2
i (s, T,Vs)ds

⎤
⎦ .

(14)

By introducing the state variables

φ1(t) =
t∫

0

√
V1

s dW1(s), x1(t) =
t∫

0

V1
s ds

φ2(t) =
t∫

0

e−η2(t−s)
√

V2
s dW2(s), x2(t) =

t∫
0

e−2η2(t−s)V2
s ds

φ3(t) =
t∫

0

e−η3(t−s)
√

V3
s dW3(s), φ4(t) =

t∫
0

(t − s)e−η3(t−s)
√

V3
s dW3(s)

x3(t) =
t∫

0

e−2η3(t−s)V3
s ds, x4(t) =

t∫
0

(t − s)e−2η3(t−s)V3
s ds,

x5(t) =
t∫

0

(t − s)2e−2η3(t−s)V3
s ds.

and performing some basic manipulations, Eq. (14) can be expressed as (7).

References

Baur, D. G. (2012). Asymmetric volatility in the gold market. The Journal of Alternative Investments,
14(4), 26–38.

Björk, T., Landén, C., & Svensson, L. (2004). Finite dimensional realisations for stochastic volatility
forward rate models. The Royal Society—Proceedings: Mathematical, Physical and Engineering
Sciences, 460(2041), 53–83.

Chiarella, C., & Kwon, O. (2001). Forward rate dependent Markovian transformations of the Heath-
Jarrow-Morton term structure model. Finance and Stochastics, 5(2), 237–257.



334 L. Clewlow et al.

Chiarella, C., Kang, B., Nikitopoulos, C. S., & Tô, T. (2013). Humps in the volatility structure of
the crude oil futures market: New evidence. Energy Economics, 40, 989–1000.

Clewlow, L., & Strickland, C. (2000). Energy Derivatives: Pricing and Risk Management (1st ed.).
London: Lacima Publications.

Dai, Q., & Singleton, K. (2000). Specification analysis of affine term structure models. Journal of
Finance, 55, 1943–1978.

Doran, J. S., & Ronn, E. I. (2008). Computing the market price of volatility risk in the energy
commodity market. Journal of Banking and Finance, 32, 2541–2552.

Duffie, D. (2001). Dynamic Asset Pricing Theory. Princeton, NJ: Princeton University Press.
Duffie, D., & Kan, R. (1996). A yield-factor model of interest rates. Mathematical Finance, 6(4),

379–406.
Gibson, R., & Schwartz, E. (1990). Stochastic convenience yield and the pricing of oil contingent

claims. Journal of Finance, 45, 959–976.
Heath, D., Jarrow, R., & Morton, A. (1992). Bond pricing and the term structure of interest rates:

A new methodology for contingent claim valuation. Econometrica, 60(1), 77–105.
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications

to bond and currency options. Review of Financial Studies, 6(2), 327–343.
Korn, O. (2005). Drift matters: An analysis of commodity derivatives. Journal of Futures Markets,

25, 211–241.
Miltersen, K. (2003). Commodity price modelling that matches current observables: A new

approach. Quantitative Finance, 3, 51–58.
Miltersen, K. R., & Schwartz, E. (1998). Pricing of options on commodity futures with stochastic

term structure of convenience yields and interest rates. Journal of Financial and Quantitative
Analysis, 33(1), 33–59.

Nelson, C., & Siegel, A. (1987). Parsimonious modelling of yield curves. Journal of Business, 60,
473–489.

Ng, V. K., & Pirrong, S. C. (1994). Fundamentals and volatility: Storage, spreads, and the dynamics
of metals prices. Journal of Business, 67(2), 203–230.

Protter, P. (2004). Stochastic Integration and Differential Equations. New York: Springer.
Salisu, A. A., & Fasanya, I. O. (2013). Modelling oil price volatility with structural breaks. Energy

Policy, 52(C), 554–562.
Schwartz, E. S & Trolle, A. B. (2009a). Unspanned stochastic volatility and the pricing of commodity

derivatives. Review of Financial Studies, 22(11), 4423–4461.
Tokic, D. (2011). Rational destabilizing speculation, positive feedback trading and the oil bubble

on 2008. Energy Policy, 39(4), 2051–2061.



A Multi-factor Structural Model
for Australian Electricity Market Risk

John Breslin, Les Clewlow and Chris Strickland

1 Introduction

In this paper, we develop a general framework for the modelling of Australian
electricity market risk based on the structural relationships in the market. The model
framework is designed to be consistent with temperature and load mean forecasts,
market forward price quotes, the dependence of load on temperature, and the depen-
dence of price on load. The primary use of the model is for the accurate evaluation
of the market risk of an electricity generation and retail company but it can also
be used for the valuation of electricity market derivatives and assets. We demon-
strate the application of our framework to the Australian National Electricity Market
(NEM) by estimating the model using recent historical data from the NEM and then
simulating the market using the estimated model.

Historically, the majority of published work on modelling electricity prices has
taken the traditional finance approach of applying stochastic processes directly to
the spot price (see for example Clewlow and Strickland (2000); Weron et al. (2004);
Cartea and Figueroa (2005); Geman and Roncoroni (2006); Benth et al. (2007),
(2008); Barndorff-Nielsen et al. (2010); Klüppelberg et al. (2010); Kholodnyi (2011);
Veraart and Veraart (2013)). However, this approach has some fundamental disad-
vantages. Observation suggests that the spot price of electricity is linked to other
key market variables, such as the temperature and electricity demand, and with a
non-linear relationship which cannot be accurately captured by simple correlations.
Furthermore, the dynamics of electricity spot prices are difficult to capture with a
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model which considers the spot price dynamics without any reference to the market
structure.

An alternative “structural” or “hybrid” approach is based on jointly modelling the
electricity price as a function of supply and demand based market variables and the
structural links between them. Examples of models in this category are reviewed in
Carmona and Coulon (2013). One of the first papers on this approach was Barlow
(2002) which considered demand as the only driving variable with the spot price being
a power function of an Ornstein-Uhlenbeck diffusion process. Later this approach
was extended to consider alternative drivers: fuel prices (Carmona et al. 2012; Pirrong
and Jermakyan 2008), capacity (Burger et al. 2004; Cartea and Villaplana 2008), fuel
prices and capacity (Aïd et al. 2012; Coulon and Howison 2009). The advantage of
this approach is it makes use of the key information which is available in electricity
markets such as the demand factors, fuel prices, and generation capacity. In this paper,
we propose a model which uses temperature as a key demand factor and demand as
a key driver of the electricity price.

The paper is organised as follows: In Sect. 2, we introduce the model and discuss
its key features. Section 3 presents the results of applying the model to the Australian
NEM. Finally, Sect. 4 contains our conclusions.

2 The Model

The Australian NEM consists of five regions, or nodes, which correspond to the
South-Eastern Australian states: Queensland (QLD), New South Wales (NSW), Vic-
toria (VIC), South Australia (SA), and Tasmania (TAS). The Australian Energy Mar-
ket Operator (AEMO) has responsibility for power system operations (i.e. security
of supply and system reliability) as well as market operations. Ignoring the intercon-
nection between regions, the electricity spot price at each node is set every 5 min(a
Dispatch Interval), with the six prices for each half-hour averaged to provide mar-
ket prices every 30 min (a Trading Interval). Generator offers for supply at specific
prices are matched against demand in each dispatch interval, and the generators are
dispatched by AEMO according to a “least cost” optimisation algorithm, taking in to
account the physical constraints on the generators and the transmission network.1

Under normal market conditions, the spot price will typically be in the range
$30/MWh–$100/MWh. The price reflects the marginal cost of generation, so the
price will generally rise along with the regional demand, as more expensive gen-
erators are dispatched to meet the demand. We refer to this as the underlying spot
price. But when transmission network constraints bind or another event occurs (such
as a forced outage of a generator) the price can rise rapidly well above these levels,
sometimes to the market price cap of $13,100/MWh and returning, usually within a

1 In reality the dispatch algorithm co-optimises the dispatch for the energy as well as ancilliary
service markets, and across all regions, taking into account interconnector flows and constraints.
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few hours, to the “normal” range. We refer to these sudden and rapid price changes
as price spikes.

In terms of modelling the NEM spot price for risk measurement and analysis
of simple derivatives such as futures, swaps and swaptions, a stochastic model of
spot prices such as a mean reverting jump diffusion process can capture the key
characteristics of the market. Such a model can be sufficiently rich to represent the
key risks in their market exposure, but also simple enough to allow for analytical
pricing of derivatives for efficient valuation and Value-at-Risk calculations.

However, in general, NEM market participants have diverse portfolios consist-
ing of a combination of derivative contracts, generation assets, retail customers and
environmental/carbon liabilities. There is a well-defined relationship between these
different portfolio components. For example, on a day when temperatures are high
we expect an above average electricity demand (due to additional air conditioning
load), which in turn will lead to additional (more expensive) generation being dis-
patched and hence higher than average spot price outcomes. From a risk measurement
perspective, it is important to capture these relationships between different compo-
nents of the portfolio. In the case of a participant with both generation assets and
retail customers, in this example the cost to supply the additional electricity demand
from their customers should be (partially) offset by additional generation revenue,
so capturing this in the model would avoid overstating the risk that may occur if the
model does not properly model that relationship. These structural relationships can
be hard to capture using purely stochastic models, so a more practical approach is
to use a hybrid model, so called because models of this type explicitly recognise the
structural relationships between key variables (like temperature, demand and price)
as well as a stochastic components to capture the variability in these variables and
the impact of variables which can’t be easily modelled.

The modelling framework that we propose in this paper is illustrated in Fig. 1.
The temperature is modeled as an independent source of risk around a mean tem-

perature forecast. The temperature feeds into the load model via a time-dependent
functional relationship between the temperature and load. The load also has an addi-
tional non-temperature dependent source of risk added to the temperature-dependent
load. The underlying spot price model has a functional dependence on the load and
an additional non-load dependent source of risk. Finally, there is the price spike
model driven by a Poisson process which is dependent on the level of the load. In the
following sections, we analyse the NEM data and propose specific models for each
of the components in the model framework. The Brownian motions which provide
the sources of risk may all be correlated.

2.1 The Temperature Model

In order to determine an appropriate model for the regional temperature, we
analyse the seasonal variation and intraday variation of the half-hourly historical
temperature data from 1 January 2006 to 31 December 2012 for the Bankstown
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Fig. 1 The structural relationships in the model

Fig. 2 Half-hourly temperature at Bankstown Airport weather station

Airport weather station. This weather station is typically chosen by market partic-
ipants as being representative of the NSW regional temperature. Figure 2 shows a
time series plot of the data.
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Fig. 3 Half-hourly average temperature for each month at Bankstown Airport weather station

Fig. 4 Auto-correlation of the half-hourly temperature for Bankstown Airport weather station

Each half-hour is plotted as a separate line to show the range of intra-day tem-
perature by the colour range as well as the seasonal variation. Figure 3 shows the
average intra-day temperature profile for each month. The maximum standard error
over all the mean estimates for each period and each month is 0.5 so the estimated
profiles accurately reflect the intraday temperature profile.

The auto-correlation structure of the temperature changes is shown in Fig. 4. This
indicates that a simple mean reverting model with normally distributed shocks as
previously proposed by Alaton et al. (2002), Benth and Saltyte-Benth (2007) is
appropriate.

Given the above analysis of the temperature data and the previous work dis-
cussed in Sect. 1, we propose the following model for the evolution of the half-hourly
regional temperature (H(t)):
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dH(t) =
[∂ H̄(t)

∂t
−

t∫
t0

σH (u, t)
∂σH (u, t)

∂t
du +

t∫
t0

∂σH (u, t)

∂t
dzH (u)

]
dt + σH (t)dzH (t)

(1)

σH (u, t) = σH (u) exp(−αH (t − u)) (2)

where H̄(t) is the time-dependent deterministic mean forecast of the daily average
temperature, σH (t) is the time dependent deterministic volatility of the temperature,
αH is the mean reversion rate of the temperature, zH (t) is a Brownian motion.
This model is a generalisation of the model introduced by Alaton et al. (2002).
The generalisation uses the results in Sect. 8.5 of Clewlow and Strickland (2000)
to allow the specification of the temperature forecast which is exactly equal to the
mean temperature. The form of the volatility function in Eq. (2) is equivalent to mean
reverting dynamics in the temperature as shown in Clewlow and Strickland (1999).
This model also allows for generalisations of the volatility specification as shown in
Clewlow and Strickland (2000). We use this same general model specification for
the residual in all the components of the model. This has the advantage of limiting
the effective complexity of the model whilst still maintaining its flexibility.

2.2 The Regional Load Model

The electricity demand in any region of the NEM is partly dependent on retail and
commercial customer demand for heating and cooling. The demand profile over the
calendar year and intra-day therefore has a strong relationship with the month of year
and time of day as well as the prevailing weather conditions. Figure 5 shows a time
series plot of the NSW regional electricity demand for the period from 1 July 2006 to
31 December 2012. This shows that the seasonal profile has higher average demand
and lower volatility in the cooler months of April to September and lower average
demand but higher volatility in the warmer months October through to March.

Each half-hour is plotted as a separate line to show the range of intra-day demand
by the colour range as well as the seasonal variation. Figure 6 shows the average
intra-day demand profile for each month.

The maximum standard error is 103 so the smoothness of the profiles accurately
reflects the intraday profile. The intra-day demand profile has a relatively simple
shape for the warmer months October through to March with the demand rising
smoothly from around 5–10 am where it levels off before smoothly declining from
around 4 pm through to 5 am. For the cooler months April to September the profile is
similar but there are pronounced peaks at 10 am and 7 pm reflecting the high demand
of electricity based heating in the morning and evening. Figures 7, 8, 9 and 10 show
the relationship between the half-hourly NSW regional demand and temperature for
January, April, July and October business days 8–10 am, business days 4–6 pm, non-
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Fig. 5 Half-hourly NSW regional demand

Fig. 6 Half-hourly average NSW regional demand for each month

Fig. 7 NSW regional demand as a function of temperature in January, April, July and October
business days 8–10 am
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Fig. 8 NSW regional demand as a function of temperature in January, April, July and October
business days 4–6 pm

Fig. 9 NSW regional demand as a function of temperature in January, April, July and October
non-business days 8–10 am

Fig. 10 NSW regional demand as a function of temperature in January, April, July and October
non-business days 4–6 pm

business days 8–10 am, and non-business days 4–6 pm. Each point on the charts
represents an observed temperature and load pair in a particular half hour.

The form of the variation of regional demand on the ambient temperature depends
on the seasonal period, day of the week and time of day. Where the ambient tem-
perature is above or below 18.5 ◦C, the relationship is quite linear and where the
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temperature variation is centred on 18.5 ◦C the relationship shows a strong U shape.
This suggests that the relationship can be modelled using a U-shaped functional form
with a minimum at 18.5 ◦C.

Based on the above observations, we propose that the regional load (L(t)) can be
modeled as the sum of a load which is a quadratic function of the regional temperature
(H(t)) and a non-temperature dependent load component (L̃(t)):

L(t) = a(t)+ c(t)(H(t)− Hmin)
2 + L̃(t) (3)

where a(t) represents the time varying base load when the temperature is at Hmin,
c(t) is the responsiveness of the temperature-dependent load to the squared difference
in the temperature from Hmin and Hmin is the temperature at which there is there
is no demand for heating or cooling. We further propose that the non-temperature
dependent load component can be modeled as a mean reverting stochastic process:

dL̃(t) =
[∂ ln ¯̃L(t)

∂t
−

t∫
t0

σL̃(u, t)
∂σL̃(u, t)

∂t
du+

t∫
t0

∂σL̃(u, t)

∂t
dzL̃(u)

]
dt + σL̃(t)dzL̃ (t)

(4)

σL̃(u, t) = σL̃(u) exp(−αL̃(t − u)) (5)

where ¯̃L(t) is the time-dependent deterministic mean forecast, σL̃(t) is the time-
dependent deterministic volatility, αL̃ is the mean reversion rate and zL̃(t) is a
Brownian motion. The regional load (L(t)) can be made consistent with a time-
dependent mean load forecast (L̄(t)) by adjusting the time varying base load (a(t))
such that the average of the simulated loads at each time step are equal to the load
forecast:

Δa(t) = L̄(t)− 1

N

N∑
i=1

Li (t) (6)

whereΔa(t) is the adjustment to the time varying base load (a(t)) and i = 1, . . . , N
are the simulation indices.

2.3 The Regional Reference Price Model

In Sect. 2, we described how the regional reference price depends on the lowest
price which allows the demand to be met by the generation offers to supply. This
means that as demand increases such that more expensive generation is required to
meet that demand the regional reference price will increase. Figure 11 shows the
historical relationship between the regional reference price and the regional demand
for the months of January, April, July and October between 2008 and 2012. Based
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Fig. 11 NSW regional price as a function of demand in January, April, July and October 2008–2012

on the observed relationship, we propose that the price can be decomposed into a
piecewise linear function of load plus a residual random component for prices below
$100/MWh and an additional price spike component for loads greater than around
10,000 MW.

We therefore propose the non-spiking or normal price (SN (t)) can be modeled
as the sum of a piecewise linear price function (P L P(t, L(t))) of the regional load
(L(t)) and a non-load dependent component (S̃(t)):

SN (t) = P L P(t, L(t))+ S̃(t) (7)

The non-load dependent price component can be modeled as a mean reverting sto-
chastic process:

dS̃(t) =
[∂ ln ¯̃S(t)

∂t
−

t∫
t0

σS̃(u, t)
∂σS̃(u, t)

∂t
du+

t∫
t0

∂σS̃(u, t)

∂t
dzS̃(u)

]
dt+σS̃(t)dzS̃(t)

(8)
σS̃(u, t) = σS̃(u) exp(−αS̃(t − u)) (9)

where ¯̃S(t) is the time-dependent deterministic mean forecast, σS̃(t) is the time-
dependent deterministic volatility, αS̃ is the mean reversion rate and zS̃(t) is a Brown-
ian motion.

For the price spikes (SP S(t)), we use a mean reverting Poisson process conditional
on the regional load level:

dSP S(t) =
{

0 L(t) < L P S(t)
−αP S SP S(t)dt + κP S(t)+d p(t;φP S) L(t) ≥ L P S(t)

(10)

where αP S is the mean reversion rate of the price spikes, κP S(t) is the random price
spike size which is normally distributed with mean zero and time-dependent standard
deviation γP S(t), φP S(t) is the time-dependent deterministic annualised arrival rate
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of the Poisson process dp(t), the+ superscript on κP S(t) indicates only the positive
jumps are taken and L P S(t) is the time-dependent deterministic price spike trigger
level below which no price spikes occur.

The total regional reference price (S(t)) is given by:

S(t) = SN (t)+ SP S(t) (11)

The total regional reference price (S(t)) can be made consistent with an initial
(time 0) forward price curve (F(0, t)) by proportionally adjusting the simulated total
regional reference price (S(t)) such that the average at each time step is equal to the
forward price:

SA,i (t) = Si (t)ΔS(t) (12)

ΔS(t) = F(0, t)
1
N

∑N
i=1 Si (t)

(13)

where SA,i (t) is the adjusted total regional reference price for simulation i =
1, . . . , N , Si (t) is the unadjusted total regional reference price for simulation i ,
ΔS(t) is the proportional adjustment and i = 1, . . . , N are the simulation indices.

3 Numerical Results

In this section, we estimate the model and then compare the statistical properties of
the observable simulated model variables with those of the data.

3.1 The Data

We use half-hourly data from the NSW region of the NEM. The temperature data
is for the Bankstown Airport weather station, which is typically chosen by mar-
ket participants as being the most representative for modeling the NSW regional
temperature. The regional demand and price data is from the NEM website.

3.2 Estimation

3.2.1 Temperature Model

We use the half-hourly historical temperature data from 1 January 2006 to 31 Decem-
ber 2012 for the Bankstown Airport weather station. We first estimate a piecewise
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Fig. 12 Half-hourly temperature forecast for Bankstown Airport weather station

linear hourly forecast curve function H̄(t) from the average temperature for each
month and hour as shown in Fig. 12. In order to estimate the mean reversion rate and
volatility functions, we first detrend the data by subtracting the estimated mean from
the historical temperature. To estimate the mean reversion rate we note that, using
Eq. (1), the discrete time model for the detrended temperature is2:

ΔH(t) = c0 + c1 H(t)+ σH (t)dz(t) (14)

where c1 = −αHΔt . Regressing the detrended temperature changes against the
detrended temperature levels gives an estimate of the reversion rate:

αH = 306.057

We estimate the temperature volatility function from the detrended temperature
data as the annualised sample standard deviation of the temperature changes in
“4 hourly” buckets for each month. The results are shown in tabular form in Table 1.

3.2.2 The Regional Load Model

We use the half-hourly NSW regional electricity demand for the period from 1
July 2006 to 31 December 2012 together with the corresponding temperature from
Sect. 3.2.1. We estimate the parameters a(t) and c(t) by assuming a value for
Hmin = 18.5 and regressing the demand (L(t)) against the square of the differ-

2 See Sect. 2.9 in Clewlow and Strickland (1999) for details.
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Table 1 NSW regional temperature volatility function

Hr1–4 Hr5–8 Hr9–12 Hr13–16 Hr17–20 Hr21–24

January 51.8397 79.41113 88.26753 92.49929 72.64073 55.78484
February 51.53123 66.56551 88.57734 103.5264 71.29501 56.12818
March 51.43421 69.99356 81.35919 86.48897 64.26129 64.55958
April 57.65264 92.71098 86.49076 83.37752 67.30978 68.2138
May 70.38631 100.7211 81.88056 70.56995 91.16441 77.76141
June 69.76199 85.14521 80.43355 73.7549 82.84931 74.7811
July 84.78846 96.64674 89.42756 74.8942 87.49551 86.64252
August 74.65451 119.9571 95.05989 82.45058 82.36089 82.51347
September 76.94269 119.409 97.13468 83.4198 74.65842 93.57401
October 61.62445 100.8084 91.79875 96.28022 69.67073 73.72769
November 57.17481 86.44402 95.42086 102.0853 72.58685 61.2784
December 54.68051 82.40801 83.04329 99.62553 69.26126 59.72474

Table 2 NSW regional load model base load function a(t)

Hr1–4 Hr5–8 Hr9–12 Hr13–16 Hr17–20 Hr21–24

January 6735.91 7618.79 9291.89 9381.29 9035.72 8158.80
February 6817.91 8034.46 9560.15 9473.18 9212.90 8231.10
March 6792.71 7931.97 9301.56 9102.28 8973.21 8027.74
April 6912.86 7192.69 8894.96 8833.10 9099.53 8127.20
May 7478.78 7871.04 9384.53 9081.67 9763.80 8933.73
June 7859.26 8152.13 9937.03 9363.26 10388.66 9667.22
July 8193.61 8486.54 10116.03 9367.24 10355.77 10216.50
August 7903.55 8400.09 9727.63 9271.92 9888.80 9462.26
September 7402.11 7708.02 9327.91 9018.26 9423.44 8616.41
October 7006.37 7667.81 9070.50 8849.37 8980.30 8243.97
November 6844.06 7971.42 9388.96 9209.22 9051.07 8164.09
December 6701.19 7602.08 8983.95 8748.04 8574.18 7995.82

ences (H(t) − Hmin) for “4 hourly” blocks and for each month. The results are
shown in tabular form in Tables 2 and 3.

To estimate the mean reversion rate and volatility function of the residual non-
temperature dependent load, we subtract the model values of the temperature-
dependent load from the historical load data and then use the same methodology
as in Sect. 3.2.1, which gives the following mean reversion estimate:

αL̃ = 968.108

The residual load volatility function estimates are given in tabular form in Table 4.
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Table 3 NSW regional load model quadratic function c(t)

Hr1–4 Hr5–8 Hr9–12 Hr13–16 Hr17–20 Hr21–24

January 18.36 17.93 11.80 9.65 12.24 18.99
February 17.21 17.32 13.45 11.42 12.22 15.46
March 0.00 0.00 13.13 10.92 12.45 18.38
April 2.67 1.33 5.81 3.46 8.77 11.28
May 0.74 0.00 8.93 3.24 15.09 3.40
June 1.34 1.62 7.79 27.08 16.96 3.49
July 0.00 0.00 7.12 26.07 18.42 0.00
August 1.29 0.00 12.54 10.28 25.18 4.87
September 1.38 0.00 0.00 0.54 7.91 6.98
October 0.00 0.00 5.56 5.94 6.52 2.66
November 0.90 0.00 8.04 7.64 8.28 10.24
December 0.00 0.00 11.48 11.31 12.55 16.54

Table 4 NSW regional residual load model volatility function

Hr1–4 Hr5–8 Hr9–12 Hr13–16 Hr17–20 Hr21–24

January 16326.16 11296.01 14862.76 13746.73 20065.02 13981.04
February 17253.32 6089.364 15157.53 14520.53 19295.87 12464.99
March 16605.26 2800.248 13171.52 11854.15 18978.77 12409.56
April 5043.313 7666.157 13728.24 6782.552 32092.11 15769.11
May 4247.429 14392.97 13017.31 8582.868 46095.06 14658.43
June 4042.978 18356.67 13944.13 11926.71 49868.67 10790.51
July 2894.532 20121.26 18962.07 13120.82 53588.92 10902.32
August 1889.344 17207.58 17890.93 10342.04 53564.29 13617.13
September 2175.913 13434.13 12692.27 7058.399 34081.65 16488.39
October 12882.66 14521.21 11639.84 8417.06 20158.98 12822.62
November 17120.56 8321.531 12295.69 10736.86 16220.48 11962.53
December 16598.01 9458.615 12619.3 12127.87 17347.81 14304.59

3.2.3 The Regional Reference Price Model

We use the half-hourly NSW regional electricity price and demand for the period
from 1 January 2008 to 31 December 2011.3 We set the knot points of the piecewise
linear function (Eq. 7) as 10,000, 11,000 and 12,000 MW as this is the load levels at
which the transition from base load to higher cost generation occurs. Prices above
$300/MWh are removed for the piecewise linear fitting as these will be modeled
by the price spike process. The estimation is performed separately for quarterly,
business/non-business and peak/off-peak data. The results are shown in Table 5.

To estimate the mean reversion rate and volatility function of the residual non-
load-dependent price we subtract the model values of the load-dependent price from

3 We omit 2012 from the price model estimation as carbon pricing was introduced into the market
in July 2012.
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Table 6 NSW regional price
model residual volatility
function

Peak Off peak

Q1 Business day 253.95 237.65
Q1 Non business day 162.40 211.95
Q2 Business day 258.93 246.26
Q2 Non business day 207.07 220.66
Q3 Business day 242.78 244.86
Q3 Non business day 184.98 197.55
Q4 Business day 202.46 224.90
Q4 Non business day 139.14 191.70

the historical price data and then use the same methodology as in Sect. 3.2.1, which
gives the following estimate for the reversion rate:

αL̃ = 557.102

The regional price model residual volatility function estimates are given in tabular
form in Table 6.

The mean reversion rate of the price spikes component (αP S) is estimated by using
the same approach as Sect. 3.2.1. The price spike standard deviation (γP S(t)) and
annualised arrival rate (φP S(t)) are estimated using the methodology of Clewlow
and Strickland (1999) Sect. 2.10. We obtain the following reversion rate estimate:

αP S = 5857.204

The price spikes model arrival rate and standard deviation function estimates are
given in tabular from in Table 7.

The off-peak data categories contain zero or only a few samples so we set all the
estimates to zero.

3.3 Simulation Results

In this section, we use the model parameters estimated in Sect. 3.2 to simulate the
market variables for the period January 2009–December 2012. Figure 13 shows the
temperature simulations, Fig. 14 shows the simulated load as a function of the sim-
ulated temperature for January, April, July and October months and Fig. 15 shows
the historical load against temperature for comparison. The simulations capture the
seasonal structural relationship and distributions of the temperature and load. There
are some noticeable discrepancies for the extreme values of the temperature. The
historical temperature distribution has a positive skew which is not present in the
simulations. This leads to a slight under representation of the higher load levels. This
can be seen in the January chart. The July chart shows that the temperature simu-
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Table 7 NSW regional price spike model parameter estimates

φP S(t) γP S(t)

Peak Off peak Peak Off peak
Q1 Business day 206.3825 0 1188.83 0
Q1 Non business day 130.122 0 129.708 0
Q2 Business day 156.1464 0 917.1514 0
Q2 Non business day 102.2387 0 116.0713 0
Q3 Business day 155.6113 0 1297.957 0
Q3 Non business day 46.47215 0 123.8917 0
Q4 Business day 101.0725 0 1671.039 0
Q4 Non business day 23.01478 0 135.1728 0

Fig. 13 NSW regional temperature simulation for 2009–2012

Fig. 14 NSW regional load versus temperature simulation for 2009–2012
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Fig. 15 NSW regional load versus temperature history for 2009–2012

Fig. 16 NSW regional price versus load simulation for 2009–2011

Fig. 17 NSW regional price versus load history for 2009–2011

lations have too much of a spread on the low side for the peak hours compared to
the historical data which leads to loads which are too high (too much heating based
load). This implies that the temperature volatility is too high for the winter peak.

The comparison of simulated price against load and historical price against load
for 2009–2011 is shown in Figs. 16 and 17.

The simulations capture the seasonal structural relationship and distributions of
the price and load. There are some noticeable discrepancies for the extreme values
of the load in the January and July charts. This is again due to the discrepancies
in the temperature model discussed above feeding through the load into the price
simulations. The piecewise linear fit could also be refined to better capture the peak
load price dependence, which can be seen in the January and July charts. It is also
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clear from the direct comparison of the January simulations and history that the
price spike volatility has a dependence on the load level. The model could be easily
extended to take this effect into account although estimation would be problematic
given the scarcity of the price spike data.

4 Summary and Conclusions

In this paper, we developed a general framework for the modeling of Australian
electricity market risk based on the structural relationships in the market. The model
framework is designed to be consistent with temperature and load mean forecasts and
market forward price quotes, the dependence of load on temperature, and the depen-
dence of price on load. The primary use of the model is for the accurate evaluation
of the market risk of an electricity generation and retail company but it can also be
used for the valuation of electricity market derivatives and assets. We demonstrated
the application of our framework by estimating the model using historical data for
the Australian NEM and then simulating the NEM market variables and comparing
the simulations to the historical data. The model is able to accurately capture the
structure and dynamics of the NEM.
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On an Integral Arising in Mathematical
Finance

Mark Craddock

1 Introduction

The purpose of this paper is to present a tractable form for an integral that arises in a
number of problems in analysis, financial mathematics and in other areas. For exam-
ple, it is connected to Asian option pricing, the Hartman-Watson law in stochastic
calculus as well as the problem of pricing zero coupon bonds in the Dothan model
(See below for the details). The integral in question was first derived by Yakubovich
as a fundamental solution to the parabolic PDE

ut = x2uxx + xux − x2u, (1)

see Yakubovich (2011). The solution of this PDE can be obtained by using an index
transform. This leads us to the so-called Yakubovich heat kernel (alternatively the
Yakubovich integral), which is defined by

ht (x,w) = 2

π2

∞∫
0

ke−k2t sinh(πk)Kik(x)Kik(w)dk, (2)

where the function Kν is McDonald’s modified Bessel function, Abramowitz and
Stegun (1972). The Yakubovich integral does not seem to have been evaluated in
closed form, and the fact that we need to integrate over the index of two Bessel
functions presents difficulties.

The outline of the paper is as follows. First, we provide motivation by showing
how the PDE (1) arises when we seek to price an Asian option. Then we show that

1 The integral derived by Yakubovich is slightly different, but equivalent to our formulation.
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ht is actually the heat kernel for (1). Using the Fourier sine transform, we are then
able to show how the integral may be reduced to a simpler form, which may be
explicitly evaluated as a series of error functions. Finally, we discuss some financial
applications.

2 The Asian Option Pricing PDE

The Yakubovich integral has a number of applications. To motivate our investiga-
tion, we consider Asian option pricing. Asian options are among the most popular of
path-dependent options currently traded. There is a very considerable literature on
the subject, and there are several alternative methods available for pricing. The first
is to solve a pricing PDE. Much attention has been focused on the PDE introduced by
Vecer (2001). Solving the PDE must be done numerically as no analytical solution
satisfying the necessary boundary and terminal conditions is known. Second, one may
attempt to numerically invert the Laplace transform of the price derived by Geman
and Yor (1992), Craddock et al. (2000), Fu et al. (1995), Eydeland and Geman (1995).
A fast and reasonably efficient third approach is to use the well-known approxima-
tion for the Asian price derived by moment matching. Hull (1997) describes this
method. We can also use Monte Carlo simulation. The literature is extensive, but see
Fu et al. (1995) again. Finally, we mention that a fast and accurate approximation
using Taylor expansions was obtained by Ju (2002).

Before Vecer introduced a simpler PDE, attention was focused on the PDE found
in, for example, the introductory book by Dewynne et al. (1995). This equation has
two-state variables, but is second order in only one of them. The problem of solving
this PDE motivates the current work and leads directly to the Yakubovich heat kernel.

Suppose then that we are interested in pricing an Asian option with arithmetic
average on the underlying S = {S(t) : t ≥ 0}, which follows geometric Brownian
motion. That is

dS(t) = r S(t)dt + σ S(t)dB(t), S(0) = S0,

with B = {B(t) : t ≥ 0} a standard Brownian motion. Here r denotes the short rate
of interest and σ is the volatility of the stock. Introduce ξ(t) = ∫ t

0 S(τ )dτ and let
t → T − t . It is well known that if the price of the option is V (S, ξ, t) = V̄ (ln S, ξ, t)
then

V̄t = 1

2
σ 2V̄yy +

(
r − 1

2
σ 2

)
V̄y + ey V̄ξ − r V̄ , (3)

with V̄ (ln S, ξ, 0) = f (S, ξ) for some payoff f . Boundary conditions and the deriva-
tion of the PDE are in Dewynne et al. (1995). We now take the Laplace transform in
ξ and define
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v(y, p, t) =
∞∫

0

V̄ (y, ξ, t)e−pξdξ. (4)

Integrating by parts gives

∞∫
0

ey V̄ξ (y, ξ, t)e−pξdξ = peyv(y, p, t)− ey V̄ (y, 0, t).

For the term V̄ (y, 0, t) we observe that ξ(t ′) = 0 implies that S(t ′) = 0 for all
t < t ′. As an option on an underlying whose value is always zero would usually
be worthless, it is reasonable to set V̄ (y, 0, t) = V̄ (0, 0, t) = 0. However if we
do desire a non-zero value for V̄ (y, 0, t), then this can be incorporated later using
standard variation of parameter techniques. Our problem now is to solve the PDE

vt = 1

2
σ 2vyy +

(
r − 1

2
σ 2

)
vy + (pey − r)v, (5)

with v(z, p, 0) = F(ez, p)where F denotes the Laplace transform of f in the second
variable. Equation (5) has time-independent solutions in terms of Bessel functions.
This motivates the change of variables

v(z, p, t) = e(
1
2−r/σ 2)ze

1
8σ

2α2tU

(
2
√

2ez p

σ
, p,

1

8
σ 2t

)
, (6)

where α = (2r/σ 2 + 1) and U satisfies

Uτ = y2Uyy + yUy + y2U.

This is very close to (1). Finally, letting y = i x, u(y, p, τ ) = U (−iy, p, τ ), we have

uτ = x2uxx + xux − x2u

subject to

u(x, p, 0) =
(

iσ x√
8p

)2r/σ 2−1

F

(
−σ

2x2

8p
, p

)
.

Thus, the PDE (5) can be reduced to (1). A solution of this initial value problem is
given by
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u(x, p, τ ) =
∞∫

0

u(w, p, 0)hτ (x,w)dw,

where hτ (x,w) is the heat kernel. So our next task is to compute this heat kernel.

3 The Yakubovich Heat Kernel

We consider the PDE

ut = x2uxx + xux − x2u, (7)

with u(x, 0) = φ(x) for some bounded function φ. Yakubovich has studied this
problem in detail, see Yakubovich (2011). In Yakubovich (2012) he relates the heat
kernel for this equation to the Yor integral for the density arising from the Hartman-
Watson law. In fact the PDE may be solved by means of the Kontorovich-Lebedev
transform, which was introduced by M.I. Kontorovich and N.N. Lebedev in 1938,
see Gutiérrez-Tovar and Méndez-Pérez (2007) and Yakubovich and Luchko (1994).
We use the transform pair

(K g)(k) =
∞∫

0

1

x
g(x)Kik(x)dx, (8)

where Kik(x) is the modified Bessel function of the second kind, see Abramowitz
and Stegun (1972). The inversion integral is

g(x) = 2

π2

∞∫
0

k sinh(πk)(K g)(k)Kik(x)dk. (9)

Recall that the Bessel function Kik(x) satisfies the equation

x2 K ′′ik(x)+ x K ′ik(x)− (x2 − k2)Kik(x) = 0.

We suppose that the solution of the PDE (7) is u(x, t) and let

û(k, t) =
∞∫

0

1

x
u(x, t)Kik(x)dx .

Then assuming suitable behaviour at zero for u we obtain
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ût (k, t) =
∞∫

0

1

x
ut (x, t)Kik(x)dx

=
∞∫

0

1

x
(x2uxx (x, t)+ xux (x, t)− x2u(x, t))Kik(x)dx

=
∞∫

0

(xuxx (x, t)+ ux (x, t)− xu(x, t)))Kik(x)dx

=
∞∫

0

u(x, t)
(
(x Kik(x))

′′ − K ′ik(x)− x Kik(x)
)

dx

=
∞∫

0

u(x, t)(x K ′′ik(x)+ K ′ik(x)− x Kik(x))dx

=
∞∫

0

1

x
u(x, t)(x2 K ′′ik(x)+ x K ′ik(x)− x2 Kik(x))dx

= −k2

∞∫
0

1

x
u(x, t)Kik(x)dx .

So the transformed solution û satisfies ût (k, t) = −k2û(k, t). Solving this gives
û(k, t) = û(k, 0)e−k2t , where of course û(k, 0) = (K φ)(k). Inverting û(k, t) we
have a solution to the initial value problem given by

u(x, t) = 2

π2

∞∫
0

(K φ)(k)k sinh(πk)Kik(x)dk. (10)

This can be written as

u(x, t) = 2

π2

∞∫
0

∞∫
0

φ(w)

w
ke−k2t sinh(πk)Kik(x)Kik(w)dkdw =

∞∫
0

φ(w)

w
ht (x,w)dw,

where

ht (x,w) = 2

π2

∞∫
0

ke−k2t sinh(πk)Kik(x)Kik(w)dk (11)
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is the heat kernel for (7). We will refer to this as the Yakubovich heat kernel. We will
prove the following result.

Theorem 1 The Yakubovich heat kernel is given by

ht (x,w) = 1

4
√
π t3/2

∞∫

cosh−1
(

x2+w2
2xw

)
ξe−

ξ2

4t J0

(
2xw cosh ξ − x2 − w2

)
dξ. (12)

Proof The proof uses the Fourier sine transform define by

(Fs f )(y) = g(y) =
∞∫

0

f (k) sin(ky)dk. (13)

The inverse sine transform is

(F−1
s g)(k) = f (k) = 2

π

∞∫
0

(Fs f )(y) sin(ky)dk.

On page 189 of Oberhettinger (1990), we find the Fourier sine transform

∞∫
0

sinh(πx)Kix (a)Kix (b) sin(xy)dx = J (u(a, b, y))

=
{
π2

4 J0(u(a, b, y)), u > 0

0, u < 0,

where u(a, b, y) = 2ab cosh(y)−a2−b2.Here J0 is the zeroth order Bessel function
of the first kind Abramowitz and Stegun (1972). Now we have by Fubini’s Theorem

ht (x,w) = 2

π2

∞∫
0

ke−k2tF−1
s

(
J (u(a, b, ξ)

)
(k)dk

= 4

π3

∞∫
0

∞∫
0

ke−k2t sin(ky)J (u(a, b, ξ)dkdξ

= 2

π2

∞∫
0

ξe−
ξ2

4t

2
√
π t3/2

J (u(a, b, ξ))dξ
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= 1

4
√
π t3/2

∞∫

cosh−1
(

x2+w2
2xw

)
ξe−

ξ2

4t J0

(
2xw cosh ξ − x2 − w2

)
dξ.

We finally note that for all positive x and w, the quantity x2+w2

2xw ≥ 1, so that the
lower bound of the integral is always real. �

This is a form which is much easier to evaluate numerically than the original form,
as we do not have to integrate with respect to the index of the Bessel function. The
Integral can also be further reduced to the following result.

Corollary 1 The Yakubovich heat kernel ht (x,w) may be written

ht (x,w) = 1√
4π t

exp

⎛
⎜⎝−

(
cosh−1

(
x2+w2

2xw

))2

4t

⎞
⎟⎠

+ 2wx√
4π t

∞∫

cosh−1
(

x2+w2
2xw

)
sinh ξ exp

(
− ξ

2

4t

)
J1

(
x2 + w2 − 2xw cosh ξ

)
dξ.

Equivalently

ht (x,w) = 1√
4π t

exp

⎛
⎜⎝−

(
cosh−1

(
x2+w2

2xw

))2

4t

⎞
⎟⎠

+ 1√
4π t

∞∫
0

exp

⎛
⎜⎝−

(
cosh−1

(
x2+w2+u

2xw

))2

4t

⎞
⎟⎠ J1(u)du.

Proof We simply integrate by parts and use the change of variable u = w2 + x2

− 2wx cosh ξ, and the relation J ′0(x) = −J1(x), then replace u with −u. �

It is straightforward to expand the heat kernel in a series. From the definition of
J1(x) (Abramowitz and Stegun (1972), p 360) one easily sees that

J1 (u) =
(
x2 + w2 − 2xw cosh ξ

)
2

∞∑
j=0

(
x2 + w2 − 2xw cosh ξ

)2 j

22 j j !( j + 1)! ,

with u as in the preceding proof. The important point is that the integrals
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Fig. 1 The Yakubovich Heat Kernel at t = 0.2

∞∫

cosh−1
(

x2+w2
2xw

)
sinh ξ exp

(
−ξ

2

4t

)
coshl ξdξ, l = 0, 1, 2, 3, ...

can all be evaluated in terms of the error function. Consequently, we can expand the
heat kernel as a series of error functions. For example,

∞∫

cosh−1
(

x2+w2
2xw

)
sinh ξe−

ξ2

4t dξ = 1

2

√
πet√t

(
erf

(
a + 2t

2
√

t

)
− erf

(
a − 2t

2
√

t

))
,

where a = cosh−1
(

x2+w2

2xw

)
. So we have an expansion

ht (x,w) = 1√
4π t

exp

⎛
⎜⎝−

(
cosh−1

(
x2+w2

2xw

))2

4t

⎞
⎟⎠

+ wx

4
(x2 + w2)et

(
erf

(
a + 2t

2
√

t

)
− erf

(
a − 2t

2
√

t

))

− 1

4
e4t w2x2

(
erfc

(
a − 4t

2
√

t

)
− 4erfc

(
a + 4t

2
√

t

))
+ · · · . (14)

Finally, since |J1(u)| ≤ 3/5 we have the easy estimate
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|ht (x,w)| ≤ 1√
4π t

exp

⎛
⎜⎝−

(
cosh−1

(
x2+w2

2xw

))2

4t

⎞
⎟⎠

+ 3

10
√
π t

∞∫
0

exp

⎛
⎜⎝−

(
cosh−1

(
x2+w2+u

2xw

))2

4t

⎞
⎟⎠ du.

We plot the kernel for t = 0.2 in 1.

4 Alternative Forms for ht(x,w)

We may establish other equivalent forms for the heat kernel. One such is as follows.

Proposition 1 Let

I = I (x,w, t) =
∞∫
−∞

ke−k2t sinh(πk)Kik(x)Kik(w)dk.

Then

I =
√
π

t
e
π2
4t

∞∫
−∞

e
−ξ2

4t sin

(
πξ

2t

)
sinh ξ

K1(
√

x2 + w2 + 2xw cosh ξ)√
x2 + w2 + 2xw cosh ξ

dξ,

and ht (x,w) = 1
2 I.

Proof The second part follows trivially from the fact that the integrand is even in k.
Now we use the identities

Kik(u) =
∞∫

0

e−u cosh ξ+ikξdξ

and

Kik(x)Kik(w) = 1

2

∞∫
−∞

exp

(
−uw

2x
− x(u2 + w2)

2uw

)
Kik(u)

du

u
,

see Yakubovich and Luchko (1994). Using Fubini’s Theorem we have



364 M. Craddock

I (x,w, t) = 1

2

∞∫
−∞

∞∫
−∞

∞∫
0

ke−k2t sinh(πk)

× exp

(
−uw

2x
− x(u2 + w2)

2uw

)
e−u cosh ξ+ikξ du

u
dkdξ.

Now from Gradshteyn and Ryzhik (2000) we have the integral (which can also be
done in Mathematica 9),

∞∫
0

e−
uw
2x − x(u2+w2)

2uw e−u cosh ξ du

u
= 2K0(

√
x2 + w2 + 2xw cosh ξ).

So that

I =
∞∫
−∞

∞∫
−∞

ke−k2t sinh(πk)eikξK0(
√

x2 + w2 + 2xw cosh ξ)dkdξ

= −i

√
π

4t

∞∫
−∞

d

dξ

[
e
(π+iξ)2

4t − e
(π−iξ)2

4t

]
K0(

√
x2 + w2 + 2xw cosh ξ)dξ

=
√
π

t
e
π2
4t

∞∫
−∞

e−
ξ2

4t sin

(
πξ

2t

)
sinh(ξ)

K1(
√

x2 + w2 + 2xw cosh ξ)√
x2 + w2 + 2xw cosh ξ

dξ,

upon integrating by parts and using Euler’s formula to reduce the exponential terms.
We made use of the identity K ′0(x) = −K1(x). �

Another approach to the integral is to observe that

I (x,w, t) = ∂

∂α

∫ ∞
−∞

e−k2t cosh(αk)Kik(x)Kik(w)dk
∣∣
α=π . (15)

By using the same arguments as in the previous proposition, we have the following
result.

Proposition 2 Let

J (x,w, t) =
∞∫
−∞

e−k2t cosh(αk)Kik(x)Kik(w)dk

Then
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J (x,w, t) = 2

√
π

t
e
α2
4t

∫ ∞
−∞

e−
ξ2

4t cos

(
αξ

2t

)
K0(

√
x2 + w2 + 2xw cosh ξ)dξ.

As K0(x) decays exponentially, it should be possible to numerically evaluate these
integrals quite efficiently.

5 Some Applications

For brevity, we will only sketch the applications. The forthcoming paper Craddock
and Roberts (2014) will address these in considerable detail.

5.1 Asian Options

The initial motivation for this investigation was the problem of pricing an Asian
option. Our results on the Yakubovich heat kernel immediately give us the solution
of the reduced form of the pricing equation for an Asian option derived previously.
We have

u(x, p, τ ) = 1√
4πτ

∞∫
0

u(w, p, 0) exp

⎛
⎜⎝−

(
cosh−1

(
x2+w2

2xw

))2

4τ

⎞
⎟⎠ dw

+ 1√
4πτ

∞∫
0

∞∫
0

u(w, p, 0) exp

⎛
⎜⎝−

(
cosh−1

(
x2+w2+u

2xw

))2

4τ

⎞
⎟⎠ J1(u)dudw,

where u(w, p, 0) =
(

iσw√
8p

)2r/σ 2−1
F

(
−σ 2w2

8p , p
)

. Back substitution will lead us to

the Laplace transform in the ξ variable for the Asian option and the result depends
on the payoff f that we pick. One interesting question is how this relates to the
Geman-Yor formula? One can relate the Geman-Yor formula to our result, but the
details are involved, so we defer them to Craddock and Roberts (2014). We note that
there are already efficient methods for pricing Asian options, but this method does
have some attractive features. Most notably, the double integral term can often be
ignored. This requires justification, but similar comments hold for the Dothan bond
pricing model below, and as this requires less prepatory material, we will present
some preliminary numerical examples below for this model.
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5.2 Yor’s Integral

We note that there is another connection between Asian option pricing and the
Yakubovich integral. In 1980, Yor expressed a density which is related to the
Hartman-Watson law as an integral involving only elementary functions, Yor (1980).
Specifically, the density defined by the Laplace transform

∞∫
0

e−λt dηr (t) =
I√2λ(r)

I0(r)
, (16)

has the density

p(t, r) = 1√
2π t3 I0(r)

Ht (r), (17)

where

Ht (r) = r t

π

∞∫
0

exp

(
1

2t
(π2 − x2)− r cosh x

)
sinh x sin

(πx

t

)
dx . (18)

The Hartman-Watson law is fundamental in deriving the Geman-Yor Laplace trans-
form for the price of an Asian option, Geman and Yor (1992). There is a direct
relationship between the Yakubovich heat kernel and (18). In Yakubovich (2012),
Yakubovich showed that

ht/2(x,w) =
∞∫

0

x exp

(
−1

2

(
r

x2 + w2

xw
+ xw

r

))
Ht (r)dr.

As a consequence, we have the following easy result.

Corollary 2 Let r = {r(t) : t ≥ 0} be the process with density p(t, r) defined by
(16), with r(t) = y. Then

Ex

[
I0 ((r(t))) exp

(
−1

2

(
r(t)

x2 + w2

xw
+ xw

r(t)

))]

=
∞∫

0

I0(r) exp

(
−1

2

(
r

x2 + w2

xw
+ xw

r

))
p(t, r)dr

= 1√
2π t3x

⎛
⎜⎝ 1√

4π t
exp

⎛
⎜⎝−

(
cosh−1

(
x2+w2

2xw

))2

4t

⎞
⎟⎠

⎞
⎟⎠
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+ 1√
4π t

∞∫
0

exp

⎛
⎜⎝−

(
cosh−1

(
x2+w2+u

2xw

))2

4t

⎞
⎟⎠ J1(u)du

⎞
⎟⎠ .

Here Ex [ f (r(t))] = E[ f (rt )|r(0) = x].

5.3 Bond Pricing in the Dothan Model

The Dothan model, Dothan (1978), for the short rate of interest r = {r(t) : t ≥ 0} is

dr(t) = 1

2
(1− p)σ 2r(t)dt + σr(t)dB(t),

where pσ/2 is the market price of risk. As usual, σ denotes volatility and B = {B(t) :
t ≥ 0} is a standard Brownian motion. In Pintoux and Privault (2011), Pintoux and
Privault prove that in the Dothan model, the price of a zero coupon bond P(t, T ) is
given by P(t, T ) = F(T − t, rt ), where

F(τ, r) = 2p(2r)p/2

σ p
exp

(
−σ

2 p2τ

8

) ∞∫
0

e−pyhσ 2τ/8

(√
8r

σ
, ey

)
dy. (19)

Using our expression for the Yakubovich integral, we can express the bond price as

F(τ, r) = αp,r

⎡
⎢⎣
∞∫

0

e−py√
πσ 2τ/2

exp

⎛
⎜⎝−cosh−1

(
σ(e2y+8r/σ 2)

2ey
√

8r

)2

σ 2τ/2

⎞
⎟⎠ dy

+
∞∫

0

∞∫
0

e−py√
πσ 2τ/2

exp

⎛
⎜⎝−cosh−1

(
σ(e2y+8r/σ 2+u)

2ey
√

8r

)2

σ 2τ/2

⎞
⎟⎠ J1(u)dudy

⎤
⎥⎦ ,
(20)

where αp,r = 2p(2r)p/2

σ p
e−

1
8σ

2 p2τ .

5.4 Numerical Implementation

We will not attempt to establish the most efficient method of approximation, numer-
ical evaluation of the various quantities derived above. Nor will we derive error
estimates here. In Craddock and Roberts (2014), we will investigate these issues in
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detail. However, we will make a few preliminary observations about implementation
and the consequences for pricing.

On the interval [0, 2n] the Bessel function Jk(u) is approximated by

Jk(x) ≈
n∑

m=k

dknm x2m−k, (21)

where

dknm = (−1)m+k2k−2mn1−2m(n + m − 1)!
(m − k)!(n − m)!(m!) , (22)

see Millane and Eads (2003). Thus,

ht (x,w) = 1

4
√
π t3/2

∞∫

cosh−1
(

x2+w2
2xw

)
ξe−

ξ2

4t J0

(
2xw cosh ξ − x2 − w2

)
dξ

≈ 1

4
√
π t3/2

2n∑
m=0

d0nm

2n∫

cosh−1
(

x2+w2
2xw

)
ξe−

ξ2

4t

(
2xw cosh ξ − x2 − w2

)2m
dξ. (23)

The order of the polynomial approximation required will depend on the lower limit
of integration. Each term in (23) can be evaluated in terms of exponential and error
functions. Using this we may readily compute the value of the heat kernel and estab-
lish the prices in the models we are interested in. In practice, we often need few
terms of the series and in fact it is frequently the case that the first term will suffice,
particularly for t < 1. The in-built numerical routines in software such as Mathe-
matica and Matlab can also be used to evaluate the integral with relative ease and
high accuracy.

Actually, for the Dothan model, a good approximation can often be obtained
simply by using the first term in (20), since the double integral is often small enough
that we may neglect it. For example, consider the case when r = 0.02, σ = 0.4 and
p = 2, with time to maturity of 2 years. Evaluation of (19) using (20) gives a bond
price of 0.291. The contribution of the second integral is 0.006. In fact for bonds with
maturities less than 2 years, one can show numerically that the double integral makes
essentially no contribution to the price. For example, with the same parameters as
before and time to maturity of half a year, the bond price is 0.389 and the double
integral only contributes 0.0004. For longer maturities, we have the same effect. A
10-year bond with the same parameters has a price of 0.182, with the double integral
contributing 0.0002 to the value.

A detailed investigation will be given in Craddock and Roberts (2014), but in
practice
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F(τ, r) ≈ αp,r

∞∫
0

e−py√
πσ 2τ/2

exp

⎛
⎜⎝−cosh−1

(
σ(e2y+8r/σ 2)

2ey
√

8r

)2

σ 2τ/2

⎞
⎟⎠ dy

will usually give an excellent approximation to the bond price. Similar comments
hold for Asian options, but the discussion is rather more involved and so we defer it
to Craddock and Roberts (2014).
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Change of Numéraire and a Jump-Diffusion
Option Pricing Formula

Gerald H. L. Cheang and Gim-Aik Teh

1 Introduction

Black and Scholes (1972) give an option pricing formula in terms of the stock price
and the price of a deterministic zero-coupon bond in their seminal work. Merton
(1973) provides an alternative formulation of the Black-Scholes formula in terms of
the forward price of the stock. Merton (1976) also gives an option pricing formula
where the underlying stock price process contains a compound Poisson component,
in addition to a continuous log-normally distributed component. Both Black and
Scholes (1972) and Merton (1976) assume a constant risk-free rate in their models.
However, under a stochastic interest rate term structure regime, the price of a zero-
coupon bond is not deterministic. Geman et al. (1995), through an appropriate change
in numéraire technique, give an option pricing formula where the bond price is
assumed to take on HJM-type (Heath et al. 1992) dynamics, that has a single Wiener
noise factor in common with the stock price dynamics. Their result is an extension of
the Black-Scholes-Merton option pricing formula for the case where both the stock
price and bond price share a common source of Wiener noise.

However, it has been observed that the behaviour of both stock prices and interest
rates (thus bond prices) exhibit discontinuous behaviour. For example, Ball and Torus
(1985) have documented empirical evidence of jumps in common stock prices, and
Das (2002) and Dungey et al. (2007), in interest rates and bond prices. Björk et al.
(1997a, b) extended the HJM framework to the case where the interest rates are
driven by a general marked point process as well as by a Wiener process. In this
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paper, we adopt the Geman et al. (1995) change of numéraire technique, and provide
a European call option pricing formula where the stock price dynamics follow the
Merton (1976) jump-diffusion model, under a stochastic interest rate term structure
that is an HJM type model with jumps. The stock price and the bond price processes
have different sources of Wiener noise but share a common source of jump noise
in our model. Duffie et al. (2000) have priced options under affine jump-diffusion
models with stochastic interest rates. However, their general results require the use
of Fourier transform techniques. In this paper, the derivation of our pricing formula
for a more specific model does not require Fourier transforms.

This paper is organized as follows. We introduce our extended model in Sect. 2.
In Sect. 3, we introduce a Radon-Nikodým derivative process that facilitates the
transformation of measures when we change the numérarie in our analysis. The
forward measure and the reciprocal forward measures are defined in Sects. 4 and 5
respectively. Finally before we conclude, we present our option pricing formula
in Sect. 6.

2 The Extended Model of Black-Scholes-Merton

Let (Ω,F , {Ft},Q) be a probability measure space. We are only interested in the
filtration {Ft}t≤T over 0 ≤ t ≤ T for some fixed T , the expiry time of the option.
We assume that we are already working in an equivalent risk-neutral measure Q

that corresponds to the money market account Mt = exp(
∫ t

0 rudu) as the numéraire,
where rt is the risk-free rate (possibly stochastic, and adapted to the filtration).

The market which contains the stock and bond with jump components, is inher-
ently incomplete in the Harrison and Pliska (1981) sense. There will be many equiv-
alent martingale measures that correspond to the use of the money market account
as the numéraire. It is not the aim of this paper to discuss the selection of a particular
suitable martingale measure from the original market measure P. In order to select
a suitable risk-neutral measure from the original market measure, one could employ
the minimal entropy martingale measure found in Miyahara (2001). Alternatively,

one could seek to minimize the divergence EP

[(
dQ
dP

)q]
in the manner of Jeanblanc

et al. (2007). Yet another approach would be to calibrating the model to market data,
with the aim of minimizing the relative entropy of the calibrated risk-neutral mea-
sure relative to the original measure, as done in Cont and Tankov (2004b). Hence we
assume that an equivalent risk-neutral measure Q is already specified and we define
the stock price and bond price dynamics with respect to this measure Q.

We assume that both the stock price and bond price dynamics are driven by differ-
ent Wiener components. In our model, W1,t and W2,t are correlated standard Brown-
ian motion under Q with correlation ρ, that is, dW1,t .dW2,t = ρdt, adapted to the
filtration {Ft}. Also adapted to the filtration is a homogeneous Poisson counting mea-
sure N(dy, dt) ≡ q(dy, dt) ≡ q(dy1, dy2, dt) defined over R2×[0,T ]which is asso-
ciated with a marked point process ({YTn},Nt). The intensity of the Poisson measure
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N(dy, dt) is λmQ,t(dy)dt, where λ > 0 is the constant arrival rate of the jumps of
the Poisson process Nt under Q, and mQ,t(dy) is the joint probability density of the
marks YTn under Q when Tn = t. The marks YTn at different times are independent of
each other, and they are also independent of Nt and Wt = (W1,t,W2,t)

�. The inde-
pendency assumption between the marked point process and the Wiener processes is
partly for mathematical convenience, in particular when we apply appropriate forms
of the Radon-Nikodým derivative in Theorem 1 to transform the risk-neutral measure
that we are working in to the forward measure in Sect. 4 and to the reciprocal forward
measure in Sect. 5. This is also consistent with Merton’s (1976) financial economic
arguments that the systematic risk in the model is suitably modelled with the Wiener
processes, and the unsystematic risk with an independent marked point process.

We also assume that mQ,t(dy) is non-atomic. For short, we will denote its com-
pensated measure under Q as

q̂(dy, dt) = N(dy, dt)− λmQ,t(dy)dt. (1)

Since we have two assets in our model, the jump-size Yt = (Y1,t,Y2,t)
� is a bivariate

process taking values yt = (y1,t, y2,t)
� in R

2.
Throughout this paper, we assume that St is a traded stock with continuously

paying deterministic dividend yield ζt , with return dynamics under the chosen risk-
neutral measure Q given as

dSt

St−
= (rt − ζt)dt + σ1,tdW1,t +

∫

R2

[ey1,t − 1]q̂(dy, dt) (2)

where rt is the risk-free rate and σ1,t is the (deterministic) instantaneous stock volatil-
ity per unit time. It must be noted that although the integral

∫
R2 [ey1,t −1]q̂(dy, dt) in

(2) is a double integral with respect to dy, we are effectively integrating the marginal
density mQ,t(dy2) out.

There is also a traded zero-coupon bond with return dynamics under the risk-
neutral measure Q given as

dPt,T

Pt−,T
= rtdt + σ2,tdW2,t +

∫

R2

[ey2,t − 1]q̂(dy, dt), (3)

where σ2,t is the (deterministic) instantaneous bond volatility per unit time, and
the value of the bond at maturity is PT ,T = 1. Analogous to (2), the integral∫
R2 [ey2,t − 1]q̂(dy, dt) in (3) is a double integral with respect to dy and we are

effectively integrating the marginal density mQ,t(dy1) out. We note that (3) models
the bond price dynamics obtained by introduction of jump components into the HJM
model (Heath et al. 1992), in the manner of Björk et al. (1997a, b). If the jump-sizes
are fixed instead, then we get the special case of the HJM model with fixed jumps as
in Chiarella and Nikitipoulos-Sklibosios (2003).
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The Yi,t (i = 1, 2) are random jump-sizes assumed to be correlated pairwise with
correlation Corr[Y1,t,Y2,t] = ρYt , and we define the expected proportional jump-size

κi,t ≡ EQ

[
eYi,t − 1

]
=
∫

R2

[
eyi,t − 1

]
mQ,t(dy). (4)

The moment generating function of all the jump-sizes Yt = (Y1,t,Y2,t)
� is given as

MQ,Yt (u) = EQ

[
eu�Yt

]
. (5)

We state the first assumption.

Assumption 1 The moment generating function (5) of the jump-sizes Yt exists and
is finite for all values u ∈ R

2.

For each asset, the nth jumps Y1,Tn and Y2,Tn occur together, driven by the same
Poisson arrival process Nt . The correlation between the nth return jump-sizes of
each asset is determined by the moment generating function of the joint jump-size
distribution (5). The jumps can be related to macroeconomic shocks to the system.
Should the outcome of one jump-size be zero, and the other non-zero, for example,
if Y1,Tn = 0 and Y2,Tn �= 0, then it could be attributed to idiosyncratic shocks.

In addition to the assumption on existence of the moment generating function of
the jump-sizes YTn , we also require some technical assumptions on the coefficients
of the diffusion components in the dynamics of the stock and bond prices.

Assumption 2 The interest rate (rt ≥ 0) satisfies

0 < EQ exp

⎛
⎝

T∫
0

rudu

⎞
⎠ <∞ a.s. (6)

and the deterministic volatilities satisfy

T∫
0

σ 2
1,udu <∞ and

T∫
0

σ 2
2,udu <∞. a.s. (7)

where limt→T σ2,t = 0.

Assumption 3 For 0 ≤ t ≤ T , the mean and the variance of the relative jump-sizes
of bond price satisfy

lim
t→T

EQ[Y2,t] = 0 and lim
t→T

Var[Y2,t] = 0. (8)
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Denote the doléans-dade exponential martingale under Q by EQ [·]. Then the
solutions to the stochastic differential equations for the stock (2) and the bond (3) are

St = S0 exp

⎡
⎣

t∫
0

(ru − ζu) du

⎤
⎦EQ

⎡
⎣

t∫
0

σ1,udW1,u +
Nt∑

n=1

Y1,Tn

⎤
⎦ , (9)

and

Pt,T = P0,T exp

⎡
⎣

t∫
0

rudu

⎤
⎦EQ

⎡
⎣

t∫
0

σ2,udW2,u +
Nt∑

n=1

Y2,Tn

⎤
⎦ . (10)

We reiterate that the only correlations in the model are those between the Wiener
components W1,t and W2,t , and those between the jump-size components Y1,Tn and
Y2,Tn . The Wiener processes and the jump-sizes are independent of each other. We
also assume that the correlations ρ and ρYTn

are neither ±1. For now, we make no
assumptions about the distribution of Yt . We only require its joint moment generating
function (5) to exist and that its joint density mQ,t(dy) is non-atomic.

The model (2) when the interest rate is deterministic is essentially the jump-
diffusion model of Merton (1976). We have extended Merton’s (1976) jump-diffusion
framework by introducing stochastic interest rate with jumps, resulting in the bond
price dynamics given by (3). We have also extended the option pricing example given
in Geman et al. (1995) by introducing another correlated Wiener process component
as well as jumps into the stock and bond prices. In our model given by (2) and (3),
randomness in the model is driven by the Wiener processes

Wu =
(

W1,u
W2,u

)
(11)

with correlation matrix

Σ =
(

1 ρ
ρ 1

)
, (12)

and the bivariate compound Poisson process

Nt∑
n=1

YTn =
(∑Nt

n=1 Y1,Tn∑Nt
n=1 Y2,Tn

)
(13)

where YTn is distributed in the measure Q as determined by the moment generating
function (5) with joint density mQ,t(dy) when Tn = t. The bivariate compound
process (13) has independently but non-identically distributed jumps.
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3 Transformation of Measures

In option pricing problems, the main goal is a suitable risk-neutral evaluation of
the final payoff conditional on information about the underlying asset prices up to
the current time. However, as shown in Geman et al. (1995) for the pure-diffusion
case, it is often convenient to transform the risk-neutral measure to another measure
associated with a more appropriate numéraire, in order to facilitate the derivation
of the option pricing formula. A suitable form for the Radon-Nikodým derivative
that induces a measure transformation from the chosen risk-neutral measure Q to
some equivalent measure Q̃ corresponding to some other numéraire asset, has to be
a function of Wt as well as the compound Poisson process (13).

Following Runggaldier (2003), let

Lt = exp

⎡
⎣−1

2

t∫
0

θ�u 
−1θudu−
t∫

0

(
−1θu)
�dWu

⎤
⎦

× exp

⎡
⎣−λ

t∫
0

κ ′udu+
Nt∑

n=1

(
γ�YTn + ν

)⎤⎦ , (14)

where

θu =
(
θ1,u
θ2,u

)
(15)

and

κ ′u = eνMQ,Yu(γ )− 1 = eνEQ

[
eγ
�Yu

]
− 1. (16)

The parameters, if stochastic, must be adapted to the filtration. The process Lt is a
Radon-Nikodým derivative parameterized by θu, γ and ν if EQ[Lt] = 1 for 0 ≤ t ≤
T . The following theorem which we use is standard. More general representations
expressed in terms of Lévy measures, jump measures or compensated jump measures
can be found in Colwell and Elliott (1993), Cont and Tankov (2004a) and Runggaldier
(2003).

Theorem 1 Consider the probability measure space (Ω,F , {Ft},Q) over the time
interval [0,T ] such that the Wiener process Wt and the compound Poisson process∑Nt

n=0 YTn are adapted to the filtration Ft . Suppose Lt is given by (14) with non-
stochastic parameters θu,γ and ν, and thatEQ[LT ] = 1. Then Lt is a Radon-Nikodým
derivative of some equivalent measure Q̃ with respect to Q, that is



Change of Numéraire and a Jump-Diffusion Option Pricing Formula 377

Lt = dQ̃

dQ

∣∣∣∣∣
t

= EQ

⎡
⎣−

t∫
0

(
−1θu)
�dWu

⎤
⎦× EQ

[ Nt∑
n=1

(
γ�YTn + ν

)]
. (17)

Then the Wiener processes Wi,t have drift θi,t , for i = 1, 2, under the measure Q̃,
and the compound Poisson process

∑Nt
n=0 YTn has a new arrival intensity rate

λ̃t = λ(1+ κ ′t ) (18)

with a new distribution for the jump-sizes determined by the moment generating
function

MQ̃,Yt
(u) = MQ,Yt (u+ γ )

MQ,Yt (γ )
(19)

over the interval [t, t + dt).

Proof Because of the independency assumption of the Wiener and the jump-
components in the model and in the Radon-Nikodým derivative (17), we can obtain
the new distributions of the Wiener processes and the jump-components separately
using Wiener part and the jumps part of the Radon-Nikodyḿ derivative respectively.

The Wiener part of the Radon-Nikodým derivative, given by the first term on the
right-hand side of (17), is the usual Radon-Nikodým derivative for Wiener processes
and via the usual Girsanov’s theorem, there exists W̃i,t , a standard Brownian motion
process under the transformed measure Q̃ such that

dW̃i,t = θi,tdt + dWi,t, i = 1, 2. (20)

In order to determine the new distribution of the jump part, we derive its moment
generating function under the new measure Q̃. It is given as

E
Q̃

[
eu�

∑Nt
n=1 YTn

]
=EQ

⎡
⎣EQ

⎡
⎣ Nt∑

n=1

(
γ�YTn + ν

)⎤⎦ eu�
∑Nt

n=1 YTn

⎤
⎦

= exp

⎛
⎝λ

t∫
0

(
eνMQ,Ys

(u+ γ )− 1
)

ds− λ
t∫

0

κ ′sds

⎞
⎠

= exp

⎛
⎝λ

t∫
0

(
eνMQ,Ys

(u+ γ )− 1
)

ds− λ
t∫

0

(
eνMQ,Ys

(γ )− 1
)

ds

⎞
⎠
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= exp

⎛
⎝

t∫
0

λ(1+ κ ′s)
[

MQ,Ys
(u+ γ )

MQ,Ys
(γ )

− 1

]
ds

⎞
⎠ . (21)

Thus under the transformed measure Q̃, the compound Poisson process
∑Nt

n=0 YTn

has a new arrival intensity rate given by (18) and the distribution of the jump-
sizes are determined by the moment generating function (19) over the interval
[t, t + dt). �

Remark 1 The jump part of the Radon-Nikodým derivative (17) can be written in
a more general form involving a compensated Poisson measure (see for example
Runggaldier (2003)) if the arrival intensity of the Poisson process Nt modelling the
jump-arrivals under Q is non-homogeneous. In our model (2) and (3), even though
the initial intensity of the jump-arrivals is homogeneous, we see that it will be non-
homogeneous after the appropriate measure transformations.

4 The Forward Measure

In financial economics, the stock yield, expressed in terms of units of the bond, is
known as the forward price. Thus the forward price is given as

Ft,T = Ste
∫ t

0 ζudu

Pt,T

=F0,T exp

⎡
⎣

t∫
0

(
−σ

2
1,u

2
+ σ

2
2,u

2

)
du+

t∫
0

σ1,udW1,u −
t∫

0

σ2,udW2,u

⎤
⎦

× exp

⎡
⎣−λ

t∫
0

(κ1,u − κ2,u)du+
Nt∑

n=1

(Y1,Tn − Y2,Tn)

⎤
⎦ . (22)

In the same manner, the value of the money market account can be expressed in terms
of units of the bond

Mt

Pt,T
= 1

P0,T
exp

⎡
⎣

t∫
0

(
σ 2

2,u

2
+ λκ2,u

)
du−

t∫
0

σ2,udW2,u −
Nt∑

n=1

Y2,Tn

⎤
⎦ . (23)

Under the forward measure QP, the bond Pt,T is numéraire, and the forward price

of the stock yield

{
Ste

∫ t
0 ζudu

Pt,T

}
, and the money market account in terms of units of the

bond
{

Mt
Pt,T

}
must be martingales.
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Set 1 =
(

1
0

)
, 2 =

(
0
1

)
and  =

(
1
−1

)
. By the application of Itô’s Lemma for

jump-diffusion processes (see Protter (1990) or Applebaum (2004)), the dynamics
for the forward price are

dFt,T

Ft−,T
= (σ 2

2,t − ρσ1,tσ2,t)dt + σ1,tdW1,t − σ2,tdW2,t

− λ(κ1,t − κ2,t)dt +
∫

R2

[
e
�yt − 1

]
N(dy, dt). (24)

Similarly, the dynamics for the discounted money market account are

d

(
Mt

Pt,T

)
= Mt

Pt−,T

⎡
⎢⎣σ 2

2,tdt − σ2,tdW2,t + λκ2,tdt +
∫

R2

[
e−�2 yt − 1

]
N(dy, dt)

⎤
⎥⎦ .

(25)
From (24) and (25), we see that the choice of θP,t = (−ρσ2,t −σ2,t )

�, γ = 2 and
ν = 0 in the (17) in Theorem 1 yields the Radon-Nikodým derivative

dQP

dQ

∣∣∣∣
t
= EQ

⎡
⎣−

t∫
0

(Σ−1θP,u)
�dWu

⎤
⎦× EQ

[ Nt∑
n=1

�2 YTn

]

= EQ

⎡
⎣

t∫
0

σ2,udW2,u +
Nt∑

n=1

Y2,Tn

⎤
⎦ . (26)

Thus from Girsanov’s Theorem for Wiener processes, there exist standard Brownian
motion process W̃1,t and W̃2,t under the forward measure QP such that

dW̃1,t = −ρσ2,tdt + dW1,t, (27)

and

dW̃2,t = −σ2,tdt + dW2,t . (28)

Furthermore from Theorem 1, it follows that the Poisson process Nt has a new non-
homogeneous arrival intensity

λ̃t = λEQ[e�2 Yt ] = λEQ[eY2,t ] (29)

and the moment generating function of the jump-size distributions under the forward
measure QP is
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MQP,Yt (u) =
MQ,Yt (u+ 2)

MQ,Yt (2)
. (30)

We also define the compensated Poisson counting measure under the forward measure
QP as

q̂P(dy, dt) = N(dy, dt)− λ̃tmQP,t(dy)dt. (31)

Thus the dynamics for the forward price as a martingale in the forward measure
QP are

dFt,T

Ft−,T
= σ1,tdW̃1,t − σ2,tdW̃2,t +

∫

R2

[e�yt − 1]q̂P(dy, dt). (32)

The dynamics of the discounted money market account in the forward measure are

d

(
Mt

Pt,T

)
= Mt

Pt−,T

⎡
⎢⎣−σ2,tdW̃2,t +

∫

R2

[e−y2,t − 1]q̂P(dy, dt)

⎤
⎥⎦ . (33)

From (32), the forward price can be expressed as a doléans-dade exponential mar-
tingale under the forward measure QP as

Ft,T = F0,TEQP

⎛
⎝

t∫
0

σ1,udW̃1,u −
t∫

0

σ2,udW̃2,u

⎞
⎠EQP

( Nt∑
n=1

(Y1,Tn − Y2,Tn)

)
.

(34)

5 The Reciprocal Forward Measure

Now we turn our attention to using the stock yield Ste
∫ t

0 ζudu as the numéraire. Since
Pt,T

Ste
∫ t
0 ζudu
= 1

Ft,T
, we term the measure corresponding to the stock price the reciprocal

forward measure. The reciprocal forward price is given as

1

Ft,T
= Pt,T

Ste
∫ t

0 ζudu

= 1

F0,T
exp

⎡
⎣

t∫
0

(
−σ

2
2,u

2
+ σ

2
1,u

2

)
dt +

t∫
0

σ2,udW2,u −
t∫

0

σ1,udW1,u

⎤
⎦
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× exp

⎡
⎣−λ

t∫
0

(κ2,u − κ1,u)du+
Nt∑

n=1

(Y2,Tn − Y1,Tn)

⎤
⎦ . (35)

Similarly, we express the value of the money market in terms of units of the
stock yield

Mt

Ste

t∫
0
ζudu

= 1

S0
exp

⎡
⎣

t∫
0

(
σ 2

1,u

2
+ λκ1,u

)
du−

∫ t

0
σ1,udW1,u −

Nt∑
n=1

Y1,Tn

⎤
⎦ . (36)

Under the reciprocal forward measure QS , the stock yield Ste
∫ t

0 ζudu is numéraire,

and the reciprocal forward price

{
Pt,T

Ste
∫ t
0 ζudu

}
, and the money market account in terms

of units of stock

{
Mt

Ste
∫ t
0 ζudu

}
must be martingales.

The dynamics of the reciprocal forward price are

d

(
1

Ft,T

)
= 1

Ft−,T

[
(σ 2

1,t − ρσ1,tσ2,t)dt + σ2,tdW2,t − σ1,tdW1,t

− λ(κ2,t − κ1,t)dt +
∫

R2

[
e−�yt − 1

]
N(dy, dt)

]
. (37)

Similarly, the dynamics for the discounted money market account are

d

⎛
⎝ Mt

Ste
∫ t
0 ζudu

⎞
⎠ = Mt

St−e
∫ t
0 ζudu

⎡
⎢⎣σ2

1,tdt − σ1,tdW1,t + λκ1,tdt +
∫

R2

[
e−
�
1 yt − 1

]
N(dy, dt)

⎤
⎥⎦ . (38)

From (37) and (38), we see that the choice of θS,t = (−σ1,t −ρσ1,t )
�, γ = 1 and

ν = 0 in the (17) in Theorem 1 yields the Radon-Nikodým derivative

dQS

dQ

∣∣∣∣
t
= EQ

⎡
⎣−

t∫
0

(Σ−1θP,u)
�dWu

⎤
⎦× EQ

[ Nt∑
n=1

�1 YTn

]

= EQ

⎡
⎣

t∫
0

σ1,udW1,u +
Nt∑

n=1

Y1,Tn

⎤
⎦ . (39)

Thus from Girsanov’s Theorem for Wiener processes, there exist standard Brownian
motion processes Ŵ1,t and Ŵ2,t under the reciprocal forward measure QS such that

dŴ1,t = −σ1,tdt + dW1,t, (40)
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and

dŴ2,t = −ρσ1,tdt + dW2,t . (41)

Furthermore from Theorem 1, it follows that the Poisson process Nt has a new non-
homogeneous arrival intensity

λ̂t = λEQ[e�1 Yt ] = λEQ[eY1,t ] (42)

and the moment generating function of the jump-size distributions under the recip-
rocal forward measure QS is

MQS,Yt (u) =
MQ,Yt (u+ 1)

MQ,Yt (1)
. (43)

We also define the compensated Poisson counting measure under the reciprocal
forward measure QS as

q̂S(dy, dt) = N(dy, dt)− λ̂tmQS,t(dy)dt. (44)

Thus the dynamics for the reciprocal forward price as a martingale in the reciprocal
forward measure QS are

dF−1
t,T

F−1
t−,T
= σ2,tdŴ2,t − σ1,tdŴ1,t +

∫

R2

[e−�yt − 1]q̂S(dy, dt). (45)

The dynamics of the discounted money market account in the forward measure are

d

(
Mt

Ste
∫ t

0 ζudu

)
= Mt

St−e
∫ t

0 ζudu

⎡
⎢⎣−σ1,tdŴ1,t +

∫

R2

[e−y1,t − 1]q̂S(dy, dt)

⎤
⎥⎦ . (46)

From (45), the reciprocal forward price can be expressed as a doléans-dade martingale
under the measure QS as

F−1
t,T = F−1

0,TEQS

⎛
⎝

t∫
0

σ2,udŴ2,u −
t∫

0

σ1,udŴ1,u

⎞
⎠EQS

(
−

Nt∑
n=1

(Y1,Tn − Y2,Tn)

)
.

(47)
From (32) and (45), we see that the forward price Ft,T and the reciprocal forward
price F−1

t,T both have the same Wiener volatility. From (27) and (40), we see that

dŴ1,t = −(σ1,t − ρσ2,t)dt + dW̃1,t, (48)
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and similarly from (28) and (41),

dŴ2,t = −(ρσ1,t − σ2,t)dt + dW̃2,t . (49)

6 Pricing a European Call Option

We consider a European call option Xt(St)with strike price K and maturing at T , the
same time as the bond Pt,T . The usual risk-neutral valuation of the option price at
time t is

Xt(St) = MtEQ

[
(ST − K)+

MT

∣∣∣∣Ft

]
, (50)

where Mt is the money market account. The change of numéraire result in Geman
et al. (1995) is frequently used to decompose the conditional expectation on the
right hand side of (50) into two terms which can be intepreted as the conditional
probabilities of the option being in-the-money at maturity. Although the result is
normally applied to stock price processes modelled as continuous semi-martingales,
we note that the result is also applicable to a stock and bond market driven by jump-
diffusion dynamics, as in our model. The following theorem is an adaptation of the
change of numéraire result in Theorem 2 in Geman et al. (1995) to our model.

Theorem 2 Suppose the dynamics of the stock and zero-coupon bond prices are
(2) and (3) respectively, and assumptions 1 and 2 are satisfied. The money market
account is Mt = exp(

∫ t
0 rudu). Then the risk-neutral valuation of a European style

call option (50) is equivalent to

Xt(St) ≡ Xt(Ft,T ) = Ste
− ∫ T

t ζudu
QS

[
1

Ft,T
<

1

K

∣∣∣∣Ft

]
− KPt,TQP

[
Ft,T > K

∣∣Ft
]
,

(51)
where Ft,T is the forward price of the stock given by (22).

Proof Without loss of generality, we provide the proof for the option price at time
t = 0. We denote the event that the option is in-the-money at maturity by

A = {ST > K} = {
FT ,T > K

}
. (52)

Thus

X0(S0) = EQ

[
(ST − K)+

MT

]
= EQ

[
(ST − K)

MT
1A

]

= S0e−
∫ T

0 ζudu
EQ

[
ST e

∫ T
0 ζudu

S0MT
1A

]
− KP0,TEQ

[
1

P0,T MT
1A

]
. (53)
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In (53), we note that ST e
∫ T
0 ζudu

S0MT
and 1

P0,T MT
= PT ,T

P0,T MT
are the Radon-Nikodým deriv-

atives (39) and (26) respectively. Hence it follows that

X0(S0) = S0e−
∫ T

0 ζudu
EQS [1A ]− KP0,TEQP [1A ]

= S0e−
∫ T

0 ζudu
QS [ST > K]− KP0,TQP [ST > K]

= S0e−
∫ T

0 ζudu
QS

[
1

FT ,T
<

1

K

]
− KP0,TQP

[
FT ,T > K

]
. �

Now we provide an extension of the option pricing formula given by Merton (1976)
where the stock price is driven by a jump-diffusion process. In our extension, we
include a stochastic bond with HJM-type dynamics given by (3). A nice formula in
terms of a Poisson average of log-normal distributions can be obtained if we assume
that the jump-sizes for both the stock and the bond are jointly distributed as a bivariate
normal. From this point onwards, we make the following assumption:

Assumption 4 Under the risk-neutral measure Q, the jump-sizes Yt = (Y1,t,Y2,t)
�

over the infinitesimally small interval [t, t+ dt) are distributed as a bivariate normal
with mean vector αt = (α1,t, α2,t)

� and with a covariance matrix given as


Yt =
(

δ2
1,t ρyδ1,tδ2,t

ρyδ1,tδ2,t δ2
2,t

)
, (54)

where the variance of Y1,t is δ2
1,t , the variance of Y2,t is δ2

2,t , and the correlation
between Y1,t and Y2,t is ρy.

Remark 2 From Assumption 3, the conditions limt→T α2,t = 0 and limt→T σ2,t = 0
in Assumption 4 must be satisfied.

The next theorem provides for an option pricing formula when the jump-sizes of
the stock and the bond are assumed to be correlated bivariate normals. For ease of
notation, denote the covariance matrix of the stock and zero-coupon bond log returns
arising from the Wiener components as


W ,t =
(

σ 2
1,t ρσ1,tσ2,t

ρσ1,tσ2,t σ 2
2,t

)
(55)

The option pricing formula requires the joint-density of the jump-arrival times 0 <
T1 < T2 < · · · < Tn ≤ T given NT = n under both the forward measure QP and the
reciprocal forward measure QS . A general expression for the joint-density is given in
Lemma A.1 in the Appendix. We denote gQP (t1, . . . , tn) the joint-density under the
forward measure and gQS (t1, . . . , tn) the joint-density under the reciprocal forward
measure.
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Theorem 3 Suppose the dynamics of the stock and zero-coupon bond prices are (2)
and (3) respectively, and assumptions 1, 2, 3 and 4 are satisfied. Then the risk-neutral
valuation of a European style call option (50) is equivalent to

X0(S0) =
∞∑

n=0

exp(−λT)
λn

n!

×
⎡
⎣S0e

−
T∫
0
(ζu+λκ1,u)du

T∫
0

eα1,u+
δ21,u

2 du

×
T∫

0

· · ·
t3∫

0

t2∫
0

�(d1,t1,··· ,tn)gQS (t1, · · · , tn)dt1 · · · dtn

− KP0,T e
−λ

T∫
0
κ2,udu

T∫
0

eα2,u+
δ22,u

2 du

×
T∫

0

· · ·
t3∫

0

t2∫
0

�(d2,t1,··· ,tn)gQP (t1, · · · , tn)dt1 · · · dtn

⎤
⎦ ,

(56)

where

d1,t1,··· ,tn =
ln

(
S0e−

∫ T
0 ζudu

KP0,T

)
+ ∫ T

0

(
σ2

W ,u
2 + λ̂uκ̂u

)
du+∑0<t1<···<tn≤T 

�(αti +
Yti
1)

√∫ T
0 σ 2

t,t1,··· ,tn dt
,

d2,t1,··· ,tn =
ln

(
S0e−

∫ T
0 ζudu

KP0,T

)
− ∫ T

0

(
σ2

W ,u
2 + λ̃uκ̃u

)
du−∑0<t1<···<tn≤T 

�(αti +
Yti
2)

√∫ T
0 σ 2

t,t1,··· ,tn dt
;

with

κ1,u = exp

(
α1,u +

δ2
1,u

2

)
− 1, κ2,u = exp

(
α2,u +

δ2
2,u

2

)
− 1,

λ̂u = λ(1+ κ1,u), λ̃u = λ(1+ κ2,u),

κ̂u = exp

(
−�(αu +
Yu1)+ 

�
Yu

2

)
− 1,

κ̃u = exp

(
�(αu +
Yu2)+ 

�
Yu

2

)
− 1,
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σ 2
W ,u = �
W ,u, σ 2

t,t1,··· ,tn = σ 2
W ,t +

1

T

∑
0<t1<···<tn≤T

�
Yti
.

Note. In Theorem 3, expressions of the form
∑

0<t1<···<tn≤T ati denote the sum
at1 + at2 + · · · + atn where 0 < t1 < · · · < tn ≤ T.

Proof We use the result (51) from Theorem 2. Now the probability of the option
being in-the-money under the reciprocal forward measure is

QS

[
1

FT ,T
<

1

K

]
= EQS

[
EQS [1A |NT ]

]

=
∞∑

n=0

exp

⎛
⎝−

T∫
0

λ̂udu

⎞
⎠ (

∫ T
0 λ̂udu)n

n!

×QS

(
1

FT ,T
<

1

K

∣∣∣∣NT = n

)

=
∞∑

n=0

exp

⎛
⎝−

T∫
0

λ̂udu

⎞
⎠ (

∫ T
0 λ̂udu)n

n!

×QS

(
ln

(
F0,T

FT ,T

)
< ln

(
F0,T

K

) ∣∣∣∣NT = n

)
. (57)

We note that under the reciprocal forward measureQS , the log-return of the reciprocal

forward price ln
(

F0,T
FT ,T

)
, conditional on NT = n and T1 = t1, . . ., Tn = tn, is normally

distributed as

N

⎛
⎝−

T∫
0

(
λ̂uκ̂u +

σ 2
W ,u

2

)
du−

∑
0<t1<···<tn≤T

�(αti +
Yti
1),

T∫
0

σ 2
t,t1,··· ,tn dt

⎞
⎠ ,

from (47). Thus

QS

[
1

FT ,T
<

1

K

]

=
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n=0

e−
∫ T

0 λ̂udu (
∫ T

0 λ̂udu)n

n!
T∫

0

· · ·
t3∫

0

t2∫
0

�(d1,t1,··· ,tn)gQS (t1, · · · , tn)dt1 · · · dtn.

(58)

On the other hand, the probability of the option being in-the-money under the
forward measure is
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QP
[
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]

=
∞∑

n=0

exp

⎛
⎝−

T∫
0

λ̃udu
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exp
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. (59)

We note that under the forward measure QP, the log-return of the forward price

ln
(

FT ,T
F0,T

)
, conditional on NT = n and T1 = t1, · · · , Tn = tn, is normally

distributed as

N

⎛
⎝−

T∫
0

(
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σ 2
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2

)
du+
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⎠

from (34). Thus

QP
[
FT ,T > K

]

=
∞∑

n=0

e−
∫ T

0 λ̃udu (
∫ T

0 λ̃udu)n

n!
T∫

0

· · ·
t3∫

0

t2∫
0

Φ(d2,t1,··· ,tn)gQP (t1, · · · , tn)dt1 · · · dtn.

(60)

The substitution of (58) and (60) into (51) for the case when t = 0 and further sim-
plification completes the proof. �

Remark 3 Under Merton’s (1976) jump-diffusion model, the interest rate rt = r
is assumed constant. The stock price (2) in Merton’s model has constant parame-
ters σ1,t = σ1, and relative jump-sizes Y1,Tn that are independent and identically
distributed normals N(α1, δ

2
1). In place of (3), the bond price dynamics is given by

dPt,T = rPt,T dt, (61)
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with PT ,T = 1 and all other parameters set to zero. It is easy to see that the forward
measure QP and the risk-neutral measure Q are identical under Merton’s (1976)
model. The forward price volatility is the same as the volatility of the stock price
since the non-stochastic bond does not have any volatility. Merton’s (1976) option
pricing formula can be obtained as a special case of our model.

Remark 4 In place of a stock and bond, it is possible to derive a pricing formula for a
European style exchange option where the dynamics of both stock prices are driven
by jump-diffusion processes. A similar change of numéraire approach is taken in
Cheang and Chiarella (2011) in the derivation of the pricing formula for the exchange
option under jump-diffusion dynamics.

7 Conclusion

This paper has extended the results of Geman et al. (1995) and Merton (1976) for
pricing a European call option on the stock in the case where the stock price and
bond price returns both exhibit jump-diffusion characteristics. This allows us to
incorporate a pricing model for the call option where the bond price dynamics are
also discontinuous. Merton’s (1976) jump-diffusion model for option pricing is a
special case of our model.

Appendix

In this appendix, we state a result involving the distribution of the arrival times
(T1,T2, . . . ,Tn) of a non-homogeneous Poisson process NT conditioned on n arrivals
NT = n over the interval (0,T ].

Lemma A.1 Consider a non-homogeneous Poisson process Nt with intensity λt

under some probability measure P. Let the time of the ith arrival be Ti = ti where
0 < t1 < t2 < · · · < tn ≤ T. Conditioned on NT = n, the joint density of the times
of the arrivals is

gP(t1, · · · , tn) =
⎧⎨
⎩

n!∏n
i=1 λti[∫ T

0 λtdt
]n for 0 < t1 < t2 < · · · < tn ≤ T ,

0 otherwise.
(A.1)

The proof can be found in standard texts on point processes, e.g. Daley and
Vere-Jones (1988). In the context of Theorem 3 in this paper, for 0 < t1 < t2 <

· · · < tn ≤ T, the joint density gQS (t1, . . . , tn) = n!
∏n

i=1 λ̂ti[∫ T
0 λ̂tdt

]n and gQP (t1, . . . , tn) =

n!
∏n

i=1 λ̃ti[∫ T
0 λ̃tdt

]n .
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