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Abstract. This paper presents a moving object detection method using optical 
flow in an image obtained from an omnidirectional camera mounted in a  
mobile robot. The moving object is extracted from the relative motion by 
segmenting the region representing the same optical flows after compensating 
the ego-motion of the camera. To obtain the optical flow, image is divided into 
grid windows and affine transformation is performed according to each window 
so that conformed optical flows are extracted. Moving objects are detected as 
transformed objects are different from the previously registered background. In 
omnidirectional and panoramic images, the optical flow seems to be emerging 
on focus of expansion (FOE), on the contrary, it to be vanishing on focus of 
contraction (FOC). FOE and FOC vectors are defined from the estimated 
optical flow and used as reference vectors for the relative evaluation of optical 
flow. In order to localize the moving objects, histogram vertical projection is 
applied with specific threshold. The algorithm was tested in a mobile robot and 
the proposed method achieved comparable results with 92.37% in detection 
rate. 

Keywords: Moving object detection, Omnidirectional camera, Mobile robot, 
Ego-motion compensated. 

1 Introduction 

Vision-based environment detection methods have been actively developed in robot 
vision [1]. Detecting moving object is one of the essential tasks for understanding 
environment. It is important to segment out and detecting moving objects in order to 
avoid an obstacle and control locomotion of the mobile robot in real-world 
environment. However, the vision system can provide not only a huge amount of 
information but also intensity and feature information in the populated environment. 
The omnidirectional vision system supplies a wide view of 360 degree, so they have 
been popularly used in many applications such as the motion estimation, environment 
recognition, localization and navigation of a mobile robot. 

In the past few years, moving object detection and motion estimation methods for a 
mobile robot using the optical flow have been actively studied and developed [2].  
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Fig. 1. An omnidirectional camera mounted on a mobile robot 

A qualitative obstacle detection method was proposed using the directional 
divergence of the motion field. The optical flow pattern was investigated in 
perspective camera and this pattern was used for moving object detection. Also real-
time moving object detection method was presented during translational robot motion. 
The optical flow pattern in a perspective camera is different from the pattern in an 
omnidirectional camera because of the distortion of an omnidirectional mirror.  

Several researchers have been also developed for ego-motion estimation and 
navigation of a mobile robot with an omnidirectional image [3], [4], [5] and [6]. [3], 
[4] tried to measure camera ego-motion itself using omnidirectional vision, and [5] 
gave analysis related to translation and rotation motion using optical flow. They used 
Lucas Kanade optical flow tracker and obtained corresponding features of 
background in the consecutive two omnidirectional images. Use analyzing the motion 
of feature points, camera ego-motion was calculated, but it was not used for moving 
object detection. They set up an omnidirectional camera on a mobile robot and 
obtained panoramic image transformed from omnidirectional image. They obtained 
camera ego-motion compensated frame difference based on an affine transformation 
of two consecutive frames where corner features were tracked by Kanade-Lucas-
Tomasi (KLT) optical flow tracker [6]. But detecting moving objects resulted in a 
problem that only one affine transformation model could not represent the whole 
background changes since the panoramic image has many local changes of scaling, 
translation and rotation of pixel groups. For this problem, each affine transformation 
of local pixel groups should be tracked by KLT tracker. The local pixel groups are not 
a type of image features such as corner or edge. We use grid windows-based KL T 
tracker by tracking each local sector of panoramic image while other methods use 
sparse features-based KLT tracker. Therefore we can segment moving objects in 
panoramic image by overcoming the nonlinear background transformation of 
panoramic image. 
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Fig. 2. The structure of omnidirectional vision and its image 

In this paper, a method for detection moving object using ego-motion compensated 
was proposed in an omnidirectional camera mounted on a mobile robot. We focus on 
the optical flow in omnidirectional camera. First, an omnidirectional image converted 
into a panoramic image. The moving object is detected in panoramic image. In 
omnidirectional image, the length of optical flow becomes large according as the 
radial distance goes away from the center point. Otherwise, in panoramic image, the 
length of optical flow becomes is not affected from radial distance of omnidirectional 
image. Then, optical flow pattern is analyzed in panoramic images. The moving 
object is segment out through the relative evaluation of optical flows. The image 
divides as grid windows then compute each affine transform for each window. 
Moving objects can be detected from the background transformation-compensated 
using every local affine transformation for each local window. In order to localize the 
moving objects, we applied histogram vertical projection with specific threshold. The 
proposed algorithm was tested in mobile robot motions straight forward and rotation. 

2 Mobile Robot with Omnidirectional Camera 

This section presents the omnidirectional camera system which used in this work and 
how to detect moving object from an omnidirectional camera mounted on the mobile 
robot. The mobile robot shows in Fig. 1. The omnidirectional camera consists of 
perspective camera and hyperboloid mirror as shown in Fig. 2. It captures an image 
reflecting from the mirror so that the image obtains reflective scene and not 
perspective. It is easier to recognize whether image contains moving object or not, so 
it is necessary to transform the obtained image into panoramic image [7]. 

In order to perform the omnidirectional camera in mobile robot, before we apply in 
higher level task, it need to calibrate and investigated the accuracy. When it applied in 
structure from motion, we need to recover the metric information from environment 
[9]. In this work the omnidirectional camera was calibrated using checker board as a 
pattern with control points [8]. We used a flexible calibration method for 
omnidirectional single viewpoint sensors from planar grids. However this method was 
based on an exact theoretical projection function and some parameters as distortion 
were added to consider real-world errors. 
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Fig. 3. In omnidirectional and panoramic images, the optical flow seems to be emerging on 
focus of expansion and to be vanishing on focus of contraction  

The sphere model was used by [8] and didn’t consider the image flip. This 
approach adds to this model distortion parameters to consider real world errors. This 
method is multi view, which means that it requires several images of the same pattern 
containing as many points as possible. This method needs the user to provide prior 
information to initialize the principal point and the focal length of the catadioptric 
system. The principal point is computed from the mirror center and the mirror inner 
border. The focal length is computed from three or more collinear non-radial points. 
Once all the intrinsic and extrinsic parameters are initialized a non-linear process is 
performed. From this step we got intrinsic and extrinsic camera parameter that is 
useful to apply this omnidirectional camera system in real application for mobile 
robot system [9]. 

3 Ego-Motion Compensated 

In omnidirectional and panoramic images, the optical flow seems to be emerging on 
focus of expansion (FOE), on the contrary, the optical flow seems to be vanishing on 
focus of contraction (FOC) [5]. If mobile robot moves then the panoramic image 
changes like Fig. 3. The translational motion of mobile robot makes two scaling 
points, and pixels move from FOE to FOC making curve trajectories. The rotational 
motion of mobile robot makes all pixels move to left or right. These movements of 
pixels can clearly happen when there is no moving object. If both translation and 
rotational motions happens together, these pixel movements look quite nonlinear that 
is why only one affine transformation model cannot represents these motions. 

3.1 Moving Object Segmentation 

In order to obtain moving object from omnidirectional image in mobile robot, it is not 
easy to segment out only moving object areas when the camera also moving caused 
by camera ego-motion [10]. Using [6], we apply KLT Optical Flow Tracker in order 
to deal with several conditions. Brightness constancy which  projection of the same 
point looks the same in every frame, small motion that  points do not move very far 
and spatial coherence that points move like their neighbors.  

The frame difference represents all motions caused by camera ego-motion and 
moving object in the scene. It needs to compensate this effect from frame difference 
to segment out only moving object motion, so how much the background image has  
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Fig. 4. From an omnidirectional image transformed to panoramic image (top image), we decide 
grid windows (middle image) and track each windows in the next image (bottom image) 

been transformed in two sequence images. Affine transformation represents the pixel 
movement between two sequence images as in (1), ܲԢ ൌ AP ൅ t (1) 

where PԢ is pixel location in second image and P is pixel location in first image. A is 
transformation matrix and t is translation vector. Affine parameters can be calculated 
by least square method using at least three corresponding features in two images. 

From the input omnidirectional image then transform to panoramic image, we 
decide grid windows and then compare and track each window in the next image, as 
shown in Fig. 4. Using method from [6], find the motion ݀ሺ݅, ݆ሻ of each group ݃௧ିଵሺ݅, ݆ሻ by finding most similar group ݃௧ሺ݅, ݆ሻ in the next image. ݃௧ିଵሺ݅, ݆ሻ ൌ ݃௧ሺ݅ ൅ ݀௫ሺ݅, ݆ሻ, ݆ ൅ ݀௬ሺ݅, ݆ሻሻ (2) 

It represented as affine transformation of each group as (3) ݃௧ሺ݅, ݆ሻ ൌ I݃௧ିଵሺ݅, ݆ሻ ൅ ݀௫ሺ݅, ݆ሻ (3) 

The camera motion compensated frame difference ܫௗ is calculated based on the 
tracked corresponding pixel groups using (4) ܫௗሺ݅, ݆ሻ ൌ |݃௧ିଵሺ݅, ݆ሻ െ ݃௧ሺ݅, ݆ሻ| (4) 

where ܫௗሺ݅, ݆ሻ is a pixel group located at ሺ݅, ݆ሻ in the grid.  
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Fig. 5. From two consecutive images we applied frame difference (top image) and applied 
frame difference with ego-motion compensated (bottom image) 

Suppose two consecutive sequence panoramic images shown in Fig. 4. It is not easy 
to segment out moving object using frame difference, then we apply frame difference 
with ego-motion compensate could obtain moving objects area shown in Fig. 5. 

3.2 Object Localization 

Each pixel output from frame difference with ego-motion compensated could not 
show clearly as silhouette. It just gives information of motion area from moving 
object. To obtain detected object, it is important to localize moving object area from 
the image. In this work, we define detected moving objects are represented by the 
position and width in x െ axis. Using projection histogram ݄௫ by vertically project 
image intensities into x െ coordinate. ݄௫ ൌ ௫ܲܫௗ ൌ ሾܫ, … , ௗܫሿܫ  (5) 

where ௫ܲ is a projection vector which size is same as the height of panoramic image. 
An obtained h, is shown in Fig. 5.  

We detect moving object based on the constraint of moving object existence that 
the bins of histogram in moving object area must be higher than a threshold and the 
width of these bins should be higher than a threshold as below ݄௫ሺ݅ േ 10ሻ ൐ ܣ  ሺ݄௫ሻ (6)ݔܽ݉

where A is a control constant and the threshold of bin value is dependent on the 
maximum bin's value.  In order to get threshold of bin value, in this work using 10 
omnidirectional images for training. Each image contains one or more moving objects 
shape with different shape and high, it is related to the distance from camera to object. 

From Fig. 6 shows localization results. Top image show image result from frame 
difference with ego-motion compensated. Middle image shows histogram vertical  
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Fig. 6. Detection result 

projection from above image, and bottom image shows there are four detected moving 
object, obtain from the region where have the number of bin above of the horizontal 
line as threshold value. 

4 Experimental Results 

In this work, our robot system is run in corridor with constant speed and detected 
moving object surround its path. Then evaluate our method from those image 
sequences. Proposed algorithm was programmed in MATLAB and executed on a 
Pentium 3.40 GHz, 32-bit operating system with 8 GB Random Access Memory  

Mobile robot moves in constant speed at 20 centimeters per second. From 
omnidirectional camera it captured image sequences with frame rate 4 hertz in indoor 
environment. We perform two kinds of evaluation with difference of the number of 
image frames. The first we apply the system for around 800 image frames, for which 
is the number of moving objects are 2,335. The second, we conduct for 30 minutes of 
image sequence consist of 15,673 objects. In this case, all of moving object captured 
by omnidirectional camera is human walking in corridor. Evaluation process obtain 
from calculate the true positive detection and false positive detection. 

In table 1, when the robot moving at constant speed for the first evaluation the 
accuracy of moving object detection result shown the system could detect 2,157 
(92.37%) objects and 93 false positive detections. When we apply the system for long 
image sequences, the detection rate shown almost consistence with 92.33% and less 
than 4% in false positives detection rate. Fig. 7 shows detection results several images 
taken from omnidirectional camera. 
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Fig. 7. Successful moving objects detection results 

Table 1. Detection comparison 

Number of Image 
Frames 

The number of 
human 

True 
positives 

False 
positive 

Detection rate 

800 2,335 2,157 93 92.37% 

7,000 15,673 14,472 572 92.33% 

5 Conclusions 

This paper presents moving object detection applied in mobile robot which mounted 
by an omnidirectional camera. The moving object is segment out through the relative 
evaluation of optical flows to compensate ego-motion of camera. The image is 
divided as grid windows then compute each affine transform for each window. 
Moving objects can be detected from the background transformation-compensated 
using every local affine transformation for each local window. In order to localize the 
moving objects, we applied histogram vertical projection with specific threshold. The 
algorithm was tested in mobile robot motions straight forward and rotation. The 
proposed method achieved comparable results with 92.37% in detection rate and less 
than 4% in false positive detection. 

In order to improve detection rate of the system, in the future work it need consider 
to combines object detection based on moving object detection with geometrical 
approach to calculate object position or kinematic model of robot movement relative 
to static objects environment. 
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