
Chapter 11
Reactive Phase Formation in Thin Films

In this chapter, we will discuss some aspects related to reactive phase formation in
thin films. We try to utilize as much as possible the information accumulated
during the earlier chapters and built on that. We will first have a brief look on
nucleation issues, especially in solid state, before moving into effect of micro-
structure and impurities on the reactive phase formation. Finally, we will introduce
some of the models for phase growth that have been introduced in the past and
then discuss in detail about their pros and cons.

The formation of crystalline phases starts by nucleation (which is actually
preceded by interdiffusion to create a driving force for the process). The nucleation
stage and factors influencing it are discussed in Sect. 11.1. If the stable crystalline
phases cannot form directly, metastable structures will form first, as discussed
previously in Chap. 1. The formation of amorphous metastable structures is dis-
cussed in Sect. 11.2. The kinetics of phase formation is influenced by numerous
factors such as impurities, interfaces, and stresses—all these are briefly discussed
in Sects. 11.3, 11.4 and 11.5. Finally, growth models developed to describe
reactive phase formation in thin films are critically evaluated in Sect. 11.6.

11.1 Role of Nucleation

When a new phase AB is formed at an interface between two elements A and B,
the driving force for the reaction is the Gibbs energy of formation of AB from pure
A and B. However, the formation of AB involves creation of two new interfaces A/
AB and AB/B instead of the old A/B interface. This in general leads into increase
in surface energy Dr of the system (Fig. 11.1). The classical theory of nucleation
mandates that the competition between the gain in free energy DG and the energy
loss Dr should give rise to nucleation mechanisms with an activation energy DG*

proportional to Dr3/DG2 (Fig. 11.2). There has been much criticism of the clas-
sical theory of nucleation. Nevertheless, it illustrates quite simply the major factors
involved in the nucleation process.
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In its simplest form, classical nucleation theory starts with the equilibrium
between two phases of a given substance at either the melting or evaporation point.
At the equilibrium point Tc, the free energy change DG equals to zero as shown in
Chap. 1

DG ¼ DH � TcDS ¼ 0 ð11:1Þ

thus leading into

DS ¼ DH

Tc
ð11:2Þ

At the transition temperature, the driving force is zero and nothing can happen.
At any temperature T1 away from the transition temperature, the phase transfor-
mation is driven by the driving force

Fig. 11.1 Schematic
presentation of the formation
of a new phase between A
and B

Fig. 11.2 The free energy of
a nucleus as a function of its
radius, showing the surface
contribution (positive), the
volume contribution
(negative), and their sum
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DG ¼ DH 1� T1

Tc

� �
ð11:3Þ

as long as T1 is not too far from Tc. This transformation is opposed by the surface
energy contribution.

The total free energy of a nucleus with average radius r and free energy DG1

(calculated per unit volume) is expressed generally as

DG ¼ br2r� ar3DG1 ð11:4Þ

where a and b are geometrical terms taking into account the fact that if the nucleus
is crystalline, it will generally not be spherical, because of the anisotropic char-
acteristics of crystalline elements, but tries to adopt some definite shape with
minimum surface energy. This can be determined with Wulff construction if
sufficient data on surface energies of various crystal planes are available. The
relation between the free energy of a nucleus and its radius is shown in Fig. 11.2.
As seen, DG passes through a maxim that corresponds to the critical size r* of the
nucleus. The population of nuclei smaller than r* will exist in some form of quasi-
equilibrium distribution (e.g., they constantly appear and disappear maintaining
some kind of ‘‘equilibrium’’ distribution), whereas nuclei larger than r* will tend to
grow. The value of the critical nucleus can be obtained by derivation of (11.4)

r� ¼ 2br
3a

DG1 ð11:5Þ

Furthermore, the free energy of the critical nuclei becomes (at any temperature T)
[see, Eqs. 11.3–11.5]

DG� ¼ 4b3r3T2
c =27a2DH2ðT � TcÞ2 ð11:6Þ

At that temperature, the rate of nucleation q* will be proportional to the concen-
tration of critical nuclei and to the rate at which such nuclei can form, generally some
diffusion term of the type exp(-Q/kT), so that (with a proportionality factor K)

q� ¼ K expð�DG�=kTÞ expð�Q=kTÞ ð11:7Þ

Proportionality factor can be explained briefly as follows. Under the dynamic
conditions that prevail during nucleation, one expects the number of nuclei of
critical size to be less than predicted by thermodynamic equilibrium. This is due to
the fact that during nucleation the equilibrium population of critical nuclei is
constantly being depleted by the nuclei that grow. The proportionality factor is
usually estimated to be about two. It contains also the so-called the Zeldovich
factor that is a measure of the probability that fluctuations will cause nuclei, even a
size above the critical limit, to dissolve as long as their free energy remains within
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kT of DG. Thus, every microcluster passing the critical size will not grow. This
means also that there is a flat region with a width of d in the free energy versus
radius plot. The Zeldovich factor is the reciprocal of this width. It may assume
values of the order of 10-2.

In general in the formation of phases from the end elements, DG’s are large and
thus activation energy (DG*) is small and the nucleation is quite easy. However,
after the first phase in the formation of subsequent phases, nucleation may play a
decisive role. It should be noted that DG* is actually formed from two parts DG*1

and DG*2, DG* = DG*1 + DG*2, where DG*1 is related to the density of the
crystalline nucleus and DG*2 to their growth, e.g., diffusion kinetics.

When a nucleus of a new phase is formed, this generally causes a volume
change to take place. In solid–solid nucleation, this is accompanied by deforma-
tion energy DHd (elastic energy, plus the possible plastic energy). The activation
energy for nucleation becomes proportional to Dr3/(DGc-DHd)2, where DGc is
the ‘‘chemical’’ free energy of bulk phases and the energy associated with
deformation is subtracted from that value. One can derive this by first including the
term for strain energy into Eq. 11.4. It is also a bit more convenient to consider the
free energy per atom of the nucleus rather than the free energy per volume of the
nucleus as in Eq. 11.4. The free energy associated with the formation of a nucleus
of n atoms, Dg, may be written as

Dg ¼ nDgC þ gn
2
3cþ nhd ð11:8Þ

where
n number of atoms in nucleus
DgC bulk (chemical) free energy change per atom in nucleus
g shape factor such that gn2/3 = surface area
c surface tension & surface free energy (exactly for liquids, but only

approximately with solids, because in solids there is also another factor (the
surface stress) which contributes to surface energy)

hd strain energy per atom in nucleus

One may regroup this equation as

Dg ¼ nðDgC þ hdÞ þ gn
2
3c ð11:9Þ

The term DgC will be negative below the transformation temperature, whereas hd

and c are both positive. Hence, if jDgCj[ hd, then the first term is negative. The
free energy required (Dg*) to form the critical size nucleus (n*) is found by
differentiating Eq. 11.9 and assuming DgC, hd, g, and c as constants.

Dg� ¼ 4
27

g3c3

DgC þ hdð Þ2
ð11:10Þ
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A large strain energy hd reduces the denominator and makes Dg* large. This
means that nucleation is more difficult since the critical size nucleus has a higher
energy of formation. This strain energy must be compensated by the lattice and can
be done, for example, in silicides, mainly by the diffusive motion of atoms or in
metals by dislocation motion. Large strains may change the energetic status of the
system and lead to formation of metastable structures (e.g., amorphous phases) as
will be discussed later on. It is to be noted that the strain energy is essentially
irrelevant to incoherent nucleation. In the case of strained incoherent microcluster,
diffusion of thermal vacancies to or from the disordered interface may completely
eliminate the strain energy of the system [1]. It is the cases of coherent and
semicoherent precipitates where the strain energy becomes relevant. It may be
argued that all nuclei are coherent at the very first stages of nucleation. However,
at the same time, it should be realized that these phenomena may be inaccessible to
experimental methods in many occasions.

The most important parameters determining the phase selection during nucle-
ation are the activation energy of nucleation, Dg*, the interface energies r and, the
chemical driving force DgC, and the elastic strain energy Dhd—although this last
parameter is not relevant to incoherent precipitate cases. In order to evaluate a
possible phase selection, reasonable estimates of these parameters must be
obtained.

11.1.1 Activation Energy Dg*

This term can be approximated by the activation energy of diffusion, since the
formation of a critical nucleus is mainly determined by diffusional jumps. If this is
not available, it can be also approximated with the activation energy of growth of
the formed phase in the planar growth regime. From investigations on the later
stage of growth, it has been concluded that the precipitates formed in the A/B
interface first grow to coalescence within the A/B interface [2]. These results
indicate that growth of the nucleus is preferred in the direction of the interface
emphasizing the importance of atomic mobility of the A/B interface. Therefore, it
is reasonable to assume that the activation energy of volume diffusion is only an
upper estimate for the activation energy of growth.

11.1.2 Interfacial Free Energy r

The interface free energies of crystalline phases consist of two contributions: the
chemical contribution related to (chemical) atomic interaction energy, and the
structural contribution that originates from the free energy of structural defects
associated with semicoherent and incoherent interfaces [3]. The interface free
energy terms are hardly known, and even if they are known they are usually bulk
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values, and therefore, their use in early stages of phase formation is highly
questionable. The interfacial free energies in the solid state are likely to vary
between values approaching zero for epitaxial interfaces to maximum values of the
order of few J/cm2 for random interfaces [4]. It should be emphasized that surface
free energies of crystalline solids are very much dependent on the history of the
specimen, crystal orientation, defect density, impurities etc., and they may depend
on the size of the microcluster. Hence, the values of surface free energies for solids
are not material constants, but are specific for the sample in question.

11.1.3 (Elastic) Strain Energy Dhd

Elastic strain energy affects the nucleation, particularly in the case of coherent or
semicoherent precipitates, as can be seen from the Eq. 11.10. Here, one will
consider only elastic energy, yet the deformations involved can reach proportions
beyond the usual elastic limits of the materials. A complete analysis of these
effects should take into account the energy stored in plastic deformation as well.
The elastic energy resulting from the formation of a third phase will depend on the
elastic characteristics of all three phases. In the simplified case where all three
phases have the same elastic constants, the energy is given by the following
relation [1, 5]

Dgel ¼ 2s 1þ mð Þ=9 1� mð Þ½ �e2 ð11:11Þ

where s, the shear modulus of elasticity, is also called the modulus of rigidity, m is
the Poisson ratio, and e, the strain, is the ratio between the excess volume (under
zero stress) and the volume of the hole (here the volume of the reactants) [4].
Ignoring the problems of anisotropy, the following relations from the theory of
elasticity can be utilized. Young’s modulus E is equal to s times 2(1 + m); some
tables also give the compression or bulk modulus, which is equal to E, divided by
3(1-2m). The problems of interest here do not concern isotropic materials but
three different materials at once. As a zeroth approximation, one may consider that
the strain energy is given by an average of the different elastic constants.

11.1.4 The Chemical Driving Force

In order to calculate the chemical driving force for the nucleation of a new phase at
the A/B interface, the free energy curves of the solid solution phases and of the
formed compounds must be known. These can be determined by applying the
CALPHAD method [6–10]. If there exists no information about lattice stabilities
and so on in the system, these quantities can be evaluated by ab initio methods. In
systems with large negative heat of compound formation, the driving force for the
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nucleation of a new phase from the pure elements (with no or negligible terminal
solid solubility) is large and approaches to the free energy of compound formation
in the reaction temperature. However, in all systems, interdiffusion must occur first
to create the necessary driving force for nucleation. Thus, as this may in some
cases substantially decrease the initially available driving force for compound
formation, this issue must be taken into account [11].

In Thompsons [11] treatment, it is shown that interdiffusion must precede
nucleation of new phases and that only after some interdiffusion has occurred there
can be a driving force for nucleation (see also Sect. 1.15 for more details). This
requirement imposes a kinetic constraint to the first-phase formation. Thus, rela-
tive mobilities of diffusing components in competing phases will determine which
phase will form first.

In Fig. 11.3, the Gibbs energy curves of the AB system at a given temperature
are shown, where A and B have different crystal structures a and b, respectively,
and they can form a stable intermediate phase g and a metastable phase M. By
assuming that A diffuses into b much faster than B into a, we simplify the case so
that only diffusion of A into b needs to be considered. According to the thermo-
dynamic principle of phase equilibrium (see Sect. 1.15), as diffusion proceeds, the
first phase to nucleate should be g in b when a sufficient volume of b has reached
its equilibrium composition Xeq with g (see the tangent line between b and g in
Fig. 11.3). Here, it should be remembered from the earlier discussion (Sect. 1.15)
that even though g becomes stable at this point, it will not form, since there is no
supersaturation, which would provide the necessary driving force for nucleation. If
g cannot nucleate, it will become possible for the metastable phase M to nucleate
in b when a sufficient volume of b has reached its equilibrium composition Xm

with M, provided that the interdiffusion continues. Similar arguments about the
required supersaturation as presented above naturally also apply here. The
appearance of the metastable phase M would therefore indicate that the time
required for nucleation of g is longer than the time required for interdiffusion to
the point at which M can nucleate. If neither g nor M can nucleate when the
composition of b passes through Xeq and Xm sequentially, b will polymorphically
transform into M when its composition reaches X0. This analysis leads to a con-
clusion that the phase selection depends on the interdiffusion rate in the parent
phases as well as the nucleation rates of the product phases.

While the relative rates of nucleation are (ultimately) controlling the phase
selection, which phase can nucleate (and grow) is controlled by interdiffusion.
Hence, the first-phase formation depends exclusively on the kinetics. It is to be
noted, however, that thermodynamics of the system influences the magnitude of the
diffusion coefficients via the interaction parameters (see Chap. 1). The nucleation
rates are controlled not only by the barriers to nucleation, and hence, the volume
Gibbs energy DGv and the energies of the interfaces r involved, but also by the
diffusion required to form critically sized clusters of the product phases. Thompson
[11] further suggested that if one component diffused rapidly into the other and
self-diffusion of the host was slow, polymorphic phase transitions were favored, so
that phases with broad compositional ranges of stability and phases that were rich in
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the slowly moving component were preferred, and such phases with low energy
interfaces with the host phase(s) would be especially favored. This points toward
amorphous phase formation as will be discussed below.

It should also be emphasized that the free energies of compound formation
calculated by the CALPHAD method typically refer to bulk materials. In a small
nucleus, the chemical long-range order may not be fully developed due to the
interfacial constraints, thus increasing its free energy with respect to the bulk
value. In addition, despite the surface energy terms are important in small scales
encountered during nucleation, they are typically disregarded in traditional
CALPHAD calculations. Further, strain energy may also be important if inco-
herent interface has not yet been created between the forming nuclei and the
matrix. Therefore, the free energy of an ordered chemical compound (as derived
from the CALPHAD method) should be viewed as the lower limit for the free
energy of the compound nucleus. Thus, the driving force for the formation of a
certain compound may be considerably smaller than calculated by using bulk
values.

11.1.5 Nucleation Issues in Solid-State Amorphization

The term solid-state amorphization (SSA) is used to describe manufacture of
amorphous alloys by solid-state reaction of the crystalline elements. There are two
important nucleation-related problems in solid-state amorphization. One is to
understand how an amorphous phase forms at an interface between two crystalline
elements, the other is to explain how nucleation and growth of a crystalline ele-
ment is suppressed until an amorphous layer has attained a temperature- and
system-dependent critical thickness. The first problem is dealt below and the
second in subsequent sections.

Fig. 11.3 Schematic
illustration of the free energy
versus composition of a
system AB, where elements
A and B have different
equilibrium crystal structures
a and b, respectively, and
they can form a crystalline
intermetallic phase g and a
metastable intermetallic
phase M [11]
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The most studied amorphizating system is probably Ni–Zr [12, 13]. It is pos-
sible to form amorphous layer between Ni and Zr by annealing in the solid state.
Once formed, the layer continues to grow until it has reached a temperature-
dependent critical thickness. At this critical thickness the amorphization is ter-
minated by nucleation of the crystalline Ni–Zr compound at the interface between
the amorphous alloy and crystalline Zr. Recent experimental investigations have
revealed that there is a barrier to nucleation of alloy phases at a Ni/Zr interface and
that some Zr grain boundaries are sufficiently potent heterogeneous sites that they
reduce this obstacle and allow reaction at a temperature sufficiently low for
amorphization to be possible [14–16]. However, calculation based on classical
nucleation theory suggests that no such barrier exists [17, 18]. The experimental
evidence suggests that either the estimates of the volume and surface terms in the
work of Johnson [17] and of Clemens [18] are incorrect or that some additional
effects, not included in the classical nucleation analysis, are at work.

As has been discussed above, classical nucleation theory assumes that there is
no obstacle for creating small clusters of a new phase within an existing phase.
Some of these then acquire critical size and start to grow. Kelton and Greer [19]
made a quantitative test based on numerical modeling of the cluster evolution for
multistep annealing treatments in lithium disilicate glass. They found the classical
theory of nucleation to be valid provided that the critical size was greater than 16
or 20 molecular formula units. The classical approach might not deal adequately
with a situation in which the predicted critical size is of molecular dimensions or
smaller for two reasons. First, the key parameters in classical theory are the
volume free energy and the interfacial free energy as seen above. They may both
be functions of cluster size as was discussed earlier. A second, more fundamental
problem is that it may be wrong to base nucleation calculations upon clusters of
the critical size while neglecting the obstacle to reaction which is presented by
creating initial very small clusters of a new phase. This is related to the above
treatment of Thompson showing that significant interdiffusion is required before
the formation of clusters is possible in systems exhibiting extensive solid
solubility.

If classical theory of nucleation is inadequate in circumstances where the
predicted critical radius is small, other means of analyzing the initial reaction at,
for example, Ni/Zr interface. In particular, one might examine processes, which
precedes the formation of clusters of an alloy phase and which could provide a
barrier to nucleation, which is larger than the one predicted by classical theory.
One could examine first an unmixed interface and then calculate the likelihood of
pair’s exchanges. As an effect of such exchanges, two solid solutions would form,
one of Ni in Zr and one of Zr in Ni. These solid solutions could act as precursors to
the glassy phase. The thermodynamic quantities associated with exchange process
are assumed to be the molar strain free energy gs, the molar enthalpy of mixing hm

and the molar configurational entropy sc [20]. If an interface contains N pairs of
atoms, of which a fraction of n have exchanged, the configurational entropy is (as
shown in Chap. 1)
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sc ¼ �Nk n lnðnÞ þ ð1� nÞ lnð1� nÞ½ � ð11:12Þ

assuming that the use of Stirling’s approximation is justified. Minimizing the free
energy of the interface with respect to n gives

n ¼ 1þ exp
hþ gs

kT

� �� �
ð11:13Þ

This expression predicts a barrier to reaction if (h + gs) is positive.
It is necessary to estimate the magnitudes of hm and gs as was done previously

in the case of classical approach. Christian [21] suggests that the strain energy that
results from dissolving an atom of element B in matrix of element A is

gs ¼
2sAKBðvA � vBÞ2

vBð3KB þ 4sAÞ
ð11:14Þ

Here, sA and vA are the shear modulus and atomic volume of element A, respec-
tively, while KB and vB are the bulk modulus and atomic volume of element B.
Substitution of atomic volumes from Barret and Massalski [22] and elastic module
from Brandes [23] into Eq. 11.14 gives a free energy increase of 1.6 9 10-19 J/
atom on dissolving Zr in Ni, and 2.6 9 10-19 on dissolving Ni in Zr. Thus, gs is
128 kJ/g atom. It must be emphasized that the Eq. 11.14 is only approximate and
furthermore, the Ni and Zr lattices will not strain independently of each other, and
Ni is likely to dissolve in Zr also interstitially. The large value predicted by
Eq. 11.14 is intrinsic to systems with propensities to form glasses by solid-state
amorphization (SSA). It has been noticed that disparity between the atomic sizes
of species is required in order that an amorphous phase can grow and in order to
suppress the nucleation of a crystalline phase(s) as Eq. 11.14 suggests.

An attempt to estimate the enthalpy change h on exchanging a pair of atoms is
more complicated because atoms at the unmixed interface already have nearest
neighbors, which are not similar. For this reason, only part of the full enthalpy of
mixing is available to contribute to h. It is noticeable that even the full enthalpy of
mixing -43 kJ/g atom at the equiatomic composition [24] is much less than the
evaluated gs. From these values, it seems that (h + gs) may be positive and there
might be a barrier to exchange atoms at the Ni/Zr interface.

Christian [21] suggests that while single dislocations cannot readily reduce
stresses developed in small volumes, larger defects, such as grain boundaries, may
be able to. This could explain why grain boundaries at Ni/Zr interfaces are able to
act as heterogeneous sites. It does not, however, indicate why Zr, rather than Ni
grain boundaries are needed. One reason might be that the free energies associated
with certain Zr grain boundaries are greater than the free energies of Ni grain
boundaries. A second possibility is that the strain energy associated with dissolving
Ni atom in Zr is greater than that caused by dissolving Zr atom in Ni. A third
possibility is that the diffusional asymmetry in Ni–Zr makes the slow-diffusing Zr
the ‘‘matrix’’ element for SSA, and the reaction must begin in the Zr lattice.
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It will be thermodynamically favorable for the precursor solid solutions to
transform into an amorphous phase, since the interfacial energy increase associ-
ated with the formation of two amorphous/polycrystalline interfaces is probably
less than the free energy penalty attributable to strains in the solid solutions. It
should be remembered that the incoherent interface can act as a source or sink for
thermal vacancies, thus enabling the relief of strains in the system. It is also
possible that the stresses developed in the system may change the energetic sit-
uation in such a way that amorphous phase becomes more stable than the crys-
talline ones. The amorphous phase can dissolve solute atoms more easily and is
also expected to be able to relax stresses more effectively than crystalline phase.
The effect of stresses can be integrated into the Gibbs energy equation of a phase
in question. The stress term may lift the Gibbs energy curve of the crystalline
phase/phases to such high level that amorphous phase becomes the stable one (see
Sect. 1.15).

11.2 Metastable Structures and Nucleation
on Concentration Gradient

The types of metastability in alloys have been classified by Turnbull [25] as
compositional, structural, and morphological. The degree of metastability is
characterized by the free energy excess of the system over that of the equilibrium
state. Turnbull [25] expressed this energy per mole as a fraction of R�Tm, where R is
the gas constant and �Tm is the average of the elemental melting points. Compo-
sitional metastability is where an equilibrium phase exists outside its normal
composition range, and it is associated with large excess energies of up to about
1:0 R�Tm. Structural metastability is where a phase has a non-equilibrium structure,
typically with excess energies of about 0:5 R�Tm. Morphological metastability has
the lowest excess energy, about 0:1 R�Tm, but is perhaps the most widespread, and
generally useful, type of metastability. Its excess energy arises from the abnor-
mally large area of grain boundaries and interphase interfaces.

A system in true metastable equilibrium would not have access to any state of
lower free energy by means of a continuous structural change [26]. A good
example of such is a fully relaxed amorphous phase, in which any transformation
to a lower free energy microstructure can commence only with a discrete nucle-
ation stage which has an energy barrier as discussed. On the other hand, most
morphologically metastable microstructures are not in metastable equilibrium but
can evolve continuously on annealing. In this case, the energy barrier is not
nucleation, but the activation energy of atoms making diffusional jumps. Such a
system is thermodynamically unstable but is configurationally frozen [26]. Indeed
virtually all so-called metastable microstructures, whether in fact metastable or
unstable, have technologically useful lifetimes because they are at sufficiently
low temperatures to be configurationally frozen. One interesting example of
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morphological metastability is the room temperature annealing of either sputter or
electrochemically deposited copper in IC fabrication [27–29]. After deposition, the
grain size of the films increases after few hours in room temperature. The driving
force is provided by the systems tendency to decrease its surface area and thereby
its surface energy.

The formation of metastable structures has been observed also in many silicide
forming systems [30–34]. The occurrence of these metastable structures is related
to the specific features of the thin films. Among these are the very fast atomic
transport and very steep concentration gradients often observed in thin-film
structures. Since, amorphous films are always metastable, there always exists a
crystalline phase or mixture of several crystalline phases, which are thermody-
namically more stable than the amorphous phase. In other words, amorphous
phases exist only due to some kind of barrier(s), which prevents the formation of
equilibrium phases.

In all the above-mentioned silicide systems where the solid-state amorphous
(SSA) phase formation has been observed to take place, it has been observed that
in the formation temperature range only the smaller atoms are mobile (e.g., Ni in
Si and Si in Ta). This can explain the absence of crystalline compound nucleation
during the growth of a glassy interlayer [35]. The relative immobility of the larger
atom must act as a kinetic constraint to the formation of crystalline compound
nuclei. Such nucleation apparently requires the collective motion of both atomic
species. Thus, glass growth seems to require diffusional asymmetry in binary
diffusion couples. In higher temperatures, the formation of crystalline phases
becomes possible due to the enhanced atomic transport.

The absence of compounds in SSA leads to equilibria involving much higher
solute contents in the elemental solid solutions that in full equilibrium. The
equilibria are also at much lower temperatures than are usual for the phases
involved. Figure 11.4 shows the equilibrium phase diagram for Au–Si. This sys-
tem, in which glass formation by rapid liquid quenching was first found by
Klement et al. [36], is a simple eutectic. In binary eutectic systems, the chemical
interaction between the elements is repulsive. As the attractive interaction between
the elements is increased, compounds will start to appear in a binary system.

A good example of this is Ni–Zr (Fig. 11.5), which exhibits SSA and is indeed
one of the most widely investigated systems exhibiting SSA as stated earlier. Since
the compounds do not enter into the SSA reaction, the relevant metastable phase
diagram is shown by the bold curves in Fig. 11.5. The curves show actually the
extended liquiduses. This kind of metastable phase diagrams can be calculated
with the help of CALPHAD method as already discussed. Under normal condi-
tions of SSA in Ni–Zr system (composition of the a phase is about Ni60Zr40

annealed at 300 �C) [37], it is clear from the metastable phase diagram that there
should be eutectic melting of a mixture of the elemental solid solutions. The
liquid-like amorphous phase is favored with respect to the solid solutions, and it
can therefore be formed by annealing, rather than by rapid quenching as in system
like Au–Si. However, the SSA reaction is exothermic and not endothermic as
might be expected for melting. This is because the enthalpy of mixing the two
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elements in the liquid-state amorphous phase is highly negative and outweighs the
average enthalpy of fusion. Such a negative enthalpy of mixing arises when
the liquid alloy has a specific heat significantly higher than the solid state of the

Fig. 11.4 The equilibrium
phase diagram of Au–Si, a
system showing glass
formation by melt quenching,
but not by SSA

Fig. 11.5 The equilibrium
phase diagram of Ni–Zr, a
system exhibiting SSA. A
possible metastable phase
diagram in the absence of
compounds is shown by bold
curves [26]
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system. In fact, substantial excess specific heats have been measured directly in
good glass-forming alloys, for example, Pd40Ni40P20 [38]. They are associated
with ordering in the liquid state. If there were to be a eutectic melting temperature
for Ni–Zr (involving only elemental phases and the liquid), the entropy of melting
would have to be positive. Combined with the negative enthalpy of melting, this
would imply a negative equilibrium temperature [26]. The conclusion is that for
Ni–Zr, the eutectic equilibrium does not exist above absolute zero. Provided that
the intermetallic compounds can be avoided, the amorphous phase in the middle of
the composition range is stable down to absolute zero. The phase equilibria in
systems such as Au–Si and Ni–Zr are related to each other, and an evolution from
one type of eutectic system to the other is found as the ordering tendency in the
liquid alloy is increased.

One example of impurity-induced amorphous phase formation can be found
from the ternary Ta–C–O system. The high-resolution micrograph displayed in
Fig. 11.6 reveals the presence of an amorphous layer at the TaC/Cu interface. The
composition of the layer was determined to be Ta with marked amounts of oxygen
and carbon from the very thin foil (tens of nanometers thick) with the X-ray energy-
dispersive spectrometry (EDS) in the analytical TEM. Equally high amounts of
oxygen and carbon were not detected from either side of the amorphous layer. The
layer is most probably Ta[O, C]x (i.e., metastable oxide) containing some carbon
released from the partly dissociated TaC layer. The formation of the amorphous
layer was most likely caused by the presence of oxygen in the films and also
because of the diffusion of extra oxygen to the films from the annealing environ-
ment. The structure of the Cu overlayer is strongly columnar, thus providing
suitable short-circuit paths for oxygen diffusion from the atmosphere during
annealing. The overall oxygen content of the as-deposited films is expected to be
1–2 at.%. In particular, the upper part of the TaC layer (i.e., near the TaC/Cu
interface) should contain even higher amounts of oxygen. This is owing to the
sputtering system, which is equipped with turbodrag pumps to guarantee oil-free
deposition, and therefore, the pumping of water vapor from the chamber is not very
efficient, although system has load lock. In the case of the Si/Ta/Cu metallization
system, secondary ion mass spectrometry (SIMS) analyses revealed an amorphous
oxygen-rich layer to be present already in the as-deposited films. Even though this
may be the case also in this system, the major part of the incorporated oxygen is
most likely present at the grain boundaries of the as-deposited TaC layer.

The isothermal section of the metastable Ta–C–O phase diagram at 600 �C is
displayed in Fig. 11.7. The oxygen partial pressure used in the calculations was
0.2 9 10-4 Pa. Since no thermodynamic data for the metastable Ta oxides are
available, the data for stable Ta2O5 phase are used [39–43]. It is evident that the
metastable amorphous Ta[O, C]x will eventually transform into the stable phases
(i.e., Ta2O5 and graphite). In fact, according to the XRD results, the formation of
Ta2O5 took place at 725 �C (Fig. 11.8). When the formation of Ta2O5 takes place,
TaC and graphite must also be present, since they form a three-phase field in the
diagram (Fig. 11.7). TaC phase is expected to come into local equilibrium with
metastable Ta[O, C]x before the formation of stable Ta2C is possible. Therefore,
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the formation of Ta2C has been suppressed in the calculations to obtain the con-
ditions of the actual metallization structure. The initial state of the system, where
the TaC is in equilibrium with the entrapped oxygen, is marked with the contact
line (C.L.) in the isothermal section, showing that the situation is highly unstable.
The initial composition is located on the contact line and inside the three-phase
field (TaC + Ta2O5 + graphite) in the isothermal section. Since the overall
oxygen content is relatively low (*1–2 at.%), the composition lies close to the

Fig. 11.6 HREM
micrograph from the
amorphous Ta[O, C]x phase
from the sample annealed at
600 �C for 30 min

Fig. 11.7 Isothermal section
from the evaluated metastable
ternary Ta–C–O phase
diagram at 600 �C under the
external oxygen pressure of
about 0.2 9 10-4 Pa. The
tie-lines in the TaC–Ta2O5

two-phase region are shown
in the diagram. The contact
line (C.L.) between the TaC
film and oxygen indicating
the initial unstable
equilibrium as well as the
approximate composition of
the TaC[O] are also shown
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Ta–C binary system (the anticipated composition being depicted in Fig. 11.7).
When the TaC[O]gb films are annealed at elevated temperatures, oxygen dissolves
into the TaC matrix, resulting ultimately in the formation of the stable Ta2O5 and
graphite. However, owing to the kinetic constraints, the direct formation of the
stable tantalum oxide is not possible and the formation of the amorphous
Ta[O, C]x layer takes place. Considering the thickness of the amorphous layer at
600 �C, it is evident that some oxygen has to be incorporated into the films also
from the annealing atmosphere. Only after the temperature raises above 700 �C,
the relaxation of the kinetic constraints enables the formation of the stable three-
phase structure (TaC + Ta2O5 + graphite).

The reason for the existence of the Ta[O, C]x layer in amorphous form at
relatively high temperatures is not known. However, what is known, is that met-
alloids, such as B, C, N, Si, and P, can stabilize amorphous structure in transition
metals [44]. It is expected that in this system carbon, which is released from the
partially decomposed TaC layer and incorporated into the growing amorphous
Ta[O, C]x layer, stabilizes the amorphous structure. The carbon inhibits the
crystallization of the amorphous Ta[O, C]x up to 725 �C, where the formation of
Ta2O5 is observed (Fig. 11.8). The reason for the absence of graphite after the
crystallization of Ta oxide is the very difficult nucleation of graphite, as observed
elsewhere [14]. The stabilizing effect of carbon enables the growth of the amor-
phous layer to about half the thickness of the original TaC layer at the temperature
of crystallization.

The phenomena of SSA have lead to increased interest in interfacial reactions
occurring in composition gradients. In fact, as it was stated in the beginning in thin
film couples, there often occur very steep concentration gradients. Desré and
Yavari attributed the formation of amorphous phase in a thin-film system to a great
composition gradient [45, 46]. By using simple thermodynamic arguments, they
showed that sharp composition gradients increased the stability of an amorphous
phase layer by eliminating or reducing the driving force Dga?c for nucleation of
crystalline intermetallic phases in an amorphous layer. This effect increases with
increasingly negative Dhmix and free energy of alloying Dg. As diffusive mixing
proceeds further during growth of the amorphous layer, the composition gradient
flattened out and the driving force for crystalline phase formation is gradually

Fig. 11.8 XRD spectra from
the Si/TaC(70 nm)/
Cu(400 nm) sample annealed
at 725 �C for 30 min
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restored. The energy barrier for their nucleation also diminishes toward the value
of the classic theory

The existence of a composition gradient in the interfacial region has been
experimentally observed in the Ni–Si system, and the width of the interfacial
region was estimated to be B2 9 10-3 lm [47]. This region can be an amorphous
phase or a crystalline solution phase. Figure 11.9b shows the Gibbs energy curve
of such an amorphous region (Gam) at the A/B interface.

According to the classic theory of homogeneous nucleation, in order for a
crystalline stoichiometric phase b - AC*B1-C* to nucleate in the amorphous
region, the nucleus with radius r in Fig. 11.9a must attain a critical radius r* and
equilibrium exists at the interface between the amorphous phase and b. When
composition gradient in the amorphous phase is represented by line C(X) as shown
in Fig. 11.9a, since the tangents of Gam both at C(-r) and C(+r) are in touch with
the Gibbs energy curve of the b phase, Gb, the nucleus can grow further, which
means that the radius r has reached the critical size (r = r*). If the composition
gradient in the amorphous phase is greater as represented by C0(X), however, the
nucleus will not attain the critical size because the tangents both from C0(-r) and
C0(+r) miss the tip of Gb. Therefore, there exists a critical composition gradient
rCc for b to nucleate. As long as the composition gradient in the amorphous phase
is greater than rCc, the crystalline phase will not form. Note also that the ori-
entation and shape of the nuclei with respect to composition gradient are also
important as it will change the value of radius.

Following the thermodynamic approach of Cahn and Hilliard for a non-uniform
system [48], the Gibbs free energy of a volume v of an amorphous layer can be
written as

ga vð Þ ¼ q
Z
v

½g0ðCÞ þ NAvðrCÞ2�dv ð11:15Þ

where q is the number of moles of atoms per unit volume, g0(C) is the Gibbs free
energy per atom of an amorphous phase with uniform composition C, NA is
Avogadro’s number, and v is a constant. From this can be calculated the Gibbs free
energy of formation of a nucleus for the compound AC*B1-C* which includes the
classic interfacial term

DgN ¼ 24rpcr2 þ 8q½Dgpc C�ð Þ � NAvðrCÞ2�r3 þ 4=3qaðrCÞ2r5 ð11:16Þ

where rpc is the interfacial energy at the polymorphous crystallization front,
Dgpc(C*) is the Gibbs free energy of polymorphous crystallization at C*, a =
q2Dg/qC2 is assumed to be constant in the range C* - rrC \ C \ C* + rrC.

As it can be seen from the Eq. 11.16, the concentration gradient leads to a term
to the fifth power of the embryo size. As the coefficient of the r5 is positive, this
term will contribute to increase in DGN.
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For the typical composition gradients which occur during the solid-state

amorphous reaction (rC B 10+6/cm), the energy factor NAv rCð Þ2 in Eq. 11.16 is
negligible. After some algebra, an analytical expression for the critical gradient
rCc, at which DgN is both minimum and equal to zero, is obtained as

rCc ¼
q

9 rpc

ð2jDgpcjÞ3=2

a1=2
ð11:17Þ

Above this critical gradient, there is no driving force for compound nucleation.

11.3 Role of the Interfaces

The intrinsic diffusion coefficients of A and B in a given phase are generally
different, thus leading into a flux of point defects equal to JA - JB. This flux
changes stepwise at each interface, so that point defects must be created or anni-
hilated at these places. If the interface is unable to perform this task, it leads to the
injection of point defects into the substrate [49] (Fig. 11.10). If this injection of
point defects into substrate is observed, it is always a signal of some departure from
equilibrium, because then the interface is not a perfect sink for point defects as it
should be in equilibrium situation. This can lead to the supersaturation or under-
saturation of point defects close to interface. Hence, this means that the compound

Fig. 11.9 Gibbs energy
tangent constructions for
compositions at the tips of the
critical nucleus of
intermetallic phase in an
amorphous layer subject to
the concentration gradient
rC [45]
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will not have the expected composition (non-stoichiometry). It is to be noted that in
the Darken treatment of diffusion (see from Sect. 6.7 forward) equilibrium number
of point defects are assumed to be present. This means that there should be enough
sources and sinks for the point defect to maintain number of vacancies at their
equilibrium concentrations. This is typically the case when macroscopic diffusion
phenomena are considered. However, when the nanoscale diffusion phenomena are
surveyed, the distribution of vacancy sources and sinks may become an issue and
the Darken analysis is not valid anymore. Then other type of analyses must be
utilized, such as Nazarov-Gurov type approach (see Chap. 5 for more details).

It should also be emphasized that the ‘‘chemical constants’’ (see subsequent
sections on the growth models), i.e., reactivity depends on the state of the inter-
faces and may be changed due to point defect saturation. Interfaces also offer
favorable heterogeneous nucleation sites for new phases as they reduce the size of
the critical nuclei (see above Sect. 11.1).

11.4 The Role of Grain Boundaries

Thin films possess usually high density of grain boundaries (Fig. 11.11), which
can have effect on the growth kinetics. This is because of the enhanced atom
transport via the short-circuit paths. A simple situation readily occurs in thin-film
experiments: columnar grains, with their long axis along the direction of the
diffusion flux. This situation can be modeled by dividing the film into two different
parts: one with diffusion coefficient Dvol (lattice) and the other with diffusion
coefficient Dgb (grain boundary). The number of atoms transported per unit area
and unit time is given by:

MðtÞ ¼ ðAlJl þ AgbJgbÞ ¼ ðAlDvol þ AgbDgbÞ
dc

dx
ð11:18Þ

Fig. 11.10 Injection of point
defects at the interfaces
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where Al and Agb are the cross sections of the grains and the grain boundaries per
unit area.

With conventional thickness d of grain boundaries, Al & 1 and Agb & 2d/d,
where d is the average grain diameter [50]. Instead of the lattice diffusion constant
Dvol, the effective diffusivity Dtot must now be considered:

Dtot ¼ Dvol þ
2Dgbd

d
ð11:19Þ

Thus, the value of the diffusion ‘‘coefficient’’ has increased. This may also
influence the regime of layer growth, in particular if the thickness of the film is
small. Short-circuit diffusion may enhance the atom transport to such an extent that
the reaction(s) at the interfaces become rate limiting. More thorough treatment of
short-circuit diffusion can be found from Chap. 10.

Grain boundaries also provide favorable sizes for solid-state nucleation, for the
same reasons as the interfaces (see section above). Grain boundary nuclei do not
necessarily form uniformly over available grain boundary surface (e.g., two grain
junction). On the contrary, as it is reasonable to assume that the energy to form a

Fig. 11.11 Cross-sectional SEM micrographs of as-deposited. a TaN on SiO2/Si. b TaN on
silicon. c Ta2N on SiO2/Si, and d Ta2N on silicon showing columnar microstructure. Micrographs
are in the same scale, and scale bar length is 100 nm
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nucleus of critical size is smaller at grain edges and grain corners (three and four
grain junctions, respectively). These sites with lowest critical free energy for
formation of nucleus do not necessarily contribute most to the overall nucleation
rate. This is because the number of atoms which can participate in the nucleation
process also decreases with the dimensionality of the site. Cahn [51] has shown
that the opposing effects of lower energy barriers and fewer atoms participating in
the nucleation process as the dimensionality of the site can be used to map out
different nucleation conditions under which the greatest initial contribution to the
nucleation rate is made by the sites of various types.

11.5 Role of the Impurities

Impurities have important effects on the formation of phases in thin film and bulk
couples. Presence of some impurity may enhance the formation of a particular
phase at the expense of another (see Sect. 11.2 for the case of impurity-induced
amorphous phase formation). Impurities may increase or decrease reaction tem-
peratures or influence the kinetics of a phase transformation. Impurities are also
frequently responsible for the absence of phases in diffusion couples as compared
to the corresponding phase diagram. One example of the increased reaction
temperature is the formation of TaSi2, in the reaction between thin Ta film and Si
substrate, which occurs at 923 K [52]. However, if there is oxygen at the Si/Ta
interface, the temperature of formation will rise well above 1,023 K [53]. Another
example of bulk samples is the catalyzing effect of phosphorous on the formation
of Cu3Si in the reaction between bulk copper foil and Si substrate [54]. The effect
of impurities on diffusional transport should also be considered. Impurities may
segregate preferably to grain boundaries and interfaces. When they segregate to
grain boundaries, they may reduce the effect of the short-circuit diffusion paths,
thus affecting the mass transport in the system (see Chap. 10 for details).

The driving force for the equilibrium segregation of solute or impurity atoms to
grain boundaries is systems tendency to lower its total free energy. In addition to
kinetic constraints, the extent of intergranular segregation depends on impurities
influence on the grain boundary energy as well as on the factors controlling their
solubility, i.e., size factor and chemical interactions between dissimilar atoms.
Since both the kinetics and the solubility depend on temperature, the segregation
of impurities decreases with increasing temperature. By gathering large amounts
of experimental data on grain boundary segregation, Hondros and Seah [55]
showed that the smaller the solubility of an impurity in the solvent the higher is its
segregation potential. This ‘‘rule of thumb’’ is frequently used when considering
the segregation tendency of a given impurity.

The classical free surface adsorption models have often been used for evalu-
ating grain boundary segregation because of the analogies between intergranular
segregation and adsorption at free surfaces [56]. This approach is valid if it takes
into account the specific features, which differentiate the grain interface from
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surfaces. Thus, even the most dilute grain boundary can be regarded as a two-
dimensional phase with the same components as in the bulk [57]. These compli-
cations imply, among other things, that one has to utilize the extended phase rule
instead of the classical phase rule when evaluating the degrees of freedom for the
system. A generalized phase rule has been derived for system including surfaces
and interfaces by Defay and Prigogine [58]. If c is the number of components, p is
the number of 3D phases, u number of 2D surface phases, and number of degrees
of freedom f can be expressed as follows:

f þ p ¼ cþ 2� pð Þ�ðu� sÞ ¼ v� ðu� sÞ ð11:20Þ

where v is the classical (Gibbs) degrees of freedom (ignoring surfaces) and s is the
number of ‘‘surface species.’’ Two surfaces are of different species if they separate
different couples of bulk phases. For instance, in the case of a grain boundary
precipitate b in a matrix a, the interfaces a/a and a/b are of different species and
s = 2. Also surfaces of different orientations should be considered as different
species. It is to be noted that the equilibrium condition, i.e., that the chemical
potential of a component i has the same value in all phases of the system, is valid
also for grain boundaries and surfaces as shown in Sect. 1.15. Several treatments of
intergranular segregation have been published during the past decades. Extensive
reviews of the models can be found from Refs. [59, 60].

11.6 Phase Formation in Thin-Film Structures

There has been a view that phase formation in thin-film couples is sequential in
comparison to simultaneous phase formation in bulk couples. In many works
dealing with formation of silicides, only one or two silicide layers have been
reported to grow [52, 59–69]. There have been several different approaches to
explain this phenomenon [70–78], which will be summarized briefly next. It is to
be noted that the method of evaluating microstructural evolution in diffusion
couples introduced in Chap. 8 can be used in thin-film couples and is used as a
benchmark when other treatments are discussed. As these phenomena have been
thoroughly discussed in that chapter, the treatment is not repeated here for the case
of thin-film couples.

11.6.1 Linear-Parabolic Treatment

This treatment has been used by many authors to describe reactive phase forma-
tion, including d’Heurle, Gas, and Philibert [49, 68, 69, 74]. The treatment was
first used to describe the formation of silicon dioxide [74].
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11.6.1.1 Growth of One Phase Between Pure A and B

One assumes that a compound AB grows between the pure elements A and B by
the diffusion of A atoms (Fig. 11.12). If one starts from the ‘‘pure’’ diffusional
growth, one obtains the following equation:

JA ¼ CA �MA �
dlA

dL
ð11:21Þ

where the mobility is MA ¼ DA
kT

If one assumes that the intrinsic diffusion coefficient DA is not a function of
concentration one obtains

JA ¼ CA �
DA

kT
� DgA

L
ð11:22Þ

where DgA is the Gibbs energy per A atom of the reaction A + B = AB. More
specifically, it is the required energy to move one mole of A atoms from the A/AB
interface across the AB layer to the AB/B interface, i.e., the driving force for diffusion
DlA. This value can again be obtained from the molar Gibbs energy plot of the system
in question using common tangent construction if one has the assessed thermody-
namic data of the system available as shown in Sect. 1.15 and in [79, 80]. Since

dL

dt
¼ JA � vA ð11:23Þ

cA ¼
1
vA

ð11:24Þ

then

dL

dt
¼ DA �

DgA

kT
� 1

L
ð11:25Þ

Fig. 11.12 Schematic
presentation of the AB
growth between the pure
elements A and B
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If one integrates the Eq. 11.25, one obtains the familiar parabolic growth law:

L2 ¼ Kt ð11:26Þ

If Eq. 11.26 is considered at very small layer thickness, one encounters a serious
problem, since if the L & 0, then

dL

dt
� 1 ð11:27Þ

This means that pure parabolic kinetics seems impossible. Therefore, d’Heurle
et al. [49, 68, 69] introduced the concept of linear-parabolic kinetics.

The starting point is again the Eq. 11.25, where one introduces a ‘‘kinetic
parameter’’ to take into account reactions at the interfaces

dL

dt
¼ DA �

DgA

kT
� 1

Lþ K 00
ð11:28Þ

As the thickness of the layer approaches zero L ? 0, then the Eq. 11.28 reaches
the form

dL

dt
� DA �

DgA

kT
� 1

K 00
ð11:29Þ

If one integrates this equation, one obtains:

L2 þ K 0L ¼ Kðt þ t0Þ ð11:30Þ

where K0 = 2 K00

When layer thickness grow large and reaction time becomes long (as usually in
bulk couples), one obtains the ‘‘normal’’ parabolic growth equation

L!1) L2 � Kt ð11:31Þ

11.6.1.2 Multiphase Growth Between Pure A and B

If, instead of one phase, several phases grow between A and B, the situation is
slightly different, since the growth of a specific phase depends not only its own
growth kinetics but also from the growth kinetics of the adjacent phases
(Fig. 11.13).Thus, the rate equations are coupled (see Chap. 8 for details). From
Fig. 11.13, the following equations can be derived (A is still the only diffusing
species)

516 11 Reactive Phase Formation in Thin Films

http://dx.doi.org/10.1007/978-3-319-07461-0_8


dL1

dt
! J1 � J2 ð11:32Þ

dL2

dt
! 2J2 � J1 ð11:33Þ

where the coefficient 2 in the Eq. 11.33 comes from the stoichiometry.
In layer 1, A atoms diffuse through the A2B layer to react with the AB layer

according to the equation:

1: Aþ AB ¼ A2B

Dg1 ¼ Dgf
A2B � Dgf

AB

In the other layer 2, the growth of AB takes place at two interfaces:

2a: A2B� A ¼ AB
2b: Aþ B ¼ AB
total A2Bþ B ¼ 2AB

Dg2 ¼ 2Dgf
AB � Dgf

A2B

It follows that:

dL1

dt
¼ 2

a1

L1
� X1

X2

a2

L2

a1 ¼ D1
Dg1

kT
and a2 ¼ D2

Dg2

kT

ð11:34Þ

X1

X2
¼ vA2B

vAB
! x ð11:35Þ

Fig. 11.13 Schematic
presentation of multiphase
growth between pure
elements A and B
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dL2

dt
¼ 2

a2

L2
� 2

1
x

a1

L1
ð11:36Þ

The layer thicknesses L1, L2 and the total thickness L1 + L2 are functions of
ffiffi
t
p

.
If one investigates the growth of different layers:
L1 grows if the inequality

2a1

L1
[ x

a2

L2
ð11:37Þ

is fulfilled.
Similarly L2 grows if

a2

L2
[

1
x

a1

L1
; and 2a1L2 [ xa2L1 [ a1L2; ð11:38Þ

which leads approximately to the equation:

2
D1

D2
[

L1

L2
[

D1

D2
ð11:39Þ

The ratio L1
L2

can be solved from the following equation:

L1

L2
¼

2
x a1 � xa2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
x a1 � xa2
� �2þ8a1a2

q
4a2

ð11:40Þ

This ratio L1/L2 produces to the following diagram where there are three regimes
of growth (Fig. 11.14).

At the region M, L1 grows and L2 shrinks, within the region O, L2 grows and L1

shrinks and at the region N, both phases can grow simultaneously. As the time
increases and if it is assumed that end elements in reaction couple are not con-
sumed, the reaction couple eventually reaches the N region and both phases can
grow simultaneously.

11.6.1.3 ‘‘Pure’’ Diffusional Approach to Multiphase Growth

From the ‘‘pure’’ diffusional point of view regarding the growth of A2B and AB
layers between pure A and B, the following conclusions can be drawn:

(a) All phases grow simultaneously. This contradicts experimental results from
thin-film experiments where sequential phase formation has been observed

(b) Growth rate is parabolic, e.g., L ?
ffiffi
t
p
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(c) Phases cannot disappear in reaction couple. This is as a result of the fact that
as the layer thickness goes to zero the growth rate should approach infinity:
L ? 0 then dL

dt / 1
(d) However, even for the pure diffusional growth of the phases, their thickness

ratio is proportional to the ratio of the diffusion coefficients in the layers
L1
L2
! D1

D2

For example, if the ratio of the diffusion coefficients is 104, which is of reasonable
magnitude for real experiments, and for example, if the layer thickness of the layer
1 is L1 = 103 Å, then the thickness of the layer 2 would be L2 = 10-1 Å. In this
case, the layer 2 cannot be said to really exist. This shows how within the ‘‘pure’’
diffusional theory, without any further assumptions, one already gets into trouble
with layer thicknesses that are readily used in the common thin-film technology.
However, this has also been used to defend the traditional ‘‘pure’’ diffusion
approach, since it has been stated that all the phases are present in the reaction
couple as required, but the thicknesses may be so small that they are impossible to
detect.

(e) One can conclude that with small layer thicknesses with ‘‘pure’’ diffusional
theory, mathematics of the theory, and the actual physics are contradictory

11.6.1.4 Linear-Parabolic Approach to Multiphase Growth

As we noticed, serious problems are encountered with thin-film structures if one
uses the traditional ‘‘pure’’ diffusion control approach. On the other hand, if
one examines the problem with the help of linear-parabolic growth kinetics the

Fig. 11.14 Presentation of
the different growth regions
in the A/A2B/AB/B reaction
couple under diffusion
control [71]
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above-mentioned issues can be avoided. The equations describing the growth of
the layers are the following:

dL1

dt
¼ 2

a1

L1 þ K 001
� x

a2

L2 þ K 002
ð11:41Þ

dL2

dt
¼ 2

a2

L2 þ K 002
� 2

x
a1

L1 þ K 001
ð11:42Þ

If one assumes that the layer formation is sequential as experimentally observed
in thin-film experiments, it means that L2 = 0 at the beginning. The driving force
for the formation of AB does, however, exist, e.g., dL2

dt [ 0, and therefore, the
growth rate of AB is positive. Then, one obtains the following inequality:

a2

K 002
[

1
x

a1

L1c þ K 001
ð11:43Þ

which leads to the concept of ‘‘critical thickness’’:

L1c [
1
x

a1

a2
K 002 � K 001 ð11:44Þ

This means that the AB phase will not start to grow until the thickness of the
A2B layer has reached a minimal thickness, despite the fact that the driving force
for the formation of AB exists! Also if the other end element is depleted (A or B)
before the A2B has reached the critical thickness, the AB phase will not occur.
Furthermore, if the AB layer is present initially, it will start to shrink as the A2B
layer grows at its expense—if A2B layer has not yet reached the critical thickness
that would enable the simultaneous growth of both phases. If one plots the
thickness of the phases similar to the plot as seen in Fig. 11.14, one obtains the
same kind of plot—just the nodal lines are translated (Fig. 11.15). The slope of the
lines remain unchanged, they are simply translated vertically by the quantity given
by the ‘‘reaction’’ factor. There is, however, an additional important feature that
can be seen from Fig. 11.15. If the conditions of the growth process lie inside the
area marked as R in the figure, the phase 2 (L2) would disappear under these
conditions.

The ‘‘simultaneous’’ phase growth found in the bulk diffusion couples can be
explained on the basis of the same critical thickness. In bulk couples, the annealing
times are long and the layer thickness are large and therefore the phases ‘‘easily’’
reach the required critical thickness, thus enabling the observation of several
phases. It should, however, be emphasized that in the bulk couples also, there are
occasions where all the predicted phases are not observed.

Basically, we end up with three rules for the linear-parabolic treatment of two-
phase growth
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1. The criterion for the first-phase formation is a kinetic one: It is determined by
the value of diffusitivity

2. The first phase grows alone until a critical thickness, which depends on the
same parameters, at this point the second phase appears

3. After some transient, the both phases grow simultaneously with proportional
thickness increments.

11.6.2 Interfacial Reaction Barrier Approach

The approach was introduced by Gösele and Tu [72, 77] in order to investigate the
difference between thin film and bulk reaction couples. It was basically an
extension of earlier work by other authors [73–75]. Interfacial reaction barrier was
used to describe the energy barrier associated with changes in atomic arrangements
or effects due to volume changes at the interface due to the formation of new
interface at the expense of the old. In that way, it is somewhat related to interfacial
energy.

They used a model system to consider the effect of the interfacial reaction
barriers to multiphase growth in a reaction couple where the AbB and AcB grow
between the saturated AaB and AdB phases (a[b[ c[ d). It was also assumed

Fig. 11.15 Presentation of
the different growth regions
in the A/A2B/AB/B reaction
couple according to linear-
parabolic kinetics (see text
for details) [71]
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that the AbB and AcB phases are already present at the beginning with given
thickness xb and xc. This assumption was introduced in order to avoid the problems
arising from nucleation of the phases. Intention was especially to check whether
one of the layers would shrink away completely under various kinetic conditions.

Their model was characterized by the interdiffusion coefficients ~Db and ~Dc.
These coefficients are related to the intrinsic diffusion coefficients by the Darken
equation

~Db ¼ NBDA
b þ NADB

b ð11:45Þ

The volume of the formed compound X0 per A or B atom is assumed to be
constant. They also introduced b which is the ratio of A atoms to B atom in the
AbB compound. The shift of the interfaces can be calculated from the equations

dxb

dt
¼ GbJA

b � GbcJ
A
c ð11:46Þ

dxc

dt
¼ GcJ

A
c � GcbJA

b ð11:47Þ

with the (positive) diffusion fluxes of A atoms in the AbB and AcB layer

JA
b ¼ DCeq

b keff
b =ð1þ xbj

eff
b =~DbÞ ð11:48Þ

JA
c ¼ DCeq

c jeff
c =ð1þ xcj

eff
c =~DcÞ ð11:49Þ

where

DCeq
b ¼ Ceq

ba � Ceq
bc ð11:50Þ

and

1

jeff
b

¼ 1
jba
þ 1

jbc
ð11:51Þ

The various quantities with the subscript c have analogous meaning for the AcB
layer.

The quantities Gb, Gbc, Gc, and Gcb take into account the change in compo-
sition at the interfaces

Gb ¼ X0ð1þ b2Þ 1
a� b

þ 1
b� c

� �
ð11:52Þ

Gc ¼ X0ð1þ b2Þ 1
b� c

þ 1
c� d

� �
ð11:53Þ
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Gbc ¼ Gcb ¼ X0ð1þ bÞð1þ cÞ=ðb� cÞ ð11:54Þ

The fluxes described above are assumed to be independent of each other. The
schematic presentation of the situation is shown in Fig. 11.16. In the figure, the
different parameters are depicted only for the AbB layer, but they are analogous for
the other interfaces and layers.

The assumption that the fluxes are independent leads into equations:

Jb
A ¼ jbcðCbc � Ceq

bcÞ; at the AbB interface ð11:55Þ

and

JA
c ¼ jcbðCeq

cb � CcbÞ; at the AcB interface ð11:56Þ

The quantity jbc describes the reaction barrier against the growth of AbB layer at
the expense of the AcB layer, and jcb characterizes the reaction barrier against the
growth of the AcB layer at the expense of the AbB layer. The basic difference
between this approach and the ‘‘traditional’’ diffusional approach is the occurrence
of the interfacial reaction barriers. If the reactions at the interfaces are fast, the
reaction barriers tend to approach infinity. Hence, for fast reactions, the growth
rates are as described in the ‘‘pure’’ diffusion theory.

The condition for growth of the AbB layer dxb

dt [ 0 may be expressed in terms of
the ratio r of the diffusion fluxes

Fig. 11.16 Schematic
presentation of the
concentration profile of A
atoms in the AaB/AbB/AcB/
AdB diffusion couple
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r ¼
JA
b

JA
c

ð11:57Þ

as

r [
Gc

Gcb
¼ r1 ð11:58Þ

The analogous condition for the growth of the AcB layer is

r\
Gc

Gcb
¼ r2 ð11:59Þ

with

r1 ¼ ð1þ cÞða� bÞ=ð1þ bÞða� cÞ ð11:60Þ

and

r2 ¼ ð1þ cÞðb� dÞ=ð1þ bÞðc� dÞ ð11:61Þ

where r2 [ r1, holds, since (a - b) \ (a - c) and (b - d) [ (c - d)
When the parameters xb; xc;Di

b;D
i
c; j

eff
b ;and jeff

c have such a values that the flux

ratio r is between r1 and r2 both layers can grow simultaneously. However, if the
flux ratio is not between them, one layer will shrink and the other will grow.
Hence, situation is similar as shown already in the Fig. 11.14. This similarity also
implies that there should be a critical thickness as in the other two previous
treatments. It can be found also within this theory, and it is expressed as follows:

xcrit
c ¼

r1DCeq
c Dc

�

DCeq
b jeff

b

ð11:62Þ

where the growth of AbB is reaction controlled and the growth of AcB diffusion
controlled, thus simulating sequential phase formation. It states that the AbB layer
cannot coexist with the AcB layer as long as the thickness of the AcB layer is
below the xcrit

c . This means that even without any nucleation difficulties the AbB
cannot form with the AcB layer in the AaB/AbB/AcB/AdB diffusion couple when
the thickness of the xc is not large enough. This again predicts sequential phase
growth.
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11.6.3 Similarities Between the Growth Models

It is very interesting to compare the results obtained above and those derived in
Chap. 8. Despite the differences between the approaches, all the models lead to
similar results. It is also common to both approaches that they neglect the
nucleation difficulties in order to avoid complications. In fact, it has been shown by
d’Heurle [4] that in most cases nucleation plays a role in the very early stage of the
compound formation that is at the present time beyond experimental reach.
Nevertheless, nucleation still plays a decisive role with some silicides, especially
after the first-phase formation.

In the above two models, reactions at the interface are taken into account with
the help of a ‘‘chemical constant.’’ This concept is common to both the above
models despite the slightly different names that are used. The ‘‘chemical constant’’
is, however, a slightly obscure entity, because it is not clear what are its contents.
In Göseles approach [72, 77], it was related to the arrangement of atoms in the
interface and the volume changes due to formation of a new interface. Thus, it
should contain some ‘‘nucleation’’ contribution also. In the other approach, the
meaning of the ‘‘chemical constants’’ was somewhat similar. On the contrary, in
the physicochemical approach outlined in Chap. 8 there is no need for ad hoc
chemical constants as reaction related issues arise naturally from the stoichiom-
etric considerations.

The prediction power of the two models above is quite poor, due to the nature
of the ‘‘chemical constants.’’ There is no theoretical method at the present to
calculate these constants a priori. Hence, they can be determined only by exper-
iments. Also the lack of availability to use measured or estimated thermodynamic
and kinetic (diffusion constants) values reduce the use of these approaches. Again,
in the physicochemical approach one can readily utilize experimental and theo-
retical thermodynamic and kinetic data, which makes the approach derived in
detail in Chap. 8 a very strong and feasible tool to understand interfacial reaction
layer growth in thin film as well as in bulk couples.

From a certain point of view, both of the above models are a posteriori in their
nature, as they can explain afterward the phase formation sequence but cannot
predict it. Moreover, the ‘‘chemical constants’’ used in all the models are very
much case dependent, since they are basically depended on the conditions of the
interfaces and are therefore very sensitive to impurities, additional films etc.
Furthermore, these constants are not achievable by experimental methods. The
approaches, however, fade away the somewhat ‘‘traditional’’ distinction between
thin film and bulk couples, since fundamentally the behavior is more or less the
same. Nevertheless, in practical situations, the contributions due to the grain
boundaries, impurities etc. mentioned above (Sect. 11.5 onwards) must be taken
into account in thin films. This does not change the underlying theoretical fact that
even in bulk reaction couples phase formation is basically sequential.

If one compares the above treatments to the physicochemical model extensively
discussed in Chap. 8, the benefits of the latter over the two approaches are
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obvious. As discussed above, the physicochemical model contains only measur-
able quantities, and it has also predictive power. Thus, it is the opinion of the
authors that the physicochemical model should be used whenever the morpho-
logical evolution of a binary diffusion zone is rationalized.
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