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Abstract. Discovering approximately recurrent motifs (ARMs) in time-
series is an active area of research in data mining. Exact motif discovery
was later defined as the problem of efficiently finding the most similar
pairs of timeseries subsequences and can be used as a basis for discover-
ing ARMs. The most efficient algorithm for solving this problem is the
MK algorithm which was designed to find a single pair of timeseries sub-
sequences with maximum similarity at a known length. Available exact
solutions to the problem of finding top K similar subsequence pairs at
multiple lengths (which can be the basis of ARM discovery) are not scale
invariant. This paper proposes a new algorithm for solving this problem
efficiently using scale invariant distance functions and applies it to both
real and synthetic dataset.

1 Introduction

Discovering approximately recurrent patterns in timeseries is a basic problem in
data mining and provides the basis for solving many real world problems (e.g.
gesture discovery [10], any-time nearest neighbor algorithms [12], fluid imitation
[8], etc). Consider a robot watching free hand motion of a human operator while
operating another actor using gestures [10]. The ability to automatically discover
recurring motion patterns allows the robot to learn important gestures related
to this domain. Consider an infant listening to the speech around it. The ability
to discover recurring speech patterns (words) can be of great value in learning
the vocabulary of language. In both in these cases, and in uncountable others,
the patterns do not recur exactly in the perceptual space of the learner. These
cases motivate our search for an unsupervised algorithm that can discover these
kinds of approximately recurring motifs (ARMSs) in general time-series. Several
algorithms have been proposed for solving this problem [7] [5] [1] [9].

A promising approach to solve the ARM problem is to use an algorithms that
finds ezactly the K timeseries subsequence pairs (called 2-motifs) of maximal
similarity then use them as the basis for discovering recurrent patterns which by
definition must have maximal similarity between its pairs. The naive algorithm
for solving this problem exactly for a time series of length n and motifs of
lengths between [; and Iy = I3 + [ has a time complexity of O (nQKZ). This
quadruple complexity makes it impractical to apply this algorithm except for
short timeseries, short motifs, and short motif length ranges.
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The simpler problem of exact discovery of the top 2-motif of a given length in
a timeseries was defined by Mueen and Keogh [12] in 2009 and an efficient exact
solution with amortized linear complexity was proposed (called the MK algo-
rithm). This algorithm reduced the amortized time complexity from quadratic
to linear which makes it practical to apply it to moderately long timeseries. The
MK algorithm uses the Euclidean distance between zscore normalized subse-
quences as a dissimilarity measure. The main advantage of this distance function
is that it is offset and scale invariant. It was also shown that it can provide a
comparable performance to Dynamic Time Wrapping [4].

Mohammand and Nishida [9] proposed MK+ which is an efficient extension
of MK to discover top K 2-motifs of a given length using the same distance
function and showed that it outperforms iterative application of the MK algo-
rithm. MK+ was further extended in [6] (MK++) to discover top K 2-motifs of
a range of lengths but assuming that the distance between two subsequences of
the timeseries cannot decreased with increased length. This assumption is true
of the Euclidean distance and Euclidean distance between mean-shifted subse-
quences but is not true for zscore normalized subsequences. This means that
MK++ cannot be used to discover scale-invariant 2-motifs which means that it
cannot be a basis for scale invariant ARM discovery.

Recently, Mueen proposed MOEN [11] for solving the scale invariant version
of the problem tackled in this paper. The main idea of MOEN is to calculate a
lower bound on the distance between any two subsequences at length [ given this
distance at length [—1. Using this lower bound, it is possible to efficiently discover
2-motifs at different lengths. MOEN works with zscore normalized subsequences
but the proposed algorithm can be applied to a more general class of distance
functions.

This paper proposes two solutions to this problem: The first approach is to
use a different normalization technique by dividing the mean shifted subsequence
by its range (difference between maximum and minimum values) rather than
standard deviation and using MK++ with minimal modification. We show that
this renders the algorithm approximate but in most cases leads to exactly the
same results as the exact algorithm. The second approach called sMD (for scale-
invariant Motif Discovery) is to drive an incremental method to calculate any
normalized distance function and then to use it to find motifs at all lengths in
parallel leading to an exact 2-motif discovery algorithm.

The rest of the paper is organized as follows: Section 2 gives the problem
statement. Section 3 describes MK and MK++ that form the basis of the pro-
posed algorithm. Section 4 details the proposed incremental distance calculation
method and section 5 gives the details of the proposed algorithm which is eval-
uated in section 6. The paper is then concluded.

2 Problem Statement

A time series z (t) is an ordered set of T' real values. A subsequence z; ; = [z (¢) :
z (j)] is a continguous part of a time series . In most cases, the distance between
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overlapping subsequences is considered to be infinitely high to avoid assuming
that two sequences are matching just because they are shifted versions of each
other (these are called trivial motifs [3]). In this paper we utilize the following
definitions:

Definition 1. 2-Motif: Given a timeseries = of length T, a motif length L, a
maximum internal overlap 0 > wMO > 1, maximum between-motifs overlap
0 > WO > 1, and a distance function D(.,.); the top 2-motif is a pair of
subsequences s1, so of length L with minimum distance compared with any other
pair of subsequences in the time-series that have an overlap less or equal to
wM O, the 2% 2-motif is the pair of subsequences overlapping the top 2-motif no
more than bM O that have the minimum distance compared with any other pair
satisfying this overlapping condition. The K** 2-motif is the pair of subsequences
overlapping none of the top to the K — 1** 2-motif more than bM O that have
the minimum distance compared with any other pair satisfying this overlapping
condition.

Using this definition, the problem statement of this paper can be stated
as: Given a time series x, minimum and maximum motif lengths (Lpmin and
Linaz), a mazimum allowed within-motif overlap (wMO), and a mazimum al-
lowed between-motifs overlap (bMO), find the top K 2-motifs with smallest motif
distance among all possible pairs of subsequences.

3 MK and MK++ Algorithms

The MK algorithm finds the top 2-occurrences motif in a time series. The main
idea behind MK algorithm [12] is to use the triangular inequality to prune large
distances without the need for calculating them. For metrics D (.,.) (including
the Euclidean distance), the triangular inequality can be stated as:

D(A, B) — D(C, B) < D(A,C) (1)

Assume that we have an upper limit on the distance between the two occurrences
of the motif we are after (th) and we have the distance between two subsequences
A and C and some reference point B. If subtracting the two distances leads
a value greater than th, we know that A and C' cannot be the motif we are
after without ever calculating their distance. By careful selection of the order
of distance calculations, MK algorithm can prune away most of the distance
calculations required by a brute-force quadratic motif discovery algorithm. The
availability of the upper limit on motif distance (th), is also used to stop the
calculation of any Euclidean distance once it exceeds this limit. Combining these
two factors, 60 folds speedup was reported in [12] compared with the brute-force
approach.

The inputs to the algorithm are the time series x, its total length T', motif
length L, and the number of reference points N, .The algorithm starts by se-
lecting a random set of IV, reference points. The algorithm works in two phases:
The first phase (called hereafter referencing phase) is used to calculate both the



420 Y. Mohammad and T. Nishida

upper limit on best motif distance and a lower limit on distances of all possible
pairs. During this phase, distances between the subsequences of length L start-
ing at the IV, reference points and all other T'— L + 1 points in the time series
are calculated resulting in a distance matrix of dimensions N, x (T'— L + 1).
The smallest distance encountered (Dpest) and the corresponding subsequence
locations are updated at every distance calculation.

The final phase of the algorithm (called scanning step hereafter) scans all
pairs of subsequences in the order calculated in the referencing phase to ensure
pruning most of the calculations. The scan progressed by comparing sequences
that are k steps from each other in this ordered list and use the triangular
inequality to calculate distances only if needed updating Dpyes:. The value of k
is increased from 1 to T'— L + 1. Once a complete pass over the list is done with
no update to dpest, it is safe to ignore all remaining pairs of subsequences and
announce the pair corresponding to Dpest to be the exact motif.

A better approach to discover the top K 2-motifs of a given length was sug-
gested in [9] called MK+ that uses a single scanning rather than K-scanning
runs. This approach can also be applied for every length to solve our problem.

Mohammad and Nishida [6] recently proposed an algorithm for solving the
multi-length motif discovery problem (by iteratively running a modified version
of MK) called MK++. The MK++ algorithm starts by detecting 2-motifs at the
shortest length (L.,,) and progressively finds 2-motifs at higher lengths. The
algorithm keeps three lists: Dyesrs representing a sorted list of K best distances
encountered so far and Lpests representing the 2-occurrence motif corresponding
to each member of Dpegts, and ppests keeping track of the means of the sub-
sequences in Lpests- The best-so-far variable of MK is always assigned to the
maximum value in Djpests. During the referencing phase, the distance between
the current reference subsequences and all other subsequences of length L.y,
that do not overlap it with more than wMO X L,,;, points are calculated. For
each of these distances (d) we apply the following rules in order:

Rule 1. If the new pair is overlapping the corresponding Lypes:s (i) pair with
more than wM O x L points, then this 7 is the index in Dyegss to be considered

Rule 2. If Rule! applies and D < Dpegs (), then replace Lpests (1) with P.

Rule 3. If Rule! does not apply but D < Dpesss (i), then we search Lpests for
all pairs Lpests (¢) for which Rulel applies and remove them from the list.
After that the new pair P is inserted in the current location of Lyesis and D
in the corresponding location of Dyests

The main problem with MK++ is that it assumes that the distance func-
tion is nondecreasing which makes it inappropriate for scale-invariant distance
functions.

4 Incremental Scale-Invariant Distance Calculation

We utilize the following notation: zy, is the k’s element of the timeseries « where

x is an ordered list of real numbers of length L > I. The symbols pul, o!,
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ma!, ;mn! stand for the mean, standard deviation, maximum and minimum of z'.
The normalization constant 7! is assumed to be a real number calculated from
x! and is used in this paper to achieve scale-invariance by either letting rl, = o,
(zscore normalization), or r}, = ma!, —mn! (range normalization). The distance
function (between any two timeseries 2 and y) used in this paper has the general

form: )
e A e
Dyy = Zk:@ ( el T v ) (2)

This is an Euclidean distance between two subsequences Z and 7, where
Zkz(z,lc — Mlz) /rL. This means that it satisfies the triangular inequality which
allows us to use the speedup strategy described in section 3. Nevertheless, be-
cause of the dependence of 7! and ré on data and length, it is no longer true
that Dif;l > Dfﬁy and we cannot directly use MK++ [6]. Moreover, once any of
these two values change, we can no longer use any catched values of Z and .

We need few more definitions: of, = ri=1/rl, 6L = rl/rl Al = 2 — 6Ly,
n,m

Wiy = py' — O, py" and ,ué,y = l,u;y. Notice that it is trivial to prove that the
mean of the sequence <Amyl> is equal to ,u;y.
The first contribution of this paper is a novel incremental formula for calcu-

lating scale invariant distances between time-series subsequences which is stated
in the following theorem:

Theorem 1. For any two timeseries  and y of lengths L, > [ and L, > [,

and using a normalized distance function Diy of the form shown in Equation 2,
we have:
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A sketch of the proof for Theorem 1 is:
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Notice that this is the form of a variance equation (since the mean of the sequence

<Azyl> isequal to ,uéy) and by simple manipulations we can arrive at the following
equation:

D, = (1) (1) + 5, (a)°) o
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From Equation 2, it follows that:

—2
DIl = (L) (—(l+1 (bt +Zk L (a0 ) (4)

Subtracting Equations 3 from Equation 4, using the definitions of a and 0 given
in this section and after some manipulations we get the equation in Theorem 1.

The important point about Theorem 1, is that it shows that by having a
running sum of g, Yk, (vx)?, (yk)?, and zxyk, we can incrementally calculate
the scale invariant distance function for any length [ given its value for the
previous length [ — 1. This allows us to extend the MK+ algorithm directly to
handle all motif lengths required in parallel rather than solving the problem for
each length serially as was done in MK++.

The form of Dé‘gl as a function of Di,y is quite complicated but it can be
simplified tremendously if we have another assumption:

Lemma 1. For any two timeseries « and y of lengths L, > [ and L, > [, and
using a normalized distance function D! 2y Of the form shown in Equation 2, and

I+l 1 — b we have:

1 l 2
T (N [
(r%)

Lemma 1 can be proved by substituting in Theorem 1 noticing that given the
assumptions about r}, and 7!, we have ATt = Al and Pplrt =tultt,

What Lemma 1 Shows is that if the normahzatlon constant did not change
with increased length, we need only to use the running sum of x; and y; for
calculating the distance function incrementally and using a much simpler for-
mula. This suggests that the normalization constant should be selected to change
as infrequently as possible while keeping the scale invariance nature of the dis-
tance function. The most used normalization method to achieve scale invariance
is zscore normalization in which r}, = ol. In this paper we propose using the
— less frequently used — range normahzatlon (rl !

assuming that .1 =7l and Ty =l

Yo

L = ma!, — mnl) because the
normalization constants change much less frequently. To support this claim we
conducted two experiments. In the first experiment, we generated 100 timeseries
pairs of length 1000 each using random walks and calculated the fraction of time
in which either ! or ré changed using both zscore and range normalization.
The zscore normalization constant changed 15.01% of the time while the range
normalization constant changed only 0.092% of the time. In the second experi-
ment, we used 50 timeseries representing the angles of wrist and elbow joints of
an actor while generating free gestures as a real world dataset. The zscore nor-
malization constant changed 34.2% of the time while the range normalization
constant changed only 0.11% of the time. This suggests that just ignoring the
change in the normalization constant would not affect the quality of returned
2-motifs even though it will render the algorithm approximate.

The formulas for incremental evaluation of the distance function given in this
section assume that the change in length is a single point. Both formulas can be
extended to the case of any difference in the length but proofs are much more
involved and due to lack of space will not be presented.
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5 Proposed Algorithm

The second contribution of this paper is to use the incremental normalized dis-
tance calculation formulas of Theorem 1 and Lemma 1 to extend the MK al-
gorithm to handle the scale-invariant multi-length 2-motif discovery problem
stated in section 2.

The first approach — as suggested by Lemma 1- is to use the range normaliza-
tion and modify the calculation of distances in the D5 list using the formula
proposed in Lemma 1. Notice that during the scanning phase, the algorithm will
decide to ignore pairs of subsequences based on the distances between them and
reference points. We can either keep the exactness of the algorithm by recalculat-
ing the distance between the pair and all reference points at every length using
the formula given in Theorem 1 or accept an approximate solution (that should
not be much worse than the exact one by Lemma 1) and use the distances to
reference points from previous lengths as lower bounds. In this paper we choose
the second (approximate) method to maximize the speed of the algorithm. This
approach is called MK++ for the rest of this paper. We will show that the pro-
posed algorithm is faster than this approzimate solution while being an exact
algorithm.

The second approach is to use the formula in Theorem 1 and run the two

phases of the MK algorithm in parallel for all lengths. The algorithm starts
similarly to MK+ by calculating the distance between all subsequences of the
minimum length and a randomly selected set of reference points. These dis-
tances will be used later to find lower bounds during the scanning phase. Based
on the variance of the distances associated with reference points, these points
are ordered. The subsequences of the timeseries are then ordered according to
their distances to the reference point with maximum variance. These steps can
be achieved in O (nlogn) operations. The distance function used in these steps
(Dfun) uses Equation 2 for distance calculation but in the same time keeps the
five running summation (zg, vk, (zx)?, (yx)?, and xxyx) needed for future in-
cremental distance calculations as well as the maximum and minimum of each
subsequence. After each distance calculation the structure Si__,. is updated to
keep the top K motifs at this length with associated running summations using
the same three rules of MK++ (see section 3).
The next step is to calculate the Séest s list storing distances and running sum-
mations for all lengths above the minimum length using the function D;,. which
utilized Theorem 1 to find the distances at longer lengths. The list is then sorted
at every length. Both D;,. and Dy, update the bsf variable which contains
the best-so-far distance at all lengths and is used if the run is approximate to
further prune out distance calculations during the scanning phase.

The scanning phase is then started in which the subsequences as ordered
in the previous phase are taken in order and compared with increasing offset
between them. If a complete run at a specific length did not pass the lower-
bound test , we can safely ignore all future distance calculations at that length
because by the triangular inequality we know that these distances can never be
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lower than the ones we have in S} Scanning stops when all lengths are fully
scanned.

During scanning we make use of Theorem 1 once more by using an incremental
distance calculation to find the distances to reference points and between cur-
rently tested subsequences. If we accept approximate results based on Lemma
1, we can speed things up even more by not calculating the distances to refer-
ence points during the evaluation of the lower bound and by avoiding this step
all-together if the distance at lower length was more than the current maximum

. . l
distance in Sy,

ests”

6 Evaluation

We conducted a series of experiments to evaluate the proposed approach to exist-
ing state of the art exact motif discovery algorithms. We evaluated MK++ (with
the modifications discussed in section 5) and sMD proposed in this paper to the
following algorithms: iterative application of the MK algorithm (i M K'), the brute
force approach of just comparing all possible pairs (using only bsf to prune cal-
culations) at all lengths (called BF' from now on), the brute-force algorithm but
utilizing the incremental distance calculation proposed in section 4.

In the first experiment, we evaluated the five algorithms for scalability relative
to the timeseries length. We used the EEG trace dataset from [12] and applied
the algorithm to the first subsequence of length 1000, 5000, 10000, 15000, and
20000points. The motif range was 64 to 256 points and K was 15. Because it
is always the case for all of these algorithms that execution time will increase
with increased length, we did not evaluate any algorithm for lengths larger than
the one at which its execution time exceeded one hour. Fig. 1-a shows the exe-
cution time in seconds of the six algorithms as a function of timeseries length.
Notice that sMD, and BF++ outperform all other algorithms for even moder-
ate lengths. The fact that the brute-force algorithm is better than iterative MK
and even MK++ supports the effectiveness of the proposed incremental distance
calculations because both iterative MK and MK++ cannot effectively utilize it.

The second experiment explored the effect of motif length range. We used the
same dataset used in the first experiment and a fixed timeseries length of 1000
points. We used a minimum motif length of 50 and varied the maximum motif
length from 54 to 249. K was 15 again and we stopped the execution in the same
fashion as in the first experiment. Fig. 1-b shows the execution time in seconds
of the six algorithms as a function of the motif length range. Again sMD, and
BF++ outperform the other three algorithms.

In the final experiment, we tested the application of the proposed algorithm
as the basis for ARM discovery by first deleting all 2-motifs of length [ that are
covered by 2-motifs of a higher length then combine 2-motifs at each length if
either of their subsequences are overlapping more than a predefined threshold.
We used the CMU Motion Capture Dataset available online from [2]. All the
timeseries corresponding to basketball and general exercise and stretching cate-
gories were used. The occurrences of each recurring motion pattern in the time
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Fig. 1. Comparing scalability of the proposed algorithm (sMD) with other exact motif
discovery algorithms. See text for details.

series of the 20 available in this collection were marked by hand to get ground
truth information about the locations of different motifs. The total number of
frames in the 20 time series was 37788. Timeseries length ranged from 301 to
5357 points each. Before applying motif discovery algorithms, we reduced the
dimensionality of each time series using Principal Component Analysis (PCA).
To speedup PCA calculations, we used a random set of 500 frames and applied
SVD to it then projected the whole time series on the direction of the first
Eigen vector.

We applied sMD, MK++, PROJECTIONS [13], and MCFull [7] with a motif
length between 100 and 300 to the 20 time series and calculated the accuracy
and execution time for each of these five algorithms. The proposed algorithm
achieved the highest accuracy (87% compared with 83% for MK++, 74% for
MCFull, and 64% for the PROJECTIONS algorithm) and shortest execution
time (0.0312 seconds per frame compared with 0.63 seconds for MK++, 3.2 for
MCFull, and 10.3 seconds per frame for PROJECTIONS). These results show
that the proposed algorithm is applicable to real-world motif discovery.

7 Conclusions

This paper presented an incremental formula for calculating scale invariant dis-
tances between timeseries. This formula was then used to design an algorithm for
scale invariant multi-length exact motif discovery (called sMD). The proposed
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algorithm was evaluated against brute-force solution of the problem and two
other motif discovery algorithms (MK++ and iterative application of the MK
algorithm). The proposed algorithm is an order of magnitude faster than both
of them for timeseries of moderate size (10000points).

The work reported in this paper opens several directions of future research.
The most obvious direction is parallelizing the scanning phase of the algorithm.
Another direction is integrating the proposed incremental distance calculation
method, the lower bound used in MOEN and the pruning technique of the MK
algorithm to provide even faster exact motif discovery. A third direction of fu-
ture research is to utilize top-down processing (i.e. from higher to lower motif
lengths) in conjunction with the bottom-up processing of the proposed algorithm
to guarantee that 2-motifs found at every length are not overlapping those at
higher lengths.
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