
A Data Driven Approach for Smart Lighting

Hongyu Guo, Sylvain Letourneau, and Chunsheng Yang

National Research Council of Canada
1200 Montreal Road, Ottawa, Ontario

{hongyu.guo,sylvain.letourneau,chunsheng.yang}@nrc-cnrc.gc.ca

Abstract. Smart lighting for commercial buildings should consider both
the overall energy usage and the occupants’ individual lighting prefer-
ences. This paper describes a study of using data mining techniques to
attain this goal. The lighting application embraces the concept of Office
Hotelling, where employees are not assigned permanent office spaces, but
instead a temporary workplace is selected for each check-in staff. Specif-
ically, taking check-in workers’ light requirements as inputs, a collective
classification strategy was deployed, aiming at simultaneously predicting
the dimming levels of the shared luminaries in an open office sharing
light. This classification information, together with the energy usages for
possible office plans, provides us with lighting scenarios that can both
meet users’ lighting comfort and save energy consumption. We compare
our approach with four other commonly used lighting control strategies.
Our experimental study shows that the developed learning model can
generate lighting policies that not only maximize the occupants’ lighting
satisfaction, but also substantially improve energy savings. Importantly,
our data driven method is able to create an optimal lighting scenario
with execution time that is suitable for a real-time responding system.

1 Introduction

Smart lighting, which aims to improve on both the overall energy usage and
the occupants’ individual lighting comfort, has been identified as a potential
market of 4.5 billion dollars in revenue by 20161. Such smart lighting is of im-
portance, not only for the “green” concept in terms of energy efficiency, but also
for “personalized” office space.

Recent research has shown that buildings consume one-third of the total pri-
mary energy in the U.S., and of which, lighting, in particular, accounts for about
30% [9,10]. To cope with this increasing operational expenditure, modern light-
ing systems aim to be designed to minimize the energy consumption. Equally
important, modern lighting also needs to take into account the occupants’ light-
ing preferences. Studies have indicated that lighting comfort, for example, can
dramatically impact workers’ moods and thus productivity [8,13,14]. This is
especially true under the context of Office Hotelling, where a company does
not assign permanent office spaces for employees; instead it selects a temporary
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workspace for each check-in staff. As a result, in addition to minimizing energy
saving, introducing personalized lighting for occupants in commercial buildings
is also of great importance [4].

Fig. 1. The mock-up smart lighting office with six cubicles

This paper discusses a study of using a data driven approach to attain the
above goals. Specifically, we apply recent data mining techniques to generate
lighting scenarios for an open office sharing light, within the context of Office
Hotelling. Figure 1 depicts the demonstration laboratory being set up for this
application. This laboratory includes six cubicles, and sensors were installed in
various positions of each cubicle in order to measure the environmental data such
as temperature and light level. The sensor positions are shown at the bottom-
right corner of Figure 1. The nine (9) shared lights are on the ceiling, and can
be adjusted by either the computer in each cubicle or the center control system
installed. The lighting policy generating unit here takes aim at creating lighting
scenarios that not only minimize energy consumption but also satisfy users’ light
requirements, based on occupants’ lighting preferences.

To generate a lighting scenario, the light requirements for the six desks are first
obtained and used as inputs for the smart lighting system. Next, the dimming
levels for the nine lights on the ceiling are determined by a machine learning
classification model. By doing so, such classification information will be able to
provide us with lighting scenarios that can both match users’ preferred lighting
and save energy consumption, provided that we have the energy usages for pos-
sible office plans. To this end, to obtain the various energy usages of potential
office arrangements, we shuffle the workplaces of the employees, which is a prac-
tical approach within the office hotelling context where workers typically have
different offices each time they check in. In this way, an energy saving lighting
scenario, for instance, could be assigning closer offices to workers with similar
lighting preferences. When compared with four other alternative lighting control
strategies, our study shows that the developed data driven learning model can
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generate, within reasonable responding time, lighting policies that not only max-
imize the occupants’ lighting satisfaction, but also substantially improve energy
savings.

The rest of the paper is organized as follows. Section 2 outlines our prediction
task and challenges. Next, in Section 3, we discuss our modeling approach. This
is followed by an empirical study in Section 4. Finally, Section 5 concludes the
paper and outlines our future research directions.

2 Data Mining Task and Challenge

2.1 Task Description

Constrained by the lighting preferences of the check-in employees in the office,
the aim of the smart lighting system is to generate an energy saving lighting
scenario. Also, the system has to be able to create the optimal lighting scenario in
a reasonable execution time which is suitable for a real-time responding system.

Fig. 2. Framework of the smart light control system

Figure 2 depicts the framework of our smart lighting control system. In detail,
the input of this lighting system is the check-in occupants’ light preferences.
With such input, we can have 720 different positioning scenarios for the system.
That is, we can assign an occupant to any one of the six desks in the room. In
our approach, before initiating the classification system, we shuffle the positions
of the individuals, and then use the shuffled scenarios as inputs. Subsequently,
the classification system generates the output for each of the 720 positioning
arrangements. In this way, we then can rank them in a specific order. Hence,
the automatic system is able to choose the one that both saves energy and
satisfies users’ preferences. By doing so, for the checked-in occupants in the
room, the classification system is able to generate multiple position and lighting
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arrangements, each with different preference-matched level and energy usage. As
highlighted in Figure 2, the optimal one is then chosen to actuate the luminaries.

2.2 Modeling Setup

Practically, it is a common approach to use a Synthetic Imaging System for light
design [1]. For instance, the RADIANCE system is often used by domain experts
to simulate different lighting scenarios and to foresee the effects of tailored con-
figurations. In our studies, the laboratory as depicted in Figure 1 was simulated
using the RADIANCE system, where each of the configurable light sources has
three dimming levels, i.e. Low, Median, and High. By doing so, the light on the
ceiling of the room can be controlled by the RADIANCE system, and the illu-
minance values on each of the desks in the room can be accurately measured in
Lux. Consequently, the data for the machine learning task was produced through
this simulated environment. To this end, the collected data include all the com-
binations of the lighting levels on the ceiling, and the resulting measurements
on the desks. In total, 19683 instances were collected, each is composed of six
attributes, corresponding to the illuminances on the desks, as well as nine label
sets, which reflect the nine luminaries’ dimming levels.

2.3 Modeling Challenge

From a data mining perspective, this task can be mapped into a multi-target
classification problem. That is, using six inputs X (i.e., occupants’ light require-
ments on the desks) to predict the nine outputs Y (i.e., the dimming levels of
the nine light sources on the ceiling): Y = f(X). It is worth noting that, in such
applications, correctly classifying all target variables of an instance is required.
As a result, one needs to consider a classifier has classified an instance correctly
only if all target variables of that instance are correctly determined (i.e., “exact
match”). In other words, the overall accuracy here refers to the “exact match”
accuracy. Consequently, the main aim for such classification algorithm is to take
aim at achieving higher “exact match” accuracy through learning a function f
that maps X to Y .

To deal with such multi-target tasks, one straightforward approach is to learn
a binary or multi-class classifier for each set of labels, and then each trained
learner independently assigns a corresponding label for the test object. However,
such an approach tends to result in poor predictive accuracy in terms of correctly
classifying all labels simultaneously. This is because there is a large number of
possible labels for each object to be classified, as discussed previously. For ex-
ample, as observed in our experiments, a decision tree learning method [12] can
achieve an average accuracy of 85% over nine (9) independent classifiers against
this lighting application. Nevertheless, the predictive accuracy in terms of simul-
taneously predicting all correct labels for the nine label sets was only 22.57%.
Unfortunately, as mentioned earlier, in such problems, simultaneously predicting
the correct labels for all label sets is of importance. For example, imagine that we
correctly predict eight out of the nine light sources, but misclassify one of them.
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In such scenario, the resulting luminance values of the six desks will be very
different from that of correctly classifying all nine light sources. This is because
the misdetermined light source contributes its light to all the six desks. That
type of incorrect determination will result in the dissatisfaction of all occupants
in the open offices.

3 Modeling Methodology

To address the above mentioned modeling challenge, we deployed a state-of-the-
art multi-target learning strategy, as presented by Guo and Létourneau in [5]. As
reported in [5], when compared with several popular multi-target classification
algorithms, the so-called Iterative Multi-target Classification (IAMC) approach
can meaningfully enhance the “exact match” accuracy. Instinctively, the IAMC
method benefits from being able to not only employ many accurate, mature
single-target learning approaches to model each of the target attributes, but also
utilize an iterative learning strategy to exploit the relationships among multiple
related target attributes, thus achieving higher accuracy, when compared with
other popular learning strategies for multiple targets problems [5].

Due to the IAMC method’s superior predictive performance in terms of “exact
match”, we adapt this strategy for our smart lighting application. In particular,
we significantly improve the IAMC method’s predictive accuracy in our light-
ing application through integrating an ensemble strategy, namely the AdaBoost
approach. Next, we will discuss the IAMC method and our extension in detail.

Algorithm 1. The Training of the IAMC Algorithm

Input: Object set with X attributes and Y labels, and a single target method f .
Output: Classification model Y = f(X)

1: Training begins
2: for each yi ∈ Y do
3: Build a model fs

i using X only;
4: Apply AdaBoost strategy to model fs

i ; obtaining predictive accuracy εs(i);
5: end for
6: for each yi ∈ Y do
7: Build a model fr

i using X ∪ (Y \Yi)
8: Apply AdaBoost strategy to model yr

i ; obtaining predictive accuracy εr(i)
9: end for

3.1 Iterative Approach For Multi-target Classification

The IAMC method includes two phases: training and inference. The train-
ing stage constructs two collections of single-target classifiers, while the infer-
ence stage aims at exploiting the relationships among target attributes through
these constructed classifiers. Specifically, as depicted in Algorithm 1, the IAMC
method firstly constructs two collections of classifiers: one utilizes the descriptive
attributes only while the other is augmented with provided target attributes in
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the training data. Next, as descripted in Algorithm 2, these two collections of
classifiers are used for iterative inference, as follows. The first collection is used
to initiate the iterative process, where all values of the target attributes in the
test data set are unknown. The second one is then deployed to continue the
inference procedure until the process stops. In each iteration, the current target
attribute estimates, resulting from the previous iteration, are used to enhance
the learning models. The above iterative process repeats until all of the labels
have stabilized or a pre-set number of iterations have been reached. As stated
in Algorithm 2, the IAMC outputs the labels of the last iteration.

Note that a detailed description of the IAMC algorithm falls beyond the scope
of this paper. Interested readers are referred to [5] for more discussions on this
strategy.

Algorithm 2. The Joint Inference of the IAMC Algorithm

1: generate descending ordering O based on prediction improvement εr(i)− εs(i)
2: for each object t in the test set do
3: obtain yi using fs

i ;update yi in the test set
4: end for
5: repeat
6: for each object t in the test set do
7: for each yi ∈ O do
8: compute yi using fr

i ; update yi in the test set
9: end for
10: end for
11: until pre-set threshold number of iterations have elapsed or all labels have stabi-

lized

3.2 Improving the IAMC Strategy

Recall from Algorithm 1 that, the IAMC method requires a single-target learn-
ing method as input. Our studies show that the accuracy of this single-target
learning method has a significant impact on the overall “exact match” accuracy
of the IAMC approach. Basing on this observation, we meaningfully improve
the predictive accuracy of the IAMC method in our application with a boosting
strategy, as will be discussed next.

In a nutshell, the IAMC method falls in the learning framework of collective
classification. As pointed out by Neville and Jensen in [7], one of the necessary
conditions for the success of collective classification is that the system must
be able to make some initial inferences accurately. Following this thought, we
intend to improve the individual classifiers’ prediction before initiating the col-
lective inference procedure. Particularly, we look into the AdaBoost ensemble
method, which have been proven to be able to meaningfully improve predictive
accuracy of a high error classifier, namely the so-called weak classifier [3]. The
underlying principle of the Boosting strategy states that by using a weak learning
algorithm several times on a sequence of carefully constructed training examples,
the weak learning algorithm can be converted into an algorithm with a predic-
tive performance that surpasses the original weak algorithm [11]. While learning,
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the Boosting algorithmfirst focuses on the production of a series of dependent clas-
sifiers, in which each classifier is better able to predict hard examples for which
the previous classifier performance was poor [11]. The outputs of these classifiers
are then combined using weighted voting in the final prediction of the model.

In the implementation of our lighting application, the single-target learning
method in the IAMC strategy as depicted in Algorithms 1 and 2 are replaced by
a Adaboost ensemble. That is, the f function there is replaced by a H function
as defined as following.

H(x) = sign(
M∑

m=0

αmhm(x))

Here, hm is the m-th classifier of the series of M dependent classifiers in the
boosting ensemble, and αm represents the corresponding weight of the classifier
hm.

Promisingly, our experimental studies, as will be presented in the next section,
suggest that boosting the performance of individual learners before the collective
inferences can significantly improve the collective classification’s prediction as
measured by the “exact match” metric. Therefore, in our lighting application,
we apply the AdaBoost algorithm [3] to boost the single-target learners’ accuracy
before deploying them for the IAMC strategy.

4 Experiments

4.1 Predictive Accuracy Achieved

In this experiment, we present our evaluations on using the C4.5 decision trees [12]
and the Artificial Neural Networks [2] as the single-label learning methods of
the IAMC approach. The C4.5 decision tree learner was used due to its de facto
standard for empirical comparisons. Also, Artificial Neural Networks were cho-
sen because they have proven to be surprisingly successful in many real-world
knowledge discovery applications [6]. Each of these experiments produces re-
sults using 10-fold cross validation. In addition, the number of iterations for the
collective inferences was heuristically set to 20 for each experiment.

We compared the predictive accuracy, in terms of simultaneously predicting all
correct labels, obtained by the three approaches, namely 1) the straightforward
approach that learns a classifier for each set of labels, and then each trained
learner independently assigns a corresponding label for the test object (noted as
the Intrinsic model), 2) the collective classification strategy IAMC, and 3) the
collective classification strategy with the AdaBoost method applied (noted as
BoostIAMC).We presented the accuracies obtained by the three approaches with
decision trees and neural networks as single-label learning methods in Tables 2
and 1, respectively. In these two tables, we also described the performance
improvement of both the IAMC algorithm and the BoostIAMCmethod over that
of the Intrinsic strategy. The statistic significance of these results was examined
using a paired t-test.
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Table 1. Accuracy obtained by the Intrinsic, IAMC, and BoostIAMC methods using
decision trees as the single-label learning method, along with the prediction improve-
ment of both the IAMC and BoostIAMC strategies over that of the Intrinsic approach
(p < 0.001 in the paired t-test)

Predict all lights simultaneously Accuracy Improvement

Intrinsic Model 22.57%

IAMC 41.37% 18.80%

BoostIAMC 68.33% 45.76%

Table 2. Accuracy obtained by the Intrinsic, IAMC, and BoostIAMC methods using
neural networks as the single-label learning method, along with the prediction improve-
ment of both the IAMC and BoostIAMC strategies over that of the Intrinsic approach
(p < 0.001 in the paired t-test)

Predict all lights simultaneously Accuracy Improvement

Intrinsic Model 29.37%

IAMC 64.23% 34.86%

BoostIAMC 84.86% 55.49 %

Results as shown in Tables 2 and 1 indicate that the BoostIAMC approach
can statistically and significantly increase the predictive accuracy of the Intrinsic
models in terms of simultaneously predicting all of the correct labels. That is,
the experimental results suggest that the AdaBoost strategy and the collective
inference technique were successfully employed in this lighting application. For
example, when decision trees were applied as single-label learners, the accuracy
obtained by the Intrinsic method was very low in terms of simultaneously pre-
dicting all of the correct labels. The accuracy was only 22.57%. In this case,
the collective inference process increased its accuracy to 41.37%. Furthermore,
this prediction was improved by applying the AdaBoost approach before the col-
lective classification. As a result, the final predictive accuracy achieved by the
BoostIAMC algorithm was 68.33%.

When considering deploying the neural network algorithm, the accuracy for
the Intrinsic and IAMC methods were 29.37% and 64.23%, respectively. Sig-
nificantly, this accuracy was improved to reach as high as 84.86% when the
AdaBoost algorithm was employed before the collective inferences, as achieved
by the BoostIAMC approach. Results from these two tables have also shown that
these prediction improvements were statistically significant. The results indicate
that the p-values achieved by the paired t-test were less than 0.001.

These results indicate that the BoostIAMC model with neural networks ap-
plied was very promising. The final accuracy of this model against all luminaries
was 84.86%, which was more than 16% higher than that of applying decision
trees as the single-label learning methods. Thus, in our smart lighting applica-
tion as described in Section 2.3, we deployed a BoostIAMC strategy with neural
network algorithms as its single-target learning methods for our classification
task.
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4.2 Comparison with Alternative Control Strategies

In this section, we compare our classification system with four other lighting con-
trol strategies which are commonly used in the lighting domain, namely all-on,
all-off, half-on, and exhaustive search. The all-on model refers to a configuration
of the office where all of the luminaries are wired to be turned on all together.
On the contrary, the all-off model will turn off all of the lights in the room at the
same time. In contrast, the half-on model sets each light to its Median dimming
level. When the exhaustive search model is applied, the system will exhaustively
search all of the possible lighting scenarios in the light data set and then choose
the best-matched one as its output.

We present the comparison results in Table 3, where the energy consump-
tion, average discrepancy, and response time are described for each strategy.
We calculated the discrepancy of a lighting scenario by comparing each desk’s
illuminance value, generated by the lighting strategy, with its true value ob-
tained. The measurement of the discrepancy was computed using the following
Euclidean Distance function:

Discrepancy =

√√√√
n∑

i=1

(pi − qi)2

Here pi is the illuminance value of the ith desk in the room, resulting from the
lighting scenario generated by the lighting strategy; qi is the illuminance value
of the ith desk measured, given the current lighting scenario.

Table 3. Energy consumption required and satisfaction discrepancy measured, along
with the execution time needed, to generate a lighting scenario

Energy Consump. Average Discrep. Response Time (sec.)

All ON Mod. 100% 1454.44 0

ALL OFF Mod. 0% 1460.26 0

Half ON Mod. 50% 490.13 0.0

Exhaustive Search 50% 0 20

Data Mining Mod. 50.04% 4.93 2

The results, as shown in Table 3, indicate that the all-on, all-off, and half-on
models produced a much larger gap between the occupants’ light preferences
and the ones they would receive if such a lighting system was employed than
that of the exhaustive search and data mining models. For example, the average
discrepancy was less than 5 for the two latter strategies, compared to that of
over 490 for the former two approaches.

When comparing the exhaustive searchwith the dataminingmodels, the results
suggest that the response time required for the exhaustive search model was large.
It required 20 seconds to generate a lighting scenario, compared to that of only 2
seconds needed from the data mining strategy. These observations imply that the
exhaustive search approach is not suitable for a real-time responding environment.
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5 Conclusions

Smart lighting needs to take into consideration both the overall energy usage and
the occupants’ lighting comfort. This paper describes a data-mining approach
to attain this goal. Specifically, taking check-in workers’ light requirements as
inputs, a collective classification strategy was deployed to simultaneously predict
the dimming levels of the shared luminaries. This classification information, to-
gether with the energy usage for potential office plans, provides us with lighting
scenarios that take into account both the users’ preferred lighting and energy
consumption. We evaluate our method against four other lighting control strate-
gies. Our study shows that our method can generate lighting policies that both
maximize the occupants’ satisfaction and improve the overall energy savings.

Our future work will include the dynamic lighting settings, such as people
entering and leaving the room.
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