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Preface

Diffusion in solids plays an important role in many processes in Material Science
and is the basis for numerous technological applications. In the nineteenth century,
diffusion in a solid material was hard to imagine because of densely packed
structure. In fact, the first systematic diffusion study in solid state was carried out
only in the late nineteenth century.

Before the work of Ernst O. Kirkendall and Fredrick Seitz in the 1940s, it was a
common belief that all the components diffuse at the same rate in solid materials.
Based on this assumption, direct exchange and ring mechanisms were wrongly
suggested to explain the diffusion of the components in crystalline solids.
(Surprisingly, the ring mechanism was rediscovered in molecular dynamic simu-
lation of grain boundary diffusion!) Kirkendall’s work played an important role in
formulating the basis of the theory of defect, i.e. vacancy-dependent diffusion
mechanism. Following this thought-provoking concept many outstanding papers
were published to further establish the relations to estimate the different diffusion
parameters from experiments. In the mean time, based on Georg Karl von
Hevesy’s work, radiotracer technique to study diffusion was developed which
sheds light on the fundamental aspect of the atomic nature of diffusion. In fact
Seitz, based on the available tracer diffusion study on pure Cu and Kirkendall’s
experiment, proved beyond doubt that diffusion of substitutional atoms occurs by
vacancy mechanism.

Looking back to the many books published on this subject by other researchers,
it is evident that there exists no book with a special emphasis on interdiffusion and
on the Kirkendall effect. Further, as thermodynamics plays an important role in
interdiffusion, without a proper understanding of the subject, many fundamental
aspects of interdiffusion may remain unclear. Therefore, we introduce the
important aspects of thermodynamics from the solid-state diffusion perspective
and then discuss the phenomenological process of interdiffusion extensively.
Moreover, the understanding of the interdiffusion process is not complete without
understanding the atomic mechanism of diffusion and different types of diffusion,
such as lattice and grain boundary diffusion. Therefore, these topics are discussed
in detail. Still, we are limiting the present consideration by metallic systems with
uncharged defects.

Chapter 1 starts with very basic concepts of thermodynamics. The laws of
thermodynamics are introduced and different extensive and intensive properties
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and variables are briefly discussed. The chapter is focused on a short and concise
description of the approaches to represent and utilize the thermodynamic data in a
manner suitable for interdiffusion studies. Therefore, many different ways to
represent the thermodynamic data of a given system graphically are introduced.
Special emphasis is given to Gibbs energy diagrams, phase diagrams and different
types of potential diagrams. Many of the relations developed and diagrams
introduced in this chapter will be frequently used in subsequent chapters.

Chapter 2 introduces different aspects of the hierarchical structure of solids:
atomic structure, unit cells, grain structure, defects, microstructure, etc., which are
very essential for understanding of the material systems. Some aspects related to
the defect structures in intermediate compounds, including the effect of atomic
order, are also discussed.

Chapter 3 starts with the Fick’s laws of diffusion. The second law is derived
from the first law. Subsequently, several solutions for diffusion problems with
different kinds of initial and boundary conditions are given. Limitations of the
solutions obtained are discussed, too. This chapter is written in such a way that
new students in the field or undergraduate students can understand the very basics
of Fick’s laws and their solutions, so that the formalism could directly be applied
for processing of the experimental data.

Chapter 4 relates thermodynamics with interdiffusion of components. Different
kinds of microstructures, which are expected to grow in the interdiffusion zone,
depending on the given phase diagram and composition of the end members of the
diffusion couples are explained in detail.

Chapter 5 discusses the atomic mechanisms of diffusion in detail. The main
difference between the interstitial and substitutional diffusion mechanisms is dis-
cussed. Anisotropy of diffusion, effect of temperature, and the fundamental con-
cept of a correlation factor are introduced in detail. The analytical and numerical
approaches for calculation of the correlation factors are introduced. Diffusion in
ordered phases is also disussed with a highlight on specific atomistic mechanisms
and correlation effects.

Chapter 6 concentrates on interdiffusion in systems with a wide composition
range. First, the limitations of the error function analysis are discussed based on
the topics introduced in Chap. 3 After that, different approaches that are used to
estimate the diffusion data are explained. The Kirkendall effect and the concept of
intrinsic diffusion coefficients are introduced. The estimation of the tracer diffusion
coefficients indirectly from a diffusion couple is also explained.

Chapter 7 discusses the estimation of the diffusion parameters in line com-
pounds and phases with a narrow homogeneity range. Few practical examples are
introduced to explain the steps needed for quantitative analysis.

Chapter 8 concentrates in the very recent developments in understanding the
Kirkendall effect and the physicochemical approach. By using this approach, one
can not only estimate the diffusion parameters, but also achieve more profound
understanding of the microstructural evolution of an interdiffusion zone.

Chapter 9 concentrates on diffusion in multicomponent systems. The mathe-
matical and experimental difficulties in estimating the diffusion parameters in
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ternary or higher order systems are discussed. A pseudo-binary approach, which
simplifies the conditions for the estimation of the diffusion parameter with much
better efficiency, is introduced. The usefulness of the diffusion couple technique
for the determination of phase diagrams is also discussed.

Chapter 10 concentrates mainly on short-circuit diffusion. Microstructures with
a hierarchy of short-circuit paths are explained and the kinetic regimes of diffusion
in such structures are introduced and discussed. Many practical examples are given
in order to explain the practical estimation of the diffusion parameters. Finally, the
effect of grain boundary diffusion on interdiffusion and Kirkendall effects are
briefly discussed.

Chapter 11 introduces the complications arising from the growth of the phases
as thin films. The roles of nucleation barriers, interfacial energies and elastic
strains in reactive diffusion are discussed. Further, nucleation issues in solid-state
amorphization are also discussed. Finally, it is shown that there is no fundamental
difference between thin film and bulk diffusion couples and the complications in
the former arise mainly from the structural features of thin films.

It should be noted that this book is biased towards experimental techniques.
Important developments are going on simulation, which are not covered here.
Three different groups have joined together to write on few important aspects such
as thermodynamics, interdiffusion, atomic mechanism and short-circuit diffusion.
In this also, few aspects are not covered extensively, which are beyond the
requirements for the students or available in other books.

As usual, we don’t expect it to be complete error-free. We would appreciate if
you write us with your comments and feedback so that we can take care in the next
edition.
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Chapter 1
Thermodynamics, Phases, and Phase
Diagrams

In this chapter, we will briefly go through the basics of chemical thermodynamics.
It is assumed that the reader is somewhat familiar with the fundamental concepts,
and therefore, they are not discussed in great detail. The emphasis of the chapter is
to build a thermodynamic foundation that can be utilized in the later chapters for
diffusion kinetic analyses. We will put special emphasis on the use of different
types of diagrams to represent thermodynamic data. Therefore, we introduce phase
diagrams, potential diagrams, and Gibbs free energy diagrams in considerable
detail. These ‘‘tools’’ are then used extensively in diffusion kinetic analysis later on
in the book. We will conclude the chapter by introducing some commonly used
thermodynamic conventions.

Classical thermodynamics is a phenomenological theory which deals with the
physical properties of macroscopic systems under equilibrium conditions and the
relations between them. The great importance of classical thermodynamics lies in
its exactness as well as in its generality. It does not make any assumptions con-
cerning the atomic structure of the system nor the interactions between the atoms.
Even though this can be regarded as being beneficial in many applications, this can
also be regarded as a weakness, especially in the case of solids and their solutions
and compounds. Statistical thermodynamics, on the other hand, strives to obtain
thermodynamic relationships based on the molecular behavior of matter. It pro-
vides additional information that cannot be achieved with classical thermody-
namics. Firstly, statistical thermodynamics shows that the laws of thermodynamics
are a direct consequence of the principles of quantum theory combined with one
very general statistical postulate. Secondly, statistical thermodynamics provides
general relations that cannot be derived from the laws of thermodynamics. Most
importantly, by utilizing statistical thermodynamics, it is possible to obtain a
physical understanding of the properties of solutions and about the reasons for
their behavior. Thus, it is beneficial to utilize both of the approaches described
above to obtain a more fundamental understanding of the behavior of different
material combinations. The subject of thermodynamics is vast, and there are a
large number of excellent books available [1–5]. The following seeks to sum-
marize those parts of thermodynamics that are considered essential for a basic
understanding of energetics in materials science. Further, the topics in Chap. 1 are

A. Paul et al., Thermodynamics, Diffusion and the Kirkendall Effect in Solids,
DOI: 10.1007/978-3-319-07461-0_1, � Springer International Publishing Switzerland 2014

1

http://dx.doi.org/10.1007/978-3-319-07461-0_1


chosen in such a way to be closely correlated to the use of thermodynamics in the
diffusion calculations from subsequent chapters. The treatment utilized in Chap. 1
partly follows the approach presented in the comprehensive textbook written by
Kivilahti [6].

1.1 Thermodynamics System and Its State

The system is a clearly defined part of a macroscopic space, distinguished from the
rest of the space by a physical boundary. The rest of the space (taking only the part
that can be regarded to interact with the system) is defined as the environment. The
system can be isolated, closed, or open depending on its interactions with the
environment. An isolated system cannot exchange energy or matter, a closed
system can exchange energy, but not matter, and an open system can exchange
both energy and matter with the environment. A system can be homogeneous, thus
thoroughly uniform, or heterogeneous. A homogeneous system is defined as a
phase, which can be either a pure component (element or chemical compound) or a
solution phase. A heterogeneous system, on the other hand, is a phase mixture.
Thermodynamics aims to determine the state of the system under investigation.
From experiment, it is known that when a certain number of macroscopic variables
of the system have been fixed, the values of all other variables are also fixed and
the state of the system becomes fully determined. In thermodynamics, the vari-
ables can be extensive, intensive, and partial. Extensive properties depend on the
size of the system, whereas the intensive properties do not. Partial properties are
the molar properties of a component. Those variables which are chosen to rep-
resent the system are called independent variables. A macrostate of the system is
characterized, for example, by its temperature (T), pressure (p), and composition
(ni) or temperature (T), volume (V), and composition (ni). A macrostate does not
change over time if its observable properties do not change. The system can,
however, go through changes in its state for a number of different reasons. These
changes can be reversible or irreversible. A reversible change is a change that can
be reversed by an infinitesimal modification of a variable, whereas irreversible
processes have a definite direction which cannot be reversed. In a system, the
energy of that system is constantly being redistributed among the particles of that
system. The particles in liquids and gases are constantly redistributing in location
as well as changing in quanta value (the individual amount of energy that each
molecule has). Every specific arrangement of the energy of each molecule in the
whole system at one instant is called a microstate. The nature of every microstate
implicitly contains the important concept of fluctuations in it. It is evident that a
given macrostate can be represented by number of different microstates.
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1.2 The Laws of Thermodynamics

Thermodynamics is based on a few empirical generalizations, which are stated in
the form of the following laws.

The zeroth law defines temperature such that if two systems are independently
in equilibrium with a third system, they must also be in equilibrium with each
other. Then, they have a common state variable—temperature.

The first law states the principle of conservation of energy such that the
macrostate of a system can be characterized with an extensive variable, called
internal energy E, which is constant in an isolated system. When the system
interacts with the environment and transfers from one macrostate to another, the
infinitesimal change in the internal energy can be stated as

E ¼ dqþ dw ð1:1Þ

where dq and dw are the heat and work transferred into the system during the
change. When the system receives heat from the environment, dq [ 0, and when
the system gives up heat, dq \ 0. The same is, of course, true for the work
transferred. If the system does work, dw\0, and if work is done on the system,
dw [ 0.If the external pressure acting on the systems’ straight interface is p, then
dw ¼ �pdV , if the expansion work is the only form of work. The internal energy
of the system is a state function. This means that dE is an exact differential. During
a change, its value is, therefore, independent of the path between the initial and the
final states. It is to be noted that dq and dw are not exact differentials, but infin-
itesimal quantities of heat and work, and thus, they are path functions. Their value,
when integrated, depends on the path between the initial and final states.

The second law gives the criteria for the spontaneous change in nature that
allows the macrostate in equilibrium to be characterized by a variable S, the
entropy, which has the following properties

(i) Entropy, which is defined as

S ¼ dq

T

� �
rev

ð1:2Þ

is a state function. In Eq. 1.2, the subscript rev refers to a reversible process.
Entropy can be expressed as a function of the independent state variables of the
system as S ¼ S E;Vi; nið Þ. The infinitesimal entropy change of a closed system in
an arbitrary reversible process can be thus written as

dS ¼ oS

oE

� �
dE þ oS

oV

� �
dV ð1:3Þ
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By utilizing the first law dEð ÞV ;ni
¼ dq and Eq. 1.2, we obtain

oS

oE

� �
V ;n

¼ 1
T

ð1:4Þ

where T is the absolute temperature.

(ii) The entropy of the system is an extensive property.
(iii) The entropy of the system can change for one of two reasons, either as a

result of the transfer of entropy between the system and the environment or
by the creation of entropy within the system. The entropy change can be
written as

dS ¼ deSþ diS ð1:5Þ

where diS is the entropy created within the system. From the experiment, it is
known that this quantity is always positive. During a totally reversible change, the
entropy change can be zero. When the system is isolated, its entropy can never be
decreased

dS ¼ dSð ÞE;V¼ diS� 0 ð1:6Þ

Hence, in real irreversible processes, the entropy of an isolated system always
increases and reaches its maximum at the equilibrium state.

The third law states that the entropy of the system has a property that S! So

when T ! 0, where So is a constant independent of the structure of the system. At
absolute zero, the entropy of pure, defect-free, crystalline elements has the same
value, So, which has been chosen to be zero.

Thus, the thermodynamics of closed and isolated systems is based on the fol-
lowing equations

dE ¼ dqþ dw for all changesð Þ

dS ¼ dq

T
for reversible changesð Þ

dS� 0 for changes in isolated systemsð Þ

These equations can be combined to give the fundamental equation for a closed
homogeneous system

dE ¼ TdSþ dw or

dE ¼ TdS� pdV
ð1:7Þ

if only expansion work is considered.
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Note The concept of entropy is highly ambiguous. Several interpretations
have been given to entropy. The entropy law is a consequence of the fact that
matter is composed of interacting particles that are in motion and which
constantly show a tendency to muddle up and thereby to mix both matter and
energy. Thus, it has been proposed that entropy is the measure of the systems
mixed-upness (Gibbs), or the degree of disorder (Planck). According to
Guggenheim, entropy is the measure of the spread of energy and matter.
Shannon, on the other hand, has defined entropy as the lack of information or
data [6].

The above equations are valid for closed systems with fixed composition. In
order to extend the treatment to open heterogeneous systems, we need to choose a
third variable, one that describes the composition and quantity of the system. This
is the ni being the number of moles of component i.

1.3 Heterogeneous Systems

A heterogeneous system is composed of several homogeneous subsystems,
meaning phases which each have their own energy E/, entropy S/, and compo-
sition ni

/ (i = 1, 2, … k). Consequently, the energy, the entropy, and the number of
moles of substance of the phase mixture are

E ¼
X

/

E/ ð1:8Þ

S ¼
X

/

S/ ð1:9Þ

n ¼
X

/

n/ ¼
X

/

X
i

n/
i ð1:10Þ

To exactly determine the state of the phase mixture requires that each phase that
it contains must be described accurately. If we choose the variables (S, V, and ni) to
describe the state of a given phase, all other properties are then necessarily
functions of the chosen variables. This means that especially the internal energy of
a phase can be expressed as E/(S/, V/, ni

/). Its exact differential for an arbitrary
change can be written as
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dE ¼ oE

oS

� �
dSþ oE

oV

� �
dV þ

X
i

oE

oni

� �
dni ð1:11Þ

When the composition of the phase does not change, Eq. 1.7 is valid and the
first two partial derivatives in Eq. 1.11 are temperature of the phase (T) and its
pressure (p). The last term is defined as the chemical potential of a component i.
The chemical potential is defined formally in the following [1]: ‘‘If to any
homogeneous mass we suppose an infinitesimal quantity of any substance to be
added and its entropy and volume remaining unchanged, the increase of the energy
of the mass divided by the quantity of the substance added is the (chemical)
potential for that substance in the mass considered.’’

Consequently, we obtain an equation for the change in the phase internal energy

dE/ ¼ T/dS/ � p/dV/ þ
X

i

l/
i dn/

i ð1:12Þ

This equation is the fundamental equation for the independent variables S, V,
and ni. The internal energy E is their characteristic function, the thermodynamic
potential of the phase. In a thermodynamic system, each phase has such a
potential.

Next, a new thermodynamic function is defined with the help of internal energy
and entropy

F ¼ E � TS ð1:13Þ

By differentiating the function and by substituting Eq. 1.13 into the differential
form of 1.12, we obtain

dF/ ¼ �S/dT/ � p/dV/ þ
X

i

l/
i dn/

i ð1:14Þ

This equation defines the Helmholtz free energy F, which is a function of the
independent variables T, V, and ni. The properties of this free energy function shall
be discussed in more detail in Sect. 1.5.

Let us further examine the function E/ with independent variables (S/, V/, and
ni

/). Because T, p, and li are intensive variables, they are not dependent on the
amount of phase /. From this, it follows that as the intensive variables remain
constant, Eq. 1.12 can be integrated. This gives the thermodynamic potential of
phase / as

E/ ¼ TS/ � pV/ þ
X

i

l/
i n/

i ð1:15Þ

Next, we define two new functions, the enthalpy (H) and the Gibbs free energy (G)
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H � E þ pV ð1:16Þ

G � H � TS ð1:17Þ

By recalling the definition of Helmholtz free energy (1.13), Eq. 1.15 (together
with 1.16 and 1.17) yields a function

G/ ¼
X

i

l/
i n/

i ð1:18Þ

This function (Gibbs free energy) is also a thermodynamic potential of a phase,
and it is an extensive variable. Therefore, the Gibbs free energy of a phase mixture
is given as

G ¼
X

/

X
i

l/
i n/

i ð1:19Þ

When the Gibbs free energy function for a phase is known, all other thermo-
dynamic properties of a given phase can be expressed with the help of this
potential and its derivatives. The properties of the Gibbs free energy function are
discussed in more detail in Sect. 1.5.

1.4 Commonly Used Terms and First Glance at Phase
Diagrams

Thermodynamics is an exact discipline. Therefore, it is of great importance to
define a few more key terms which will be frequently encountered later on in the
text. A component refers to independent species in the system under investigation,
giving the minimum number of substances which must be available in the labo-
ratory in order to make up any chosen equilibrium mixture of the system in
question. A phase is a region of uniformity in a system under investigation, as
already stated. It is a region of uniform chemical composition and uniform
physical properties. A phase is also distinguished from other dissimilar regions by
an interface.

To illustrate the concepts of compound and a phase, we will consider a simple
example H2O. Ice, water, and water vapor are all different phases of the compound
H2O that exist in different temperature and pressure ranges, as shown in Fig. 1.1.
The diagram shown in Fig. 1.1 is called a unary phase diagram and is shown for
water in the figure. The point marked as C is called the critical point. When tem-
perature rises above that critical point, the gas phase (water vapor) cannot be
liquefied by increasing the pressure. The curve TC gives the equilibrium vapor
pressure of the liquid as a function of temperature up to the critical point. At point
T (called the triple point), all three phases of water are in equilibrium with each other.
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Based on the Gibbs phase rule (derived later on) at this point, the number of degrees
of freedom is zero. The equilibrium can therefore be attained only at a specific
temperature and pressure. The curve ST gives the equilibrium vapor pressure of the
solid (ice) as a function of temperature. The curve TM gives the change in the
melting point of ice as a function of pressure. It is to be noted here that the curve TM
for the system H2O is highly unusual as the TM curve here is descending, whereas in
most of the systems, it is ascending. This is a result of the fact that the molar volume
of solid water (ice) is larger than that of liquid water (in Sect. 1.7 is introduced the
Clausius–Clapeyron equation that can be used to calculate this). In most systems,
however, the opposite is true. Another unary system exhibiting this type of behavior
(i.e., larger volume in solid than in liquid) is bismuth (Bi).

Different pure elements, for example, Cu or Ni, also have three different phases:
solid, liquid, and gas. Similarly, two allotropic forms, solid gray tin and white tin,
which have a different crystal structure and properties, are considered as distinct
phases. To show the example of phases with two different components, we con-
sider the Ag–Cu binary phase diagram, which is shown in Fig. 1.2. All phases are
made of the two components, Ag and Cu. The different phases a, b, and liquid are
stable within a certain temperature and composition (expressed here as weight
percentage) range. Note that the phase diagram shown in Fig. 1.2 is determined at
constant pressure. The a-phase is basically a solid solution Ag(Cu), that is, Ag
(with its face-centered cubic (FCC) structure) with a limited amount of dissolved
Cu, whereas the b-phase is a solid solution Cu(Ag), that is, Cu (with FCC struc-
ture) with a limited amount of dissolved Ag. Different notations (a and b) are used
to differentiate solid solutions from pure elements. The solvus curve separates the
single solid-phase region a from the solid two-phase region a + b. Similarly,
another solvus curve separates the one-phase solid region b from that of the solid
two-phase region a + b. The solidus curve separates the solid one-phase a-region
from the two-phase region where the solid a and the liquid are in equilibrium.
Similarly, another solidus curve separates the solid one-phase region b from the
two-phase region b + liquid. The liquidus curve, on the other hand, separates the
two-phase a + liquid and b + liquid areas from the liquid one-phase area L. In

Fig. 1.1 The pressure–
temperature diagram of H2O
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Fig. 1.2, there is a horizontal line of specific importance. It represents the so-called
eutectic reaction, where liquid L reacts to form two new solid phases a and b. At
the line, there are three phases L, a, and b which are in equilibrium with each
other. According to the Gibbs phase rule (note that here the pressure is constant),
such an equilibrium in a binary system can exist only at a specific temperature and
only with specific compositions of the three phases participating in the equilib-
rium. It is common practice to show the stability of phases in a single-component
system in different temperature and pressure ranges as shown in Fig. 1.1. In a
binary system case, the stability of the phases is shown in a different temperature
and composition range under constant pressure. Unless mentioned, a binary phase
diagram (shown in Fig. 1.2) is commonly determined at atmospheric pressure.
Note that at different pressure, the binary temperature–composition phase diagram
will be different since the equilibrium transition temperature between different
phases changes with pressure. It is also to be noted that typically, especially in the
case of metals, the vapor region is not shown in the binary phase diagram as it
typically exists at relatively high temperatures under atmospheric pressure.
Finally, it is important to realize that one cannot obtain any information about
kinetics or the morphology of the phase mixture from the phase diagram. The
diagram only gives information about the phases that can be in equilibrium under
certain composition–temperature combinations. Although there are three different
species present in a system, there are times when the phase diagram is presented as
a binary phase diagram. For example, as Fig. 1.3 shows, the MgO–Al2O3 phase
diagram is presented as a binary phase diagram, where MgO and Al2O3 are
considered as the components. The reason for this is clear. Even though there are
three species (Mg, O, and Al) in the system, there are only two components (MgO
and Al2O3). Only the amounts of these components can be changed independently.
This is called a pseudobinary phase diagram.

Fig. 1.2 Binary phase
diagram of Ag–Cu
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In a ternary system (Fig. 1.4), where three elements are mixed, the phase
diagrams take the standard form of a prism which combines an equilateral trian-
gular base (ABC) with three binary system ‘‘walls’’ (A–B, B–C, and C–A). This
three-dimensional form allows the three independent variables to be specified
(two-component concentrations and temperature). In practice, determining dif-
ferent sections of the diagram from these kinds of graphical models is difficult and,
therefore, horizontal (isothermal) sections through the prism are used (Fig. 1.4b).
The isothermal section is a triangle at a given temperature, where each corner
represents the pure element, each side represents relevant binary systems, and
areas of different phases can be determined inside the triangle. In addition to the
isothermal section, also vertical sections (isopleths) can be taken from a space
diagram of a given ternary system. We will return to these diagrams and their uses
in Sects. 1.12 and 1.13.

Another commonly used term, as already mentioned, is composition. Compo-
sition can be expressed in terms of mole fraction, atomic fraction or atomic per-
centage, and weight fraction or weight percentage. It should be pointed out that in a
binary (not pseudobinary) or multicomponent system, the mole fraction is equal to
the atomic fraction. This can be shown very easily for a system of total 1 mol,
where XA and XB are mole fractions of A and B, respectively. This can be written as

XA þ XB ¼ 1 ð1:21Þ

If nA and nB are the total number of atoms of A and B, respectively, we can
write

XA ¼ nA=No and XB ¼ nB=No ð1:22Þ

where No (=6.022 9 1023 atoms/mole) is the Avogadro number.

Fig. 1.3 Pseudobinary phase
diagram of MgO and Al2O
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This means that the atomic fraction of A ðNAÞ and B ðNBÞ, with the help of
Eq. 1.21, can be expressed as

NA ¼
nA

nA þ nB

¼ XANo

XANo þ XBNo
¼ XA

XA þ XB

¼ XA ð1:23aÞ

NB ¼
nB

nA þ nB

¼ XBNo

XANo þ XBNo
¼ XB

XA þ XB

¼ XB ð1:23bÞ

Although in the previous example, we considered the one-mole system (which
will be useful in the proceeding section), it can be shown that the mole fraction is
always equal to the atom fraction, even if the system has a total more or less than
one mole of atoms. For example, we consider the system of total x mole, where the
mole of A and B are xA and xB, respectively. This can be written as

xA þ xB ¼ x ð1:24Þ

The mole fraction of A, XA, can be expressed as

XA ¼
xA

x
¼ xA

xA þ xB

ð1:25Þ

Consequently, the atomic fraction of A, NA, can be expressed as

NA ¼
nA

nA þ nB

¼ xANo

xANo þ xBNo
¼ xA

xA þ xB

¼ xA ð1:26Þ

A similar expression can be derived for B.

Fig. 1.4 a Ternary system, and b isothermal section at T = x �C
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Concentration can be expressed as molal concentration, that is, ci = number of
moles (g-atoms, g-ions, etc.) of the solute i per 1,000 g of solution, or as volume
concentration, that is, the number of moles per cubic meter (m3). It is to be noted
that the latter definition is valid only at constant temperature. When describing the
composition of the liquid solution, for example, it is expedient to use as the two
other independent variables (in addition to composition regardless of how it is
expressed) temperature and pressure, so that differentiation with respect to tem-
perature implies constant pressure. Thus, we have

oC

oT

� �
¼ �aCS

where a is the thermal expansivity and Cs is the concentration of the species of
interest. The relation above shows that if Cs is chosen as a variable, it will not be
an independent variable [2]. Further, when we consider the solid state, it becomes
evident that in order to use volume concentrations, we should have knowledge
about the molar volume as a function of composition of the phase under investi-
gation. This is why volume concentrations are not always convenient variables
and, for this reason, will not typically be used later on in the text.

1.5 Spontaneous Change

Entropy is the basic fundamental concept when the direction of natural change is
considered as discussed in Sect. 1.2. Unfortunately, the use of entropy as the
criteria for spontaneous change requires that changes in both the system and
the environment are investigated. As the environment is not always easily defined,
the entropy criterion is not convenient to use in many practical cases. However, if
we concentrate on the system, we may lose some generality but gain a lot in the
sense that the environment no longer needs to be considered. Next, we will look in
greater detail how this can be achieved. Consider a system in thermal equilibrium
with its surroundings at a temperature T. When a change in the system occurs, the
second law of thermodynamics states (the Clausius inequality)

dS� dq

T
� 0 ð1:27Þ

Depending on the conditions under which the process occurs, this inequality
can be developed in two ways.

(i) Heat transfer at constant volume

In the absence of non-expansive work, it is possible to write dqV ¼ dE. This is
because as volume is kept constant and only expansion work is considered, the
work done by or to the system must be zero. Thus, we can write
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dE ¼ dq

and utilizing Eq. 1.27, the following is obtained

dS� dE

T
� 0 ð1:28Þ

It is to be noted that here the criteria of spontaneity is expressed in terms of
state functions only. Equation 1.28 can be rearranged as

TdS� dE V constant; no additional workð Þ ð1:29Þ

At either constant internal energy (dE = 0) or constant entropy (dS = 0),
Eq. 1.29 can be expressed as

dSE;V � 0 or dES;V � 0

The first inequality states that entropy increases in a spontaneous change in a
system with constant volume and constant internal energy. The second inequality
states that given the constant entropy and volume of a system, its internal energy
decreases during spontaneous change. This is, in fact, a statement about entropy
since it states that if the entropy of the system remains unchanged in the trans-
formation, there must be an increase in the entropy of the environment caused by
the outflow of heat from the system.

(ii) Heat transfer at constant pressure

Again, in the absence of non-expansive work, we may write dqp ¼ dH and
obtain

TdS� dH p constant; no additional workð Þ ð1:30Þ

At constant enthalpy or entropy, the following inequalities are obtained

dSH;p� 0 or dHS;p� 0

which can be interpreted in a similar fashion as inequalities concerning heat
transfer at constant V.

Unfortunately, transformations where E and V, H and p, S and V, or S and p are
constant are rare. Far more frequently, transformations take place under conditions
where V and T, or even more typically, p and T, are constant.

Equations 1.29 and 1.30 can be written as

dE � TdS� 0 and dH � TdS� 0 ð1:31Þ

The Helmholtz and Gibbs free energy functions were defined as follows
(Sect. 1.3)
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F ¼ E � TS and G ¼ H � TS ð1:32Þ

At constant temperature, the differentials of the functions F and G are

dFð ÞT ;V¼ dE � TdS ð1:33Þ

dGð ÞT ;p¼ dH � TdS ð1:34Þ

where the entropies of the phases have been replaced by the temperature of the
system. We get two new inequalities for a spontaneous change with frequently
observed variables

dFð ÞT ;V � 0 ð1:35Þ

dGð ÞT ;p� 0 ð1:36Þ

(iii) Expansion work is not the only form of work

How shall the above-derived conditions for spontaneity change if the expansion
work is no longer the only form of work? The second law of thermodynamics
states that dE ¼ dqþ dwtot, where dwtot ¼ dw0 � pdV is the total work and dw0

takes into account all other forms of work except expansion work. By solving dq,
we get

dq¼ dE � dw0 þ pdV ð1:37Þ

and utilizing the fact that dq� TdS� 0, we obtain

dE � TdS� dw0 þ pdV � 0 ð1:38Þ

By utilizing the definition of the Helmholtz free energy, we obtain

dFð ÞT � dw0 � pdV ¼ dwtot ð1:39Þ

Thus, at constant T, change occurs spontaneously when the change in Helm-
holtz energy is smaller than the total amount of work. If the volume is constant
dV = 0, then

dFð ÞT ;V � dw0 ð1:40Þ

which is equal to Eq. 1.39 when the expansion work is the only form of work.
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From the definition of enthalpy (H = E + pV) and from dE ¼ dqþ dw0 � pdV
under constant pressure, it follows that

dHð Þp¼ dE þ pdV ¼ dqþ dw0 � pdV þ pdV ð1:41Þ

which gives

dqp ¼ dHð Þp�dw0 ð1:42Þ

Combining this with Eq. 1.31 results in

dH � TdS� dw0 � 0 constant pressureð Þ ð1:43Þ

and finally,

dGð ÞT ;p� dw0 ð1:44Þ

At constants T and p, the change is spontaneous if the change in Gibbs energy is
less than the additional work done. Equations 1.44 and 1.40 can be stated also as
�DGis the maximum amount of work (other than expansion work) that the system
can release during spontaneous change at constant temperature and pressure. The
value �DFis the maximum amount of total work that the system can release during
spontaneous change at constant temperature.

Given that G = G(T, P, n1, n2,…) in an open system, with ni being the number
of moles of component i, the derivative of the Gibbs energy function yields

dG ¼ �SdT þ Vdpþ
X

i

lidni ð1:45Þ

where li is the chemical potential of component i. At a constant value of the
independent variables P, T, and nj(j 6¼ i), the chemical potential equals the partial
molar Gibbs free energy, (qG/qni)P,T,j 6¼i. The chemical potential (partial Gibbs
energy) has an important function analogous to temperature and pressure.
A temperature difference determines the tendency of heat to flow from one body
into another, while a pressure difference, on the other hand, determines the ten-
dency toward a bodily movement. A chemical potential can be regarded as the
cause of a chemical reaction or the tendency of a substance to diffuse from one
phase to another.

As shown before in Eq. 1.17, the Gibbs free energy can be expressed as

G ¼ H � TS
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where H (J/mole) is the enthalpy, T (Kelvin, K) is the absolute temperature, and
S (J/mole K) is the entropy of the system. Further, H, the total heat content or total
energy of the system, was defined in Eq. 1.16 as

H ¼ E þ pV

where E is the internal energy, P is the pressure, and V is the volume of the system.
In general, the contribution of PV in Eq. 1.16 is very small in the solid and

liquid states if the pressure is not exceptionally high. Therefore, while working
with condensed phases (solid and liquid), the PV term can, in most cases, be
neglected. Hence, the change in internal energy of the system can be approximated
to be equal to its enthalpy

H ¼ E ð1:46Þ

The internal energy of the system consists of the potential and kinetic energies
of the atoms within the system. The kinetic energy of solids and liquids is caused
by the vibration of atoms at their position. In liquids and gases, the translational
and rotational movement of the atoms (or molecules), within the system, provides
an additional contribution to the kinetic energy. Every atom vibrates with different
energy at its position with degrees of freedom in x, y, and z directions with very
high frequency that is temperature dependent. The frequency spectrum starts from
0 and goes up to a maximum value of mD, which is called the Debye frequency. By
utilizing the vibration frequencies, it is possible to calculate the heat capacity of a
given solid. Above a certain temperature (hD, the Debye temperature), all atoms
are essentially vibrating with their corresponding maximum Debye frequency. For
metals at room temperature, they are typically above their Debye temperature,
which makes it possible to use single (maximum) frequency values when con-
sidering the diffusion of atoms, for instance. The average total energy (=3NkT
where k is the Boltzmann constant and N is the number of atoms in a crystal) of
atoms is fixed with respect to a particular temperature. Moreover, the vibration of
any atom depends on the vibration of neighboring atoms because of inter-atomic
bonding. This coupling produces an elastic wave with quantized energy. The
quantum of energy in an elastic wave is called a phonon. For example, sound
waves and thermal vibrations in crystals are phonons. The other part of internal
energy in solids, the potential energy, depends on the inter-atomic bonding
between the atoms. In a single-component system, the potential energy depends on
one type of bonding, but, in a binary or multicomponent system, the potential
energy depends on the type, number, and magnitude of the different bonds between
the atoms within the system. This is explored further in Sect. 1.9 for binary sys-
tems cases. The entropy of a crystal is composed of two terms: thermal entropy
and the configurational entropy. The first part is concerned with the distribution of
energy over the available energy states in the crystal (system) and the latter part
with the distribution of atoms or particles within the crystal (system).
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Note By utilizing the Gibbs free energy, all forms of work (excluding
expansion work) can be taken into account 2(DG)p,T C w0 = Rlini +
cA + zFU + ���, where the first term is the chemical part, the second is the
surface energy contribution, the third is the electrical component, etc. Thus,
Gibbs energy gives the amount of maximum additional (non-expansion)
work that the system can perform. For all spontaneous processes, the change
in Gibbs energy must be negative. It should also be noted that the temper-
ature and pressure of the system do not have to be constant during the whole
process. It is adequate that they are the same at the initial and final stages. An
example is an exothermic reaction taking place at temperature T, where the
reaction heat is transferred to the environment at the end of the reaction, thus
making Tinitial equal to Tfinal. This is, of course, a consequence of the fact that
the Gibbs energy is a state function and its value is only dependent on the
initial and final states, not the path between them.
The Helmholtz free energy of a closed system, on the other hand, is a
function of temperature and volume. Helmholtz free energy (F) is maximum
free energy, which can be used to do work at constant volume and tem-
perature and can be expressed as

F ¼ E � TS

where E is the internal energy. The main difference between Gibbs free
energy (i.e., the change in energy at constant pressure and temperature) and
Helmholtz free energy (i.e., the change in energy at constant volume and
temperature) is ‘‘PV’’. This comes from the fact that there is need for extra
work to accommodate the volume change. Thus, the Helmholtz free energy
is the maximum amount of any kind of work the system can do and is,
therefore, sometimes called the maximum work function. The change in
Helmholtz free energy must also always be negative for a spontaneous
change.

With the help of the Gibbs free energy function derived above, the equilibrium
state of the system can be investigated. There is the relation between the chemical
potential of components and the total Gibbs energy of the system, as expressed in
Eq. 1.19 (Sect. 1.3) through

Gtot ¼
X

/

X
i

l/
i n/

i

ffi �

The Gibbs energy function can be utilized from the component level to the
system level and back again. Hence, Eq. 1.19 provides the very important con-
nection between component and system level properties.
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Three stable equilibrium states to be considered here are (i) complete or global
thermodynamic equilibrium, (ii) local thermodynamic equilibrium, and (iii) partial
thermodynamic equilibrium. When the system is at complete equilibrium, its
Gibbs free energy (G) function has reached its minimum value

dG ¼ 0 or la
i ¼ lb

i ¼ � � � ¼ l/
i ; i ¼ A;B;C; . . .ð Þ ð1:47Þ

and then, the system is in mechanical, thermal, and chemical equilibrium with its
surroundings. Consequently, there are no gradients inside the individual phases
and no changes in the macroscopic properties of the system are to be expected.

Local equilibrium, on the other hand, is defined in such a way that the equilibrium
exists only at the interfaces between the different phases present in the system. This
means that the thermodynamic functions are continuous across the interface and the
compositions of the phases right at the interface are very close to those indicated by
the equilibrium phase diagram. This also indicates that there are activity gradients in
the adjoining phases. These gradients, together with the diffusivities, determine the
diffusion of components in the various phases of a joint region.

Partial equilibrium means that the system is in equilibrium only with respect to
certain components. It is generally found that some processes taking place in the
system can be rapid, while others are relatively slow. If the rapid ones occur
quickly enough to fulfill the requirements for stable equilibrium (within the limit
of error) and the slow ones are slow enough that they can be ignored, then it is
quite proper to treat the system as being in equilibrium with respect to the rapid
processes alone [7].

It is also possible that the global energy minimum of the system is not acces-
sible owing to different restrictions. In such cases, we are dealing with metastable
equilibrium, which can be defined as a local minimum of the total Gibbs energy of
the system. In order to obtain global stable equilibrium, some forms of activation
(e.g., thermal energy) must be brought into the system. It is to be noted that
metastable equilibrium can also be complete, local, or partial; the local metastable
equilibrium concept, in any case, will be used frequently in the following sections.
Very often, one or more interfacial compounds, which should be thermodynami-
cally stable at a particular temperature, are not observed between two materials
and, then, these interfaces are in local metastable equilibrium. Another situation
commonly encountered occurs in solid/liquid reaction couples, where during the
few first seconds, the solid material is in local metastable equilibrium with the
liquid containing the dissolved atoms, before the intermetallic compound(s) is
formed at the interface. In fact, a principle commonly known as Ostwald’s rule
states that, when a system undergoing reaction proceeds from a less stable state,
the most stable state is not formed directly but rather the next more stable state is
formed, and so on, step by step until (if ever) the most stable is formed. It is a fact
that most materials used in everyday life have not been able to reach their absolute
minimum energy state and are, therefore, in metastable equilibrium. It should be
noted that a system at metastable equilibrium has thermodynamic properties,
which are exactly determined, just as a system at stable equilibrium.
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1.6 Free Energy and Phase Stability
of Single-Component System

Different phases of a single element can be stable at a different temperature range
under a particular pressure (we consider atmospheric pressure). For example,
below the melting point, a solid phase is stable, whereas above the melting point, a
liquid phase is stable. In general, at a particular temperature, the phase with the
lowest Gibbs free energy will be the stable one. If at a particular temperature, the
free energy of two phases is the same, then both phases are stable at that tem-
perature. This takes place, for example, at the melting point where the solid and
the liquid phases exist together. This also means that the system is in equilibrium
and there is no driving force for change. To explain the stability of phases at
different temperatures, we need to know the change in their free energies as a
function of temperature. Consequently, (following Eq. 1.18) in order to determine
free energy at a particular temperature, it is necessary to determine the enthalpy
and the entropy at that particular temperature. Both properties can be determined
from the knowledge of specific heat at constant pressure, CP. The specific heat or
specific heat capacity CP (J/mole K) is defined as the amount of heat required to
increase the temperature of a system by one Kelvin under constant pressure.

The absorption or release of heat, dq, in a reversible process, at constant
pressure from the system to the surrounding area is equal to the enthalpy change,
dH, of the system. We can write

dq ¼ dH ð1:48Þ

Further, from the definition of Cp, the equation can be written

Cp ¼
dq

dT
ð1:49Þ

From Eqs. 1.48 and 1.49, follows

dH ¼ CpdT ð1:50Þ

By integrating Eq. 1.50, it can be expressed as

ZH

o

dH ¼
ZT

o

CPdT

HT ¼ Ho þ
ZT

o

CPdT

ð1:51Þ

where HT and Ho are enthalpy at temperature T and 0 K, respectively.
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The enthalpy at room temperature 298 K is often known, and Eq. 1.51 can be
written as

HT ¼ H298 þ
ZT

298

CPdT ð1:52Þ

Further, from the definition of entropy for a reversible process, we know

dS ¼ dq

T
¼ CPdT

T
ð1:53Þ

By integrating Eq. 1.53, we get

ST ¼ So þ
ZT

o

CP

T
dT ¼

ZT

o

Cp

T
dT ð1:54Þ

where So is the entropy at 0 K. However at 0 K, the entropy of a defect-free pure
element is, by definition, zero (according to the third law of thermodynamics).
Moreover, if the entropy at 298 K is known, then Eq. 1.54 can be written as

ST ¼ S298 þ
ZT

298

CP

T
dT ð1:55Þ

Note We have considered above a pure element with a defect-free structure.
However, it is to be emphasized that it is impossible to obtain a defect-free
structure at temperatures above 0 K. There will always be a certain amount
of point defects, such as vacancies and impurities present in the structure
under the equilibrium condition. The free energy of a phase including the
contribution from defects can be expressed as

Gm ¼ Gþ DGd

Gm is the free energy of a single-component material with point defects; G is
the free energy of the defect-free material, and DGd is the free energy change
because of the presence of defects. As will be shown later on, vacancies, for
instance, are always present with a certain equilibrium concentration above
0 K. However, since the concentration of defects, in general, is small
compared to the number of atoms, we can in many cases neglect the con-
tribution from DGd.
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In general, the CP values for different phases can be experimentally determined
and are available in the literature. The way that CP typically varies with temper-
ature is shown in Fig. 1.5a. From the knowledge of CP, it is possible to calculate
H and S at a particular temperature T and consequently determine the variation of
free energy G as a function of temperature. If there are phase transformations
within the temperature range of interest, the enthalpies and entropies of the cor-
responding transformation must be added, at the appropriate T, and the integration
must continue with the Cp value of the new phase, to obtain the correct H and S at
the required temperature. The enthalpy of the formation of all pure elements under
atmospheric pressure and with their most stable form at room temperature (298 K)
has been defined to be zero at all temperatures. These are called the standard
enthalpies of formation. And from these, the enthalpy change as a function of

temperature can be determined as HT ¼
RT

298
CPdT. The typical change in enthalpy,

entropy, and free energy is shown in Fig. 1.5b. There are a few important points
that should be noted here. It is clear from Eq. 1.50 that the slope of the enthalpy
curve dH/dT is equal to CP. Since the value of CP always increases with tem-
perature, the slope of the enthalpy curve will also increase continuously with rising
temperature. Further, from standard thermodynamic relation, we know that
dG = Vdp - SdT. Since transformations at constant pressure are under consid-
eration, we can write dG = - SdT. Hence, the slope of the free energy curve dG/
dT is equal to -S. Since entropy always increases with temperature, the slope of
the free energy, G, should always decrease with rising temperature.

Now, let us consider the stability of the solid and liquid phases of a metal. To
do this, we will first need to determine the change in free energy with temperature
for both solid and liquid phases separately. From Eqs. 1.17, 1.50, and 1.55, we can
write the expressions for free energy for solid and liquid phases as

GS ¼ HS
0 þ

ZT

0

CS
PdT � T

ZT

0

CS
P

T
dT ð1:56aÞ

GL ¼ HL
0 þ

ZT

0

CL
PdT � T

ZT

0

CL
P

T
dT ð1:56bÞ

The superscripts ‘‘S’’ and ‘‘L’’ are denoted for solid and liquid phases,
respectively. In general, the CP of the liquid phase at a particular temperature is
higher than that of the solid phase. The typical variation of CP for solid and liquid
phases is shown in Fig. 1.6a. The corresponding changes in enthalpy and free
energy as a function of temperature of the phases are shown in Fig. 1.6b.

As already discussed, the pV term for both solid and liquid phases is very small
and the enthalpy can be taken to be practically equal to E. Therefore, the Gibbs
energy function can be written as G = E - TS, making the free energy low for a
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phase with a low internal energy E and/or high entropy S. It is also apparent that at
low temperature, the E term will dominate, whereas at higher temperature, the
term becomes more and more significant. In general, the solid phases have higher
bonding energies compared to those of liquid phases. So the internal energy, i.e.,
enthalpy, of the solid phase is lower than the liquid phase. Further, the entropies of
liquids are typically larger than those of solids. Thus, at higher temperatures, the
liquid phase becomes stable. From Fig. 1.6b, it can be seen, for instance, that
below the melting point the solid phase is stable, whereas above the melting point
the liquid phase is stable. At the melting point, their Gibbs energies are the same,
as discussed in the beginning of this section.

Now, let us turn to consider solid-state transformation between gray tin to white
tin. Gray tin has a diamond crystal structure which is very brittle. White tin, on the
other hand, which is commercially available with a metallic luster has a BCT
(body-centered tetragonal) structure. The Gibbs energy curves for both structures
are shown in Fig. 1.7.

In Fig. 1.7, the molar Gibbs energy of the BCT-Sn has been set at zero for all
temperatures. Thus, the BCT-Sn is the reference state. The Gibbs energies of
different forms of Sn are then compared against this self-chosen reference value.
As can be seen from Fig. 1.7, BCT-Sn should be stable between 13 and 232 �C.
Below 13 �C, Sn with a diamond structure is the most stable form of tin, and above
232 �C, the liquid Sn is the most stable form of tin. It is to be noted that even
though the transition temperature between the diamond and body-centered
tetragonal structures is 13 �C, in practice the transformation requires undercooling
to about -30 �C. This is because at 13 �C, the two crystal structures are in
equilibrium and their Gibbs energies are the same. Thus, the driving force for the
transformation is zero. As temperature decreases, the driving force for the trans-
formation increases and the kinetics becomes slower. Thus, the optimum condi-
tions for the transformation are found at -30 �C. This occurrence of the low

Fig. 1.5 a Typical change of CP with temperature. b Arbitrary values of H, S, and G with
temperature. Note that in many metals, the enthalpy is zero at room temperature, 298 K
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temperature diamond form of Sn should be avoided as it will lead to a phenom-
enon called tin pest. Owing to the much larger molar volume of Sn with the
diamond structure (in comparison with the smaller BCT-Sn), the transition frac-
tures (or even pulverizes) the tin objects going through the transition. One can also
determine the hypothetical melting point of the diamond Sn from the intersection
point of the metastable part of the diamond Gibbs energy curve with that of the
liquid phase. It turns out to be about 160 �C.

Fig. 1.6 a Arbitrary values of specific heat at constant pressure solid and liquid phase. b The
change of enthalpy (HS-enthalpy of solid phase, HL-enthalpy of liquid phase) and free energy
(GS-free energy of solid phase, GL-free energy of liquid phase) of solid and liquid phases with
temperature. L is the latent heat of fusion. Solid line follows the change of enthalpy and free
energy of the system with temperature

Fig. 1.7 The molar Gibbs energies of different phases of Sn as a function of temperature at
1 atm pressure. The figure on the right shows an enlarged part of the figure on the left
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The increasing importance of the entropy term (-TS) is the reason why in
many metals, we find the phase with a relatively closely packed structure is stable
at a lower temperature, whereas a relatively loosely packed structure is stable at
higher temperature. The reason for this lies in a more loosely packed structure
where there is a higher degree of vibrational freedom. For instance, a-Ti with an
HCP structure is stable at low temperature, whereas b-Ti with a BCC structure is
stable at high temperature.

1.7 Pressure Effect of Single-Component Phase Diagram

Until now, as mentioned earlier, it has been assumed that all transformations occur
under constant, typically atmospheric, pressure. If we consider the Gibbs free
energy at constant temperature but under different pressure, for example, at higher
pressure, then the freedom for vibration of atoms will be decreased in comparison
with the normal pressure. This will result in an increase in free energy, as shown in
Fig. 1.8. We know from the standard thermodynamic relation dG = Vdp - SdT
that the slope of the free energy versus pressure curve is equal to volume V, at
constant temperature. Since the volume of matter generally decreases with
increasing pressure, the slope of the free energy versus pressure curve will be
positive, but it will decrease continuously with increasing pressure. Consequently,
the equilibrium transition temperature from one phase to another will be different
under different pressures and depending on the conditions, the transition temper-
ature with increasing pressure might increase or decrease. This can be understood
as being based on the Clausius–Clapeyron relation, which can be derived by
considering the equilibrium transition temperature between the a- and c-phases in
an iron system. By using a standard thermodynamic relation, it is possible to write
for the molar Gibbs energy

Fig. 1.8 The variation of
molar Gibbs free energy g
with increase in pressure
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dga ¼ va
mdP� sadT ð1:57aÞ

dgc ¼ vc
mdP� scdT ð1:57bÞ

Since the equilibrium transition between these two phases is under consider-
ation at equilibrium temperature, one has ga ¼ gc and further, dga ¼ dgc. By
equating Eqs. 1.57a and 1.57b, the following is obtained

oP

oT

� �
eq

¼ sc � sa

vc
m � va

m

¼ Ds

Dvm
ð1:58Þ

From Eqs. 1.17, we can write

gc ¼ hc � Tsc ð1:59aÞ

ga ¼ ha � Tsa ð1:59bÞ

From Eqs. 1.59a and 1.59b and from the consideration of equilibrium transi-
tion, we can write

Dg ¼ gc � ga ¼ 0 ¼ ðhc � haÞ � Tðsc � saÞ ¼ Dh� TDs ð1:60Þ

Further, we can write at the transition temperature (Ttr)

Ds ¼ Dh

T
ð1:61Þ

By introducing Eq. 1.61 in Eq. 1.60, we arrive at the following

dP

dT

� �
¼ Dh

TDvm
ð1:62Þ

Equation 1.62 is the Clausius–Clapeyron equation, which can be used to cal-
culate, for example, the TM curve shown in Fig. 1.1. We know that the a-phase has
a BCC structure and the c-phase has an FCC structure. Since FCC is a more closely
packed structure, we can write for the transition a ? c, Dv ¼ vc

m � va
m\0. On the

other hand, we have seen previously that the enthalpy of a phase which is stable at
higher temperature is higher (less negative) than that of a phase which is stable at
lower temperature. This becomes Dh ¼ hc � ha [ 0. From Eq. 1.63, it follows that

dP
dT

� �
eq

\0 for the equilibrium transformation from the a-phase to the c-phase. This

is the reason why the equilibrium transition temperature decreases with increasing
pressure. Let us consider the case of the equilibrium transition between the c- to
d-phase. Since the c-phase has an FCC structure, whereas the d-phase has a BCC

structure, it is possible to write for the transition c ? d Dv ¼ vd
m � vc

m [ 0.
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Further, from our previous explanation, we can write Dh ¼ hd � hc [ 0. So
dP
dT

� �
eq

[ 0 for this transition and equilibrium transition temperature increases with

increasing pressure.

1.8 Free Energy and Stability of Phases in a Binary System

In the previous sections, we have considered mainly single-component systems
(i.e., pure elements). It is common knowledge that most materials in nature consist
of several phases and that these phases themselves are never pure elements. In fact,
based on the second law of thermodynamics, a pure substance exists only in our
minds and represents a limiting state, which we may asymptotically approach but
never actually obtain. Thus, the thermodynamic description of multicomponent
systems is of great importance from the theoretical as well as from the practical
point of view. In the treatment of multicomponent open systems, the most common
process considered in defining the thermodynamic functions for a solution is called
the mixing process, which Guggenheim defines as [2]:

The mixing process is the change in state experienced by the system when appropriate
amounts of the ‘pure’ components in their reference states are mixed together forming a
homogeneous solution brought to the same temperature and pressure as the initial state.

It is to be noted that although the mixing process is strongly influenced by
interaction forces between atoms and molecules (i.e., Dh), the fundamental cause
behind mixing is the entropy (Ds) change of the system.

For our analysis, we shall consider a system with a total of one mole of atoms,
where XA is the mole fraction of element A and XB is the mole fraction of element
B. This translates into

XA þ XB ¼ 1 ð1:63Þ

We define the free energies of pure elements A as GA and that of B as GB at a
particular temperature. The total molar free energy g0 of a purely mechanical
mixture can be written as

g0 ¼ XAgA þ XBgB ð1:64Þ

Now, if we allow interdiffusion to taken place between the elements A and B,
there will be change in the free energy because of mixing, gmix. Consequently, the
total free energy of the system after mixing can be written as

g ¼ g0 þ Dgmix ð1:65Þ
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From Eqs. 1.17 and 1.65, we find the expression for the free energy change
because of mixing as

DGmix ¼ g� g0 ¼ h� Ts� h0 þ Ts0 ¼ ðh� h0Þ � Tðs� s0Þ
Dgmix ¼ Dhmix � TDsmix

ð1:66Þ

where ho and h are the total enthalpy of the system before and after mixing. The
values so and s are the entropies of the system before and after mixing. The value
Dhmix ¼ ðh� h0Þ is the change in enthalpy, and Dsmix ¼ ðs� s0Þ is the change in
entropy due to mixing. The enthalpy of mixing can be zero, negative, or positive
depending on the system; the entropy of mixing, on the other hand, is always
positive. We shall first briefly discuss the mixing process in general and then look
a little closer at where the different terms in Eq. 1.66 arise.

1.8.1 Change in Free Energy in an Ideal System

Note that in the case of an ideal solution, Dhmix ¼ 0 and the free energy of the
system can be written as

g ¼ g0 þ Dgmix ¼ g0 � TDsmix ð1:67Þ

The change in free energy with composition is shown in Fig. 1.9a at one
particular temperature T. The straight dotted line represents the total free energy
ðg0 ¼ XAgA þ XBgBÞ of the elements A and B before any mixing (i.e., a purely
mechanical mixture of A and B). The solid curved line represents the free energy
of the system after mixing ðg ¼ g0 � TDsmixÞ. Further, the change in free energy
with composition at higher temperature, T1, is shown in Fig. 1.9b. The change in
free energy caused by mixing in an ideal solution Dgmix ¼ �TDsmix is naturally
larger at the higher temperature.

Entropy of mixing (Dsmix)
The entropy of mixing originates from two different contributions, thermal and

configurational. If we consider that there are no volume and enthalpy changes
caused by mixing, then the only contribution to the entropy will configurational.
Configurational entropy comes from the possibility of arranging the atoms A and B
in different ways for a particular macrostate. Following statistical thermodynam-
ics, the configurational entropy can be expressed as

S ¼ k ln w ð1:68Þ

where w is a thermodynamic probability, a kind of measure of randomness. This
means that the molar entropy of mixing can be written as
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Dsmix ¼ s� s0 ¼ k ln w� k ln 1 ¼ k ln w ð1:69Þ

where, as explained before, s0 is the entropy before mixing and s is the entropy
after mixing. Since in the case of a pure element, there is only one way by which
atoms can be arranged (if vacancies are neglected), we can write w = 1. If we
consider the random solid solution, then the number of different ways by which
atoms A and B can be arranged is

w ¼ ðnA þ nBÞ!
nA!nB!

ð1:70Þ

where nA and nB are the total number of atoms of A and B, respectively.
According to Stirling’s approximation,

ln N! ¼ N ln N � N ð1:71Þ

Following Stirling’s approximation, Eq. 1.69 can be written as

DSmix ¼ k ln w

¼ ½ðnA þ nBÞ lnðnA þ nBÞ � ðnA þ nBÞ� � ½nA ln nA � nA� � ½nB ln nB � nB�
ð1:72Þ

Fig. 1.9 Free energy versus
composition diagram in an
ideal case at a low
temperature, T, and b high
temperature, T1
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From the definition of the mole fraction, we can write

nA ¼ XAN0; nB ¼ XBN0; XA þ XB ¼ 1 ð1:73Þ

Substituting Eq. 1.73 in Eq. 1.72, we get

Dsmix ¼ �kN0½XA ln XA þ XB ln XB�
¼ �R½XA ln XA þ XB ln XB�

ð1:74Þ

It is, therefore, clearly apparent from Eq. 1.74 that the entropy of mixing is
always positive and will vary, as shown in Fig. 1.10. It can also be seen that the
entropy of mixing reaches its maximum at XB = 0.5. To find the slope at different
compositions, we can differentiate Eq. 1.74 (note that XA + XB = 1).

dDsmix

dXB

¼ �R � lnð1� XBÞ � ð1� XBÞ
1

ð1� XBÞ
þ ln XB þ XB

1
XB

� 	

¼ �R ln
XB

ð1� XBÞ

ð1:75Þ

So the slope at XB = 0.5 is equal to zero, whereas the slope at XB = 0 or 1 is
infinity. Thus, it is evident from the above discussion why a pure substance is just a
limit which we can approach but never achieve—as stated at the beginning of this
section. As the slope goes to infinity at XB = 0, it states that in order to remove the
last B impurity from A, an infinite amount of energy must be used.

Fig. 1.10 The change in
entropy of mixing with the
change in composition
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1.8.2 Change in Free Energy in a System with Exothermic
Transformation

As discussed above, the enthalpy of mixing in an exothermic transformation is
negative. The free energy of mixing for such a case at different compositions at a
particular temperature T is shown in Fig. 1.11a. The free energy curves at higher
temperature T1 are shown in Fig. 1.11b. At higher temperature, the TDsmix term
will be higher, making Dgmix higher after mixing. In consequence, the total free
energy of the system will change far more drastically with composition compared
to at lower temperature.

1.8.3 Change in Free Energy in a System with Endothermic
Transformation

In endothermic transformation, the enthalpy of mixing Dhmix [ 0. So, if the
temperature under consideration is reasonably low, the negative contribution to the
Gibbs energy of mixing from TDsmix may be smaller than the positive contribution
from the enthalpy of mixing Dhmix within a certain composition range. In that case,

Fig. 1.11 Free energy versus
composition diagram for a
system with exothermic
transformation at a low
temperature, T, and b high
temperature, T1
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the free energy of mixing will be positive at a certain composition range and the
total free energy change can vary, for example, as shown in Fig. 1.12 resulting in a
formation of a miscibility gap. However, at higher temperature, T1 at all compo-
sitions Dhmix will be smaller than TDsmix and the free energy of mixing is always
negative, as can be seen in Fig. 1.12b. The next section considers the origin of the
enthalpy of mixing.

Note We have considered a very simplified model to establish the relation of
free energy after mixing in a binary system. We have not considered the
elastic strain that could play an important role. In some systems, where the
size of the atoms is very similar, this factor can be disregarded. However, in
some systems because of a large difference in atomic size, the elastic strain
might play a significant role. Calculations, however, become extremely
complicated if we are to consider the effect of elastic strain and so it is left
outside the scope of this book. It must, nevertheless, be remembered that the
elastic energy (as other forms of work) can be incorporated into the Gibbs
free energy of the system.

Fig. 1.12 Free energy versus
composition diagram in a
system with endothermic
transformation at a low
temperature, T, and b high
temperature, T1
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1.9 Thermodynamics of Solutions and Phase Diagrams

In the following section, the thermodynamic background necessary for under-
standing the phase diagrams introduced briefly in Sect. 1.4 is discussed. After that
the binary and ternary phase diagrams are discussed in greater detail.

1.9.1 The Chemical Potential and Activity in a Binary Solid
Solution

For any heterogeneous system at equilibrium, the chemical potential of a com-
ponent i has the same value in all phases of the system, where the component has
accessibility. A general problem for dealing with solutions thermodynamically can
be regarded as one of properly determining the chemical potentials of the com-
ponents. Usually, the treatment utilizes the activity function introduced by Lewis
and Randall [8]. The value of the treatment lies in its close relation to composition;
with appropriate choice of reference state, the activity approaches the mole frac-
tion as the mole fraction approaches unity. Most commonly in the thermodynamics
of solutions, it is not the activity which is used, but rather the activity coefficient
which is defined as the ratio of the activity ai to the mole fraction Xi

ci ¼
ai

Xi
ð1:76Þ

In terms of the chemical potential, the activity can be expressed

l j
i � lo

i ¼ RT ln a j
i ¼ RT ln X j

i þ RT ln c j
i ð1:77Þ

where lo
i is the chemical potential of pure i in the reference or standard state, l j

i

the chemical potential of i in phase j, a j
i the activity of component i in phase j,

R the gas constant, T the temperature, and (i = A, B,…; j = a, b,…). In the
limiting case of ideal solutions, where the enthalpy (Dh = 0) and volume change
(Dm = 0) of mixing are zero and the only contribution to Gibbs free energy of
mixing arises from the configurational entropy term

Dsm ¼
X
i¼A

Xi ln Xi ð1:78Þ

the activity coefficient in Eq. 1.77 is unity and the activity of the component equals
its mole fraction (i.e., Raoultian behavior, see discussion below). If the equality is
valid for all compositions, the solution is called perfect. Thus, the activity coef-
ficient represents deviation of the real solutions from this limiting behavior. The
use of activity coefficient instead of activity in Eq. 1.77 clearly indicates the
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excess energy term RT ln l j
i to be responsible for the non-ideal behavior. This

issue is addressed in more detail in the next section.
As only relative values of thermodynamic functions can be determined, an

agreed reference state has to be established for each element or species in order to
make thermodynamic treatment quantitative (see Fig. 1.7 and related discussion).
In principle, the choice of the reference state is arbitrary as long as the chosen state
is used consequently throughout the analysis. The chosen state is then defined to be
zero and all other possible states of the element are compared against the reference
state to obtain their relative stabilities. It should be noted that there are some
uncertainties related to the usage of reference states in the literature.

1.9.2 Free Energy of Solutions

In Sect. 1.9, we briefly discussed the so-called mixing process as well as the binary
solution phases. In the beginning of this section, we also introduced the concept of
activity, which describes the deviation of the behavior of a solution from ideal
behavior. A statistical approach can be used to provide more insight into the
properties of the phases. The simplest model is one in which the total energy of the
solution is given by a summation of interactions between the nearest neighbor
atoms. If we have a binary system with two types of atoms (A and B), there will be
three interaction energy terms. These are the energy of the A–A pairs, that of the
B–B pairs, and that of the A–B pairs. Here, we assume that the total energy of the
solution arises from the interactions between the nearest neighbors. The binding
energy may be defined by considering that the change in energy as the distance
between a pair of atoms is decreased from infinity to an equilibrium separation.
The change in energy during this process is the binding energy, which for a pair of
A atoms is given as -2eAA, for B atoms as -2eBB, and so forth. Thus, the bond
energies are negative quantities.

The simplest model for real solution phases based on the above-defined nearest
neighbor interaction approach is the so-called regular solution model. It is based
on the following assumptions: (i) Mixing among accessible lattice spaces is
completely random pi ¼ Ni

N ¼ Xi, (ii) atoms interact only with their nearest
neighbors, (iii) the bond energy between dissimilar atoms eij is independent of
composition and temperature, and (iv) there is no change in volume upon mixing.

Let us examine a solution which is formed by two metals (A and B) with an
identical crystal structure. Let us further assume that the system as defined above is
in equilibrium with its surroundings. We will presume that metal A has NA atoms
and metal B has NB atoms and that eAA and eBB are the bond energies of the AA
and BB atom pairs according to the assumptions (ii) and (iii). Then, the config-
uration energies of pure metals, with the coordination number z, are E0

A ¼
zN0

AeAA=2 and E0
B ¼ zN0

BeBB=2, when the atoms are at rest at their equilibrium
lattice points. The number two in the nominator in the above equations is
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introduced in order to prevent calculating the A–A and B–B interactions twice.
The formation of the solution phase starts by removing one atom from each metal
and transferring them to an infinite distance from the metal (and each other). The
work associated with this process is -z(eAA + eBB). By returning an atom A to
metal B and an atom B to metal A, the pure metals are transformed into solutions
with infinite dilution. The total number of A–B bonds with bond energy eAB in
these solutions is 2z. The energy associated with this mixing process (per inter-
change) can be described as

dE ¼ 2z eAB �
1
2
ðeAA þ eBBÞ

� 	
¼ �2zIAB ð1:79Þ

where IAB (per bond) is the interchange energy.
As the energy change associated with the formation of a mixture with a number

of NAB bonds is DE ¼ NABIAB, the internal energy of the solution phase is

E ¼ z

2

ffi �
NAðeAAÞ þ

z

2

ffi �
NBðeBBÞ þ NABIAB ð1:80Þ

The next step is to identify what the most probable number of AB bonds (NAB)
is with the nominal composition of Xo

B. This problem can be resolved by utilizing
the first assumption of the regular solution model, i.e., that the mixing among the
lattice sites is completely random. This means that the probability that an atom A
is in position 1 equals pA(1) = (NA/N) and that atom B is in position 2 equals
pB(2) = (NB/N). However, since pA(1)pB(2) = (NANB/N2) and because
pA(1)pB(2) = pA(2)pB(1), we get

pð1;2ÞAB ¼
2NANB

N2
ð1:81Þ

In the solution phase, we have total of 0.5zN adjacent lattice site pairs and
therefore,

�pAB ¼ pð1;2ÞAB ¼
2NANB

N2

zN

2

� �
¼ z

NANB

NA þ NB

� �
ð1:82Þ

Thus, the internal energy of the solution phase can be written as

E ¼ z

2

ffi �
NAðeAAÞ þ

z

2

ffi �
NBðeBBÞ þ z

NANB

NA þ NB

� �
IAB ð1:83Þ

By assuming that the chemical potentials of pure metals A and B can be
approximated as l0

A ffi 1
2 Z eAAð Þ and l0

B ffi 1
2 Z eBBð Þ and utilizing the definition of

the chemical potential, the Gibbs energy of the regular solution phase becomes
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G ¼ NAlo
A þ NBlo

B þ kT
X

i

Ni ln
Ni

NA þ NB

� �
þ z

NANB

NA þ NB

� �
IAB ð1:84Þ

from which the molar Gibbs energy is obtained as

g ¼ Xo
AlA þ Xo

BlB þ RT
X

i

Xi ln Xi þ LABXAXB ð1:85Þ

where LAB (=zNIAB) is the molar interaction energy, i.e., the interaction
parameter.

The relationship between activity and the interaction parameter can be written
as

ai ¼ ciXi ¼ Xi exp
Lijð1� XiÞ2

RT

" #
ð1:86Þ

Consequently, the sign of the interaction parameter determines whether the
formation of mixture is favored or hindered. When |eAA + eBB| \ |2eAB| and the
interaction parameter is negative (remember that the bonding energies are nega-
tive), the solution will have a larger than random probability of bonds between
unlike atoms, and thus, mixing or compound formation is favored, as in Fig. 1.13.
The converse is true when the interaction parameter is positive (|eAA + eB-

B| [ |2eAB|) since atoms then prefer to be neighbors to their own kind and form
clusters. From Eq. 1.86, it is also seen how the activity coefficient depends on both
the sign and magnitude of the interaction parameter. Activity is eventually
determined by the interactions between different types of atoms in the solution
phase. It is also helpful to notice that the excess term in Eq. 1.86 LABXAXB can be
identified with the enthalpy of mixing in Eq. 1.66.

Justification of Eq. 1.86
Deviations from ideal behavior are commonly expressed in the form of excess
functions. The excess Gibbs energy of mixing can be expressed as
Dgxs

mix ¼ Dhxs
mix � TDsxs

mix. This is the extra energy of mixing resulting from
the formation of a real instead of an ideal solution. In a regular solution model,
the entropy of mixing is defined to be the same as that of an ideal solution.

Fig. 1.13 Schematic
presentation of the effect of
the sign of the enthalpy of
mixing and that of the
interaction parameter on the
formation of a solution phase
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Thus, the excess entropy of mixing Dsxs
mix is zero and Dgxs

mix ¼ Dhxs
mix in the

case of regular solutions. Therefore, the expression LABXAXB in Eq. 1.86 can
be equated to the excess enthalpy of mixing. It is to be noted that the
expression LABXAXB is also the simplest possible expression for the excess
energy of mixing, as it is required that the excess energy of mixing goes to
zero when XA = 0 or XA = 1. There is a standard relation between the partial
molar properties of a component and the total properties of a phase that can be
expressed for the excess enthalpy of mixing and the partial excess enthalpy of
the mixing of component B as

Dhxs
B;mix ¼ Dhxs

mix þ XA

dDhxs
mix

dXB

We have the above-defined Dhxs
mix ¼ LABXAXB ¼ LABð1� XBÞXB ¼

LABðXB � X2
BÞ

Thus, dDhxs
mix

dXB

¼ LABð1� 2XBÞ

and we obtain

Dhxs
B;mix ¼ LABXAXB þ XALABð1� 2XBÞ

¼ XALABðXB þ 1� 2XBÞ ¼ XALABð1� XBÞ ¼ LABX2
A

The excess enthalpy of the mixing of component B can also be equated (in
the case of regular solution model) to RT ln cB as discussed above.
Thus, we can write as follows:

RT ln cB ¼ LABX2
A

cB ¼ exp
LABð1� XBÞ2

RT

" #

As aB ¼ XBcB, we finally obtain

aB ¼ XBcB ¼ XB exp
LABð1� XBÞ2

RT

" #
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In Fig. 1.14, the effect of the sign and magnitude of the interaction parameter
on the formation of a solution phase is shown [9]. When there is no preferred
interaction between the atoms in the system, the interaction parameter LAB = 0
(eAA + eBB = 2eAB), the integral heat of mixing is zero, and the free energy of
mixing is given by curve I. As the interaction parameter is made more positive, it
can be seen how the enthalpy of mixing becomes more positive and the free energy
of mixing becomes less negative. When a certain magnitude of positive interaction
is reached, it can be seen that the system is about to enter the state where the
solution phase becomes unstable. When LAB is increased to even more positive
values, one can see how the Gibbs energy curve changes its sign of curvature at the
middle region and the so-called miscibility gap is formed. This is associated with
the formation of two separate phase regions—one rich in A and another rich in B.

Fig. 1.14 The effect of interaction parameter on the stability of a solution phase [9]
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It was shown that one may find a situation where the interaction parameter is
zero and there is no net interaction between A and B (i.e., eAA + eBB = 2eAB).
This type of behavior is associated with the above-defined ideal systems and is
described by Raoult’s law. The Raoultian solution was shown above to be the one
where the activity coefficient (Eq. 1.76) is unity and the activity of the component
equals its mole fraction. Such behavior is shown in Fig. 1.15. If Raoult’s law is
obeyed by the solution phase through the whole composition range, the solution is
called perfect. This type of solution does not exist in reality, but it does provide a
convenient reference state to which the behavior of real solutions can be com-
pared. In Fig. 1.15, another limiting law (Henry’s law) is also shown. This limiting
law can be understood by utilizing the regular solution model and Eq. 1.86. When
one approaches the limit where Xi ? 0, i.e., the solution becomes dilute, it can be
seen from Eq. 1.87 that the activity coefficient becomes concentration independent
as

1ci ¼ exp
Lij

RT

� 	
ð1:87Þ

This defines the Henry’s law line seen in Fig. 1.15. The limiting laws shown in
Fig. 1.15 provide the reference states to which real solutions can be compared. As
we approach pure substance (Xi ? 1), the solution behavior necessarily approa-
ches Raoultian behavior no matter how ‘‘non-ideally’’ it otherwise behaves. This is
true also for Henry’s law, as all solutions approach it as the solution becomes
dilute enough. It is also to be noted that if the solute follows Henry’s law, then the
solvent necessarily follows Raoult’s law. Furthermore, whereas perfect solutions
do not exist, ideal solution behavior is commonly encountered in practice within
restricted composition limits.

Fig. 1.15 Raoult’s and Henry’s laws in a binary solution
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Historically, activity measurements have been carried out mainly by measuring
the changes in the partial pressure of a given substance upon alloying with respect
to the values of the pure component. As this type of approach also gives an easily
accessible alternative route to derive the above-defined limiting laws, we shall
briefly consider Raoult’s and Henry’s laws from this point of view. Consider a
pure liquid A in a closed vessel (initially evacuated) at temperature T. It will
spontaneously evaporate until the pressure in the vessel is equal to the saturated
vapor pressure of liquid A (po

A) at temperature T. At this point, the rate of evap-
oration reðAÞ and the rate of condensation rcðAÞ are equal. In order for an atom to
escape the surface of the liquid and enter the gas phase, it must overcome the
attractive forces exerted on it by its neighbors (i.e., overcome the activation energy
E	 barrier). The magnitude of E	 determines the intrinsic evaporation rate. The
condensation rate is proportional to the number of A atoms in the vapor phase,
which strike (and stick) the liquid surface in unit time. For a fixed temperature, the
condensation rate is proportional to the pressure of the vapor rcðAÞ ¼ kpo

A which is
equal to reðAÞ at equilibrium. A similar situation holds for a liquid B. If we now add
a small amount of liquid B to liquid A, what happens? If the mole fraction of A in
the resulting binary mixture is XA and assuming that the atomic diameters of A and
B are comparable and there is no surface excess, the fraction of the surface area
occupied by A atoms is XA. It is a natural assumption that atom A can evaporate
only from a site where it is present and, therefore, reðAÞ is decreased by a factor of
XA and the equilibrium pressure exerted by A is decreased from po

A to pA

reðAÞXA ¼ kpA ð1:88Þ

and by utilizing the above-defined equality between evaporation rate and equi-
librium pressure, we obtain

pA ¼ XApo
A ð1:89Þ

which is Raoult’s law. A similar equation holds for component B. The law states
that the vapor pressure exerted by a component i in a solution is equal to the
product of the mole fraction of i in the solution and the vapor pressure of i at the
temperature of the solution.

While deriving Raoult’s law, it was assumed that there is no change in the
intrinsic evaporation rates. This requires that the magnitudes of the A–A, B–B, and
A–B interactions are balanced so that the depth of the potential energy well of an
atom at the surface site is independent of the types of atoms surrounding it (see
discussion below). If we take that the A–B interaction is much stronger than that
between identical atoms and consider a solution of A in B which is sufficiently
dilute in such a way that every A atom is surrounded only by B atoms, in this case,
the activation energy for an A atom to evaporate from the surface is higher than
without B and thus, the intrinsic evaporation rate will be smaller ðr0eðAÞ\reðAÞÞ and

equilibrium occurs when
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r0eðAÞXA ¼ kpA ð1:90Þ

which results in

pA ¼
r0eðAÞ
reðAÞ

XApo
A ð1:91Þ

and as ðr0eðAÞ\reðAÞÞ, pA is a smaller quantity than that in Eqs. 1.88, 1.91 can be

written as

pA ¼ k0AXA ð1:92Þ

If the XA of the solution is increased, it becomes more probable that not all of
the A atoms at the surface are surrounded only by the B atoms. This will have an
effect on the activation energy (depth of the potential energy well), and thus, after
a certain critical value of XA, the intrinsic evaporation rate becomes composition
dependent and Eq. 1.93 no longer holds. Equation 1.93 is, of course, Henry’s law
(a similar equation holds for B atoms also). Note also that Raoultian and Henrian
activity coefficients have different reference states. More information about the use
of these standard states as well as changing between them can be found, for
example, from Refs. [10, 11].

1.10 Lever Rule and the Common Tangent Construction

When two materials, especially metals, are mixed together, they either form a
homogeneous solution or separate into a mixture of phases, as already discussed.
Let us consider an alloy X in Fig. 1.16 in the binary system A–B to separate into a
mixture of two phases a and b (under a particular temperature and pressure).

We shall assume that there are N atoms of alloy X and that the fraction of atoms
in the a-phase is (1-x) and in the b-phase is x. The number of B atoms in alloy X is
nX

B, the number of B atoms in the a-phase is na
B, and the number of B atoms in the

b-phase is nb
B. We can change these to atomic fractions by dividing by the total

number of atoms N to get

XB ¼
nx

B

N

Xa
B ¼

na
B

Nð1� xÞ

Xb
B ¼

nb
B

Nx

ð1:93Þ
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Since nX
B ¼ na

B þ nb
B, then

NXB ¼ NXa
Bð1� xÞ þ NXb

Bx ð1:94Þ

where

x ¼ XB � Xa
B

Xb
B � Xa

B

¼ m

mþ n
ð1:95Þ

and

1� x ¼ Xb
B � XB

Xb
B � Xa

B

¼ n

mþ n
ð1:96Þ

and

x

1� x
¼ m

n
ð1:97Þ

Equation 1.97 is called the lever rule, which enables us to calculate the relative
amounts of phases in a phase mixture in terms of the alloy composition and the
phases into which it separates. The free energy of a phase mixture can also be
determined by using the lever rule. If alloy X separates into phases a and b, the free
energy of an alloy will be unchanged by the separation. The free energy of alloy
X is, therefore, equal to the sum of the free energies of the a- and b-phases. Since

alloy X consists of an amount of the a-phase equal to
Xb

B
�XB

Xb
B
�Xa

B

� �
and similarly

XB�Xa
B

Xb
B
�Xa

B

� �
of the b-phase, the molar free energy of alloy X will be

g ¼ a
Xb

B � XB

Xb
B � Xa

B

 !
þ b

XB � Xa
B

Xb
B � Xa

B

 !
ð1:98Þ

Fig. 1.16 The lever rule
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where a and b represent the free energies of the a- and b-phases at the given
temperature and pressure, as seen from Fig. 1.17. We can further rearrange
Eq. 1.98 in order to obtain the free energy of alloy X

g ¼ a
ðXb

B � Xa
BÞ � ðXB � Xa

BÞ
Xb

B � Xa
B

" #
þ b

XB � Xa
B

Xb
B � Xa

B

 !

¼ aþ ðb� aÞ XB � Xa
B

Xb
B � Xa

B

 !

¼ aþ c

ð1:99Þ

Hence, alloy X which separates into two phases of composition Xa
B and Xb

B with
the free energies a and b has a free energy given by the point x on the straight line
connecting a and b (the common tangent). This is depicted in Fig. 1.17.

As an example of the use of common tangent construction, the calculation of
two-phase equilibrium is presented in Fig. 1.18. The condition for chemical
equilibrium is that the chemical potentials of the components are equal in the
phases that are in equilibrium. In the beginning, the a-phase with composition a1 is
contacted with the b-phase with a composition b1. As seen from Fig. 1.18 (at the
moment in question), the chemical potential (partial molar Gibbs energy) of

component A in the a-phase is la1
A and in the b-phase lb1

A , whereas that of com-

ponent B in the a-phase is la1
A and in the b-phase it is lb1

A , which are hardly equal.

Thus, there is a driving force D1lBðla1
B � lb1

B Þ which drives the diffusion of the B

atoms to the a-phase (from composition b1 to a1) and D1lAðl
b1
A � la1

A Þ driving the
A atoms in the opposite direction. As the diffusion proceeds, the driving force for
diffusion gradually decreases (D2lB and D2lA) and vanishes when the chemical
potentials of the components (A and B) become equal in both phases. This takes
place when the two Gibbs energy curves for the a- and b-phases have a common
tangent and the equilibrium has been established.

Fig. 1.17 The common
tangent construction
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1.11 The Gibbs Phase Rule

The Gibbs phase rule explains the number of phases that will be present in a
system in equilibrium and is expressed as

F þ P ¼ C þ N ð1:100Þ

where F is the number of degrees of freedom (always C 0), P is the number of
phases (liquid phase, a-phase, b-phase), C is the number of components, and
N corresponds to the non-compositional variable. In our case, there are two non-
compositional variables present, temperature and pressure. This means that
Eq. 1.100 can be written as

F þ P ¼ C þ 2 ð1:101Þ

Now for the purpose of explaining the stability of the phases in equilibrium, a
single-component system that is presented in Fig. 1.19a is considered. First, let us
examine the single-phase, solid, liquid or gas phase, region which can be written in
this region C = 1, P = 1. Also from Eq. 1.101, we can write F = 2. This means
that in this region, there are two degrees of freedom, temperature and pressure.
Accordingly, temperature and pressure can be varied independently within the
region. Consequently, to determine the state of the phase in a single-phase region,

Fig. 1.18 Use of the common tangent construction to determine the phase equilibria
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Fig. 1.19 a single-component phase diagram b binary phase diagram

both temperature and pressure must be fixed. Next, we consider the phase
boundary, along which the two phases are in equilibrium. For this can be written
C = 1, P = 2. Further, from Eq. 1.100, we can write F = 1, meaning that there is
only one degree of freedom and only temperature or pressure can be varied along
that tie-line. The other variable is automatically fixed for a particular temperature
or pressure. Let us further consider the invariant point A, where all three phases
can exist together. At this point, C = 1, P = 3. Therefore, following Eq. 1.100,
F = 0, meaning that there are no degrees of freedom at that point and all three
phases can exist only at one particular pressure and temperature.

Let us further consider the binary phase diagram shown in Fig. 1.19b. Since
binary phase diagrams are measured at constant (in general, atmospheric) pressure,
there is only one non-compositional variable present, which is temperature.
Equation 1.100 can thus be written as

F þ P ¼ C þ 1 ð1:102Þ

Now, if we consider the single-phase region, then we can write C = 2, P = 1.
Following Eq. 1.102, we find F = 2 in the single-phase a-region. This means that
to determine the state of an alloy inside a single-phase region, both temperature and
composition must be fixed. Further, if we consider a two-phase region such as
(L + a), then we can write P = 2, C = 2. So following Eq. 1.102, we find the
number of degrees of freedom F = 1. To determine the state of an alloy inside this
region, we need to fix only one variable, either T, XA, or XB. Since, if we fix any one
of these variables, other variables will be fixed automatically. Take, for instance, T2

where the composition of liquid and a-phases have fixed values. Next, if we con-
sider the eutectic point E, where the three phases, a, b, and liquid exist together, we
can write P = 2, C = 2. Following Eq. 1.103, we find F = 0, meaning that there
are no degrees of freedom and T, XA, and XB are all fixed at this point.

The phase rule is a convenient tool to check that experimentally determined
phase diagrams are correct. With its help, it is possible to point out anomalies in
phase diagrams and to offer corrections.
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Let us briefly look at one example. In Fig. 1.20, there is a hypothetical binary
A–B phase diagram. It contains four errors. Let us next look what they are and
produce two versions of the corrected diagram.

Error 1 Two-phase region in a binary diagram, thus F = 1 (pressure is fixed).
If the temperature is fixed, the compositions are unambiguously determined. In the
diagram, this is not so. If we choose temperature conveniently, the tie-line enters
the single-phase region and returns back to the two-phase region. Correction
remove the bend from the liquidus.

Error 2 Pure element, thus one component F = 1 + 1 - P = 2 - P. At the
melting point, there are two phases in equilibrium F = 2 - 2 = 0. Hence, phase
transformation for a pure element takes place at one particular temperature.
Correction: Liquidus and solidus curves must meet at the same point.

Error 3 Eutectic line represents three-phase equilibrium, thus F = 0. Tem-
perature must be constant. Correction Eutectic line must be horizontal.

Error 4 There are four phases in equilibrium at the eutectic isotherm, and thus,
F = -1. The number of degrees of freedom must not be negative and, therefore,
four-phase equilibrium in a binary system, with constant pressure, is not possible.
Correction 1 c-phase must be removed to obtain the necessary degree of freedom
to make F = 0. Correction 2 If there is first a two-phase a + b region below the
eutectic isotherm and after that a peritectoid reaction takes place, we can preserve
the c-phase.

The two versions of the corrected phase diagrams are shown in Fig. 1.21.

1.12 Correlation of Free Energy and Phase Diagram
in Binary Systems

We shall first start with the simplest possible binary system, where elements A and
B are completely miscible in both solid and liquid state. This requires that the
elements A and B have (i) the same crystal structure, (ii) their size difference is
less than 15 %, and (iii) their electronegativities have similar values. These are

Fig. 1.20 A hypothetical
erroneous phase diagram
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known as the Hume-Rothery rules. An example of such a system is Cu–Ni above
355 �C (i.e., above the solid state, miscibility gap caused at least partly by the
ferromagnetism of Ni). Thus, the A–B system shown in Fig. 1.22 exhibits ideal
behavior and atoms will not have any preference to select neighboring atoms. To
give a mental picture of what complete miscibility in solid state means, we can
trace the following line of thought. If one begins with pure A, with its own crystal
structure, and starts to replace A atoms with B atoms, then, in the case of complete
solubility, one can eventually replace all A atoms with B atoms without any
change in crystal structure or formation of new phases and reach pure element B,
with its own crystal structure (which has to be, by definition, the same as A’s). To
illustrate this behavior, we have to consider the change in free energy with
composition for two different phases, solid (gs) and liquid (gL), to find the stability
of the phases at different temperatures and compositions. Here, we assume that the

melting point of element A (TA
m ) is higher than the melting point of element B

(TB
m). First, if we consider a relatively high temperature, as shown in Fig. 1.22a, we

know from our previous discussion that the liquid phase will be stable because of a
high contribution of entropy. Now, if we start to decrease the temperature to a
certain extent, two factors shall be mainly noticed, which shall change in the free
energy diagram. We have seen before that the free energy of a liquid phase
decreases faster than that of a solid phase. So with the decrease in temperature, the
difference in free energy of both liquid and solid phases will decrease. Further,
because of the decrease in temperature, the contribution of Dgmix 
 �TDsmix will
decrease, which means that the curvature of both curves will recede. If we
decrease the temperature up to the melting point of element A (TA

m), then we shall
find, as shown in Fig. 1.22b, that gL and gS will intersect at XB = 0. If the tem-
perature is decreased further, then the curves are found to intersect somewhere in
the middle, as shown in Fig. 1.22c. The diagram can be separated into three
different composition range of 0� XS

B

� �
, XS

B � XL
B

� �
, and XL

B � 1
� �

. Here, espe-

cially the composition range of XS
B � XL

B

� �
draws attention for further discussion.

Fig. 1.21 The two correct versions of the diagram shown in Fig. 1.20
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For the sake of discussion, if we consider the nominal composition X	B in this
composition range, then it is apparent that the liquid phase (with this composition)
cannot be stable at this temperature, since it does not correspond to the minimum
free energy of the system. At the first instance, the solid phase with this compo-
sition seems to be the stable one. However, the system always tries to minimize its
free energy if possible. In this case, there is a possibility to further minimize the
free energy, if both solid and liquid phases exist together, the Gibbs energy value
then sits on the common tangent as defined in Sect. 1.10. It is clear from Fig. 1.22c
that the system will have minimum free energy when the solid phase with the
composition of XS

B exists with the liquid phase having the composition of XL
B.

Fig. 1.22 Free energy versus composition diagram at different temperatures a–e for an
isomorphous system and f the corresponding phase diagram
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Since X	B is the average composition of the alloy, the mole fraction of the solid
phase, following the lever rule (defined in Sect. 1.8), will be ðXL

B � X	BÞ=ðXL
B � XS

BÞ
and the mole fraction of the liquid phase will be ðX	B � XS

BÞ=ðXL
B � XS

BÞ. It should
be noted that with the change in average composition within the range of
ðXL

B � XS
BÞ, the composition of the solid and liquid phases will not change, but, only

the relative amount of the phases will change. It can also be understood from
Fig. 1.22c that in this range, the liquid and solid phases with the composition XS

B

and XL
B will exist together, since the chemical potential or activity of elements A

and B in both the phases must be the same (lS
A ¼ lL

A and lS
B ¼ lL

B). In other words,
once solid and liquid phases reach their stable composition, there is no further
driving force for change. It is also clear that in the composition range of 0� XS

B

� �
,

the solid phase will be stable since it has minimum free energy in that composition
range, whereas in the composition range of XL

B � 1
� �

, only the liquid phase will be
stable since it has minimum free energy in that composition range. If we decrease
the temperature to TB

m , the free energy curves of the phases, as depicted in
Fig. 1.22d, will intersect at XB = 1. If we decrease the free energy of the system
even further, the free energy of the solid phase, as shown in Fig. 1.22e, will be
lower than the free energy of the liquid phase in all compositions and the solid
phase will be stable. The corresponding phase diagram can be seen from Fig. 1.22f.

Next, let us consider a solution with a positive heat of mixing (endothermic
behavior), which means that there is a miscibility gap in the system. Further, it is
assumed that the miscibility gap occurs only in the solid state but not in the liquid
phase. Thus, at low temperatures, the free energy of the mixing of the solid phase will
be positive because of the positive heat of mixing. At higher temperature, however,
the free energy of mixing becomes negative, because of the growing importance of
the entropy term ð�TDsmixÞ. At a reasonably high temperature, the free energy of the
solid and liquid phases might vary with composition, as shown in Fig. 1.23a.

With a further decrease in temperature to TA
m , the free energy curves of solid

(gS) and liquid (gL) phases will intersect, as is presented in Fig. 1.23b. Any further
decrease in temperature down to T2, because of the difference in curvature, gL

intersects gS at two points, so there are five-phase regions stable at a different
composition range, as given in Fig. 1.23c. With a further decrease in temperature
to T3, we shall find that gS is lower than gL at all compositions so that only the solid
phase is stable at this temperature, as shown in Fig. 1.23d. It also should be noted
that because of the endothermic nature of transformation, with the decrease in
temperature, the curvature of gS is decreased very rapidly and with the further
decrease in temperature to T4, the free energy of mixing becomes positive and the
curvature of the free energy curve will become positive in a certain composition
range in the middle.

This is the reason why in this composition range, the solid cannot be present as a
single stable phase but will spontaneously dissociate into two different phases with
compositions a1 and a2, as can be seen from Fig. 1.23e. The area between compo-
sitions a1 and a2 in Fig. 1.23e is called the spinodal region. It is to be noted that
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decomposition of the phase inside the spinodal does not require nucleation. Only after
reaching the inflection points of the Gibbs energy curve, must nucleation precede the
formation of a new phase. Figure 1.23f presents the corresponding phase diagram.

There are systems in which the enthalpy of mixing is positive and of such a high
magnitude that the free energy curve will have positive curvature within a certain
composition range up to a reasonably high temperature. In such cases, the free
energy curves of the phases will change as a function of temperature in a way
shown in Fig. 1.24a–e. The corresponding phase diagram is presented in Fig. 1.24f.
Here, the main difference will be that at temperature TE and at a particular

Fig. 1.23 Free energy versus composition diagram of a system which goes through endothermic
transformation because of mixing and corresponding phase diagram
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composition XE, the three phases, a, b, and L, can all exist together. Point E, plotted
in Fig. 1.24f, corresponds to eutectic transformation. At the eutectic isotherm, the
number of degrees of freedom is zero and thus, the equilibrium can occur only at a
specific temperature and with fixed compositions of a, b, and L.

In all the above cases, we have considered systems where the crystal structure
of elements A and B were similar and thus, there has been only one free energy
curve for the solid phase. However, in a system where the elements have different
crystal structure, we need to consider different free energy curves for different
elements, as shown in Fig. 1.25. Let us designate, A(B), i.e., element A with a
particular crystal structure, alloyed with some B as the a-phase. Similarly, B(A) is

Fig. 1.24 Free energy versus composition diagram of a system which goes through endothermic
transformation with very high enthalpy of mixing and corresponding phase diagram
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designated as the b-phase. Note in Fig. 1.25a that element A with the crystal
structure of element B (ga

B) will have a much higher free energy than its stable free
energy (ga

A); thus, it is a metastable crystal structure of A. Similarly, ga
B is much

higher than ga
B. This system, under our consideration, also has an eutectic trans-

formation as in the previous example.
Let us next consider the case, where the formation of the c-phase in the system

is associated with strong exothermic transformation, as can be noted from
Fig. 1.26a. This implies that there is considerable difference in the electroneg-
ativities of the elements A and B. Note also that with only a slight change in

Fig. 1.25 Free energy versus composition diagram of a system where elements have different
crystal structures and corresponding phase diagram
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composition, the free energy of this phase increases very rapidly. Thus, the
composition limits of the stability region of this phase are strictly limited. The
corresponding phase diagram at a particular temperature T is given in Fig. 1.26b.
As will be discussed in Sect. 2.6, different atoms in the ordered phase try to
occupy particular lattice positions in the crystal to maximize the number of A–B
bonds depending on the average composition of the phase. These ordered phases
are known as intermetallic compound or intermediate phases, and in general, these
phases have a different crystal structure than the crystal structure of the pure
element. In the example shown in Fig. 1.26, it is to be observed that the c-phase
has a very narrow homogeneity range. However, in some cases, as presented in
Fig. 1.27, the ordered phase can, in fact, have a wide homogeneity range, where
the change in free energy (because of the small change in composition) is not very
striking, unlike as in the previous example. These phases can deviate from their
stoichiometric composition because of the presence of defects, as discussed in
Sect. 1.11.

Fig. 1.26 Free energy versus composition diagram and the corresponding phase diagram where
the phase (ordered c-phase) goes through strong exothermic transformation

Fig. 1.27 Free energy versus composition diagram and the corresponding phase diagram where
the ordered c-phase has a wide homogeneity range

52 1 Thermodynamics, Phases, and Phase Diagrams

http://dx.doi.org/10.1007/978-3-319-07461-0_2


1.13 Ternary Phase Diagrams

According to the Gibbs phase rule, the number of degrees of freedom in a
homogeneous ternary phase under constant pressure is three. Thus, we need to
specify three independent variables (two-component mole fractions and temper-
ature) in order to fix an equilibrium in a ternary solution phase. This leads to a
three dimensional (T, XA, XB) presentation. As already discussed, it is of common
practice to utilize an equilateral triangular (the Gibbs triangle) base (ABC) with
three binary system ‘‘walls’’ (A–B, B–C, C–A) and temperature as the vertical
axis. Next, we will briefly discuss ternary space diagrams as well as the isothermal
and vertical sections taken from those diagrams.

Figure 1.28 shows the simplest possible ternary system, where there is com-
plete solid and liquid solubility in the system (ABC). This ternary space model is
very simple and easy to interpret, but as the systems become more complex, the
space model becomes harder and harder to use. Therefore, it is common practice to
utilize different sections and projections from the space model to yield more easily
accessible information. As an example, the liquidus and solidus projections from
the ABC system are shown in Fig. 1.29.

These types of projections are typically made with constant temperature
intervals and can therefore be interpreted similarly as the contour lines in a map.
Accordingly, the closer the spacing of the projection lines, the steeper is the
projected surface. Isothermal sections are the most commonly used types of pre-
sentation of ternary equilibria. Figure 1.30 shows the isothermal section at tem-
perature T3 from the ABC system given in Fig. 1.28.

The plane intersects the liquidus surface at T3 along the curve l1l2 and the
solidus surface along the curve s1s2. On the left-hand side of the curve l1l2, there is

Fig. 1.28 Ternary space
diagram with complete solid
and liquid solubilities in all
three binary systems
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a single-phase liquid region and on the right-hand side of the curve s1s2, there is a
single-phase solid region. Between these two curves, there is a two-phase liquid
and a solid region. The compositions of the phases in two-phase equilibrium are
obtained at the end points of the tie-line and the amounts by the lever rule, as in
binary phase diagrams. The directions of the tie-lines lying within the figure vary
fan-like, so that there is a gradual transition from the direction of one bounding tie-
line to that of the other. No two tie-lines at the same temperature may ever cross.
This is a direct result of the Gibbs phase rule. Beyond these considerations,
nothing can be said about the direction of tie-lines, except that they must run from
liquidus to solidus. Other than those tie-lines on the edges of the diagram, none of
them point toward a corner of the diagram unless by mere coincidence or due to a
complete lack of solubility with the element at the given corner. Therefore, it is
necessary to determine the position and direction of the tie-lines experimentally. It
should be noted that the activity of a given component has the same value at each
end of a tie-line.

Vertical sections (isopleths) from ternary space diagrams can also be taken.
Figure 1.31 presents some ways in which this can be achieved. Afterward, these
isopleths are shown in Fig. 1.32.

Even though the isopleths appear quite like binary phase diagrams, they must
not be confused with them. In general, tie-lines cannot be used with isopleths and
they only show the temperature composition regions of the different phases.

Fig. 1.29 Solidus and
liquidus projections from the
space diagram in Fig. 1.28

Fig. 1.30 Isothermal section
at temperature T from the
diagram seen in Fig. 1.28
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When there are three phases in equilibrium in a ternary system under constant
pressure, there is still one degree of freedom left. Thus, three-phase equilibrium in a
ternary system exists within a certain temperature range and not at a single tem-
perature as in binary systems under constant pressure. Three-phase equilibrium in a
ternary phase diagram is represented by a tie-triangle and as the temperature
changes these tie-triangles form a ‘‘stack’’ of tie-triangles (Fig. 1.33). The com-
position of phases participating in the three-phase equilibrium can be found from
the corners of the tie-triangle and the amount by applying the lever rule three times.

In this hypothetical ternary system in AC, there is complete solid and liquid
solubility, whereas AB and BC are eutectic systems. Point M is the eutectic point
of system AB, which is at a higher temperature than N, which is the eutectic point
of the system BC. Thus, in both binary systems (AB and BC), an eutectic reaction
l,a + b takes place. In Fig. 1.34, the surfaces AMNC ja MNB are the liquidus

Fig. 1.31 Different ways one
can take an isopleth

Fig. 1.32 Two isopleths
taken along the lines ab and
Ac

Fig. 1.33 Stack of tie-
traingles
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surfaces and thus determine the solubilities of a and b to liquid. These surfaces
meet at the eutectic valley MN. DG and EF are curves joining the points repre-
senting the respective compositions of the a and b phases formed in the eutectic
reactions in the binary systems. DME and GNF are horizontal lines that represent
these eutectic reactions. The surfaces ADGC and BEF are the solidus surfaces. The
three curves MN, DG, and EF do not lie in the same plane. The curve MN lies
above the surface DEFG, in such a way that there are three curved surfaces
DMNG, MEFN, and DEFG, which enclose a three-phase space where a, b, and the
liquid are in equilibrium. Each of these surfaces is made up of tie-lines repre-
senting l + a, l + b, and a + b equilibria. The surfaces DMNG, MEFN, and
DEFG separate the three-phase space from the liquid + a, liquid + b , and a + b
regions, respectively. Where the three-phase region terminates in the binary sys-
tems AB and BC, it shrinks to the binary eutectic lines. In a ternary system, the
eutectic reaction l ? a + b occurs over a range of temperature. If we have an
alloy with nominal composition of X, as in Fig. 1.34, the solidification takes place
as follows. During the solidification, the first solid phase to form is primary b,
when the liquidus surface is first met. The composition of the liquid then changes
along a path on the liquidus surface and that of the solid b along a path on the
solidus surface as the temperature decreases. Then, at a certain temperature T1,
before solidification is completed, the liquid composition reaches a point on the
curve MN and solid composition a point on the curve EF. The situation at T1 is
given in Fig. 1.35a where a tie-triangle is drawn. At this temperature, the nominal
composition is seen to lie on the lb tie-line. When the temperature is decreased to
T2, the three-phase equilibrium is established, as the nominal composition now lies
inside the tie-triangle Fig. 1.35b. The compositions of the liquid, a, and b are
given by the points l2, a2, and b2, and their respective amounts can be obtained by
applying the lever rule three times

Fig. 1.34 ABC ternary
system, where binary system
AC has complete solid
solubility and binary systems
AB and BC are eutectic ones
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% liquidðl2Þ ¼
Xl02
l2l02
� 100; % b2 ¼

Xb02
b2b

0
2

� 100 and % a2 ¼
Xa02
a2a02

� 100

Solidification ends at T3 when the a3b3 tie-line is encountered.
As the ternary systems become more complicated, the analysis shown above

becomes increasingly difficult. Thus, it is of common practice to utilize different
sections taken from the space model to provide information in a more accessible
form. Next, we shall consider isothermal sections a little more, as they, in general,
provide the most useful information on the ternary system. When working with the
isothermal section and naming the phase regions, it is helpful to remember that the
sides of the three-phase triangles must always face the two-phase regions, and at
the corners of the tie-triangle, single-phase regions exist. These rules are based on
the more general Palatnik-Landau theorem. Figure 1.36 contains an example of the
AuPbSn system at 200 �C with all the phase regions clearly marked in the figure. It
is to be noted that in the case of systems with stoichiometric compounds, the two-
phase regions between three-phase regions may be reduced to just a single tie-line.

As an example of utilization of isothermal sections, we shall consider the fol-
lowing case. An interesting behavior has been observed in the Cu/SnBi eutectic
system during soldering at temperatures above 200 �C. In particular, when the
solder volume is small, reactions can result in drastic changes to the microstructure
when soldering times are increased. Since bismuth does not react with Cu, only tin is
consumed during the reactions. This will eventually lead to a shift in the liquid solder
composition toward the Bi-rich corner. When the isothermal section of the SnBiCu
equilibrium phase diagram is investigated, it is to be noted that when the enrichment
of liquid with bismuth increases and the composition of the solder is around
60 at-% bismuth, the local equilibrium condition changes, as shown in Fig. 1.37.

Fig. 1.35 The process of solidification of an alloy with nominal composition X in the system
shown in Fig. 1.34 is exemplified in this figure as a function of temperature. a Temperature at
which liquid composition reaches a point on the curve MN and solid composition a point on the
curve EF, b temperature where three-phase equilibrium is established, and c temperature when
solidification ends
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Cu6Sn5 cannot exist in local equilibrium with solder enriched with Bi at this
temperature (*200 �C, shown as contact line 2). Cu3Sn can, however, exist in local
equilibrium even with pure Bi. Therefore, the Cu6Sn5 should transform into the
Cu3Sn layer. This has indeed been experimentally verified to take place [12].
The thing of special interest was that the Cu3Sn layer maintained the original Cu6Sn5

morphology that it replaced [12].
From the thermodynamic data, one can also calculate the so-called phase

fraction diagram (NP)-diagrams, which can be utilized to investigate, for example,

Fig. 1.36 Isothermal section from the Au–Pb–Sn ternary system at 200 �C

Fig. 1.37 Isothermal section
from the Bi–Cu–Sn phase
diagram at 200 �C
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solidification. They show, as a function of temperature, the changes in the fractions
of phase with a given nominal composition. An example is shown in Fig. 1.38.

As an example of the use of phase fraction diagrams, let us consider the next
case, where identical SnAgCu solder alloy is used to solder components on two
types of printed wiring boards (PWB’s)—one with an Ni(P)/Au and one with a
Cu(OSP) surface finish. Under the reflow conditions typically used in lead-free
soldering, the solidification structure is generally cellular, where the small Cu6Sn5

and Ag3Sn phases are dispersed between the large primary Sn grains [13]. If
protective Au surface finishes are used, some small needle-like AuSn4 can also be
found inside the solder matrix at the high-angle boundaries. An example of the
microstructure formed in the interconnections soldered with the Sn0.5Ag0.5Cu
alloy on electrochemical Ni(P) with a thin flash Au on top (denoted Ni(P)|Au in the
following) is shown in Fig. 1.39.

Both the Cu6Sn5 and the Ag3Sn particles are uniformly distributed around the
relatively large Sn grains. Figure 1.40 shows a micrograph taken from a sample

Fig. 1.38 NP-diagram of the
phase formation during
solidification of a SnAgCu
solder, when Cu/(OSP)
metallization is used. Note
that owing to the high
fraction of Sn, the diagram
has been enlarged and
therefore relative amount of
phases goes only up to 15 %

Fig. 1.39 Solder
microstructure after reflow
when Ni(P) metallization is
used [13]
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soldered with the same solder alloy but this time on the boards with organic
solderability preservative (OSP) on the Cu pads (noted Cu|OSP). The resulting
microstructure seems to be different even though the same solder alloy was used
relative to Ni(P)|Au, interconnections formed on the Cu|OSP contain more and
larger Cu6Sn5 intermetallic particles dispersed inside the solder.

What is the reason behind these differences observed experimentally? Let us
take a closer look at what takes place during soldering. The thin layer of Au on top
of Ni(P) dissolves instantly and completely into the molten solder, and the Ni starts
dissolving next into the melt. The OSP coating partially evaporates and the rest
dissolves into the solder flux during soldering. In the case of the Cu|OSP boards, it
is the Cu pad that starts dissolving into the solder alloy. The dissolution rate of Cu in
Sn0.5Ag0.5Cu (wt%) is about 0.07 lm/s. Based on this, the amount of Cu disso-
lution at the entire area of the soldering pad during the typical 40–45 s time above
217 �C is enough to lift the Cu concentration in the soldered interconnections close
to 1 wt%, even when taking the amount of Cu bonded into the intermetallic layers
on both sides of the interconnections into account. The dissolution rate of Ni is
about 50 times smaller than that of Cu and thus, the dissolution of Ni to the solder is
insignificant. All Ni that is dissolved at the interface is bonded to the (Cu, Ni)6Sn5

layer. Taking into account the amount of Cu bonded to the intermetallic layers on
both sides of the interconnections, the nominal composition of the interconnections
soldered on the Ni(P)|Au-coated pads will result in about Sn0.5Ag0.3Cu, whereas
the final composition on the interconnection on Cu was about Sn0.5Ag1.0Cu.

An important consequence of higher Cu content is that solidification process is
different in interconnections soldered on Ni from those soldered on Cu.
Figures 1.38 and 1.41 present the phase fraction diagrams, where the amount of
different phases in the relative number of moles can be presented as a function of
temperature. The interconnections soldered on Ni(P)|Au PWB have the
Sn0.5Ag0.3Cu composition, whereas the interconnections soldered on Cu|OSP
have the Sn0.5Ag1.0Cu.

As can be seen from Fig. 1.41, the solidification of the liquid interconnections
soldered on Ni(P)|Au boards starts with the formation of the primary Sn phase when

Fig. 1.40 Solder
microstructure after reflow
when Cu(OSP) metallization
is used [13]
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the interconnections are cooled down from the peak reflow temperature to below
the liquidus temperature of 229 �C. The Cu6Sn5 phase does not nucleate until below
222 �C, where the composition of the liquid reaches the eutectic valley. Figure 1.38
presents the phase fraction diagram of the liquid interconnections soldered on
Cu|OSP boards. In this case, the solidification begins with the formation of primary
Cu6Sn5 below 229 �C. However, the nominal composition of the liquid soon meets
the curve of two-fold saturation, after which the solidification of the interconnec-
tions proceeds by the binary eutectic reaction L ? (Sn)eut + (Cu6Sn5)eut. Below
the four-phase invariant temperature, there is more than three times as much Cu6Sn5

in the Cu|OSP interconnections as in those on the Ni(P)|Au substrate. It is to be
noted that the above analysis of solidification has been carried out by considering
that the system is in complete equilibrium. As this is not typically the case in
practical applications, the above-presented discussion must be taken to represent
the ideal situation where kinetics plays no role in the process.

1.14 Stability Diagrams (Activity Diagrams, etc.)

The activity diagram shown in the right-hand side of Fig. 1.42 is one form of many
different types of stability diagrams. In such a diagram, the thermodynamic
potential of one of the components is plotted as a function of the relative atomic
fractions of the other two components. The activity values which are needed in the
construction of such a diagram can be calculated from the assessed thermodynamic
data. When calculating the activities of the components, the activities of the
stoichiometric compounds at equilibrium are regarded to be one. It should be noted
that the precision of the calculations is very much dependent on the accuracy and

Fig. 1.41 NP-diagram of the
phase formation during
solidification when Ni(P)/Au
metallization is used [13]
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consistence of the thermodynamic data used. Therefore, great care should be
exercised when using data from different sources.

The edges of the diagram shown in Fig. 1.42 represent the binary systems
(Sn–Bi, Sn–Pb, and Pb–Bi). The ternary phase relations are represented by the
inside of the diagram. The stoichiometric single-phase regions are represented as
vertical lines, two-phase regions as areas, and three-phase fields as horizontal
lines. The vertical left- and right-hand axes represent the binary edge systems. In
Fig. 1.42, the identical phase regions in the ternary isotherm and in the activity
diagram at the same temperature are identified with the same color. The three-
phase equilibria are shown as red triangles in the isothermal Section and as red
horizontal lines in the activity diagram. In Fig. 1.43, the activity diagrams for all
three species of the C–Si–Ta system are shown. Figure 1.44 shows the corre-
sponding isothermal section.

The activity diagrams provide useful information about the formation of the
reaction layer sequence when used together with the isothermal sections as fol-
lows. The example is from the Si/TaC/Cu diffusion barrier structure where the
Si/TaC interface is studied. From the phase diagram, it is evident that the Si/TaC
interface is not in equilibrium and a driving force for the formation of additional
phases between the substrate and the TaC layer therefore exists (Fig. 1.44).
Although there exists a TaC + TaSi2 two-phase region in the phase diagram
(Fig. 1.44), SiC must be formed to incorporate the carbon released after the for-
mation of TaSi2 in the reaction between Si and TaC, because of the mass balance
requirement. The formation of SiC and TaSi2 was confirmed with TEM investi-
gations and therefore gives support to the assessed phase diagram. The reacted
structure consisted of layers of SiC and TaSi2 on top of the silicon substrate.

Fig. 1.42 Isothermal section from the Bi–Pb–Sn phase diagram at 120 8C and the corresponding
activity diagram at the same temperature
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The original TaC was completely consumed during the reaction, since no traces of
it could be found at 800 �C. The reaction sequence seemed to be Si/SiC/TaSi2/
TaC, in which the TaC was used completely to yield the final structure Si/SiC/
TaSi2. Silicon is expected to be the first species moving at this interface owing to
the following reasons. Firstly, Si has been found to be the mobile species during
the formation of TaSi2 that occurs around 650 �C in the binary Ta–Si system by Si
in diffusion, whereas the movement of Ta has not been observed under similar
conditions. Secondly, chemical bonding between Ta and C in the TaC compound
is expected to be strong, and breaking of these bonds, which is required for the
release and subsequent diffusion of Ta, would require large amounts of energy.
Owing to the facts stated above, the diffusion of tantalum or carbon in this system
is not considered to be highly probable. Consequently, Si is anticipated to be the
main diffusing species at the Si/TaC interface around 800 �C.

Fig. 1.43 Activity diagrams for C, Si, and Ta at 800 �C [14]
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Whether the above-presented phase formation sequence is thermodynamically
possible can be investigated with the help of Fig. 1.43. As can be seen from the
calculated activity diagram, Si can move along its lowering activity in the proposed
reaction sequence and therefore, diffusion of Si in this particular reaction sequence is
allowed on thermodynamic grounds. The examination of the calculated activity
diagrams for carbon and tantalum does not restrict the diffusion of these elements in
the suggested reaction sequence either (Fig. 1.43). However, as already discussed,
carbon and tantalum are strongly bonded to each other in the TaC compound and are
not expected to move easily. Therefore, the reaction most likely starts by Si in
diffusion into TaC (most probably via grain boundaries). This is followed by the
formation of TaSi2, which then leads to the accompanied dissociation of TaC. The
released carbon is then available for the formation of SiC in the reaction with Si. This
mechanism will finally yield the experimentally observed structure Si/SiC/TaSi2.

1.15 The Use of Gibbs Energy Diagrams

In the following examples, the use of Gibbs energy diagrams is presented. The
discussion follows largely that presented in the classical treatments of the subject
by Hillert [10, 15].

In Fig. 1.45, a typical molar property diagram at a given temperature T0 is
shown. The diagram shows some of the basic properties of a molar property dia-
gram. From Fig. 1.45, one can see, for example, how a Gibbs energy of a phase is
defined (ga ¼ Xa

Ala
A þ Xa

Bla
B) with the help of chemical potentials, how the

Fig. 1.44 Isothermal section
at 800 �C from the C–Si–Ta
system [14]
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chemical potentials for a species in a given phase are defined (from the end points of
the tangent), that the slope of a tangent equals the chemical potential difference of B

and A in the alpha phase dga

dXB
¼ la

B � la
A

ffi �
, and so on. These simple geometrical

features of the molar diagrams can be used for a wide variety of applications [15].
The positive curvature of the Gibbs energy curve makes the phase stable against

fluctuations in composition. The same feature of the curve also provides the
driving force for the elimination of differences in composition within the phase
(Fig. 1.46). Thus, this is the driving force for diffusion. Let us consider the situ-
ation where B atoms diffuse from a region of high concentration (more precisely
activity) to a region of low concentration. Each individual region may be regarded
as a reservoir of B with its own value of gB, and the difference in gB is identical to
the decrease in Gibbs free energy when one mole of B is transferred. We make an
assumption that the rate of transfer is proportional to the decrease in Gibbs free
energy and the number of B atoms per volume XB

vm
and inversely proportional to the

transport distance Dy. With these assumptions, the expression for the flux of B
atoms may be written as

JB ¼ �
MBXB

vm

DgB

vm
¼ �MB

vm
XB

dgB

dXB

DXB

Dy
ð1:103Þ

Fig. 1.45 Typical molar
property diagram

Fig. 1.46 Determination of
the driving force for diffusion
within a solution phase
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The constant of proportionality, MB, may be regarded as the mobility of the B
atoms. By introducing the curvature of the g curve, we obtain

JB ¼ �
MB

vm
XAXB

d2g

dX2

DXB

Dvm
ð1:104Þ

By considering the Fick’s first law (see Chap. 3), the diffusion constant for B is
recognized as

DB ¼ MBXAXB

d2g

dX2
B

ð1:105Þ

The mobility is thus multiplied by the thermodynamic factor. By using the
activity or activity coefficient for B, the thermodynamic factor can be transformed
to the shape as used in Chap. 3

XAXB

d2g

dX2
B

¼ XB

dgB

dXB

¼ dgB

d ln XB

¼ RT
d ln aB

d ln XB

¼ RT 1þ d ln cB

d ln XB

� �
ð1:106Þ

A similar derivation can be carried out also for component A, and the same
factor is obtained

DA ¼ MAXAXB

d2g

dX2
B

ð1:107Þ

It is to be noted that in ternary systems, there are more than one thermo-
dynamic factor. In a binary system, the Gibbs–Duhem equation (will be
derived in Sect. 1.16) gives

XAdlA þ XBdlB ¼ 0

and

XAdlA ¼ RT dXA þ XAd ln cAð Þ
XBdlB ¼ RT dXB þ XBd ln cBð Þ

In a binary system, XA þ XB ¼ 1 and thus, dXA þ dXB ¼ 0 which finally gives

XA

d ln cA

dXA

� �
¼ XB

d ln cB

dXB

� �

or

66 1 Thermodynamics, Phases, and Phase Diagrams

http://dx.doi.org/10.1007/978-3-319-07461-0_3
http://dx.doi.org/10.1007/978-3-319-07461-0_3


d ln aA

d ln XA

¼ d ln aB

d ln XB

In a ternary system, Gibbs–Duhem equation is written as

XAdlA þ XBdlB þ XCdlC ¼ 0

and it is immediately seen there must be more than one thermodynamic
factor in a given ternary system. In fact, there are four factors of which three
are independent.
van Loo et al. have derived [16] equations for the four thermodynamic
factors in a ternary system as well as the relation between the three inde-
pendent ones and the fourth which depends on the other three as follows.

H11 ¼
d ln a1

d ln X1

� �
p;T ;X2

H12 ¼
d ln a1

d ln X2

� �
p;T ;X1

H21 ¼
d ln a2

d ln X1

� �
p;T ;X2

H22 ¼
d ln a2

d ln X2

� �
p;T ;X1

H21 ¼
X1

1� X1ð Þ
1� X2ð Þ

X2
H12 þH22 �H11

� 	

By noting that the so-called phenomenological constant is related to the
mobility by LB ¼ MBCB and by remembering the relation between the chemical
potential and the activity, the fluxes of elements A and B can be expressed as

JA ¼ �LA

dlA

dx

JB ¼ �LB

dlB

dx

ð1:108Þ

This equation will be utilized in Chap. 4.
One can also use Gibbs energy diagrams to obtain the driving force for diffusion

of a particular species over a growing phase.
In Fig. 1.47, the common tangent construction defined above is used to

determine the driving forces for diffusion of Cu through Cu3Sn and Sn through
Cu6Sn5. Dle

Cu is the chemical potential difference of Cu between interfaces Cu3Sn/
Cu and Cu6Sn5/Cu3Sn, which drives the diffusion of Cu through Cu3Sn and Dlg

Snis
the chemical potential difference of Sn between the interfaces Sn/Cu6Sn5 and
Cu6Sn5/Cu3Sn, which drives the diffusion of Sn through the Cu6Sn5 layer. It is
easy to realize from Fig. 1.47 that changes in the stabilities of the g- and e-phases
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(in their Gibbs free energy) will change the values of Dlg
Sn and Dle

Cu and thus
increase or decrease the driving forces for diffusion of components in the system.

From Fig. 1.47, other important features can also be extracted. For instance, the
common tangent between the curves gL

bin and gg gives the equilibrium solubility of
Cu to a liquid solder (L), which is given as eXL

Cu. The equilibrium solubility is the
amount of Cu that can be dissolved infinitely slowly to liquid solder before the g-
phase comes into equilibrium with the liquid. The formation of the g-phase does
not, however, occur with this composition, as the driving force is zero at this point
(no supersaturation). In real cases, the dissolution of Cu does not take place
infinitely slow and, therefore, the equilibrium solubility is generally exceeded. The
solubility of Cu does not increase infinitely, but there is an upper limit for its value
and this can also be determined from Fig. 1.47. When more and more Cu dissolves
into liquid, eventually, a situation is faced where the dissolution of more Cu would
lead to the precipitation of pure metallic Cu out of the supersaturated solder. This
corresponds to the common tangent construction between the solder and pure Cu.
The tangent point in the liquid curve at this metastable equilibrium gives the upper
value of Cu that can be dissolved into liquid solder at any rate, i.e., the metastable
solubility mXL

Cu. When this value has been reached, also the driving force for the
formation of the g-phase has reached its maximum (shown in the diagram as
DgL!g in Fig. 1.47). Since the metastable solubility is directly related to the dis-
solution rate of a given metal to a solder in question, it provides important
information about the formation of intermetallic compounds between different
metals and solders. In many cases, its value is about 2–3 times larger than the
equilibrium solubility [17–19].

Fig. 1.47 Gibbs energy
diagram from the Cu–Sn
system at 235 �C
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To get an idea about the relation between the above discussion and the actual
phase formation in reaction couple where solid Cu is in contact with liquid Sn, it is
helpful to consider the schematic presentation of the situation in Fig. 1.48. As Cu
comes into contact with liquid Sn, it starts to dissolve rapidly. The equilibrium
solubility of Cu6Sn5 to liquid Sn (eXCu

L ) is achieved quickly (in fractions of sec-
ond). Owing to the reasons explained above, the dissolution does not stop at this
value but the dissolution of Cu continues until the ultimate limit, the metastable
solubility (mXCu

L ), is reached. At this point, the equilibrium between pure Cu and
supersaturated liquid is achieved (equal chemical potential of Cu in both phases).
This means that the dissolution of Cu must stop as there is no driving force for that
anymore. At the same point, the maximum driving force for the formation of
Cu6Sn5 is established (see Fig. 1.47). The composition profile of Cu is during
these initial stages are shown by the hatched area in Fig. 1.49. As can be seen,

Fig. 1.48 Schematic
presentation of the solid
Cu/liquid Sn reaction couple
after about 1 s (upper figure)
and after several minutes
(lower figure)
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there is a certain amount of Cu, the double hatched area, which exceeds the
equilibrium solubility of Cu6Sn5 to liquid Sn. This is the extra amount of Cu that
can be used to form Cu6Sn5 isothermally. It is evident from Fig. 1.49 that at the
interface between Cu6Sn5 and the liquid Sn, the equilibrium solubility is estab-
lished (where the second vertical dashed line from the left crosses the composition
curve in Fig. 1.49).

The driving force for the precipitation can also be evaluated from the Gibbs
phase diagram (Fig. 1.50). In Fig. 1.50, an alloy, a1, which is inside the two-phase
region a + b is shown. The Gibbs free energy of the system would decrease by
precipitation of b, and the total driving force for the complete reaction in one mole
of the alloy is given by the short arrow Dg The driving force for the formation of a
very small quantity of b from a large quantity of a1 is obtained by considering the
tangent representing the supersaturated a-phase. The magnitude of the driving
force (in nucleation stage) is given by the separation of the points at the two
tangents as

Fig. 1.49 Enlarged part of
the solubility curves of the
upper figure in Fig. 1.48

Fig. 1.50 Determination of a
driving force for the
nucleation of a new phase
from supersaturated solid
solution

70 1 Thermodynamics, Phases, and Phase Diagrams



Dg ¼ Xb
Ala1

A þ Xb
Bla1

B � gb

gb ¼ Xb
Alae

A þ Xb
Blae

B

Dg ¼ Xb
Aðla1

A � lae
A Þ þ Xb

Bðla1
B � lae

B Þ
ð1:109Þ

For low supersaturations, one can introduce the curvature of the ga curve. By
comparing the triangles in Fig. 1.50, one obtains

Dg

Xb
B � Xa

B

¼ ðlB � lAÞ
1

ð1:110Þ

This can be further modified to obtain

Dg ¼ Xb
B � Xa

B

ffi �
DðlB � lAÞ ¼ Xb

B � Xa
B

ffi �
D

dga

dXB

� �
ð1:111Þ

Dg ¼ d2ga

dX2
B

Xb
B � Xa

B

ffi �
DXa

B ð1:112Þ

The last expression contains a factor xb
B � xa

B

ffi �
which is the difference in

composition between the two phases. At the start of the precipitation, a new phase
may be favored (higher driving force) if it differs much in composition even when
it cannot be in stable equilibrium with the matrix phase. Thus, formation of a
metastable phase (here e) is favored (Fig. 1.51) according to the Ostwald rule.

One can also obtain quantitative numerical data about energy changes in a
given system, by utilizing the simple geometric constructions shown above
together with some simplified assumptions. Let us take one example from the
important Cu–Sn system (Fig. 1.52). Consider the nucleation and growth of the
g-phase, with Xg

Cu ¼ a and Xg
Sn ¼ b (a + b = 1), out of supersaturated solder

mXL
Cu ¼ c. The driving force for the nucleation of the g-phase is given by Dgg ¼

gL
tg � gL

tg (per mole of g). The two terms can be expanded as

Fig. 1.51 Formation of a
metastable phase
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gL
tg ¼ Xg

Cu
mlL

Cu þ ð1� Xg
CuÞ

mlL
Sn ð1:113Þ

and

gL
tg ¼ Xg

Cu
elL

Cu þ ð1� Xg
CuÞ

elL
Sn ð1:114Þ

which gives

) Dgg ¼ Xg
Cu

mlL
Cu þ 1� Xg

Cu

� �m
lL

Sn � Xg
Cu

elL
Cu þ 1� Xg

Cu

� �e
lL

Sn


 �
ð1:115Þ

and by using the definition of the chemical potential of a component, this gives

¼ RT Xg
Cu ln

maL
Cu

eaL
Cu

� �
þ Xg

Sn ln
maL

Sn
eaL

Sn

� �� 	
ð1:115Þ

If we simplify the treatment by assuming that the liquid behaves as a perfect
solution, the activity values can be replaced by compositions, which give

ffi RT Xg
Cu ln

mXL
Cu

eXL
Cu

� �
þ ð1� Xg

CuÞ ln
1� mXL

Cu

1� eXL
Cu

� �� 	

ffi 8:3145 J/Kmol � 508 K 0:545 ln
0:06

0:018

� �
þ ð1� 0:545Þ ln 1� 0:06

1� 0:018

� �� 	

¼ 2687:5 J/mol

ð1:116Þ

Fig. 1.52 Gibbs energy
diagram from the Cu–Sn
system at 235 �C
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Similarly, the change in Gibbs energy of the system owing to the precipitation
of Cu6Sn5 can be expressed as

Dgtot ¼ gL
tg � egL

tgð¼ DgL!LþgÞ ð1:117Þ

This can be written as

¼ RT mXL
Cu ln

maL
Cu

eaL
Cu

� �
þ mXL

Sn ln
maL

Sn
eaL

Sn

� �� 	
ð1:118Þ

and by again assuming perfect behavior

ffi RT mXL
Cu ln

mXL
Cu

eXL
Cu

� �
þ 1� mXL

Cu

� �
ln

1� mXL
Cu

1� eXL
Cu

� �� 	

ffi 8:3145 J/Kmol � 508 K 0:06 ln
0:06

0:018

� �
þ ð1� 0:06Þ ln 1� 0:06

1� 0:018

� �� 	

¼ 131:6 J/mol

ð1:119Þ

Hence, it can be concluded that these simple molar diagrams (Gibbs free energy
diagrams) give an extensive amount of important information in an easily visu-
alized form.

1.15.1 Effect of Pressure on the Phase Equilibrium

Related to the effects of pressure on the phase equilibrium, we shall consider two
equations, the Laplace and the Kelvin equations. If a fluid interface is curved
between two phases, then it turns out that the pressures on either side must be
different. When the system is in equilibrium, every part of the surface must be in
mechanical equilibrium (also in thermal and chemical). For a curved surface, the
forces of surface tension are exactly balanced by the difference in pressure on the
two sides of the interface. This is expressed by the Laplace equation

pa � pb ¼ c
1
r0
þ 1

r00

� �
ð1:120Þ

where P stands for the pressure, c is the surface tension, and r0 and r00 are the radii
of curvatures. By convention, positive values are assigned for the radii of curvature
if they lie in phase a (see Fig. 1.53).

An important consequence of the Laplace equation concerns the effect of sur-
face curvature on the vapor pressure of a liquid. This relationship is known as the
Kelvin equation
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ln
pc

p1

� �
¼ cvL

m

RT

� �
2
rm

� �
ð1:121Þ

where pc and p? are the vapor pressures over the curved surface of mean curvature
rmð 1

rm
¼ 1

2
1
r0 þ 1

r00

� �
and a flat surface (r = ?) and vL

m is the molar volume of the

liquid. There is a convention to assign a positive sign to rm when it lies in the
liquid phase and a negative sign when it lies in the vapor phase. Equation 1.121
can be used, for example, to rationalize capillary condensation or in the treatment
of nucleation (Chap. 11). Condensation occurs when the actual vapor pressure
exceeds the equilibrium vapor pressure. If the surface is curved, the Kelvin Eq. 1.
121 shows that the actual pressure can be significantly lower than equilibrium
pressure and thus, condensation in pores in the solid (if the liquid wets the solid) or
between closed spaced solid particles may occur.

The effect pressure on the phase equilibrium can be investigated with Gibbs
energy diagrams. According to the definition, the Gibbs free energy of a phase
depends upon the pressure according to g ¼ gð0Þ þ pvm where 0 denotes the
atmospheric pressure. As discussed above, for condensed phases, the pvm term can
often be neglected if the pressure is not exceptionally high. However, it plays an
important role if the two phases in equilibrium are under different pressures. This
occurs, as shown above, when the interface is curved and is caused by the surface
tension (or energy) of the curved interfaces. Next, we shall briefly discuss how the
equilibrium between two phases is changed by the introduction of increased
pressure. The two g curves are displaced upward by the amounts pava

m and pavb
m,

respectively. This takes place even with phase compositions so well defined that
they will not change (Fig. 1.54a). The change in gB, for instance, can be evaluated
as follows. By comparing the triangles in Fig. 1.54b, one obtains

gB � pbvb
m

gB � pava
m

¼ Xb
A

Xa
A

ð1:122Þ

where DGB equals gB(pa, pb) - gB(0). The above equation can be rearranged to
give

Fig. 1.53 Pressure
difference across a curved
surface
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gBðpa; pbÞ � gBð0Þ ¼
Xa

Apbvb
m � Xb

Apava
m

Xa
A � Xb

A

ð1:123Þ

A similar equation can be derived also for gA. When considering a spherical b
particle in an a matrix, it is usually assumed that the matrix is under atmospheric
pressure and one can therefore use pa ¼ 0. One then obtains a diagram shown in
Fig. 1.55. The compositional change, DXa

B (for small values), can be written as

DXa
B ¼

pbvb
m

d2ga�
dX2

B
� Xb

B � Xa
B

ffi � ð1:124Þ

By inserting pb ¼ 2c
r and utilizing the regular solution model, one obtains

DXa
B ¼

2cvb
mXa

AXa
B

r RT � 2La
ABXa

AXa
B

� �
Xb

B � Xa
B

ffi � ð1:125Þ

Fig. 1.55 Nucleation of b
phase from a-matrix

Fig. 1.54 Effect of pressure on phase equilibrium between two stoichiometric phases
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If both phases can vary in composition, the calculations become much more
complicated.

It is also possible to use Gibbs energy diagrams to investigate the segregation of
a given impurity to grain boundaries (Fig. 1.56). This involves a so-called constant
volume condition. If we assume that the interface can be approximated as a thin
layer of a homogeneous phase with constant thickness and its own Gibbs energy
function as well as that the partial molar volumes of all the phases (including the
interfacial phase) are independent of composition, we can use parallel tangent
construction to find the interfacial composition. In this case, we consider exchange
of atoms (A and B) between the interface and the bulk. The number of atoms at the
interface is considered to be constant. Thus, if atom A leaves the interface and
enters the bulk and atom B moves into opposite direction at the same time, the
Gibbs free energy should not change

la
A � lb

A ¼ la
B � lb

B ð1:127Þ

where a refers to the bulk phase and b to interface. This can be rewritten as

lb
B � lb

A ¼ la
B � la

A ð1:128Þ

which gives the slopes for the interfacial phase and for the bulk phase

dgb

XB

¼ dga

XB

ð1:129Þ

For interphase segregation, where the volume is not necessarily fixed other
approaches, like that of Gibbs surface excess model, must be utilized. Any change of
c due to an appreciable addition of B can be obtained directly from the molar Gibbs
energy diagram. For instance, if one wants to estimate the maximum segregation to a
grain boundary (which can possibly occur), the construction shown in Fig. 1.57 can
be used. This is based on the fact that the maximum amount to segregate must
certainly be less than the segregation needed in order to make the surface tension

Fig. 1.56 Parallel tangent
construction to investigate
segregation
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to disappear, as this has never been observed experimentally. The surface ten-
sion will vanish when the two parallel tangents coincide as shown in Fig. 1.57.
This gives the hypothetical upper limit for interfacial segregation. Several more
advanced treatments of intergranular segregation have been published during recent
decades [20–22].

1.15.2 Ternary Molar Gibbs Energy Diagrams

The molar Gibbs free energy diagrams for ternary systems can also be conve-
niently drawn, as shown in Fig. 1.58. In this case, the molar Gibbs energies of
solution phases are represented by surfaces instead of curves and the common
tangent construction is replaced by a common tangent plane. In Fig. 1.58, the
ternary equivalent of the process shown in Fig. 1.18 is presented. As mentioned
above, the chemical equilibrium condition of the equal value of the chemical
potential of each component leads to the common tangent construction in a binary
system and to the common tangent plane construction in a ternary system. In the
latter case, the values for the chemical potentials are read from the intersections of
the tangent plane with the three edges of the diagram. As shown in Fig. 1.58, the
tangent plane is allowed to roll under the given Gibbs energy surfaces until a
common tangent plane for the curves is established. Figure 1.58a shows the
starting point of the process. The initial compositions of the phases are given by
the points where the tangent plane touches the free energy surface of the given
phase. The values for the chemical potentials for each component in a given phase
are obtained for the intersection points of the corresponding tangent planes. As can
be seen, the chemical potentials for components A, B, and C are hardly equal in
the two phases to start with. Thus, there is driving force for diffusion of the
components. The tangent plane drawn with green color belongs to the b-phase
(blue curve) and that with red to the a-phase (red curve). The plane drawn with
black lines shows the Gibbs energy for a purely mechanical mixture of A, B, and
C. From the composition profile in Fig. 1.58a, it can be seen that no interdiffusion

Fig. 1.57 The determination
of the upper limit for
segregation
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Fig. 1.58 a Ternary Gibbs energy diagram with composition profile showing the initial situation
for the diffusion couple a/b. b Ternary Gibbs energy diagram with composition profile showing
the situation for the diffusion couple a/b after some interdiffusion has taken place, but the
equilibrium has not been reached. c Ternary Gibbs energy diagram with composition profile
showing the final equilibrium situation for the diffusion couple a/b
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has taken place. As can be seen from Fig. 1.58b, the tangent planes start to roll
under the Gibbs free energy surfaces and, consequently, the chemical potentials of
the components start to change. It is evident that Fig. 1.58b represents an inter-
mediate stage in the process as the chemical potentials for components A, B, and C
are not yet equal in both phases. From the composition profile of the a/b-diffusion
couple in Fig. 1.58b, it can be seen that the compositions at the interface have been
changed. Further, it is noticed that only components A and B diffuses in this case
and component C is immobile. The end-member compositions are unaffected by
the diffusion process as required (See Chap. 3 for further discussion). The final
equilibrium situation is given in Fig. 1.58c, in which the common tangent plane is
shown. As can be seen, the chemical potentials for the components are now equal
at each phase and thus, the chemical equilibrium condition is fulfilled.

Another example from a ternary Gibbs energy diagram is shown in Fig. 1.59
which represents the stability of phases in the BiCuSn system at 235 �C. There are
two intermetallic compounds, (Cu6Sn5 (g) and Cu3Sn (e)), which enter the stable
equilibrium at this temperature. A vertical section (SnBieut?Cu) through this
diagram is shown in Fig. 1.60. As can be seen, the section resembles the Gibbs
energy diagram of the binary Cu-Sn system, but it is not exactly the same. The
‘‘tangent lines’’ drawn in the diagram (Fig. 1.60) are not identical to the tangent
lines in Fig. 1.52, but are 2D sections through the corresponding tangent planes.

Fig. 1.59 Ternary molar
Gibbs energy diagram from
the BiCuSn system at 235 �C
[17]
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1.16 Interdependence of Chemical Potentials:
Gibbs–Duhem Equation

In this section, we shall derive the Gibbs–Duhem relation, which will be useful in
proceeding chapters to find the relation between diffusion under chemical potential
gradient with the diffusion in the absence chemical potential gradient as the
driving force. From our point of view, the application of Gibbs–Duhem equation to
obtain the change in the chemical potential because of the change in composition
of an alloy is the most important use of the general relation. For the sake of
explanation, let us consider the free energy versus composition diagram, as shown
in Fig. 1.61. First, we consider the point P and from the slope at that we can
determine the chemical potential of elements A and B at that point as lP

A and lP
B,

respectively. Now suppose we make a small change in the composition and move
to the point Q. Again from the slope of the free energy at that point, we can find the

chemical potential of elements as lQ
A and lQ

B . So it is apparent that the change in
chemical potential of elements, A and B, because of the change in composition is

�dlA ¼ lQ
A � lP

A

� �
and �dlB ¼ ðlQ

B � lP
BÞ, respectively. Further, from any point

P or Q, it can be written that

� dlA

XB

¼ dlB

XA

¼ dðlB � lAÞ
1

ð1:130Þ

Fig. 1.60 A vertical section
through the Gibbs energy
diagram shown in Fig. 1.59
[17]
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Further, from the slope, we can write

dg

dXB

¼ lB � lA

1
ð1:131Þ

Combining Eqs. 1.130 and 1.131 and multiplying XAXB, the expression
becomes

�XAdlA ¼ XBdlB ¼ XAXB

d2g

dX2
B

dXB ð1:132Þ

Further, it can be shown that

d2g

dX2
B

¼ d2g

dX2
A

ð1:133Þ

It follows that

XAdlA þ XBdlB ¼ 0 ð1:134Þ

Equation 1.134 is known as Gibbs Duhem equation. It illustrates clearly that
chemical potentials, or any other partial thermodynamic properties [5], cannot be
changed independently. On the contrary, for example, in a binary system con-
sidered here, when the one chemical potential is changed, the other one must
change also. This is evident also in ternary systems as shown in Fig. 1.58a–c.
Further, we can derive one another useful relation from Eq. 1.134. From
Eqs. 1.132 and 1.133 follows

�XA

dlA

dXB

¼ XB

dlB

dXB

¼ XAXB

d2g

dX2
B

¼ XAXB

d2g

dX2
A

ð1:135Þ

Fig. 1.61 The change in
chemical potential because of
the change in composition is
shown to derive the Gibbs–
Duhem equation
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and consequently,

lB ¼� lB þ RT ln aB ¼� lB þ RT ln cBXB ð1:136aÞ

lA ¼� lA þ RT ln aA ¼� lA þ RT ln cAXA ð1:136bÞ

From Eq. 1.136, the following expression can be obtained

dlB

dXB

¼ RT
d ln cB

dXB

þ d ln XB

dXB

� 	
¼ RT

1
cB

dcB

dXB

þ 1
XB

� 	
¼ RT

XB

1þ d ln cB

d ln cB

� 	

dlB

dXB

¼ RT

XB

d ln aB

d ln XB

ð1:137Þ

Similarly from Eq. 1.137, since XA + XB = 1, follows

dlA

dXB

¼ �RT
d ln cA

dXA

þ d ln XA

dXA

� 	
¼ �RT

1
cA

dcA

dXA

þ 1
XA

� 	
¼ RT

XB

1þ d ln cA

d ln cA

� 	

dlA

dXB

¼ RT

XB

d ln aA

d ln XA

ð1:138Þ

Using Eq. 1.137 in Eq. 1.138, we obtain

d ln aA

d ln XA

¼ d ln aB

d ln XB

¼ XAXB

RT

d2g

dX2
A

¼ XAXB

RT

d2g

dX2
B

ð1:139Þ

This is again the thermodynamic factor discussed in Sect. 1.15.

1.17 Molar Volume of a Phase and Partial Molar Volumes
of the Species

Many times it is important to determine the molar volume of the phases and partial
molar volume of the species. By definition, the molar volume, vm, of a phase can
be determined from

vm ¼
vcell

na
NAvo ð1:140Þ

where vcellðm3Þ is the volume of the unit cell determined from the known data on
the lattice parameters available in the literature, N0 is the Avogadro number
(6.023 9 1023 mol-1), and na is the number of atoms in the unit cell.

When virtually no structural vacancies are present in a unit cell, the number
of atoms, na, in the last equation can be replaced by the number of lattice sites, ns.
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We can neglect the amount of thermal vacancies, since this number is very small.
On the other hand, when constitutional vacancies are created in the structure and if
the number is appreciable, we should consider this for the calculation of molar
volumes. In this case, we can write na ¼ ns � nV , with nV being the number of
vacancies present in the unit cell.

So, when there are no structural vacancies present in the structure, the calculation
of molar volume is rather straightforward. However, for further clarification, we
like to extend our discussion to the calculation which contains structural vacancies.
For this purpose, we consider the B2 NiAl phase in an Ni–Al system. The homo-
geneity range of the B2 phase is shown in Fig. 1.62. It can be seen that there is a
wide homogeneity range on both sides of the stoichiometry. As will be discussed in
Chap. 2, deviation from the homogeneity in the Ni-rich side is achieved by the
Ni-antisite defects (NiAl that is Ni atom occupying the sublattice belongs to Al
atom), whereas deviation in the Al-rich side is achieved by the presence of triple
defect (2VNi þ NiAl composed of two vacancies in sublattice belonging to Ni
atoms and one Ni atom occupying a site in a sublattice belonging to Al atoms).

Fig. 1.62 The change in a lattice parameter and b vacancy concentration of NiAl phase and
c molar volume of the phase (a and b are from [23])
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So to calculate the molar volume in the Ni-rich side is straightforward and the
number of lattice positions can be used to count the number of atoms. However, in
the Al-rich side, we need to consider the number of antisites for the calculation of
molar volume. The molar volume of the phase at different compositions can be
calculated from the available data on the lattice parameter and vacancy concen-
tration, as shown in Fig. 1.62a and b, respectively. The calculated molar volume of
the phase is shown in Fig. 1.62c.

The partial molar volume of the species can be defined as the change in molar
volume because of the addition of a very small amount of the species. The partial
molar volume of the species Að�vAÞ and Bð�vBÞ is related with the molar volume of a
phase, or an alloy (vm) is related by

vm ¼ XA�vA þ XB�vB ð1:141Þ

Thus, the partial molar volume of the species at a particular composition, X	B, can
be calculated by taking slope at v	 from the molar volume versus composition
diagram, as shown in Fig. 1.63. The values �v	A and �v	B are the partial molar volumes
of the species A and B, respectively, at X	B. This is a property diagram similar to that
which was extensively used in Sect. 1.15 (the molar Gibbs energy diagram).

1.18 Few Standard Thermodynamic Relations

Derivations for a few relations can be found in [24]. We have previously shown
that the mole fraction and the atomic fraction are the same in the systems we have
considered. We commonly present the diffusion data with respect to atomic
fraction or atomic percentage, and we shall use them for further derivations.

NA þ NB ¼ 1 ð1:142Þ

Fig. 1.63 The determination
of partial molar volume of the
species, A and B in a binary
system is shown
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where NA and NB are the atomic fractions of A and B.

CA ¼
XA

vm
¼ NA

vm

CB ¼
XB

vm
¼ NB

vm

ð1:143Þ

where Ci is the concentration of species i and mm is the molar volume at the
composition of interest.

NA�vA þ NB�vB ¼ vm ð1:144Þ

where mi is the partial molar volume of the species i. By utilizing (1.142 and
1.143), we get

CA þ CB ¼
NA

vm
þ NB

vm
¼ NA þ NBð Þ

vm
¼ 1

vm
ð1:145Þ

On the other hand by substituting Ni = Cimm from (1.143) to (1.144), we obtain

CAvm�vA þ CBvm�vB ¼ vm

vm CA�vA þ CB�vBð Þ ¼ vm

CA�vA þ CB�vB ¼ 1

ð1:146Þ

Since the molar volumes also follow Gibbs–Duhem relation, which was pre-
sented in Sect. 1.16, we can write

XAd�vA þ XBd�vB ¼ 0 or NAd�vA þ NBd�vB ¼ 0 ð1:147Þ

By multiplying this with total concentration C, one gets CðNAd�vA þ NBd�vBÞ ¼ 0

ðCA þ CBÞðNAd�vA þ NBd�vBÞ ¼ 0, and from (1.145), we see that 1
vm

ffi �
NAd�vAþð

NBd�vBÞ ¼ 0, which based on (1.143) reduces to

CAd�vA þ CBd�vB ¼ 0 ð1:148Þ

When taking total differential from (1.146), we get

CAd�vA þ CBd�vB þ �vAdCA þ �vBdCB ¼ 0

According to (1.148), the first two terms are zero and, thus,

�vAdCA þ �vBdCB ¼ 0 ð1:149Þ
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When we consider that molar volume is not constant

dCA ¼
�vB

v2
m

� �
dNA

dCB ¼
�vA

v2
m

� �
dNB

ð1:150Þ

References

1. K. Denbigh, The Principles of chemical equilibrium, 3rd ed., Cambridge University Press,
Cambridge, U.K, 1978.

2. E.A. Guggenheim, Thermodynamics, Elsevier Science, The Netherlands, 1967.
3. D. Kondepudi and I. Prigogine, Modern Thermodynamics From Heat Engines to Dissipative

Structures, Wiley, 1998.
4. P. Atkins and J. DePaula, Physical Chemistry, Macmillan Higher Education, 2009.
5. N. A. Gokcen, Thermodynamics, Techscience incorporated, 1975.
6. J.K. Kivilahti, Theory of metallic solutions, Otakustantamo, 1982, (in Finnish).
7. L. Darken and R. Gurry, Physical Chemistry of Metals, McGraw-Hill, (1953).
8. G.N. Lewis and M. Randall, Thermodynamics, revised by K. Pitzer and L. Brewer, McGraw-

Hill, 1961.
9. D. Gaskell, Introduction to Metallurgical Thermodynamics, McGraw-Hill, Tokyo, 1973.

10. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations: Their
Thermodynamic Basis, Cambridge Univ. Press, 1998.

11. H. Lukas, S. Fries, and B. Sundman (2007) Computational Thermodynamics- The Calphad
Method, Cambridge University Press (2007).

12. Rönkä K., van Loo F.J.J. and. Kivilahti J.K, Metal. Mater. Trans. A, 29A (1998) 2951.
13. T. Mattila, V. Vuorinen and J.K. Kivilahti, J. of Mater. Res. 19 (2004) 3214.
14. Laurila T., Zeng K., Molarius J., Suni I., and Kivilahti J.K., Journal of Applied Physics 91

(2002) 5391.
15. Hillert M., ‘‘The Uses of Gibbs Free Energy-Composition Diagrams’’, in Lectures on the

Theory of Phase Transformations, (Ed. H.I. Aaronson, The Metallurgical Society of the
AIME, (1975)).

16. C. Cserhati, U. Ugaste, M. van Dal, N. Lousberg, A. Kodentsov, and F.J.J. van Loo, Defect
and Diffusion Forum 194-199 (2001) 189.

17. T. Laurila, V. Vuorinen and J.K Kivilahti, Materials Science and Engineering – R, R49, (1-2),
pp. 1-60, (2005).

18. Laurila T, Vuorinen V. and Paulasto-Kröckel M, Materials Science and Engineering – R, R68
(2010) 1-38.

19. R. Wang and Y. Kim, Metall Trans 5 (1974) 1973.
20. E. Hondros and M. Seah, Metall. Trans. A, 8A (1977) 1363.
21. M. Guttmann, Metall. Trans. A 8A (1977) 1383.
22. E. Guggenheim, Trans. Faraday Soc, 36 (1940) 397.
23. Y.A. Chang and J.P. Neumann, Prog. Solid State Chem. 14 (1982) 221.
24. L. Trimble, D. Finn and A. Cosgarea, Acta Metallurgica 13 (1965) 501.

86 1 Thermodynamics, Phases, and Phase Diagrams



Chapter 2
Structure of Materials

In this chapter, we will briefly go through the hierarchical structure of materials.
First, the atomic bonding and crystal structures are covered briefly. Then, the
emphasis is placed on the presence of different types of defects and imperfections.
Since point defects provide the fundamental basis for understanding the atomic
mechanisms of diffusion, they are discussed in detail. In addition, the crystal
structures including also the defect structures of intermediate phases and ordered
binary intermetallics are quantitatively presented.

2.1 Hierarchical Structure of Materials

Most properties are actually highly structure sensitive. Therefore, it is of utmost
importance to understand the basis for the structure of materials to be able to
control the properties and reliability of engineering materials. Microstructure is a
general term used to cover a wide range of structural features, ranging from those
visible to the naked eye (for instance, macrostructure) to those corresponding
to the inter-atomic distances in the crystal lattice (for instance, nanostructure).
In other words, the size scale of the structural features ranges about 10 orders of
magnitude. Therefore, in order to observe the structural features at these different
scales, as shown in Fig. 2.1 [1], adequate resolving power is required.

Frequently, a large variety of structural features on different levels is note-
worthy. Therefore, in the following chapters, the hierarchical structure of materials
is presented.

2.2 Atomic Bonding

An atom can exist in different energy states according to the kind of interaction it has
with neighboring atoms. The nature of this interaction is defined by the type of
atomic bonding. The bonds can be categorized into two classes according to the
bond energy. The primary bonds ([100 kJ/mol) are ionic, covalent, and metallic.

A. Paul et al., Thermodynamics, Diffusion and the Kirkendall Effect in Solids,
DOI: 10.1007/978-3-319-07461-0_2, � Springer International Publishing Switzerland 2014
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It is to be emphasized that in many materials, the bonding falls between these
distinct categories. For example, the Si–O bond in silica is approximately half ionic
and half covalent. The secondary bonds are of the van der Waals, or hydrogen, type.
Many of the material properties, such as Young’s modulus, the melting point, and
the coefficient of thermal expansion (CTE) (as seen from Table 2.1), are related to
the bond energy.

Ionically bonded crystals that possess high binding energies are generally
considered to be hard, brittle, insulating, and thermally stable. The bond is based
on the equilibrium between attractive and repulsive coulombic (electrostatic)
forces. The ions are ordered in the crystal in such a non-directional manner that a
macroscopically neutral material is generated. The structures typically have simple
stoichiometry such as AB, AB2, and A2B.

Covalent crystals and molecules are based on bonds that share the pair of
electrons in the direct line between the atoms. The directional bonding is caused by
the concentrated electron density between the nuclei. Covalent bonding includes
many types of interactions such as r-bonding and p-bonding. These bonds can be
either saturated, as in gas molecules H2, N2, O2 …, or unsaturated, as in polymer’s
or covalent crystals C, Si, SiC …. Materials that possess bonds of a covalent nature
are either insulators or semiconductors.

The nature of the atomic bond in metallic crystals differs from those of ionically
and covalently bonded materials. The fundamentals of ionic and covalent bonds are

Fig. 2.1 Size scale relating structural features of metals to techniques of observation (redrawn
from [1])
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based on chemical valence. However, in metallic bonding, the theory enables the
rationalization–typical metallic properties in addition to the aspect of the linking of
atoms. By releasing the valence electrons the metal atoms in crystal can lower their
energy state compared to individual atom. In this case the electrons are always close
to nucleus (low potential energy region) but are not localized (i.e. cannot be asso-
ciated with specific atom) so the kinetic energy is not increased too much. When
summarized over the crystal this leadsto a stable structure. The bonds act between
identical and different metallic atoms, as is revealed by the formation of numerous
element and alloy structures. Typically, metallic atoms have either 8 or 12 neigh-
boring atoms between which the bonds act. These resonating bonds usually permit
plastic deformation and easy electron transfer throughout the structure.

2.3 Crystal Lattice

The formation of a crystal structure occurs as a result of bonding between atoms.
Strong non-directional bonding typically allows atoms to pack efficiently, exhib-
iting planes of high atomic density containing close-packed directions. Crystals are
thus solids in which all of the atoms occupy well-defined locations, being ordered
across the whole material. These locations are defined by a crystal lattice, which is
an infinite pattern of points, each of which having the same surroundings in the
same orientation. Therefore, lattice is a mathematical concept out of which any
point can be used as the origin for defining any other lattice points. There are only
14 possible three-dimensional lattices, called Bravais lattices, from which all
crystal structures can be built as shown in Fig. 2.2.

It is to be noted that the crystal structure of a simple pure metal and that of a
complex protein may both be described in terms of the same lattice, but the

Table 2.1 Atomic bonding types, bonding energies, and respective melting temperatures for
various substances

Bonding type Substance Bonding
energy (kJ/mol)

Young’s
modulus (GPa)

CTE (10-6) Melting
temperature (�C)

Ionic NaCl 640 39.98 44 801
MgO 1,000 249 10.8 2,800

Covalent Si 450 129 2.8 1,410
C (diamond) 713 1,220 1.1 [3,550

Metallic Hg 68 182 -39
Al 324 69 23 660
Fe 406 196 12 1,538
W 849 344 4.5 3,410

Van der Waals Ar 7.7 -189
Cl2 31 -101

Hydrogen NH3 35 -78
H2O 51 8.6–12 (ice) 51 (ice) 0
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number of atoms allocated to each lattice point (i.e., motifs) can vary from one to
few thousands. Thus, a crystal structure is composed of a lattice plus a motif. The
unit cells can be either simply primitive, body centered, face centered, or base
centered. A primitive unit cell contains only a single lattice point, whereas a base-
centered and body-centered cell contains two lattice points and a face-centered cell
contains four lattice points.

The fundamentals of the crystal symmetry, planes, and directions as well as
their indexing and nomenclature can be found from many excellent textbooks, for
instance [2, 3]. Therefore, only the most common crystal types for pure metals and
alloys, i.e., the close-packed face-centered cubic (FCC), body-centered cubic
(BCC), and hexagonal close-packed (HCP) crystals, are presented in brief here.
The atomic arrangement of the FCC and HCP crystals are shown in Fig. 2.3, where
the location of the atom in the third layer defines whether the structure becomes
hexagonal close packed (left, ABAB… arrangement) or FCC (right, ABCABC…
arrangement). BCC crystals are not closely packed, and therefore, they contain
more empty spaces (tetrahedral and octahedral interstitial sites) as can be seen
from Fig. 2.4 and Table 2.2.

Fig. 2.2 Bravais lattices
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2.4 Grain Structure

Grain structure is composed of small crystals that form a three-dimensional
aggregate. The main characteristics are grain size, shape, and grain shape anisot-
ropy. An impingement grain structure forms when grains grow until they meet or
impinge, for example, during secondary recrystallization, producing characteristic
ragged interfaces. A columnar grain structure is produced by unidirectional growth

Fig. 2.3 Close-packed arrangements

Fig. 2.4 Octahedral (O) and tetrahedral (T) interstitial sites in FCC-, HCP-, and BCC-type
metals
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such as in solidification or electrochemical plating (See Fig. 2.5a). Equiaxed grains
can be formed by several processes such as recrystallization (See Fig. 2.5b) or
solidification.

2.5 Defects

Many physical (especially mechanical) properties of solid materials are primarily
based on the presence of different types of defects and imperfections. In other
words, often specific material characteristics are deliberately fashioned by intro-
ducing a controlled amount of particular defect. The classification of crystalline
imperfections is generally made according to either the geometry or dimension-
ality of the defect. Thus, the defects are typically divided into (i) point defects,
which are related to a single or a few atomic positions, (ii) linear (or one-
dimensional) defects, (iii) two-dimensional defects such as surfaces, interfaces,
and different types of boundaries, and (iv) volume defects including inclusions,
cracks, voids, and pores.

2.5.1 Point Defects

Point defects are central to gain an understanding of the atomic mechanisms of
diffusion, and therefore, they are discussed in detail. There can be a few types of
point defects present in the structure in an equilibrium condition (e.g., vacancies,
impurities, and antistructure). Typically, in ‘‘pure’’ elements, vacancies and
impurities are present in the structure. First, let us discuss the defects present in the
pure elements and then turn to consider the defects present in the ordered phases.

Fig. 2.5 Cross-polarized optical images from a columnar electrochemically plated Sn crystals
between Cu equiaxed SnBi alloy and b recrystallized SAC solder interconnection after 3,000
cycles during a -40 �C () +125 �C thermal cycling test
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2.5.1.1 Equilibrium Vacancy Concentration in Pure Elements

The presence of vacancies in a pure element can be estimated using the same kind
of treatment as was followed to find the free energy in a binary system, as
explained previously in Sect. 1.8. The formation of vacancies can be explained, as
shown in Fig. 2.6, where one atom diffuses from the interior of the crystal to the
surface leaving a vacant site (the Schottky defect). There is another type of point
defect, called the Frenkel defect, which is formed when an atom from a lattice site
moves into an interstitial site thus leaving an empty space (vacancy) behind. For
the sake of analysis, the presence of vacancies (V) in the element A can be
visualized as a binary system of A and V. Now, the creation of vacancies is
associated with the increase in internal energy because of broken bonds around the
vacancies. In general, the equilibrium number of vacancies is so small that we can
neglect the interaction between them. Thus, if we consider that the number of
vacancies to be very small, then the increase in enthalpy resulting from the for-
mation of vacancies can be written as

Dh � XvDhv ð2:1Þ

Here, DXv is the mole fraction of the vacancy and Dhv is the increase in
enthalpy caused by one mole of vacancies.

Factors contributing to Dhv in metals are as follows:

1. Change in the volume. When an atom is removed from the center of the lattice
and is placed at the surface, there is no change in the surface area, but rather an
increase in the volume. This decreases the average energy of the electrons,
giving a negative change in energy.

2. The removal of an atom leaves behind one atomic volume devoid of charge.
Free electrons around the site tend to flow into this vacancy. Since there in no
positive charge in the vacant site, the electrostatic energy is increased. To
minimize this effect, there will be a sharp change in the electron density, which
imposes in the end a higher kinetic energy for the electrons and an increase in
the energy of the lattice.

3. When an atom is removed, the surrounding ions will relax into the vacancy
decreasing slightly the energy of the final lattice.

Fig. 2.6 Movement of atoms to create a vacancy at the interior
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If we now consider the total effect of all the above-mentioned three contribu-
tions, it is to be found that the sum is positive Dhv; thus, it costs energy to form a
vacancy.

The entropy can be divided into two parts, namely thermal entropy and config-
urational entropy (Sect. 1.5). Now, if we consider the change in entropy resulting
from the mixing of vacancies with the pure element, there will be two types of
contributions. First, there will be the change in the vibration pattern of the atoms
next to vacancies because of extra free space. The increase in entropy caused by the
extra freedom of vibration can be written as XvDsv. Here, Dsv is the increase in
entropy for one mole of vacancies. Furthermore, there will be a change in con-
figurational entropy considering the mixing of A and V and this can be expressed
as (Note that we are considering XA þ Xv ¼ 1)

Dsmix ¼ �R Xv ln Xv þ 1� Xvð Þ ln 1� Xvð Þ½ � ð2:2Þ

So the total change in entropy can be written as

Ds ¼ DsvXv � R Xv ln Xv þ 1� Xvð Þ ln 1� Xvð Þ½ � ð2:3Þ

Thus, the total free energy of the system containing vacancies can be written as

G ¼ GA þ DG ð2:4Þ

where GA is the free energy of the defect free system of pure element A. DG is the
change in free energy and can be expressed as (Sect. 1.3)

DG ¼ DH � TDS ð2:5Þ

From Eqs. 2.2 to 2.5, the total free energy of the system can be written as

G ¼ GA þ XvDHv � T DSv � R Xv ln Xv þ 1� Xvð Þ ln 1� Xvð Þ½ �f g ð2:6Þ

The change in enthalpy, entropy, and free energy due to an increasing number
of vacancies can be seen in Fig. 2.7. It is apparent that DH increases linearly with
the increase in vacancies, whereas �TDS decreases very rapidly in the beginning,
but the rate of change decreases drastically. So it should be clear that in the
beginning, the total free energy of the system will decrease with the creation of
vacancies, but after a certain range, the free energy will start to increase because
DH will start dominating. The system will therefore go through a minimum. We
have seen before in Sect. 1.2 that a system will stay in equilibrium when it has
minimum free energy. So we can state that the system will remain in equilibrium
with free energy Ge. Further, we know that in the equilibrium condition,
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dG

dXv
¼ 0 ð2:7Þ

So from the differentiation of G (Eq. 2.6) with respect to Xv and then by
equaling it to zero, we can write

DHv � TDSv þ RT ln Xv þ Xv �
1
Xv
� ln 1� Xvð Þ � 1� Xð Þ � 1

1� Xvð Þ

� �
¼ 0

ð2:8Þ

Since the number of vacancies that can be present in the system is very small,
we can write 1� Xv � 1. Thus, Eq. 2.8 can be written as

DHv � TDSv þ RT ln Xv ¼ 0 ð2:9Þ

So the relation for the equilibrium concentration of vacancies can be written as

Xe
v ¼ Xv ¼ exp �DHv � TDSv

RT

� �
¼ exp �DGv

RT

� �
ð2:10Þ

Here, Xe
v is the equilibrium concentration of vacancies at a particular temper-

ature T, and DGv is the activation energy for the formation of one mole of
vacancies. Equation 2.10 can further be written as

Fig. 2.7 The change in free
energy of element A with the
increase in vacancy
concentration
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Xe
v ¼ X0

v exp �DHv

RT

� �
ð2:11Þ

where DHv is the activation enthalpy for the formation of vacancies and X0
v is the

pre-exponential factor and is equal to

exp
DSv

R

� �
ð2:12Þ

It is to be noted here that if the vacancies are not present in their equilibrium
fraction in a binary system, their chemical potential is not zero, and thus, it will
transform the system essentially into a ternary one where, for instance, there is
now more than one thermodynamic factor (Sect. 1.15).

2.5.1.2 Equilibrium Concentration of Impurities in Pure Elements

In many metals, especially in transition metals, interstitial atoms such as carbon,
nitrogen, oxygen, and hydrogen can be present depending, to a large extent, on the
metal. The presence of these impurities can change the properties of the material
drastically. The maximum concentration of interstitial atoms that can be present
depends on different factors such as the crystal structure of the metal and the size
of the interstitial atoms. There are mainly two types of interstitial sites present in
the structure: tetrahedral (surrounded by four solvent atoms) and octahedral
(surrounded by six solvent atoms). However, since it has been observed that
interstitial atoms typically prefer to occupy octahedral interstices (hydrogen is a
known exception), we shall mainly consider this type of sites. The treatment to
calculate the maximum solubility of interstitial atoms is slightly different to the
treatment that was followed in the previous section to calculate vacancy concen-
tration. This is because these atoms will occupy interstitial positions without
displacing metal atoms which occupy normal lattice positions. To explain the
treatment, let us first consider an element A, which has a BCC crystal structure and
the presence of interstitial atoms, I, as shown in Fig. 2.8a. Possible octahedral
interstitial positions in the BCC lattice are shown by black dots. In general, the size
of the interstitial atoms is larger than the size of the interstitial site and further-
more, it cannot be smaller. So if any interstitial atom is present, the surrounding
lattice will be strained. This means that the enthalpy of the system will be
increased. If the increase in enthalpy resulting from the addition of one mole of
interstitial atoms is DhI, then the total enthalpy increment of the system is
expressed by

Dh ¼ XIDhI ð2:13Þ
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where XI ¼ nI
N0

is the mole fraction of the interstitial atoms present in the system

and nI is the total number of interstitial atoms. Again, there will be two different
types of contribution to entropy. The first contribution comes from the fact that
the vibration of atoms A next to the interstitial atoms will change from a normal
mode of vibration and will be more random and irregular because of the dis-
tortion of the lattice. If we consider that the change of the entropy due to the
change of vibration pattern is DSI for one mole of interstitial atoms, then for XI

mole of interstitial atoms the change in entropy will be XIDSI. Further, there will
also be an increase in entropy because of the mixing of the solvent and interstitial
atoms. Now, from the crystal structure, as shown in Fig. 2.8a for two solvent
atoms, there are six sites for interstitial atoms. Additionally, we can write that for
each A atom, there are three sites for interstitial atoms. So if we consider that
there are N0 numbers of A atoms, then there will be 3N0 numbers of sites
available for interstitial atoms. In another sense, we can say that nI atoms will
randomly occupy nI sites from 3N0 sites. Following statistical thermodynamics,
the entropy of mixing can be written as

DSmix ¼ S� S0 ¼ k ln w� k ln 1 ¼ k ln w ð2:14Þ

where w is roughly the measure of randomness, S0 is the entropy before mixing,
and S is the entropy after mixing. Since in the case of a pure element, there is only
one way by which atoms can be arranged, we can write w = 1. If we consider that
interstitial atoms will choose their sites completely randomly, then we can write

w ¼ 3N0!

nI! 3N0 � nIð Þ! ð2:15Þ

Fig. 2.8 Octahedral interstitial positions are shown by black dots in a BCC unit cell and b FCC
unit cell
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According to Stirling’s approximation,

ln N! ¼ N ln N � N

Following Stirling’s approximation, Eq. 2.15 can be derived as

DSmix ¼ k 3N0 ln 3N0 � nI ln nI � 3N0 � nIð Þ ln 3N0 � nIð Þ½ � ð2:16Þ

Furthermore, Eq. 2.16 can be written as

DSmix ¼ R 3 ln 3N0 �
nI

N0
ln nI �

3N0 � nI

N0
ln 3N0 � nIð Þ

� �

DSmix ¼ R 3 ln
3N0

3N0 � nI

� nI

N0
ln

nI

3N0 � nI

� � ð2:17Þ

Further, replacing XI ¼ nI=N0, Eq. 2.17 can be written as

DSmix ¼ R 3 ln
3

3� XI

� XI ln
XI

3� XI

� �
ð2:18Þ

So the total free entropy change can be written as

DS ¼ XIDSI þ R 3 ln
3

3� XI

� XI ln
XI

3� XI

� �
ð2:19Þ

Moreover, the total free energy of the system after the addition of interstitial
atoms can be written as

G ¼ GA þ DG ¼ GA þ DH � TDSI

G ¼ GA þ XIDHI � TXIDSI � RT 3 ln
3

3� XI

� XI ln
XI

3� XI

� � ð2:20Þ

As we have seen in the previous section that the equilibrium concentration of

interstitial atoms can be found from dG
dXI
¼ 0. Thus,

DHI � TDSI � RT � 3
3� XI

� XI

XI

� ln XI þ ln 3� XIð Þ � XI

3� XI

� �
¼ 0

DHI � TDSI þ RT ln
XI

3� XI

¼ 0

ð2:21Þ

Further, the activation energy for the interstitial atom additions can be written
as DgI ¼ DHI � TDSI. Since we have considered that the concentration of impu-
rities is much less, we can write 3� XI � 3. So Eq. 2.21 can be written as
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XI ¼ 3 exp �DgI

RT

� �
ð2:22Þ

Similarly, if we consider the FCC crystal, as shown in Fig. 2.8b, then the
number of octahedral sites available for interstitial atoms is four. Further, in an
FCC unit cell, the total number of atoms per unit cell is likewise four. So we can
say that for N0 solvent atoms, there will be N0 sites available for interstitial atoms.
As in the previous example, if we consider nI interstitial atoms which will occupy
randomly N0 sites, then we can show that

XI ¼ exp �DgI

RT

� �
ð2:23Þ

So in general, we can write that the equilibrium concentration of interstitial
impurities present is

XI ¼ B exp �DgI

RT

� �
ð2:24Þ

Here, factor B depends on the crystal structure.
Furthermore, Eq. 2.24 for any kind of crystal structures can be written as

XI ¼ X0
I exp �DhI

RT

� �
ð2:25Þ

where DHI is the activation enthalpy for interstitial impurities and X0
I is the pre-

exponential factor which is defined as

X�1 ¼ B exp
Ds

R

� �
: ð2:26Þ

In above examples, we have seen that a BCC crystal has a higher number of
octahedral sites than an FCC crystal. However, the size of these interstitial
sites in an FCC crystal is d = 0.414D (d is the interstitial void size and D is
the diameter of the solvent atom), whereas the corresponding size in a BCC
crystal is d = 0.155D. In general, the size of the interstitial atoms is greater
than the interstitial site size. So the addition of interstitial atoms always
creates a strain in the lattice. Since the size of the interstitial sites in an FCC
crystal is larger than that in a BCC crystal, the concentration of impurities
(except hydrogen) in an FCC crystal is typically higher than in a BCC
crystal. This is the reason why the carbon concentration in an a-iron (BCC
structure) is much less than in a c-iron (FCC structure).
Another important difference between BCC and FCC lattices in terms of
interstitial atoms is that in a BCC lattice, the occupation of the octahedral
lattice site (Fig. 2.8) leads to distortion (due to the asymmetry of the octa-
hedral site) and, consequently, to formation of a shear stress field around the
interstitial. This enables the screw component (see Sect. 2.5.2) of the
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dislocations (which possesses only the shear stress component) to interact
with the stress field created. As in iron, for instance, at low temperatures, the
majority of dislocations are of the screw type (or have the majority of the
screw component), and this leads to differences in the mechanical properties
of the BCC and FCC forms of iron.

2.5.2 Linear Defects

Dislocations, which are the most typical linear (or one-dimensional) defects, and
their ability to move define the ductility (plasticity) of metals and explain why the
strength of a metal crystal is far less than the theoretical strength calculated on the
basis of the bond strength between the metal atoms. During typical plastic defor-
mation, dislocations are formed by the Frank-Read source with the rate of *106/s.
Due to the force (stress), the dislocations glide along the close-packed crystal planes.
When the dislocation density of a material is increased, also the internal energy is
increased more than the entropy. Therefore, the dislocations are not stable and tend to
annihilate or escape from the crystal. The decrease in ductility and increase in
strength are related to the interactions between the dislocations as well as between
the dislocations and other obstacles to movement such as precipitations or grain
boundaries. At high homologous temperatures (T[0.45 Tm), dislocations can also
climb, which increases the degrees of freedom of movement, leading to lower
strength and higher ductility. In addition, many different types of crystals react at
increased rates at the points where dislocations intersect the surface.

Even though the plastic deformation occurring via dislocation movement is
qualitatively fully comprehended in macro- and microcrystalline materials, the
quantitative analyses still remain incomplete [5]. This is due to the difficulties in
averaging the interactions between dislocations and the other mechanisms con-
tributing to the plastic flow on the plastic flow on the nanoscale, such as grain
rotation, twinning, etc. [5]. It is also to be noted that, from an atomistic point of
view, the length of dislocation becomes increasingly important as the grain size of
the material approaches the nanoscale.

Although there are many different types of dislocations, they all can be con-
sidered as combinations of the two fundamental types (i.e., the edge dislocations
and screw dislocations shown in Fig. 2.9).

Summary of dislocations:

1. Dislocations are formed during deformation.
2. Dislocations glide due to a stress (force) along close-packed planes

running in a close-packed direction.
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3. As dislocation density increases, the internal energy of the material
increases more than its entropy. Therefore, dislocations are not stable and
try to annihilate.

4. Dislocations interact with each other, and thus, gliding becomes more
difficult. This, in turn, increases the strength of the material, yet the
ductility is decreased. Other obstacles, such as grain boundaries and
precipitates, have a similar effect.

5. At increased temperatures (T [ 0.45 Tm), dislocations can climb, which
increases the degrees of freedom for their movement. This causes
decrease in strength and increase in ductility.

2.5.3 Two-Dimensional Defects

The two-dimensional defects (i.e., planar defects, especially surfaces and inter-
faces) have a significant effect not only on the mechanical properties of materials
but also on their chemical reactivity. For example, the reaction rates during cor-
rosion are typically determined by the amount of exposed surface area. In addition,
these defects, such as grain boundaries between crystallites in a polycrystalline
alloy, provide lower activation energy short circuit paths for atomic diffusion and
impurities tend to segregate there. Since the surface and interfacial diffusion can be
orders of magnitude faster than that of bulk diffusion, see Fig. 10.2 in Chap. 10

Fig. 2.9 Edge dislocation and screw dislocation
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these short circuit paths may have significant technological impacts, for example,
in the electromigration reliability of electronic circuits, as can be seen from
Table 2.3. In addition, the two-dimensional defects interact with other defects,
such as dislocations, as discussed in Sect. 2.5.2.

It is also to be noted that these defects have their own energy, surface energy,
which quantifies the disruption of intermolecular bonds that occur when a surface
is created. The minimization of surface energy provides a driving force for many
important phenomena such as sintering, wetting, and grain coarsening. Other types
of planar defects are low- and high-angle grain boundaries, in which adjacent
grains can be distinguished depending on the misalignments of atomic planes, twin
boundaries, and antiphase boundaries.

2.5.4 Volume Defects

Volume defects (bulk defects, 3D defects) like precipitates, inclusions, cracks, voids,
and pores also have important effects on the mechanical, thermal, electronic, and
optical properties of solids. These defects are typically introduced into the material
during manufacturing and fabrication steps. Furthermore, these defects are capable
of increasing mechanical stress locally and are thus especially deleterious to the
mechanical reliability of the metal. However, in dispersion hardening, foreign par-
ticles or additional elements that form precipitates are added to strengthen the parent
material by forming obstacles to movement of dislocations facilitating plastic
deformation. The good high-temperature strength of many super-alloys is due to the
second-phase particles. Nonetheless, pores, cracks, and voids that act as stress
concentration sites are typically detrimental for mechanical strength.

2.6 Some Examples of Intermediate Phases
and Their Crystal Structure

There are numerous different kinds of ordered phases that are present with many
differing crystal structures varying from being relatively simple to extremely
complicated. There are basically two types that intermediate phases can form,

Table 2.3 Lattice, grain boundary, and surface interdiffusion coefficients of Cu, Al, and
(SnPb)eut at 100 �C [6]

Material Temp. ratio 373/Tm Diffusivities at 100 �C (m2/s)

Cu 0.275 Lattice Dl = 7 9 10-24

Grain Dgb = 3 9 10-11

Surface Ds = 10-8

Al 0.4 Dl = 1.5 9 10-15 Dgb = 6 9 10-7

(SnPb)eut 0.82 Dl = 2 9 10-5 to -6
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being interstitial and substitutional compounds. The precise type of phase that will
form depends on the relative atomic size, valency, and electronegativity as was
discussed earlier (Sect. 1.12). When one type of atom is much smaller than
another, then the smaller atoms are able to occupy the interstitial positions in the
crystal of the other atom. For example, different kinds of metal carbides are inter-
stitial intermetallic compounds. Some of the examples are shown in Fig. 2.10. When
atom sizes differ by a factor of 1.1–1.6, Laves phase might form (see Fig. 2.11). The
other type are substitutional compounds where one type of atom occupies one
particular sublattice and another type of atom occupies the other sublattice.

The main difference with these kinds of substitutional alloys and the case of
random alloys is that there is an equal probability for both atoms to occupy a par-
ticular position. A few different examples of these kinds of compounds are shown in
Fig. 2.10. Note that we have shown relatively simple examples which will be con-
sidered for discussion in forthcoming chapters. Some systems, for example, Cu3Au,
CuAu, and CuZn, transform to disordered phases at high temperature, because of the
dominating role of entropy compared to enthalpy in these systems.

Fig. 2.10 Crystal structure of substitutional ordered phases: a B2 (AB)-NiAl, CoAl, CuZn,
AuZn; b L12 (A3B)-Ni3Al, Ni3Ga, Ni3Ge; c L1o (AB) -CuAu, CoPt, FePt; d A15 (A3B)- Nb3Sn,
Nb3Ge, V3Si
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2.6.1 Defects in Intermediate Phases

The composition range of the intermediate phases in binary systems can vary from
a very narrow homogeneity range, as shown in Fig. 1.26, to a reasonably wide
homogeneity range, as shown in Fig. 1.27. There is no ordered phase present
which is a perfect line compound that is with stoichiometric composition without
any deviation. The deviation from stoichiometric composition is achieved by the
presence of constitutional defects in the structure. Mainly two types of defects are
found in these structures. One type is structural vacancies. Note that structural
vacancies found because of deviation from the stoichiometric composition are
different from the thermal vacancies which are always present at a specific tem-
perature with a certain equilibrium concentration. Another type of defect which is
typically found is an antisite (or an antistructure) defect that is created when an
atom occupies a position belonging to the other type of atom.

To clarify what has been stated above, let us consider one of the most studied
ordered structures, the B2 phase. Let us see the crystal structure a little differently, as
shown in Fig. 2.12a. The lattice positions can be divided into two types, the a- and b-
sublattices. If A atoms, in a binary A–B alloy, occupy the a-sublattice ([0,0,0]
positions), then the B atoms will occupy the b-sublattice ( 1

2;
1
2;

1
2½ � positions). It can be

seen that two simple cubes of the a-sublattice and the b-sublattice interpenetrate each
other forming the B2 structure. At stoichiometric composition and in a perfect
crystal, we expect this condition to occur. However, when composition deviates from
the stoichiometric composition, defects will be present in the structure and the
number of defects depends on the extent of deviation in the composition.

There can be two types of B2 intermediate phases. One type is in the A-rich side
where antisite defects are present, whereas in the B-rich side, triple defects are
present, as shown in Fig. 2.12. A triple defect is so named because it comprises a total

Fig. 2.11 C15 Laves phase
A2B type
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of three defects, namely two vacancies in the a-sublattice and one antisite defect in
the b-sublattice. It is important to keep in mind that the triple defects are not nec-
essary bounded defects, i.e. the vacancies and antisite do not necessary occupy
nearest neighboring positions. The triple defect disorder refers the total defect
concentrations when there are two vacancies for each antisite atom, see Sect. 2.6.3 for
more details. These kinds of defects are found, for example, in the B2 NiAl, CoAl,
NiGa, and CoGa phases. There is another kind of B2 phase, where in both sides of the
stoichiometry, only antisite defects are present, as shown in Fig. 2.12c. This kind of
defect is found in the B2 AuZn, CuZn, AgZn, and AgMg phases, for instance.

Fig. 2.12 Defect structure in B2 phases. a Perfect crystal. b Phases where on one side of the
stoichiometric composition, there is the presence of triple defects, whereas on the other side,
antisite defects are present. c Phases where on both sides of the stoichiometric compositions,
antisite defects are present
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However, it should be pointed out that a triple defect is not a common defect in
phases other than the B2 structure. Instead, simple vacancies are typically present.
Moreover, in most of the ordered phases in both sides of the stoichiometry, only
antistructure defects are present. We have seen earlier that at above 0 K, there will
always be some vacancies present (their number depending on the temperature)
due to the fact that they are thermodynamic equilibrium defects. Similarly, in
ordered phases, even at stoichiometric composition vacancies and antistructure,
defects will be present and the number of defects increases with increasing tem-
perature. However, calculation of point defects in ordered phases is not very
straightforward as shown next.

2.6.2 Crystal Structures and Point Defects in Ordered Binary
Intermetallics on an Example of Ni-, Ti-,
and Fe-Aluminides

The ordered Ni-, Ti-, and Fe-aluminides reveal different crystalline structures. The
most important are the following: B2 (NiAl and FeAl, see Fig. 2.10a), L12 (Ni3Al,
see Fig. 2.10b), L10 (TiAl, see Fig. 2.10c), D019 (Ti3Al, see Fig. 2.13a), and D03

(Fe3Al, see Fig. 2.13b). Here, the ideally ordered crystalline structures of Ni-, Ti-,
and Fe-aluminides are schematically presented, i.e., the structures at zero tem-
perature and at perfect stoichiometric compositions. As the temperature increases
and/or the composition deviates from stoichiometry, substitutional point defects
are inevitably generated. Four types of substitutional point defects can generally be
introduced in a two-atomic intermetallic compound AB, namely the vacancies on
both sublattices, VA and VB, and the atoms on the differing sublattices, AB and BA

(the antistructure or antisite atoms). One may differentiate between structural
(constitutional) and thermal point defects which could be created in an off-stoi-
chiometric intermetallic compound. In a strict definition, the structural defects are
those defects which remaining thermal equilibrium in the intermetallic compound
even at T = 0 in its maximally ordered state in order to accommodate the devi-
ation from the stoichiometric composition. The difference between the real con-
centration of defects at T 6¼ 0 and the concentration of the structural defects
presents the concentration of the thermal defects.

In a strict sense, nature does not ‘‘mark’’ the defects as constitutional or thermal
ones. Such subdivision is helpful only from an educational point of view in order
to refer to different sources of defects in a given compound. In such a definition,
the concentration of thermal defects can even be negative. The Al-rich phase NiAl
seems to present such an example. A further difference between the structural and
thermal defects stems from the fact that one type of structural point defects is
generally sufficient to accommodate the deviation from the stoichiometry, whereas
at least two types of thermal point defects have to be simultaneously created to
satisfy the mass-balance conditions (to preserve the given composition, i.e., the
given ratio between the constitutional elements).
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Moreover, the point defects have not to be uniformly distributed over the
different sublattices in an ordered intermetallic compound.

In Fig. 2.14, the concentrations of different defects in the intermetallic com-
pounds under consideration are compared at T = 0.75Tm. This temperature cor-
responds to T = 1,252 K for Ni3Al, 1,434 K for NiAl, 1,457 K for Ti3Al, 1,294 K
for TiAl, and 1,195 K for FeAl. Tm is the melting temperature of the stoichiometric
composition of the given compound. The defect concentrations on different
sublattices can be calculated according to the chemical reaction approach
described below. Since in an intermetallic compound, point defects are created in a
correlated manner in order to preserve the given composition, the concentration of
point defects depends on the formation energies of all four types of defect. The
literature data were here used for numerical estimates. It is important to note that
the formation entropy effects were neglected.

The chemical reaction approach is outlined below for the example of NiAl. The
vibrational energy contribution is neglected.

2.6.3 Calculation of Point Defect Formation Energies

The calculation of defect energies in pure metals is quite straightforward and was
presented in Sect. 2.5 in detail. In the case of intermetallic compounds, however,
the defect energies have to be calculated in a modified way. The energy difference
between a block of perfect unit cells and that containing a given defect yields the
values which may be called the ‘‘raw’’ formation energy of the defect. The ‘‘raw’’
values of single defects together with the cohesive energy per atom, e0, used in the
presented estimates, are listed in Table 2.4. The B2 NiAl phase is exemplified here
as a binary AB compound (A = Ni and B = Al). Since introduction of a single
defect generally violates the composition of the compound, these ‘‘raw’’ values by
themselves cannot represent the thermodynamical quantities. The effective for-
mation energies, which correspond to the Arrhenius approximations of the tem-
perature dependence of the defect concentrations, can be used with this aim.

Fig. 2.13 Lattice structures of Ti3Al a and Fe3Al b aluminides. The Ti and Al atoms are
represented by black and gray spheres. Fe has two sublattices indicated by FeI and FeII
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Fig. 2.14 Concentrations of vacancy and antistructure atoms on transition metal and aluminum
sublattices in NiAl, Ni3Al, TiAl, Ti3Al, and FeAl as a function of composition at T = 0.75 Tm

(Tm is the melting point of the compound)
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The equilibrium defect concentrations in an intermetallic compound can be cal-
culated using either canonical or grand canonical ensemble formalism. Of course,
both methods will give the same result, so the choice of approach is a matter of
convenience. Alternatively, the point defects can be treated as individual species and
different point defect reactions can be considered as chemical reactions in a multi-
component lattice gas [7]. This approach is sketched here and, of course, it gives the
same results as the previous two, yet in a slightly more elegant way.

Till the end of this section, we will use a special notation for the defect con-
centrations in view of a specific structure of an ordered compound. We will
introducing the occupation probabilities of a defect P on a given sublattice denoted
as YP instead of concentration variables, which are determined in mole fractions.
This approach simplifies significantly the analysis for ordered compounds.

The point defect concentrations are assumed to be small, so that the defect
interactions are neglected. Formally, each type P of point defects is described by a
chemical potential

lP ¼ eP þ kT ln YP ð2:27Þ

Here, eP is the ‘‘raw’’ formation energy of a single defect and YP is the occu-
pation probability of the defect P per unit site in its own sublattice. The commonly
used defect concentrations, XP, see Sect. 2.5, expressed as the site fractions of the
number of defects are related to YP by the obvious relation for the B2 structures:
2XP = YP.

The four unknown equilibrium point defect concentrations {YP} in a B2
compound, i.e., the vacancy concentrations on the two sublattices and the con-
centrations of the two types of antisite atoms, can be determined from the kinetic
equilibrium conditions with respect to the three point defect reactions, supple-
mented by the conservation law for a fixed alloy composition. The latter can be
written in the form

n 1� 2YVA
� 2YVB

ð Þ ¼ 1
4

YVB
� YVA

ð Þ þ 1
2

YAB
� YBA

ð Þ ð2:28Þ

where

n ¼ XA �
1
2

ð2:29Þ

is the deviation of the alloy composition (mole fraction of A, XA) from the ideal
stoichiometric composition (XA = 0.5). Neglecting the terms such as n2 in

Table 2.4 The ‘‘raw’’ formation energies of single point defects in NiAl where V is the vacancy,
the bottom subscript denotes the sublattice, and e0 is the cohesive energy of the alloy

eVNi eVAl eNi_Al eAl_Ni e0

‘‘Raw’’ formation energy, eV/atom 5.978 5.471 -0.920 3.457 -4.494
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Eq. 2.28 for small deviations from the stoichiometric composition and small
concentrations of the point defects, the above equation can be presented as

n ¼ 1
4

YVB
� YVA

ð Þ þ 1
2

YAB
� YBA

ð Þ ð2:30Þ

The choice of three point defect reaction is a matter of convenience and
depends on whether we deal with a triple-defect or antisite disorder compound. For
the NiAl alloy, for instance, a convenient set of reactions is

2VA þ AB þ AB$ 0 ð2:31Þ

AB þ BA $ 0 ð2:32Þ

2VB þ AB$ AB ð2:33Þ

Equation 2.31 represents the triple-defect equilibrium in the system. It simply
shows that a triple defect can be cancelled by adding a structural unit AB to the
system. Similarly, Eq. 2.32 represents an antisite equilibrium and shows that a pair
of antistructure atoms can be created or cancelled. Finally, Eq. 2.33 shows that, if
we initially have two B vacancies and add a structural unit NiAl, then Al will
cancel one of the vacancies, while Ni will turn the other vacancy into an NiAl-
antistructure atom.

The dynamic equilibrium in the above defect reactions, Eqs. 2.31–2.33, can be
reached by the equality of corresponding chemical potentials. The structural unit,
NiAl, will be presented by 2e0. This will give

etd þ kT ln Y2
VA

YAB
¼ 0 ð2:34Þ

eAB
þ eBA

þ kT ln YAB
YBA
¼ 0 ð2:35Þ

2eVB
� eAB

þ 2e0 þ kT ln
Y2

VB

YAB

� �
¼ 0 ð2:36Þ

Here, etd ¼ 2e0 þ 2eVA
þ eAB

is the so-called triple-defect energy.
Equations 2.30 and 2.34–2.36 could be solved numerically for the four defect

concentrations in dependence on the composition of the alloy. Then, the effective
activation energies can be estimated by linear fitting in the logarithm concentration
against the inverse temperature coordinates within the given temperature interval.
The analysis shows that the temperature dependence of the point defect concen-
trations can be adequately treated with a single formation energy. The specific
results for NiAl are given in Fig. 2.15.

Besides that, Eqs. 2.30 and 2.34–2.36 can be solved analytically in an
approximate manner by using the fact that in NiAl, YVA

and YAB
are much greater

than the other two concentrations. Then, Eq. 2.30 can be rewritten in the form
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n ¼ 1
2

YAB
� 1

4
YVA

ð2:37Þ

From Eq. 2.37, we have YVA
¼ 2YAB

for the stoichiometric composition, n = 0.
For the A-rich compositions n[0, the A antistructure atoms are the main defects
ðYVA

� YAB
Þ and Eq. 2.37 transforms into YAB

¼ 2n. On the other hand, for the
B-rich compositions n\ 0, the A vacancies are mainly formed ðYVA

ffi YAB
Þ and

Eq. 1.174 will be read as YVA
¼ �4n. These relations make it possible to solve

analytically the system of Eqs. 2.34–2.36 and to find the concentrations of all four
point defects under the given approximations. The analytical expressions for the
effective formation energies are given in Table 2.5. The comparison with Fig. 2.15
suggests that these results correspond well to the numerical data at the stoichi-
ometric composition and far from the stoichiometry.

The calculations suggest that the Ni vacancies and the Ni antistructure atoms
are the main defects in NiAl and the concentration of Al vacancies is by a few
orders of magnitude lower than the concentration of Ni vacancies in accordance
with the experimental observations.

A similar form of analytic solution can be used for other compounds, and
the results are presented in Fig. 2.14. Figure 2.14a–e demonstrate a few
important features of defect behavior. It is obvious that both the Ti-aluminides
(Fig. 2.14c, d) and Ni3Al (Fig. 2.14b) belong to the antistructure defect type of
intermetallic compounds, since antistructure atoms are predominantly generated
to accommodate the deviation from the stoichiometry. In contrast, NiAl reveals
a triple-defect type of point defect disorder and constitutional Ni vacancies exist
in NiAl on the Al-rich side, as in Fig. 2.14a. Moreover, the Ni vacancy con-
centration is very large also on the Ni-rich side, for example, XVA

	 10�4 at
T = 0.75Tm. In the other intermetallics under consideration, the vacancies are
also mainly concentrated on the transition metal sublattice and their concen-
tration amounts to about 10-6 to 10-5 at T = 0.75Tm. These are also the typical
vacancy concentrations in close-packed pure metals at the same reduced tem-
perature. The vacancy concentration on the Al sublattice is remarkably smaller,
especially in B2–FeAl, see Fig. 2.14e.

Fig. 2.15 Effective
formation energies Ef of the
point defects as function of
composition cNi
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B2–FeAl is neither a compound with a pure antisite disorder nor a compound
with a pure triple-defect disorder. FeAl demonstrates a hybrid behavior in which
the relation between the Fe vacancy concentration and that of the antistructure
atoms depends crucially on temperature.

The concentration of the Ti antistructure atoms in the Ti-aluminides is generally
larger than that of the Ni antistructure atoms in the Ni-aluminides of the same
composition, as in Fig. 2.14. This fact corresponds to a higher degree of thermal
disorder inherent in Ti-aluminides at similar reduced temperatures. These features
play a decisive role in the analysis of the respective self-diffusion behavior.

An important question now arises as to how the particular crystal structure of
the given intermetallic compound can affect the self-diffusion properties. It is
generally accepted that self-diffusion in close-packed structures occurs via nearest-
neighbor jumps of vacancies. Since random vacancy jumps between different
sublattices would generally produce disorder (and since there is a strong tendency
to accomplish the reverse), ordering jump after a given disordering jump, the
correlated jumps of vacancies will clearly play a decisive role in the long-range
diffusion process. These problems will be considered in Chap. 5.

2.7 Microstructure and Phase Structure

The structural details at different levels that create the microstructure of a
given material are shown in Fig. 2.16. On the other hand, microstructures can be
divided, based on the formation mechanism, into three major types namely solidi-
fication structures, solid-state transformation structures, and annealing structures.
Figure 2.17 shows, as an example, an eutectic solidification structure of AuSn-alloy
and the same material after annealing at 150 �C for 6,600 h. A profound discussion
on different types of microstructures can be found, for example, from the ASM
handbook, and therefore, it is not included here [1] (Fig. 2.16).

Table 2.5 Analytical expressions of the effective formation energies Qf
P of the point defects P,

P = VNi, VAl, NiAl, and AlNi (in eV/Atom) in NiAl in dependence on composition n = XNi–�

n\ 0 n = 0 n[ 0

Qf
VNi

0 etd=3 etd=2
0 0.683 1.024

Qf
VAl

2e0 þ eVAl þ eVNi 4e0 þ 3eVAl þ eVNi � eNiAlð Þ=3 e0 þ eVAl � 1
2 eNiAl

2.461 1.778 1.437

Qf
NiAl

etd etd=3 0
2.048 0.683 0

Qf
AlNi

eAlNi � 2e0 � 2eVNi �2e0 � 2eVNi þ 3eAlNi þ 2eNiAlð Þ=3 eAlNi þ eNiAl

0.489 1.854 2.537
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Fig. 2.16 Structural details
at different levels creating the
microstructure of a material

Fig. 2.17 a Eutectic solidification structure of Au80Sn20 (wt %) alloy and, b the same structure
after annealing at 150 �C for 6,600 h

114 2 Structure of Materials



Chapter 3
Fick’s Laws of Diffusion

In this chapter, Fick’s laws of diffusion are introduced. The second law is derived
using the first law and the mass conservation. Solutions for the second law con-
sidering a constant diffusion coefficient for different conditions are given. Few
examples are also introduced to show the estimation procedure.

3.1 Fick’s First and Second Laws of Diffusion

Adolf Fick [1] was the first man to propose the phenomenological relation for
diffusion. His reasoning being the following: when considering the flux of particles
(atoms, molecules, ions etc.) in a one-dimensional system caused by a concen-
tration gradient, the flux can be expressed as

J ¼ dm

dtA
¼ �D

oC

ox
ð3:1aÞ

where J (mol/m2 s) is the flux, dm (mol) is the change in the amount of matter in
small time dt (seconds), A (m2) is the area, D (m2/s) is the diffusion coefficient,
C (mol/m3) is the concentration of the particles, and x (m) is the position
parameter. The negative sign stems from the fact that diffusion occurs in the
direction opposite to the increasing concentration gradient.

It should be noted immediately that the Fick’s first law can be directly applied
only in a steady-state condition, as shown in Fig. 3.1, where the composition does
not change with time. In addition, there should not be any external driving forces
present other than the concentration gradient. Let us consider a square pipe of iron
and pass carburizing gas inside and decarburizing gas outside of the pipe. If the wall
is reasonably thin, a steady state might prevail in the system. Suppose further that
the concentrations at the inner and the outer surfaces are Ci and Co, respectively.
Then, the concentration gradient can be written as dC

dx ¼
Co�Ci
xo�xi

¼ � Ci�Co
xo�xi

¼ � Ci�Co
d .

Here, d is the wall thickness. The diffusion coefficient, D in this system, can be

A. Paul et al., Thermodynamics, Diffusion and the Kirkendall Effect in Solids,
DOI: 10.1007/978-3-319-07461-0_3, � Springer International Publishing Switzerland 2014
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estimated from what we know about the flux in the system. The flux can be esti-
mated from the transferred material per unit time, that is, dm

dt (mol/s) = Dm
Dt divided

by the area. If the pipe is cylindrical with an average radius of r and length of l, then
the concentration gradient is dC

dr and material transferred in mol/s through the area

A = 2prl is Dm
Dt . Therefore, we can write

J ¼ Dm

Dt 2prlð Þ ¼ �D
oC

or

Dm

Dt
¼ �D 2p lð Þ oC

o ln r

ð3:1bÞ

Fig. 3.1 Steady-state
diffusion and the composition
profile
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Note here that if a steady state prevails, then concentration profile, which is oC
ox

or oC
o ln r, will not change with time. However, under most experimental conditions,

the concentration at a particular position changes with time at any location. For
example, consider two blocks of alloys A–B with average concentrations of CB

1

and CB
2 which are coupled and annealed at an increased temperature. The change

in the concentration with the annealing time is shown in Fig. 3.2a. Similarly, we
can consider the diffusion of element B in a block of material A, as shown in
Fig. 3.2b. Any possible changes in the composition profiles with time are shown.
In this condition, Fick’s first law cannot be used to estimate the diffusion coeffi-
cient of the components because of the absence of a time parameter. What is
needed, therefore, is a relation which is able to explain the non-steady-state dif-
fusion process, that is, the change in concentration at a particular position with
increasing annealing time.

For this purpose, Fick’s second law is derived from the consideration of mass
conservation and Fick’s first law. For the sake of explanation, let us consider a
very thin slab Dx ¼ x2 � x1ð Þ in the diffused block of A from the example, as
shown in Fig. 3.2b. The flux of element B in this thin slab, as shown in Fig. 3.3.
The block with a unit cross-sectional area is the one under consideration. If the flux
coming in through the plane x1 is J1

B, then the total amount of element B coming
through this plane in a short time d t can be written as J1

Bd t. Similarly, the total
amount of material out through the plane x2 can be written as J2

Bd t. If we consider
J1

B [ J2
B, the increase in concentration of B in the small thickness of Dx can be

written as

Fig. 3.2 Change in non-steady-state composition profile with time (a) in a diffusion couple of C1
B

and C2
B (b) for diffusion of B in A
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dCB ¼
ðJ1

B � J2
BÞd t

Dx
ð3:2Þ

Furthermore, since only a very small thickness Dx is being considered, the
variation of flux in this region can be considered linear so that

oJB

ox
¼ J2

B � J1
B

Dx
¼ � J1

B � J2
B

Dx
ð3:3Þ

Using Eq. 3.2 in Eq. 3.3 and considering very small time, we can write

oCB

ot
¼ � oJB

ox
ð3:4Þ

Following Fick’s first law, shown above in Eqs. 3.1a, 3.4 can be written as

oCB

o t
¼ o

ox
DB

oCB

ox

� �
ð3:5aÞ

For a constant diffusion coefficient, we can write

oCB

o t
¼ DB

o2CB

ox2
ð3:5bÞ

Equation 3.5a is better known as Fick’s second law. One important point,
however, should be noted here that it is not possible to use Fick’s first law to
estimate the distribution of components over the whole interaction zone in a

Fig. 3.3 Change in flux with
distance in a very thin slab
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non-steady-state condition. Nevertheless, it can be applied at any particular point
since the flux is proportional to the concentration gradient at every location in a
profile developed by a diffusion-controlled process.

3.2 Solution of Fick’s Second Law to Estimate
the Diffusion Coefficient

In the majority of systems in practical applications, the diffusion coefficient is not
constant, but is rather a function of concentration. However, solving Fick’s second
law for such cases is not as straightforward as it may first appear. It is achieved
with the help of the Boltzmann parameter as explained in Chap. 6. However, in
some cases, the variation in the diffusion coefficient with composition is negligi-
ble. Moreover, an element will have a constant diffusion coefficient in a homo-
geneous material with constant concentration. Different solutions can be found for
different situations considering D as constant (as in Eq. 3.5b above). In the sec-
tions that follow, three such solutions are introduced and explained in greater
detail.

3.2.1 Solution for a Thin-Film Condition

The first case to consider is that where a very small amount of material B as thin
film is sandwiched between two rods of pure material A, as shown in Fig. 3.4. By
small, we mean that, after diffusion, B will become mixed in A as an impurity,
without significantly changing the concentration of A. If this system is annealed
for time t at a particular temperature of interest, then the concentration profile of
element B in A can be expressed as

CB xð Þ ¼ C0

t1=2
exp � x2

4DBt

� �
ð3:6Þ

where CB xð Þ is the concentration of material B at x, C0 is the constant, and DB is
the diffusion coefficient of component B. This relation is developed based on the
exponential decay in the composition profile that is found in practical examples, as
shown in the CB versus x plot. The correctness of the solution can be examined
after differentiating Eq. 3.6 with respect to t and x and then replacing them in
Eq. 3.5b. It can be seen that the distribution of element B is symmetrical to the
plane x = 0 and the positive side of the distribution is just a reflection of the
negative side. Additionally, the total amount of material B, MB, sandwiched
between A can be expressed as
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MB ¼
Zþ1

�1

CBdx ð3:7Þ

Thus, MB can be found by replacing Eq. 3.6 in Eq. 3.7 as

MB ¼
Zþ1

�1

C0

t1=2
exp � x2

4DB t

� �
dx ð3:8Þ

We consider k ¼ x
2
ffiffiffiffiffiffi
DBt
p so that dx ¼ 2

ffiffiffiffiffiffiffiffi
DBt
p� �

dk. Since C0 is a constant term,

we can write

MB ¼ 2C0
ffiffiffiffiffiffi
DB

p Zþ1

�1

exp �k2� �
dk ¼ 2C0

ffiffiffiffiffiffiffiffiffi
pDB

p
ð3:9Þ

Fig. 3.4 Material B is
sandwiched between blocks
of material A. The change in

CB, dCB
dx , and d2CB

dx2 with x is
shown after annealing for
time, t
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Since
Rþ1
�1

exp �k2� �
dk ¼

ffiffiffiffi
p
p

For a particular annealing time, t is constant and using Eq. 3.9 in Eq. 3.6, we
can write

CB xð Þ ¼ MB

2
ffiffiffiffiffiffiffiffiffiffiffi
pDBt
p exp � x2

4DB t

� �
ð3:10Þ

From the CB versus x plot, one can find dCB
dx versus x as shown in Fig. 3.4. Since

the constant diffusion coefficient is under consideration, dC
dx versus x reflects the

flux at different planes after a certain annealing time t that can be understood from
the Fick’s first law. It is apparent from the profile that there is no diffusion at
x = 0, þ1, and �1. The infinite distance represents the ends of the sample,
which are not affected by the diffusion of components. Moreover, the fact that the
flux is zero at x = 0 demonstrates that both positive and negative sides of the
system do not influence each other. In another sense, it seems as if the two

different parts are joined together at x = 0. Further, the d2C
dx2 versus x profile gives

an overall idea about the region where the system is losing the diffusing element

(i.e., where o2CB
ox2

� �
\0) and in which part it is gaining (i.e., where o2CB

ox2

� �
[ 0).

However, it should be noted that the region where the system is losing or gaining
flux changes with time, since the concentration profile changes with time, as
shown in Fig. 3.5.

As already mentioned, the system considered for the above discussion acts as if
two different parts are joined together. If material B is joined or deposited on the
surface of material A, as shown in Fig. 3.6, then Eq. 3.10 must be written as

Fig. 3.5 Change in
concentration with time in a
thin-film sandwiched couple
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CB ¼
MBffiffiffiffiffiffiffiffiffiffiffi
pDB t
p exp � x2

4DBt

� �
ð3:11Þ

Note here that the factor 2 from the denominator in Eq. 3.10 is removed since
the material diffuses in one direction only. Equation 3.11 can be written as

ln CB ¼ ln
MBffiffiffiffiffiffiffiffiffiffiffi
pDB t
p � x2

4DB t
ð3:12Þ

As shown in Fig. 3.6, the diffusion coefficient DB can be estimated from the

slope ¼ � 1
4DBt

� �
of the ln CB versus x2 plot.

3.2.1.1 Solution for a Semi-infinite Diffusion Couple (Error Function
Analysis)

When two blocks with different concentrations are joined and annealed at an
increased temperature for diffusion, this is called a diffusion couple. A diffusion
couple is one of the important techniques to study diffusion with an added
advantage that often it resembles the actual reaction layer structure in many
applications. The treatment to estimate the diffusion parameters is similar when a
piece of material is exposed to the gaseous medium, for example, as in carburi-
zation of steel having a situation as shown in Fig. 3.2b. With the change in time, the
penetration length and the concentration at a particular position will be changed. A
semi-infinite system is one where the ends of the couple are not affected by the

Fig. 3.6 Determination of
the diffusion coefficient is
shown from the slope of the
ln CB versus x2 plot
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diffusion of components. The relations developed here will be applicable only in a
semi-infinite diffusion couple case, which will be explained in greater detail. In
general, the lengths of the blocks are considered to be semi-infinite when the
following relation for the length is valid [ 10

ffiffiffiffiffi
Dt
p

. It can be immediately seen that
this length actually depends on the system under study. For our analysis, we first
consider a diffusion couple of pure A (CB ¼ 0) and an alloy of A–B (CB ¼ CþB ), as
shown in Fig. 3.7. The initial boundary conditions are

CB ¼ 0 at x\0 before annealing, that is, for time t ¼ 0 and
CB ¼ CþB at x [ 0 before annealing, that is, for time t ¼ 0.

The solution to this can be found with the help of the solution developed for the
thin-film condition. We assume that the block with the concentration CþB is built
from n numbers of very thin slices of thickness Dn. Now, we can see this problem
similar to the thin-film condition, given above in Eq. 3.10. In a particular thin slice
Dni, the total concentration of element B is MB ¼ CþB Dni. Therefore, this can be
written as

CB xð Þ ¼ CþB Dni

2
ffiffiffiffiffiffiffiffiffiffi
pDBt
p exp � x� nið Þ2

4DB t

" #
ð3:13Þ

Fig. 3.7 Concentration profile in a diffusion couple based on the consideration of many thin
slices
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Here, x is replaced by x� nið Þ, since the slice Dni is located at a distance ni

from the initial contact plane, x = 0. Similarly, we consider all other thin slices
and from the assumption that different slices do not affect each other, the con-
centration at any position x after superposition can be written as

CB xð Þ ¼ CþB
2
ffiffiffiffiffiffiffiffiffiffi
pDBt
p

Xn

i¼1

exp � x� nið Þ2

4DB t

" #
Dni ð3:14Þ

The first slice Dn1 is at the distance of n1 ¼ 0 and the nth slice Dnn is at the
distance of nn ¼ þ1 from the initial contact plane, x ¼ 0. The concentration at
any position x, following Eq. 3.14, can be written in the integral form as

CB xð Þ ¼ CþB
2
ffiffiffiffiffiffiffiffiffiffi
pDBt
p

Z1

0

exp � x� nð Þ2

4DB t

" #
dn ð3:15Þ

Let us consider

g ¼ x� n

2
ffiffiffiffiffiffiffiffi
DB t
p ð3:16Þ

Differentiating Eq. 3.16,

dg ¼ � dn

2
ffiffiffiffiffiffiffiffi
DB t
p ð3:17Þ

For n ¼ 0, g ¼ x
2
ffiffiffiffiffiffi
DBt
p , and for n ¼ 1, g ¼ �1. So Eq. 3.15 can be written as

CB xð Þ ¼ � CþBffiffiffi
p
p

Z�1

x= 2
ffiffiffiffiffiffi
DBt
pð Þ

exp �g2
� �

dg ¼ CþBffiffiffi
p
p

Zx= 2
ffiffiffiffiffiffi
DBt
pð Þ

�1

exp �g2
� �

dg ð3:18Þ

The value of the integral in Eq. 3.18 is not straightforward to estimate. So for
the sake of convenience, Eq. 3.18 is converted in terms of error function. The error
function of z, which is basically the value of the integral from 0 to z, expressed as

erf zð Þ ¼ 2ffiffiffi
p
p
Zz

0

exp �g2
� �

dg ð3:19Þ

In general, the values of erf(z) as a function of z is available in the literature and
the positive values of z are listed in Table 3.1. The variation is shown in Fig. 3.8
for both positive and negative values of z. From Eq. 3.18,
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CB xð Þ ¼ CþBffiffiffi
p
p

Z0

�1

exp �g2
� �

dgþ
Zx= 2
ffiffiffiffiffiffi
DBt
pð Þ

0

exp �g2
� �

dg

2
664

3
775

CB xð Þ ¼ CþBffiffiffi
p
p �

Z�1

0

exp �g2
� �

dgþ
Zx= 2
ffiffiffiffiffiffi
DBt
pð Þ

0

exp �g2
� �

dg

2
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3
775

CB xð Þ ¼ CþB
2
�erf �1ð Þ þ erf

x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �	 


ð3:20Þ

It can be seen from Fig. 3.8 that

erf �zð Þ ¼ �erf zð Þ; erf �1ð Þ ¼ �1 ð3:21Þ

Therefore, Eq. 3.20 can be written as

CB xð Þ ¼ CþB
2

1þ erf
x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �	 

ð3:22aÞ

CB xð Þ
CþB

¼ 1
2

1þ erf
x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �	 

ð3:22bÞ

It should be noted here that position x is the distance from x = 0. For the
negative side, the sign inside the bracket will be negative. Thus, it is mandatory to
find the location of x = 0 after measuring the concentration profile for the cal-

culation of the diffusion coefficient. For x = 0, CB xð Þ ¼ CþB
2 1þ 0½ � ¼ CþB

2 . There-

fore, the location of the initial contact plane is
CþB
2 that is exactly at the middle of

the concentration profile. This is to be expected, since we are considering here a
constant diffusion coefficient at all possible concentrations.

Fig. 3.8 Variation of
erf(z) with z
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When the concentration profile is opposite to that in Fig. 3.7, as shown in
Fig. 3.9, the concentration profile is expressed as

CB xð Þ ¼ C�B
2

1� erf
x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �	 

¼ C�B

2
erfc

x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �
ð3:23aÞ

CB xð Þ
C�B

¼ 1
2

1� erf
x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �	 

¼ 1

2
erfc

x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �
ð3:23bÞ

where erfc(z) is the error function complement.
So the only difference between Eqs. 3.22a and 3.23a is the negative sign inside

the brackets, which originates from the difference in the concentration profiles that
are considered in these systems. By denoting ‘‘-’’ and ‘‘+’’ in C�B and CþB ,
respectively, we define the concentrations of the left- and right-hand unaffected
side of the couple halves.

In the above examples, the concentration in one end member was considered to
be CB ¼ 0. Now, let us consider the diffusion couple of C�B and CþB , where the
concentration of element B is not zero. First, by considering that CþB [ C�B and the
profile shown in Fig. 3.10a and by following Eq. 3.22b, the relation can be written
as

CB xð Þ � C�B
CþB � C�B

¼ 1
2

1þ erf
x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �	 

ð3:24aÞ

Here, the concentration is normalized with respect to the concentration differ-
ence of the end members. Note that when C�B ¼ 0, Eq. 3.24a reduces to Eq. 3.22b.
Moreover, the sign of the x should be considered properly. The left-hand side of
the couple from x = 0 should have a negative sign.

After rearranging, Eq. 3.24a can be written as

Fig. 3.9 Composition profile
in a diffusion couple of CB ¼
C�B and CB ¼ 0
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CB xð Þ ¼ CþB þ C�B
2

þ CþB � C�B
2

erf
x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �
ð3:24bÞ

Similarly, if we consider that C�B [ CþB and the profile shown in Fig. 3.10b,
then Eq. 3.23b should be rewritten as

CB xð Þ � CþB
C�B � CþB

¼ 1
2

1� erf
x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �	 

ð3:25aÞ

Rearranging Eq. 3.25a, we can write

CB xð Þ ¼ C�B þ CþB
2

� C�B � CþB
2

erf
x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �
ð3:25bÞ

that coincides exactly with Eq. 3.24b. The specific way to represent the solution,
i.e., expressions (3.24a) or (3.25a), remains an arbitrary choice which may be
dictated by a demand of ‘‘elegancy’’ to have positive numbers in equations. This is
explained below.

Please note that the error function is antisymmetric just by definition, Eq. 3.21.
Thus, on the negative side from x = 0, i.e., at x \ 0, minus sign inside the bracket
in Eq. 3.25a changes to a plus sign with a positive argument of the error function.
Therefore, it should be noted from Eqs. 3.24a and 3.25a that any combination of
these equations can be considered if the signs inside the brackets are taken
properly. A positive sign might be used for the part of the concentration profile
where the concentration increases when we move toward the end of the couple
from the initial contact plane. A negative sign might be used for the part of the
concentration profile where the concentration decreases when we move toward the
end of the couple from the initial contact plane. Any choice is allowed and they are
equivalent as the direct comparison of Eqs. 3.24b and 3.25b reveals.

Fig. 3.10 Concentration profile in diffusion couples of C�B and CþB , where in a CþB [ C�B , and
b C�B [ CþB
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Note that here it is also necessary to find the location of the initial contact plane
(x = 0) for the calculation of the diffusion coefficient from the concentration
profile. For x = 0, Eq. 3.24b or 3.25b will reduce to

CB x ¼ 0ð Þ ¼ C�B þ CþB
2

ð3:26Þ

This suggests that the average concentration will indicate the location of the
initial contact plane.

Now, let us turn to consider the carburization of steel, where the carbon con-
centration of steel from the surface is increased by diffusion. In this process, steel
is kept in a gas mixture of CH4 and CO at the temperature of interest. Depending
on the ratio of the gases supplied, the carbon concentration at the surface is kept
constant by a constant supply of gases. Thus, with the increase in annealing time,
the concentration profile of the carbon changes, as shown in Fig. 3.11a. If we
consider that the initial carbon concentration of the steel is Co and the carbon
concentration at the surface is Cs, following Eq. 3.25a (since C diffuses from left
to right), the concentration of C, C(x), comparing Fig. 3.10b can be written as

C xð Þ � Co

CS � Co
¼ 1� erf

x

2
ffiffiffiffiffi
Dt
p

� �
ð3:27aÞ

Furthermore, Eq. 3.27a can be rearranged as

C xð Þ ¼ CS � CS � C0ð Þ erf
x

2
ffiffiffiffiffi
Dt
p

� �
ð3:27bÞ

Fig. 3.11 Change in concentration profile with annealing time during carburization of steel in
which a C diffuse from left to right, and b C diffuse from right to left
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Here, the main difference between Eqs. 3.25a and 3.27a is that the numerical
factor � is missing. The numerical factor is removed since here we have only one
side of the profile from x = 0 compared to the two sides in the previous diffusion
couple example. It is also important to note that if we consider that the carbon is
diffusing in the opposite direction, as shown in Fig. 3.11b, we shall find the same
relation as in Eq. 3.27a. In this case, as C is diffusing from right to left, Eq. 3.24a
should be written comparing Fig. 3.10a as

C xð Þ � Co

CS � Co
¼ 1þ erf � x

2
ffiffiffiffiffi
Dt
p

� �
¼ 1� erf

x

2
ffiffiffiffiffi
Dt
p

� �
¼ erfc

x

2
ffiffiffiffiffi
Dt
p

� �
ð3:28Þ

If we consider the carburization treatment of a material with no carbon present
before the carburization treatment, that is, Co ¼ 0, the above relation will reduce
to

C xð Þ ¼ CS 1� erf
x

2
ffiffiffiffiffi
Dt
p

� �	 

¼ CS erfc

x

2
ffiffiffiffiffi
Dt
p

� �
ð3:29Þ

When considering decarburization, as shown in Fig. 3.12 where the carbon
concentration at the surface Cs = 0 for the whole time, then from Eq. 3.28, the
relation for decarburization can be written

C xð Þ ¼ C0 erf
x

2
ffiffiffiffiffi
Dt
p

� �
ð3:30Þ

Fig. 3.12 Concentration
profile for a decarburization
treatment
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Yet another important relation can be obtained from the above discussion. Let
us consider the carburization experiment once again. We know that the diffusion
coefficient depends on temperature; it is considered to be D1 at T1 and D2 at T2.
Suppose we wish to know what is the time difference needed to achieve a par-
ticular concentration, let us say C xð Þ ¼ C1 at a particular distance, x1 at two

different temperatures. We can write C xð Þ�Co

CS�Co
¼ C1�Co

CS�Co
in Eq. 3.28 and

x2
1

D1t1
¼ x2

1

D2t2
ð3:31Þ

Next follows a discussion of the calculation of the diffusion coefficient in a
diffusion couple. Suppose that under consideration, we have a diffusion couple of
two different blocks with composition C�B ¼ C1

B and CþB ¼ C2
B such that C2

B [ C1
B.

Therefore, the concentration profile shown in Fig. 3.10a can be expected and it can
be expressed as

CB xð Þ ¼ C2
B þ C1

B

2

� �
þ C2

B � C1
B

2

� �
erf

x

2
ffiffiffiffiffi
Dt
p

� �
ð3:32Þ

If the system has a constant molar volume, Eq. 3.32 reduces to

NBðxÞ ¼
N2

B þ N1
B

2
þ N2

B � N1
B

2

� �
erf

x

2
ffiffiffiffiffi
Dt
p

� �
ð3:33Þ

since CB ¼ NB
Vm
¼ XB

Vm
, where NB is the atomic fraction, XB is the mole fraction of

element B, and Vm is the molar volume. Suppose these compositions are N1
B ¼ 0:3

and N2
B ¼ 0:7, as shown in Fig. 3.13. This couple is annealed for 25 h. A com-

position profile might built up such that the atomic fraction of B at the distance of
2.5 lm from x = 0 would be NB ¼ 0:6. Using the relation in Eq. 3.33, it is possible
to estimate the diffusion coefficient in this system. From the description above, we
know that NB ¼ 0:6, N1

B ¼ 0:3, N2
B ¼ 0:7, t ¼ 25 h ¼ 25� 60� 60 = 90,000 s,

and x ¼ 2:5 lm ¼ 2:5� 10�6 m. Substituting these values in Eq. 3.33, we get

erf
2:5� 10�6

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 90;000
p

� �
¼ 0:5 ð3:34Þ

From the values listed in Table 3.1, we see that there is no value exactly for
erf(z) = 0.5. We have the values erf(z) = 0.49375 for z = 0.47 and erf(z) = 0.50275
for z = 0.48. Since these values are very close, we can consider linear variation and
find the value of z for erf(z) = 0.5 following
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z� 0:47
0:48� 0:47

¼ 0:5� 0:49375
0:50275 � 0:49375

z ¼ 0:477

So we get

erf 0:477ð Þ � 0:5 ð3:35Þ

Comparing Eqs. 3.34 and 3.35, we can write

2:5� 10�6

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90;000� D
p ¼ 0:477

This gives the diffusion coefficient D ¼ 7:6� 10�17 m2=s.
Now, suppose that we are interested in annealing the couple at a higher temperature

where diffusion is faster and the diffusion coefficient is D ¼ 1:05� 10�16 m2=s. We
would like to find how much time it will take to develop a similar concentration
profile, i.e., NB = 0.6 at the position x = 2.5 lm. Since the compositions are the
same, we can use Eq. 3.31 for this calculation, where D1 ¼ 7:6� 10�17 m2=s,
t1 ¼ 25 h, x1 ¼ x2 ¼ 2:5 lm, and D2 ¼ 1:05� 10�16 m2=s. Thus, we find that the
system needs t2 ¼ D1t1

D2
¼ 18.1 h.

Fig. 3.13 Composition profile developed in a diffusion couple
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The relations used above are strictly applicable only in the case of semi-
infinite diffusion couples. This means that annealing time must be short
enough such that the end parts of the material are not affected by the dif-
fusion of components. We have stated previously that the length of each
block in a couple should be greater than 10

ffiffiffiffiffi
Dt
p

. However, in practice, even
if one atomic layer in the end is found to be unaffected, the couple can be
considered as semi-infinite. It must be apparent that the values for the length
of the blocks can be considered as semi-infinite depend on diffusion coef-
ficient, temperature, and desired annealing time. If the system is not semi-
infinite, the analysis will lead to an inaccurate results.

Let us consider a situation shown in Fig. 3.14. At time t = 0, that is, the time
before annealing, the concentration in the position ranges from -h to h is C ¼ Co.
Outside this range, the concentration is C ¼ 0. Therefore, this can be seen as a
block/film with the thickness of 2 h having concentration of Co sandwiched
between the materials with the concentration of zero. The initial profile at t = 0 is
indicated by the dotted line. The concentration profile, after time t = t, is indicated
by the solid curve. It should be noted here that this condition is different from the
condition discussed in Sect. 3.2.1, where the diffusing element from a very thin
layer mixes in the impurity level without significantly altering the concentration of
the bulk material into which the component is diffusing. In this example, we
consider a relatively thick film or block with a finite thickness such that the
diffusing components from this relatively thick film/block will change the overall
concentration of the material in between which this layer is sandwiched. In the

Fig. 3.14 Diffusion profile
developed from a thick film
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thin-film solution as shown Sect. 3.2.1, we considered the concentration of the
diffusing element only. In this example, however, we consider the concentration
profile of an alloy.

Following a procedure similar to that used to develop the error function anal-
ysis, the diffusion profile can be expressed as

CðxÞ ¼ 1
2

Co erf
h� x

2
ffiffiffiffiffi
Dt
p þ erf

hþ x

2
ffiffiffiffiffi
Dt
p

	 

ð3:36Þ

It can be seen that the diffusion profile has a reflection at x = 0. The book
written by J. Crank can be consulted for a more detailed treatment on this [2].

3.2.2 Solution for Homogenization (Separation of Variables)

Now, let us consider a system that ultimately reaches homogenization, meaning
that we must turn to consider relatively long annealing times. In any system, the
concentration varies with respect to two variables time t and position x. Hence, we
can write

C x; tð Þ ¼ XðxÞTðtÞ ð3:37Þ

Partial differentiation with respect to x and t gives

dC

dt
¼ X

dT

dt
ð3:38aÞ

d2C

dx2
¼ T

d2X

dx2
ð3:38bÞ

Replacing Eqs. 3.38a and 3.38b in Fick’s second law expressed in Eq. 3.5b, we
obtain

X
dT

dt
¼ DT

d2X

dx2
ð3:39aÞ

1
DT

dT

dt
¼ 1

X

d2X

dx2
ð3:39bÞ

From Eq. 3.39a, it can be observed that the relation is divided with respect to
t and x. Both sides should be equal to the same constant value. For the sake of
convenience, let us consider the constant as �k2. There is an advantage in con-
sidering the constant like this, which will become clearer to the reader during the
derivation that follows. We can write
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1
DT

dT

dt
¼ �k2

dT

T
¼ �k2Ddt

ð3:40Þ

By integration, it yields

ZT

To

dT

T
¼ �k2D

Z t

o

dt

ln
T

To
¼ �k2Dt

T tð Þ ¼ To exp �k2Dt
� �

;

ð3:41aÞ

where To is the value at time t = 0. This relation indicates the reason for con-
sidering the negative sign in the constant value. It shows that T decreases expo-
nentially with increasing annealing time. Additionally, we can write

1
X

d2X

dx2
¼ �k2

d2X

dx2
þ k2X ¼ 0

Integration gives

XðxÞ ¼ A0 sin kxþ B0 cos kxð Þ; ð3:41bÞ

where A0 and B0 are the constant.
Replacing T and X (from Eq. 3.41a) in Eq. 3.36, we get

Cðx; tÞ ¼ A0 sin kxþ B0 cos kxð ÞTo exp �k2Dt
� �

¼ A sin kxþ B cos kxð Þ exp �k2Dt
� �

where A ¼ A0To and B ¼ B0To

This solution is valid for any values of k. If there are different values of k, then
the solution will be the sum of all the values

Cðx; tÞ ¼
X1
m¼1

Am sin kmxþ Bm cos kmxð Þ exp �k2
mDt

� �
ð3:42Þ

The values of Am, Bm and km should be determined depending on the system
under investigation. We consider a thin sheet, with thickness h, where the con-
centration of the diffusing substance is kept uniformly before the start of the
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diffusion process. Further, the concentration at the surfaces of the sheet is always
kept at zero. Thus, the boundary conditions can be written as

C ¼ Co; for 0\x\h; at t ¼ 0

C ¼ 0; for x ¼ 0 and x ¼ h; at t [ 0

From the second boundary condition, C is zero at x = 0 at any time only if
Bm = 0. Moreover, C is zero at x = h at any time only if km = mp/h, where m is a
positive integer. Replacing these values in Eq. 3.42, we get

Cðx; tÞ ¼
X1
m¼1

Am sin
mp
h

x
� �

exp �m2p2

h2
Dt

� �
ð3:43Þ

From the first boundary condition for t = 0, we get

Co ¼
X1
m¼1

Am sin
mp
h

x
� �

ð3:44Þ

Now, we need to find the value of Am. We multiply both sides by sin np
h xdx and

integrate in the range of 0 to h.

Zh

o

Co sin
np
h

x
� �

dx ¼
X1
m¼1

Am

Zh

o

sin
np
h

x sin
mp
h

xdx

0
@

1
A ð3:45Þ

On the right-hand side, all integrals will be zero except for only one value
n = m. When n = m, the value of the integral is h/2. So we can write

Am ¼
2
h

Zh

o

Co sin
mp
h

x
� �

dx ð3:46Þ

Integration of this shows the value of 0 for even values of m and 4Co/mp for any
odd values of m. The summation of the integer values can be changed so that we
can use this relation for every integer, with the result that it will give odd m values
for every integer. This can be written as

Am ¼
4Co

mp
¼ Aj ¼

4C

2jþ 1ð Þp j ¼ 0; 1; 2. . .. . .. . .

So Eq. 3.43 can be written as

Cðx; tÞ ¼ 4Co

p

X1
j¼0

1
2jþ 1

sin
2jþ 1ð Þpx

h
exp � 2jþ 1ð Þ2p2

h2
Dt

 !
ð3:47Þ
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This solution is the summation of all the terms for j equal from zero to infinity.
However, it must be clear from the relation that the value for every successive
j decreases exponentially (note the negative sign inside the exponent). It should,
therefore, be possible to represent the concentration with the first few values of
j. Let us estimate the value for j = 0 and 1 after time t.

Cj¼0ðx; tÞ ¼
4Co

p
sin

px

h
exp � p2

h2
Dt

� �
for j ¼ 0:

Cj¼1ðx; tÞ ¼
4Co

p
1
3

sin
3px

h
exp � 9p2

h2
Dt

� �
for j ¼ 1:

Taking ratio of these two values, we get

Cj¼0ðx; tÞ
Cj¼1ðx; tÞ

¼ 3 exp
8p2

h2
Dt

� �

As explained earlier, this solution can be used where the thickness of the system
is relatively small so that it can reach homogeneity in a reasonable time frame.
This thickness again depends on the diffusion coefficient at that particular tem-
perature of interest. Let us consider h ¼ 4

ffiffiffiffiffi
Dt
p

, where the ratio given above is 419.
This means that if we neglect even the second term, the error is only 0.2 %. On the
other hand, if we have h ¼ 10

ffiffiffiffiffi
Dt
p

, the ratio is 6.6. If we neglect the second term,
an error of around 15 % is to be expected. Thus, the number of terms that should
be considered depends on the system and the temperature, since D varies differ-
ently in different systems at a particular temperature.

Note There is widespread confusion as to the usefulness or the applicability
of Fick’s fist law. Many even think that this law cannot be used in any
realistic situation. It should be noted here that there is no fundamental
problem in Fick’s first law. It is true that it cannot be used directly to study
the time-dependent mass distribution in a non-steady case. However, at one
particular composition after a fixed annealing time, Fick’s first law is still
applicable to relate the flux and the concentration gradient at any particular
concentration. This will be shown in Chap. 6 in which the relations for the
calculation of different diffusion parameters are developed.
It is also stated many times that the chemical potential gradient is the real
driving force for the diffusion process and not the concentration gradient. As
will be discussed in Chap. 4, it is correct that the chemical potential gradient
always indicates the direction of diffusing components correctly, since
components always diffuse down the chemical potential gradient. It is rather
common to find the diffusion of components also down the concentration
gradient in the majority of systems. However, there are also several exam-
ples of uphill diffusion (especially in multicomponent systems), where the
direction of the diffusing components is against the concentration gradient
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because of a favorable chemical potential gradient. In this case also, Fick’s
laws are applicable and the uphill diffusion is indicated by a negative sign in
the diffusion coefficient compared to a positive sign for the downhill diffu-
sion. For further clarification, see Chap. 9 on multicomponent diffusion
analysis.
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Chapter 4
Development of Interdiffusion Zone
in Different Systems

In this chapter, the microstructural evolution in the interdiffusion zone in a
diffusion couple is explained based on thermodynamics. A two-phase mixture
cannot develop in a binary system, whereas this is possible to find in a ternary
system. Condition for finding an uphill diffusion is explained.

As discussed in the previous chapter, when two different blocks are joined for
diffusion, it is called a diffusion couple. For example, two alloys of A-B binary
system are coupled, as shown in Fig. 4.1. The concentration (or composition) of
the left-hand side of the couple is CB

- (or NB
-) and the concentration (or compo-

sition) of the right-hand side of the couple is CB
+ (or NB

+). We consider CB
- \ CB

+

(or NB
- \ NB

+). In general (meaning not in uphill diffusion), as will be discussed
later in this chapter, A will diffuse from left to right and B will diffuse from right to
left. In uphill diffusion, the direction of diffusing component is just the opposite.
As the atoms interdiffuse with each other, the overall process is known as inter-
diffusion. The definition and details of the diffusion parameters are discussed at
greater length in Chaps. 5–8. In this chapter, the discussion is on the growth of the
phases in an interdiffusion zone in different systems.

4.1 Chemical Potential as the Driving Force for Diffusion
and Phase Layer Growth in an Interdiffusion Zone

In most practical examples, diffusion occurs under the presence of driving forces.
A chemical driving force that is the diffusion caused by differences in the chemical
potential or activity of the components is common to the majority of systems.
Additionally, a few other types of forces might influence the diffusion process. For
example, in the electronic industry, the flow of electrons also drives the diffusion
process because of the presence of current. The presence of driving forces makes
the jump rate of atoms higher in one particular direction. Let us consider the
isomorphous phase diagram that is presented in Fig. 4.2a. The free energy curve
of the solid solution phase at temperature, T, is shown in Fig. 4.2b. At any

A. Paul et al., Thermodynamics, Diffusion and the Kirkendall Effect in Solids,
DOI: 10.1007/978-3-319-07461-0_4, � Springer International Publishing Switzerland 2014

141

http://dx.doi.org/10.1007/978-3-319-07461-0_5
http://dx.doi.org/10.1007/978-3-319-07461-0_8


composition, let us say, XB
*, we can determine the chemical potentials of the

components by taking a slope and then extending it to XB = 0 and 1. Following
on from this, the activity of the components can be estimated from the relation
li - li

o = RT ln ai, where li
o is the chemical potential of component i at the

standard state (25 �C and 1 atmospheric pressure). As discussed in Chap. 1, we
know that the activity of component B, represented by the value aB, increases from
0 to 1 with an increase in composition from XB = 0 to 1. In an (almost) ideal
system, the activity coefficient cB is almost equal to 1 and aB & XB. The variation
of the chemical potential is also similar. For instance, the chemical potential of
B increases from a negligible value to lB with an increase in XB = 0 – 1. The
variation in the activity and chemical potential of A with an increase in XB is just
the opposite. Suppose, at temperature T, two alloys P (composition XB

P) and
R (composition XB

R) are coupled. P is a relatively A-rich alloy and R is a B-rich
alloy. The free energies of P and R are gP and gR. The compositions of the alloys
are such that the average composition considering the total amounts of P and R is
XB

Q, meaning that the couple has an average free energy of g0Q before mixing by
interdiffusion. However, it is higher than the free energy at equilibrium gQ when
they form an alloy after mixing. Since the blocks are coupled below the melting
point, the equilibrium composition can only be realized using a solid-state inter-
diffusion process. Therefore, the driving force comes from the drive to decrease
the free energy of the system. It can be seen in Fig. 4.2c that lA

P [ lA
R and lB

R [ lB
P.

These values will change to the chemical potentials of the components in the
homogenized alloy Q that is lA

Q and lB
Q. Therefore, the A-rich alloy should lose

A and add B. Conversely, the B-rich alloy should lose B and add A. This process
indicates that atom A should diffuse from P to R and atom B should diffuse from
R to P. The change in the concentration profile with increasing annealing time is
shown in Fig. 4.2d. After infinite time, the block will reach to a single equilibrium
composition of XB

Q. Here, infinite time is symbolic, which is basically the time
required for complete homogenization to occur. It will vary from system to system
depending on the diffusion coefficients at the temperature of interest and thickness
of the blocks.

Since atoms diffuse down the chemical potential gradient, the flux of element
A can be written based on a phenomenological point of view as

JAa
lR

A � lP
A

Dx
a� lP

A � lR
A

Dx

JA ¼ �LA
dlA

dx
;

ð4:1aÞ

Fig. 4.1 Interdiffusion of
components A and B in a
diffusion couple
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where the proportionality constant LA is called the phenomenological constant of
component A.

Similarly for component B, it can be written as

JBa
lP

B � lR
B

Dx
a� lR

B � lP
B

Dx

JB ¼ �LB
dlB

dx
;

ð4:1bÞ

where LB is the phenomenological constant for element B. These relations were
developed previously in Chap. 1 (Sect. 1.15).

Fig. 4.2 Interdiffusion in a complete solid solution is explained in a phase diagram, bg versus
composition diagram, c chemical potentials of components, and d the diffusion couple and
composition profiles
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In terms of the concentration gradient, we can write

JAa
CR

A � CP
A

Dx
a� CP

A � CR
A

Dx

JA ¼ �DA
dCA

dx

ð4:1cÞ

Similarly, we can write

JBa
CP

B � CR
B

Dx
a� CR

B � CP
B

Dx

JB ¼ �DB
dCB

dx

ð4:1dÞ

DA and DB are the intrinsic diffusion coefficients, i.e., the diffusion coefficients of
the components A and B.

Therefore, it can be seen in this system that the components diffuse down the
chemical potential and concentration gradient. This is indeed the case for most
systems. However, in uphill diffusion, it is different—as will be explained at the
end of this section. Since composition changes with time at one particular location,
driving force and flux of components also change accordingly. It is a fact that the
diffusion coefficient depends on a few other factors such as crystal structure and
defects, which will be covered in the next few chapters. For now, we consider a
hypothetical phase diagram, the one shown in Fig. 4.3a. A diffusion couple is
made of the pure components A and B, at temperature T, as presented in Fig. 4.3a.
At this temperature of interest, there are three regions between A and B: the
phase mixture of A and b, the single-phase b, and the phase mixture of b and
B. Following the Gibbs phase rule, F = C – P + 2, where F is the degrees of
freedom, C is the number of the components, and P is the number of the phases. As
the experiments are conducted at constant temperature and pressure, this relation
can be written as F = C – P. In a binary system (C = 2), it becomes F + P = 2.
Therefore, in binary diffusion couple, the total number of phases and the degrees of
freedom can be two. Since composition is one of the degrees of freedom already
present, only one phase can be present in the interdiffusion zone. This further
indicates that at any position to the diffusion direction, a phase mixture cannot
grow in a binary system. Therefore, only the b phase will grow in the interdiffusion
zone. We can observe from Figs. 4.3b and c that at the interface I, A and b are in
equilibrium, and at the interface II, b and B are in equilibrium. Although local
equilibrium exists at these interfaces, the diffusion of the components will occur
since there is a difference in the chemical potential of the components between
interfaces I and II. We witness a continuous change in the chemical potential
across the interdiffusion zone. For example, it changes from lA

I to lA
II for the

element A. In fact, this is true in any interdiffusion zone, where there will be a
continuous variation in chemical potential during the entire interdiffusion process.
In this particular case, since the phase has a very narrow homogeneity range, the
chemical potential changes very sharply.
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From the above discussion, it must be clear that if we couple the alloys P and Q,
as shown in Fig. 4.3a, there will be no interdiffusion because there is no difference
in the chemical potential of the components even though a composition difference
exists. This indicates that the composition or concentration differences between the
couples do not explain the interdiffusion of the components. It is necessary to
examine the interdiffusion process based on the difference in the chemical
potentials. What we are actually saying is that there will be no interdiffusion
between the alloys P and Q. Self-diffusion of the components in the respective
alloys still can occur. All these are covered to in greater detail in the next chapter
as a part of the discussion on the atomic mechanism of diffusion. Even the size of
the phases increases in the alloys to minimize the interfacial energy since these are
two-phase mixtures.

Let us consider another phase diagram, as shown in Fig. 4.4a. At the temper-
ature of our interest T, we have a solid solution a, an intermetallic compound b,
and a solid solution c. The free energy diagram is shown in Fig. 4.4b and the

Fig. 4.3 Growth of a phase with narrow composition range is explained in a the hypothetical
phase diagram, b free energy versus composition diagram, c the variation of the chemical
potential of components, and d the interdiffusion zone and composition profile
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change in the chemical potential of element B is shown in Fig. 4.4c. Following the
explanations above, it can be understood that the a, b, and c phases will grow in
the interdiffusion zone and the likely composition profile is shown in Fig. 4.4d.
It can be seen that the two-phase mixture, where the chemical potentials of the
components are constant, will not develop in the interdiffusion zone. Therefore, as
expected, the continuous change in the chemical potential is present in the inter-
diffusion zone.

Now we turn to consider a phase diagram, shown in Fig. 4.5a, which has a
complete solid solution in the high temperature range and a miscibility gap in the
low temperature range. Therefore, when A and B are coupled in these temperature
ranges, different composition profiles will develop in the interdiffusion zone. As
shown in Fig. 4.5b, interdiffusion zone will show continuous change in the
composition profile at T1, whereas at T2, it will exhibit a composition jump.

The whole diffusion process is completely different, if we couple two alloys
P and Q inside the miscibility gap, as presented in Fig. 4.6a. The process is
explained with respect to the chemical potential of the components, as can be

Fig. 4.4 Interdiffusion in a system where the solid solution phases are present along with an
intermetallic compound with a wide homogeneity range is explained. a Hypothetical phase
diagram, bg versus XB diagram, c the change in chemical potential with composition, and d the
diffusion couple and composition profile
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Fig. 4.5 Interdiffusion at
two different temperatures is
explained in a system where
there is a miscibility gap at
the lower temperature.
a Hypothetical phase
diagram, b composition
profile at higher temperature,
where it has a complete solid
solution, and c composition
profile at lower temperature,
where it has a miscibility gap
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observed in Fig. 4.6b. The alloy P is relatively A-rich and the alloy Q is B-rich.
However, it can be seen that in Fig. 4.6b, lA

P \lA
Q and lB

Q \ lB
P. Therefore, ele-

ment A will diffuse from the A-lean alloy Q to the A-rich alloy P, whereas B will
diffuse from the B-lean alloy P to the B-rich alloy Q.

With respect to the chemical potential gradient, the flux of the atoms can be
expressed as

JAa
lP

A � lQ
A

Dx
a� lQ

A � lP
A

Dx

JA ¼ �LA
dlA

dx
;

ð4:2aÞ

Fig. 4.6 Interdiffusion in a
diffusion couple of two alloys
inside the miscibility gap is
explained in a a hypothetical
phase diagram, b g versus XB

diagram, and c the direction
of the diffusing components
in a diffusion couple
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Similarly,

JBa
lQ

B � lP
B

Dx
a� lP

B � lQ
B

Dx

JB ¼ �LB
dlB

dx
;

ð4:2bÞ

In terms of concentration gradient, we can write

JAa
CP

A � CQ
A

Dx

JA ¼ DA
dCA

dx
:

ð4:2cÞ

Similarly,

JB ¼ DB
CQ

B � CP
B

Dx
¼ DB

dCB

dx
: ð4:2dÞ

Therefore, the minus sign of Fick’s first law is not there in the relations
expressed in Eqs. 4.2c and 4.2d. This would suggest that the components diffuse
up the concentration gradient rather than down the concentration gradient and, for
this simple reason, it is called uphill diffusion. It should be noted here that the
relations for the calculation of the diffusion coefficients from the composition
profiles are derived considering the minus sign in Fick’s first law. The same
relations can be used to determine the diffusion coefficients even if the system goes
through uphill diffusion. Nonetheless, the diffusion coefficient will have a negative
sign.

4.2 Few Practical Examples

In this section, we shall provide a few examples that are based upon real working
systems. From Fig. 4.7a [1], it can be seen that in the high temperature range, the
Au–Cu system has a complete solid solution. Thus, after coupling Au and Cu at
850 �C for 9 h [1], a continuous change in the composition is to be found, as
depicted in Fig. 4.7b. It needs to be pointed out here that, below 410 �C, a con-
tinuous change in the composition profile will not develop because of the presence
of the intermediate phases, as was discussed above based on the hypothetical
diffusion couples in Figs. 4.3 and 4.4.

It can be seen in the Au–Sb phase diagram in Fig. 4.8a [2], that below 633 K,
there is only one compound AuSb2 that is present. The solubility of Sb in Au is
very low and the solubility of Au in Sb is negligible. In the diffusion couple of Au
and Sb at 607 K (330 �C) annealed for 225 h, it is mainly the AuSb2 phase that is
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noted to have grown [3]. Both the solid solubility phases do not grow with any
reasonable thickness.

Next we consider the diffusion couple in a Co–W system [4]. At 1,200 �C, the
three phases, the Co(W) solid solution, Co7W6, and the W(Co) solid solution, are
expected to grow according to the phase diagram presented in Fig. 4.9a [5, 6].
It can be seen from the micrograph in Fig. 4.9b and the composition profile in
Fig. 4.9c that mainly the Co(W) solid solution, denoted as Co(ss), and the Co7W6

phase grows with reasonable thickness in the interdiffusion zone [6]. We should
also note here that thermodynamics explains the existence of the phases; however,
the growth of the phase layer with reasonable thickness depends on the kinetics
that is the interdiffusion rate. The W(Co) solid solution must be present as a very
thin layer because of its very low interdiffusion rate.

Fig. 4.7 a Au–Cu phase diagram. b The composition profile developed at 850 �C in the Au–Cu
system [1]

Fig. 4.8 a Au–Sb phase diagram [2]. b Growth of the AuSb2 phase in the Au–Sb diffusion
couple annealed for 225 h at 330 �C [3]
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Fig. 4.9 a Co–W phase diagram [4], b diffusion couple of Co/W annealed at 1,200 �C for 25 h
[6], and c the measured composition profile [6]
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Next, we consider the Ag–Zn system [7] that is presented in Fig. 4.10a. From
this figure, it can be seen that the Ag(Zn) solid solution has a much wider
homogeneity range compared to the Zn(Ag) solid solution. Moreover, the three
intermediate phases, b-AgZn, c-Ag5Zn8 and e-AgZn3 are present. In the Ag/Zn
diffusion couple that was annealed at 370 �C for 5 h, all three intermediate phases
grow, as shown in Fig. 4.10b [8]. Although Ag(Zn) has a very wide composition
range in the phase diagram, it does not develop because of slow kinetics. The
presence of a relatively thin Zn(Ag) solid solution is evident from the composition
profile, which can be seen from Fig. 4.10c. ThO2 particles were used to detect the
position of the Kirkendall marker planes K1 and K2, which will be discussed in
greater depth later in Chaps. 6 and 7.

We consider an incremental diffusion couple in the Ni–Al system [9]. By
incremental diffusion couple, we mean that the end-member compositions are not
made from pure components. Two alloys Ni0.65Al0.35 and Ni0.845Al0.155, as rep-
resented by dots in Fig. 4.11a used in a diffusion couple annealed at 1,000 �C for
24 h [10]. The Ni0.65Al0.35 alloy has two phases, b-NiAl and c0-Ni3Al. The
Ni0.845Al0.155 alloy consists of c0-Ni3Al and c-Ni(Al). Since the two-phase regions
cannot grow, only the c0-Ni3Al grows in the interdiffusion zone. This is the reason
that we find a jump in the composition profile on either side of the product phase.

As we have discussed till now, all the phases present in the phase diagram
should grow simultaneously in the interdiffusion zone. This is generally true when
speaking about bulk diffusion couples. On the other hand, the sequential growth of
the phase layers is very common during the growth of the phases in thin-film
conditions [11], something that will be discussed later on in Chap. 11. Now we
shall show a few examples on the growth of silicides in bulk diffusion couples. For
example, we consider first Nb–Si system [12]. Figure 4.12a shows that the two
silicides, NbSi2 and Nb5Si3, are present at 1,250 �C, the temperature of interdif-
fusion [13]. These two phases are indeed found in the interdiffusion zone, as
shown in Fig. 4.12b. The growth rate of the Nb5Si3 phase is lower than that of the
NbSi2 phase, so we find it only as a thin layer.

Next we move on to consider the W–Si system [14], in which two phases, WSi2
and W5Si3, are present, as shown in Fig. 4.13a. It can be seen that the interdif-
fusion zone in Fig. 4.13b contains mainly the WSi2 phase [15]. This W5Si3 phase
is actually present (not visible in the micrograph), however, with the thickness of
less than a micron, indicating that the W5Si3 phase has a much lower growth rate
compared to the WSi2 phase. As shown in Fig. 4.13c, after removing Si from one
side of the couple, an incremental diffusion couple of W/WSi2 was prepared and
annealed at a higher temperature of 1,350 �C in order to achieve a higher growth
rate in which the W5Si3 phase can be very clearly seen.

In the V–Si system [16], as the phase diagram in Fig. 4.14a shows, four phases
should grow in the interdiffusion zone at 1,200 �C [17]. It can, however, be seen in
Fig. 4.14b that only two phases, V5Si3 and VSi2, grow with reasonable thickness
and the V3Si phase grows only as a thin layer. The presence of the V6Si5 phase is
not clearly visible in this microstructure; however, under a higher magnification
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micrograph, the presence of this phase is very clearly seen, as Fig. 4.14c
demonstrates.

Similarly, in the Ta–Si system four phases are present, as shown in Fig. 4.15a
[18]. However, in the interdiffusion zone, only two phases, TaSi2 and Ta5Si3, were
detected in the scanning electron microscope image that is reproduced in

(a)

(b)

(c)

Fig. 4.10 a Ag–Zn phase
diagram [7], b diffusion
couple of Ag/Zn annealed
at 370 �C for 5 h [8], and
c the measured composition
profile [8]
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Fig. 4.15b [19]. The Ta5Si3 phase was grown as a very thin layer. When Si was
removed from one side of the diffusion couple to study the growth of the Ta5Si3
phase, as shown in Fig. 4.15c, another phase, Ta2Si, was found at the interface,
suggesting that the other phase, the Ta3Si phase, must have an even lower growth
rate that makes the presence of this phase difficult to detect under a scanning
electron microscope.

In the Mo–Si system that is shown in Fig. 4.16a [20], three phases, Mo3Si,
Mo5Si3, and MoSi2, are present. In the interdiffusion zone [21], as Fig. 4.16b
demonstrates, there were two phases, Mo5Si3 and MoSi2, detected in the

Fig. 4.11 a Ni–Al phase
diagram is shown [9]. Dots
indicate the compositions of
end members of the
incremental diffusion couple.
b the diffusion couple
annealed at 1,000 �C for
24 h, and c the measured
composition profile [10]
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Fig. 4.12 a Nb–Si phase diagram [12] and b the interdiffusion zone developed in between the
diffusion couple of Nb/Si annealed at 1,250 �C for 24 h [13]

Fig. 4.13 a W–Si phase diagram [14], b the interdiffusion zone of the W/Si diffusion couple
annealed at 1,225 �C for 9 h, and c the interdiffusion zone of the incremental diffusion couple W/
WSi2 annealed at 1,350 �C for 16 h [15]
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interdiffusion zone. The transmission electron microscope image [22] shows the
presence of the Mo3Si phase, which was not possible to detect under the scanning
electron microscope. This would strongly suggest that the growth rate of the Mo3Si
phase is much lower compared to the other phases. In fact, in the Ti/Al diffusion
couple, only the TiAl3 phase was found in the interdiffusion zone [23]. All the
other phases present in the phase diagram, the TiAl2, TiAl, and Ti3Al phases, were
not to be found. These three phases appeared in an incremental couple of TiAl3/Ti,
which is suggestive of a much lower growth rate compared to that of TiAl3 in the
Ti/Al diffusion couple.

Sometimes, changing annealing temperature or time plays an important role on
finding the phases differently in the interdiffusion zone. In the Co–Ta system, as
presented in Fig. 4.17 [24], we found that only the Co2Ta phase grows in the
interdiffusion zone at 1,050 �C. However, when the couple is annealed at
1,150 �C, the other two phases, CoTa2 and CoTa, which were not visible (but must
be present as very thin layer) at 1,050 �C, were found to form. This indicates that
the growth rate of these two phases increased at 1,150 �C making it possible to

Fig. 4.14 a V–Si phase diagram [16], b interdiffusion zone of the V/Si diffusion couple annealed
at 1,200 �C for16 h, and c V-rich phases of the same diffusion couple [17]
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find them along with the Co2Ta phase. In the Pd-Sn phase diagram [25], eight
intermetallic compounds are present. When the Pd/Sn diffusion couple was
annealed at 175 �C for 9 h, only the PdSn4 phase layer was found with higher
thickness, as Fig. 4.18a makes clear of its presence [26]. However, upon closer
examination—at the PdSn4/Pd interface as the location is marked by (b) in
Fig. 4.18a and shown in Fig. 4.18b—another two phases, PdSn3 and PdSn2, were
detected. Similar behavior was noticed at 150 �C for the same annealing time of
9 h at 150 �C. However, when the couple was annealed for a longer period of
36 h, the other two phases were also to be found with higher thickness, as shown in
Fig. 4.18c. All these further indicate that the growth rate of the other missing
phases must be even lower.

Therefore, as expected, all the phases might grow simultaneously especially in
bulk diffusion couples. Yet all the phases might not grow with a reasonable
thickness to be detectable by the scanning electron microscope. A much higher
resolution image from a transmission electron microscope might show the

Fig. 4.15 a Ta–Si phase diagram [18], b interdiffusion zone of the Ta/Si diffusion couple
annealed at 1,250 �C for 9 h, and c incremental diffusion couple of Ta/TaSi2 annealed at
1,350 �C for 9 h [19]
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Fig. 4.16 a Mo–Si phase diagram [20], b interdiffusion zone of the Mo/Si diffusion couple
annealed at 1,300 �C for 16 h [21], and c interdiffusion zone of the Mo/MoSi2 couple showing the
presence of the Mo3Si phase [22]

Fig. 4.17 Interdiffusion zone of the Ta/Co diffusion couple annealed at a 1,050 �C for 16 h and
b 1,150 �C for 16 h [24]
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presence of these phase layers as very thin layers. However, it might not be always
true. In the Cu–Sn diffusion couple [27], it is suspected that the Cu3Sn phase does
not grow in the beginning along with the Cu6Sn5 phase. As will be discussed much
later in Chap. 11, sequential growth is rather commonplace in thin-film conditions.

Sometimes, the phases developed in the interdiffusion zone suggest that the
problem lies in the phase diagram. As the Ti–Si phase diagram in Fig. 4.19a
shows, the Ti3Si phase does not exist at above 1,170 �C [28]. However, when the
experiment was conducted at 1,200 �C, this phase was found along with the other
phases as shown in Fig. 4.19b. The same was to be found at 1,225 �C; however, it
was not found at 1,250 �C, as shown in Fig. 4.19c and d, hinting strongly that this
phase exists up to the temperature somewhere between the temperatures
1,225–1,250 �C [29]. Similarly, the diffusion couple experiments were used to
detect problems in a few other phase diagrams [10, 24, 30].

In a ternary system, unlike in a binary system, a phase mixture can evolve in the
interdiffusion zone. This could be understood with the help of the Gibbs phase
rule, F = C – P + 2. Again, since the experiments are conducted at constant

Fig. 4.18 a Interdiffusion zone of the Pd/Sn diffusion couple annealed at 175 �C for 9 h, b Pd-
rich phases in the same diffusion couple, and c interdiffusion zone of the Pd/Sn diffusion couple
annealed at 150 �C for 36 h [26]

4.2 Few Practical Examples 159

http://dx.doi.org/10.1007/978-3-319-07461-0_11


temperature and pressure, this relation can be written as F = C – P. In a ternary
system (C = 3), it becomes F = 3 - P. Therefore, in the ternary diffusion couple,
the total of number of phases and the degrees of freedom can be three. Since the
composition is one of the degrees of freedom, a mixture of the two phases could
develop in the interdiffusion zone. It can, for instance, be seen in the Au(20Cu)/Sn
diffusion couple presented in Fig. 4.20a [31] that two layers with phase mixtures
have developed: one layer with (Au,Cu)Sn4 and (Au,Cu)Sn and another layer with
(Au,Cu)Sn2 and (Au,Cu)Sn. This does not necessarily mean that layers always will
grow with the phase mixture in a ternary system, as found in the Co(50Ni)/Mo
diffusion couple, which can be seen in Fig. 4.20b. This will be discussed further in
Chap. 9 (Sect. 9.5).

4.3 Making Products by a Diffusion Process

The study of diffusion is important to gain a full understanding on many physical
and mechanical properties of materials. Most of the phase transformations in the
solid state occur by some kind of a diffusion-controlled process. It is a common
assumption that the study of diffusion is important in order to generate data for
further understanding of the related processes. However, there are many products

Fig. 4.19 a Ti–Si phase diagram [28], b Ti/Si couple annealed at 1,200 �C for 16 h, and c and
d Ti-rich phases in the interdiffusion zone annealed at 1,225 and 1,250 �C annealed for 16 h [29],
respectively
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on the marketplace that are actually produced by harnessing the diffusion process.
Time and time again, the diffusion-controlled growth of the phase layers at the
interface determines the overall performance of the structures. In this section, a
few technologically important systems are discussed briefly to give an idea of how
diffusion can work in practice.

Take, for instance, the turbine blades used in land- and air-based gas turbines.
These are required to maintain their high strength at the highest possible tem-
peratures while working in extreme harsh environmental conditions. One single
material cannot possess the required mechanical properties along with superior
oxidation and corrosion resistance. Superalloys are considered at present as the
suitable materials for these demanding applications because of their ability to
retain high mechanical strength at very high temperatures. Regrettably, these
superalloys do not have enough oxidation resistance. Furthermore, there is a
demand to increase the operating temperature for higher efficiency and low
emission of unwanted gases. Therefore, two different layers of coatings are used
on the superalloy, b Ni(Pt)Al or MCrAlY (M = Ni, Co, Fe) as a bond coat and
yittria-stabilized zirconia (YSZ) as a thermal barrier top coat. A cross section of the
turbine blade is shown in Fig. 4.21a [32]. The material b Ni(Pt)Al is called the
diffusion coating, since it is produced by harnessing a diffusion process. First, Pt is
electroplated on the superalloy, and following this, Al is deposited by pack
cementation process as gas phase at an elevated temperature. After reaction dif-
fusion, a layer of b Ni(Pt)Al forms on the surface. Finally, YSZ is deposited on top
of it. During deposition and service, an Al2O3 layer forms between the bond and
top coat that protects the superalloy from oxidation because of very low diffusion
rate of oxygen. Moreover, an interdiffusion zone is formed between the superalloy
and the bond coat because of composition difference, as shown in Fig. 4.21b [33].
A high concentration of brittle topological closely packed compounds grows in
this interdiffusion zone and could be a potential source of failure. The loss of Al in
this interdiffusion zone from the bond coat is unwanted since a continuous supply
is required for the self-healing that is the continuous growth of the Al2O3 layer on

Fig. 4.20 a Interdiffusion zone of an Au(20Cu)/Sn diffusion couple annealed at 200 �C for 9 h
[31]. T is a ternary phase, b Interdiffusion zone of a Co(50Ni)/Mo diffusion couple annealed at
1,200 �C for 25 h [6]
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top of the bond coat, i.e., in the middle of bond coat and top coat. Self-healing is
important to cover the surface where spallation of Al2O3 occurs. Since Al diffuses
out from the bond coat, it is important to study the role of different factors that
determine the diffusion of components [34–36]. One of the beneficial roles of Pt in
the bond coat is an increase in the Al diffusion rate [37]. This ensures that the
service life of a turbine blade is increased threefold. Another type of bond coat,
MCrAlY, is called an overlay coating since it is deposited directly on the super-
alloy—unlike the b Ni(Pt)Al coating. Again, similar studies are important to
understand or enhance the performance. Studies not only on the bond coat, but also
extensive diffusion studies in the superalloys, themselves conducted to understand
many properties such as homogenization and creep.

Nb3Sn is one of the A15 intermetallic superconductors used in many applica-
tions where the need is beyond the ability of NbTi (greater than a magnetic field of
8 T). Since this is a brittle intermetallic compound, it cannot be drawn as wire.
Different manufacturing techniques are used to circumvent this problem, such as
the bronze technique, the internal tin process, the powder-in-tube process, the jelly
roll process, as well as infiltration, to name but a few. Diffusion plays an important
role in the vast majority of production processes. To make our point, we shall now
discuss only the bronze technique, which is one of the most favored routes. In this
technique, Nb rods are inserted into Cu(Sn) bronze alloys. Next, this block is
drawn as wire. The cross-sectional view is given in Fig. 4.22a [38]. Following this,
the composite wire is annealed in the temperature range of 700–850 �C such that
Nb3Sn grows at the Nb/Cu(Sn) interface, as shown in Fig. 4.22b, which was
annealed at 850 �C for 4 h. It has already been shown that the growth rate of the
intermetallic compound changes drastically because of a small change in Sn
content in the Cu(Sn) bronze alloy, which changes the Sn diffusion rate through
the product phase [39, 40]. Even the addition of small amounts of different
components such as Ti, Zr, or Hf also increases the growth rate [41]. Similarly, the
manufacturing procedure of V3Ga is being researched, a process which may
replace Nb3Sn because of better properties.

Fig. 4.21 a Cross section of a turbine blade [32] b Diffusion couple of CMX 4 superalloy with
Ni(15Pt)Al bond coat at 1,200 �C, annealed for 25 h [33]
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Flip-chip and wire bonding are the two techniques to join chip–chip and chip–
substrate. As shown in the schematic diagram presented in Fig. 4.23a, different
underbump metallizations (UBM) are used for different purposes to make the
bonding by using an Sn-based solder alloy in flip-chip bonding. Cu is used for
good bonding, Ni is used as a barrier layer, and Au is used for corrosion protection.
During soldering, Sn-based intermetallic compounds form by reaction between
the UBM layers in the solid state and the solder in the liquid state. Further, during
the service, these compounds grow by a solid-state diffusion-controlled process.
As already explained, the chemical potential difference acts as the driving force for
the growth of the phases. Additionally, an electrical current with a very high
density due to the small dimensions also plays an important role in the growth of
the phases. The growth of the phase layers in the Cu–Sn system is explained in
Fig. 4.24b [42]. In the absence of any current, the two-phase layers, Cu3Sn and

Fig. 4.22 a Cross-sectional view of Nb/Cu(Sn) composite wire and b growth of Nb3Sn at
800 �C, annealed for 4 h [38]

Fig. 4.23 Schematic diagram of cross-sectional view where a flip-chip and b wire bonds are
shown
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Fig. 4.24 a The IRF6716MPbF component package and the test board. b The growth of the
phase layers of the three interconnections investigated is shown for no current (NC) drain and
source. Phase layers are grown in the middle of printed wire board (PWB) Cu and SnAgCu (SAC)
solder [42]
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Cu6Sn5, grow in the interdiffusion zone. It must be clear that Cu diffuses from the
Cu end member toward the solder, whereas Sn diffuses from the solder alloy
toward the Cu. Depending on the direction of the electron flow, the diffusion of
these components is affected. When there is no current, the thickness of the Cu3Sn
phase is less than the thickness of the Cu6Sn5 phase. The thicknesses of these
layers become comparable when the electrons flow in the direction of the solder to
the Cu. On the other hand, the thickness of Cu6Sn5 increases without changing the
thickness of Cu3Sn, when the electrons flow from the Cu to the solder. This
phenomenological process is discussed in further detail in Chap. 8.

Similarly in wire bonding, as shown in Fig. 4.23b, Au wires are connected with
Al pad. During service, several phases grow at the interface, being affected by
chemical and electrical driving forces.

Often, in order to achieve a property balance, dissimilar materials such as
metal–metal, metal–ceramic and ceramic–ceramic are joined by a solid-state
diffusion bonding process. This process is being exploited to produce a seamless
bond between two different types of superalloys. Metal–metal bondings are pro-
duced by this method when these are difficult to join properly by welding. In many
applications, however, ceramics are preferred as the top layer and a metal or alloy
as the substrate. In this case, the materials are bonded directly or joined using an
inter-layer. Even two different ceramic layers are also bonded using a metal inter-
layer. Multilayer laminate structures are also produced following a similar method.
To achieve this, alternate layers are deposited using various techniques or rolled
after stacking before annealing to create a good bond by a diffusion-controlled
process.
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Chapter 5
Atomic Mechanism of Diffusion

In this chapter, we analyze the diffusion mechanisms in metals from an atomistic
point of view. It is shown that the defects of crystalline structure, mainly vacancies
and interstitial atoms, mediate diffusion. The fundamental difference between self-
diffusion and tracer (self- or impurity) diffusion is introduced, and the basic
concept of correlation factors is discussed. Further, the temperature and orientation
dependence of diffusion according to both substitutional and interstitial mecha-
nisms are examined. The complications related to specific structure of compounds,
including the effect of ordering, are introduced.

In the previous chapter, we discussed diffusion without considering the atom-
istic mechanisms of diffusion. For example, we considered a diffusion couple
where two different materials are fixed together. In another example, we consid-
ered a thin film sandwiched between different materials. Further, diffusion during
carburization and decarburization was discussed. It is important to note here that
different atomistic mechanisms of diffusion are involved in these different cases.

5.1 Different Types of Diffusion

On atomistic scale, diffusion of atoms is mediated by defects of the crystalline
state. In this respect, the diffusion mechanisms can mainly be divided into two
categories: substitutional and interstitial. Interstitialcy diffusion (of importance in
the case of semiconductors), which is not so common, is not considered for dis-
cussion here. As shown in Fig. 5.1a, host atoms exchange positions with vacancies
in substitutional diffusion. Therefore, the presence of vacancies is the primary
requirement for substitutional diffusion and an atom can jump on the condition that
vacancy is present at the nearest neighbor position. Impurities such as C, H, N, and
O occupy the interstitial sites, as shown in Fig. 5.1b. When these atoms jump to
another vacant interstitial position, it is called interstitial diffusion. We have seen
in Chap. 2 that the equilibrium concentrations of vacancies or impurities are very
small. Therefore, the jump of atom in substitutional diffusion is restricted, which
depends on the availability of a vacancy. On the other hand, since concentration of
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impurities is typically very low, most of the nearest neighbor interstitial positions
are free for the atom to jump. This is one of the reasons to find much higher rate of
interstitial diffusion compared to that of substitutional diffusion. As it will be
discussed later in this chapter, substitutional diffusion is even more complicated in
an ordered phase compared to a solid solution phase.

As discussed in Chap. 2, in a polycrystalline material, different kinds of defects
might be present. When diffusion occurs through the lattice inside a grain by point
defects, it is called lattice diffusion or volume diffusion. It is denoted as Dl or Dv.
Edge dislocations are one of the line defects present in the structure. When dif-
fusion occurs via these dislocations, it is called pipe diffusion, since it resembles
like flow of atoms through a pipe, as shown in Fig. 5.2. In polycrystalline mate-
rials, grain boundaries are always present, as shown by arrows in Fig. 5.3. In
general, these are more open (compared to the lattice inside the grain). Therefore,
atoms can diffuse at much faster rate and it is called the grain boundary diffusion.
As it will be discussed in Chap. 10, grain boundary diffusion coefficient, Dgb,
depends on the type of the particular interface, mainly on the misorientation of the
grains and the interface inclination. Generally, diffusion along low-angle grain

Fig. 5.1 a Substitutional diffusion is explained based on atomic arrangement on (111) plane in a
FCC crystal. ‘‘v’’ denotes a vacancy. b Interstitial diffusion is explained in a FCC crystal. Filled
black dot is the impurity atom, and open small circles indicate the free interstitial positions
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boundaries (with the misorientation angle h taken conventionally to be less than
15�) is slower with respect to that along the high-angle grain boundaries (i.e., with
h[ 15�). For further details, the reader is referred to Chap. 10. When diffusion
occurs over the surface, as shown in Fig. 5.4, it is called surface diffusion. This
type of diffusion is also found through the cracks or pores in the material.

As already discussed, in substitutional lattice diffusion, first condition is that
vacancy is available at the next neighbor position where an atom could jump. We
have seen in Chap. 2 that it has its own activation energy barrier for the formation
of vacancies. Moreover, the jumping atom has to displace the neighboring atoms

Fig. 5.2 Diffusion through an edge dislocation is explained

Fig. 5.3 Grain boundaries in
a polycrystalline material
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from their equilibrium positions temporarily to create enough space to exchange the
position with vacancies. Energy is required to spend for this elastic deformation,
which is called the activation energy for migration. Therefore, as it will be seen
during the derivation for Arrhenius equation, the activation energy for substitu-
tional lattice diffusion comes from activation energy for vacancy formation and
migration. In the case of pipe and grain boundary diffusion, the activation energy
for migration is less (compared to the lattice diffusion) because of extra free space
available. This is the reason that with the increase in misorientation of grains, grain
boundary diffusion rate generally increases (still this diffusion enhancement can
remain relatively small for ‘‘compact’’ interfaces such as a coherent twin bound-
ary). In surface diffusion, the activation energy barrier is even less since atoms are
missing above the jumping atom. Further, the activation energy barrier for inter-
stitial diffusion is less than the substitutional diffusion since vacancies are not
required. Even the activation energy for migration is also less because of smaller
size of diffusing atom. With the decrease in the size of the interstitial atoms, the
activation energy is expected to decrease in a particular material.

A diffusion couple of alloys C�B and CþB in the A–B system is shown in Fig. 5.5.
The interdiffusion zone is grown because of diffusion of elements A and B. The
diffusion of these elements is called intrinsic diffusion, and diffusion coefficients
are called the intrinsic diffusion coefficients, denoted by DA and DB. Since, overall,
the atoms interdiffuse to each other, it is called interdiffusion and the diffusion
coefficient is called the interdiffusion coefficient, ~D. It should be noted here that the
interdiffusion coefficient is a kind of average of the intrinsic diffusion coefficients
and expressed as ~D ¼ CAVADB þ CBVBDA. Vi is the partial molar volume of
element i. When the variation of the molar volume with composition in the
interdiffusion zone can be neglected, it is expressed as ~D ¼ NADB þ NBDA.
Therefore, it is not a direct average of the intrinsic diffusion coefficients. It should
be noted here that following the error function analysis as discussed in Chap. 3, we
calculate the interdiffusion coefficient. More accurate approaches to calculate the
interdiffusion coefficients and the intrinsic diffusion coefficients will be discussed
in Chap. 6.

In the example above, we discussed interdiffusion that occurs in the presence of
chemical driving force. Electric current could also be present in some systems used
especially in the electronics industry. In fact, diffusion also occurs in the absence

Fig. 5.4 Surface diffusion is
explained
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of any external driving forces, as shown in the example in Fig. 5.6. If radioisotope
of element A (A*) is deposited on the surface of the same element A, by measuring
the intensity of isotope decays, we know that A* diffuses inside A. Note that the
difference between A* and A is only in the atomic mass and there is no difference
in chemical potential. So except the very little gain in configurational entropy in
this particular example, there is no other driving force present. Radioisotopes are
actually used to trace the diffusion of elements. It indicates that in a piece of pure
element A, jump, that is, the diffusion of atoms, is always happening just because
of thermal vibration.

Let us consider the defects which mediate diffusion, i.e., vacancies or interstitial
atoms. The corresponding diffusion coefficients (of vacancies, Dv, or interstitials,
Di) are defined as the self-diffusion coefficient DS (to be not mixed with the tracer
self-diffusion coefficient, D*, see below). Since self-diffusion of elements cannot be
traced or measured, if it proceeds via vacancies since there is no marker for a
vacancy. On the other hand, (radio) tracer atoms are used to monitor movements of
atoms and to measure the diffusion coefficient. The corresponding phenomenon is
called tracer diffusion (or tracer self-diffusion), and tracer self-diffusion coefficient
is denoted as D*. Note that although radioisotopes are used to trace the diffusion,
the tracer self-diffusion coefficient is not necessarily equal to DS. These are related
by D� ¼ fDS, where f is the correlation factor and it is less than one in substitutional
diffusion. In the case of diffusion via vacancy mechanism, the above relationship is
written as D* = fDv and f is a just geometric factor specific to the given lattice in
the case of tracer self-diffusion.

Fig. 5.5 Interdiffusion of
elements A and B in a
diffusion couple

Fig. 5.6 Tracer diffusion of
element A is shown
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In the interstitial diffusion, the correlation factor is just unity, f = 1, which
means D* = DS. This will be explained in detail in this chapter. Note here that
thin-film solution of the Fick’s second law, as explained in Chap. 3 (Sect. 3.2), is
used to determine the tracer diffusion coefficients. Then, from the calculated/
known value of f, one can estimate the self-diffusion coefficient. Note that the
so-called perturbed angular correlation method [54] might provide Dv directly.

If the diffusion rate of element B using the radioisotope (B*) is measured in
element A, it is called impurity (or solute) tracer diffusion of B in A and the diffusion
coefficient is expressed as D�BðAÞ. This is shown in Fig. 5.7. Note here that the amount

of B* should be so small that it can mix in A in the impurity level without forming a
solid solution or a compound. Otherwise, the relation, developed based on thin-film
solution, cannot be used to determine the diffusion coefficient. If the concentration is
high, interdiffusion coefficient should be calculated following the relation developed
by error function analysis or the relations developed in Chaps. 6 and 7.

In previous chapters, we have discussed diffusion in general and the develop-
ment of concentration profiles. There are two approaches to study diffusion in
solids, namely a continuum approach and a consideration of the atomic mecha-
nism. Following the continuum approach, we study the development of concen-
tration profiles and calculate diffusion parameters without going into the details of
the atomic level of diffusion. That means we deal with mainly the kinetics of
diffusion. This is followed in previous two chapters. On the other hand, the atomic
mechanism of diffusion is important to understand the diffusion mechanism.
Depending on the types of diffusion and the phase or materials, diffusion mech-
anism could be very different in different systems.

We know from our discussion in the first chapter that atoms vibrate with the Debye
frequency of about 1013 s-1 and the average energy of 3kT (k is the Boltzmann
constant and T is the absolute temperature). With increasing temperature, the average
energy of atoms increases without changing much in the frequency. In general, the
size of atoms is higher than the size of the voids or the passage through which the
atom should jump. Therefore, sufficient energy is required to displace the neigh-
boring atoms elastically or temporarily from their equilibrium positions. The actual
barrier in three dimensions will be explained later. The energy required for this
migration is called the activation energy for migration. This is the same as the
activation energy for diffusion in the case of interstitial diffusion. However, in
substitutional diffusion, as explained earlier, the presence of a vacancy is must for a
successful jump. We have explained in Chap. 2 that there is always equilibrium

Fig. 5.7 Measurement of
impurity diffusion coefficient
is shown
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concentration of vacancies present. However, the system has to spend energy to
create vacancies, which is called the activation energy for the formation of vacancies.
These will be discussed in detail in the following sections. Therefore, the activation
energy for substitution diffusion is the sum of activation energy for migration and the
activation energy for vacancy formation. On the other hand, activation energy for
interstitial diffusion is equal to the energy required for migration.

It should be noted here that we do not have any technique to see how really the
atoms jump. The diffusion mechanism also could be very complicated because of
various factors involved. However, it is possible to visualize diffusion based on
very simplified theories, as explained for interstitial and substitutional diffusion
separately.

5.2 Interstitial Atomic Mechanism of Diffusion

5.2.1 Relation Between Jump Frequency and the Diffusion
Coefficient

As already mentioned, atoms vibrate at their equilibrium positions and might gain
sufficient energy to jump to another position. This jump is possible just because of
thermal vibration even if there are no other internal (chemical potential difference)
or external (flow of electrons) forces present. Diffusion of atoms increases to a
particular direction because of the presence of driving forces. Otherwise, the jump
is truly random. It means that the successive jump does not depend on the previous
jump and it has equal probability to jump to all the neighboring free sites available.
That means it might go back to its previous position.

In the beginning, we shall discuss the random jump of atoms. The jump rate or
frequency of atoms can be related to the diffusion coefficient following very
simplified discussion. We consider a FCC unit cell, as shown in Fig. 5.8.
Depending on equilibrium concentration, there could be one interstitial atom at the
center of the unit cell. The equilibrium concentration of impurities, in general, is
so small that we neglect the presence of another interstitial atom very close to it.
Three adjacent planes, denoted by P, Q, and R, are shown. Out of these three
planes, let us consider first the exchange of atoms between planes Q and R.
Following, we shall discuss it considering jump to any directions in three
dimensions. Suppose the number of interstitial atoms on plane Q is nQ per unit area
and plane R is nR per unit area. For the sake of discussion, we assume that
nQ [ nR. If we consider the jump frequency, that is, the number of jumps of atoms
per unit time from plane Q, as CQ, then the flux of atoms can be written as

JQ ¼
1
2

nQCQ ð5:1aÞ
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Factor � comes from the fact that there is an equal probability that atoms will
jump from plane Q to P or R. Note here that the unit of flux is number/(unit
area 9 unit time). If number is converted to moles, unit area in m2 and time in s,
the unit for flux will be mol/m2 � s, which is considered in Chap. 3 for the
discussion of Fick’s laws of diffusion. If the jump frequency of atoms from plane R
is CR, then the flux of atoms from R to Q can be written as

JR ¼
1
2

nRCR ð5:1bÞ

Fig. 5.8 Diffusion of interstitial atoms between different planes is shown
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Since nQ [ nR, the net flux of atoms from R to Q can be written as

J ¼ JQ � JR ¼
1
2

nQCQ � nRCRð Þ ð5:2Þ

Note here that we have considered random jump of atoms in the absence of any
driving forces. In an isotropic or cubic system (as explained in Sect. 5.2.5),

CQ ¼ CR ¼ C ð5:3Þ

It indicates that the resultant flux is because of the difference in number of atoms in
different planes only.

Therefore, Eq. 5.2 can be written as

J ¼ 1
2

nQ � nRð ÞC ð5:4Þ

We consider the distance between planes Q and R is very small and equal to
Dx. So the concentration of interstitial atoms on plane Q is CQ ¼ nQ=Dx and that
of plane R is CR ¼ nR=Dx. Note here that the number of atoms is divided by a
length parameter to get the unit of number/unit volume for concentration.

Therefore, Eq. 5.4 can be written as

J ¼ 1
2

CQ � CRð ÞDxC ð5:5Þ

Further, since we have considered very small inter-planar spacing, the concen-
tration gradient can be written as

CR � CQð Þ
Dx

¼ � CQ � CRð Þ
Dx

¼ � dC

dx
ð5:6Þ

We could assume the linear change in the concentration profile, since Dx is very
small.

By replacing Eq. 5.6 in Eq. 5.5, we get

J ¼ � 1
2
Dx2C

dC

dx
ð5:7Þ

After comparing with Fick’s first law J ¼ �D dC
dx

� �
, the diffusion coefficient can be

expressed as

D ¼ 1
2

CDx2 ð5:8Þ
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Note here that Dx is related to the lattice parameter. For a known crystal
structure, the average jump frequency can be calculated from the measured dif-
fusion coefficients. One important fact here should be noted here that the factor �
comes from our consideration of jumps between two planes. Jump to forward or
backward direction is considered for easy explanation. However, in actual case, in
a crystal in three dimensions, every atom can jump to any of the Z positions. Z is
the coordination number, that is, the number of nearest neighbors.

Therefore, the diffusion coefficient is related to the jump frequency by

D ¼ 1
Z

C Dxð Þ2 ð5:9Þ

Similarly, if we consider the jump of an atom to a particular position i only,
Eq. 5.9 can be written as

D ¼ Ci Dxið Þ2 ð5:10Þ

Here, Ci is the jump frequency to a particular position. Therefore, the overall jump
frequency, C, can be related to Ci by

C ¼ ZCi ð5:11Þ

Atoms are free to jump to any of the nearest neighbor positions. That means
atom can jump to any of the interstitial sites numbered as 1–12 in a FCC crystal, as
shown in Fig. 5.8. We have considered nQ atoms on plane Q. Different atoms on
that plane could jump randomly to any of the positions. If the structure is not
isotropic, as discussed in Sect. 5.2.5, jump frequency could be different to different
positions. Since we calculate the diffusion coefficient from the average of jumps of
many atoms, we can write

D ¼ 1
Z

XZ

i¼0

CiDx2
i ð5:12Þ

In an isotropic FCC crystal, the average diffusion coefficient with equal jump
frequency to all the positions can be written as

D ¼ 1
12

Xi¼12

i¼0

CDx2
i ð5:13Þ

Let us determine the diffusion coefficient in x direction in a FCC lattice, as shown
in Fig. 5.8. The effective jump lengths to positions 1, 2, 3, and 4 are Dx ¼ � a

2, to
positions 5, 6, 7, and 8 are Dx ¼ 0, and to positions 9, 10, 11, and 12 are Dx ¼ a

2.
Further jump frequencies to any of the sites are the same, since it is an isotropic
system and there should not be any difference in the activation energy for
migration. Following Eq. 5.13, we can write
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D ¼ 1
12

X4

i¼1

CDx2
i þ

X8

i¼5

CDx2
iþ
X12

i¼9

CDx2
i

 !

¼ 1
12

4C Dxð Þ2þ4C 0ð Þ þ 4C Dxð Þ2
h i

¼ 2
3
CDx2 ¼ 1

6
Ca2

ð5:14Þ

The possibilities of different jump frequencies and anisotropy of diffusion are
discussed in Sect. 5.2.5. The main difference in the relation derived in Eqs. 5.8 and
5.14 for the diffusion coefficient calculated from the same crystal structure stems
from the fact that in the latter case, we have considered the jump of atoms to both
negative and positive directions along the x-axis. So it is apparent that the
numerical factor depends on our consideration and also on the crystal structure. In
a broader sense, diffusion coefficient in any system can be written as

D / Ca2 ¼ g Ca2 ð5:15Þ

Here, the proportionality constant, g, in some literatures is called geometric
constant.

Fick’s first law is the center relation in physics of diffusion. How far does it
remain to be valid if one goes to the atomistic scale and do consider gra-
dients between successive atomistic layers? Very recently, Adda et al. [1]
have demonstrated by an atomistic study that Fick’s first law is valid also for
a ‘‘strongest possible’’ concentration gradient. The authors used numerical
simulations as a tool to check the linearity between the flux and the con-
centration gradient for vacancy-mediated diffusion of atoms in a solid and
for atom diffusion in a model liquid. It was proven that Fick’s law is valid in
both systems even in the presence of the strongest possible tracer concen-
tration gradients, provided that the diffusion time is enough for tracer jumps
over several nearest neighbor distances.

From the relations derived above, we find an interesting fact. From the measured
values, we know that the diffusion coefficient of carbon in c-iron with FCC structure
at 1,100 �C is in the order of 10-10 m2/s. The jump distance can approximately be
considered as Dx & 1 Å = 10-10 m. This gives the jump frequency C in the order
of 1010 s-1. This means that atoms change their position in the order of 1010 times
per second at 1,100 �C! This number looks very large. However, it should be noted
that atoms make successful jump one out of 103 only, since Debye vibration fre-
quency is in the order of 1013 s-1. Now, just for the sake of discussion, we consider
that one particular atom moves only in one direction following the straight line.
Then, it would cover a distance of 1010 (m) 9 10-10 (s-1) 9 3,600 (s) =
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3,600 m = 3.6 km in 1 h! However, measured composition profiles in an experi-
ment indicate that the actual penetration length is less than a millimeter. That means
atoms do not follow a straight path. In fact, in the absence of any driving forces,
atoms move completely randomly, which is explained in the next section.

5.2.1.1 Jumps in the Presence of External Force

If an external force is applied, the effective energy barriers for atom jumps will be
modified. Correspondingly, the jump frequencies depend on the external force that
in turn modifies the resulting flux of atoms.

Let us consider an external force F caused by an external potential field,
F ¼ �rVðxÞ, as shown in Fig. 5.9. If the potential field V(x) is applied, the energy
landscape for atom jumps is modified as shown in Fig. 5.9—while without
external field all sites were equivalent and all barriers are considered to be equal to
e, the energy barriers of jumps along and opposite to the direction of potential
gradient become to be different. This difference is designated by D in Fig. 5.9.

Let n1 and n2 be the numbers of interstitial atoms at planes 1 and 2, respec-
tively. The planes are considered to be located at x - a/2 and x + a/2, and a is the
distance between the planes. Let the jump frequencies of atoms from site 1 to site 2
be C12, and C21 is the frequency of a reverse jump. The number of atoms in the
layer at the middle of the planes 1 and 2 is n(x) and n(x) = a � C(x), respectively,
where C(x) is the atomic concentration at the position x. Then, considering the
planes 1 and 2 as atomic positions with a very small distance in between and
assuming that the atom concentration practically does not vary on such distances,
we can write

n1 ¼ nðxÞ � a

2
on

ox
ð5:16aÞ

and

n2 ¼ nðxÞ þ a

2
on

ox
: ð5:16bÞ

Then, the flux of atoms between the planes 1 and 2 is

J ¼ n1C12 � n2C21; ð5:17Þ

and substituting Eqs. 5.16a and 5.17, we arrive at

J ¼ �a
C12 þ C21

2
on

ox
þ n C12 � C21ð Þ

¼ �a2 C12 þ C21

2
oC

ox
þ aC C12 � C21ð Þ:

ð5:18Þ
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Note that in the absence of external force, C12 = C21 = C/2, Eq. 5.18 is
reduced to

J ¼ � a2

2
C

oC

ox
; ð5:19Þ

that coincides with Eq. 5.7 derived previously. Here, C is the total frequency of
atomic jumps from plane 1, and these jumps are equally distributed between those
to the right, i.e., to plane 2, and to the left.

Since the atomic jumps are thermally activated, we can write

C12 ¼ C� exp � e12

RT

ffi �
; ð5:20aÞ

and

C21 ¼ C� exp � e21

RT

ffi �
: ð5:20bÞ

Here, C* is the corresponding pre-exponential factor. The activation barriers are
modified by the applied external force (external potential field) and see Fig. 5.9

e12 ¼ e� D
2
; ð5:21aÞ

and

e21 ¼ eþ D
2
: ð5:21bÞ

Fig. 5.9 Effect of external
potential field V(x) on the
energy landscape of jumping
atom. C1 and C2 are the jump
frequencies between planes 1
and 2, separated by the
distance a, and the energy
barrier is e in the absence of
external potential field. In the
presence of the external field,
the site energies are modified
and they are shifted by D for
the neighboring planes (sites)
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As it was stated above, the case D/2 � e is considered. Then,

C12 ¼ C� exp � e� D=2
RT

� �
¼ C� exp � e

RT

ffi �
exp

D
2RT

� �
� 1

2
C 1þ D

2RT

� �
;

ð5:22aÞ

and

C12 ¼ C� exp � eþ D=2
RT

� �
¼ C� exp � e

RT

ffi �
exp � D

2RT

� �
� 1

2
C 1� D

2RT

� �
:

ð5:22bÞ

Now, substituting these equations into relation (5.18), the flux of atoms
between planes 1 and 2 is

J ¼ � a2

2
C

oC

ox
þ aDC

2RT
C ¼ �D

oC

ox
þ vC: ð5:23Þ

Here, the diffusion coefficient defined by Eq. 5.8 is used (Dx = a is the present
case), and an additional term to Fick’s first law, vc, is appeared in the presence of
the driving force. We see that if an external potential field is applied, the net flux of
atoms is determined by a sum of two terms, diffusional one, �D oc

ox, and convective
one, vc. The convection velocity, v, is given by

v ¼ aDC
2RT

¼ a2

2
C

D=a

RT
¼ D

D=a

RT
¼ D

RT
F; ð5:24Þ

which is the well-known Nernst–Einstein equation. We used an obvious relation,
F ¼ � oV

ox ¼ D
a, and see Fig. 5.9. Within the given approximation, i.e., linear terms,

the convection velocity is proportional to the external force F and mobility M is
determined by the diffusion coefficient D, M = D/RT.

The effect of other driving force (e.g., temperature gradient or electric force)
can be treated quite similarly. The driving force F induces inequality of the jump
frequencies C12 and C21, and to the first-order expansion, we may write

C12 ¼
1
2

C 1þ nð Þ ð5:25aÞ

and

C12 ¼
1
2

C 1� nð Þ: ð5:25bÞ
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These equations can be considered as a definition of the term n. Substituting
these expressions to Eq. 5.18, we arrive to Eq. 5.23 with the following expression
for the convection velocity,

v ¼ an C: ð5:26Þ

The thermal energy RT per net jump of one mole of interstitial atoms in the
direction of the applied force is equal to the work done by the force over the jump
distance a,

RT
C12 � C21

C=2
¼ Fa; ð5:27Þ

and using expressions (5.25a) and (5.25b),

n ¼ a

2
F

RT
: ð5:28Þ

Thus, the convection velocity is

v ¼ a2C0

2
F

RT
¼ D

RT
F: ð5:29Þ

Again, we arrived to the Nernst–Einstein equation, expression (5.24), which is
valid if the driving force is small when the expansions (5.25a) and (5.25b) can be
used (Fig. 5.9).

5.2.2 Random Walk of Atoms

As explained already, atoms vibrate at their equilibrium position and might gain
sufficient energy to jump to any of the neighboring available positions. Further,
after making a successful jump, it might jump again to any of the sites. Two
successive jumps are not related. If the atom does not come back to the previous
position, then we can say that the atom is diffused. For the sake of explanation, let
us consider a two-dimensional array of solvent atoms as shown in Fig. 5.10. Fol-
lowing, the jump in a three-dimensional lattice will be considered. Suppose initially
one interstitial atom is located at position P. After many jumps, this atom reaches,
let say, to Q. Now question is that how many jumps it will make to reach Q.

One can easily count that there are few short routes available, as shown by green
dotted arrows, which need 14 jumps to reach Q from P. However, chance of taking
any of the short routes by making all necessary jump is least expected. It might take
a torturous route as shown by black solid arrows. Note that the steps in the middle
are not shown. At first glance, it seems impossible to make any prediction on the
average number of jumps or time necessary for considering random walk of atoms.
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However, following a simplified approach, we can roughly estimate it. We assume
that the atom makes n jumps to reach from P to Q. The jump vector Ln connecting
the points P and Q can be written as

Ln ¼ l1 þ l2 þ l3 þ � � � þ ln ¼
Xn

i¼1

li; ð5:30Þ

where li is the jump vector of the ith jump. To calculate the magnitude, we need to
take dot product.

Ln � Ln ¼ L2
n ¼ l1 � l1 þ l1 � l2 þ l1 � l3 þ � � � þ l1 � ln

þ l2 � l1 þ l2 � l2 þ l2 � l3 þ � � � þ l2 � ln
þ l3 � l1 þ l3 � l2 þ l3 � l3 þ � � � þ l3 � ln
. . .

. . .

þ ln � l1 þ ln � l2 þ ln � l3 þ � � � þ ln � ln

ð5:31Þ

Equation 5.31 can be arranged as

L2
n ¼

Xn

i¼1

li � li þ 2
Xn�1

i¼1

li � liþ1 þ 2
Xn�2

i¼1

li � liþ2. . . ð5:32Þ

The first sum includes all diagonal terms li� li, the second sum consists all li� li+1

and li+1 � li terms (according to dot product of vectors, these are the same), the
third sum consists all li � li+2 and li+2 � li terms, and so on. Equation 5.32 can be
rewritten as

Fig. 5.10 Jump of an
interstitial atom through
different routes from the
position P to the position Q
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L2
n ¼

Xn

i¼1

li � li þ 2
Xn�1

j¼1

Xn�j

i¼1

li � liþj

¼
Xn

i¼1

l2
i þ 2

Xn�1

j¼1

Xn�j

i¼1

lij j liþj

�� �� cos hi;iþj

ð5:33Þ

Here, cos hi;iþj is the angle between jump vectors li and li+j.
Note that we are considering diffusion in crystalline solids. If we consider the

diffusion in cubic system, magnitude of the jump vectors are equal since direct jump is
possible only to the nearest neighbor positions. Therefore, Eq. 5.33 can be written as

L2
n ¼ nl2 þ 2l2

Xn�1

j¼1

Xn�j

i¼1

cos hi;iþj ð5:34Þ

Till now, we have considered jumps of one particular atom only. However, to find
the average jump distance, we should consider many atoms together and take
average of jumps of all the atoms. The first term in Eq. 5.34, that is, nl2, will be the
same for all the atoms. The differences in total jump distance because of choosing
different path by different atoms are counted in the second term. Therefore,
Eq. 5.34 can be written, after taking average from many atoms, as

�L2
n ¼ nl2 1þ 2

n

Xn�1

j¼1

Xn�j

i¼1

cos hi;iþj

0
@

1
A ð5:35Þ

Further, since we have considered the random walk of many atoms together, for
every positive value of cos hi;iþj from an atom, there will be an equal chance of a
negative value from the jump of another atom. It is explained with the help of
interstitial atoms sitting in an octahedral void in a FCC crystal, as shown in
Fig. 5.11. There are 12 jump vectors l1 to l12. It must be clear that for every jump
vector, there is an equal but negative jump vector; for example, l2 = -l12. Further

Fig. 5.11 Jump vectors of an
interstitial atom are shown
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because of random nature of jump, atoms have equal probability to jump to any of
the locations. If one atom has jump sequence of l1 � l2, then there is an equal
probability that another atom has jump sequence of l1 � l12. So we can write, for
example, li � l2 � li � l12 ¼ 0. This will lead the double summation of Eq. 5.35 to

zero. Therefore, it is safe to write that
Pn�1

j¼1

Pn�j
i¼1 cos hi;iþj

ffi �
¼ 0 in a cubic

isotropic crystal, and Eq. 5.35 can then be rewritten as

�L2
n ¼ nl2 ð5:36Þ

Therefore, the average magnitude of jumps of many atoms after n number of
jumps can be written as

�Ln ¼
ffiffiffiffiffi
�L2

n

q
¼

ffiffiffi
n
p

l ð5:37Þ

Note that we are considering the average taken from many atoms. There can be
huge difference in the distance that different atoms will travel after a particular
diffusion time. Equation 5.37 indicates that atoms will make an average
(14)2 = 386 jumps to reach from P to Q, where 14 jumps are required following
the shorter routes. We reconsider the example what we have discussed already in
the previous section. With average jump frequency of 1010 s-1 of carbon at
1,100 �C in C-iron, the average effective jump length in 1 h is �Ln ¼

ffiffiffi
n
p

l ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1010 � 3;600

p
� 10�10 m ¼ 0:6 mm ¼ 600 lm. Further, note here that this is an

average from many atoms. Different atoms will actually jump different distances
and the difference in jump length could be very large.

This concept of random walk is actually developed based on Einstein’s
mathematical analysis of Brownian motion. He developed the relation for
diffusivity as D ¼ h�L2

ni=6t, considering the jump of atoms in three
dimensions.

5.2.3 Effect of Temperature on the Interstitial Diffusion
Coefficient

We have already discussed that atoms vibrate at their positions with an average
energy of 3kT. With the increase in temperature, thermal energy of the system
increases so that atoms vibrate even more violently. That means the jump fre-
quency will increase with increasing temperature. However, the atoms cannot
jump freely, since the void between the host atoms, through which atoms should
jump, is smaller than the size of the atom. Therefore, the host atoms should be
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moved elastically as explained in Fig. 5.12. The change in local free energy with
the movement of the atom is shown. In the beginning, the atoms are at their
equilibrium positions and the energy at this ground state is gg per mol of atoms.
The free energy is the highest in the middle, where it needs maximum energy to
move the host atoms elastically. This is called an activated state, and the free
energy is ga per mol of atoms. Following, atoms reach to another ground state. So
an extra energy of Dga ¼ ga � gg per mole of atoms is required to cross the barrier.
This is the activation energy for interstitial diffusion and is equal to the energy
required for the migration Dgm. Atoms jump with Debye frequency, v, and the
probability of the successful jump to a new position is exp �Dgm=RTð Þ. Therefore,
the jump frequency to a particular position can be written as

Ci ¼ m exp �Dga

RT

� �
ð5:38Þ

From Eq. 5.10, Eq. 5.38 can be written as

D ¼ mDx2 exp �Dga

RT

� �
¼ D00 exp �Dga

RT

� �
; ð5:39Þ

where D00 is the temperature-independent pre-exponential factor. This temperature-
dependent relation for the diffusion coefficient relation is the Arrhenius equation.

Fig. 5.12 a The jump of
atom from one equilibrium
position to another
equilibrium position. b The
movement of interstitial atom
and the neighboring solvent
atoms is shown. For the sake
of explanation, we have
rotated the atomic structure
by 45o. c The associated free
energy change with the
movement of the interstitial
atom is shown
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Further, Dga ¼ Dha � TDsa. With the help of this relation, many times Eq. 5.39 is
expressed as

D ¼ mDx2 exp
Dsa

R

� �
exp �Dha

RT

� �
¼ D0 exp �Dha

RT

� �
ð5:40Þ

In this equation, D0 ¼ m Dx2 exp Dsa

R

ffi �
¼ D00 exp Dsa

RT

� �
is the pre-exponential

factor and Dha is the activation enthalpy for diffusion. Note here that at a particular
temperature, the change in entropy because of migration is more or less fixed in a
system. This accounts for the change in entropy because of the change in vibration
pattern of neighboring atoms where the elastic displacement of the host atoms is
greatest.

Equation 5.40 can be written as

ln D ¼ ln D0 �
Q

RT
ð5:41aÞ

log D ¼ log D0 �
Q

2:3RT
ð5:41bÞ

Therefore, the activation energy and the pre-exponential factor can be deter-
mined from the plots shown in Fig. 5.13.

It must be clear from the discussion above that the pre-exponential factor and
the activation energy depend on a number of factors, such as size of the interstitial
atoms, elastic modulus of the material, lattice parameter and the crystal structure.
Because of this size factor, e.g., the diffusion rates of small elements in Fe have to
decrease generally in the order of H, O, N, and C. Some available data are listed in
Table 5.1. It is clearly seen that solely the size factor has a limited applicability,
though it is very useful in the analysis of the diffusion trends. One has to mention
that the atomic radii depend strongly on the environment and the charge state and
any tabulated data have to be used with cautions.

Fig. 5.13 a ln D versus 1/T plot and b log D versus 1/T plot to calculate the activation energy
and the pre-exponential factor
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Similar dependencies for these small elements were found for their diffusion in
a-Ti with the HCP lattice, too. However, one recognizes immediately that the
electronic effects are also important in explaining the atomic diffusion rates. Most
prominent example is the diffusion of transition metal atoms, such as Co, Fe, and
Ni, in a-Ti, see below in the chapter—they are even faster than C or N!

5.2.4 Tracer Method of Measuring the Interstitial
Diffusion Coefficient

Since the concentration of the diffusing impurity element is very small, tracer
method is followed to calculate the impurity diffusion coefficient utilizing radio-
isotopes, which are easy to detect. This is explained in Fig. 5.14. Radioisotopes of
impurity element A are deposited on the substrate B, in which the impurity dif-
fusion coefficient would be measured. At the temperature of the experiment,
radioisotope impurity elements diffuse inside the substrate. Different atoms diffuse
different lengths because of random walk of atoms. With the increase in annealing
time, the penetration distance increases. After the experiment for certain time at a
desired temperature, the specimen is sliced at different known distances along the
x direction and the concentration of the radioisotopes is measured by measuring
intensities of the emitted rays. Following the solution for thin film from Fick’s
second law, we can write

IRðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
pD�At

p exp � x2

4D�At

� �
ð5:42Þ

ln IR ¼ ln
1ffiffiffiffiffiffiffiffiffiffiffi
pD�At

p
 !

� x2

4D�At
ð5:43Þ

where IR is the specific or relative intensity measured and D�A is the impurity
diffusion coefficient of element A.

Table 5.1 The tracer impurity diffusion coefficients, D* (m2/s), and the corresponding activation
enthalpies, Q (kJ/mol), for diffusion of small atoms in FCC and BCC iron [2–8]

Impurity Atomic
radius
(pm)

BCC Fe FCC Fe

Q (kJ/mol) D* at 300
K (m2/s)

References Q (kJ/mol) D* at 1,400
K (m2/s)

References

H 25 6 7 9 10-9 [2] 43 2 9 10-8 [3]
O 60 92 4 9 10-23 [4] 166 9 9 10-11 [5]
N 65 73 2 9 10-20 [6] 169 5 9 10-11 [7]
C 70 84 5 9 10-21 [6] 148 7 9 10-11 [8]

The atomic radii after [9] are listed. For comparison, the atomic radius of Fe is 140 pm
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From the slope � 1
4D�

A
t of ln IR versus x2 plot, as shown in Fig. 5.14, D�A can be

calculated using the known annealing time.

5.2.5 Orientation Dependence of Interstitial Diffusion
Coefficient

In Sect. 5.2.2, we considered a cubic crystal to simplify the derivation for average
jump length calculation during random walk in which the magnitudes of all jump
vectors are equal. Following, we were able to derive a simple relation to explain
the random walk of atoms. However, in some structures such as hexagonal,
tetragonal, or orthorhombic, the jump vectors in different directions could be
different. Even the void size through which the atoms jump could also be different
to find different jump frequencies and the activation energy for diffusion.

For comparison, we consider face-centered cubic and orthorhombic structures,
as shown in Fig. 5.15. We consider again the presence of an interstitial atom in an
octahedral site in the middle. Other octahedral sites are shown by open dotted
circle to which the interstitial atom could jump. We have discussed earlier that
diffusion coefficient is calculated from the average jumps of many atoms. In a FCC
crystal, the diffusion coefficient can be written as

D ¼ 1
12

X12

i¼0

CiDx2
i ð5:44Þ

Fig. 5.14 Tracer method to determine impurity tracer diffusion coefficient is shown
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In a cubic crystal because of symmetry, as shown in Fig. 5.15a, there is equal
probability of jump frequency to any of the positions and Eq. 5.44 can be written
as

D ¼ 1
12

C
X12

i¼0

Dx2
i ð5:45Þ

We consider the diffusion along the x-axis. All the nearest neighbor interstitial
sites have equal distances. Considering positive and negative sides on the x-axis,
the effective jump length for the positions 1, 2, 3 and 4 is -a/2, where a is the
lattice parameter. This is zero for positions 5, 6, 7 and 8. Although atoms jump to
these positions, the effective length is zero considering the jump along the x-axis.
This is a/2 for positions 9, 10, 11 and 12. Therefore, the diffusion coefficient along
the x-axis can be written as

Dx ¼
1

12
C 4 � a

2

ffi �2
þ4 0ð Þ þ 4

a

2

ffi �2

 �

¼ 1
6
Ca2 ð5:46Þ

We consider the diffusion along the y-axis. The effective jump length to the
positions 2, 6, 7, and 10 is equal to -a/2. This is zero for positions 1, 3, 9, and 11
and a/2 for positions 4, 5, 8, and 12. Therefore, the diffusion coefficient along the
y-axis can be written as

Fig. 5.15 Interstitial sites are shown in a face-centered cubic and b orthorhombic face-centered
cubic crystal structures to explain the anisotropy in diffusion
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Dy ¼
1

12
C
X12

i¼0

Dy2
i ¼

1
12

C 4 � a

2

ffi �2
þ4 0ð Þ þ 4

a

2

ffi �2

 �

¼ 1
6
Ca2 ð5:47Þ

where Dyi is the effective jump length along the y-axis.
Similarly, it can be shown that the diffusion coefficient along the z-axis is also

equal to 1
6 Ca2. Hence, the diffusion coefficients in a cubic crystal along all the axes

are the same. In other words, the diffusion coefficient in a cubic crystal is orien-
tation independent.

Now let us consider the diffusion in a face-centered orthorhombic structure, as
shown in Fig. 5.15b. Lattice parameters along the x-, y-, and z-axes are a, b, and c,
respectively, which are different in length. Further, we denote the planes per-
pendicular to the x, y, and z directions as x, y, and z, respectively. In this case, it is
apparent that the effective jump length will be different, when we consider dif-
fusion at different directions. Even the activation energy and the jump frequency
also could be different depending on the site to which the atom jumps. To explain
this, we consider the jump to three different positions at 1, 2, and 7. Although the
actual barrier is because of four atoms around the void through which the atom
jumps, it can be explained based on two atoms inside the same unit cell. For
example, for the jump to position 1, the barrier will be from the atoms M and N.
Similarly, when it jumps to positions 2 and 7, the main barrier comes from N–P
and P–R, respectively. Note that M–N, N–P, and P–R barrier atoms are sitting on
the planes y, x, and z, respectively. The areas inside the unit cell of these planes are
ac, bc and ab, respectively, which are different. Therefore, the void size through
which the atoms jump are different. This will lead to different activation energy
barrier and jump frequency.

We denote the jump frequencies to different positions as

C1 for the positions 2, 4, 10, and 12
C2 for the positions 1, 3, 9, and 11
C3 for the positions 5, 6, 7, and 8

Following the same line of discussion as above for the cubic crystal, the dif-
fusion coefficients along the x-axis can be written as

D ¼ 1
12

X12

i¼0

CiDx2
i ¼

1
12

C1Dx2
1 þ C2Dx2

2. . .C12Dx2
12

� 


Dx ¼
1

12

C2 �
a

2

ffi �2
þC1 0ð Þ2þC2

a

2

ffi �2
þC1 0ð Þ2þC3 �

a

2

ffi �2
þC3 �

a

2

ffi �2

þC3
a

2

ffi �2
þC3

a

2

ffi �2
þC2 �

a

2

ffi �2
þC1 0ð Þ2þC2

a

2

ffi �2
þC1 0ð Þ2

2
664

3
775

¼ a2

12
C2 þ C3½ ffi

Similarly, we find
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Dy ¼
b2

12
C1 þ C3½ ffi

Dz ¼
c2

12
C1 þ C2½ ffi

Therefore, we get Dx 6¼ Dy 6¼ Dz. From the above discussion, we can say that if
tracer diffusion experiments with impurity elements are conducted on a cubic
crystal, the diffusion coefficient will be the same irrespective of the orientation of
the substrate. On the other hand, the diffusion coefficient in a substrate with
orthorhombic structure will be different in different directions. This can be found
from experiments by selecting a single crystal substrate with different orientations
and then by doing tracer diffusion experiments, as explained in the previous
section. It can be easily understood that even if the jump frequency is the same and
there is a difference in lattice parameters in a non-cubic crystal structure, such that
the total jump length for atoms will be different in different directions to find
different diffusion coefficients.

There exist experimental evidences on the anisotropic nature of the interstitial
diffusion. Typically, this kind of diffusion anisotropy is not as large as that found
in some cases of substitutional diffusion. What is a reason for such behavior? In
order to answer this non-trivial question, at least semiqualitatively, one has to
consider these diffusion mechanisms in details. We will limit us to the case of
metallic system in which one should not deal with the charge state of the point
defects. The key point is the magnitude of the corresponding energy barriers. The
migration barriers are typically smaller in the case of interstitial diffusion, which
are typically of the order of 0.2–0.5 eV, and they are larger for substitutional
diffusion (1 eV and more). Correspondingly, the differences in the barriers for the
diffusion jumps in different directions are typically larger for substitutional dif-
fusion in comparison with those for interstitial one. Therefore, the diffusion
anisotropy is more prominent. The effect is still moderate for pure metals, e.g., in
HCP a-Ti or Zn, in which the diffusion anisotropy for self-diffusion is within a
factor of 2 or 3 (Fig. 5.16), but it can reach the orders of magnitude in intermetallic
compounds due to the anisotropy of sublattices (see the discussion in Sect. 5.3.6).

5.3 Diffusion in Substitutional Alloys

In the second chapter, we have discussed the formation of equilibrium concen-
tration of vacancies. This concentration is, in general, in the order of 10-3–10-4

near the melting point. That means one vacancy is present in a cube of 10–14
atoms in each direction. Because of this low concentration, we can neglect the
vacancy–vacancy interactions. Although vacancy is just a vacant lattice site, it is
considered as one of the entities to mediate discussion. Therefore, exchanging
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position of a vacancy with an atom can be seen as diffusion of atom, as well as the
diffusion of the vacancy. One interesting fact should be noted here that if we are
looking at one particular atom, the diffusion of that atom will depend on the
availability of a vacancy to its neighboring position. On the other hand, for a
vacancy, this restriction is not there and it can exchange position with any of the
atoms. In other words, one particular atom cannot go through a random jump
process; however, a vacancy can go through it. This is the reason that in substi-
tutional diffusion, tracer and self-diffusion coefficients are different, although
radioisotopes are used to study the self-diffusion of elements. These two are
related by a correlation factor. To explain this in detail, first we need to explain the
tracer diffusion method in substitutional diffusion.

5.3.1 Measurement of Tracer Diffusion Coefficient

As stated earlier, even in a pure material, diffusion of atoms is always happening
just because of thermal vibration. Since there is no driving force present, atoms go
through a random jump. The diffusion rate depends on the homologous temper-
ature, that is, the temperature relative to its melting point. Since the atoms are very
small and at relatively high temperature these might change place too many times
per second, we cannot study the diffusion directly. For this sake, the tracer tech-
nique is developed, in which the diffusion of radioisotopes is quantified from the
measurement of intensities of emitted rays at different depths after certain
annealing time. This is similar to the procedure already explained for the calcu-
lation of impurity diffusion coefficient in Sect. 5.2.4. To study the self-diffusion
coefficient of element B, radioisotopes of B* are deposited as very thin layer on a
block of material B, as shown in Fig. 5.17. After certain annealing time, the

Fig. 5.16 Self-diffusion in
single crystals of Zn, In, and
Sn parallel (solid lines) and
perpendicular (dashed lines)
to the c-axis of the HCP
structure. The data from the
collection [11] are used
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specific intensity of the emitted ray is measured at different depths after serial
sectioning. In this case, Eq. 5.44 can be rewritten as

ln IR ¼ ln
1ffiffiffiffiffiffiffiffiffiffiffi
pD�Bt

p
 !

� x2

4D�Bt
ð5:48Þ

Following the tracer diffusion coefficient, D�B could be calculated from the
slope, � 1

4D�
B

t, of the plot ln IR versus x2. However, as mentioned earlier, the

measured tracer diffusion coefficient is not exactly the same as the self-diffusion
coefficient. They are related by a correlation factor, f. Sometimes, the tracer self-
diffusion coefficient is stated as the same as self-diffusion coefficient, which is not
really correct. In the next section, we have explained the concept of the correlation
factor.

5.3.2 Concept of the Correlation Factor

For the sake of discussion, we consider the tracer diffusion experiment as
explained above in a FCC metal structure with [111] orientation. Atomic
arrangement on the (111) plane is shown in Fig. 5.18. For the ease of explanation,
we consider two-dimensional arrangements, although the argument is valid in
three dimensions also. Suppose we have a situation that a vacancy, V, is sur-
rounded by five B and one B*, as shown in Fig. 5.18a. Now suppose B* and V
exchange their position and come to the situation, as shown in Fig. 5.18b. Since

Fig. 5.17 Tracer method to determine tracer diffusion coefficient is shown
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the fraction of vacancies present in the structure is rather small, there is no
guarantee that the tracer atom will find another vacancy to exchange its position
immediately again to move forward. As explained before, there could be one
vacancy present in a cube of 10 to 14 atoms each side only at melting point. At
lower temperatures the vacancy concentration is significantly smaller and the
imaginary size of the corresponding cube is considerably larger. So the next
probable jump of B* is back to the previous position after exchanging position with
the vacancy. Then, there will be no diffusion. However, from the previous example,
we have seen that the tracer atoms indeed move forward. Therefore, if this move
forwards, the next probable jump is to position 1 or 5, on the condition that vacancy
already exchanged position with the atoms located at these positions. To move even
further, the next probability of jump of the tracer atom is to any of the positions 8 or
6. However, the probability is even lower than that of the previous jump, since after
two successive jumps, vacancy has to reach to these positions of interest before the
tracer atom could exchange position. Note that in the middle of these two successive
jumps, also vacancy might deviate to other direction because of random nature. The
probability of tracer atom to reach to the position 7 is the least, since before this
exchange; the vacancy first has to reach to that position after making few successful
jumps. Therefore, vacancy can go through a completely random jump process.
However, the jump of the tracer atom is related to other jumps.

From the arguments developed in Sect. 5.2.2, we can write

�L2
v ¼ nl2 ð5:49Þ

Since tracer atoms go through correlated jumps, the second term in Eq. 5.43,
that is, double summation, is not zero and can be expressed as

�L2
t ¼ nl2 1þ 2

n

Xn�1

j¼1

Xn�j

i¼1

cos hi;iþj

0
@

1
A ð5:50Þ

where �L2
t is the square of average jump distance of tracer atoms after n jumps.

Fig. 5.18 Exchanging position between radioisotope B* and vacancy is shown
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The correlation factor considering very large number of atoms and averaging
over large number of trajectories is expressed as

f ¼ lim
n!1

�L2
t

�L2
v

¼ lim
n!1

1þ 2
n

Xn�1

j¼1

Xn�j

i¼1

cos hi;iþj

� �0
@

1
A ð5:51Þ

Looking at Eq. 5.51, it can be understood that the correlation factor actually
measures the fraction of total jumps that give the diffusion or movement of tracer
atoms. Since vacancies go through a random jump and it makes possible the dif-
fusion of many atoms, the diffusion coefficient of vacancies, Dv, is actually equal to
the self-diffusion coefficient, Ds. Therefore, it is necessary to calculate the corre-
lation factor theoretically before determining the self-diffusion coefficient from the
experimentally measured tracer self-diffusion coefficients. The correlation factor
depends on the crystal structure, and the strict calculation is explained in the next
section. However, before that, we can get further insights from a rough estimation.

Following previous line of discussion, we can say that the probability of
exchanging positions between the vacancy and the tracer atom is 1/Z (Z is the
coordination number). From Fig. 5.18b, we understand that the next probable
jump for the tracer atom is back to the previous position; however, it is not
necessary that the vacancy will definitely exchange position with the tracer atom
again, since vacancy can exchange position with any other atoms. Therefore, the
probability of the second jump again is 1/Z. Two successive change of positions, as
explained, will not result any successful jump, and we can say roughly that the
fraction of jumps that will give successful diffusion for the tracer atom is

f ¼ 1� 2
Z

ð5:52Þ

Note here that we add the probabilities since these two steps are separate
events. This is very rough estimation since we have not considered the possibilities
of coming back of the tracer atom to its initial position after few or many jumps,
which also should be added with the factor 2/Z. However, these numbers are much
smaller than 2/Z. If all other possibilities are also considered, the difference
between the actual correlation factor and roughly estimated value using Eq. 5.52 is
small, which can be found from the values listed in Table 5.2. Note here that the
difference increases with increasing coordination number because of increase in
the number of possible ways to exchange positions.

Since the square of average jump length is proportional to the diffusion coef-
ficient, we can write from Eq. 5.51 as

D� ¼ fDs ð5:53Þ
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5.3.3 Calculation of the Correlation Factor

The calculation of the correlation factor represents generally an involved task, and
the result depends on the diffusion mechanism, crystalline lattice, and type of
diffuser. It is just a number for self-diffusion in pure metal via vacancy mechanism,
but could be temperature dependent already for solute diffusion in pure metals or
for diffusion in ordered compounds.

In this book, we will follow the general method of Howard [10] which could be
applied for such involved situation as, e.g., calculations of the correlation factors
for grain boundary diffusion.

First, we will outline the calculation of the correlation factor for cubic metals
and then will introduce a generalization for arbitrary lattices. Thus, we will start
from Eq. 5.51.

The corresponding summations can be performed analytically in very special
cases, which are though general enough to be broadly applied at least for cubic
metals, namely in situations where

(i) the crystal is isotropic;
(ii) all jump vectors of the diffusing atom are axes of twofold or threefold

symmetry, and
(iii) all jumps are equivalent, i.e., jump lengths are the same.

Then, the series expression for the correlation factor reduces to the simple
expression

f ¼ 1þ cos h12h i
1� cos h12h i ð5:54Þ

where cos h12h i is the average value of the cosine of the angle between any two
consecutive jumps of the diffusing atom in view of the conditions (i)–(iii). The
quantity cos h12h i may be calculated numerically (see below).

In the case when the conditions (i)–(iii) are not fulfilled, Eq. 5.54 cannot be
applied. Instead, one may either use the numerical method directly or, after a
careful analysis of the lattice and possible diffusion jumps, apply the concept of
partial correlation factors which will be shortly outlined in that follows.

The starting point again is the expression for the correlation factor fx which is
defined for the principle x-axis as

Table 5.2 Actual and roughly estimated values ð1� 2=ZÞ depending on the crystal structure

Crystal structure Z 1� 2
Z

f

Simple cubic 6 0.6667 0.65549
Body-centered cubic 8 0.75 0.72149
Face-centered cubic 12 0.8333 0.78145
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fx ¼ 1þ 2

P1
i¼1

P1
j¼1 xixiþj

� �
P1

i¼1 x2
ih i

ð5:55Þ

Here, xi is the x projection of the ith jump, which could be now different for
different jumps. It is clear that the summation has to be done over the jumps with
nonzero x component. Only such jumps will be considered and counted in the
summations. The consideration is general with no limitations on jump lengths and
symmetry. Thus, it is applicable for short-circuit diffusion, too, or in the case of
diffusion in non-cubic lattices.

The critical point is the classification of all jumps in different types. Since the
lattice is periodic, the number of all types N is finite and let the subscript a label
these types as a = 1, 2, 3, …N. The types are defined such as for all xi of the same
type, the sum

P1
j¼1 xixiþj

� �
could be rewritten as

X1
j¼1

xixiþj

� �
¼
X1
j¼1

xaxa;j
� �

ð5:56Þ

and it does not depend on i. Here, the subscript a, j refers to the jth jump after a
jump of the type a. Then, one can show that Eq. 5.55 could be written in matrix
notation as

fx ¼ c � f ð5:57Þ

where c = (c1,…,cN) is the vector with components ca which represent the fraction
of jumps of the type a in any very long sequence of atom jumps and f = (f1,…,fN)
is the vector of the partial correlation factors representing the contributions of the
given types of jumps. The latter is defined by the expression

f ¼ Iþ 2Z � TðE� TÞ�1 � d: ð5:58Þ

Here, I is the N-component unit column vector, E is the N 9 N unit matrix,
d = (|z1|,…, |zN|) is the column vector of the jump distances of type a jumps, Z is
the N 9 N matrix which diagonal elements are equal to z�1

a

�� ��, a = 1,…, N, and
T is a N 9 N matrix with the elements

tab ¼ Pþab � P�ab; a; b ¼ 1; . . .;N:

Here, Pþab P�ab

ffi �
is the probability that a tracer jump of type a is immediately

followed by a tracer jump of type b in the same (+) or opposite (-) direction. The
main point is the determination of these probabilities which may be evaluated
using numerical methods. The advantage is a low cost of the numerical calcula-
tions in which the jump history of a given tracer is enough to follow over 106

individual jumps. If the numerical method will be applied directly to Eq. 5.54, the
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atom jumps have to be followed up to 109 individual jumps to have a reasonable
accuracy in sophisticated cases of non-cubic crystals. The application of the
concept will be demonstrated for the case of diffusion in MoSi2 below.

Generally, the correlation factors can directly be calculated using numerical
methods. The starting point is the determination of all jump frequencies which are
involved in diffusion of a tracer atom over the lattice. Having calculated the
transition probabilities for all possible vacancy jumps, the correlation factor can be
calculated by the Monte Carlo approach. In simulations, a box of the size of, let us
say, 100 9 100 9 100 with the given structure is first generated. A vacancy is
created at the center of the block, and the vacancy is allowed to perform the given
types of jumps. The probabilities pi of these jumps can be calculated according to
the transition frequencies mi estimated before:

pi ¼
miPz
j¼1 mj

; ð5:59Þ

where z is the coordination number of the given lattice. The time-residence
algorithm is typically applied. Each jump of the vacancy is successful, and the
time variable is increased by

s ¼ 1Pz
j¼1 mj

: ð5:60Þ

The atomic correlation factors for species k, several species belong to the lattice
under consideration, are calculated from the equation:

fk ¼
Pnk

i¼1 R2
i

mka2
k

; ð5:61Þ

where Ri is the net displacement of the ith atom of type k, nk is the total number of
atoms of type k, mk is the total number of vacancy exchanges with atoms of type k,
and ak is the elementary jump length.

5.3.4 The Relation Between the Jump Frequency
and the Diffusion Coefficient in Substitutional
Diffusion

For the sake of explanation, let us consider (111) planes of a pure element B with
FCC crystal, as shown in Fig. 5.19. We consider that there is a radioisotope, B*,
present on the plane Q which is surrounded by six B, numbered as 4–9, respec-
tively. Based on the crystal structure, we can say that if three nearest neighbor
sites, numbered as 1–3, respectively, are actually on the plane P below Q, then
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other three nearest neighbor sites, numbered as 10–12, respectively, are on the
plane R above the plane P. Since we are considering random jump process, we can
say that the tracer atom can jump to any of these 12 positions, on the condition that
vacancy is present on that site. To derive the relation, as we did in the case of
interstitial diffusion, we first consider the jump of atoms between planes Q and R.
Following, we shall develop the general relation that can be used without any
restrictions.

Now, we follow the previous line of discussion as considered to relate the jump
frequency with the diffusion coefficient in Sect. 5.2.1. We consider the exchange
of vacancies and the tracer atom between planes Q and R. B* can jump to any of
the sites 10–12, on the condition that vacancy is available at the site of interest.
Therefore, the flux of the tracer atom can be expressed as

~J�Q ¼
3

12
nQf pVCQ ¼

1
4

nQf pVCQ ð5:62Þ

The numerical factor comes from the fact that a tracer atom exchanges position
with vacancy in one of the 3 sites (10–12) on the plane R out of total 12 nearest
neighbors. nQ is the total number of tracer atoms present on the plane Q. pV is the
probability to find a vacancy, f is the correlation factor, and CQ is the jump

Fig. 5.19 The jump of the radiotracer B* between (111) planes of B with FCC crystal structure is
discussed

5.3 Diffusion in Substitutional Alloys 199



frequency of the tracer atom from plane Q to R. Similarly, the flux of tracer atoms
from R to Q can be written as

J
 �

R ¼
3

12
nRf pVCR ¼

1
4

nRf pVCR ð5:63Þ

where nR is the total number of tracer atoms present on the plane R and CR is the
jump frequency of tracer atom from plane R to plane Q.

Since we are considering isotropic FCC crystal, we have CQ = CR = C. If we
consider, nQ [ nR, then the resultant flux from plane Q to R can be written as

J� ¼ 1
4

f pVC nQ � nRð Þ ð5:64Þ

Following similar arguments as discussed for interstitial diffusion in Sect. 5.2.1,
we get

J� ¼ � 1
4

f pVCDx2 dC

dx
ð5:65Þ

Here, Dx is the effective jump length or the inter-planar spacing. Comparing
with Fick’s first law J� ¼ �D� dC

dx

� �
, we can write the tracer diffusion coefficient of

element B as

D� ¼ 1
4

f pVCDx2 ð5:66Þ

Since the concentration of vacancy is very small, the probability of finding a
vacancy for the successful jump is equal to the mole fraction of the vacancies, XV.
Therefore, Eq. 5.66 can be written as

D� ¼ 1
4

f XVCDx2 ð5:67Þ

The above equation is derived based on the jump between the planes Q and R.
However, as such, atoms are free to jump to any of the neighboring atoms
depending on the availability of vacancy. There are many atoms present on the
same plane, and there is a probability that different atoms will jump to different
positions, so the average tracer diffusion coefficients can be written as

D� ¼ f XV

1
Z

XZ

Z¼1

CDx2
i ð5:68Þ
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The tracer diffusion to a particular position i can be expressed as

D�i ¼ f XVCiDx2
i ð5:69Þ

where C ¼ ZCi.
If the crystal is not isotropic and the jump frequency is different to different

positions, then the tracer diffusion coefficient from the average of different kinds of
jumps can be written as

D� ¼ f XV

1
Z

XZ

Z¼1

CiDx2
i ð5:70Þ

From the relation between the tracer self-diffusion and self-diffusion coeffi-
cients (Eq. 5.53), the self-diffusion coefficient, that is, the vacancy diffusion
coefficient, can be expressed as

Ds ¼ XV

1
Z

XZ

Z¼1

CiDx2
i ð5:71Þ

5.3.5 Effect of Temperature on Substitutional Diffusion

As it is discussed, in substitutional diffusion, atoms exchange position with the
vacancies. However, the atom has to move the neighboring atoms elastically for a
successful jump, as shown in Fig. 5.20. Just for the sake of explanation, two-
dimensional atomic arrangements are shown instead of actual three dimensions.
The probability with which atoms will make a successful jump at a particular

temperature T is expressed as exp � Dgm

RT

ffi �
. Here, Dgm is the activation energy for

migration per mol of atoms. Since atoms make m (Debye frequency) attempts per

second, the jump frequency can be written as Ci ¼ m exp � Dgm

RT

ffi �
and the self-

diffusion coefficient can be expressed as

D ¼ mXV Dx2 exp �Dgm

RT

� �
ð5:72Þ

Therefore, the only difference in the relation between temperature-dependent
self-diffusion coefficient and the interstitial diffusion coefficient (Eq. 5.39) is the
extra term XV. From the discussion in Chap. 2, we know that the equilibrium
vacancy concentration at a particular temperature, T, is expressed as
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XV ¼ exp �DgV

RT

� �
ð5:73Þ

By replacing Eq. 5.73 in Eq. 5.72, we get

D ¼ mDx2 exp �Dgm þ DgV

RT

� �
¼ D0 exp �Dga

RT

� �
ð5:74Þ

D0 is the temperature-independent pre-exponential factor. The activation
energy barrier for the self-diffusion comes from two different contributions, one
from the activation energy for the formation of vacancies and another is from the
activation energy barrier for migration. So it must be apparent that the interstitial
diffusion in general is much easier than substitutional diffusion. Sometimes,
anomalies are found, as shown in Fig. 5.21. Further, Eq. 5.74 can be written as

ln D ¼ ln D0 �
Q

RT

log D ¼ log D0 �
Q

2:3RT

So it is apparent that one can determine the activation energy for diffusion
from the plot of ln D versus 1

T or log D versus 1
T, where the slope is equal to -Q/R or

-Q/2.3R, respectively.
Interstitial diffusion and substitutional diffusion of C and Fe are compared for

the case of Fe in Sect. 5.3.7. The hexagonal lattices of a-Ti, a-Zr, and a-Hf
represent other interesting cases featuring fast diffusion rates of small nonmetallic
atoms, such as C or O, and even ‘‘ultrafast’’ diffusion rates of transition metals—
Fe, Ni, Co, and Mn (see Fig. 5.21). The corresponding diffusion rates are faster
than those of self-diffusion by five (C in a-Ti) or seven (Ni in a-Ti) orders of

Fig. 5.20 Activation energy
barrier for substitutional
diffusion is explained with
the a atomic movement and
b change in free energy
during movement
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magnitude! The diffusion enhancement of, e.g., Ni in a-Zr approaches 10 orders of
magnitude at 1,000 K. These ultrafast diffusion rates are explained by interstitial
diffusion mechanism of the transition metal atoms and are related to the specific
electronic effects owing to their unfilled d-states. Only, hydrogen reveals even
faster diffusion rates in these hexagonal structures.

Note that the diffusion rates of transition metal atoms become ‘‘normal’’ in bcc
beta phases, i.e., b-Ti, b-Zr, or b-Hf, and in fact, these atoms diffuse via a common
vacancy mechanism. As an example, diffusion of small nonmetallic atoms, tran-
sition metals, and Ti is shown in Fig. 5.22. At first glance, the diffusion behavior
of Fe and Ni at the a ? b transition in Ti does not follow common rules (see
Sect. 5.3.7 for the a ? c transition in Fe)—although the bcc lattice (b-Ti) is more
open, the diffusion rates of Ni and Fe either continue to follow the low-temperature
Arrhenius line established in the more dense phase (Ni) or even drop with
increasing temperature (Fe). The reason is the basic change of the underlying
diffusion mechanism—from interstitial one for Ni and Fe in a-Ti to substitutional
one in b-Ti.

Figure 5.22 features several important issues on self- and solute diffusion in
crystalline solids:

Fig. 5.21 Ultrafast diffusion of transition metal atoms (Fe and Ni) and fast diffusion of
nonmetallic solutes (C, O, and N) in a-Ti (left) and a-Zr (right) in comparison with self-diffusion
(thick solid lines). Only the diffusivities perpendicular to the c-axis are presented. The data for a-
Ti are from (Ti) [12], (Fe) [13], (Ni) [14], (C) [15], (O) [16], and (N) [17], and for a-Zr, they are
taken from (Zr) [18], (Fe) [19], (Ni) [20], (C) [21], (O) [22], and (N) [23]
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• Diffusion mechanism (interstitial vs. vacancy mediated) has a strong effect on
diffusion rates, and small nonmetallic atoms diffuse typically much faster in
metals in comparison with the self-diffusion rates.

• The diffusion rate depends strongly on the type of lattice. In fact, self-diffusion
of Ti is significantly enhanced in more open bcc structure of b-Ti comparing to
that of very dense hcp structure of a-Ti. This is true for vacancy-mediated
diffusion hopping mechanism, and the enhancement is less pronounced for
species diffusing via interstitial mechanism.

• Strongly curved temperature dependences in the Arrhenius coordinates could
be measured, e.g., for Ti self- or Fe solute diffusion in b-Ti, as shown in
Fig. 5.22.

The latter point required a special consideration. Generally, two different
mechanisms can be suggested to explain the observed behavior:

(a) A change of basic properties of the lattice with approaching the critical
temperature, as phonon softening in b-Ti near melting point [28] or a
decrease of magnetization in ferromagnetic Fe at the ferro-para-magnetic
transition temperature;

(b) Existence of two different diffusion mechanisms with different activation
energies.

The existence of fast diffusing solutes with strong binding to vacancies or
(potentially) a tendency to form a solute—self-interstitial pairs could significantly

Fig. 5.22 Comparison
between the diffusion rates of
small nonmetallic atoms (C,
O, and N) and transition
metals (Ni and Fe) in the a-
and b-phases of Ti. The data
are taken from Refs. [15, 24]
(C), [16, 25] (O), [17, 26]
(N), [14, 27] (Ni), [13, 27]
(Fe), and [12, 28] (Ti) for a-
and b-phases, respectively
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affect self-diffusion. In fact, such behavior was observed in a-phases of Ti and Zr
and it is featured in Fig. 5.23.

The enhancement of Zr and Ti self-diffusion rates in less pure materials is due to
the strong interaction between Fe interstitial atoms, which are ultrafast diffusers in a-
Zr or a-Ti, with host vacancies. The formation of very mobile vacancy–interstitial
impurity complexes causes in this way ‘‘extrinsic’’ diffusion behavior. This strong
attractive interaction between interstitially dissolved Fe atoms and metallic vacan-
cies results in an increased vacancy concentration. Generally, the vacancy concen-
tration cv in the presence of strongly interacting impurities is increased by the amount
of vacancy–impurity pairs, the concentration (in terms of mol fraction) of which can
be presented as Xv = Xv

0�exp{-(DHf + DHb)/RT}. Here DHf and DHb are the vacancy
formation enthalpy and vacancy–impurity binding enthalpy, respectively, and Xv

0 =
exp{(DSf + DSb)/R} with corresponding contributions offormation, DSf, and binding,
DSb, entropies. If DHb \ 0 (attraction), the overall concentration of vacancies will be
increased, and if the vacancy–impurity complexes are highly mobile, this effect
will give rise to an enhanced self-diffusion. Note that the total effect from all fast
diffusing impurities available in the material should be taken into account.

We have explained the activation barrier with the help of two-dimensional
arrays of atoms. However, to understand the actual barrier, we need to consider the
atomic arrangements in three dimensions as shown in Fig. 5.24. We consider the
atomic arrangement on a (111) plane of a FCC crystal. We further consider that

Fig. 5.23 Impurity effect on
self-diffusion in a-Ti and a-
Zr substantiated as the
influence of Fe content. Zr
and Ti diffusion rates were
measured in Fe-doped [29,
30] and ‘‘Fe-free’’ [12, 31]
materials, respectively
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atom 2 jumps to vacancy at 6. Therefore, the jumping atom has to displace atoms 1
and 4 on the same plane and 7 below and 8 above this plane, respectively.
Therefore, the actual barrier plane has atoms 1, 8, 4, and 7.

Now, we consider a material with BCC structure, as shown in Fig. 5.25. Two-
dimensional atomic arrangement is shown for (110) plane. The activation barrier is
not clear, when, for example, atom 2 jumps to a vacant lattice site at the center. If
we consider just one unit cell, it seems that the activation barrier is mainly because
of the atoms 1, 7, and 6. However, to understand the actual barrier, we need to
consider another unit cell, keeping atom 2 at the body center position. It must be
apparent that actually, the atom has to cross another barrier plane also with atoms
9, 10, and 11. That means it has to cross two barrier planes in total to make a
successful jump. This is the reason that the free energy versus distance curve in
BCC crystal may have two humps.

In Fig. 5.26, the results of real calculations are presented for a-Fe and b-Zr.
Although such shallow minima are sometimes observed in other cases, too, one
has to be careful with corresponding interpretation in view of approximate nature
of the used inter-atomic potentials.

5.3.6 Orientation Dependence in Substitutional Diffusion

We start our discussion with a BCC lattice, which has coordination number Z = 8.
For the ease of explanation, we consider the presence of a vacancy at the body
center position, as shown in Fig. 5.27.

This is an isotropic system. That means all the jump lengths are equal. Even the
activation energy for all the jumps also should be the same to consider Ci ¼ C. We
consider diffusion along the x-axis (h100i direction). Suppose atoms 1, 2, 5, and 6
are on one plane, V is on the next plane, and atoms 3, 4, 7, and 8 are on another
plane. So vacancy has equal probability to exchange position with any of the

Fig. 5.24 Activation barrier plane is shown in a FCC structure

206 5 Atomic Mechanism of Diffusion



atoms. Further, different vacancies will exchange position with different atoms.
Therefore, the diffusion coefficient from Eq. 5.71 can be written as

Dx
s ¼ Dh100i

s ¼ Xv

1
Z

XZ

Z¼1

CiDx2
i ¼ XvC

1
8

4 � a

2

ffi �2
þ4

a

2

ffi �2

 �

¼ 1
4

XvCa2 ð5:75Þ

Fig. 5.25 Activation barrier
planes are shown in a BCC
structure

Fig. 5.26 Energy barrier as a
function of the position of the
jumping atom normalized to
the jump distance for a-Fe
and b-Zr after Chirkov and
Nazarov [32]. Two humps in
the energy landscape are
clearly seen
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where ± a/2 are the effective jump lengths.

Similarly, we can show that Dy
s ¼ Dh010i

s ¼ 1
4 XvCa2 and Dz

s ¼ Dh001i
s ¼ 1

4 XvCa2.
Now, we consider diffusion along the h110i direction that is perpendicular to

the plane (110). The effective jump length is equal to the inter-planar spacing
	a=

ffiffiffi
2
p

. It can be seen easily that atoms 2, 4, 6, and 8 are located on the same
plane (110) with the vacancy. So the exchange of the vacancy with these atoms
will not contribute to diffusion distance along the h110i direction. The exchange
of vacancy to any of the atoms 1, 5, 3, and 7 will only contribute to the diffusion.
So the diffusion coefficient in this direction can be written as

Ds
h110i ¼ XvC

1
8

4ð0Þ þ 4 	 affiffiffi
2
p

� �2
" #

¼ 1
4

XvCa2 ð5:76Þ

From the above discussions, we can see that the diffusion coefficient is insen-
sitive to the direction in a BCC structure.

Let us now consider a FCC structure, as shown in Fig. 5.28a. Again, we can
consider Ci ¼ C, since it is an isotropic system. It has a coordination number of 12.
That means different vacancies on the same plane will exchange position with any
of the 12 atoms with an equal probability. When we consider the diffusion along
the x-axis, the effective jump length is Dx ¼ �a=2 for the exchange with atoms 5,
6, 7, and 8 and a/2 for the exchange with atoms 10, 11, 12, and 13. On the other
hand, the effective jump length is zero for the exchange with atoms 1, 2, 3, and 4.
So the diffusion coefficient along the x-axis can be written as

Dx
s ¼ XvC

1
12

4 � a

2

ffi �2
þ4ð0Þ þ 4

a

2

ffi �2

 �

¼ 1
6

XvCa2 ð5:77Þ

The same value will be found, when we consider diffusion along the y- or
z-axis.

Fig. 5.27 BCC unit cell is shown with the presence of a vacancy at the center
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Now, we consider the diffusion along the h111i direction that is perpendicular
to the plane (111), as shown in Fig. 5.28b. Note that the numbers used to denote
the atoms in figures (a) and (b) are not related. Vacancy is surrounded by 6 atoms
4–9 on the same plane and will not contribute to the diffusion perpendicular to this
plane. If atoms 1–3 are located below the plane with the vacancy, then atoms
10–12 are located above the plane. The effective jump lengths for the exchange of
vacancies with any of these atoms are equal to the inter-planar spacing Dx ¼ 	 affiffi

3
p .

Therefore, the coefficient along the h111i direction can be written as

Dh111i
s ¼ XvC

1
12

3 � affiffiffi
3
p

� �2

þ6ð0Þ þ 3
affiffiffi
3
p
� �2

" #
¼ 1

6
XvCa2 ð5:78Þ

So we can say that the diffusion coefficient to any directions in a FCC lattice
will be the same.

Now, we extend our discussion to body-centered tetragonal structures, as shown
in Fig. 5.29a. It has the same lattice parameter a along the x- and y-axes. Along the
z-axis, it has different lattice parameter c. So the effective jump lengths along the
x- and y-axes for exchanging position between atoms and the vacancies are 	a=2,
and along the z-axis, it is 	c=2. However, if we consider the vacancy at the center,
it must be clear that the actual distance (not the effective jump length) and the size
of the void through which the atoms jump are the same for any jumps. Therefore,
we can write Ci ¼ C. The diffusion coefficients along different axes can be written
as

Dx
s ¼ Dy

s ¼ XvC
1
8

4 � a

2

ffi �2
þ4

a

2

ffi �2

 �

¼ 1
4

XvCa2 ð5:79Þ

Ds
z ¼ XvC

1
8

4 � c

2

ffi �2
þ4

c

2

ffi �2

 �

¼ 1
4

XvCc2 ð5:80Þ

Fig. 5.28 a FCC unit cell and b atomic arrangement on plane (111) are shown with the presence
of a vacancy in the middle
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Further, we consider the face-centered orthorhombic structure with lattice
parameters a, b, and c along the x-, y-, and z-axes, respectively, as shown in
Fig. 5.29b. Note here that (similar to the discussion on interstitial diffusion in the
same crystal structure in Sect. 5.2.5) atoms 1, 2, 3, and 4 are on the x plane with
the area of bc, atoms 5, 7, 9, and 11 are on the y plane with the area of ac, and
atoms 6, 8, 10, and 12 are on the z plane with the area of ab. So the jump
frequencies will be different when vacancies exchange position with the atoms on
different planes. These are denoted as C1, C2, and C3 for the atoms on x, y, and
z planes, respectively. Further, the effective jump lengths along the x, y, and
z directions are 	a=2; 	b=2 and 	c=2. Therefore, the diffusion coefficients can be
expressed as

Ds ¼
1

12
XV

X12

i¼0

CiDx2
i ¼

1
12

C1Dx2
1 þ C2Dx2

2 � � � þ C12Dx2
12

� 


Dx
s ¼ Xv

1
12

C1 0ð Þ2þC1 0ð Þ2þC1 0ð Þ2þC1 0ð Þ2þC2 �a=2ð Þ2þC3 �a=2ð Þ2

þ C2 �a=2ð Þ2þC3 �a=2ð Þ2þC2 a=2ð Þ2þC3 a=2ð Þ2þC2 a=2ð Þ2þC3 a=2ð Þ2

" #

¼ 1
12 Xv C2 þ C3ð Þa2 ð5:81aÞ

Dy
s ¼ Xv

1
12

C1 �b=2ð Þ2þC1 b=2ð Þ2þC1 b=2ð Þ2þC1 �b=2ð Þ2þC2 0ð Þ2þC3 b=2ð Þ2

þ C2 0ð Þ2þC3 �b=2ð Þ2þC2 0ð Þ2þC3 b=2ð Þ2þC2 0ð Þ2þC3 �b=2ð Þ2

2
4

3
5

¼ 1
12

Xv C1 þ C3ð Þb2 ð5:81bÞ

Fig. 5.29 a Body-centered tetragonal and b face-centered orthorhombic structures are shown
with the presence of a vacancy in the middle
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Dz
s ¼ Xv

1
12

C1 c=2ð Þ2þC1 �c=2ð Þ2þC1 c=2ð Þ2þC1 �c=2ð Þ2þC2 c=2ð Þ2þC3 0ð Þ2

þC2 �c=2ð Þ2þC3 0ð Þ2þC2 c=2ð Þ2þC3 0ð Þ2þC2 �c=2ð Þ2þC3 0ð Þ2

2
4

3
5

¼ 1
12

Xv C1 þ C2ð Þc2

ð5:81cÞ

Therefore, from Eqs. 3.58a, 3.58b, and 3.58c, we can write in an orthorhombic
structure

Ds
x 6¼ Ds

y 6¼ Ds
z ð5:82Þ

Now, we discuss hexagonal close packed structure. Lattice parameters are a and
c, as shown in Fig. 5.30. If we consider the presence of a vacancy in the middle of
the basal plane, we can see that it is surrounded by total 12 atoms. There are six
atoms on the basal plane, numbered as 1–6, respectively. Three atoms are at
distance þ c

2 along the z-axis, numbered as 7–9, respectively, and three atoms are at
distance � c

2, numbered as 10–12, respectively. We need to consider two jump
frequencies: C1 for exchanging position with atoms 1–6 and C2 for exchanging
position with atoms 7–12. So the diffusion along the x- and z-axes can be written as

Ds ¼
1

12
XV

X12

i¼0

CiDx2
i ¼

1
12

C1Dx2
1 þ C2Dx2

2 � � � þ C12Dx2
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ð5:83aÞ
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1
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C2XVc2

ð5:83bÞ

One interesting point should be noted here. In the case of an ideal HCP

structure, we know that c
a ¼

ffiffi
8
3

q
and C1 ¼ C2 (note that it has similarities in

packing with a FCC structure). So it becomes Dx ¼ DZ . However, this is not true
in most of the hexagonal structures, since in general, the ratio of lattice parameters
deviates from the ideality. This will result in different jump frequencies also in
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different directions, and certain diffusion anisotropy is measured accordingly (see
the experimental examples in Fig. 5.16).

In Sect. 5.2.5, the diffusion anisotropy for interstitial diffusion was documented.
As it was stated, the ratio of diffusivities of interstitial atoms in different directions
is generally not too large, within a factor of 2–3. On the other hand, the diffusion
anisotropy for substitutional atoms can be very pronounced, especially if we
consider intermetallic phases. For example, the diffusion anisotropy approaches
three to four orders of magnitude for Mo diffusion in MoSi2 and is about an order
of magnitude for Si diffusion in MoSi2 (Fig. 5.31). A pronounced anisotropy of Ti

Fig. 5.30 Atomic
arrangement and different
jump frequencies are shown
to explain anisotropy in
diffusion in a hexagonal
closed packed crystal
structure

Fig. 5.31 Arrhenius plots of
the diffusion coefficients of
Mo (black) and Si (blue) in
MoSi2 perpendicular (dashed
lines) and parallel (solid
lines) to the tetragonal axis,
after [33, 34]
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self-diffusion in the L10-phase TiAl was reported, too. The reason for such huge
diffusion anisotropy is the anisotropy of sublattices in the compounds (see general
discussion in next sections).

5.3.7 Effect of Phase Transitions on Substitutional Diffusion

The effect of crystalline structure on diffusion rates of interstitially and substitu-
tionally diffusing species is most prominent for the case of iron, as shown in
Fig. 5.32. The a ? c phase transition is accompanied by the lattice-type change
from more open structure (bcc) to more dense one (fcc), and the diffusion rates
drop indeed by orders of magnitude. It is very instructive to compare the diffu-
sivities in d-Fe and in paramagnetic a-Fe which both reveal the same bcc lattice—
the diffusion rates follow almost the same Arrhenius line extrapolated through the
c-phase region, as shown in Fig. 5.32.

Furthermore, magnetic phase transition has a noticeable effect on diffusion of
magnetic atoms, such as Fe and Co, as shown in Fig. 5.32. Whereas diffusion of Fe
and Co follows linear Arrhenius-type dependencies in the paramagnetic state of
a-Fe, it deviates strongly to lower diffusivities in the ferromagnetic state, below Tc

in Fig. 5.32, due to additional stiffness of the lattice.

5.4 Diffusion Mechanisms in Intermetallics

So far, we have atomistically considered diffusion in pure metals. Certain com-
plications arise in the case of alloys. We will limit our analysis of atomistic
diffusion mechanisms by the case of binary AB alloys. Firstly, we will analyze
substitutional diffusion in disordered binary alloys, and then, the case of ordered
(intermetallic) AB phases will be considered. These two atomic arrangements are
explained in Fig. 5.33a using a BCC lattice as an example.

In completely disordered AB alloy, the probability to find A or B atoms at any
site is equal. This situation corresponds to Fig. 5.33a, and the atomic types are
represented by gray spheres. The corresponding structure is called A2 one.

Alternatively, if the AB alloy is fully ordered on the BCC lattice, then one type
of atoms (say, A) occupies cells corner positions, while other atoms (thus, B)
reside at the cell center positions, as shown in Fig. 5.33b. Then, this structure is
called as B2 one, and two sublattices—that of A atoms and that of B atoms each of
them being a simple cubic lattice—can be introduced. The tendency for an alloy to
be in ordered or disordered state is directly related to the corresponding interaction
energies between different atomic sorts, i.e., the relationship between 2eAB and the
sum (eAA + eBB) as discussed in Chaps. 1 and 2.

Self-diffusion in such alloys proceeds via migration of vacancies, and it is
somehow different in ordered and disordered states.
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5.4.1 Diffusion in Disordered Intermetallic Compounds

In this case, diffusion is mediated by jumps of vacancies, though the particular
energy barriers depend on the kind of jumping atom and local environment of it. In
a mean field approach, the effect of local environment can be neglected and one
has to introduce just two jump frequencies for a vacancy: xA and xB.

Fig. 5.33 Examples of atomic arrangements in binary AB alloy with disordered A2 (a) and ordered
B2 (b) structures. The A and B atoms are sketched as black and white spheres. The gray spheres in
the first figure represent site at which the probabilities to find either A or B atom are equal

Fig. 5.32 Effect of crystalline structure and magnetic transition on diffusion rates of interstitially
diffusing (C and N) and substitutionally diffusing (Fe and Co) species on the example of diffusion
in iron
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A very useful (and exact as mean field approximation) approach was derived by
Manning [35]. His treatment will be sketched here for a binary AB random alloy.
The vacancy correlation factor, fv, is represented as

fvnv ¼ f A
v nA þ f B

v nB ð5:84Þ

where f A
v and f B

v are the partial vacancy correlation factors, nA and nB are the
number of vacancy jumps performed as exchange with the atoms of the sorts A and
B, respectively, and nv is the total number of vacancy jumps for the given time
t. The key point of the Manning approach is the introduction of the escape fre-
quency H defined as

H ¼ fvM0xv ð5:85Þ

Here, xv is the average vacancy jump frequency, and M0 is the function of the
geometrical tracer correlation factor f0 for the given lattice occupied by one sort of
atoms,

M0 ¼ 2f0 1� f0ð Þ ð5:86Þ

The tracer correlation factors of atoms A and B, fA and fB, respectively, one can
use an expression, which is almost analogous to Eq. 5.54,

fA ¼
1þ tA
1� tA

and fB ¼
1þ tB
1� tB

with tA ¼ pþA � p�A and tB ¼ pþB � p�B , where pþA (pþB ) is the probability for A (B)
atom to make the second jump in the same direction as that of the first jump and,
correspondingly, p�A (p�B ) is the probability for A (B) atom to make the second
jump opposite to the direction of the first jump. Using the escape frequency H and
the vacancy–atom exchange frequencies xA and xB introduced above, the tracer
correlation factors can be represented as

fA ¼
H

2xA þ H
and fB ¼

H

2xB þ H

Within Manning’s theory, the tracer correlation factors are related to the partial
vacancy correlation factors by the following expressions:

fA ¼ f0f A
v and fB ¼ f0f B

v

In the mean field approximation, the average vacancy exchange frequency is

xv ¼ cAxA þ cBxB ¼ cAxA þ ð1� cAÞxB ð5:87Þ

Here, the vacancy concentration is considered to be negligibly low.
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5.4.2 Diffusion Mechanisms in Ordered Intermetallic
Compounds

In this case, A and B atoms are not randomly distributed on the same crystalline
lattice, as shown in Fig. 5.33b. As it was explained in Chap. 2, generally 4 types of
basic substitutional defects can be introduced in ordered AB compound. We will
illustrate this point for the B2 binary AB compound, as shown in Fig. 5.33b. We
can introduce two sublattices, A and B sublattices, for the perfectly ordered
stoichiometric compound, which would exclusively be occupied by A and B
atoms, respectively. Since the chemical nature of A and B is considered to be
different, it costs different energy to produce vacancy on A or B sublattice and
these defects have to be differentiated, as shown in Fig. 5.34a and b.

Two further defects are the antisite or antistructure atoms when atoms of one
sort occupy sites on the wrong sublattice, as shown in Fig. 5.34c, d. As detailed
analysis in Chap. 2 has substantiated, the formation energies (as well as formation
entropies and formation volumes) of all defects have not necessarily the same, and
as a rule, they substantially deviate.

The ordered structure of intermetallic compounds imposes certain limitations
on geometrically possible vacancy-mediated diffusion mechanisms. Below, the
most important diffusion mechanisms are discussed.

5.4.3 Six-Jump Cycle Mechanism

Originally, this mechanism was proposed for B2 compounds [36], but later it was
elaborated for others ordered structures, too. A scheme of this mechanism with a
[110] net displacement of the vacancy is shown in Fig. 5.35. One starts with a
vacancy on the A sublattice, and after 6 successive jumps, the vacancy exchanges
its position with A atom along the face diagonal of the unit cell. During this cyclic
movement, disorder in the phase AB increases first—from VA to VB + BA (jump
1), then to VA + BA + AB (jump 2), and finally to VB + 2BA + AB (jump 3)—
and then, it is restored to the initial one, i.e., with the only A vacancy—from
VB + 2BA + AB to VA + BA + AB (jump 4), then to VB + BA (jump 5), and
finally to VA (jump 6).

Thus, as a result of 6 jumps, a vacancy accomplishes one and a half cycle and
effectively jumps along the diagonal of the face, as shown in Fig. 5.35. It is clear
that first jumps are related to an increase of the energy of the crystal since defects
(antisite atoms) are produced. The situation after the 3rd jump represents a most
disordered state: one vacancy and three antisite atoms left behind as a result of the
first cycle. Following jumps will restore the order in the lattice, and exactly the
same ordered state (single vacancy on the initial sublattice) is retained.
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Fig. 5.35 The scheme of the six-jump cycle mechanism with a net [110] displacement of the
vacancy VA

Fig. 5.34 Four types of substitutional defects in ordered AB compound with A and B atoms
shown as black and white spheres and vacancy as a cube: vacancy on the a A and b B sublattices,
c A atom on the B sublattice, and d B atom on the A sublattice
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One has to pay attention that two further types of cycles are possible in the B2
lattice, as shown in Fig. 5.36, corresponding to the [001] net displacement of the
initial vacancy—the so-called bent (Fig. 5.36a) and flat (Fig. 5.36b) cycles.

It is important that the atoms do not necessarily move along the vectors drawn
in Figs. 5.35 and 5.36, and the exact trajectories have to be determined via
appropriate atomistic simulations. The vectors, as in each case of such schematic

Fig. 5.36 Two variants of the six-jump cycle mechanism with the net [001] displacement of the
vacancy—a bent and b flat cycles. As a result, the vacancy on A sublattice and A atom exchange
their positions along the edge of the unit cell
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representation, just connect the initial and final positions of the vacancy for a
particular jump during accomplishing the whole cycle motion.

The energy barriers are not necessarily the same for all types of the cycles. An
example of atomistic calculations (allowing relaxation after each jump) is pre-
sented in Fig. 5.37 for the case of B2-ordered NiAl (in Figs. 5.35, 5.36, the Ni
atoms are A and Al atoms are B). One recognize, e.g., that the 110 cycles are most
probable in this structure for NiAl. Further, the atomistic simulation with reliable
inter-atomic potentials reveals that the first disordering jump of the vacancy
involves typically the highest energy barrier. Subsequent jumps, requiring though
a thermal activation, could bring system even to a configuration with a lower total
energy with respect to the neighboring configurations, as shown in Fig. 5.37. Of
course, the energy of the system is completely restored after the vacancy has
accomplished the full sequence of six jumps.

A very important note is due here. Could the temperature dependence of diffusion
according to such sophisticated jump sequence be described by a single Arrhenius-
type dependence like Eq. 5.74? If yes, how is the activation barrier defined? Is this
the highest barrier in the sequence? The numerical simulations give very important
hints and predict that diffusion by such highly correlated jump sequence (in par-
ticular, for the six-jump cycles) can reasonably be described by an Arrhenius law,
Eq. 5.74, and the migration energy can conveniently be represented by a sum of two
contributions—the height of the first barrier and the activation energy corresponding
to the correlation effects. This can qualitatively be exemplified in Fig. 5.37.
According to such viewpoint, the energy barriers for all types of the six-jump cycles
are exactly the same and correspond to the height of the first barrier. Still the [001]-
type cycles involve very high barriers for the 3rd jumps, as shown in Fig. 5.37, so
that the probability of a reverse jump in those sequences is significantly larger and
the whole jump sequence will hardly be accomplished, especially at lower tem-
peratures. As the temperature increases, the importance of the difference in the
barrier heights decreases, since it is proportional to exp(-Q/kT), and such sequences

Fig. 5.37 The energy
barriers corresponding to
different six-jump cycles in
the B2 structure of NiAl. The
jump sequences were defined
in Figs. 5.35 and 5.36, and
the abscissa axis represents
the distance along jump
vectors defined for the whole
cycle
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may occur. This strong temperature dependence of the probability of the accom-
plishment of the cycles corresponds to a large contribution to the effective activation
energy. This conclusion is of general importance for diffusion mechanisms which
include more than one jump of a defect. The present consideration highlights the
importance of careful determination of the correlation effects for the diffusion
mechanisms in ordered alloys.

The correlated jumps of the atomic species during accomplishing the cycles
impose certain limitations on the quantities which can be measured in a diffusion
experiment. Firstly, in a highly ordered state near the stoichiometric composition,
the ratio of tracer diffusivities of both components, DA/DB, can adopt only the
values within the interval

1
q

 DA

DB


 q ð5:88Þ

where q was calculated to be 2 [37] and was later corrected to q & 2.034 by
including the correlation effects [38]. The ratio of diffusivities of Ag and Mg in
b-AgMg, Zn and Au in b0-AuZn, and Cd and Au in b-AuCd falls into these limits,
and this is typically considered as a strong support of the six-jump cycle mech-
anism in these compounds.

Diffusion by the six-jump cycles is a highly correlated process, as we have
already seen. Thus, the correlation factor is supposed to be rather small. However,
one should generally distinguish two types of correlations which characterize the
six-jump cycles. Considering the individual cycles as effective vacancy jump
events occurring with the given frequency, one can calculate the resulting corre-
lation factors ~fA and ~fB [38]. For B2 NiAl, Monte Carlo calculations resulted in
~fNi � 0:782 and ~fAl � 0:860. In contrast, the tracer correlation factors for Ni and
Al atoms in that case were calculated to be fNi � 0:445 and fAl � 0:022, respec-
tively. We note that fNi is not as small as it was usually anticipated for the six-jump
cycle mechanism. This fact should be taken into account when interpreting the
results of, e.g., Mössbauer effect experiments, which allowed establishing the
geometry of individual atomic jumps and, by comparing the local jump rates with
the long-range diffusion data, estimating the corresponding correlation factor.

In [39], the isotope effect was measured for both Au and Zn in the B2-ordered
b0-AuZn alloys, with EAu (and correspondingly fAu) being considerably larger than
EZn (fZn) in Zn-rich alloys (e.g., EAu = 0.35 and EZn = 0.05 in the Au-51.85 at.%
Zn alloy). This fact resembles the relation between fNi and fAl in B2-NiAl for the
six-jump cycle mechanism [40] and can be explained by the predominant vacancy
concentration in the Au sublattice and an increased probability of a reverse jump
of a Zn atom which has initiated a six-jump cycle. One may argue that since both
atom types in the B2 AB alloy participate in the same cycle, the pertinent cor-
relation factors fA and fB have to be similar. However, this is generally not true, as
the simulations of correlation effects during diffusion according to the six-jump
cycle mechanism in NiAl have shown, and very different correlation factors for the
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two components can be obtained. Thus, the large difference between fA and fB in
an AB compound cannot be considered as an argument against the six-jump cycle
mechanism.

The six-jump cycles are to be considered as a subset of a general n-jump cycle
mechanism, since, e.g., 3-jump cycles were considered in the L10 structure of TiAl
and 10-jump cycles were introduced to explain diffusion in quasicrystalline
compounds. Moreover, higher n cycles can be introduced in the B2 structure, too
(with n = 10, for example), by a simple inspection of the lattice. In this regard, the
six-jump cycles represent simply the n-cycle mechanism with the lowest possible
in the given structure number of n successive jumps of a single vacancy in
otherwise perfect lattice (thus, n = 3 for L10, n = 6 for B2, n = 6 for L12, and
n = 10 for Mackay icosahedrons, respectively, as basic tilling units of icosahedral
quasicrystals, etc.).

There is one important point here. The six-jump cycle mechanism was con-
sidered for a perfectly ordered lattice containing one vacancy on a given sublattice.
In this sense, it was analyzed for the stoichiometric composition of the AB alloy.
However, there are basically no objections against the existence of such highly
correlated jump sequences in off-stoichiometric AB compounds. As the compo-
sition of a given compound deviates from the stoichiometric one, a large amount of
(constitutional) defects appear and mutual interaction between different defects has
to be considered. If a vacancy performing a six-jump cycle meets an antistructure
atom on a particular lattice, the limits in the previous equation are changed [41].
It was shown that q may become significantly larger that unity [41]. Thus, in a less
ordered state, experimental values of DA/DB being larger than 2 can no longer be
considered as an indication that the six-jump cycle mechanism does not operate.
One may easily see that such six-jump cycle will be transformed to four-cycle
mechanism in the B2 structure if vacancy and antisite atoms reside in different
sublattices, as shown in Fig. 5.38. Further subtypes of the general n-jump cycle
mechanism could formally be introduced. The sequences differ by activation
energies, and the level of correlation of individual jumps and thus with different
probabilities could be found by inspection of the results of real simulations using
molecular dynamics.

5.4.4 Sublattice Diffusion Mechanism

When one of the components forms a lattice structure which enables the nearest
neighbor jumps through the respective sublattice, random jumps of a vacancy on
this sublattice will not affect the order in the compound. As an example, this
mechanism is schematically presented in Fig. 5.39 for the L12 structure. It is
important that this mechanism can dominate diffusion not only of the majority
component, but also of the minority component. In such a case, a minority atom
jumps into the ‘‘wrong’’ sublattice and continues its migration through this sub-
lattice. The sublattice diffusion mechanism was extensively analyzed in [42, 43].
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It is obvious that the diffusivities of both components are not coupled by a
relation similar to Eq. 5.88, if the sublattice diffusion mechanism operates.

The correlation factors for the sublattice diffusion mechanism in the L12

structure of Ni3Al are different for diffusion of the majority (i.e., Ni) and minority
(i.e., Al) components. The calculations as outlined above provide that fNi = 0.689.
The determination of fAl is more intricate, and e.g., a five-frequency model has to
be invoked (see Fig. 5.40).

Fig. 5.38 A scheme of 4-jump cycles for the B2 structure. The flat (1–2–3–4) and bent (10–20–
3–4) cycles are shown. These jump sequences are flowed starting from a vacancy on Ni sublattice
(square) as a nearest neighbor of a Ni antisite atom, NiAl (the shaded circle). The vacancy first
can exchange its position with Al atom occupying the next nearest neighbor position to NiAl (the
jump of type 10) or Al atom from 4th coordination shell of NiAl (the jump of type 1). The jumps 20

or 2 correspond to the most disordered states with two NiAl and one AlNi (and a Ni vacancy, of
course). The jumps 3 and 4 restore the initial order in the compound

Fig. 5.39 A scheme of sublattice diffusion mechanism for the case of A3B compound. Here, A
and B atoms are represented by dark and bright spheres, respectively. Eight possible directions of
nearest neighbor jumps of a B vacancy are shown by dashed lines
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The somewhat lengthy calculations demonstrate that the Al correlation factor
can be expressed in a usual way via the vacancy—Al atom exchange frequency x2

and the vacancy escape frequency H:

fAl ¼
H

x2 þ H
and H ¼ 10x3Fz 2x1 þ 5x3Fxð Þ

2x1 þ 5x3 Fz þ Fxð Þ

Here, Fx and Fz are functions of x4/x0, and they are changed in the range of
0.2–1, if x4/x0 increases from 0 to ?.

5.4.5 Triple-Defect Diffusion Mechanism

This mechanism was originally proposed by Bakker and Stolwijk for the B2
compound CoGa [44]. It specifies the migration of a triple defect, which represents
a bounded entity composed of two transition metal vacancies and one transition
metal atom in an antistructural position. The triple-defect mechanism in CoGa was
described to correspond to the two nearest neighbor jumps of a Co atom and one
next nearest neighbor jump of a Ga atom. In Fig. 5.41, the triple-defect mechanism
is shown for the case of the B2-NiAl compound. As a result of the indicated
sequence of jumps, the triple defect moves leaving the order in the compound
unchanged.

Since a correlated sequence of atomic jumps is involved, the diffusivities of
both components in the perfectly ordered state are coupled by Eq. 5.88 with
q = 13.3.

The correlation factors are supposed to be small for the triple-defect diffusion
mechanism. They were calculated for B2-NiAl and fNi & 0.05 at T = 1,300 K in
Ref. [45] using a Monte Carlo method (Fig. 5.42). fNi depends remarkably on
temperature, and the contribution of this temperature dependence to the overall

Fig. 5.40 The jump frequencies for a Ni vacancy (cube) neighboring an Al antisite atom (red
sphere). The five frequencies x0–x4 for a vacancy on the Ni sublattice are indicated: x0 is the
frequency of Ni vacancy jumps away from the Al antisite atom; x1 is the frequency of direct
exchange with the Al antisite; x2 is the jump frequency between neighboring positions of the Al
antisite; x3 is the frequency of vacancy jump from first neighbor position of the Al antisite to a
more distant neighbor; and x4 is the frequency of the reverse jump to x3
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activation enthalpy of Ni diffusion by the triple-defect mechanism amounts to
17 kJ/mol. This fact has to be taken into account in interpreting activation enthalpy
of diffusion in ordered compounds.

Fig. 5.41 A scheme of the triple-defect mechanism as it can occur in the B2 compound NiAl—
either via a sequence of a three or b four atomic jumps. In the first case, atoms of one kinds, most
probably of Al, perform a next nearest neighbor jump within own sublattice to temporary Al
vacancy, the jump 2 in (a)
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5.4.6 Antistructure Bridge Mechanism

This mechanism was originally proposed by Kao and Chang [46] for the B2
structure and was later extended also to L12 structures [47]. The antistructure
bridge (ASB) mechanism is schematically presented in Fig. 5.43a. As a result of
the two indicated jumps, the vacancy and the antistructure atom effectively
exchange their positions. Since the vacancy can in fact jump up to the 4th or 5th
coordination shell from its initial position (depending on the lattice structure), the
resulting large geometrical factor of the ASB mechanism increases its contribution
to the diffusivity.

It is important to note that the contribution of this mechanism has a percolation
nature in the sense that long-range diffusion by the ASB mechanism will occur
only if the concentration of the antistructure atoms will be sufficiently high. A
relatively high critical concentration for a B2 structure was initially estimated from
purely geometrical arguments. The Monte Carlo simulation of this process
resulted, however, in a smaller value of the percolation threshold, about 5 %. Such
an antistructure atom concentration can indeed exist in intermetallics, and the ASB
mechanism becomes important for explaining the observed diffusion behavior in
Ni aluminides [45, 48].

In the L10 structure of the phase TiAl, other types of the ASB mechanism are of
prime importance. One of such variant is presented in Fig. 5.43b. After the indi-
cated two jumps (1 + 2), the A vacancy moved perpendicular to the A atom layers
using an antistructure A atom as a ‘‘bridge.’’ If a further antistructure atom in a
suitable nearest neighbor position is available for the vacancy after its second
jump, the next ASB sequence may start, as it is indicated in Fig. 5.43b. The Monte
Carlo calculation of the percolation threshold for the long-range diffusion by this
variant of the ASB mechanism yields about 11 % of the antistructure atoms as the
critical concentration.

Fig. 5.42 Temperature
dependence of correlation
factors of Ni diffusion in the
B2-phase NiAl determined
for triple-defect and
divacancy diffusion
mechanisms. The divacancy
mechanism here is referred to
a mechanism of diffusion via
a pair of Ni vacancies
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During the ASB sequence of jumps, only one sort of atoms moves (see
Fig. 5.43). Therefore, the diffusivities of the two components are not coupled.

In a strict sense, the genuine ASB mechanism operates only after the perco-
lation threshold is reached. However, in combination with another mechanism
(usually the sublattice diffusion mechanism), the ASB mechanism (e.g., jump
sequence 1 ? 2 in Fig. 5.8b) can substantially contribute already to long-range
diffusion without any percolation threshold. One can therefore use the term ‘‘ASB
mechanism’’ also in such cases, referring to the specific sequence presented in
Fig. 5.43a, b.

5.4.7 Interstitial Diffusion Mechanism

Small metallic atoms could diffuse interstitially in a matrix of a given intermetallic
compound. In Fig. 5.44, the solute diffusion of Fe and Ni in pure a-Ti, a2-Ti3Al,
and in c-TiAl is presented in comparison with Ti self-diffusion in these materials
as a function of the reduced temperature Tm/T. Here, Tm is the melting point of
pure Ti or the intermetallic alloys of the stoichiometric composition. Figure 5.44
substantiates that both Fe and Ni are fast diffusers in a-Ti or in a2-Ti3Al, [49, 50],
while they are ‘‘normal’’ diffusers in c-TiAl.

Fig. 5.43 The antistructure bridge mechanism as it can be found in B2 (a) and L10

(b) compounds
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This fact correlates with the local arrangements of the atoms which form
the octahedral sites for the interstitial diffusion in these compounds, as shown in
Fig. 5.45.

The high solubility of nonmetallic interstitial solutes in a2-Ti3Al could be
attributed to the existence of those octahedral positions in this compound which
are exclusively formed by Ti atoms [51]. Unlike pure a-Ti, a2-Ti3Al has additional
octahedral sites formed by two Al atoms and four Ti atoms, as shown in Fig. 5.45.
This fact explains a lower Fe and Ni interstitial solubility and thus a lower dif-
fusivity (in terms of the dissociative mechanism) in a2-Ti3Al with respect to a-Ti,
since the ‘‘mixed’’ octahedral sites are obviously not energetically favorable for
interstitial occupancy. As the inspection of the structure of c-TiAl shows, only
‘‘mixed’’ octahedral sites exist in this compound. This is most probably the reason
why small metallic elements (e.g., Fe and Ni) form only substitutional solutions in
TiAl and therefore show ‘‘normal’’ vacancy-mediated diffusion behavior in this
compound, as shown in Fig. 5.44.

5.4.8 Other Diffusion Mechanisms

Several other mechanisms, which may be relevant in some specific cases, were
proposed for ordered intermetallic compounds. The next nearest neighbor jump

Fig. 5.44 Diffusion rates of
Fe and Ni in a-Ti, a2-Ti3Al,
and c-TiAl in comparison
with the corresponding self-
diffusivities of Ti plotted
again normalized temperature
Tm/T. Here, Tm is the melting
point of the corresponding
material
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mechanism may correspond to the lowest activation energy of single Ni vacancy
migration in Al-rich NiAl. Also, a divacancy mechanism, with both vacancies
belonging to the same sublattice in NiAl, may be suggested. After the given
sequence of four atomic jumps, the initial order is completely restored and the
divacancy has moved by one step.

5.5 Correlation Factors of Diffusion in Intermetallic
Compounds

The calculation of the correlation factors for simple lattices was outlines in Sect.
5.3.3. In ordered intermetallic compounds, the procedure is somehow modified,
since the geometry of sublattices and specific diffusion mechanisms have to be
taken into account, and it will be presented in this subchapter using MoSi2 as an
example. We will limit us for Si diffusion in MoSi2, for which the diffusion
mechanism is considered as well established [52]. We will follow the analysis
considered in detail in [53].

Generally, diffusion is described by a symmetric diffusivity tensor of rank 2.
For a tetragonal crystal like MoSi2, this tensor has two principal components.
Diffusion is fully described by the diffusivities along the tetragonal axis, D||, and
perpendicular to it, D\. Denoting the frequencies of type-1 and type-2 jumps as x1

and x2, respectively (see Fig. 5.46), the tracer diffusivities can be written as

Djj ¼
1
2

c

3

ffi �2
x1f1jj þ x2f2jj

ffi �
Ceq

V ¼
1
2

c

3

ffi �2
x1 þ x2ð ÞfjjCeq

V ð5:89Þ

and

Fig. 5.45 Local atomic environments of octahedral interstitial sites in a-Ti, a2-Ti3Al, and c-TiAl
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D? ¼
1
2

a2x1f1?Ceq
V ð5:90Þ

Here, Ceq
V is the vacancy concentration on the Si sublattice in thermal equi-

librium. f1? is the partial correlation factor for diffusion perpendicular to the
tetragonal axis. Since type-2 jumps do not contribute to diffusion perpendicular to
the tetragonal axis, the partial correlation factor coincides with the total correlation
factor in this direction, i.e., f1? ¼ f? � f1jj and f2jj are the partial correlation factors
for diffusion parallel to the tetragonal axis related to the jump types 1 and 2,
respectively. fjj is the total correlation factor related to diffusion in this direction.
It can be expressed in terms of the partial correlation factors as

fjj ¼
x1f1jj þ x2f2jj

x1 þ x2
¼

f1jj þ x2
x1

f2jj

1þ x2
x1

ð5:91Þ

Partial and total correlation factors are functions of the frequency ratio x2/x1.
The anisotropy ratio of diffusion

D?
Djj
¼ a2x1f1?

c
3

� �2
x1f1jj þ x2f2jj

ffi � ¼ a2f1?

c
3

� �2
f1jj þ x2

x1
f2jj

ffi � ð5:92Þ

is fully described by the correlation factors and is a function of the frequency ratio
as well. The strong anisotropy of both Mo and Si diffusion in MoSi2 is documented
in Fig. 5.30.

In order to calculate the partial correlation factors fi, one cannot take advantage
of the inversion symmetry, because the Si sublattice sites are not inversion centers,
as shown in Fig. 5.46. Moreover, there is no twofold or threefold symmetry around

Fig. 5.46 a Lattice structure of MoSi2 and b the structure of the Si sublattice. The two types of
Si vacancy jumps are shown
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the direction of the type-1 jumps. We suggest combining Howard’s matrix method
[10] and a Monte Carlo approach to calculate the correlation factors, as it was
described above.

Both types of jumps contribute to diffusion parallel to the tetragonal axis, as
shown in Fig. 5.46. Hence, the relevant partial correlation factors can be deter-
mined as

f jj ¼ Iþ 2Z � TðE� TÞ�1 � d ð5:93Þ

where f jj ¼ ðf1jj ; f2jj Þ is the column vector of the partial correlation factors, I the
2-component unit column vector, E the 2 9 2 unit matrix, d = (|z1|, |z2|) the
column vector of the jump distances |z1| = c/6 and |z2| = c/3 of type-1 and type-2

jumps, Z ¼ z�1
1

�� �� 0
0 z�1

2

�� ��
����

����, respectively. T is a 2 9 2 matrix with the elements

tij ¼ Pþij � P�ij ; i; j ¼ 1; 2: ð5:94Þ

Here, P	ij is the probability that a tracer jump of type i is immediately followed
by a tracer jump of type j in the same (+) or opposite (-) direction along the
tetragonal axis.

Since only type-1 jumps contribute to diffusion perpendicular to the tetragonal
axis (Fig. 5.46), Eq. 5.44 can be simplified, and the relevant correlation factor f\
can be written as

f? ¼
1þ t

1� t
ð5:95Þ

with

t ¼ Pþ � P� ð5:96Þ

Here, P± is the probability that a type-1 jump is immediately followed by a
type-1 tracer jump with the same (+) or opposite (-) displacement perpendicular
to the tetragonal axis.

5.5.1 Calculation of the Probabilities P

The probabilities P	ij and P± introduced above have to be determined in order to
calculate the correlation factors. Let us start with diffusion along the tetragonal
axis. Diffusion perpendicular to the axis is simpler and will be considered
afterward.
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Figure 5.46b shows the situation immediately after a tracer atom jump of the
type 1. The tracer atom is at the site O, whereas the vacancy occupies the
neighboring site A after this jump. It is obvious that if the next jump of the tracer is
a type-2 jump, the sign of its displacement with respect to the tetragonal axis will
be the same as that of the first jump (both jumps displace the tracer atom in the
negative direction of the z-axis). Alternatively, if the next jump of the tracer is a
type-1 jump (leading to one of the lattice points A, B, C, or D in Fig. 5.46b), the
sign of its z component will definitely be opposite to the sign of the z component of
the first jump. Therefore, the probabilities are Pþ11 ¼ 0; P�11 6¼ 0; Pþ12 6¼ 0, and
P�12 ¼ 0, and the corresponding matrix elements reduce to t11 ¼ �P�11 and
t12 ¼ Pþ12. Considering the situation prevailing just after a tracer jump of type 2,
we arrive at the relationships Pþ21 6¼ 0; P�21 ¼ 0; Pþ22 ¼ 0, and P�22 6¼ 0, and thus
t21 ¼ Pþ21 and t22 ¼ �P�22.

Let us suppose that the tracer atom has just performed a jump of type 1. We
need to know the probabilities P�11 and Pþ12 that the next jump of the tracer atom
will be of type 1 or 2, respectively. These two sequential tracer jumps can gen-
erally be mediated by the same vacancy or by two different vacancies. As a usual
approximation in the encounter model, the vacancy concentration is considered as
very small, and thus, a tracer encounter with a next vacancy occurs only after the
first encounter has totally been completed (e.g., when the first vacancy has escaped
from the tracer atom). Therefore, the individual encounters are well separated in
time, and a new vacancy does not disturb the correlations induced by a previous
vacancy. In this case, the correlation factors do not depend on the vacancy
concentration.

If taking into account that the two successive tracer jumps can generally be
induced by the same or by different vacancies, two different contributions to the
total probabilities P	ij are expected: firstly, a contribution from the encounter with
the same vacancy and secondly, a contribution from sequential encounters with the
old and the new vacancy. In the latter case, the tracer jump of type i has occurred
as a last event of the encounter with the old vacancy (and the vacancy has then
escaped from the tracer atom), and the next tracer jump of type j has been induced
by a new vacancy through its first exchange with the tracer atom. The second
contribution to P	ij is important for the MoSi2 structure. This is in contrast to lattice
structures with inversion symmetry, where the fresh vacancies equally contribute
to both Pþij and P�ij . Hence, they do not affect the resulting correlation factors,

which depend only on the differences tij ¼ Pþij � P�ij . However, in the case of a
lattice structure, in which the site positions are not inversion centers (this is the
case of the Si sublattice of MoSi2), the fresh vacancies may give different con-
tributions to Pþij and P�ij . To illustrate this problem, let us consider the following
situation: Suppose a first vacancy has induced a tracer jump of type 1 and has been
escaped. After some time, a fresh vacancy will approach the tracer atom from a
totally random direction and will induce the next tracer jump. If this next tracer
jump is of type 1, it will definitely be in the opposite direction to the first jump of
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type 1 with respect to the tetragonal axis. This fact increases the total probability
P�11, but, by no means, it changes the value of Pþ11, which remains zero. Therefore,
the total probability P�11 must be known to calculate t11 and finally to compute the
correlation factors.

At first, let us consider the contribution of an encounter of the tracer atom with
the same vacancy to P	1j, j = 1, 2. Since the vacancy performs a random walk, it
can either induce tracer jumps of type 1 or 2, or escape without inducing any
further jump of the tracer atom. Let us denote the probability for the latter event by
Pe1 , the escape probability after a type-1 jump. Furthermore, we denote the
probabilities that the same vacancy induces a type-1 or type-2 jump during its
random walk, which follows the initial site exchange with the tracer atom, by ~P�11

and ~Pþ12, respectively. The sum of all probabilities for the path of a particular
vacancy equals unity:

~P�11 þ ~Pþ12 þ Pe1 ¼ 1 ð5:97Þ

A similar relationship holds for the vacancy random walk when the first site
exchange resulted in a type-2 jump:

~Pþ21 þ ~P�22 þ Pe2 ¼ 1 ð5:98Þ

The quantities ~P	ij describe the probabilities of sequential jumps of types i and

j of a tracer atom caused by the same vacancy. In contrast, the P	ij denotes the total

probabilities of sequential jumps of types i and j of the tracer atoms, irrespective of
which vacancy has induced these jumps. As explained above, in order to calculate
P	ij , we have to add to ~P	ij the probability that a ‘‘fresh’’ vacancy induces the jump
j at its first site exchange with the tracer atom, provided that the ‘‘old’’ vacancy has
escaped from the system (remember that this ‘‘old’’ vacancy has previously
induced the jump i), i.e.,

P	ij ¼ ~P	ij þ Pei
~Pj ð5:99Þ

Here, ~Pj is the probability that a vacancy arriving from an arbitrary lattice
position of the Si sublattice at a nearest neighbor position of site O induces the
jump j of the tracer atom at its very first site exchange. We have ~P1 þ ~P2 ¼ 1,
because the ‘‘fresh’’ vacancy can induce either a type-1 or type-2 jump of the
tracer atom.

In the absence of driving forces, the flux of fresh vacancies, which induce the
jump j at the first site exchange with the tracer atom, is the same as the reverse flux
of vacancies escaping after an inverse jump -j without inducing any further jump
of the tracer atom, namely xjPe�j CV. On the Si sublattice, a vacancy can induce
four jumps of type 1 and one jump of type 2. In view of the lattice symmetry, the
escape probabilities for jumps j and -j are equal (j = 1, 2). Furthermore, in
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thermal equilibrium, the probability to find a vacancy on any site of the Si sub-
lattice is the same. Therefore,

~P1 ¼
4x1Pe1

4x1Pe1 þ x2Pe2

ð5:100Þ

and

~P2 ¼
x2Pe2

4x1Pe1 þ x2Pe2

ð5:101Þ

Combining the above equations, the final expression for P	ij becomes

P	ij ¼ ~P	ij þ Pej

njxjPej

4x1Pe1 þ x2Pe2

; i; j ¼ 1; 2: ð5:102Þ

Here, n1 = 4 and n2 = 1 are the numbers of jumps of the corresponding type.
In the case of diffusion perpendicular to the tetragonal axis, only type-1 jumps

must be taken into account. Then, one can simply calculate P	 as

P	 ¼ ~P	 ð5:103Þ

Here, ~P	 is the probability that during a random walk of the given vacancy, the
second jump of the tracer atom will occur in the same (+) or opposite (-) direction
with respect to the first jump. Due to the symmetry of the structure in the plane
perpendicular to the tetragonal axis and in contrast to the previous case of diffusion
along the tetragonal axis, the fresh vacancies give equal contributions to both P+

and P-. Thus, Eq. 5.95 is not affected by such vacancies, since only the difference
t = P+ - P- is important in the calculation of the correlation factor f\.

5.5.2 The Monte Carlo Calculation Scheme

A Monte Carlo approach can be applied to calculate ~P	ij and Pei , and the structure
of Eq. 5.101 suggests the calculation scheme. At first, a tracer atom and a vacancy
are placed at the positions O and A on the Si sublattice (Fig. 5.46b). This corre-
sponds to the atomic configuration after a type-1 jump. Then, the random walk of
the vacancy is initiated and followed in the computer until the vacancy either
escapes (see below) or induces a jump of type j of the tracer atom (j = 1, 2). By
performing the Monte Carlo runs many times, the probabilities ~P�11;

~Pþ12, and Pe1

are thus determined. Similarly, by simulating the atomic configuration after a type-
2 jump and following the random walk of the vacancy, the probabilities ~P�21; ~Pþ22,
and Pe2 are determined. From Eq. 5.101, the probabilities P	ij are then calculated
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using the probabilities ~P	ij and Pei (i, j = 1, 2) obtained from the Monte Carlo
simulation.

The probabilities ~P	 are calculated in a similar manner: An atomic configu-
ration after the tracer jump of type 1 is modeled, and the following random walk of
the vacancy is considered until it either induces a tracer jump or escapes from the
tracer atom. The events resulting in the type-1 jump (with a nonzero displacement
perpendicular to the tetragonal axis) are counted, and their probability is deter-
mined by appropriate averaging. In view of Eq. 5.102, neither is it necessary to
determine the probability that the vacancy escapes nor that it induces a jump of
type 2 (with zero displacement perpendicular to the tetragonal axis). The proba-
bilities ~P	 can be inserted in Eq. 5.93 instead of the total probabilities P±, and the
relevant correlation factor f\ can be determined.

In the simulation, the initial vacancy and a tracer atom were introduced into the
center of the simulation block. If the vacancy reaches the external boundary of the
simulation block in the course of its random walk, we consider it as escaped from
the tracer atom. The particular values of P	ij and Pei turned out to depend on the
size of the simulation block. However, their combination in Eq. 5.101 approaches
a constant value when the size of the simulation block is increased.

The random walk of a vacancy is simulated in a standard manner. On any lattice
site, the vacancy can perform either one out of 4 possible jumps of type 1 or one
jump of type 2. The corresponding probabilities are x1/(4x1 + x2) and x2/
(4x1 + x2), respectively. Since the absolute diffusivities are not addressed here,
the frequency ratio x2/x1 is the only crucial parameter.

All probabilities depend only on this ratio. By using an appropriate random
number generator, for each Monte Carlo step, the direction of the vacancy jump is
chosen in agreement with the above-mentioned probabilities for the given value of
the ratio x2/x1. The position of the vacancy is then updated, and the next jump
direction is selected. Thus, in each Monte Carlo step, the vacancy definitely
performs one jump onto a neighbor site, and the probability of the given jump
depends on the frequency ratio x2/x1. The frequency ratio x2/x1 was changed in
the simulations in the wide range from 10-5 to 105.

In the particular calculations, a simulation block of 80 9 80 9 80 unit cells
was found to give satisfactory results (the unit cell for the MoSi2 structure is
shown in Fig. 5.46a). The random walk of a vacancy was followed until either the
vacancy induces a jump of type j of the tracer atom or the vacancy reaches the
outer surface of the simulation block. This procedure was repeated for 105 to 107

times, and the probabilities ~P	ij and Pei were estimated from suitable averages of
the individual Monte Carlo runs. Then, the partial correlation factors were cal-
culated for the chosen ratios of the frequencies x2/x1.

One comment about the calculation of the probabilities P± may be added.
Diffusion perpendicular to the tetragonal axis is mediated exclusively by type-1
jumps. Consideration of type-1 jumps solely would correspond to a two-dimen-
sional random walk within a Si bilayer of the MoSi2 structure. The escape
probability in a random walk on a two-dimensional lattice is exactly zero.
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However, since in the Si sublattice, type-2 jumps also occur with a probability
depending on the ratio x2/x1, the vacancy can still escape from the tracer atom and
randomize. If the ratio x2/x1 is very small, the vacancy will very rarely jump to
another Si bilayer in the MoSi2 structure during the simulation run. However, after
a sufficiently large number of jumps, the vacancy will almost have lost its
‘‘memory’’ of the position of the tracer atom and can be considered as
‘‘randomized.’’

The calculated partial and total correlation factors are presented in Fig. 5.47 as
functions of the frequency ratio x2/x1. For practical purposes and for convenient
reference, it is useful to express the numerically calculated correlation factors by
suitable analytical formula. Appropriate fits can be obtained ratios of polynomial
functions:

f ¼
a0 þ a1

x2
x1

ffi �
þ a2

x2
x1

ffi �2

b0 þ b1
x2
x1

ffi �
þ b2

x2
x1

ffi �2
þb3

x2
x1

ffi �3 ð5:104Þ

with appropriate values of the constants ai and bi. The curves in Fig. 5.47 are
drawn using such expressions. Note that the rational form of the fitting function
has no direct physical background. However, the crystal lattice could be linked to

Fig. 5.47 The correlation
factors of Si diffusion on the
Si sublattice of MoSi2 as a
function of the frequency
ratio x2/x1. The error bars
represent the standard
deviations from the mean
values. The solid lines
correspond to Eq. 5.104
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an electrical network and the correlation factors may be expressed in terms of the
resistivity of such a network. It seems reasonable that the resistivity of a network
with parallel and series connections is likely expressed by a rational function. Each
partial correlation factor is calculated by own set of parameters.

The correlation factor f\ for diffusion perpendicular to the tetragonal axis
changes monotonically from 0.466 ± 0.002 to 0.748 ± 0.002 when x2/x1

increases from 10-4 to 103 (Fig. 5.47, squares), respectively. For x2/x1 = 0,
diffusion is confined to a Si bilayer and can be considered to be two-dimensional.
Then, Si diffusion perpendicular to the tetragonal axis can still occur without type-
2 jumps (Fig. 5.46b), and the pertaining correlation factor f\ is finite. No long-
range diffusion along the tetragonal axis occurs in such a case: A jump with
a +z component is immediately followed by a jump with a -z component and vice
versa. For x2/x1 = 0, the Si sublattice can be considered as a square lattice. The
exact correlation factor of vacancy diffusion on a square lattice is known to be
0.4669 which is well reproduced by the Monte Carlo technique.

The partial correlation factor f1jj increases monotonically from almost zero to
0.80 ± 0.02 when x2/x1 increases in the same range (Fig. 5.47, triangles up).
Somehow unexpected is the behavior of f2jj , which approaches a value of 1.5 when
x2/x1 ? 0 (Fig. 5.47, triangles down). As x2/x1 increases, f2jj drops gradually to
zero. The total correlation factor of Si diffusion along the tetragonal axis, fjj,
remains smaller than unity (Fig. 5.47, circles), although the partial correlation
factor f2jj is larger than unity at small values of x2/x1.

The case of f2jj is very interesting. Forward correlation produced by the specific
structure of the Si sublattice in MoSi2 results in f2jj[ 1 for x2/x1 ? 0. Let us
analyze this limiting case analytically.

Suppose that a tracer atom has just performed a type-1 jump. Since x2 & 0, the
vacancy performs an almost two-dimensional random walk in the Si bilayer in
which the tracer atom is located. Since the escape probability on a two-dimen-
sional lattice is zero, the vacancy will definitely return to the tracer atom and at
sometime induces a type-1 jump. The probability for the vacancy to jump into the
neighboring Si bilayers and to induce a type-2 jump is practically zero. Thus, for
x2/x1 ? 0, we have P�11 ? 1 and Pþ12 ? 0. Now consider a random walk of the
vacancy just after a type-2 jump of the tracer atom has occurred. The vacancy and
the tracer atom are in different Si bilayers, and the probability that the vacancy
immediately induces the type-2 backward jump of the tracer atom is almost zero,
i.e., P�22 & 0. However, occasionally, the vacancy will interchange somewhere
between the Si bilayers; it can then appear in the same Si bilayer where the tracer
atom is located. The probability that the vacancy will jump exactly toward the
tracer atom position is negligibly small. Then, after a random walk within the Si
bilayer where the tracer atom is located, the vacancy will induce a type-1 jump of
the tracer atom. Thus, it is reasonable to suppose that Pþ21 ? 1 if x2 ? 0.
Introducing these values of P	ij Eq. 5.102 and taking into account that the escape
probabilities are zero, the T matrix for x2/x1 ? 0 becomes
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T ¼ �1 0
1 0

����
���� ð5:105Þ

Then, the partial correlation factors turn out to be

f1jj ¼ 1þ 2 � � 1
2

� �
¼ 0 ð5:106Þ

and

f2jj ¼ 1þ 2 � 1
2

� �
c=6
c=3
¼ 1:5 ð5:107Þ

These estimates for the limiting case x2/x1 ? 0 perfectly agree with the Monte
Carlo results of Fig. 5.47.

This example teaches us that though the correlation factors do not exceed
unity just by definition, the partial correlation factors could be larger than
unity, if a forward correlation of jumps is involved. Diffusion of Si atoms in
MoSi2 represents a textbook example where one of partial correlation factors
can be as large as 1.5!
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Chapter 6
Interdiffusion and the Kirkendall Effect
in Binary Systems

This chapter deals with diffusion in the phases with wide homogeneity range.
Different approaches, which could be used to estimate the variation of interdif-
fusion coefficients with composition, are described. Following the Kirkendall
effect is introduced along with the estimation of the intrinsic diffusion coefficients.
The estimation of the tracer diffusion coefficients from a diffusion couple is also
explained.

This chapter considers the continuum approach of diffusion, where the diffusion
of components is treated in a continuous medium without going into the details of
the atomic mechanism of diffusion. The advantage of this approach is that we can
analyze and predict the micro- and/or macroscopic physicochemical changes in
applications without going into a complicated atomistic model. In 1896, Sir
W. C. Roberts reported for the first time the systematic study of the diffusion of
gold in solid lead [1]. From the experiments in the early twentieth century, it was
evident that the diffusion coefficient in the solid state is not a constant, but is rather
a function of composition and temperature. Earlier in Chap. 3, we introduced the
solutions for Fick’s second law of diffusion considering the constant diffusion
coefficient, which are not usually the case in practical examples. In many systems,
diffusion coefficients might vary in the range of a few orders of magnitude. It is not
possible to solve the relation considering the variation in the diffusion coefficient
with composition, since a particular composition changes location with time in
the interdiffusion zone. To clarify, considering the variation of interdiffusion
coefficient with composition, Fick’s second law can be written as

oC

ot
¼ o

ox
eD oC

ox

� �

¼ oeD
ox

oC

ox
þ eD o2C

ox2

ð6:1Þ

The term oeD=ox makes the equation inhomogeneous, and the solution in the
closed form is not possible.
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However, instead of finding a solution for C(x, t) as done in Chap. 3, it is

possible to find the solution for eD ¼ eD Cð Þ; that is, the variation in the interdif-
fusion coefficient with concentration using the Boltzmann parameter.

6.1 Matano–Boltzmann Analysis

Matano [2] with the help of the Boltzmann parameter [3] solved Fick’s second law
so that we are able to estimate the variation in the interdiffusion coefficients with
composition. Frequently, researchers use the Matano–Boltzmann analysis to
estimate the interdiffusion coefficients at desired compositions from a measured
composition profile. However, the limitation of this method is that it can be used
strictly where the partial molar volumes of the components are constant; that is, the
total volume does not change with reaction and mixing. This is explained in
greater detail later in this chapter in Sect. 6.5. At this point, we are interested to
derive the Matano–Boltzmann relation. Consider the case, when two alloys of
initial concentrations C�B and CþB are coupled and annealed for a reasonably short
time t such that after annealing, some parts of the end members still remain
unaffected by interdiffusion as shown in Fig. 6.1. The boundary conditions can be
written as

CB ¼ C�B for x\ 0 at t ¼ 0

CB ¼ CþB for x [ 0 at t ¼ 0
ð6:2Þ

where ‘‘-’’ and ‘‘+’’ represent the left- and right-hand ends of the diffusion couple.
Boltzmann [3] introduced the variable

k ¼ k CBð Þ ¼ x� xoð Þ=t1=2 ¼ x=t1=2 ð6:3Þ

where xo = 0 is the location of the initial contact plane (bonding interface before
annealing) and x is the location with respect to this plane. The initial contact plane
is also known as the Matano plane in most of the literature on this subject.
Equation 6.3 suggests that every concentration, for example, C�B, will move from
the initial contact plane such that k� ¼ k C�B

ffi �
¼ x�=t1=2 will have a fixed value. To

clarify further, we consider Fig. 6.1. Suppose at the location x1, the concentration
of the plane is C�B after an annealing time of t1. At another annealing time, let us
suppose after t2, the same concentration is to be found at the location of x2.
According to the Boltzmann parameter, the plane corresponding to C�B will move
such that

k� ¼ k C�B
ffi �

¼ x1=t1=2
1 ¼ x2=t1=2

2 ¼ constant
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It further indicates that in a diffusion-controlled process (parabolic growth of
the phase layer), every concentration in the interdiffusion zone will have a fixed k
value. This means that we can verify the diffusion-controlled process by plotting k
versus x=t1=2 after conducting the experiments for different annealing times. The
variation of k estimated at different concentrations with respect to x=t1=2 will be
the same irrespective of different annealing times. However, note that k at one
particular concentration will depend on the end-member concentrations in the
diffusion couple and will have a different value in another diffusion couple with
different end members.

Using the Boltzmann parameter given in Eq. 6.3, we obtain

oCB

ot
¼ oCB

ok
ok
ot
¼ � 1

2
x

t3=2

oCB

ok
oCB

ox
¼ oCB

ok
ok
ox
¼ 1

t1=2

oCB

ok

ð6:4Þ

And replacing Eq. 6.4 in Fick’s second law (Eq. 6.1) results in

Fig. 6.1 Significance of the
Boltzmann parameter is
explained with the help of
a Diffusion couple and b its
concentration profile
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oCB

ot
¼ o

ox
eD oC

ox

� �
� x

2t
3
2

oCB

ok

¼ o

ox

eD
t

1
2

oCB

ok

 !
¼ o

t
1
2ox

eD oCB

ok

� � ð6:5Þ

since the concentration profiles under consideration are after a fixed annealing
time t. From Eq. 6.3, it is possible to write ok ¼ ox=t1=2. By introducing it in
Eq. 6.5, we get

� x

2t3=2

oCB

ok
¼ 1

t

o

ok
eD oCB

ok

� �

Again by replacing with the Boltzmann parameter, k, it can be written with
respect to variable k as

� k
2

dCB

dk
¼ d

dk
eD dCB

dk

� �
ð6:6Þ

Multiplying both the sides by dk, we get

� 1
2
kdCB ¼ d eD dCB

dk

� �
ð6:7Þ

The initial conditions of Eq. 6.2 at time t = 0 can be rewritten as

C ¼ C�B at k ¼ �1
C ¼ CþB at k ¼ þ1

ð6:8Þ

Integrating Eq. 6.7 from the initial concentration C�B to the concentration of

interest, C�B to measure the interdiffusion coefficient, eD, results in

� 1
2

ZC�B
C�B

kdCB ¼ eDdCB

dk

����
C�B

C�B

ð6:9Þ

The data are always measured at some fixed time so that t is constant. Replacing
the Boltzmann parameter, we arrive at

� 1
2

ZC�B
C�B

xdCB ¼ eDt
dCB

dx

����
C�B

C�B

¼ eDt
dCB

dx

� �
C�B

� eDt
dCB

dx

� �
C�B

¼ eDt
dCB

dx

� �
C�B

ð6:10Þ
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since dCB
dx

ffi �
C�B
¼ 0 at the unaffected part of the diffusion couple, where it has a

concentration of C�B (see Fig. 6.2). Equation 6.10 can thus be rewritten as

eD C�B
ffi �

¼ � 1
2t

dx

dCB

� �
C�B

ZC�B
C�B

xdCB

2
64

3
75 ð6:11Þ

So the interdiffusion coefficient at the concentration of interest C�B can be
determined using Eq. 6.11. This is explained considering the composition profile
developed in a binary A–B system, as presented in Fig. 6.2c. In general, it is easier

Fig. 6.2 Calculation of the
diffusion parameter following
Matano–Boltzmann
parameter. a Diffusion
couple, b finding the location
of the initial contact plane by
equalizing the areas P and Q,
and c estimation of the
interdiffusion coefficient is
explained
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to integrate with respect to x in order to estimate the area under the integral. After
integrating by parts, the following is obtained

eD C�B
ffi �

¼ � 1
2t

dx

dCB

� �
C�B

x� C�B � C�B
ffi �

�
Zx�

x�1

CB � C�B
ffi �

dx

2
4

3
5 ð6:12Þ

since x� ¼ x� � xo. The value x�1 is the location at the unaffected end member of
the diffusion couple on the left. Note here that the location parameter is measured
with respect to xo and the concentration is considered from one unaffected part of
the diffusion couple (left-hand side in the present case). From Fig. 6.2c, the
interdiffusion coefficient can be expressed in terms of the areas as

eD C�B
ffi �

¼ 1
2t

dx

dCB

� �
C�B

Sþ R½ � ð6:13Þ

Note here the missing minus sign, since the values of R and S are actually
positive and negative, respectively, in this particular case. To estimate the inter-
diffusion coefficients using Eq. 6.13, it is necessary to use the absolute values of
the areas R and S. However, we should be careful before choosing Eq. 6.13 rather
than Eq. 6.12. This is because Eq. 6.13 cannot be used directly if the concentration
of interest is on the other side of the initial contact plane. It is nevertheless always
safe to refer to Eq. 6.12. This is explained with an example at the end of this
section.

It must be clear that we need to determine the location of the initial contact
plane (as explained in Fig. 6.2b) for the determination of the interdiffusion coef-
ficients. From the mass balance, we can write

ZCþB
C�B

xdCB ¼ 0

ZCo
B

C�B

xdCB þ
ZCþB
Co

B

xdCB ¼ 0 ð6:14aÞ

Zxo

x�1

CB � C�B
ffi �

dx ¼
Zxþ1

xo

CþB � CB

ffi �
dx ð6:14bÞ

where Co
B is the concentration of the component B at xo after interdiffusion. Note

here that the other parts in both the sides after integration by parts are equal to zero
since xo = 0. The value xþ1 is the location at the unaffected end member of the
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diffusion couple on the right. Equations 6.14a and 6.14b suggests that the location
of xo can be found by equalizing the areas denoted by P and Q, as shown in
Fig. 6.2b.

To clarify the estimation methodology, we consider an imaginary diffusion
couple in a hypothetical binary system, the one portrayed in Fig. 6.3. For instance,
suppose a diffusion couple was made between two alloys of A0.85B0.15 and
A0.15B0.85. Following the explanations given in Chap. 4, only the b phase will
grow with a wide homogeneity range of NB = 0.4 to NB = 0.6. For the sake of

easy explanation and estimation of eD without the use of any software, we consider
that the composition profile inside the product phase in the diffusion couple has a
fixed slope. Furthermore, we assume that the molar volume is constant over
the whole composition range. Since CB ¼ NB=vm, where mm is the molar volume,
Eq. 6.12 can be rewritten as

eD N�B
ffi �

¼ � 1
2t

dx

dNB

� �
N�B

x� N�B � N�B
ffi �

�
Zx�

x�1

NB � N�B
ffi �

dx

2
4

3
5 ð6:15Þ

Note here that it is actually possible to consider the molar volume of the
different phases for the calculation in real systems. The methodology explained
here based on the NB versus x profile is similar to the calculation from CB versus
x profile using Eq. 6.12. Suppose the diffusion couple was annealed for 100 h and
the measured composition profile shows the thickness of the product phase layer as
being 200 lm. The composition profile is measured along the dotted line shown on
the diffusion couple in Fig. 6.3. The hypothetical composition profile is shown in
Fig. 6.4a.

As explained above, the prerequisite of the calculation is finding the location of
the initial contact plane. By equalizing the areas P and Q, we find this plane to be
located at 150 lm, as can be noted from Fig. 6.4b. Therefore, this location should
be set to zero, as shown in Fig. 6.4c. Now suppose, we wish to estimate the
interdiffusion coefficient at NB = 0.45, which is located at -50 lm. It will,
therefore, be necessary to first estimate the slope. Since it has a fixed slope over the
whole product phase, it can be estimated as

dNB

dx
¼ 0:6� 0:4

100� ð�100Þ½ � � 10�6
¼ 0:2

200� 10�6
¼ 103=m

Further, the areas that are shown in Fig. 6.4c can be written as

S ¼ x� N�B � N�B
ffi �

¼ x� � xoð Þ N�B � N�B
ffi �

¼ �50� 10�6 0:45� 0:15ð Þ ¼ �15� 10�6 m
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R ¼
Zx�

x�1

NB � N�B
ffi �

dx

¼ �50� ð�100Þ½ � 0:4� 0:15ð Þ þ 1
2
�50� ð�100Þ½ � 0:45� 0:4ð Þ ¼ 13:75� 10�6 m

Thus, following Eq. 6.15, for the annealing time of 100 h, the interdiffusion
coefficient can be estimated as

eD N�B ¼ 0:45
ffi �

¼ � 1
2t

dx

dNB

� �
N�B

x� N�B � N�B
ffi �

�
Zx�

x�1

NB � N�B
ffi �

dx

2
4

3
5

¼ � 1
2� 100� 60� 60

� 1
103
�15� 10�6 � 13:75� 10�6
� �

¼ 3:99� 10�14 m2=s

Note that this explains the missing minus sign in Eq. 6.13.
Now let us turn to estimate the interdiffusion coefficient at the composition of

NB = 0.525. The reader is referred to Fig. 6.4d for the calculation. Note that the
composition gradient dNB=dxð Þ in this particular case is the same. The areas can be
written as

Fig. 6.3 An imaginary
diffusion profile is shown
based on the alloys in an
imaginary binary system
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N ¼ x� N�B � N�B
ffi �

¼ x� � xoð Þ N�B � N�B
ffi �

¼ 25� 10�6 0:525� 0:15ð Þ ¼ 9:375� 10�6 m

M ¼
Zx�

x�1

NB � N�B
ffi �

dx

¼ 25� ð�100Þ½ � 0:4� 0:15ð Þ þ 1
2

25� ð�100Þ½ � 0:525� 0:4ð Þ ¼ 39:06� 10�6 m

As a result, the interdiffusion coefficient can be estimated as

(a) (b)

(c) (d)

Fig. 6.4 Calculation procedure of the interdiffusion coefficient at the composition of interest.
a Composition profile, b locating the initial contact plane, c estimating the interdiffusion
coefficient at the composition of interest in the left-hand side of the initial contact plane, and
d estimating the interdiffusion coefficient at the composition of interest in the right-hand side of
the initial contact plane

6.1 Matano–Boltzmann Analysis 247



eD N�B ¼ 0:525
ffi �

¼ � 1
2t

dx

dNB

� �
N�B

x� N�B � N�B
ffi �

�
Zx�

x�1

NB � N�B
ffi �

dx

2
4

3
5

¼ � 1
2� 100� 60� 60

� 1
103

9:375� 10�6 � 39:06� 10�6
� �

¼ 4:12� 10�14 m2=s

6.2 Limitation of the Matano–Boltzmann Analysis

We have shown previously that the location of the initial contact plane or the
Matano plane can be found from the concentration profile, i.e., CB versus x using

the relation
R xo

x�1 CB � C�B
ffi �

dx ¼
R xþ1

xo
CþB � CBð Þdx. Ideally, it should also be

possible to find this plane from CA versus x using the relation
R xo

x�1 C�A � CA

ffi �
dx ¼

R xþ1

xo
CA � CþA
ffi �

dx. Note here that NA + NB = 1, N�
A
þ N�

B
¼ 1. Therefore

CB vs. x increases from left to right ðC�B \CþB Þ, CA vs. x decreases in the same
direction ðC�A [ CþA Þ. Since there is a unique initial contact plane, we should be
able to find the same location by following any of the profiles. However, this is not
always the case. As explained in Fig. 6.5, there can be three different situations
depending on the variation of the molar volume with composition. It is almost
impossible to find a practical system, in which molar volume varies ideally fol-
lowing Vegard’s law with the composition as shown in Fig. 6.5a. However, there
are a few systems, where the deviation of the molar volume from the straight line
connecting the molar volumes of the pure components vA

m and vB
m is marginal.

Consequently, there will be almost no change in the total volume of the diffusion
couple after interdiffusion. In this case, the initial contact planes located from the
profiles CB versus x and CA versus x will be more or less the same. In fact, if the
molar volume varies ideally following Vegard’s law ðvm ¼ NAvA

m þ NBvB
mÞ, then

the location of this plane found from any of the profiles will be exactly the same.
In most of the systems, the molar volume deviates from the ideality. There can be
positive deviation, as presented in Fig. 6.5b. Since the compositions that develop
in the interdiffusion zone have a higher molar volume than the ideal value, there
will be expansion in the diffusion couple, resulting in an increase in the total length
of the diffusion couple. Note here that the diffusion profile in the diffusion couple
is one dimensional. In this case, two different locations of the initial contact plane
are found (as explained later in Sect. 6.5). In fact, both are actually incorrect and
we are unable to find the exact location of the initial contact plane. In a system,
where the molar volume has a negative deviation from the ideality, the diffusion
couple will shrink after interdiffusion, as depicted in Fig. 6.5c. In this case also,
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two different values will be found when the initial contact plane is determined
from CA versus x and CB versus x.

As explained in the previous section, it is necessary to find the location of the
initial contact plane for the calculation of the interdiffusion coefficient using the
Matano–Boltzmann relation. In most of the systems, the molar volume deviates
from ideality. Therefore, we are unable to locate the position of the initial contact
plane exactly. This leads to an error in the calculation of the diffusion parameters.

To circumvent this problem, relations to estimate eD were developed such that
there is no need to find the initial contact plane. Ballufi [4] first derived the
solution for the interdiffusion coefficient for systems where the molar volume does
not change ideally. Sometime later, Sauer and Freise [5] generalized the Matano–
Boltzmann analysis for the same conditions. Wagner [6] then came to a similar
relation but by using a simpler and easy-to-understand method. Next came Den
Broeder [7] who developed the relation based on a much simpler graphical
interpretation. Here, the Den Broeder approach is first explained, as it is fairly easy
to follow. After that, we present the Wagner approach, which is very useful to
derive the equations to be used for the estimation of few other important diffusion
parameters along with the interdiffusion coefficients.

6.3 Den Broeder Approach to Determine
the Interdiffusion Coefficient

Den Broeder [7] followed an easy-to-understand graphical approach. The con-
centration-normalizing variable YC is introduced such that

YC ¼
CB � C�B
CþB � C�B

ð6:16Þ

Fig. 6.5 Effect of deviation of molar volume in the diffusion couples is shown for a ideal case,
b positive deviation, and c negative deviation
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This leads to

dYC ¼
dCB

CþB � C�B
ð6:17Þ

Replacing Eqs. 6.16 and 6.17 in Eq. 6.12 results in

eD Y�C
ffi �

¼ � 1
2t

dx

dYC

� �
Y�C

x�Y�c �
Zx�

x�1

YCdx

2
4

3
5 ð6:18Þ

To determine the interdiffusion coefficients using the relation expressed in
Eq. 6.18, it is necessary to convert the concentration profile (Fig. 6.6b) to YC

versus x, as shown in Fig. 6.6c. Note here that Y�C ¼ 0 and YþC ¼ 1. In terms of the
areas shown in Fig. 6.6c, Eq. 6.18 can be expressed as

Fig. 6.6 Calculation of the interdiffusion coefficients is shown following Den Broeder’s approach.
a Diffusion couple, b concentration profile, c derivation of the Den Broeder’s approach, and d slope
at the concentration of interest
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eD Y�C
ffi �

¼ 1
2t

dx

dYC

� �
Y�C

Sþ R½ � ð6:19Þ

The minus sign is missing in Eq. 6.19 (similar to Eq. 6.13) since the value of
S is negative and the value of R is positive. With respect to the position of the
initial contact plane xo we can write

Rþ SþM ¼ P ð6:20Þ

By adding N to both sides, we get

Rþ SþM þ N ¼ Pþ N

SþM þ N ¼ Pþ N � R
ð6:21Þ

We can further write that

SþM þ N ¼ x� � xoð ÞYþC ¼ x� ð6:22aÞ

Since YþC ¼ 1.

Pþ N ¼
Zxþ1

x�

1� YCð Þdx ð6:22bÞ

R ¼
Zx�

x�1

YCdx ð6:22cÞ

Replacing 6.22a, 6.22b and 6.22c in 6.21, we get

x� ¼
Zxþ1

x�

1� YCð Þdx�
Zx�

x�1

YCdx ð6:23Þ

Therefore, the following is obtained

S ¼ x�Y�C ¼ Y�C

Zxþ1

x�

1� YCð Þdx� Y�C

Zx�

x�1

YCdx ð6:24Þ
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Sþ R ¼ Y�C

Zxþ1

x�

1� YCð Þdx� Y�C

Zx�

x�1

YCdxþ
Zx�

x�1

YCdx

¼ 1� Y�C
ffi � Zx�

x�1

YCdxþ Y�C

Zxþ1

x�

1� YCð Þdx

ð6:25Þ

Replacing Eq. 6.25 in Eq. 6.19 gives

eD Y�C
ffi �

¼ 1
2t

dx

dYC

� �
Y�C

1� Y�C
ffi � Zx�

x�1

YCdxþ Y�C

Zxþ1

x�

1� YCð Þdx

2
4

3
5 ð6:26Þ

Following Fig. 6.6d, we can express Eq. 6.26 as

eD Y�C
ffi �

¼ 1
2t

dx

dYC

� �
Y�C

1� Y�C
ffi �

Rþ Y�CQ
� �

ð6:27Þ

This means that it is no longer necessary to locate the initial contact plane. We
measure the composition profile, i.e., NB versus x, by using the composition-
measuring techniques. NB is the atomic fraction of the component B. Dividing the
atomic fractions by the respective molar volumes, the concentration profile can
then be estimated. The concentration profile is converted into the concentration-
normalizing variable YC versus x. Next, the interdiffusion coefficients can be
estimated by determining the gradient at the point of interest and by estimating the
areas R and Q, as shown in Fig. 6.6d, considering the known annealing time t. That
means we do not have to consider an ideal variation or a fixed molar volume as
required for the calculation using the Matano–Boltzmann analysis. Note here that
Sauer-Freise [5] derived the same relation but differently.

6.4 Wagner’s Approach to the Calculation
of the Interdiffusion Coefficient

From Fick’s first law and the relations expressed in Sect. 1.18 (Eq. 1.150), the
following is obtained

eJB ¼ �eD oCB

ox
¼ �eD �vA

v2
m

oNB

ox
ð6:28aÞ

Similarly, the interdiffusion flux with respect to the component A can be
expressed as
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eJA ¼ �eD oCA

ox
¼ �eD �vB

v2
m

oNA

ox
¼ eD �vB

v2
m

oNB

ox
¼ �vB

�vA

eD �vA

v2
m

oNB

ox
ð6:28bÞ

Since NA + NB = 1
From Eqs. 6.28a and 6.28b, we can write

�vAeJA þ �vBeJB ¼ 0 ð6:29Þ

So it must be apparent that the interdiffusion fluxes are different when estimated
using the concentration profiles of different components. However, the interdif-
fusion coefficient is a material constant and the value is the same, whether
determined with respect to either of the component A or component B.

Using the relations presented in Eq. 1.144 (Sect. 1.18), Eq. 6.28a can be
rewritten as

eJB
NB�vB þ NA�vAð Þ

vm
¼ �eD �vA

v2
m

oNB

ox

eD ¼ � vm NB�vBeJB þ NA�vAeJB

ffi �
�vA oNB=oxð Þ

Using Eq. 6.29, we can write

eD ¼ � vm �NB�vAeJA þ NA�vAeJB

ffi �
�vA oNB=dxð Þ

eD ¼ vm NBeJA � NAeJB

ffi �
oNB=ox

ð6:30Þ

From Fick’s second law, as expressed in Eq. 3.4, we can write

o

ot

NB

vm

� �
¼ oCB

ot
¼ � oeJB

ox
ð6:31aÞ

o

ot

NA

vm

� �
¼ oCA

ot
¼ � oeJA

ox
ð6:31bÞ

We introduce a composition-normalized variable as

YB ¼
NB � N�B
NþB � N�B

ð6:32Þ

This can be rewritten as

NB ¼ NþB YB þ N�B 1� YBð Þ ð6:33aÞ
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Substituting the left-hand side with NB = 1 - NA

1� NA ¼ NþB YB þ N�B 1� YBð Þ
1� NA ¼ NþB YB þ N�B 1� YBð Þ þ YB � YB

NA ¼ 1� NþB YB � N�B 1� YBð Þ � YB þ YB

NA ¼ YB � NþB YB

ffi �
þ 1� YB � N�B 1� YBð Þ
� �

NA ¼ 1� NþB
ffi �

YB þ 1� N�B
ffi �

1� YBð Þ

ð6:33bÞ

Substituting Eqs. 6.33a and 6.33b in Eqs. 6.31a and 6.31b, respectively, we
arrive at

NþB
o

ot

YB

vm

� �
þ N�B

o

ot

1� YB

vm

� �
¼ � oeJB

ox
ð6:34aÞ

1� NþB
ffi � o

ot

YB

vm

� �
þ 1� N�B
ffi � o

ot

1� YB

vm

� �
¼ � oeJA

ox
ð6:34bÞ

We know the Boltzmann parameter expressed in Eq. 6.3 to be

k ¼ k CBð Þ ¼ x

t1=2
ð6:35Þ

By differentiating with respect to t, we get

dk ¼ � 1
2

x

t3=2
dt ¼ � 1

2
k
t

dt

dt ¼ �2t
dk
k

ð6:36Þ

Replacing Eq. 6.36 in Eqs. 6.34a and 6.34b we obtain

k
2t

NþB
d

dk
YB

vm

� �
þ N�B

d

dk
1� YB

vm

� �	 

¼ oeJB

ox
ð6:37aÞ

k
2t

1� NþB
ffi � d

dk
YB

vm

� �
þ 1� N�B
ffi � d

dk
1� YB

vm

� �	 

¼ oeJA

ox
ð6:37bÞ

Next, the expressions are rewritten with respect to YB
vm

and 1�YB
vm

. Multiplying

Eq. 6.37a by 1� N�B
ffi �

and Eq. 6.37b by N�B and then subtracting the corre-
sponding sides, we get

254 6 Interdiffusion and the Kirkendall Effect in Binary Systems



� k
2t

NþB � N�B
ffi � d

dk
YB

vm

� �
¼ N�B

oeJA

ox
� 1� N�B
ffi � oeJB

ox
ð6:38aÞ

In the same way, multiplying Eq. 6.37a by 1� NþBð Þ and Eq. 6.37b by NþB and
then subtracting the corresponding sides leads to

k
2t

NþB � N�B
ffi � d

dk
1� YB

vm

� �
¼ NþB

oeJA

ox
� 1� NþB
ffi � oeJB

ox
ð6:38bÞ

By differentiating the Boltzmann parameter with respect to x, we get

dk ¼ dx

t1=2

Next, we multiply dk to the left-hand side and dx/t1/2 to the right-hand side of
Eq. 6.38a so that

� k
2t

NþB � N�B
ffi �

d
YB

vm

� �
¼ 1

t1=2
N�B deJA � 1� N�B

ffi �
deJB

� �

From the Boltzmann parameter, we can write x ¼ x�1; k ¼ k�1 and
x ¼ x�; k ¼ k�.

Integrating for a fixed annealing time t from k ¼ k�1 to a particular position of
interest k ¼ k� (corresponds to the mole fraction N�B), we get

� 1
2t

NþB � N�B
ffi � Zk�

k�1

kd
YB

vm

� �
¼ 1

t1=2
N�B

ZeJ �A
o

deJA � 1� N�B
ffi � ZeJ �B

o

deJB

2
664

3
775

Note that the interdiffusion flux at the unaffected part x ¼ x�1 or k ¼ k�1 is
zero.

Following integration by parts on the left-hand side, we get

� 1
2t

NþB � N�B
ffi � k�Y�B

v�m
�
Zk�

k�1

YB

vm
dk

2
4

3
5 ¼ 1

t1=2
N�B eJ�A � 1� N�B

ffi �eJ�B� �

1
2t

NþB � N�B
ffi �

� k�Y�B
v�m
þ
Zk�

k�1

YB

vm
dk

2
4

3
5 ¼ 1

t1=2
N�B eJ�A � 1� N�B

ffi �eJ�B� �
ð6:39aÞ

In the same way, we multiply Eq. 6.38b by dk on the left-hand side and by dx/
t1/2 on the right-hand side. Following integration from k ¼ k� to k ¼ kþ1 and then
by doing integration by parts on the left-hand side of the equation, we get
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1
2t

NþB � N�B
ffi � k� 1� Y�B

ffi �
v�m

þ
Zkþ1

k�

1� YBð Þ
vm

dk

2
64

3
75 ¼ 1

t1=2
NþB eJ�A � 1� NþB

ffi �eJ�B� �

Note here the sign because of (1 - YB).

1
2t

NþB � N�B
ffi �

�
k� 1� Y�B
ffi �

v�m
�
Zkþ1

k�

1� YBð Þ
vm

dk

2
64

3
75 ¼ 1

t1=2
�NþB eJ�A þ 1� NþB

ffi �eJ�B� �

ð6:39bÞ

J�A and J�B are the fluxes at k ¼ k�. Multiplying Eq. 6.39a by 1� Y�B
ffi �

and
Eq. 6.39b by Y�B and subtracting the corresponding sides, we obtain

1
2t

NþB � N�B
ffi �

1� Y�B
ffi � Zk�

k�1

YB

vm
dkþ Y�B

Zkþ1

k�

1� YBð Þ
vm

dk

2
4

3
5

¼ 1

t1=2
N�BeJ�A � 1� N�B

ffi �eJ�B� �
ð6:40Þ

Note here that the right-hand side of the relation can be found by replacing

Y�B ¼
N�B�N�B
NþB �N�B

and 1� Y�B ¼
NþB �N�B
NþB �N�B

.

Since dk ¼ dx
t1=2, Eq. 6.40 can be written as

1
2t

NþB � N�B
ffi �

1� Y�B
ffi � Zk�

k�1

YB

vm
dxþ Y�B

Zkþ1

k�

1� YBð Þ
vm

dx

2
64

3
75

¼ N�BeJ�A � 1� N�B
ffi � eJ�B� �

ð6:41Þ

Previously, we have derived the interdiffusion coefficient with respect to the

interdiffusion fluxes eJA and eJB in Eq. 6.30. At a particular composition of interest

NB ¼ N�B, for the fluxes of eJ �A and eJ�B, it can be written as

eD N�B
ffi �

¼
v�m N�BeJ�A � N�AeJ�Bffi �

dNB=dxð Þx�
ð6:42Þ

Substituting Eq. 6.41 in Eq. 6.42 results in

eD N�B
ffi �

¼
NþB � N�B
ffi �

v�m
2t dNB=dxð Þx�

1� Y�B
ffi � Zx�

x�1

YB

vm
dxþ Y�B

Zx�1

x�

1� YBð Þ
vm

dx

2
4

3
5 ð6:43Þ
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From Eq. 6.32, we can write

dYB ¼
dNB

NþB � N�B
ð6:44Þ

And replacing Eq. 6.44 in Eq. 6.43, we get

eD Y�B
ffi �

¼ v�m
2t dYB=dxð Þx�

1� Y�B
ffi � Zx�

x�1

YB

vm
dxþ Y�B

Zxþ1

x�

1� YBð Þ
vm

dx

2
4

3
5 ð6:45Þ

The calculation procedure is explained in Fig. 6.7. After measuring the com-
position profile in atomic fraction, presented in Fig. 6.7b, the normalized profile
should be plotted, as shown in Fig. 6.7c. Moreover, from the knowledge of the
variation of the molar volume with composition, YB

vm
and 1�YB

vm
versus x should be

plotted as shown in Fig. 6.7d and e, respectively. If we wish to estimate the
interdiffusion coefficient at the composition, N�B, which is located at x� in the
diffusion couple, we need to estimate how the gradient dYB

dx at Y�B corresponds to N�B.

Afterward, the areas R ¼
R x�

x�1
YB
vm

dx and S ¼
R xþ1

x�
1�YBð Þ

vm
dx should be determined to

estimate the interdiffusion coefficients using the relation expressed in Eq. 6.45.
Further, the difference between the Den Broeder [7] or Sauer-Freise [5] treat-

ment with Wagner’s approach [7] should be noted. This should lead to some
difference in the diffusion data estimated, especially if the molar volume deviates
from the ideality. In fact, for a constant molar volume, these relations are the same.

It should be noted here that when interdiffusion coefficients are estimated over a
wide composition range, the impurity diffusion coefficients could be estimated by
extending the data to 0 and 100 atomic percent of an element. At 0 at.% B, we
have the impurity diffusion coefficient of B in pure A, and at 100 at.% B, we have
the impurity diffusion coefficient of A in pure B. This is commonly practiced in
many systems.

6.5 Change in Total Volume of the Diffusion Couple

In Sect. 6.2, we have already discussed that there could be a change in the total
volume of the diffusion couple depending on the deviation of the molar volume
from the ideality. In these couples, we are unable to locate the initial contact plane
xo exactly [8, 9]. In fact, the change in volume is related to the difference (in terms
of distance) between the locations found using the profiles CA versus x and CB

versus x. In this section, we shall show the relation between the changes in total
volume with the location of the initial contact planes estimated following a
quantitative analysis based on a hypothetical diffusion couple.
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As shown in Fig. 6.8, suppose we couple two alloys N�B (or N�A , expressed with
respect to the element A) and NþB ðNþA Þ. Note here that N�B is a B-lean alloy and NþB
is a B-rich alloy, such that NþB [ N�B . Following the same argument, we can write
NþA \N�A . As explained previously, the location of the initial contact plane should
be estimated with respect to CA versus x and CB versus x. Similarly, it can be
determined using the composition-normalized variable, introduced during the
derivation of Wagner’s relation, from the YB=vm versus x and YA=vm versus x plots,

as can be seen from Fig. 6.9. Note that YB ¼ NB�N�B
NþB �N�B

and YA ¼
NA�NþA
N�A �NþA

. Further, we

can write

1� YB ¼ 1� NB � N�B
NþB � N�B

¼ NþB � NB

NþB � N�B
¼ 1� NþA � 1þ NA

1� NþA � 1þ N�A
¼ NA � NþA

N�A � NþA
¼ YA

ð6:46Þ

Fig. 6.7 Explanation of the calculation procedure of the interdiffusion coefficient following
Wagner’s approach. a An imaginary diffusion couple, b NB versus x, c YB versus x profile,
d YB=Vm versus x profile, and e 1� YBð Þ=Vm versus x profile
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This means that it is now possible to identify the initial contact plane with
respect to the YB=vm versus x and 1� YBð Þ=vm versus x plots, as Fig. 6.9 shows, by
equalizing the areas P and Q. For the sake of explanation, we consider the initial
contact plane found from the YB=vm versus x is xI

o and from the 1� YBð Þ=vm versus
x plot to be xII

o . In terms of mathematical equations, these locations are expressed
by equalizing the areas P and Q as

ZxI
o

x�1

YB

vm
dx ¼

Zxþ1

xI
o

1
vþm
� YB

vm

� �
dx ð6:47aÞ

ZxII
o

x�1

1
v�m
� 1� YBð Þ

vm

� �
dx ¼

Zxþ1

xII
o

1� YBð Þ
vm

dx ð6:47bÞ

Note that v�m is the molar volume of the left-hand side end member with the
composition N�B and vþm is the molar volume of the right-hand side of the end
member with the composition NþB .

Furthermore, we can write P + R = Q + R. Thus, based on Fig. 6.9a and
Eq. 6.47a, the following can be written

Fig. 6.8 Effect of molar
volume change on the
dimension of the diffusion
couple
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ZxI
o

x�1

YB

vm
dxþ

Zxþ1

xI
o

YB

vm
dx¼

Zxþ1

xI
o

1
vþm
� YB

vm

� �
dxþ

Zxþ1

xI
o

YB

vm
dx

Zxþ1

x�1

YB

vm
dx¼ 1

vþm

Zxþ1

xI
o

dx

xþ1 � xI
o

vþm
¼
Zxþ1

x�1

YB

vm
dx

xþ1 � xI
o ¼ vþm

Zxþ1

x�1

YB

vm
dx

ð6:48aÞ

Similarly, with the help of Fig. 6.9b and Eq. 6.47b, we can write

ZxII
o

x�1o

1� YBð Þ
vm

dxþ
ZxII

o

x�1

1
v�m
� 1� YBð Þ

vm

� �
dx¼

ZxII
o

x�1o

1� YBð Þ
vm

dxþ
Zxþ1

xII
o

1� YBð Þ
vm

dx

1
v�m

ZxII
o

x�1

dx¼
Zxþ1

x�1

1� YBð Þ
vm

dx

xII
o � x�1

v�m
¼
Zxþ1

x�1

1� YBð Þ
vm

dx

xII
o � x�1 ¼ v�m

Zxþ1

x�1

1� YBð Þ
vm

dx ð6:48bÞ

Fig. 6.9 Profiles used for the derivation of the molar volume effect on the total volume of the
diffusion couple. a YB=vm versus x and b 1� YBð Þ=vm versus x plots
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Adding Eqs. 6.48a and 6.48b, we get

xII
o � x�1 þ xþ1 � xI

o ¼ v�m

Zxþ1

x�1

1� YBð Þ
vm

dxþ vþm

Zxþ1

x�1

YB

vm
dx

xII
o � x�1 þ xþ1 � xI

o ¼
Zxþ1

x�1

v�m þ vþm � v�m
ffi �
vm

YBdx

ð6:49Þ

When the molar volume varies ideally with the composition, i.e., linear between
v�m and vþm with respect to NB (and hence YB), we can write

vm ¼ v�m þ vþm � v�m
ffi �

YB ð6:50Þ

At a particular composition, if the deviation of the molar volume from the
connecting line of the molar volumes of the unaffected end members is þDvm for
the positive deviation and �Dvm for the negative deviation, then Eq. 6.50 con-
sidering the deviations can be rewritten as

vm ¼ v�m þ vþm � v�m
ffi �

YB � Dvm

vm � Dvm ¼ v�m þ vþm � v�m
ffi �

YB
ð6:51Þ

Replacing Eq. 6.51 in Eq. 6.49, we can write

xII
o � x�1 þ xþ1 � xI

o ¼
Zxþ1

x�1

vm � Dvm

vm
dx

xII
o � x�1 þ xþ1 � xI

o ¼ xþ1 � x�1 �
Zxþ1

x�1

Dvm

vm
dx

xI
o � xII

o ¼ �
Zxþ1

x�1

Dvm

vm
dx

ð6:52Þ

Here,
R xþ1

x�1
Dvm
vm

dx measures the total volume change of the diffusion couple.

Since we have a line profile in the diffusion couple, we can assume that the volume
change will be mainly because of the change in the length of the diffusion couple.
It must be clear from Eq. 6.52 that in the case of ideal variation of the molar
volume ðDvm ¼ 0Þ, there will be no difference in the location of the initial contact
plane found from the two different profiles. In the case of positive or negative
deviation, the difference between the estimated values will be equal to the change
in the length of the diffusion couple.
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To explain the effect of the change in the total volume on the estimated values
of the initial contact plane, a very simple hypothetical diffusion couple is con-
sidered in Fig. 6.10. In the hypothetical phase diagram, as shown in Fig. 6.10a,
there are three compounds with narrow homogeneity range a, b, and c which are
present. The average composition of these phases with respect to the element B, NB

are 0.25 (A0.75B0.25), 0.6 (A0.4B0.6), and 0.75 (A0.25B0.75). As discussed in Chap. 4,
if we couple a and c, the b phase will grow in the interdiffusion zone, as Fig. 6.10c
shows. If the molar volume varies ideally, as is the case in this system, then if the
molar volume of a is 1 unit and c is 2 units, the molar volume of b will be 1.7 units
(see Fig. 6.10b). Additionally, suppose that 0.6 mol of a and 1.4 mol of c get
consumed to produce 2 mol of b. In terms of the reaction equation, we can write

0:6A0:75B0:25 að Þ þ 1:4A0:25B0:75 cð Þ ! 2A0:4B0:6 bð Þ ð6:53Þ

Since the diffusion couple has a line profile, we can consider the unit cross-
sectional area. Consequently, the units consumed or produced can be directly
expressed in length units, such that

0:6� 1 að Þ þ 1:4� 2 cð Þ ! 2� 1:7 bð Þ ¼ 3:4 units ð6:54Þ

This further means that 0.6 units of a and 2.8 units of c get consumed to
produce 3.4 units of b. The composition profile developed is shown in Fig. 6.11b.

Fig. 6.10 a Imaginary phase diagram showing, b the positive deviation of the molar volume and
c its effect on the dimension of the diffusion couple
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Following on from this, the YB=vm versus x and 1� YBð Þ=vm versus x plots are
shown in Fig. 6.11c, d. The values used in Fig. 6.11c, d are estimated as follows

a phase: Na
B ¼ N�B ¼ 0:25,

Ya
B ¼ Y�B ¼

NB � N�B
NþB � N�B

¼ Na
B � Na

B

Nc
B � Na

B

¼ 0:25� 0:25
0:75� 0:25

¼ 0;

Ya
B

va
m

¼ 0
1
¼ 0;

1� Ya
B

va
m

¼ 1
1
¼ 1

b phase: Nb
B ¼ NB ¼ 0:6,

Yb
B ¼ YB ¼

NB � N�B
NþB � N�B

¼ Nb
B � Na

B

Nc
B � Na

B

¼ 0:6� 0:25
0:75� 0:25

¼ 0:7;

Yb
B

vb
m

¼ 0:7
1:7
¼ 0:412;

1� Yb
B

vb
m

¼ 0:3
1:7
¼ 0:1765
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Fig. 6.11 Estimation of the initial contact plane is explained when molar volume varies ideally.
a Diffusion couple, b composition profile, c YB=vm versus x plot showing the location of xI

o, and
d 1� YBð Þ=vm versus x plot showing the location of xII

o

6.5 Change in Total Volume of the Diffusion Couple 263



c phase: Nc
B ¼ NþB ¼ 0:75,

Yc
B ¼ YþB ¼

NB � N�B
NþB � N�B

¼ Nc
B � Na

B

Nc
B � Na

B

¼ 0:75� 0:25
0:75� 0:25

¼ 1;

Yc
B

vc
m
¼ 1

2
¼ 0:5;

1� Yc
B

vc
m
¼ 0

2
¼ 0

From Eq. 6.54, we know that the actual location of the initial contact plane is
0.6 units from the a/b interface. Now, let us examine whether it is possible to
locate this initial contact plane. By equating the areas P and Q in the YB=vm versus
x plot—as seen from Fig. 6.11c—we get the location xI

o as

0:412� 0ð ÞxI
o ¼ 0:5� 0:412ð Þ 3:4� xI

o

ffi �
xI

o ¼ 0:6

Similarly, we find the location of the initial contact plane xII
o from the

1� YBð Þ=vm versus x plot given in Fig. 6.11d by equating the areas R and S as

1� 0:1765ð ÞxII
o ¼ 0:1765 3:4� xII

o

ffi �
xII

o ¼ 0:6

This means we are able to locate the exact position of the initial contact plane
from any of the profiles when molar volume varies ideally with composition.

Now let us consider the positive deviation of the molar volume for the b phase
as 1.85 units, as shown in Fig. 6.10b. Similar to the previous example, we consider
the growth of 2 mol of the product phase by consuming 0.6 mol of a and 1.4 mol
of c. The reaction equation is therefore the same, as expressed in Eq. 6.53.
However, the units consumed or produced can be directly expressed in length
units, such that

0:6� 1 að Þ þ 1:4� 2 cð Þ ! 2� 1:85 bð Þ ¼ 3:7 units ð6:55Þ

This means that 0.6 units of a and 2.8 units of c get consumed to produce 3.7
units of b, resulting in an expansion of (3.7 - 3.4 =) 0.3 units. There is expansion
on both sides of the initial contact plane inside the b phase. Now, let us see what
we find from the YB=vm versus x and 1� YBð Þ=vm versus x plots. The plots are
shown in Fig. 6.12.

a phase: Na
B ¼ N�B ¼ 0:25,

Ya
B ¼ Y�B ¼

NB � N�B
NþB � N�B

¼ Na
B � Na

B

Nc
B � Na

B

¼ 0:25� 0:25
0:75� 0:25

¼ 0;

Ya
B

va
m

¼ 0
1
¼ 0;

1� Ya
B

va
m

¼ 1
1
¼ 1
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b phase: Nb
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Fig. 6.12 Estimation of the initial contact plane is explained when molar volume deviates
positively. a Diffusion couple, b composition profile, c YB=vm versus x plot showing the location
of xI

o, and d 1� YBð Þ=vm versus x plot showing the location of xII
o
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By equating the areas P and Q in the YB=vm versus x plot as shown in
Fig. 6.12c, we obtain the location xI

o as

0:378� 0ð ÞxI
o ¼ 0:5� 0:378ð Þ 3:7� xI

o

ffi �
xI

o ¼ 0:9

Similarly, we find the location of the initial contact plane xII
o from the

1� YBð Þ=v versus x plot, as shown in Fig. 6.12d by equating the areas R and S as

1� 0:162ð ÞxII
o ¼ 0:162 3:7� xII

o

ffi �
xII

o ¼ 0:6

Thus, we find the two different locations from two different plots. These distances
from the a/b interface are 0.6 and 0.9. Actual, initial plane must be located between
these two, which we are unable to find. In this case, we have considered just one line
compound with a fixed composition. Therefore, when considering homogeneous
expansion, we can still locate the exact location of this plane, which should be at
0:6þ 0:6� 0:3

3:4 ¼ 0:653 units from the a/b interface. This is estimated based on the
expansion for the length of 0.6 units consumed from the a phase, that is, the length
from the a/b interface in the case of ideal variation of the molar volume. However, in
most practical examples, the expansion or the shrinkage of the interdiffusion zone
will not be homogeneous and it is almost impossible to locate the exact position of
this plane. The Wagner and Den Broeder methods, as discussed in the previous
sections, are useful to estimate the interdiffusion coefficients without locating the
exact position of the initial contact plane. However, as we shall discuss later in
Chap. 8, there is still a need to locate this position for the rationalization of the
possibilities of multiple Kirkendall marker planes. We shall discuss how it is possible
to still find this location indirectly with a small error (see Sect. 8.4).

6.6 The Kirkendall Effect

Till now, the estimation procedure of the interdiffusion coefficients has been
discussed, which is a kind of average of the intrinsic diffusion coefficients of
components. In fact, for long, it was a commonly held belief that the diffusivities
of the components are the same. Based on this belief, the atomic mechanisms of
diffusion were developed. However, on many occasions, scientists researching this
field noted a strange behavior. For example, in 1929, Pfeil [10] reported one
peculiar phenomenon while studying the oxidation of iron and steel:

It had frequently been noticed that small particles of foreign matter (such as pieces of
muffle) falling on the surface of oxidising iron were gradually buried. The scale grew up
round these particles until they finally disappeared beneath the surface, but they could
afterwards be found by breaking up the layer of scale.
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This is explained with the aid of a schematic diagram in Fig. 6.13. The foreign
matter, i.e., the muffle pieces, acted as an inert material and did not take any part in
the reaction and the diffusion process. This was an indication that Fe had a higher
diffusion rate compared to that of oxygen. After diffusing through the oxide layer,
Fe reacted with O2 to produce the oxide layer. Since the product phase grew at the
oxide/air interface, the oxide layer covered the muffle pieces.

As indicated in the book written by Darken and Gurry [11], Hartley [12] was
the first to deliberately use foreign inert particles, titanium dioxide, in an organic
acetone/cellulose–acetate system, to study the inequality of the diffusing compo-
nents. Immediately after that, Smigelkas and Kirkendall [13] reported a similar
technique to study the inequality of the diffusivities of the components in the
Cu–Zn binary system. Instead, they used molybdenum wires as inert markers.
Hartley’s work went unnoticed in the community working on the metallic systems,
and the work published by Kirkendall changed the viewpoints on the atomic
mechanism of diffusion. The movement of the inert markers caused by the dif-
ference in the diffusion coefficients of the components in an interdiffusion zone is
known as the Kirkendall effect.

The experiment followed by Smigelkas and Kirkendall [13] is explained with
the help of the schematic diagram represented in Fig. 6.14. A rectangular bar
(18 9 1.9 cm2) of 70–30 wrought brass (70 wt% Cu–30 wt% Zn) was first pre-
pared. After the standard metallographic preparation of grinding and polishing,
130 lm Mo wires were placed on opposite sides of the surfaces. Next, a 2,500 lm
thick electroplated copper layer was deposited. The diffusion couple was then
subjected to annealing at 785 �C. At different intervals, a small piece was cross-
sectioned and the rest of the block was annealed further. This way, it was possible
to examine the movement of the markers at different annealing times. With the
increase in annealing time, the thickness of the product phase a brass increased and
the distance between the markers decreased. The movement of the markers was
estimated after rectifying the volume change in the interdiffusion zone and found
to be parabolic with time. It should be noted here that the Mo markers neither took

Fig. 6.13 Schematic
diagram explaining the
movement of debris inside
the oxide layer on steel
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part in the diffusion process nor did they react with the diffusing components. The
equal diffusivities would have resulted in no movement of the markers because of
the transfer of equal amount of material on either side of the Kirkendall plane. The
movement of the markers, on the other hand, indicated the unequal diffusion rates
of the components in the a brass, Cu(Zn) solid solution. In the manuscript, they
reported [13]:

The movement of the insoluble molybdenum wire was conclusive evidence that the alpha
brass was being forced back as a whole (or attracted back) as a result of the diffusing out of
the zinc atoms individually.

From this study, two conclusions were drawn which had enormous impact at
that time on solid-state diffusion [13]:

1. The rate of diffusion of zinc is much greater than that of copper in alpha brass, and
2. When zinc diffuses more rapidly than copper in alpha brass, the interface shifts to

compensate at least partially for the diffusion rate.

Fig. 6.14 Schematic illustration of the Kirkendall’s experiment
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The results reported by Kirkendall not only showed that the diffusion rates of
the components in a solid are different, it also helped to establish the vacancy
mechanism for substitutional diffusion.

At first, this work was highly criticized mainly by the renowned scientist
R. F. Mehl, who was the reviewer of the article and did not accept it immediately
for the publication. He felt that this could be an experimental artifact and other
factors such as the transport of Zn vapor could have a significant effect. Ultimately,
he accepted the article for publication and the manuscript was published along
with the comments from many scientists. The impact of the work can be realized
from R. F. Mehl’s [14] comment:

If verified, this ‘‘Kirkendall effect’’ would greatly modify not only the treatment of dif-
fusion data but also the theory of mechanism of diffusion. It would, for example, be no
longer possible to represent diffusion data in a substitutional solid solution by one coef-
ficient, applying to both metal atoms since the separate coefficients are not equal, but one
would have to show two coefficients, one each for each of the two metal atoms.

The historical development of this discussion can be traced by reading the
article by Nakajima [15]. Immediately after the publication, R. F. Mehl along with
his student da Silva conducted many rigorous studies in many Cu-based solid
solutions with different types of markers [16]. Simultaneously, many other groups
also worked on this topic. Ultimately, everybody agreed with the results published
by Kirkendall, and this phenomenon thereafter was known as the Kirkendall effect.

In the mean time, which might not be known by many, in 1942, Huntington and
Seitz also established that substitutional diffusion in metals occurs by a vacancy
mechanism [17]. It should be noted here that the second manuscript [18] of Kir-
kendall’s career in which he mentioned for the first time the difference in diffusion
coefficients of components was published in the same year (before validating the
fact with a detailed experimental work in his third manuscript [13] in 1947).
However, because of ongoing Second World War, Huntington and Seitz’s paper
was overlooked. In fact, before all these developments, Zener [20] proposed a
direct interchange mechanism, where, as shown in Fig. 6.15a, two atoms exchange
their position directly. If this is true, then there should be no difference in the
diffusion rates of components. In their landmark article, Huntington and Seitz [17]

V

(a) (b)Fig. 6.15 Atomic diffusion
mechanisms: a direct
interchange mechanism and
b vacancy mechanism
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estimated the activation energy for Cu self-diffusion for (i) a direct exchange
mechanism, (ii) an interstitial mechanism, and (iii) the vacancy mechanism. They
used the experimentally determined activation energy for the tracer diffusion
coefficient of Cu for comparison, which varied in the range of 2.1–2.5 eV
(202.6–241.2 kJ/mol). Based on their rudimentary calculations, they found the
theoretically calculated values to be 17.2 eV (1,659.6 kJ/mol) for the direct
interchange mechanism and 10 eV (964.9 kJ/mol) for the interstitial diffusion
mechanism. On the other hand, they got a value of about 2.8 eV (270.2 kJ/mol) for
the vacancy mechanism in which around 1.8 eV (173.7 kJ/mol) is required for
vacancy formation and 1 eV (96.5 kJ/mol) for migration. Therefore, the theoret-
ically estimated activation energy is very close to the value estimated by experi-
ments if the vacancy mechanism of diffusion is considered. They stated that [17]:

The results of these computations…seem to show beyond a reasonable doubt that the
vacancy mechanism of diffusion is greatly preferred over the other two considered here for
copper.

In a private communication, Zener criticized this rudimentary calculation.
Following this, Huntington and Seitz [19] refined their calculation and found that
the true value of the activation energy for the interchange mechanism is close to
10.3 eV (993.8 kJ/mol). They also assumed that the activation energy for inter-
stitial diffusion must be somewhat smaller than the value that they initially esti-
mated. Therefore, they felt that these two mechanisms are dubious for the diffusion
of components. Theoretically calculated values are much higher compared to the
experimentally estimated values of activation energy.

Zener still believed in a defect-free diffusion mechanism although he did not
show any proof against the vacancy mechanism. In 1949, he proposed a new ring
mechanism, as explained in Fig. 6.16 [20], where the movement of atoms will
produce a ring to exchange positions. He estimated the activation energy required
would be 4 eV/atom (386 kJ/mol), which is not as high as the direct interchange
mechanism. In the meantime, in 1947, Smigelkas and Kirkendall reported the
movement of a fiducial marker in a Cu(Zn) alloy. From the Cu(Zn) alloy, when
zinc diffuses away, all the sites are not occupied by the flow of Cu from the
opposite direction with the result that vacant sites are left unoccupied. In another
sense, there should be a flow of vacancies opposite to the faster diffusing
components (here Zn) to compensate for the difference between the Zn and Cu
fluxes. Ultimately, this leads to shrinking on the brass side and swelling on the
copper side so that the markers move toward the brass side. In many systems,
Kirkendall pores form in the interdiffusion zone, which will be discussed in the
next section.

After Zener’s ring mechanism [20] proposal, Seitz [21] discussed different
aspects to defend the vacancy mechanism of diffusion. The main difficulty in
accepting the validity of the vacancy mechanism was because of doubts that
lingered concerning existence of vacancies. However, he used the Kirkendall
marker experiments as a proof of the vacancy mechanism. As already mentioned,
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R. F. Mehl’s group experimented on many systems to validate Kirkendall marker
experiment. On request, Mehl wrote a letter stating the outcome of the experiments
to Seitz as [21]:

(1) We have repeated this experiment some thirty times, in five metallic systems and at
various temperatures. We are able to attain a very satisfactory degree of precision in all
measurements, greater than that which Kirkendall attained.
(2) We were able to demonstrate that the Matano boundary does coincide with the initial
boundary in all cases, when correction is made for change of lattice parameter. This, to be
sure, is, as you say, merely the law of conservation of mass, with the sole qualification that
it demonstrates also that changing percentages of vacancies in the couples are not great
enough to affect the experiment, as might be expected.
(3) The fiducial markers move in all systems studied and at all temperatures by an amount
which varies markedly from system to system.
(4) For a time we entertained the thought that vapor pressure might be the controlling
factor, arguing that transport by vapor along the interface between the wire and the alloy
might give the movement of the wires observed. We have now investigated all types of
markers including various wires, powders and foils. All of them move and by the same
amount; even those which are wetted and which actually dissolve partially show the same
amount of movement.

Fig. 6.16 Exchange of atoms by ring mechanism a two-, b three-, c four-ring in FCC lattice, and
d four-ring in BCC lattice
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Based on these points, Seitz mentioned that [21]:

It is clear from the start that the Kirkendall experiment cannot be explained naturally in
terms of the diffusion mechanism if this is assumed to be exclusively of the interchange
type, that is, if one of the possible mechanisms studied by Zener is assumed to predom-
inate completely. For in this case an atom which shifts its position would always do so by
moving from one normal position to another and would always be replaced at once by
another atom. As a result the lattice array would be maintained completely intact, except
for the local expansion or contraction that arises from the variation of the average size of
the unit cell with composition, which does not appear to be sufficient to explain the
Kirkendall effect.

6.7 Darken Analysis: Relation Between Interdiffusion
and Intrinsic Diffusion Coefficients

From Kirkendall’s experiment, it was apparent that the diffusion process in solid
solutions could not be explained by a single diffusion coefficient. Rather, it is
necessary to consider the diffusion rates of all the components. This was first
treated mathematically in 1948 by Darken [22]. Almost at the same time, Hartley
and Crank [23] studied the same subject and they named the diffusivities of the
components as intrinsic diffusion coefficients. Seitz [24] and Bardeen [25]
described the diffusion process more extensively. Before discussing the assump-
tions or the limitations of the Darken analysis, it is pertinent to first explain the
concepts introduced by Darken. In Sect. 6.11, we have described different facts
and limitations of this analysis.

Let us consider a hypothetical binary diffusion couple of components A and
B of the compositions N�B (A-rich) and NþB (B-rich), as shown in Fig. 6.17. Before
annealing, fiducial (inert) markers are applied at the interface and annealed at an
elevated temperature so that interdiffusion takes place. When interdiffusion starts,
the markers are trapped at a certain fixed composition and cannot escape at a later
stage. Thus, the movement of the markers actually indicates the movement of a
particular composition. If the intrinsic diffusivity of DB is higher than that of DA at
that marker plane (called the Kirkendall plane), then the marker plane will move to
the right-hand side from the initial contact interface xo. The intrinsic flux and the
intrinsic diffusion coefficient of the components can be estimated at the Kirkendall
marker plane, which are related following Fick’s first law as

JA ¼ �DA
oCA

ox

� �
K

ð6:56aÞ

JB ¼ �DB
oCB

ox

� �
K

ð6:56bÞ
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This Kirkendall reference plane xK (denoted by K) is not fixed but moves
relative to the laboratory frame of reference, that is, the initial contact plane xo as
shown in Fig. 6.17. Suppose the velocity of the Kirkendall marker plane is mK.
Darken [22] explained the relation between the interdiffusion fluxes at the

Kirkendall marker planes eJA and eJB measured with respect to xo and the intrinsic
diffusion fluxes JA and JB measured with respect to xK as

eJA ¼ JA þ vKCA ð6:57aÞ

eJB ¼ JB þ vKCB ð6:57bÞ

From Eq. 6.29, in an infinite diffusion couple, the following can be derived

�vAeJA þ �vBeJB ¼ eJvol
A þ eJvol

B ¼ 0 ð6:58Þ

where eJvol
A and eJvol

B are the volume fluxes (volume flux = partial molar volume of
component, �vi 9 molar flux) with respect to elements A and B, respectively. From
Eq. 6.58, we arrive at

Jvol
A ¼ �vAeJA ¼ �vAJA þ vK�vACA ð6:59aÞ

Jvol
B ¼ �vBeJB ¼ �vBJB þ vK�vBCB ð6:59bÞ

Substituting Eqs. 6.59a and 6.59b in Eq. 6.58 and then using the relations
expressed in Eqs. 6.56a and 6.56b, we obtain

Kx

x

x

Kx

ox

ox

−
BN +

BN

−
BN +

BN

−
BN +

BN

0=t

1tt =

2tt =

Fig. 6.17 Movement of the
inert markers with the
increase in annealing time,
where t2 [ t1 [ t = 0
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� �vADA
oCA

ox

� �
K

þ�vACAvK � �vBDB
oCB

ox

� �
K

þ�vBCBvK ¼ 0

�vACA þ �vBCB

ffi �
vK ¼ �vADA

oCA

ox

� �
K

þ�vBDB
oCB

ox

� �
K

ð6:60Þ

By using the standard thermodynamic relations expressed in Eqs. 1.146 and
1.149, the following can be derived

vK ¼ �ð�vBJB þ �vAJAÞ ¼ �vB DB � DAð Þ oCB

ox

� �
K

ð6:61aÞ

Similarly, with respect to the concentration profile of the component A, we can
derive

vK ¼ �vA DA � DBð Þ oCA

ox

� �
K

ð6:61bÞ

Further from Eq. 1.150

vK ¼
�vA�vB

v2
m

DB � DAð Þ oNB

ox

� �
K

ð6:62Þ

If the molar volume is constant in a phase, then Eq. 6.62 can be written as

vK ¼ DB � DAð Þ oNB

ox

� �
K

ð6:63Þ

The marker velocity can also be estimated directly from the known locations of
the initial contact plane xo and the Kirkendall marker plane xK. The relation can be
derived using the Boltzmann parameter, as expressed above in Eq. 6.3.

kK ¼ k CKð Þ ¼ xK � xo

t1=2
¼ xK

t1=2

vK ¼
dxK

dt
¼

d kKt1=2
ffi �

dt
¼ kK

2t1=2
¼ xK � xo

2t
¼ xK

2t

ð6:64Þ

Therefore, if it is possible to estimate the location of the initial contact plane
correctly, we can therefore estimate the Kirkendall marker velocity using Eq. 6.64.

From Eqs. 6.57b and 6.61a, we can write

�eD oCB

ox
¼ �DB

oCB

ox
þ CBvK

�eD oCB

ox

� �
K

¼ �DB
oCB

ox

� �
K

þCB�vB DB � DAð Þ oCB

ox

� �
K
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Utilizing the standard thermodynamic relations that were presented earlier in
Sect. 1.18 (Eq. 1.146), this turns into

�eD oCB

ox

� �
K

¼ � 1� CB�vBð ÞDB
oCB

ox

� �
K

� CB�vBDA
oCB

ox

� �
K

�eD oCB

ox

� �
K

¼ � CA�vADB þ CB�vBDAð Þ oCB

ox

� �
KeD ¼ �vACADB þ �vBCBDA

ð6:65Þ

In a rare case, if the molar volume is constant such that vm ¼ �vA ¼ �vB, Eq. 6.65
reduces to

eD ¼ NADB þ NBDA ð6:66Þ

Equation 6.66 is known as the Darken equation.
Note here that the interdiffusion coefficients can be measured at any position in a

concentration profile; however, the intrinsic diffusivities can only be measured at
compositions indicated by the inert markers. Therefore, Eq. 6.66 can be used only at the
marker plane to estimate all the parameters such as interdiffusion and intrinsic diffusion
coefficients. At other compositions, only the interdiffusion coefficient can be estimated.

The basic conditions of the previous equations are that the system is under
isothermal and isobaric conditions, that no high external force is present (which
might cause plastic deformation of the sample or, possibly, pressure-dependent
diffusion coefficients), and time-dependent effects are absent such as the recrys-
tallization process. This might cause a gradual transition from the grain boundary
diffusion to the much slower bulk (lattice) diffusion.

6.8 Relations for the Estimation of the Intrinsic
Diffusion Coefficients

As mentioned previously, the intrinsic diffusivities can be measured only at the
Kirkendall plane position, xK. Heumann [26] and van Loo [27] derived relations
following which the intrinsic diffusion coefficients can be estimated from the
composition profile. Wagner [6] did not derive these relations; however, on the
similar line of treatment, we can derive the same relations. In this section, different
ways to estimate the intrinsic diffusion coefficients will be discussed [8]. We shall
first explain the Heumann approach. Next, the relations for the calculation of the
intrinsic diffusion coefficients will be developed using the approach followed by
Wagner for the calculation of the interdiffusion coefficients. These were derived
differently by van Loo [27]. In the end, the multifoil technique will be described
following which these parameters can be estimated over the whole interdiffusion
zone at different compositions in a single diffusion couple instead of at one par-
ticular composition by following the previous two methods.
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6.8.1 Heumann’s Method

As already explained, the markers are trapped in a plane with a particular com-
position in a diffusion couple and move depending on the relative mobilities of the
components. Since the diffusion parameters are fixed for a particular composition
at a particular temperature, we can integrate the intrinsic flux of the element
B crossing the Kirkendall marker plane over the annealing time t as

XB ¼ �
Z t

0

JK
B dt ¼ DB

Z t

0

dCB

dx

� �
K

dt ð6:67Þ

Note here that since the element B diffuses from right to left, the intrinsic flux
should be taken as negative.

dCB

dx

� �
K

¼ dCB

dk

� �
K

dk
dx

ð6:68aÞ

where k ¼ kðCÞ ¼ x
t1=2 is the Boltzmann parameter explained above in Eq. 6.3.

Therefore, Eq. 6.68a can be written as

dCB

dx

� �
K

¼ 1

t1=2

dCB

dk

� �
K

ð6:68bÞ

As explained previously that every k corresponds to one particular concentra-
tion in a diffusion couple, we can write Eq. 6.67 as

XB ¼ DB
dCB

dk

� �
K

Z t

0

dt

t1=2
¼ 2DBt1=2 dCB

dk

� �
K

ð6:69Þ

Replacing Eq. 6.68b in Eq. 6.69, we get (using the standard thermodynamic
relations given in Sect. 1.18)

XB ¼ 2DBt
dCB

dx

� �
K

¼ 2DBt
�vA

v2
m

dNB

dx

� �
K

ð6:70aÞ

According to Fig. 6.18, since the direction of the diffusion of the component
A is opposite to that of B—that is, from left to right—the sign for the intrinsic flux
should be taken positive for component A, and we can write

XA ¼
Z t

0

JK
A dt ¼� 2DAt

dCA

dx

� �
K

¼ �2DAt
�vB

v2
m

dNA

dx

� �
K

¼ 2DAt
�vB

v2
m

dNB

dx

� �
K

ð6:70bÞ
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From Eqs. 6.70a and 6.70b, we can write the ratio of the intrinsic diffusion
coefficients as

DB

DA
¼ �vB

�vA

XB

XA
ð6:71Þ

The cumulative intrinsic fluxes X that cross the Kirkendall marker plane are
shown graphically in Fig. 6.18, which are estimated by taking the differences of
the area under the concentration profile at time t = 0 and t = t, as shown in
Fig. 6.18b, c.

In the A-rich side (that is, in the left-hand side), in which the component B has
diffused from the right-hand side:

For t = 0, the area is X. For t = t, the area is B + P. Therefore, the difference is

XB ¼ Bþ P� X ¼ Bþ P� Pþ Qð Þ ¼ B� Q ¼ Bþ xK
1

v�m
� C�A

� �
, since xK is

negative in this example.
In the B-rich side, that is, in the right-hand side, in which the component A has

diffused from the left-hand side:
For t = 0, the area is Y. For t = t, the area is A + R + S. Consequently, the

difference is XA ¼ Aþ R note S ¼ Yð Þ ¼ A� xKCþA . Therefore,

DB

DA
¼ �vB

�vA

Bþ xK
1

v�m
� C�A

� �
A� xKCþA

¼ �vB

�vA

Bþ xK
1

v�m
� N�A

v�m

� �

A� xK
NþA
vþm

DB

DA
¼ �vB

�vA

R xK

x�1ðC�A � CAÞdxþ xK
1

v�m
� N�A

v�m

� �
R xþ1

xK
ðCA � CþA Þdx� xK

NþA
vþm

ð6:72aÞ

Note that for a constant molar volume, ðvm ¼ �vA ¼ �vBÞ, and Eqs. 6.72a and
6.72b, following similar analysis using Fig. 6.17d, e, reduces to

DB

DA
¼

B1 þ xK 1� N�A
ffi �

A1 � xKNþA
DB

DA
¼
R xK

x�1ðN�A � NAÞdxþ xK 1� N�A
ffi �

R xþ1

xK
ðNA � NþA Þdx� xKNþA

ð6:72bÞ

Note here that the need for locating the initial contact plane (i.e., the Matano
plane), for the calculation of the intrinsic diffusion coefficients, is similar to its
need for the calculation of the interdiffusion coefficient using the Matano–Boltz-
mann analysis, as explained previously in Sect. 6.1. It is not necessary only in the
case of diffusion couples with pure components as the end members, since N�A ¼ 1
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(for pure A) and NþA ¼ 0 (for pure B). One should be careful about taking proper
signs in the above equations, when the marker plane is found in other side of the
Matano plane, especially in an incremental couple.

Fig. 6.18 Explanation of the Huemman’s approach for estimating the intrinsic diffusion
coefficients. a An imaginary diffusion couple with corresponding composition profile, b Concen-
tration profile before interaction, c plot of concentration profile by converting it to CA ¼ NA=Vm

d composition profile, and e estimation of the intrinsic diffusion coefficients after considering
constant molar volume
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6.8.2 Relations Developed with the Help of Wagner’s
Treatment

Equation 6.39a and 6.39b at the Kirkendall marker plane can be written as

1
2t

NþB � N�B
ffi �

� kKYK
B

vK
m

þ
ZkK

k�1

YB

vm
dk

2
64

3
75 ¼ 1

t
1
2

N�B eJK
A � 1� N�B

ffi �eJK
B

� �
ð6:73aÞ

1
2t

NþB � N�B
ffi �

�
kK 1� YK

B

ffi �
vK

m

�
Zkþ1

kK

1� YBð Þ
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dk

2
64

3
75 ¼ 1

t
1
2

�NþB eJK
A þ 1� NþB

ffi �eJK
B

� �

ð6:73bÞ

To write a relation with respect to eJK
B only, we multiply Eq. 6.73a by NþB and

Eq. 6.73b by N�B . Subsequently, we add them and after rearranging, we get [8]

1
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By replacing the Boltzmann parameter kK ¼ xK

t1=2 and then using the relation of
the velocity of the marker plane vK ¼ xK

2t , as expressed in Eq. 6.64, we arrive at
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eJK
B ¼ vKCK

B �
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Note that the concentration of the marker plane is CK
B ¼

NK
B

vK
m

From the Boltzmann parameter, we know that dk ¼ dx
t1=2 and we can write

eJK
B ¼ vKCK

B �
1
2t

NþB

ZxK

x�1

YB

vm
dx� N�B
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vm
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2
4

3
5

Compared to Eq. 6.57b, the intrinsic flux of the element B at the Kirkendall
marker plane can be written as

JK
B ¼ �

1
2t

NþB

ZxK

x�1

YB

vm
dx� N�B

Zxþ1

xK

1� YBð Þ
vm
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From Fick’s first law, it follows that

DB ¼
1
2t

ox

oCB

� �
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3
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Further, using the standard thermodynamic relations given in Eq. 1.150

DB ¼
1
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2
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3
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Equation 6.75 can be used if we wish to determine the intrinsic diffusion coef-
ficients using the profiles NB versus x, YB=vm versus x, and 1� YBð Þ=vm versus x.

The equation for the interdiffusion flux eJA can be written in the same way.
Multiplying Eq. 6.73a by 1� NþBð Þ and Eq. 6.73b by 1� N�B

ffi �
and following the

similar procedure, the intrinsic diffusivity for the component A can be derived as

DA ¼
1
2t

ox

oCA
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NþA
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vm
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2
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3
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By once again utilizing the Eq. 1.150, the following is obtained
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From Eqs. 6.75 and 6.77, we can write
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ð6:78Þ

The calculation procedure is shown in Fig. 6.19. R and S are the areas as shown
in the figure. Note here that, unlike the Heumann method, there is no need to locate
the initial contact position, a task which is not easily accomplished.

In general, instead of estimating the intrinsic diffusion coefficients using
Eqs. 6.75 and 6.77 directly, one can estimate the interdiffusion coefficient using
Eq. 6.45 and the ratio of diffusivities using Eq. 6.78. Afterward, the intrinsic
diffusion coefficients can be estimated using Eqs. 6.65 or 6.66. Note that it is just a
matter of choice.

6.8.3 Multifoil Technique to Estimate the Intrinsic
Diffusion Coefficients

In the example above, we have seen that the intrinsic diffusion coefficients could
be estimated only at the Kirkendall marker plane only, since this is the only
marked plane that moved from the beginning depending on the relative mobilities
of the components. Therefore, many diffusion couples with different end-member
compositions need to be prepared (leading to marker planes at different compo-
sitions), if we want to determine the intrinsic diffusion coefficients at different
compositions. This was done in the b phase of the Ni–Al system [28], which could
be a tedious task depending on the system. The multifoil technique is developed in
such a way that we are able to estimate these parameters over the whole com-
position range of interest from only a single experiment. This is explained with the
help of experimental results in the Ni–Pt system [29]. In this technique, many foils
of two dissimilar materials are stacked together. Therefore, it is relatively easy to
follow this technique if the foils could be made. Fortunately, this is relatively
straightforward in the case of metals. The number of foils used for these experi-
ments is decided based on the thickness of the interdiffusion zone developed in the
bulk diffusion couple experiments. After the interdiffusion process, according
to the boundary condition of the equations, some unaffected parts should be left
at the ends of the diffusion couple. The back scattered electron image of the
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interdiffusion zone developed is shown in Fig. 6.20a. The velocity v of the markers
at different planes can be determined by the relation developed by Levasseur and
Philibert [30], Cornet [31] and van Loo et al. [32]

v ¼ 1
2t

y� xo
dy

dxo

� �
ð6:79Þ

Here, xo is the initial position of markers before interdiffusion and x is the new
position after the interdiffusion, such that y = (x - xo) is the net displacement. It
can be seen that for x0 = 0 (i.e., the Kirkendall plane), according to Eq. 6.79,
v = y/2t, which is the Kirkendall marker displacement similar to Eq. 6.64.

The composition profile of the Pt/Ni diffusion couple is shown in Fig. 6.20b.
The displacement of the markers is measured using the backscattered electron

Fig. 6.19 Explanation of van Loo’s approach for the estimation of the intrinsic diffusion
coefficients. a Diffusion couple with corresponding composition profile, b YB=vm versus x plot,
and c 1� YBð Þ=vm versus x plot
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image. All variations of y with x are plotted in Fig. 6.20c. The markers outside the
interdiffusion zone also experienced some displacement due to deformations, i.e.,
creep at annealing temperature. For that, a correction procedure, suggested by
Heumann and Grundhoff [33] (followed by van Dal et al. [34]) for plastic
deformation, is used in this study. A baseline is drawn which passes through the
unreacted parts of the end members, and the difference between the position of

(e)

(a) (b)

(c) (d)

Fig. 6.20 Explanation of procedure for estimating intrinsic diffusion coefficients using multifoil
technique. a Diffusion couple, b composition profile, c displacement curve, d corrected
displacement curve, and e the velocity curve of markers [29]
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markers and this baseline gives the actual displacement of the markers, which is
shown in Fig. 6.20d. Thus, we assume the deformation rate of the end members of
the couple to be equal and constant. The difference between the marker dis-
placement measured in the diffusion couple and the value corresponding to the
baseline—i.e., the dashed line in Fig. 6.20c giving the actual marker shift (plotted
in Fig. 6.20d)—was constructed. It should be noted that the maximum displace-
ment need not to be necessarily at the Kirkendall marker plane only, as is found in
this system.

The displacement is then plotted versus x0 (= x - y) to determine dy=dxo.
Following on from this, the velocities of the different marker planes are estimated
from Eq. 6.79 as plotted in Fig. 6.20e. Furthermore, we can derive

DB

DA
¼ �vBDB

�vBDA

DB

DA
¼ �vB �vBCB þ �vACAð ÞDB

�vB �vBCB þ �vACAð ÞDA

Since, as shown previously in Eq. 1.146, �vBCB þ �vACA ¼ 1
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Since according to Eq. 6.65 eD ¼ �vACADB þ �vBCBDA, we can write
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Since according to Eqs. 6.61a and 6.61b v ¼ �vB DB � DAð Þ oCB
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DB

DA
¼ 1þ f CB

1� f CAð�vA=�vBÞ
where f ¼ v

eDðoCB=oxÞ
ð6:80Þ

Therefore, from the values of v, as shown in Fig. 6.20e, it is possible to estimate

DB=DA. After estimating eD following previously explained approaches, we can the
estimate intrinsic diffusion coefficients using Eq. 6.65. The interdiffusion coeffi-
cients estimated in a bulk diffusion couple must be compared with the estimated
values from a multifoil experiment in order to validate the results. It can be seen in
Fig. 6.21a that the interdiffusion coefficients are more or less the same. This helps
to understand if stacking of foils created any problem in the diffusion couple. The
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Fig. 6.21 Estimation of
diffusion parameters
following multifoil technique
as discussed in previous
figure: a interdiffusion
coefficients, b molar volume,
and c the intrinsic diffusion
coefficients in the Ni–Pt
system [29]
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variation of the molar volume is shown in Fig. 6.21b. The intrinsic diffusion
coefficients that were subsequently estimated by multifoil technique are given in
Fig. 6.21c.

6.9 Different Ways to Detect the Kirkendall
Marker Plane

As already explained, it is important to use inert markers at the mating interface of
a diffusion couple and anneal it to detect the Kirkendall marker plane after
interdiffusion. Following, these inert particles are found under a scanning electron
microscope (SEM) by image analysis or by detecting the X-ray peak originated
from the material used as marker in an energy dispersive spectrometer (EDS) or
wavelength dispersive spectrometer (WDS) detectors. Depending on the system in
which they are used, different materials are used as markers, and these materials
can be used in wire or powder form. Powders are used more often because of ease
of use. It is important to note that the markers selected do not react with the
diffusing components, which will otherwise not move ideally depending on their
relative mobilities. Markers are made from should be impervious to the diffusing
components, and there should be enough space between them to not hinder the
movement of the diffusing components. Marker size should be much smaller than
the total interdiffusion zone thickness. On the other hand, the markers should not
be so small that they are dragged along by the grain boundaries, a phenomenon we
have often witnessed, especially when we have used the particles in powder form
and the particle size was less than 0.1 lm. As already mentioned, Kirkendall and
many others preferred to use Mo or W wires as inert markers. Due to the diffi-
culties in placing the wires, powders are used more commonly these days. These
are dispersed in acetone, and a small drop is placed on a metallographically
prepared smooth surface of one of the couple halves. The acetone evaporates
leaving the particles distributed evenly on the surface. Distribution could be
checked in an optical microscope. In general, we prefer, on average around
20–30 lm spacing between the particles for average particle size of 1–2 lm.
However, strictly speaking, it is difficult to achieve very good control over the
distribution of the particles and the desired distribution pattern might not be
achieved in first attempt. This process is repeated after cleaning the surface with
acetone until we have an acceptable distribution pattern. It is not possible to
achieve a perfectly even distribution; however, having too many particles clumped
together in many locations should be avoided. Once satisfied, another couple half
is placed above and clamped in a fixture to place it in the calibrated furnace for
annealing. According to our experience, a marker size of 1–5 lm works well
depending on the system and the thickness of the interdiffusion zone. Different
refractory metal and oxide powders such as W, Mo, ThO2, TiO2, and Y2O3 are
used in metallic systems. Similarly, Au and Pt particles are used in oxides. ThO2

acts as the best marker in most of the metallic systems, since this is one of the
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highly inert oxides. Furthermore, very high atomic number of Th makes it easily
detectable with a white contrast in a scanning electron image, as shown in
Fig. 6.22a [35–37]. Sometimes, debris accumulated during grinding and polishing
on the surface also acts as inert markers and is found at the Kirkendall marker
plane along with the inert particles that have been deliberately used. Even the
scratches act as a negative surface and are found at this plane in the form of a line
of pores, since the components cannot diffuse through it. For example, as
Fig. 6.22b [9] demonstrates, in the Cu/(Cu-8 at.% Si), the location of the marker
plane could be detected easily by the presence of pores and TiO2 particles on the
same line. In fact, the presence of such a straight line of pores could be considered
confidently as the Kirkendall plane even when markers are not used. The location
of the marker plane could also be located with the help of duplex morphology that
develops in the interdiffusion zone. As explained in greater detail later in Chap. 8,
this indicates the location of the marker plane, as it is found in Fig. 6.22c [38].
This is frequently of great help, especially in situations when we cannot use
markers. For example, in many refractory metal–silicon systems, we could not
grow the interdiffusion zone when inert particles were used since both the mate-
rials are very hard and do not make a successful contact if markers are used. In that
case, by detecting the presence of duplex morphology, it is possible to identify the

Fig. 6.22 Kirkendall marker plane positions (K) are shown in a Co2Si/CoSi2 [36, 37], b Cu/
Cu(8 at.% Si), c Ta/Si, and d Ta/TaSi2 diffusion couples [38]
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location of the Kirkendall marker planes, as shown in the Ta/Si and TaSi2/Ta
diffusion couples, given in Fig. 6.22c, d [38]. In the Ta/Si couple, the location of
the Kirkendall marker plane could easily be detected by the presence of both
duplex morphology and the line of pores. Duplex morphology is found since the
phase layer grows differently from the two interfaces. Larger grains are found on
the Si side since the phase layer grows on this single crystal. On the other hand,
another sublayer grows on the Ta5Si3 phase with much finer grains since Ta5Si3
possesses very small grains. A similar duplex morphology is found in the Ta5Si3
phase that is grown between Ta and TaSi2. Grain morphology could be detected by
different techniques, for example, by etching with an etchant under a polarized
microscope [35–37], or an electron backscattered diffraction (EBSD) detector [38].
Figure 6.22c is an SEM image taken after etching with an acid mixture of HNO3

and HF, and Fig. 6.22d is a non-indexed EBSD image.

6.10 Phenomenological Equations: Darken’s Analysis
for the Relations Between the Interdiffusion, Intrinsic,
and Tracer Diffusion Coefficients

To gain deeper insights into the phenomenological process, it is crucial to understand
this process from a thermodynamical point of view. As discussed earlier in Chap. 4,
we have seen how the chemical potential gradient better explains the diffusion
process compared to the concentration gradient. In fact, in n component system, an
equilibrium condition could be defined with respect to T, P, and the chemical
potential of the components l1; l2. . .ln. Therefore, as previously covered in Chaps.
1 and 4, the flux of the element i can be expressed with respect to its gradient as

Ji ¼ �Li1
dl1

dx
� Li2

dl2

dx
. . .� Lin

dln

dx
� LiT

dT

dx
� LiP

dP

dx
ð6:81aÞ

Similarly, if any other driving forces such as electric potential, hydrostatic
stress, etc., are present, then the additional terms should be added. If we consider
the experimental condition under constant temperature and pressure—with no
other external driving forces present—then, in a one-dimensional AB binary dif-
fusion profile, we can write

JA ¼ �LAA
dlA

dx
� LAB

dlB

dx
� LAV

dlv

dx

JB ¼ �LBA
dlA

dx
� LBB

dlB

dx
� LBV

dlv

dx

Jv ¼ �LVA
dlA

dx
� LVB

dlB

dx
� LVV

dlv

dx

Note here that this last equation is relevant when a vacancy diffusion mecha-
nism is operative. However when the vacancies are in equilibrium, the chemical
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potential of the vacancy should, therefore, be considered to be zero. As mentioned
earlier, we have not discussed the assumptions of Darken analysis. Nonetheless, it
takes mainly two assumptions: (i) vacancies remain in equilibrium at every con-
centration of the interdiffusion zone and (ii) the off-diagonal phenomenological

constants are zero. Therefore, we have lv ffi 0; dlv
dx ffi 0; LAB ¼ 0 and LBA ¼ 0,

meaning that the flux of the components can be written as

JA ¼ �LAA
dlA

dx
ð6:81bÞ

JB ¼ �LBB
dlB

dx
ð6:81cÞ

If F is the force due to the chemical potential an dmB is the velocity of the
component B, then the mobility of B can be written as MB ¼ vB F. Therefore, the
flux of element B can be written as

JB ¼ CBvB ¼ MBFCB ð6:82Þ

Since the force is equal to the chemical potential gradient where the atoms

diffuse down the gradient, we can write F ¼ � dlB
dx . Consequently, Eq. 6.82 can be

written as

JB ¼ �MBCB
dlB

dx
ð6:83Þ

In comparison with Eq. 6.81c, the phenomenological constant can be written as
LB ¼ MBCB. When comparing it with Fick’s first law, we can write

DB ¼ MBCB
dlB

dCB
¼ MB

NB

vm

dlB

dCB
ð6:84Þ

Further using the standard thermodynamic relation in Eq. 1.150

DB ¼
vm

�vA
MBNB

dlB

dNB
¼ vm

�vA
MB

dlB

d ln NB
ð6:85Þ

Furthermore,

lB ¼ lo
B þ RT ln aB ¼ lo

B þ RT ln NB þ ln cBð Þ ð6:86Þ

Substituting Eq. 6.86 in Eq. 6.85

DB ¼
vm

�vA
MBRT

d ln aB

d ln NB
¼ vm

�vA
MBRT 1þ d ln cB

d ln NB

� �
ð6:87Þ
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In the measurement of the tracer diffusion coefficient, as explained previously
in Chap. 5, there is no driving force for diffusion. Moreover, since this is a
measurement in a single-composition alloy, the volume terms are unnecessary.
Thus, it is possible to write the tracer diffusion coefficient with respect to the
mobility term from Eq. 6.87 as

D�B ¼ M�BRT ð6:88Þ

The above relation is known as the Nernst–Einstein relation.
Substituting Eq. 6.88 in Eq. 6.87, we get

DB ¼ D�B
vm

�vA

d ln aB

d ln NB
¼ D�B

vm

�vA
1þ d ln cB

d ln NB

� �
ð6:89aÞ

In the same way, for the component A

DA ¼ D�A
vm

�vB

d ln aA

d ln NA
¼ D�A

vm

�vB
1þ d ln cA

d ln NA

� �
ð6:89bÞ

According to the Gibbs–Duhem relation derived much earlier in Chap. 1
(Eqs. 1.134 and 1.139), we know that d ln aA

d ln NA
¼ d ln aB

d ln NB
. Substituting Eqs. 6.89a and

6.89b in Eq. 6.65, we arrive at

eD ¼ NAD�B þ NBD�A
ffi � d ln aB

d ln NB

� �
ð6:90Þ

This relation was first proposed by Darken [22].
The ratio of intrinsic diffusivities in terms of tracer diffusivities can be

expressed by

DB

DA
¼ �vB

�vA

D�B
D�A

ð6:91Þ

Comparing Eqs. 6.78 and 6.91

D�B
D�A
¼

NþB
R xK

x�1
YB
vm

dx� N�B
R xþ1

xK

1�YBð Þ
vm

dx

�NþA
R xK

x�1
YB
vm

dxþ N�A
R xþ1

xK

1�YBð Þ
vm

dx

" #
ð6:92Þ

Using this relation, it is possible to estimate the ratio of tracer diffusion coef-
ficients at the Kirkendall marker plane using the composition profile. The velocity
of the Kirkendall marker plane from Eqs. 6.61a, 6.89a and 6.89b can be written as
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vK ¼ �vB D�B
vm

�vA
� D�A

vm

�vB

� �
H

oCB

ox

� �
K

ð6:93Þ

where H ¼ d ln aA
d ln NA

¼ d ln aB
d ln NB

is known as the thermodynamic factor.

6.11 Limitations of the Relations Developed by Darken
and Manning’s Correction for the Vacancy Wind
Effect

After the above analysis by Darken, Bardeen [25] made a thorough analysis and
explained that the relations developed by Darken can be derived by considering
enough sources and sinks for vacancies to maintain this equilibrium ðdlv=dx ffi 0Þ
over the interdiffusion zone. Subsequently, Seitz [39] showed further that every-
where inside the interdiffusion zone vacancies should be at equilibrium ðlv ffi 0Þ.
He further explained that Darken’s relations (Eq. 6.66) could be used in both
substitutional and interstitial diffusion. Bardeen and Herring [40] argued (based on
the experimental results available in the 1950s) that Darken’s relations are fulfilled
in most of the diffusion couples. Therefore, a volume of vacancies should be
created on one side of the couple and absorbed on the other side. This volume is
equivalent to the volume shift by the Kirkendall marker plane, that is, the shift
distance xK ¼ xK � xo multiplied by the cross-sectional area of the couple. This
point is clarified in Fig. 6.23. In this example, the component A has a higher
diffusion rate compared to B. Therefore, the vacancies flow in the same direction
of the component B, which has the lower diffusion rate of the two. Following
Eqs. 1.149 and 6.61a, we can write [41]

vK ¼ vmJV ¼ �ð�vBJB þ �vAJAÞ ð6:94Þ

The dJV=dx versus x plot gives the idea in which part vacancies are created
(positive) and absorbed (negative). Analysis indicates that grain boundaries, pores,
cracks [39], and interfaces [41] act as a source and sink for vacancies. Doo and
Balluffi [42] presented the proof on the role of edge dislocations related to the
Kirkendall marker shift. Its role as sink and source is explained more clearly in
Fig. 6.24 with the aid of a schematic illustration of the lattice planes and dislo-
cations. The vacancies are flowing from right to left since there is a net flux of
atoms from left to right. On the left, the dislocations act as sinks, where the atoms
are replaced by vacancies from the extra plane. On the right, they act as sources,
where the atoms are added to the extra planes [43]; that is, the vacancies are
created and move to neighboring positions.
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One interesting feature noticed in many diffusion couples is that pores are found
on the side of the diffusion couple toward which the marker plane moves. In the
beginning, the reason for the formation of voids was not clear and was believed
that this might be incidental in a few diffusion couples [44]. However, over time, it
became clear that this must be related to the Kirkendall effect. Branes [45] found
that the volume of these pores is considerable and influences the Kirkendall plane
shift. In the absence of any voids, the marker plane movement would be more [35].
Therefore, these two can be considered as competitive phenomena. In some
couples, as can be seen in Fig. 6.22a, the content of pores is very high. In general,
the lack of sinks is considered to be a valid explanation for finding these pores,
especially if one component has a much higher diffusion rate compared to the
other, as is the case in the CoSi phase. The diffusion rate of Si is around 30 times

Fig. 6.23 Flow of vacancies
depending on the intrinsic
fluxes is explained
a composition profile, b flux
of components, and c creation
and annihilation of vacancies
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higher than that of Co in this phase [36]. Similar behavior was found in the Nb5Si3
phase, as shown in Fig. 6.25a, in which one side of the Kirkendall marker plane is
covered by pores [46]. The diffusion rate of Si is approximately 100 times higher
than that of Nb in this phase. The area fraction of the pores in the Cu3Sn phase is
found to be noticeably less, as seen from the Cu/Sn system shown in Fig. 6.25b
[8]. It is believed that the distribution of the pores is affected by the impurities
present in the end members. Note here that the diffusion rate of Cu is almost
30 times higher than that of Sn in this phase [47]. The differences in pore volume
vary from system to system, and these differences may be due to the difference in
the availability of sinks, the relative mobilities of the components, or the presence
of impurities or inclusions, for instance. When the pore volume is substantial, this
factor should be considered in the calculation of the diffusion parameters, as was
done in the Co–Si system [36].

Along with the formation of pores, the development of stress in the diffusion
couple and the deformation of the diffusion couple are also associated with the
Kirkendall effect. Previously, the Kirkendall effect has been discussed based on the
movement of the markers and the shrinkage on one side with the corresponding
swelling on the other side of the couple based on a one-dimensional diffusion (i.e.,
composition) profile. With the accumulation of vacancies and/or pore formation,
tensile stress develops on one side of the couple and compressive stress develops
on the other side where an extra amount of atoms are accommodated. This may
result in a three-dimensional change in the diffusion couple, as shown in Fig. 6.26
[48]. After annealing for time t, Fig. 6.26b shows one-dimensional deformation,
whereas Fig. 6.26c presents the volume deformation. In this case, there will be
equal deformation in all directions, which is one-third of the total deformation in
one-dimensional deformation case. The dots on the figure represent the markers
showing the deformation areas. For further reading on deformation and bending,
the reader is referred to the manuscripts by Boettinger et al. [49] and Daruka et al.

Fig. 6.24 Edge dislocations as sink and source of vacancies are explained
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Fig. 6.25 Evolution of the
Kirkendall voids in different
systems is explained in the
a Nb5Si3 [46] and b Cu3Sn
phases [8]

Fig. 6.26 a Deformation of
diffusion couple and
distribution of inert particles
are shown before the
experiments and when
deformation is b one
dimensional and c three
dimensional. Dots indicate
the markers at different
planes
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[50]. It should be noted here that the deformation or bending of the sample could
be significant in a thin-film diffusion couple.

Darken’s treatment correlates the interdiffusion, intrinsic, and tracer diffusion
coefficients of the components with the aid of the thermodynamic factor. As
explained, in a binary system, the intrinsic diffusivities of the components are
different. When diffusion is controlled by a vacancy mechanism, the net flow of
matter in one direction will be balanced by a flow of vacancies in the opposite
direction. Manning explained that the net flux of vacancies creates a vacancy
wind effect during interdiffusion [51, 52]. According to this theory, the flow of
vacancies will make a jump of some extra vacancies. The jump of extra
vacancies means an increase in the diffusion rate of the faster diffusing com-
ponents and a decrease in the diffusion rate of the slower diffusing component
than what is expected when adopting the relations developed by Darken. To
accommodate this effect, he incorporated a correction factor into the equations
developed by Darken. Naturally, these modified equations are known as the
Darken–Manning equations.

Assuming there is no supersaturation, binding of vacancies, and no clustering
in the alloy, Manning modified Eqs. 6.89a and 6.89b using a random alloy model
as

DA ¼
vm

�vB
D�AH 1þWAð Þ ð6:95aÞ

DB ¼
vm

�vA
D�BH 1�WBð Þ ð6:95bÞ

where the vacancy wind factor Wi ¼
2Ni D�A�D�Bð Þ

Mo NAD�AþNBD�Bð Þ ; Mo is a constant, which

depends on the crystal structure of the system, Ni is the mole fraction of com-
ponent i, and H is the thermodynamic factor d ln aA=d ln NA ¼ d ln aB=d ln NB.
Replacing Eqs. 6.95a and 6.95b in Eq. 6.65 and after some simple arithmetic, we
arrive at

eD ¼ NAD�B þ NBD�A
ffi �

H WAB ð6:96Þ

where WAB ¼ 1þ 2NANB D�A�D�Bð Þ2
Mo NAD�BþNBD�Að Þ NAD�AþNBD�Bð Þ

In the same way, the Kirkendall marker velocity was modified to

vK ¼ �vB
vm

�vA
D�B �

vm

�vB
D�A

� �
a H

oCB

ox
¼ 1

vm
�vBD�B � �vAD�A
ffi �

a H
oNB

ox
ð6:97Þ

where a ¼ 1=f and f is the correlation factor for self-diffusion. Last equation can
be written after modifying the relation using equations in Sect. 1.18.

6.11 Limitations of the Relations Developed by Darken and Manning’s Correction 295

http://dx.doi.org/10.1007/978-3-319-07461-0_1


The values of Mo and a for face centered cubic, body-centered cubic, simple
cubic, and diamond structure are 7.15, 5.33, 3.77, 2 and 1.280, 1.375, 1.531, 2,
respectively.

Many experiments have been conducted to compare the experimental results on
intrinsic diffusion coefficients and those estimated by the Manning method from
the tracer diffusion coefficients. The outcome is ambiguous. Schmatz et al. [53]
and Iorio et al. [54] found that Manning’s correction led to a better match between
the ratio of self-diffusivities estimated from the Kirkendall effect and the ratio
determined by radioactive tracer measurements. However, there was significant
disagreement in the absolute values of the self-diffusivities between those exper-
imentally determined and those estimated using the Manning approach. Kohn et al.
[55] also found discrepancies between experimental and estimated values. Meyer
[56] and Dallwitz [57] estimated the Kirkendall marker shift and found good
agreement between experimentally determined results and the values predicted by
Manning’s model. Carlson [58] found that the vacancy wind effect is an important
parameter for intrinsic diffusion fluxes and determined these values at different
compositions for the V–Ti system. Later, Manning [59], Dayananda [60], and
Belova and Murch [61] have extended this approach to consider the vacancy wind
effect in multicomponent systems. The presence of the vacancy wind effect rather
indicates that the off-diagonal phenomenological constants, which are assumed to
be zero for the derivation of Darken’s relations (Eq. 6.90), are not actually zero.

As already mentioned, Darken’s relations can be used when vacancies are in
thermal equilibrium, meaning that enough sources and sinks for the vacancies
must be present in the interdiffusion zone to keep the vacancies in thermal equi-
librium. As mentioned by Gusak et al. [62], Nazarov and Gurov [63, 64] analyzed
the condition considering a non-equilibrium vacancy concentration in a binary
diffusion couple by neglecting the sources and sinks to derive the relation

eD ¼ D�AD�B
NAD�A þ N�BD�B

H ð6:98Þ

As commented by Gusak et al. [62] Darken’s relation expressed in Eq. 6.90 is
controlled by the faster diffusing component, whereas the relation developed by
Nazarov–Gurov is controlled by the slower diffusing component. The significance
of all this is that the Nazarov–Gurov relation could be important in the nanoscale
interdiffusion process, where a non-ideal concentration of vacancies could be
found. Darken’s relation, on the other hand, is highly relevant in the macro and
bulk samples. In fact, the Nazarov–Gurov relation could be important at the very
initial stage of the diffusion couple; however, Darken’s relation will prevail when
annealing time is higher [65].
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Chapter 7
Growth of Phases with Narrow
Homogeneity Range and Line Compounds
by Interdiffusion

In this chapter, the growth of the line compounds and the phases with narrow
homogeneity range by reactive diffusion is discussed. The concept of the inte-
grated diffusion coefficient is introduced. In the end, few case studies are given to
explain the estimation procedure of the diffusion coefficients.

7.1 Time-Dependent Growth of the Phase Layer

In the previous chapter, we covered how interdiffusion works in a solid solution
or—to put it another way—how the interdiffusion process affects the growth of
phases with a wide composition range. In this present chapter, the growth of the
phases with a narrow homogeneity range and the line compounds will be pre-
sented. Earlier, we showed that it is possible to validate the assumption that
diffusion controls the process under investigation by using the Boltzmann
parameter. However, in the case of line compounds, this must be verified by
examining the parabolic nature of the growth. To simplify the discussion, let us
consider an interdiffusion zone, where only a single-phase layer grows. In a dif-
fusion-controlled process, the rate of increase in layer thickness is inversely pro-
portional to the layer thickness itself. This arises from the fact that the amount of
diffusing flux decreases with the increase in layer thickness, because the atoms
have to diffuse a longer distance. Therefore, the following can be written

dx

dt
/ 1

x
ð7:1aÞ

dx

dt
¼ k

1
x

ð7:1bÞ

where x is the layer thickness, t is the time, and k is a constant. Integrating Eq. 7.1b
from zero layer thickness at time zero to the layer thickness of Dx after the
annealing time of t, we get
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Dx2 ¼ 2kpt ð7:2Þ

where kp is the parabolic growth constant. Thus, the parabolic nature of the growth
is checked by plotting Dx versus t or Dx2 versus t, as discussed in Figs. 7.1, 7.3,
7.4, 7.5 and 7.6. Sometimes, instead plotting, Dx versus t1=2 plot Dx2 versus t is
found from which the parabolic growth constant can be estimated from the slope
¼ 2kp

� �
, as presented in Fig. 7.1b. In fact, it is also a common practice to plot

Dx versus t to verify the parabolic nature of the growth, as shown in Fig. 7.1a.
The activation energy for the growth of a phase can be determined by con-

ducting diffusion experiments at different temperatures. According to the Arrhe-
nius equation,

kp ¼ ko
p exp � Qg

RT

ffi �
ð7:3Þ

where kp
o is the pre-exponential factor, R is the gas constant, and Qg is the

activation energy for growth. The activation energy can be estimated from the
slope �Qg=R

� �
of the ln kp versus 1=T plot, as can be seen from Fig. 7.2. Rather

the zero thickness at zero annealing time should not be added to the experimentally
measured data points.

Under ideal conditions, the layer thickness at the beginning of the experiment is
zero. However, for a number of reasons, different kinds of situation can be
encountered. The thickness of the phase layer is always measured after a certain
annealing time. When the line is extrapolated to t = 0, sometimes, it may intersect
the y-axis (axis for thickness) at some positive value of Dxi. This can be realized
from Fig. 7.3. One of the reasons to find this kind of behavior is because of the
growth during the heating and cooling cycles at the time of the heat treatment.
Most of the experiments are conducted in vacuum or under flowing inter-gases. In

Δx

t

Δx

t

2

(a) (b)

0 0

Fig. 7.1 Plots of the growth of a phase layer during diffusion-controlled process a Dx versus
t and b Dx2 versus t
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these cases, the sample has to be placed in the furnace first and only then heated to
the desired temperature. After the completion of annealing at a specific temper-
ature, the growth of the phase layer during the cooling down period could be
avoided by quenching the sample immediately. However, if the interface is
weak—for example, in a metal/silicon diffusion couples—or if we like to avoid
oxidation, furnace cooling is preferred. In the calculations, only the isothermal
annealing time at the desired temperature is taken into account. Therefore, Dxi

indicates the growth of layer thickness during the heating and cooling cycles. If the
activation energy for growth is low, this contribution can be significant. The
contribution will be smaller, however, when the activation energy is high. This can
be understood from the fact that the activation energy indicates the difference in

kp

1/T

high Q

low Qg

g

Fig. 7.2 Arrhenius plot explaining the activation energies

Δx

t

Δx

t

2

Δx Δxi i
2

(a) (b)

0 0

Growth during heating and cooling Growth during heating and cooling

Growth during isothermal annealing Growth during isothermal annealing

Fig. 7.3 Parabolic growth plots showing the effect of growth during heating and cooling cycles
in the furnace
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growth rate at different temperatures, as shown in Fig. 7.2. Keeping the sample at
the desired annealing temperature for a relatively long time, we can minimize this
contribution to the overall growth.

It is not very straightforward to understand whether the positive value of Dxi

indicates only the growth of the phase layer during the heating and cooling cycles.
In interdiffusion, both lattice and grain boundary diffusion might play a significant
role. In the beginning, when the size of the grains is very small (representing a
high grain boundary area), the growth of the phase might happen mainly due to the
flux diffused via the grain boundaries. However, with an increase in annealing
time, grains also grow along with the layer thickness. Therefore, after a certain
annealing time, the diffusion process could be controlled by the lattice diffusion. In
this case, if Dx2 is plotted with respect to t for short annealing times, the transition
will be clear from the curve, as shown in Fig. 7.4b. In most of the cases, however,
this will be difficult to find because of very small transition time. Therefore, if the
experiments are conducted by choosing the annealing times in the later stage
where the lattice diffusion-controlled growth process has already started after the
initial grain boundary diffusion-controlled process, Dxi will be positive. Then, it
will be difficult to understand whether this is because of the heating and cooling
cycles or because of the initial grain boundary diffusion. It should be noted here
that this is not a problem to determine the parabolic growth constant, since it can
be estimated from the slope directly. In terms of an equation, it can be written as

Dx2 � Dx2
i ¼ 2kpt ð7:4Þ

However, if we wish to examine the reason for finding the positive Dxi value,
one experiment should be conducted by heating to the desired temperature and
then cooling without holding it for isothermal annealing.

Many times immediately after the start of annealing, the layer cannot start
growing. This can be realized from Fig. 7.5. This phenomenon is generally found
when the surface layer is covered by a thin oxide layer—something which is very
commonly found in couples with Al, as was found in the Ti/Al diffusion couple [1,
2]. It might have an incubation period of many hours during which the growth of
the phase was reaction controlled. Once the oxide layer is completely broken, the
diffusion-controlled parabolic growth of the phase is found. Sometimes, the small
broken pieces of oxide are found in the product phase itself [1]. The parabolic
growth constant in this case is estimated from

Dx2 ¼ 2kp t � toð Þ ð7:5Þ

Many times, [2–4], a carbon or phosphorous segregated layer could be present
at one of the material surfaces. A very small concentration, even in the range of a
few parts per million, is enough to create problem at the initial stage of the growth
process. This might even lead to a different diffusion process in the beginning and
even might become a reaction-controlled process because of the limited amount of
impurities.
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The growth of the phase layer at the initial stage could be reaction controlled,
where the layer grows linearly with time. After a certain annealing time, the
growth process might become diffusion controlled, as shown in Fig. 7.6. Dybkov
has discussed this topic extensively in his book [5]. In a thin-film couple, because
of the stress developed during deposition, the growth of the phase could, in fact, be
reaction controlled. Sometimes, especially in this condition, nucleation of the
product phase could be difficult because of the low driving force for the formation
and the high interfacial energy. In such cases, a non-equilibrium phase(s) could be
formed. However, in the bulk diffusion couple of solid materials (that is not
porous), this is not so common. Even if it is there, in the very beginning, the
parabolic growth constant estimated using the Eq. 7.5 does not draw any signifi-
cant error. Pieraggi [6] has discussed extensively on the right choice of plotting
between Dx versus t or Dx2 versus t for oxide layer growth cases, where the initial
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Fig. 7.4 Parabolic growth plots showing the effect of transition from grain boundary diffusion to
lattice diffusion
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Fig. 7.5 Parabolic growth constant plots showing incubation time
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fast growth rate does not contribute to the steady-state growth at the later stage.
However, oxide systems are beyond the scope of discussion in this book. Inter-
ested readers are referred to the manuscript by Pieraggi [6] or to the summary of
the outcome by van Loo [2].

If the aim is to ultimately conduct the experiments to determine the activation
energy for growth, then time-dependent experiments ideally should be conducted
at every temperature, in the case that Dxi is positive or there is an incubation time.
On the other hand, it can be neglected, if these are small. It is also possible to
consider similar deviation, if the temperature range of a particular study is not very
high. This value might not be very different at differing temperatures within a short
temperature range. It is easy to appreciate the need to conduct time-dependent
experiments at every temperature based on the results plotted with respect to the
Arrhenius equation for the calculation of the activation energy, as shown in
Fig. 7.2. If the data points fall more or less on the line, this indicates that the
deviation in the temperature range of interest will be similar. It should be noted
here that sometimes data are fit by considering zero thickness at zero annealing
time, as shown in Fig. 7.7b in the Mg/Ni diffusion couple [7]. When experimental
data points are extrapolated to zero time, these will never lead to zero thickness
exactly because of error associated with the experiments even if there are no issues
at the initial stages as discussed above. However, there is nothing wrong to show
the graph, as presented in Fig. 7.7c, which is drawn after extracting the data points
from Fig. 7.7b. With such a small error, one can conveniently consider that the
system is not affected by the factors discussed above at the initial stage.

If local equilibrium is achieved in an interdiffusion zone, as shown by Wagner
[8], Gurov et al. [9], and Kidson [10], all the phase layers contained in the phase
diagram should be present in the interdiffusion zone. Local equilibrium is, in
general, found in the bulk diffusion couple, and it is expected that all phase layers
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controlledReaction 

controlled
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Fig. 7.6 Parabolic growth plots showing transition from reaction-controlled to diffusion-
controlled growth

304 7 Growth of Phases with Narrow Homogeneity Range and Line Compounds



start growing together. However, it is also true that the growth rates of one or more
phases are much lower compared to the growth rate of other phases. In such cases,
the phases with slower growth rates might actually be present in the interdiffusion
zone, but proper analysis, for example, under a transmission electron microscope
(TEM) is required to detect the phase. In the Mo–Si system [11], three phases,
MoSi2, Mo5Si3, and Mo3Si, should be present in the interdiffusion zone of the Mo/
Si diffusion couple. However, the interdiffusion zone was mainly covered by the
MoSi2 phase with a very thin layer of the Mo5Si3 phase [12]. Mo3Si phase was not
detected at all. Our calculation showed that the thickness of Mo3Si in this couple is
in the nanometer range, which is not possible to detect under a scanning electron
microscope. TEM analysis by Yoon et al. [13] showed the presence of this phase.
The same phase was grown with reasonable thickness in Mo/Mo5Si3 incremental
couple [14]. In the Au/Sn diffusion couple, the Au5Sn phase was not found;
however, it was revealed after etching the sample [15]. Even in the bulk diffusion
couples, sometimes, a sequential rather than a simultaneous phase growth is
sometimes suspected [16]. However, the initial time for the sequential growth
could be so small that validating this fact experimentally is difficult. In the

(a) (b)

(c)

Fig. 7.7 a Mg/Ni diffusion couple annealed at 480 �C for 45 h. Growth of the product phases
with respect to square root time are shown for b considering zero thickness at zero time and
c without considering it in the data fit [7]
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thin-film couple, instead of simultaneous growth, sequential growth is very
common and the phases may not grow parabolically with time [17]. Nucleation
problem is also encountered frequently especially in the thin-film couples [18–21].

In multiphase growth, if all the phases grow parabolically with time, the growth
of the total interdiffusion zone will also be parabolic with time. Quite often, the
phase(s) grow with more or less straight interface, and it is relatively easy to check
the parabolic nature of the growth, as can be seen in the Mg–Ni system which is
reproduced in Fig. 7.7 [7]. However, many times [22], as found in the Au/Sn
diffusion couple, one or more phase layers could be very wavy, and this leads to a
high standard deviation in the calculation of the parabolic growth constant, as
shown in Fig. 7.8 [23].

In the end, it should be noted that the parabolic growth constant is not a material
constant since the thickness of a particular phase layer changes with the change in
composition of the end members. It is therefore not straightforward to discuss the
diffusion behavior based on the parabolic growth constant calculations. In a par-
ticular condition, the activation energy for growth could be the same as the acti-
vation energy for the diffusion coefficient (single-phase growth of a line compound
in the interdiffusion zone). In most conditions (multiphase growth), however, these
are actually different. Therefore, incorrect conclusions may be drawn if the dif-
fusion behavior is discussed solely based on the calculation of the parabolic
growth constant. It is always safe to consider the diffusion coefficients, since the
diffusion coefficient is a material constant. In fact, as will be discussed, the
thickness of a particular phase layer is grown differently in different couples with
different end members such that the diffusion coefficients of the phases remain
constant.

(a) (b)

Fig. 7.8 a Au/Sn diffusion couple at 180 �C for 36 h [15]. b Growth of the phase layers with
respect to time at 180 �C [23]
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7.2 Calculation of the Diffusion Parameters in Line
Compounds or the Phases with Narrow Homogeneity
Range: Concept of the Integrated Diffusion Coefficient

The relations derived in Chap. 6 cannot be used to estimate the diffusion coeffi-
cients for compounds with a narrow homogeneity range. To explain this, we
consider an imaginary phase diagram as shown in Fig. 7.9a. An alloy in the a
phase (NB

�) is coupled with an alloy in the c phase (NB
þ). Following the argu-

ments discussed in Chap. 4, the a, b, and c phases with a composition profile
shown in Fig. 7.9b could grow in the interdiffusion zone. In the b phase, the
composition profile will have a negligible gradient since this phase has a very
narrow composition range. Previously in Chap. 6, the relation for the interdiffusion
coefficient (Eq. 6.45) was derived as

~D YB
�ð Þ ¼ vm

�

2t dYB=dxð ÞYB
�

1� YB
�ð Þ
Zx�

x�1

YB

vm
dxþ YB

�
Zxþ1

x�

1� YBð Þ
vm

dx

2
4

3
5 ð7:6Þ

To determine the interdiffusion coefficient, it is necessary to calculate the
gradient dYB

dx ¼ 1
NþB �N�B

dNB
dx , which is almost impossible to determine in the b phase.

To overcome this problem, Wagner [8] introduced the concept of the integrated
diffusion coefficient ~Dint—which is the interdiffusion coefficient ~D integrated over

the unknown composition range, let us say DNb
B ¼ Nb 2

B � Nb 1
B . In mathematical

terms, it is expressed as

~Db
int ¼

ZNb 2
B

N
b 1

B

~DdNB ð7:7Þ

The interdiffusion coefficient may not vary significantly in the narrow com-
position range, and hence, Eq. 7.7 can be written as

~Db
int ¼ ~D Nb2

B � Nb1
B

� �
¼ ~DDNb

B ð7:8Þ

Frequently, the phase might grow with only a small composition range (not
very narrow). It remains, however, difficult to calculate the composition gradient
with minimum error. Often, a phase might have a reasonably wide composition
range, yet the gradient changes very sharply near the interface, or it does not grow
with the complete measureable composition range. If the actual composition range
is known, the average interdiffusion diffusion coefficient is estimated from the
integrated diffusion coefficient using the relation
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~Dav ¼
~Db

int

DNB
b ð7:9Þ

We can derive the relation for the estimation of the integrated diffusion coef-
ficient from a composition profile with the help of relations expressed in Eqs. 7.6
and 7.8. The term inside the brackets in Eq. 7.6 can be separated into three parts in
the interdiffusion zone (see Fig. 7.9) as
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Since we are seeking to calculate the diffusion parameter in the b phase, which

has an average (or stoichiometric) composition of Nb
B, both YB

b and vb
m can be

considered as constant. Therefore, Eq. 7.10 can be written as
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Fig. 7.9 a Lower part of an imaginary phase diagram and b a possible composition profile of the
diffusion couple
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The thickness of the b phase is Dxb ¼ xb 2 � xb 1 . Further, we can write

dx

dYB

ffi �
b

¼ NþB � N�B
� � dx

dNB

ffi �
b

¼ NþB � N�B
� � Dxb

DNb
ð7:12Þ

Replacing Eq. 7.12 in Eq. 7.11, we arrive at
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Since YB ¼ NB�N�B
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; the above relation can be written as
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Note here that the first term that is the term outside the bracket accounts for the
profile of the phase of interest (b) to calculate the integrated diffusion coefficient.
The first term inside the bracket accounts for the composition profile of the phases
on the left-hand side, whereas the second term accounts for the phases present on
the right-hand side of the phase of interest b. Numerous cases contain many line
compounds or the phases with a narrow homogeneity in the interdiffusion zone.
The composition profile in the solid solution in the ends of the couple might be
negligible compared to the thickness of the phases with a narrow homogeneity
range. In that case, Eq. 7.13a can therefore be written as
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since kb
p ¼

Dxbð Þ2
2t . Note here that the end members are numbered as 1 and n. (n - 2)

phases––i.e., from 2 to (n - 1)—grow in the interdiffusion zone. As shown
in Fig. 7.10, suppose three phases, a, b, and c grow and we wish to calculate the
integrated diffusion coefficient of the b phase. Equation 7.13b can then be expressed
as
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where a ¼ NB
b � NB

�, b ¼ NþB � Nb
B, P ¼ DxaðNB

a � NB
�Þ, and Q ¼ DxcðNþB � Nc

BÞ.
The integrated diffusion coefficients for the a and the c phases can be estimated,

following Fig. 7.11 from
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where c ¼ Na
B � N�B , d ¼ NB

þ � NB
a,M ¼ DxbðNþB � Nb

BÞ, and N ¼ DxcðNþB � Nc
BÞ.

It should be noted here that the first term inside the bracket becomes zero as no
phase(s) are present on the left-hand side of the phase of interest.
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where e ¼ NB
c � NB

�, f ¼ NþB � Nc
B, R ¼ DxaðNB

a � NB
�Þ, and S ¼ DxbðNb

B � N�B Þ.
It should be noted here that the second term inside bracket becomes zero as no
phase(s) are present on the right-hand side of the phase of interest.

In cases where only the b phase grows in the interdiffusion zone, (see
Fig. 7.12), such that no other phases are present on the left- and right-hand sides of
the product phase, Eq. 7.14a is then simplified to

Fig. 7.10 a Lower part of an imaginary phase diagram with three line compounds and b a
possible composition profile of the diffusion couple showing the estimation of the integrated
diffusion coefficient for the b phase

Fig. 7.11 Composition profiles showing the estimation of the integrated diffusion coefficients for
the a a-phase and b b-phase
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~Db
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a� b
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p ð7:15Þ

where kp
b is the parabolic growth constant of the b phase.

7.3 Calculation of the Average Interdiffusion Coefficient

Often, a phase grows in the interdiffusion zone, which has a composition range of
only a few percent. Nevertheless, it still may not be possible to estimate the
composition gradient with the minimum of error. For example, when Ni and Mo
were coupled at 1,150 �C for 9 h, the interdiffusion zone developed with the
Ni(Mo) solid solution and the r phase following the phase diagram, as shown in
Fig. 7.13 [24]. After plotting the average smoothened composition profile on the

Fig. 7.12 Estimation of the integrated diffusion coefficient in an incremental diffusion couple is
explained for a a diffusion couple with two phase mixtures as the end members and b single
phases as the end members
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measured profile, it was not possible to calculate the interdiffusion coefficients in
the r phase with a small margin of error because of the small composition gra-
dient. On the other hand, this phase is not a line compound or does not grow with a
very small composition range. Thus, the calculation of the integrated diffusion
coefficient is not very suitable. In this kind of system, it is very common practice to
calculate an average interdiffusion coefficient. Two different approaches could be
followed to estimate this. It can be estimated by dividing ~Dint with the known
composition range of the phase DNB

b as expressed in Eq. 7.9. For that, first, it is
necessary to determine the integrated diffusion coefficient for the phase. Therefore,
to apply the relations derived in the previous section, an average composition
profile with a zero gradient is first determined from the measured composition
profile in the phase of interest following

Nb
BðavÞ ¼

R N
b 2
B

N
b 1
B

NBdx

Dxb
ð7:16Þ

Next, the average composition profile is plotted with the help of the known
thickness of the phase. For instance, in the case of the Ni–Mo system, only the
average composition profile for the r-NiMo phase should be plotted without
changing anything in the Ni(Mo) solid solution. Subsequently, the appropriate
equation—as discussed in the previous section—is used to calculate the integrated
diffusion coefficient. In this particular system, Eq. 7.13a should be used. The
average interdiffusion coefficient is then estimated using the relation expressed in
Eq. 7.9.

Another approach can also be followed to determine this parameter by esti-
mating the interdiffusion flux ~J. Following Fick’s first law, considering constant
molar volume for the phase of interest, we can write

Fig. 7.13 a SEM image of a Ni/Mo diffusion couple (Ni end member is further away from the
image shown) and b composition profile at 1,150 �C for 9 h
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dC

dx
¼ �~D

1

vb
m

dNB

dx
ð7:17Þ

Generally, in a phase with a small composition range, the variation of the lattice
parameters with composition is not known. Therefore, an average constant molar
volume is considered, which is estimated based on the lattice parameter data of
stoichiometric composition. Replacing Eqs. 7.17 and 7.7, we get

~Db
int ¼

ZNb 2
B

N
b 1

B

~DdNB ¼� vb
m

Zxb 2

xb 1

~Jdx ð7:18Þ

Therefore, ~D
b
int can be estimated after calculating the variation of ~J with

composition and then integrating it over the length of the phase of interest. The
value ~J can be estimated using the relation developed by Den Broeder for the
interdiffusion coefficient (Eq. 6.26) expressed as

~D Y�C
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¼ 1
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dYC
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Since according to Eq. 6.16, the concentration-normalized variable is expressed

as YC ¼ CB�C�B
CþB�C�B

~D Y�C
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Therefore, using Fick’s first law, we can write

~J Y�C
� �

¼ �
CþB � C�B
� �

2t
1� Y�C
� � Zx�

x�1

YCdxþ Y�C

Zxþ1

x�

1� YCð Þdx

2
4

3
5 ð7:19aÞ

After calculating the flux in the composition range of the phase of interest, the
integrated diffusion coefficient can be estimated by integrating the flux over the
phase layer thickness in accordance with Eq. 7.18. This can also be estimated
using the expression of the composition-normalized variable used by Wagner [8]
to develop the relation for the interdiffusion coefficient, expressed by (Eq. 6.45)
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where YB ¼ NB�NB
�

NB
þ�NB

�. Fick’s first law, with the help of Eq. 1.150, can be written as

~J ¼ �~D
dCB

dx
¼ �~D

�vA

v2
m

ffi �
dNB

dx

Replacing this in the previous equation, we get
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If we consider a constant molar volume in the phase of interest, we can write
v�m ¼ v�A. Therefore, the relation for the interdiffusion flux can be written as

~J ¼ �
NþB � N�B
� �

2tvm
1� Y�B
� � Zx�

x�1

YBdxþ Y�B

Zxþ1

x�

1� YBð Þdx

2
4

3
5 ð7:19cÞ

Note that for constant molar volume, Eq. 7.19a will be the same as Eq. 7.19c.
We have noticed in many cases that the last approach that is the determination of
the average interdiffusion coefficient by integrating the interdiffusion flux gives
smaller error than averaging the composition profile following Eq. 7.16

7.4 Comments on the Relations Between the Parabolic
Growth Constants, Integrated and Average
Interdiffusion Coefficients

One important fact can be explained with the help of Eq. 7.15 and Fig. 7.12.
Previously, we stated that the parabolic growth constant is not a material constant.
In fact, the integrated diffusion coefficient is a material constant and it has a fixed
value at a particular stoichiometric composition of the compound and the tem-
perature. Moreover, this means that at a particular temperature, the integrated
diffusion coefficient is constant irrespective of the end-member composition.
However, the parabolic growth constant or the thickness of the phase layer actually
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depends on the composition of the end members. It is explained in Fig. 7.12. When
the compositions of the end members are closer to the product phase, it will grow
with a higher thickness compared to the one having a larger difference in the end-
member composition. For example, we consider that the composition of the
product phase b is NB

b ¼ 0:5. Suppose, in Fig. 7.12a, the end-member composi-
tions are N�B ¼ 0:45 and NB

þ ¼ 0:55. Therefore, from Eq. 7.15, the parabolic
growth constant in this case would be

kb
pðaÞ ¼

0:10
0:05� 0:05

� ~Db
int ð7:20aÞ

In the second case, as shown in Fig. 7.12b, suppose the end-member compo-
sitions are N�B ¼ Na

B ¼ 0:35 and NþB ¼ Nc
B ¼ 0:65. We can write

kb
pðbÞ ¼

0:30
0:15� 0:15

� ~Db
int ð7:20bÞ

Therefore, for the same annealing time, we can write

kb
pðaÞ

kb
pðbÞ

¼ 0:10
0:30
� 0:15� 0:15

0:05� 0:05
¼ 3 ð7:20cÞ

This now means that the parabolic growth constant in the first case will be 3
times higher. If the annealing time is the same, the ratio of the layer thickness will
be (since Dx2 ¼ 2kpt)

DxbðaÞ
DxbðbÞ

¼
ffiffiffi
3
p
¼ 1:73 ð7:20dÞ

This indicates that in the first diffusion couple, the layer thickness will be 1.73
times higher than the second diffusion couple. A physical explanation for this can
be easily understood. In the first case (Fig. 7.12a), the end members have a phase
mixture of (a + b) and (b + c) between which the b phase grows. The component
A dissociates from the a phase at one interface and then diffuses through the b phase
to reach to the other interface and reacts with the c phase to produce the b phase.
Similarly, B dissociates from the c phase and then diffuses to other phase and reacts
with the a phase to produce the b phase. In this way, dissociation and reaction of the
a and c phases produces the b phase. Moreover, the b phase that already exists in the
end members directly adds to the b product phase in the interdiffusion zone. On the
other hand, in the second case (Fig. 7.12b), the b phase is not present in the end
members. The product b phase grows by dissociation and reaction only. Therefore,
the growth rate in the first case is higher, which is shown by the derivations above.
Read Chap. 8 for a better understanding of such mechanisms.

Furthermore, it also should be noted that, in an incremental diffusion couple (if
only one phase grows), the thickness of the phase layer is always higher than the
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thickness of the same phase grown in a multiphase interdiffusion zone. In fact,
many times, we are not able to calculate the diffusion parameter of a phase in a
multiphase interdiffusion since it does not grow with reasonable thickness. To
determine the diffusion parameter with a smaller error in that phase, an incremental
diffusion couple is conducted such that the phase of interest grows with a higher
thickness [25–27]. This can be understood from Eq. 7.13c. In an incremental
couple, only the first part of the equation is relevant, whereas in multiphase growth,
the first part is related to the phase of interest and the second part is relevant for the
other phases. In an incremental couple, the components can dissociate at the
interfaces and diffuse through the phase of interest only for the growth of this phase.
On the other hand, in a couple with multiphase growth, the components have to
diffuse through all the phases, which grow together but at different rates. Moreover,
simultaneous growth and consumption process at the interfaces make the diffusion
process very complicated, which will be discussed in detail in Chap. 8. In fact,
Wagner [8] named the parabolic growth constant estimated in a diffusion couple of
end members with pure components as the parabolic growth constant of the first
kind, kI

P. When the parabolic growth constant is estimated in an incremental dif-
fusion couple with a single phase in the interdiffusion zone, it is referred to as the
parabolic growth constant of the second kind, kII

P .
Here, two important facts should be noted. In two different incremental diffu-

sion couples with different end-member compositions, when the same phase grows
in an interdiffusion zone, the parabolic growth constant values will be different.
After measuring the growth rate at different temperatures, when the parabolic
growth constants are plotted following the Arrhenius equation, as expressed in
Eq. 7.3, the difference will be in the pre-exponential factor only. The activation
energy for the parabolic growth will be same in both the cases. However, when the
growth of a particular phase is compared between an incremental couple and the
couple with the end members where other phase(s) also grow (multiphase growth),
the key values—i.e., the parabolic growth constants, the pre-exponential factors,
and the activation energies—will all be different. This is the reason why the
parabolic growth constant is not a material constant but rather depends on the
composition of the end members. On the other hand, the integrated diffusion
coefficient is a material constant and it is the same for a particular phase, irre-
spective of the end-member composition. In fact, a phase under different condi-
tions grows such that the integrated diffusion coefficient is the same.

To continue with the discussion on the activation energy for the parabolic
growth constant and the integrated diffusion coefficient, another important fact
should be noted. Replacing Eq. 7.3 in Eq. 7.15, we obtain

~Dint ¼
a� b

aþ b
� ko

p exp � Qg

RT

ffi �
ð7:21aÞ

Similarly, the Arrhenius equation for the integrated interdiffusion coefficient
could be written as
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~Dint ¼ ~Do
int exp �QD

RT

ffi �
ð7:21bÞ

By comparing the relations above, it can be easily understood that when in an
incremental diffusion couple a single phase grows in the interdiffusion zone, the
activation energy for both—the parabolic growth constant and the integrated
diffusion coefficient—is the same. The difference is in the pre-exponential terms
only. However, it is not true for the phase when it grows with other phases in the
interdiffusion zone. In multiphase growth, the parabolic growth constant of a phase
is nonetheless estimated directly from the measured thickness of that phase only.
However, for the calculation of the integrated diffusion coefficient, the thickness
and the composition of the other phases are also used, as explained in Eq. 7.13a. In
multiphase growth, when one particular phase grows with a much higher thickness
than that of the other thin phases, we have seen that the difference between the
activation energies of the parabolic growth constants and the integrated diffusion
coefficients is much less for the thick phase. However, it could be significantly
different in the case of a phase with much lower thickness. The comments above
are also true when the activation energy for the parabolic growth constants and the
average interdiffusion coefficients are compared. These are shown in the Fe–Nb
system, as presented in Fig. 7.14 for the NbFe2 and NbFe phases. The NbFe2 phase
grows with a much higher thickness, and there is not much difference in the
activation energy for the parabolic growth constant and the average interdiffusion
coefficient. On the other hand, the NbFe phase grows with a small thickness and
there is a high difference in the activation energies [28].

In many cases, for example, during the interaction of Cu with Sn-based solder,
as shown in Fig. 7.15 [29], where two phases Cu3Sn and Cu6Sn5 grow in the
interdiffusion zone, we cannot estimate the diffusion parameters. Although the
solder is a multicomponent alloy, only Sn from the solder along with the Cu from
the Cu printed wiring board takes part in the interdiffusion process. We may feel
optimistic that it is possible to estimate the diffusion parameters by considering it
as a binary Cu/Sn system. However, we cannot do so. It should be noted here that
the condition for the use of the relations derived for the calculation of the diffusion
parameters is valid only when we are able to measure the concentration profile up
to the unaffected zone in the couple. It is not possible to estimate exactly how
much length is affected in the solder alloy, and it is even almost impossible to find
the average composition profile because of presence of a phase mixture.

When only one phase layer grows in the interdiffusion zone, in such couples, it
is common practice to calculate the interdiffusion coefficient using the relation

Dx ¼ 2
ffiffiffiffiffi
~Dt
p

. This relation is written based on the error function analysis explained
previously in Chap. 3, with the consideration that the interdiffusion coefficient is
constant. However, sometimes, this relation is used even when more than one
phase layer grows at the interface. This is incorrect, since in this calculation, the
diffusion parameter for the phase of interest is incorrectly estimated without
considering the growth of the other phases. Sometimes, one interdiffusion
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coefficient is estimated taking the thickness of all the phases together. Note that
this is also not correct, since different phases have different compositions and they
will have different diffusion coefficients and perhaps different diffusion mecha-
nisms. We commented previously, that when all the phases grow parabolically
with time, the total thickness of the interdiffusion zone would also be parabolic
with time. By considering this fact, sometimes, the activation energy for growth is

(a) (b)

(d)(c)

(e) (f)

Fig. 7.14 a Fe/Nb diffusion couple annealed at 1,150 �C for 25 h, b measured composition
profile, Arrhenius plots of the parabolic growth constants for c NbFe2 and d NbFe phases,
Arrhenius plots of the average interdiffusion coefficients for e NbFe2 and f NbFe phases
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estimated after calculating the parabolic growth constant from the total layer
thickness. This is again incorrect, since the activation energy indicates the diffu-
sion and the growth mechanisms that are different for different phases. One single
value for all the phases together does not have any physical significance.

7.5 Calculation of the Ratio of the Intrinsic Diffusion
Coefficients

In the previous chapter, we have derived the relations for the intrinsic diffusion
coefficient for the components, as expressed in Eqs. 6.74 and 6.76. However, again
because of the same problem, as discussed before, we cannot calculate a very
small composition gradient in the line compounds (or the phases with a narrow
homogeneity range) and it is not possible to calculate the absolute values of the
intrinsic diffusion coefficients. It is, however, possible to calculate the ratio of
diffusivities (Eq. 6.78), using the relation

�vADB

�vBDA
¼

NþB
R xK

x�1
YB
vm

dx� N�B
R xþ1

xK

1�YBð Þ
vm

dx
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x�1
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vm

dxþ N�A
R xþ1
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1�YBð Þ
vm

dx

" #
ð7:22Þ

In the above relation, it can be seen that we still need to determine the partial
molar volumes of the components. In general, since the phases under consideration
have a very narrow homogeneity range, the details concerning the variation of the
molar volume in that small composition range are not known. Therefore, it is also
impossible to calculate the ratio of the intrinsic diffusion coefficients correctly.
However, from the relation expressed in Eq. 6.92, we can write

D�B
D�A
¼

NþB
R xK

x�1
YB
vm

dx� N�B
R xþ1

xK

1�YBð Þ
vm

dx
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1�YBð Þ
vm
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ð7:23Þ

Fig. 7.15 Reaction layers formed in the reaction of Sn-based SnAgCu (SAC) solder and Cu after
annealing at 110 �C for 750 h
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Thus, at the location of the Kirkendall marker plane, we can calculate directly
the ratio of the tracer diffusion coefficients. However, again, in Eq. 7.23, we have
disregarded the contribution from the vacancy wind effect. Considering the
vacancy wind effect, Eq. 7.23 can be written correctly as

D�B 1�WBð Þ
D�A 1þWAð Þ ¼

NþB
R xK

x�1
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vm

dx� N�B
R xþ1
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dx

�NþA
R xK

x�1
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dxþ N�A
R xþ1

xK

1�YBð Þ
vm

dx

" #
ð7:24Þ

where Wi ¼ 2NiðD�A�D�BÞ
MoðNAD�AþNBD�BÞ

.

For most intermetallic compounds that have a complicated crystal structure, the
value of the structure factor Mo is not readily available. For this reason, we
calculate the ratio of the tracer diffusion coefficients using the relation expressed in
Eq. 7.23, i.e., by neglecting the role of the vacancy wind effect. Because of this
assumption, we cannot estimate the ratio of the tracer diffusion coefficients cor-
rectly; however, it is still very useful, to understand the atomic mechanism of
diffusion. In many cases, this does not greatly affect the estimated values and error
falls within the limit of experimental error that one typically expects from the
experimental procedure.

The calculation procedures to determine the ratio of the tracer diffusion coef-
ficients are explained in Fig. 7.16. Note here that we need to calculate the integrals

U ¼
R xK

x�1
YB
vm

dx and W ¼
R xþ1

xK

1�YBð Þ
vm

dx on the either side of the Kirkendall marker

plane, located at xK , and indicated by the white dotted markers on the schematic
diffusion couple. When we calculate the ratio of the tracer diffusion coefficients in
a line compound by neglecting the contribution of the vacancy wind effect,
Eq. 7.23 can be rewritten as

D�B
D�A
¼ NþB U� N�B W
�NþA Uþ N�A W

� 	
ð7:25Þ

In few cases, such as that presented in Fig. 7.16a, there could be a phase of
interest with narrow composition range in which the marker plane is located. On
both sides of this phase, composition varies continuously. In this case, the values
of U and W are
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Note here that after converting YB to NB, we have not included the factor
ðNþB � N�B Þ. This is because the same term is present in both numerator and
denominator in Eq. 7.25 to cancel out each other. Sometimes, in multiphase
growth, all the phases grow either as line compounds or with a narrow composition
range, as expressed in Fig. 7.16b. In this case, the values of U and W can be
written as

U ¼
Na

B � N�B
� �

va
m

Dxa þ
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ð7:27aÞ
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If an incremental diffusion couple experiment is conducted such that only one
phase grows in the interdiffusion zone, as shown in Fig. 7.16c, then these values
can be written as
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Fig. 7.16 Imaginary composition profiles explaining the estimation of the ratio of diffusivities of
the components for different conditions
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7.6 Calculation of the Tracer Diffusion Coefficients

The previous chapter contained an explanation of the procedure for estimating the
tracer diffusion coefficients in a diffusion couple indirectly by using the interdif-
fusion coefficients, the ratio of the intrinsic diffusion coefficients, and the ther-
modynamic factor. It can also be estimated directly (without calculating the
interdiffusion coefficient) by using the absolute values of the intrinsic diffusion
coefficients and the thermodynamic factor. As explained in the previous section,
we can estimate only the ratio of the tracer diffusion coefficients in the phases with
a narrow homogeneity range. Consequently, we need to relate the integrated dif-
fusion coefficients with the ratio of the tracer diffusion coefficients and thermo-
dynamic parameters (driving forces) to estimate the absolute values of the tracer
diffusion coefficients. We consider a hypothetical incremental diffusion couple of a
and c, as shown in Fig. 7.17, where only a single b phase grows at the interface.
Further, a is A-rich phase and c is B-rich phase. This means that A dissociates from
a at the interface I and then diffuses to the interface II. At this interface, A reacts
with c to produce the b phase. Concurrently, B dissociates from c and then diffuses
to the interface I. At this interface, it reacts with a to produce the b phase. From the
chemical potential point of view (see Chaps. 1 and 4), A diffuses from the inter-
faces I to II because lI

A [ lII
A . Simultaneously, B diffuses from the interface II to I

because lII
B [ lI

B, as explained in Fig. 7.17. Replacing the relation between the
interdiffusion coefficient and the tracer diffusion coefficient as expressed in Eq. 6.90
(see Chap. 6) in Eq. 7.7, we get
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N
b 1
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ð7:29Þ

where aB
I and aII

B are the activities of the component B at the interfaces I and II,
respectively. Since we are considering an average composition of the phase with a
very narrow homogeneity range and at that composition, it will have the fixed
tracer diffusion coefficient of the components. This can therefore be written as
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From the relations between the activities and the chemical potential of the
components as derived in Chap. 1, we can write

lI
B ¼ lo

B þ RT ln aI
B ð7:31aÞ

lII
B ¼ lo

B þ RT ln aII
B ð7:31bÞ

From Eqs. 7.31a and 7.31b, we can express the relation for the driving force for
diffusion of the component B as

DdgB ¼ lI
B � lII

B ¼ �RT ln aII
B � ln aI

B

� �
ð7:32Þ

Replacing Eq. 7.32 in Eq. 7.30, we get

~Db
int ¼ � Nb

AD�B þ Nb
BD�A

� �Nb
BDdgB

RT
ð7:33aÞ

It should be noted here that Nb
BDdgB ¼ Nb

ADdgA(see Sect. 7.7.2). Thus, the same
relation, with respect to the driving force for diffusion of the component A, can be
written as

Fig. 7.17 Imaginary a free energy diagram, b phase diagram, and c composition profile
explaining the estimation of the tracer diffusion coefficients from an incremental diffusion couple
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~Db
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AD�B þ Nb
BD�A

� �Nb
ADdgA

RT
ð7:33bÞ

If the product phase b grows between the pure end members A and B such that
no other phases are present in the phase diagram, it is possible to write Eq. 7.33a
as

~Db
int ¼ � Nb

AD�B þ Nb
BD�A

� �Df gb

RT
ð7:34Þ

whereDf gb is the free energy for the formation of the b phase. Therefore, by
estimating the ratio of the tracer diffusion coefficients, the integrated diffusion
coefficients, and the driving force for diffusion of the components, the absolute
values of the tracer diffusion coefficients can be estimated.

One important fact should be noted here that the integrated diffusion coeffi-
cients and the ratio of the tracer diffusion coefficients could be estimated from any
type of diffusion couple—whether an incremental diffusion couple or a couple
with pure end members. However, the driving force for diffusion should be esti-
mated considering the growth of the product phase in an incremental couple from
the adjacent phases in the phase diagram. Similarly, even if the diffusion param-
eters in the product b phase are estimated in an incremental couple with phase
mixtures of a + b and b + c as the end members (for, e.g., see Fig. 7.12a), the
driving force for diffusion should be estimated as if the layer is grown between the
pure a and c phases as the end members. Note here that the diffusion coefficients
are the material constants and would have the same values irrespective of the
different end members.

7.7 The Kirkendall Marker Velocity in a Line Compound

In the previous chapter, we have derived the relation for the velocity of the marker
plane (Eq. 6.61) as

vK ¼ �vB DB � DAð Þ oCB

ox

ffi �
K

ð7:35Þ

Since we cannot determine the absolute values of the intrinsic diffusion coef-
ficients in the line compound, the relation must be derived differently. Using
standard thermodynamic relations (Eq. 1.150) together with Eq. 7.35, the fol-
lowing can be written
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vK ¼
�vA�vB

v2
m

DB � DAð Þ oNB

ox

ffi �
K

ð7:36Þ

Integrating Eq. 7.36 over the composition range from NB
b 1 to Nb 2

B and the
position range (that is the thickness) from xb 1 to xb 2 ,

Zxb 2

xb 1

vKdx ¼
ZNb 2

B

N
b 1
B

�vA�vB

v2
m

DB � DAð ÞdNB ð7:37Þ

Further, we know from Eq. 6.65 that

~Dvm ¼ NA�vADB þ NB�vBDA ð7:38Þ

Using Eq. 7.38 in Eq. 7.37, we arrive at

vKDxb ¼
�vA�vB

v2
m

DB � DAð Þ
ZNb2

B

Nb1
B

~Dvm

NA�vADB þ NB�vBDA
dNB

Here, we are considering the phase with a narrow homogeneity range or a line
compound with an almost fixed or an average composition. Consequently, it is
possible to consider the intrinsic diffusion coefficients and molar volume of the b
phase as more or less constant. It will, therefore, almost have a fixed velocity.
Thus, we can write

vKDxb ¼
�vA�vB

vm

DB � DA

NA�vADB þ NB�vBDA

ZNb2
B

Nb1
B

~DdNB ð7:39Þ

From the definition of the integrated diffusion coefficient (Eq. 7.7) and dividing
both numerator and denominator by �vBDA in Eq. 7.39, the velocity can be written
as [30]

vK ¼
�vA

vm

DB
DA
� 1

�vADB
�vBDA

� �
NA þ NB

~Dint

Dxb
ð7:40Þ

Again, it is almost impossible to calculate the partial molar volumes of the
phase and the exact velocity is thus impossible to calculate. Mostly, we consider
vm ¼ �vA ¼ �vB and calculate the velocity of the marker plane in a line compound. It
can be seen that to calculate the velocity of the marker plane, it is first necessary to
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calculate the intrinsic (or the ratio of the intrinsic) diffusion coefficient from the
composition profile. We can derive a simpler relation to estimate this value
directly from the composition profile. We denote / ¼

R
x�1

xK Y
vm

dx and

w ¼
R xþ1

xK

1�Y
vm

dx. Therefore, the relation for the intrinsic diffusion coefficients, as

expressed in Eqs. 6.75 and 6.77, can be written as

DB ¼
1
2t

v2
m

�vA

ox

oNB

ffi �
K

NþB /� N�B w
� �

ð7:41aÞ

DA ¼
1
2t

v2
m

�vB

ox

oNA

ffi �
K

NþA /� N�A w
� �

ð7:41bÞ

Replacing Eq. 7.41a, b in Eq. 7.36, we get

vK ¼
�vA�vB

v2
m

1
2t

v2
m

�vA

ox

oNB

ffi �
K

NþB /� N�B w
� �

� 1
2t

v2
m

�vB

ox

oNA

ffi �
K

NþA /� N�A w
� �� 	

oNB

ox

ffi �
K

Since NA þ NB ¼ 1 that is dNA þ dNB ¼ 0, we can write

vK ¼
1
2t

�vB NþB /� N�B w
� �

þ �vA NþA /� N�A w
� �� �

vK ¼
1
2t

�vBNþB þ �vANþA
� �

/� �vBN�B þ �vAN�A
� �

w
� � ð7:42aÞ

In a diffusion couple with pure components as end members, N�B ¼ 0, NA
� ¼ 1,

NþB ¼ 1, and NþA ¼ 0. Therefore, Eq. 7.42a reduces to [26]

vK ¼
1
2t

�vB/� �vAw½ � ð7:42bÞ

The advantage of using Eq. 7.42a is that this makes it possible to determine the
velocity of the marker plane directly from the Y/vm versus x plot. Furthermore, this
relation can be used in any phase with wide homogeneity range or a line com-
pound. In order to calculate the partial molar volumes in a line compound or in a
phase where the variation of the molar volume with composition is not known, the
approximate velocity of the marker plane can be estimated by considering
�vB ¼ �vA ¼ vm.

It should be noted here that we have composition jumps between the end
members and the product phases in multiphase growth. Mathematically, we
cannot differentiate the composition profile anywhere if it is not continuous
at some points. Therefore, we actually assume a sharp, but continuous
change in composition at those points. On the other hand, we highlight that
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all important relations, i.e., those for the estimation of the integrated diffu-
sion coefficient using Eq. 7.13a, the interdiffusion flux using Eq. 7.19a, and
the ratio of diffusivities by Eqs. 7.22 and 7.23, were derived without any
differentiation of the composition profile, and thus, the obtained formulas are
mathematically correct.

7.8 Case Studies

7.8.1 Calculation of the Integrated and the Ratio
of the Tracer Diffusion Coefficients

We consider a diffusion couple of Nb/Si annealed at 1,250 �C for 24 h [27].
According to the phase diagram shown in Fig. 7.18a, two phase layers Nb5Si3 and
NbSi2 are expected to grow at the interface, as can be seen in Fig. 7.18b.
According to the composition analysis, the composition profile in the Nb(Si) and
Si(Nb) was negligible and can be neglected. Since the phases are actually line
compounds, the composition profile can be drawn after measuring the thickness of
the phase layers, as shown in Fig. 7.19a. ‘‘K’’ denotes the location of the Kir-
kendall marker plane. Therefore, we can calculate the integrated diffusion coef-
ficients for both the phases and the ratio of the tracer diffusion coefficients in
the NbSi2 phase. The thicknesses of the phase layers are mentioned in the profile.
The calculated molar volumes of the phases are vNb5Si3

m ¼ 9:6� 10�6 and
vm

NbSi2 ¼ 8:7� 10�6 m3=mol.
The integrated diffusion coefficients can be estimated as (see Fig. 7.19b, c)

~DNb5Si3
int ¼ a� b

aþ b

Dx2
Nb5Si3

2t
þ DxNb5Si3

2t

b 0ð Þ þ a v
Nb5Si3
m

v
NbSi2
m

P
� �

aþ b

2
4

3
5 ¼ 4:4� 10�16 m2=s

where a ¼ 3
8� 0 ¼ 3

8, b ¼ 1� 3
8 ¼ 5

8, DxNb5Si3 ¼ 4:7� 10�6 m, 2t ¼ 2� 24� 60�
60 ¼ 172; 800 s, and P ¼ 1� 2

3

� �
� 110:2� 10�6 m.

~DNbSi2
int ¼ c� d

cþ d

Dx2
NbSi2

2t
þ DxNbSi2

2t

d v
NbSi2
m

v
Nb5Si3
m

Q
� �

þ c 0ð Þ
cþ d

2
64

3
75 ¼ 1:6� 10�14 m2=s

where c ¼ 2
3� 0 ¼ 2

3, d ¼ 1� 2
3 ¼ 1

3, DxNb5Si3 ¼ 110:2� 10�6 m, 2t ¼ 2�24�60�
60 ¼ 172; 800 s, and Q ¼ 1� 3

8

� �
� 4:7� 10�6 m.
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Fig. 7.18 a Nb–Si phase diagram [31] and b Nb/Si diffusion couple annealed at 1,250 �C for
24 h [27]

Fig. 7.19 Estimation of the diffusion parameters from the composition profile in the Nb–Si
system is explained. a Composition profile, estimation of the integrated diffusion coefficient for
b Nb5Si3, c NbSi2, and d estimation of the ratio of diffusivities in the NbSi2 phase
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The ratio of the diffusivities can be estimated as (see Fig. 7.19d)

D�Si

D�Nb

¼ NþSiU� N�SiW
�NþNbUþ N�NbW

� 	
¼ 4:62

where U ¼ M
v

Nb5Si3
m

þ N
v

NbSi2
m

, W ¼ R
v

NbSi2
m

, M ¼ 3
8� 0
� �

� 4:7� 10�6 m, N ¼ 2
3� 0
� �

�
76:2� 10�6 m, R ¼ 1� 2

3

� �
� 34� 10�6 m, N�Si ¼ 0, NSi

þ ¼ 1, N�Nb ¼ 1, and
NNb

þ ¼ 0.

7.8.2 Calculation of the Absolute Values of the Tracer
Diffusion Coefficients

Let us consider the incremental diffusion couple between Co0.48Si0.52 and Si [25,
30]. From the Co–Si phase diagram shown in Fig. 7.20a [31], it can be seen that
the Co0.48Si0.52 alloy consists of two phases, CoSi and CoSi2. Therefore, in the
diffusion couple, as expected, only the CoSi2 phase is grown, as shown in
Fig. 7.20b. The couple was annealed at 1,186 �C for 100 h. ThO2 particles were
used to detect the location of the Kirkendall marker plane. The length of the phase
layer on either side of the marker plane is shown. With the aim of calculating the
absolute values at the Kirkendall marker plane, we should first determine the
integrated diffusion coefficients and the ratio of the tracer diffusion coefficients.
These are

~DCoSi2
int ¼ ab

aþ b

Dx2
CoSi2

2t

¼ ð2=3� 0:52Þð1� 2=3Þ
1� 0:52

154:4� 10�6
� �2

2� 100� 60� 60
¼ 3:3� 10�15 m2=s

vCo

vSi

DSi

DCo

¼ D�Si

D�Co

¼ NþSiR� N�SiS

�NþCoRþ N�CoS

� 	

¼ 1� ð2=3� 0:52Þ � 102:2� 0:52� 1� 2=3ð Þ � 52:2
�0� 2=3� 0:52ð Þ � 102:2þ 0:48� ð1� 2=3Þ � 52:2

� 	
¼ 0:7

Now, we need to calculate the driving force for diffusion of the components
through the CoSi2 phase. As mentioned earlier, we need to consider as if the
product phase is grown between the pure CoSi and Si end members. Since the
diffusion parameters are the material constants, the values estimated above would
be the same. The free energy of the phases at 1,186 �C is estimated using the
thermodynamic parameters, as listed in Table 7.1. First, the enthalpy and the
entropy at the temperature of interest are estimated using the relations
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hT ¼ h298 þ
ZT

298

CPdT ð7:43aÞ

sT ¼ s298 þ
ZT

298

CP

T
dT ð7:43bÞ

where Cp ¼ Aþ BT � C
T2

Fig. 7.20 a Co–Si phase diagram, b Co0.48Si0.52/Si diffusion couple annealed at 1,186 �C for
100 h, c composition profile, and d the estimation of the driving forces [25, 30]

Table 7.1 Thermodynamic parameters in Co–Si system are tabulated

Details of Cp values

CoSi CoSi2 Si

A 49.16 70.86 23.698
B 9 10-3 12.1 I8.66 3.305
C 9 105 7.54 9.93 4.351
S298 43.2 J/mol.K 64.2 J/mol.K 18.81 J/mol.K
h298 -94,600 J (mole of CoSi) -98,700 J (mole of CoSi2) 0
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After this, the free energies of the phases are estimated using the relation
g = h - Ts. The values are estimated as g(CoSi) = -218,714.9 J/mole of
CoSi, g(CoSi2) = -281,727.8 J/mol of CoSi2, and g(Si) = -54,814.57 J/mole
of atom. To estimate the driving forces from a free energy diagram—which is
drawn with respect to per mol of atom—it is necessary to divide the values of
g estimated for CoSi and CoSi2 by the number of atoms in the compound that is
2 and 3, respectively. This leads to g(CoSi) = -109,357.45 J/mole of atom and
g(CoSi2) =-93,909.27 J/mole of atom. We can use the estimated value of the Si
free energy as it is. After plotting the values, as shown in Fig. 7.20d, we get
DdgSi = -8,199 J/mol of Si atom and DdgCo = -16,398 J/mol of Co atom.
Previously, we stated that NSiDdgSi ¼ NCoDdgCo. It can be seen that this is true
since NSi ¼ 2=3 and NCo ¼ 1=3. Next, the absolute values of the tracer diffusion
coefficients are determined using the relations

~Dint ¼ 3:3� 10�15 m2=s ¼ � NCoD�Si þ NSiD
�
Co

� �NSiDdgSi

RT
D�Si

D�Co

¼ 0:7

The values are estimated as D�Co ¼ 8:25� 10�15 m2=s; D�Si ¼ 5:77�
10�15 m2=s.

The estimated values of the driving forces demonstrate that NSiDdgSi ¼
NCoDdgCo. We can demonstrate that this is true in a different way with respect to
the reaction/diffusion at the interfaces. This is explained with the help of Fig. 7.21.
It can be seen that Si diffuses to the interface I and reacts with CoSi to produce the
CoSi2 phase. Co dissociates at the same interface from CoSi to produce the
product phase at the same interface. The dissociated Co diffuses through the CoSi2
product phase and reacts with Si at the interface II to produce the CoSi2 product
phase. In terms of a reaction at the interfaces, we can write

Interface I

2CoSi ¼ Co½ �dþCoSi2 ð7:44aÞ

CoSi þ Si½ �d¼ CoSi2 ð7:44bÞ

Interface II

2Si þ Co½ �d¼ CoSi2 ð7:44cÞ

Note here that the above interface reactions do not control the growth of the
phase. Rather, the diffusion of the components through the product phase controls
the growth process. From Eq. 7.44b, we can write the energy change per mol of
moving Si atom as
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DdgSi ¼ g CoSi2ð Þ � g CoSið Þ � g Sið Þ ð7:45aÞ

Since the same Co atoms are involved in producing the product phase at both
interfaces, by adding Eqs. 7.44a and 7.44c, we can write

2CoSi þ 2Si ¼ 2CoSi2

Therefore, the energy change per mol of a moving Co atom can be written as

DdgCo ¼ 2g CoSi2ð Þ � 2g CoSið Þ � 2g Sið Þ ð7:45bÞ

Comparing Eqs. 7.45a and 7.45b, we can write

DdgCoSi2
Co ¼ 2DdgCoSi2

Si

1
3

DdgCoSi2
Co ¼ 2

3
DdgCoSi2

Si

NCoSi2
Co DdgCoSi2

Co ¼ NCoSi2
Si DdgCoSi2

Si

7.8.3 Diffusion Studies in the Ti-Si System
and the Significance of the Parabolic Growth Constant

Ti–Si is one of the important refractory metal–silicon systems used extensively in
the very large-scale integrated (VLSI) industry. The C54 phase TiSi2 is used as a
contact because of its low resistivity and excellent thermal stability. This material
is grown by depositing a thin film of Ti on Si. Later, self-aligned silicide (salicide)
is grown at the interface by a diffusion-controlled process. Therefore, extensive
studies have been conducted in this system in order to understand the growth of the
phases mainly in the thin-film condition because of the relevance of such studies.
Time-dependent experiments were conducted, and the growth of the phase was
found to follow the parabolic growth law (that is, diffusion-controlled growth)
[32]. However, studies in the thin-film condition might not be suitable to develop a
basic understanding of both the phase growth mechanism and the atomic mech-
anism of diffusion, which is explained in more detail later in Chap. 11.

Interdiffusion in the bulk solid-state condition is ideal for fundamental studies.
As shown in Fig. 7.22a, the TiSi2, TiSi, and Ti5Si4 phases are grown with a higher

Fig. 7.21 A schematic
representation of the CoSi/Si
diffusion couple
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thickness at 1,200 �C after an annealing period of 16 h. A closer examination
reveals the presence of two other phases, Ti5Si3 and Ti3Si, as shown in Fig. 7.22b.
Since these are present as very thin layers, we consider only the first three phases
for analysis. Since the parabolic growth of the interdiffusion zone has been already
confirmed by many researchers in this system, at first, the temperature-dependent
experiments were conducted to estimate the activation energies. The thicknesses of
the phase layers (Dx) are tabulated in Table 7.2. Some interesting behavior con-
cerning the growth of TiSi phase can be noticed. The increase in layer thickness
with increasing annealing temperature is negligible.

There could be two reasons for this behavior. As already discussed, in an
incremental couple, when only one phase layer grows in the interdiffusion zone, it
is not affected by any other phases. On the other hand, the growth kinetics of a
phase in multiphase interdiffusion depends on the growth of neighboring phases,
which is discussed in detail subsequently in Chap. 8. Ideally, all the phases should
grow according to their own diffusion parameters since these are the material
constants. This means that the thicknesses of the phase layers are adjusted
depending on the end-member compositions such that the diffusion parameters

Fig. 7.22 a Ti/Si couple annealed at 1,200 �C for 16 h showing the thicker phases and b image
of the same couple near the Ti end member showing the presence of other phases [32]

Table 7.2 Thicknesses of phases grown at different temperatures after 16 h of annealing

Temperature (�C) (Dx TiSi2 in lm) Dx (TiSi in lm) Dx (Ti5Si4 in lm)

1,150 39 ± 1.1 23 ± 0.5 9 ± 0.3
1,175 43 ± 0.6 24 ± 0.4 12 ± 0.3
1,200 52 ± 0.8 24 ± 0.6 14 ± 0.4
1,225 60 ± 0.5 25 ± 0.6 15 ± 0.7
1,250 67 ± 0.9 25 ± 0.7 18 ± 0.4
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remain the same. There is, therefore, a possibility that the growth rate of the other
phase changed with temperature in such a way that the growth rate of TiSi phase
did not vary significantly with temperature. This also means that the activation
energy for the growth of this phase is relatively low compared to the other phases.
Secondly, it is possible that this phase could not grow ideally—that is, paraboli-
cally with time—in a multiphase interdiffusion zone, as was found, for instance, in
the Ti–Al system [1]. To investigate this, time-dependent experiments were con-
ducted at 1,200 �C. As can be seen clearly from Fig. 7.23a–c, all three phases
grow by a diffusion-controlled process since a linear dependence of the phase
thickness squares Dx2 versus time 2t is found. This fact indicates that the activation
energy for the interdiffusion of TiSi phase must be low compared to the other
phases, as discussed above, which is clear from Fig. 7.23d. Another important
point should be noted here: We might ask whether time-dependent experiments
should be conducted at every temperature, especially when Dx 6¼ 0 at t = 0, as it
is found in this particular system. This can be decided based on the tempera-
ture-dependent experiments. If the growth of the phase layer is affected differently
at different temperatures, data points will not fall on a line in the Arrhenius plot.
Figure 7.23d shows that these points do actually fall on a line for all the phases in

Fig. 7.23 Time-dependent experiments at 1,200 �C for 4, 9, 16, 25, and 36 h are shown by Dx2

versus 2t plots for a TiSi2, b TiSi, c Ti5Si4, and d the integrated diffusion coefficients for TiSi2,
TiSi, and Ti5Si4 plotted following the Arrhenius equation [32]
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this system, this indicates that the phases are affected similarly at the initial stage
in the temperature range of our interest. This is true for most of the systems, if
experiments are conducted relatively within a small temperature range.
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Chapter 8
Microstructural Evolution
of the Interdiffusion Zone

In this chapter, previously unknown behavior of marker plane is shown. In most of
the cases, we find the markers along one particular plane; however, in certain
condition, these might spread. Sometimes, markers split into more than one planes.
A characteristic microstructural feature is found to develop depending on the
number and location of the marker planes. This led to development of a physico-
chemical approach explaining the microstructural evolution in the interdiffusion
zone.

As already discussed in Chap. 6, the discovery of the Kirkendall effect [1, 2] is
one of the most important developments in the area of solid-state diffusion. This
helped to validate the vacancy-mediated substitutional diffusion. For long, it was
known that the markers accumulate at a single plane with a fixed composition.
However, sometimes, an unusual behavior of the marker plane has been reported in
the literature on this subject. Bastin and Rieck [3] placed W wire at the interface of
a Ni/Ti diffusion couple before annealing it at 800 �C for 72 h. Three phases, Ti2Ni,
TiNi, and TiNi3, were grown in the interdiffusion zone. Surprisingly, the authors
found pieces of broken W wire in different phases, as if these markers tried to move
to different planes simultaneously. Much later, in 1993, Shimozaki et al. [4]
reported another unusual behavior in the b0-AuZn phase grown by interdiffusion in
the Au/Au0.36Zn0.64 diffusion couple. As discussed in Chap. 6, the position of the
marker plane could be detected by the presence of a line of pores that developed
because of the negative surface (such as scratches or by the presence of debris left
on the metallographically prepared bonding surfaces). In general, the markers used
to detect the Kirkendall plane are also found along with these on the same plane.
Shimozaki et al. used 5-lm-diameter W wire as an inert marker. To their surprise,
they found the wires at one plane and the traces (pores caused by scratches or
debris) of the original interface at another plane. In both cases, the actual reason for
such behavior was not known. In the meantime, following theoretical analysis,
Cornet and Calais [5] and van Loo et al. [6] described the possibility of finding more
than one Kirkendall marker plane in an interdiffusion zone. In their analysis, they
considered a diffusion couple of a and b with a single interface between them. First,
they showed that depending on the initial composition of the end members, the
same interface can act as both a source and a sink for vacancies when one particular

A. Paul et al., Thermodynamics, Diffusion and the Kirkendall Effect in Solids,
DOI: 10.1007/978-3-319-07461-0_8, � Springer International Publishing Switzerland 2014

337

http://dx.doi.org/10.1007/978-3-319-07461-0_6
http://dx.doi.org/10.1007/978-3-319-07461-0_6


component diffuses at a faster rate in both the phases. If DA=DB [ 1 in one phase
and DA=DB\1 in the other phase, depending on the initial end-member compo-
sitions, there could be two Kirkendall planes present in the interdiffusion zone. In
that case, the inert markers placed at the initial contact plane have to split and will
accumulate at two different planes: one in the a phase and the other in the b phase.
In fact, we should consider a marker plane in each phase. Depending on the
end-member compositions, the intrinsic diffusion coefficients and the interdiffusion
coefficients, it is possible to actually find one or more than one marker planes. After
the manuscript published by Shimozaki et al. extensive studies were conducted in
several systems including the Ni–Ti and the Au–Zn systems in order to demonstrate
the previously unknown behavior of the marker planes [7–13]. Now, we know that
the inert markers could be stable to be found in one plane. Under certain circum-
stances, we might notice some unstable behavior, in which, instead of accumulation
in one plane, the markers might spread over a wider area. Depending on the
end-member compositions and diffusivities, more than one plane also could be
found in a single phase or in different phases. Based on which, a physico-chemical
approach is developed to explain the morphologies in a multiphase interdiffusion
zone depending on the presence of a single or multiple Kirkendall planes.

8.1 Stable, Unstable, and Multiple Kirkendall Marker
Planes

In Chap. 6, we have seen that the intrinsic diffusion coefficients can be estimated
over the composition range using an incremental diffusion couple by making
several diffusion couples with different end members or from a single diffusion
couple by making a multifoil diffusion couple. Once the intrinsic diffusion coef-
ficients (DA and DB) are calculated, the velocity at a different composition in a
particular diffusion couple can be determined from the knowledge of these dif-
fusion parameters at different compositions and the concentration gradient mea-
sured at those compositions following the relation as expressed in Eq. 6.61

vK ¼ �vB DB � DAð Þ oCB

ox

� �
K

ð8:1Þ

The velocity of the Kirkendall plane (or the composition of the Kirkendall marker
plane) can also be determined directly by locating the initial contact plane xo and
the Kirkendall marker plane xK from the relation as expressed in Eq. 6.64

vK ¼
xK � xo

2t
¼ xK

2t
ð8:2Þ

Therefore, at the intersection point of these two lies the location of the Kirkendall
marker plane, since both have the same velocity at this plane [7, 8]. To explain
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further in a simplified system, let us consider, the constant molar volume of a
system, such that vA ¼ vB ¼ vm and a constant interdiffusion coefficient ~D over the
whole concentration range. Therefore, Fick’s second law reduces to

oNB

o t
¼ ~D

o2NB

ox2
ð8:3Þ

The solution of Eq. 8.3 with respect to error function can be written as [7, 8, 10]

NB ¼
1
2

erfc
x

2
ffiffiffiffiffi
~Dt
p

� �
ð8:4Þ

For a constant molar volume, Eq. 8.1 can be written as

v ¼ DB � DAð Þ oNB

ox
ð8:5Þ

Further, the Darken relation (Eq. 6.65) can be expressed as

~D ¼ NADB þ NBDA ð8:6Þ

If we would like to consider a constant ratio of diffusivities, Eq. 8.5, with the help
of Eq. 8.6 can be written as

v ¼ ~D
DB

DA
� 1

NA
DB

DA
þ NB

 !
oNB

ox
ð8:7Þ

With the help of Eq. 8.4, Eq. 8.7 can be written as

v ¼ ~D
DB

DA
� 1

NA
DB

DA
þ NB

 !
�1ffiffiffi

p
p 1

2
ffiffiffiffiffi
~Dt
p

� �
exp � x

2
ffiffiffiffiffi
~Dt
p

� �2
" #

ð8:8Þ

After plotting v versus x using Eq. 8.8, the location of the Kirkendall plane can be
rationalized by the intersection of the straight line—expressed by Eq. 8.2—that goes
through x = 0. The velocity diagram, as shown in Fig. 8.1, is estimated for
~D ¼ 10�14 m2=s; DA=DB ¼ 3; t ¼ 106 s and for the constant molar volume [7, 10].

Note that in an actual case, the ratios of the diffusivities are not constant over
the whole composition range and even the molar volume might change drastically.
In that case, Eqs. 8.1 and 8.2 should be used to construct the velocity curve. Cornet
and Calais [5] explained the possibility of finding multiple Kirkendall marker
planes in a theoretical analysis. Much later, the group of van Loo [7–13] conducted
extensive experimental studies to show the different possibilities of the marker
planes and explained these behaviors with the help of theoretical analysis that has
been developed based on the work by Cornet and Calais [5]. Now, we know that a

8.1 Stable, Unstable, and Multiple Kirkendall Marker Planes 339

http://dx.doi.org/10.1007/978-3-319-07461-0_8


stable marker plane can be present in a system such that all the inert markers
accumulate along a single composition indicating the position of the Kirkendall
marker plane. On the other hand, markers can be unstable such that they spread
over a composition or region in the interdiffusion zone. In a few special cases,
markers have been known to bifurcate or trifurcate. There is a possibility of
bifurcation in a single phase or in two different phases.

Before showing the experimental results, it is necessary to understand the
condition in which different kinds of behavior could be found [7, 8]. We consider a
system where in the A-rich side A has a higher diffusion rate compared to B and in
the B-rich side B has a higher diffusion rate compared to A. In such a case,
according to Eq. 8.1, as shown in Fig. 8.2, the velocity will have a negative value
in the A-rich side and positive values in the B-rich side. We have considered the
left-hand side of the diffusion couple as being A-rich and the right-hand side of the
couple as being B-rich. Following, the number and nature of the marker plane will
depend on the location of the intersection on the velocity curve by the straight line
determined by Eq. 8.2. Depending on the end-member compositions, the inter-
diffusion coefficients and the intrinsic diffusion coefficients, the straight line
estimated from the position of the marker plane might intersect the velocity curve
at a point, where it has a negative gradient dv=dx\0. This point is shown in
Fig. 8.2a. In this case, it will have a stable marker plane such that all the markers
will accumulate at this Kirkendall marker plane located at xK. At the very initial
stage, if for any reason, the markers move ahead of this plane, they will slow down
due to lower velocity and come back to the stable plane. On the other hand, if the
markers are left behind this plane, they will move faster because of the higher
velocity and drift to the marker plane. Therefore, the marker plane acts as the
attractor for the markers to accumulate the inert particles from the nearby
positions.

As shown in Fig. 8.2b, by changing the end-member compositions in the same
system, the position of the initial contact plane xo = 0 might move such that the
straight line intersects the velocity curve at a point where it has a positive gradient

Fig. 8.1 Velocity diagram
showing the location of the
Kirkendall marker plane [7]
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Fig. 8.2 Imaginary velocity diagrams showing the possibility of finding a a stable marker plane,
b an unstable marker plane, and c bifurcation of the marker plane in the same system [7]
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dv=dx [ 0. It should be noted here that the slope of the line, vK ¼ xK

2t also changes
with the change in end-member compositions. Following a similar line of dis-
cussion, the stability of the movement of the inert markers can be explained. At the
very initial stage, for any perturbation, if the markers are left behind, they will
slow down because of lower velocity. On the other hand, if the markers move
ahead, they will move faster to go even further away. Therefore, it will show
unstable marker behavior, where the markers will be spread over a larger area.

In another diffusion couple with different end members, a situation might arise
where the straight line intersects the velocity curve at three points, as shown in
Fig. 8.2c. An unstable marker plane is present at x2

K between two stable planes at
x1

K and x3
K. At the very initial stage, since the markers move away from the

unstable marker plane, the markers will be attracted by the stable planes. There-
fore, in this diffusion couple, two stable marker planes—that is the bifurcation of
the marker plane—will be found.

The conditions of finding stable and unstable Kirkendall marker planes were
examined experimentally in the Ni–Pd and Fe–Pd systems, as shown in Fig. 8.3
[9]. ThO2 particles were used as inert markers. As discussed in the previous
chapter, the velocity curves were determined following a multifoil technique. The
intersection points—indicating the location of the Kirkendall marker planes—are
found by plotting the straight line from the estimated location of the initial contact
plane and the known location of the Kirkendall marker plane. It can be seen that
dv=dx\0 at the point of intersection in the Ni–Pd system, where a stable marker
plane is found. On the other hand, in the Fe–Pd system dv=dx [ 0 at the point of
intersection and it has an unstable Kirkendall plane. In the Fe–Pd system, since
there is no particular marker plane present, a plane approximately in the middle of
the marker region was considered for the construction of the velocity diagram.

Experimental evidence indicating the presence of stable, unstable, and the
bifurcation of the marker plane was found in the b0-AuZn phase in the diffusion
couples with different end-member compositions [8]. From the tracer diffusion
data available in the literature published on the subject, it was known that Au is the
faster diffusing component in the Au-rich and Zn is the faster diffusing component
in the Zn-rich side of this phase. Therefore, it was expected to find the situations,
as explained in Fig. 8.2. As shown in Fig. 8.4, in a diffusion couple of
Au0.66Zn0.34/Au0.34Zn0.66, a stable Kirkendall marker plane was found. As pre-
sented in Fig. 8.5, by changing the end-member compositions, an unstable Kir-
kendall marker plane was found in the same phase in a Au0.70Zn0.30/Au0.40Zn0.60

diffusion couple. The Kirkendall marker location—as shown in a rectangle
denoted by B in Fig. 8.5b—is shown in Fig. 8.5c where an array of markers are to
be seen spreading over a region. By changing the end-member compositions of the
diffusion couple, as shown in Fig. 8.6, the bifurcation of the Kirkendall marker
plane was found. One Kirkendall plane was found in the Au-rich and another in the
Zn-rich side of the b0-AuZn phase.

However, rationalization with the help of a velocity diagram was not possible
because of difficulties in determining the intrinsic diffusion coefficients over the
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whole composition range in the b0-AuZn phase. Absence of the data on lattice
parameter variation and Zn evaporation during melting complicated the analysis.
Similar bifurcation of the Kirkendall marker plane was found in the b-NiAl phase,
as shown in Fig. 8.7 in a diffusion couple of Ni41.7Al58.3/Ni72.24Al27.76 at 1,000 �C.
The optical micrograph in Fig. 8.7b presents the whole interdiffusion zone, and the
back scattered electron image in Fig. 8.7c exhibits the position of the two marker
planes shown by the presence of ThO2 particles. One marker plane was found in
the Ni-rich and another in the Al-rich side of the b-NiAl phase [11]. To estimate
the intrinsic diffusion coefficients over the homogeneity range in this phase, many
incremental diffusion couple experiments were conducted such that marker posi-
tions are found at different compositions. The composition of the diffusion couples
and the annealing times are listed in Table 8.1 along with the couple in which
bifurcation of the marker plane was found.

The estimated interdiffusion coefficients and the ratio of the intrinsic diffusion
coefficients are shown in Fig. 8.8a and b. From the average of these values, the
intrinsic diffusion coefficients are estimated using Eq. 6.66, as shown in Fig. 8.8c.
The velocity curve was determined with the help of the concentration gradient

Fig. 8.3 a Velocity diagram constructed experimentally in the Ni–Pd system and b experimen-
tally found a stable marker plane. c Velocity diagram constructed experimentally in the Fe–Pd
system and d experimentally found unstable marker plane [9]
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obtained from the measured composition profile in the diffusion couple showing
bifurcation of the marker plane, as shown in Fig. 8.9a. Afterward, the straight line
determined from vK ¼ xK � xoð Þ=2t ¼ xK=2t is drawn by calculating the initial
contact plane and from knowledge of the known location of the marker plane. In

Fig. 8.4 a Compositions for a diffusion couple indicating on the Au–Zn phase diagram in which
b a single marker plane is found [8]
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Fig. 8.5 a Compositions for a diffusion couple indicating on the Au–Zn phase diagram in which
b unstable marker plane is found, c shows the marker region [8]
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Fig. 8.6 a Compositions for a diffusion couple indicating on the Au–Zn phase diagram in which
b a bifurcation of the marker plane is found [8]
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Fig. 8.7 a Compositions for a diffusion couple indicating on the Ni–Al phase diagram in which
b a bifurcation of the marker plane is found in the b-NiAl phase (polarized light microscope
image), c back scattered electron image clearly shows the location of the marker planes [11]

8.1 Stable, Unstable, and Multiple Kirkendall Marker Planes 347



the velocity diagram given in Fig. 8.9b, we see that this straight line intersects the
velocity curve at two points where it has a negative gradient. There is a jump in the
middle of the velocity curve since the composition profile does not grow with any
measurable thickness near the stoichiometric composition because of the low
interdiffusion coefficients.

The bifurcation of the Kirkendall marker plane shown in the previous examples is
found in a single phase. Bifurcation in different phases is found more often than that
in a single phase such as in Ag–Zn, Co–Si, Ni–Ti, and Au–Sn systems. The
examples for Ag–Zn [12], Co–Si [14, 15], and Ni–Ti [10] systems are shown in
Fig. 8.10. In fact, the study on the Ni–Ti system was conducted since this is one of
the first systems indicating the likelihood of more than one Kirkendall marker plane.
Trifurcation of the Kirkendall marker plane is very rare and it was found in the Ti–
Al system [16], which was in fact predicted from the data reported on diffusion
parameters before the experimental proof. Theoretically, these behaviors of the
marker planes were studied by Höglund and Ågren [17] and Boettinger et al. [18].

8.2 A Physicochemical Approach to Explain
the Morphological Evolution in an Interdiffusion Zone

It has been seen in many examples that a characteristic morphology develops in
the product phase when grown by reactive diffusion. For example, three incre-
mental diffusion couples in different systems are shown in Fig. 8.11 [14, 15, 19,
20]. It can be seen that a duplex morphology is present whenever there is a
Kirkendall marker plane present. In Fig. 8.10a, the bifurcation of the marker plane
is shown in the Ag–Zn system [12]. The grain morphologies in different phases are
shown in Fig. 8.12. In the e-AgZn3 and c-Ag5Zn8 phases, the marker planes are

Table 8.1 Details of the incremental diffusion couple experiments conducted at 1,000 �C are
listed

Couple no. Diffusion couple Time (h)

1 Ni49.8Al50.2/Ni72.24Al27.76 100
2 Ni49.8Al50.2/Ni66.24Al33.76 24
3 Ni46Al54/Ni72.24Al27.76 24
4 Ni46Al54/Ni66.24Al33.76 24
5 Ni46Al54/Ni57.5Al42.5 100
6 Ni46Al54/Ni57.5Al42.5 24
7 Ni46Al54/Ni49.8Al50.2 100
8 Ni49.8Al50.2/Ni57.5Al42.5 100
9 Ni46Al54/Ni52.2Al47.8 100
10 Ni46Al54/Ni52.2Al47.8 24
11 Ni41.7Al58.3/Ni72.24Al27.76 24
12 Ni46Al54/Ni54Al46 24
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Fig. 8.8 a The interdiffusion
coefficients, b the ratio of the
intrinsic diffusion coefficients
and c the estimated intrinsic
diffusion coefficients at
different compositions in the
b-NiAl phase at
1,000 �C [11]
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present and the duplex morphology is also evident. On the other hand, there is no
marker plane present in the b-AgZn phase, where uniform and continuous grain
morphology is present.

The experimental results shown above indicate that the phase layer grows
differently at different interface interphases. In reactive diffusion, the product
phase layers are grown because of the reaction/dissociation of the diffusing
component from the interfaces. Although the phases are grown by the reactions
and/or dissociation at the interface interphases, growth of the phases are not
controlled by these processes. We are considering the systems, in which diffusion
of components through the phase layers takes longer time to control the growth
process. There are many examples, especially in thin-film conditions, where the
growth of the phase is reaction controlled, which are not considered here. Before
estimating the diffusion parameters with the help of a physicochemical approach,

Fig. 8.9 a Composition profile and b the velocity diagram rationalization of the bifurcation of
the marker plane [11]
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Fig. 8.10 Experimental
evidences of bifurcations in
a Ag–Zn [12], b Co–Si [14,
15], and c Ni–Ti [10] systems
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Fig. 8.11 Duplex morphology in the presence of the Kirkendall marker plane in different phases
a CoSi [14, 15], b Ni5Si2 [19], and c Ni3Al [20]
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which is developed considering the reactions and dissociations at the interfaces in
real systems along with the diffusion of the component through the phase layer, we
shall first show that this approach is equivalent to the relations developed in the
previous chapters.

Fig. 8.12 Duplex morphology in the presence of the Kirkendall marker plane in a e-phase,
b c-phase and c a uniform grain morphology in the b-phase because of the absence of any marker
plane [12]
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For the sake of simplicity, let us consider a diffusion couple of a and c phases in
which a line compound b grows in an interdiffusion zone, as shown in Fig. 8.13
[21]. The stoichiometric compositions of the a, b, and c phases are A1-mBm, A1-

nBn, and A1-pBp, respectively. Suppose a is an A-rich and b is a B-rich phase.
Therefore, as shown in the figure, A dissociates from the a phase at the interface I
to produce the product b phase. The dissociated A then diffuses to the interface II
and reacts with the c phase to produce the b phase. At the same time, B dissociates
from the c phase at the interface II to produce the b phase. The dissociated B
diffuses to the interface I to produce the b phase. Therefore, at both interfaces, the
product phase b is grown by the dissociation and reaction of the components.
Suppose, [du]A mol/m2 is the flux of the component A crossing the Kirkendall
marker plane in the short period of time dt. Similarly, the flux of the component B
that crosses the marker plane in that short period of time is [dv]B mol/m2. The
location of the marker plane in the interdiffusion zone is shown by filled circles,
and the location is denoted as xK. It is evident that the thickness of the product
phase that is grown in the left-hand side of the marker plane is due to the reaction
and dissociation at the interface I. On the other hand, the right-hand side of the
product phase from the Kirkendall marker plane is grown because of the reaction
and dissociation at the interface II. Therefore, we should write the reaction and
dissociation equations at the two different interfaces.

Reaction dissociation equations at the interface I:

n

n� m
duA1�mBm a phaseð Þ ! du ½A�d þ

m

n� m
duA1�nBn b phaseð Þ

Fig. 8.13 A schematic
diagram explaining the
physicochemical approach
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dissociation of A

1� n

n� m
dvA1�mBm a phaseð Þ þ dv ½B�d !

1� m

n� m
dvA1�nBn b phaseð Þ

reaction of B.
Reaction dissociation equations at the interface II:

n

p� n
duA1�pBp c phaseð Þ þ du ½A�d !

p

p� n
duA1�nBn b phaseð Þ

reaction of A

1� n

p� n
dvA1�pBP c phaseð Þ ! dv ½B�d þ

1� p

p� n
dvA1�nBn b phaseð Þ

dissociation of A.
The amount of the b phase produced at the interface I is 1

n�m mduþ 1� mð Þdv½ �
mol/m2 and at the interface II is 1

p�n pduþ 1� pð Þdv½ � mol/m2. Suppose, the molar

volume of the product b phase is vm, which will be written as vb
m at latter stage.

Suppose, the thicknesses of the phase layer grown from the interfaces I and II in this
short period of time dt is dxI=K and dxK=II, respectively. Therefore, we can write

1
n� m

mduþ ð1� mÞdv½ � vm ¼ dxI=K ð8:9aÞ

1
p� n

pduþ ð1� pÞdv½ � vm ¼ dxK=II ð8:9bÞ

Furthermore, we can write both the left- and right-hand sides of the end members,
as well as the composition of the product phases as m ¼ N�B ; p ¼ NþB and n ¼ NB.
Therefore, Eqs. 8.9a and 8.9b can be rewritten as

N�B duþ ð1� N�B Þdv ¼ NB � N�B
vm

dxI=K ð8:10aÞ

NþB duþ ð1� NþB Þ dv ¼ NþB � NB

vm
dxK=II ð8:10bÞ

If the fluxes of the diffusing components A and B are 0 at time t = 0 and become
u and v after the annealing time t, we can write Eqs. 8.10a and 8.10b by integrating
as
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N�B

Zu

o

duþ ð1� N�B Þ
Zv

o

dv ¼
ZxK

x�1

NB � N�B
vm

dx

N�B uþ ð1� N�B Þv ¼
ZxK

x�1

NB � N�B
vm

dx

NþB

Zu

o

duþ ð1� NþB Þ
Zv

o

dv ¼
Zxþ1

xK

NB � N�B
vm

dx

ð8:11aÞ

NþB uþ ð1� NþB Þv ¼
Zxþ1

xK

NþB � NB

vm
dx ð8:11bÞ

Now, we would like to write the expressions separately for u and v. Multiplying
Eq. 8.11a by 1� NþBð Þ and Eq. 8.11b by 1� N�B

� �
and then by subtracting, we get

N�B ð1� NþB Þu� NþB ð1� N�B Þu ¼ ð1� NþB Þ
ZxK

x�1

NB � N�B
vm

dx

� ð1� N�B Þ
Zxþ1

xK

NþB � NB

vm
dx

u ¼ � ð1� NþB Þ
ZxK

x�1

NB � N�B
NþB � N�B

1
vm

dx� ð1� N�B Þ
Zxþ1

xK

NþB � NB

NþB � N�B

1
vm

dx

2
4

3
5

Introducing the composition normalizing variable YB ¼ NB�N�B
Nþ

B
�N�

B

such that

1� YB ¼ Nþ
B
�NB

Nþ
B
�N�

B

, we can write

u ¼ � ð1� NþB Þ
ZxK

x�1

YB

vm
dx� ð1� N�B Þ

Zxþ1

xK

1� YB

vm
dx

2
4

3
5

u ¼ � NþA

ZxK

x�1

YB

vm
dx� N�A

Zxþ1

xK

1� YB

vm
dx

2
4

3
5

ð8:12aÞ

Multiplying Eq. 8.11a by N�B and Eq. 8.11b by NþB and then by subtracting, we get
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NþB ð1� N�B Þv � N�B ð1� NþB Þv ¼ NþB

ZxK

x�1

NB � N�B
vm

dx� N�B

Zxþ1

xK

NþB � NB

vm
dx

v ¼ NþB

ZxK

x�1

NB � N�B
NþB � N�B

1
vm

dx� N�B

Zxþ1

xK

NþB � NB

NþB � N�B

1
vm

dx

v ¼ NþB

ZxK

x�1

YB

vm
dx� N�B

Zxþ1

xK

1� YB

vm
dx

ð8:12bÞ

The intrinsic flux of A that is JA and the intrinsic flux of B that is JB can be related
to u and v. It is a fact that the intrinsic fluxes are inversely proportional to t1=2.
Moreover, the sign of the flux of A should be taken as positive since it diffuses
from left to right and the flux of B should be taken as negative since it diffuses
from right to left. Therefore, we can write

u ¼
Zu

0

du ¼
Z t

0

JA dt ¼
Z t

0

k

t1=2
dt ¼ kt1=2

1=2
¼ 2tJA ¼ �2tDA

oCA

ox
ð8:13aÞ

v ¼
Zv

0

dv ¼�
Z t

0

JB dt ¼ �
Z t

0

k

t1=2
dt ¼ �2tJB ¼ 2tDB

oCB

ox
ð8:13bÞ

where k is the proportionality constant. Note here that Ji ¼ �Di
oCi
ox . From

Eqs. 8.12 and 8.13a, we can write

DA ¼
1
2t

ox

oCA

� �
NþA

ZxK

x�1

Y

vm
dx� N�A

Zxþ1

xK

1� Y

vm
dx

2
4

3
5 ð8:14aÞ

DB ¼
1
2t

ox

oCB

� �
NþB

ZxK

x�1

Y

vm
dx� N�B

Zxþ1

xK

1� Y

vm
dx

2
4

3
5 ð8:14bÞ

Note that these are the relations developed by van Loo [22] and are those that we
derived earlier in Chap. 6 following the approach by Wagner [13]. From the
standard thermodynamic relations oCA ¼ �vB=v2

m

� �
oNA; oCB ¼ �vA=v2

m

� �
oNB (Eq.

1.150), we can write the ratio of the intrinsic diffusion coefficients as
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�vADB

�vBDA

¼ JB

JA

¼ v

u
ð8:15aÞ

Following Eq. 6.91, we can write this with respect to the ratio of the tracer dif-
fusion coefficients as

D�B
D�A
¼ �vADB

�vBDA

¼ JB

JA

¼ v

u
ð8:15bÞ

Therefore, since the partial molar volumes are not known in a phase with a narrow
homogeneity range, we actually measure the ratio of the tracer diffusion coeffi-
cients after neglecting the role of the vacancy wind effect, as explained in Chap. 6.

Previously in Chap. 6, we derived the relation between the interdiffusion
coefficients and the intrinsic diffusion coefficients as

~D ¼ CA�vADB þ CB�vBDA ð8:16Þ

since NB þ NA ¼ 1; Ci ¼ Ni
vm

, we can write the interdiffusion coefficients with

respect to u and v with the help of Eqs. 8.13a and 8.13b as [21]

~D ¼ vm

2t

ox

oNB

NBuþ NAv½ � ð8:17Þ

In the case of a compound with a very narrow homogeneity range, since we
cannot measure the composition profile, the integrated diffusion coefficient is
measured. With respect to u and v, we can express this as [23]

~Db
int ¼

ZNII
B

NI
B

~D dNB ¼
ZxII

b

xI
b

vm

2t
NBuþ NAv½ � dx ¼ vb

m

2t
Nb

Buþ Nb
Av

h i
Dxb ð8:18Þ

As explained in Chap. 6, here the unknown composition range of the b phase is
NII

B � NI
B, the thickness of the phase layer is Dxb ¼ xII

b � xI
b. The average molar

volume of the phase vb
m and the composition Nb

B can be considered as constant and
during a fixed annealing time of t fixed amount of fluxes, u and v transfer through
the Kirkendall marker plane. The values of u and v can be estimated from the
composition profile using the relations expressed in Eqs. 8.12a and 8.12b. It should
be noted here that by replacing these relations in Eqs. 8.17 and 8.18, we can derive
the same relations for the interdiffusion coefficient and the integrated diffusion
coefficient as derived by Wagner, which are described in Chaps. 6 and 7.

The velocity of the marker plane following Eq. 6.62 can be estimated by

358 8 Microstructural Evolution of the Interdiffusion Zone

http://dx.doi.org/10.1007/978-3-319-07461-0_8
http://dx.doi.org/10.1007/978-3-319-07461-0_6
http://dx.doi.org/10.1007/978-3-319-07461-0_6
http://dx.doi.org/10.1007/978-3-319-07461-0_6
http://dx.doi.org/10.1007/978-3-319-07461-0_6
http://dx.doi.org/10.1007/978-3-319-07461-0_7
http://dx.doi.org/10.1007/978-3-319-07461-0_8


vK ¼ �ð�vAJA þ �vBJBÞ

Replacing Eq. 8.13a in the above equation, we get

vK ¼ � �vA

u

2t
� �vB

v

2t

� �
¼ 1

2t
�vBv� �vAuð Þ ð8:19aÞ

If the values of the partial molar volumes are not known—for instance, in a
phase with a narrow homogeneity range—we consider vm ¼ �vA ¼ �vB, where vm is
the molar volume of the product phase. Therefore, we can write

xK ¼ 2tvK ¼ vm v� uð Þ ð8:19bÞ

It can be understood from the above discussion that the phase layer grows
differently from the two different interfaces and we should expect a duplex mor-
phology separated by a Kirkendall marker plane as shown in Fig. 8.11. Therefore,
one expects the same values of diffusion coefficients when derived following
different approaches explained in Chaps. 6 and 7 or this chapter. The physico-
chemical approach has an additional benefit that it sheds light on the morpho-
logical evolutions in the interdiffusion zone.

Fig. 8.14 Interdiffusion zone
of the CoSi phase in a
diffusion couple of Co2Si/
CoSi2 annealed at 1,000 �C
for 49 h and use of the
physicochemical approach
for the estimation of the
diffusion parameter [14]
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8.3 The Application of the Physicochemical Approach
in an Incremental Diffusion Couple with a Single
Product Phase

Let us now apply this physicochemical approach to estimate the integrated dif-
fusion coefficient and the ratio of the tracer diffusion coefficients in real systems.
We consider the growth of CoSi in a diffusion couple of Co2Si and CoSi2 annealed
at 1,100 �C for 49 h, as shown in Fig. 8.11a. The description of the analysis is
presented in Fig. 8.14 [16, 21]. It is to be anticipated that Co will dissociate from
the Co-rich phase Co2Si at the interface I to produce the CoSi product phase. Co
will then diffuse to the interface II to react with the CoSi2 phase and produce the
CoSi phase. Similarly, Si dissociates from the Si-rich phase (the CoSi2 phase at the
interface II) to produce the CoSi phase. The dissociated Si diffuses to the interface
I to react with the Co2Si phase and produce the CoSi phase.

In terms of chemical reaction equations:

At the interface I (Co2Si/CoSi)

3uCo2=3Si1=3 ! u½ �Coþ2uCo1=2Si1=2

3vCo2=3Si1=3 þ v½ �Si! 4vCo1=2Si1=2

At the interface II (CoSi/CoSi2)

3uCo1=3Si2=3 þ u½ �Co! 4uCo1=2Si1=2

3vCo1=3Si2=3 ! v½ �Siþ2vCo1=2Si1=2

The parameters [u]Co and [v]Si are the number of moles of Co and Si atoms,
respectively, transferred per unit area of the reaction layer during the total diffu-
sion time. Following on from this, we can write

2uþ 4vð ÞvCoSi
m ¼ DxI

CoSi ð8:20aÞ

4uþ 2vð ÞvCoSi
m ¼ DxII

CoSi ð8:20bÞ

Note that the same relations can be obtained directly from Eq. 8.11.

N�Siuþ 1� N�Si

� �
v ¼

ZxK

x�1

NSi � N�Si

vCoSi
m

dx ¼ NSi � N�Si

vCoSi
m

ZxK

x�1

dx ¼ NSi � N�Si

vCoSi
m

DxI
CoSi

NþSiuþ 1� NþSi

� �
v ¼

Zxþ1

xK

NþSi � NSi

vCoSi
m

dx ¼ NþSi � NSi

vCoSi
m

Zxþ1

xK

dx ¼ NþSi � NSi

vCoSi
m

DxII
CoSi
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In this example, N�Si ¼ 1=3; 1� N�Si ¼ 2=3; NþSi ¼ 2=3; 1� NþSi ¼ 1=3; NSi ¼
1=2 and 1� NSi ¼ 1=2. We are considering a phase with a narrow composition
range that is an average composition and the constant molar volume of the phase.
It can be seen that from the composition values written above, we get the same
relations in Eq. 8.20.

The thicknesses of the sublayers measured from the microstructure shown in
Fig. 8.14 are DxI

CoSi ¼ 162 lm. Note here that the actual length of DxII
CoSi is

measured as 107 lm (approximately 23 %); however, the length of DxII
CoSi ¼

82:4 lm is considered for the calculation because of the presence of pores in this
sublayer [14, 15]. The molar volume of the CoSi phase is vCoSi

m ¼ 6:6�
10�6 m3=mol: Using these values, we find u = 0.07 and v = 6.1 mol/m2.
Therefore, the integrated diffusion coefficient and the ratio of the tracer diffusion
coefficients can be estimated using the relations expressed in Eqs. 7.15b and 7.18
as (for an annealing time of 49 h)

D�Si

D�Co

¼ v

u
¼ 87

~DCoSi
int ¼

vCoSi
m

2t
NCoSi

Si uþ NCoSi
Co v

	 

Dxb

¼ 6:60� 10�6

2� 49� 60� 60
1
2
� 0:07þ 1

2
� 6:1

� �
162þ 82:4ð Þ � 10�6

¼ 1:41� 10�14 m2=s

Once again, it was possible to calculate the same values using the relations
shown in Chap. 7 (Eq. 7.15).

~DCoSi
int ¼

NCoSi
Si � NCo2Si

Si

� �
NCoSi2

Si � NCoSi
Si

� �
NCoSi2

Si � NCo2Si
Si

� � Dx2
CoSi

2t

¼ 1=6� 1=6
1=3

� 162þ 82:4ð Þ � 10�6

2� 49� 60� 60

¼ 1:41� 10�14 m2=s

Now, let us consider an incremental couple in which a single product phase
grows from the end members with two phase alloys, as shown in Fig. 8.15 [23].
One of the end members has a composition of Co0.81Si0.19. It can be observed from
the phase diagram and the alloy in the end member that it is a phase mixture of e-
Co—that is, e-Co(Si) solid solution with a composition of Co0.83Si0.17 at 1,100 �C.
Another alloy used as an end member has an average composition of Co0.52Si0.48,
meaning that it is a phase mixture of Co2Si and CoSi phases. The volume fraction
of the phases can be estimated by the lever rule, as explained in Chap. 1.

Before proceeding to the reaction equations, it is necessary to understand the
mechanism by which the product phase grows at the interdiffusion zone. Note that
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only the e-Co(Si) phase from the left-hand side end member and the CoSi phase
from the right-hand side end member will take part in the reaction or the disso-
ciation process. The Co2Si phase that is already present in the alloy will directly
add to the product phase. This is the reason, as explained in Chap. 7 (Sect. 7.4), the
growth rate of a product phase is different depending on the end-member com-
positions. If we select alloys having a composition closer to the product phase, the
growth kinetics of the phase will be higher since the amount of this phase—which
can be directly added to the product phase—is higher. The reaction dissociation
equations at the interfaces can be written as [23].

At the interface I (Co0.81Si0.19/Co2Si)

2:04uCo0:83Si0:17 eð Þ ! u½ �Coþ1:04uCo2=3Si1=3

4:06vCo0:83Si0:17 eð Þ þ v½ �Si! 5:06vCo2=3Si1=3

At the interface II (CoSi/CoSi2)

2uCo1=2Si1=2 þ u½ �Co! 3uCo2=3Si1=3

4vCo1=2Si1=2 ! v½ �Siþ3vCo2=3Si1=3

The parameters [u]Co and [v]Si are the number of moles of Co and Si atoms,
respectively, transferred per unit area of the reaction layer during the total diffu-
sion time. Therefore, (1.04u + 5.06v) moles of the Co2Si phase are produced at
the interface I caused by the dissociation and reaction processes. Moreover, as
already discussed for the (2.04u + 4.06v) moles of the e-Co(Si) phase that is
consumed at the interface I, a portion of the Co2Si phase will be directly added to
the product phase. Following the lever rule, we know that in an alloy with an
average composition of Co0.81Si0.19, the ratio of the mole fractions of the Co2Si

Fig. 8.15 a Co–Si phase diagram and b use of the physicochemical approach in the Co2Si phase
grown at 1,100 �C after annealing for 100 h [23]
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phase to the e-Co(Si) phase with a composition of Co0.83Si0.17 is 0:19�0:17
1=3�0:19 ¼ 0:14.

For the consumption of (2.04u + 4.06v) moles of the e-Co(Si) phase at this
interface, 0.14(2.04u + 4.06v) moles of the Co2Si phase will be directly added to
the product phase. Therefore, the growth of the Co2Si phase from the interface I
can be written as

1:04uþ 5:06vð Þ þ 0:14ð2:04uþ 4:06vÞ½ �vCo2Si
m ¼ DxI

Co2Si

1:3uþ 5:6vð ÞvCo2Si
m ¼ DxI

Co2Si

ð8:21aÞ

Similarly, at the interface II, (3u + 3v) moles of the Co2Si phase are produced by
the reaction and dissociation processes. Since (2u + 4v) moles of CoSi are con-
sumed at this interface, a portion of the Co2Si phase will be directly added to the
product phase. Following the lever rule, the ratio of moles of the Co2Si phase to
the CoSi phase in an alloy with an average composition of a Co0.52Si0.48 alloy is
0:5�0:48
0:48�1=3 ¼ 0:136. For the consumption of (2u + 4v) moles of CoSi, 0.136(2u + 4v)

moles of the Co2Si phase will be directly added to the product phase. Therefore,
the growth of the Co2Si phase from the interface II can be written as

3uþ 3vð Þ þ 0:136ð2uþ 4vÞ½ �vCo2Si
m ¼ DxII

Co2Si

3:3uþ 3:5vð ÞvCo2Si
m ¼ DxII

Co2Si

ð8:21bÞ

The same relations can be obtained directly from Eq. 8.11.

N�Siuþ ð1� N�SiÞv ¼
ZxK

x�1

NSi � N�Si

vCo2Si
m

dx ¼ NSi � N�Si

vCo2Si
m

ZxK

x�1

dx ¼ NSi � N�Si

vCo2Si
m

DxI
Co2Si

NþSiuþ ð1� NþSiÞv ¼
Zxþ1

xK

NþSi � NSi

vCo2Si
m

dx ¼ NþSi � NSi

vCo2Si
m

Zxþ1

xK

dx ¼ NþSi � NSi

vCo2Si
m

DxII
Co2Si

In this example, N�Si ¼ 0:19; 1� N�Si ¼ 0:81; NþSi ¼ 0:48; 1� NþSi ¼ 0:52; NSi ¼
1=3 and 1� NSi ¼ 2=3. It can be seen that from the composition values written
above, we arrive at the same relations as those in Eq. 8.21.

The thicknesses of the sublayers measured from the microstructure shown in
Fig. 8.15 are DxI

Co2Si ¼ 147 lm and DxII
Co2Si ¼ 309 lm. The molar volume of the

Co2Si phase is vCo2Si
m ¼ 6:56� 10�6 m3=mol. Using these values, we find

u = 13.55 and v = 0.78. Therefore, the integrated diffusion coefficient and the
ratio of the tracer diffusion coefficients can be estimated using the relations
expressed in Eqs. 8.15b and 8.18 as (for an annealing time of 100 h)
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D�Si

D�Co

¼ v

u
¼ 0:06

~DCo2Si
int ¼ vCo2Si

m

2t
NCo2Si

Si uþ NCo2Si
Co v

	 

DxCo2Si

¼ 6:56� 10�6

2� 100� 60� 60
1
3
� 13:55þ 2

3
� 0:78

� �
147þ 309ð Þ � 10�6

¼ 2:1� 10�14 m2=s

It should be pointed out here that the relations developed in this chapter could also
be used to calculate the diffusion parameters at the Kirkendall marker plane where
the composition varies in the interdiffusion zone. For example, as shown in
Fig. 8.16 in a Ni0.65Al0.35/Ni0.845Al0.155 diffusion couple, the c0 phase grows in the
interdiffusion zone [21]. It can be understood from the Ni–Al phase diagram in
Fig. 4.11a [24] that Ni0.65Al0.35 is a phase mixture of the b-NiAl phase with the
composition of the Ni0.625Al0.375 (dark matrix) and the c0-Ni3Al phase (gray
precipitates) having the composition of Ni0.72Al0.28. The other end member with a
composition of Ni0.845Al0.155 is a c-Ni(Al) solid-solution phase [20]. Unlike the
previous examples, in this case, there will be composition redistribution after the c0

phase gets added to the product phase from the end member.
The composition profile of the interdiffusion zone is shown in Fig. 8.17a. We

consider that u and v in mol/m2 are the fluxes of Al and Ni crossing the Kirkendall
marker plane for the total annealing time of 196 h. The relations expressed in
Eq. 8.11 for this diffusion couple can be written as

0:65uþ 0:35v ¼
ZxK

x�1

NNi � 0:65
vm

dx ð8:22aÞ

0:845uþ 0:155v ¼
Zxþ1

xK

0:845� NNi

vm
dx ð8:22bÞ

Fig. 8.16 Use of the
physicochemical approach in
Ni3Al phase grown in a
diffusion couple at 1,000 �C
annealed for 196 h [20]
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Fig. 8.17 Explanation of
estimation of the diffusion
parameters by
physicochemical approach in
Ni3Al [21]
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Note here that N�B ¼ 0:65; 1� N�B ¼ 0:35; NþB ¼ 0:845 and 1 - NþB ¼ 0:155.
The (NNi - 0.65)/vm versus x and (0.845 - NNi)/vm versus x plots are given in
Fig. 8.17b and c, respectively, to determine the values of u and v. The variation in
the molar volume of the Ni3Al phase with composition is available in published
work as [20]

vm ¼ 6:60þ 0:823 1� NNið Þ þ 0:965 1� NNi

� �2 ð8:22cÞ

The partial molar volumes of Ni and Al from Eq. 8.22c are estimated as
6.54 9 10-6 and 7.85 9 10-6 m3/mol.

The values under integral are determined graphically from Fig. 8.17b and c and
the values of u and v using Eq. 8.22 are found to be 0.28 and 1.67 mol/m2,
respectively. The slope d NNi=vmð Þ=dx is found to be 7.49 9 107 mol/m4. Fol-
lowing, the values of the intrinsic diffusion coefficients of the component are
estimated as DNi ¼ 1:58� 10�14 and DAl ¼ 3:2� 10�15 m2=s.

8.4 The Application of the Physicochemical Approach
to Explain the Multiphase Growth

The diffusion process for multiphase growth is highly complicated in comparison
with the growth of a single phase in an interdiffusion zone. Instead of considering
the calculated diffusion parameters from a single composition profile, we shall use
the diffusion parameters estimated from the incremental diffusion couples to
explain the morphological evolution during multiphase growth. Since there is an
extensive data available for the Co–Si system, we shall consider this. A similar
method can be used in the other systems once the diffusion process is understood
in this system. The useful data at 1,100 �C are listed in Table 8.2 [16]. We con-
sider a diffusion couple of Co/CoSi2, in which, according to the phase diagram
shown in Fig. 8.15a, two phases (Co2Si and CoSi) should grow in the interdiffu-
sion zone. Such a schematic diffusion couple is shown in Fig. 8.18. As shown in
this figure, it is necessary to consider a Kirkendall marker plane in both the phases.
Following, we consider that the total flux of Co and Si that crosses the Kirkendall
marker plane in the Co2Si phase is [m]Co and [n]Si, respectively. Similarly, the
total flux of Co and Si that crosses the Kirkendall marker plane in the CoSi phase
is [p]Co and [q]Si, respectively. The growth of the Co2Si phase at the interface I
occurs by the reaction of Co with the Si-diffused component through this phase
after the dissociation at the interface II. At the interface II, the same phase grows
because of the dissociation of Si from the CoSi phase. At the same time, the phase
also grows because of the reaction between CoSi and Co that diffuses from the
interface I. At the same time, the CoSi phase grows at the interface II because of
the dissociation of Co from the Co2Si phase and the reaction of Si with the same
phase. The dissociated Co diffuses through the CoSi product phase and reacts with
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the CoSi2 phase to produce CoSi. Si that reacts with the Co2Si phase at the
interface II is actually produced by the dissociation from the CoSi2 phase at the
interface III to produce the CoSi product phase. Therefore, it must be clear that
the Co2Si and CoSi phases at the interfaces grow by consuming the neighboring
phase(s) and at the same time become consumed because of the growth of the
neighboring phase(s).

In terms of reaction equations, these can be written as:

At the interface I (Co/Co2Si on the Co2Si side)

2nCoþ n Si½ �d! 3nCo2=3Si1=3

At the interface II (Co2Si/CoSi on the Co2Si side)

4nCo1=2Si1=2 ! n Si½ �dþ3nCo2=3Si1=3

2mCo1=2Si1=2 þ m ½Co�d ! 3mCo2=3Si1=3

At the interface II (Co2Si/CoSi on the CoSi side)

Table 8.2 The integrated diffusion coefficients ~Dint

� �
, molar volumes of the Co-silicides (vm),

and the ratio of tracer diffusivities of Si and Co �vCoDSi

�vSiDCo

� �
at 1,100 �C in different phases are listed

Phases

Co2Si CoSi

~Dint m2=sð Þ (1.5 ± 0.5) 9 10-14 (4.6 ± 0.3) 9 10-14

D�
Si

D�
Co

¼ �vCoDSi

�vSiDCo

� �
0.06 ± 0.025 35 ± 15

vm (m3 mol-1) 6.56 9 10-6 6.60 9 10-6

These are the average values obtained from many different diffusion couples. Therefore, the data
considered for Co2Si in this table are different from the data obtained in a particular diffusion
couple, as discussed in the previous example

Fig. 8.18 A schematic diagram explaining the physicochemical approach in a Co/CoSi2
diffusion couple
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3pCo2=3Si1=3 ! p Co½ �dþ2pCo1=2Si1=2

3qCo2=3Si1=3 þ q Si½ �d! 4qCo1=2Si1=2

At the interface III (CoSi/CoSi2 on the CoSi side)

3pCo1=3Si2=3 þ p Co½ �d! 4pCo1=2Si1=2

3qCo1=3Si2=3 ! q Si½ �dþ2qCo1=2Si1=2

Therefore, 3n moles of the Co2Si phase are produced at the interface I. At the
interface II, (3m + 3n) moles of Co2Si are produced and at the same time
(3p + 3q) moles get consumed. At the same interface, on the other side, (2p + 4q)
moles of CoSi are produced; however, (4n + 2 m) moles get consumed. At the
interface III, (4p + 2q) moles of CoSi are produced.

v
Co2=3Si1=3
m � 3n ¼ DxI

Co2Si

v
Co2=3Si1=3
m � 3mþ 3n� 3p� 3qð Þ ¼ DxII

Co2Si

v
Co1

2
Si1

2
m � 2pþ 4q� 4n� 2mð Þ

v
Co1

2
Si1

2
m � 4pþ 2qð Þ

ð8:23aÞ

The integrated diffusion coefficients can be written as

~DCo2Si
int ¼ vCo2Si

m

2t
NCo2Si

Si mþ NCo2Si
Co n

	 

DxI

Co2Si þ DxII
Co2Si

� �

~DCoSi
int ¼

vCoSi
m

2t
NCoSi

Si pþ NCo2Si
Co q

	 

DxII

CoSi þ DxIII
CoSi

� � ð8:23bÞ

The ratio of the diffusivities can be written as

D�Si

D�Co






Co2Si

¼ �vCoDSi

�vSiDCo






Co2Si

¼ n

m

D�Si

D�Co






CoSi

¼ �vCoDSi

�vSiDCo






CoSi

¼ q

p

ð8:23cÞ

Using the molar volume values, the integrated diffusion coefficients and the ratio
of the intrinsic (or tracer diffusion coefficients), as listed in Table 8.2, we find the
values for 100 hrs as

DxI
Co2Si ¼ 32 lm, DxII

Co2Si ¼ 133 lm; DxII
CoSi ¼ 168:5 lm, DxII

CoSi ¼ 294:5 lm,

m ¼ 26:8; n ¼ 1:6; p ¼ 0:6 and q ¼ 21:0 mol=m2:
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One interesting fact should be noted here that the thicknesses of all the sublayers
DxII

Co2Si and DxII
CoSi are positive, despite getting consumed by the neighboring

phases at the interface II. This means that both phases will have the Kirkendall
marker plane. In other sense, bifurcation of the Kirkendall marker plane is
expected. This can be shown with respect to the velocity diagram construction.
The velocity of the phases can be estimated as

vCo2Si
m n� mð Þ ¼ 2tvCo2Si

K ¼ xCo2Si
K ¼ �165:3 lm

vCoSi
m q� pð Þ ¼ 2tvCoSi

K ¼ xCoSi
K ¼ 134:6 lm

Note that we have assumed the partial molar volume of the component to be equal
to the molar volume of the phase.

It should be noted here that for the velocity diagram plot, we have not deter-
mined the initial contact plane—which is not possible to determine correctly—as
already explained in Chap. 6. It can be seen that the range of the y and x axes is
kept the same such that the straight line 2tvK ¼ xK will have an angle of 45�.
Accordingly, the straight line can just be drawn from one corner to the other as is
done in Fig. 8.19a. The location of the initial contact plane is the position at which
it intersects 2tv = 0. The positions of the intersection points by the straight line
2tvK ¼ xK on the line representing the velocity of the phases indicate the location
of the Kirkendall marker plane. Since we have considered the phases with an
average composition, the velocity of the phase is drawn by the straight lines. The
interdiffusion zone in the Co/CoSi2 phase is shown in Fig. 8.19b. It can be seen
that the thicknesses of the phase layers are similar within the range of experimental
error. As estimated, both phases contain the Kirkendall marker plane. The pres-
ence of duplex morphology is also evident in both phases suggesting the location
of the marker planes. Note here that there was a very small dissolution of Si in the

(a) (b)

Fig. 8.19 a A velocity diagram and b the interdiffusion zone showing the location of the marker
planes in a Co/CoSi2 diffusion couple [14] annealed at 1100 �C for 100 h
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Co end member, which is neglected in this analysis [16]. This results a minor error
in the estimated values.

Now, let us turn to consider a Ta–Si system where there are four intermediate
phases [25]; however, only two phases (TaSi2 and Ta5Si3) could be detected in the
interdiffusion zone. There was an indication that the other phases have a much
lower growth rate such that they may be present as very thin layers—but are
almost impossible to detect under a scanning electron microscope. Therefore, for
our analysis, we can consider the presence of two phases only in the interdiffusion
zone, as shown in Fig. 8.20. We shall consider a diffusion couple annealed at
1,250 �C for 9 h. This couple is presented schematically in Fig. 8.20 to explain the
dissociation and reaction processes occurring at different interfaces. All details of
the integrated diffusion coefficients, the ratio of the diffusivities, and the molar
volumes are listed below in Table 8.3.

In the same line of discussion, as described in the previous example, we can
write the reaction dissociation equations at the interfaces as

At the interface I

5
3

n Taþ n½ �Si!
8
3

n Ta5=8Si3=8

Fig. 8.20 A schematic diagram explaining the physicochemical approach in a Ta/Si diffusion
couple

Table 8.3 The integrated diffusion coefficients, ~Dint

� �
molar volumes of the Ta-silicides (vm)

and the intrinsic flux ratios of Si and Ta �vTaDSi

�vSiDTa

� �
at 1,250 �C in different phases are listed [24]

Phase

Ta5Si3 TaSi2
~Dint m2=sð Þ 1.41 9 10-16 5.02 9 10-14

D�
Si

D�
Ta
¼ �vTaDSi

�vSiDTa

5.8 1.1

vm (m3 mol-1) 9.48 9 10-6 8.71 9 10-6
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At the interface II (Ta5Si3 side)

9
7

m Ta1=3Si2=3 þ m½ �Ta!
16
7

m Ta5=8Si3=8

15
7

n Ta1=3Si2=3 ! n½ �Siþ
8
7

n Ta5=8Si3=8

Interface II (TaSi2 side)

8
7

q Ta5=8Si3=8 þ q½ �Si!
15
7

q Ta1=3Si2=3

16
7

p Ta5=8Si3=8 ! p½ �Taþ
9
7

p Ta1=3Si2=3

Interface III

2 p Siþ ½ p �Ta ! 3 p Ta1=3Si2=3

Accordingly, the thicknesses of the sublayers can be related to the mole of the
product phases formed at the different interfaces can be written as

8
3

n � vTa5Si3
m ¼ DxI

Ta5Si3

16
7

m þ 8
7

n

� �
� 16

7
pþ 8

7
q

� �� �
� vTa5Si3

m ¼ DxII
Ta5Si3

15
7

q þ 9
7

p

� �
� 15

7
n þ 9

7
m

� �� �
� vTaSi2

m ¼ DxII
TaSi2

3p� vTaSi2
m ¼ DxIII

TaSi2

ð8:24aÞ

Following, the integrated diffusion coefficients and the ratio of the diffusivities of
the components can be written as

~DTa5Si3
int ¼ vTa5Si3

m

2t
NTa5Si3

Ta nþ NTa5Si3
Si m

	 

DxI

Ta5Si3
þ DxII

Ta5Si3

� �

~DTaSi2
int ¼ vTaSi2

m

2t
NTaSi2

Ta qþ NTaSi2
Si p

	 

DxII

TaSi2
þ DxIII

TaSi2

� � ð8:24bÞ

D�Si

D�Ta






Ta5Si3

¼ n

m

D�Si

D�Ta






TaSi2

¼ q

p

ð8:24cÞ
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Using the values in the Table 8.3 for 9 h, we get

DxI
Ta5Si3

¼ 64:07; DxII
Ta5Si3

¼ �63:52; DxII
TaSi2
¼ 42:7 and DxIII

TaSi2
¼ 78:15 lm

m ¼ 0:437; n ¼ 2:535; p ¼ 2:99 and q ¼ 3:29 mol=m2:

Unlike the example, as discussed before, all sublayer thicknesses do not have
positive values. This would indicate that DxII

Ta5Si3
gets consumed at the interface II

because of the growth of DxII
TaSi2

. Therefore, the total thickness of the Ta5Si3 phase

is DxI
Ta5Si3

þ DxII
Ta5Si3

= 0.55 lm. This further means that there will be a Kirken-
dall marker plane in the TaSi2 phase and no marker plane in the Ta5Si3 phase. This
is indeed to be found also in the Ta/Si couple as shown in Fig. 8.21. The location
of the marker plane is evident from the presence of pores and the duplex mor-
phology, as discussed in greater depth in Chap. 6.

Now, let us consider the Ag–Zn system, as shown in Figs. 8.10a and 8.12. The
Zn/Ag couple was annealed at 370 �C for 5 h, and analysis can be done to
understand the reason for not finding any Kirkendall marker plane in the b-AgZn
phase [13, 26]. The composition profile is given in Fig. 8.22. It can be seen that the
phases have a wide homogeneity range. To simplify the analysis, we consider an
average composition of the phases, which is estimated from

Nh
Ag





ave
¼

RNþh
Ag

N�h
Ag

NAgdx

Dxh
ð8:25Þ

Fig. 8.21 Interdiffusion zone
of the Ta/Si diffusion couple
annealed at 1,250 �C for 9 h
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where h is the phase of interest, N�h
Ag and Nþh

Ag are the phase boundary composi-
tions, and Dxh is the thickness of the interested phase. The estimated average
compositions of the e, c and b phases are Ag0.154Zn0.846, Ag0.394Zn0.606, and
Ag0.521Zn0.479, respectively. For our analysis without complication, we ignore the
dissolution of Ag in Zn and Zn in Ag, since the composition profiles developed in
these solid solutions are small.

The schematic diffusion couple is presented above in Fig. 8.23. Based on the
average compositions of the phases, the reaction/dissociation equations at different
interfaces can be written as

Interface I—Zn/AgZn3 (AgZn3 side)

5:49nZn þ ½n�Ag ! 6:49nAg0:154Zn0:846 eð Þ

Reaction of Ag with Zn

Interface II—AgZn3/Ag5Zn8 (AgZn3 side)

0:64mAg0:394Zn0:606 cð Þ þ ½m�Zn ! 1:64mAg0:154Zn0:846 eð Þ

Reaction of Zn with Ag5Zn8

3:53nAg0:394Zn0:606 cð Þ ! ½n�Ag þ 2:53nAg0:154Zn0:846 eð Þ

Dissociation of Ag from Ag5Zn8

Interface II—AgZn3/Ag5Zn8 (Ag5Zn8 side)

Fig. 8.22 Composition
profile of the Ag/Zn diffusion
couple annealed at 370 �C for
5 h
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1:64pAg0:154Zn0:846 eð Þ ! ½p�Zn þ 0:64pAg0:394Zn0:606 cð Þ

Dissociation of Zn from AgZn3

2:53qAg0:154Zn0:846 eð Þ þ ½q�Ag ! 3:53qAg0:394Zn0:606 cð Þ

Reaction of Ag with AgZn3

Interface III—Ag5Zn8/AgZn (Ag5Zn8 side)

3:10pAg0:521Zn0:479 bð Þ þ ½p�Zn ! 4:10pAg0:394Zn0:606 cð Þ

Reaction of Zn with AgZn

4:77qAg0:521Zn0:479 bð Þ ! ½q�Ag þ 3:77qAg0:394Zn0:606 cð Þ

Dissociation of Ag from AgZn

Interface III—Ag5Zn8/AgZn (AgZn side)

4:10rAg0:394Zn0:606 cð Þ ! ½r�Zn þ 3:10rAg0:521Zn0:479 bð Þ

Dissociation of Zn from Ag5Zn8

3:77sAg0:394Zn0:606 cð Þ þ ½s�Ag ! 4:77sAg0:521Zn0:479 bð Þ

Reaction of Ag with Ag5Zn8

Interface IV—AgZn/Ag (AgZn side)

Fig. 8.23 A schematic diagram explaining the physicochemical approach in the Ag/Zn diffusion
couple
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1:09rAgþ ½r�Zn ! 2:09rAg0:521Zn0:479 bð Þ

Reaction of Zn with Ag.

Here, m, n, p, q, r, and s are the fluxes (moles/m2) of the components as shown in
Fig. 8.23. The product phases produced at different interfaces can be related to the
thicknesses of the sublayers as

ve
m 6:49nð Þ ¼ DxI

e

ve
m 1:64mþ 2:53n� 1:64p� 2:53qð Þ ¼ DxII

e

vc
m 0:64pþ 3:53q� 0:64m� 3:53nð Þ ¼ DxII

c

vc
m 4:10pþ 3:77q� 4:10r � 3:77sð Þ ¼ DxIII

c

vb
m 3:10r þ 4:77s� 3:10p� 4:77qð Þ ¼ DxIII

b

vb
m 2:09rð Þ ¼ DxIV

b

The molar volumes of the e, c and b phases are 9.20 9 10-6, 9.44 9 10-6 and
9.46 9 10-6 m3/mol. The sublayer thicknesses in the e and c phases measured
directly from the Ag–Zn diffusion couple as shown in Fig. 8.24 are DxI

e ¼
48:6; DxII

e ¼ 50:2; DxII
c ¼ 16:65; DxIII

c ¼ 24:45 and DxIII
b þ DxIV

b

� �
¼ 244 lm.

The ratio of the diffusivities in the b-AgZn phase was estimated using an incre-

mental couple as r
s ¼

VAgDZn

VZnDAg
¼ 6:5. From these, the rest of the parameters are

estimated as m = 19.62, n = 0.81, p = 13.88, q = 2.37, r = 13.52,
s = 2.08 mol/m2, and DxIII

b ¼ �23:72 and DxIV
b ¼ 267:72 mm. Therefore, the

negative value of DxIII
b is suggestive of the consumption of the sublayer by the

neighboring phase and the absence of the Kirkendall marker plane in the b phase.
Now, let us consider different locations of the marker planes and the kind of

morphology to be expected in the interdiffusion zone. Our discussion shall be
based upon only two product phases in the interdiffusion zone; the description is,
however, the same when a different number of phases are formed. Typically, we
expect to find one of the three examples given in Fig. 8.24.

Suppose, two phases (A2B and AB2) are grown in the interdiffusion zone of a
hypothetical A/B diffusion couple. There is a possibility that the marker planes are
present in both the phases, as shown in Fig. 8.24a, meaning that the thicknesses of
all the sublayers are positive and duplex morphology should be expected in both
the phases. It should be noted here that finding more than one Kirkendall plane in
an interdiffusion zone is not very common—with very few rare examples being
found till date [27]. In most cases, a single marker plane is present in one of the
phases—as shown in Fig. 8.24b—which signifies that the thicknesses of the
sublayers DxI

A2B and DxII
A2B are positive in the A2B phase. DxII

AB2
is negative, which
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means that this part is consumed because of the growth of the DxII
A2B. However,

DxIII
AB2

is positive. This suggests that duplex morphology is to be expected in the
A2B phase and a uniform morphology is expected in the AB2 phase. There could
be many examples where the marker plane is present at one of the interfaces of the
end-member/product phase, as shown in Fig. 8.24c. Very frequently, it is con-
cluded (based on the similar location of the marker plane) that one of the com-
ponents has a much higher diffusion rate compared to the other in both phases.
This is not correct. For example, if the marker plane is present at the A/A2B
interface, it is true that A has a much higher diffusion rate compared to B in the
A2B phase. However, it is not indicative of the relative mobilities of the com-
ponents in the AB2 phase. There could be a comparable diffusion rate of both the
components in this phase. Due to the significantly higher diffusion rate of A and
negligible diffusion rate of B in the A2B phase, DxI

AB2
will be negligible and DxII

AB2

will be almost equal to the total thickness of the A2B phase. Moreover, due to the
very high flux of A through this phase, the growth rate of this product phase is very
high at the interface II and might consume the whole of DxII

AB2
and a part of DxIII

AB2

such that DxII
AB2

will have a negative value. Therefore, both the phases will have a
uniform morphology. It should be noted here that, sometimes, even if the possi-
bility of bifurcation of the marker plane is expected in an interdiffusion zone, the
markers in both the phases might not be found. This was seen in the Cu–Sn system,
where the Cu3Sn and Cu6Sn5 phases are seen to be growing at the interdiffusion
zone [28]. The marker plane was found only in the Cu6Sn5 phase; however,
according to the analysis based on the diffusion parameters in the phases, the

Fig. 8.24 Schematic representation of the diffusion couple explaining the situation for finding
a bifurcation of the marker plane b a single Kirkendall marker plane in the A2B phase and c a
single marker plane at A/A2B phase
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marker plane should be present in both the phases. To find the marker planes in
both the phases, it is important that both phases should start growing together from
the beginning to trap the markers. This is, in general, found in bulk diffusion
couples, as discussed till now. In thin films, on the other hand, sequential phase
growth is very frequently reported. The presence of the marker plane only in the
Cu6Sn5 phase, however, indicates the sequential growth of the phases, where the
Cu3Sn phase, most probably, started growing after some incubation period. If this
is true, once all the markers get trapped in the Kirkendall marker plane in the
Cu6Sn5 phase, no markers will be left in the Cu3Sn phase after it starts growing.

8.5 Effect of Electrical Current on the Microstructural
Evolution of the Diffusion Zone

The physicochemical approach can also be utilized to rationalize the effect of
additional driving forces, such as electric field, on the growth of interfacial phases.
Figure 8.25 shows a cross section of the component with the directions of the
current and electron flux. The electron flux enters the component from the source
contact and leaves from the drain contact. In the forthcoming analysis of the effect
of the electron flow on the IMC, growth only the on the printed wiring board
(PWB) side is considered. This is because, at the component side, the presence of
Ag finish will make the analysis less quantitative.

Figure 8.26 shows the interfacial microstructures from solder—PWB interfaces
from the samples that have been annealed at 110 �C for 750 h and both the drain
as well as source contacts after 750 h of constant current stressing.

Due to the relatively complex geometry of the interconnections and the differ-
ences in cross-sectional areas, the current crowding effects and thus the differences
in current densities cannot be easily addressed. However, even if only the direction
of the electron flux is taken into consideration, the marked differences in the total
IMC growth kinetics as well as the relative thicknesses of the Cu6Sn5 and Cu3Sn
intermetallic compounds can be observed when these differences are compared
with the results obtained using the diffusion couple experiments [29, 30]. Closer
examination of Table 8.4 and Fig. 8.26 reveals that when the flow of electrons is
toward the PWB, the g and e phase layers are almost of the same thickness, whereas
in the opposite situation, the thickness of Cu3Sn is drastically reduced.

The thickness ratio of Cu6Sn5 to Cu3Sn is unusually high in the case of the
annealed samples (Table 8.4) when compared to the earlier results from the Cu/
Sn(X) diffusion couples [31–35]. It is known that impurity and alloying compo-
nents can drastically change the growth kinetics of the IMC compounds [32].
Hence, it is not surprising that the IMC ratio differs from that observed with high
purity materials. Based on our previous experiments, it is known that alloying
components (like Ni) in copper increase the Sn flux through Cu6Sn5 but have no
measurable effect on the intrinsic fluxes inside Cu3Sn. This, in turn, results in a
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lower growth rate of Cu3Sn than in the case of a pure Cu/Sn diffusion couple. The
decrease in the growth rate of Cu3Sn can be understood when it is noticed that the
growth of the reaction layers in multiphase diffusion couples is dependent on each
other. Thus, when the formation rate of Cu6Sn5 at the Cu3Sn/Cu6Sn5 interface
increases, more and more Cu3Sn is consumed by the growing g layer. As the fluxes
of either Sn or Cu inside Cu3Sn are not significantly altered, this results in the
observed growth behavior. A similar (but slightly different) effect using the
electron flux can be observed here as discussed below. Regarding the annealed

Fig. 8.25 SEM micrograph
of the structure of the
component used in the
electromigration study

Fig. 8.26 SEM micrograph
showing the interfacial
reaction layer structure
depending on the direction of
the electron flux [29]
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samples, it is to be noted that in this case, the Cu–Sn IMCs are growing between
the Cu and SnAgCu solder instead of between Cu and pure Sn. Based on the
experimental results [34], it is known that the thickness of Cu3Sn is smaller when
growth takes place in the Cu/SnAgCu diffusion couple than in the Sn/Cu diffusion
couple at the same temperature. This can be understood when considering how the
presence of Ag and Cu in solder affects the activities of the diffusing components.
The presence of Cu in the solder decreases the driving force for diffusion of Cu
from the Cu-substrate to the solder as the activity difference decreases. Likewise,
the lowering of the activity of Sn in the solder (because of the presence of Ag)
reduces the driving force for diffusion of Sn toward the Cu-substrate, thus reducing
the Sn flux. These two effects combine to produce the observed difference between
the Cu/Sn and Cu/SnAgCu reaction couples. Finally, it is emphasized that also the
slightly lower temperature used here (110 �C instead of 125 �C which is used in
the reference cases [34, 35]) will itself contribute to the observed smaller thickness
ratio of Cu3Sn to Cu6Sn5.

From the results of the steady current experiments, it can be seen that in the
drain contact, the electron flux comes from the solder side to the interface. Thus,
the PWB pad is acting as the anode, meaning that the Sn flux toward the PWB is
increased in both IMC layers whereas the flux of Cu from the PWB is decreased,
which, based on the experimental results, seems to favor the growth of Cu3Sn. This
can be analyzed in more detail with the help of Fig. 8.27 and the following
reaction equations.’

The reaction scheme

The reactions occurring at different interfaces of the reaction couple, as shown in
Fig. 8.27, can be expressed as follows

Interface I:

3qCuþ q½Sn�d ! 4qCu3=4Sn1=4

Interface II Cu3Sn side:

Table 8.4 Thickness data of the intermetallic compounds grown at the interface

Cu3Sn Cu6Sn5 Cu6Sn5 to Cu3Sn
ratio

No current 0.8 lm 3 lm 3.8
0.093 mol/m2 0.283 mol/

m2

Constant current from PWB 2.1 lm 2.3 lm 1.1
0.244 mol/m2 0.217 mol/

m2

Constant current from
solder

0.9 lm (*no change)
0.1 mol

3.8 lm 4.2
0.36 mol/m2
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11
9

pCu6=11Sn5=11 þ p Cu½ �d!
20
9

pCu3=4Sn1=4

11
3

qCu6=11Sn5=11 ! q Sn½ �dþ
8
3

qCu3=4Sn1=4

Interface II Cu6Sn5 side:

20
9

rCu3=4Sn1=4 ! r Cu½ �dþ
11
9

rCu6=11Sn5=11

8
3

sCu3=4Sn1=4 þ s Sn½ �d!
11
3

sCu6=11Sn5=11

Interface III:

5
6

rSnþ r Cu½ �d!
11
6

rCu6=11Sn5=11

Fig. 8.27 Schematic presentation of the interfacial reactions occurring in the reaction couple
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Here, p and q are the moles of Cu and Sn, respectively, transferred per unit area
through the Cu3Sn phase during the total diffusion time t. Similarly, r and s are the
number of moles of Cu and Sn transported during interaction per unit area through
the Cu6Sn5-phase layer. From the equations written above, it is clear that at the
interface II, not only 20

9 pþ 8
3 q

� �
moles of Cu3Sn grow, but also 20

9 r þ 8
3 s

� �
moles

get consumed because of the growth of the Cu6Sn5 phase. Similarly, 11
9 r þ 11

3 s
� �

moles of Cu6Sn5 grow at the same interface, but 11
9 pþ 11

3 q
� �

moles get consumed
by the Cu3Sn phase.

The thickness of the parts of the product phase layers resulting from the
interfacial reactions given above can be expressed as

4q� vCu3Sn
m ¼ DxCu3Sn

I

20
9

pþ 8
3

q� 20
9

r � 8
3

s

� �
� vCu3Sn

m ¼ DxCu3Sn
II

11
9

r þ 11
3

s� 11
9

p� 11
3

q

� �
� vCu6Sn5

m ¼ DxCu6Sn5
II

11
6

r � vCu6Sn5
m ¼ DxCu6Sn5

III

where DxCu3Sn
I and DxCu3Sn

II are the thicknesses of the sublayers in the Cu3Sn phase.

DxCu6Sn5
II and DxCu6Sn5

III are the thicknesses of sublayers in the Cu6Sn5 phase. These
sublayers are separated by the Kirkendall marker planes in these phases. In
Table 8.5, the experimental results about the effect of the electron flow on the
growth of the IMCs are presented in a different way. In addition to thickness, the
amount of each phase has been tabulated in terms of mole/m2 for the sake of
discussion.

PWB as the anode

Table 8.5 Summary of the
experimental results

Cu6Sn5 (lm) Cu3Sn (lm) IMC tot (lm)

After soldering
No current 1 0.1 1.1
Drain 1 0.1 1.1
Source 1 0.1 1.1
1,500 Cycles
No current 1.8 1.4 3.2
Drain 2.4 1.2 3.6
Source 3.6 0.3 3.9
3,000 Cycles
No current 1.9 1.9 3.8
Drain 2.7 1.5 4.2
Source 4.4 0.5 4.9
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Let us first consider that there is an equal increase in the flux of Sn and an equal
decrease in the flux of Cu in both the phases. First, the two cases will be addressed
separately and then the combined effect of the changes in the Cu and Sn fluxes is
addressed.

(i) Increase in the Sn flux through the phases:

Owing to the diffusion of Sn, 4 parts (in terms of moles) of the Cu3Sn product
phase will grow at the interface I plus a further 8/3 parts at the interface II by
consuming the Cu6Sn5 phase. On the other hand, 8/3 parts will get consumed
because of the growth of the Cu6Sn5 phase at the interface II. So, in total, there will
be a net gain of 4 parts of the Cu3Sn phase in this case.

Similarly, 11/3 parts of the Cu6Sn5 phase will grow at the interface II and the
same amount will get consumed because of the growth of the Cu3Sn phase at that
interface. So, there should be no net change in the layer thickness of the Cu6Sn5

phase.

(ii) Decrease in the Cu flux through the phases:

If the flow of Cu decreases at the same rate through both the phases, there will
be 20/9 parts (in terms of moles) less production of Cu3Sn at the interface II.
Further, because of the decreased diffusion rate of Cu through the Cu6Sn5 phase,
there will be 20/9 less consumption of the Cu3Sn phase at the interface II. So, there
should be no net change in the layer thickness of the Cu3Sn phase because of the
flow of electrons from solder to the PWB.

On the other hand, as a result of the lower production of the Cu3Sn phase at the
interface II, there will be 11/9 parts less consumption of the Cu6Sn5 phase at that
interface. At the same time (because of the decreased flow rate of Cu through the
Cu6Sn5 phase), there will 11/9 parts less production of the Cu6Sn5 phase due to the
dissociation of the Cu3Sn phase at the interface II. Finally, there will be lower
production of 11/6 parts of the Cu6Sn5 phase at the interface III. So, there should
be a net loss in the thickness of the Cu6Sn5 phase compared to the situation when
there is no flow of electrons.

(iii) Combined effect of Sn and Cu fluxes

Thus, if the Cu and Sn fluxes are affected similarly in both the phases, then for
every 4 parts of Cu3Sn phase increase there will be a corresponding 11/6 parts
decrease in the layer thickness of the Cu6Sn5 phase. This means that for a one-part
increase in the thickness of the Cu3Sn phase, there will be a corresponding 0.46
parts decrease in the thickness of the Cu6Sn5 phase. In our experimental results, we
actually get for a 0.151 parts (mol/m2) increase in the thickness of the Cu3Sn phase
a corresponding decrease of 0.066 parts in the Cu6Sn5 phase. This can be put in
another way: for a 1-part Cu3Sn phase increase, we get 0.44 parts of decrease in
the Cu6Sn5 phase. This is very close to the analysis presented above and can thus
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be taken to indicate that the components (Sn and Cu) are indeed affected in a
similar fashion by the electron flow. To conclude, it is now self-evident that it is
time to reexamine the assumption that Sn should be strongly affected by the
electron flux owing to its higher effective valence (Z*).

PWB as the cathode

Again, we consider there to be an equal decrease of Sn flux and an increase of
Cu in both the phases. The good match between the analysis results based on this
assumption with the experimental results, shown above, gives us further confi-
dence that this approach is justified.

(i) Increase in Cu flux through the phases:

When the amount of Cu3Sn increases by 20/9 parts (in moles) by consuming the
Cu6Sn5 phase at the interface II because of the increase of Cu flux, 20/9 parts of
the same phase will get consumed because of the growth of the Cu6Sn5 phase at
the same interface. So, there will be no net gain or loss in the thickness of the
Cu3Sn phase because of the increase in the diffusion rate of Cu. Owing to the
increase in the flow of Cu through the Cu3Sn phase, the increased consumption of
11/9 of the Cu6Sn5 phase will occur at the interface II. However, at the same time,
11/9 parts of the same phase will grow by dissociation of the Cu3Sn phase, because
of the increase in flow of Cu through this phase. A further increase of 11/6 parts of
the Cu6Sn5 phase will occur due to the increase in the flow of Cu through the g
phase. So, there should be no net gain in the thickness of the Cu3Sn phase, but a
net gain of 11/6 parts in the thickness of the Cu6Sn5 phase.

(ii) Decrease in Sn flux through the phases:

Owing to the decreased diffusion rate of Sn through the Cu3Sn phase, there will
be a corresponding 4 parts decrease in the layer thickness. Similarly, there will be
8/3 parts less produced at the interface II caused by the dissociation of the Cu6Sn5

phase. Furthermore, because of the decreased diffusion rate of Sn through the
Cu6Sn5 phase, the consumption of the same phase will be 8/3 parts less at the same
interface. So, the net loss for the Cu3Sn should be 4 parts.

Because of the decrease of Sn flux through the Cu6Sn5 phase, there will be 11/3
parts less production of the phase at the interface II by consuming the Cu3Sn
phase. At the same time, there will be 11/3 parts less consumption of the same
phase because of the low diffusion rate of Sn through the Cu3Sn phase. So, there
should be no net gain in the Cu6Sn5 phase layer thickness because of low flux of
Sn through both the phases.

(iii) Combined effect of Sn and Cu fluxes

When we consider the increase in the flow of Cu and the corresponding
decrease in the flow of Sn to occur equally through both the phases, there will be a
net gain of 11/6 parts in the thickness of Cu6Sn5 and a net decrease of 4 parts in the
thickness of the Cu3Sn phase. However, the diffusion rate of Sn is known to be
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small compared to that of Cu in the Cu3Sn phase, as shown in the ratios of the
tracer diffusion coefficients [28]

D�Cu

D�Sn






Cu3Sn

¼ p

q
� 30

D�Cu

D�Sn






Cu6Sn5

¼ r

s
� 0:35

Consequently, the role of Sn in this phase can be neglected—especially in this
particular case as the diffusion of Sn is further hindered by the electron flux.

Overall, therefore, there should be an increase in the layer thickness of the
Cu6Sn5 phase, which is what we see in the experiment. The results from the above
analysis and from the experiments are summarized in Table 8.6.
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Chapter 9
Interdiffusion in Multicomponent Systems

In this Chapter, estimation of the diffusion parameters in the multicomponent
system is explained. A pseudobinary approach simplifying the mathematical
conditions is also described. Finally the use of diffusion couple establishing the
phase diagram is presented.

In the previous chapters, we have explained the diffusion analysis in binary
systems. In fact, it is relatively easy to study interdiffusion when only two com-
ponents take part in the diffusion process. This is the reason that the majority of
systems studied are binary systems. With an increase in the number of compo-
nents, the study of interdiffusion either becomes (at best) rather difficult or (at
worst) close to impossible. Even, the physical meaning of some of the parameters
involved are not very easy to understand [1]. Research is going on to develop an
easier approach for the study of multicomponent systems. In this chapter, we shall
introduce the concept very briefly without going into too much complexity—
something that could be difficult for new students of the diffusion process to
understand. A book written by Kirkaldy and Young [2] will shed further light on
this topic. A comprehensive review written by Dayananda in Ref. [3] could be very
useful to understand the details on the evolution of the composition in ternary and
quaternary systems. The main difference between binary and multicomponent
systems is that in binary systems, we neglect the cross-terms. On the other hand,
these are important to consider in multicomponent systems, which might have
strong influence. This fact as well as the influence of vacancies on diffusion in
binary alloys in general will be clear after the discussion below and from the note
in the end of the Sect. 9.4.

9.1 Interdiffusion and Intrinsic Diffusion Coefficients
in Multicomponent Systems

The interdiffusion flux of an i-th component in a multicomponent system based on
Onsager’s formulism [4, 5] can be written as

A. Paul et al., Thermodynamics, Diffusion and the Kirkendall Effect in Solids,
DOI: 10.1007/978-3-319-07461-0_9, � Springer International Publishing Switzerland 2014
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~Ju ¼ �
Xn�1

v¼1

~Dn
uv

oCv

ox
ð9:1aÞ

The interdiffusion fluxes estimated from the composition profiles of different
components are related by (following the same line of discussion in Chap. 6 for
binary systems)

Xn

u¼1

�vu~Ju ¼ �v1~J1 þ �v2~J2 þ � � � � � � þ �vn~Jn ¼ 0 ð9:1bÞ

where ~Ju is the interdiffusion flux of the component u, ~D is the interdiffusion
coefficient, C is the concentration, x is the position parameter, �vu is the partial
molar volume, and n is the dependent variable. From Eq. 9.1b, it can be under-
stood that we need to estimate the interdiffusion fluxes for (n-1) components. The
flux for the n-th component can be determined from these values. Compositions of
different components are related by N1 þ N2 þ � � � � � � þ Nn ¼ 1. Therefore, if we
consider the n-th component as the dependent variable, the interdiffusion fluxes
can be expressed with (n-1) components. This means that the total (n-1)2

interdiffusion coefficients are required to express the interdiffusion fluxes of all the
(n-1) independent components.

Following Eq. 9.1a, in a ternary system (n = 3), ~J1 and ~J2 can be expressed as

~J1 ¼ �~D3
11

oC1

ox
� ~D3

12
oC2

ox
¼ �~D3

11
1

vm

oN1

ox
� ~D3

12
1

vm

oN2

ox
ð9:2aÞ

~J2 ¼ �~D3
21

oC1

ox
� ~D3

22
oC2

ox
¼ �~D3

21
1

vm

oN1

ox
� ~D3

22
1

vm

oN2

ox
ð9:2bÞ

The second part of the relations above is true for a constant molar volume, vm. In
most ternary systems, the change in lattice parameters with composition is not
known and an average molar volume is considered for the estimations. Following
Eq. 9.1b, ~J3 can be related by (for the constant molar volume and constant partial
molar volumes of the components)

~J1 þ ~J2 þ ~J3 ¼ 0 ð9:3Þ

The average molar volume can be estimated by taking the weighted fraction of
the molar volumes of the pure components that is vm avð Þ ¼ 1

n

Pn
i¼1 vi

m, where vi
m is

the molar volume of the pure component i. In Eqs. 9.2a and 9.2b, ~D3
11 and ~D3

22 are
the main (or direct) interdiffusion coefficients, which represent the influence of the
concentration gradient of one component on the diffusion rate of the same com-
ponent. ~D3

12 and ~D3
21 are the cross- or indirect interdiffusion coefficients, which

represent the influence of the concentration gradient of one component on the
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diffusion rate of the other component. The third component is considered as the
dependent variable. Therefore, the values of ~D3

11;
~D3

12;
~D3

21, and ~D3
22 are required

to relate or to calculate the interdiffusion fluxes in a ternary system.
The estimation of these parameters, however, is not as straightforward as in a

binary system. These parameters can only be determined at the point of inter-
section of the composition profiles from two different diffusion couples. For
example, in a Ni–Co–Pt system, the diffusion couples were made with different
compositions and annealed at 1,200 �C for 25 h. [6]. It can be seen in Fig. 9.1a
that the two composition profiles are found to intersect at a composition shown by
a red circle. In each diffusion couple, the interdiffusion flux of the two components
can be determined from the measured composition profile. The composition profile
of Co(25Pt)/Ni is shown in Fig. 9.1b. Kirkaldy [7] explained that it is possible to
use the Matano–Boltzmann analysis to determine the interdiffusion flux. A few
years later, the same was discussed by Philibert and Guy [8]. Therefore, the
interdiffusion flux of each component i can be determined using the relation [from
Eq. 7.19a]

~Ji YCi

� �
¼ �

Cþi � C�i
ffi �

2t
1� YCi

� � Zx�

x�1

YCi dxþ YCi

Zxþ1

x�

1� YCið Þ dx

2
4

3
5 ð9:4aÞ

where YCi
¼ Ci�C�i

Cþi �C�i
. Since, we generally consider a constant molar volume caused

by an unknown variation of the molar volume in a ternary system, we can write

~Ji Yið Þ ¼ �
Nþi � N�i
ffi �

2tvm
1� Yið Þ

Zx�

x�1

Yidxþ Yi

Zxþ1

x�

1� Yið Þ dx

2
4

3
5 ð9:4bÞ

where Yi ¼ Ni�N�i
Nþi �N�i

. Note that the same relation can be written, when the flux is

estimated using Wagner’s relation considering the constant molar volume, as can
be seen in Eq. 7.19c. The variation of the interdiffusion flux estimated from the
composition profile in Fig. 9.1b is shown in Fig. 9.1c. The correctness of the
estimation can be checked by examining whether the summation of the interdif-
fusion fluxes that is ~JNi þ ~JCo þ ~JPt ¼ 0 because of the consideration of the con-
stant molar volume. Note that depending on the direction of the diffusing
component, if the interdiffusion fluxes for Co and Pt are positive, the interdiffusion
flux of Ni should be negative. By considering Ni as a dependent variable, we
calculate the interdiffusion fluxes of the independent variables Co and Pt at the
composition of the intersection point. Accordingly, we can write

~JCo couple 1ð Þ ¼ �~DNi
CoCo

1
vm

oNCo

ox

� �
Couple 1

�~DNi
CoPt

1
vm

oNPt

ox

� �
Couple 1

ð9:5aÞ
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Fig. 9.1 Composition
profiles of diffusion couples
in Ni–Co–Pt system annealed
at 1,200 �C for 25 h are
shown on a Ni–Co–Pt Gibb’s
triangle. b Composition-
distance profile of the
Co(25Pt)/Ni diffusion couple
and c estimated variation of
interdiffusion fluxes of
components [6]
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~JPt couple 1ð Þ ¼ �~DNi
PtCo

1
vm

oNCo

ox

� �
Couple 1

�~DNi
PtPt

1
vm

oNPt

ox

� �
Couple 1

ð9:5bÞ

Similarly, at the same intersection point, we can calculate the interdiffusion fluxes
of these two components from the composition profile that is developed in the
second diffusion couple (Ni25Pt)/Co. These fluxes are related to the interdiffusion
coefficients as

~JCo couple 2ð Þ ¼ �~DNi
CoCo

1
vm

oNCo

ox

� �
Couple 2

�~DNi
CoPt

1
vm

oNPt

ox

� �
Couple 2

ð9:5cÞ

~JPt couple 2ð Þ ¼ �~DNi
PtCo

1
vm

oNCo

ox

� �
Couple 2

�~DNi
PtPt

1
vm

oNPt

ox

� �
Couple 2

ð9:5dÞ

The interdiffusion coefficients are the material constants, and these should be the
same at that particular composition. Therefore, solving the above equations, four
interdiffusion coefficients can be estimated at the point of intersection from two
separate diffusion profiles.

The interdiffusion coefficients in a ternary system were first time estimated by
Zeibold and Ogilvie [9] in the Cu–Au–Ag system. It must be apparent that many
diffusion couples should be prepared to calculate the variation of the interdiffusion
coefficients with composition over the whole composition range in a ternary
system. The diffusion couples prepared in the Ni–Co–Pt system, which were
annealed at 1,200 �C for 25 h, are shown in Fig. 9.2 [6]. The interdiffusion
coefficients can be estimated at all the compositions where the diffusion profiles
have intersected. Variation of the data are shown in Fig. 9.3.

Fig. 9.2 Composition
profiles developed in different
diffusion couples of Co–Ni–
Pt system annealed at
1,200 �C for 25 h are shown
in the Gibbs triangle. Profiles
with dotted lines indicate the
presence of uphill diffusion.
Compositions at which three
profiles intersect are shown
by circles [6]
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A relatively high rate of error is expected in the estimation of these ternary-
system parameters (compared to any binary system) because of the requirements
of two diffusion profiles. This can be explained with the estimated data in the Ni–
Co–Pt system. As circled in Fig. 9.2, there are two compositions, at which three
different composition profiles have intersected. We should, therefore, be able to
estimate the interdiffusion coefficients by considering any of the two diffusion
couples at the same intersection points. The estimated values are listed in
Table 9.1. The data of three rows at both compositions are estimated, considering
three different combinations. It can be seen that there is no change in the sign of
the diffusion coefficients; however, there was a relatively high difference between
the diffusion parameters estimated.

Another important question is which component should be considered as a
dependent component. As explained by Kirkaldy and Young [2], the dependent
variable should be chosen such that the conditions written below are fulfilled—
conditions that are derived based on the thermodynamic requirements and stability
of the solutions

~D3
11 þ ~D3

22 [ 0 ð9:6aÞ

ð~D3
11 þ ~D3

22Þ
2� 4ð~D3

11
~D3

22 � ~D3
12

~D3
21Þ ð9:6bÞ

ð~D3
11

~D3
22 � ~D3

12
~D3

21Þ� 0 ð9:6cÞ

In general, when the diffusion experiments are conducted in a small section, it is a
common practice to consider the solvent component (that is, the major component)
as the dependent variable. Of course, it is still wise to check whether the above
conditions written in Eqs. 9.6a, 9.6b and 9.6c are met. When the experiments are
covered in the whole composition range, after estimation of the data, it is neces-
sary to check for which component the conditions for the dependent variable is
fulfilled at all compositions. Repeatedly—as it was in the case of the Ni–Co–Pt
system—the conditions are met when we consider any of the components as the
dependent variable. It should be noted at this point that presenting data with

Table 9.1 The main and cross-interdiffusion coefficients estimated at the composition where
three intersecting diffusion profiles in the Co–Ni–Pt are listed [6]

Composition at. % ~DNi
CoCo

(10-14 m2/s)

~DNi
CoPt

(10-15 m2/s)

~DNi
PtCo

(10-15 m2/s)

~DNi
PtPt

(10-14 m2/s)

Ni = 19.8, Co = 22.7
and Pt = 57.5

0.8 -5 -6.2 1.1
0.3 -1.7 -6.9 1.2
1.2 -1.9 -7.1 1.2

Ni = 43, Co = 40
and Pt = 17

1.7 -7.1 -0.9 0.4
1.5 -2.5 -1.2 1.3
0.9 -3 -0.2 0.8
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respect to one dependent variable is sufficient, since the interdiffusion coefficients
considering different components as dependent variables are related by [10]

~D2
11 ¼ ~D3

11 � ~D3
12 ð9:7aÞ

~D2
13 ¼ �~D3

12 ð9:7bÞ

~D2
31 ¼ ~D3

22 þ ~D3
12 � ~D3

11 � ~D3
21 ð9:7cÞ

~D2
33 ¼ ~D3

22 þ ~D3
12 ð9:7dÞ

~D1
22 ¼ ~D3

22 � ~D3
21 ð9:7eÞ

~D1
23 ¼ �~D3

21 ð9:7fÞ

~D1
32 ¼ ~D3

11 þ ~D3
21 � ~D3

22 � ~D3
12 ð9:7gÞ

~D1
33 ¼ ~D3

11 þ ~D3
21 ð9:7hÞ

The variation of the interdiffusion coefficients estimated in the Ni–Co–Pt system is
shown in Fig. 9.3.

The interdiffusion fluxes that are estimated based on the composition profile of
a particular component are related to the intrinsic fluxes of the components by [3]

~Ju ¼ Ju � Nu

Xn

k¼1

Jk ð9:8aÞ

In a ternary system, these can be written as

~J1 ¼ 1� N1ð ÞJ1 � N1 J2 þ J3ð Þ ¼ N2 þ N3ð ÞJ1 � N1 J2 þ J3ð Þ ð9:8bÞ

~J2 ¼ 1� N2ð ÞJ2 � N2 J1 þ J3ð Þ ¼ N1 þ N3ð ÞJ2 � N2 J1 þ J3ð Þ ð9:8cÞ

~J3 ¼ 1� N3ð ÞJ3 � N3 J1 þ J2ð Þ ¼ N1 þ N2ð ÞJ3 � N3 J1 þ J2ð Þ ð9:8dÞ

where Ju is the intrinsic flux of the component u. Furthermore, the intrinsic flux is
related to the intrinsic diffusion coefficients by [3]

Ju ¼ �
Xn�1

v¼1

Dn
uv

oCv

ox
ð9:9aÞ

In a ternary system, we can write
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J1 ¼ �D3
11

oC1

ox
� D3

12
oC2

ox
ð9:9bÞ

J2 ¼ �D3
21

oC1

ox
� D3

22
oC2

ox
ð9:9cÞ

J3 ¼ �D3
31

oC1

ox
� D3

32
oC2

ox
ð9:9dÞ

The interdiffusion coefficients are related to the intrinsic diffusion coefficients by
[3]

~Dn
uv ¼ Dn

uv � Nu

Xn

k¼1

Dn
kv ð9:10aÞ

In a ternary system, the four main and cross-interdiffusion coefficients are related
by

Fig. 9.3 Main interdiffusion coefficients ~DNi
CoCo and ~DNi

PtPt and the cross-interdiffusion coefficients
~DNi

CoPt and ~DNi
PtCo calculated at common intersecting compositions in the Co–Ni–Pt system [6]
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~Dn
11 ¼ Dn

11 � N1 Dn
11 þ Dn

21 þ Dn
31

ffi �
ð9:10bÞ

~Dn
12 ¼ Dn

12 � N1 Dn
12 þ Dn

22 þ Dn
32

ffi �
ð9:10cÞ

~Dn
21 ¼ Dn

21 � N2 Dn
11 þ Dn

21 þ Dn
31

ffi �
ð9:10dÞ

~Dn
22 ¼ Dn

22 � N2 Dn
12 þ Dn

22 þ Dn
32

ffi �
ð9:10eÞ

Lane and Kirkaldy [11] described the requirements of these six intrinsic diffusion
coefficients to describe the intrinsic or interdiffusion fluxes and the interdiffusion
coefficients. From the relations above, it must be clear that these can be estimated
at the composition of the intersection from the two diffusion couples with an
additional condition that the inert particles used as markers (indicating the position
of the Kirkendall plane) are also located at that composition. Six intrinsic fluxes
can be estimated at this composition using the method developed by Heumann as
explained previously in Sect. 6.11a, [12, 13] or the relation developed in Sect.
6.8b, which is expressed as

JK
i ¼ �

1
2t

Nþi

ZxK

x�1

Yi

vm
dx� N�i

Zxþ1

xK

1� Yið Þ
vm

dx

2
4

3
5 ð9:11aÞ

For constant molar volume, it can be written as

JK
i ¼ �

1
2tvm

Nþi

ZxK

x�1

Yidx� N�i

Zxþ1

xK

1� Yið Þdx

2
4

3
5 ð9:11bÞ

Since there is very little chance of getting the markers at the point of intersection,
which is very difficult to predict, it is very rare for anyone to estimate the intrinsic
diffusion coefficients following this method. For example, Sohn and Dayananda
[14] estimated these six intrinsic diffusion coefficients at one composition in the
Fe–Ni–Al system. Dayananda [15] developed an approach in which the intrinsic
diffusion coefficients can be estimated from a single vapor/solid diffusion couple.
Therefore, this method is restricted to systems, where the components are able to
react in the vapor phase (such as Zn and Mg) with solid alloys. This approach was
applied in the Cu–Zn–Mn [16] and Ag–Zn–Cd [17] systems.

The existence of the zero flux plane (ZFP) in the interdiffusion zone of different
multicomponent systems is shown by Dayananda et al. in many systems [14, 18,
19]. This is associated with the uphill diffusion of a component in a particular part
of the interdiffusion zone and the downhill diffusion in the other part. This can be
explained with the help of the CoPt/Ni diffusion couples in the Ni–Co–Pt system,
with varying compositions of CoPt alloys, as shown in Fig. 9.2. The composition
profiles and the estimated interdiffusion fluxes are presented in Fig. 9.4, where it
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can be seen that in the Co(25Pt)/Ni couple, all the components diffuse down the
concentration gradient. Therefore, if the interdiffusion fluxes of Co and Pt are
expressed with a positive sign, the interdiffusion flux of Ni will be expressed with
a negative sign. In the Co(50Pt)/Ni couple, very minor uphill diffusion is to be
observed, and in the Co(75Pt)/Ni couple, clear uphill diffusion of Co is to be seen.
The Co profile in the Co(75Pt)/Ni interdiffusion zone increases first to a higher
composition than the composition used (25 at.%) in the Co(75Pt) end member and
then decreases in the other part of the interdiffusion zone. For this reason, the
estimated interdiffusion flux of Co has a negative sign in the beginning and then
changes to a positive sign. During the transition from negative to positive values, it
goes through a zero value and the plane corresponding to this composition is called

(a) (b)

(c) (d)

(e) (f)

Fig. 9.4 Composition profiles developed in a Co(25Pt)/Ni, c Co(50Pt)/Ni, e Co(75Pt)/Ni
diffusion couples and the corresponding calculated flux profiles are shown in b, d, and f [6]
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the ZFP. Since the main interdiffusion coefficients are always positive, from
Eq. 9.2a and 9.2b, it should be clear that the cross-interdiffusion coefficients
should have a negative sign in the uphill diffusion range. Further, the flux because
of cross-interdiffusion (that is, the second part of the equation) must be higher than
the flux because of the main interdiffusion (that is, the first part of the equation).
The profiles shown by dashed lines in Fig. 9.2 are found to have uphill diffusion.
The possible occurrence of ZFP is explained by Dayananda et al. [18, 20, 21]
based on their experimental evidence. According to these authors, ZFP is found
when the diffusion path that is the composition profile on a Gibb’s triangle crosses
a constant activity line passing through a terminal alloy composition. Thompson
and Morral [22, 23] have discussed different types of diffusion path and the
occurrence of ZFP based on the angle of the composition vector connecting the
end members. They subsequently developed an analytical model to predict the
occurrence of ZFP considering constant diffusivities [24].

Diffusion paths that are plotted on a Gibb’s triangle from a diffusion couple in a
single phase are commonly found with an ‘‘S’’ shape (serpentine). In a thermo-
dynamically ideal system, the diffusion paths are always serpentine. The authors
who have considered constant diffusion constants to discuss the shape of the curve
at elaborate lengths include van Loo et al. [25] and Thompson and Morral [22, 23].
As explained by Rönka et al. [26], the initial shape of the diffusion path is
dependent on the relative mobilities of the components. In a diffusion couple of
AB/C, if the mobilities of the components are such that DA [ DB [ DC, the
diffusion path will start in the B-rich side from AB and A-rich side from C. This
leads to a serpentine diffusion profile. Sohn and Dayananda [14] have shown the
presence of a serpentine and double serpentine profile in the b-(NiFe)Al phase. As
shown in Fig. 9.5, a diffusion couple between the alloys b3 and b15 shows a
serpentine diffusion path, whereas a couple between b5 and b17 shows the presence
of a double serpentine diffusion path.

At the ZFP, if the interdiffusion flux of the component i is zero, it is possible to
estimate the ratio of the main and cross-interdiffusion coefficients simply by
measuring the composition gradient of the components at that composition since

~Ji ¼ 0 ¼ �~D3
i1

1
vm

oN1

ox
� ~D3

i2
1

vm

oN2

ox
ð9:11aÞ

~D3
i1

~D3
i2

¼ � oN2=oxð Þ
oN1=oxð Þ

����
ZFP

ð9:11bÞ

Further, at the maxima or minima of a composition profile, the composition gra-
dient of that component is zero. Therefore, the cross-interdiffusion coefficient can
be estimated directly from the interdiffusion flux and the composition gradient of
the other component. If the Kirkendall marker plane is found at this composition of
maxima or minima, it can be understood from Eqs. 9.9a–d that three intrinsic
diffusion coefficients can be estimated from a single diffusion couple. The intrinsic
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diffusion coefficients were estimated in this fashion by Sohn and Dayananda [14]
in the Fe–Ni–Al system.

By extrapolating the interdiffusion coefficients to binary axes, we can extract the
binary diffusion coefficients and the impurity diffusion coefficients [14]. For
example, when the ~D2

11 and ~D2
22 values are extended to zero composition of 3, these

values are equal to the interdiffusion coefficients in the binary 1–2 system. When
the composition of component 1 approaches zero, ~D2

11 and ~D3
11 are equal to the

impurity diffusion coefficient of 1, which is D1 ð2; 3Þ in the binary 2–3 system [9].
In a quaternary system, the requirements for the estimation of the interdiffusion

coefficients are even more stringent. For example, following Eq. 9.1a, the inter-
diffusion fluxes of the components, considering a constant molar volume, can be
expressed as

~J1 ¼ �~D4
11

1
vm

oN1

ox
� ~D4

12
1

vm

oN2

ox
� ~D4

13

1
vm
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ox
ð9:12aÞ

~J2 ¼ �~D4
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1
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oN1

ox
� ~D4
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1
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ox
� ~D4

23

1
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oN3

ox
ð9:12bÞ

~J3 ¼ �~D4
31

1
vm

oN1

ox
� ~D4

32
1

vm

oN2

ox
� ~D4

33

1
vm

oN3

ox
ð9:12cÞ

~J1 þ ~J2 þ ~J3 þ ~J4 ¼ 0 ð9:12dÞ

Therefore, there are nine interdiffusion coefficients to determine and for that we
need three composition profiles to intersect at one particular composition. It is
almost impossible to design experiments in such a way that three diffusion couples

Fig. 9.5 Diffusion profiles in the Fe–Ni–Al system showing serpentine (b15/b3) and double
serpentine diffusion (b5/b17) paths [14]
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are able to intersect at a common point in a three-dimensional composition space
[1]. This is the simple reason why there have been no previous experiments
conducted to determine these nine interdiffusion coefficients in a quaternary sys-
tem. Experimental studies are available in Cu–Ni–Zn–Mn [20] and Ni–Cr–Co–Mo
[21] quaternary systems—the interdiffusion coefficients, however, were not esti-
mated from three intersecting diffusion couples. In the Cu–Ni–Zn–Mn system, the
interdiffusion fluxes were estimated, which can be done directly from the com-
position profiles measured using the relation in Eqs. 9.4a and 9.4b. In the Ni–Cr–
Co–Mo system, only the major interdiffusion coefficients were estimated in a
single diffusion couple in which two components did not develop the diffusion
profile such that the cross-interdiffusion coefficients could be considered as zero.

There is always a special interest to develop an experimental approach for the
(easy) determination of diffusion parameters in systems with three or more compo-
nents. Krishtal et al. [27] first developed a treatment to estimate the diffusion
parameters in a multicomponent system, considering the constant diffusion coeffi-
cients. In the following decade, Thompson and Morral [23] developed a square root
diffusivity approach, again by considering the constant diffusion coefficients. This
means that these treatments can be used when the composition differences of the
diffusion couples are reasonably small such that the diffusion coefficients do not vary
significantly over that composition range. The approach developed by Thompson and
Morral was used to estimate the diffusion parameters in a few quaternary systems,
keeping the composition difference of the diffusion couple end members very small
such as 5 at.% [28–30]. Stalker et al. [28] have shown that in such a small composition
range, they could estimate back the interdiffusion flux with a very minor error.

9.2 Average Effective and Integrated Diffusion Coefficients
in Multicomponent System

As it is discussed above, in a ternary system, it is necessary to determine four
interdiffusion coefficients at the point of intersection from two different diffusion
couples. To circumvent this problem, Dayananda and Sohn [31] introduced the
concept of the average effective interdiffusion coefficient so that this parameter
could be estimated from a composition profile in a single diffusion couple. From
Eq. 9.2a, we can write

~Ji ¼ �~D3
i1

oC1

ox
� ~D3

i2
oC2

ox
ð9:13Þ

In terms of the effective interdiffusion coefficient

~Ji ¼ �~Deff
i

oCi

ox
ð9:14Þ
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Comparing Eqs. 9.13 and 9.14, we can write

~Deff
i ¼ ~D3

i1
oC1

oCi
� ~D3

i2
oC2

oCi
ð9:15Þ

Therefore, the effective interdiffusion coefficients are a kind of average of the main
and cross-interdiffusion coefficients and do not shed any light on the individual
values. To estimate this parameter, one needs to follow the step discussed below.
Suppose we are interested to estimate these parameters on either side of the initial
contact plane. Integrating Eq. 9.14 from the unaffected left-hand side of the end
member to the initial contact plane that is the Matano plane, we get
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ð9:16aÞ

where Co
i is the composition at the Matano plane that is the initial contact plane.

�~D
eff

i;L is the average effective diffusion coefficient on the left-hand side of the
Matano plane. P is the area, as shown in Fig. 9.6a.

Integrating Eq. 9.14 from the Matano plane to the unaffected right-hand side of
the diffusion couple, we get
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ð9:16bÞ

�~D
eff

i;R is the average effective diffusion coefficient on the right-hand side of the

Matano plane. Q is the area as shown in Fig. 9.6a. The value of ~Ji can be estimated
using the relation expressed in Eqs. 9.4a and 9.4b. Note here that for the com-
position profile considered in this figure, both the numerator and denominator of
Eqs. 9.16a and 9.16b are negative in order to give positive values for the average
effective interdiffusion coefficients.

Dayananda and Sohn [31] used this procedure to estimate the average effective
interdiffusion coefficients on either side of the Matano plane and then estimated
back the concentration profile from these estimated values to show that this is an
efficient estimation procedure.
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Dayananda and Sohn [32] developed another model, following which—instead of
estimating one average effective diffusion coefficient—the average values of the main
and cross-interdiffusion coefficients can be estimated from only a single diffusion
couple. Integrating Eq. 9.13 over the composition range of interest, we can write

Zx2

x1

~Jidx ¼ �
ZC1 x2ð Þ

C1 x1ð Þ

~D3
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3
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3
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dC2

Zx2

x1

~Jidx ¼ ��~D
3
i1 C1 x2ð Þ � C1 x1ð Þ½ � � �~D

3
i2 C2 x2ð Þ � C2 x1ð Þ½ � ð9:17aÞ

where, �~D
3
i1 and �~D

3
i2 are the average interdiffusion coefficients estimated over the

composition range of interest. Now, multiplying Eq. 9.13 by x� xoð Þ on both sides
and then integrating over the same composition range of interest, we get

Fig. 9.6 Explanation of the a average effective diffusion coefficients and b average main and
cross-interdiffusion coefficients from a single diffusion profile in a ternary system
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From the Matano–Boltzmann relation expressed in Eq. 6.11, we can write
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Replacing this in the above relation, we get
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Therefore, by solving Eqs. 9.17a and 9.17b for the two components in a single
diffusion profile, we can determine the four average values of the main and cross-
interdiffusion coefficients from a single diffusion couple. The estimations of
~Ji x1ð Þ; ~Ji x2ð Þ; S ¼

R x2

x1
~Jidx and R ¼

R x2

x1
~Ji x� xoð Þ dx are explained in Fig. 9.6b.
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Dayananda and Sohn [32] used this method to calculate the diffusion parameters in
the Cu–Ni–Zn, Fe–Ni–Al, and Ni–Cr–Al systems. From the estimated diffusion
parameters, they estimated back the composition profiles and found that the dif-
ference between the actual profiles from which these parameters were estimated
and then estimated profiles is negligible.

The advantage of these two methods developed by Dayananda et al. is that it is
now possible to estimate the diffusion parameters from only a single diffusion
couple—compared to a need for two intersecting diffusion profiles in the con-
ventional method previously explained in Sect. 9.1. However, the disadvantage is
that we calculate a kind of average value over the composition range, where the
diffusion coefficients might vary significantly. If the first method is followed, the
average effective diffusion coefficients should be estimated for all the components
from their composition profiles. On the other hand, in the estimation of the average
main and cross-interdiffusion coefficients (explained in the second method), the
compositions profiles of two components are required. Additionally, in the second
case, after estimating the average main and cross-interdiffusion coefficients, the
stability of the solution should be checked by validating the conditions given in
Eq. (9.6a, 9.6b and 9.6c). Cermak and Rothova [33] argued that by making the
interval (between x1 and x2) very small, the values can be estimated close to that of
the actual values that were estimated at the point of intersection from the two
different diffusion couples. However, much recently, Cheng et al. [34] have shown
that this cannot be used to determine the composition-dependent diffusion coef-
ficients as demanded by Cermak and Rothova.

Many times, as seen from the binary system case discussed in Chap. 6, in
ternary systems, layers also grow in the interdiffusion zone with the line com-
pounds or the phases with a narrow homogeneity range. Because of the very small
composition range, it is not possible to design experiments such that composition
profiles from two different diffusion couples intersect at a common composition
inside the phase. Further, it is also not possible to determine the concentration
gradient. Therefore, the integrated diffusion coefficients should be estimated for
different components using the relation (based on Eqs. 7. 17 and 7. 19a
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where YC;i ¼
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Cþi �C�i

.
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Similarly, using the relations developed by Wagner [35] following Eq. 7. 19c, it
can be expressed for constant molar volume as

~J ¼ �
NþB � N�B
ffi �

2t
1� Y�B
ffi � Zx�

x�1

YB

vm
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2
4

3
5 ð9:18cÞ

Note here that for the constant molar volume, Eq. 9.18b will be the same as
Eq. 9.4b.

Therefore, as explained above in Chap. 7, in a ternary system also, the inte-
grated diffusion coefficients of different components can be estimated by inte-
grating the interdiffusion flux (determined from a composition or concentration
profile) using Eq. 9.18b, 9.18c or Eq. 9.4 over the thickness Dxb ¼ xb2

� xb1

ffi �
of

the phase layer of interest b. One important fact should be noted here that, in a
binary case, there is only one integrated diffusion coefficient, which is the same
when estimated from the composition profile of any of the components. However,
in a ternary system, each component will have an integrated diffusion coefficient if
these develop a diffusion profile in the interdiffusion zone.

If the composition range of the phase is narrow but known, then the average
effective interdiffusion coefficient can be estimated by dividing the integrated
diffusion coefficient with the composition range

~Deff
i ¼

~Db
int

DNb
B

ð9:19Þ

It should be noted here that the average effective interdiffusion coefficient in Eqs. 7.9
and 9.19 is the same. Further, this is called the average interdiffusion coefficient in a
binary system, which is the average of the interdiffusion coefficients. In a ternary
system, it is called the average effective interdiffusion coefficients—which is a kind
of average of the main and cross-interdiffusion coefficients in a phase. The estimation
of the average effective interdiffusion coefficient in a ternary system is the only
option and very useful in many systems. For example, the diffusion paths developed
in different diffusion couples in the Ni–Co–W are shown in Fig. 9.7a. It can be seen
that in a few diffusion couples, l-(Co,Ni)7W6 grows with a small composition range.
The composition profile of the Co(25Ni)/W diffusion couple is shown in Fig. 9.7b
[36]. It must be clear that it is not easy to design experiments such that the compo-
sition profiles from two different diffusion couples intersect in the range of phase
composition. It is also difficult to calculate the concentration gradient inside the l
phase, since it does not vary enough with composition to measure with a minimum
error. Therefore, the average effective diffusion coefficients were estimated to
understand the interdiffusion process in this system.
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9.3 A Pseudobinary Approach

This approach is to estimate the interdiffusion coefficients in different systems over
time, which is easier to follow compared to the approaches explained in earlier
sections. Recently, Paul [37] explained added possibilities that exist—for instance,
estimating the intrinsic diffusion coefficients along with the interdiffusion coeffi-
cients from a single diffusion couple. To begin with, however, we shall consider a
ternary system before commenting on the multicomponent system in general,
which will be similar irrespective of the number of components in the system. The
main requirement to follow this approach is that the composition of the end
members are selected such that only two components diffuse—i.e., to develop the
diffusion profile, keeping the other components constant throughout the diffusion
couple. Therefore, the composition of the two components should vary in the end
members used in the diffusion couple, keeping others constant. An imaginary phase
diagram is considered, as shown in Fig. 9.8. When Alloy 1 (A0.15B0.85) and Alloy 2
(A0.35B0.65) are coupled, c grows in the interdiffusion zone, which has a compo-
sition range of DNc

A ¼ 0:2� 0:3: This is a binary system. Now suppose, a fixed
amount of 10 at.% of component C is added to both end members. Consequently,
the composition of the end members of the diffusion couple is Alloy 3
(A0.15B0.75C0.10) and Alloy 4 (A0.35B0.55C0.10). For the ease of explanation, we
consider the linear variation of the composition in the product c phase and also
consider that the molar volume is the constant. However, note here that this
approach is not restricted to this condition and can be used in any real system, where
the molar volume does not vary ideally. The alloying addition might replace one of
the components, especially in the intermetallic compounds. In this particular case,
we have considered that C replaces B. As the composition of C is the same in both
end members, c might grow with the same composition. Therefore, component C
does not develop a diffusion profile but becomes mixed and the composition is fixed

(a) (b)

Fig. 9.7 a Composition profiles of different diffusion couples on a Co–Ni–W isothermal phase
diagram at 1,200 �C. b Measured composition profile of the Co(25Ni)/W diffusion couple
annealed at 1,200 �C for 25 h [36]
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throughout the diffusion couple. Therefore, from Eqs. 9.2a, 9.2b and 9.8a–9.8d, for
N2 as fixed composition it is clear that the diffusion in this ternary system should be
considered as a pseudobinary system. For example, if we consider that the com-
position of component 2 is fixed, from the intrinsic flux (J2 = 0) the interdiffusion
flux (~J2 ¼ 0) and the concentration gradient (dC2=dx ¼ 0), the relations are reduced
to the relations in a binary system. Therefore, the estimation procedure is rather
similar. To explain the steps, we first consider the couple in the binary system and
then explain it for the ternary (pseudobinary) system.

9.3.1 Estimation of Diffusion Parameters in a Binary System

A diffusion couple of two blocks with compositions of, let us say, Alloy 1
(A0.15B0.85) and Alloy 2 (A0.35B0.65) as presented in Fig. 9.9a. Suppose in the
middle, a single phase c grows with a composition range of DNc

A ¼ 0:2�0:3. To
simplify the explanation, we consider a linear change in the composition in the
interdiffusion zone, as shown in composition profiles of A and B in Figs. 9.9b and c.
Further, we consider that there is no change in the molar volume with the change in
composition. These assumptions are taken such that it will be easier for the readers
to calculate the diffusion parameters without the help of any software. As men-
tioned already, this method is applicable in any real system, where the composition
profile is not linear and the molar volume deviates from ideality. For the calculation
of the intrinsic diffusion coefficients, we consider the presence of the marker plane
in the interdiffusion zone. Although the variation of the interdiffusion coefficients
with composition can be estimated, the interdiffusion and intrinsic diffusion coef-
ficients at the marker plane only are estimated at present so that we can validate the

Fig. 9.8 Compositions of the
alloys chosen for diffusion
couples [37]
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results. The interdiffusion flux of a component i in a binary or multicomponent
system can be estimated by Eq. 7.19c
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We can calculate the interdiffusion flux of A by
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A minus sign is there since the component A diffuses from right to left and the
interdiffusion flux is negative. For the interdiffusion flux of B, a minus sign will
not be there since it diffuses from left to right. The composition range of the
diffusion couple is DNA ¼ NþA � N�A , where NþA and N�A are the composition of the
initial and unaffected parts of the left- and right-hand sides of the end members, x*

is the position of interest, YA is the composition normalized variable and is equal to
NA�N�A
NþA �N�A

. From Fick’s first law for constant molar volume, we can write
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From Eqs. 9.20b and 9.20c, we can write the relation for the interdiffusion coef-
ficient at the marker plane (denoted by K) as
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It should be noted here that the data estimated will be the same if estimated with
respect to the composition profile of B instead of A. Let us consider that the
markers used at the interface before annealing are shifted to 0.24 atomic fraction A
(0.76 atomic fraction B) located at 40 lm from the Alloy 1/c phase interface. The
total thickness of the product c phase grown in the interdiffusion zone is 100 lm
after 25 h of annealing at one particular temperature T. The interdiffusion coeffi-
cients can be estimated at any of compositions; however, we calculate it at the
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marker plane to validate our results. With the help of Eq. 9.20d and from the YA

versus x plot, as shown in Fig. 9.9d, the interdiffusion coefficient is estimated as
2.05 9 10-14 m2/s.

The intrinsic diffusion coefficients of components A and B can be estimated
from Eqs. 6.74 and 6.76
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since we are considering a constant molar volume in the phase of our interest and
in a binary system NA þ NB ¼ 1.

Therefore, using Fick’s first law, the intrinsic fluxes can be expressed as
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Since A diffuses from right to left, JA ¼ �DA
dCA
dx and B diffuses from left to right,

JB ¼ DB
dCB
dx . The intrinsic diffusion coefficients are estimated at the Kirkendall

marker plane as DK
A ¼ 0:72� 10�14 and DK

B ¼ 6:27� 10�14m2=s. The accuracy of
the estimations can be checked from the relation between the interdiffusion and
intrinsic diffusion coefficients (Eq. 6.65)

~DK ¼ NK
A DK

B þ NK
B DK

A ð9:22Þ

408 9 Interdiffusion in Multicomponent Systems

http://dx.doi.org/10.1007/978-3-319-07461-0_6
http://dx.doi.org/10.1007/978-3-319-07461-0_6
http://dx.doi.org/10.1007/978-3-319-07461-0_6


Fig. 9.9 a Diffusion couple of Alloys 1 and 2, b composition profile with respect to element
A c composition profile with respect to element B and d composition normalized variable YA

versus x plot [37]

9.3.2 A Pseudobinary Approach in a Ternary System

Now, consider a ternary diffusion couple of Alloy 3 and Alloy 4, as shown in Fig. 9.8.
For the sake of explanation, we first consider that the homogeneity range of the c
phase does not change because of the addition of C. Furthermore, the component C
replaces the component B. Now, we need to select the end-member compositions,
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such that the composition range of the components A and B are the same with a fixed
composition of the component C in both. To compare with the results already esti-
mated in the binary case, we consider the same composition range of 0.2 for A and B
between the end members. We choose a fixed composition C, for example, 0.1 such
that the compositions of the end members are A0.15B0.75C0.10 (Alloy 3) and
A0.35B0.55C0.10 (Alloy 4). The product phases might grow with the same fixed
percentage of C. It can be seen as an interdiffusion of A and B in the presence of the
other component C. The diffusion rates of the components can be affected because of
the presence of other components since the concentrations of defects (thermal
vacancies and structural antisites) and the thermodynamic driving forces in the c
product phase will change. As a result of the change in diffusion rates, the layer
thickness of the product phase will also change. However, for the sake of explanation
and to validate our estimations, we consider two cases. In one case, we assume that
there is no change in layer thickness and the position of the Kirkendall marker plane
is the same. This is considered first to validate the estimations. Then, we consider the
change in both in layer thickness and the position of the marker plane. These are
shown in Figs. 9.10a and 9.11a.

Firstly, we consider the composition range of the components to be the same as the
binary system since we are seeking to validate our results. If no difference is seen in the
layer thickness in the ternary system, the diffusion rates should also be the same. Since
the two components A and B diffuse and the third component C does not have the
concentration gradient, it can be considered as a pseudobinary system. Moreover, it
should be the same when we consider either component A or B for our estimations, as
can be seen immediately from the NA versus x or YA versus x plots in Fig. 9.10a and c.
At the location of 40 lm, the interdiffusion coefficient is estimated to be the same as
that estimated in the binary system. However, note that NB is 0.66 (since NA = 0.24 and
NC = 0.10) in the ternary system instead of 0.76 in the binary system. As
NA + NB + NC = 1 and C replaces B in the ternary system, we would rather measure
the interdiffusion coefficients at NB+C (= NB + NC) = 0.76. For the estimation of the
interdiffusion coefficients, we could consider NB or NB+C, since the composition is
normalized and the composition range of the diffusion couple is the same. However, for
the estimation of the intrinsic diffusion coefficients, we need to consider the total
composition of B and C, that is, NB+C. If we neglect C, then the total mol fraction (or the
atomic fraction) will not be equal to one, making the estimation of the intrinsic dif-
fusion coefficients incorrect. On the other hand, the composition profile for the com-
ponent A is the same. Therefore, if we wish to estimate the intrinsic diffusion
coefficients also, we should calculate the diffusion parameters with respect to NA versus
x or NB+C versus x, as shown in Figs. 9.10a and b. Hence, we need to consider YA versus
x or YB+C versus x. We show the estimation of the intrinsic diffusion coefficients with
respect to the YA versus x plot, as shown in Fig. 9.10c following

DA ¼
1
2t

dx

dNA

� �
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Fig. 9.10 Composition profiles of a diffusion couple in a ternary A–B–C system a composition
profile of element A b composition profile of elements (B + C), c composition normalized
variable YA versus x plot [37]

9.3 A Pseudobinary Approach 411



Fig. 9.11 Composition profiles of a diffusion couple in a ternary A–B–C system, where layer
thickness is affected because of addition of C with A and B a composition profile of element A
b composition profile of elements (B + C), c composition normalized variable YA versus x plot [37]
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We considered exactly the same location of the marker plane and we obtain the
same values of DA and DB as estimated in the binary system.

To validate the results, we considered the same layer thickness. However, as
already mentioned, the layer thickness—and even the location of the marker
plane—actually change due to the addition of another component, since it influ-
ences both defect concentrations and the thermodynamic driving force. It could
increase or decrease the growth rate depending on the particular system under
consideration. Let us consider that the growth rate in the presence of C is lower
and the layer thickness after annealing for 25 h is 90 lm. There is also a change in
the location of the marker plane, which is to be found at 0.245 of NA, at the
location of 40.5 lm from the Alloy 3/c phase interface, as shown in Fig. 9.11a.
The YA versus x plot is presented in Fig. 9.11c. The interdiffusion and intrinsic
diffusion coefficients are estimated at the marker plane as ~D ¼ 1:68� 10�14,
DA = 1.13 9 10-14 and DB = 3.38 9 10-14 m2/s.

Therefore, we have seen that if the experiments are conducted in a particular
way, the ternary system can be treated as a pseudobinary system and the same
relations developed for the binary system can be used. We have shown the esti-
mations at one particular composition only, however, just as in a binary system, it
is possible to estimate the variation of the interdiffusion coefficients with the
compositions. Any error in estimation of the data caused by the deviation in the
average composition of the end member is discussed in detail [37], which indicates
that we could estimate the data without much error when the average composition
deviates within ±1 at.%, a task which is not very difficult to achieve.

9.3.3 A Pseudobinary Approach in a Multicomponent System

As already explained, alloy compositions are chosen such that the composition of one
component is the same and then a third component is added at the cost of the second
component. Similarly, we can add many components, which will replace the com-
ponent B and then the estimation procedure will be the same. The interdiffusion
coefficients can be estimated with respect to the composition profile of A or B.
However, for the estimation of the intrinsic diffusion coefficients, we should consider
the composition profile of A or the total of the other components (B + X). This
approach is useful when studying the diffusion of intermetallic compounds, where, in
general, one alloying component replaces another particular component. If we are
interested to study interdiffusion in random solid solutions and calculate the interdif-
fusion at the equiatomic compositions (let us say, a five-component system), then only
two components, for instance, A and B could vary in the range of 0.15–0.25. Following,
0.2 atomic fractions of all other components should be added to both the alloys that are
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Fig. 9.12 Composition
profile of multicomponent
diffusion couple in random
solid solution [37]

to be bonded, as shown in Fig. 9.12. Moreover, the interdiffusion coefficients can be
estimated at 0.2 atomic fractions from any of the composition profiles (A or B).
However, the main difficulty in this system is for the estimation of the intrinsic dif-
fusion coefficients, since we cannot decide how to add the composition of the other
components with A and B. Further, analysis is required to tackle this issue. A similar
problem will be faced if one particular component replaces both of the components. In
such cases, also the interdiffusion coefficient can only be estimated.

9.3.4 Estimation of Diffusion Parameters in Line
Compounds Following the Pseudobinary Approach

As already explained, the integrated diffusion coefficients ~Dint should be estimated when
phases grow with a narrow homogeneity range. This is basically the interdiffusion
coefficient integrated over the unknown small composition range of, for example, the
phase b. This can be expressed with the help of Eq. 9.18a, 9.18b and 9.18c as

eDb
int ¼

ZN 00A

N 0A

~DdNA

~Db
int ¼ �

ZxII

xI

~JVb
mdx ¼ �~Jvb

mDxb

From Eq. 9.4b

~J ¼ �
NþA � N�A
ffi �

2tvb
m

1� Y�A
ffi � Zx�

x�1

YAdxþ Y�A

Zxþ1

x�

1� YAð Þdx

2
4

3
5

Therefore,

~Db
int ¼

NþA � N�A
ffi �

Dxb

2t
1� YAð Þ

Zx�

x�1

YAdxþ YA

Zxþ1

x�

1� YAð Þdx

2
4

3
5

ð9:24Þ

414 9 Interdiffusion in Multicomponent Systems



As already explained in Chap. 7 [from Eq. 7.18], we can estimate the ratio of the
diffusivities for a constant molar volume by

DA

DB
¼

NþA
RxK

x�1
YAdx� N �A

Rxþ1
xK

1� YAð Þdx

" #

�NþBþC
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x�1
YAdxþ N �BþC

Rxþ1
xK

1� YAð Þdx

" # ð9:25Þ

Let us consider a diffusion couple between Alloy 7 (A0.15B0.75C0.1) and Alloy 8
(A0.35B0.55C0.1) where one line compound grows with the composition
A0.25B0.65C0.1, as shown in Fig. 9.13. Suppose the marker plane is located at a
distance of 40.5 lm from the Alloy 5/b phase interface. The values are estimated
as ~Dint ¼ 2:25� 10�14 m2=s and DB

DA
¼ 2:33.

The examples given above are discussed mainly based on the ternary systems;
however, the same method can be followed in systems that consider more than
three components as long as only two components diffuse. There are a few
advantages in following this pseudobinary approach compared to the other
methods explained before. For example, from a single diffusion couple, we can
estimate the variation of the interdiffusion coefficients over the whole composition
range in the interdiffusion zone as well as the intrinsic diffusion coefficients at the
Kirkendall marker plane. This is otherwise very difficult in a ternary system and
almost impossible in a quaternary system. The possibility of conducting pseud-
obinary experiments to examine the role of alloying additions in a more systematic
approach could be understood from Fig. 9.14. Suppose, we would like to study the
effect of Pt on the diffusion rate of Ni and Pt in the b-Ni(Pt)Al phase, which is used
in jet engines as a bond coat for protection from oxidation. The diffusion rates of
Ni and Al are very important for a proper understanding of the performance and
the life of the product. To estimate the diffusion of the component and predict the
defects present on different sublattices, it is necessary to conduct experiments
systematically such that the data estimated at different compositions can be

Fig. 9.13 Composition
profile of element A in a
multicomponent system,
where a line compound grows
in the interdiffusion zone [37]
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compared. Since we can estimate the diffusion parameters at the point of inter-
section by following the conventional method, we need to prepare two couples, for
example, a couple of Alloy 1/Alloy 2 and Alloy 3/Alloy 4, as shown in Fig. 9.14a.
In general, diffusion profiles are S-shaped, as already discussed, and it is almost
impossible to predict beforehand the point of intersection. With the aim of getting
the point of intersection with the same ratio of Ni and Al (but with an increasing
content of Pt), suppose another set of diffusion profiles are prepared from Alloy 5/
Alloy 6 and Alloy 7/Alloy 8. In these alloys, the Pt content is increased while
keeping the Ni/Al ratio the same, with the expectation of finding the point of
intersection at the same Ni/Al ratio—yet with increased Pt compared to the pre-
vious case. However, these will not necessarily intersect at the desired composition
and may even intersect at a different Ni/Al composition, as shown in Fig. 9.14. We
are unable to compare the results from different sets of couples, which is some-
thing very commonly encountered. Therefore, the estimation in the ternary sys-
tems is mostly restricted to the data generation, without any further understanding
on the complex process of diffusion. Moreover, there is rarely any chance that the
markers will also be at the point of intersection to estimate the intrinsic diffusion
coefficients. In this regard, pseudo-binary approach rather should be followed.

Fig. 9.14 Advantage of a pseudobinary approach explained a diffusion couples following
conventional technique, b diffusion couples in a pseudobinary approach, c diffusion couple of
Ni(9.5Pt)50Al/Ni(9.5Pt)40Al annealed at 1,100 �C for 25 h, and d its composition profile
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When we want to study the effect of Pt on interdiffusion of Ni and Al, we could
consider the diffusion couples of Alloy 1/Alloy 2, Alloy 3/Alloy 4, and Alloy 5/
Alloy 6, as shown in Fig. 9.14b. For example, an experimental diffusion profile of
(Ni9.5Pt)40Al/Ni(9.5Pt)50Al is shown in Fig. 9.14c. It can be seen that Pt does not
develop any diffusion profile and remains constant throughout the diffusion couple.
Therefore, this approach is highly suited for understanding the diffusion mecha-
nism by changing the Pt content systematically with the added advantage that we
can estimate the intrinsic diffusion coefficients from a single diffusion couple.
Additionally, we can estimate the variation of the interdiffusion coefficients over
the whole composition range—unlike the other methods by which we can only
estimate these parameters at the point of intersection.

9.4 Estimation of Tracer Diffusion Coefficients
in a Ternary System

As we have discussed much earlier in Chap. 6, the vacancy wind effect might have
an important role to play on the diffusing components. However, for the sake of
simplicity, we shall neglect this contribution to show the relations for estimating
the tracer diffusion coefficients directly from the interdiffusion experiments using
the thermodynamic parameters. If the vacancies are at equilibrium in the system
and considering that diffusion occurs by a vacancy exchange mechanism [38], the
intrinsic flux of the components in terms of the phenomenological constant Lii can
be written (as also discussed in Chap. 6) as [2]

Ji ¼ �Lii
oli

ox
ð9:26aÞ

We have neglected the contribution from the off-diagonal terms Lij by neglecting
the contribution from the vacancy wind effect and the correlation effects. Fur-
thermore, we consider the thermal equilibrium of the vacancies over the whole
interdiffusion zone. Therefore, based on the analysis by Darken [39] and LeClaire
[40], the phenomenological constants divided by the concentration can be related
to the mobilities Mi ¼ D�i =RT (Eq. 6.88), where Lii ¼ MiCi such that

Lii ¼
CiD�i
RT

ð9:26bÞ

Replacing Eq. 9.26b in Eq. 9.26a, we get

Ji ¼ �
CiD�i
RT

oli

ox
¼ � NiD�i

RTvm

oli

ox
ð9:27Þ
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Since li ¼ lo
i þ RT ln ai and ai ¼ ciNi, as discussed in Chap. 1, Eq. 9.27 can be

written as

Ji ¼ �
NiD�i
vmai

oai

ox
¼ � D�i

vmci

oai

ox
ð9:28Þ

From Eqs. 9.8a, 9.27 and 9.28 considering a constant molar volume in a ternary
system, we can write
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~J3 ¼ �~J1 � ~J2 ð9:29cÞ

If the thermodynamic data in a ternary system are known, using the composition in
a diffusion couple, the interdiffusion fluxes are estimated at the point of interest
using the relation in Eq. 9.4a. Further, from the known activities (or chemical
potentials) of the components at a different composition, the composition profile
can be converted to the activity or the chemical potential profile for all the
components. From these profiles, the thermodynamic parameters required in
Eq. 9.29a, 9.29b and 9.29c can be estimated. Subsequently, the tracer diffusion
coefficients of the components can be estimated at the point of interest. Rönka
et al. [26] estimated the interdiffusion and the tracer diffusion coefficients at the
point of intersection from two diffusion couples in a Cu–Fe–Ni system, finding that
the estimated tracer diffusion coefficients are consistent with the data available in
literature in the Cu–Ni and Fe–Ni systems.

The intrinsic fluxes in the system considering the constant molar volume can be
written as [26]

Jv ¼ �
Xn

i¼1

Ji ð9:30aÞ

In a ternary system, it is reduced to

Jv ¼ � J1 þ J2 þ J3ð Þ ð9:30bÞ
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Replacing Eq. 9.27 in Eq. 9.30b, we get
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ð9:30cÞ

Therefore, the position of the Kirkendall marker plane can be found from the
relation above, since (as discussed in Chap. 6)

vmJv ¼
xK

2t
ð9:31Þ

By comparing the shift in the diffusion couple (and estimating the shift with the
help of the estimated diffusion coefficients using the relations above), it is possible
to examine the reliability of the estimation procedure.

In the above analysis, the vacancy wind effect could be neglected since we
neglected the off-diagonal terms Lij. In an actual case, however, these might not be
negligible. As mentioned by Belova et al. [41], in some rare cases, these off-
diagonal terms could dominate to change the direction of the atomic flux. Manning
[42, 43] developed the relations including the vacancy wind effect. Dayananda
[44] extended this theory for the determination of the vacancy wind effect
experimentally in a multicomponent system, considering the non-diagonal phe-
nomenological constants. Moleko et al. [45] also developed a model, considering
the vacancy wind effect. Belova et al. [41] have reported an interesting outcome in
their analysis based on the experimental data compiled by Divinski et al. [46] in
the Cu–Ni–Fe system. They have shown the procedure to determine the jump
frequencies, correlation factors, and the vacancy wind effects following the theory
developed by Manning [43] and Dayananda [44] from the available tracer diffu-
sion coefficients. In the process, they have shown that Darken formulism (ignoring
the off-diagonal term) is reliable to express the diagonal phenomenological con-
stants in terms of the tracer diffusion coefficients. They have also demonstrated the
procedure to calculate the tracer diffusion coefficients and the vacancy wind effect
from the interdiffusion coefficients following the theory developed by Darken [39],
Manning [43], and Dayananda [44]

Holly and Danielewski [47] have developed an extended Darken quantitative
model to describe the multicomponent interdiffusion process based on the con-
sideration of local mass conservation and by using the expressions for drift and
diffusional flux—the momentum conservation equations where the diffusivities of
components vary with composition. Filipek et al. [48] used this analysis in the Fe–
Co–Ni system and found good agreement between theoretically estimated and
experimentally determined composition profiles developed in the diffusion cou-
ples. Divinski et al. [46] applied this model in the Cu–Fe–Ni system to show good
agreement between the estimated and experimental interdiffusion concentration,
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which validates the assumptions made by Holly and Danielewski in their model for
the description of interdiffusion in a non-ideal system.

An important note is due here. The vacancies in a binary alloy can be
considered as third component and thus, generally, even binary alloys have
to be treated as multicomponent systems. Then, the off-diagonal terms
cannot be neglected that results in a vacancy wind effect for the binary
compositions. However, in typical situation, the vacancy concentrations are
small and the resulting correction on the vacancy wind effect is about unity.
In most binary couples, the corresponding contribution can safely be
neglected, especially in view of the experimental uncertainties. Neverthe-
less, it is important to keep this fact in mind.

9.5 Determination of Phase Diagram Following Diffusion
Couple Technique

Knowledge of phase diagrams is very important for developing any new material or
for gaining a full understanding of the physical and mechanical behavior of
materials. However, the determination of a phase diagram is a very tedious pro-
cedure. The level of complexity increases drastically in ternary system compared to
simpler binary systems. Numerous samples must be prepared in order to establish a
ternary phase diagram. Added complications come from the fact that the phase
equilibria existing at the solid state might not be achieved by a melt route—
especially if there is a peritectic reaction present. On the other hand, a diffusion
couple along with the melting of selective alloys could be very handy to decrease
the number of experiments (or alloys) required to establish a phase diagram. For
more comprehensive treatment on this area, the readers are referred to an excellent
review written by Kodentsov et al. [49] and the book on methods for phase diagram
determination [50]. The use of the diffusion couple for the development of the phase
diagram was, in fact, first proposed by Kirkaldy [51]. Kirkaldy and Brown [52]
formulated the number of rules, which were then compiled by Clark [53] based on a
hypothetical diffusion couple. Most recently, Morral [54] has compiled a few more
rules developed at a later stage. At this point, we shall discuss mainly the rules
described by Clark and explain the advantages and limitations of using a diffusion
couple for the determination of phase diagrams.

It should be pointed out here that, unlike in a binary diffusion couple, in a ternary
couple a two-phase mixture can develop when the experiment is conducted at a
constant temperature. This can be understood from the Gibb’s phase rule F = C –
P + 2. At constant temperature and pressure, we can write F = C – P. In a ternary
system, C = 3. Therefore, F + P = 3 and the two phases (that is P = 2) are

420 9 Interdiffusion in Multicomponent Systems



allowed, keeping the variation of the concentration as one degree of freedom.
Previously in Chap. 4, we have seen that in a binary system, two phase mixture
cannot grow in the middle of a diffusion couple since it is not allowed to develop a
region of equilibrium before the whole diffusion couple reaches to an equilibrium
state. Similarly, three phase mixture cannot grow in a ternary diffusion couple. A
two phase mixture can grow only when the diffusion path (i.e. the composition
profile) goes from one phase area to two phase area, cuts the tie-lines at a given
angle and returns to one phase area. If the one phase area is named a and the two
phase are is a + b, then under these circumstances the a phase contains precipitates
of the b phase and thus a two phase mixture has been formed. The rules are
described based on the diffusion path (that is the plot of composition profile of a
diffusion couple on a Gibb’s triangle) in a ternary diffusion couple between A and
Z on a hypothetical phase diagram, as shown in Fig. 9.15a [49].

Note that there are many phases, such as a, b, d, r, p, k, l, and c that are
present. The two-phase equilibrium regions are shown by connected tie lines, and
the three-phase regions are kept blank. When the composition profile is examined
from alloy Z, the variation in the composition inside the d phase should be shown
by a diffusion path drawn with a solid line ab. Since the phases d and r are
separated by a wavy interface, the solid-line diffusion path should intersect the tie
lines as shown by bc. Then, the diffusion path goes through the r phase as shown
by cd. Following, the precipitates of the p phase appear inside this phase and again
after that the r phase is present as a single phase. This means that the diffusion
path should enter the two-phase equilibrium region as shown by def and then
returns again to the r phase to continue up to fg. Phases r and p are separated by a
straight interface. Therefore, the diffusion path should run parallel to the tie lines
as shown by gh and it should be drawn by a dotted line. ij shows the three-phase
equilibrium region starting from phase p toward two-phase region k and l. jk
shows the phase mixture of k and l. The location of the line in the two-phase
equilibrium region depends on the relative amounts of the phases. kl shows the
transition from one three-phase equilibrium to another three-phase equilibrium. lm
shows the path from two-phase equilibrium k–c to the c phase. Following, the
diffusion path goes through the c phase, as shown by mn. One important fact
should be noted here, as denoted by the blue dotted line in Fig. 9.15b, the diffusion
path should intersect the line connecting Z and A at least once. For any deviation in
the composition profile, the diffusion path moves away from the straight line;
however, because of the mass balance, it has to go in the opposite direction after
intersecting the connecting line. Moreover, a two-phase mixture develops only
when the diffusion path passes through a three-phase equilibrium. Let us consider
another hypothetical phase diagram and the diffusion couple as explained by
Kodentsov et al. [49], as shown in Fig. 9.16. Suppose two alloys R and S are
coupled, so that a ternary phase develops at the interface. Therefore, the diffusion
path first cuts through the tie lines between the a and the l phases, the position of
the line depending on the relative phase fractions of the phases. At the interface I,
three phases, a, l, and T are in equilibrium at specific points of contact, which is
represented by a dotted line on the phase diagram. After the phase mixture, only
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Fig. 9.15 a Hypothetical phase diagram showing a diffusion path in a diffusion couple between
A and Z and b mass balance (blue dotted) line showing intersection with diffusion path [49]
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the T phase is developed and the diffusion path has to enter the T phase from the
corner of the triangle representing the three-phase equilibrium. The solid line
inside the T phase represents the composition variation in the diffusion couple.
Since at the interface II, the T–b–c are again in equilibrium at specific points of
contact, the diffusion path shown by a dotted line enters the b–c mixture.

Now, let us consider the phase diagram, as shown in Fig. 9.17a [49]. The
experimental diffusion couples, 1 and 2 are shown in Fig. 9.17b and c. It can be

Fig. 9.16 a Hypothetical phase diagram and diffusion path b a schematic representation of the
microstructure [49]
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seen that since Ag is in equilibrium with the Fess solid solution and Fe2Ti, nothing
develops at the interdiffusion zone of the Ag/Fe80Ti20 diffusion couple. On the
other hand, the diffusion couple Ag/Fe30Ti70 goes through two three-phase

Fig. 9.17 a Diffusion couple
composition on an isothermal
Ag–Fe–Ti phase diagram,
interdiffusion zone between
b Ag/Fe80Ti20 and c Ag/
Fe30Ti70 developed after
annealing at 850 �C for 100 h
[55]
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Fig. 9.18 a Isothermal cross
section of the Ni–Cr–V phase
diagram at 1,150 �C.
b Interdiffusion zones
developed after (b) 16 and
c 49 h [49]
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equilibriums. Therefore, at the interface I, it has the three-phase equilibrium of
Ag–FeTi–TiAg. At the interface II, it has another three-phase equilibrium, that of
FeTi–TiAg–b(Ti). In the interdiffusion zone, it grows as a phase mixture of FeTi
and TiAg.

At times, by making a single diffusion couple, the information on the whole
phase diagram can be developed by examining the interdiffusion zone of a dif-
fusion couple at different times [49, 55], as shown in Fig. 9.18. For example, a
very thin layer of Ni was sandwiched between two thick foils of Cr and V at
1,150 �C. The interdiffusion zone was examined at different time intervals for the
identification of the phases evolved and measurement of the composition profiles.
Using this information and with the additional help of few melted alloys as shown
by dots on the phase diagram, one can define the phase boundaries much better.
Many times, the diffusion couple experiments alone are not enough to establish the
phase diagram. We assume local equilibrium at the interfaces in a diffusion couple,
meaning that the chemical potential varies continuously over the interdiffusion
zone. In a bulk diffusion couple, all the phases on a diffusion path are expected to
grow. However, one or more phases might grow with a very small thickness and it
could be very difficult to detect or measure the composition. Furthermore, time and
time again, it is difficult to measure the exact phase boundary composition—
especially if the composition varies sharply near the interface. When the com-
position is measured by an electron probe microanalyzer, depending on the gun
(tungsten filament or field emission), the composition should be measured at least
1–3 lm inside from the edge of the phase boundary depending on the components.
In the case of a sharp change in composition, the measured value could be sig-
nificantly different from the actual phase boundary composition. If the composition
does not change sharply, this difference could be low. Therefore, by combining the
measurement of a few equilibrated alloys along with the diffusion couple exper-
iments, we can establish a reasonably accurate phase diagram.

Often, the composition profiles measured from the diffusion couples indicate
the need for further studies to establish the phase diagram correctly. For example,
the composition range of the l phase measured in the Ni–Co–W system, as shown
in Fig. 9.7a, is higher than the range published in the previous phase diagrams.
Similarly, issues were also found in the Co–Ta system, which was corrected by the
diffusion couple experiments [58].
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Chapter 10
Short-Circuit Diffusion

In this chapter, we describe the basics of diffusion along short circuits in materials,
especially along grain boundaries. The fundamental model of Fisher is represented
and discussed in detail. Its approximate solution, which is important from a
didactic point of view, is given at first. Then, the exact solutions for instantaneous
and constant sources are sketched and a general approach for the analysis of
experimental data is formulated. The concept of kinetic regimes of diffusion in
materials with a hierarchy of short-circuit paths is introduced and discussed using
original experimental data on nanocrystalline alloys. The effect of grain boundary
diffusion on interdiffusion phenomena is evaluated.

Short-circuit diffusion paths in metals and alloys have attracted continuous
attention because of their technological importance. Alloying, sintering, and oxi-
dation—these are the phenomena, which demand consideration of interface- or
dislocation-enhanced diffusion, just to name a couple of them. The importance of
the kinetic and thermodynamic properties of interfaces grows considerably when
considering the miniaturization of whole devices or the length scale of their typical
structure features. The interface structure, its kinetics, stability, and possible
structure transformations are strongly affected by solute segregation, both of the
alloying components and residual impurities.

Typically one- and two-dimensional defects are considered as short circuits in
materials, such as dislocation lines, dislocation walls, grain boundaries (i.e.,
interfaces between differently oriented grains), and phase boundaries (i.e., inter-
faces between different phases which could even be equally oriented). Further-
more, such defects are triple lines or triple junctions, i.e., lines along which three
differently oriented grains meet in a polycrystalline material, and free surfaces, see
Fig. 10.1, where possible short-circuit paths are sketched.

The short-circuit defects, such as dislocations and grain boundaries, could have
a strong impact on the process of interdiffusion, especially since the diffusion rates
of atoms are typically enhanced along these defects.

A compilation of diffusion rates in a crystalline bulk and along typical short-
circuit paths in a metal is presented in Fig. 10.2 using pure silver as an example.
As a rule of thumb, the reader can memorize that self-diffusion is fastest along a
free surface where the activation energy Qs constitutes 0.1–0.3 of the activation

A. Paul et al., Thermodynamics, Diffusion and the Kirkendall Effect in Solids,
DOI: 10.1007/978-3-319-07461-0_10, � Springer International Publishing Switzerland 2014
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energy of the bulk diffusion Qv. Diffusion rates along high-angle grain boundaries
are slower with the activation energy Qgb, which amounts typically to (0.4–0.6)Qv.
Low-angle grain boundaries and dislocation walls reveal typically slower diffusion
rates, although these are scarcely studied. Again, as a rule of thumb, one may write
that Dlb & Dd and typically these values amount to (0.01 7 0.1) Dgb; that is, the
corresponding diffusion coefficients do not typically exceed 10 % of the values
which correspond to the diffusivities of high-angle grain boundaries Dgb. Here, Dlb

and Dd are the diffusion coefficients of the low-angle grain boundary and of
individual dislocations, respectively.

Grain boundary (GB) diffusion measurements are very sensitive to the struc-
tural state of GBs. Small changes in atomic positions can result in corresponding
changes of energy barriers for diffusion jumps. Since the diffusion rate depends
exponentially on the energy barriers, a significant change in the GB diffusivities,
both for solute and matrix atoms, can be expected.

Fig. 10.2 Comparison of
experimental data on
diffusion rates in pure Ag in
bulk, Dv [41], along
dislocations, Dd [42], along
grain boundaries, Dgb [42],
and on surface in vacuum, Ds

[43]. For generality, the
temperature scale is
normalized on the melting
point of Ag, Tm = 1,235 K

Fig. 10.1 Schematic
representation of defects
which may act as short-circuit
paths in a polycrystalline
material: dislocation line q;
grain boundaries, e.g., ABCD
one; triple lines as AD one;
and phase boundaries as the
interface between phases
a and b
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The current GB diffusion measurements almost exclusively rely on the model
which was suggested by Fisher in 1951 [1]. This is especially true for self-diffusion.
Bokstein et al. [2] and later Gibbs [3] recognized that the GB diffusion problem has
to be specially treated in solute diffusion cases, namely the solute segregation at
grain boundaries has to be taken into account. Subsequent development of the GB
diffusion theory is most completely represented by the famous handbook on the
fundamentals of grain and interphase boundary diffusion [4].

10.1 Fisher Model of GB Diffusion

The commonly accepted Fisher model [1] is a model of the fast GB diffusion in
which a leakage of diffusing atoms to the bulk is normal to GB (Fig. 10.3). The
solid is considered as a two-dimensional (xy) object which is characterized by a
unique (isotropic) diffusion coefficient Dv. The grain boundary is characterized by
a (typically) enhanced diffusion coefficient Dgb (Dgb � Dv) and represents a slab
of the thickness d, oriented perpendicularly to the outer surface (y = 0).

The diffusion transport of atoms in material occurs then via the fast diffusion of
tracer atoms from the outer surface along the grain boundaries with subsequent
leakage into the crystalline bulk and further diffusion with typically a lower dif-
fusion rate.

The diffusion problem will be formulated in the following way

ocgb

ot
¼ Dgb

o2cgb

ox2
þ o2cgb

oy2

� �
when xj j\d=2 ð10:1aÞ

ocv

ot
¼ Dv

o2cv

ox2
þ o2cv

oy2

� �
when xj j[ d=2 ð10:1bÞ

The boundary condition

scv �d=2; y; t
ffi �

¼ cgbð�d=2; y; tÞ ð10:2Þ

takes into account the GB segregation in the linear form (the so-called Henry
isotherm), where s is the segregation coefficient (Fig. 10.3). The definition of s is
given by Eq. 10.2 itself, i.e.,

s ¼ cgbð�d=2; y; tÞ
cv �d=2; y; t
ffi � ¼ cgbð�d=2Þ

cv �d=2

ffi � ð10:2aÞ

and is considered as a constant in the GB diffusion experiment which does not
depend on the position, time, and the solute concentrations, even though the latter

10 Short-Circuit Diffusion 431



is not a necessary condition and one can go beyond the linear segregation
approximation.

Additionally, we have to take into account the equality of diffusion fluxes

perpendicularly to the GB at �d=2; y
ffi �

Dv

ocv

ox

����
xj j¼d=2

¼ Dgb

ocgb

ox

����
xj j¼d=2

ð10:3Þ

Now, we may use the conditions that the GB width d is small, several atomic
distances, and Dgb � Dv. Then, on the same scale, the change of cgb is signifi-
cantly smaller than that of cv. Thus, expanding cgb(x, y, t) in a Taylor series around
x = 0, we have

cgbðx; y; tÞ ¼ cgbð0; y; tÞ þ
x2

2
o2cgbðx; y; tÞ

ox2

����
x¼0

þ � � � : ð10:4Þ

Here, we neglected the higher-order terms and used the symmetry of the

problem with respect to x = 0, i.e., ocgbðx;y;tÞ
ox

���
x¼0
¼ 0. Denoting cgb(0) = cgb(0, y, t)

and c00gbð0Þ ¼
o2cgbðx;y;tÞ

ox2

���
x¼0

and substituting Eq. 10.4 into Eq. 10.1a, we arrive at

ð xj j\d=2Þ

Fig. 10.3 Schematic illustration of Fisher model of GB diffusion updated including probable
effect of GB segregation. The distribution of tracer atoms in the GB of the width d and diffusion
coefficient Dgb is sketched. Far from the outer surface (y = 0), the tracer atoms enter the
crystallite bulk by leakage from the grain boundary and they diffuse further with the diffusion
coefficient Dv
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o

ot
cgbð0Þ þ

x2

2
c00gbð0Þ

� �

¼ Dgb

o2

ox2
cgbð0Þ þ

x2

2
c00gbð0Þ

� �
þ o2

oy2
cgbð0Þ þ

x2

2
c00gbð0Þ

� �� � ð10:5Þ

Since both cgb(0) and c00gbð0Þ are functions of y and t and do not depend on x by
definition and limiting us by the terms linear in d, we have

ocgbð0Þ
ot

¼ Dgb c00gbð0Þ þ
o2cgbð0Þ

oy2

� �
ð10:6Þ

Now, we will substitute the expansion (Eq. 10.4) into the boundary conditions
(Eqs. 10.2 and 10.3), and again neglecting the term of the order of d2 and higher,
we will arrive at

sc �d=2; y; t
ffi �

¼ cgbð0Þ ð10:7Þ

and

Dv

ocv

ox

����
xj j¼d=2

¼ Dgb

o

ox
cgbð0Þ þ

x2

2
c00gbð0Þ

� �	 
����
xj j¼d=2

¼ Dgb

d
2

c00gbð0Þ ð10:8Þ

Equation 10.8 may be rewritten as

Dgbc00gbð0Þ ¼
2
d

Dv

ocv

ox

����
xj j¼d=2

ð10:9Þ

After substitution of this expression into Eq. 10.6, we arrive at a final system of
diffusion equations for the GB diffusion problem

ocgb

ot
¼ Dgb

o2cgb

oy2
þ 2Dv

d
ocv

ox

����
xj j¼d=2

; when xj j\d=2 ð10:10Þ

and Eq. 10.1b for diffusion in the crystalline bulk, xj j[ d=2. Here,
cgb : cgb(0) : cgb(y, t), since the GB concentration does not depend on the
coordinate x under the approximations used, i.e., the small value of d and the
significant diffusion enhancement in the GB slab.

There is a straightforward interpretation of Eq. 10.10, i.e., the concentration of
tracer atoms in a GB is changed due to diffusion along the GB, the first term on the
on the right-hand side of the equation, and due to tracer leakage into the crystalline
bulk, the rate of which is controlled by the gradient of the bulk concentration near
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the GB, the second term on the right-hand side of the equation. The factor 2 in
Eq. 10.10 takes into account the fact that the tracer leakage occurs in the two sides
of the GB, i.e., in both crystallites.

10.1.1 Approximate Solution of the Fisher Model

An approximate solution of the GB diffusion problem, shown in Eqs. 10.10 and
10.1b, can be found for constant-source initial conditions

cgb 0; tð Þ ¼ s c0; cv x; 0; tð Þ ¼ c0; ð10:11aÞ

cgb y; 0ð Þ ¼ cv x; y; 0ð Þ ¼ 0 for y [ 0; ð10:11bÞ

cgbð1; tÞ ¼ cvðx;1; tÞ ¼ 0 for all t ð10:11cÞ

The specific condition, given in Eq. 10.11a on the outer surface, is introduced
to have a consistency with the segregation isotherm, shown in Eq. 10.2, in the
bulk. Nowadays, the corresponding solutions, Eqs. 10.18 and 10.23 below, are not
widely used, but they are important for didactical reasons.

The following approximations are used:

1. Tracer concentration in a sample is determined by two independent fluxes,
(1) atoms diffused via the GB with subsequent outdiffusion toward the crys-
talline bulk, and (2) direct diffusion in the bulk from the surface with the rate Dv.

2. The distribution of tracer atoms that entered the crystalline bulk by the flux (1)
is governed by diffusion perpendicular to the grain boundary. Diffusion along
the y direction is negligible for this flux o2cv=oy2 � 0.

3. Diffusion along the GB is very fast, and the distribution of tracer atoms along
the GB is created within a very short time after the beginning of diffusion, and
then, it only slowly evolves with time. Then, for longer time, it can be assumed
that ocgb=ot � 0.

Using the second approximation, Eq. 10.1b will be transformed to

ocv

ot
¼ Dv

o2cv

ox2
ð10:12Þ

According to the third approximation, diffusion in the crystal bulk proceeds
from a constant source with the concentration of cgb(y,t) and the corresponding
solution of Eq. 10.12 is (see Sect. 3.2.2)

cvðx; y; tÞ ¼
cgbðy; tÞ

s
erfc

xj j � d
2

2
ffiffiffiffiffiffiffi
Dvt
p

� �
� cgbðy; tÞ

s
erfc

x

2
ffiffiffiffiffiffiffi
Dvt
p

� �
ð10:13Þ
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at xj j[ d=2. Here erfc(u) is the complimentary error function defined as

erfc uð Þ ¼ 1� erf ðuÞ ¼ 2ffiffiffi
p
p
Z1

u

expð�z2Þdz

Under the third approximation, Eq. 10.10 transforms to

o2cgb

oy2
¼ � 2Dv

dDgb

ocv

ox

����
xj j¼d=2

ð10:14Þ

Since cv as a function of x for the given y and t is known (Eq. 10.13), we have
to evaluate its x derivative at xj j ¼ d=2 and substitute the resulting expression into
Eq. 10.15. As a result, we have

o2cgb

oy2
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
Dv=pt

p
sdDgb

cgb ð10:15Þ

This is the second-order differential equation, the solution of which in the quasi-
stationary case under consideration is

cgbðy; tÞ ¼ sc0 exp � y

L

ffi �
ð10:16Þ

where the reduced penetration depth L is defined by

L2 ¼ sdDgb

ffiffiffiffiffiffiffiffi
t

4Dv

r ffiffiffi
p
p
¼ P

ffiffiffiffiffiffiffiffi
t

4Dv

r ffiffiffi
p
p

ð10:17Þ

Here, the so-called triple product of GB diffusion P, P = sdDgb, is introduced.
The resulting distribution of tracer atoms in the crystalline bulk around a grain

boundary ð xj j[ d=2Þ is then defined as

cvðx; y; tÞ ¼ cI
v þ cII

v

¼ c0erfc
y

2
ffiffiffiffiffiffiffi
Dvt
p

� �
þ c0 exp � 4Dv

pt

� �1=4 yffiffiffi
P
p

" #
erfc

xj j � d
2

2
ffiffiffiffiffiffiffi
Dvt
p

� � ð10:18Þ

Here, the first term cI
v corresponds to the direct diffusion of tracer atoms from

the sample surface into the crystalline bulk via bulk diffusion (see Chap. 3) and the
second term cII

v is the Fisher solution for the GB diffusion problem and it represents
the concentration of tracer atoms in the crystalline bulk which appeared there via
fast GB diffusion and subsequent outdiffusion from the GB. In the GB slab
ð xj j\d=2Þ, the tracer concentration follows Eq. 10.16.
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In a typical GB diffusion experiment, one determines the so-called layer con-
centration of the tracer atoms (or a value which is proportional to it as in the case
of radioactive isotopes), cðy; tÞ, as a function of the penetration depth y for the
given diffusion time t.

Let us represent our sample as a polycrystalline material with a grain size
d being much larger than the diffusion length in the crystalline bulk, d �

ffiffiffiffiffiffiffi
Dvt
p

(the exact conditions for diffusion in polycrystalline material will be considered
below), so that the diffusion fluxes from neighboring grain boundaries do not
overlap. Following the Fisher model, the GBs are still represented as parallel slabs
of the thickness d which are perpendicular to the outer surface. Then, the tracer
concentration in a thin layer perpendicular to the y-axis is determined as

cðy; tÞ ¼ 2
d

Zd=2

0

cgbðy; tÞdxþ
Zd=2

d=2

cI
vðy; tÞ þ cII

v ðx; y; tÞ
� 


dx

2
64

3
75 ð10:19Þ

Here, we have used the symmetry of the GB diffusion problem and integrated
only over a half of a grain and the grain boundary, i.e., from x = 0 to x = d/2.
Since d � d and cgb and cI

v do not depend on x, the first two integrals are trivial

cðy; tÞ ¼ 2
d

d
2

cgbðy; tÞ þ
d

2
cI

vðy; tÞ þ
Zd=2

d=2

cII
v ðx; y; tÞdx

2
64

3
75

¼ d
d

cgbðy; tÞ þ cI
vðy; tÞ þ

2
d

Zd=2

d=2

cII
v ðx; y; tÞdx

ð10:20Þ

Now, we will use the condition d �
ffiffiffiffiffiffiffi
Dvt
p

that allows us to extend the upper
integration bond to infinity. Performing integration (using the standard formulaR1
u

erfc vð Þdv ¼ exp �u2ð Þ=
ffiffiffi
p
p
� u erfc uð Þ which is derived via integration by

parts), we obtain

cðy; tÞ ¼ sdc0

d
exp � y

L

ffi �
þ c0erfc

y

2
ffiffiffiffiffiffiffi
Dvt
p

� �
þ 4c0 exp � y

L

ffi � ffiffiffiffiffiffiffiffi
Dvt

pd2

r
ð10:21Þ

Or regrouping the terms

cðy; tÞ ¼ c0erfc
y

2
ffiffiffiffiffiffiffi
Dvt
p

� �
þ c0

sd
d

1þ 2ffiffiffi
p
p 2

ffiffiffiffiffiffiffi
Dvt
p

sd

� �
exp � y

L

ffi �
ð10:22Þ

Thus, in the case of GB diffusion from a constant source, the distribution of
tracer atoms in a polycrystalline material is represented by a sum of two terms, as
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given in Eq. 10.22, the first term is the result of direct diffusion via the crystalline
bulk and follows a complimentary error function solution (see Chap. 2) and the
second term is now a signature of the presence of GBs in the material and rep-
resents an exponential function of the depth y (for this approximate solution).

Since the complimentary error function is nearly c0 exp � y2

4Dvt

ffi �
at large depths

and decreases rapidly, the penetration profiles have their specific shape—rapid
decrease of the tracer concentration in the near-surface region and a shallow tail
which corresponds to the GB diffusion contribution. Thus, at large depths, typi-
cally, y [ 5

ffiffiffiffiffiffiffi
Dvt
p

cðy; tÞ ffi c0
sd
d

1þ 2ffiffiffi
p
p 2

ffiffiffiffiffiffiffi
Dvt
p

sd

� �
exp � y

L

ffi �
ð10:23Þ

The term in square brackets is very important and can be written as 1þ 2ffiffi
p
p a�1,

where a is the GB diffusion parameter

a ¼ sd

2
ffiffiffiffiffiffiffi
Dvt
p ð10:24Þ

which is the ratio of the effective GB diffusion width sd and the diffusion length in
the crystalline bulk 2

ffiffiffiffiffiffiffi
Dvt
p

. Equation 10.24 is simplified if a ffi 1, and at large
depths,

cðy; tÞ ffi c0
4
ffiffiffiffiffiffiffiffiffiffiffiffi
Dvt=p

p
d

exp � y

L

ffi �
ð10:25Þ

This solution of the GB diffusion problem (the Fisher solution) corresponds to
the case when the amount of tracer atoms residing at the GB—the first term in the
square brackets in Eq. 10.23—is negligible with respect to that in the crystalline
bulk—the second term.

Equation 10.25 suggests how the GB diffusion parameter, the triple product
P = sdDgb, can be determined from a GB diffusion experiment. One has to plot the
logarithm of the tracer concentration as a function of the depth, and having
determined the slope of the curve L-1, the triple product will be determined as

P ¼ sdDgb ¼ 2

ffiffiffiffiffiffi
Dv

pt

r
L2 ¼ 2

ffiffiffiffiffiffi
Dv

pt

r
� o ln c

oy

� ��2

ð10:26Þ

There exists also another way to determine the triple product experimentally.
We will directly start from Eq. 10.18 and look on the isoconcentration contours for
a cv(x, y, t) distribution around a GB after the given diffusion time t at large depths
when the GB diffusion-related flux dominates (the second term in Eq. 10.18). The
x and y derivatives of cv(x, y, t) at the GB, xj j ¼ d=2, are (only one sign of x has to
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be analyzed in view of the symmetry conditions, we will consider the positive
x direction)

ocvðx; y; tÞ
ox

¼ c0 exp � y

L

h i 2ffiffiffi
p
p exp �

x� d
2

� 
2

4Dvt

 !
1

2
ffiffiffiffiffiffiffi
Dvt
p ¼ c0ffiffiffiffiffiffiffiffiffiffi

pDvt
p exp � y

L

h i

ð10:27Þ

and

ocvðx; y; tÞ
oy

¼ � c0

L
exp � y

L

h i
erfc

x� d
2

2
ffiffiffiffiffiffiffi
Dvt
p

� �
¼ � c0

L
exp � y

L

h i
ð10:28Þ

The ratio of the two derivatives is equal to the cotangent of the angle w at which
the isoconcentration line meets the GB

cot w ¼
ocvðx;y;tÞ

ox
ocvðx;y;tÞ

oy

¼ Lffiffiffiffiffiffiffiffiffiffi
pDvt
p ¼ p�1=4 P

2Dv

ffiffiffiffiffiffiffi
Dvt
p

� �1=2

¼ p�1=4 sdDgb

2Dv

ffiffiffiffiffiffiffi
Dvt
p

� �1=2

ð10:29Þ

Thus, having measured the tracer distribution around the GB after GB diffusion
and having determined the angle w, we can determine the triple product P as

P ¼ sdDgb ¼ 2
ffiffiffiffiffi
pt
p

D3=2
v cot2 w ð10:30Þ

In the case of self-diffusion, the segregation effects are absent and s = 1. Then,
the triple product P is reduced to the double product P = dDgb. Thus, in a typical
GB diffusion experiment, it is not the GB diffusion coefficient Dgb itself, but the
triple product sdDgb or double product dDgb which can be determined accordingly.
The way of determination of s, d, and Dgb individually will be described below.

10.1.2 Exact Solutions of the Fisher Model

Exact solutions of the GB diffusion problem were derived by Whipple [5] and
Suzuoka [6] for constant and instantaneous source conditions and generalized by
Le Claire [7]. For further details, the reader is referred to the original papers or to
the textbook [4]. Here, we will present the final results.

First, the following dimensionless parameters are introduced

n ¼ x� d=2ffiffiffiffiffiffiffi
Dvt
p ð10:31Þ
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g ¼ yffiffiffiffiffiffiffi
Dvt
p ð10:32Þ

b ¼ D� 1ð Þa ¼ D� 1ð Þ sd

2
ffiffiffiffiffiffiffi
Dvt
p � sdDgb

2Dv

ffiffiffiffiffiffiffi
Dvt
p ð10:33Þ

Here, D is the ratio of the GB and bulk diffusion coefficients

D ¼ Dgb

Dv

ð10:34Þ

In the case of a constant source, the tracer distribution in the crystalline bulk is

cvðn; g; bÞ ¼ cI
v þ cII

v

¼ c0erfc gð Þ þ c0g
2
ffiffiffi
p
p
ZD
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exp �g2=4r½ 	
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� �1=2

nþ r� 1
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� �" #
dr

ð10:35Þ
In the case of an instantaneous source, when the amount M of tracer atoms has

been applied to the outer surface of the sample, the exact solution of the GB
diffusion problem appears as

cvðn; g; bÞ ¼ cI
v þ cII

v ¼
Mffiffiffiffiffiffiffiffiffiffi
pDvt
p exp � g2

4
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þ Mffiffiffiffiffiffiffiffiffiffi
pDvt
p

ZD

1

g2

4r
� 1

2

� �
exp �g2=4r½ 	
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ð10:36Þ
In the case of the radiotracer diffusion experiment, when the layer concentration

cðyÞ is determined, its distribution is governed by Eq. 10.20 with cI
v and cII

v

determined by either Eq. 10.35 or 10.36. In order to derive the corresponding
expressions, we again will consider only the GB diffusion-related term cII

v and
neglect the amount of tracer atoms within the GB; that is, a ffi 1 is assumed (these
conditions will be further classified by the B regime of GB diffusion; see below).
Then, the layer tracer concentration is determined by

(instantaneous source conditions)

cðg; bÞ ffi M

d
ffiffiffi
p
p
ZD

1

g2

r
� 2

� �
exp �g2=4r½ 	

r3=2

D� r
D� 1

� �1=2
exp �Y2ð Þffiffiffi

p
p � Yerfc Yð Þ

� �
dr

ð10:37aÞ
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and (constant-source conditions)

cðg; bÞ ffi 2c0g
ffiffiffiffiffiffiffi
Dvt
p

d
ffiffiffi
p
p
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1

g2
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p
p � Y erfc Yð Þ

� �
dr

ð10:37bÞ

Here,

Y ¼ r� 1
2b

D� 1
D� r

� �1=2

For the specified geometry, the grain size d has to be considered as the spacing
between opposite GBs or the size of sample if a bicrystal with a single GB is
considered.

Although Eq. 10.37a or 10.37b could be readily incorporated in a numerical
analysis for the fitting of the experimentally determined concentration profile, Le
Claire [7] has derived simplified expressions which are easy to handle, and they
are commonly used in GB data processing. In this case, the GB diffusion-related
tails of the penetration profiles are fitted by the following exponential function

cðyÞ ¼ c
 exp � y

K

ffi �6=5
� �

ð10:38Þ

Here, the effective reduced penetration depth K was found to be a function of
the GB diffusion parameters

K2 ¼ P

ffiffiffiffiffiffiffiffi
t

4Dv

r
qb�p ð10:39Þ

with q and p (generally small) being numerical constants. The specific values of
these constants depend on the value of b and the type of initial conditions. The full
set of specific constants in dependence on the value of b is given in the textbook
[4]. Here, we will list the most important expressions rewriting Eq. 10.39 for the
value of the triple (double) product P.

In the case of the instantaneous source, the diffusivity value P is determined by
(b[ 10)

P ¼ 1:322

ffiffiffiffiffiffi
Dv

t

r
� o ln c

oy6=5

� ��5=3

ð10:40Þ

and in the case of the constant source, the corresponding expression is (b[ 104)
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P ¼ 1:308

ffiffiffiffiffiffi
Dv

t

r
� o ln c

oy6=5

� ��5=3

ð10:41Þ

The main feature of GB diffusion is the linear dependence of the logarithm of
the tracer concentration on the depth to the power of 1.2 = 6/5. One has to keep in
mind that the power 6/5 is only a numerical approximation of the exact solution. A
general expression for the triple product P is given by the formula

P ¼ q
Dp

v

tr
� o ln c

oy6=5

� ��m

ð10:42Þ

Here, q, p, r, and m are numerical constants which depend on the type of initial
conditions and the value of the parameter b, as seen from Table 10.1.

These solutions are valid for the case when the GBs are perpendicular to the
outer surface of the sample. This situation is fulfilled in the case of diffusion in a
bicrystal.

In the case of GB diffusion in a polycrystalline material with the grain size d,
Levine and MacCallum have analyzed a situation [8] when the diffusion fluxes
from different grains do not overlap, but the GB diffusion length K is significantly
larger than the grain size

sd� d � K ð10:43Þ

Then, one has to take into account that the local positions of the GBs are
typically inclined with respect to the penetration depth y that modifies the tracer
distribution. In the case of instantaneous source conditions, the layer tracer con-
centration was shown [8] to follow Eq. 10.38 and the triple product of GB dif-
fusion can be determined by Eq. 10.42 with the following values

q ¼ 1:946; p ¼ r ¼ 0:5; m ¼ 5=3 if
ffiffiffiffiffiffiffi
Dvt
p

� 0:025d ð10:44Þ

and

q ¼ 1:889; p ¼ r ¼ 0:5; m ¼ 5=3 if
ffiffiffiffiffiffiffi
Dvt
p

¼ 0:079d ð10:45Þ

As a result, compared to the Le Claire approximation of the Whipple exact
solution (the first row in Table 10.1), one recognizes that the same slope of the
penetration profile in a polycrystalline material corresponds to the triple product
P increased by a factor 1.47 with that corresponding to the bicrystalline diffusion
experiment. Alternatively, we can deduce that the random orientation of GBs in a
polycrystalline material reduces the effective penetration depth and this has to be
taken into account in the analysis of the penetration profiles.
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10.1.3 Comparison of the Solutions of GB Diffusion Problem

How sensitive is the result of the processing of experimental profiles to the method
used? How large an error could be introduced via improper analysis? These
questions will be analyzed below.

Below, the results of the radiotracer experiments on the diffusion of a 110mAg
radioisotope in Cu bicrystals will be presented and different methods of analysis
are compared. The Cu bicrystal was grown from two single crystalline seeds
misoriented one with respect to the other by rotation around a common [001] axis
on 36.3�. Correspondingly, almost each fifth atom of one crystal occupies the same
positions which would correspond to the (imaginary) atomic positions of the other
crystal, if it would be extended to infinity. The resulting grain boundary is termed
as nearly R5(310)[001] where R5 is the inverse number of equivalent atomic
positions in both crystals, (310) is the GB plane, and [001] is the rotation axis. The
atomic positions near the corresponding grain boundary are shown in Fig. 10.2 as
they were obtained by atomistic simulation using molecular dynamics. Such a
structure indicates that the diffusion rates along the GB could be higher than those
in the crystalline bulk—first of all in view of a more open structure.

For the general description of GB structures, types, and properties, the reader is
referred to a number of well-known textbooks [9–12].

Diffusion of Ag along the [001] axis of the GB, the atomistic structure of which is
presented in Fig. 10.4, was measured using precise parallel sectioning, and the
obtained concentration profiles are plotted in Fig. 10.5. The triple product P was
determined using the Fisher approximate solution plotting the profile against the
depth y (Fig. 10.5a) and using Wipple (Fig. 10.5b) and Suzuoka (Fig. 10.5c) exact
solutions, i.e., by plotting the tracer concentrations against the depth to the 6/5 power.

Figure 10.5 demonstrates some important points about different methods of
profile processing. First, the usage of the sectioning method for measurements of
GB diffusion has a great advantage in that the exact type of initial conditions is not
really important—in this particular case, the difference between the application of
Wipple’s and Suzuoka’s solutions is marginal and below 1 %—far below the
typical experimental uncertainty, which amounts in total to about 10–15 % for a
high-quality GB diffusion experiment. The approximate Fisher solution underes-
timates the diffusivity—in this particular case, the triple product is determined to
be lower by about 50 % with respect to that which follows from the exact

Table 10.1 Values of the numerical parameters in Eq. 10.42 depending on the type of initial
conditions and the value of the GB diffusion parameter b

Type of initial
conditions

b q p r m

Instantaneous [10 1.322 0.5 0.5 5/3 = 1.667
10 \b\ 100 1.084 0.469 0.531 1.718

Constant 102 \b\ 104 1.206 0.492 0.508 1.681
b[ 104 1.308 0.5 0.5 5/3
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solutions. However, it can be shown that the ratio of the deduced triple (double)
products using approximate and exact solutions, PFisher/PWhipple, is almost constant
if b[ 10 [7]. Thus, if GB diffusion is measured at different temperatures and uses
the Fisher model for data analysis, we would underestimate the triple products at
each temperature, but almost a correct value of the activation enthalpy will be
determined for the temperature dependence of the deduced diffusivity.

It is hardly possible to prove the correctness of the exact solution with respect to
the approximate one by the shape of the experimental profile itself—good-quality
fits are obtained using both ln c versus y and ln c versus y6/5 dependencies, as
depicted in Fig. 10.5. However, if one can measure the GB diffusion-related part of
the penetration profile over three or even more decades in decrease of the tracer
concentration, it becomes clear that the tracer distribution does follow the ln c ver-
sus y6/5 dependence, given in Fig. 10.6. Such a textbook example has been measured
for Fe diffusion in a nanocrystalline c-FeNi alloy with the grain size of 100 nm [13].
This example demonstrates the advantage of the serial sectioning method in
determination of the GB diffusion parameters, if the penetration profiles were pro-
cessed to the depths that a significant (over several orders of magnitude) decrease of
the tracer concentration related to the GB diffusion contribution was followed.

10.2 Kinetic Regimes of GB Diffusion

In our derivation of the approximate and exact solutions of the GB diffusion
problem in Fisher’s formulation, several critical assumptions were used:

• The amount of tracer atoms within the GB itself was neglected; see for instance
Eqs. 10.23 and 10.25;

Fig. 10.4 Atomic positions
corresponding to
R5(310)[001] grain boundary
as obtained by molecular
dynamic simulation. Atoms
are color coded with respect
to the crystallographic
symmetry of the
neighborhood from blue
(perfect FCC lattice) to white
(random lattice)
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• The diffusion fluxes from different GBs were considered as independent and
not interfering with one another, as in Eq. 10.13, for instance; and

• Linear (Henry-type) segregation at the GB was assumed, as in Eq. 10.2a.

Below, we will formulate the strict conditions of the application of derived
formalism (i.e., approximate Fisher or exact Whipple and Suzuoka solutions) to
the GB diffusion problem and will discuss the situations when the basic
assumptions above cannot be used. First, we will follow the classification of Har-
rison [14] who introduced the kinetic regimes of GB diffusion in a polycrystalline
material with one type of short-circuit diffusion paths (i.e., the grain boundaries
featuring the same kinetic, thermodynamic, and structural parameters—the GB
diffusion coefficient, segregation factor, and GB width). Then, we will extend this
common classification to real materials in which several distinct short-circuit
diffusion paths may act simultaneously. The reader can easily imagine a poly-
crystalline material with a not negligible dislocation density in which diffusion can

Fig. 10.5 Penetration profiles (i.e., plots of relative specific activity vs. the penetration depth y)
for Ag diffusion in Cu near R5(310)[100] grain boundary when processed according to Fisher’s
approximate solution (a) and to the Whipple (b) and Suzuoka (c) exact solutions

444 10 Short-Circuit Diffusion



occur along the grain boundaries, dislocations, and in the crystalline bulk with
fundamentally different rates.

We are starting with a parallel slab model (i.e., Fisher’s model) in which three
basic kinetic regimes can be distinguished, the C, B, and A regimes, as shown in
Fig. 10.7.

Fig. 10.6 Diffusion of Fe in c-FeNi nanocrystalline alloy at 852 K and 751 K as analyzed using
approximate Fisher solution (open symbols, upper abscise axis) and exact Suzuoka solution (filled
symbols, bottom abscise axis). Perfect linearity of the profiles in the coordinates of ln c versus y6/5

and their systematic curvature in the coordinates of ln c versus y are clearly seen

δ d

(a) (b) (c)

Fig. 10.7 Schematic classification of GB diffusion regimes after Harrison [16]: the C (a), B (b),
and A (c) kinetics. The tracer distribution after a given diffusion anneal is sketched (gray regions).
The grain boundaries are considered as homogeneous slabs of width d and diffusivity Dgb. The
grain size d is indicated
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10.2.1 C Regime of GB Diffusion

At low temperatures (short times of diffusion annealing treatment), the bulk dif-
fusion length,

ffiffiffiffiffiffiffi
Dvt
p

, is small with respect to the effective GB width s�d and the
tracer atoms concentrate exclusively in the GBs (Fig. 10.7a).

Using the GB diffusion parameter a, given in Eq. 10.24—the Le Claire
parameter—the mathematical condition for this regime corresponds to the relation

a � sd

2
ffiffiffiffiffiffiffi
Dvt
p [ 1 ð10:46Þ

As an example, the penetration profiles measured for Ni GB diffusion in
polycrystalline Cu (grain size of 400 lm) are shown in Fig. 10.8a.

If the bulk diffusion flux can be neglected, tracer atoms localize within the GBs
and their distribution follows standard solutions for diffusion in homogeneous
media, which is characterized by the diffusion coefficient Dgb.

An instantaneous source solution

c ¼ dM

d
ffiffiffiffiffiffiffiffiffiffiffiffi
pDgbt

p exp � y2

4Dgbt

� �
ð10:47Þ

and a constant source solution

c ¼ dc0

d
erfc

y

2
ffiffiffiffiffiffiffiffiffi
Dgbt

p
 !

ð10:48Þ

Assuming the Gaussian-type solution for GB tracer diffusion, the corresponding
GB diffusion coefficient can be determined as

Dgb ¼
1
4t
� o ln c

oy2

� ��1

ð10:49Þ

Plotting the penetration profiles in the coordinates of the logarithm of con-
centration against depth squared, one recognizes that the corresponding tails of the
profiles do follow the Gaussian-type solution and the slopes of the fit lines allow
determination of the GB diffusion coefficients directly.

The main problem of the GB diffusion measurement in the C kinetic regime is
related to the extremely low signal which has to be detected from the tiny amount
of tracer atoms localized in (a few) grain boundaries of a polycrystalline solid—
note the factor d/d in Eqs. 10.47 and 10.48.

However, using high-end detectors and optimizing counting facilities, it is
possible to conduct reliable C-type GB diffusion measurements even for bicrystals
with a single grain boundary [15]. It is not possible to overestimate the
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fundamental importance of such measurements, since they would provide direct
information on the GB diffusion coefficient as a function of all crystallographic
parameters of the specific interface under investigation. As an example, the pen-
etration profiles for Ag diffusion in Cu R5(310)[001] bicrystal are presented in
Fig. 10.8b. The atomic structure of the R5(310)[001] grain boundary, shown in
Fig. 10.4, suggests an anisotropy of GB diffusion and, indeed, faster diffusion
along the tilt axis (perpendicular to the image plane) was measured comparing to
that perpendicular to the tilt axis (within the image plane in Fig. 10.4 along the
interface).

10.2.2 B Regime of GB Diffusion

With increasing temperature, the bulk diffusion length becomes much larger than
the GB width d (for self-diffusion) or the effective GB width sd (in the case of
solute diffusion) and diffusion out of the GB into the bulk cannot be neglected. If
the bulk diffusion fluxes from different GBs do not overlap (Fig. 10.7b), such

Fig. 10.8 Penetration profiles measured in the C-type kinetic regime for Ni diffusion in
polycrystalline Cu [44] (a) and for Ag diffusion in Cu R5(310)[001] bicrystals [15] (b). In b, the
profiles measured for Ni diffusion along (filled symbols) and perpendicular (open symbols) to the
[001] tilt axis are shown
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conditions correspond to the B kinetics. Formally, the following conditions have to
be fulfilled

a � sd

2
ffiffiffiffiffiffiffi
Dvt
p \0:1 ð10:50Þ

and

K
 � dffiffiffiffiffiffiffi
Dvt
p [ 3 ð10:51Þ

As it is seen from its definition, K* is the ratio of the grain size to the bulk
diffusion length.

This is the regime in which the above-derived expressions, Eqs. 10.25, 10.37a,
and 10.38, are valid. As the analysis has shown, the only parameter which can be
determined from such a GB diffusion experiment is the triple product P of the
segregation factor s, the GB width d, and the GB diffusivity Dgb, P = s�d�Dgb, as
presented in Eqs. 10.26 and 10.42.

Examples of the B-type penetration profiles are presented in Fig. 10.9 for Ni
diffusion in polycrystalline Cu (Fig. 10.9a) and for Ag diffusion in Cu
R5(310)[001] bicrystals (Fig. 10.9b).

The near-surface parts of the penetration profiles are caused by bulk diffusion
from the outer surface, the term c1

v in Eq. 10.20, and they are omitted from the
corresponding fit procedure. A good linearity of the GB diffusion-related parts of
the profiles in the coordinates of the logarithm of the concentration against the
depth to the power 6/5 is clearly to be seen.

10.2.3 A Regime of GB Diffusion

At even higher temperatures (very long diffusion times), the bulk diffusion fluxes
from different GBs overlap, as in Fig. 10.7c, and diffusion proceeds in an effec-
tively homogeneous medium. In the parallel slab model of a polycrystal, the
diffusion rate is characterized by an effective diffusion coefficient, Deff [16]

Deff ¼ gDgb þ ð1� gÞDv ð10:52Þ

Here, g is the time spent by the diffused atoms within a GB,

g ¼ sf

1� f þ sf
ð10:53Þ

with f being the fraction of GBs in the polycrystal [4].
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In the case of a fine-grained polycrystalline material, the Maxwell–Garnet-type
relation [17, 18]

Deff ¼ Dv

2ð1� f ÞDv þ ð1þ 2f ÞDgb

ð2þ f ÞDv þ ð1� f ÞDgb

ð10:54Þ

can be more appropriate. Note that Eq. 10.54 is written for the case of self-
diffusion, s = 1.

Thus, the following solutions are applicable

c ¼ dM

d
ffiffiffiffiffiffiffiffiffiffiffiffi
pDeff t
p exp � y2

4Deff t

� �
ð10:55Þ

in the case of instantaneous source and

c ¼ dc0

d
erfc

y

2
ffiffiffiffiffiffiffiffiffiffi
Deff t
p

� �
ð10:56Þ

in the case of a constant source.

Fig. 10.9 Penetration profiles measured in the B-type kinetic regime a for Ni diffusion in
polycrystalline Cu and b for Ag diffusion in Cu R5(310)[001] bicrystals. In b, the profiles
measured for Ni diffusion along (filled symbols) and perpendicular (open symbols) to the [001] tilt
axis are shown

10.2 Kinetic Regimes of GB Diffusion 449



An example of penetration profile measured in the A-type kinetic regime will
be presented below.

Table 10.2 gives a general overview of the GB diffusion regimes with relevant
parameters and the quantities which can be measured in the case of self-diffusion
(s = 1).

In Table 10.2, two transition regimes B–C and A–B are listed, and they will be
discussed shortly below.

10.2.4 BC Transition Regime of GB Diffusion

Often, GB diffusion measurements in a coarse-grained material cannot be per-
formed under strict C or B kinetic regime conditions and they fall into transition
kinetics from the C to B regime. This is especially true for solute diffusion when
the exact value of the segregation factor is not known a priori. An example of a
penetration profile measured in the transition BC regime for Ni diffusion in Cu is
presented in Fig. 10.10a.

Self-consistent determination of the segregation factor s for Ni in Cu allowed
unambiguous analysis of the profile which was measured for the value of
a = 0.66. According to Table 10.2, this value corresponds to the transition BC
regime. Figure 10.10a suggests that such a profile reveals a systematic deviation
from the anticipated behavior when analyzed according to both B and C kinetic
conditions.

In Fig. 10.10b, the determined GB diffusion coefficients Dgb are plotted as a
function of inverse temperature and a very important feature of data processing is
immediately seen. The filled symbols in Fig. 10.10b represent the data points
measured in the true C-type conditions and determined applying Eq. 10.49, while
the open square corresponds to the profile represented in Fig. 10.10a and analyzed
as hypothetically measured in the C regime. Such improper processing of the GB
diffusion profiles results in an underestimation of the true diffusion coefficient, in
the particular case, by a factor of three.

In order to prove the diffusion regime, the diffusion experiment at 635 K was
repeated with a significantly shorter diffusion time, by a factor of 20. A simple
inspection of Eq. 10.46 indicates immediately that the values of a will be larger

Table 10.2 Limits of GB diffusion kinetic regimes, shape of the concentration profiles, and the
values which can be determined in the parallel slab model

Regime C Transition
BC

B Transition AB A

GB diffusion
parameters

a[ 1 0.1 \ a\ 1 a\ 0.1 a\ 0.1 a\ 0.1
– – b[ 10 b[ 2
– – K* [ 3 0.4 \K* \ 3 K* \ 0.4

Profile shape c
 exp �qy2ð Þ – c
 exp �qy6=5
� 


c
 exp �qy3=2
� 


c
 exp �qy2ð Þ
Dgb Dgb and P P Dgb Deff
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and the C-type kinetic regime will be promoted with a = 13. Indeed, the newly
determined diffusion coefficient fits perfectly the Arrhenius line, denoted by the
filled symbols in Fig. 10.10b.

Still, there is a possibility to process the penetration profiles measured in the
transition regime introducing correction factors for the determined diffusion
coefficient Dgb (analysis according to the C kinetics) or the triple product P (B
kinetics). As a most appropriate method, one can use a modification of the approach
of Szabo with co-workers [19]. The following flowchart is proposed in such cases:

1. The penetration profiles are first replotted as a function of the reduced depth
aw4/5, where w is determined by

w ¼ yffiffiffi
P
p 4Dv

t

� �1=4

¼ yffiffiffiffiffiffiffiffiffiffiffiffi
sdDgb

p 4Dv

t

� �1=4

ð10:57Þ

and a is given by Eq. 10.24. The determination of a and w requires
knowledge of s, d, and Dgb. The self-consistent approach for determination
of these parameters will be described below in more detail. Here, in order
to have a first approximation of w, the profile is recommended to be
analyzed as measured in the B regime, if a\ 0.5, and as measured in the C
regime at a[ 0.5. In this case, the values of P or Dgb will be determined
from the corresponding profile slope and the reduced depths w and
accordingly the product aw4/5 will be estimated.

Fig. 10.10 An example of a penetration profile measured at T = 635 K for Ni diffusion in
polycrystalline Cu and plotted according to the a B regime (bottom abscise axis) or C regime
(upper abscise axis) of GB diffusion and b the Arrhenius plot for the determined Dgb values
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2. Using the graphical dependencies plotted in [19], the correction factor for the
deduced diffusion coefficient can be determined. Pure numerical fitting reveals
that the following functions reproduce the correction factors calculated in [19]
to an accuracy better than 1 % in the interval of interest of 0.01 B aw4/5 B 30

G1 �
Pð Þexp

Pð Þtheor
¼ 9þ 16Qð Þ � 3

2
þ exp 1:504� 1:840Sð Þ

1þ exp �ðS� 0:873ð Þ=0:226Þ ð10:58Þ

where

Q ¼ 1� exp �0:700þ 0:967Sð Þ
1þ exp ðS� 0:873Þ=0:226ð Þ

and

S ¼ ln aw4=5
ffi �

3. Having determined the correction factor for the apparent triple product G1, one
can use the relation

G2 ¼ 1� G1ð Þ 1þ G1=4ð Þ ð10:59Þ

in order to determine the corresponding correction factor for the apparent
GB diffusion coefficient, G2, which is defined as

G2 �
Dgb

� 
exp

Dgb

� 
theor
ð10:60Þ

In these expressions, (P)exp and (Dgb)exp stand for the apparent diffusion
parameters which would be determined from the penetration profiles analyzing
them according to the B or C kinetic regime, respectively. The quantities
(P)theor and (Dgb)theor denote the corresponding theoretical values. The
dependencies G1(aw4/5) and G2(aw4/5) are represented in Fig. 10.11.

4. Then, new corrected values of P will be obtained, which allows us to give a
next estimate of both, the segregation factor and the GB diffusivity, and the
evaluations have to be repeated from the step #1 till convergence is reached.
Typically, only several iterations are necessary.

10.2.5 AB Transition Regime of GB Diffusion

If GB diffusion is measured in a nanocrystalline or ultrafine-grained material with
a small and stable grain size (even at moderately high temperatures), the bulk
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diffusion length may become comparable to the grain size and the parameter K*,
taken from Eq. 10.51, would be about unity. In such a case, the penetration profiles
neither follow a Gaussian solution, ln c
 y2 (the A kinetics), nor a Suzuoka’s
solution, ln c
 y6=5 (the B kinetics). In Fig. 10.12, a set of model penetration
profiles are presented which are calculated with the following set of parameters:
Dv = 10-14 m2/s, t = 100 s, Dgb = 10-9 m2/s, d = 10-8 m, a = 0.005, and
b = 500 for grain size d = 10-7 m, 10-6 m, and 10-5 m, thus by varying the
parameter K* from 10 to 1 and finally to 0.1, respectively.

Fig. 10.11 Dependencies of the corrections factors G1 and G2 on the reduced depth aw4/5 as
determined by approximate Eqs. 10.58 and 10.59

Fig. 10.12 Simulated penetration profiles at Dv = 10-14 m2/s, t = 100 s, Dgb = 10-9 m2/s,
d = 10-8 m, a = 0.005, and b = 500 for grain size d = 10-7 m, 10-6 m, and 10-5 m. The
profiles are represented according to the A (a), AB (b), and B (c) kinetic regime conditions. The
value of the parameter K* is indicated. The parameter k is a scaling factor
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Figure 10.12 suggests clearly (compare with Table 10.2) that if a\ 0.1 and
b[ 10, the conditions of the B kinetics are fulfilled at K* = 0.1 and those of the A
kinetics hold at K* = 10 and the profiles are strictly linear when plotted against y6/5

in the former case and against y2 in the latter. However, if K* = 1, unusual curvature
of the profiles for both presentations is obvious, as seen from Fig. 10.12a, c.

This case of K* & 1 has to be analyzed further. In the derivation, we will limit
ourselves to the case of self-diffusion (s = 1).

Let us consider a general polyhedral polycrystalline body with an averaged
grain size hdi and effective GB thickness d. Since d may be comparable with d (as
in the case of nanocrystals), we will introduce a parameter l, l % hdi + d, as
shown in Fig. 10.13. This will allow us to use common geometric theorems for a
polycrystalline body with an arbitrary grain size 0 B d B ?. Then, the volume
fraction e of the GB material will be determined by e = 2d/l % 2/(1 + \ d [/d).

Let cgb be the concentration of the diffusant in the grain boundary materials.
Considering a one-dimensional problem and assuming that cgb = cgb(y, t) depends
only on the depth y and time t, the master equation for the GB diffusion in a
polycrystalline body will be

e
ocgbðy; tÞ

ot
¼ 2e 1þ e=2ð Þ

3
Dgb

o2cgbðy; tÞ
o2y

� rF ð10:61Þ

The following boundary conditions are valid for a constant source

cgb 0; tð Þ ¼ 1; cgbð1; tÞ ¼ 0; cgb y; 0ð Þ ¼ 0; y [ 0 ð10:61aÞ

Fig. 10.13 Definition of
geometric parameters for a
nanocrystalline material. An
arbitrary section through the
body perpendicular to the
diffusion direction is shown
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and for an instantaneous source

cgbð1; tÞ ¼ 0; cgb y; 0ð Þ ¼ Md yð Þ; ocgb

oy y¼0

����� ¼
MdðtÞ
Dgb

ð10:61bÞ

Here, r is the total GB surface area per unit volume, which may be estimated as
r = 2e(1 - e)2, F is the effective flux of the tracer atoms into the grain volume
from GBs, M is the amount of the tracer material for the instantaneous source, and
d(y) is the standard delta function.

The flux F = F(y, t) into the grain interior is

Fðy; tÞ ¼
Z t

0

ocgbðy; sÞ
os

Gðt � sÞds ð10:62Þ

where G(t) is the flux into an averaged grain with the diffusivity Dv at zero initial
diffusant concentration on its boundaries. The true form of G depends on the grain
shapes. It is possible to derive their analytical formula for simple geometric forms.
However, only approximate expressions can be obtained in a general case. Having
introduced the reduced time s = (4Dv/d2)t, an empirical function may be used,

GðtÞ ¼ GðsÞ ¼ 2Dv

d
ffiffiffiffiffi
ps
p exp �e2s

� �
ð10:63Þ

Let us introduce also a reduced penetration depth

g ¼ 1
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Dv

Dgb 1þe=2ð Þ

qh i
y ¼ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

D 1þe=2ð Þ

qh i
y. Here, D = Dgb/Dv. Then, Eq. 10.61 can be

rewritten as

ocgb

os
¼ o2cgb

o2g
� d 1� eð Þ2

2Dv

Gðg; sÞ ð10:64Þ

The total concentration of the diffusant c averaged over a section of the
polycrystalline body will be

cðg; sÞ ¼ ecgbðg; sÞ þ r
Zs

0

cvðg; mÞGðs� mÞdm ð10:65Þ

where cv is the concentration inside the grains. It is convenient to use the Laplace
transformation to solve Eqs. 10.61–10.64. By applying the Laplace transformation
to Eq. 10.64, the general solution may be presented as (boundary conditions for a
constant source being taken into account)
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cðg; sÞ ¼ e
2pi

Z10þi1

10�i1

~Cðg; s; pÞdp

¼ e
2pi

Z10þi1

10�i1

eps � 1ð Þ 1
p

1þ ð1� eÞ2ffiffiffiffiffiffiffiffiffiffiffiffi
pþ e2

p
" #

exp �g p 1þ ð1� eÞ2ffiffiffiffiffiffiffiffiffiffiffiffi
pþ e2

p
 !" #1=2

8<
:

9=
;dp

ð10:66Þ

where the path of integration is to the right side of all singularities of the integrand
~C. Since the initial concentration is zero, the term eps may be replaced by (eps - 1).
We have two singularity points in the complex plane, p = 0 and -e2 (see
Fig. 10.14). Since the integrand has no singularities inside the region R, the integral
along the contour L must be zero. The integrals on CR and Cq0 approach zero at

R ? ? and q0 ? 0, respectively, and e
2pi

R
Cq

~Cdp! eþ ð1� eÞ2 at q ? 0. This

finite value is self-extracted in the final form of the integral in Eq. 10.66. Thus, the
complex integral along the line f0 ± i? can be transformed to a sum of the
integrals along four line segments (Fig. 10.13)

cðg; sÞ ¼ e
p

Ze2

0

1� e�1sð ÞU
1

sin g
ffiffiffiffiffiffi
1U

pffi �
d1

þ e
p

Z1

e2

1� e�1sð Þ
exp �g

ffiffiffi
1
p

A sin u
2

� �
1

ð1� eÞ2ffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p cos Bþ sin B

" #
d1

ð10:67Þ

Here, U ¼ 1þ ð1�eÞ2ffiffiffiffiffiffiffiffi
e2�g
p ; A ¼ 1þ ð1�eÞ4

g�e2

h i1=4
; B ¼ g

ffiffiffi
1
p

A cos u
2; cosu ¼ 1þ ð1�eÞ4

g�e2

h i�1
:

This form of solution allows performing a transition to e ? 1 (d ? 0) limit,
and the general solution for GB diffusion in a pure grain boundary material from a
constant source will be obtained

Cðg; sÞ ¼ 1� 1
p

Z1

0

e�1s sin g
ffiffiffi
1
p� 


1
d1 ð10:68Þ

In an opposite case, a Fisher-like solution will be derived. Indeed, let us make a
transition to e ? 0 limit in Eq. 10.67. The first term in Eq. 10.67 gives therewith a
contribution with the magnitude of only about e2 and can be neglected. Thus, it

remains to evaluate the last term. Since A�!
e!0

gþ1
g

ffi �1
4
, we may write
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c ¼ e
p

Z1

0

1� e�1sð Þ
exp �g 1

4ð1þ1Þ

ffi �1=4
	 


1

� sin g
1ð1þ 21Þ2

4ð1þ gÞ

 !1=4
0
@

1
Aþ 1ffiffiffi

g
p cos g

1ð1þ 21Þ2

4ð1þ gÞ

 !1=4
0
@

1
A

2
4

3
5d1

ð10:69Þ

Let us evaluate the coefficient c ¼ �d ln C
dg

���
g¼0
¼ � 1

C
1
d

6
D

� 
1=2dC
dy

���
y¼0

representing

the slope of the relevant curve. After simple algebraic transformations, one may
find that at e! 0 C y ¼ 0ð Þ ¼ 2e

ffiffi
s
p

p
and

dC

dg

���� g¼0
e!0

¼ e

p
ffiffiffi
2
p
Z1

0

1� e�1s

15=4 1þ 1ð Þ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 212

p
� 1

h i
d1 ffi 2

ffiffiffi
6
p

p1=4

ffiffiffiffiffiffiffiffiffiffi
Dv

dDgb

s
1

pDvtð Þ1=4

Z1

0

ffiffiffi
m
p

exp �m2
� 


dm

ð10:70Þ

The estimate of the integral in Eq. 10.70 suggests the slope c in the present
solution differs and distinguishes from Fisher’s result only by a factor of 1.59. About
the same factor (*1.57) was derived by Levine and McCallum for GB diffusion in a
polycrystalline material [8]. The numerical analysis shows that the concentration

distribution is characterized by the product g � s�1=4 ¼ g0 � b�1=2 3
2þe

ffi �1=2
where

g0 ¼ y=
ffiffiffiffiffiffiffi
Dvt
p

and b are conventional dimensionless parameters. Thus, Eq. 10.67
allows us to examine the GB diffusivity in the whole range of grain sizes.

In a similar way, one can derive the solution for the instantaneous source,

Fig. 10.14 Singularity
points and the integration
contour L in calculation of the
integral Eq. 10.66
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cðg; sÞ ffi
Ze2

0

e�1s U3=2ffiffiffi
1
p cos g

ffiffiffiffiffiffi
1U

pffi �
d1

�
Z1

e2

e�1s
A exp �g

ffiffiffi
1
p

A sin /
2

ffi �
ffiffiffi
1
p sin

/
2
þ 1� eð Þ2ffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p cos

/
2

 !
sin Bþ 1� eð Þ2ffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p sin

/
2
� cos

/
2

 !
cos B

" #
d1

ð10:71Þ

Substituting e = 1, it is possible to obtain the standard Gaussian solution for
diffusion in a homogeneous media from an instantaneous source,

cðg; sÞ ¼ Mffiffiffiffiffiffiffiffiffiffiffiffi
pDgbt

p exp � g2

4Dgbt

� �
ð10:72Þ

Equations 10.67 and 10.69 cannot be further simplified and require a numerical
evaluation. A detailed analysis in terms of stretched exponential functions such as
ln c
 ym demonstrates that in the case of small values of e2s
 4Dvt

l2 and s
 4Dvt
d2

(that corresponds to the C type of diffusion kinetics), the power m = 2. In the case
of the B regime (large values of s and small values of e2s), m = 6/5. The diffusion
behavior in the transition regime (large values of s and e2s & 1) is the most
interesting and unusual power dependence with m = 3/2 being observed. In
Fig. 10.12b, the simulated penetration profiles are plotted as a function of y3/2.
Almost perfect linearity of the profile with K* = 4(e2s)-1 = 1 is clearly to be
seen.

We have shown that the tracer distribution in the case of the C regime of GB
diffusion allows determination of the value of Dgb, while the double product dDgb

(or the triple product sdDgb for solute diffusion) is determined in the case of the B
kinetic regime. Effective penetration in the B regime is described by the reduced
depth w = g � s-1/4. On the other hand, the effective penetration in the transition
AB regime is determined by the value

w
 ¼ gs�0:45 ¼ 1
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Dv

Dgb 1þ e=2ð Þ

s
4Dv

d2

� ��0:45
" #

yt�0:45 ð10:73Þ

This quantity is related to the standard reduced depth w via the following

expression: w
 ¼ w � s�0:2 3
2þe

ffi �1=2
¼ w D

b

ffi ��0:1
3

2þe

ffi �1=2
. The corresponding slopes,

S ¼ �d ln c=dw3=2, are a weak function of e2s and S % 1.128 at e2s % 1. This fact
suggests the following expression for the determination of the GB diffusion
coefficient in this regime

Dgb ffi
5
4

4Dvt

d2

� �0:091
t

S

S0exp

 !1:33

¼ 5
4

s0:09

t

S

S0exp

 !1:33

ð10:74Þ
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Here, S0exp ¼ �d ln c=dy3=2 is to be determined by fitting of the experimental
profile. Inserting the numerical factors, this expression is written as

Dgb ¼
16:65

1þ d=d

D0:1
v

d0:2t0:9
� o ln c

oy3=2

� ��4=3

ð10:75Þ

The value of the GB width d enters explicitly Eq. 10.75 and has to be deter-
mined separately. However, the final result only slightly depends on the value of d
due to the power of 0.2.

Experimentally measured profiles belonging to the transition AB kinetic regime
are shown in Fig. 10.15. They represent the case of Fe diffusion in a nanocrys-
talline (grain size of 100 nm) c-FeNi alloy [13]. It is seen that the linearity of the
profiles in the given coordinates is followed over three orders of magnitude in
decrease of the tracer concentration!

10.3 Determination of the Segregation Factor s

The majority of GB diffusion experiments are performed under the B kinetic
regime. The defined effective activation enthalpy of GB diffusion in this case

Fig. 10.15 Examples of
penetration profiles measured
in the AB transition regime
for Fe diffusion in
nanocrystalline c-FeNi
alloy [13]
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P ¼ P0 exp �Qgb

RT

� �
ð10:76Þ

contains the real enthalpy of GB diffusion DHgb and the enthalpy of segregation
Hseg \ 0

Qgb ¼ DHgb þ Hseg ð10:77Þ

Theoretically, the GB width can depend on temperature and contribute to
Eq. 10.77. However, the available data are consistent with the approximation
d = const, which is to be seen below. The analysis of Table 10.2 suggests a way
for separate determination of GB diffusion parameters in systematic measurements
on the same polycrystalline material. A combination of the B- and C-type
experiments is crucial, since the GB diffusion coefficient Dgb is measured in the C
kinetics (typically at lower temperatures), while the triple product P, P = sdDgb, is
determined at higher temperatures in the B kinetics for solute diffusion. These data
can be combined, and the product sd will be estimated

sd ¼ Pð ÞB�kinetics

Dgb

� 
C�kinetics
¼

sdDgb

� 
B�kinetics

Dgb

� 
C�kinetics
ð10:78Þ

This approach is outlined in Fig. 10.16 for selected solutes.
Figure 10.16 suggests that the values of the triple product P, being extrapolated

to lower temperatures of the C-type measurements, are systematically smaller than
the corresponding diffusion coefficients Dgb and the difference reaches orders of
magnitude. This difference is exactly the product sd.

A comment is due here. The subdivision of the measured data in B and C
kinetics is strongly based on the values of the segregation factor s which is typ-
ically unknown in advance. Moreover, the value of d has also to be known. A
special procedure is suggested to analyze the GB diffusion data in a self-consistent
and reliable way.

The value of the GB diffusional width d can be determined similarly to
Eq. 10.78 if one performs a similar series of self-diffusion measurements in both B
and C kinetics. Then, the corresponding segregation factor is simply unity and

d ¼ Pð ÞB�kinetics

Dgb

� 
C�kinetics
¼

dDgb

� 
B�kinetics

Dgb

� 
C�kinetics
ð10:79Þ

As an example, the GB diffusion data on high-purity polycrystalline Ni mea-
sured both in the B and C kinetic regimes are presented in Fig. 10.17.

Figure 10.17 suggests that there is a huge gap between the directly measured
values of Dgb and the extrapolated high-temperature data for P = dDgb. This is
exactly the (diffusional) GB width d. Table 10.3 lists the values reported so far
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Fig. 10.16 Compilation of
results on Ag [19], Ge [45],
Ni [44], and Bi [46] GB
diffusion in 5N8 high-purity
Cu measured in both, the
B-type (solid symbols) and
C-type (open symbols)
kinetics. The determination
of the product sd for Ni is
sketched. The grain boundary
self-diffusion of Cu [47] is
plotted by thick dashed (the
B kinetics) and solid
(the C kinetics) lines

Fig. 10.17 Compilation of
GB self-diffusion
measurements in Ni in both,
B (squares) and C (circles)
kinetic regimes [30]. Open
symbols represent the data
determined in the transition
BC regime. The way of
determination of the GB
width d is sketched
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based on the GB self-diffusion measurements. As one can see, d = 0.5 nm is a
very good estimate for the GB width for the GB diffusion of matrix atoms.

The knowledge of the GB width d allows a consistent analysis of solute GB
diffusion and determination of the segregation properties. The flowchart of such
analysis is as follows:

1. One starts assuming d = 0.5 nm and uses a reasonable estimate of the segre-
gation factor s. According to the empirical relation of Hondros and Seah [20],
the segregation factor s is inversely proportional to the bulk solubility of the
solute cv0

s ¼ kH

cv0

ð10:80Þ

where the Hondros’ constant is within the range kH = 1 to 10 [20]. This
estimate can be recommended as a good initial guess. Otherwise, one may
use s = 1.

2. Knowing the product sd enables us to analyze all profiles according to the
given GB diffusion kinetics, as given in Table 10.2.

3. Having determined the triple products P, one should approximate them by an
Arrhenius temperature dependence, P ¼ P0 expð�Qgb=RTÞ. Extrapolating then
the P values to lower temperatures of the Dgb measurements, the product sd
will be determined.

4. Again, fitting the sd data by an Arrhenius line, sd ¼ s0d expð�DHs=RTÞ, the
values of sd can be determined for all temperatures in question. This gives new
estimates of the GB diffusion parameters, (a and b) and one should repeat the
loop starting from step #2.

Typically, after several iterations, a convergence is reached.

Table 10.3 Compilation of published results on the diffusional GB width d

Material Tracer d (nm) Reference

NiO 63Ni 0.7 [48]
Ag 110mAg 0.43 ± 0.27b [42]
Ag 110mAg 0.5a [49]
c-FeNi 59Fe 0.5a [13, 22]
c-FeNi 63Ni 0.55 ± 0.43 [50]
a-Fe 59Fe 0.5a [51]
Ni (99.999 wt%) 63Ni 0.54 ± 0.1 [30]
Ni (99.99 wt%) 63Ni 0.6 ± 0.2 [31]
a-Ti 44Ti, 57Co 0.5a [52]

a The assumption d = 0.5 nm allowed to treat the results consistently
b Our estimate of the GB width from the data given by Sommer and Herzig [42]. The authors
stated originally that assuming d = 0.5 nm, the B and C kinetic data will produce consistent
results
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As an example of systematic measurements of GB diffusion in the same, high-
purity polycrystalline Cu, the data on different solutes are collected in Table 10.4
and shown in Fig. 10.18.

The described approach is based on the following main approximations:

• Constant and isotropic GB width d is assumed;
• Arrhenius-type dependencies are assumed to hold for both Dgb and P, i.e.,

Db ¼ Dgb0 expð�DHgb=RTÞ and P ¼ P0 expð�Qgb=RTÞ, respectively;
• Linear segregation of the solute (the Henry isotherm) is supposed; that is, the

segregation coefficient is not changed along the boundary, s = const for the
given temperature T;

• The limits of the GB diffusion regimes are strictly defined.

Table 10.4 Compilation of available GB diffusion and segregation data on different solutes in
the same high-purity (99.9998 wt.%) Cu

Tracer P0 (m3/s) Qgb

(kJ/mol)
Dgb0 (m2/s) DHgb

(kJ/mol)
s0d (m) -Hs

(kJ/mol)
s0 Refs.

Cu 3.9 9 10-16 72.5 7.8 9 10-7 72.5 – – – [47]
Ag 1.4 9 10-15 69.1 1.7 9 10-4 108.6 8.0 9 10-12 39.5 0.016 [19]
Ge 4.0 9 10-16 58.6 2.8 9 10-6 84.8 1.45 9 10-10 26.2 0.29 [45]
Bi 6.6 9 10-12 102.8 2.4 9 10-1 156.2 2.7 9 10-11 53.4 0.054 [46]
Ni 1.9 9 10-16 73.8 6.9 9 10-7 90.4 3.0 9 10-10 16.6 0.60 [44]

Fig. 10.18 Solute
segregation in high-purity
copper as determined by GB
diffusion measurement. The
Arrhenius parameters are
listed in Table 10.4
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The next (very important) approximation is that the GB widths for self-diffusion
dsd and that for solute diffusion dsolute are equal: dsd = dsolute. Generally speaking,
this may not be the case. One may imagine that dsolute [ dsd (even dsolute � dsd)
and Dsolute

gb which enters the triple product P will correspond to an effective value.
In such a case, the application of Eq. 10.78 would be incorrect.

There are, however, strong arguments that this is not the case, at least for such
solutes as Ag and Bi in Cu in the case of true dilute solution. The segregation
enthalpies derived from the application of Eq. 10.78 agree well with the inde-
pendently measured data produced by Auger spectroscopy.

Several features can be highlighted:

• Fast (slow) diffusants in a bulk tend to remain identical in GB;
• Strong GB segregation tends to reduce the GB diffusivity; the stronger a

segregation, the greater the retardation effect.

10.4 Nonlinear GB Segregation and GB Diffusion

The described theory of GB diffusion, contained in Eqs. 10.1–10.43, predicts linear
penetration profiles in the coordinates of the logarithm of concentration against
depth to the 6/5 power if GB diffusion occurs in the B kinetic regime. The solutions
are derived considering (1) the constant and isotropic GB width d, (2) the constant
and isotropic GB diffusion coefficient Dgb � Dv, and (3) the constant value of the
segregation factor s, given in Eq. 10.2. However, segregation could strongly
depend on the solute concentration in the bulk that is known as nonlinear segre-
gation [21]. In such cases, nonlinear (strongly curved) penetration profiles are
expected for GB solute diffusion [4]. An example is given in Fig. 10.19a, while a
perfect B-type penetration profile is measured for Ag diffusion in Cu bicrystal if a
low amount of tracer material is used (0.3 kBq of radioactive 110mAg is initially
deposited); strongly and characteristically curved penetration profiles are obvious if
the tracer concentration is significantly increased (12 or even 120 kBq of 110mAg).
The above analysis clearly demonstrates that this is not the type of boundary
conditions—instantaneous versus constant source—that could introduce such a
curvature of the profiles.

Using the penetration profiles presented in Fig. 10.19a, it is possible to deter-
mine the pertinent segregation isotherm, i.e., cgb as a function of cv, cgb(cv). The
key moment is that using radiotracer material with a known specific activity and
by applying the Fisher solution, it is possible to determine the absolute bulk solute
concentration just near the GB cv0 (in mole fractions) as a function of the pene-
tration depth y. According to the Fisher solution for the B regime, the layer
concentration of the tracer cðyÞ at the given depth y is fully determined by out-
diffusion from the GB considered as a constant source with the concentration cv0,

and is described by Eq. 10.13. Integrating over x, we derive
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cv0ðyÞ ¼
d

4
p

Dvt

� �
cðyÞ ð10:81Þ

In this case, d is the diameter of the bicrystals used in the experiments presented
in Fig. 10.19a.

At large depths (low tracer concentrations), a linear (Henry) segregation iso-
therm is valid and cgb(y) can be determined using the value of the corresponding
segregation factor sH, which was found in an independent series of B- and C-type
GB diffusion measurements, as shown in Table 10.4.

Let us introduce y0 as the critic depth below which the Henry segregation is
valid. Then, regrouping the term in Eq. 10.25, we have at y [ y0

d

4
p

Dvt

� �
cðyÞ � cv0ðyÞ ¼ c0 exp � y

L

ffi �
¼ c0 exp � y

L

ffiffiffiffiffi
sH
p

� �
ð10:82Þ

and

cgbðyÞ ¼ sHcv0 ¼ sHc0 exp � y

L

ffiffiffiffiffi
sH
p

� �
ð10:83Þ

Here, the reduced penetration depth L, seen from Eq. 10.17, is written as L ¼

L

ffiffiffiffiffi
sH
p

where L* is now L
 ¼
ffiffiffiffiffiffiffiffiffiffi
dDgb

p
pt

4Dv

ffi �1=4

Generally, at arbitrary depth, the bulk and GB concentrations may be decom-
posed as

Fig. 10.19 Penetration profiles measured for Ag diffusion in Cu R5 bicrystal at a different
amounts of the tracer material applied and b the determined segregation isotherms
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cv0ðyÞ ¼ DvðyÞ þ c0 exp � y

L

ffiffiffiffiffi
sH
p

� �
ð10:84Þ

and

cgbðyÞ ¼ DgbðyÞ þ sHc0 exp � y

L

ffiffiffiffiffi
sH
p

� �
ð10:85Þ

The terms Dv(y) and Dgb(y) represent the deviations of the measured tracer
concentrations at the depth y from the Fisher solution of the GB diffusion problem
in the presence of only linear segregation with s = sH. The total tracer distribution
obeys the standard equation of GB diffusion, Eq. 10.15, which can be presented as

o2cgb

oy2
¼ L�2cv0 ð10:86Þ

with the boundary condition cv0 ? 0 and cgb ? 0 as y ? ?. Combining
Eqs. 10.84–10.86, the following relation is obtained

o2Dgb

oy2
¼ L�2Dv ð10:87Þ

with a more appropriate boundary condition Dv = Dgb = 0 as y C y0. This is a
simple second-order differential equation which can be solved by double inte-
gration. As a result, the GB solute concentration will be found as a function of the
penetration depth y

cgbðyÞ ¼ sHc0 exp � y

L

ffiffiffiffiffi
sH
p

� �
þ L�2

Zy

y0

ds
Zs

y0

DvðuÞdu ð10:88Þ

Since cv0 is measured as a function of the penetration depth y, as given in
Eq. 10.81, the relation given in Eq. 10.88 implicitly determines the segregation
isotherm cgb(cv0).

This method is applied to the two curved penetration profiles measured for GB
diffusion of Ag in Cu bicrystal, as shown in Fig. 10.19a. The results, i.e., cgb as
function of cv0, are presented in Fig. 10.19b. The resulting segregation isotherms
derived from the two independent GB diffusion experiments are consistent. One
realizes that using very sensitive radiotracer GB diffusion measurements with a
suitable tracer on bicrystals, it is possible to reliably determine the segregation
isotherm already starting from very small GB concentrations. Regarding this
feature, the presented radiotracer method is superior to other experimental tech-
niques so far applied for treating the segregation phenomena.
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10.5 Microstructures with Hierarchy of Short-Circuit
Diffusion Paths

Microstructure in technologically relevant materials is far more complicated as it
is captured by a simple bicrystal-like model, as depicted in Fig. 10.3. Often, a
hierarchic microstructure is revealed in a material as, for example, was the case of
a sintered nanocrystalline c-FeNi alloy [13, 22]—the nanocrystalline grains (with
the grain size of d * 100 nm) turned out to be clustered in agglomerates with an
average size da of 30–50 lm. This microstructure is shown in Fig. 10.20 and is
sketched in Fig. 10.21a. In Fig. 10.20, the results of optical and atomic force
microscopy (AFM) techniques are combined since they examine the microstruc-
ture on different scales. Individual nanograins are perfectly resolved by the AFM
technique, whereas micrometer-large agglomerates are clearly seen by optical
microscopy after suitable surface preparation (polishing and etching).

Thus, at least two different types of internal interfaces existed in such material—
the interfaces between the nanograins and the interfaces between agglomerates (or
clusters) of these grains. These interfaces are deliberately drawn as thin and thick
boundaries in Fig. 10.21a since very different diffusion properties may be expected
(as is the case).

On the other hand, the hierarchy of short-circuit diffusion paths in a typical
polycrystalline material can be represented by the following contributions
(grouped according to the corresponding diffusion rates):

• Triple junctions, i.e., line defects representing the lines along which three
grains and correspondingly three GBs meet (however, so far, no direct tracer
data for the dilute (Henry) limit exist, which would unambiguously confirm
that the diffusion along the triple junctions is faster than along the corre-
sponding grain boundaries, since the available data correspond to the results of
microprobe analysis [23] or 3D atom-probe tomography [24], which may suffer
from contaminate chemical effects);

• General (random) high-angle GBs;
• Low-angle GBs, dislocation walls, and individual dislocations.

For the effect of dislocations on GB diffusion and rigorous analysis of the
corresponding kinetic regimes, the reader is referred to original papers [25, 26].
The corresponding analytical formulation (as well as the case of triple junction
diffusion) are very similar to that presented below.

10.5.1 Kinetic Regimes of GB Diffusion in a Material
with a Hierarchic Microstructure

In the case of a hierarchy of the microstructure (Fig. 10.21a), three potential
diffusion paths should simultaneously be taken into account:
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1. Short-circuit diffusion along the inter-agglomerate boundaries. Each of such
interfaces is assumed to be represented by a homogeneous slab of the width da

and the diffusivity Da;
2. Short-circuit diffusion along nanocrystalline GBs which are considered as

homogeneous slabs of the width d and the diffusivity Dgb;
3. Bulk diffusion with the diffusion coefficient Dv.

It is reasonable to assume (and this was experimentally verified) that in the
temperature interval of typical diffusion measurements

Fig. 10.20 Microstructure of nanocrystalline c-FeNi alloy [25] as revealed by optic microscopy
and atomic force microscopy (insert)—individual nanograins are clustered in micrometer-large
agglomerates

Fig. 10.21 a Schematic microstructure of the nanocrystalline c-FeNi alloy with a hierarchic
microstructure. Small nanograins (of the size d) are clustered in agglomerates of the size da. d and
da are the widths of nano-GBs and inter-agglomerate boundaries, respectively; Dv, Dgb, and Da

are the bulk, nano-GB, and inter-agglomerate boundary diffusivities, respectively. In b, the
concentrations, which are relevant to the definitions of the segregation factors s and sa, are
indicated
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Da � Dgb � Dv ð10:89Þ

Taking this relation into account, three different diffusion fluxes can generally
be introduced:

1. Direct volume diffusion from the sample surface into the nanograins, diffusion
rate Dv;

2. GB diffusion along nanocrystalline boundaries Dgb with subsequent outdiffu-
sion into the grain interior, Dv; and

3. Diffusion along the inter-agglomerate boundaries Da with subsequent outdif-
fusion to the nanoboundaries Dgb and then into the grain bulk Dv.

Thus, the regimes of interface diffusion for the processes (1) and (3) have to be
specified separately in order to describe the overall diffusion kinetic. Taking this in
mind, a two-letter designation was suggested [13], such as C–B. Each letter cor-
responds to the given Harrison kinetic regime, introduced above in Sect. 10.2,
which is satisfied for the particular interface type. We first specify the regime for
nano-GBs and then for inter-agglomerate boundary diffusion. Therefore, the C–B
regime describes the case when the C regime of diffusion along the nanocrystalline
GBs (no outdiffusion into bulk) is satisfied and when simultaneously the (quasi) B
regime of diffusion along the inter-agglomerate boundaries (fast diffusion along
the inter-agglomerate boundaries with subsequent outdiffusion into the adjacent
nano-GBs) is fulfilled. The word ‘‘quasi’’ is necessary to indicate that the regime is
similar to that of B, but due to the different outdiffusion kinetics (tracer leakage
occurs only at places where nanocrystalline GBs cross the inter-agglomerate
boundaries), the triple product is modified, see Sect. 10.5.1.2. And it does not
follow it, as will be shown below.

In the case of solute diffusion, the segregation of the solute to both types of
internal interfaces has to be taken into account. More than one segregation coef-
ficient have to be introduced. The solute atoms can generally be in excess in the
following (see Fig. 10.21b):

(a) Nanocrystalline GBs with respect to the adjacent bulk;
(b) Inter-agglomerate interfaces with respect to the adjacent bulk; and
(c) Inter-agglomerate interfaces with respect to the adjacent positions in the

nano-GBs which intersect this inter-agglomerate interface.

In view of relation in Eq. 10.89, two segregation factors are required to describe
the diffusion problem under consideration: s, which characterizes the solute excess
in a nano-GB with respect to an adjacent bulk plane, and sa, which corresponds to
an excess of the solute in the inter-agglomerate boundary with respect to the
adjacent position in the nanocrystalline GB

s ¼ cgb

cvð0Þ
ð10:90Þ
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and

sa ¼
ca

cgbð0Þ
ð10:91Þ

Here, cv(0), cgb, cgb(0), and ca are the corresponding solute concentrations in the
bulk just near a nanocrystalline GB, in a nano-GB, in a nano-GB just near an inter-
agglomerate boundary, and in an inter-agglomerate boundary, respectively. The
definition of these concentrations is illustrated more clearly in Fig. 10.21b.

The segregation factor sav = ca/c0v(0) (the case (b) above) is not important in
the present consideration as we have neglected the direct outdiffusion from the
inter-agglomerate boundaries into the bulk (here, c0v(0) is the bulk solute con-
centration just near the inter-agglomerate boundary, shown in Fig. 10.21b). Note
that the excess of solute atoms in the inter-agglomerate boundaries with respect to
the bulk sav may be presented as sav = sas, if the segregation behavior corresponds
to dilute limit conditions (linear segregation). The segregation factor s is important
for the flux (2), and both factors, s and sa, affect the flux (3).

In dependence on the given kinetic conditions, five regimes (C–C, C–B, B–B,
A–B, and A) and one subregime (AB–B) can be introduced to describe diffusion in
a material with a hierarchy of kinetic properties of internal interfaces. The relevant
parameters along with the diffusion characteristics, which can be determined
experimentally, and the typical concentration dependencies of the penetration
profiles are given in Table 10.5, and the penetration profiles are exemplified using
the data for Fe, Ni, or Ag diffusion in the nanocrystalline c-Fe–Ni alloy [13, 22].
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Fig. 10.22 Example of
penetration profile measured
in the C–C regime for Ag
diffusion in nanocrystalline c-
FeNi alloy [27]
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10.5.1.1 C–C Regime

This regime corresponds to very low temperatures and short diffusion times which
suppress any outdiffusion from the internal interfaces in the material (Table 10.5).
The condition a[ 1 means that bulk diffusion is negligible, i.e.,

ffiffiffiffiffiffiffi
Dvt
p

� s � d. If
the tracer enters the nanocrystalline GBs, it remains there. The diffusion length
along the nanocrystalline GBs is also very small in this regime, since the next
condition aa [ 1 can approximately be rewritten as

ffiffiffiffiffiffiffiffiffi
Dgbt

p
\ sada

2k ffi sa � d. There-

fore, the diffusion length along the nanocrystalline GBs,
ffiffiffiffiffiffiffiffiffi
Dgbt

p
, is very small and

this flux cannot be detected by a conventional sectioning method for very small
grain size, d = 10 to 100 nm. The factor k in the expression for aa takes into
account the fact that outdiffusion from an inter-agglomerate boundary only occurs
through regions where the nanocrystalline boundaries (of the width d) intersect
with the inter-agglomerate boundary. For cubic grains, k = 2d/d.

Since nano-GB diffusion is almost ‘‘frozen out,’’ the tracer is dominantly located
in the inter-agglomerate boundaries. The diffusion profile corresponds to the error
function or Gaussian solution of the diffusion equation in dependence on the given
initial conditions. An example of such a profile, experimentally measured for Ag
solute diffusion in the nanocrystalline c-FeNi alloy [27], is shown in Fig. 10.22. Due
to the small solid solubility of Ag in the FeNi alloy, the initial conditions corre-
sponded to the thick layer solution and the error function fitting was applied to
extract the diffusivity Da of the inter-agglomerate boundaries in that case.

The segregation factors s and sa should be known to evaluate a and aa. Since
s and sa are not known a priori, the estimates s = sa = 1 may initially be used. The
self-consistent evaluation of the whole data set in all diffusion regimes, however,
allows calculation of the segregation factor s and estimation of sa, as was described
above for solute diffusion in a polycrystalline material.

10.5.1.2 C–B Regime

With increasing temperature of diffusion anneals, the diffusion length along the
nano-GBs increases and outdiffusion from the inter-agglomerate boundaries is
becoming important,

ffiffiffiffiffiffiffiffiffi
Dgbt

p
� sa � d. This introduces the formal B regime con-

ditions for diffusion along the inter-agglomerate boundaries. However, since bulk
diffusion is still suppressed,

ffiffiffiffiffiffiffi
Dvt
p

\\s � d, the C kinetic conditions assert for
nano-GB diffusion. These conditions define the C–B diffusion regime in the
material with a bimodal interface structure (Table 10.5).

In this diffusion regime, not the values sa, da, or Da, but only their product
Pa = sadaDa/k can be determined from the penetration profiles. The specific fea-
ture of the inter-agglomerate boundaries is that outdiffusion does not proceed
uniformly but only there where the nano-GBs intersect the inter-agglomerate
boundary. The density of such places k enters explicitly into the expression for the
product Pa.
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The diffusion length for diffusion along the nanocrystalline GBs,
ffiffiffiffiffiffiffiffiffi
Dgbt

p
, should

be smaller than the size da of the agglomerates in this regime. Otherwise, the dif-
fusion fluxes from different inter-agglomerate boundaries will overlap and the for-
mal A kinetic regime might become important. In the C–B diffusion regime, the
parameter a is larger than unity and the tracer does not penetrate into the bulk. The
diffusion process is thus confined to nano-GBs and inter-agglomerate boundaries
only. The tracer is mainly located in the nano-GBs.

An example of such a penetration profile measured for Fe diffusion in nano-c-
FeNi [22] is presented in Fig. 10.23. A two-stage shape of the penetration profile is
clearly seen. The first part, which is characterized by the ln c
 y2 depth depen-
dence of the concentration profile, corresponds to the nano-GB diffusion in the C
regime. As a result, the nano-GB diffusivity Dgb can directly be determined from
this part (Table 10.5).

The second part of the penetration profile in Fig. 10.23 corresponds to the faster
diffusion mode from the surface into the inter-agglomerate boundaries with sub-
sequent outdiffusion into adjacent nanocrystalline GBs. Since formal B-type
conditions are fulfilled in this diffusion mode, the Suzuoka solution, given in
Eqs. 10.37a–10.38, of the interface diffusion problem has to be applied, as in
Table 10.5. The solid line in Fig. 10.23 represents the relevant fit.

10.5.1.3 B–B Regime

If temperature and/or time of diffusion anneal increases further, the bulk diffusion
flux becomes more significant and cannot be neglected. Then, the diffusion process
will be dominated by two fluxes:
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Fig. 10.23 Example of
penetration profile measured
in the C–B regime for Fe
diffusion in nanocrystalline
c-FeNi alloy [22]
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1. GB diffusion along the nanocrystalline GBs with subsequent outdiffusion into
the grain interior and

2. Faster diffusion along inter-agglomerate boundaries with subsequent outdiffu-
sion to nanoboundaries and then into the grains.

Since the bulk diffusion length
ffiffiffiffiffiffiffi
Dvt
p

has to be smaller than the grain size to
satisfy the conditions of this B–B regime (Table 10.5), the total contribution of
direct volume diffusion from the sample surface into the nanograins can be
neglected. Correspondingly, two-stage penetration profiles should be observed. An
example of such a profile, which was measured for Ni diffusion in nano-c-FeNi
[28], is shown in Fig. 10.24.

The B regime conditions are satisfied for the flux (1). Therefore, the Suzuoka
solution to the GB diffusion problem is applied to analyze this term. As a result, the
first part of the penetration profile should be linear in the coordinates of lnc versus y6/5

and only the triple product P = sdDgb can be determined, but not the nano-GB
diffusivity Dgb itself (see Table 10.5). The parameter b ¼ P=2Dv

ffiffiffiffiffiffiffi
Dvt
p

has to be
large enough in order to observe a distinct GB diffusion-related tail. It was shown that
b C 2 can be used as a lower limit of the B regime [22].

The diffusion flux (2) represents a fundamentally new situation. In order to
describe an analytic expression for the layer tracer concentration c that entered the
sample this way, we will reformulate the Fisher model for inter-agglomerate
boundary diffusion from a constant source. The tracer concentrations cv(x, y, t) in
the bulk, the cgb(x, y, t) in nanocrystalline grain boundaries, and the ca(x, y, t) in
inter-agglomerate boundaries are to be considered. To derive an analytical solu-
tion, the following approximations are made (see Fig. 10.21b):
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1. Diffusion in the nanocrystalline grains (bulk diffusion) occurs primarily normal to
the local position of the GB, i.e., in the y direction in Fig. 10.21b, cv(x, y, t) =
cv(y, t). The direct bulk diffusion from the surface into the grain is assumed to be
negligible.

2. The relationship given in Eq. 10.89 is supposed to be valid. Thus, the tracer
atoms enter the GB slabs only by leaving the inter-agglomerate boundary along
the x direction, while direct GB diffusion along the nanocrystalline GBs from
the surface is neglected. Thus, cgb(x, y, t) = cgb(x, t). Moreover, the condition
ocgbðx; tÞ=ot � 0 is assumed when describing bulk diffusion. The latter means
that outdiffusion from the nanocrystalline GBs into the bulk occurs in nearly
constant-source conditions as in the original formulation of Fisher’s model.

3. With respect to GB diffusion, the tracer distribution within the inter-agglom-
erate boundaries is established within a very short period of time s and the
relations ca(x, y, t) = ca(y, t) and ocaðy; tÞ=otjt [ s� 0 are assumed.

Considering the interfaces as homogeneous slabs with given diffusivities, the
following equations can be written for the concentrations ca, cgb, and cv

ocaðy; tÞ
ot

¼ Da

o2caðy; tÞ
oy2

þ k
2
da

Jgb

��
xj j¼da=2

þ 2
da

Jvj xj j¼da=2; xj j\da=2 ð10:92Þ

ocgbðx; tÞ
ot

¼ Dgb

o2cgbðx; tÞ
ox2

þ 2Dv

d
ocvðy; tÞ

oy

����
yj j¼d=2

; xj j[ da=2; yj j\d=2

ð10:93Þ

ocvðx; y; tÞ
ot

¼ Dv

o2cvðx; y; tÞ
ox2

þ o2cvðx; y; tÞ
oy2

� �
; xj j[ da=2; yj j[ d=2

ð10:94Þ

Here, Jgb and Jv are the fluxes of tracer atoms leaving the inter-agglomerate
boundary through adjacent nanocrystalline GBs and the bulk, respectively; k
determines the density of outdiffusion paths from the inter-agglomerate boundary,
as can be observed from Table 10.5.

In the present analysis, we will also neglect the amount of tracer which leaves
the inter-agglomerate boundary by direct outdiffusion into the bulk, given by the
last term in Eq. 10.92. Thus, Jvj xj j¼da=2¼ 0 and this condition decouples the con-

centrations ca and cv. Then, the tracer distribution ~cv in the volume after diffusion
along an inter-agglomerate boundary and then along a given nanocrystalline GB is
given by (see Eq. 10.18)

~cv ¼ caerfc
y

2
ffiffiffiffiffiffiffi
Dvt
p

� �
exp � 4Dv

pt

� �1=4 xffiffiffi
P
p

" #
ð10:95Þ
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Then, the total amount Mgb of tracer atoms entering the bulk this way is given
by

Mgb ¼ 2ca

Z1

0

erfc
y

2
ffiffiffiffiffiffiffi
Dvt
p

� �
dy

Z1

0

exp � 4Dv

pt

� �1=4 xffiffiffi
P
p

" #
dx

¼ 2
ffiffiffi
2
p

ca

p3=4
D1=4

v t3=4
ffiffiffi
P
p

ð10:96Þ

Note that according to the exact solution of the GB diffusion problem with a
constant source [4]

Mgb ¼ ca

ffiffiffiffiffiffi
2P
p

Cð7=4ÞD
1=4
v t3=4 ð10:97Þ

where C is the Euler gamma function. We see that Eqs. 10.96 and 10.97 differ by
the numerical factors only (about 1.199 and 1.539, respectively). However, in view
of the approximate character of the original system of Eqs. 10.92–10.94, we will
use Eq. 10.96 in the following.

The flux Jgb can easily be calculated as Jgb ¼ 1
d

oMgb

ot . Substituting the obtained
expression for Jgb into Eq. 10.92 and by applying the condition
ocaðy; tÞ=otjt [ s� 0, the final equation for ca is

o2caðy; tÞ
oy2

¼ 1:798
ffiffiffiffiffiffiffiffiffiffiffiffi
Dgb=d

p
daDa=k

Dv=tð Þ1=4ca ð10:98Þ

This equation has the following solution under the boundary condition of
ca ? 0 at y ? ?

ca ¼ c0 exp � 1:798
daDa=k

ffiffiffiffiffiffiffiffi
Dgb

d

r
Dv

t

� �1=4
 !1=2

y

8<
:

9=
; ð10:99Þ

Thus, the plot of ln c against y yields a straight line and its slope determines the
product Pa = daDa/k for inter-agglomerate boundary diffusion in the B–B kinetic
regime

Pa ¼
daDa

k
¼ 1:798

ffiffiffiffiffiffiffiffi
Dgb

d

r
Dv

t

� �1=4

� o ln c

oy

� ��2

ð10:100Þ

It was shown [28] that the approximate solution for Pa, as given in Eq. 10.100,
is precise enough to be applied in a diffusion experiment. The parameters a0a and
b0a, which determine the conditions of the B–B regime (Table 10.5), are defined as
follows:
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a0a ¼
sada

k
ffiffiffiffiffiffiffiffiffiffiffiffi
sdDgb

p 4Dv

pt

� �1=4

ð10:101Þ

and

b0a ¼
Pa

Dgb

ffiffiffiffiffiffiffiffiffiffiffiffi
sdDgb

p 4Dv

pt

� �1=4

ð10:102Þ

The fit in Fig. 10.24 describes the experimental points quite well over almost
four decades of decrease in concentration, supplying reliable data on both nano-
GB and inter-agglomerate boundary diffusion.

10.5.1.4 AB–B Regime

As it was shown, the temperature interval of the B–B regime has an upper limit by
the condition that an overlap of the bulk diffusion fluxes from different nanocrys-
talline GBs must be avoided. With increasing temperature, this condition will be
violated. For interface diffusion in a unimodal structure, it is known that the con-
ditions of the A kinetic regime are fulfilled if the bulk diffusion length is much
larger than the grain size d. In between, the transition AB regime exists, at
d=4\

ffiffiffiffiffiffiffi
Dvt
p

\3d. The key feature of this subregime is the unusual depth depen-
dence of the concentration profile: lnc * y3/2, see Sect. 10.2.5. Such profiles were
indeed measured in the experiments on Fe diffusion in nano-c-FeNi [13], observed
from Fig. 10.15. The measured decrease of the logarithm of concentration with the
penetration depth over more than three decades definitely allowed ruling out the B
(lnc * y6/5) or A (lnc * y2) kinetics in the relevant cases.

In the case of a nanomaterial with a bimodal distribution of the interface
characteristics, the subregime AB–B can be introduced. Examples of such profiles,
which were measured for Ni diffusion in nano-c-FeNi, are shown in
Fig. 10.25. The first part of the two-stage profile measured at T = 1,002 K is
linear in the coordinates of lnc versus y3/2 (nano-GB diffusion), and the second one
is linear in the coordinates of lnc versus y6/5 (inter-agglomerate boundary diffu-
sion). The solid line, which represents the relevant fit in Fig. 10.25, nicely
reproduces the experimental data over about five orders of magnitude in con-
centration. The profile, which was measured at T = 1013 K (Fig. 10.25), reveals
only a part related to nano-GB diffusion and is almost perfectly linear over three
decades in the coordinates of lnc versus y3/2. The product sDgb can be determined
from the first part of the profile (see Table 10.5), whereas the triple product P00a ¼
sadaDa can be evaluated from the deeper part of the concentration profile. The
inter-agglomerate boundary diffusion problem in such conditions is still not solved
exactly. The tracer leakage from inter-agglomerate boundaries into agglomerates
can approximately be described by an effective diffusivity Da

eff as in Eq. 10.52,
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which in the case of negligible bulk diffusion and the absence of segregation
effects transforms to

Da
eff ffi fgbDgb ð10:103Þ

Here, fgb is the volume fraction of the nano-GBs in agglomerate. This fraction
can be determined as fgb = qd/d (q is a numerical factor). Then, inter-agglomerate
boundary diffusion can be described by the formal Suzuoka solution with the
effective diffusivity Da

eff instead of the GB diffusivity Dgb (see Table 10.5). The
following parameters are important in the AB–B diffusion regime

a00a ¼
sada

2
ffiffiffiffiffiffiffiffiffiffi
Da

eff t
p ð10:104Þ

and

b00a ¼
P00a

2Da
eff

ffiffiffiffiffiffiffiffiffiffi
Da

eff t
p ð10:105Þ

10.5.1.5 A–B Regime

If the bulk diffusion length becomes remarkably larger than the grain sizeffiffiffiffiffiffiffi
Dvt
p

[ 3d, the A kinetic is valid for tracer diffusion along nanocrystalline GBs.
Then, the agglomerates are characterized by an effective diffusivity Da

eff , which is
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Fig. 10.25 Example of
penetration profile measured
in the AB–B regime for Ni
diffusion in nanocrystalline
c-FeNi alloy [28]
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described by a modified Hart–Mottlock or Maxwell–Garnet equation in the case of
solute diffusion, as shown in Eqs. 10.52 and 10.54.

Since typically Dv ffi Dgb and fgb ffi 1, only the nano-GB diffusion contribu-
tion becomes important (see Table 10.5).

If the resulting diffusion length inside of the agglomerates
ffiffiffiffiffiffiffiffiffiffi
Da

eff t
p

is smaller than

the agglomerate size
ffiffiffiffiffiffiffiffiffiffi
Da

eff t
p

\da=4, the fluxes from different inter-agglomerate
boundaries do not overlap and diffusion occurs in the A–B kinetic regime in the
bimodal interface microstructure under consideration. The penetration profiles
generally should be composed of two parts. The first part corresponds to bulk
diffusion in a homogeneous material (inner part of agglomerates) characterized by
an effective diffusion coefficient Da

eff . An example of such a penetration profile is
presented in Fig. 10.26 for the case of Fe diffusion in nano-c-FeNi [13]. The pen-
etration profile turns out to be slightly curved at large depths, as seen in Fig. 10.26.
However, the number of relevant experimental points is too small to be able to
extract reliably the inter-agglomerate boundary diffusivity. The deviation from the
linearity in this profile could only be detected due to the extremely high sensitivity of
the applied radionuclide-counting facilities, which allowed an accurate detection of
the penetration profile over five decades in the decrease of concentration.

10.5.1.6 A Regime

With increasing temperature, the effective diffusivity of the agglomerates Da
eff in

Eq. 10.94 becomes larger and the relevant diffusion length can be remarkably
larger than the agglomerate size

ffiffiffiffiffiffiffiffiffiffi
Da

eff t
p

[ 3da. Then, the A kinetic is valid for
tracer diffusion in this material. The nanocrystalline alloy as a whole can be
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Fig. 10.26 Example of
penetration profile measured
in the A–B regime for Fe
diffusion in nanocrystalline
c-FeNi alloy [13]
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considered as a homogeneous material with the effective diffusivity DM
eff . The

penetration profile should follow the thin-layer solution of the diffusion equation,
and the inclination of the fitting line in the coordinates of lnc versus y2 gives the
effective diffusivity DM

eff .
An example of such a profile measured for Ag diffusion in nanocrystalline FeNi

alloy at T = 1,200 K [27] is shown in Fig. 10.27. The contribution of the inter-
agglomerate boundary diffusivity Da to the effective diffusivity DM

eff was found to
be less than 10 %, and the relevant relation in Table 10.1 allows a consistent
determination of the nano-GB diffusivity Dgb. The knowledge of the segregation
factor s is imperative for such calculations, and it was determined by an iterative
approach (see below).

10.5.2 Temperature Dependence of Interface Diffusion
in Material with a Hierarchic Microstructure

Diffusion of Fe, Ni, and Ag in a nanocrystalline c-FeNi alloy was intensively
measured in the extended temperature interval from about 500 to 1,200 K. The
penetration profiles were analyzed according to the strict mathematical conditions
of the appearance of the given kinetic regime, and consistent data in the whole
temperature interval were derived. For the analysis of Fe and Ni diffusion, the
relevant segregation factors sFe and sNi are close to unity. Fe and Ni show complete
mutual miscibility in the c-phase, and one may expect only slight (if any) seg-
regation of both Fe and Ni to internal interfaces in the c-FeNi alloy. On the other
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Fig. 10.27 Example of
penetration profile measured
in the A regime for Ag
diffusion in nanocrystalline
c-FeNi alloy [27]
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hand, Ag reveals very small solubility in FeNi and a strong Ag segregation to
internal interfaces is expected.

Ag diffusion in the nanocrystalline c-FeNi was measured in various diffusion
regimes, and the succession of the kinetics C–C, C–B, AB–B, and A was observed,
and the diffusivities of both nano-GBs and inter-agglomerate boundaries were
determined, as presented in Fig. 10.28.

The diffusivity Dgb of the nanocrystalline GBs was directly determined in the
C–B kinetics. In order to establish the limits of relevant kinetic regimes and to
analyze the experimental data, the knowledge of the segregation factor s is
imperative. As it was shown above, the segregation factor s can be determined by a
combination of the C- and B-type GB diffusion measurements. Whereas the B–B
kinetics was observed for both Fe and Ni diffusion, it cannot be realized for Ag
diffusion in the nanocrystalline FeNi alloy for formal reasons. In the case of self-
diffusion, s = 1 and the conditions a ¼ d=2

ffiffiffiffiffiffiffi
Dvt
p

\0:1 and 2
ffiffiffiffiffiffiffi
Dvt
p

\d=2 can
simultaneously be satisfied in the given temperature interval even for such a small
grain size d as d = 100 nm. This is no longer the case for diffusion of such a
strongly segregating solute as Ag. The above-mentioned inequalities can be
rewritten as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dvt [ 5sd
p

and
ffiffiffiffiffiffiffi
Dvt
p

\d=4, respectively. Taking into account that
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Fig. 10.28 Arrhenius diagram for Ag diffusion in nanocrystalline c-FeNi alloy [27]. Filled
symbols represent the diffusivity of nanocrystalline GBs, and open symbols correspond to inter-
agglomerate boundary diffusion. The conditions d = 0.5 nm and da = 1 nm were used to
recalculate the measured Pa and P values for the relevant diffusivities Da and Dgb. The triple
product P for Ag diffusion in coarse-grained FeNi alloy is also shown (diamonds). The method of
calculation of the segregation factor s for Ag in FeNi is illustrated
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d = 100 nm and d % 0.5 nm, it becomes evident that these relations cannot
simultaneously be satisfied if s [ 10. As the temperature increases, the C–B
kinetic regime ð

ffiffiffiffiffiffiffi
Dvt
p

\sd=2Þ changes to the A–B kinetics with
ffiffiffiffiffiffiffi
Dvt
p

[ 3d.
This fundamental difficulty can be overcome by the B-type GB diffusion

measurements in coarse-grained material (with a remarkably larger value of the
grain size d). The key point is that the close similarity between Ni self-diffusion in
the coarse-grained and nanocrystalline c-FeNi alloy [28] suggests similar GB
structures in these materials. The measurements of Ag diffusion in the coarse-
grained c-Fe–Ni alloy yielded the triple product P = sdDgb as a function of
temperature (diamonds in Fig. 10.28). The data on P for Ag diffusion (determined
for the coarse-grained material) can thus be combined with the direct data on Dgb

(determined for the nanocrystalline material). As a result, the temperature
dependence of the segregation factor s can be derived (Fig. 10.28).

Ag segregates strongly at GBs in the c-FeNi alloy, for example, s = 1,000 at
T = 700 K. Here, an iterative procedure was applied to calculate s. Having
determined several values of Dgb (supposing that the low-temperature measure-
ments were performed in the C kinetics), a crude estimate of s can be determined
by combination of these Dgb values and the P values for coarse-grained material.
This estimate of s allows a more precise calculation of the parameter a and thus a
better evaluation of the limits of the C–B regime. This in turn allows a more
justified calculation of Dgb until self-consistency is reached.

Having determined the segregation factor s, an Ag GB diffusion experiment in
the nanocrystalline material has been designed, which satisfies the conditions of
the AB–B kinetics (the B–B kinetics cannot be fulfilled for formal reasons). For
this purpose, the time and temperature of the diffusion anneal have to be chosen
very carefully using Table 10.5. The value determined for sDgb is multiplied by
the GB width d and is plotted in Fig. 10.28 (triangle up). Almost perfect agreement
with the independent data of P = sdDgb measured in coarse-grained material
(diamonds) is obtained, as depicted in Fig. 10.28. This fact supports the conclusion
that the diffusivities of the nanocrystalline (d * 100 nm) and coarse-grained
(d * 0.5 mm) materials are very similar.

Ag diffusion along the inter-agglomerate boundaries proceeds much faster than
along the nano-GBs, as portrayed in Fig. 10.28 (open symbols). Having deter-
mined Pa = sadaDa/k and Da separately in the C–B and C–C regimes, respectively,
the factor sada/k can be estimated. Taking k as k = 2d/d with d = 0.5 nm and
d = 100 nm, an upper estimate of the product sada is obtained, sada * 1 nm.
Since the inter-agglomerate boundaries present a more open structure with respect
to the nano-GBs, the value of da & 1 nm seems to be a good estimate. Thus, the
segregation factor sa for Ag seems to be about unity. This means that there is
practically no excess of Ag atoms in the inter-agglomerate boundaries with respect
to the nanocrystalline GBs, as shown in Eq. 10.91, and the segregation behavior of
these two internal interfaces with respect to the bulk is similar. In Fig. 10.28, the
value of Da measured in the C–C regime is multiplied by the factor da/k (using the
estimates da = 1 nm and k = 0.01) for comparison with the Pa values measured in
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the C–B regime (open star and circles, respectively). Assuming sa = 1, the tem-
perature dependence of Pa can be presented by the linear Arrhenius relationship
(dotted line in Fig. 10.28).

10.6 Dependence of GB Diffusion on GB Parameters

The grain boundary represents an interface between two crystals. Therefore, each
GB can be characterized by the following macroscopic and microscopic param-
eters: matrix of rotation between the two crystalline coordinate systems, for
instance, the axis x! and angle h of rotation (3 parameters); the inclination of the
GB plane with respect to a chosen direction n! (2 parameters); and the matrix of

atomic translation t!¼ ðtx; ty; tzÞ. The set of parameters ðx!; h; n!Þ can be chosen
on demand during bicrystal preparation by setting the misorientations of the
crystals and properly choosing the required position of the interface. The param-

eters t! cannot be influenced, and thus, they are known as microscopic.
In dependence on the given set of the parameters ðx!; h; n!Þ, it is possible for us

to distinguish the following:

• Low-angle grain boundary with h B 15�;
• High-angle GBs with h[ 15�;
• Special (low sigma) GBs with special values of ðx!; hÞ so that the value of the

inverse density of equivalent (coinciding) positions of the two lattices is small,
for example, R5, R7, etc. The values of R1 and R3 correspond to the low-angle
and twin boundaries, respectively;

• Pure tilt GBs with x!? n!, i.e., the misorientation axis lies in the GB plane;
• Pure twist GBs with x! k n!, i.e., the misorientation axis is perpendicular to the

GB plane;
• GB of a mixed type;
• Symmetric and asymmetric GBs.

Generally, GB diffusion and segregation depends on all these parameters.
The production and characterization of oriented bicrystals is an extremely

difficult task. The desired misorientation has to be uniform along the GB with a
high accuracy showing only small fluctuations of the GB plane orientation. Even
nowadays, the production of top-quality-oriented bicrystals looks more like art
than a technology. The state of the art in such measurements is represented by the
works of Herzig with co-workers [29]. They demonstrated that the precise spec-
ification of all three misorientation angles to the accuracy of ±0.1� (including the
non-avoidable twist component) is required to rationalize the orientation depen-
dence and to observe cusps in diffusivities at low-R misorientations.

In Fig. 10.29, GB diffusion of Au in Cu near R5 GBs [29] is presented as a
function of the misorientation angle h. The observed increase of the GB diffusivity
with approaching the perfect R5 misorientation from large tilt angles h[ 36.9� is
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caused by an increase in the accompanying twist component. This effect ‘‘masks’’
partially the deep cusp in the GB diffusivity occurring at the perfect R5
misorientation.

10.7 Effect of Purity on GB Diffusion

The purity and segregation of solutes can both strongly affect the GB diffusion. In
Fig. 10.30, Ni GB self-diffusion measured in coarse-grained polycrystalline Ni of
different purity levels [30, 31] is compared. The GB diffusion has been measured

Fig. 10.29 GB diffusion of
195Au in Cu R5(310)[001]
bicrystals as a function of the
tilt angle h measured at two
temperatures 661 K and
780 K after [29]. The
misorientation angle
corresponding to the exact
R5(310)[001] interface is
shown by dotted line. The
dashed lines are drawn as
guidance for eyes

Fig. 10.30 Ni GB self-
diffusion measured in 99.6
[30], 99.99 [31], and
99.999 wt.% [30] pure
polycrystalline Ni materials
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by the same technique and using the same equipment. As a general trend, it is seen
that the higher the purity of a material, the higher the grain boundary diffusivity
P = d � Dgb and the lower the effective activation energy for grain boundary
diffusion. One has to mention that different ‘‘critical’’ impurities, which strongly
segregate at GBs and which could affect dramatically the grain boundary diffusion,
might be present in different materials.

Figure 10.30 suggests a strongly non-monotonous dependence of Dgb on the
purity of Ni, D99:999

gb � D99:99
gb � D99:6

gb , especially at low temperatures. The prob-

lem of the effect of impurities on GB diffusion has been analyzed in [31].

10.8 Grain Boundary Interdiffusion

So far, tracer diffusion along GBs was considered. However, as in the case of bulk
diffusion, one can consider the case of chemical grain boundary diffusion just like
the diffusion of A atoms along GBs of B or that of A atoms along GBs of AB, etc.,
occurring in corresponding couples. The predominance of GB diffusion corre-
sponds typically to low temperatures and is especially important for thin-film or
microelectronic applications. Unfortunately, this subject is even not completely
understood from the theoretical point of view because of the inherent requirements
to consider coupled diffusion–elasticity or diffusion–plasticity problems, just for-
getting a rather small number of dedicated and well-posed experimental
measurements.

Here, we will shortly consider several issues, including diffusion–strain cou-
pling in GB interdiffusion, the manifestation of the Kirkendall effect, and mor-
phology development under GB interdiffusion.

10.8.1 Coupling of Diffusion and Strain for GB
Interdiffusion

Herring [32] has analyzed the chemical potential of atoms in a GB under
assumption that the GB is a perfect sink or source of vacancies and has shown that
by neglecting the higher-order contributions of the stress tensor components, the
chemical potential is modified by the value of Dl

Dl ¼ �rX ð10:106Þ

where r is the normal tensile traction at the GB and X is the atomic volume.
Let us analyze a simplified GB interdiffusion problem considering a stressed

bicrystal. We will follow the formulation of Klinger and Rabkin [33, 34], as seen
from Fig. 10.31.
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The atomic fluxes of the components along the GB, JA, and JB can be repre-
sented as the sums of two contributions associated with the gradient of concen-
tration and the gradient of normal stress

JA ¼ �dDA
gb

ocA
gb

oy
þ

dDA
gbX

kT
cA

gb

or
oy

ð10:107aÞ

JB ¼ �dDB
gb

ocB
gb

oy
þ

dDB
gbX

kT
cB

gb

or
oy

ð10:107bÞ

Here, d is the GB width (assumed to be the same for both components),
DA

gbðDB
gbÞ is the diffusion coefficient of A (B) atoms along the GB, and cA

gbðcB
gbÞ is

the GB concentration of A (B) atoms (in at/m3). The atomic volume X is also
supposed to be the same for both components, and thus,

cA
gb þ cB

gb ¼
1
X

ð10:108Þ

As a result of GB diffusion of A in B, the new material is plated as a wedge of
the thickness w, as shown in Fig. 10.31. The conditions of mass conservation of A
and B atoms are written as (for the case where the wedge is growing, ow=ot [ 0)

d
ocA

gb

ot
¼ d

o

oy
DA

gb

ocA
gb

oy

 !
� dX

kT

o

oy
DA

gbcA
gb

or
oy

� �
� cA

gb

ow

ot
ð10:109aÞ

Fig. 10.31 A sample of material B, considered as a bicrystals with a single GB perpendicular to
its surface, with the layer of material A deposited on its surface. The GB fluxes of A and B atoms
are indicated, and an imbalance of JA and JA leads to formation of a wedge of extra material at
the GB. The wedge thickness, 2w(x,y), is indicated
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In [33] the case of the same and constant GB diffusion coefficients was considered,
DA

gb ¼ DB
gb ¼ Dgb ¼ const, that Eq. 10.108 corresponds to a simplified equation

owðy; tÞ
ot

¼ � dXDgb

kT

o2rðy; tÞ
oy2

ð10:110Þ

The plated out material can be represented as a mass of edge dislocations with
the Burgers vector density of ow=oy [33]. Then, the diffusion of A and thickening
of the wedge correspond to the climb of these dislocations toward B. The normal
stresses can be written as [35]

rðy; tÞ ¼ r0 � E

Z1

0

Kðy; zÞ owðz; tÞ
oz

dz ð10:111Þ

Here, E* = E/4p(1 - m2) is the equivalent elastic modulus and

Kðy; zÞ ¼ 1
y� z

þ 1
yþ z

� 6y

yþ zð Þ2
þ 4y2

yþ zð Þ3

The solution of the system of Eqs. 10.109 and 10.111 (or a simplified solution
of Eqs. 10.110 and 10.111) represents the evolution of GB concentration and
normal stresses in the case of GB interdiffusion.

10.8.2 Kirkendall Effect in GB Interdiffusion

GB interdiffusion of A in B was extensively analyzed by Rabkin and Klinger [34],
and we will follow their analysis. The diffusion problem is sketched in Fig. 10.31.
The inequality of GB diffusion fluxes leads to plating out of additional material at
the GB in the form of a wedge, as seen from Fig. 10.29. In this case, the GB
concentration profiles are influenced by the normal GB stresses developing in the
course of GB interdiffusion. It is important that the effective GB diffusion coef-
ficients are weak functions of the relative difference of intrinsic GB diffusivities.

Klinger and Rabkin have shown that if DA [ DB, i.e., if the solute diffuses
faster than the matrix atoms, compressive GB stresses are developed in the near-
surface zone, while at larger depths, the stresses are tensile. In the opposite case
DA \ DB, which is most probable in view of the experimental data, for instance,
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presented above for Cu, Fig. 10.16, the sequence of stressed zones along the GB is
inverted.

The estimates of the maximal thickness of the wedge of extra material at a GB,
which could be generated by the GB Kirkendall effect, provided values of the
order of the diffusion GB thickness d that complicates the direct experimental
observations of such phenomena.

An example of GB interdiffusion in the Ni/Cu couple [36] is presented in
Fig. 10.32. A thin Ni layer has been deposited in ultrafine-grained Cu (grain size
of 300 nm), and the couple was annealed at T = 450 K for 24 h. The phenomena
of Ni GB diffusion in Cu (Fig. 10.32a) and that of Cu in Ni (Fig. 10.32b) are
qualitatively seen. The lines are drawn for a better understanding of the pictures.
The Ni/Cu interface (thick dashed line) remains sharp after the annealing treat-
ment. However, Cu penetrates strongly along the Ni1/Ni2 grain boundary (the
bright contrast at the corresponding location in Fig. 10.32b). Marginal penetration
of Ni atoms along the Cu GB can also be elucidated (see Fig. 10.32a).

Fig. 10.32 Energy-filtered transmission electron microscopy images of the diffusion couple Ni/
Cu. The distributions of Ni (a) and Cu (b) atoms are to be compared with the corresponding TEM
image (c). The tracer of grain boundaries in Ni film and Cu substrate are sketched by dashed
lines. The scale bars correspond to 100 nm
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10.8.3 Morphology of Growing Phases Affected
by GB Diffusion

The GB interdiffusion can strongly affect the morphology of growing phases in an
interdiffusion couple. The present analysis follows generally the analysis of van
Loo [37]. Typical structures having been observed in different experiments are
shown in Fig. 10.33.

The presence of grain boundaries in the end members can change the mor-
phology of the reaction layer at low temperatures due to dominant GB diffusion,
presented in Fig. 10.33a, b. Such cases correspond qualitatively to the model of
Klinger and Rabkin considered above and given in Fig. 10.31. Experimentally, the
appearance of the GB wedges was observed by Bastin [38] during the formation of
b-Ti via GB diffusion of Ni into a-Ti. Tracers of iron in a-Ti were shown to play
the key role in the corresponding experiments since addition of Fe stabilizes the b-
Ti phase. Similar experiments on iron-free a-Ti stopped this kind of GB inter-
diffusion [38]. Bastin argued that the formation of a particular type of morphology,
i.e., (a) or (b) in Fig. 10.33, has to depend on the position of the relevant interface
with respect to the Matano plane.

If the rate of GB interdiffusion dominates over that through the crystalline bulk,
morphology as in Fig. 10.33c may be formed. Such a kind of reaction layer growth
has been observed for Ni3A1 grown in the Ni/NiA1 diffusion couples [39].

At even lower temperatures, when bulk diffusion can be considered as frozen,
thin needle-like crystals can often be formed, as shown in Fig. 10.33d. This case
corresponds, for example, to the Cu3Si formation in the Cu–Si couples [40].
Simultaneously, straight interphase boundaries are found. One may argue that
interphase boundary diffusion is responsible for the flattering of the interface and
GB interdiffusion for plating out material around grain boundaries.

Fig. 10.33 Possible morphologies appearing in interdiffusion couples in the presence of GB
diffusion: a formation of GB wedges toward reaction layer, b GB wedges toward end members
with formation of solid solutions, c predominant growth of GB wedges due to enhanced GB
diffusion, and d needle-like morphology of reaction layer due to the dominance of GB diffusion
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Chapter 11
Reactive Phase Formation in Thin Films

In this chapter, we will discuss some aspects related to reactive phase formation in
thin films. We try to utilize as much as possible the information accumulated
during the earlier chapters and built on that. We will first have a brief look on
nucleation issues, especially in solid state, before moving into effect of micro-
structure and impurities on the reactive phase formation. Finally, we will introduce
some of the models for phase growth that have been introduced in the past and
then discuss in detail about their pros and cons.

The formation of crystalline phases starts by nucleation (which is actually
preceded by interdiffusion to create a driving force for the process). The nucleation
stage and factors influencing it are discussed in Sect. 11.1. If the stable crystalline
phases cannot form directly, metastable structures will form first, as discussed
previously in Chap. 1. The formation of amorphous metastable structures is dis-
cussed in Sect. 11.2. The kinetics of phase formation is influenced by numerous
factors such as impurities, interfaces, and stresses—all these are briefly discussed
in Sects. 11.3, 11.4 and 11.5. Finally, growth models developed to describe
reactive phase formation in thin films are critically evaluated in Sect. 11.6.

11.1 Role of Nucleation

When a new phase AB is formed at an interface between two elements A and B,
the driving force for the reaction is the Gibbs energy of formation of AB from pure
A and B. However, the formation of AB involves creation of two new interfaces A/
AB and AB/B instead of the old A/B interface. This in general leads into increase
in surface energy Dr of the system (Fig. 11.1). The classical theory of nucleation
mandates that the competition between the gain in free energy DG and the energy
loss Dr should give rise to nucleation mechanisms with an activation energy DG*

proportional to Dr3/DG2 (Fig. 11.2). There has been much criticism of the clas-
sical theory of nucleation. Nevertheless, it illustrates quite simply the major factors
involved in the nucleation process.
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In its simplest form, classical nucleation theory starts with the equilibrium
between two phases of a given substance at either the melting or evaporation point.
At the equilibrium point Tc, the free energy change DG equals to zero as shown in
Chap. 1

DG ¼ DH � TcDS ¼ 0 ð11:1Þ

thus leading into

DS ¼ DH

Tc
ð11:2Þ

At the transition temperature, the driving force is zero and nothing can happen.
At any temperature T1 away from the transition temperature, the phase transfor-
mation is driven by the driving force

Fig. 11.1 Schematic
presentation of the formation
of a new phase between A
and B

Fig. 11.2 The free energy of
a nucleus as a function of its
radius, showing the surface
contribution (positive), the
volume contribution
(negative), and their sum
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DG ¼ DH 1� T1

Tc

� �
ð11:3Þ

as long as T1 is not too far from Tc. This transformation is opposed by the surface
energy contribution.

The total free energy of a nucleus with average radius r and free energy DG1

(calculated per unit volume) is expressed generally as

DG ¼ br2r� ar3DG1 ð11:4Þ

where a and b are geometrical terms taking into account the fact that if the nucleus
is crystalline, it will generally not be spherical, because of the anisotropic char-
acteristics of crystalline elements, but tries to adopt some definite shape with
minimum surface energy. This can be determined with Wulff construction if
sufficient data on surface energies of various crystal planes are available. The
relation between the free energy of a nucleus and its radius is shown in Fig. 11.2.
As seen, DG passes through a maxim that corresponds to the critical size r* of the
nucleus. The population of nuclei smaller than r* will exist in some form of quasi-
equilibrium distribution (e.g., they constantly appear and disappear maintaining
some kind of ‘‘equilibrium’’ distribution), whereas nuclei larger than r* will tend to
grow. The value of the critical nucleus can be obtained by derivation of (11.4)

r� ¼ 2br
3a

DG1 ð11:5Þ

Furthermore, the free energy of the critical nuclei becomes (at any temperature T)
[see, Eqs. 11.3–11.5]

DG� ¼ 4b3r3T2
c =27a2DH2ðT � TcÞ2 ð11:6Þ

At that temperature, the rate of nucleation q* will be proportional to the concen-
tration of critical nuclei and to the rate at which such nuclei can form, generally some
diffusion term of the type exp(-Q/kT), so that (with a proportionality factor K)

q� ¼ K expð�DG�=kTÞ expð�Q=kTÞ ð11:7Þ

Proportionality factor can be explained briefly as follows. Under the dynamic
conditions that prevail during nucleation, one expects the number of nuclei of
critical size to be less than predicted by thermodynamic equilibrium. This is due to
the fact that during nucleation the equilibrium population of critical nuclei is
constantly being depleted by the nuclei that grow. The proportionality factor is
usually estimated to be about two. It contains also the so-called the Zeldovich
factor that is a measure of the probability that fluctuations will cause nuclei, even a
size above the critical limit, to dissolve as long as their free energy remains within
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kT of DG. Thus, every microcluster passing the critical size will not grow. This
means also that there is a flat region with a width of d in the free energy versus
radius plot. The Zeldovich factor is the reciprocal of this width. It may assume
values of the order of 10-2.

In general in the formation of phases from the end elements, DG’s are large and
thus activation energy (DG*) is small and the nucleation is quite easy. However,
after the first phase in the formation of subsequent phases, nucleation may play a
decisive role. It should be noted that DG* is actually formed from two parts DG*1

and DG*2, DG* = DG*1 + DG*2, where DG*1 is related to the density of the
crystalline nucleus and DG*2 to their growth, e.g., diffusion kinetics.

When a nucleus of a new phase is formed, this generally causes a volume
change to take place. In solid–solid nucleation, this is accompanied by deforma-
tion energy DHd (elastic energy, plus the possible plastic energy). The activation
energy for nucleation becomes proportional to Dr3/(DGc-DHd)2, where DGc is
the ‘‘chemical’’ free energy of bulk phases and the energy associated with
deformation is subtracted from that value. One can derive this by first including the
term for strain energy into Eq. 11.4. It is also a bit more convenient to consider the
free energy per atom of the nucleus rather than the free energy per volume of the
nucleus as in Eq. 11.4. The free energy associated with the formation of a nucleus
of n atoms, Dg, may be written as

Dg ¼ nDgC þ gn
2
3cþ nhd ð11:8Þ

where
n number of atoms in nucleus
DgC bulk (chemical) free energy change per atom in nucleus
g shape factor such that gn2/3 = surface area
c surface tension & surface free energy (exactly for liquids, but only

approximately with solids, because in solids there is also another factor (the
surface stress) which contributes to surface energy)

hd strain energy per atom in nucleus

One may regroup this equation as

Dg ¼ nðDgC þ hdÞ þ gn
2
3c ð11:9Þ

The term DgC will be negative below the transformation temperature, whereas hd

and c are both positive. Hence, if jDgCj[ hd, then the first term is negative. The
free energy required (Dg*) to form the critical size nucleus (n*) is found by
differentiating Eq. 11.9 and assuming DgC, hd, g, and c as constants.

Dg� ¼ 4
27

g3c3

DgC þ hdð Þ2
ð11:10Þ
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A large strain energy hd reduces the denominator and makes Dg* large. This
means that nucleation is more difficult since the critical size nucleus has a higher
energy of formation. This strain energy must be compensated by the lattice and can
be done, for example, in silicides, mainly by the diffusive motion of atoms or in
metals by dislocation motion. Large strains may change the energetic status of the
system and lead to formation of metastable structures (e.g., amorphous phases) as
will be discussed later on. It is to be noted that the strain energy is essentially
irrelevant to incoherent nucleation. In the case of strained incoherent microcluster,
diffusion of thermal vacancies to or from the disordered interface may completely
eliminate the strain energy of the system [1]. It is the cases of coherent and
semicoherent precipitates where the strain energy becomes relevant. It may be
argued that all nuclei are coherent at the very first stages of nucleation. However,
at the same time, it should be realized that these phenomena may be inaccessible to
experimental methods in many occasions.

The most important parameters determining the phase selection during nucle-
ation are the activation energy of nucleation, Dg*, the interface energies r and, the
chemical driving force DgC, and the elastic strain energy Dhd—although this last
parameter is not relevant to incoherent precipitate cases. In order to evaluate a
possible phase selection, reasonable estimates of these parameters must be
obtained.

11.1.1 Activation Energy Dg*

This term can be approximated by the activation energy of diffusion, since the
formation of a critical nucleus is mainly determined by diffusional jumps. If this is
not available, it can be also approximated with the activation energy of growth of
the formed phase in the planar growth regime. From investigations on the later
stage of growth, it has been concluded that the precipitates formed in the A/B
interface first grow to coalescence within the A/B interface [2]. These results
indicate that growth of the nucleus is preferred in the direction of the interface
emphasizing the importance of atomic mobility of the A/B interface. Therefore, it
is reasonable to assume that the activation energy of volume diffusion is only an
upper estimate for the activation energy of growth.

11.1.2 Interfacial Free Energy r

The interface free energies of crystalline phases consist of two contributions: the
chemical contribution related to (chemical) atomic interaction energy, and the
structural contribution that originates from the free energy of structural defects
associated with semicoherent and incoherent interfaces [3]. The interface free
energy terms are hardly known, and even if they are known they are usually bulk
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values, and therefore, their use in early stages of phase formation is highly
questionable. The interfacial free energies in the solid state are likely to vary
between values approaching zero for epitaxial interfaces to maximum values of the
order of few J/cm2 for random interfaces [4]. It should be emphasized that surface
free energies of crystalline solids are very much dependent on the history of the
specimen, crystal orientation, defect density, impurities etc., and they may depend
on the size of the microcluster. Hence, the values of surface free energies for solids
are not material constants, but are specific for the sample in question.

11.1.3 (Elastic) Strain Energy Dhd

Elastic strain energy affects the nucleation, particularly in the case of coherent or
semicoherent precipitates, as can be seen from the Eq. 11.10. Here, one will
consider only elastic energy, yet the deformations involved can reach proportions
beyond the usual elastic limits of the materials. A complete analysis of these
effects should take into account the energy stored in plastic deformation as well.
The elastic energy resulting from the formation of a third phase will depend on the
elastic characteristics of all three phases. In the simplified case where all three
phases have the same elastic constants, the energy is given by the following
relation [1, 5]

Dgel ¼ 2s 1þ mð Þ=9 1� mð Þ½ �e2 ð11:11Þ

where s, the shear modulus of elasticity, is also called the modulus of rigidity, m is
the Poisson ratio, and e, the strain, is the ratio between the excess volume (under
zero stress) and the volume of the hole (here the volume of the reactants) [4].
Ignoring the problems of anisotropy, the following relations from the theory of
elasticity can be utilized. Young’s modulus E is equal to s times 2(1 + m); some
tables also give the compression or bulk modulus, which is equal to E, divided by
3(1-2m). The problems of interest here do not concern isotropic materials but
three different materials at once. As a zeroth approximation, one may consider that
the strain energy is given by an average of the different elastic constants.

11.1.4 The Chemical Driving Force

In order to calculate the chemical driving force for the nucleation of a new phase at
the A/B interface, the free energy curves of the solid solution phases and of the
formed compounds must be known. These can be determined by applying the
CALPHAD method [6–10]. If there exists no information about lattice stabilities
and so on in the system, these quantities can be evaluated by ab initio methods. In
systems with large negative heat of compound formation, the driving force for the
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nucleation of a new phase from the pure elements (with no or negligible terminal
solid solubility) is large and approaches to the free energy of compound formation
in the reaction temperature. However, in all systems, interdiffusion must occur first
to create the necessary driving force for nucleation. Thus, as this may in some
cases substantially decrease the initially available driving force for compound
formation, this issue must be taken into account [11].

In Thompsons [11] treatment, it is shown that interdiffusion must precede
nucleation of new phases and that only after some interdiffusion has occurred there
can be a driving force for nucleation (see also Sect. 1.15 for more details). This
requirement imposes a kinetic constraint to the first-phase formation. Thus, rela-
tive mobilities of diffusing components in competing phases will determine which
phase will form first.

In Fig. 11.3, the Gibbs energy curves of the AB system at a given temperature
are shown, where A and B have different crystal structures a and b, respectively,
and they can form a stable intermediate phase g and a metastable phase M. By
assuming that A diffuses into b much faster than B into a, we simplify the case so
that only diffusion of A into b needs to be considered. According to the thermo-
dynamic principle of phase equilibrium (see Sect. 1.15), as diffusion proceeds, the
first phase to nucleate should be g in b when a sufficient volume of b has reached
its equilibrium composition Xeq with g (see the tangent line between b and g in
Fig. 11.3). Here, it should be remembered from the earlier discussion (Sect. 1.15)
that even though g becomes stable at this point, it will not form, since there is no
supersaturation, which would provide the necessary driving force for nucleation. If
g cannot nucleate, it will become possible for the metastable phase M to nucleate
in b when a sufficient volume of b has reached its equilibrium composition Xm

with M, provided that the interdiffusion continues. Similar arguments about the
required supersaturation as presented above naturally also apply here. The
appearance of the metastable phase M would therefore indicate that the time
required for nucleation of g is longer than the time required for interdiffusion to
the point at which M can nucleate. If neither g nor M can nucleate when the
composition of b passes through Xeq and Xm sequentially, b will polymorphically
transform into M when its composition reaches X0. This analysis leads to a con-
clusion that the phase selection depends on the interdiffusion rate in the parent
phases as well as the nucleation rates of the product phases.

While the relative rates of nucleation are (ultimately) controlling the phase
selection, which phase can nucleate (and grow) is controlled by interdiffusion.
Hence, the first-phase formation depends exclusively on the kinetics. It is to be
noted, however, that thermodynamics of the system influences the magnitude of the
diffusion coefficients via the interaction parameters (see Chap. 1). The nucleation
rates are controlled not only by the barriers to nucleation, and hence, the volume
Gibbs energy DGv and the energies of the interfaces r involved, but also by the
diffusion required to form critically sized clusters of the product phases. Thompson
[11] further suggested that if one component diffused rapidly into the other and
self-diffusion of the host was slow, polymorphic phase transitions were favored, so
that phases with broad compositional ranges of stability and phases that were rich in

11.1 Role of Nucleation 499

http://dx.doi.org/10.1007/978-3-319-07461-0_1
http://dx.doi.org/10.1007/978-3-319-07461-0_1
http://dx.doi.org/10.1007/978-3-319-07461-0_1
http://dx.doi.org/10.1007/978-3-319-07461-0_1


the slowly moving component were preferred, and such phases with low energy
interfaces with the host phase(s) would be especially favored. This points toward
amorphous phase formation as will be discussed below.

It should also be emphasized that the free energies of compound formation
calculated by the CALPHAD method typically refer to bulk materials. In a small
nucleus, the chemical long-range order may not be fully developed due to the
interfacial constraints, thus increasing its free energy with respect to the bulk
value. In addition, despite the surface energy terms are important in small scales
encountered during nucleation, they are typically disregarded in traditional
CALPHAD calculations. Further, strain energy may also be important if inco-
herent interface has not yet been created between the forming nuclei and the
matrix. Therefore, the free energy of an ordered chemical compound (as derived
from the CALPHAD method) should be viewed as the lower limit for the free
energy of the compound nucleus. Thus, the driving force for the formation of a
certain compound may be considerably smaller than calculated by using bulk
values.

11.1.5 Nucleation Issues in Solid-State Amorphization

The term solid-state amorphization (SSA) is used to describe manufacture of
amorphous alloys by solid-state reaction of the crystalline elements. There are two
important nucleation-related problems in solid-state amorphization. One is to
understand how an amorphous phase forms at an interface between two crystalline
elements, the other is to explain how nucleation and growth of a crystalline ele-
ment is suppressed until an amorphous layer has attained a temperature- and
system-dependent critical thickness. The first problem is dealt below and the
second in subsequent sections.

Fig. 11.3 Schematic
illustration of the free energy
versus composition of a
system AB, where elements
A and B have different
equilibrium crystal structures
a and b, respectively, and
they can form a crystalline
intermetallic phase g and a
metastable intermetallic
phase M [11]
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The most studied amorphizating system is probably Ni–Zr [12, 13]. It is pos-
sible to form amorphous layer between Ni and Zr by annealing in the solid state.
Once formed, the layer continues to grow until it has reached a temperature-
dependent critical thickness. At this critical thickness the amorphization is ter-
minated by nucleation of the crystalline Ni–Zr compound at the interface between
the amorphous alloy and crystalline Zr. Recent experimental investigations have
revealed that there is a barrier to nucleation of alloy phases at a Ni/Zr interface and
that some Zr grain boundaries are sufficiently potent heterogeneous sites that they
reduce this obstacle and allow reaction at a temperature sufficiently low for
amorphization to be possible [14–16]. However, calculation based on classical
nucleation theory suggests that no such barrier exists [17, 18]. The experimental
evidence suggests that either the estimates of the volume and surface terms in the
work of Johnson [17] and of Clemens [18] are incorrect or that some additional
effects, not included in the classical nucleation analysis, are at work.

As has been discussed above, classical nucleation theory assumes that there is
no obstacle for creating small clusters of a new phase within an existing phase.
Some of these then acquire critical size and start to grow. Kelton and Greer [19]
made a quantitative test based on numerical modeling of the cluster evolution for
multistep annealing treatments in lithium disilicate glass. They found the classical
theory of nucleation to be valid provided that the critical size was greater than 16
or 20 molecular formula units. The classical approach might not deal adequately
with a situation in which the predicted critical size is of molecular dimensions or
smaller for two reasons. First, the key parameters in classical theory are the
volume free energy and the interfacial free energy as seen above. They may both
be functions of cluster size as was discussed earlier. A second, more fundamental
problem is that it may be wrong to base nucleation calculations upon clusters of
the critical size while neglecting the obstacle to reaction which is presented by
creating initial very small clusters of a new phase. This is related to the above
treatment of Thompson showing that significant interdiffusion is required before
the formation of clusters is possible in systems exhibiting extensive solid
solubility.

If classical theory of nucleation is inadequate in circumstances where the
predicted critical radius is small, other means of analyzing the initial reaction at,
for example, Ni/Zr interface. In particular, one might examine processes, which
precedes the formation of clusters of an alloy phase and which could provide a
barrier to nucleation, which is larger than the one predicted by classical theory.
One could examine first an unmixed interface and then calculate the likelihood of
pair’s exchanges. As an effect of such exchanges, two solid solutions would form,
one of Ni in Zr and one of Zr in Ni. These solid solutions could act as precursors to
the glassy phase. The thermodynamic quantities associated with exchange process
are assumed to be the molar strain free energy gs, the molar enthalpy of mixing hm

and the molar configurational entropy sc [20]. If an interface contains N pairs of
atoms, of which a fraction of n have exchanged, the configurational entropy is (as
shown in Chap. 1)

11.1 Role of Nucleation 501

http://dx.doi.org/10.1007/978-3-319-07461-0_1


sc ¼ �Nk n lnðnÞ þ ð1� nÞ lnð1� nÞ½ � ð11:12Þ

assuming that the use of Stirling’s approximation is justified. Minimizing the free
energy of the interface with respect to n gives

n ¼ 1þ exp
hþ gs

kT

� �ffi �
ð11:13Þ

This expression predicts a barrier to reaction if (h + gs) is positive.
It is necessary to estimate the magnitudes of hm and gs as was done previously

in the case of classical approach. Christian [21] suggests that the strain energy that
results from dissolving an atom of element B in matrix of element A is

gs ¼
2sAKBðvA � vBÞ2

vBð3KB þ 4sAÞ
ð11:14Þ

Here, sA and vA are the shear modulus and atomic volume of element A, respec-
tively, while KB and vB are the bulk modulus and atomic volume of element B.
Substitution of atomic volumes from Barret and Massalski [22] and elastic module
from Brandes [23] into Eq. 11.14 gives a free energy increase of 1.6 9 10-19 J/
atom on dissolving Zr in Ni, and 2.6 9 10-19 on dissolving Ni in Zr. Thus, gs is
128 kJ/g atom. It must be emphasized that the Eq. 11.14 is only approximate and
furthermore, the Ni and Zr lattices will not strain independently of each other, and
Ni is likely to dissolve in Zr also interstitially. The large value predicted by
Eq. 11.14 is intrinsic to systems with propensities to form glasses by solid-state
amorphization (SSA). It has been noticed that disparity between the atomic sizes
of species is required in order that an amorphous phase can grow and in order to
suppress the nucleation of a crystalline phase(s) as Eq. 11.14 suggests.

An attempt to estimate the enthalpy change h on exchanging a pair of atoms is
more complicated because atoms at the unmixed interface already have nearest
neighbors, which are not similar. For this reason, only part of the full enthalpy of
mixing is available to contribute to h. It is noticeable that even the full enthalpy of
mixing -43 kJ/g atom at the equiatomic composition [24] is much less than the
evaluated gs. From these values, it seems that (h + gs) may be positive and there
might be a barrier to exchange atoms at the Ni/Zr interface.

Christian [21] suggests that while single dislocations cannot readily reduce
stresses developed in small volumes, larger defects, such as grain boundaries, may
be able to. This could explain why grain boundaries at Ni/Zr interfaces are able to
act as heterogeneous sites. It does not, however, indicate why Zr, rather than Ni
grain boundaries are needed. One reason might be that the free energies associated
with certain Zr grain boundaries are greater than the free energies of Ni grain
boundaries. A second possibility is that the strain energy associated with dissolving
Ni atom in Zr is greater than that caused by dissolving Zr atom in Ni. A third
possibility is that the diffusional asymmetry in Ni–Zr makes the slow-diffusing Zr
the ‘‘matrix’’ element for SSA, and the reaction must begin in the Zr lattice.

502 11 Reactive Phase Formation in Thin Films



It will be thermodynamically favorable for the precursor solid solutions to
transform into an amorphous phase, since the interfacial energy increase associ-
ated with the formation of two amorphous/polycrystalline interfaces is probably
less than the free energy penalty attributable to strains in the solid solutions. It
should be remembered that the incoherent interface can act as a source or sink for
thermal vacancies, thus enabling the relief of strains in the system. It is also
possible that the stresses developed in the system may change the energetic sit-
uation in such a way that amorphous phase becomes more stable than the crys-
talline ones. The amorphous phase can dissolve solute atoms more easily and is
also expected to be able to relax stresses more effectively than crystalline phase.
The effect of stresses can be integrated into the Gibbs energy equation of a phase
in question. The stress term may lift the Gibbs energy curve of the crystalline
phase/phases to such high level that amorphous phase becomes the stable one (see
Sect. 1.15).

11.2 Metastable Structures and Nucleation
on Concentration Gradient

The types of metastability in alloys have been classified by Turnbull [25] as
compositional, structural, and morphological. The degree of metastability is
characterized by the free energy excess of the system over that of the equilibrium
state. Turnbull [25] expressed this energy per mole as a fraction of R�Tm, where R is
the gas constant and �Tm is the average of the elemental melting points. Compo-
sitional metastability is where an equilibrium phase exists outside its normal
composition range, and it is associated with large excess energies of up to about
1:0 R�Tm. Structural metastability is where a phase has a non-equilibrium structure,
typically with excess energies of about 0:5 R�Tm. Morphological metastability has
the lowest excess energy, about 0:1 R�Tm, but is perhaps the most widespread, and
generally useful, type of metastability. Its excess energy arises from the abnor-
mally large area of grain boundaries and interphase interfaces.

A system in true metastable equilibrium would not have access to any state of
lower free energy by means of a continuous structural change [26]. A good
example of such is a fully relaxed amorphous phase, in which any transformation
to a lower free energy microstructure can commence only with a discrete nucle-
ation stage which has an energy barrier as discussed. On the other hand, most
morphologically metastable microstructures are not in metastable equilibrium but
can evolve continuously on annealing. In this case, the energy barrier is not
nucleation, but the activation energy of atoms making diffusional jumps. Such a
system is thermodynamically unstable but is configurationally frozen [26]. Indeed
virtually all so-called metastable microstructures, whether in fact metastable or
unstable, have technologically useful lifetimes because they are at sufficiently
low temperatures to be configurationally frozen. One interesting example of
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morphological metastability is the room temperature annealing of either sputter or
electrochemically deposited copper in IC fabrication [27–29]. After deposition, the
grain size of the films increases after few hours in room temperature. The driving
force is provided by the systems tendency to decrease its surface area and thereby
its surface energy.

The formation of metastable structures has been observed also in many silicide
forming systems [30–34]. The occurrence of these metastable structures is related
to the specific features of the thin films. Among these are the very fast atomic
transport and very steep concentration gradients often observed in thin-film
structures. Since, amorphous films are always metastable, there always exists a
crystalline phase or mixture of several crystalline phases, which are thermody-
namically more stable than the amorphous phase. In other words, amorphous
phases exist only due to some kind of barrier(s), which prevents the formation of
equilibrium phases.

In all the above-mentioned silicide systems where the solid-state amorphous
(SSA) phase formation has been observed to take place, it has been observed that
in the formation temperature range only the smaller atoms are mobile (e.g., Ni in
Si and Si in Ta). This can explain the absence of crystalline compound nucleation
during the growth of a glassy interlayer [35]. The relative immobility of the larger
atom must act as a kinetic constraint to the formation of crystalline compound
nuclei. Such nucleation apparently requires the collective motion of both atomic
species. Thus, glass growth seems to require diffusional asymmetry in binary
diffusion couples. In higher temperatures, the formation of crystalline phases
becomes possible due to the enhanced atomic transport.

The absence of compounds in SSA leads to equilibria involving much higher
solute contents in the elemental solid solutions that in full equilibrium. The
equilibria are also at much lower temperatures than are usual for the phases
involved. Figure 11.4 shows the equilibrium phase diagram for Au–Si. This sys-
tem, in which glass formation by rapid liquid quenching was first found by
Klement et al. [36], is a simple eutectic. In binary eutectic systems, the chemical
interaction between the elements is repulsive. As the attractive interaction between
the elements is increased, compounds will start to appear in a binary system.

A good example of this is Ni–Zr (Fig. 11.5), which exhibits SSA and is indeed
one of the most widely investigated systems exhibiting SSA as stated earlier. Since
the compounds do not enter into the SSA reaction, the relevant metastable phase
diagram is shown by the bold curves in Fig. 11.5. The curves show actually the
extended liquiduses. This kind of metastable phase diagrams can be calculated
with the help of CALPHAD method as already discussed. Under normal condi-
tions of SSA in Ni–Zr system (composition of the a phase is about Ni60Zr40

annealed at 300 �C) [37], it is clear from the metastable phase diagram that there
should be eutectic melting of a mixture of the elemental solid solutions. The
liquid-like amorphous phase is favored with respect to the solid solutions, and it
can therefore be formed by annealing, rather than by rapid quenching as in system
like Au–Si. However, the SSA reaction is exothermic and not endothermic as
might be expected for melting. This is because the enthalpy of mixing the two
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elements in the liquid-state amorphous phase is highly negative and outweighs the
average enthalpy of fusion. Such a negative enthalpy of mixing arises when
the liquid alloy has a specific heat significantly higher than the solid state of the

Fig. 11.4 The equilibrium
phase diagram of Au–Si, a
system showing glass
formation by melt quenching,
but not by SSA

Fig. 11.5 The equilibrium
phase diagram of Ni–Zr, a
system exhibiting SSA. A
possible metastable phase
diagram in the absence of
compounds is shown by bold
curves [26]
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system. In fact, substantial excess specific heats have been measured directly in
good glass-forming alloys, for example, Pd40Ni40P20 [38]. They are associated
with ordering in the liquid state. If there were to be a eutectic melting temperature
for Ni–Zr (involving only elemental phases and the liquid), the entropy of melting
would have to be positive. Combined with the negative enthalpy of melting, this
would imply a negative equilibrium temperature [26]. The conclusion is that for
Ni–Zr, the eutectic equilibrium does not exist above absolute zero. Provided that
the intermetallic compounds can be avoided, the amorphous phase in the middle of
the composition range is stable down to absolute zero. The phase equilibria in
systems such as Au–Si and Ni–Zr are related to each other, and an evolution from
one type of eutectic system to the other is found as the ordering tendency in the
liquid alloy is increased.

One example of impurity-induced amorphous phase formation can be found
from the ternary Ta–C–O system. The high-resolution micrograph displayed in
Fig. 11.6 reveals the presence of an amorphous layer at the TaC/Cu interface. The
composition of the layer was determined to be Ta with marked amounts of oxygen
and carbon from the very thin foil (tens of nanometers thick) with the X-ray energy-
dispersive spectrometry (EDS) in the analytical TEM. Equally high amounts of
oxygen and carbon were not detected from either side of the amorphous layer. The
layer is most probably Ta[O, C]x (i.e., metastable oxide) containing some carbon
released from the partly dissociated TaC layer. The formation of the amorphous
layer was most likely caused by the presence of oxygen in the films and also
because of the diffusion of extra oxygen to the films from the annealing environ-
ment. The structure of the Cu overlayer is strongly columnar, thus providing
suitable short-circuit paths for oxygen diffusion from the atmosphere during
annealing. The overall oxygen content of the as-deposited films is expected to be
1–2 at.%. In particular, the upper part of the TaC layer (i.e., near the TaC/Cu
interface) should contain even higher amounts of oxygen. This is owing to the
sputtering system, which is equipped with turbodrag pumps to guarantee oil-free
deposition, and therefore, the pumping of water vapor from the chamber is not very
efficient, although system has load lock. In the case of the Si/Ta/Cu metallization
system, secondary ion mass spectrometry (SIMS) analyses revealed an amorphous
oxygen-rich layer to be present already in the as-deposited films. Even though this
may be the case also in this system, the major part of the incorporated oxygen is
most likely present at the grain boundaries of the as-deposited TaC layer.

The isothermal section of the metastable Ta–C–O phase diagram at 600 �C is
displayed in Fig. 11.7. The oxygen partial pressure used in the calculations was
0.2 9 10-4 Pa. Since no thermodynamic data for the metastable Ta oxides are
available, the data for stable Ta2O5 phase are used [39–43]. It is evident that the
metastable amorphous Ta[O, C]x will eventually transform into the stable phases
(i.e., Ta2O5 and graphite). In fact, according to the XRD results, the formation of
Ta2O5 took place at 725 �C (Fig. 11.8). When the formation of Ta2O5 takes place,
TaC and graphite must also be present, since they form a three-phase field in the
diagram (Fig. 11.7). TaC phase is expected to come into local equilibrium with
metastable Ta[O, C]x before the formation of stable Ta2C is possible. Therefore,
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the formation of Ta2C has been suppressed in the calculations to obtain the con-
ditions of the actual metallization structure. The initial state of the system, where
the TaC is in equilibrium with the entrapped oxygen, is marked with the contact
line (C.L.) in the isothermal section, showing that the situation is highly unstable.
The initial composition is located on the contact line and inside the three-phase
field (TaC + Ta2O5 + graphite) in the isothermal section. Since the overall
oxygen content is relatively low (*1–2 at.%), the composition lies close to the

Fig. 11.6 HREM
micrograph from the
amorphous Ta[O, C]x phase
from the sample annealed at
600 �C for 30 min

Fig. 11.7 Isothermal section
from the evaluated metastable
ternary Ta–C–O phase
diagram at 600 �C under the
external oxygen pressure of
about 0.2 9 10-4 Pa. The
tie-lines in the TaC–Ta2O5

two-phase region are shown
in the diagram. The contact
line (C.L.) between the TaC
film and oxygen indicating
the initial unstable
equilibrium as well as the
approximate composition of
the TaC[O] are also shown
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Ta–C binary system (the anticipated composition being depicted in Fig. 11.7).
When the TaC[O]gb films are annealed at elevated temperatures, oxygen dissolves
into the TaC matrix, resulting ultimately in the formation of the stable Ta2O5 and
graphite. However, owing to the kinetic constraints, the direct formation of the
stable tantalum oxide is not possible and the formation of the amorphous
Ta[O, C]x layer takes place. Considering the thickness of the amorphous layer at
600 �C, it is evident that some oxygen has to be incorporated into the films also
from the annealing atmosphere. Only after the temperature raises above 700 �C,
the relaxation of the kinetic constraints enables the formation of the stable three-
phase structure (TaC + Ta2O5 + graphite).

The reason for the existence of the Ta[O, C]x layer in amorphous form at
relatively high temperatures is not known. However, what is known, is that met-
alloids, such as B, C, N, Si, and P, can stabilize amorphous structure in transition
metals [44]. It is expected that in this system carbon, which is released from the
partially decomposed TaC layer and incorporated into the growing amorphous
Ta[O, C]x layer, stabilizes the amorphous structure. The carbon inhibits the
crystallization of the amorphous Ta[O, C]x up to 725 �C, where the formation of
Ta2O5 is observed (Fig. 11.8). The reason for the absence of graphite after the
crystallization of Ta oxide is the very difficult nucleation of graphite, as observed
elsewhere [14]. The stabilizing effect of carbon enables the growth of the amor-
phous layer to about half the thickness of the original TaC layer at the temperature
of crystallization.

The phenomena of SSA have lead to increased interest in interfacial reactions
occurring in composition gradients. In fact, as it was stated in the beginning in thin
film couples, there often occur very steep concentration gradients. Desré and
Yavari attributed the formation of amorphous phase in a thin-film system to a great
composition gradient [45, 46]. By using simple thermodynamic arguments, they
showed that sharp composition gradients increased the stability of an amorphous
phase layer by eliminating or reducing the driving force Dga?c for nucleation of
crystalline intermetallic phases in an amorphous layer. This effect increases with
increasingly negative Dhmix and free energy of alloying Dg. As diffusive mixing
proceeds further during growth of the amorphous layer, the composition gradient
flattened out and the driving force for crystalline phase formation is gradually

Fig. 11.8 XRD spectra from
the Si/TaC(70 nm)/
Cu(400 nm) sample annealed
at 725 �C for 30 min
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restored. The energy barrier for their nucleation also diminishes toward the value
of the classic theory

The existence of a composition gradient in the interfacial region has been
experimentally observed in the Ni–Si system, and the width of the interfacial
region was estimated to be B2 9 10-3 lm [47]. This region can be an amorphous
phase or a crystalline solution phase. Figure 11.9b shows the Gibbs energy curve
of such an amorphous region (Gam) at the A/B interface.

According to the classic theory of homogeneous nucleation, in order for a
crystalline stoichiometric phase b - AC*B1-C* to nucleate in the amorphous
region, the nucleus with radius r in Fig. 11.9a must attain a critical radius r* and
equilibrium exists at the interface between the amorphous phase and b. When
composition gradient in the amorphous phase is represented by line C(X) as shown
in Fig. 11.9a, since the tangents of Gam both at C(-r) and C(+r) are in touch with
the Gibbs energy curve of the b phase, Gb, the nucleus can grow further, which
means that the radius r has reached the critical size (r = r*). If the composition
gradient in the amorphous phase is greater as represented by C0(X), however, the
nucleus will not attain the critical size because the tangents both from C0(-r) and
C0(+r) miss the tip of Gb. Therefore, there exists a critical composition gradient
rCc for b to nucleate. As long as the composition gradient in the amorphous phase
is greater than rCc, the crystalline phase will not form. Note also that the ori-
entation and shape of the nuclei with respect to composition gradient are also
important as it will change the value of radius.

Following the thermodynamic approach of Cahn and Hilliard for a non-uniform
system [48], the Gibbs free energy of a volume v of an amorphous layer can be
written as

ga vð Þ ¼ q
Z
v

½g0ðCÞ þ NAvðrCÞ2�dv ð11:15Þ

where q is the number of moles of atoms per unit volume, g0(C) is the Gibbs free
energy per atom of an amorphous phase with uniform composition C, NA is
Avogadro’s number, and v is a constant. From this can be calculated the Gibbs free
energy of formation of a nucleus for the compound AC*B1-C* which includes the
classic interfacial term

DgN ¼ 24rpcr2 þ 8q½Dgpc C�ð Þ � NAvðrCÞ2�r3 þ 4=3qaðrCÞ2r5 ð11:16Þ

where rpc is the interfacial energy at the polymorphous crystallization front,
Dgpc(C*) is the Gibbs free energy of polymorphous crystallization at C*, a =
q2Dg/qC2 is assumed to be constant in the range C* - rrC \ C \ C* + rrC.

As it can be seen from the Eq. 11.16, the concentration gradient leads to a term
to the fifth power of the embryo size. As the coefficient of the r5 is positive, this
term will contribute to increase in DGN.
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For the typical composition gradients which occur during the solid-state

amorphous reaction (rC B 10+6/cm), the energy factor NAv rCð Þ2 in Eq. 11.16 is
negligible. After some algebra, an analytical expression for the critical gradient
rCc, at which DgN is both minimum and equal to zero, is obtained as

rCc ¼
q

9 rpc

ð2jDgpcjÞ3=2

a1=2
ð11:17Þ

Above this critical gradient, there is no driving force for compound nucleation.

11.3 Role of the Interfaces

The intrinsic diffusion coefficients of A and B in a given phase are generally
different, thus leading into a flux of point defects equal to JA - JB. This flux
changes stepwise at each interface, so that point defects must be created or anni-
hilated at these places. If the interface is unable to perform this task, it leads to the
injection of point defects into the substrate [49] (Fig. 11.10). If this injection of
point defects into substrate is observed, it is always a signal of some departure from
equilibrium, because then the interface is not a perfect sink for point defects as it
should be in equilibrium situation. This can lead to the supersaturation or under-
saturation of point defects close to interface. Hence, this means that the compound

Fig. 11.9 Gibbs energy
tangent constructions for
compositions at the tips of the
critical nucleus of
intermetallic phase in an
amorphous layer subject to
the concentration gradient
rC [45]
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will not have the expected composition (non-stoichiometry). It is to be noted that in
the Darken treatment of diffusion (see from Sect. 6.7 forward) equilibrium number
of point defects are assumed to be present. This means that there should be enough
sources and sinks for the point defect to maintain number of vacancies at their
equilibrium concentrations. This is typically the case when macroscopic diffusion
phenomena are considered. However, when the nanoscale diffusion phenomena are
surveyed, the distribution of vacancy sources and sinks may become an issue and
the Darken analysis is not valid anymore. Then other type of analyses must be
utilized, such as Nazarov-Gurov type approach (see Chap. 5 for more details).

It should also be emphasized that the ‘‘chemical constants’’ (see subsequent
sections on the growth models), i.e., reactivity depends on the state of the inter-
faces and may be changed due to point defect saturation. Interfaces also offer
favorable heterogeneous nucleation sites for new phases as they reduce the size of
the critical nuclei (see above Sect. 11.1).

11.4 The Role of Grain Boundaries

Thin films possess usually high density of grain boundaries (Fig. 11.11), which
can have effect on the growth kinetics. This is because of the enhanced atom
transport via the short-circuit paths. A simple situation readily occurs in thin-film
experiments: columnar grains, with their long axis along the direction of the
diffusion flux. This situation can be modeled by dividing the film into two different
parts: one with diffusion coefficient Dvol (lattice) and the other with diffusion
coefficient Dgb (grain boundary). The number of atoms transported per unit area
and unit time is given by:

MðtÞ ¼ ðAlJl þ AgbJgbÞ ¼ ðAlDvol þ AgbDgbÞ
dc

dx
ð11:18Þ

Fig. 11.10 Injection of point
defects at the interfaces
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where Al and Agb are the cross sections of the grains and the grain boundaries per
unit area.

With conventional thickness d of grain boundaries, Al & 1 and Agb & 2d/d,
where d is the average grain diameter [50]. Instead of the lattice diffusion constant
Dvol, the effective diffusivity Dtot must now be considered:

Dtot ¼ Dvol þ
2Dgbd

d
ð11:19Þ

Thus, the value of the diffusion ‘‘coefficient’’ has increased. This may also
influence the regime of layer growth, in particular if the thickness of the film is
small. Short-circuit diffusion may enhance the atom transport to such an extent that
the reaction(s) at the interfaces become rate limiting. More thorough treatment of
short-circuit diffusion can be found from Chap. 10.

Grain boundaries also provide favorable sizes for solid-state nucleation, for the
same reasons as the interfaces (see section above). Grain boundary nuclei do not
necessarily form uniformly over available grain boundary surface (e.g., two grain
junction). On the contrary, as it is reasonable to assume that the energy to form a

Fig. 11.11 Cross-sectional SEM micrographs of as-deposited. a TaN on SiO2/Si. b TaN on
silicon. c Ta2N on SiO2/Si, and d Ta2N on silicon showing columnar microstructure. Micrographs
are in the same scale, and scale bar length is 100 nm
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nucleus of critical size is smaller at grain edges and grain corners (three and four
grain junctions, respectively). These sites with lowest critical free energy for
formation of nucleus do not necessarily contribute most to the overall nucleation
rate. This is because the number of atoms which can participate in the nucleation
process also decreases with the dimensionality of the site. Cahn [51] has shown
that the opposing effects of lower energy barriers and fewer atoms participating in
the nucleation process as the dimensionality of the site can be used to map out
different nucleation conditions under which the greatest initial contribution to the
nucleation rate is made by the sites of various types.

11.5 Role of the Impurities

Impurities have important effects on the formation of phases in thin film and bulk
couples. Presence of some impurity may enhance the formation of a particular
phase at the expense of another (see Sect. 11.2 for the case of impurity-induced
amorphous phase formation). Impurities may increase or decrease reaction tem-
peratures or influence the kinetics of a phase transformation. Impurities are also
frequently responsible for the absence of phases in diffusion couples as compared
to the corresponding phase diagram. One example of the increased reaction
temperature is the formation of TaSi2, in the reaction between thin Ta film and Si
substrate, which occurs at 923 K [52]. However, if there is oxygen at the Si/Ta
interface, the temperature of formation will rise well above 1,023 K [53]. Another
example of bulk samples is the catalyzing effect of phosphorous on the formation
of Cu3Si in the reaction between bulk copper foil and Si substrate [54]. The effect
of impurities on diffusional transport should also be considered. Impurities may
segregate preferably to grain boundaries and interfaces. When they segregate to
grain boundaries, they may reduce the effect of the short-circuit diffusion paths,
thus affecting the mass transport in the system (see Chap. 10 for details).

The driving force for the equilibrium segregation of solute or impurity atoms to
grain boundaries is systems tendency to lower its total free energy. In addition to
kinetic constraints, the extent of intergranular segregation depends on impurities
influence on the grain boundary energy as well as on the factors controlling their
solubility, i.e., size factor and chemical interactions between dissimilar atoms.
Since both the kinetics and the solubility depend on temperature, the segregation
of impurities decreases with increasing temperature. By gathering large amounts
of experimental data on grain boundary segregation, Hondros and Seah [55]
showed that the smaller the solubility of an impurity in the solvent the higher is its
segregation potential. This ‘‘rule of thumb’’ is frequently used when considering
the segregation tendency of a given impurity.

The classical free surface adsorption models have often been used for evalu-
ating grain boundary segregation because of the analogies between intergranular
segregation and adsorption at free surfaces [56]. This approach is valid if it takes
into account the specific features, which differentiate the grain interface from
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surfaces. Thus, even the most dilute grain boundary can be regarded as a two-
dimensional phase with the same components as in the bulk [57]. These compli-
cations imply, among other things, that one has to utilize the extended phase rule
instead of the classical phase rule when evaluating the degrees of freedom for the
system. A generalized phase rule has been derived for system including surfaces
and interfaces by Defay and Prigogine [58]. If c is the number of components, p is
the number of 3D phases, u number of 2D surface phases, and number of degrees
of freedom f can be expressed as follows:

f þ p ¼ cþ 2� pð Þ�ðu� sÞ ¼ v� ðu� sÞ ð11:20Þ

where v is the classical (Gibbs) degrees of freedom (ignoring surfaces) and s is the
number of ‘‘surface species.’’ Two surfaces are of different species if they separate
different couples of bulk phases. For instance, in the case of a grain boundary
precipitate b in a matrix a, the interfaces a/a and a/b are of different species and
s = 2. Also surfaces of different orientations should be considered as different
species. It is to be noted that the equilibrium condition, i.e., that the chemical
potential of a component i has the same value in all phases of the system, is valid
also for grain boundaries and surfaces as shown in Sect. 1.15. Several treatments of
intergranular segregation have been published during the past decades. Extensive
reviews of the models can be found from Refs. [59, 60].

11.6 Phase Formation in Thin-Film Structures

There has been a view that phase formation in thin-film couples is sequential in
comparison to simultaneous phase formation in bulk couples. In many works
dealing with formation of silicides, only one or two silicide layers have been
reported to grow [52, 59–69]. There have been several different approaches to
explain this phenomenon [70–78], which will be summarized briefly next. It is to
be noted that the method of evaluating microstructural evolution in diffusion
couples introduced in Chap. 8 can be used in thin-film couples and is used as a
benchmark when other treatments are discussed. As these phenomena have been
thoroughly discussed in that chapter, the treatment is not repeated here for the case
of thin-film couples.

11.6.1 Linear-Parabolic Treatment

This treatment has been used by many authors to describe reactive phase forma-
tion, including d’Heurle, Gas, and Philibert [49, 68, 69, 74]. The treatment was
first used to describe the formation of silicon dioxide [74].
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11.6.1.1 Growth of One Phase Between Pure A and B

One assumes that a compound AB grows between the pure elements A and B by
the diffusion of A atoms (Fig. 11.12). If one starts from the ‘‘pure’’ diffusional
growth, one obtains the following equation:

JA ¼ CA �MA �
dlA

dL
ð11:21Þ

where the mobility is MA ¼ DA
kT

If one assumes that the intrinsic diffusion coefficient DA is not a function of
concentration one obtains

JA ¼ CA �
DA

kT
� DgA

L
ð11:22Þ

where DgA is the Gibbs energy per A atom of the reaction A + B = AB. More
specifically, it is the required energy to move one mole of A atoms from the A/AB
interface across the AB layer to the AB/B interface, i.e., the driving force for diffusion
DlA. This value can again be obtained from the molar Gibbs energy plot of the system
in question using common tangent construction if one has the assessed thermody-
namic data of the system available as shown in Sect. 1.15 and in [79, 80]. Since

dL

dt
¼ JA � vA ð11:23Þ

cA ¼
1
vA

ð11:24Þ

then

dL

dt
¼ DA �

DgA

kT
� 1

L
ð11:25Þ

Fig. 11.12 Schematic
presentation of the AB
growth between the pure
elements A and B
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If one integrates the Eq. 11.25, one obtains the familiar parabolic growth law:

L2 ¼ Kt ð11:26Þ

If Eq. 11.26 is considered at very small layer thickness, one encounters a serious
problem, since if the L & 0, then

dL

dt
� 1 ð11:27Þ

This means that pure parabolic kinetics seems impossible. Therefore, d’Heurle
et al. [49, 68, 69] introduced the concept of linear-parabolic kinetics.

The starting point is again the Eq. 11.25, where one introduces a ‘‘kinetic
parameter’’ to take into account reactions at the interfaces

dL

dt
¼ DA �

DgA

kT
� 1

Lþ K 00
ð11:28Þ

As the thickness of the layer approaches zero L ? 0, then the Eq. 11.28 reaches
the form

dL

dt
� DA �

DgA

kT
� 1

K 00
ð11:29Þ

If one integrates this equation, one obtains:

L2 þ K 0L ¼ Kðt þ t0Þ ð11:30Þ

where K0 = 2 K00

When layer thickness grow large and reaction time becomes long (as usually in
bulk couples), one obtains the ‘‘normal’’ parabolic growth equation

L!1) L2 � Kt ð11:31Þ

11.6.1.2 Multiphase Growth Between Pure A and B

If, instead of one phase, several phases grow between A and B, the situation is
slightly different, since the growth of a specific phase depends not only its own
growth kinetics but also from the growth kinetics of the adjacent phases
(Fig. 11.13).Thus, the rate equations are coupled (see Chap. 8 for details). From
Fig. 11.13, the following equations can be derived (A is still the only diffusing
species)
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dL1

dt
! J1 � J2 ð11:32Þ

dL2

dt
! 2J2 � J1 ð11:33Þ

where the coefficient 2 in the Eq. 11.33 comes from the stoichiometry.
In layer 1, A atoms diffuse through the A2B layer to react with the AB layer

according to the equation:

1: Aþ AB ¼ A2B

Dg1 ¼ Dgf
A2B � Dgf

AB

In the other layer 2, the growth of AB takes place at two interfaces:

2a: A2B� A ¼ AB
2b: Aþ B ¼ AB
total A2Bþ B ¼ 2AB

Dg2 ¼ 2Dgf
AB � Dgf

A2B

It follows that:

dL1

dt
¼ 2

a1

L1
� X1

X2

a2

L2

a1 ¼ D1
Dg1

kT
and a2 ¼ D2

Dg2

kT

ð11:34Þ

X1

X2
¼ vA2B

vAB
! x ð11:35Þ

Fig. 11.13 Schematic
presentation of multiphase
growth between pure
elements A and B
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dL2

dt
¼ 2

a2

L2
� 2

1
x

a1

L1
ð11:36Þ

The layer thicknesses L1, L2 and the total thickness L1 + L2 are functions of
ffiffi
t
p

.
If one investigates the growth of different layers:
L1 grows if the inequality

2a1

L1
[ x

a2

L2
ð11:37Þ

is fulfilled.
Similarly L2 grows if

a2

L2
[

1
x

a1

L1
; and 2a1L2 [ xa2L1 [ a1L2; ð11:38Þ

which leads approximately to the equation:

2
D1

D2
[

L1

L2
[

D1

D2
ð11:39Þ

The ratio L1
L2

can be solved from the following equation:

L1

L2
¼

2
x a1 � xa2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
x a1 � xa2
� �2þ8a1a2

q
4a2

ð11:40Þ

This ratio L1/L2 produces to the following diagram where there are three regimes
of growth (Fig. 11.14).

At the region M, L1 grows and L2 shrinks, within the region O, L2 grows and L1

shrinks and at the region N, both phases can grow simultaneously. As the time
increases and if it is assumed that end elements in reaction couple are not con-
sumed, the reaction couple eventually reaches the N region and both phases can
grow simultaneously.

11.6.1.3 ‘‘Pure’’ Diffusional Approach to Multiphase Growth

From the ‘‘pure’’ diffusional point of view regarding the growth of A2B and AB
layers between pure A and B, the following conclusions can be drawn:

(a) All phases grow simultaneously. This contradicts experimental results from
thin-film experiments where sequential phase formation has been observed

(b) Growth rate is parabolic, e.g., L ?
ffiffi
t
p
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(c) Phases cannot disappear in reaction couple. This is as a result of the fact that
as the layer thickness goes to zero the growth rate should approach infinity:
L ? 0 then dL

dt / 1
(d) However, even for the pure diffusional growth of the phases, their thickness

ratio is proportional to the ratio of the diffusion coefficients in the layers
L1
L2
! D1

D2

For example, if the ratio of the diffusion coefficients is 104, which is of reasonable
magnitude for real experiments, and for example, if the layer thickness of the layer
1 is L1 = 103 Å, then the thickness of the layer 2 would be L2 = 10-1 Å. In this
case, the layer 2 cannot be said to really exist. This shows how within the ‘‘pure’’
diffusional theory, without any further assumptions, one already gets into trouble
with layer thicknesses that are readily used in the common thin-film technology.
However, this has also been used to defend the traditional ‘‘pure’’ diffusion
approach, since it has been stated that all the phases are present in the reaction
couple as required, but the thicknesses may be so small that they are impossible to
detect.

(e) One can conclude that with small layer thicknesses with ‘‘pure’’ diffusional
theory, mathematics of the theory, and the actual physics are contradictory

11.6.1.4 Linear-Parabolic Approach to Multiphase Growth

As we noticed, serious problems are encountered with thin-film structures if one
uses the traditional ‘‘pure’’ diffusion control approach. On the other hand, if
one examines the problem with the help of linear-parabolic growth kinetics the

Fig. 11.14 Presentation of
the different growth regions
in the A/A2B/AB/B reaction
couple under diffusion
control [71]

11.6 Phase Formation in Thin-Film Structures 519



above-mentioned issues can be avoided. The equations describing the growth of
the layers are the following:

dL1

dt
¼ 2

a1

L1 þ K 001
� x

a2

L2 þ K 002
ð11:41Þ

dL2

dt
¼ 2

a2

L2 þ K 002
� 2

x
a1

L1 þ K 001
ð11:42Þ

If one assumes that the layer formation is sequential as experimentally observed
in thin-film experiments, it means that L2 = 0 at the beginning. The driving force
for the formation of AB does, however, exist, e.g., dL2

dt [ 0, and therefore, the
growth rate of AB is positive. Then, one obtains the following inequality:

a2

K 002
[

1
x

a1

L1c þ K 001
ð11:43Þ

which leads to the concept of ‘‘critical thickness’’:

L1c [
1
x

a1

a2
K 002 � K 001 ð11:44Þ

This means that the AB phase will not start to grow until the thickness of the
A2B layer has reached a minimal thickness, despite the fact that the driving force
for the formation of AB exists! Also if the other end element is depleted (A or B)
before the A2B has reached the critical thickness, the AB phase will not occur.
Furthermore, if the AB layer is present initially, it will start to shrink as the A2B
layer grows at its expense—if A2B layer has not yet reached the critical thickness
that would enable the simultaneous growth of both phases. If one plots the
thickness of the phases similar to the plot as seen in Fig. 11.14, one obtains the
same kind of plot—just the nodal lines are translated (Fig. 11.15). The slope of the
lines remain unchanged, they are simply translated vertically by the quantity given
by the ‘‘reaction’’ factor. There is, however, an additional important feature that
can be seen from Fig. 11.15. If the conditions of the growth process lie inside the
area marked as R in the figure, the phase 2 (L2) would disappear under these
conditions.

The ‘‘simultaneous’’ phase growth found in the bulk diffusion couples can be
explained on the basis of the same critical thickness. In bulk couples, the annealing
times are long and the layer thickness are large and therefore the phases ‘‘easily’’
reach the required critical thickness, thus enabling the observation of several
phases. It should, however, be emphasized that in the bulk couples also, there are
occasions where all the predicted phases are not observed.

Basically, we end up with three rules for the linear-parabolic treatment of two-
phase growth
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1. The criterion for the first-phase formation is a kinetic one: It is determined by
the value of diffusitivity

2. The first phase grows alone until a critical thickness, which depends on the
same parameters, at this point the second phase appears

3. After some transient, the both phases grow simultaneously with proportional
thickness increments.

11.6.2 Interfacial Reaction Barrier Approach

The approach was introduced by Gösele and Tu [72, 77] in order to investigate the
difference between thin film and bulk reaction couples. It was basically an
extension of earlier work by other authors [73–75]. Interfacial reaction barrier was
used to describe the energy barrier associated with changes in atomic arrangements
or effects due to volume changes at the interface due to the formation of new
interface at the expense of the old. In that way, it is somewhat related to interfacial
energy.

They used a model system to consider the effect of the interfacial reaction
barriers to multiphase growth in a reaction couple where the AbB and AcB grow
between the saturated AaB and AdB phases (a[b[ c[ d). It was also assumed

Fig. 11.15 Presentation of
the different growth regions
in the A/A2B/AB/B reaction
couple according to linear-
parabolic kinetics (see text
for details) [71]
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that the AbB and AcB phases are already present at the beginning with given
thickness xb and xc. This assumption was introduced in order to avoid the problems
arising from nucleation of the phases. Intention was especially to check whether
one of the layers would shrink away completely under various kinetic conditions.

Their model was characterized by the interdiffusion coefficients ~Db and ~Dc.
These coefficients are related to the intrinsic diffusion coefficients by the Darken
equation

~Db ¼ NBDA
b þ NADB

b ð11:45Þ

The volume of the formed compound X0 per A or B atom is assumed to be
constant. They also introduced b which is the ratio of A atoms to B atom in the
AbB compound. The shift of the interfaces can be calculated from the equations

dxb

dt
¼ GbJA

b � GbcJ
A
c ð11:46Þ

dxc

dt
¼ GcJ

A
c � GcbJA

b ð11:47Þ

with the (positive) diffusion fluxes of A atoms in the AbB and AcB layer

JA
b ¼ DCeq

b keff
b =ð1þ xbj

eff
b =~DbÞ ð11:48Þ

JA
c ¼ DCeq

c jeff
c =ð1þ xcj

eff
c =~DcÞ ð11:49Þ

where

DCeq
b ¼ Ceq

ba � Ceq
bc ð11:50Þ

and

1

jeff
b

¼ 1
jba
þ 1

jbc
ð11:51Þ

The various quantities with the subscript c have analogous meaning for the AcB
layer.

The quantities Gb, Gbc, Gc, and Gcb take into account the change in compo-
sition at the interfaces

Gb ¼ X0ð1þ b2Þ 1
a� b

þ 1
b� c

� �
ð11:52Þ

Gc ¼ X0ð1þ b2Þ 1
b� c

þ 1
c� d

� �
ð11:53Þ
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Gbc ¼ Gcb ¼ X0ð1þ bÞð1þ cÞ=ðb� cÞ ð11:54Þ

The fluxes described above are assumed to be independent of each other. The
schematic presentation of the situation is shown in Fig. 11.16. In the figure, the
different parameters are depicted only for the AbB layer, but they are analogous for
the other interfaces and layers.

The assumption that the fluxes are independent leads into equations:

Jb
A ¼ jbcðCbc � Ceq

bcÞ; at the AbB interface ð11:55Þ

and

JA
c ¼ jcbðCeq

cb � CcbÞ; at the AcB interface ð11:56Þ

The quantity jbc describes the reaction barrier against the growth of AbB layer at
the expense of the AcB layer, and jcb characterizes the reaction barrier against the
growth of the AcB layer at the expense of the AbB layer. The basic difference
between this approach and the ‘‘traditional’’ diffusional approach is the occurrence
of the interfacial reaction barriers. If the reactions at the interfaces are fast, the
reaction barriers tend to approach infinity. Hence, for fast reactions, the growth
rates are as described in the ‘‘pure’’ diffusion theory.

The condition for growth of the AbB layer dxb

dt [ 0 may be expressed in terms of
the ratio r of the diffusion fluxes

Fig. 11.16 Schematic
presentation of the
concentration profile of A
atoms in the AaB/AbB/AcB/
AdB diffusion couple
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r ¼
JA
b

JA
c

ð11:57Þ

as

r [
Gc

Gcb
¼ r1 ð11:58Þ

The analogous condition for the growth of the AcB layer is

r\
Gc

Gcb
¼ r2 ð11:59Þ

with

r1 ¼ ð1þ cÞða� bÞ=ð1þ bÞða� cÞ ð11:60Þ

and

r2 ¼ ð1þ cÞðb� dÞ=ð1þ bÞðc� dÞ ð11:61Þ

where r2 [ r1, holds, since (a - b) \ (a - c) and (b - d) [ (c - d)
When the parameters xb; xc;Di

b;D
i
c; j

eff
b ;and jeff

c have such a values that the flux

ratio r is between r1 and r2 both layers can grow simultaneously. However, if the
flux ratio is not between them, one layer will shrink and the other will grow.
Hence, situation is similar as shown already in the Fig. 11.14. This similarity also
implies that there should be a critical thickness as in the other two previous
treatments. It can be found also within this theory, and it is expressed as follows:

xcrit
c ¼

r1DCeq
c Dc

�

DCeq
b jeff

b

ð11:62Þ

where the growth of AbB is reaction controlled and the growth of AcB diffusion
controlled, thus simulating sequential phase formation. It states that the AbB layer
cannot coexist with the AcB layer as long as the thickness of the AcB layer is
below the xcrit

c . This means that even without any nucleation difficulties the AbB
cannot form with the AcB layer in the AaB/AbB/AcB/AdB diffusion couple when
the thickness of the xc is not large enough. This again predicts sequential phase
growth.
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11.6.3 Similarities Between the Growth Models

It is very interesting to compare the results obtained above and those derived in
Chap. 8. Despite the differences between the approaches, all the models lead to
similar results. It is also common to both approaches that they neglect the
nucleation difficulties in order to avoid complications. In fact, it has been shown by
d’Heurle [4] that in most cases nucleation plays a role in the very early stage of the
compound formation that is at the present time beyond experimental reach.
Nevertheless, nucleation still plays a decisive role with some silicides, especially
after the first-phase formation.

In the above two models, reactions at the interface are taken into account with
the help of a ‘‘chemical constant.’’ This concept is common to both the above
models despite the slightly different names that are used. The ‘‘chemical constant’’
is, however, a slightly obscure entity, because it is not clear what are its contents.
In Göseles approach [72, 77], it was related to the arrangement of atoms in the
interface and the volume changes due to formation of a new interface. Thus, it
should contain some ‘‘nucleation’’ contribution also. In the other approach, the
meaning of the ‘‘chemical constants’’ was somewhat similar. On the contrary, in
the physicochemical approach outlined in Chap. 8 there is no need for ad hoc
chemical constants as reaction related issues arise naturally from the stoichiom-
etric considerations.

The prediction power of the two models above is quite poor, due to the nature
of the ‘‘chemical constants.’’ There is no theoretical method at the present to
calculate these constants a priori. Hence, they can be determined only by exper-
iments. Also the lack of availability to use measured or estimated thermodynamic
and kinetic (diffusion constants) values reduce the use of these approaches. Again,
in the physicochemical approach one can readily utilize experimental and theo-
retical thermodynamic and kinetic data, which makes the approach derived in
detail in Chap. 8 a very strong and feasible tool to understand interfacial reaction
layer growth in thin film as well as in bulk couples.

From a certain point of view, both of the above models are a posteriori in their
nature, as they can explain afterward the phase formation sequence but cannot
predict it. Moreover, the ‘‘chemical constants’’ used in all the models are very
much case dependent, since they are basically depended on the conditions of the
interfaces and are therefore very sensitive to impurities, additional films etc.
Furthermore, these constants are not achievable by experimental methods. The
approaches, however, fade away the somewhat ‘‘traditional’’ distinction between
thin film and bulk couples, since fundamentally the behavior is more or less the
same. Nevertheless, in practical situations, the contributions due to the grain
boundaries, impurities etc. mentioned above (Sect. 11.5 onwards) must be taken
into account in thin films. This does not change the underlying theoretical fact that
even in bulk reaction couples phase formation is basically sequential.

If one compares the above treatments to the physicochemical model extensively
discussed in Chap. 8, the benefits of the latter over the two approaches are
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obvious. As discussed above, the physicochemical model contains only measur-
able quantities, and it has also predictive power. Thus, it is the opinion of the
authors that the physicochemical model should be used whenever the morpho-
logical evolution of a binary diffusion zone is rationalized.
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