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Preface

Diffusion in solids plays an important role in many processes in Material Science
and is the basis for numerous technological applications. In the nineteenth century,
diffusion in a solid material was hard to imagine because of densely packed
structure. In fact, the first systematic diffusion study in solid state was carried out
only in the late nineteenth century.

Before the work of Ernst O. Kirkendall and Fredrick Seitz in the 1940s, it was a
common belief that all the components diffuse at the same rate in solid materials.
Based on this assumption, direct exchange and ring mechanisms were wrongly
suggested to explain the diffusion of the components in crystalline solids.
(Surprisingly, the ring mechanism was rediscovered in molecular dynamic simu-
lation of grain boundary diffusion!) Kirkendall’s work played an important role in
formulating the basis of the theory of defect, i.e. vacancy-dependent diffusion
mechanism. Following this thought-provoking concept many outstanding papers
were published to further establish the relations to estimate the different diffusion
parameters from experiments. In the mean time, based on Georg Karl von
Hevesy’s work, radiotracer technique to study diffusion was developed which
sheds light on the fundamental aspect of the atomic nature of diffusion. In fact
Seitz, based on the available tracer diffusion study on pure Cu and Kirkendall’s
experiment, proved beyond doubt that diffusion of substitutional atoms occurs by
vacancy mechanism.

Looking back to the many books published on this subject by other researchers,
it is evident that there exists no book with a special emphasis on interdiffusion and
on the Kirkendall effect. Further, as thermodynamics plays an important role in
interdiffusion, without a proper understanding of the subject, many fundamental
aspects of interdiffusion may remain unclear. Therefore, we introduce the
important aspects of thermodynamics from the solid-state diffusion perspective
and then discuss the phenomenological process of interdiffusion extensively.
Moreover, the understanding of the interdiffusion process is not complete without
understanding the atomic mechanism of diffusion and different types of diffusion,
such as lattice and grain boundary diffusion. Therefore, these topics are discussed
in detail. Still, we are limiting the present consideration by metallic systems with
uncharged defects.

Chapter 1 starts with very basic concepts of thermodynamics. The laws of
thermodynamics are introduced and different extensive and intensive properties
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and variables are briefly discussed. The chapter is focused on a short and concise
description of the approaches to represent and utilize the thermodynamic data in a
manner suitable for interdiffusion studies. Therefore, many different ways to
represent the thermodynamic data of a given system graphically are introduced.
Special emphasis is given to Gibbs energy diagrams, phase diagrams and different
types of potential diagrams. Many of the relations developed and diagrams
introduced in this chapter will be frequently used in subsequent chapters.

Chapter 2 introduces different aspects of the hierarchical structure of solids:
atomic structure, unit cells, grain structure, defects, microstructure, etc., which are
very essential for understanding of the material systems. Some aspects related to
the defect structures in intermediate compounds, including the effect of atomic
order, are also discussed.

Chapter 3 starts with the Fick’s laws of diffusion. The second law is derived
from the first law. Subsequently, several solutions for diffusion problems with
different kinds of initial and boundary conditions are given. Limitations of the
solutions obtained are discussed, too. This chapter is written in such a way that
new students in the field or undergraduate students can understand the very basics
of Fick’s laws and their solutions, so that the formalism could directly be applied
for processing of the experimental data.

Chapter 4 relates thermodynamics with interdiffusion of components. Different
kinds of microstructures, which are expected to grow in the interdiffusion zone,
depending on the given phase diagram and composition of the end members of the
diffusion couples are explained in detail.

Chapter 5 discusses the atomic mechanisms of diffusion in detail. The main
difference between the interstitial and substitutional diffusion mechanisms is dis-
cussed. Anisotropy of diffusion, effect of temperature, and the fundamental con-
cept of a correlation factor are introduced in detail. The analytical and numerical
approaches for calculation of the correlation factors are introduced. Diffusion in
ordered phases is also disussed with a highlight on specific atomistic mechanisms
and correlation effects.

Chapter 6 concentrates on interdiffusion in systems with a wide composition
range. First, the limitations of the error function analysis are discussed based on
the topics introduced in Chap. 3 After that, different approaches that are used to
estimate the diffusion data are explained. The Kirkendall effect and the concept of
intrinsic diffusion coefficients are introduced. The estimation of the tracer diffusion
coefficients indirectly from a diffusion couple is also explained.

Chapter 7 discusses the estimation of the diffusion parameters in line com-
pounds and phases with a narrow homogeneity range. Few practical examples are
introduced to explain the steps needed for quantitative analysis.

Chapter 8 concentrates in the very recent developments in understanding the
Kirkendall effect and the physicochemical approach. By using this approach, one
can not only estimate the diffusion parameters, but also achieve more profound
understanding of the microstructural evolution of an interdiffusion zone.

Chapter 9 concentrates on diffusion in multicomponent systems. The mathe-
matical and experimental difficulties in estimating the diffusion parameters in
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ternary or higher order systems are discussed. A pseudo-binary approach, which
simplifies the conditions for the estimation of the diffusion parameter with much
better efficiency, is introduced. The usefulness of the diffusion couple technique
for the determination of phase diagrams is also discussed.

Chapter 10 concentrates mainly on short-circuit diffusion. Microstructures with
a hierarchy of short-circuit paths are explained and the kinetic regimes of diffusion
in such structures are introduced and discussed. Many practical examples are given
in order to explain the practical estimation of the diffusion parameters. Finally, the
effect of grain boundary diffusion on interdiffusion and Kirkendall effects are
briefly discussed.

Chapter 11 introduces the complications arising from the growth of the phases
as thin films. The roles of nucleation barriers, interfacial energies and elastic
strains in reactive diffusion are discussed. Further, nucleation issues in solid-state
amorphization are also discussed. Finally, it is shown that there is no fundamental
difference between thin film and bulk diffusion couples and the complications in
the former arise mainly from the structural features of thin films.

It should be noted that this book is biased towards experimental techniques.
Important developments are going on simulation, which are not covered here.
Three different groups have joined together to write on few important aspects such
as thermodynamics, interdiffusion, atomic mechanism and short-circuit diffusion.
In this also, few aspects are not covered extensively, which are beyond the
requirements for the students or available in other books.

As usual, we don’t expect it to be complete error-free. We would appreciate if
you write us with your comments and feedback so that we can take care in the next
edition.
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Chapter 1
Thermodynamics, Phases, and Phase
Diagrams

In this chapter, we will briefly go through the basics of chemical thermodynamics.
It is assumed that the reader is somewhat familiar with the fundamental concepts,
and therefore, they are not discussed in great detail. The emphasis of the chapter is
to build a thermodynamic foundation that can be utilized in the later chapters for
diffusion kinetic analyses. We will put special emphasis on the use of different
types of diagrams to represent thermodynamic data. Therefore, we introduce phase
diagrams, potential diagrams, and Gibbs free energy diagrams in considerable
detail. These “tools” are then used extensively in diffusion kinetic analysis later on
in the book. We will conclude the chapter by introducing some commonly used
thermodynamic conventions.

Classical thermodynamics is a phenomenological theory which deals with the
physical properties of macroscopic systems under equilibrium conditions and the
relations between them. The great importance of classical thermodynamics lies in
its exactness as well as in its generality. It does not make any assumptions con-
cerning the atomic structure of the system nor the interactions between the atoms.
Even though this can be regarded as being beneficial in many applications, this can
also be regarded as a weakness, especially in the case of solids and their solutions
and compounds. Statistical thermodynamics, on the other hand, strives to obtain
thermodynamic relationships based on the molecular behavior of matter. It pro-
vides additional information that cannot be achieved with classical thermody-
namics. Firstly, statistical thermodynamics shows that the laws of thermodynamics
are a direct consequence of the principles of quantum theory combined with one
very general statistical postulate. Secondly, statistical thermodynamics provides
general relations that cannot be derived from the laws of thermodynamics. Most
importantly, by utilizing statistical thermodynamics, it is possible to obtain a
physical understanding of the properties of solutions and about the reasons for
their behavior. Thus, it is beneficial to utilize both of the approaches described
above to obtain a more fundamental understanding of the behavior of different
material combinations. The subject of thermodynamics is vast, and there are a
large number of excellent books available [1-5]. The following seeks to sum-
marize those parts of thermodynamics that are considered essential for a basic
understanding of energetics in materials science. Further, the topics in Chap. 1 are

A. Paul et al., Thermodynamics, Diffusion and the Kirkendall Effect in Solids, 1
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chosen in such a way to be closely correlated to the use of thermodynamics in the
diffusion calculations from subsequent chapters. The treatment utilized in Chap. 1
partly follows the approach presented in the comprehensive textbook written by
Kivilahti [6].

1.1 Thermodynamics System and Its State

The system is a clearly defined part of a macroscopic space, distinguished from the
rest of the space by a physical boundary. The rest of the space (taking only the part
that can be regarded to interact with the system) is defined as the environment. The
system can be isolated, closed, or open depending on its interactions with the
environment. An isolated system cannot exchange energy or matter, a closed
system can exchange energy, but not matter, and an open system can exchange
both energy and matter with the environment. A system can be homogeneous, thus
thoroughly uniform, or heterogeneous. A homogeneous system is defined as a
phase, which can be either a pure component (element or chemical compound) or a
solution phase. A heterogeneous system, on the other hand, is a phase mixture.
Thermodynamics aims to determine the state of the system under investigation.
From experiment, it is known that when a certain number of macroscopic variables
of the system have been fixed, the values of all other variables are also fixed and
the state of the system becomes fully determined. In thermodynamics, the vari-
ables can be extensive, intensive, and partial. Extensive properties depend on the
size of the system, whereas the intensive properties do not. Partial properties are
the molar properties of a component. Those variables which are chosen to rep-
resent the system are called independent variables. A macrostate of the system is
characterized, for example, by its temperature (7), pressure (p), and composition
(n;) or temperature (7), volume (V), and composition (n;). A macrostate does not
change over time if its observable properties do not change. The system can,
however, go through changes in its state for a number of different reasons. These
changes can be reversible or irreversible. A reversible change is a change that can
be reversed by an infinitesimal modification of a variable, whereas irreversible
processes have a definite direction which cannot be reversed. In a system, the
energy of that system is constantly being redistributed among the particles of that
system. The particles in liquids and gases are constantly redistributing in location
as well as changing in quanta value (the individual amount of energy that each
molecule has). Every specific arrangement of the energy of each molecule in the
whole system at one instant is called a microstate. The nature of every microstate
implicitly contains the important concept of fluctuations in it. It is evident that a
given macrostate can be represented by number of different microstates.
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1.2 The Laws of Thermodynamics

Thermodynamics is based on a few empirical generalizations, which are stated in
the form of the following laws.

The zeroth law defines temperature such that if two systems are independently
in equilibrium with a third system, they must also be in equilibrium with each
other. Then, they have a common state variable—temperature.

The first law states the principle of conservation of energy such that the
macrostate of a system can be characterized with an extensive variable, called
internal energy E, which is constant in an isolated system. When the system
interacts with the environment and transfers from one macrostate to another, the
infinitesimal change in the internal energy can be stated as

E =dq+adw (1.1)

where dg and dw are the heat and work transferred into the system during the
change. When the system receives heat from the environment, dg > 0, and when
the system gives up heat, dg < 0. The same is, of course, true for the work
transferred. If the system does work, dw <0, and if work is done on the system,
dw > 0.If the external pressure acting on the systems’ straight interface is p, then
dw = —pdV, if the expansion work is the only form of work. The internal energy
of the system is a state function. This means that dE is an exact differential. During
a change, its value is, therefore, independent of the path between the initial and the
final states. It is to be noted that dg and dw are not exact differentials, but infin-
itesimal quantities of heat and work, and thus, they are path functions. Their value,
when integrated, depends on the path between the initial and final states.

The second law gives the criteria for the spontaneous change in nature that
allows the macrostate in equilibrium to be characterized by a variable S, the
entropy, which has the following properties

(i) Entropy, which is defined as

- (4).

is a state function. In Eq. 1.2, the subscript rev refers to a reversible process.
Entropy can be expressed as a function of the independent state variables of the
system as S = S(E, V;, n;). The infinitesimal entropy change of a closed system in
an arbitrary reversible process can be thus written as

ds = (2—2)&4 (g—i)dv (1.3)
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By utilizing the first law (dE)y , = dq and Eq. 1.2, we obtain

1
o =— (1.4)
oK)y, T
where T is the absolute temperature.

(ii)) The entropy of the system is an extensive property.

(iii) The entropy of the system can change for one of two reasons, either as a
result of the transfer of entropy between the system and the environment or
by the creation of entropy within the system. The entropy change can be
written as

dS = d,S + d;S (1.5)

where d;S is the entropy created within the system. From the experiment, it is
known that this quantity is always positive. During a totally reversible change, the
entropy change can be zero. When the system is isolated, its entropy can never be
decreased

dS = (dS) = diS >0 (1.6)

Hence, in real irreversible processes, the entropy of an isolated system always
increases and reaches its maximum at the equilibrium state.

The third law states that the entropy of the system has a property that S — S,
when T — 0, where S, is a constant independent of the structure of the system. At
absolute zero, the entropy of pure, defect-free, crystalline elements has the same
value, S,, which has been chosen to be zero.

Thus, the thermodynamics of closed and isolated systems is based on the fol-
lowing equations

dE =dg +dw (for all changes)

d
ds = 7(] (for reversible changes)

dS>0 (for changes in isolated systems)

These equations can be combined to give the fundamental equation for a closed
homogeneous system

dE =TdS +dw or

(1.7)
dE = TdS — pdV

if only expansion work is considered.
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Note The concept of entropy is highly ambiguous. Several interpretations
have been given to entropy. The entropy law is a consequence of the fact that
matter is composed of interacting particles that are in motion and which
constantly show a tendency to muddle up and thereby to mix both matter and
energy. Thus, it has been proposed that entropy is the measure of the systems
mixed-upness (Gibbs), or the degree of disorder (Planck). According to
Guggenheim, entropy is the measure of the spread of energy and matter.
Shannon, on the other hand, has defined entropy as the lack of information or
data [6].

The above equations are valid for closed systems with fixed composition. In
order to extend the treatment to open heterogeneous systems, we need to choose a
third variable, one that describes the composition and quantity of the system. This
is the n; being the number of moles of component i.

1.3 Heterogeneous Systems

A heterogeneous system is composed of several homogeneous subsystems,
meaning phases which each have their own energy E?, entropy $?, and compo-
sitionn? (i = 1,2, ... k). Consequently, the energy, the entropy, and the number of
moles of substance of the phase mixture are

E=) E° (1.8)
%

s=> s (1.9)
%

n:%:nd’:%:zn? (1.10)

To exactly determine the state of the phase mixture requires that each phase that
it contains must be described accurately. If we choose the variables (S, V, and »;) to
describe the state of a given phase, all other properties are then necessarily
functions of the chosen variables. This means that especially the internal energy of
a phase can be expressed as E?(S?, V?, n?). Its exact differential for an arbitrary
change can be written as
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OF OE OF
dE = (a—s>ds+ (W)dv-i-z (6—m>dni (1.11)

When the composition of the phase does not change, Eq. 1.7 is valid and the
first two partial derivatives in Eq. 1.11 are temperature of the phase (7) and its
pressure (p). The last term is defined as the chemical potential of a component i.
The chemical potential is defined formally in the following [1]: “If to any
homogeneous mass we suppose an infinitesimal quantity of any substance to be
added and its entropy and volume remaining unchanged, the increase of the energy
of the mass divided by the quantity of the substance added is the (chemical)
potential for that substance in the mass considered.”

Consequently, we obtain an equation for the change in the phase internal energy

dE® = T%dS? — p?dV® + " pfdn! (1.12)

This equation is the fundamental equation for the independent variables S, V,
and n;. The internal energy E is their characteristic function, the thermodynamic
potential of the phase. In a thermodynamic system, each phase has such a
potential.

Next, a new thermodynamic function is defined with the help of internal energy
and entropy

F=E—TS (1.13)

By differentiating the function and by substituting Eq. 1.13 into the differential
form of 1.12, we obtain

dF? = —$%dT? — p?av? + 3" pfdn! (1.14)

This equation defines the Helmholtz free energy F, which is a function of the
independent variables 7, V, and n;. The properties of this free energy function shall
be discussed in more detail in Sect. 1.5.

Let us further examine the function E? with independent variables (8%, v?, and
nd). Because T, p, and u; are intensive variables, they are not dependent on the
amount of phase ¢. From this, it follows that as the intensive variables remain
constant, Eq. 1.12 can be integrated. This gives the thermodynamic potential of
phase ¢ as

E* =TS8 —pv?® + 3" ufn! (1.15)

Next, we define two new functions, the enthalpy (H) and the Gibbs free energy (G)
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H=E+pV (1.16)
G=H-TS (1.17)

By recalling the definition of Helmholtz free energy (1.13), Eq. 1.15 (together
with 1.16 and 1.17) yields a function

G* =" ulnf (1.18)

This function (Gibbs free energy) is also a thermodynamic potential of a phase,
and it is an extensive variable. Therefore, the Gibbs free energy of a phase mixture
is given as

G=>"> ulnf (1.19)
6 i

When the Gibbs free energy function for a phase is known, all other thermo-
dynamic properties of a given phase can be expressed with the help of this
potential and its derivatives. The properties of the Gibbs free energy function are
discussed in more detail in Sect. 1.5.

1.4 Commonly Used Terms and First Glance at Phase
Diagrams

Thermodynamics is an exact discipline. Therefore, it is of great importance to
define a few more key terms which will be frequently encountered later on in the
text. A component refers to independent species in the system under investigation,
giving the minimum number of substances which must be available in the labo-
ratory in order to make up any chosen equilibrium mixture of the system in
question. A phase is a region of uniformity in a system under investigation, as
already stated. It is a region of uniform chemical composition and uniform
physical properties. A phase is also distinguished from other dissimilar regions by
an interface.

To illustrate the concepts of compound and a phase, we will consider a simple
example H,O. Ice, water, and water vapor are all different phases of the compound
H,O that exist in different temperature and pressure ranges, as shown in Fig. 1.1.
The diagram shown in Fig. 1.1 is called a unary phase diagram and is shown for
water in the figure. The point marked as C is called the critical point. When tem-
perature rises above that critical point, the gas phase (water vapor) cannot be
liquefied by increasing the pressure. The curve TC gives the equilibrium vapor
pressure of the liquid as a function of temperature up to the critical point. At point
T (called the triple point), all three phases of water are in equilibrium with each other.
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Fig. 1.1 The pressure— 1000 |

temperature diagram of H,O
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Based on the Gibbs phase rule (derived later on) at this point, the number of degrees
of freedom is zero. The equilibrium can therefore be attained only at a specific
temperature and pressure. The curve ST gives the equilibrium vapor pressure of the
solid (ice) as a function of temperature. The curve TM gives the change in the
melting point of ice as a function of pressure. It is to be noted here that the curve TM
for the system H,O is highly unusual as the TM curve here is descending, whereas in
most of the systems, it is ascending. This is a result of the fact that the molar volume
of solid water (ice) is larger than that of liquid water (in Sect. 1.7 is introduced the
Clausius—Clapeyron equation that can be used to calculate this). In most systems,
however, the opposite is true. Another unary system exhibiting this type of behavior
(i.e., larger volume in solid than in liquid) is bismuth (Bi).

Different pure elements, for example, Cu or Ni, also have three different phases:
solid, liquid, and gas. Similarly, two allotropic forms, solid gray tin and white tin,
which have a different crystal structure and properties, are considered as distinct
phases. To show the example of phases with two different components, we con-
sider the Ag—Cu binary phase diagram, which is shown in Fig. 1.2. All phases are
made of the two components, Ag and Cu. The different phases «, f3, and liquid are
stable within a certain temperature and composition (expressed here as weight
percentage) range. Note that the phase diagram shown in Fig. 1.2 is determined at
constant pressure. The a-phase is basically a solid solution Ag(Cu), that is, Ag
(with its face-centered cubic (FCC) structure) with a limited amount of dissolved
Cu, whereas the f-phase is a solid solution Cu(Ag), that is, Cu (with FCC struc-
ture) with a limited amount of dissolved Ag. Different notations (« and /) are used
to differentiate solid solutions from pure elements. The solvus curve separates the
single solid-phase region o from the solid two-phase region o + f5. Similarly,
another solvus curve separates the one-phase solid region f§ from that of the solid
two-phase region o + f5. The solidus curve separates the solid one-phase o-region
from the two-phase region where the solid « and the liquid are in equilibrium.
Similarly, another solidus curve separates the solid one-phase region f from the
two-phase region 8 + liquid. The liguidus curve, on the other hand, separates the
two-phase o + liquid and f§ + liquid areas from the liquid one-phase area L. In
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Fig. 1.2 Binary phase 1200
diagram of Ag—Cu
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Fig. 1.2, there is a horizontal line of specific importance. It represents the so-called
eutectic reaction, where liquid L reacts to form two new solid phases « and f5. At
the line, there are three phases L, o, and f which are in equilibrium with each
other. According to the Gibbs phase rule (note that here the pressure is constant),
such an equilibrium in a binary system can exist only at a specific temperature and
only with specific compositions of the three phases participating in the equilib-
rium. It is common practice to show the stability of phases in a single-component
system in different temperature and pressure ranges as shown in Fig. 1.1. In a
binary system case, the stability of the phases is shown in a different temperature
and composition range under constant pressure. Unless mentioned, a binary phase
diagram (shown in Fig. 1.2) is commonly determined at atmospheric pressure.
Note that at different pressure, the binary temperature—composition phase diagram
will be different since the equilibrium transition temperature between different
phases changes with pressure. It is also to be noted that typically, especially in the
case of metals, the vapor region is not shown in the binary phase diagram as it
typically exists at relatively high temperatures under atmospheric pressure.
Finally, it is important to realize that one cannot obtain any information about
kinetics or the morphology of the phase mixture from the phase diagram. The
diagram only gives information about the phases that can be in equilibrium under
certain composition—temperature combinations. Although there are three different
species present in a system, there are times when the phase diagram is presented as
a binary phase diagram. For example, as Fig. 1.3 shows, the MgO-Al,0O5 phase
diagram is presented as a binary phase diagram, where MgO and Al,O; are
considered as the components. The reason for this is clear. Even though there are
three species (Mg, O, and Al) in the system, there are only two components (MgO
and Al,O3). Only the amounts of these components can be changed independently.
This is called a pseudobinary phase diagram.
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Fig. 1.3 Pseudobinary phase 3000
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In a ternary system (Fig. 1.4), where three elements are mixed, the phase
diagrams take the standard form of a prism which combines an equilateral trian-
gular base (ABC) with three binary system “walls” (A-B, B-C, and C—A). This
three-dimensional form allows the three independent variables to be specified
(two-component concentrations and temperature). In practice, determining dif-
ferent sections of the diagram from these kinds of graphical models is difficult and,
therefore, horizontal (isothermal) sections through the prism are used (Fig. 1.4b).
The isothermal section is a triangle at a given temperature, where each corner
represents the pure element, each side represents relevant binary systems, and
areas of different phases can be determined inside the triangle. In addition to the
isothermal section, also vertical sections (isopleths) can be taken from a space
diagram of a given ternary system. We will return to these diagrams and their uses
in Sects. 1.12 and 1.13.

Another commonly used term, as already mentioned, is composition. Compo-
sition can be expressed in terms of mole fraction, atomic fraction or atomic per-
centage, and weight fraction or weight percentage. It should be pointed out that in a
binary (not pseudobinary) or multicomponent system, the mole fraction is equal to
the atomic fraction. This can be shown very easily for a system of total 1 mol,
where X, and Xg are mole fractions of A and B, respectively. This can be written as

Xa+Xg =1 (1.21)

If ny and ng are the total number of atoms of A and B, respectively, we can
write

XA:I’lA/ND and XB:VLB/NO (122)

where N, (=6.022 x 10> atoms/mole) is the Avogadro number.
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This means that the atomic fraction of A (Na) and B (Ng), with the help of
Eq. 1.21, can be expressed as

Neo M XaN, _ XA
AT na+ns  XaN, + XN, X+ Xg

Xa (1.23a)

XN, X
Ng = ng B/Vo B

_ _ - — Xg (1.23b)
na+ng  XaN, +XgN, Xa+Xp

Although in the previous example, we considered the one-mole system (which
will be useful in the proceeding section), it can be shown that the mole fraction is
always equal to the atom fraction, even if the system has a total more or less than
one mole of atoms. For example, we consider the system of total x mole, where the
mole of A and B are x5 and xg, respectively. This can be written as

XA +xg =x (1.24)

The mole fraction of A, X,, can be expressed as

XA XA
Xp=—= 1.25
A X XA + XB ( )

Consequently, the atomic fraction of A, Na, can be expressed as

N,
Ny=—TA e ¥ (1.26)
na +ng  xaN, +xgN, xa -+ xB

A similar expression can be derived for B.
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Concentration can be expressed as molal concentration, that is, ¢; = number of
moles (g-atoms, g-ions, etc.) of the solute i per 1,000 g of solution, or as volume
concentration, that is, the number of moles per cubic meter (m3). It is to be noted
that the latter definition is valid only at constant temperature. When describing the
composition of the liquid solution, for example, it is expedient to use as the two
other independent variables (in addition to composition regardless of how it is
expressed) temperature and pressure, so that differentiation with respect to tem-
perature implies constant pressure. Thus, we have

oC
(&) = =<

where « is the thermal expansivity and C is the concentration of the species of
interest. The relation above shows that if C, is chosen as a variable, it will not be
an independent variable [2]. Further, when we consider the solid state, it becomes
evident that in order to use volume concentrations, we should have knowledge
about the molar volume as a function of composition of the phase under investi-
gation. This is why volume concentrations are not always convenient variables
and, for this reason, will not typically be used later on in the text.

1.5 Spontaneous Change

Entropy is the basic fundamental concept when the direction of natural change is
considered as discussed in Sect. 1.2. Unfortunately, the use of entropy as the
criteria for spontaneous change requires that changes in both the system and
the environment are investigated. As the environment is not always easily defined,
the entropy criterion is not convenient to use in many practical cases. However, if
we concentrate on the system, we may lose some generality but gain a lot in the
sense that the environment no longer needs to be considered. Next, we will look in
greater detail how this can be achieved. Consider a system in thermal equilibrium
with its surroundings at a temperature 7. When a change in the system occurs, the
second law of thermodynamics states (the Clausius inequality)

d
ds-%l >0 (1.27)

Depending on the conditions under which the process occurs, this inequality
can be developed in two ways.

(i) Heat transfer at constant volume

In the absence of non-expansive work, it is possible to write dqy = dE. This is
because as volume is kept constant and only expansion work is considered, the
work done by or to the system must be zero. Thus, we can write
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dE = dq
and utilizing Eq. 1.27, the following is obtained

dE
ds == >0 (1.28)

It is to be noted that here the criteria of spontaneity is expressed in terms of
state functions only. Equation 1.28 can be rearranged as

TdS>dE (V constant, no additional work) (1.29)

At either constant internal energy (dE = 0) or constant entropy (dS = 0),
Eq. 1.29 can be expressed as

dSE7V 2 0 or dE&V § 0

The first inequality states that entropy increases in a spontaneous change in a
system with constant volume and constant internal energy. The second inequality
states that given the constant entropy and volume of a system, its internal energy
decreases during spontaneous change. This is, in fact, a statement about entropy
since it states that if the entropy of the system remains unchanged in the trans-
formation, there must be an increase in the entropy of the environment caused by
the outflow of heat from the system.

(i) Heat transfer at constant pressure

Again, in the absence of non-expansive work, we may write dg, = dH and
obtain

TdS>dH (p constant, no additional work) (1.30)
At constant enthalpy or entropy, the following inequalities are obtained
dSH"p Z 0 or dHSwP § 0

which can be interpreted in a similar fashion as inequalities concerning heat
transfer at constant V.

Unfortunately, transformations where E and V, H and p, S and V, or S and p are
constant are rare. Far more frequently, transformations take place under conditions
where V and T, or even more typically, p and 7, are constant.

Equations 1.29 and 1.30 can be written as

dE —TdS<0 and dH—TdS<0 (1.31)

The Helmholtz and Gibbs free energy functions were defined as follows
(Sect. 1.3)
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F=FE—-TS and G=H —-TS (1.32)
At constant temperature, the differentials of the functions F and G are
(dF)Ty: dE — TdS (1.33)
(dG)Tﬁp: dH — TdS (1.34)
where the entropies of the phases have been replaced by the temperature of the
system. We get two new inequalities for a spontaneous change with frequently
observed variables

(dF);, <0 (1.35)

(dG);, <0 (1.36)

(iii) Expansion work is not the only form of work

How shall the above-derived conditions for spontaneity change if the expansion
work is no longer the only form of work? The second law of thermodynamics
states that dE = dq + dwy;, Where dwy, = dw' — pdV is the total work and dw’
takes into account all other forms of work except expansion work. By solving dq,
we get

dgq= dE — aw' + pdV (1.37)
and utilizing the fact that dg — TdS <0, we obtain
dE — TdS — dw' + pdV <0 (1.38)
By utilizing the definition of the Helmholtz free energy, we obtain
(dF); <dw' — pdV = dwy (1.39)
Thus, at constant 7, change occurs spontaneously when the change in Helm-
holtz energy is smaller than the total amount of work. If the volume is constant
dV = 0, then

(dF)ry < aw' (1.40)

which is equal to Eq. 1.39 when the expansion work is the only form of work.
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From the definition of enthalpy (H = E + pV) and from dE = dg + dw' — pdV
under constant pressure, it follows that

(dH),= dE +pdV = dq + dw' — pdV + pdV (1.41)
which gives
dg, = (dH)p—dw’ (1.42)
Combining this with Eq. 1.31 results in
dH — TdS — dw' <0 (constant pressure) (1.43)
and finally,
(dG)r, < aw' (1.44)

At constants T and p, the change is spontaneous if the change in Gibbs energy is
less than the additional work done. Equations 1.44 and 1.40 can be stated also as
—AGis the maximum amount of work (other than expansion work) that the system
can release during spontaneous change at constant temperature and pressure. The
value —AF'is the maximum amount of total work that the system can release during
spontaneous change at constant temperature.

Given that G = G(T, P, ny, n,,...) in an open system, with n; being the number
of moles of component i, the derivative of the Gibbs energy function yields

dG = —SdT + Vdp + > _ pdn; (1.45)

where p; is the chemical potential of component i. At a constant value of the
independent variables P, T, and n;(j # i), the chemical potential equals the partial
molar Gibbs free energy, (0G/0n;)p 1;.;. The chemical potential (partial Gibbs
energy) has an important function analogous to temperature and pressure.
A temperature difference determines the tendency of heat to flow from one body
into another, while a pressure difference, on the other hand, determines the ten-
dency toward a bodily movement. A chemical potential can be regarded as the
cause of a chemical reaction or the tendency of a substance to diffuse from one
phase to another.
As shown before in Eq. 1.17, the Gibbs free energy can be expressed as

G=H-T1S
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where H (J/mole) is the enthalpy, T (Kelvin, K) is the absolute temperature, and
S (J/mole K) is the entropy of the system. Further, H, the total heat content or total
energy of the system, was defined in Eq. 1.16 as

H=FE+pV

where E is the internal energy, P is the pressure, and V is the volume of the system.

In general, the contribution of PV in Eq. 1.16 is very small in the solid and
liquid states if the pressure is not exceptionally high. Therefore, while working
with condensed phases (solid and liquid), the PV term can, in most cases, be
neglected. Hence, the change in internal energy of the system can be approximated
to be equal to its enthalpy

H=E (1.46)

The internal energy of the system consists of the potential and kinetic energies
of the atoms within the system. The kinetic energy of solids and liquids is caused
by the vibration of atoms at their position. In liquids and gases, the translational
and rotational movement of the atoms (or molecules), within the system, provides
an additional contribution to the kinetic energy. Every atom vibrates with different
energy at its position with degrees of freedom in x, y, and z directions with very
high frequency that is temperature dependent. The frequency spectrum starts from
0 and goes up to a maximum value of vp, which is called the Debye frequency. By
utilizing the vibration frequencies, it is possible to calculate the heat capacity of a
given solid. Above a certain temperature (6p, the Debye temperature), all atoms
are essentially vibrating with their corresponding maximum Debye frequency. For
metals at room temperature, they are typically above their Debye temperature,
which makes it possible to use single (maximum) frequency values when con-
sidering the diffusion of atoms, for instance. The average total energy (=3NkT
where k is the Boltzmann constant and N is the number of atoms in a crystal) of
atoms is fixed with respect to a particular temperature. Moreover, the vibration of
any atom depends on the vibration of neighboring atoms because of inter-atomic
bonding. This coupling produces an elastic wave with quantized energy. The
quantum of energy in an elastic wave is called a phonon. For example, sound
waves and thermal vibrations in crystals are phonons. The other part of internal
energy in solids, the potential energy, depends on the inter-atomic bonding
between the atoms. In a single-component system, the potential energy depends on
one type of bonding, but, in a binary or multicomponent system, the potential
energy depends on the type, number, and magnitude of the different bonds between
the atoms within the system. This is explored further in Sect. 1.9 for binary sys-
tems cases. The entropy of a crystal is composed of two terms: thermal entropy
and the configurational entropy. The first part is concerned with the distribution of
energy over the available energy states in the crystal (system) and the latter part
with the distribution of atoms or particles within the crystal (system).
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Note By utilizing the Gibbs free energy, all forms of work (excluding
expansion work) can be taken into account —(AG),r > W = Ipn; +
YA + zFU + ---, where the first term is the chemical part, the second is the
surface energy contribution, the third is the electrical component, etc. Thus,
Gibbs energy gives the amount of maximum additional (non-expansion)
work that the system can perform. For all spontaneous processes, the change
in Gibbs energy must be negative. It should also be noted that the temper-
ature and pressure of the system do not have to be constant during the whole
process. It is adequate that they are the same at the initial and final stages. An
example is an exothermic reaction taking place at temperature 7, where the
reaction heat is transferred to the environment at the end of the reaction, thus
making Tjniiia €qual to Tg,.1- This is, of course, a consequence of the fact that
the Gibbs energy is a state function and its value is only dependent on the
initial and final states, not the path between them.

The Helmholtz free energy of a closed system, on the other hand, is a
function of temperature and volume. Helmholtz free energy (F) is maximum
free energy, which can be used to do work at constant volume and tem-
perature and can be expressed as

F=E-TS

where E is the internal energy. The main difference between Gibbs free
energy (i.e., the change in energy at constant pressure and temperature) and
Helmbholtz free energy (i.e., the change in energy at constant volume and
temperature) is “PV”’. This comes from the fact that there is need for extra
work to accommodate the volume change. Thus, the Helmholtz free energy
is the maximum amount of any kind of work the system can do and is,
therefore, sometimes called the maximum work function. The change in
Helmbholtz free energy must also always be negative for a spontaneous
change.

With the help of the Gibbs free energy function derived above, the equilibrium
state of the system can be investigated. There is the relation between the chemical
potential of components and the total Gibbs energy of the system, as expressed in
Eq. 1.19 (Sect. 1.3) through

G = Z Z (H?nfb)
PR

The Gibbs energy function can be utilized from the component level to the
system level and back again. Hence, Eq. 1.19 provides the very important con-
nection between component and system level properties.



18 1 Thermodynamics, Phases, and Phase Diagrams

Three stable equilibrium states to be considered here are (i) complete or global
thermodynamic equilibrium, (ii) local thermodynamic equilibrium, and (iii) partial
thermodynamic equilibrium. When the system is at complete equilibrium, its
Gibbs free energy (G) function has reached its minimum value

dG=0 or wW=p=...=u’ (i=AB,C,..) (1.47)

and then, the system is in mechanical, thermal, and chemical equilibrium with its
surroundings. Consequently, there are no gradients inside the individual phases
and no changes in the macroscopic properties of the system are to be expected.

Local equilibrium, on the other hand, is defined in such a way that the equilibrium
exists only at the interfaces between the different phases present in the system. This
means that the thermodynamic functions are continuous across the interface and the
compositions of the phases right at the interface are very close to those indicated by
the equilibrium phase diagram. This also indicates that there are activity gradients in
the adjoining phases. These gradients, together with the diffusivities, determine the
diffusion of components in the various phases of a joint region.

Partial equilibrium means that the system is in equilibrium only with respect to
certain components. It is generally found that some processes taking place in the
system can be rapid, while others are relatively slow. If the rapid ones occur
quickly enough to fulfill the requirements for stable equilibrium (within the limit
of error) and the slow ones are slow enough that they can be ignored, then it is
quite proper to treat the system as being in equilibrium with respect to the rapid
processes alone [7].

It is also possible that the global energy minimum of the system is not acces-
sible owing to different restrictions. In such cases, we are dealing with metastable
equilibrium, which can be defined as a local minimum of the total Gibbs energy of
the system. In order to obtain global stable equilibrium, some forms of activation
(e.g., thermal energy) must be brought into the system. It is to be noted that
metastable equilibrium can also be complete, local, or partial; the local metastable
equilibrium concept, in any case, will be used frequently in the following sections.
Very often, one or more interfacial compounds, which should be thermodynami-
cally stable at a particular temperature, are not observed between two materials
and, then, these interfaces are in local metastable equilibrium. Another situation
commonly encountered occurs in solid/liquid reaction couples, where during the
few first seconds, the solid material is in local metastable equilibrium with the
liquid containing the dissolved atoms, before the intermetallic compound(s) is
formed at the interface. In fact, a principle commonly known as Ostwald’s rule
states that, when a system undergoing reaction proceeds from a less stable state,
the most stable state is not formed directly but rather the next more stable state is
formed, and so on, step by step until (if ever) the most stable is formed. It is a fact
that most materials used in everyday life have not been able to reach their absolute
minimum energy state and are, therefore, in metastable equilibrium. It should be
noted that a system at metastable equilibrium has thermodynamic properties,
which are exactly determined, just as a system at stable equilibrium.
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1.6 Free Energy and Phase Stability
of Single-Component System

Different phases of a single element can be stable at a different temperature range
under a particular pressure (we consider atmospheric pressure). For example,
below the melting point, a solid phase is stable, whereas above the melting point, a
liquid phase is stable. In general, at a particular temperature, the phase with the
lowest Gibbs free energy will be the stable one. If at a particular temperature, the
free energy of two phases is the same, then both phases are stable at that tem-
perature. This takes place, for example, at the melting point where the solid and
the liquid phases exist together. This also means that the system is in equilibrium
and there is no driving force for change. To explain the stability of phases at
different temperatures, we need to know the change in their free energies as a
function of temperature. Consequently, (following Eq. 1.18) in order to determine
free energy at a particular temperature, it is necessary to determine the enthalpy
and the entropy at that particular temperature. Both properties can be determined
from the knowledge of specific heat at constant pressure, Cp. The specific heat or
specific heat capacity Cp (J/mole K) is defined as the amount of heat required to
increase the temperature of a system by one Kelvin under constant pressure.

The absorption or release of heat, dg, in a reversible process, at constant
pressure from the system to the surrounding area is equal to the enthalpy change,
dH, of the system. We can write

dg = dH (1.48)

Further, from the definition of C,, the equation can be written

dq
C,=— 1.49
Pear (1.49)
From Eqgs. 1.48 and 1.49, follows
dH = C,dT (1.50)

By integrating Eq. 1.50, it can be expressed as

H T
/dH:/deT
T

Hr :H(,Jr/deT

o

(1.51)

where Hr and H,, are enthalpy at temperature 7 and 0 K, respectively.
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The enthalpy at room temperature 298 K is often known, and Eq. 1.51 can be
written as

T
Hy = Haog + / CpdT (1.52)
298

Further, from the definition of entropy for a reversible process, we know

ds = d—Tq = CPTdT (1.53)
By integrating Eq. 1.53, we get
T c T c
Sy :S,,+/7”dT: /7"dT (1.54)

where S, is the entropy at 0 K. However at 0 K, the entropy of a defect-free pure
element is, by definition, zero (according to the third law of thermodynamics).
Moreover, if the entropy at 298 K is known, then Eq. 1.54 can be written as

T
C
St = Shrg + / 7PdT (1.55)
298

Note We have considered above a pure element with a defect-free structure.
However, it is to be emphasized that it is impossible to obtain a defect-free
structure at temperatures above 0 K. There will always be a certain amount
of point defects, such as vacancies and impurities present in the structure
under the equilibrium condition. The free energy of a phase including the
contribution from defects can be expressed as

Gn =G+ AGy

G, is the free energy of a single-component material with point defects; G is
the free energy of the defect-free material, and AG, is the free energy change
because of the presence of defects. As will be shown later on, vacancies, for
instance, are always present with a certain equilibrium concentration above
0 K. However, since the concentration of defects, in general, is small
compared to the number of atoms, we can in many cases neglect the con-
tribution from AG,.
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In general, the Cp values for different phases can be experimentally determined
and are available in the literature. The way that Cp typically varies with temper-
ature is shown in Fig. 1.5a. From the knowledge of Cp, it is possible to calculate
H and § at a particular temperature 7 and consequently determine the variation of
free energy G as a function of temperature. If there are phase transformations
within the temperature range of interest, the enthalpies and entropies of the cor-
responding transformation must be added, at the appropriate 7, and the integration
must continue with the C, value of the new phase, to obtain the correct H and S at
the required temperature. The enthalpy of the formation of all pure elements under
atmospheric pressure and with their most stable form at room temperature (298 K)
has been defined to be zero at all temperatures. These are called the standard
enthalpies of formation. And from these, the enthalpy change as a function of

T
temperature can be determined as Hr = [ CpdT. The typical change in enthalpy,
298

entropy, and free energy is shown in Fig. 1.5b. There are a few important points
that should be noted here. It is clear from Eq. 1.50 that the slope of the enthalpy
curve dH/dT is equal to Cp. Since the value of Cp always increases with tem-
perature, the slope of the enthalpy curve will also increase continuously with rising
temperature. Further, from standard thermodynamic relation, we know that
dG = Vdp — SdT. Since transformations at constant pressure are under consid-
eration, we can write dG = — SdT. Hence, the slope of the free energy curve dG/
dT is equal to —S. Since entropy always increases with temperature, the slope of
the free energy, G, should always decrease with rising temperature.

Now, let us consider the stability of the solid and liquid phases of a metal. To
do this, we will first need to determine the change in free energy with temperature
for both solid and liquid phases separately. From Egs. 1.17, 1.50, and 1.55, we can
write the expressions for free energy for solid and liquid phases as

T T
S
G* = Hj + / CpdT — / 7” (1.56a)
0 0

Gt =Hf + / CLdT — / (1.56b)
0

The superscripts “S” and “L” are denoted for solid and liquid phases,
respectively. In general, the Cp of the liquid phase at a particular temperature is
higher than that of the solid phase. The typical variation of Cp for solid and liquid
phases is shown in Fig. 1.6a. The corresponding changes in enthalpy and free
energy as a function of temperature of the phases are shown in Fig. 1.6b.

As already discussed, the pV term for both solid and liquid phases is very small
and the enthalpy can be taken to be practically equal to E. Therefore, the Gibbs
energy function can be written as G = E — TS, making the free energy low for a
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Fig. 1.5 a Typical change of Cp with temperature. b Arbitrary values of H, S, and G with
temperature. Note that in many metals, the enthalpy is zero at room temperature, 298 K

phase with a low internal energy E and/or high entropy S. It is also apparent that at
low temperature, the E term will dominate, whereas at higher temperature, the
term becomes more and more significant. In general, the solid phases have higher
bonding energies compared to those of liquid phases. So the internal energy, i.e.,
enthalpy, of the solid phase is lower than the liquid phase. Further, the entropies of
liquids are typically larger than those of solids. Thus, at higher temperatures, the
liquid phase becomes stable. From Fig. 1.6b, it can be seen, for instance, that
below the melting point the solid phase is stable, whereas above the melting point
the liquid phase is stable. At the melting point, their Gibbs energies are the same,
as discussed in the beginning of this section.

Now, let us turn to consider solid-state transformation between gray tin to white
tin. Gray tin has a diamond crystal structure which is very brittle. White tin, on the
other hand, which is commercially available with a metallic luster has a BCT
(body-centered tetragonal) structure. The Gibbs energy curves for both structures
are shown in Fig. 1.7.

In Fig. 1.7, the molar Gibbs energy of the BCT-Sn has been set at zero for all
temperatures. Thus, the BCT-Sn is the reference state. The Gibbs energies of
different forms of Sn are then compared against this self-chosen reference value.
As can be seen from Fig. 1.7, BCT-Sn should be stable between 13 and 232 °C.
Below 13 °C, Sn with a diamond structure is the most stable form of tin, and above
232 °C, the liquid Sn is the most stable form of tin. It is to be noted that even
though the transition temperature between the diamond and body-centered
tetragonal structures is 13 °C, in practice the transformation requires undercooling
to about —30 °C. This is because at 13 °C, the two crystal structures are in
equilibrium and their Gibbs energies are the same. Thus, the driving force for the
transformation is zero. As temperature decreases, the driving force for the trans-
formation increases and the kinetics becomes slower. Thus, the optimum condi-
tions for the transformation are found at —30 °C. This occurrence of the low
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Fig. 1.7 The molar Gibbs energies of different phases of Sn as a function of temperature at
1 atm pressure. The figure on the right shows an enlarged part of the figure on the left

temperature diamond form of Sn should be avoided as it will lead to a phenom-
enon called tin pest. Owing to the much larger molar volume of Sn with the
diamond structure (in comparison with the smaller BCT-Sn), the transition frac-
tures (or even pulverizes) the tin objects going through the transition. One can also
determine the hypothetical melting point of the diamond Sn from the intersection
point of the metastable part of the diamond Gibbs energy curve with that of the
liquid phase. It turns out to be about 160 °C.
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Fig. 1.8 The variation of
molar Gibbs free energy g
with increase in pressure

Free energy

Pressure

The increasing importance of the entropy term (—TS) is the reason why in
many metals, we find the phase with a relatively closely packed structure is stable
at a lower temperature, whereas a relatively loosely packed structure is stable at
higher temperature. The reason for this lies in a more loosely packed structure
where there is a higher degree of vibrational freedom. For instance, «-Ti with an
HCP structure is stable at low temperature, whereas f-Ti with a BCC structure is
stable at high temperature.

1.7 Pressure Effect of Single-Component Phase Diagram

Until now, as mentioned earlier, it has been assumed that all transformations occur
under constant, typically atmospheric, pressure. If we consider the Gibbs free
energy at constant temperature but under different pressure, for example, at higher
pressure, then the freedom for vibration of atoms will be decreased in comparison
with the normal pressure. This will result in an increase in free energy, as shown in
Fig. 1.8. We know from the standard thermodynamic relation dG = Vdp — SdT
that the slope of the free energy versus pressure curve is equal to volume V, at
constant temperature. Since the volume of matter generally decreases with
increasing pressure, the slope of the free energy versus pressure curve will be
positive, but it will decrease continuously with increasing pressure. Consequently,
the equilibrium transition temperature from one phase to another will be different
under different pressures and depending on the conditions, the transition temper-
ature with increasing pressure might increase or decrease. This can be understood
as being based on the Clausius—Clapeyron relation, which can be derived by
considering the equilibrium transition temperature between the o- and y-phases in
an iron system. By using a standard thermodynamic relation, it is possible to write
for the molar Gibbs energy
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dg* =v2dP — s*dT (1.57a)
dg’ =v)dP — s'dT (1.57b)

Since the equilibrium transition between these two phases is under consider-
ation at equilibrium temperature, one has g* = g’ and further, dg* = dg’. By
equating Egs. 1.57a and 1.57b, the following is obtained

oP s’ —s* As
(@) 2ot ws

w Vn— Vi Av,

From Eqgs. 1.17, we can write
g =n—-Ts (1.59a)
g =h" —Ts" (1.59b)

From Eqgs. 1.59a and 1.59b and from the consideration of equilibrium transi-
tion, we can write

Ag=g" —g"=0= (" —h")—T(s" —s") = Ah — TAs (1.60)
Further, we can write at the transition temperature (7,)

_ Ah
T

As (1.61)

By introducing Eq. 1.61 in Eq. 1.60, we arrive at the following

dP Ah
(ﬁ) T TAv, (1.62)

Equation 1.62 is the Clausius—Clapeyron equation, which can be used to cal-
culate, for example, the TM curve shown in Fig. 1.1. We know that the a-phase has
a BCC structure and the y-phase has an FCC structure. Since FCC is a more closely
packed structure, we can write for the transition o — v, Av = —v% <0. On the
other hand, we have seen previously that the enthalpy of a phase which is stable at
higher temperature is higher (less negative) than that of a phase which is stable at
lower temperature. This becomes Ah = h’ — h* > 0. From Eq. 1.63, it follows that

(%) e <0 for the equilibrium transformation from the o-phase to the y-phase. This

is the reason why the equilibrium transition temperature decreases with increasing
pressure. Let us consider the case of the equilibrium transition between the y- to
J-phase. Since the y-phase has an FCC structure, whereas the J-phase has a BCC

structure, it is possible to write for the transition y — & Av =12 — v > 0.
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Further, from our previous explanation, we can write Ah = h —h >0. So
(%) eq > 0 for this transition and equilibrium transition temperature increases with
increasing pressure.

1.8 Free Energy and Stability of Phases in a Binary System

In the previous sections, we have considered mainly single-component systems
(i.e., pure elements). It is common knowledge that most materials in nature consist
of several phases and that these phases themselves are never pure elements. In fact,
based on the second law of thermodynamics, a pure substance exists only in our
minds and represents a limiting state, which we may asymptotically approach but
never actually obtain. Thus, the thermodynamic description of multicomponent
systems is of great importance from the theoretical as well as from the practical
point of view. In the treatment of multicomponent open systems, the most common
process considered in defining the thermodynamic functions for a solution is called
the mixing process, which Guggenheim defines as [2]:
The mixing process is the change in state experienced by the system when appropriate

amounts of the ‘pure’ components in their reference states are mixed together forming a
homogeneous solution brought to the same temperature and pressure as the initial state.

It is to be noted that although the mixing process is strongly influenced by
interaction forces between atoms and molecules (i.e., Ah), the fundamental cause
behind mixing is the entropy (As) change of the system.

For our analysis, we shall consider a system with a total of one mole of atoms,
where X4 is the mole fraction of element A and X is the mole fraction of element
B. This translates into

Xa+Xg =1 (1.63)

We define the free energies of pure elements A as G and that of B as Gy at a
particular temperature. The total molar free energy gy of a purely mechanical
mixture can be written as

80 = Xaga + Xngs (1.64)

Now, if we allow interdiffusion to taken place between the elements A and B,
there will be change in the free energy because of mixing, gix. Consequently, the
total free energy of the system after mixing can be written as

8 = 8o + Agmix (1.65)
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From Egs. 1.17 and 1.65, we find the expression for the free energy change
because of mixing as

AGnix =8—80=h—Ts —hyp+ Tso = (h — ho) — T(s — 50) (1.66)

Agmix = Ahmix - TASmix '
where h, and h are the total enthalpy of the system before and after mixing. The
values s, and s are the entropies of the system before and after mixing. The value
Ahmix = (h — hg) is the change in enthalpy, and Asyix = (s — so) is the change in
entropy due to mixing. The enthalpy of mixing can be zero, negative, or positive
depending on the system; the entropy of mixing, on the other hand, is always
positive. We shall first briefly discuss the mixing process in general and then look
a little closer at where the different terms in Eq. 1.66 arise.

1.8.1 Change in Free Energy in an Ideal System

Note that in the case of an ideal solution, Ahn,;x = 0 and the free energy of the
system can be written as

g=8o0+ Agmix =80 — TAsmix (167)

The change in free energy with composition is shown in Fig. 1.9a at one
particular temperature 7. The straight dotted line represents the total free energy
(g0 = Xaga + Xpgg) of the elements A and B before any mixing (i.e., a purely
mechanical mixture of A and B). The solid curved line represents the free energy
of the system after mixing (g = go — TAsmix). Further, the change in free energy
with composition at higher temperature, 7, is shown in Fig. 1.9b. The change in
free energy caused by mixing in an ideal solution Agnix = —TAsyx is naturally
larger at the higher temperature.

Entropy of mixing (Aspix)

The entropy of mixing originates from two different contributions, thermal and
configurational. If we consider that there are no volume and enthalpy changes
caused by mixing, then the only contribution to the entropy will configurational.
Configurational entropy comes from the possibility of arranging the atoms A and B
in different ways for a particular macrostate. Following statistical thermodynam-
ics, the configurational entropy can be expressed as

S=klnw (1.68)

where w is a thermodynamic probability, a kind of measure of randomness. This
means that the molar entropy of mixing can be written as
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where, as explained before, s, is the entropy before mixing and s is the entropy
after mixing. Since in the case of a pure element, there is only one way by which
atoms can be arranged (if vacancies are neglected), we can write w = 1. If we
consider the random solid solution, then the number of different ways by which
atoms A and B can be arranged is

o atne)! (1.70)

I’lA!l’lB!

where n, and ng are the total number of atoms of A and B, respectively.
According to Stirling’s approximation,

InN!=NInN - N (1.71)
Following Stirling’s approximation, Eq. 1.69 can be written as

ASpmix = klnw
= [(nA + nB)ln(nA + I’lB) — (nA + I’lB)] — [I/ZA lIll/lA — I’lA] — [nB lnnB — I’lB]
(1.72)
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From the definition of the mole fraction, we can write
na = XaNo; ng =XgNg; Xa+Xg =1 (173)
Substituting Eq. 1.73 in Eq. 1.72, we get

Asmix = —kN() [XA In XA + XB In XB]

(1.74)
= —R[XA lnXA + XB IIIXB}

It is, therefore, clearly apparent from Eq. 1.74 that the entropy of mixing is
always positive and will vary, as shown in Fig. 1.10. It can also be seen that the
entropy of mixing reaches its maximum at Xg = 0.5. To find the slope at different
compositions, we can differentiate Eq. 1.74 (note that X, + Xg = 1).

dAsmix
dXg

1
—+ IIIXB +X137

=—R —ln(lfxB)*(lfxB)ﬁ XB

X (1.75)

Rln (1= Xo)

So the slope at Xg = 0.5 is equal to zero, whereas the slope at Xg = 0 or 1 is

infinity. Thus, it is evident from the above discussion why a pure substance is just a

limit which we can approach but never achieve—as stated at the beginning of this

section. As the slope goes to infinity at Xg = 0, it states that in order to remove the
last B impurity from A, an infinite amount of energy must be used.
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1.8.2 Change in Free Energy in a System with Exothermic
Transformation

As discussed above, the enthalpy of mixing in an exothermic transformation is
negative. The free energy of mixing for such a case at different compositions at a
particular temperature T is shown in Fig. 1.11a. The free energy curves at higher
temperature 7 are shown in Fig. 1.11b. At higher temperature, the TAsy;x term
will be higher, making Agmix higher after mixing. In consequence, the total free
energy of the system will change far more drastically with composition compared
to at lower temperature.

1.8.3 Change in Free Energy in a System with Endothermic
Transformation

In endothermic transformation, the enthalpy of mixing Ahyx > 0. So, if the
temperature under consideration is reasonably low, the negative contribution to the
Gibbs energy of mixing from 7T Asy,;x may be smaller than the positive contribution
from the enthalpy of mixing Ahp;x within a certain composition range. In that case,
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the free energy of mixing will be positive at a certain composition range and the
total free energy change can vary, for example, as shown in Fig. 1.12 resulting in a
formation of a miscibility gap. However, at higher temperature, 7; at all compo-
sitions Ahy,x will be smaller than TAsp,;x and the free energy of mixing is always
negative, as can be seen in Fig. 1.12b. The next section considers the origin of the

enthalpy of mixing.

Note We have considered a very simplified model to establish the relation of
free energy after mixing in a binary system. We have not considered the
elastic strain that could play an important role. In some systems, where the
size of the atoms is very similar, this factor can be disregarded. However, in
some systems because of a large difference in atomic size, the elastic strain
might play a significant role. Calculations, however, become extremely
complicated if we are to consider the effect of elastic strain and so it is left
outside the scope of this book. It must, nevertheless, be remembered that the
elastic energy (as other forms of work) can be incorporated into the Gibbs

free energy of the system.
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1.9 Thermodynamics of Solutions and Phase Diagrams

In the following section, the thermodynamic background necessary for under-
standing the phase diagrams introduced briefly in Sect. 1.4 is discussed. After that
the binary and ternary phase diagrams are discussed in greater detail.

1.9.1 The Chemical Potential and Activity in a Binary Solid
Solution

For any heterogeneous system at equilibrium, the chemical potential of a com-
ponent i has the same value in all phases of the system, where the component has
accessibility. A general problem for dealing with solutions thermodynamically can
be regarded as one of properly determining the chemical potentials of the com-
ponents. Usually, the treatment utilizes the activity function introduced by Lewis
and Randall [8]. The value of the treatment lies in its close relation to composition;
with appropriate choice of reference state, the activity approaches the mole frac-
tion as the mole fraction approaches unity. Most commonly in the thermodynamics
of solutions, it is not the activity which is used, but rather the activity coefficient
which is defined as the ratio of the activity a; to the mole fraction X;
a;

— 1.7
=y (1.76)

In terms of the chemical potential, the activity can be expressed
@ — 10 =RTInal = RTInX! + RTIny/ (1.77)

where pf is the chemical potential of pure i in the reference or standard state, ,ul’

the chemical potential of i in phase j, af the activity of component i in phase j,
R the gas constant, T the temperature, and (i = A, B,...; j =0, f,...). In the
limiting case of ideal solutions, where the enthalpy (Ah = 0) and volume change
(Av = 0) of mixing are zero and the only contribution to Gibbs free energy of
mixing arises from the configurational entropy term

Asp =Y X;InX; (1.78)
i=A

the activity coefficient in Eq. 1.77 is unity and the activity of the component equals
its mole fraction (i.e., Raoultian behavior, see discussion below). If the equality is
valid for all compositions, the solution is called perfect. Thus, the activity coef-
ficient represents deviation of the real solutions from this limiting behavior. The
use of activity coefficient instead of activity in Eq. 1.77 clearly indicates the
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excess energy term RT In ,ulf to be responsible for the non-ideal behavior. This
issue is addressed in more detail in the next section.

As only relative values of thermodynamic functions can be determined, an
agreed reference state has to be established for each element or species in order to
make thermodynamic treatment quantitative (see Fig. 1.7 and related discussion).
In principle, the choice of the reference state is arbitrary as long as the chosen state
is used consequently throughout the analysis. The chosen state is then defined to be
zero and all other possible states of the element are compared against the reference
state to obtain their relative stabilities. It should be noted that there are some
uncertainties related to the usage of reference states in the literature.

1.9.2 Free Energy of Solutions

In Sect. 1.9, we briefly discussed the so-called mixing process as well as the binary
solution phases. In the beginning of this section, we also introduced the concept of
activity, which describes the deviation of the behavior of a solution from ideal
behavior. A statistical approach can be used to provide more insight into the
properties of the phases. The simplest model is one in which the total energy of the
solution is given by a summation of interactions between the nearest neighbor
atoms. If we have a binary system with two types of atoms (A and B), there will be
three interaction energy terms. These are the energy of the A—A pairs, that of the
B-B pairs, and that of the A-B pairs. Here, we assume that the total energy of the
solution arises from the interactions between the nearest neighbors. The binding
energy may be defined by considering that the change in energy as the distance
between a pair of atoms is decreased from infinity to an equilibrium separation.
The change in energy during this process is the binding energy, which for a pair of
A atoms is given as —2exa, for B atoms as —2egp, and so forth. Thus, the bond
energies are negative quantities.

The simplest model for real solution phases based on the above-defined nearest
neighbor interaction approach is the so-called regular solution model. It is based
on the following assumptions: (i) Mixing among accessible lattice spaces is
completely random p; = % = X;, (i) atoms interact only with their nearest
neighbors, (iii) the bond energy between dissimilar atoms ¢; is independent of
composition and temperature, and (iv) there is no change in volume upon mixing.

Let us examine a solution which is formed by two metals (A and B) with an
identical crystal structure. Let us further assume that the system as defined above is
in equilibrium with its surroundings. We will presume that metal A has N, atoms
and metal B has Ny atoms and that ¢4, and egp are the bond energies of the AA
and BB atom pairs according to the assumptions (ii) and (iii). Then, the config-
uration energies of pure metals, with the coordination number z, are EX =
ZN%¢ean/2 and EY = zNJepp/2, when the atoms are at rest at their equilibrium
lattice points. The number two in the nominator in the above equations is



34 1 Thermodynamics, Phases, and Phase Diagrams

introduced in order to prevent calculating the A—A and B-B interactions twice.
The formation of the solution phase starts by removing one atom from each metal
and transferring them to an infinite distance from the metal (and each other). The
work associated with this process is —z(éaa + €gp). By returning an atom A to
metal B and an atom B to metal A, the pure metals are transformed into solutions
with infinite dilution. The total number of A-B bonds with bond energy eap in
these solutions is 2z. The energy associated with this mixing process (per inter-
change) can be described as

1
dE =27 |:8AB — E (EAA + 8BB):| = —ZZIAB (179)

where I5p (per bond) is the interchange energy.
As the energy change associated with the formation of a mixture with a number
of Nag bonds is AE = Naglag, the internal energy of the solution phase is

Z Z
E = <§)NA(8AA) + (E)NB(SBB) +NABIAB (180)
The next step is to identify what the most probable number of AB bonds (Nag)
is with the nominal composition of X3. This problem can be resolved by utilizing
the first assumption of the regular solution model, i.e., that the mixing among the
lattice sites is completely random. This means that the probability that an atom A
is in position 1 equals pay) = (Na/N) and that atom B is in position 2 equals
PB2) = (NB/N) However, since PAPBR) = (NANB/Nz) and because
PAPBR) = PAQ@PB(1), WE get
(12) _ 2NaNp
Pap” = N2 (1.81)
In the solution phase, we have total of 0.5zN adjacent lattice site pairs and
therefore,

_ (1,2) 2NaNg (zN NaNg
=p\) = — =z ———— 1.82
Pav = Pas N? ( 2) = “\Na+Ns (1.82)

Thus, the internal energy of the solution phase can be written as

E= (%)NA(SAA) + @NB(aBB) —l—z(%)l/m (1.83)

By assuming that the chemical potentials of pure metals A and B can be
approximated as ) 22 1Z(eaa) and uf} = 1Z(¢pp) and utilizing the definition of
the chemical potential, the Gibbs energy of the regular solution phase becomes
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Fig. 1.13 Schematic
presentation of the effect of
the sign of the enthalpy of
mixing and that of the
interaction parameter on the
formation of a solution phase

i NaNg
G = Nauf + Np + kT » N;l I 1.84
Alp + Nppig + z,: n< A NB) (NA +NB) AB (1.84)
from which the molar Gibbs energy is obtained as
g = X3up + Xgug + RT D> X;InX; + LapXaXp (1.85)

where Lap (=zNIag) is the molar interaction energy, i.e., the interaction
parameter.

The relationship between activity and the interaction parameter can be written
as

Li(1-X))°

a; = ’))iX,' = X,' exXp RT

(1.86)

Consequently, the sign of the interaction parameter determines whether the
formation of mixture is favored or hindered. When leaa + éggpl < [2eap! and the
interaction parameter is negative (remember that the bonding energies are nega-
tive), the solution will have a larger than random probability of bonds between
unlike atoms, and thus, mixing or compound formation is favored, as in Fig. 1.13.
The converse is true when the interaction parameter is positive (leaa + €g.
Bl > 12:aBl) since atoms then prefer to be neighbors to their own kind and form
clusters. From Eq. 1.86, it is also seen how the activity coefficient depends on both
the sign and magnitude of the interaction parameter. Activity is eventually
determined by the interactions between different types of atoms in the solution
phase. It is also helpful to notice that the excess term in Eq. 1.86 LygXsXg can be
identified with the enthalpy of mixing in Eq. 1.66.

Justification of Eq. 1.86

Deviations from ideal behavior are commonly expressed in the form of excess
functions. The excess Gibbs energy of mixing can be expressed as
Ags = AR — TAsY, . This is the extra energy of mixing resulting from
the formation of a real instead of an ideal solution. In a regular solution model,
the entropy of mixing is defined to be the same as that of an ideal solution.
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Thus, the excess entropy of mixing Asyy is zero and Agyy, = AAL in the
case of regular solutions. Therefore, the expression LagX2Xg in Eq. 1.86 can
be equated to the excess enthalpy of mixing. It is to be noted that the
expression LogXaXp is also the simplest possible expression for the excess
energy of mixing, as it is required that the excess energy of mixing goes to
zero when X, = 0 or X, = 1. There is a standard relation between the partial
molar properties of a component and the total properties of a phase that can be
expressed for the excess enthalpy of mixing and the partial excess enthalpy of

the mixing of component B as
dAR™,
AhXS . = Ahxs. X mix
B,mix mix + Xa dXB
We have the above-defined AR = LagXaXp = Lag(l — Xg)Xp =
Lag(Xs — X3)

ThUS, dAhxs

I — sl = 2%
dXB AB( B)

and we obtain

Al

B,mix

= LapXaXs + XaLag(1 — 2X3)

= XALAB(XB +1- 2XB) = XALAB(l — XB) = LABXi

The excess enthalpy of the mixing of component B can also be equated (in
the case of regular solution model) to RT Inyg as discussed above.

Thus, we can write as follows:

RT Inyg = LapXa

o Lag(1 — Xg)?
7B p ~ RT
As ap = Xgyg, we finally obtain
2
Lag(1l — X&)

ap = Xpyg = Xp exp

RT
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B

Fig. 1.14 The effect of interaction parameter on the stability of a solution phase [9]

In Fig. 1.14, the effect of the sign and magnitude of the interaction parameter
on the formation of a solution phase is shown [9]. When there is no preferred
interaction between the atoms in the system, the interaction parameter Lag = 0
(eaa + eBB = 2eap), the integral heat of mixing is zero, and the free energy of
mixing is given by curve I. As the interaction parameter is made more positive, it
can be seen how the enthalpy of mixing becomes more positive and the free energy
of mixing becomes less negative. When a certain magnitude of positive interaction
is reached, it can be seen that the system is about to enter the state where the
solution phase becomes unstable. When Lap is increased to even more positive
values, one can see how the Gibbs energy curve changes its sign of curvature at the
middle region and the so-called miscibility gap is formed. This is associated with
the formation of two separate phase regions—one rich in A and another rich in B.
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Fig. 1.15 Raoult’s and Henry’s laws in a binary solution

It was shown that one may find a situation where the interaction parameter is
zero and there is no net interaction between A and B (i.e., eap + e = 2¢aB).
This type of behavior is associated with the above-defined ideal systems and is
described by Raoult’s law. The Raoultian solution was shown above to be the one
where the activity coefficient (Eq. 1.76) is unity and the activity of the component
equals its mole fraction. Such behavior is shown in Fig. 1.15. If Raoult’s law is
obeyed by the solution phase through the whole composition range, the solution is
called perfect. This type of solution does not exist in reality, but it does provide a
convenient reference state to which the behavior of real solutions can be com-
pared. In Fig. 1.15, another limiting law (Henry’s law) is also shown. This limiting
law can be understood by utilizing the regular solution model and Eq. 1.86. When
one approaches the limit where X; — 0, i.e., the solution becomes dilute, it can be
seen from Eq. 1.87 that the activity coefficient becomes concentration independent

as

©y; = exp Ls—ﬂ (1.87)

This defines the Henry’s law line seen in Fig. 1.15. The limiting laws shown in
Fig. 1.15 provide the reference states to which real solutions can be compared. As
we approach pure substance (X; — 1), the solution behavior necessarily approa-
ches Raoultian behavior no matter how “non-ideally” it otherwise behaves. This is
true also for Henry’s law, as all solutions approach it as the solution becomes
dilute enough. It is also to be noted that if the solute follows Henry’s law, then the
solvent necessarily follows Raoult’s law. Furthermore, whereas perfect solutions
do not exist, ideal solution behavior is commonly encountered in practice within
restricted composition limits.
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Historically, activity measurements have been carried out mainly by measuring
the changes in the partial pressure of a given substance upon alloying with respect
to the values of the pure component. As this type of approach also gives an easily
accessible alternative route to derive the above-defined limiting laws, we shall
briefly consider Raoult’s and Henry’s laws from this point of view. Consider a
pure liquid A in a closed vessel (initially evacuated) at temperature 7. It will
spontaneously evaporate until the pressure in the vessel is equal to the saturated
vapor pressure of liquid A (p%) at temperature 7. At this point, the rate of evap-
oration r.(a) and the rate of condensation r.() are equal. In order for an atom to
escape the surface of the liquid and enter the gas phase, it must overcome the
attractive forces exerted on it by its neighbors (i.e., overcome the activation energy
E* barrier). The magnitude of E* determines the intrinsic evaporation rate. The
condensation rate is proportional to the number of A atoms in the vapor phase,
which strike (and stick) the liquid surface in unit time. For a fixed temperature, the
condensation rate is proportional to the pressure of the vapor r.(a) = kpj which is
equal to r,(4) at equilibrium. A similar situation holds for a liquid B. If we now add
a small amount of liquid B to liquid A, what happens? If the mole fraction of A in
the resulting binary mixture is X and assuming that the atomic diameters of A and
B are comparable and there is no surface excess, the fraction of the surface area
occupied by A atoms is X4. It is a natural assumption that atom A can evaporate
only from a site where it is present and, therefore, r,(4) is decreased by a factor of
X, and the equilibrium pressure exerted by A is decreased from pq to pa

re(a)Xa = kpa (1.88)

and by utilizing the above-defined equality between evaporation rate and equi-
librium pressure, we obtain

pa = XaP% (1.89)

which is Raoult’s law. A similar equation holds for component B. The law states
that the vapor pressure exerted by a component i in a solution is equal to the
product of the mole fraction of i in the solution and the vapor pressure of i at the
temperature of the solution.

While deriving Raoult’s law, it was assumed that there is no change in the
intrinsic evaporation rates. This requires that the magnitudes of the A—A, B-B, and
A-B interactions are balanced so that the depth of the potential energy well of an
atom at the surface site is independent of the types of atoms surrounding it (see
discussion below). If we take that the A-B interaction is much stronger than that
between identical atoms and consider a solution of A in B which is sufficiently
dilute in such a way that every A atom is surrounded only by B atoms, in this case,
the activation energy for an A atom to evaporate from the surface is higher than
without B and thus, the intrinsic evaporation rate will be smaller (7] (a) <Te( a)) and

equilibrium occurs when
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r;(A>XA = kpa (1.90)
which results in
P
pa =2 >XAPZ (1.91)
re(A)

and as (r;(A) <Fe(a))> Pa is a smaller quantity than that in Egs. 1.88, 1.91 can be
written as

pa = kyXa (1.92)

If the X, of the solution is increased, it becomes more probable that not all of
the A atoms at the surface are surrounded only by the B atoms. This will have an
effect on the activation energy (depth of the potential energy well), and thus, after
a certain critical value of X4, the intrinsic evaporation rate becomes composition
dependent and Eq. 1.93 no longer holds. Equation 1.93 is, of course, Henry’s law
(a similar equation holds for B atoms also). Note also that Raoultian and Henrian
activity coefficients have different reference states. More information about the use
of these standard states as well as changing between them can be found, for
example, from Refs. [10, 11].

1.10 Lever Rule and the Common Tangent Construction

When two materials, especially metals, are mixed together, they either form a
homogeneous solution or separate into a mixture of phases, as already discussed.
Let us consider an alloy X in Fig. 1.16 in the binary system A-B to separate into a
mixture of two phases o and f (under a particular temperature and pressure).
We shall assume that there are N atoms of alloy X and that the fraction of atoms
in the a-phase is (1—x) and in the f-phase is x. The number of B atoms in alloy X is

n)B‘ , the number of B atoms in the a-phase is nf;, and the number of B atoms in the

p-phase is ng. We can change these to atomic fractions by dividing by the total

number of atoms N to get

"
X =
n’
X% — B
x5 :ﬁ
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Fig. 1.16 The lever rule
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Since n¥ = n% 4 nf, then
NXg = NX%(1 — x) + NXbx (1.94)
where
X — X3
x=2—8_ T (1.95)
xb—xz m+n
and
XXz n
l—x=— = (1.96)
xb_xz m+n
and
x m
=— 1.97
l—x n ( )

Equation 1.97 is called the lever rule, which enables us to calculate the relative
amounts of phases in a phase mixture in terms of the alloy composition and the
phases into which it separates. The free energy of a phase mixture can also be
determined by using the lever rule. If alloy X separates into phases o and f3, the free
energy of an alloy will be unchanged by the separation. The free energy of alloy
X is, therefore, equal to the sum of the free energies of the o- and fS-phases. Since

. xf—x .
alloy X consists of an amount of the «-phase equal to (X‘;} x]j) and similarly
B~ B

<XB _XE) of the f-phase, the molar free energy of alloy X will be

xh—xz
g:a<M>+b<L—Xé> (1.98)
} o o :
Xh — X3 Xh — X3
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where a and b represent the free energies of the o- and f-phases at the given
temperature and pressure, as seen from Fig. 1.17. We can further rearrange
Eq. 1.98 in order to obtain the free energy of alloy X

(Xh — X3) — (X8 — X3) b Xg — X3
X5 — X

§=4a
X5 — X
Xp — X3 1.99
=a+(b—a) % (1.99)
Xp — X3
=a+c

Hence, alloy X which separates into two phases of composition X} and Xg with
the free energies a and b has a free energy given by the point x on the straight line
connecting o and f (the common tangent). This is depicted in Fig. 1.17.

As an example of the use of common tangent construction, the calculation of
two-phase equilibrium is presented in Fig. 1.18. The condition for chemical
equilibrium is that the chemical potentials of the components are equal in the
phases that are in equilibrium. In the beginning, the a-phase with composition «1 is
contacted with the S-phase with a composition /1. As seen from Fig. 1.18 (at the
moment in question), the chemical potential (partial molar Gibbs energy) of

component A in the a-phase is ¢4 and in the f-phase ,uf\l, whereas that of com-
ponent B in the o-phase is ¢4 and in the B-phase it is ,ufil, which are hardly equal.

Thus, there is a driving force A' g ( pE — ,ugl) which drives the diffusion of the B
atoms to the a-phase (from composition 1 to «1) and Al Ha (uﬁl — pal) driving the
A atoms in the opposite direction. As the diffusion proceeds, the driving force for
diffusion gradually decreases (A%ug and A’u,) and vanishes when the chemical
potentials of the components (A and B) become equal in both phases. This takes
place when the two Gibbs energy curves for the o- and f-phases have a common
tangent and the equilibrium has been established.
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Fig. 1.18 Use of the common tangent construction to determine the phase equilibria

1.11 The Gibbs Phase Rule

The Gibbs phase rule explains the number of phases that will be present in a
system in equilibrium and is expressed as

F+P=C+N (1.100)

where F' is the number of degrees of freedom (always > 0), P is the number of
phases (liquid phase, o-phase, fi-phase), C is the number of components, and
N corresponds to the non-compositional variable. In our case, there are two non-
compositional variables present, temperature and pressure. This means that
Eq. 1.100 can be written as

F+P=C+2 (1.101)

Now for the purpose of explaining the stability of the phases in equilibrium, a
single-component system that is presented in Fig. 1.19a is considered. First, let us
examine the single-phase, solid, liquid or gas phase, region which can be written in
this region C = 1, P = 1. Also from Eq. 1.101, we can write F' = 2. This means
that in this region, there are two degrees of freedom, temperature and pressure.
Accordingly, temperature and pressure can be varied independently within the
region. Consequently, to determine the state of the phase in a single-phase region,
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both temperature and pressure must be fixed. Next, we consider the phase
boundary, along which the two phases are in equilibrium. For this can be written
C = 1, P = 2. Further, from Eq. 1.100, we can write F = 1, meaning that there is
only one degree of freedom and only temperature or pressure can be varied along
that tie-line. The other variable is automatically fixed for a particular temperature
or pressure. Let us further consider the invariant point A, where all three phases
can exist together. At this point, C = 1, P = 3. Therefore, following Eq. 1.100,
F = 0, meaning that there are no degrees of freedom at that point and all three
phases can exist only at one particular pressure and temperature.

Let us further consider the binary phase diagram shown in Fig. 1.19b. Since
binary phase diagrams are measured at constant (in general, atmospheric) pressure,
there is only one non-compositional variable present, which is temperature.
Equation 1.100 can thus be written as

F+P=C+1 (1.102)

Now, if we consider the single-phase region, then we can write C = 2, P = 1.
Following Eq. 1.102, we find F' = 2 in the single-phase o-region. This means that
to determine the state of an alloy inside a single-phase region, both temperature and
composition must be fixed. Further, if we consider a two-phase region such as
(L + o), then we can write P = 2, C = 2. So following Eq. 1.102, we find the
number of degrees of freedom F = 1. To determine the state of an alloy inside this
region, we need to fix only one variable, either 7, X, or Xg. Since, if we fix any one
of these variables, other variables will be fixed automatically. Take, for instance, 7>
where the composition of liquid and «-phases have fixed values. Next, if we con-
sider the eutectic point E, where the three phases, o, 3, and liquid exist together, we
can write P = 2, C = 2. Following Eq. 1.103, we find F = 0, meaning that there
are no degrees of freedom and 7, X, and Xp are all fixed at this point.

The phase rule is a convenient tool to check that experimentally determined
phase diagrams are correct. With its help, it is possible to point out anomalies in
phase diagrams and to offer corrections.
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Fig. 1.20 A hypothetical
erroneous phase diagram

Let us briefly look at one example. In Fig. 1.20, there is a hypothetical binary
A-B phase diagram. It contains four errors. Let us next look what they are and
produce two versions of the corrected diagram.

Error I Two-phase region in a binary diagram, thus F = 1 (pressure is fixed).
If the temperature is fixed, the compositions are unambiguously determined. In the
diagram, this is not so. If we choose temperature conveniently, the tie-line enters
the single-phase region and returns back to the two-phase region. Correction
remove the bend from the liquidus.

Error 2 Pure element, thus one component F =1+ 1 — P =2 — P. At the
melting point, there are two phases in equilibrium F = 2 — 2 = 0. Hence, phase
transformation for a pure element takes place at one particular temperature.
Correction: Liquidus and solidus curves must meet at the same point.

Error 3 Eutectic line represents three-phase equilibrium, thus F = 0. Tem-
perature must be constant. Correction Eutectic line must be horizontal.

Error 4 There are four phases in equilibrium at the eutectic isotherm, and thus,
F = —1. The number of degrees of freedom must not be negative and, therefore,
four-phase equilibrium in a binary system, with constant pressure, is not possible.
Correction 1 y-phase must be removed to obtain the necessary degree of freedom
to make F = 0. Correction 2 If there is first a two-phase o + [ region below the
eutectic isotherm and after that a peritectoid reaction takes place, we can preserve
the y-phase.

The two versions of the corrected phase diagrams are shown in Fig. 1.21.

1.12 Correlation of Free Energy and Phase Diagram
in Binary Systems

We shall first start with the simplest possible binary system, where elements A and
B are completely miscible in both solid and liquid state. This requires that the
elements A and B have (i) the same crystal structure, (ii) their size difference is
less than 15 %, and (iii) their electronegativities have similar values. These are
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Fig. 1.21 The two correct versions of the diagram shown in Fig. 1.20

known as the Hume-Rothery rules. An example of such a system is Cu—Ni above
355 °C (i.e., above the solid state, miscibility gap caused at least partly by the
ferromagnetism of Ni). Thus, the A-B system shown in Fig. 1.22 exhibits ideal
behavior and atoms will not have any preference to select neighboring atoms. To
give a mental picture of what complete miscibility in solid state means, we can
trace the following line of thought. If one begins with pure A, with its own crystal
structure, and starts to replace A atoms with B atoms, then, in the case of complete
solubility, one can eventually replace all A atoms with B atoms without any
change in crystal structure or formation of new phases and reach pure element B,
with its own crystal structure (which has to be, by definition, the same as A’s). To
illustrate this behavior, we have to consider the change in free energy with
composition for two different phases, solid (g*) and liquid (g;), to find the stability
of the phases at different temperatures and compositions. Here, we assume that the

melting point of element A (Tné) is higher than the melting point of element B
(TB). First, if we consider a relatively high temperature, as shown in Fig. 1.22a, we
know from our previous discussion that the liquid phase will be stable because of a
high contribution of entropy. Now, if we start to decrease the temperature to a
certain extent, two factors shall be mainly noticed, which shall change in the free
energy diagram. We have seen before that the free energy of a liquid phase
decreases faster than that of a solid phase. So with the decrease in temperature, the
difference in free energy of both liquid and solid phases will decrease. Further,
because of the decrease in temperature, the contribution of Agmix ~ —T Asyx Will
decrease, which means that the curvature of both curves will recede. If we
decrease the temperature up to the melting point of element A (7%), then we shall
find, as shown in Fig. 1.22b, that gL and gS will intersect at Xg = 0. If the tem-
perature is decreased further, then the curves are found to intersect somewhere in
the middle, as shown in Fig. 1.22c. The diagram can be separated into three
different composition range of (0 —X3), (X§ —X§), and (X§ — 1). Here, espe-
cially the composition range of (Xg — Xé) draws attention for further discussion.
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Fig. 1.22 Free energy versus composition diagram at different temperatures a—e for an
isomorphous system and f the corresponding phase diagram

For the sake of discussion, if we consider the nominal composition X in this
composition range, then it is apparent that the liquid phase (with this composition)
cannot be stable at this temperature, since it does not correspond to the minimum
free energy of the system. At the first instance, the solid phase with this compo-
sition seems to be the stable one. However, the system always tries to minimize its
free energy if possible. In this case, there is a possibility to further minimize the
free energy, if both solid and liquid phases exist together, the Gibbs energy value
then sits on the common tangent as defined in Sect. 1.10. It is clear from Fig. 1.22c
that the system will have minimum free energy when the solid phase with the
composition of X3 exists with the liquid phase having the composition of X5.
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Since X is the average composition of the alloy, the mole fraction of the solid
phase, following the lever rule (defined in Sect. 1.8), will be (X5 — X))/ (X5 — X5)
and the mole fraction of the liquid phase will be (X; — X3)/(X5 — X3). It should
be noted that with the change in average composition within the range of
(XL — X3), the composition of the solid and liquid phases will not change, but, only
the relative amount of the phases will change. It can also be understood from
Fig. 1.22c that in this range, the liquid and solid phases with the composition X3
and X5 will exist together, since the chemical potential or activity of elements A
and B in both the phases must be the same (1§ = pk and pg; = pk). In other words,
once solid and liquid phases reach their stable composition, there is no further
driving force for change. It is also clear that in the composition range of (O — Xg),
the solid phase will be stable since it has minimum free energy in that composition
range, whereas in the composition range of (Xé — 1), only the liquid phase will be
stable since it has minimum free energy in that composition range. If we decrease
the temperature to 75, the free energy curves of the phases, as depicted in
Fig. 1.22d, will intersect at Xg = 1. If we decrease the free energy of the system
even further, the free energy of the solid phase, as shown in Fig. 1.22e, will be
lower than the free energy of the liquid phase in all compositions and the solid
phase will be stable. The corresponding phase diagram can be seen from Fig. 1.22f.

Next, let us consider a solution with a positive heat of mixing (endothermic
behavior), which means that there is a miscibility gap in the system. Further, it is
assumed that the miscibility gap occurs only in the solid state but not in the liquid
phase. Thus, at low temperatures, the free energy of the mixing of the solid phase will
be positive because of the positive heat of mixing. At higher temperature, however,
the free energy of mixing becomes negative, because of the growing importance of
the entropy term (—7 Aspix ). At a reasonably high temperature, the free energy of the
solid and liquid phases might vary with composition, as shown in Fig. 1.23a.

With a further decrease in temperature to T, the free energy curves of solid
(g%) and liquid (¢%) phases will intersect, as is presented in Fig. 1.23b. Any further
decrease in temperature down to T,, because of the difference in curvature, gL
intersects g° at two points, so there are five-phase regions stable at a different
composition range, as given in Fig. 1.23c. With a further decrease in temperature
to T, we shall find that g° is lower than g” at all compositions so that only the solid
phase is stable at this temperature, as shown in Fig. 1.23d. It also should be noted
that because of the endothermic nature of transformation, with the decrease in
temperature, the curvature of g° is decreased very rapidly and with the further
decrease in temperature to T4, the free energy of mixing becomes positive and the
curvature of the free energy curve will become positive in a certain composition
range in the middle.

This is the reason why in this composition range, the solid cannot be present as a
single stable phase but will spontaneously dissociate into two different phases with
compositions «; and oy, as can be seen from Fig. 1.23e. The area between compo-
sitions o and o, in Fig. 1.23e is called the spinodal region. It is to be noted that
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Fig. 1.23 Free energy versus composition diagram of a system which goes through endothermic
transformation because of mixing and corresponding phase diagram

decomposition of the phase inside the spinodal does not require nucleation. Only after
reaching the inflection points of the Gibbs energy curve, must nucleation precede the
formation of a new phase. Figure 1.23f presents the corresponding phase diagram.
There are systems in which the enthalpy of mixing is positive and of such a high
magnitude that the free energy curve will have positive curvature within a certain
composition range up to a reasonably high temperature. In such cases, the free
energy curves of the phases will change as a function of temperature in a way
shown in Fig. 1.24a—e. The corresponding phase diagram is presented in Fig. 1.24f.
Here, the main difference will be that at temperature Ty and at a particular
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Fig. 1.24 Free energy versus composition diagram of a system which goes through endothermic
transformation with very high enthalpy of mixing and corresponding phase diagram

composition Xg, the three phases, «, 3, and L, can all exist together. Point E, plotted
in Fig. 1.24f, corresponds to eutectic transformation. At the eutectic isotherm, the
number of degrees of freedom is zero and thus, the equilibrium can occur only at a
specific temperature and with fixed compositions of o, f3, and L.

In all the above cases, we have considered systems where the crystal structure
of elements A and B were similar and thus, there has been only one free energy
curve for the solid phase. However, in a system where the elements have different
crystal structure, we need to consider different free energy curves for different
elements, as shown in Fig. 1.25. Let us designate, A(B), i.e., element A with a
particular crystal structure, alloyed with some B as the a-phase. Similarly, B(A) is
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Fig. 1.25 Free energy versus composition diagram of a system where elements have different
crystal structures and corresponding phase diagram

designated as the f-phase. Note in Fig. 1.25a that element A with the crystal
structure of element B (gf) will have a much higher free energy than its stable free
energy (g%); thus, it is a metastable crystal structure of A. Similarly, g§ is much
higher than gf. This system, under our consideration, also has an eutectic trans-
formation as in the previous example.

Let us next consider the case, where the formation of the y-phase in the system
is associated with strong exothermic transformation, as can be noted from
Fig. 1.26a. This implies that there is considerable difference in the electroneg-
ativities of the elements A and B. Note also that with only a slight change in
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Fig. 1.27 Free energy versus composition diagram and the corresponding phase diagram where
the ordered y-phase has a wide homogeneity range

composition, the free energy of this phase increases very rapidly. Thus, the
composition limits of the stability region of this phase are strictly limited. The
corresponding phase diagram at a particular temperature 7 is given in Fig. 1.26b.
As will be discussed in Sect. 2.6, different atoms in the ordered phase try to
occupy particular lattice positions in the crystal to maximize the number of A-B
bonds depending on the average composition of the phase. These ordered phases
are known as intermetallic compound or intermediate phases, and in general, these
phases have a different crystal structure than the crystal structure of the pure
element. In the example shown in Fig. 1.26, it is to be observed that the y-phase
has a very narrow homogeneity range. However, in some cases, as presented in
Fig. 1.27, the ordered phase can, in fact, have a wide homogeneity range, where
the change in free energy (because of the small change in composition) is not very
striking, unlike as in the previous example. These phases can deviate from their
stoichiometric composition because of the presence of defects, as discussed in
Sect. 1.11.
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Fig. 1.28 Ternary space
diagram with complete solid
and liquid solubilities in all
three binary systems

1.13 Ternary Phase Diagrams

According to the Gibbs phase rule, the number of degrees of freedom in a
homogeneous ternary phase under constant pressure is three. Thus, we need to
specify three independent variables (two-component mole fractions and temper-
ature) in order to fix an equilibrium in a ternary solution phase. This leads to a
three dimensional (7, XA, Xg) presentation. As already discussed, it is of common
practice to utilize an equilateral triangular (the Gibbs triangle) base (ABC) with
three binary system “walls” (A-B, B-C, C-A) and temperature as the vertical
axis. Next, we will briefly discuss ternary space diagrams as well as the isothermal
and vertical sections taken from those diagrams.

Figure 1.28 shows the simplest possible ternary system, where there is com-
plete solid and liquid solubility in the system (ABC). This ternary space model is
very simple and easy to interpret, but as the systems become more complex, the
space model becomes harder and harder to use. Therefore, it is common practice to
utilize different sections and projections from the space model to yield more easily
accessible information. As an example, the liquidus and solidus projections from
the ABC system are shown in Fig. 1.29.

These types of projections are typically made with constant temperature
intervals and can therefore be interpreted similarly as the contour lines in a map.
Accordingly, the closer the spacing of the projection lines, the steeper is the
projected surface. Isothermal sections are the most commonly used types of pre-
sentation of ternary equilibria. Figure 1.30 shows the isothermal section at tem-
perature 75 from the ABC system given in Fig. 1.28.

The plane intersects the liquidus surface at 75 along the curve i/, and the
solidus surface along the curve s;s,. On the left-hand side of the curve [,/,, there is
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Fig. 1.29 Solidus and
liquidus projections from the
space diagram in Fig. 1.28
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Fig. 1.30 Isothermal section
at temperature 7 from the
diagram seen in Fig. 1.28

a single-phase liquid region and on the right-hand side of the curve s;s,, there is a
single-phase solid region. Between these two curves, there is a two-phase liquid
and a solid region. The compositions of the phases in two-phase equilibrium are
obtained at the end points of the tie-line and the amounts by the lever rule, as in
binary phase diagrams. The directions of the tie-lines lying within the figure vary
fan-like, so that there is a gradual transition from the direction of one bounding tie-
line to that of the other. No two tie-lines at the same temperature may ever cross.
This is a direct result of the Gibbs phase rule. Beyond these considerations,
nothing can be said about the direction of tie-lines, except that they must run from
liquidus to solidus. Other than those tie-lines on the edges of the diagram, none of
them point toward a corner of the diagram unless by mere coincidence or due to a
complete lack of solubility with the element at the given corner. Therefore, it is
necessary to determine the position and direction of the tie-lines experimentally. It
should be noted that the activity of a given component has the same value at each
end of a tie-line.

Vertical sections (isopleths) from ternary space diagrams can also be taken.
Figure 1.31 presents some ways in which this can be achieved. Afterward, these
isopleths are shown in Fig. 1.32.

Even though the isopleths appear quite like binary phase diagrams, they must
not be confused with them. In general, tie-lines cannot be used with isopleths and
they only show the temperature composition regions of the different phases.
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When there are three phases in equilibrium in a ternary system under constant
pressure, there is still one degree of freedom left. Thus, three-phase equilibrium in a
ternary system exists within a certain temperature range and not at a single tem-
perature as in binary systems under constant pressure. Three-phase equilibrium in a
ternary phase diagram is represented by a tie-triangle and as the temperature
changes these tie-triangles form a “stack” of tie-triangles (Fig. 1.33). The com-
position of phases participating in the three-phase equilibrium can be found from
the corners of the tie-triangle and the amount by applying the lever rule three times.

In this hypothetical ternary system in AC, there is complete solid and liquid
solubility, whereas AB and BC are eutectic systems. Point M is the eutectic point
of system AB, which is at a higher temperature than N, which is the eutectic point
of the system BC. Thus, in both binary systems (AB and BC), an eutectic reaction
[<a + p takes place. In Fig. 1.34, the surfaces AMNC ja MNB are the liquidus
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Fig. 1.34 ABC ternary
system, where binary system
AC has complete solid
solubility and binary systems
AB and BC are eutectic ones

surfaces and thus determine the solubilities of  and f to liquid. These surfaces
meet at the eutectic valley MN. DG and EF are curves joining the points repre-
senting the respective compositions of the « and f phases formed in the eutectic
reactions in the binary systems. DME and GNF are horizontal lines that represent
these eutectic reactions. The surfaces ADGC and BEF are the solidus surfaces. The
three curves MN, DG, and EF do not lie in the same plane. The curve MN lies
above the surface DEFG, in such a way that there are three curved surfaces
DMNG, MEFN, and DEFG, which enclose a three-phase space where o, f5, and the
liquid are in equilibrium. Each of these surfaces is made up of tie-lines repre-
senting [ + o, [ + f, and o + f equilibria. The surfaces DMNG, MEEN, and
DEFG separate the three-phase space from the liquid + o, liquid + f, and o + f8
regions, respectively. Where the three-phase region terminates in the binary sys-
tems AB and BC, it shrinks to the binary eutectic lines. In a ternary system, the
eutectic reaction [ — o + f occurs over a range of temperature. If we have an
alloy with nominal composition of X, as in Fig. 1.34, the solidification takes place
as follows. During the solidification, the first solid phase to form is primary f,
when the liquidus surface is first met. The composition of the liquid then changes
along a path on the liquidus surface and that of the solid § along a path on the
solidus surface as the temperature decreases. Then, at a certain temperature 77,
before solidification is completed, the liquid composition reaches a point on the
curve MN and solid composition a point on the curve EF. The situation at 7 is
given in Fig. 1.35a where a tie-triangle is drawn. At this temperature, the nominal
composition is seen to lie on the /f tie-line. When the temperature is decreased to
T, the three-phase equilibrium is established, as the nominal composition now lies
inside the tie-triangle Fig. 1.35b. The compositions of the liquid, o, and f are
given by the points /, a5, and f3,, and their respective amounts can be obtained by
applying the lever rule three times
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(a)m'i \ /_____, B
(b)“:

I
Fig. 1.35 The process of solidification of an alloy with nominal composition X in the system
shown in Fig. 1.34 is exemplified in this figure as a function of temperature. a Temperature at
which liquid composition reaches a point on the curve MN and solid composition a point on the
curve EF, b temperature where three-phase equilibrium is established, and ¢ temperature when
solidification ends

Xt Xp: X!
% liquid(l,) = —=2 x 100, %p, = —'B% x 100 and %o, = “2, x 100
bl BB %200

Solidification ends at 75 when the o3f; tie-line is encountered.

As the ternary systems become more complicated, the analysis shown above
becomes increasingly difficult. Thus, it is of common practice to utilize different
sections taken from the space model to provide information in a more accessible
form. Next, we shall consider isothermal sections a little more, as they, in general,
provide the most useful information on the ternary system. When working with the
isothermal section and naming the phase regions, it is helpful to remember that the
sides of the three-phase triangles must always face the two-phase regions, and at
the corners of the tie-triangle, single-phase regions exist. These rules are based on
the more general Palatnik-Landau theorem. Figure 1.36 contains an example of the
AuPbSn system at 200 °C with all the phase regions clearly marked in the figure. It
is to be noted that in the case of systems with stoichiometric compounds, the two-
phase regions between three-phase regions may be reduced to just a single tie-line.

As an example of utilization of isothermal sections, we shall consider the fol-
lowing case. An interesting behavior has been observed in the Cu/SnBi eutectic
system during soldering at temperatures above 200 °C. In particular, when the
solder volume is small, reactions can result in drastic changes to the microstructure
when soldering times are increased. Since bismuth does not react with Cu, only tin is
consumed during the reactions. This will eventually lead to a shift in the liquid solder
composition toward the Bi-rich corner. When the isothermal section of the SnBiCu
equilibrium phase diagram is investigated, it is to be noted that when the enrichment
of liquid with bismuth increases and the composition of the solder is around
60 at-% bismuth, the local equilibrium condition changes, as shown in Fig. 1.37.
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T=200°C

1 Au+ Au,Pb
2 AutAuSnt+Au,Pb
3 AuSn+Au,Pb+AuSn
4 Au,Pb+AuSn+AuPb,
5 AuSn+AuPb,+AuPb,
6 AuSn+AuPb,+Pb
7 AuSn+Pb

8 AuSn+Pb+AuSn,
9 AuSn,+Pb

10 AuSn,+Pb+AuSn,
11 AuSn,+Lig+Pb
12 AuSn,+Liq

13 AuSn, +Lig+Sn
14 Pb+Liq

15 Liq

16 Sn+Liq

17 Sn+AuSn,

Fig. 1.36 Isothermal section from the Au-Pb—Sn ternary system at 200 °C

Fig. 1.37 Isothermal section T=200°C
from the Bi—Cu—Sn phase
diagram at 200 °C

0 2.2 o, 4 0.6 0.8 1.@
X(Bi)

CugSns cannot exist in local equilibrium with solder enriched with Bi at this
temperature (~ 200 °C, shown as contact line 2). CuzSn can, however, exist in local
equilibrium even with pure Bi. Therefore, the CugSns should transform into the
Cu3zSn layer. This has indeed been experimentally verified to take place [12].
The thing of special interest was that the Cu3Sn layer maintained the original CugSns
morphology that it replaced [12].

From the thermodynamic data, one can also calculate the so-called phase
fraction diagram (NP)-diagrams, which can be utilized to investigate, for example,
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Fig. 1.39 Solder
microstructure after reflow
when Ni(P) metallization is
used [13]

solidification. They show, as a function of temperature, the changes in the fractions
of phase with a given nominal composition. An example is shown in Fig. 1.38.

As an example of the use of phase fraction diagrams, let us consider the next
case, where identical SnAgCu solder alloy is used to solder components on two
types of printed wiring boards (PWB’s)—one with an Ni(P)/Au and one with a
Cu(OSP) surface finish. Under the reflow conditions typically used in lead-free
soldering, the solidification structure is generally cellular, where the small CugSns
and AgzSn phases are dispersed between the large primary Sn grains [13]. If
protective Au surface finishes are used, some small needle-like AuSn, can also be
found inside the solder matrix at the high-angle boundaries. An example of the
microstructure formed in the interconnections soldered with the Sn0.5Ag0.5Cu
alloy on electrochemical Ni(P) with a thin flash Au on top (denoted Ni(P)lAu in the
following) is shown in Fig. 1.39.

Both the CugSns and the Ag;Sn particles are uniformly distributed around the
relatively large Sn grains. Figure 1.40 shows a micrograph taken from a sample
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Fig. 1.40 Solder
microstructure after reflow
when Cu(OSP) metallization
is used [13]

soldered with the same solder alloy but this time on the boards with organic
solderability preservative (OSP) on the Cu pads (noted CulOSP). The resulting
microstructure seems to be different even though the same solder alloy was used
relative to Ni(P)IAu, interconnections formed on the CulOSP contain more and
larger CugSns intermetallic particles dispersed inside the solder.

What is the reason behind these differences observed experimentally? Let us
take a closer look at what takes place during soldering. The thin layer of Au on top
of Ni(P) dissolves instantly and completely into the molten solder, and the Ni starts
dissolving next into the melt. The OSP coating partially evaporates and the rest
dissolves into the solder flux during soldering. In the case of the CulOSP boards, it
is the Cu pad that starts dissolving into the solder alloy. The dissolution rate of Cu in
Sn0.5Ag0.5Cu (wt%) is about 0.07 pm/s. Based on this, the amount of Cu disso-
lution at the entire area of the soldering pad during the typical 4045 s time above
217 °C is enough to lift the Cu concentration in the soldered interconnections close
to 1 wt%, even when taking the amount of Cu bonded into the intermetallic layers
on both sides of the interconnections into account. The dissolution rate of Ni is
about 50 times smaller than that of Cu and thus, the dissolution of Ni to the solder is
insignificant. All Ni that is dissolved at the interface is bonded to the (Cu, Ni)gSns
layer. Taking into account the amount of Cu bonded to the intermetallic layers on
both sides of the interconnections, the nominal composition of the interconnections
soldered on the Ni(P)IAu-coated pads will result in about Sn0.5Ag0.3Cu, whereas
the final composition on the interconnection on Cu was about Sn0.5Ag1.0Cu.

An important consequence of higher Cu content is that solidification process is
different in interconnections soldered on Ni from those soldered on Cu.
Figures 1.38 and 1.41 present the phase fraction diagrams, where the amount of
different phases in the relative number of moles can be presented as a function of
temperature. The interconnections soldered on Ni(P)JAu PWB have the
Sn0.5Ag0.3Cu composition, whereas the interconnections soldered on CulOSP
have the Sn0.5Ag1.0Cu.

As can be seen from Fig. 1.41, the solidification of the liquid interconnections
soldered on Ni(P)IAu boards starts with the formation of the primary Sn phase when
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the interconnections are cooled down from the peak reflow temperature to below
the liquidus temperature of 229 °C. The CugSns phase does not nucleate until below
222 °C, where the composition of the liquid reaches the eutectic valley. Figure 1.38
presents the phase fraction diagram of the liquid interconnections soldered on
CulOSP boards. In this case, the solidification begins with the formation of primary
CugSns below 229 °C. However, the nominal composition of the liquid soon meets
the curve of two-fold saturation, after which the solidification of the interconnec-
tions proceeds by the binary eutectic reaction L — (Sn)eut + (CugSns)eut. Below
the four-phase invariant temperature, there is more than three times as much CugSns
in the CulOSP interconnections as in those on the Ni(P)IAu substrate. It is to be
noted that the above analysis of solidification has been carried out by considering
that the system is in complete equilibrium. As this is not typically the case in
practical applications, the above-presented discussion must be taken to represent
the ideal situation where kinetics plays no role in the process.

1.14 Stability Diagrams (Activity Diagrams, etc.)

The activity diagram shown in the right-hand side of Fig. 1.42 is one form of many
different types of stability diagrams. In such a diagram, the thermodynamic
potential of one of the components is plotted as a function of the relative atomic
fractions of the other two components. The activity values which are needed in the
construction of such a diagram can be calculated from the assessed thermodynamic
data. When calculating the activities of the components, the activities of the
stoichiometric compounds at equilibrium are regarded to be one. It should be noted
that the precision of the calculations is very much dependent on the accuracy and
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Fig. 1.42 Isothermal section from the Bi—Pb—Sn phase diagram at 120 °C and the corresponding
activity diagram at the same temperature

consistence of the thermodynamic data used. Therefore, great care should be
exercised when using data from different sources.

The edges of the diagram shown in Fig. 1.42 represent the binary systems
(Sn—Bi, Sn-Pb, and Pb-Bi). The ternary phase relations are represented by the
inside of the diagram. The stoichiometric single-phase regions are represented as
vertical lines, two-phase regions as areas, and three-phase fields as horizontal
lines. The vertical left- and right-hand axes represent the binary edge systems. In
Fig. 1.42, the identical phase regions in the ternary isotherm and in the activity
diagram at the same temperature are identified with the same color. The three-
phase equilibria are shown as red triangles in the isothermal Section and as red
horizontal lines in the activity diagram. In Fig. 1.43, the activity diagrams for all
three species of the C-Si-Ta system are shown. Figure 1.44 shows the corre-
sponding isothermal section.

The activity diagrams provide useful information about the formation of the
reaction layer sequence when used together with the isothermal sections as fol-
lows. The example is from the Si/TaC/Cu diffusion barrier structure where the
Si/TaC interface is studied. From the phase diagram, it is evident that the Si/TaC
interface is not in equilibrium and a driving force for the formation of additional
phases between the substrate and the TaC layer therefore exists (Fig. 1.44).
Although there exists a TaC + TaSi, two-phase region in the phase diagram
(Fig. 1.44), SiC must be formed to incorporate the carbon released after the for-
mation of TaSi, in the reaction between Si and TaC, because of the mass balance
requirement. The formation of SiC and TaSi, was confirmed with TEM investi-
gations and therefore gives support to the assessed phase diagram. The reacted
structure consisted of layers of SiC and TaSi, on top of the silicon substrate.
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Fig. 1.43 Activity diagrams for C, Si, and Ta at 800 °C [14]

The original TaC was completely consumed during the reaction, since no traces of
it could be found at 800 °C. The reaction sequence seemed to be Si/SiC/TaSi,/
TaC, in which the TaC was used completely to yield the final structure Si/SiC/
TaSi,. Silicon is expected to be the first species moving at this interface owing to
the following reasons. Firstly, Si has been found to be the mobile species during
the formation of TaSi, that occurs around 650 °C in the binary Ta—Si system by Si
in diffusion, whereas the movement of Ta has not been observed under similar
conditions. Secondly, chemical bonding between Ta and C in the TaC compound
is expected to be strong, and breaking of these bonds, which is required for the
release and subsequent diffusion of Ta, would require large amounts of energy.
Owing to the facts stated above, the diffusion of tantalum or carbon in this system
is not considered to be highly probable. Consequently, Si is anticipated to be the
main diffusing species at the Si/TaC interface around 800 °C.
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Whether the above-presented phase formation sequence is thermodynamically
possible can be investigated with the help of Fig. 1.43. As can be seen from the
calculated activity diagram, Si can move along its lowering activity in the proposed
reaction sequence and therefore, diffusion of Si in this particular reaction sequence is
allowed on thermodynamic grounds. The examination of the calculated activity
diagrams for carbon and tantalum does not restrict the diffusion of these elements in
the suggested reaction sequence either (Fig. 1.43). However, as already discussed,
carbon and tantalum are strongly bonded to each other in the TaC compound and are
not expected to move easily. Therefore, the reaction most likely starts by Si in
diffusion into TaC (most probably via grain boundaries). This is followed by the
formation of TaSi,, which then leads to the accompanied dissociation of TaC. The
released carbon is then available for the formation of SiC in the reaction with Si. This
mechanism will finally yield the experimentally observed structure Si/SiC/TaSi,.

1.15 The Use of Gibbs Energy Diagrams

In the following examples, the use of Gibbs energy diagrams is presented. The
discussion follows largely that presented in the classical treatments of the subject
by Hillert [10, 15].

In Fig. 1.45, a typical molar property diagram at a given temperature 7} is
shown. The diagram shows some of the basic properties of a molar property dia-
gram. From Fig. 1.45, one can see, for example, how a Gibbs energy of a phase is
defined (g* = Xjui + Xgug) with the help of chemical potentials, how the



1.15 The Use of Gibbs Energy Diagrams 65

a

Fig. 1.45 Typical molar g
property diagram =
Hy

o o
Hy —
)

Xiug+ X5

O e i i

Hy

Fig. 1.46 Determination of a
the driving force for diffusion g

within a solution phase
Apty
gf.'i

chemical potentials for a species in a given phase are defined (from the end points of
the tangent), that the slope of a tangent equals the chemical potential difference of B

and A in the alpha phase (2% =
features of the molar diagrams can be used for a wide variety of applications [15].

The positive curvature of the Gibbs energy curve makes the phase stable against
fluctuations in composition. The same feature of the curve also provides the
driving force for the elimination of differences in composition within the phase
(Fig. 1.46). Thus, this is the driving force for diffusion. Let us consider the situ-
ation where B atoms diffuse from a region of high concentration (more precisely
activity) to a region of low concentration. Each individual region may be regarded
as a reservoir of B with its own value of gg, and the difference in gg is identical to
the decrease in Gibbs free energy when one mole of B is transferred. We make an
assumption that the rate of transfer is proportional to the decrease in Gibbs free

energy and the number of B atoms per volume ’Vi and inversely proportional to the

U — ,ufg), and so on. These simple geometrical

transport distance Ay. With these assumptions, the expression for the flux of B
atoms may be written as

_MyXyAgs  Ms, dgs AXy

Js = VB xp 988
? Ve Vm v B dXg Ay

(1.103)
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The constant of proportionality, My, may be regarded as the mobility of the B
atoms. By introducing the curvature of the g curve, we obtain

M d*g AX,
Jp = — XXy S 508

_— 1.104
Vin dx? Av,, ( )

By considering the Fick’s first law (see Chap. 3), the diffusion constant for B is
recognized as

d*g

Dp = MpXaXp——
B BABXmz3

(1.105)

The mobility is thus multiplied by the thermodynamic factor. By using the
activity or activity coefficient for B, the thermodynamic factor can be transformed
to the shape as used in Chap. 3

d? d d dl dlny
XaXp o8 _x, 488 _ 98B _ pp@ B RT(1+ N8

- d1nXg

a8 _ _ - - 1.106
dx3~ “PdXs  dinXg dInXg ) (1.106)

A similar derivation can be carried out also for component A, and the same
factor is obtained

d2g

Da = MaAXaAXg — 1.107
A AABdX]% ( )

It is to be noted that in ternary systems, there are more than one thermo-
dynamic factor. In a binary system, the Gibbs—Duhem equation (will be
derived in Sect. 1.16) gives

Xadua + Xgdug =0

and

Xadu = RT(dXa + Xadlny,)
Xpdug = RT(dXp + XpdInyy)

In a binary system, X5 + Xg = 1 and thus, dXs + dXp = 0 which finally gives

dlny, dlnyg
XAl —— ) =X
A(dXA> B(dXB

or
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dlnap _ dnag
dlnX, dInXg

In a ternary system, Gibbs—Duhem equation is written as

and it is immediately seen there must be more than one thermodynamic
factor in a given ternary system. In fact, there are four factors of which three
are independent.

van Loo et al. have derived [16] equations for the four thermodynamic
factors in a ternary system as well as the relation between the three inde-
pendent ones and the fourth which depends on the other three as follows.

9 — dlna; 9. — dlna;
1= \dmx, T 2= \dinXx, DT,

9 — dlnay 9.y — dlna
2= \dnx, T, 2~ \dnXx, DT,

0y — {(1 —X3)

(0] @y — 0O
X, 12+ Gy 11}

By noting that the so-called phenomenological constant is related to the
mobility by Lg = MgCg and by remembering the relation between the chemical
potential and the activity, the fluxes of elements A and B can be expressed as

d
JA:—LA#

. (1.108)
g — .9
B B dx

This equation will be utilized in Chap. 4.

One can also use Gibbs energy diagrams to obtain the driving force for diffusion
of a particular species over a growing phase.

In Fig. 1.47, the common tangent construction defined above is used to
determine the driving forces for diffusion of Cu through Cu;Sn and Sn through
CueSns. Apg, is the chemical potential difference of Cu between interfaces CusSn/
Cu and CugSns/CusSn, which drives the diffusion of Cu through Cu;Sn and A,ugnis
the chemical potential difference of Sn between the interfaces Sn/CugSns and
CueSns/CuzSn, which drives the diffusion of Sn through the CueSns layer. It is
easy to realize from Fig. 1.47 that changes in the stabilities of the #- and e-phases
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(in their Gibbs free energy) will change the values of Aul and Apf, and thus
increase or decrease the driving forces for diffusion of components in the system.

From Fig. 1.47, other important features can also be extracted. For instance, the
common tangent between the curves gk and g" gives the equilibrium solubility of
Cu to a liquid solder (L), which is given as °X%,. The equilibrium solubility is the
amount of Cu that can be dissolved infinitely slowly to liquid solder before the #-
phase comes into equilibrium with the liquid. The formation of the n-phase does
not, however, occur with this composition, as the driving force is zero at this point
(no supersaturation). In real cases, the dissolution of Cu does not take place
infinitely slow and, therefore, the equilibrium solubility is generally exceeded. The
solubility of Cu does not increase infinitely, but there is an upper limit for its value
and this can also be determined from Fig. 1.47. When more and more Cu dissolves
into liquid, eventually, a situation is faced where the dissolution of more Cu would
lead to the precipitation of pure metallic Cu out of the supersaturated solder. This
corresponds to the common tangent construction between the solder and pure Cu.
The tangent point in the liquid curve at this metastable equilibrium gives the upper
value of Cu that can be dissolved into liquid solder at any rate, i.e., the metastable
solubility "X&,. When this value has been reached, also the driving force for the
formation of the n-phase has reached its maximum (shown in the diagram as
Agl=" in Fig. 1.47). Since the metastable solubility is directly related to the dis-
solution rate of a given metal to a solder in question, it provides important
information about the formation of intermetallic compounds between different
metals and solders. In many cases, its value is about 2-3 times larger than the
equilibrium solubility [17-19].
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To get an idea about the relation between the above discussion and the actual
phase formation in reaction couple where solid Cu is in contact with liquid Sn, it is
helpful to consider the schematic presentation of the situation in Fig. 1.48. As Cu
comes into contact with liquid Sn, it starts to dissolve rapidly. The equilibrium
solubility of CugSns to liquid Sn (EXE“) is achieved quickly (in fractions of sec-
ond). Owing to the reasons explained above, the dissolution does not stop at this
value but the dissolution of Cu continues until the ultimate limit, the metastable
solubility ("XEY), is reached. At this point, the equilibrium between pure Cu and
supersaturated liquid is achieved (equal chemical potential of Cu in both phases).
This means that the dissolution of Cu must stop as there is no driving force for that
anymore. At the same point, the maximum driving force for the formation of
CugSns is established (see Fig. 1.47). The composition profile of Cu is during
these initial stages are shown by the hatched area in Fig. 1.49. As can be seen,
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there is a certain amount of Cu, the double hatched area, which exceeds the
equilibrium solubility of CugSns to liquid Sn. This is the extra amount of Cu that
can be used to form CugSns isothermally. It is evident from Fig. 1.49 that at the
interface between CugSns and the liquid Sn, the equilibrium solubility is estab-
lished (where the second vertical dashed line from the left crosses the composition
curve in Fig. 1.49).

The driving force for the precipitation can also be evaluated from the Gibbs
phase diagram (Fig. 1.50). In Fig. 1.50, an alloy, o, which is inside the two-phase
region o + [ is shown. The Gibbs free energy of the system would decrease by
precipitation of f3, and the total driving force for the complete reaction in one mole
of the alloy is given by the short arrow Ag The driving force for the formation of a
very small quantity of § from a large quantity of «; is obtained by considering the
tangent representing the supersaturated o-phase. The magnitude of the driving
force (in nucleation stage) is given by the separation of the points at the two
tangents as
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For low supersaturations, one can introduce the curvature of the g* curve. By
comparing the triangles in Fig. 1.50, one obtains

Ag - (g — pa)
B .
xb — xz 1

(1.110)

This can be further modified to obtain

e = (6 =38l — ) = (6 —x3)8 (55 ) (1)
Ag:%gg(xﬁ—xg)AXf; (1.112)

The last expression contains a factor (xg —xﬁ) which is the difference in

composition between the two phases. At the start of the precipitation, a new phase
may be favored (higher driving force) if it differs much in composition even when
it cannot be in stable equilibrium with the matrix phase. Thus, formation of a
metastable phase (here ¢) is favored (Fig. 1.51) according to the Ostwald rule.
One can also obtain quantitative numerical data about energy changes in a
given system, by utilizing the simple geometric constructions shown above
together with some simplified assumptions. Let us take one example from the
important Cu—Sn system (Fig. 1.52). Consider the nucleation and growth of the
n-phase, with X!, =a and X{, =b (a + b = 1), out of supersaturated solder
"X&, = c. The driving force for the nucleation of the y-phase is given by Ag" =

gtLg — gtLg (per mole of n). The two terms can be expanded as
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which gives
= Ag" = X" te, + (1= X&) 15, — [X& wey + (1= X&) 5] (1.115)

and by using the definition of the chemical potential of a component, this gives

_ N 0 (%
= RT|X¢,In( o ) +Xg,In( > (1.115)

e
acy Sn

If we simplify the treatment by assuming that the liquid behaves as a perfect
solution, the activity values can be replaced by compositions, which give

meu 1— meu
=~ RT [Xgu 1n<eXéj ) + (1 —X@an(;l — X@C )}

0.06 1 —0.06
= 8.3145 J/Kmol - 508 K [0.545 In (—0.018> +(1-0545)In (mﬂ

= 2687.5 J/mol
(1.116)
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Similarly, the change in Gibbs energy of the system owing to the precipitation
of CugSns can be expressed as

A = gt gl (= AgH1) (1.117)

This can be written as

m L m L
= RT|"XE, In( —Cu ) 4 mxL jp( %50 (1.118)
Cu gaéu Sn eaén

and by again assuming perfect behavior

me 1— me
~ RT mXL 1 Cu 1 _mXL 1 Cu
() + 0t (o)
0.06 1 —0.06
=~ 8.3145 J/Kmol - 508 K {0.06 In (—) + (1 —0.06)In <7>}

0.018 1-0.018
= 131.6J/mol
(1.119)

Hence, it can be concluded that these simple molar diagrams (Gibbs free energy
diagrams) give an extensive amount of important information in an easily visu-
alized form.

1.15.1 Effect of Pressure on the Phase Equilibrium

Related to the effects of pressure on the phase equilibrium, we shall consider two
equations, the Laplace and the Kelvin equations. If a fluid interface is curved
between two phases, then it turns out that the pressures on either side must be
different. When the system is in equilibrium, every part of the surface must be in
mechanical equilibrium (also in thermal and chemical). For a curved surface, the
forces of surface tension are exactly balanced by the difference in pressure on the
two sides of the interface. This is expressed by the Laplace equation

11
p“—pﬁ=y< +7> (1.120)

ror

where P stands for the pressure, y is the surface tension, and # and /' are the radii
of curvatures. By convention, positive values are assigned for the radii of curvature
if they lie in phase o (see Fig. 1.53).

An important consequence of the Laplace equation concerns the effect of sur-
face curvature on the vapor pressure of a liquid. This relationship is known as the
Kelvin equation
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where p© and p™ are the vapor pressures over the curved surface of mean curvature
rm(E=14(5+) and a flat surface (r = c0) and V4 is the molar volume of the

Fm r r
liquid. There is a convention to assign a positive sign to r,, when it lies in the
liquid phase and a negative sign when it lies in the vapor phase. Equation 1.121
can be used, for example, to rationalize capillary condensation or in the treatment
of nucleation (Chap. 11). Condensation occurs when the actual vapor pressure
exceeds the equilibrium vapor pressure. If the surface is curved, the Kelvin Eq. 1.
121 shows that the actual pressure can be significantly lower than equilibrium
pressure and thus, condensation in pores in the solid (if the liquid wets the solid) or
between closed spaced solid particles may occur.

The effect pressure on the phase equilibrium can be investigated with Gibbs
energy diagrams. According to the definition, the Gibbs free energy of a phase
depends upon the pressure according to g = g(0) + pv,, where 0 denotes the
atmospheric pressure. As discussed above, for condensed phases, the pv,, term can
often be neglected if the pressure is not exceptionally high. However, it plays an
important role if the two phases in equilibrium are under different pressures. This
occurs, as shown above, when the interface is curved and is caused by the surface
tension (or energy) of the curved interfaces. Next, we shall briefly discuss how the
equilibrium between two phases is changed by the introduction of increased
pressure. The two g curves are displaced upward by the amounts p*v* and p*v/,
respectively. This takes place even with phase compositions so well defined that
they will not change (Fig. 1.54a). The change in gg, for instance, can be evaluated
as follows. By comparing the triangles in Fig. 1.54b, one obtains

g —pPvE Xl

=4 (1.122)
g8 — p*V5, XA

where AGg equals gg(p°, p/}) — gg(0). The above equation can be rearranged to
give
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Fig. 1.54 Effect of pressure on phase equilibrium between two stoichiometric phases
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A similar equation can be derived also for g5. When considering a spherical f§
particle in an o matrix, it is usually assumed that the matrix is under atmospheric
pressure and one can therefore use p* = 0. One then obtains a diagram shown in
Fig. 1.55. The compositional change, AX} (for small values), can be written as

B Pl
=
) xg - (X - X3)

AX;

(1.124)

By inserting p/ = 2—/ and utilizing the regular solution model, one obtains

2pvE X X3
r(RT = 213,%3%3) (X4 - X3)

AXE = (1.125)
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construction to investigate My
segregation g,

x: X

If both phases can vary in composition, the calculations become much more
complicated.

It is also possible to use Gibbs energy diagrams to investigate the segregation of
a given impurity to grain boundaries (Fig. 1.56). This involves a so-called constant
volume condition. If we assume that the interface can be approximated as a thin
layer of a homogeneous phase with constant thickness and its own Gibbs energy
function as well as that the partial molar volumes of all the phases (including the
interfacial phase) are independent of composition, we can use parallel tangent
construction to find the interfacial composition. In this case, we consider exchange
of atoms (A and B) between the interface and the bulk. The number of atoms at the
interface is considered to be constant. Thus, if atom A leaves the interface and
enters the bulk and atom B moves into opposite direction at the same time, the
Gibbs free energy should not change

A — MR = Hp — Hp (1.127)

where o refers to the bulk phase and b to interface. This can be rewritten as
My — HA = g — Y (1.128)
which gives the slopes for the interfacial phase and for the bulk phase

b o
dg” _ ds” (1.129)
X X

For interphase segregation, where the volume is not necessarily fixed other
approaches, like that of Gibbs surface excess model, must be utilized. Any change of
7 due to an appreciable addition of B can be obtained directly from the molar Gibbs
energy diagram. For instance, if one wants to estimate the maximum segregation to a
grain boundary (which can possibly occur), the construction shown in Fig. 1.57 can
be used. This is based on the fact that the maximum amount to segregate must
certainly be less than the segregation needed in order to make the surface tension
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to disappear, as this has never been observed experimentally. The surface ten-
sion will vanish when the two parallel tangents coincide as shown in Fig. 1.57.
This gives the hypothetical upper limit for interfacial segregation. Several more
advanced treatments of intergranular segregation have been published during recent
decades [20-22].

1.15.2 Ternary Molar Gibbs Energy Diagrams

The molar Gibbs free energy diagrams for ternary systems can also be conve-
niently drawn, as shown in Fig. 1.58. In this case, the molar Gibbs energies of
solution phases are represented by surfaces instead of curves and the common
tangent construction is replaced by a common tangent plane. In Fig. 1.58, the
ternary equivalent of the process shown in Fig. 1.18 is presented. As mentioned
above, the chemical equilibrium condition of the equal value of the chemical
potential of each component leads to the common tangent construction in a binary
system and to the common tangent plane construction in a ternary system. In the
latter case, the values for the chemical potentials are read from the intersections of
the tangent plane with the three edges of the diagram. As shown in Fig. 1.58, the
tangent plane is allowed to roll under the given Gibbs energy surfaces until a
common tangent plane for the curves is established. Figure 1.58a shows the
starting point of the process. The initial compositions of the phases are given by
the points where the tangent plane touches the free energy surface of the given
phase. The values for the chemical potentials for each component in a given phase
are obtained for the intersection points of the corresponding tangent planes. As can
be seen, the chemical potentials for components A, B, and C are hardly equal in
the two phases to start with. Thus, there is driving force for diffusion of the
components. The tangent plane drawn with green color belongs to the f-phase
(blue curve) and that with red to the a-phase (red curve). The plane drawn with
black lines shows the Gibbs energy for a purely mechanical mixture of A, B, and
C. From the composition profile in Fig. 1.58a, it can be seen that no interdiffusion
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Fig. 1.58 a Ternary Gibbs energy diagram with composition profile showing the initial situation
for the diffusion couple o/f. b Ternary Gibbs energy diagram with composition profile showing
the situation for the diffusion couple o/ff after some interdiffusion has taken place, but the
equilibrium has not been reached. ¢ Ternary Gibbs energy diagram with composition profile
showing the final equilibrium situation for the diffusion couple o/f
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has taken place. As can be seen from Fig. 1.58b, the tangent planes start to roll
under the Gibbs free energy surfaces and, consequently, the chemical potentials of
the components start to change. It is evident that Fig. 1.58b represents an inter-
mediate stage in the process as the chemical potentials for components A, B, and C
are not yet equal in both phases. From the composition profile of the «/f-diffusion
couple in Fig. 1.58b, it can be seen that the compositions at the interface have been
changed. Further, it is noticed that only components A and B diffuses in this case
and component C is immobile. The end-member compositions are unaffected by
the diffusion process as required (See Chap. 3 for further discussion). The final
equilibrium situation is given in Fig. 1.58c, in which the common tangent plane is
shown. As can be seen, the chemical potentials for the components are now equal
at each phase and thus, the chemical equilibrium condition is fulfilled.

Another example from a ternary Gibbs energy diagram is shown in Fig. 1.59
which represents the stability of phases in the BiCuSn system at 235 °C. There are
two intermetallic compounds, (CugSns (1) and CusSn (¢)), which enter the stable
equilibrium at this temperature. A vertical section (SnBig,—Cu) through this
diagram is shown in Fig. 1.60. As can be seen, the section resembles the Gibbs
energy diagram of the binary Cu-Sn system, but it is not exactly the same. The
“tangent lines” drawn in the diagram (Fig. 1.60) are not identical to the tangent
lines in Fig. 1.52, but are 2D sections through the corresponding tangent planes.
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1.16 Interdependence of Chemical Potentials:
Gibbs—-Duhem Equation

In this section, we shall derive the Gibbs—Duhem relation, which will be useful in
proceeding chapters to find the relation between diffusion under chemical potential
gradient with the diffusion in the absence chemical potential gradient as the
driving force. From our point of view, the application of Gibbs—Duhem equation to
obtain the change in the chemical potential because of the change in composition
of an alloy is the most important use of the general relation. For the sake of
explanation, let us consider the free energy versus composition diagram, as shown
in Fig. 1.61. First, we consider the point P and from the slope at that we can
determine the chemical potential of elements A and B at that point as yf and uf,
respectively. Now suppose we make a small change in the composition and move
to the point Q. Again from the slope of the free energy at that point, we can find the
chemical potential of elements as ,ug and ,ug. So it is apparent that the change in
chemical potential of elements, A and B, because of the change in composition is
—dpp = (1§ — p¥) and —dpy = (u§ — ph), respectively. Further, from any point
P or Q, it can be written that

_dps _dug d(pg — pa)

= (1.130)
Xs  Xa 1
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Further, from the slope, we can write
48 _HB —Ha (1.131)

dXg 1

Combining Egs. 1.130 and 1.131 and multiplying X,Xp, the expression
becomes

2

dg
—Xaduy = Xpdug = XaXpg —dX 1.132
AGUA BAUp A BdX% B ( )
Further, it can be shown that
dzg dzg
—0 =2 1.133
dX3 dX3 ( )
It follows that

Equation 1.134 is known as Gibbs Duhem equation. It illustrates clearly that
chemical potentials, or any other partial thermodynamic properties [5], cannot be
changed independently. On the contrary, for example, in a binary system con-
sidered here, when the one chemical potential is changed, the other one must
change also. This is evident also in ternary systems as shown in Fig. 1.58a—c.
Further, we can derive one another useful relation from Eq. 1.134. From
Egs. 1.132 and 1.133 follows

d d d’ d>
X SEA xS xS 8 :XAXBﬁ
A

— 1.135
dXp dXp dx; ( )



82 1 Thermodynamics, Phases, and Phase Diagrams
and consequently,
Ug =° ug + RTInag =° ug + RT InyzXp (1.136a)
Up ="ty + RTInap =° pp + RT Iny, Xa (1.136b)

From Eq. 1.136, the following expression can be obtained

dﬁ_RT{dlnyB+dlnXB] :RT[L%—&— 1} __RT {1 dlnyg
VBdXB XB

dXg dXg = dXg T Xp dInyg
dug _ RT dInag

dXB o XB dlnXB

] (1.137)

Similarly from Eq. 1.137, since X5 + Xz = 1, follows

%:—RT dlnyA+d1nXA — _RT Ldy, | 1 :E | dlny,
dXB dXA dXA N dXA XA XB dlnyA
du,  RT dInap

dXB o XB dll’lXA

(1.138)

Using Eq. 1.137 in Eq. 1.138, we obtain

dlnaA dlnaB - XAXB dzg - XAXB ng

dinXy dnXs RT dX3 RT dx3

(1.139)

This is again the thermodynamic factor discussed in Sect. 1.15.

1.17 Molar Volume of a Phase and Partial Molar Volumes
of the Species

Many times it is important to determine the molar volume of the phases and partial
molar volume of the species. By definition, the molar volume, v,,, of a phase can
be determined from

Vi =~ N (1.140)

a

where vy (m?) is the volume of the unit cell determined from the known data on
the lattice parameters available in the literature, N, is the Avogadro number
(6.023 x 10* mol™ "), and n, is the number of atoms in the unit cell.

When virtually no structural vacancies are present in a unit cell, the number
of atoms, n,, in the last equation can be replaced by the number of lattice sites, n,.
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Fig. 1.62 The change in a lattice parameter and b vacancy concentration of NiAl phase and
¢ molar volume of the phase (a and b are from [23])

We can neglect the amount of thermal vacancies, since this number is very small.
On the other hand, when constitutional vacancies are created in the structure and if
the number is appreciable, we should consider this for the calculation of molar
volumes. In this case, we can write n, = ny, — ny, with ny being the number of
vacancies present in the unit cell.

So, when there are no structural vacancies present in the structure, the calculation
of molar volume is rather straightforward. However, for further clarification, we
like to extend our discussion to the calculation which contains structural vacancies.
For this purpose, we consider the B2 NiAl phase in an Ni—Al system. The homo-
geneity range of the B2 phase is shown in Fig. 1.62. It can be seen that there is a
wide homogeneity range on both sides of the stoichiometry. As will be discussed in
Chap. 2, deviation from the homogeneity in the Ni-rich side is achieved by the
Ni-antisite defects (Nia; that is Ni atom occupying the sublattice belongs to Al
atom), whereas deviation in the Al-rich side is achieved by the presence of triple
defect (2Vn; + Niy; composed of two vacancies in sublattice belonging to Ni
atoms and one Ni atom occupying a site in a sublattice belonging to Al atoms).
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So to calculate the molar volume in the Ni-rich side is straightforward and the
number of lattice positions can be used to count the number of atoms. However, in
the Al-rich side, we need to consider the number of antisites for the calculation of
molar volume. The molar volume of the phase at different compositions can be
calculated from the available data on the lattice parameter and vacancy concen-
tration, as shown in Fig. 1.62a and b, respectively. The calculated molar volume of
the phase is shown in Fig. 1.62c.

The partial molar volume of the species can be defined as the change in molar
volume because of the addition of a very small amount of the species. The partial
molar volume of the species A(v,) and B(¥p) is related with the molar volume of a
phase, or an alloy (v,,) is related by

Vin :XAVA +XB\7B (1141)

Thus, the partial molar volume of the species at a particular composition, X3, can
be calculated by taking slope at v* from the molar volume versus composition
diagram, as shown in Fig. 1.63. The values v} and v} are the partial molar volumes
of the species A and B, respectively, at X;. This is a property diagram similar to that
which was extensively used in Sect. 1.15 (the molar Gibbs energy diagram).

1.18 Few Standard Thermodynamic Relations

Derivations for a few relations can be found in [24]. We have previously shown
that the mole fraction and the atomic fraction are the same in the systems we have
considered. We commonly present the diffusion data with respect to atomic
fraction or atomic percentage, and we shall use them for further derivations.

Nao+Ng =1 (1.142)
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where N and Ng are the atomic fractions of A and B.

X N,
Cy=22=TA
v v
m Vm (1.143)
X N,
Cg="2_-"8
Vm Vi

where C; is the concentration of species i and v,, is the molar volume at the
composition of interest.

NaVA + Ngvg = vy, (1.144)

where v; is the partial molar volume of the species i. By utilizing (1.142 and
1.143), we get

Na N (Na+Ng) 1
CotCy=Na No_ (NatNg) 1 (1.145)

m vm Vm vm

On the other hand by substituting N; = C;v,, from (1.143) to (1.144), we obtain

Caviva + CVpVB = vy
vm(CAT/A + CBT/B) = Vm (1146)
Cava +Cpvg =1

Since the molar volumes also follow Gibbs—Duhem relation, which was pre-
sented in Sect. 1.16, we can write

Xadva +Xgdvg =0 or Nadva + Ngdvg =0 (1147)

By multiplying this with total concentration C, one gets C(Nadva + Npdvg) =0
(Ca + Cg)(Nadva + Npdvg) = 0, and from (1.145), we see that (VL) (Nadva+
Ngdvg) = 0, which based on (1.143) reduces to

Cadva + Cgdvg =0 (1.148)
When taking total differential from (1.146), we get
Cadvp + Cpdvg + vadCx +vgdCg =0
According to (1.148), the first two terms are zero and, thus,

vadCa + vgdCg =0 (1149)
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When we consider that molar volume is not constant
%
dCx = (—‘;) dN
\

m

(1.150)
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Chapter 2
Structure of Materials

In this chapter, we will briefly go through the hierarchical structure of materials.
First, the atomic bonding and crystal structures are covered briefly. Then, the
emphasis is placed on the presence of different types of defects and imperfections.
Since point defects provide the fundamental basis for understanding the atomic
mechanisms of diffusion, they are discussed in detail. In addition, the crystal
structures including also the defect structures of intermediate phases and ordered
binary intermetallics are quantitatively presented.

2.1 Hierarchical Structure of Materials

Most properties are actually highly structure sensitive. Therefore, it is of utmost
importance to understand the basis for the structure of materials to be able to
control the properties and reliability of engineering materials. Microstructure is a
general term used to cover a wide range of structural features, ranging from those
visible to the naked eye (for instance, macrostructure) to those corresponding
to the inter-atomic distances in the crystal lattice (for instance, nanostructure).
In other words, the size scale of the structural features ranges about 10 orders of
magnitude. Therefore, in order to observe the structural features at these different
scales, as shown in Fig. 2.1 [1], adequate resolving power is required.

Frequently, a large variety of structural features on different levels is note-
worthy. Therefore, in the following chapters, the hierarchical structure of materials
is presented.

2.2 Atomic Bonding

An atom can exist in different energy states according to the kind of interaction it has
with neighboring atoms. The nature of this interaction is defined by the type of
atomic bonding. The bonds can be categorized into two classes according to the
bond energy. The primary bonds (>100 kJ/mol) are ionic, covalent, and metallic.

A. Paul et al., Thermodynamics, Diffusion and the Kirkendall Effect in Solids, 87
DOI: 10.1007/978-3-319-07461-0_2, © Springer International Publishing Switzerland 2014



88 2 Structure of Materials

c Grain size in single phase metals 5
GF zones Precipitates
Structural feature Diameter of Microcracks Porosity
the atom Surface finish
Sizescale 0.1nm 1nm 10nm 100 nm 1pm 10 pum 100 pm 1mm
imi | 1 | | 1 1 [ 1 |
Limit of resolution } | } | ! | ! |
UL ——/ 1 111
g 23| logpew T £xo ol x|lgllz
Technique/ ga| |2ags 5§ m832 2(3|[5]]§
El 8232 s =223 B =5/ &
Instrument z 3 £5g T @5¢e Yilgl|l&g||la
S E SR3A 2 aos® 3" |22
s ®223 g 283 FII&|[(2]||E
=3 =3 2 2&a s|la|[8]|8
m o o= & o0 @ -
sz ssf3 s 238 8|32
g3 332 & g 23§ |2 <
= I5 8 2 =9 2
3 3 - = =5 3 5 "
a5 2 § 28 Es
g 3 8 @ =|“§ 2
@w = 3 o w
§§ = & 9
= g
LY n fala) zliglgll=
€ g g 239256 S g2 /2 |8
3 3 22 2
Feature Observed g g2 88 3 2 ﬁg 3 g 28 g
a3 = @, S o om s 2 ] =1
S o 8 8 = =0 on =D e ® =1
gcg 2g & §2385| |E|[=||E]l8
=0 c m | 2 = a8 33 3 F=1 s
g 8| |82 BE8¢ | |®|E||3
5 E| =23 8233 s
L] F T
= = E
2
w

Fig. 2.1 Size scale relating structural features of metals to techniques of observation (redrawn
from [1])

It is to be emphasized that in many materials, the bonding falls between these
distinct categories. For example, the Si—O bond in silica is approximately half ionic
and half covalent. The secondary bonds are of the van der Waals, or hydrogen, type.
Many of the material properties, such as Young’s modulus, the melting point, and
the coefficient of thermal expansion (CTE) (as seen from Table 2.1), are related to
the bond energy.

Ionically bonded crystals that possess high binding energies are generally
considered to be hard, brittle, insulating, and thermally stable. The bond is based
on the equilibrium between attractive and repulsive coulombic (electrostatic)
forces. The ions are ordered in the crystal in such a non-directional manner that a
macroscopically neutral material is generated. The structures typically have simple
stoichiometry such as AB, AB,, and A,B.

Covalent crystals and molecules are based on bonds that share the pair of
electrons in the direct line between the atoms. The directional bonding is caused by
the concentrated electron density between the nuclei. Covalent bonding includes
many types of interactions such as o-bonding and n-bonding. These bonds can be
either saturated, as in gas molecules Hy, N5, O, ..., or unsaturated, as in polymer’s
or covalent crystals C, Si, SiC .... Materials that possess bonds of a covalent nature
are either insulators or semiconductors.

The nature of the atomic bond in metallic crystals differs from those of ionically
and covalently bonded materials. The fundamentals of ionic and covalent bonds are
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Table 2.1 Atomic bonding types, bonding energies, and respective melting temperatures for
various substances

Bonding type  Substance Bonding Young’s CTE (10~% Melting
energy (kJ/mol) modulus (GPa) temperature (°C)

Tonic NaCl 640 39.98 44 801

MgO 1,000 249 10.8 2,800
Covalent Si 450 129 2.8 1,410

C (diamond) 713 1,220 1.1 >3,550
Metallic Hg 68 182 -39

Al 324 69 23 660

Fe 406 196 12 1,538

w 849 344 4.5 3,410
Van der Waals Ar 7.7 —189

Cl, 31 —101
Hydrogen NH; 35 —78

H,0 51 8.6—12 (ice) 51 (ice) 0

based on chemical valence. However, in metallic bonding, the theory enables the
rationalization—typical metallic properties in addition to the aspect of the linking of
atoms. By releasing the valence electrons the metal atoms in crystal can lower their
energy state compared to individual atom. In this case the electrons are always close
to nucleus (low potential energy region) but are not localized (i.e. cannot be asso-
ciated with specific atom) so the kinetic energy is not increased too much. When
summarized over the crystal this leadsto a stable structure. The bonds act between
identical and different metallic atoms, as is revealed by the formation of numerous
element and alloy structures. Typically, metallic atoms have either 8 or 12 neigh-
boring atoms between which the bonds act. These resonating bonds usually permit
plastic deformation and easy electron transfer throughout the structure.

2.3 Crystal Lattice

The formation of a crystal structure occurs as a result of bonding between atoms.
Strong non-directional bonding typically allows atoms to pack efficiently, exhib-
iting planes of high atomic density containing close-packed directions. Crystals are
thus solids in which all of the atoms occupy well-defined locations, being ordered
across the whole material. These locations are defined by a crystal lattice, which is
an infinite pattern of points, each of which having the same surroundings in the
same orientation. Therefore, lattice is a mathematical concept out of which any
point can be used as the origin for defining any other lattice points. There are only
14 possible three-dimensional lattices, called Bravais lattices, from which all
crystal structures can be built as shown in Fig. 2.2.

It is to be noted that the crystal structure of a simple pure metal and that of a
complex protein may both be described in terms of the same lattice, but the
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Fig. 2.2 Bravais lattices
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number of atoms allocated to each lattice point (i.e., motifs) can vary from one to
few thousands. Thus, a crystal structure is composed of a lattice plus a motif. The
unit cells can be either simply primitive, body centered, face centered, or base
centered. A primitive unit cell contains only a single lattice point, whereas a base-
centered and body-centered cell contains two lattice points and a face-centered cell
contains four lattice points.

The fundamentals of the crystal symmetry, planes, and directions as well as
their indexing and nomenclature can be found from many excellent textbooks, for
instance [2, 3]. Therefore, only the most common crystal types for pure metals and
alloys, i.e., the close-packed face-centered cubic (FCC), body-centered cubic
(BCC), and hexagonal close-packed (HCP) crystals, are presented in brief here.
The atomic arrangement of the FCC and HCP crystals are shown in Fig. 2.3, where
the location of the atom in the third layer defines whether the structure becomes
hexagonal close packed (left, ABAB... arrangement) or FCC (right, ABCABC...
arrangement). BCC crystals are not closely packed, and therefore, they contain
more empty spaces (tetrahedral and octahedral interstitial sites) as can be seen
from Fig. 2.4 and Table 2.2.
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Fig. 2.4 Octahedral (O) and tetrahedral (7) interstitial sites in FCC-, HCP-, and BCC-type
metals

2.4 Grain Structure

Grain structure is composed of small crystals that form a three-dimensional
aggregate. The main characteristics are grain size, shape, and grain shape anisot-
ropy. An impingement grain structure forms when grains grow until they meet or
impinge, for example, during secondary recrystallization, producing characteristic
ragged interfaces. A columnar grain structure is produced by unidirectional growth
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Fig. 2.5 Cross-polarized optical images from a columnar electrochemically plated Sn crystals
between Cu equiaxed SnBi alloy and b recrystallized SAC solder interconnection after 3,000
cycles during a —40 °C <= +125 °C thermal cycling test

such as in solidification or electrochemical plating (See Fig. 2.5a). Equiaxed grains
can be formed by several processes such as recrystallization (See Fig. 2.5b) or
solidification.

2.5 Defects

Many physical (especially mechanical) properties of solid materials are primarily
based on the presence of different types of defects and imperfections. In other
words, often specific material characteristics are deliberately fashioned by intro-
ducing a controlled amount of particular defect. The classification of crystalline
imperfections is generally made according to either the geometry or dimension-
ality of the defect. Thus, the defects are typically divided into (i) point defects,
which are related to a single or a few atomic positions, (ii) linear (or one-
dimensional) defects, (iii) two-dimensional defects such as surfaces, interfaces,
and different types of boundaries, and (iv) volume defects including inclusions,
cracks, voids, and pores.

2.5.1 Point Defects

Point defects are central to gain an understanding of the atomic mechanisms of
diffusion, and therefore, they are discussed in detail. There can be a few types of
point defects present in the structure in an equilibrium condition (e.g., vacancies,
impurities, and antistructure). Typically, in “pure” elements, vacancies and
impurities are present in the structure. First, let us discuss the defects present in the
pure elements and then turn to consider the defects present in the ordered phases.
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Fig. 2.6 Movement of atoms to create a vacancy at the interior

2.5.1.1 Equilibrium Vacancy Concentration in Pure Elements

The presence of vacancies in a pure element can be estimated using the same kind
of treatment as was followed to find the free energy in a binary system, as
explained previously in Sect. 1.8. The formation of vacancies can be explained, as
shown in Fig. 2.6, where one atom diffuses from the interior of the crystal to the
surface leaving a vacant site (the Schottky defect). There is another type of point
defect, called the Frenkel defect, which is formed when an atom from a lattice site
moves into an interstitial site thus leaving an empty space (vacancy) behind. For
the sake of analysis, the presence of vacancies (V) in the element A can be
visualized as a binary system of A and V. Now, the creation of vacancies is
associated with the increase in internal energy because of broken bonds around the
vacancies. In general, the equilibrium number of vacancies is so small that we can
neglect the interaction between them. Thus, if we consider that the number of
vacancies to be very small, then the increase in enthalpy resulting from the for-
mation of vacancies can be written as

Ah ~ X,Ah, (2.1)

Here, AX, is the mole fraction of the vacancy and Ah, is the increase in
enthalpy caused by one mole of vacancies.
Factors contributing to Ah, in metals are as follows:

1. Change in the volume. When an atom is removed from the center of the lattice
and is placed at the surface, there is no change in the surface area, but rather an
increase in the volume. This decreases the average energy of the electrons,
giving a negative change in energy.

2. The removal of an atom leaves behind one atomic volume devoid of charge.
Free electrons around the site tend to flow into this vacancy. Since there in no
positive charge in the vacant site, the electrostatic energy is increased. To
minimize this effect, there will be a sharp change in the electron density, which
imposes in the end a higher kinetic energy for the electrons and an increase in
the energy of the lattice.

3. When an atom is removed, the surrounding ions will relax into the vacancy
decreasing slightly the energy of the final lattice.


http://dx.doi.org/10.1007/978-3-319-07461-0_1
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If we now consider the total effect of all the above-mentioned three contribu-
tions, it is to be found that the sum is positive Ah,; thus, it costs energy to form a
vacancy.

The entropy can be divided into two parts, namely thermal entropy and config-
urational entropy (Sect. 1.5). Now, if we consider the change in entropy resulting
from the mixing of vacancies with the pure element, there will be two types of
contributions. First, there will be the change in the vibration pattern of the atoms
next to vacancies because of extra free space. The increase in entropy caused by the
extra freedom of vibration can be written as X,As,. Here, As, is the increase in
entropy for one mole of vacancies. Furthermore, there will be a change in con-
figurational entropy considering the mixing of A and V and this can be expressed
as (Note that we are considering X4 + X, = 1)

Asmix = —R[X, InX, + (1 = X,) In(1 — X,)] (2.2)

So the total change in entropy can be written as
As = As,X, — R[X,InX, + (1 — X,)In(1 — X,)] (2.3)
Thus, the total free energy of the system containing vacancies can be written as
G=Gs+AG (2.4)

where G, is the free energy of the defect free system of pure element A. AG is the
change in free energy and can be expressed as (Sect. 1.3)

AG = AH — TAS (2.5)
From Egs. 2.2 to 2.5, the total free energy of the system can be written as
G =Gy + X,AH, — T{AS, — RX,InX, + (1 — X,) In(1 — X,)]} (2.6)

The change in enthalpy, entropy, and free energy due to an increasing number
of vacancies can be seen in Fig. 2.7. It is apparent that AH increases linearly with
the increase in vacancies, whereas —TAS decreases very rapidly in the beginning,
but the rate of change decreases drastically. So it should be clear that in the
beginning, the total free energy of the system will decrease with the creation of
vacancies, but after a certain range, the free energy will start to increase because
AH will start dominating. The system will therefore go through a minimum. We
have seen before in Sect. 1.2 that a system will stay in equilibrium when it has
minimum free energy. So we can state that the system will remain in equilibrium
with free energy G,. Further, we know that in the equilibrium condition,


http://dx.doi.org/10.1007/978-3-319-07461-0_1
http://dx.doi.org/10.1007/978-3-319-07461-0_1
http://dx.doi.org/10.1007/978-3-319-07461-0_1
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So from the differentiation of G (Eq. 2.6) with respect to X, and then by
equaling it to zero, we can write

1 1
AH, — TAS, + RT |[InX, + X, — —In(1 = X,) — (1 = X) - ———| =0
+RT|InX, +X, - - n( ) —( ) =%

(2.8)

Since the number of vacancies that can be present in the system is very small,
we can write 1 — X, &~ 1. Thus, Eq. 2.8 can be written as

AH, — TAS, + RT InX, =0 (2.9)

So the relation for the equilibrium concentration of vacancies can be written as

X =X, =exp ( w> = exp ( igf) (2.10)

Here, X; is the equilibrium concentration of vacancies at a particular temper-
ature 7, and AG, is the activation energy for the formation of one mole of
vacancies. Equation 2.10 can further be written as
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AH,
X¢ :Xﬁexp<— RT‘) (2.11)

where AH, is the activation enthalpy for the formation of vacancies and XS is the
pre-exponential factor and is equal to

exp (Alf") (2.12)

It is to be noted here that if the vacancies are not present in their equilibrium
fraction in a binary system, their chemical potential is not zero, and thus, it will
transform the system essentially into a ternary one where, for instance, there is
now more than one thermodynamic factor (Sect. 1.15).

2.5.1.2 Equilibrium Concentration of Impurities in Pure Elements

In many metals, especially in transition metals, interstitial atoms such as carbon,
nitrogen, oxygen, and hydrogen can be present depending, to a large extent, on the
metal. The presence of these impurities can change the properties of the material
drastically. The maximum concentration of interstitial atoms that can be present
depends on different factors such as the crystal structure of the metal and the size
of the interstitial atoms. There are mainly two types of interstitial sites present in
the structure: tetrahedral (surrounded by four solvent atoms) and octahedral
(surrounded by six solvent atoms). However, since it has been observed that
interstitial atoms typically prefer to occupy octahedral interstices (hydrogen is a
known exception), we shall mainly consider this type of sites. The treatment to
calculate the maximum solubility of interstitial atoms is slightly different to the
treatment that was followed in the previous section to calculate vacancy concen-
tration. This is because these atoms will occupy interstitial positions without
displacing metal atoms which occupy normal lattice positions. To explain the
treatment, let us first consider an element A, which has a BCC crystal structure and
the presence of interstitial atoms, /, as shown in Fig. 2.8a. Possible octahedral
interstitial positions in the BCC lattice are shown by black dots. In general, the size
of the interstitial atoms is larger than the size of the interstitial site and further-
more, it cannot be smaller. So if any interstitial atom is present, the surrounding
lattice will be strained. This means that the enthalpy of the system will be
increased. If the increase in enthalpy resulting from the addition of one mole of
interstitial atoms is Ahy;, then the total enthalpy increment of the system is
expressed by

Ah = X;Ah (2.13)


http://dx.doi.org/10.1007/978-3-319-07461-0_1
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Fig. 2.8 Octahedral interstitial positions are shown by black dots in a BCC unit cell and b FCC
unit cell

ny

No
and np is the total number of interstitial atoms. Again, there will be two different
types of contribution to entropy. The first contribution comes from the fact that
the vibration of atoms A next to the interstitial atoms will change from a normal
mode of vibration and will be more random and irregular because of the dis-
tortion of the lattice. If we consider that the change of the entropy due to the
change of vibration pattern is AS; for one mole of interstitial atoms, then for Xj
mole of interstitial atoms the change in entropy will be X;AS;. Further, there will
also be an increase in entropy because of the mixing of the solvent and interstitial
atoms. Now, from the crystal structure, as shown in Fig. 2.8a for two solvent
atoms, there are six sites for interstitial atoms. Additionally, we can write that for
each A atom, there are three sites for interstitial atoms. So if we consider that
there are Ny numbers of A atoms, then there will be 3N, numbers of sites
available for interstitial atoms. In another sense, we can say that n; atoms will
randomly occupy nj sites from 3N, sites. Following statistical thermodynamics,
the entropy of mixing can be written as

where X; = - is the mole fraction of the interstitial atoms present in the system

ASpix =S—So=kInw—kInl =k lnw (2.14)

where w is roughly the measure of randomness, Sy is the entropy before mixing,
and S is the entropy after mixing. Since in the case of a pure element, there is only
one way by which atoms can be arranged, we can write w = 1. If we consider that
interstitial atoms will choose their sites completely randomly, then we can write

3Ny!
= 2.15
v nI!(3N0 —nl)! ( )
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According to Stirling’s approximation,
InN!'=N InN — N
Following Stirling’s approximation, Eq. 2.15 can be derived as
ASmix = k[3Ng In3Ny — ny Inny — (3Ny — ny) In(3Ny — ny)] (2.16)

Furthermore, Eq. 2.16 can be written as

3Ny —
ASmix = R [3 In 3N — %m ny — OTnIInBNO - nl)]
- 0 0 (2.17)
ASmix = R|3In—r0— pp ™
3No —n1 No 3Ny—m
Further, replacing X; = n;/Ny, Eq. 2.17 can be written as
3 X
ASnix = R |31 - X1 2.18
m |: n3—X1 In3_XI] ( )
So the total free entropy change can be written as
3 X1
AS = XIAS  +R|3In—— — X;1 2.19
1A51 + [ n3—X1 1113_XI] ( )

Moreover, the total free energy of the system after the addition of interstitial
atoms can be written as

G =Gs+AG=Gs+ AH — TAS

—XiIn———

G = Ga + XiAH; — TX{AS; — RT |31 X (2:20)
= — — n
ATTAITEL T AR 3-X 3-X

As we have seen in the previous section that the equilibrium concentration of

interstitial atoms can be found from g—g = 0. Thus,

3
AH{ —TAS; —RT|——— — 2 —InX; + In(3 — X{) —

X
AH; — TAS; + RT' 1 =
: PRI,

Further, the activation energy for the interstitial atom additions can be written
as Ag; = AHp — TAS;. Since we have considered that the concentration of impu-
rities is much less, we can write 3 — X; =~ 3. So Eq. 2.21 can be written as
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Agr
X;=3 exp( RT) (2.22)

Similarly, if we consider the FCC crystal, as shown in Fig. 2.8b, then the
number of octahedral sites available for interstitial atoms is four. Further, in an
FCC unit cell, the total number of atoms per unit cell is likewise four. So we can
say that for Ny solvent atoms, there will be N sites available for interstitial atoms.
As in the previous example, if we consider n; interstitial atoms which will occupy
randomly N, sites, then we can show that

A
X; = exp <— R—?) (2.23)

So in general, we can write that the equilibrium concentration of interstitial
impurities present is

Agi
Xi=8B -— 2.24
= exp( - 25 224)
Here, factor B depends on the crystal structure.

Furthermore, Eq. 2.24 for any kind of crystal structures can be written as

Ah
X; = XV exp (— R—T‘) (2.25)
where AH] is the activation enthalpy for interstitial impurities and X} is the pre-
exponential factor which is defined as

A
X] =B exp (ﬁ) (2.26)

In above examples, we have seen that a BCC crystal has a higher number of
octahedral sites than an FCC crystal. However, the size of these interstitial
sites in an FCC crystal is d = 0.414D (d is the interstitial void size and D is
the diameter of the solvent atom), whereas the corresponding size in a BCC
crystal is d = 0.155D. In general, the size of the interstitial atoms is greater
than the interstitial site size. So the addition of interstitial atoms always
creates a strain in the lattice. Since the size of the interstitial sites in an FCC
crystal is larger than that in a BCC crystal, the concentration of impurities
(except hydrogen) in an FCC crystal is typically higher than in a BCC
crystal. This is the reason why the carbon concentration in an a-iron (BCC
structure) is much less than in a y-iron (FCC structure).

Another important difference between BCC and FCC lattices in terms of
interstitial atoms is that in a BCC lattice, the occupation of the octahedral
lattice site (Fig. 2.8) leads to distortion (due to the asymmetry of the octa-
hedral site) and, consequently, to formation of a shear stress field around the
interstitial. This enables the screw component (see Sect. 2.5.2) of the
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dislocations (which possesses only the shear stress component) to interact
with the stress field created. As in iron, for instance, at low temperatures, the
majority of dislocations are of the screw type (or have the majority of the
screw component), and this leads to differences in the mechanical properties
of the BCC and FCC forms of iron.

2.5.2 Linear Defects

Dislocations, which are the most typical linear (or one-dimensional) defects, and
their ability to move define the ductility (plasticity) of metals and explain why the
strength of a metal crystal is far less than the theoretical strength calculated on the
basis of the bond strength between the metal atoms. During typical plastic defor-
mation, dislocations are formed by the Frank-Read source with the rate of ~ 10%s.
Due to the force (stress), the dislocations glide along the close-packed crystal planes.
When the dislocation density of a material is increased, also the internal energy is
increased more than the entropy. Therefore, the dislocations are not stable and tend to
annihilate or escape from the crystal. The decrease in ductility and increase in
strength are related to the interactions between the dislocations as well as between
the dislocations and other obstacles to movement such as precipitations or grain
boundaries. At high homologous temperatures (7 > 0.45 T,,), dislocations can also
climb, which increases the degrees of freedom of movement, leading to lower
strength and higher ductility. In addition, many different types of crystals react at
increased rates at the points where dislocations intersect the surface.

Even though the plastic deformation occurring via dislocation movement is
qualitatively fully comprehended in macro- and microcrystalline materials, the
quantitative analyses still remain incomplete [S]. This is due to the difficulties in
averaging the interactions between dislocations and the other mechanisms con-
tributing to the plastic flow on the plastic flow on the nanoscale, such as grain
rotation, twinning, etc. [5]. It is also to be noted that, from an atomistic point of
view, the length of dislocation becomes increasingly important as the grain size of
the material approaches the nanoscale.

Although there are many different types of dislocations, they all can be con-
sidered as combinations of the two fundamental types (i.e., the edge dislocations
and screw dislocations shown in Fig. 2.9).

Summary of dislocations:

1. Dislocations are formed during deformation.
2. Dislocations glide due to a stress (force) along close-packed planes
running in a close-packed direction.
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Fig. 2.9 Edge dislocation and screw dislocation

3. As dislocation density increases, the internal energy of the material
increases more than its entropy. Therefore, dislocations are not stable and
try to annihilate.

4. Dislocations interact with each other, and thus, gliding becomes more
difficult. This, in turn, increases the strength of the material, yet the
ductility is decreased. Other obstacles, such as grain boundaries and
precipitates, have a similar effect.

5. At increased temperatures (7 > 0.45 T,,), dislocations can climb, which
increases the degrees of freedom for their movement. This causes
decrease in strength and increase in ductility.

2.5.3 Two-Dimensional Defects

The two-dimensional defects (i.e., planar defects, especially surfaces and inter-
faces) have a significant effect not only on the mechanical properties of materials
but also on their chemical reactivity. For example, the reaction rates during cor-
rosion are typically determined by the amount of exposed surface area. In addition,
these defects, such as grain boundaries between crystallites in a polycrystalline
alloy, provide lower activation energy short circuit paths for atomic diffusion and
impurities tend to segregate there. Since the surface and interfacial diffusion can be
orders of magnitude faster than that of bulk diffusion, see Fig. 10.2 in Chap. 10


http://dx.doi.org/10.1007/978-3-319-07461-0_10
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Table 2.3 Lattice, grain boundary, and surface interdiffusion coefficients of Cu, Al, and
(SnPb),,, at 100 °C [6]

Material Temp. ratio 373/T,, Diffusivities at 100 °C (mz/s)
Cu 0.275 Lattice D; = 7 x 1072
Grain Dy, =3 x 107"
Surface D, = 1078
Al 0.4 Di=15x 107" Dy, =6 x 1077
(SnPb)ey 0.82 D=2x107°%© ¢

these short circuit paths may have significant technological impacts, for example,
in the electromigration reliability of electronic circuits, as can be seen from
Table 2.3. In addition, the two-dimensional defects interact with other defects,
such as dislocations, as discussed in Sect. 2.5.2.

It is also to be noted that these defects have their own energy, surface energy,
which quantifies the disruption of intermolecular bonds that occur when a surface
is created. The minimization of surface energy provides a driving force for many
important phenomena such as sintering, wetting, and grain coarsening. Other types
of planar defects are low- and high-angle grain boundaries, in which adjacent
grains can be distinguished depending on the misalignments of atomic planes, twin
boundaries, and antiphase boundaries.

2.5.4 Volume Defects

Volume defects (bulk defects, 3D defects) like precipitates, inclusions, cracks, voids,
and pores also have important effects on the mechanical, thermal, electronic, and
optical properties of solids. These defects are typically introduced into the material
during manufacturing and fabrication steps. Furthermore, these defects are capable
of increasing mechanical stress locally and are thus especially deleterious to the
mechanical reliability of the metal. However, in dispersion hardening, foreign par-
ticles or additional elements that form precipitates are added to strengthen the parent
material by forming obstacles to movement of dislocations facilitating plastic
deformation. The good high-temperature strength of many super-alloys is due to the
second-phase particles. Nonetheless, pores, cracks, and voids that act as stress
concentration sites are typically detrimental for mechanical strength.

2.6 Some Examples of Intermediate Phases
and Their Crystal Structure

There are numerous different kinds of ordered phases that are present with many
differing crystal structures varying from being relatively simple to extremely
complicated. There are basically two types that intermediate phases can form,
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B

Fig. 2.10 Crystal structure of substitutional ordered phases: a B2 (AB)-NiAl, CoAl, CuZn,
AuZn; b L1, (A3;B)-NizAl, Ni3Ga, NisGe; ¢ L1, (AB) —CuAu, CoPt, FePt; d A15 (A3;B)- NbsSn,
Nb3Ge, V3Sl

being interstitial and substitutional compounds. The precise type of phase that will
form depends on the relative atomic size, valency, and electronegativity as was
discussed earlier (Sect. 1.12). When one type of atom is much smaller than
another, then the smaller atoms are able to occupy the interstitial positions in the
crystal of the other atom. For example, different kinds of metal carbides are inter-
stitial intermetallic compounds. Some of the examples are shown in Fig. 2.10. When
atom sizes differ by a factor of 1.1-1.6, Laves phase might form (see Fig. 2.11). The
other type are substitutional compounds where one type of atom occupies one
particular sublattice and another type of atom occupies the other sublattice.

The main difference with these kinds of substitutional alloys and the case of
random alloys is that there is an equal probability for both atoms to occupy a par-
ticular position. A few different examples of these kinds of compounds are shown in
Fig. 2.10. Note that we have shown relatively simple examples which will be con-
sidered for discussion in forthcoming chapters. Some systems, for example, Cu;Au,
CuAu, and CuZn, transform to disordered phases at high temperature, because of the
dominating role of entropy compared to enthalpy in these systems.


http://dx.doi.org/10.1007/978-3-319-07461-0_1
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Fig. 2.11 CI15 Laves phase
A,B type

2.6.1 Defects in Intermediate Phases

The composition range of the intermediate phases in binary systems can vary from
a very narrow homogeneity range, as shown in Fig. 1.26, to a reasonably wide
homogeneity range, as shown in Fig. 1.27. There is no ordered phase present
which is a perfect line compound that is with stoichiometric composition without
any deviation. The deviation from stoichiometric composition is achieved by the
presence of constitutional defects in the structure. Mainly two types of defects are
found in these structures. One type is structural vacancies. Note that structural
vacancies found because of deviation from the stoichiometric composition are
different from the thermal vacancies which are always present at a specific tem-
perature with a certain equilibrium concentration. Another type of defect which is
typically found is an antisite (or an antistructure) defect that is created when an
atom occupies a position belonging to the other type of atom.

To clarify what has been stated above, let us consider one of the most studied
ordered structures, the B2 phase. Let us see the crystal structure a little differently, as
shown in Fig. 2.12a. The lattice positions can be divided into two types, the a- and f3-
sublattices. If A atoms, in a binary A-B alloy, occupy the a-sublattice ([0,0,0]
positions), then the B atoms will occupy the B-sublattice ([1, 1, 1] positions). It can be
seen that two simple cubes of the a-sublattice and the -sublattice interpenetrate each
other forming the B2 structure. At stoichiometric composition and in a perfect
crystal, we expect this condition to occur. However, when composition deviates from
the stoichiometric composition, defects will be present in the structure and the
number of defects depends on the extent of deviation in the composition.

There can be two types of B2 intermediate phases. One type is in the A-rich side
where antisite defects are present, whereas in the B-rich side, triple defects are
present, as shown in Fig. 2.12. A triple defect is so named because it comprises a total


http://dx.doi.org/10.1007/978-3-319-07461-0_1
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(a)

o - sublattice

®l---- B - sublattice

Triple defect

Antisite

Antisite

B-rich

Fig. 2.12 Defect structure in B2 phases. a Perfect crystal. b Phases where on one side of the
stoichiometric composition, there is the presence of triple defects, whereas on the other side,
antisite defects are present. ¢ Phases where on both sides of the stoichiometric compositions,
antisite defects are present

of three defects, namely two vacancies in the «-sublattice and one antisite defect in
the f-sublattice. It is important to keep in mind that the triple defects are not nec-
essary bounded defects, i.e. the vacancies and antisite do not necessary occupy
nearest neighboring positions. The triple defect disorder refers the total defect
concentrations when there are two vacancies for each antisite atom, see Sect. 2.6.3 for
more details. These kinds of defects are found, for example, in the B2 NiAl, CoAl,
NiGa, and CoGa phases. There is another kind of B2 phase, where in both sides of the
stoichiometry, only antisite defects are present, as shown in Fig. 2.12c. This kind of
defect is found in the B2 AuZn, CuZn, AgZn, and AgMg phases, for instance.



2.6 Some Examples of Intermediate Phases and Their Crystal Structure 107

However, it should be pointed out that a triple defect is not a common defect in
phases other than the B2 structure. Instead, simple vacancies are typically present.
Moreover, in most of the ordered phases in both sides of the stoichiometry, only
antistructure defects are present. We have seen earlier that at above 0 K, there will
always be some vacancies present (their number depending on the temperature)
due to the fact that they are thermodynamic equilibrium defects. Similarly, in
ordered phases, even at stoichiometric composition vacancies and antistructure,
defects will be present and the number of defects increases with increasing tem-
perature. However, calculation of point defects in ordered phases is not very
straightforward as shown next.

2.6.2 Crystal Structures and Point Defects in Ordered Binary
Intermetallics on an Example of Ni-, Ti-,
and Fe-Aluminides

The ordered Ni-, Ti-, and Fe-aluminides reveal different crystalline structures. The
most important are the following: B2 (NiAl and FeAl, see Fig. 2.10a), L1, (NizAl,
see Fig. 2.10b), L1, (TiAl, see Fig. 2.10c), D09 (TizAl see Fig. 2.13a), and D03
(Fe;Al see Fig. 2.13b). Here, the ideally ordered crystalline structures of Ni-, Ti-,
and Fe-aluminides are schematically presented, i.e., the structures at zero tem-
perature and at perfect stoichiometric compositions. As the temperature increases
and/or the composition deviates from stoichiometry, substitutional point defects
are inevitably generated. Four types of substitutional point defects can generally be
introduced in a two-atomic intermetallic compound AB, namely the vacancies on
both sublattices, V5 and Vg, and the atoms on the differing sublattices, Ag and B4
(the antistructure or antisite atoms). One may differentiate between structural
(constitutional) and thermal point defects which could be created in an off-stoi-
chiometric intermetallic compound. In a strict definition, the structural defects are
those defects which remaining thermal equilibrium in the intermetallic compound
even at T = 0 in its maximally ordered state in order to accommodate the devi-
ation from the stoichiometric composition. The difference between the real con-
centration of defects at 7 # 0 and the concentration of the structural defects
presents the concentration of the thermal defects.

In a strict sense, nature does not “mark” the defects as constitutional or thermal
ones. Such subdivision is helpful only from an educational point of view in order
to refer to different sources of defects in a given compound. In such a definition,
the concentration of thermal defects can even be negative. The Al-rich phase NiAl
seems to present such an example. A further difference between the structural and
thermal defects stems from the fact that one type of structural point defects is
generally sufficient to accommodate the deviation from the stoichiometry, whereas
at least two types of thermal point defects have to be simultaneously created to
satisfy the mass-balance conditions (to preserve the given composition, i.e., the
given ratio between the constitutional elements).
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Ti Al

Fig. 2.13 Lattice structures of TizAl a and Fe;Al b aluminides. The Ti and Al atoms are
represented by black and gray spheres. Fe has two sublattices indicated by Fe; and Fey

Moreover, the point defects have not to be uniformly distributed over the
different sublattices in an ordered intermetallic compound.

In Fig. 2.14, the concentrations of different defects in the intermetallic com-
pounds under consideration are compared at T = 0.757,,. This temperature cor-
responds to 7 = 1,252 K for NizAl, 1,434 K for NiAl, 1,457 K for Ti;Al, 1,294 K
for TiAl, and 1,195 K for FeAl. T,, is the melting temperature of the stoichiometric
composition of the given compound. The defect concentrations on different
sublattices can be calculated according to the chemical reaction approach
described below. Since in an intermetallic compound, point defects are created in a
correlated manner in order to preserve the given composition, the concentration of
point defects depends on the formation energies of all four types of defect. The
literature data were here used for numerical estimates. It is important to note that
the formation entropy effects were neglected.

The chemical reaction approach is outlined below for the example of NiAl. The
vibrational energy contribution is neglected.

2.6.3 Calculation of Point Defect Formation Energies

The calculation of defect energies in pure metals is quite straightforward and was
presented in Sect. 2.5 in detail. In the case of intermetallic compounds, however,
the defect energies have to be calculated in a modified way. The energy difference
between a block of perfect unit cells and that containing a given defect yields the
values which may be called the “raw” formation energy of the defect. The “raw”
values of single defects together with the cohesive energy per atom, &g, used in the
presented estimates, are listed in Table 2.4. The B2 NiAl phase is exemplified here
as a binary AB compound (A = Ni and B = Al). Since introduction of a single
defect generally violates the composition of the compound, these “raw” values by
themselves cannot represent the thermodynamical quantities. The effective for-
mation energies, which correspond to the Arrhenius approximations of the tem-
perature dependence of the defect concentrations, can be used with this aim.
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Fig. 2.14 Concentrations of vacancy and antistructure atoms on transition metal and aluminum
sublattices in NiAl, NizAl, TiAl, TizAl, and FeAl as a function of composition at 7' = 0.75 T},
(T}, is the melting point of the compound)
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Table 2.4 The “raw” formation energies of single point defects in NiAl where V is the vacancy,
the bottom subscript denotes the sublattice, and g is the cohesive energy of the alloy

EVNi EvAl ENi_Al EALNi €0
“Raw” formation energy, eV/atom 5.978 5471 —0.920 3.457 —4.494

The equilibrium defect concentrations in an intermetallic compound can be cal-
culated using either canonical or grand canonical ensemble formalism. Of course,
both methods will give the same result, so the choice of approach is a matter of
convenience. Alternatively, the point defects can be treated as individual species and
different point defect reactions can be considered as chemical reactions in a multi-
component lattice gas [7]. This approach is sketched here and, of course, it gives the
same results as the previous two, yet in a slightly more elegant way.

Till the end of this section, we will use a special notation for the defect con-
centrations in view of a specific structure of an ordered compound. We will
introducing the occupation probabilities of a defect P on a given sublattice denoted
as Yp instead of concentration variables, which are determined in mole fractions.
This approach simplifies significantly the analysis for ordered compounds.

The point defect concentrations are assumed to be small, so that the defect
interactions are neglected. Formally, each type P of point defects is described by a
chemical potential

up =¢ep +kT InYp (2.27)

Here, ¢p is the “raw” formation energy of a single defect and Yp is the occu-
pation probability of the defect P per unit site in its own sublattice. The commonly
used defect concentrations, Xp, see Sect. 2.5, expressed as the site fractions of the
number of defects are related to Yp by the obvious relation for the B2 structures:
2Xp = Yp.

The four unknown equilibrium point defect concentrations {Yp} in a B2
compound, i.e., the vacancy concentrations on the two sublattices and the con-
centrations of the two types of antisite atoms, can be determined from the kinetic
equilibrium conditions with respect to the three point defect reactions, supple-
mented by the conservation law for a fixed alloy composition. The latter can be
written in the form

1
i(l_ZYVA_ZYVB): (YVB_YVA>+§(YAB _YBA) (228)

ENY

where

E=Xp— % (2.29)

is the deviation of the alloy composition (mole fraction of A, X,) from the ideal
stoichiometric composition (X, = 0.5). Neglecting the terms such as & in
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Eq. 2.28 for small deviations from the stoichiometric composition and small
concentrations of the point defects, the above equation can be presented as

(YVB - YVA) +1(YAB - YBA) (230)

&= 2

EAI

The choice of three point defect reaction is a matter of convenience and
depends on whether we deal with a triple-defect or antisite disorder compound. For
the NiAl alloy, for instance, a convenient set of reactions is

2Va + Ag +AB < 0 (2.31)
2Vp + AB < Ag (2.33)

Equation 2.31 represents the triple-defect equilibrium in the system. It simply
shows that a triple defect can be cancelled by adding a structural unit AB to the
system. Similarly, Eq. 2.32 represents an antisite equilibrium and shows that a pair
of antistructure atoms can be created or cancelled. Finally, Eq. 2.33 shows that, if
we initially have two B vacancies and add a structural unit NiAl, then Al will
cancel one of the vacancies, while Ni will turn the other vacancy into an Nigi-
antistructure atom.

The dynamic equilibrium in the above defect reactions, Eqs. 2.31-2.33, can be
reached by the equality of corresponding chemical potentials. The structural unit,
NiAl, will be presented by 2¢,. This will give

&d + kT InY}, Yo, =0 (2.34)

SAB+SBA+kT IHYABYBAZO (235)
Y2

ey, — eay + 260 + AT In (Y—V> =0 (2.36)
Ap

Here, &4 = 269 + 2¢y, + ea, is the so-called triple-defect energy.

Equations 2.30 and 2.34-2.36 could be solved numerically for the four defect
concentrations in dependence on the composition of the alloy. Then, the effective
activation energies can be estimated by linear fitting in the logarithm concentration
against the inverse temperature coordinates within the given temperature interval.
The analysis shows that the temperature dependence of the point defect concen-
trations can be adequately treated with a single formation energy. The specific
results for NiAl are given in Fig. 2.15.

Besides that, Eqgs. 2.30 and 2.34-2.36 can be solved analytically in an
approximate manner by using the fact that in NiAl, Yy, and Y,, are much greater
than the other two concentrations. Then, Eq. 2.30 can be rewritten in the form
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From Eq. 2.37, we have Yy, = 2Ya, for the stoichiometric composition, & = 0.
For the A-rich compositions & > 0, the A antistructure atoms are the main defects
(Yv, < Ya,) and Eq. 2.37 transforms into Ya, = 2&. On the other hand, for the
B-rich compositions ¢ < 0, the A vacancies are mainly formed (Yy, > Ya,) and
Eq. 1.174 will be read as Yy, = —4¢. These relations make it possible to solve
analytically the system of Eqs. 2.34-2.36 and to find the concentrations of all four
point defects under the given approximations. The analytical expressions for the
effective formation energies are given in Table 2.5. The comparison with Fig. 2.15
suggests that these results correspond well to the numerical data at the stoichi-
ometric composition and far from the stoichiometry.

The calculations suggest that the Ni vacancies and the Ni antistructure atoms
are the main defects in NiAl and the concentration of Al vacancies is by a few
orders of magnitude lower than the concentration of Ni vacancies in accordance
with the experimental observations.

A similar form of analytic solution can be used for other compounds, and
the results are presented in Fig. 2.14. Figure 2.14a—e demonstrate a few
important features of defect behavior. It is obvious that both the Ti-aluminides
(Fig. 2.14¢, d) and Ni3Al (Fig. 2.14b) belong to the antistructure defect type of
intermetallic compounds, since antistructure atoms are predominantly generated
to accommodate the deviation from the stoichiometry. In contrast, NiAl reveals
a triple-defect type of point defect disorder and constitutional Ni vacancies exist
in NiAl on the Al-rich side, as in Fig. 2.14a. Moreover, the Ni vacancy con-
centration is very large also on the Ni-rich side, for example, Xy, ~10~* at
T = 0.75T,,. In the other intermetallics under consideration, the vacancies are
also mainly concentrated on the transition metal sublattice and their concen-
tration amounts to about 107° to 107> at 7 = 0.757,,. These are also the typical
vacancy concentrations in close-packed pure metals at the same reduced tem-
perature. The vacancy concentration on the Al sublattice is remarkably smaller,
especially in B2-FeAl, see Fig. 2.14e.
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Table 2.5 Analytical expressions of the effective formation energies Q/P of the point defects P,
P = Vi, Var, Nigg, and Aly; (in eV/Atom) in NiAl in dependence on composition & = Xni—%2

£<0 £E=0 £E>0

0, 0 E eu/2
0 0.683 1.024

Q’;/A[ 2e0 + evy 1 ey (480 + 38VAI + ey — eNiA[)/3 & + ey, — %CNiA/
2.461 1.778 1.437

Qfl;li,\, Etd 8,d/3 0
2.048 0.683 0

QZIN, ALy — 280 - 28VM (—280 - 28VM + 3£Alm + 281\],*/”)/3 EAly;i + ENiy
0.489 1.854 2.537

B2-FeAl is neither a compound with a pure antisite disorder nor a compound
with a pure triple-defect disorder. FeAl demonstrates a hybrid behavior in which
the relation between the Fe vacancy concentration and that of the antistructure
atoms depends crucially on temperature.

The concentration of the Ti antistructure atoms in the Ti-aluminides is generally
larger than that of the Ni antistructure atoms in the Ni-aluminides of the same
composition, as in Fig. 2.14. This fact corresponds to a higher degree of thermal
disorder inherent in Ti-aluminides at similar reduced temperatures. These features
play a decisive role in the analysis of the respective self-diffusion behavior.

An important question now arises as to how the particular crystal structure of
the given intermetallic compound can affect the self-diffusion properties. It is
generally accepted that self-diffusion in close-packed structures occurs via nearest-
neighbor jumps of vacancies. Since random vacancy jumps between different
sublattices would generally produce disorder (and since there is a strong tendency
to accomplish the reverse), ordering jump after a given disordering jump, the
correlated jumps of vacancies will clearly play a decisive role in the long-range
diffusion process. These problems will be considered in Chap. 5.

2.7 Microstructure and Phase Structure

The structural details at different levels that create the microstructure of a
given material are shown in Fig. 2.16. On the other hand, microstructures can be
divided, based on the formation mechanism, into three major types namely solidi-
fication structures, solid-state transformation structures, and annealing structures.
Figure 2.17 shows, as an example, an eutectic solidification structure of AuSn-alloy
and the same material after annealing at 150 °C for 6,600 h. A profound discussion
on different types of microstructures can be found, for example, from the ASM
handbook, and therefore, it is not included here [1] (Fig. 2.16).


http://dx.doi.org/10.1007/978-3-319-07461-0_5
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Fig. 2.16 Structural details
at different levels creating the Type of atomicbonding — Unit Cell
microstructure of a material @

Group of Unit Cells — Grain

U

Group of Grains + Grain boundaries — Grain Structure

P

Different Phases + Defects

O

Microstructure

(a) (AuSn+Au,Sn),., (b) (AuSn+Au,Sn),.,

COMPO 150kvV X750 10pm WD 15.0mm JJCOMPO 150kV  X1,000 10pm WD 15.0mm

Fig. 2.17 a Eutectic solidification structure of Au80Sn20 (wt %) alloy and, b the same structure
after annealing at 150 °C for 6,600 h
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Chapter 3
Fick’s Laws of Diffusion

In this chapter, Fick’s laws of diffusion are introduced. The second law is derived
using the first law and the mass conservation. Solutions for the second law con-
sidering a constant diffusion coefficient for different conditions are given. Few
examples are also introduced to show the estimation procedure.

3.1 Fick’s First and Second Laws of Diffusion

Adolf Fick [1] was the first man to propose the phenomenological relation for
diffusion. His reasoning being the following: when considering the flux of particles
(atoms, molecules, ions etc.) in a one-dimensional system caused by a concen-
tration gradient, the flux can be expressed as

dm oC

]:ﬂ:_Da (3.1a)

where J (mol/m2 s) is the flux, dm (mol) is the change in the amount of matter in
small time df (seconds), A (m?) is the area, D (m?/s) is the diffusion coefficient,
C (mol/m>) is the concentration of the particles, and x (m) is the position
parameter. The negative sign stems from the fact that diffusion occurs in the
direction opposite to the increasing concentration gradient.

It should be noted immediately that the Fick’s first law can be directly applied
only in a steady-state condition, as shown in Fig. 3.1, where the composition does
not change with time. In addition, there should not be any external driving forces
present other than the concentration gradient. Let us consider a square pipe of iron
and pass carburizing gas inside and decarburizing gas outside of the pipe. If the wall
is reasonably thin, a steady state might prevail in the system. Suppose further that
the concentrations at the inner and the outer surfaces are C; and C,, respectively.

Then, the concentration gradient can be written as € — G=G — _G=C _— GG
dx Xo—X; Xo—X; d

Here, d is the wall thickness. The diffusion coefficient, D in this system, can be
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DOI: 10.1007/978-3-319-07461-0_3, © Springer International Publishing Switzerland 2014



116

Fig. 3.1 Steady-state
diffusion and the composition

3 Fick’s Laws of Diffusion

Carburizing
gas

profile

Decarburizing
gas

Concentration of Carbon, C

Distance, x

estimated from what we know about the flux in the system. The flux can be esti-
mated from the transferred material per unit time, that is, d—’:‘ (mol/s) = AA—’:‘ divided
by the area. If the pipe is cylindrical with an average radius of » and length of /, then
the concentration gradient is % and material transferred in mol/s through the area
A = 2mrl is §2. Therefore, we can write

~ Am _Da£
At (27rl) or (3.1b)
A—m*—D(Z 1) oc
At " s
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Fig. 3.2 Change in non-steady-state composition profile with time (a) in a diffusion couple of C}
and C% (b) for diffusion of B in A

Note here that if a steady state prevails, then concentration profile, which is %—f

or %, will not change with time. However, under most experimental conditions,

the concentration at a particular position changes with time at any location. For
example, consider two blocks of alloys A—B with average concentrations of Cp!
and Cp? which are coupled and annealed at an increased temperature. The change
in the concentration with the annealing time is shown in Fig. 3.2a. Similarly, we
can consider the diffusion of element B in a block of material A, as shown in
Fig. 3.2b. Any possible changes in the composition profiles with time are shown.
In this condition, Fick’s first law cannot be used to estimate the diffusion coeffi-
cient of the components because of the absence of a time parameter. What is
needed, therefore, is a relation which is able to explain the non-steady-state dif-
fusion process, that is, the change in concentration at a particular position with
increasing annealing time.

For this purpose, Fick’s second law is derived from the consideration of mass
conservation and Fick’s first law. For the sake of explanation, let us consider a
very thin slab Ax (= x, — x;) in the diffused block of A from the example, as
shown in Fig. 3.2b. The flux of element B in this thin slab, as shown in Fig. 3.3.
The block with a unit cross-sectional area is the one under consideration. If the flux
coming in through the plane x; is J}, then the total amount of element B coming
through this plane in a short time 57 can be written as J3d¢. Similarly, the total
amount of material out through the plane x, can be written as Jéét. If we consider
J} > J7, the increase in concentration of B in the small thickness of Ax can be
written as
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Fig. 3.3 Change in flux with plane 1 plane 2
distance in a very thin slab
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Furthermore, since only a very small thickness Ax is being considered, the
variation of flux in this region can be considered linear so that

oJg  Jp—Jp  Jy—Jj

o A Ax (3:3)
Using Eq. 3.2 in Eq. 3.3 and considering very small time, we can write
0Cp oJp
T o (34)

Following Fick’s first law, shown above in Egs. 3.1a, 3.4 can be written as

0Cs 0 [ 0C

For a constant diffusion coefficient, we can write

dCp 3*Cp
— =Dp—— 3.5b
ar P ae (3.50)

Equation 3.5a is better known as Fick’s second law. One important point,
however, should be noted here that it is not possible to use Fick’s first law to
estimate the distribution of components over the whole interaction zone in a
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non-steady-state condition. Nevertheless, it can be applied at any particular point
since the flux is proportional to the concentration gradient at every location in a
profile developed by a diffusion-controlled process.

3.2 Solution of Fick’s Second Law to Estimate
the Diffusion Coefficient

In the majority of systems in practical applications, the diffusion coefficient is not
constant, but is rather a function of concentration. However, solving Fick’s second
law for such cases is not as straightforward as it may first appear. It is achieved
with the help of the Boltzmann parameter as explained in Chap. 6. However, in
some cases, the variation in the diffusion coefficient with composition is negligi-
ble. Moreover, an element will have a constant diffusion coefficient in a homo-
geneous material with constant concentration. Different solutions can be found for
different situations considering D as constant (as in Eq. 3.5b above). In the sec-
tions that follow, three such solutions are introduced and explained in greater
detail.

3.2.1 Solution for a Thin-Film Condition

The first case to consider is that where a very small amount of material B as thin
film is sandwiched between two rods of pure material A, as shown in Fig. 3.4. By
small, we mean that, after diffusion, B will become mixed in A as an impurity,
without significantly changing the concentration of A. If this system is annealed
for time 7 at a particular temperature of interest, then the concentration profile of
element B in A can be expressed as

Co x2
CB(.X) = mexp (- HB[) (36)

where Cp(x) is the concentration of material B at x, Cy is the constant, and Dy is
the diffusion coefficient of component B. This relation is developed based on the
exponential decay in the composition profile that is found in practical examples, as
shown in the Cp versus x plot. The correctness of the solution can be examined
after differentiating Eq. 3.6 with respect to 7 and x and then replacing them in
Eq. 3.5b. It can be seen that the distribution of element B is symmetrical to the
plane x = 0 and the positive side of the distribution is just a reflection of the
negative side. Additionally, the total amount of material B, Mg, sandwiched
between A can be expressed as


http://dx.doi.org/10.1007/978-3-319-07461-0_6
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Fig. 3.4 Material B is
sandwiched between blocks
of material A. The change in
Cp, %S, and £ with x is
shown after annealing for
time, t

Distance, x
+o0o
MB = / Cde
—00

Thus, Mg can be found by replacing Eq. 3.6 in Eq. 3.7 as

+00

Co x?
MB— / m&Xp(—FBt> dx

—00

(3.8)

We consider 1 = %/#D? so that dx = (2\/D3t) d/. Since Cj is a constant term,

we can write

+00
Mg = 2Cy\/Dg / exp(—4%) di. = 2Co\/nDp

(3.9)
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Fig. 3.5 Change in [ [
concentration with time in a
thin-film sandwiched couple |

ta>t> ty
t,

Ce

-0 0 +
Distance, x

+00
Since [ exp(—4*) di=\/n

For a particular annealing time, ¢ is constant and using Eq. 3.9 in Eq. 3.6, we
can write

2

MB X
C = - 3.10
0=/~ iy) 210

From the Cjy versus x plot, one can find % versus x as shown in Fig. 3.4. Since

the constant diffusion coefficient is under consideration, d—f versus x reflects the

flux at different planes after a certain annealing time ¢ that can be understood from
the Fick’s first law. It is apparent from the profile that there is no diffusion at
x =0, 400, and —oo. The infinite distance represents the ends of the sample,
which are not affected by the diffusion of components. Moreover, the fact that the
flux is zero at x = 0 demonstrates that both positive and negative sides of the
system do not influence each other. In another sense, it seems as if the two

different parts are joined together at x = 0. Further, the ng versus x profile gives
an overall idea about the region where the system is losing the diffusing element

(i.e., where (a;c;g) <0) and in which part it is gaining (i.e., where (azcg> > 0).

0x2
However, it should be noted that the region where the system is losing or gaining
flux changes with time, since the concentration profile changes with time, as
shown in Fig. 3.5.
As already mentioned, the system considered for the above discussion acts as if
two different parts are joined together. If material B is joined or deposited on the
surface of material A, as shown in Fig. 3.6, then Eq. 3.10 must be written as
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Fig. 3.6 Determination of |
the diffusion coefficient is _
shown from the slope of the / A t=0
In Cp versus x? plot B
i/
t=t
InCg 1
Slope =- Wﬂt
—_— Xz
M, B x2
Cp = ——exp| ——— 3.11
nDgt P( 4Dpgt ( )

Note here that the factor 2 from the denominator in Eq. 3.10 is removed since
the material diffuses in one direction only. Equation 3.11 can be written as

2

\/TCDB 4DBZ

As shown in Fig. 3.6, the diffusion coefficient Dy can be estimated from the

InCyp = In——2— (3.12)

slope <: m) of the In Cp versus x> plot.

3.2.1.1 Solution for a Semi-infinite Diffusion Couple (Error Function
Analysis)

When two blocks with different concentrations are joined and annealed at an
increased temperature for diffusion, this is called a diffusion couple. A diffusion
couple is one of the important techniques to study diffusion with an added
advantage that often it resembles the actual reaction layer structure in many
applications. The treatment to estimate the diffusion parameters is similar when a
piece of material is exposed to the gaseous medium, for example, as in carburi-
zation of steel having a situation as shown in Fig. 3.2b. With the change in time, the
penetration length and the concentration at a particular position will be changed. A
semi-infinite system is one where the ends of the couple are not affected by the
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Fig. 3.7 Concentration profile in a diffusion couple based on the consideration of many thin
slices

diffusion of components. The relations developed here will be applicable only in a
semi-infinite diffusion couple case, which will be explained in greater detail. In
general, the lengths of the blocks are considered to be semi-infinite when the
following relation for the length is valid > 10+/Dr. It can be immediately seen that
this length actually depends on the system under study. For our analysis, we first
consider a diffusion couple of pure A (Cg = 0) and an alloy of A-B (Cp = Cj), as
shown in Fig. 3.7. The initial boundary conditions are

Cp = 0 at x<0 before annealing, that is, for time = 0 and
Cp = C;; at x > 0 before annealing, that is, for time ¢t = 0.

The solution to this can be found with the help of the solution developed for the
thin-film condition. We assume that the block with the concentration Cj is built
from n numbers of very thin slices of thickness AE. Now, we can see this problem
similar to the thin-film condition, given above in Eq. 3.10. In a particular thin slice
A¢;, the total concentration of element B is Mg = C;Af,-. Therefore, this can be
written as

_ C;Aéi (x — fi)z
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Here, x is replaced by (x — ¢;), since the slice A¢&; is located at a distance ¢&;
from the initial contact plane, x = 0. Similarly, we consider all other thin slices
and from the assumption that different slices do not affect each other, the con-
centration at any position x after superposition can be written as

(x=&)
4D t

Cp(x) = A& (3.14)

wm“zp

The first slice A&, is at the distance of £, = 0 and the nth slice A&, is at the
distance of ¢, = +oo from the initial contact plane, x = 0. The concentration at
any position x, following Eq. 3.14, can be written in the integral form as

x 2
- d 3.15
CB / 4DBI é ( )
0
Let us consider
x—¢
=— 3.16
T 2Dut 10
Differentiating Eq. 3.16,
d¢
dn = ———— 3.17
RN 217
For £ =0, n—T—— and for £ = oo, # = —oo. So Eq. 3.15 can be written as
-0 x/(%/W)
Ci(x) G / exp(—1°) dnp = G / exp(—n’) dn  (3.18)
VT VT '
o/ (2vm) e

The value of the integral in Eq. 3.18 is not straightforward to estimate. So for
the sake of convenience, Eq. 3.18 is converted in terms of error function. The error
function of z, which is basically the value of the integral from O to z, expressed as

erf(z f/ exp(— (3.19)

In general, the values of erf(z) as a function of z is available in the literature and
the positive values of z are listed in Table 3.1. The variation is shown in Fig. 3.8
for both positive and negative values of z. From Eq. 3.18,
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Fig. 3.8 Variation of
erf(z) with z

erf(z)

0
Cp(x) = C—\/l% Z exp(—n?) dn + / exp(—n?) dn

o/ (2Pm)

Cct - (3.20)
Cp(x) = \/_BE - / exp(—n°) dn + / exp(—n*) dn
0 0
Cp(x) = %; [—erf(—oo) + erf(z\/%)]
It can be seen from Fig. 3.8 that
erf(—z) = —erf(z); erf(—o0) = —1 (3.21)

Therefore, Eq. 3.20 can be written as

Cp(x) = %; {1 +erf (2 \/);m)} (3.22a)

cggc) :% [1 +erf<2\/%ﬁﬂ (3.22b)

It should be noted here that position x is the distance from x = 0. For the
negative side, the sign inside the bracket will be negative. Thus, it is mandatory to
find the location of x = 0 after measuring the concentration profile for the cal-

. N

culation of the diffusion coefficient. For x = 0, Cp(x) = %B [1+0]= %B There-
+

fore, the location of the initial contact plane is CTB that is exactly at the middle of

the concentration profile. This is to be expected, since we are considering here a

constant diffusion coefficient at all possible concentrations.
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Fig. 3.9 Composition profile Cq ———
in a diffusion couple of Cp = ™~
Cgz and Cp =0 @
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When the concentration profile is opposite to that in Fig. 3.7, as shown in
Fig. 3.9, the concentration profile is expressed as

- % [1 _erf (N);J_Btﬂ - %erfo (2\/XD_Bt> (3.23a)

ol deloy) oo

where erfc(z) is the error function complement.

So the only difference between Eqs. 3.22a and 3.23a is the negative sign inside
the brackets, which originates from the difference in the concentration profiles that
are considered in these systems. By denoting “—” and “+” in Cz and Cj,
respectively, we define the concentrations of the left- and right-hand unaffected
side of the couple halves.

In the above examples, the concentration in one end member was considered to
be Cp = 0. Now, let us consider the diffusion couple of C; and Cz{, where the
concentration of element B is not zero. First, by considering that C;; > Cy and the
profile shown in Fig. 3.10a and by following Eq. 3.22b, the relation can be written
as

CB(X)

Cg‘?f_c?zé[l—i—erf(z\/%ﬂ (3.24a)

Here, the concentration is normalized with respect to the concentration differ-
ence of the end members. Note that when C; = 0, Eq. 3.24a reduces to Eq. 3.22b.
Moreover, the sign of the x should be considered properly. The left-hand side of
the couple from x = 0 should have a negative sign.

After rearranging, Eq. 3.24a can be written as
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Fig. 3.10 Concentration profile in diffusion couples of C; and Cj, where in a Cj > Cy, and
b Cy > C}
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Similarly, if we consider that C; > Cj and the profile shown in Fig. 3.10b,
then Eq. 3.23b should be rewritten as

CB()C)

(3.24b)

() om

Rearranging Eq. 3.25a, we can write

Ci+Ch Ci—Cf x
C _Ss 8 Cp B orf
5(*) 2 > U\ D

that coincides exactly with Eq. 3.24b. The specific way to represent the solution,
i.e., expressions (3.24a) or (3.25a), remains an arbitrary choice which may be
dictated by a demand of “elegancy” to have positive numbers in equations. This is
explained below.

Please note that the error function is antisymmetric just by definition, Eq. 3.21.
Thus, on the negative side from x = 0, i.e., at x < 0, minus sign inside the bracket
in Eq. 3.25a changes to a plus sign with a positive argument of the error function.
Therefore, it should be noted from Eqs. 3.24a and 3.25a that any combination of
these equations can be considered if the signs inside the brackets are taken
properly. A positive sign might be used for the part of the concentration profile
where the concentration increases when we move toward the end of the couple
from the initial contact plane. A negative sign might be used for the part of the
concentration profile where the concentration decreases when we move toward the
end of the couple from the initial contact plane. Any choice is allowed and they are
equivalent as the direct comparison of Eqgs. 3.24b and 3.25b reveals.

(3.25b)
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Carburizing gas Carburizing gas

ts>tr >ty (a)

Carbon
concentration

Carbon
concentration

DN

Distance, x Distance, x

Fig. 3.11 Change in concentration profile with annealing time during carburization of steel in
which a C diffuse from left to right, and b C diffuse from right to left

Note that here it is also necessary to find the location of the initial contact plane
(x = 0) for the calculation of the diffusion coefficient from the concentration
profile. For x = 0, Eq. 3.24b or 3.25b will reduce to

G+ Gy

CB()C == 0) 3

(3.26)

This suggests that the average concentration will indicate the location of the
initial contact plane.

Now, let us turn to consider the carburization of steel, where the carbon con-
centration of steel from the surface is increased by diffusion. In this process, steel
is kept in a gas mixture of CH4 and CO at the temperature of interest. Depending
on the ratio of the gases supplied, the carbon concentration at the surface is kept
constant by a constant supply of gases. Thus, with the increase in annealing time,
the concentration profile of the carbon changes, as shown in Fig. 3.11a. If we
consider that the initial carbon concentration of the steel is C, and the carbon
concentration at the surface is C,, following Eq. 3.25a (since C diffuses from left
to right), the concentration of C, C(x), comparing Fig. 3.10b can be written as

C(x)—C, X
@—Q1W%E§> (327

Furthermore, Eq. 3.27a can be rearranged as

C(x) = Cs — (Cs — Cp) exf (2 \jﬁ) (3.27b)
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Here, the main difference between Eqs. 3.25a and 3.27a is that the numerical
factor %2 is missing. The numerical factor is removed since here we have only one
side of the profile from x = 0 compared to the two sides in the previous diffusion
couple example. It is also important to note that if we consider that the carbon is
diffusing in the opposite direction, as shown in Fig. 3.11b, we shall find the same
relation as in Eq. 3.27a. In this case, as C is diffusing from right to left, Eq. 3.24a
should be written comparing Fig. 3.10a as

%: 1 +erf(—2L\/D_t) =1 —erf(#D_) _erfc(z%/ﬁ) (3.28)

If we consider the carburization treatment of a material with no carbon present
before the carburization treatment, that is, C, = 0, the above relation will reduce
to

C(x) = Cg {1 —erf <ﬁ§>} = Cyerfe (2%/5) (3.29)

When considering decarburization, as shown in Fig. 3.12 where the carbon
concentration at the surface C; = 0 for the whole time, then from Eq. 3.28, the
relation for decarburization can be written

C(x) = Coerf <#D7> (3.30)
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Yet another important relation can be obtained from the above discussion. Let
us consider the carburization experiment once again. We know that the diffusion
coefficient depends on temperature; it is considered to be D; at T} and D, at T>.
Suppose we wish to know what is the time difference needed to achieve a par-
ticular concentration, let us say C(x) = C; at a particular distance, x; at two

Cx)—Cy -G
-G = O=C in Eq. 3.28 and

different temperatures. We can write

2 2
I (3.31)
Dltl D2t2

Next follows a discussion of the calculation of the diffusion coefficient in a
diffusion couple. Suppose that under consideration, we have a diffusion couple of
two different blocks with composition C; = Cj, and Cj = C% such that C3 > C}.

Therefore, the concentration profile shown in Fig. 3.10a can be expected and it can

be expressed as
Ci + C') C: - C} X
Cp(x) = L2—8) + ( 8 B)erf(—) 3.32
B(x) ( 2 2 2\/5; ( )

If the system has a constant molar volume, Eq. 3.32 reduces to

N3 + N} <N2 — N} x
Np(x) = L LT B ) erf ( ) 3.33
since Cp = % = )‘5—5, where Np is the atomic fraction, Xp is the mole fraction of

element B, and V,, is the molar volume. Suppose these compositions are N} = 0.3
and N3 = 0.7, as shown in Fig. 3.13. This couple is annealed for 25 h. A com-
position profile might built up such that the atomic fraction of B at the distance of
2.5 um from x = 0 would be N = 0.6. Using the relation in Eq. 3.33, it is possible
to estimate the diffusion coefficient in this system. From the description above, we
know that Nz = 0.6, N} = 0.3, N3 = 0.7, t =25 h =25 x 60 x 60 = 90,000 s,
and x = 2.5 um = 2.5 x 10~® m. Substituting these values in Eq. 3.33, we get

2.5 % 1076
f(-2X 2 V=05 3.34
° (2 D x 90,000> (3:34)

From the values listed in Table 3.1, we see that there is no value exactly for
erf(z) = 0.5. We have the values erf(z) = 0.49375 for z = 0.47 and erf(z) = 0.50275
for z = 0.48. Since these values are very close, we can consider linear variation and
find the value of z for erf(z) = 0.5 following
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Fig. 3.13 Composition profile developed in a diffusion couple

z—047 0.5 -0.49375
0.48 —0.47  0.50275 — 0.49375
z=0477
So we get
erf(0.477) ~ 0.5 (3.35)

Comparing Eqgs. 3.34 and 3.35, we can write

2.5%x10°°

2,/90,000 x D

This gives the diffusion coefficient D = 7.6 x 107" m?/s.

Now, suppose that we are interested in annealing the couple at a higher temperature
where diffusion is faster and the diffusion coefficient is D = 1.05 x 10~ '*m?/s. We
would like to find how much time it will take to develop a similar concentration
profile, i.e., Ng = 0.6 at the position x = 2.5 um. Since the compositions are the
same, we can use Eq. 3.31 for this calculation, where D; = 7.6 x 10717 m?/s,
t1 =25h,x =x, =2.5 um, and D, = 1.05 x 10~1° rnz/s. Thus, we find that the

system needs t, = %ﬁ‘ = 18.1 h.

= 0477



134 3 Fick’s Laws of Diffusion

Fig. 3.14 Diffusion profile
developed from a thick film

The relations used above are strictly applicable only in the case of semi-
infinite diffusion couples. This means that annealing time must be short
enough such that the end parts of the material are not affected by the dif-
fusion of components. We have stated previously that the length of each

block in a couple should be greater than 10v/Dt. However, in practice, even
if one atomic layer in the end is found to be unaffected, the couple can be
considered as semi-infinite. It must be apparent that the values for the length
of the blocks can be considered as semi-infinite depend on diffusion coef-
ficient, temperature, and desired annealing time. If the system is not semi-
infinite, the analysis will lead to an inaccurate results.

Let us consider a situation shown in Fig. 3.14. At time ¢ = 0, that is, the time
before annealing, the concentration in the position ranges from —h to h is C = C,,.
Outside this range, the concentration is C = 0. Therefore, this can be seen as a
block/film with the thickness of 2 h having concentration of C, sandwiched
between the materials with the concentration of zero. The initial profile at r = 0 is
indicated by the dotted line. The concentration profile, after time ¢ = ¢, is indicated
by the solid curve. It should be noted here that this condition is different from the
condition discussed in Sect. 3.2.1, where the diffusing element from a very thin
layer mixes in the impurity level without significantly altering the concentration of
the bulk material into which the component is diffusing. In this example, we
consider a relatively thick film or block with a finite thickness such that the
diffusing components from this relatively thick film/block will change the overall
concentration of the material in between which this layer is sandwiched. In the
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thin-film solution as shown Sect. 3.2.1, we considered the concentration of the
diffusing element only. In this example, however, we consider the concentration
profile of an alloy.

Following a procedure similar to that used to develop the error function anal-
ysis, the diffusion profile can be expressed as

1 h— x h+x
C(x) = , lerf erf 3.36
(x) NTRRE T (3.36)

It can be seen that the diffusion profile has a reflection at x = 0. The book
written by J. Crank can be consulted for a more detailed treatment on this [2].

3.2.2 Solution for Homogenization (Separation of Variables)

Now, let us consider a system that ultimately reaches homogenization, meaning
that we must turn to consider relatively long annealing times. In any system, the
concentration varies with respect to two variables time ¢ and position x. Hence, we
can write

Clx, 1) = X(x)T(1) (3.37)

Partial differentiation with respect to x and ¢ gives

dc dT
d’c X
a2~ Tae (3.38b)

Replacing Egs. 3.38a and 3.38b in Fick’s second law expressed in Eq. 3.5b, we
obtain

dTr ’x
1 dT 14d°X
DT dr ~ Xdl (3.39b)

From Eq. 3.39a, it can be observed that the relation is divided with respect to
t and x. Both sides should be equal to the same constant value. For the sake of
convenience, let us consider the constant as —42. There is an advantage in con-
sidering the constant like this, which will become clearer to the reader during the
derivation that follows. We can write
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1dr_ _)?

DT j; (3.40)
— = —2’Ddt
T

By integration, it yields

(3.41a)

where T, is the value at time ¢t = 0. This relation indicates the reason for con-
sidering the negative sign in the constant value. It shows that T decreases expo-
nentially with increasing annealing time. Additionally, we can write

ldz_X —_)?
X dx?
d’X
—S+AX=0
dx? *
Integration gives
X(x) = (A’sinAx + B cos Ax), (3.41b)

where A’ and B’ are the constant.
Replacing T and X (from Eq. 3.41a) in Eq. 3.36, we get

C(x,1) = (A'sin Ax + B' cos Ax)T, exp(—2’Dt)
= (Asin Ax + B cos Ax) exp(—A*Dr)

where A = A'T, and B = B'T,
This solution is valid for any values of A. If there are different values of A, then
the solution will be the sum of all the values

Clx,1) = Z (A Sin Ayx + By, €OS AyX) exp(—)uﬁlDt) (3.42)

m=1

The values of A,,, B,, and 4,, should be determined depending on the system
under investigation. We consider a thin sheet, with thickness s, where the con-
centration of the diffusing substance is kept uniformly before the start of the
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diffusion process. Further, the concentration at the surfaces of the sheet is always
kept at zero. Thus, the boundary conditions can be written as

C=¢C, forO<x<h, at t=0
C=0, forx=0 andx=h, at >0

From the second boundary condition, C is zero at x = 0 at any time only if
B,, = 0. Moreover, C is zero at x = h at any time only if 4,, = mm/h, where m is a
positive integer. Replacing these values in Eq. 3.42, we get

0 2.2
cten) = 3= (Ansin57x) oo (=" 01) (3.43)
From the first boundary condition for r = 0, we get
= (Am sinTx> (3.44)
m=1 h

Now, we need to find the value of A,,. We multiply both sides by sin“*xdx and
integrate in the range of O to A.

h h

/C sm(—x) i /sm—x81n7xdx (3.45)

m=1
On the right-hand side, all integrals will be zero except for only one value
n = m. When n = m, the value of the integral is #/2. So we can write

h

2 . /mm
An=1 / c, sm<7x>dx (3.46)

o

Integration of this shows the value of O for even values of m and 4C,/mn for any
odd values of m. The summation of the integer values can be changed so that we
can use this relation for every integer, with the result that it will give odd m values
for every integer. This can be written as

4C, 4C
:A]:4 j:O, 172.........

Ay =
mn (2j+ )n

So Eq. 3.43 can be written as

4C, 1 2+ 1 2j + 1)°n2
C(x,t) = C(Z sin(J+ )nxexp<—MDt> (3.47)

; 2
TS 2j+1 h h
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This solution is the summation of all the terms for j equal from zero to infinity.
However, it must be clear from the relation that the value for every successive
Jj decreases exponentially (note the negative sign inside the exponent). It should,
therefore, be possible to represent the concentration with the first few values of
Jj. Let us estimate the value for j = 0 and 1 after time ¢.

2

4G, . :
Cizo(x,1) = Tsm%exp (—%Dt) forj=0.

4C,1 . 3 972
Cimi(x,1) = gsm%exp (—h—ﬂ;Dt) forj=1.
Y

Taking ratio of these two values, we get

Cj:()(x, t) 812
—-— =3 —-Dt
Goilwn) — ~OP\w

As explained earlier, this solution can be used where the thickness of the system
is relatively small so that it can reach homogeneity in a reasonable time frame.
This thickness again depends on the diffusion coefficient at that particular tem-
perature of interest. Let us consider h = 4+/Dt, where the ratio given above is 419.
This means that if we neglect even the second term, the error is only 0.2 %. On the
other hand, if we have h = 10v/Dt, the ratio is 6.6. If we neglect the second term,
an error of around 15 % is to be expected. Thus, the number of terms that should
be considered depends on the system and the temperature, since D varies differ-
ently in different systems at a particular temperature.

Note There is widespread confusion as to the usefulness or the applicability
of Fick’s fist law. Many even think that this law cannot be used in any
realistic situation. It should be noted here that there is no fundamental
problem in Fick’s first law. It is true that it cannot be used directly to study
the time-dependent mass distribution in a non-steady case. However, at one
particular composition after a fixed annealing time, Fick’s first law is still
applicable to relate the flux and the concentration gradient at any particular
concentration. This will be shown in Chap. 6 in which the relations for the
calculation of different diffusion parameters are developed.

It is also stated many times that the chemical potential gradient is the real
driving force for the diffusion process and not the concentration gradient. As
will be discussed in Chap. 4, it is correct that the chemical potential gradient
always indicates the direction of diffusing components correctly, since
components always diffuse down the chemical potential gradient. It is rather
common to find the diffusion of components also down the concentration
gradient in the majority of systems. However, there are also several exam-
ples of uphill diffusion (especially in multicomponent systems), where the
direction of the diffusing components is against the concentration gradient
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because of a favorable chemical potential gradient. In this case also, Fick’s
laws are applicable and the uphill diffusion is indicated by a negative sign in
the diffusion coefficient compared to a positive sign for the downhill diffu-
sion. For further clarification, see Chap. 9 on multicomponent diffusion
analysis.
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Chapter 4
Development of Interdiffusion Zone
in Different Systems

In this chapter, the microstructural evolution in the interdiffusion zone in a
diffusion couple is explained based on thermodynamics. A two-phase mixture
cannot develop in a binary system, whereas this is possible to find in a ternary
system. Condition for finding an uphill diffusion is explained.

As discussed in the previous chapter, when two different blocks are joined for
diffusion, it is called a diffusion couple. For example, two alloys of A-B binary
system are coupled, as shown in Fig. 4.1. The concentration (or composition) of
the left-hand side of the couple is Cy (or Ng) and the concentration (or compo-
sition) of the right-hand side of the couple is Cj (or Nj). We consider Cz < Cp
(or Nz < Ng). In general (meaning not in uphill diffusion), as will be discussed
later in this chapter, A will diffuse from left to right and B will diffuse from right to
left. In uphill diffusion, the direction of diffusing component is just the opposite.
As the atoms interdiffuse with each other, the overall process is known as inter-
diffusion. The definition and details of the diffusion parameters are discussed at
greater length in Chaps. 5-8. In this chapter, the discussion is on the growth of the
phases in an interdiffusion zone in different systems.

4.1 Chemical Potential as the Driving Force for Diffusion
and Phase Layer Growth in an Interdiffusion Zone

In most practical examples, diffusion occurs under the presence of driving forces.
A chemical driving force that is the diffusion caused by differences in the chemical
potential or activity of the components is common to the majority of systems.
Additionally, a few other types of forces might influence the diffusion process. For
example, in the electronic industry, the flow of electrons also drives the diffusion
process because of the presence of current. The presence of driving forces makes
the jump rate of atoms higher in one particular direction. Let us consider the
isomorphous phase diagram that is presented in Fig. 4.2a. The free energy curve
of the solid solution phase at temperature, 7, is shown in Fig. 4.2b. At any
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Fig. 4.1 Interdiffusion of
components A and B in a
diffusion couple

& N: t=0

composition, let us say, X;, we can determine the chemical potentials of the
components by taking a slope and then extending it to Xz = 0 and 1. Following
on from this, the activity of the components can be estimated from the relation
W — 1 = RT In a;, where 4§ is the chemical potential of component i at the
standard state (25 °C and 1 atmospheric pressure). As discussed in Chap. 1, we
know that the activity of component B, represented by the value ap, increases from
0 to 1 with an increase in composition from Xz = 0 to 1. In an (almost) ideal
system, the activity coefficient yp is almost equal to 1 and ag = Xj. The variation
of the chemical potential is also similar. For instance, the chemical potential of
B increases from a negligible value to up with an increase in Xz = 0 — 1. The
variation in the activity and chemical potential of A with an increase in Xj is just
the opposite. Suppose, at temperature T, two alloys P (composition X%) and
R (composition X%) are coupled. P is a relatively A-rich alloy and R is a B-rich
alloy. The free energies of P and R are gp and gz. The compositions of the alloys
are such that the average composition considering the total amounts of P and R is
X%, meaning that the couple has an average free energy of g’ o before mixing by
interdiffusion. However, it is higher than the free energy at equilibrium g, when
they form an alloy after mixing. Since the blocks are coupled below the melting
point, the equilibrium composition can only be realized using a solid-state inter-
diffusion process. Therefore, the driving force comes from the drive to decrease
the free energy of the system. It can be seen in Fig. 4.2c that u% > pf and pf > 14,
These values will change to the chemical potentials of the components in the
homogenized alloy Q that is u and u§. Therefore, the A-rich alloy should lose
A and add B. Conversely, the B-rich alloy should lose B and add A. This process
indicates that atom A should diffuse from P to R and atom B should diffuse from
R to P. The change in the concentration profile with increasing annealing time is
shown in Fig. 4.2d. After infinite time, the block will reach to a single equilibrium
composition of X¥. Here, infinite time is symbolic, which is basically the time
required for complete homogenization to occur. It will vary from system to system
depending on the diffusion coefficients at the temperature of interest and thickness
of the blocks.

Since atoms diffuse down the chemical potential gradient, the flux of element
A can be written based on a phenomenological point of view as

JAauﬁf—uﬁa_uﬁ—uﬁ
Ax fix (4.1a)

Ha

Jo=—Ly—4

A A dx’
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Fig. 4.2 Interdiffusion in a complete solid solution is explained in a phase diagram, bg versus
composition diagram, ¢ chemical potentials of components, and d the diffusion couple and
composition profiles

where the proportionality constant L, is called the phenomenological constant of
component A.
Similarly for component B, it can be written as
Pl P Sl
A YT Ax
(4.1b)
dug

Jp=—Lg—L
B dea

where Ly is the phenomenological constant for element B. These relations were
developed previously in Chap. 1 (Sect. 1.15).
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In terms of the concentration gradient, we can write
Ci-C Ci-Cf
o —
Ax Ax (4.1¢c)

dCy
Jy=-D, =2
A A dx

JAOC

Similarly, we can write

ct_ck k-t

Jpa o —
Ax Ax (4.1d)
7. — _p. 98
B B dx

D, and Dg are the intrinsic diffusion coefficients, i.e., the diffusion coefficients of
the components A and B.

Therefore, it can be seen in this system that the components diffuse down the
chemical potential and concentration gradient. This is indeed the case for most
systems. However, in uphill diffusion, it is different—as will be explained at the
end of this section. Since composition changes with time at one particular location,
driving force and flux of components also change accordingly. It is a fact that the
diffusion coefficient depends on a few other factors such as crystal structure and
defects, which will be covered in the next few chapters. For now, we consider a
hypothetical phase diagram, the one shown in Fig. 4.3a. A diffusion couple is
made of the pure components A and B, at temperature 7, as presented in Fig. 4.3a.
At this temperature of interest, there are three regions between A and B: the
phase mixture of A and f3, the single-phase f, and the phase mixture of  and
B. Following the Gibbs phase rule, F = C — P + 2, where F is the degrees of
freedom, C is the number of the components, and P is the number of the phases. As
the experiments are conducted at constant temperature and pressure, this relation
can be written as F = C — P. In a binary system (C = 2), it becomes F' + P = 2.
Therefore, in binary diffusion couple, the total number of phases and the degrees of
freedom can be two. Since composition is one of the degrees of freedom already
present, only one phase can be present in the interdiffusion zone. This further
indicates that at any position to the diffusion direction, a phase mixture cannot
grow in a binary system. Therefore, only the f§ phase will grow in the interdiffusion
zone. We can observe from Figs. 4.3b and c that at the interface I, A and f are in
equilibrium, and at the interface II, f and B are in equilibrium. Although local
equilibrium exists at these interfaces, the diffusion of the components will occur
since there is a difference in the chemical potential of the components between
interfaces I and II. We witness a continuous change in the chemical potential
across the interdiffusion zone. For example, it changes from s to uy for the
element A. In fact, this is true in any interdiffusion zone, where there will be a
continuous variation in chemical potential during the entire interdiffusion process.
In this particular case, since the phase has a very narrow homogeneity range, the
chemical potential changes very sharply.
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Fig. 4.3 Growth of a phase with narrow composition range is explained in a the hypothetical
phase diagram, b free energy versus composition diagram, ¢ the variation of the chemical
potential of components, and d the interdiffusion zone and composition profile

From the above discussion, it must be clear that if we couple the alloys P and Q,
as shown in Fig. 4.3a, there will be no interdiffusion because there is no difference
in the chemical potential of the components even though a composition difference
exists. This indicates that the composition or concentration differences between the
couples do not explain the interdiffusion of the components. It is necessary to
examine the interdiffusion process based on the difference in the chemical
potentials. What we are actually saying is that there will be no interdiffusion
between the alloys P and Q. Self-diffusion of the components in the respective
alloys still can occur. All these are covered to in greater detail in the next chapter
as a part of the discussion on the atomic mechanism of diffusion. Even the size of
the phases increases in the alloys to minimize the interfacial energy since these are
two-phase mixtures.

Let us consider another phase diagram, as shown in Fig. 4.4a. At the temper-
ature of our interest 7, we have a solid solution ¢, an intermetallic compound f,
and a solid solution y. The free energy diagram is shown in Fig. 4.4b and the
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Fig. 4.4 Interdiffusion in a system where the solid solution phases are present along with an
intermetallic compound with a wide homogeneity range is explained. a Hypothetical phase
diagram, bg versus Xp diagram, c the change in chemical potential with composition, and d the
diffusion couple and composition profile

change in the chemical potential of element B is shown in Fig. 4.4c. Following the
explanations above, it can be understood that the «, [, and y phases will grow in
the interdiffusion zone and the likely composition profile is shown in Fig. 4.4d.
It can be seen that the two-phase mixture, where the chemical potentials of the
components are constant, will not develop in the interdiffusion zone. Therefore, as
expected, the continuous change in the chemical potential is present in the inter-
diffusion zone.

Now we turn to consider a phase diagram, shown in Fig. 4.5a, which has a
complete solid solution in the high temperature range and a miscibility gap in the
low temperature range. Therefore, when A and B are coupled in these temperature
ranges, different composition profiles will develop in the interdiffusion zone. As
shown in Fig. 4.5b, interdiffusion zone will show continuous change in the
composition profile at T, whereas at T», it will exhibit a composition jump.

The whole diffusion process is completely different, if we couple two alloys
P and Q inside the miscibility gap, as presented in Fig. 4.6a. The process is
explained with respect to the chemical potential of the components, as can be
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Fig. 4.5 Interdiffusion at
two different temperatures is
explained in a system where
there is a miscibility gap at
the lower temperature.

a Hypothetical phase
diagram, b composition
profile at higher temperature,
where it has a complete solid
solution, and ¢ composition
profile at lower temperature,
where it has a miscibility gap
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Fig. 4.6 Interdiffusion in a (a)
diffusion couple of two alloys
inside the miscibility gap is
explained in a a hypothetical
phase diagram, b g versus Xp
diagram, and c the direction
of the diffusing components
in a diffusion couple
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observed in Fig. 4.6b. The alloy P is relatively A-rich and the alloy Q is B-rich.
However, it can be seen that in Fig. 4.6b, i < u and u§ < u%. Therefore, ele-
ment A will diffuse from the A-lean alloy Q to the A-rich alloy P, whereas B will
diffuse from the B-lean alloy P to the B-rich alloy Q.

With respect to the chemical potential gradient, the flux of the atoms can be
expressed as

JAaui—ufa_uf — 1k
Ax ?jx (4.22)
Jy= -1,
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Similarly,
P
B o —
Ax Ax (4.2b)
7o~ s
B B dx )

In terms of concentration gradient, we can write

ch—c?
JAOCM
Ax (4.2¢)
A — UA dx .
Similarly,
c? - ct dc

Therefore, the minus sign of Fick’s first law is not there in the relations
expressed in Eqs. 4.2c and 4.2d. This would suggest that the components diffuse
up the concentration gradient rather than down the concentration gradient and, for
this simple reason, it is called uphill diffusion. It should be noted here that the
relations for the calculation of the diffusion coefficients from the composition
profiles are derived considering the minus sign in Fick’s first law. The same
relations can be used to determine the diffusion coefficients even if the system goes
through uphill diffusion. Nonetheless, the diffusion coefficient will have a negative
sign.

4.2 Few Practical Examples

In this section, we shall provide a few examples that are based upon real working
systems. From Fig. 4.7a [1], it can be seen that in the high temperature range, the
Au—Cu system has a complete solid solution. Thus, after coupling Au and Cu at
850 °C for 9 h [1], a continuous change in the composition is to be found, as
depicted in Fig. 4.7b. It needs to be pointed out here that, below 410 °C, a con-
tinuous change in the composition profile will not develop because of the presence
of the intermediate phases, as was discussed above based on the hypothetical
diffusion couples in Figs. 4.3 and 4.4.

It can be seen in the Au—Sb phase diagram in Fig. 4.8a [2], that below 633 K,
there is only one compound AuSb, that is present. The solubility of Sb in Au is
very low and the solubility of Au in Sb is negligible. In the diffusion couple of Au
and Sb at 607 K (330 °C) annealed for 225 h, it is mainly the AuSb, phase that is
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Fig. 4.8 a Au-Sb phase diagram [2]. b Growth of the AuSb, phase in the Au-Sb diffusion
couple annealed for 225 h at 330 °C [3]

noted to have grown [3]. Both the solid solubility phases do not grow with any
reasonable thickness.

Next we consider the diffusion couple in a Co—W system [4]. At 1,200 °C, the
three phases, the Co(W) solid solution, Co;Wg, and the W(Co) solid solution, are
expected to grow according to the phase diagram presented in Fig. 4.9a [5, 6].
It can be seen from the micrograph in Fig. 4.9b and the composition profile in
Fig. 4.9¢ that mainly the Co(W) solid solution, denoted as Co(ss), and the Co;W¢
phase grows with reasonable thickness in the interdiffusion zone [6]. We should
also note here that thermodynamics explains the existence of the phases; however,
the growth of the phase layer with reasonable thickness depends on the kinetics
that is the interdiffusion rate. The W(Co) solid solution must be present as a very
thin layer because of its very low interdiffusion rate.
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[6], and ¢ the measured composition profile [6]
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Next, we consider the Ag—Zn system [7] that is presented in Fig. 4.10a. From
this figure, it can be seen that the Ag(Zn) solid solution has a much wider
homogeneity range compared to the Zn(Ag) solid solution. Moreover, the three
intermediate phases, B-AgZn, y-AgsZng and e-AgZnj are present. In the Ag/Zn
diffusion couple that was annealed at 370 °C for 5 h, all three intermediate phases
grow, as shown in Fig. 4.10b [8]. Although Ag(Zn) has a very wide composition
range in the phase diagram, it does not develop because of slow kinetics. The
presence of a relatively thin Zn(Ag) solid solution is evident from the composition
profile, which can be seen from Fig. 4.10c. ThO, particles were used to detect the
position of the Kirkendall marker planes K; and K,, which will be discussed in
greater depth later in Chaps. 6 and 7.

We consider an incremental diffusion couple in the Ni—Al system [9]. By
incremental diffusion couple, we mean that the end-member compositions are not
made from pure components. Two alloys Nig¢5Aly35 and Nig gqs5Alg 155, as rep-
resented by dots in Fig. 4.11a used in a diffusion couple annealed at 1,000 °C for
24 h [10]. The NiggsAlgss alloy has two phases, B-NiAl and y'-NisAl. The
Nig g45Al9.155 alloy consists of y'-Ni3Al and y-Ni(Al). Since the two-phase regions
cannot grow, only the y'-Ni3;Al grows in the interdiffusion zone. This is the reason
that we find a jump in the composition profile on either side of the product phase.

As we have discussed till now, all the phases present in the phase diagram
should grow simultaneously in the interdiffusion zone. This is generally true when
speaking about bulk diffusion couples. On the other hand, the sequential growth of
the phase layers is very common during the growth of the phases in thin-film
conditions [11], something that will be discussed later on in Chap. 11. Now we
shall show a few examples on the growth of silicides in bulk diffusion couples. For
example, we consider first Nb—Si system [12]. Figure 4.12a shows that the two
silicides, NbSi, and NbsSi;, are present at 1,250 °C, the temperature of interdif-
fusion [13]. These two phases are indeed found in the interdiffusion zone, as
shown in Fig. 4.12b. The growth rate of the NbsSi; phase is lower than that of the
NbSi, phase, so we find it only as a thin layer.

Next we move on to consider the W—Si system [14], in which two phases, WSi,
and W5Sis, are present, as shown in Fig. 4.13a. It can be seen that the interdif-
fusion zone in Fig. 4.13b contains mainly the WSi, phase [15]. This W5Si3 phase
is actually present (not visible in the micrograph), however, with the thickness of
less than a micron, indicating that the W5Si; phase has a much lower growth rate
compared to the WSi, phase. As shown in Fig. 4.13c, after removing Si from one
side of the couple, an incremental diffusion couple of W/WSi, was prepared and
annealed at a higher temperature of 1,350 °C in order to achieve a higher growth
rate in which the W5Si; phase can be very clearly seen.

In the V-Si system [16], as the phase diagram in Fig. 4.14a shows, four phases
should grow in the interdiffusion zone at 1,200 °C [17]. It can, however, be seen in
Fig. 4.14b that only two phases, VsSi; and VSi,, grow with reasonable thickness
and the V;Si phase grows only as a thin layer. The presence of the VSis phase is
not clearly visible in this microstructure; however, under a higher magnification
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Fig. 4.10 a Ag-Zn phase
diagram [7], b diffusion
couple of Ag/Zn annealed
at 370 °C for 5 h [8], and
¢ the measured composition
profile [8]
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micrograph, the presence of this phase is very clearly seen, as Fig. 4.14c

demonstrates.

Similarly, in the Ta—Si system four phases are present, as shown in Fig. 4.15a
[18]. However, in the interdiffusion zone, only two phases, TaSi, and TasSi3, were
detected in the scanning electron microscope image that is reproduced in
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Fig. 4.15b [19]. The TasSi; phase was grown as a very thin layer. When Si was
removed from one side of the diffusion couple to study the growth of the TasSis
phase, as shown in Fig. 4.15c¢, another phase, Ta,Si, was found at the interface,
suggesting that the other phase, the Ta;Si phase, must have an even lower growth
rate that makes the presence of this phase difficult to detect under a scanning
electron microscope.

In the Mo-Si system that is shown in Fig. 4.16a [20], three phases, MosSi,
MosSis, and MoSi,, are present. In the interdiffusion zone [21], as Fig. 4.16b
demonstrates, there were two phases, MosSi; and MoSi,, detected in the
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Fig. 4.12 a Nb-Si phase diagram [12] and b the interdiffusion zone developed in between the
diffusion couple of Nb/Si annealed at 1,250 °C for 24 h [13]
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Fig. 4.13 a W-Si phase diagram [14], b the interdiffusion zone of the W/Si diffusion couple
annealed at 1,225 °C for 9 h, and ¢ the interdiffusion zone of the incremental diffusion couple W/
WSi, annealed at 1,350 °C for 16 h [15]
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Fig. 4.14 a V-Si phase diagram [16], b interdiffusion zone of the V/Si diffusion couple annealed
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interdiffusion zone. The transmission electron microscope image [22] shows the
presence of the Mo3Si phase, which was not possible to detect under the scanning
electron microscope. This would strongly suggest that the growth rate of the Mo;Si
phase is much lower compared to the other phases. In fact, in the Ti/Al diffusion
couple, only the TiAl; phase was found in the interdiffusion zone [23]. All the
other phases present in the phase diagram, the TiAl,, TiAl, and TizAl phases, were
not to be found. These three phases appeared in an incremental couple of TiAls/Ti,
which is suggestive of a much lower growth rate compared to that of TiAlj; in the
Ti/Al diffusion couple.

Sometimes, changing annealing temperature or time plays an important role on
finding the phases differently in the interdiffusion zone. In the Co-Ta system, as
presented in Fig. 4.17 [24], we found that only the Co,Ta phase grows in the
interdiffusion zone at 1,050 °C. However, when the couple is annealed at
1,150 °C, the other two phases, CoTa, and CoTa, which were not visible (but must
be present as very thin layer) at 1,050 °C, were found to form. This indicates that
the growth rate of these two phases increased at 1,150 °C making it possible to
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Fig. 4.15 a Ta-Si phase diagram [18], b interdiffusion zone of the Ta/Si diffusion couple
annealed at 1,250 °C for 9 h, and ¢ incremental diffusion couple of Ta/TaSi, annealed at
1,350 °C for 9 h [19]

find them along with the Co,Ta phase. In the Pd—Sn phase diagram [25], eight
intermetallic compounds are present. When the Pd/Sn diffusion couple was
annealed at 175 °C for 9 h, only the PdSn, phase layer was found with higher
thickness, as Fig. 4.18a makes clear of its presence [26]. However, upon closer
examination—at the PdSns/Pd interface as the location is marked by (b) in
Fig. 4.18a and shown in Fig. 4.18b—another two phases, PdSn; and PdSn,, were
detected. Similar behavior was noticed at 150 °C for the same annealing time of
9 h at 150 °C. However, when the couple was annealed for a longer period of
36 h, the other two phases were also to be found with higher thickness, as shown in
Fig. 4.18c. All these further indicate that the growth rate of the other missing
phases must be even lower.

Therefore, as expected, all the phases might grow simultaneously especially in
bulk diffusion couples. Yet all the phases might not grow with a reasonable
thickness to be detectable by the scanning electron microscope. A much higher
resolution image from a transmission electron microscope might show the



158 4 Development of Interdiffusion Zone in Different Systems

(@) (b)
2600
2400 | Wo .

2200 1}
2000
1800 - |
1600 __
1400 - Liaia
: Si—
1200 ey
0 10 20 30 40 50 60 70 80 90 100
Mo Atomic Percent Si Si

Temperature (°C)

Fig. 416 a Mo-Si phase diagram [20], b interdiffusion zone of the Mo/Si diffusion couple

annealed at 1,300 °C for 16 h [21], and ¢ interdiffusion zone of the Mo/MoSi, couple showing the
presence of the Mo;Si phase [22]

(a)

PR RSl Co.Ta Co
N
‘J Lan(e E
L 3 —~ W~
§ TR
- - LY -
e K
P -
P — !
L "
! . - =
e .
. T

Fig. 4.17 Interdiffusion zone of the Ta/Co diffusion couple annealed at a 1,050 °C for 16 h and
b 1,150 °C for 16 h [24]
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Fig. 4.18 a Interdiffusion zone of the Pd/Sn diffusion couple annealed at 175 °C for 9 h, b Pd-
rich phases in the same diffusion couple, and c interdiffusion zone of the Pd/Sn diffusion couple
annealed at 150 °C for 36 h [26]

presence of these phase layers as very thin layers. However, it might not be always
true. In the Cu—Sn diffusion couple [27], it is suspected that the Cu;Sn phase does
not grow in the beginning along with the CueSns phase. As will be discussed much
later in Chap. 11, sequential growth is rather commonplace in thin-film conditions.

Sometimes, the phases developed in the interdiffusion zone suggest that the
problem lies in the phase diagram. As the Ti-Si phase diagram in Fig. 4.19a
shows, the Ti3Si phase does not exist at above 1,170 °C [28]. However, when the
experiment was conducted at 1,200 °C, this phase was found along with the other
phases as shown in Fig. 4.19b. The same was to be found at 1,225 °C; however, it
was not found at 1,250 °C, as shown in Fig. 4.19¢ and d, hinting strongly that this
phase exists up to the temperature somewhere between the temperatures
1,225-1,250 °C [29]. Similarly, the diffusion couple experiments were used to
detect problems in a few other phase diagrams [10, 24, 30].

In a ternary system, unlike in a binary system, a phase mixture can evolve in the
interdiffusion zone. This could be understood with the help of the Gibbs phase
rule, F = C - P + 2. Again, since the experiments are conducted at constant
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Fig. 4.19 a Ti-Si phase diagram [28], b Ti/Si couple annealed at 1,200 °C for 16 h, and ¢ and
d Ti-rich phases in the interdiffusion zone annealed at 1,225 and 1,250 °C annealed for 16 h [29],
respectively

temperature and pressure, this relation can be written as F = C — P. In a ternary
system (C = 3), it becomes F = 3 — P. Therefore, in the ternary diffusion couple,
the total of number of phases and the degrees of freedom can be three. Since the
composition is one of the degrees of freedom, a mixture of the two phases could
develop in the interdiffusion zone. It can, for instance, be seen in the Au(20Cu)/Sn
diffusion couple presented in Fig. 4.20a [31] that two layers with phase mixtures
have developed: one layer with (Au,Cu)Sny and (Au,Cu)Sn and another layer with
(Au,Cu)Sn, and (Au,Cu)Sn. This does not necessarily mean that layers always will
grow with the phase mixture in a ternary system, as found in the Co(50Ni)/Mo
diffusion couple, which can be seen in Fig. 4.20b. This will be discussed further in
Chap. 9 (Sect. 9.5).

4.3 Making Products by a Diffusion Process

The study of diffusion is important to gain a full understanding on many physical
and mechanical properties of materials. Most of the phase transformations in the
solid state occur by some kind of a diffusion-controlled process. It is a common
assumption that the study of diffusion is important in order to generate data for
further understanding of the related processes. However, there are many products
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Fig. 4.20 a Interdiffusion zone of an Au(20Cu)/Sn diffusion couple annealed at 200 °C for 9 h
[31]. T is a ternary phase, b Interdiffusion zone of a Co(50Ni)/Mo diffusion couple annealed at
1,200 °C for 25 h [6]

on the marketplace that are actually produced by harnessing the diffusion process.
Time and time again, the diffusion-controlled growth of the phase layers at the
interface determines the overall performance of the structures. In this section, a
few technologically important systems are discussed briefly to give an idea of how
diffusion can work in practice.

Take, for instance, the turbine blades used in land- and air-based gas turbines.
These are required to maintain their high strength at the highest possible tem-
peratures while working in extreme harsh environmental conditions. One single
material cannot possess the required mechanical properties along with superior
oxidation and corrosion resistance. Superalloys are considered at present as the
suitable materials for these demanding applications because of their ability to
retain high mechanical strength at very high temperatures. Regrettably, these
superalloys do not have enough oxidation resistance. Furthermore, there is a
demand to increase the operating temperature for higher efficiency and low
emission of unwanted gases. Therefore, two different layers of coatings are used
on the superalloy, f§ Ni(Pt)Al or MCrAlY (M = Ni, Co, Fe) as a bond coat and
yittria-stabilized zirconia (YSZ) as a thermal barrier top coat. A cross section of the
turbine blade is shown in Fig. 4.21a [32]. The material  Ni(Pt)Al is called the
diffusion coating, since it is produced by harnessing a diffusion process. First, Pt is
electroplated on the superalloy, and following this, Al is deposited by pack
cementation process as gas phase at an elevated temperature. After reaction dif-
fusion, a layer of § Ni(Pt)Al forms on the surface. Finally, ¥SZ is deposited on top
of it. During deposition and service, an Al,O3 layer forms between the bond and
top coat that protects the superalloy from oxidation because of very low diffusion
rate of oxygen. Moreover, an interdiffusion zone is formed between the superalloy
and the bond coat because of composition difference, as shown in Fig. 4.21b [33].
A high concentration of brittle topological closely packed compounds grows in
this interdiffusion zone and could be a potential source of failure. The loss of Al in
this interdiffusion zone from the bond coat is unwanted since a continuous supply
is required for the self-healing that is the continuous growth of the Al,O3 layer on
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Fig. 4.21 a Cross section of a turbine blade [32] b Diffusion couple of CMX 4 superalloy with
Ni(15Pt)Al bond coat at 1,200 °C, annealed for 25 h [33]

top of the bond coat, i.e., in the middle of bond coat and top coat. Self-healing is
important to cover the surface where spallation of Al,O5 occurs. Since Al diffuses
out from the bond coat, it is important to study the role of different factors that
determine the diffusion of components [34-36]. One of the beneficial roles of Pt in
the bond coat is an increase in the Al diffusion rate [37]. This ensures that the
service life of a turbine blade is increased threefold. Another type of bond coat,
MCrAlY, is called an overlay coating since it is deposited directly on the super-
alloy—unlike the f Ni(Pt)Al coating. Again, similar studies are important to
understand or enhance the performance. Studies not only on the bond coat, but also
extensive diffusion studies in the superalloys, themselves conducted to understand
many properties such as homogenization and creep.

NbsSn is one of the Al5 intermetallic superconductors used in many applica-
tions where the need is beyond the ability of NbTi (greater than a magnetic field of
8 T). Since this is a brittle intermetallic compound, it cannot be drawn as wire.
Different manufacturing techniques are used to circumvent this problem, such as
the bronze technique, the internal tin process, the powder-in-tube process, the jelly
roll process, as well as infiltration, to name but a few. Diffusion plays an important
role in the vast majority of production processes. To make our point, we shall now
discuss only the bronze technique, which is one of the most favored routes. In this
technique, Nb rods are inserted into Cu(Sn) bronze alloys. Next, this block is
drawn as wire. The cross-sectional view is given in Fig. 4.22a [38]. Following this,
the composite wire is annealed in the temperature range of 700-850 °C such that
Nb;Sn grows at the Nb/Cu(Sn) interface, as shown in Fig. 4.22b, which was
annealed at 850 °C for 4 h. It has already been shown that the growth rate of the
intermetallic compound changes drastically because of a small change in Sn
content in the Cu(Sn) bronze alloy, which changes the Sn diffusion rate through
the product phase [39, 40]. Even the addition of small amounts of different
components such as Ti, Zr, or Hf also increases the growth rate [41]. Similarly, the
manufacturing procedure of V3;Ga is being researched, a process which may
replace Nb3Sn because of better properties.
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(a)

Fig. 4.22 a Cross-sectional view of Nb/Cu(Sn) composite wire and b growth of Nb3Sn at
800 °C, annealed for 4 h [38]
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Fig. 4.23 Schematic diagram of cross-sectional view where a flip-chip and b wire bonds are
shown

Flip-chip and wire bonding are the two techniques to join chip—chip and chip—
substrate. As shown in the schematic diagram presented in Fig. 4.23a, different
underbump metallizations (UBM) are used for different purposes to make the
bonding by using an Sn-based solder alloy in flip-chip bonding. Cu is used for
good bonding, Ni is used as a barrier layer, and Au is used for corrosion protection.
During soldering, Sn-based intermetallic compounds form by reaction between
the UBM layers in the solid state and the solder in the liquid state. Further, during
the service, these compounds grow by a solid-state diffusion-controlled process.
As already explained, the chemical potential difference acts as the driving force for
the growth of the phases. Additionally, an electrical current with a very high
density due to the small dimensions also plays an important role in the growth of
the phases. The growth of the phase layers in the Cu—Sn system is explained in
Fig. 4.24b [42]. In the absence of any current, the two-phase layers, CuzSn and
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Fig. 4.24 a The IRF6716MPbF component package and the test board. b The growth of the
phase layers of the three interconnections investigated is shown for no current (NC) drain and
source. Phase layers are grown in the middle of printed wire board (PWB) Cu and SnAgCu (SAC)
solder [42]
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CugSns, grow in the interdiffusion zone. It must be clear that Cu diffuses from the
Cu end member toward the solder, whereas Sn diffuses from the solder alloy
toward the Cu. Depending on the direction of the electron flow, the diffusion of
these components is affected. When there is no current, the thickness of the Cu;Sn
phase is less than the thickness of the CugSns phase. The thicknesses of these
layers become comparable when the electrons flow in the direction of the solder to
the Cu. On the other hand, the thickness of CugSns increases without changing the
thickness of CusSn, when the electrons flow from the Cu to the solder. This
phenomenological process is discussed in further detail in Chap. 8.

Similarly in wire bonding, as shown in Fig. 4.23b, Au wires are connected with
Al pad. During service, several phases grow at the interface, being affected by
chemical and electrical driving forces.

Often, in order to achieve a property balance, dissimilar materials such as
metal-metal, metal-ceramic and ceramic—ceramic are joined by a solid-state
diffusion bonding process. This process is being exploited to produce a seamless
bond between two different types of superalloys. Metal-metal bondings are pro-
duced by this method when these are difficult to join properly by welding. In many
applications, however, ceramics are preferred as the top layer and a metal or alloy
as the substrate. In this case, the materials are bonded directly or joined using an
inter-layer. Even two different ceramic layers are also bonded using a metal inter-
layer. Multilayer laminate structures are also produced following a similar method.
To achieve this, alternate layers are deposited using various techniques or rolled
after stacking before annealing to create a good bond by a diffusion-controlled
process.
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Chapter 5
Atomic Mechanism of Diffusion

In this chapter, we analyze the diffusion mechanisms in metals from an atomistic
point of view. It is shown that the defects of crystalline structure, mainly vacancies
and interstitial atoms, mediate diffusion. The fundamental difference between self-
diffusion and tracer (self- or impurity) diffusion is introduced, and the basic
concept of correlation factors is discussed. Further, the temperature and orientation
dependence of diffusion according to both substitutional and interstitial mecha-
nisms are examined. The complications related to specific structure of compounds,
including the effect of ordering, are introduced.

In the previous chapter, we discussed diffusion without considering the atom-
istic mechanisms of diffusion. For example, we considered a diffusion couple
where two different materials are fixed together. In another example, we consid-
ered a thin film sandwiched between different materials. Further, diffusion during
carburization and decarburization was discussed. It is important to note here that
different atomistic mechanisms of diffusion are involved in these different cases.

5.1 Different Types of Diffusion

On atomistic scale, diffusion of atoms is mediated by defects of the crystalline
state. In this respect, the diffusion mechanisms can mainly be divided into two
categories: substitutional and interstitial. Interstitialcy diffusion (of importance in
the case of semiconductors), which is not so common, is not considered for dis-
cussion here. As shown in Fig. 5.1a, host atoms exchange positions with vacancies
in substitutional diffusion. Therefore, the presence of vacancies is the primary
requirement for substitutional diffusion and an atom can jump on the condition that
vacancy is present at the nearest neighbor position. Impurities such as C, H, N, and
O occupy the interstitial sites, as shown in Fig. 5.1b. When these atoms jump to
another vacant interstitial position, it is called interstitial diffusion. We have seen
in Chap. 2 that the equilibrium concentrations of vacancies or impurities are very
small. Therefore, the jump of atom in substitutional diffusion is restricted, which
depends on the availability of a vacancy. On the other hand, since concentration of
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Fig. 5.1 a Substitutional diffusion is explained based on atomic arrangement on (111) plane in a
FCC crystal. “v” denotes a vacancy. b Interstitial diffusion is explained in a FCC crystal. Filled
black dot is the impurity atom, and open small circles indicate the free interstitial positions

impurities is typically very low, most of the nearest neighbor interstitial positions
are free for the atom to jump. This is one of the reasons to find much higher rate of
interstitial diffusion compared to that of substitutional diffusion. As it will be
discussed later in this chapter, substitutional diffusion is even more complicated in
an ordered phase compared to a solid solution phase.

As discussed in Chap. 2, in a polycrystalline material, different kinds of defects
might be present. When diffusion occurs through the lattice inside a grain by point
defects, it is called lattice diffusion or volume diffusion. It is denoted as D; or D,.
Edge dislocations are one of the line defects present in the structure. When dif-
fusion occurs via these dislocations, it is called pipe diffusion, since it resembles
like flow of atoms through a pipe, as shown in Fig. 5.2. In polycrystalline mate-
rials, grain boundaries are always present, as shown by arrows in Fig. 5.3. In
general, these are more open (compared to the lattice inside the grain). Therefore,
atoms can diffuse at much faster rate and it is called the grain boundary diffusion.
As it will be discussed in Chap. 10, grain boundary diffusion coefficient, Dy,
depends on the type of the particular interface, mainly on the misorientation of the
grains and the interface inclination. Generally, diffusion along low-angle grain


http://dx.doi.org/10.1007/978-3-319-07461-0_2
http://dx.doi.org/10.1007/978-3-319-07461-0_10

5.1 Different Types of Diffusion 169

O 0000 06O :
I
L -
000000 : e
I
XX B K X ' !
e
& ,

Fig. 5.2 Diffusion through an edge dislocation is explained

Fig. 5.3 Grai.n boundgries in O
a polycrystalline material O
0® ¢% 0
®@g. O\ ,0° 0
© 9 O @) OO
004 °\0°%0 0
Oooooo 0 50
0o ¢ @ O
©9 0 ¢® ©000°
.... ... O OOO
® o _0 g ,00°
®o o ® ¢® 000
:00...0 o 0©
®0e0 0 o0 ®
o000 °?®

boundaries (with the misorientation angle 0 taken conventionally to be less than
15°) is slower with respect to that along the high-angle grain boundaries (i.e., with
0 > 15°). For further details, the reader is referred to Chap. 10. When diffusion
occurs over the surface, as shown in Fig. 5.4, it is called surface diffusion. This
type of diffusion is also found through the cracks or pores in the material.

As already discussed, in substitutional lattice diffusion, first condition is that
vacancy is available at the next neighbor position where an atom could jump. We
have seen in Chap. 2 that it has its own activation energy barrier for the formation
of vacancies. Moreover, the jumping atom has to displace the neighboring atoms
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Fig. 5.4 Surface diffusion is
explained

from their equilibrium positions temporarily to create enough space to exchange the
position with vacancies. Energy is required to spend for this elastic deformation,
which is called the activation energy for migration. Therefore, as it will be seen
during the derivation for Arrhenius equation, the activation energy for substitu-
tional lattice diffusion comes from activation energy for vacancy formation and
migration. In the case of pipe and grain boundary diffusion, the activation energy
for migration is less (compared to the lattice diffusion) because of extra free space
available. This is the reason that with the increase in misorientation of grains, grain
boundary diffusion rate generally increases (still this diffusion enhancement can
remain relatively small for “compact” interfaces such as a coherent twin bound-
ary). In surface diffusion, the activation energy barrier is even less since atoms are
missing above the jumping atom. Further, the activation energy barrier for inter-
stitial diffusion is less than the substitutional diffusion since vacancies are not
required. Even the activation energy for migration is also less because of smaller
size of diffusing atom. With the decrease in the size of the interstitial atoms, the
activation energy is expected to decrease in a particular material.

A diffusion couple of alloys Cy and Cy in the A-B system is shown in Fig. 5.5.
The interdiffusion zone is grown because of diffusion of elements A and B. The
diffusion of these elements is called intrinsic diffusion, and diffusion coefficients
are called the intrinsic diffusion coefficients, denoted by D4 and Dg. Since, overall,
the atoms interdiffuse to each other, it is called interdiffusion and the diffusion
coefficient is called the interdiffusion coefficient, D. It should be noted here that the
interdiffusion coefficient is a kind of average of the intrinsic diffusion coefficients
and expressed as D = CAVaDg + CgVgDa. V; is the partial molar volume of
element i. When the variation of the molar volume with composition in the
interdiffusion zone can be neglected, it is expressed as D = NyDg + NgDa.
Therefore, it is not a direct average of the intrinsic diffusion coefficients. It should
be noted here that following the error function analysis as discussed in Chap. 3, we
calculate the interdiffusion coefficient. More accurate approaches to calculate the
interdiffusion coefficients and the intrinsic diffusion coefficients will be discussed
in Chap. 6.

In the example above, we discussed interdiffusion that occurs in the presence of
chemical driving force. Electric current could also be present in some systems used
especially in the electronics industry. In fact, diffusion also occurs in the absence


http://dx.doi.org/10.1007/978-3-319-07461-0_3
http://dx.doi.org/10.1007/978-3-319-07461-0_6

5.1 Different Types of Diffusion 171

Fig. 5.5 Interdiffusion of R .,
elements A and B in a _ Ce, Ng t=0
diffusion couple

Ng t=t

Fig. 5.6 Tracer diffusion of Isotopes A*
element A is shown \

of any external driving forces, as shown in the example in Fig. 5.6. If radioisotope
of element A (A*) is deposited on the surface of the same element A, by measuring
the intensity of isotope decays, we know that A* diffuses inside A. Note that the
difference between A* and A is only in the atomic mass and there is no difference
in chemical potential. So except the very little gain in configurational entropy in
this particular example, there is no other driving force present. Radioisotopes are
actually used to trace the diffusion of elements. It indicates that in a piece of pure
element A, jump, that is, the diffusion of atoms, is always happening just because
of thermal vibration.

Let us consider the defects which mediate diffusion, i.e., vacancies or interstitial
atoms. The corresponding diffusion coefficients (of vacancies, D,, or interstitials,
D;) are defined as the self-diffusion coefficient Dg (to be not mixed with the tracer
self-diffusion coefficient, D*, see below). Since self-diffusion of elements cannot be
traced or measured, if it proceeds via vacancies since there is no marker for a
vacancy. On the other hand, (radio) tracer atoms are used to monitor movements of
atoms and to measure the diffusion coefficient. The corresponding phenomenon is
called tracer diffusion (or tracer self-diffusion), and tracer self-diffusion coefficient
is denoted as D”. Note that although radioisotopes are used to trace the diffusion,
the tracer self-diffusion coefficient is not necessarily equal to Ds. These are related
by D* = fDs, where f'is the correlation factor and it is less than one in substitutional
diffusion. In the case of diffusion via vacancy mechanism, the above relationship is
written as D* = fD, and fis a just geometric factor specific to the given lattice in
the case of tracer self-diffusion.
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Fig. 5.7 Measurement of Isotopes B*
impurity diffusion coefficient
is shown

In the interstitial diffusion, the correlation factor is just unity, f = 1, which
means D* = Dg. This will be explained in detail in this chapter. Note here that
thin-film solution of the Fick’s second law, as explained in Chap. 3 (Sect. 3.2), is
used to determine the tracer diffusion coefficients. Then, from the calculated/
known value of f, one can estimate the self-diffusion coefficient. Note that the
so-called perturbed angular correlation method [54] might provide D, directly.

If the diffusion rate of element B using the radioisotope (B*) is measured in
element A, it is called impurity (or solute) tracer diffusion of B in A and the diffusion
coefficient is expressed as Df (A)" This is shown in Fig. 5.7. Note here that the amount

of B* should be so small that it can mix in A in the impurity level without forming a
solid solution or a compound. Otherwise, the relation, developed based on thin-film
solution, cannot be used to determine the diffusion coefficient. If the concentration is
high, interdiffusion coefficient should be calculated following the relation developed
by error function analysis or the relations developed in Chaps. 6 and 7.

In previous chapters, we have discussed diffusion in general and the develop-
ment of concentration profiles. There are two approaches to study diffusion in
solids, namely a continuum approach and a consideration of the atomic mecha-
nism. Following the continuum approach, we study the development of concen-
tration profiles and calculate diffusion parameters without going into the details of
the atomic level of diffusion. That means we deal with mainly the kinetics of
diffusion. This is followed in previous two chapters. On the other hand, the atomic
mechanism of diffusion is important to understand the diffusion mechanism.
Depending on the types of diffusion and the phase or materials, diffusion mech-
anism could be very different in different systems.

We know from our discussion in the first chapter that atoms vibrate with the Debye
frequency of about 10'* s~! and the average energy of 3kT (k is the Boltzmann
constant and 7'is the absolute temperature). With increasing temperature, the average
energy of atoms increases without changing much in the frequency. In general, the
size of atoms is higher than the size of the voids or the passage through which the
atom should jump. Therefore, sufficient energy is required to displace the neigh-
boring atoms elastically or temporarily from their equilibrium positions. The actual
barrier in three dimensions will be explained later. The energy required for this
migration is called the activation energy for migration. This is the same as the
activation energy for diffusion in the case of interstitial diffusion. However, in
substitutional diffusion, as explained earlier, the presence of a vacancy is must for a
successful jump. We have explained in Chap. 2 that there is always equilibrium
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concentration of vacancies present. However, the system has to spend energy to
create vacancies, which is called the activation energy for the formation of vacancies.
These will be discussed in detail in the following sections. Therefore, the activation
energy for substitution diffusion is the sum of activation energy for migration and the
activation energy for vacancy formation. On the other hand, activation energy for
interstitial diffusion is equal to the energy required for migration.

It should be noted here that we do not have any technique to see how really the
atoms jump. The diffusion mechanism also could be very complicated because of
various factors involved. However, it is possible to visualize diffusion based on
very simplified theories, as explained for interstitial and substitutional diffusion
separately.

5.2 Interstitial Atomic Mechanism of Diffusion

5.2.1 Relation Between Jump Frequency and the Diffusion
Coefficient

As already mentioned, atoms vibrate at their equilibrium positions and might gain
sufficient energy to jump to another position. This jump is possible just because of
thermal vibration even if there are no other internal (chemical potential difference)
or external (flow of electrons) forces present. Diffusion of atoms increases to a
particular direction because of the presence of driving forces. Otherwise, the jump
is truly random. It means that the successive jump does not depend on the previous
jump and it has equal probability to jump to all the neighboring free sites available.
That means it might go back to its previous position.

In the beginning, we shall discuss the random jump of atoms. The jump rate or
frequency of atoms can be related to the diffusion coefficient following very
simplified discussion. We consider a FCC unit cell, as shown in Fig. 5.8.
Depending on equilibrium concentration, there could be one interstitial atom at the
center of the unit cell. The equilibrium concentration of impurities, in general, is
so small that we neglect the presence of another interstitial atom very close to it.
Three adjacent planes, denoted by P, Q, and R, are shown. Out of these three
planes, let us consider first the exchange of atoms between planes Q and R.
Following, we shall discuss it considering jump to any directions in three
dimensions. Suppose the number of interstitial atoms on plane Q is ng per unit area
and plane R is ng per unit area. For the sake of discussion, we assume that
ng > ng. If we consider the jump frequency, that is, the number of jumps of atoms
per unit time from plane Q, as I'g, then the flux of atoms can be written as

1
JQ = EnQFQ (51a)
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Fig. 5.8 Diffusion of interstitial atoms between different planes is shown

Factor 2 comes from the fact that there is an equal probability that atoms will
jump from plane Q to P or R. Note here that the unit of flux is number/(unit
area X unit time). If number is converted to moles, unit area in m? and time in S,
the unit for flux will be mol/m* - s, which is considered in Chap. 3 for the
discussion of Fick’s laws of diffusion. If the jump frequency of atoms from plane R
is I'r, then the flux of atoms from R to Q can be written as

1
JR = EnRFR (Slb)
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Since nqg > ng, the net flux of atoms from R to Q can be written as
1
JZ.]Q—JR :E(HQFQ—HRFR) (52)

Note here that we have considered random jump of atoms in the absence of any
driving forces. In an isotropic or cubic system (as explained in Sect. 5.2.5),

[g=Ir=T (5.3)

It indicates that the resultant flux is because of the difference in number of atoms in
different planes only.
Therefore, Eq. 5.2 can be written as

J = (nQ — I’lR)F (54)

N —

We consider the distance between planes Q and R is very small and equal to
Ax. So the concentration of interstitial atoms on plane Q is Cq = ng/Ax and that
of plane R is Cr = ng/Ax. Note here that the number of atoms is divided by a
length parameter to get the unit of number/unit volume for concentration.

Therefore, Eq. 5.4 can be written as

J= %(CQ — CMT (5.5)

Further, since we have considered very small inter-planar spacing, the concen-
tration gradient can be written as

(Cr—Cq) _ (Cq—Cr) __dC

(5.6)

Ax Ax dx

We could assume the linear change in the concentration profile, since Ax is very
small.
By replacing Eq. 5.6 in Eq. 5.5, we get

1 ac
J=—-AT— 5.7
2 dx (57)
After comparing with Fick’s first law (J = —D4€), the diffusion coefficient can be

expressed as

1
D= Ersz (5.8)
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Note here that Ax is related to the lattice parameter. For a known crystal
structure, the average jump frequency can be calculated from the measured dif-
fusion coefficients. One important fact here should be noted here that the factor 2
comes from our consideration of jumps between two planes. Jump to forward or
backward direction is considered for easy explanation. However, in actual case, in
a crystal in three dimensions, every atom can jump to any of the Z positions. Z is
the coordination number, that is, the number of nearest neighbors.

Therefore, the diffusion coefficient is related to the jump frequency by

1
D = —T(Ax)? (5.9)
z
Similarly, if we consider the jump of an atom to a particular position i only,

Eq. 5.9 can be written as
D =Ti(Ax;)? (5.10)

Here, I'; is the jump frequency to a particular position. Therefore, the overall jump
frequency, I', can be related to I'; by

[ =zl (5.11)

Atoms are free to jump to any of the nearest neighbor positions. That means
atom can jump to any of the interstitial sites numbered as 1-12 in a FCC crystal, as
shown in Fig. 5.8. We have considered nq atoms on plane Q. Different atoms on
that plane could jump randomly to any of the positions. If the structure is not
isotropic, as discussed in Sect. 5.2.5, jump frequency could be different to different
positions. Since we calculate the diffusion coefficient from the average of jumps of
many atoms, we can write

1 & 5
D—ZE;RMQ (5.12)

In an isotropic FCC crystal, the average diffusion coefficient with equal jump
frequency to all the positions can be written as

i=12

1
D=— TAX? 1
12; Ax; (5.13)

Let us determine the diffusion coefficient in x direction in a FCC lattice, as shown
in Fig. 5.8. The effective jump lengths to positions 1, 2, 3, and 4 are Ax = —4, to
positions 5, 6, 7, and 8 are Ax = 0, and to positions 9, 10, 11, and 12 are Ax = 4.
Further jump frequencies to any of the sites are the same, since it is an isotropic
system and there should not be any difference in the activation energy for
migration. Following Eq. 5.13, we can write
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1 4 8 12
D= (2; TAx? + ; TAx+ ; rm?)

-l
f—FAx =

4T(0) +4F(Ax)2} (5.14)

)+
1
3 r'a®
The possibilities of different jump frequencies and anisotropy of diffusion are
discussed in Sect. 5.2.5. The main difference in the relation derived in Eqs. 5.8 and
5.14 for the diffusion coefficient calculated from the same crystal structure stems
from the fact that in the latter case, we have considered the jump of atoms to both
negative and positive directions along the x-axis. So it is apparent that the
numerical factor depends on our consideration and also on the crystal structure. In
a broader sense, diffusion coefficient in any system can be written as

D xTd> =gld® (5.15)

Here, the proportionality constant, g, in some literatures is called geometric
constant.

Fick’s first law is the center relation in physics of diffusion. How far does it
remain to be valid if one goes to the atomistic scale and do consider gra-
dients between successive atomistic layers? Very recently, Adda et al. [1]
have demonstrated by an atomistic study that Fick’s first law is valid also for
a “strongest possible” concentration gradient. The authors used numerical
simulations as a tool to check the linearity between the flux and the con-
centration gradient for vacancy-mediated diffusion of atoms in a solid and
for atom diffusion in a model liquid. It was proven that Fick’s law is valid in
both systems even in the presence of the strongest possible tracer concen-
tration gradients, provided that the diffusion time is enough for tracer jumps
over several nearest neighbor distances.

From the relations derived above, we find an interesting fact. From the measured
values, we know that the diffusion coefficient of carbon in y-iron with FCC structure
at 1,100 °C is in the order of 10™'° m?/s. The jump distance can approximately be
considered as Ax &~ 1 A = 107'° m. This gives the jump frequency I" in the order
of 10'° s™!. This means that atoms change their position in the order of 10'° times
per second at 1,100 °C! This number looks very large. However, it should be noted
that atoms make successful jump one out of 10° only, since Debye vibration fre-
quency is in the order of 10"* s™'. Now, just for the sake of discussion, we consider
that one particular atom moves only in one direction following the straight line.
Then, it would cover a distance of 10 (m) x 1071° (s_l) x 3,600 (s) =
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3,600 m = 3.6 km in 1 h! However, measured composition profiles in an experi-
ment indicate that the actual penetration length is less than a millimeter. That means
atoms do not follow a straight path. In fact, in the absence of any driving forces,
atoms move completely randomly, which is explained in the next section.

5.2.1.1 Jumps in the Presence of External Force

If an external force is applied, the effective energy barriers for atom jumps will be
modified. Correspondingly, the jump frequencies depend on the external force that
in turn modifies the resulting flux of atoms.

Let us consider an external force F caused by an external potential field,
F = —VV(x), as shown in Fig. 5.9. If the potential field V(x) is applied, the energy
landscape for atom jumps is modified as shown in Fig. 5.9—while without
external field all sites were equivalent and all barriers are considered to be equal to
€, the energy barriers of jumps along and opposite to the direction of potential
gradient become to be different. This difference is designated by A in Fig. 5.9.

Let n; and n, be the numbers of interstitial atoms at planes 1 and 2, respec-
tively. The planes are considered to be located at x — a/2 and x + a/2, and a is the
distance between the planes. Let the jump frequencies of atoms from site 1 to site 2
be I'j,, and I'; is the frequency of a reverse jump. The number of atoms in the
layer at the middle of the planes 1 and 2 is n(x) and n(x) = a - C(x), respectively,
where C(x) is the atomic concentration at the position x. Then, considering the
planes 1 and 2 as atomic positions with a very small distance in between and
assuming that the atom concentration practically does not vary on such distances,
we can write

aon
= - 5.16
m =) -5 (5.16)
and
aon
= ——. 5.16b
m = () + 5o (5.160)
Then, the flux of atoms between the planes 1 and 2 is
J:nlrlz—nzrﬂ, (517)
and substituting Eqgs. 5.16a and 5.17, we arrive at
T'p+T15 0n
J= —a%a—-&- n(p —Ty)
I'p+ T gC (5-18)
= —Clzu— + aC(Flz — er).

2 Ox
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Note that in the absence of external force, I'\; = I';; = I/2, Eq. 5.18 is
reduced to

2
a FGC

=-Sr— 1
J T30 (5.19)

that coincides with Eq. 5.7 derived previously. Here, I is the total frequency of
atomic jumps from plane 1, and these jumps are equally distributed between those
to the right, i.e., to plane 2, and to the left.

Since the atomic jumps are thermally activated, we can write

Ip=r" exp(— %), (5.20a)
and
Iy =T exp(— %) (5.20b)

Here, I'" is the corresponding pre-exponential factor. The activation barriers are
modified by the applied external force (external potential field) and see Fig. 5.9

A
g2 =¢8— 5, (5.21a)

and

& =&+ <. (521b>
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As it was stated above, the case A/2 < ¢ is considered. Then,

e—A/2 € A 1 A
T =exp — T exp(— =) exp( 57 ) 5T ( 1+ 557
2 eXp( RT ) P\ RT Xp(ZRT> 2 ( +2RT>

(5.22a)
and
e+ A/2 & A 1 A
s = exp( — e ~aT(1—).
12 CXP( RT ) eXp( RT) p( 2RT) 2 < 2RT)
(5.22b)

Now, substituting these equations into relation (5.18), the flux of atoms
between planes 1 and 2 is

2

J:—%r%—er%c——D%—CJrvc (5.23)

Here, the diffusion coefficient defined by Eq. 5.8 is used (Ax = a is the present

case), and an additional term to Fick’s first law, vc, is appeared in the presence of

the driving force. We see that if an external potential field is applied, the net flux of

atoms is determined by a sum of two terms, diffusional one, —D %, and convective
one, vc. The convection velocity, v, is given by

aAF_a_er_/cz_DA/a D

= = = 5.24
2RT 2 RT RT RT ' ( )

which is the well—known Nernst-Einstein equation. We used an obvious relation,
F = az o A and see Fig. 5.9. Within the given approximation, i.e., linear terms,
the convection velocity is proportional to the external force F' and mobility M is
determined by the diffusion coefficient D, M = D/RT.

The effect of other driving force (e.g., temperature gradient or electric force)
can be treated quite similarly. The driving force F induces inequality of the jump

frequencies I'j, and Iy, and to the first-order expansion, we may write
1 z
I', = 51"(1 + C) (5253)
and

I = ; (1-2¢). (5.25b)
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These equations can be considered as a definition of the term . Substituting
these expressions to Eq. 5.18, we arrive to Eq. 5.23 with the following expression
for the convection velocity,

v=alTl. (5.26)

The thermal energy RT per net jump of one mole of interstitial atoms in the
direction of the applied force is equal to the work done by the force over the jump
distance a,

Iy =Ty
RT— = =F 5.27
= Fa (5.27)
and using expressions (5.25a) and (5.25b),
a F
=_——. 2
$=5x7 (5.28)
Thus, the convection velocity is
a2F0 F D
=—— =—F. 5.2
2 RT RT (5.29)

Again, we arrived to the Nernst—Einstein equation, expression (5.24), which is
valid if the driving force is small when the expansions (5.25a) and (5.25b) can be
used (Fig. 5.9).

5.2.2 Random Walk of Atoms

As explained already, atoms vibrate at their equilibrium position and might gain
sufficient energy to jump to any of the neighboring available positions. Further,
after making a successful jump, it might jump again to any of the sites. Two
successive jumps are not related. If the atom does not come back to the previous
position, then we can say that the atom is diffused. For the sake of explanation, let
us consider a two-dimensional array of solvent atoms as shown in Fig. 5.10. Fol-
lowing, the jump in a three-dimensional lattice will be considered. Suppose initially
one interstitial atom is located at position P. After many jumps, this atom reaches,
let say, to Q. Now question is that how many jumps it will make to reach Q.

One can easily count that there are few short routes available, as shown by green
dotted arrows, which need 14 jumps to reach Q from P. However, chance of taking
any of the short routes by making all necessary jump is least expected. It might take
a torturous route as shown by black solid arrows. Note that the steps in the middle
are not shown. At first glance, it seems impossible to make any prediction on the
average number of jumps or time necessary for considering random walk of atoms.
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However, following a simplified approach, we can roughly estimate it. We assume
that the atom makes » jumps to reach from P to Q. The jump vector L, connecting
the points P and Q can be written as

Ly=lh+h+h+-+l=>Y I (5.30)
i=1

where /; is the jump vector of the ith jump. To calculate the magnitude, we need to
take dot product.

Ly Ly=L2=1 L+l -L+l-L+-+1-1,
+bL-li+hL-L+h-L+--+bL-I,

th b4l b4l 4+l
34 302 343 3 In (531>

+ln'll+ln'l2+ln'l3+"'+ln'ln

Equation 5.31 can be arranged as

n n—1 n—2
L= 542 Ll +2) il (5.32)
i=1 i=1 i=1

The first sum includes all diagonal terms /;- [;, the second sum consists all /;- [;;
and /;;; - [; terms (according to dot product of vectors, these are the same), the
third sum consists all /; - [;;» and [;;, - [; terms, and so on. Equation 5.32 can be
rewritten as
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Fig. 5.11 Jump vectors of an 5
interstitial atom are shown
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= lez +2 Z Z |l,| ’l[ﬂ" Cos 6i,i+j
i=1 =1 =1

Here, cos 0;;; is the angle between jump vectors /; and ;..

Note that we are considering diffusion in crystalline solids. If we consider the
diffusion in cubic system, magnitude of the jump vectors are equal since direct jump is
possible only to the nearest neighbor positions. Therefore, Eq. 5.33 can be written as

n—1 n—j

Ly =nl +2P> > cos by (5.34)

=1 =1

Till now, we have considered jumps of one particular atom only. However, to find
the average jump distance, we should consider many atoms together and take
average of jumps of all the atoms. The first term in Eq. 5.34, that is, n/?, will be the
same for all the atoms. The differences in total jump distance because of choosing
different path by different atoms are counted in the second term. Therefore,
Eq. 5.34 can be written, after taking average from many atoms, as

n—1 n—j

_ 2
L} =nl 1+—§ § c0s 04/ (5.35)
j=1 i=1

Further, since we have considered the random walk of many atoms together, for
every positive value of cos 0;,,; from an atom, there will be an equal chance of a
negative value from the jump of another atom. It is explained with the help of
interstitial atoms sitting in an octahedral void in a FCC crystal, as shown in
Fig. 5.11. There are 12 jump vectors /; to /1,. It must be clear that for every jump
vector, there is an equal but negative jump vector; for example, [, = —/,. Further
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because of random nature of jump, atoms have equal probability to jump to any of
the locations. If one atom has jump sequence of [; - [, then there is an equal
probability that another atom has jump sequence of /; - [;,. So we can write, for
example, [; - I, — I; - [} = 0. This will lead the double summation of Eq. 5.35 to

zero. Therefore, it is safe to write that (Z;’:_ll Z:’;{ cos Qi‘iﬂ-) =0 in a cubic

isotropic crystal, and Eq. 5.35 can then be rewritten as

L} =nl (5.36)
Therefore, the average magnitude of jumps of many atoms after n number of
jumps can be written as

L =\/I = val (5.37)

Note that we are considering the average taken from many atoms. There can be
huge difference in the distance that different atoms will travel after a particular
diffusion time. Equation 5.37 indicates that atoms will make an average
(14)> = 386 jumps to reach from P to Q, where 14 jumps are required following
the shorter routes. We reconsider the example what we have discussed already in
the previous section. With average jump frequency of 10'® s™' of carbon at
1,100 °C in T-iron, the average effective jump length in 1h is L, = /nl=
/1010 x 3,600 x 107'm = 0.6 mm = 600 um. Further, note here that this is an
average from many atoms. Different atoms will actually jump different distances
and the difference in jump length could be very large.

This concept of random walk is actually developed based on Einstein’s
mathematical analysis of Brownian motion. He developed the relation for
diffusivity as D = (I2?)/6t, considering the jump of atoms in three
dimensions.

5.2.3 Effect of Temperature on the Interstitial Diffusion
Coefficient

We have already discussed that atoms vibrate at their positions with an average
energy of 3kT. With the increase in temperature, thermal energy of the system
increases so that atoms vibrate even more violently. That means the jump fre-
quency will increase with increasing temperature. However, the atoms cannot
jump freely, since the void between the host atoms, through which atoms should
jump, is smaller than the size of the atom. Therefore, the host atoms should be
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moved elastically as explained in Fig. 5.12. The change in local free energy with
the movement of the atom is shown. In the beginning, the atoms are at their
equilibrium positions and the energy at this ground state is g, per mol of atoms.
The free energy is the highest in the middle, where it needs maximum energy to
move the host atoms elastically. This is called an activated state, and the free
energy is g, per mol of atoms. Following, atoms reach to another ground state. So
an extra energy of Ag, = g, — g, per mole of atoms is required to cross the barrier.
This is the activation energy for interstitial diffusion and is equal to the energy
required for the migration Ag,,. Atoms jump with Debye frequency, v, and the
probability of the successful jump to a new position is exp(—Ag,,/RT). Therefore,
the jump frequency to a particular position can be written as

I =vexp (— i‘g;f) (5.38)

From Eq. 5.10, Eq. 5.38 can be written as

Aga Aga
D= vszexp<— RgT> = D) exp(— RgT)’ (5.39)

where D' is the temperature-independent pre-exponential factor. This temperature-
dependent relation for the diffusion coefficient relation is the Arrhenius equation.
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-
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Fig. 5.13 a In D versus 1/T plot and b log D versus 1/T plot to calculate the activation energy
and the pre-exponential factor

Further, Ag, = Ah, — TAs,. With the help of this relation, many times Eq. 5.39 is
expressed as

As Ah Ah,
— 2 a _—a = —_ <
D =vAx exp< R )exp( RT) Doexp( RT> (5.40)

In this equation, Dy = v Ax? exp(%) = Djyexp(5%) is the pre-exponential

factor and Ah, is the activation enthalpy for diffusion. Note here that at a particular
temperature, the change in entropy because of migration is more or less fixed in a
system. This accounts for the change in entropy because of the change in vibration
pattern of neighboring atoms where the elastic displacement of the host atoms is
greatest.

Equation 5.40 can be written as

lnD:lnDofg (541a)
RT
log D =log Dy — 23% (5.41b)

Therefore, the activation energy and the pre-exponential factor can be deter-
mined from the plots shown in Fig. 5.13.

It must be clear from the discussion above that the pre-exponential factor and
the activation energy depend on a number of factors, such as size of the interstitial
atoms, elastic modulus of the material, lattice parameter and the crystal structure.
Because of this size factor, e.g., the diffusion rates of small elements in Fe have to
decrease generally in the order of H, O, N, and C. Some available data are listed in
Table 5.1. It is clearly seen that solely the size factor has a limited applicability,
though it is very useful in the analysis of the diffusion trends. One has to mention
that the atomic radii depend strongly on the environment and the charge state and
any tabulated data have to be used with cautions.
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Table 5.1 The tracer impurity diffusion coefficients, D* (m%s), and the corresponding activation
enthalpies, Q (kJ/mol), for diffusion of small atoms in FCC and BCC iron [2-8]

Impurity Atomic BCC Fe FCC Fe
1(rad11)ls Q (kJ/mol) D* at 300 References Q (kJ/mol) D* at 1,400 References
pm K (m%s) K (m%s)

H 25 6 7% 107° [2] 43 2x 1078 [3]

¢} 60 92 4 x 1075 4 166 9 x 107" [5]

N 65 73 2 x 10720 [6] 169 5% 1071 (7]

C 70 84 5% 10720 [6] 148 7 x 10717 [8]

The atomic radii after [9] are listed. For comparison, the atomic radius of Fe is 140 pm

Similar dependencies for these small elements were found for their diffusion in
a-Ti with the HCP lattice, too. However, one recognizes immediately that the
electronic effects are also important in explaining the atomic diffusion rates. Most
prominent example is the diffusion of transition metal atoms, such as Co, Fe, and
Ni, in o-Ti, see below in the chapter—they are even faster than C or N!

5.2.4 Tracer Method of Measuring the Interstitial
Diffusion Coefficient

Since the concentration of the diffusing impurity element is very small, tracer
method is followed to calculate the impurity diffusion coefficient utilizing radio-
isotopes, which are easy to detect. This is explained in Fig. 5.14. Radioisotopes of
impurity element A are deposited on the substrate B, in which the impurity dif-
fusion coefficient would be measured. At the temperature of the experiment,
radioisotope impurity elements diffuse inside the substrate. Different atoms diffuse
different lengths because of random walk of atoms. With the increase in annealing
time, the penetration distance increases. After the experiment for certain time at a
desired temperature, the specimen is sliced at different known distances along the
x direction and the concentration of the radioisotopes is measured by measuring
intensities of the emitted rays. Following the solution for thin film from Fick’s
second law, we can write

1 x2
IR(x) = ———exp( — —— 5.42
R () nD;;teXp( 4Dj;t> (5.42)

x2

1
Il =Inf— | ———
K (./aszg) 4Dt

where Iy is the specific or relative intensity measured and D} is the impurity
diffusion coefficient of element A.

(5.43)
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Fig. 5.14 Tracer method to determine impurity tracer diffusion coefficient is shown

R
i
calculated using the known annealing time.

From the slope of Inly versus x” plot, as shown in Fig. 5.14, D7, can be

5.2.5 Orientation Dependence of Interstitial Diffusion
Coefficient

In Sect. 5.2.2, we considered a cubic crystal to simplify the derivation for average
jump length calculation during random walk in which the magnitudes of all jump
vectors are equal. Following, we were able to derive a simple relation to explain
the random walk of atoms. However, in some structures such as hexagonal,
tetragonal, or orthorhombic, the jump vectors in different directions could be
different. Even the void size through which the atoms jump could also be different
to find different jump frequencies and the activation energy for diffusion.

For comparison, we consider face-centered cubic and orthorhombic structures,
as shown in Fig. 5.15. We consider again the presence of an interstitial atom in an
octahedral site in the middle. Other octahedral sites are shown by open dotted
circle to which the interstitial atom could jump. We have discussed earlier that
diffusion coefficient is calculated from the average jumps of many atoms. In a FCC
crystal, the diffusion coefficient can be written as

1 12
D=—Y A 5.44
72 2 A (5.44)



5.2 Interstitial Atomic Mechanism of Diffusion 189
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Fig. 5.15 Interstitial sites are shown in a face-centered cubic and b orthorhombic face-centered
cubic crystal structures to explain the anisotropy in diffusion

In a cubic crystal because of symmetry, as shown in Fig. 5.15a, there is equal
probability of jump frequency to any of the positions and Eq. 5.44 can be written
as

1 12
D=—T 2 4
Y A (5.45)

We consider the diffusion along the x-axis. All the nearest neighbor interstitial
sites have equal distances. Considering positive and negative sides on the x-axis,
the effective jump length for the positions 1, 2, 3 and 4 is —a/2, where a is the
lattice parameter. This is zero for positions 5, 6, 7 and 8. Although atoms jump to
these positions, the effective length is zero considering the jump along the x-axis.
This is a/2 for positions 9, 10, 11 and 12. Therefore, the diffusion coefficient along
the x-axis can be written as

D, = %r [4(— %’)2+4(0) n 4(%’) 1 - éraz (5.46)

We consider the diffusion along the y-axis. The effective jump length to the
positions 2, 6, 7, and 10 is equal to —a/2. This is zero for positions 1, 3, 9, and 11
and a/2 for positions 4, 5, 8, and 12. Therefore, the diffusion coefficient along the
y-axis can be written as
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| —— 1 2 2] 1
D, :Er;Ay% :EF[4(—g> +4(o)+4(g) } = Td’ (5.47)

where Ay; is the effective jump length along the y-axis.

Similarly, it can be shown that the diffusion coefficient along the z-axis is also
equal to %F a’. Hence, the diffusion coefficients in a cubic crystal along all the axes
are the same. In other words, the diffusion coefficient in a cubic crystal is orien-
tation independent.

Now let us consider the diffusion in a face-centered orthorhombic structure, as
shown in Fig. 5.15b. Lattice parameters along the x-, y-, and z-axes are a, b, and c,
respectively, which are different in length. Further, we denote the planes per-
pendicular to the x, y, and z directions as x, y, and z, respectively. In this case, it is
apparent that the effective jump length will be different, when we consider dif-
fusion at different directions. Even the activation energy and the jump frequency
also could be different depending on the site to which the atom jumps. To explain
this, we consider the jump to three different positions at 1, 2, and 7. Although the
actual barrier is because of four atoms around the void through which the atom
jumps, it can be explained based on two atoms inside the same unit cell. For
example, for the jump to position 1, the barrier will be from the atoms M and N.
Similarly, when it jumps to positions 2 and 7, the main barrier comes from N-P
and P-R, respectively. Note that M—N, N-P, and P-R barrier atoms are sitting on
the planes y, x, and z, respectively. The areas inside the unit cell of these planes are
ac, bc and ab, respectively, which are different. Therefore, the void size through
which the atoms jump are different. This will lead to different activation energy
barrier and jump frequency.

We denote the jump frequencies to different positions as

I'; for the positions 2, 4, 10, and 12
I, for the positions 1, 3, 9, and 11
I'; for the positions 5, 6, 7, and 8

Following the same line of discussion as above for the cubic crystal, the dif-
fusion coefficients along the x-axis can be written as

IZZFM Fle2+F2Ax TiAx,]
N Fz(—g)2+r,(0)2+rz(§)2+r,(0) 41 (-5) +F3(—g>2
T 12

(G e o
2

12[F2+F3]

Similarly, we find
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b2
D, =—|I' I
y =z N+ 135
2
D, =—II' T
b4 12[ 1+ 2]

Therefore, we get D, # D, # D,. From the above discussion, we can say that if
tracer diffusion experiments with impurity elements are conducted on a cubic
crystal, the diffusion coefficient will be the same irrespective of the orientation of
the substrate. On the other hand, the diffusion coefficient in a substrate with
orthorhombic structure will be different in different directions. This can be found
from experiments by selecting a single crystal substrate with different orientations
and then by doing tracer diffusion experiments, as explained in the previous
section. It can be easily understood that even if the jump frequency is the same and
there is a difference in lattice parameters in a non-cubic crystal structure, such that
the total jump length for atoms will be different in different directions to find
different diffusion coefficients.

There exist experimental evidences on the anisotropic nature of the interstitial
diffusion. Typically, this kind of diffusion anisotropy is not as large as that found
in some cases of substitutional diffusion. What is a reason for such behavior? In
order to answer this non-trivial question, at least semiqualitatively, one has to
consider these diffusion mechanisms in details. We will limit us to the case of
metallic system in which one should not deal with the charge state of the point
defects. The key point is the magnitude of the corresponding energy barriers. The
migration barriers are typically smaller in the case of interstitial diffusion, which
are typically of the order of 0.2-0.5 eV, and they are larger for substitutional
diffusion (1 eV and more). Correspondingly, the differences in the barriers for the
diffusion jumps in different directions are typically larger for substitutional dif-
fusion in comparison with those for interstitial one. Therefore, the diffusion
anisotropy is more prominent. The effect is still moderate for pure metals, e.g., in
HCP o-Ti or Zn, in which the diffusion anisotropy for self-diffusion is within a
factor of 2 or 3 (Fig. 5.16), but it can reach the orders of magnitude in intermetallic
compounds due to the anisotropy of sublattices (see the discussion in Sect. 5.3.6).

5.3 Diffusion in Substitutional Alloys

In the second chapter, we have discussed the formation of equilibrium concen-
tration of vacancies. This concentration is, in general, in the order of 1073-10~*
near the melting point. That means one vacancy is present in a cube of 10-14
atoms in each direction. Because of this low concentration, we can neglect the
vacancy-vacancy interactions. Although vacancy is just a vacant lattice site, it is
considered as one of the entities to mediate discussion. Therefore, exchanging
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Fig. 5.16 Self-diffusion in 1x10™" . ' . . ‘
single crystals of Zn, In, and
Sn parallel (solid lines) and
perpendicular (dashed lines)
to the c-axis of the HCP
structure. The data from the x10™ 3
collection [11] are used
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position of a vacancy with an atom can be seen as diffusion of atom, as well as the
diffusion of the vacancy. One interesting fact should be noted here that if we are
looking at one particular atom, the diffusion of that atom will depend on the
availability of a vacancy to its neighboring position. On the other hand, for a
vacancy, this restriction is not there and it can exchange position with any of the
atoms. In other words, one particular atom cannot go through a random jump
process; however, a vacancy can go through it. This is the reason that in substi-
tutional diffusion, tracer and self-diffusion coefficients are different, although
radioisotopes are used to study the self-diffusion of elements. These two are
related by a correlation factor. To explain this in detail, first we need to explain the
tracer diffusion method in substitutional diffusion.

5.3.1 Measurement of Tracer Diffusion Coefficient

As stated earlier, even in a pure material, diffusion of atoms is always happening
just because of thermal vibration. Since there is no driving force present, atoms go
through a random jump. The diffusion rate depends on the homologous temper-
ature, that is, the temperature relative to its melting point. Since the atoms are very
small and at relatively high temperature these might change place too many times
per second, we cannot study the diffusion directly. For this sake, the tracer tech-
nique is developed, in which the diffusion of radioisotopes is quantified from the
measurement of intensities of emitted rays at different depths after certain
annealing time. This is similar to the procedure already explained for the calcu-
lation of impurity diffusion coefficient in Sect. 5.2.4. To study the self-diffusion
coefficient of element B, radioisotopes of B* are deposited as very thin layer on a
block of material B, as shown in Fig. 5.17. After certain annealing time, the
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Fig. 5.17 Tracer method to determine tracer diffusion coefficient is shown

specific intensity of the emitted ray is measured at different depths after serial
sectioning. In this case, Eq. 5.44 can be rewritten as

x2

1
J/mDst) 4Dyt

Following the tracer diffusion coefficient, D} could be calculated from the
slope, of the plot Inlg versus 2. However, as mentioned earlier, the

Inlg =1n (5.48)

— e
measured tracer diffusion coefficient is not exactly the same as the self-diffusion
coefficient. They are related by a correlation factor, f. Sometimes, the tracer self-
diffusion coefficient is stated as the same as self-diffusion coefficient, which is not
really correct. In the next section, we have explained the concept of the correlation
factor.

5.3.2 Concept of the Correlation Factor

For the sake of discussion, we consider the tracer diffusion experiment as
explained above in a FCC metal structure with [111] orientation. Atomic
arrangement on the (111) plane is shown in Fig. 5.18. For the ease of explanation,
we consider two-dimensional arrangements, although the argument is valid in
three dimensions also. Suppose we have a situation that a vacancy, V, is sur-
rounded by five B and one B", as shown in Fig. 5.18a. Now suppose B" and V
exchange their position and come to the situation, as shown in Fig. 5.18b. Since
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Fig. 5.18 Exchanging position between radioisotope B” and vacancy is shown

the fraction of vacancies present in the structure is rather small, there is no
guarantee that the tracer atom will find another vacancy to exchange its position
immediately again to move forward. As explained before, there could be one
vacancy present in a cube of 10 to 14 atoms each side only at melting point. At
lower temperatures the vacancy concentration is significantly smaller and the
imaginary size of the corresponding cube is considerably larger. So the next
probable jump of B” is back to the previous position after exchanging position with
the vacancy. Then, there will be no diffusion. However, from the previous example,
we have seen that the tracer atoms indeed move forward. Therefore, if this move
forwards, the next probable jump is to position 1 or 5, on the condition that vacancy
already exchanged position with the atoms located at these positions. To move even
further, the next probability of jump of the tracer atom is to any of the positions 8 or
6. However, the probability is even lower than that of the previous jump, since after
two successive jumps, vacancy has to reach to these positions of interest before the
tracer atom could exchange position. Note that in the middle of these two successive
jumps, also vacancy might deviate to other direction because of random nature. The
probability of tracer atom to reach to the position 7 is the least, since before this
exchange; the vacancy first has to reach to that position after making few successful
jumps. Therefore, vacancy can go through a completely random jump process.
However, the jump of the tracer atom is related to other jumps.
From the arguments developed in Sect. 5.2.2, we can write

L2 =nl (5.49)

Since tracer atoms go through correlated jumps, the second term in Eq. 5.43,
that is, double summation, is not zero and can be expressed as

n—1 n—j

_ 2
2=n|1 +;Z cos 0 (5.50)
j=1 i=1

where L7 is the square of average jump distance of tracer atoms after n jumps.
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The correlation factor considering very large number of atoms and averaging
over large number of trajectories is expressed as

Lz 2 n—1 n—j
f = lim Z—’ =1lim [ 1+= (cos 0;;) (5.51)
n—o0 v n—oo n Py ’

J=1

Looking at Eq. 5.51, it can be understood that the correlation factor actually
measures the fraction of total jumps that give the diffusion or movement of tracer
atoms. Since vacancies go through a random jump and it makes possible the dif-
fusion of many atoms, the diffusion coefficient of vacancies, D,, is actually equal to
the self-diffusion coefficient, D. Therefore, it is necessary to calculate the corre-
lation factor theoretically before determining the self-diffusion coefficient from the
experimentally measured tracer self-diffusion coefficients. The correlation factor
depends on the crystal structure, and the strict calculation is explained in the next
section. However, before that, we can get further insights from a rough estimation.

Following previous line of discussion, we can say that the probability of
exchanging positions between the vacancy and the tracer atom is 1/Z (Z is the
coordination number). From Fig. 5.18b, we understand that the next probable
jump for the tracer atom is back to the previous position; however, it is not
necessary that the vacancy will definitely exchange position with the tracer atom
again, since vacancy can exchange position with any other atoms. Therefore, the
probability of the second jump again is 1/Z. Two successive change of positions, as
explained, will not result any successful jump, and we can say roughly that the
fraction of jumps that will give successful diffusion for the tracer atom is

f=1- (5.52)

2
zZ

Note here that we add the probabilities since these two steps are separate
events. This is very rough estimation since we have not considered the possibilities
of coming back of the tracer atom to its initial position after few or many jumps,
which also should be added with the factor 2/Z. However, these numbers are much
smaller than 2/Z. If all other possibilities are also considered, the difference
between the actual correlation factor and roughly estimated value using Eq. 5.52 is
small, which can be found from the values listed in Table 5.2. Note here that the
difference increases with increasing coordination number because of increase in
the number of possible ways to exchange positions.

Since the square of average jump length is proportional to the diffusion coef-
ficient, we can write from Eq. 5.51 as

* = fD, (5.53)
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Table 5.2 Actual and roughly estimated values (1 — 2/Z) depending on the crystal structure

Crystal structure Z 1-2 f

Simple cubic 6 0.6667 0.65549
Body-centered cubic 8 0.75 0.72149
Face-centered cubic 12 0.8333 0.78145

5.3.3 Calculation of the Correlation Factor

The calculation of the correlation factor represents generally an involved task, and
the result depends on the diffusion mechanism, crystalline lattice, and type of
diffuser. It is just a number for self-diffusion in pure metal via vacancy mechanism,
but could be temperature dependent already for solute diffusion in pure metals or
for diffusion in ordered compounds.

In this book, we will follow the general method of Howard [10] which could be
applied for such involved situation as, e.g., calculations of the correlation factors
for grain boundary diffusion.

First, we will outline the calculation of the correlation factor for cubic metals
and then will introduce a generalization for arbitrary lattices. Thus, we will start
from Eq. 5.51.

The corresponding summations can be performed analytically in very special
cases, which are though general enough to be broadly applied at least for cubic
metals, namely in situations where

(i) the crystal is isotropic;
(i) all jump vectors of the diffusing atom are axes of twofold or threefold
symmetry, and
(iii) all jumps are equivalent, i.e., jump lengths are the same.

Then, the series expression for the correlation factor reduces to the simple
expression

1+ (cos0p)

f= 1 — (cos 0y5)

(5.54)

where (cos ;) is the average value of the cosine of the angle between any two
consecutive jumps of the diffusing atom in view of the conditions (i)—(iii). The
quantity (cos 012) may be calculated numerically (see below).

In the case when the conditions (i)—(iii) are not fulfilled, Eq. 5.54 cannot be
applied. Instead, one may either use the numerical method directly or, after a
careful analysis of the lattice and possible diffusion jumps, apply the concept of
partial correlation factors which will be shortly outlined in that follows.

The starting point again is the expression for the correlation factor f, which is
defined for the principle x-axis as
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> Zfil <xixi+1'>
> <x,2>

Here, x; is the x projection of the ith jump, which could be now different for
different jumps. It is clear that the summation has to be done over the jumps with
nonzero x component. Only such jumps will be considered and counted in the
summations. The consideration is general with no limitations on jump lengths and
symmetry. Thus, it is applicable for short-circuit diffusion, too, or in the case of
diffusion in non-cubic lattices.

The critical point is the classification of all jumps in different types. Since the
lattice is periodic, the number of all types N is finite and let the subscript o label
these types as o = 1, 2, 3, ...N. The types are defined such as for all x; of the same
type, the sum Y, (x;x;4;) could be rewritten as

fi=1+2 (5.55)

; (xixiyj) = Z; (xaxs5) (5.56)

and it does not depend on i. Here, the subscript «, j refers to the jth jump after a
jump of the type o. Then, one can show that Eq. 5.55 could be written in matrix
notation as

fi=c-f (5.57)

where ¢ = (cy,...,cy) is the vector with components ¢, which represent the fraction
of jumps of the type « in any very long sequence of atom jumps and f = (f},....fy)
is the vector of the partial correlation factors representing the contributions of the
given types of jumps. The latter is defined by the expression

f=1+22-TE-T)'-d (5.58)

Here, I is the N-component unit column vector, E is the N x N unit matrix,

d = (Izl,..., Izyl) is the column vector of the jump distances of type o jumps, Z is
the N x N matrix which diagonal elements are equal to |z;1 {, o=1,..., N, and

T is a N x N matrix with the elements

tx,;:P;ﬁ—P;ﬂ, o,f=1,...,N.

Here, P;rﬁ (P;ﬁ) is the probability that a tracer jump of type « is immediately

followed by a tracer jump of type f in the same (+) or opposite (—) direction. The
main point is the determination of these probabilities which may be evaluated
using numerical methods. The advantage is a low cost of the numerical calcula-
tions in which the jump history of a given tracer is enough to follow over 10°
individual jumps. If the numerical method will be applied directly to Eq. 5.54, the
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atom jumps have to be followed up to 10° individual jumps to have a reasonable
accuracy in sophisticated cases of non-cubic crystals. The application of the
concept will be demonstrated for the case of diffusion in MoSi, below.
Generally, the correlation factors can directly be calculated using numerical
methods. The starting point is the determination of all jump frequencies which are
involved in diffusion of a tracer atom over the lattice. Having calculated the
transition probabilities for all possible vacancy jumps, the correlation factor can be
calculated by the Monte Carlo approach. In simulations, a box of the size of, let us
say, 100 x 100 x 100 with the given structure is first generated. A vacancy is
created at the center of the block, and the vacancy is allowed to perform the given
types of jumps. The probabilities p; of these jumps can be calculated according to
the transition frequencies v; estimated before:
Vi

pPi = Z ) (5 59)

j=1"Yj
where z is the coordination number of the given lattice. The time-residence
algorithm is typically applied. Each jump of the vacancy is successful, and the
time variable is increased by

! (5.60)

- )
j=1"Yj

The atomic correlation factors for species k, several species belong to the lattice
under consideration, are calculated from the equation:

LR
fi = —En;;z , (5.61)
k

where R; is the net displacement of the ith atom of type k, n; is the total number of
atoms of type k, my, is the total number of vacancy exchanges with atoms of type &,
and q; is the elementary jump length.

5.3.4 The Relation Between the Jump Frequency
and the Diffusion Coefficient in Substitutional
Diffusion

For the sake of explanation, let us consider (111) planes of a pure element B with
FCC crystal, as shown in Fig. 5.19. We consider that there is a radioisotope, B”,
present on the plane Q which is surrounded by six B, numbered as 4-9, respec-
tively. Based on the crystal structure, we can say that if three nearest neighbor
sites, numbered as 1-3, respectively, are actually on the plane P below Q, then
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(111) planes

P Q R

Fig. 5.19 The jump of the radiotracer B” between (111) planes of B with FCC crystal structure is
discussed

other three nearest neighbor sites, numbered as 10-12, respectively, are on the
plane R above the plane P. Since we are considering random jump process, we can
say that the tracer atom can jump to any of these 12 positions, on the condition that
vacancy is present on that site. To derive the relation, as we did in the case of
interstitial diffusion, we first consider the jump of atoms between planes Q and R.
Following, we shall develop the general relation that can be used without any
restrictions.

Now, we follow the previous line of discussion as considered to relate the jump
frequency with the diffusion coefficient in Sect. 5.2.1. We consider the exchange
of vacancies and the tracer atom between planes Q and R. B” can jump to any of
the sites 10-12, on the condition that vacancy is available at the site of interest.
Therefore, the flux of the tracer atom can be expressed as

- 3 1
Ja = EanerQ = ZanpVFQ (562)

The numerical factor comes from the fact that a tracer atom exchanges position
with vacancy in one of the 3 sites (10-12) on the plane R out of total 12 nearest
neighbors. ng is the total number of tracer atoms present on the plane Q. py is the
probability to find a vacancy, f is the correlation factor, and I'g is the jump
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frequency of the tracer atom from plane Q to R. Similarly, the flux of tracer atoms
from R to Q can be written as

3 1
Ty =13/ PvIR = 31/ pT (5.63)

where np is the total number of tracer atoms present on the plane R and I'y is the
jump frequency of tracer atom from plane R to plane Q.

Since we are considering isotropic FCC crystal, we have I'q = I'r = T". If we
consider, ng > ng, then the resultant flux from plane Q to R can be written as

J' = %f pvl(ng — nr) (5.64)

Following similar arguments as discussed for interstitial diffusion in Sect. 5.2.1,
we get

,dC

o (5.65)

. 1
J'=——fpvIAx
4
Here, Ax is the effective jump length or the inter-planar spacing. Comparing
with Fick’s first law (J * = —-D* %), we can write the tracer diffusion coefficient of
element B as

1
D" = prvmxz (5.66)

Since the concentration of vacancy is very small, the probability of finding a
vacancy for the successful jump is equal to the mole fraction of the vacancies, Xy.
Therefore, Eq. 5.66 can be written as

1
D' = v XyTAx? (5.67)

The above equation is derived based on the jump between the planes Q and R.
However, as such, atoms are free to jump to any of the neighboring atoms
depending on the availability of vacancy. There are many atoms present on the
same plane, and there is a probability that different atoms will jump to different
positions, so the average tracer diffusion coefficients can be written as

* 1 z 2
D" = fXVizZ;FAxi (5.68)
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The tracer diffusion to a particular position i can be expressed as
D! = fXyTiAX? (5.69)

where I' = ZT';.

If the crystal is not isotropic and the jump frequency is different to different
positions, then the tracer diffusion coefficient from the average of different kinds of
jumps can be written as

1 Y4
D' =fXy=Y @AY 7
f VZ; AY; (5.70)

From the relation between the tracer self-diffusion and self-diffusion coeffi-
cients (Eq. 5.53), the self-diffusion coefficient, that is, the vacancy diffusion
coefficient, can be expressed as

1E )
D, :XVE;FL'AX,‘ (5.71)

5.3.5 Effect of Temperature on Substitutional Diffusion

As it is discussed, in substitutional diffusion, atoms exchange position with the
vacancies. However, the atom has to move the neighboring atoms elastically for a
successful jump, as shown in Fig. 5.20. Just for the sake of explanation, two-
dimensional atomic arrangements are shown instead of actual three dimensions.
The probability with which atoms will make a successful jump at a particular

temperature 7 is expressed as exp(— %"). Here, Ag,, is the activation energy for
migration per mol of atoms. Since atoms make v (Debye frequency) attempts per

second, the jump frequency can be written as I'; = vexp(—%’f) and the self-

diffusion coefficient can be expressed as

Agn
D = vXy Ax* exp <— R—gT> (5.72)

Therefore, the only difference in the relation between temperature-dependent
self-diffusion coefficient and the interstitial diffusion coefficient (Eq. 5.39) is the
extra term Xy. From the discussion in Chap. 2, we know that the equilibrium
vacancy concentration at a particular temperature, 7, is expressed as
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Fig. 5.20 Activation energy (a)
barrier for substitutional
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Xy = exp (— %) (5.73)
By replacing Eq. 5.73 in Eq. 5.72, we get
Agn + Agv Ag
— 2 _ — _"O%a
D =vAx exp( RT Dy exp RT (5.74)

D, is the temperature-independent pre-exponential factor. The activation
energy barrier for the self-diffusion comes from two different contributions, one
from the activation energy for the formation of vacancies and another is from the
activation energy barrier for migration. So it must be apparent that the interstitial
diffusion in general is much easier than substitutional diffusion. Sometimes,
anomalies are found, as shown in Fig. 5.21. Further, Eq. 5.74 can be written as

InD = 1nD, —2
RT

log D = log Dy TART

So it is apparent that one can determine the activation energy for diffusion
from the plot of In D versus % or log D versus %, where the slope is equal to —Q/R or
—Q/2.3R, respectively.

Interstitial diffusion and substitutional diffusion of C and Fe are compared for
the case of Fe in Sect. 5.3.7. The hexagonal lattices of o-Ti, o-Zr, and o-Hf
represent other interesting cases featuring fast diffusion rates of small nonmetallic
atoms, such as C or O, and even “ultrafast” diffusion rates of transition metals—
Fe, Ni, Co, and Mn (see Fig. 5.21). The corresponding diffusion rates are faster
than those of self-diffusion by five (C in o-Ti) or seven (Ni in o-Ti) orders of
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Fig. 5.21 Ultrafast diffusion of transition metal atoms (Fe and Ni) and fast diffusion of
nonmetallic solutes (C, O, and N) in o-Ti (left) and o-Zr (right) in comparison with self-diffusion
(thick solid lines). Only the diffusivities perpendicular to the c-axis are presented. The data for o-
Ti are from (Ti) [12], (Fe) [13], (Ni) [14], (C) [15], (O) [16], and (N) [17], and for o-Zr, they are
taken from (Zr) [18], (Fe) [19], (Ni) [20], (C) [21], (O) [22], and (N) [23]

magnitude! The diffusion enhancement of, e.g., Ni in o-Zr approaches 10 orders of
magnitude at 1,000 K. These ultrafast diffusion rates are explained by interstitial
diffusion mechanism of the transition metal atoms and are related to the specific
electronic effects owing to their unfilled d-states. Only, hydrogen reveals even
faster diffusion rates in these hexagonal structures.

Note that the diffusion rates of transition metal atoms become “normal” in bcc
beta phases, i.e., B-Ti, B-Zr, or B-Hf, and in fact, these atoms diffuse via a common
vacancy mechanism. As an example, diffusion of small nonmetallic atoms, tran-
sition metals, and Ti is shown in Fig. 5.22. At first glance, the diffusion behavior
of Fe and Ni at the o — P transition in Ti does not follow common rules (see
Sect. 5.3.7 for the a0 — v transition in Fe)—although the bcc lattice (B-Ti) is more
open, the diffusion rates of Ni and Fe either continue to follow the low-temperature
Arrhenius line established in the more dense phase (Ni) or even drop with
increasing temperature (Fe). The reason is the basic change of the underlying
diffusion mechanism—from interstitial one for Ni and Fe in o-Ti to substitutional
one in B-Ti.

Figure 5.22 features several important issues on self- and solute diffusion in
crystalline solids:
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e Diffusion mechanism (interstitial vs. vacancy mediated) has a strong effect on

diffusion rates, and small nonmetallic atoms diffuse typically much faster in
metals in comparison with the self-diffusion rates.

The diffusion rate depends strongly on the type of lattice. In fact, self-diffusion
of Ti is significantly enhanced in more open bcc structure of B-Ti comparing to
that of very dense hcp structure of o-Ti. This is true for vacancy-mediated
diffusion hopping mechanism, and the enhancement is less pronounced for
species diffusing via interstitial mechanism.

Strongly curved temperature dependences in the Arrhenius coordinates could
be measured, e.g., for Ti self- or Fe solute diffusion in B-Ti, as shown in
Fig. 5.22.

The latter point required a special consideration. Generally, two different

mechanisms can be suggested to explain the observed behavior:

(a) A change of basic properties of the lattice with approaching the critical

(b)

temperature, as phonon softening in B-Ti near melting point [28] or a
decrease of magnetization in ferromagnetic Fe at the ferro-para-magnetic
transition temperature;

Existence of two different diffusion mechanisms with different activation
energies.

The existence of fast diffusing solutes with strong binding to vacancies or

(potentially) a tendency to form a solute—self-interstitial pairs could significantly
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affect self-diffusion. In fact, such behavior was observed in a-phases of Ti and Zr
and it is featured in Fig. 5.23.

The enhancement of Zr and Ti self-diffusion rates in less pure materials is due to
the strong interaction between Fe interstitial atoms, which are ultrafast diffusers in -
Zr or o-Ti, with host vacancies. The formation of very mobile vacancy—interstitial
impurity complexes causes in this way “extrinsic” diffusion behavior. This strong
attractive interaction between interstitially dissolved Fe atoms and metallic vacan-
cies results in an increased vacancy concentration. Generally, the vacancy concen-
tration c, in the presence of strongly interacting impurities is increased by the amount
of vacancy—impurity pairs, the concentration (in terms of mol fraction) of which can
be presented as X, = x? -exp{ —(AH + AH?)/RT}. Here AH and AH? are the vacancy
formation enthalpy and vacancy—impurity binding enthalpy, respectively, and X0 =
exp{(AS"+ AS")/R} with corresponding contributions of formation, AS", and binding,
ASb, entropies. If AH? <0 (attraction), the overall concentration of vacancies will be
increased, and if the vacancy—impurity complexes are highly mobile, this effect
will give rise to an enhanced self-diffusion. Note that the total effect from all fast
diffusing impurities available in the material should be taken into account.

We have explained the activation barrier with the help of two-dimensional
arrays of atoms. However, to understand the actual barrier, we need to consider the
atomic arrangements in three dimensions as shown in Fig. 5.24. We consider the
atomic arrangement on a (111) plane of a FCC crystal. We further consider that
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barrier plane

Fig. 5.24 Activation barrier plane is shown in a FCC structure

atom 2 jumps to vacancy at 6. Therefore, the jumping atom has to displace atoms 1
and 4 on the same plane and 7 below and 8 above this plane, respectively.
Therefore, the actual barrier plane has atoms 1, 8, 4, and 7.

Now, we consider a material with BCC structure, as shown in Fig. 5.25. Two-
dimensional atomic arrangement is shown for (110) plane. The activation barrier is
not clear, when, for example, atom 2 jumps to a vacant lattice site at the center. If
we consider just one unit cell, it seems that the activation barrier is mainly because
of the atoms 1, 7, and 6. However, to understand the actual barrier, we need to
consider another unit cell, keeping atom 2 at the body center position. It must be
apparent that actually, the atom has to cross another barrier plane also with atoms
9, 10, and 11. That means it has to cross two barrier planes in total to make a
successful jump. This is the reason that the free energy versus distance curve in
BCC crystal may have two humps.

In Fig. 5.26, the results of real calculations are presented for o-Fe and B-Zr.
Although such shallow minima are sometimes observed in other cases, too, one
has to be careful with corresponding interpretation in view of approximate nature
of the used inter-atomic potentials.

5.3.6 Orientation Dependence in Substitutional Diffusion

We start our discussion with a BCC lattice, which has coordination number Z = 8.
For the ease of explanation, we consider the presence of a vacancy at the body
center position, as shown in Fig. 5.27.

This is an isotropic system. That means all the jump lengths are equal. Even the
activation energy for all the jumps also should be the same to consider I'; = I'. We
consider diffusion along the x-axis ((100) direction). Suppose atoms 1, 2, 5, and 6
are on one plane, V is on the next plane, and atoms 3, 4, 7, and 8 are on another
plane. So vacancy has equal probability to exchange position with any of the
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Fig. 5.25 Activation barrier
planes are shown in a BCC
structure
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atoms. Further, different vacancies will exchange position with different atoms.
Therefore, the diffusion coefficient from Eq. 5.71 can be written as

1 & 1 a\?  san?] 1
pr =D —x, 1S rag —x,r) [4(— 944 (9) } ~lxre (55)
s s Z; 8 2 2 4
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z (110)

Fig. 5.27 BCC unit cell is shown with the presence of a vacancy at the center

where £ a/2 are the effective jump lengths.
Similarly, we can show that D} = D§010> = inl"a2 and D} = Dé = %le"az.
Now, we consider diffusion along the (110) direction that is perpendicular to
the plane (110). The effective jump length is equal to the inter-planar spacing

001)

+a/ V2. It can be seen easily that atoms 2, 4, 6, and 8 are located on the same
plane (110) with the vacancy. So the exchange of the vacancy with these atoms
will not contribute to diffusion distance along the (110) direction. The exchange
of vacancy to any of the atoms 1, 5, 3, and 7 will only contribute to the diffusion.
So the diffusion coefficient in this direction can be written as

4(0) + 4(i%)2

From the above discussions, we can see that the diffusion coefficient is insen-
sitive to the direction in a BCC structure.

Let us now consider a FCC structure, as shown in Fig. 5.28a. Again, we can
consider I'; = T, since it is an isotropic system. It has a coordination number of 12.
That means different vacancies on the same plane will exchange position with any
of the 12 atoms with an equal probability. When we consider the diffusion along
the x-axis, the effective jump length is Ax = —a/2 for the exchange with atoms 3,
6, 7, and 8 and a/2 for the exchange with atoms 10, 11, 12, and 13. On the other
hand, the effective jump length is zero for the exchange with atoms 1, 2, 3, and 4.
So the diffusion coefficient along the x-axis can be written as

1
=X, I'd* (5.76)

1
Diy = X T =
(110) 2

8

a

2

I
Dﬁ:XVFE[“( 2 6

)2+4(0) + 4(f)2] ~lxre (5.77)

The same value will be found, when we consider diffusion along the y- or
Z-axis.
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Fig. 5.28 a FCC unit cell and b atomic arrangement on plane (111) are shown with the presence
of a vacancy in the middle

Now, we consider the diffusion along the (111) direction that is perpendicular
to the plane (111), as shown in Fig. 5.28b. Note that the numbers used to denote
the atoms in figures (a) and (b) are not related. Vacancy is surrounded by 6 atoms
4-9 on the same plane and will not contribute to the diffusion perpendicular to this
plane. If atoms 1-3 are located below the plane with the vacancy, then atoms
10-12 are located above the plane. The effective jump lengths for the exchange of
vacancies with any of these atoms are equal to the inter-planar spacing Ax = + %

Therefore, the coefficient along the (111) direction can be written as

piny — er% l3 (— \%) 2+6(0) +3 (\%) 2

So we can say that the diffusion coefficient to any directions in a FCC lattice
will be the same.

Now, we extend our discussion to body-centered tetragonal structures, as shown
in Fig. 5.29a. It has the same lattice parameter a along the x- and y-axes. Along the
z-axis, it has different lattice parameter c. So the effective jump lengths along the
x- and y-axes for exchanging position between atoms and the vacancies are +a/2,
and along the z-axis, it is =¢/2. However, if we consider the vacancy at the center,
it must be clear that the actual distance (not the effective jump length) and the size
of the void through which the atoms jump are the same for any jumps. Therefore,
we can write I'; = I'. The diffusion coefficients along different axes can be written
as

1
= ngra2 (5.78)
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Fig. 5.29 a Body-centered tetragonal and b face-centered orthorhombic structures are shown
with the presence of a vacancy in the middle

Further, we consider the face-centered orthorhombic structure with lattice
parameters a, b, and c¢ along the x-, y-, and z-axes, respectively, as shown in
Fig. 5.29b. Note here that (similar to the discussion on interstitial diffusion in the
same crystal structure in Sect. 5.2.5) atoms 1, 2, 3, and 4 are on the x plane with
the area of bc, atoms 5, 7, 9, and 11 are on the y plane with the area of ac, and
atoms 6, 8, 10, and 12 are on the z plane with the area of ab. So the jump
frequencies will be different when vacancies exchange position with the atoms on
different planes. These are denoted as I'y, I'5, and I'; for the atoms on x, y, and
z planes, respectively. Further, the effective jump lengths along the x, y, and
z directions are +a/2, +b/2 and +c/2. Therefore, the diffusion coefficients can be
expressed as

1 12 5 1 5 5 )
o S rag - L ¢ oy

1 [T1(0)*+T1(0)°+T1(0)*+T1(0)*+T2(—a/2)*+T3(—a/2)*
D: :XVE 4T (_ /2 2 _ 2 2 2 2 2
2(=a/2)"+T3(=a/2)"+12(a/2)"+T3(a/2)"+T2(a/2)"+13(a/2)

=5X (I + I3)a? (5.81a)
ooy LT (=b/2)*+T1(b/2)*+T1(b/2)*+T1(=b/2)*+T2(0)*+T5(b/2)*
Y2 (024 T (—b/2)2 T (0) 24 T (b/2) 4+ T (0) T (—b/2)?
= ixv(rl +T3)b? (5.81b)

12
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- 1 (c/2)*+T1(—¢/2)°+T1(c/2)*+T1(—¢/2)*+T(c/2)*+T5(0)*
©U2 |y (—e/2) 4 T5(0)2 4T (¢/2) 4T3 (0)2 4T (¢ /2)2+T5(0)?
= %XV(FI =+ Fz)C2

(5.81c)

Therefore, from Eqs. 3.58a, 3.58b, and 3.58c, we can write in an orthorhombic
structure

D} # D} # D} (5.82)

Now, we discuss hexagonal close packed structure. Lattice parameters are a and
¢, as shown in Fig. 5.30. If we consider the presence of a vacancy in the middle of
the basal plane, we can see that it is surrounded by total 12 atoms. There are six
atoms on the basal plane, numbered as 1-6, respectively. Three atoms are at
distance + 5 along the z-axis, numbered as 7-9, respectively, and three atoms are at
distance —$, numbered as 10-12, respectively. We need to consider two jump
frequencies: I'; for exchanging position with atoms 1-6 and I'; for exchanging
position with atoms 7—12. So the diffusion along the x- and z-axes can be written as

1 - 2 1 2 2 2
Dg = EXV lz:; F,’A)Ci = E [Flel -+ FZAXZ SR Flexlz}

o v L Ti(—a)*+T1(=a/2)*+T1(a/2)*+T1(a)*+T1(a/2)*+T(=a/2)*
CU 2| (ca2 4T (0) 4+ T (a2 4 Ta (~a/2) 4 T3 (0)+ Ta(a/2)”
= %Xva2(3rl + FQ)
(5.83a)
D — xut T1(0)°+T1(0)*+T1 (0)*+T'1(0)*+T(0)*+T'1 (0)°
V2 (/24T (/20 4T (¢ )2) 4T (= 2)*+Ts (—c )2+ Ta(—c/2)?
1 2
== ngXVC
(5.83b)

One interesting point should be noted here. In the case of an ideal HCP

structure, we know that £ = \/g and I'; =TI, (note that it has similarities in

packing with a FCC structure). So it becomes D, = D;. However, this is not true
in most of the hexagonal structures, since in general, the ratio of lattice parameters
deviates from the ideality. This will result in different jump frequencies also in
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Fig. 5.30 Atomic
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different directions, and certain diffusion anisotropy is measured accordingly (see
the experimental examples in Fig. 5.16).

In Sect. 5.2.5, the diffusion anisotropy for interstitial diffusion was documented.
As it was stated, the ratio of diffusivities of interstitial atoms in different directions
is generally not too large, within a factor of 2-3. On the other hand, the diffusion
anisotropy for substitutional atoms can be very pronounced, especially if we
consider intermetallic phases. For example, the diffusion anisotropy approaches
three to four orders of magnitude for Mo diffusion in MoSi, and is about an order
of magnitude for Si diffusion in MoSi, (Fig. 5.31). A pronounced anisotropy of Ti
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self-diffusion in the L1y-phase TiAl was reported, too. The reason for such huge
diffusion anisotropy is the anisotropy of sublattices in the compounds (see general
discussion in next sections).

5.3.7 Effect of Phase Transitions on Substitutional Diffusion

The effect of crystalline structure on diffusion rates of interstitially and substitu-
tionally diffusing species is most prominent for the case of iron, as shown in
Fig. 5.32. The oo — v phase transition is accompanied by the lattice-type change
from more open structure (bcc) to more dense one (fcc), and the diffusion rates
drop indeed by orders of magnitude. It is very instructive to compare the diffu-
sivities in 8-Fe and in paramagnetic o-Fe which both reveal the same bcc lattice—
the diffusion rates follow almost the same Arrhenius line extrapolated through the
v-phase region, as shown in Fig. 5.32.

Furthermore, magnetic phase transition has a noticeable effect on diffusion of
magnetic atoms, such as Fe and Co, as shown in Fig. 5.32. Whereas diffusion of Fe
and Co follows linear Arrhenius-type dependencies in the paramagnetic state of
a-Fe, it deviates strongly to lower diffusivities in the ferromagnetic state, below 7
in Fig. 5.32, due to additional stiffness of the lattice.

5.4 Diffusion Mechanisms in Intermetallics

So far, we have atomistically considered diffusion in pure metals. Certain com-
plications arise in the case of alloys. We will limit our analysis of atomistic
diffusion mechanisms by the case of binary AB alloys. Firstly, we will analyze
substitutional diffusion in disordered binary alloys, and then, the case of ordered
(intermetallic) AB phases will be considered. These two atomic arrangements are
explained in Fig. 5.33a using a BCC lattice as an example.

In completely disordered AB alloy, the probability to find A or B atoms at any
site is equal. This situation corresponds to Fig. 5.33a, and the atomic types are
represented by gray spheres. The corresponding structure is called A2 one.

Alternatively, if the AB alloy is fully ordered on the BCC lattice, then one type
of atoms (say, A) occupies cells corner positions, while other atoms (thus, B)
reside at the cell center positions, as shown in Fig. 5.33b. Then, this structure is
called as B2 one, and two sublattices—that of A atoms and that of B atoms each of
them being a simple cubic lattice—can be introduced. The tendency for an alloy to
be in ordered or disordered state is directly related to the corresponding interaction
energies between different atomic sorts, i.e., the relationship between 2¢5p and the
sum (eaa + egp) as discussed in Chaps. 1 and 2.

Self-diffusion in such alloys proceeds via migration of vacancies, and it is
somehow different in ordered and disordered states.
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Fig. 5.32 Effect of crystalline structure and magnetic transition on diffusion rates of interstitially

diffusing (C and N) and substitutionally diffusing (Fe and Co) species on the example of diffusion
in iron

Fig. 5.33 Examples of atomic arrangements in binary AB alloy with disordered A2 (a) and ordered
B2 (b) structures. The A and B atoms are sketched as black and white spheres. The gray spheres in
the first figure represent site at which the probabilities to find either A or B atom are equal

5.4.1 Diffusion in Disordered Intermetallic Compounds

In this case, diffusion is mediated by jumps of vacancies, though the particular
energy barriers depend on the kind of jumping atom and local environment of it. In
a mean field approach, the effect of local environment can be neglected and one
has to introduce just two jump frequencies for a vacancy: m and og.
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A very useful (and exact as mean field approximation) approach was derived by
Manning [35]. His treatment will be sketched here for a binary AB random alloy.
The vacancy correlation factor, f,, is represented as

fvnv :fVAnA +f\?nB (584)

where f2 and f are the partial vacancy correlation factors, n, and ng are the
number of vacancy jumps performed as exchange with the atoms of the sorts A and
B, respectively, and n, is the total number of vacancy jumps for the given time
t. The key point of the Manning approach is the introduction of the escape fre-
quency H defined as

H = f,Myw, (5.85)

Here, o, is the average vacancy jump frequency, and M, is the function of the
geometrical tracer correlation factor f; for the given lattice occupied by one sort of
atoms,

My = 2fo(1 — fo) (5.86)

The tracer correlation factors of atoms A and B, f and f3, respectively, one can
use an expression, which is almost analogous to Eq. 5.54,

I+
71—1‘]3

T +ia
71—tA

Sa and fp

with 74 = pX — px and 15 = p; — py, where p} (pg) is the probability for A (B)
atom to make the second jump in the same direction as that of the first jump and,
correspondingly, p, (pg) is the probability for A (B) atom to make the second
jump opposite to the direction of the first jump. Using the escape frequency H and
the vacancy—atom exchange frequencies m, and og introduced above, the tracer
correlation factors can be represented as

H

Ia 2w + H

e — d =
2(,1)A +H an fB

Within Manning’s theory, the tracer correlation factors are related to the partial
vacancy correlation factors by the following expressions:

fa=fofyt and fs =fofY
In the mean field approximation, the average vacancy exchange frequency is
Wy = cA®A + cpwp = cawa + (1 — ca)wp (5.87)

Here, the vacancy concentration is considered to be negligibly low.
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5.4.2 Diffusion Mechanisms in Ordered Intermetallic
Compounds

In this case, A and B atoms are not randomly distributed on the same crystalline
lattice, as shown in Fig. 5.33b. As it was explained in Chap. 2, generally 4 types of
basic substitutional defects can be introduced in ordered AB compound. We will
illustrate this point for the B2 binary AB compound, as shown in Fig. 5.33b. We
can introduce two sublattices, A and B sublattices, for the perfectly ordered
stoichiometric compound, which would exclusively be occupied by A and B
atoms, respectively. Since the chemical nature of A and B is considered to be
different, it costs different energy to produce vacancy on A or B sublattice and
these defects have to be differentiated, as shown in Fig. 5.34a and b.

Two further defects are the antisite or antistructure atoms when atoms of one
sort occupy sites on the wrong sublattice, as shown in Fig. 5.34c, d. As detailed
analysis in Chap. 2 has substantiated, the formation energies (as well as formation
entropies and formation volumes) of all defects have not necessarily the same, and
as a rule, they substantially deviate.

The ordered structure of intermetallic compounds imposes certain limitations
on geometrically possible vacancy-mediated diffusion mechanisms. Below, the
most important diffusion mechanisms are discussed.

5.4.3 Six-Jump Cycle Mechanism

Originally, this mechanism was proposed for B2 compounds [36], but later it was
elaborated for others ordered structures, too. A scheme of this mechanism with a
[110] net displacement of the vacancy is shown in Fig. 5.35. One starts with a
vacancy on the A sublattice, and after 6 successive jumps, the vacancy exchanges
its position with A atom along the face diagonal of the unit cell. During this cyclic
movement, disorder in the phase AB increases first—from V to Vg + B (jump
1), then to Vo 4+ BA + Ag (jump 2), and finally to Vg + 2B5 + Ag (jump 3)—
and then, it is restored to the initial one, i.e., with the only A vacancy—from
Ve + 2BA + Ag to Vo + BA + Ag (jump 4), then to Vg + Ba (jump 5), and
finally to V (jump 6).

Thus, as a result of 6 jumps, a vacancy accomplishes one and a half cycle and
effectively jumps along the diagonal of the face, as shown in Fig. 5.35. It is clear
that first jumps are related to an increase of the energy of the crystal since defects
(antisite atoms) are produced. The situation after the 3rd jump represents a most
disordered state: one vacancy and three antisite atoms left behind as a result of the
first cycle. Following jumps will restore the order in the lattice, and exactly the
same ordered state (single vacancy on the initial sublattice) is retained.


http://dx.doi.org/10.1007/978-3-319-07461-0_2
http://dx.doi.org/10.1007/978-3-319-07461-0_2
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Fig. 5.34 Four types of substitutional defects in ordered AB compound with A and B atoms
shown as black and white spheres and vacancy as a cube: vacancy on the a A and b B sublattices,
¢ A atom on the B sublattice, and d B atom on the A sublattice

Fig. 5.35 The scheme of the six-jump cycle mechanism with a net [110] displacement of the
vacancy Va
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(b)

Fig. 5.36  Two variants of the six-jump cycle mechanism with the net [001] displacement of the
vacancy—a bent and b flat cycles. As a result, the vacancy on A sublattice and A atom exchange
their positions along the edge of the unit cell

One has to pay attention that two further types of cycles are possible in the B2
lattice, as shown in Fig. 5.36, corresponding to the [001] net displacement of the
initial vacancy—the so-called bent (Fig. 5.36a) and flat (Fig. 5.36b) cycles.

It is important that the atoms do not necessarily move along the vectors drawn
in Figs. 5.35 and 5.36, and the exact trajectories have to be determined via
appropriate atomistic simulations. The vectors, as in each case of such schematic
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representation, just connect the initial and final positions of the vacancy for a
particular jump during accomplishing the whole cycle motion.

The energy barriers are not necessarily the same for all types of the cycles. An
example of atomistic calculations (allowing relaxation after each jump) is pre-
sented in Fig. 5.37 for the case of B2-ordered NiAl (in Figs. 5.35, 5.36, the Ni
atoms are A and Al atoms are B). One recognize, e.g., that the 110 cycles are most
probable in this structure for NiAl. Further, the atomistic simulation with reliable
inter-atomic potentials reveals that the first disordering jump of the vacancy
involves typically the highest energy barrier. Subsequent jumps, requiring though
a thermal activation, could bring system even to a configuration with a lower total
energy with respect to the neighboring configurations, as shown in Fig. 5.37. Of
course, the energy of the system is completely restored after the vacancy has
accomplished the full sequence of six jumps.

A very important note is due here. Could the temperature dependence of diffusion
according to such sophisticated jump sequence be described by a single Arrhenius-
type dependence like Eq. 5.74? If yes, how is the activation barrier defined? Is this
the highest barrier in the sequence? The numerical simulations give very important
hints and predict that diffusion by such highly correlated jump sequence (in par-
ticular, for the six-jump cycles) can reasonably be described by an Arrhenius law,
Eq. 5.74, and the migration energy can conveniently be represented by a sum of two
contributions—the height of the first barrier and the activation energy corresponding
to the correlation effects. This can qualitatively be exemplified in Fig. 5.37.
According to such viewpoint, the energy barriers for all types of the six-jump cycles
are exactly the same and correspond to the height of the first barrier. Still the [001]-
type cycles involve very high barriers for the 3rd jumps, as shown in Fig. 5.37, so
that the probability of a reverse jump in those sequences is significantly larger and
the whole jump sequence will hardly be accomplished, especially at lower tem-
peratures. As the temperature increases, the importance of the difference in the
barrier heights decreases, since it is proportional to exp(—Q/kT), and such sequences
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may occur. This strong temperature dependence of the probability of the accom-
plishment of the cycles corresponds to a large contribution to the effective activation
energy. This conclusion is of general importance for diffusion mechanisms which
include more than one jump of a defect. The present consideration highlights the
importance of careful determination of the correlation effects for the diffusion
mechanisms in ordered alloys.

The correlated jumps of the atomic species during accomplishing the cycles
impose certain limitations on the quantities which can be measured in a diffusion
experiment. Firstly, in a highly ordered state near the stoichiometric composition,
the ratio of tracer diffusivities of both components, DA/Dg, can adopt only the
values within the interval

1
q

| >

A<y (5.88)
B

<

>

where g was calculated to be 2 [37] and was later corrected to ¢ =~ 2.034 by
including the correlation effects [38]. The ratio of diffusivities of Ag and Mg in
B-AgMg, Zn and Au in B’-AuZn, and Cd and Au in B-AuCd falls into these limits,
and this is typically considered as a strong support of the six-jump cycle mech-
anism in these compounds.

Diffusion by the six-jump cycles is a highly correlated process, as we have
already seen. Thus, the correlation factor is supposed to be rather small. However,
one should generally distinguish two types of correlations which characterize the
six-jump cycles. Considering the individual cycles as effective vacancy jump
events occurring with the given frequency, one can calculate the resulting corre-
lation factors f4 and fz [38]. For B2 NiAl, Monte Carlo calculations resulted in
fNi ~ 0.782 and fAl =~ 0.860. In contrast, the tracer correlation factors for Ni and
Al atoms in that case were calculated to be fy; =~ 0.445 and fa; ~ 0.022, respec-
tively. We note that fy; is not as small as it was usually anticipated for the six-jump
cycle mechanism. This fact should be taken into account when interpreting the
results of, e.g., Mossbauer effect experiments, which allowed establishing the
geometry of individual atomic jumps and, by comparing the local jump rates with
the long-range diffusion data, estimating the corresponding correlation factor.

In [39], the isotope effect was measured for both Au and Zn in the B2-ordered
B’-AuZn alloys, with E4, (and correspondingly fa,) being considerably larger than
E7, (fz,) in Zn-rich alloys (e.g., Eoy = 0.35 and Ez, = 0.05 in the Au-51.85 at.%
Zn alloy). This fact resembles the relation between fy; and fa; in B2-NiAl for the
six-jump cycle mechanism [40] and can be explained by the predominant vacancy
concentration in the Au sublattice and an increased probability of a reverse jump
of a Zn atom which has initiated a six-jump cycle. One may argue that since both
atom types in the B2 AB alloy participate in the same cycle, the pertinent cor-
relation factors f and fg have to be similar. However, this is generally not true, as
the simulations of correlation effects during diffusion according to the six-jump
cycle mechanism in NiAl have shown, and very different correlation factors for the
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two components can be obtained. Thus, the large difference between f5 and fg in
an AB compound cannot be considered as an argument against the six-jump cycle
mechanism.

The six-jump cycles are to be considered as a subset of a general n-jump cycle
mechanism, since, e.g., 3-jump cycles were considered in the L1, structure of TiAl
and 10-jump cycles were introduced to explain diffusion in quasicrystalline
compounds. Moreover, higher n cycles can be introduced in the B2 structure, too
(with n = 10, for example), by a simple inspection of the lattice. In this regard, the
six-jump cycles represent simply the n-cycle mechanism with the lowest possible
in the given structure number of n successive jumps of a single vacancy in
otherwise perfect lattice (thus, n = 3 for L1y, n = 6 for B2, n = 6 for L1,, and
n = 10 for Mackay icosahedrons, respectively, as basic tilling units of icosahedral
quasicrystals, etc.).

There is one important point here. The six-jump cycle mechanism was con-
sidered for a perfectly ordered lattice containing one vacancy on a given sublattice.
In this sense, it was analyzed for the stoichiometric composition of the AB alloy.
However, there are basically no objections against the existence of such highly
correlated jump sequences in off-stoichiometric AB compounds. As the compo-
sition of a given compound deviates from the stoichiometric one, a large amount of
(constitutional) defects appear and mutual interaction between different defects has
to be considered. If a vacancy performing a six-jump cycle meets an antistructure
atom on a particular lattice, the limits in the previous equation are changed [41].
It was shown that ¢ may become significantly larger that unity [41]. Thus, in a less
ordered state, experimental values of D,/Dg being larger than 2 can no longer be
considered as an indication that the six-jump cycle mechanism does not operate.
One may easily see that such six-jump cycle will be transformed to four-cycle
mechanism in the B2 structure if vacancy and antisite atoms reside in different
sublattices, as shown in Fig. 5.38. Further subtypes of the general n-jump cycle
mechanism could formally be introduced. The sequences differ by activation
energies, and the level of correlation of individual jumps and thus with different
probabilities could be found by inspection of the results of real simulations using
molecular dynamics.

5.4.4 Sublattice Diffusion Mechanism

When one of the components forms a lattice structure which enables the nearest
neighbor jumps through the respective sublattice, random jumps of a vacancy on
this sublattice will not affect the order in the compound. As an example, this
mechanism is schematically presented in Fig. 5.39 for the L1, structure. It is
important that this mechanism can dominate diffusion not only of the majority
component, but also of the minority component. In such a case, a minority atom
jumps into the “wrong” sublattice and continues its migration through this sub-
lattice. The sublattice diffusion mechanism was extensively analyzed in [42, 43].
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Fig. 5.38 A scheme of 4-jump cycles for the B2 structure. The flat (1-2-3-4) and bent (1'-2'-
3-4) cycles are shown. These jump sequences are flowed starting from a vacancy on Ni sublattice
(square) as a nearest neighbor of a Ni antisite atom, Niy; (the shaded circle). The vacancy first
can exchange its position with Al atom occupying the next nearest neighbor position to Niy; (the
jump of type 1’) or Al atom from 4th coordination shell of Niy (the jump of type 1). The jumps 2’
or 2 correspond to the most disordered states with two Nia; and one Aly; (and a Ni vacancy, of
course). The jumps 3 and 4 restore the initial order in the compound

Fig. 5.39 A scheme of sublattice diffusion mechanism for the case of A;B compound. Here, A
and B atoms are represented by dark and bright spheres, respectively. Eight possible directions of
nearest neighbor jumps of a B vacancy are shown by dashed lines

It is obvious that the diffusivities of both components are not coupled by a
relation similar to Eq. 5.88, if the sublattice diffusion mechanism operates.

The correlation factors for the sublattice diffusion mechanism in the L1,
structure of Ni3Al are different for diffusion of the majority (i.e., Ni) and minority
(i.e., Al) components. The calculations as outlined above provide that fy; = 0.689.
The determination of f,; is more intricate, and e.g., a five-frequency model has to
be invoked (see Fig. 5.40).
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Fig. 5.40 The jump frequencies for a Ni vacancy (cube) neighboring an Al antisite atom (red
sphere). The five frequencies my—w,4 for a vacancy on the Ni sublattice are indicated: ® is the
frequency of Ni vacancy jumps away from the Al antisite atom; ®, is the frequency of direct
exchange with the Al antisite; @, is the jump frequency between neighboring positions of the Al
antisite; s is the frequency of vacancy jump from first neighbor position of the Al antisite to a
more distant neighbor; and o, is the frequency of the reverse jump to o3

The somewhat lengthy calculations demonstrate that the Al correlation factor
can be expressed in a usual way via the vacancy—Al atom exchange frequency ®,
and the vacancy escape frequency H:

= and 1003 F* (201 + Sw3F¥)
Mo+ H T 2wy + 503 (FF + FY)

Here, F* and F* are functions of m4/mg, and they are changed in the range of
0.2-1, if w4/mq increases from 0 to co.

5.4.5 Triple-Defect Diffusion Mechanism

This mechanism was originally proposed by Bakker and Stolwijk for the B2
compound CoGa [44]. It specifies the migration of a triple defect, which represents
a bounded entity composed of two transition metal vacancies and one transition
metal atom in an antistructural position. The triple-defect mechanism in CoGa was
described to correspond to the two nearest neighbor jumps of a Co atom and one
next nearest neighbor jump of a Ga atom. In Fig. 5.41, the triple-defect mechanism
is shown for the case of the B2-NiAl compound. As a result of the indicated
sequence of jumps, the triple defect moves leaving the order in the compound
unchanged.

Since a correlated sequence of atomic jumps is involved, the diffusivities of
both components in the perfectly ordered state are coupled by Eq. 5.88 with
qg = 13.3.

The correlation factors are supposed to be small for the triple-defect diffusion
mechanism. They were calculated for B2-NiAl and fy; ~ 0.05 at T = 1,300 K in
Ref. [45] using a Monte Carlo method (Fig. 5.42). fn; depends remarkably on
temperature, and the contribution of this temperature dependence to the overall
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Fig. 5.41 A scheme of the triple-defect mechanism as it can occur in the B2 compound NiAl—
either via a sequence of a three or b four atomic jumps. In the first case, atoms of one kinds, most
probably of Al, perform a next nearest neighbor jump within own sublattice to temporary Al
vacancy, the jump 2 in (a)

activation enthalpy of Ni diffusion by the triple-defect mechanism amounts to
17 kJ/mol. This fact has to be taken into account in interpreting activation enthalpy
of diffusion in ordered compounds.
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5.4.6 Antistructure Bridge Mechanism

This mechanism was originally proposed by Kao and Chang [46] for the B2
structure and was later extended also to L1, structures [47]. The antistructure
bridge (ASB) mechanism is schematically presented in Fig. 5.43a. As a result of
the two indicated jumps, the vacancy and the antistructure atom effectively
exchange their positions. Since the vacancy can in fact jump up to the 4th or 5th
coordination shell from its initial position (depending on the lattice structure), the
resulting large geometrical factor of the ASB mechanism increases its contribution
to the diffusivity.

It is important to note that the contribution of this mechanism has a percolation
nature in the sense that long-range diffusion by the ASB mechanism will occur
only if the concentration of the antistructure atoms will be sufficiently high. A
relatively high critical concentration for a B2 structure was initially estimated from
purely geometrical arguments. The Monte Carlo simulation of this process
resulted, however, in a smaller value of the percolation threshold, about 5 %. Such
an antistructure atom concentration can indeed exist in intermetallics, and the ASB
mechanism becomes important for explaining the observed diffusion behavior in
Ni aluminides [45, 48].

In the L1 structure of the phase TiAl, other types of the ASB mechanism are of
prime importance. One of such variant is presented in Fig. 5.43b. After the indi-
cated two jumps (1 + 2), the A vacancy moved perpendicular to the A atom layers
using an antistructure A atom as a “bridge.” If a further antistructure atom in a
suitable nearest neighbor position is available for the vacancy after its second
jump, the next ASB sequence may start, as it is indicated in Fig. 5.43b. The Monte
Carlo calculation of the percolation threshold for the long-range diffusion by this
variant of the ASB mechanism yields about 11 % of the antistructure atoms as the
critical concentration.
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Fig. 5.43 The antistructure bridge mechanism as it can be found in B2 (a) and L1,
(b) compounds

During the ASB sequence of jumps, only one sort of atoms moves (see
Fig. 5.43). Therefore, the diffusivities of the two components are not coupled.

In a strict sense, the genuine ASB mechanism operates only after the perco-
lation threshold is reached. However, in combination with another mechanism
(usually the sublattice diffusion mechanism), the ASB mechanism (e.g., jump
sequence 1 — 2 in Fig. 5.8b) can substantially contribute already to long-range
diffusion without any percolation threshold. One can therefore use the term “ASB
mechanism” also in such cases, referring to the specific sequence presented in
Fig. 5.43a, b.

5.4.7 Interstitial Diffusion Mechanism

Small metallic atoms could diffuse interstitially in a matrix of a given intermetallic
compound. In Fig. 5.44, the solute diffusion of Fe and Ni in pure o-Ti, a,-TizAl,
and in y-TiAl is presented in comparison with Ti self-diffusion in these materials
as a function of the reduced temperature 7,,/T. Here, T,, is the melting point of
pure Ti or the intermetallic alloys of the stoichiometric composition. Figure 5.44
substantiates that both Fe and Ni are fast diffusers in o-Ti or in o,-TizAl, [49, 50],
while they are “normal” diffusers in y-TiAl
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This fact correlates with the local arrangements of the atoms which form
the octahedral sites for the interstitial diffusion in these compounds, as shown in
Fig. 5.45.

The high solubility of nonmetallic interstitial solutes in o,-TizAl could be
attributed to the existence of those octahedral positions in this compound which
are exclusively formed by Ti atoms [51]. Unlike pure o-Ti, o,-Ti3Al has additional
octahedral sites formed by two Al atoms and four Ti atoms, as shown in Fig. 5.45.
This fact explains a lower Fe and Ni interstitial solubility and thus a lower dif-
fusivity (in terms of the dissociative mechanism) in o,-TizAl with respect to o-Ti,
since the “mixed” octahedral sites are obviously not energetically favorable for
interstitial occupancy. As the inspection of the structure of y-TiAl shows, only
“mixed” octahedral sites exist in this compound. This is most probably the reason
why small metallic elements (e.g., Fe and Ni) form only substitutional solutions in
TiAl and therefore show “normal” vacancy-mediated diffusion behavior in this
compound, as shown in Fig. 5.44.

5.4.8 Other Diffusion Mechanisms

Several other mechanisms, which may be relevant in some specific cases, were
proposed for ordered intermetallic compounds. The next nearest neighbor jump
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Fig. 5.45 Local atomic environments of octahedral interstitial sites in o-Ti, o,-TizAl, and y-TiAl

mechanism may correspond to the lowest activation energy of single Ni vacancy
migration in Al-rich NiAl. Also, a divacancy mechanism, with both vacancies
belonging to the same sublattice in NiAl, may be suggested. After the given
sequence of four atomic jumps, the initial order is completely restored and the
divacancy has moved by one step.

5.5 Correlation Factors of Diffusion in Intermetallic
Compounds

The calculation of the correlation factors for simple lattices was outlines in Sect.
5.3.3. In ordered intermetallic compounds, the procedure is somehow modified,
since the geometry of sublattices and specific diffusion mechanisms have to be
taken into account, and it will be presented in this subchapter using MoSi, as an
example. We will limit us for Si diffusion in MoSi,, for which the diffusion
mechanism is considered as well established [52]. We will follow the analysis
considered in detail in [53].

Generally, diffusion is described by a symmetric diffusivity tensor of rank 2.
For a tetragonal crystal like MoSi,, this tensor has two principal components.
Diffusion is fully described by the diffusivities along the tetragonal axis, Dy, and
perpendicular to it, D | . Denoting the frequencies of type-1 and type-2 jumps as ®;
and ,, respectively (see Fig. 5.46), the tracer diffusivities can be written as

1 c

D=3 (5) (e o )6 =3 () @ voricy (589

and
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Fig. 5.46 a Lattice structure of MoSi, and b the structure of the Si sublattice. The two types of
Si vacancy jumps are shown

D, = %azwufhc;q (5.90)
Here, Cy! is the vacancy concentration on the Si sublattice in thermal equi-
librium. f;, is the partial correlation factor for diffusion perpendicular to the
tetragonal axis. Since type-2 jumps do not contribute to diffusion perpendicular to
the tetragonal axis, the partial correlation factor coincides with the total correlation
factor in this direction, i.e., fi, =fi - le and sz are the partial correlation factors
for diffusion parallel to the tetragonal axis related to the jump types 1 and 2,
respectively. fj is the total correlation factor related to diffusion in this direction.
It can be expressed in terms of the partial correlation factors as

_oufy t ooy + ol
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(5.91)

Partial and total correlation factors are functions of the frequency ratio w,/®.
The anisotropy ratio of diffusion

D_  _doh, _ af (5.92)

Dy (%)2 (walu + wazH) (%)2 (fl” * %fzu)

is fully described by the correlation factors and is a function of the frequency ratio
as well. The strong anisotropy of both Mo and Si diffusion in MoSi, is documented
in Fig. 5.30.

In order to calculate the partial correlation factors f;, one cannot take advantage
of the inversion symmetry, because the Si sublattice sites are not inversion centers,
as shown in Fig. 5.46. Moreover, there is no twofold or threefold symmetry around
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the direction of the type-1 jumps. We suggest combining Howard’s matrix method
[10] and a Monte Carlo approach to calculate the correlation factors, as it was
described above.

Both types of jumps contribute to diffusion parallel to the tetragonal axis, as
shown in Fig. 5.46. Hence, the relevant partial correlation factors can be deter-
mined as

fi=1+2Z-TE-T)'-d (5.93)

where f|| = (fi,f2,) is the column vector of the partial correlation factors, I the
2-component unit column vector, E the 2 x 2 unit matrix, d = (Izyl, Izp!) the
column vector of the jump distances Iz;| = ¢/6 and Iz,| = ¢/3 of type-1 and type-2
—1
kN
0 [z

jumps, Z = , respectively. T is a 2 x 2 matrix with the elements

tj=P; =Py, i,j=12 (5.94)
Here, Pif is the probability that a tracer jump of type i is immediately followed
by a tracer jump of type j in the same (+) or opposite (—) direction along the
tetragonal axis.
Since only type-1 jumps contribute to diffusion perpendicular to the tetragonal
axis (Fig. 5.46), Eq. 5.44 can be simplified, and the relevant correlation factor f|
can be written as

1+1¢
=— 5.95
fi=ge (595)
with
t=P" — P (5.96)

Here, P* is the probability that a type-1 jump is immediately followed by a
type-1 tracer jump with the same (+) or opposite (—) displacement perpendicular
to the tetragonal axis.

5.5.1 Calculation of the Probabilities P

The probabilities P?/F and P* introduced above have to be determined in order to
calculate the correlation factors. Let us start with diffusion along the tetragonal
axis. Diffusion perpendicular to the axis is simpler and will be considered
afterward.
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Figure 5.46b shows the situation immediately after a tracer atom jump of the
type 1. The tracer atom is at the site O, whereas the vacancy occupies the
neighboring site A after this jump. It is obvious that if the next jump of the tracer is
a type-2 jump, the sign of its displacement with respect to the tetragonal axis will
be the same as that of the first jump (both jumps displace the tracer atom in the
negative direction of the z-axis). Alternatively, if the next jump of the tracer is a
type-1 jump (leading to one of the lattice points A, B, C, or D in Fig. 5.46b), the
sign of its z component will definitely be opposite to the sign of the z component of
the first jump. Therefore, the probabilities are P, =0, P;; #0, P{, #0, and
P, =0, and the corresponding matrix elements reduce to #; = —P}; and
f12 = P},. Considering the situation prevailing just after a tracer jump of type 2,
we arrive at the relationships P3; # 0, P, =0, P;, =0, and P, # 0, and thus
h = P;rl and ty, = _PEZ'

Let us suppose that the tracer atom has just performed a jump of type 1. We
need to know the probabilities Pj; and P, that the next jump of the tracer atom
will be of type 1 or 2, respectively. These two sequential tracer jumps can gen-
erally be mediated by the same vacancy or by two different vacancies. As a usual
approximation in the encounter model, the vacancy concentration is considered as
very small, and thus, a tracer encounter with a next vacancy occurs only after the
first encounter has totally been completed (e.g., when the first vacancy has escaped
from the tracer atom). Therefore, the individual encounters are well separated in
time, and a new vacancy does not disturb the correlations induced by a previous
vacancy. In this case, the correlation factors do not depend on the vacancy
concentration.

If taking into account that the two successive tracer jumps can generally be
induced by the same or by different vacancies, two different contributions to the
total probabilities P;‘F are expected: firstly, a contribution from the encounter with
the same vacancy and secondly, a contribution from sequential encounters with the
old and the new vacancy. In the latter case, the tracer jump of type i has occurred
as a last event of the encounter with the old vacancy (and the vacancy has then
escaped from the tracer atom), and the next tracer jump of type j has been induced
by a new vacancy through its first exchange with the tracer atom. The second
contribution to Pf]F is important for the MoSi, structure. This is in contrast to lattice
structures with inversion symmetry, where the fresh vacancies equally contribute
to both P; and Pl.;. Hence, they do not affect the resulting correlation factors,
which depend only on the differences t; = P; — P;. However, in the case of a
lattice structure, in which the site positions are not inversion centers (this is the
case of the Si sublattice of MoSi,), the fresh vacancies may give different con-
tributions to Pg and Pj;. To illustrate this problem, let us consider the following
situation: Suppose a first vacancy has induced a tracer jump of type 1 and has been
escaped. After some time, a fresh vacancy will approach the tracer atom from a
totally random direction and will induce the next tracer jump. If this next tracer
jump is of type 1, it will definitely be in the opposite direction to the first jump of
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type 1 with respect to the tetragonal axis. This fact increases the total probability
P, but, by no means, it changes the value of P{;, which remains zero. Therefore,
the total probability P, must be known to calculate ¢;; and finally to compute the
correlation factors.

At first, let us consider the contribution of an encounter of the tracer atom with
the same vacancy to Pﬁ, j = 1, 2. Since the vacancy performs a random walk, it
can either induce tracer jumps of type 1 or 2, or escape without inducing any
further jump of the tracer atom. Let us denote the probability for the latter event by
P, , the escape probability after a type-1 jump. Furthermore, we denote the
probabilities that the same vacancy induces a type-1 or type-2 jump during its
random walk, which follows the initial site exchange with the tracer atom, by }31’1

and PTZ, respectively. The sum of all probabilities for the path of a particular
vacancy equals unity:

P+ Pl + P, =1 (5.97)

A similar relationship holds for the vacancy random walk when the first site
exchange resulted in a type-2 jump:

Py + Py + P, =1 (5.98)

The quantities i’ﬁ describe the probabilities of sequential jumps of types i and
j of a tracer atom caused by the same vacancy. In contrast, the P; denotes the total
probabilities of sequential jumps of types i and j of the tracer atoms, irrespective of
which vacancy has induced these jumps. As explained above, in order to calculate
Plf we have to add to 135 the probability that a “fresh” vacancy induces the jump
Jj at its first site exchange with the tracer atom, provided that the “old” vacancy has
escaped from the system (remember that this “old” vacancy has previously
induced the jump i), i.e.,

P =P; + PP (5.99)

Here, 13j is the probability that a vacancy arriving from an arbitrary lattice
position of the Si sublattice at a nearest neighbor position of site O induces the
jump j of the tracer atom at its very first site exchange. We have P; + P, = 1,
because the “fresh” vacancy can induce either a type-1 or type-2 jump of the
tracer atom.

In the absence of driving forces, the flux of fresh vacancies, which induce the
jump j at the first site exchange with the tracer atom, is the same as the reverse flux
of vacancies escaping after an inverse jump —j without inducing any further jump
of the tracer atom, namely w;P,_,Cy. On the Si sublattice, a vacancy can induce
four jumps of type 1 and one jump of type 2. In view of the lattice symmetry, the
escape probabilities for jumps j and —j are equal (j = 1, 2). Furthermore, in
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thermal equilibrium, the probability to find a vacancy on any site of the Si sub-
lattice is the same. Therefore,

- 4w, P,
Pl=— 20 (5.100)
4w,P,, + w0 P,,
and
- P,
py=— Ple (5.101)
4601Pel + 0)2P€2
Combining the above equations, the final expression for P?j[ becomes
+ _ pt nj;Pe, .
Py =P; +P i,j=1,2. (5.102)

é 4w1Pe| + (,{)2Pe2 ’

Here, ny = 4 and n, = 1 are the numbers of jumps of the corresponding type.
In the case of diffusion perpendicular to the tetragonal axis, only type-1 jumps
must be taken into account. Then, one can simply calculate P* as

pt = p* (5.103)

Here, P* is the probability that during a random walk of the given vacancy, the
second jump of the tracer atom will occur in the same (+) or opposite (—) direction
with respect to the first jump. Due to the symmetry of the structure in the plane
perpendicular to the tetragonal axis and in contrast to the previous case of diffusion
along the tetragonal axis, the fresh vacancies give equal contributions to both P*
and P~. Thus, Eq. 5.95 is not affected by such vacancies, since only the difference
t = P* — P~ is important in the calculation of the correlation factor £ .

5.5.2 The Monte Carlo Calculation Scheme

A Monte Carlo approach can be applied to calculate P;j‘? and P,,, and the structure
of Eq. 5.101 suggests the calculation scheme. At first, a tracer atom and a vacancy
are placed at the positions O and A on the Si sublattice (Fig. 5.46b). This corre-
sponds to the atomic configuration after a type-1 jump. Then, the random walk of
the vacancy is initiated and followed in the computer until the vacancy either
escapes (see below) or induces a jump of type j of the tracer atom (j = 1, 2). By
performing the Monte Carlo runs many times, the probabilities P},, P}, and P,,
are thus determined. Similarly, by simulating the atomic configuration after a type-
2 jump and following the random walk of the vacancy, the probabilities Pz‘l, P;rz,
and P,, are determined. From Eq. 5.101, the probabilities Pf]F are then calculated



234 5 Atomic Mechanism of Diffusion

using the probabilities 13?; and P, (i, j =1, 2) obtained from the Monte Carlo
simulation.

The probabilities P* are calculated in a similar manner: An atomic configu-
ration after the tracer jump of type 1 is modeled, and the following random walk of
the vacancy is considered until it either induces a tracer jump or escapes from the
tracer atom. The events resulting in the type-1 jump (with a nonzero displacement
perpendicular to the tetragonal axis) are counted, and their probability is deter-
mined by appropriate averaging. In view of Eq. 5.102, neither is it necessary to
determine the probability that the vacancy escapes nor that it induces a jump of
type 2 (with zero displacement perpendicular to the tetragonal axis). The proba-
bilities P* can be inserted in Eq. 5.93 instead of the total probabilities P*, and the
relevant correlation factor |, can be determined.

In the simulation, the initial vacancy and a tracer atom were introduced into the
center of the simulation block. If the vacancy reaches the external boundary of the
simulation block in the course of its random walk, we consider it as escaped from
the tracer atom. The particular values of P?j[ and P,, turned out to depend on the
size of the simulation block. However, their combination in Eq. 5.101 approaches
a constant value when the size of the simulation block is increased.

The random walk of a vacancy is simulated in a standard manner. On any lattice
site, the vacancy can perform either one out of 4 possible jumps of type 1 or one
jump of type 2. The corresponding probabilities are ®;/(4®; + ®,) and ,/
(4o, + ®y), respectively. Since the absolute diffusivities are not addressed here,
the frequency ratio m,/m; is the only crucial parameter.

All probabilities depend only on this ratio. By using an appropriate random
number generator, for each Monte Carlo step, the direction of the vacancy jump is
chosen in agreement with the above-mentioned probabilities for the given value of
the ratio m,/®,. The position of the vacancy is then updated, and the next jump
direction is selected. Thus, in each Monte Carlo step, the vacancy definitely
performs one jump onto a neighbor site, and the probability of the given jump
depends on the frequency ratio w,/®;. The frequency ratio m,/®,; was changed in
the simulations in the wide range from 107> to 10°.

In the particular calculations, a simulation block of 80 x 80 x 80 unit cells
was found to give satisfactory results (the unit cell for the MoSi, structure is
shown in Fig. 5.46a). The random walk of a vacancy was followed until either the
vacancy induces a jump of type j of the tracer atom or the vacancy reaches the
outer surface of the simulation block. This procedure was repeated for 10° to 10’
times, and the probabilities 13?; and P,, were estimated from suitable averages of
the individual Monte Carlo runs. Then, the partial correlation factors were cal-
culated for the chosen ratios of the frequencies w,/®;.

One comment about the calculation of the probabilities P* may be added.
Diffusion perpendicular to the tetragonal axis is mediated exclusively by type-1
jumps. Consideration of type-1 jumps solely would correspond to a two-dimen-
sional random walk within a Si bilayer of the MoSi, structure. The escape
probability in a random walk on a two-dimensional lattice is exactly zero.
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Fig. 5.47 The correlation 1.6 RLL R R Rl e e e
factors of Si diffusion on the _

Si sublattice of MoSi, as a
function of the frequency 1.4 —
ratio w»/®w;. The error bars

represent the standard

deviations from the mean 1.2
values. The solid lines

correspond to Eq. 5.104
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However, since in the Si sublattice, type-2 jumps also occur with a probability
depending on the ratio ®,/®, the vacancy can still escape from the tracer atom and
randomize. If the ratio m,/®; is very small, the vacancy will very rarely jump to
another Si bilayer in the MoSi2 structure during the simulation run. However, after
a sufficiently large number of jumps, the vacancy will almost have lost its
“memory” of the position of the tracer atom and can be considered as
“randomized.”

The calculated partial and total correlation factors are presented in Fig. 5.47 as
functions of the frequency ratio m,/m,. For practical purposes and for convenient
reference, it is useful to express the numerically calculated correlation factors by
suitable analytical formula. Appropriate fits can be obtained ratios of polynomial
functions:

2
ap + a (3’7?) + ay (Z,’—f)
f= 2 3
bo+ by (22) + b2 (2) +bs (22)
with appropriate values of the constants a; and b;. The curves in Fig. 5.47 are

drawn using such expressions. Note that the rational form of the fitting function
has no direct physical background. However, the crystal lattice could be linked to

(5.104)
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an electrical network and the correlation factors may be expressed in terms of the
resistivity of such a network. It seems reasonable that the resistivity of a network
with parallel and series connections is likely expressed by a rational function. Each
partial correlation factor is calculated by own set of parameters.

The correlation factor f, for diffusion perpendicular to the tetragonal axis
changes monotonically from 0.466 £ 0.002 to 0.748 £ 0.002 when ®,/®;
increases from 107* to 10° (Fig. 5.47, squares), respectively. For w./m, = 0,
diffusion is confined to a Si bilayer and can be considered to be two-dimensional.
Then, Si diffusion perpendicular to the tetragonal axis can still occur without type-
2 jumps (Fig. 5.46b), and the pertaining correlation factor f, is finite. No long-
range diffusion along the tetragonal axis occurs in such a case: A jump with
a +z component is immediately followed by a jump with a —z component and vice
versa. For m,/®; = 0, the Si sublattice can be considered as a square lattice. The
exact correlation factor of vacancy diffusion on a square lattice is known to be
0.4669 which is well reproduced by the Monte Carlo technique.

The partial correlation factor f;, increases monotonically from almost zero to
0.80 & 0.02 when m,/m; increases in the same range (Fig. 5.47, triangles up).
Somehow unexpected is the behavior of f> , which approaches a value of 1.5 when
0o, — 0 (Fig. 5.47, triangles down). As ®,/®; increases, f>, drops gradually to
zero. The total correlation factor of Si diffusion along the tetragonal axis, S
remains smaller than unity (Fig. 5.47, circles), although the partial correlation
factor f, is larger than unity at small values of @,/e;.

The case of f is very interesting. Forward correlation produced by the specific
structure of the Si sublattice in MoSi, results in f2H> 1 for wy/m; — 0. Let us
analyze this limiting case analytically.

Suppose that a tracer atom has just performed a type-1 jump. Since @, = 0, the
vacancy performs an almost two-dimensional random walk in the Si bilayer in
which the tracer atom is located. Since the escape probability on a two-dimen-
sional lattice is zero, the vacancy will definitely return to the tracer atom and at
sometime induces a type-1 jump. The probability for the vacancy to jump into the
neighboring Si bilayers and to induce a type-2 jump is practically zero. Thus, for
wy/®; — 0, we have P[; — 1 and P1+2 — 0. Now consider a random walk of the
vacancy just after a type-2 jump of the tracer atom has occurred. The vacancy and
the tracer atom are in different Si bilayers, and the probability that the vacancy
immediately induces the type-2 backward jump of the tracer atom is almost zero,
ie., P, =~ 0. However, occasionally, the vacancy will interchange somewhere
between the Si bilayers; it can then appear in the same Si bilayer where the tracer
atom is located. The probability that the vacancy will jump exactly toward the
tracer atom position is negligibly small. Then, after a random walk within the Si
bilayer where the tracer atom is located, the vacancy will induce a type-1 jump of
the tracer atom. Thus, it is reasonable to suppose that P;; — 1 if @, — 0.
Introducing these values of P; Eq. 5.102 and taking into account that the escape

probabilities are zero, the T matrix for w,/®; — 0 becomes
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-1 0

|7 Y| 109
Then, the partial correlation factors turn out to be

1

fiy=1+2- <—§> =0 (5.106)
and
1\ ¢/6

=14+2-(z])—5=15 5.107
p=1+2:(3) 92 (5.107)

These estimates for the limiting case w,/®; — 0 perfectly agree with the Monte
Carlo results of Fig. 5.47.

This example teaches us that though the correlation factors do not exceed
unity just by definition, the partial correlation factors could be larger than
unity, if a forward correlation of jumps is involved. Diffusion of Si atoms in
MoSi, represents a textbook example where one of partial correlation factors
can be as large as 1.5!
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Chapter 6
Interdiffusion and the Kirkendall Effect
in Binary Systems

This chapter deals with diffusion in the phases with wide homogeneity range.
Different approaches, which could be used to estimate the variation of interdif-
fusion coefficients with composition, are described. Following the Kirkendall
effect is introduced along with the estimation of the intrinsic diffusion coefficients.
The estimation of the tracer diffusion coefficients from a diffusion couple is also
explained.

This chapter considers the continuum approach of diffusion, where the diffusion
of components is treated in a continuous medium without going into the details of
the atomic mechanism of diffusion. The advantage of this approach is that we can
analyze and predict the micro- and/or macroscopic physicochemical changes in
applications without going into a complicated atomistic model. In 1896, Sir
W. C. Roberts reported for the first time the systematic study of the diffusion of
gold in solid lead [1]. From the experiments in the early twentieth century, it was
evident that the diffusion coefficient in the solid state is not a constant, but is rather
a function of composition and temperature. Earlier in Chap. 3, we introduced the
solutions for Fick’s second law of diffusion considering the constant diffusion
coefficient, which are not usually the case in practical examples. In many systems,
diffusion coefficients might vary in the range of a few orders of magnitude. It is not
possible to solve the relation considering the variation in the diffusion coefficient
with composition, since a particular composition changes location with time in
the interdiffusion zone. To clarify, considering the variation of interdiffusion
coefficient with composition, Fick’s second law can be written as

oC 0 [~o0C
E—a(l’a—;)

RITI
T 0x Ox ox?

(6.1)

The term dD /0x makes the equation inhomogeneous, and the solution in the
closed form is not possible.
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However, instead of finding a solution for C(x, ) as done in Chap. 3, it is

possible to find the solution for D = l~)(C ), that is, the variation in the interdif-
fusion coefficient with concentration using the Boltzmann parameter.

6.1 Matano-Boltzmann Analysis

Matano [2] with the help of the Boltzmann parameter [3] solved Fick’s second law
so that we are able to estimate the variation in the interdiffusion coefficients with
composition. Frequently, researchers use the Matano—Boltzmann analysis to
estimate the interdiffusion coefficients at desired compositions from a measured
composition profile. However, the limitation of this method is that it can be used
strictly where the partial molar volumes of the components are constant; that is, the
total volume does not change with reaction and mixing. This is explained in
greater detail later in this chapter in Sect. 6.5. At this point, we are interested to
derive the Matano-Boltzmann relation. Consider the case, when two alloys of
initial concentrations C and Cj are coupled and annealed for a reasonably short
time ¢ such that after annealing, some parts of the end members still remain
unaffected by interdiffusion as shown in Fig. 6.1. The boundary conditions can be
written as

Cp=Cy forx<O0 at t=0

6.2

Cp=Cy forx>0 at t=0 (62)

where “—” and “+” represent the left- and right-hand ends of the diffusion couple.
Boltzmann [3] introduced the variable

A=2(Cg) = (x— x,,)/tl/2 = x/tl/2 (6.3)

where x, = 0 is the location of the initial contact plane (bonding interface before
annealing) and x is the location with respect to this plane. The initial contact plane
is also known as the Matano plane in most of the literature on this subject.
Equation 6.3 suggests that every concentration, for example, Cj, will move from
the initial contact plane such that 1* = /“L(Cg) = x*/t'/? will have a fixed value. To
clarify further, we consider Fig. 6.1. Suppose at the location x;, the concentration
of the plane is C after an annealing time of ;. At another annealing time, let us
suppose after t,, the same concentration is to be found at the location of x,.
According to the Boltzmann parameter, the plane corresponding to Cy will move
such that

2= 0(Cy) = xi /1> = x2 /13> = constant
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Fig. 6.1 Significance of the (a)
Boltzmann parameter is

explained with the help of

a Diffusion couple and b its
concentration profile

(b)

*

(9]
®

Concentration, Cg

O
m

Distance, x

It further indicates that in a diffusion-controlled process (parabolic growth of
the phase layer), every concentration in the interdiffusion zone will have a fixed /4
value. This means that we can verify the diffusion-controlled process by plotting .
versus x/ 1'/2 after conducting the experiments for different annealing times. The
variation of A estimated at different concentrations with respect to x/r'/? will be
the same irrespective of different annealing times. However, note that A at one
particular concentration will depend on the end-member concentrations in the
diffusion couple and will have a different value in another diffusion couple with
different end members.

Using the Boltzmann parameter given in Eq. 6.3, we obtain

GCB_GCBG/I_ 1 x 6CB

or oo 287 9k

0y _0Co0%_ 1 26y o
ox 0l ox /202

And replacing Eq. 6.4 in Fick’s second law (Eq. 6.1) results in
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0y _ 0 (52) x oGy

or  Ox Ox 25 04
_ 0 (DG _ 0 (52
Tax\A 04 Aox oA

since the concentration profiles under consideration are after a fixed annealing
time ¢. From Eq. 6.3, it is possible to write 04 = Ox/¢'/2. By introducing it in
Eq. 6.5, we get

(6.5)

X G 10 (526
263/2.9).  t0A o4

Again by replacing with the Boltzmann parameter, 4, it can be written with
respect to variable / as

AdCg d (~dCg
_IE_~ (pZ== .
2d. di ( di. ) (6.6)
Multiplying both the sides by d/, we get
1 ~dCp
—E/ldCB = d(D 77 ) (6.7)
The initial conditions of Eq. 6.2 at time ¢t = 0 can be rewritten as
C=Cy; at i=-—
8 > (6.8)

C=Cjy at A=+4o0

Integrating Eq. 6.7 from the initial concentration C; to the concentration of
interest, Cy to measure the interdiffusion coefficient, D, results in

C

1 ~dCp|
> [ sdcy =D .
; / AdCp 77 . (6.9)

B

The data are always measured at some fixed time so that 7 is constant. Replacing

the Boltzmann parameter, we arrive at
Cy c
1 ~dCg|™® ~ [(dC ~ (dC ~ (dC
——/deB:Dt—B =Di[=2) —Dt(=2) =Di[=E) (6.10)
2 dx |- dx c dx c; dx c

Cy
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Fig. 6.2 Calculation of the (a)
diffusion parameter following
Matano-Boltzmann

parameter. a Diffusion

couple, b finding the location

of the initial contact plane by
equalizing the areas P and Q,

and ¢ estimation of the

interdiffusion coefficient is (b)

explained
c
e
g
c
Q
Q
c
o
o

Concentration, Cg

R

Distance, x

since (%) c-= 0 at the unaffected part of the diffusion couple, where it has a
B

concentration of C, (see Fig. 6.2). Equation 6.10 can thus be rewritten as

Cp

~ 1 / dx
D(C) = —— [ d 6.11
(C3) =5, <ch)€; / xdC (6.11)
z

B

So the interdiffusion coefficient at the concentration of interest C; can be
determined using Eq. 6.11. This is explained considering the composition profile
developed in a binary A—B system, as presented in Fig. 6.2c. In general, it is easier
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to integrate with respect to x in order to estimate the area under the integral. After
integrating by parts, the following is obtained

*

X

b(C;) =+ (%)Cg ¥ (Ch— C5) - / (Co-Cila  (6.12)

X

since x* = x* — x,. The value x~° is the location at the unaffected end member of
the diffusion couple on the left. Note here that the location parameter is measured
with respect to x, and the concentration is considered from one unaffected part of
the diffusion couple (left-hand side in the present case). From Fig. 6.2c, the
interdiffusion coefficient can be expressed in terms of the areas as

D(Cyp) :%(L%)C;[SJFR] (6.13)

Note here the missing minus sign, since the values of R and S are actually
positive and negative, respectively, in this particular case. To estimate the inter-
diffusion coefficients using Eq. 6.13, it is necessary to use the absolute values of
the areas R and S. However, we should be careful before choosing Eq. 6.13 rather
than Eq. 6.12. This is because Eq. 6.13 cannot be used directly if the concentration
of interest is on the other side of the initial contact plane. It is nevertheless always
safe to refer to Eq. 6.12. This is explained with an example at the end of this
section.

It must be clear that we need to determine the location of the initial contact
plane (as explained in Fig. 6.2b) for the determination of the interdiffusion coef-
ficients. From the mass balance, we can write

G
/ )CdCB =0
Cy
cy, cy
/.deB + / deB =0 (6143)
Cy G
/ (Cp — Cp)dx = / (Cf — Cp)dx (6.14b)

where C3 is the concentration of the component B at x,, after interdiffusion. Note
here that the other parts in both the sides after integration by parts are equal to zero
since x, = 0. The value x> is the location at the unaffected end member of the
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diffusion couple on the right. Equations 6.14a and 6.14b suggests that the location
of x, can be found by equalizing the areas denoted by P and Q, as shown in
Fig. 6.2b.

To clarify the estimation methodology, we consider an imaginary diffusion
couple in a hypothetical binary system, the one portrayed in Fig. 6.3. For instance,
suppose a diffusion couple was made between two alloys of AggsBgis and
Ag.15Bo.gs. Following the explanations given in Chap. 4, only the f phase will
grow with a wide homogeneity range of Nz = 0.4 to Nz = 0.6. For the sake of

easy explanation and estimation of D without the use of any software, we consider
that the composition profile inside the product phase in the diffusion couple has a
fixed slope. Furthermore, we assume that the molar volume is constant over
the whole composition range. Since Cg = N /v,,, where v, is the molar volume,
Eq. 6.12 can be rewritten as

x*

5(N;);<&)N§ CW-n) - [ a-Npal (613)

x>

Note here that it is actually possible to consider the molar volume of the
different phases for the calculation in real systems. The methodology explained
here based on the Ny versus x profile is similar to the calculation from Cp versus
x profile using Eq. 6.12. Suppose the diffusion couple was annealed for 100 h and
the measured composition profile shows the thickness of the product phase layer as
being 200 pm. The composition profile is measured along the dotted line shown on
the diffusion couple in Fig. 6.3. The hypothetical composition profile is shown in
Fig. 6.4a.

As explained above, the prerequisite of the calculation is finding the location of
the initial contact plane. By equalizing the areas P and Q, we find this plane to be
located at 150 pm, as can be noted from Fig. 6.4b. Therefore, this location should
be set to zero, as shown in Fig. 6.4c. Now suppose, we wish to estimate the
interdiffusion coefficient at Nz = 0.45, which is located at —50 pm. It will,
therefore, be necessary to first estimate the slope. Since it has a fixed slope over the
whole product phase, it can be estimated as

dNp 0.6-04 0.2

“dx 100 — (—100)] x 106 200 x 106

=10*/m

Further, the areas that are shown in Fig. 6.4c can be written as

S=x"(Nj—Ng) = (x* —x,) (N5 — Ng)
=50 x107%(0.45 - 0.15) = =15 x 10 °m


http://dx.doi.org/10.1007/978-3-319-07461-0_4
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Fig. 6.3 An imaginary
diffusion profile is shown Liquid, L
based on the alloys in an
imaginary binary system

Temperature, T

p

x*

R= / (Ng — Ny )dx

X

1
= [-50 — (—100)](0.4 — 0.15) + 3 [—50 — (—100)](0.45 — 0.4) = 13.75 x 10 °m
Thus, following Eq. 6.15, for the annealing time of 100 h, the interdiffusion

coefficient can be estimated as

*

-~ 1 [/ dx P _ -
soive =42 e f v
B x>

1 1 e .
= 3 T00 % 60 60 < 107 19 X 1070~ 1375 % 107

=3.99 x 10~ ¥ m?/s

Note that this explains the missing minus sign in Eq. 6.13.
Now let us turn to estimate the interdiffusion coefficient at the composition of
Np = 0.525. The reader is referred to Fig. 6.4d for the calculation. Note that the

composition gradient (dNg/dx) in this particular case is the same. The areas can be
written as
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Fig. 6.4 Calculation procedure of the interdiffusion coefficient at the composition of interest.
a Composition profile, b locating the initial contact plane, ¢ estimating the interdiffusion
coefficient at the composition of interest in the left-hand side of the initial contact plane, and
d estimating the interdiffusion coefficient at the composition of interest in the right-hand side of
the initial contact plane

N=x"

(Vs

— Ny)

= (x" —x,) (N — Ny ) =25 x 107°(0.525 — 0.15) = 9.375 x 10 °m

*

M= / (Np — Ny )dx

= [25 — (=100)](0.4 — 0.15) + % 25 — (—100)](0.525 — 0.4) = 39.06 x 10 *m

As a result, the interdiffusion coefficient can be estimated as
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-, 1 [/ dx **_X -
D@@:Qﬂﬁ:—icmﬁmx(%—Ng— /(%—Ngw
B

1 1
=_ —[9.375 x 107 — 39.06 x 107°
7% 100 X 60 x 60 = 108 0375 % x 107°]

=412 x 10 m?/s

6.2 Limitation of the Matano—Boltzmann Analysis

We have shown previously that the location of the initial contact plane or the
Matano plane can be found from the concentration profile, i.e., Cp versus x using

the relation [, (Cp — Cy)dx = [*7(Cf — Cp)dx. deally, it should also be

x> Xo

possible to find this plane from C, versus x using the relation [, (Cy — C,)
d.x — j‘x#x (CA — Cj)dx Note here that NA + NB = 1, IVA:t —|— N;t — 1 Therefore

Xo
Cp vs. x increases from left to right (Cz <Cj), Ca vs. x decreases in the same
direction (C, > CJ). Since there is a unique initial contact plane, we should be
able to find the same location by following any of the profiles. However, this is not
always the case. As explained in Fig. 6.5, there can be three different situations
depending on the variation of the molar volume with composition. It is almost
impossible to find a practical system, in which molar volume varies ideally fol-
lowing Vegard’s law with the composition as shown in Fig. 6.5a. However, there
are a few systems, where the deviation of the molar volume from the straight line
connecting the molar volumes of the pure components v and v® is marginal.
Consequently, there will be almost no change in the total volume of the diffusion
couple after interdiffusion. In this case, the initial contact planes located from the
profiles Cp versus x and C, versus x will be more or less the same. In fact, if the
molar volume varies ideally following Vegard’s law (v,, = Nav4 + Npv8), then
the location of this plane found from any of the profiles will be exactly the same.
In most of the systems, the molar volume deviates from the ideality. There can be
positive deviation, as presented in Fig. 6.5b. Since the compositions that develop
in the interdiffusion zone have a higher molar volume than the ideal value, there
will be expansion in the diffusion couple, resulting in an increase in the total length
of the diffusion couple. Note here that the diffusion profile in the diffusion couple
is one dimensional. In this case, two different locations of the initial contact plane
are found (as explained later in Sect. 6.5). In fact, both are actually incorrect and
we are unable to find the exact location of the initial contact plane. In a system,
where the molar volume has a negative deviation from the ideality, the diffusion
couple will shrink after interdiffusion, as depicted in Fig. 6.5c. In this case also,
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Fig. 6.5 Effect of deviation of molar volume in the diffusion couples is shown for a ideal case,
b positive deviation, and ¢ negative deviation

two different values will be found when the initial contact plane is determined
from C4 versus x and Cp versus x.

As explained in the previous section, it is necessary to find the location of the
initial contact plane for the calculation of the interdiffusion coefficient using the
Matano—Boltzmann relation. In most of the systems, the molar volume deviates
from ideality. Therefore, we are unable to locate the position of the initial contact
plane exactly. This leads to an error in the calculation of the diffusion parameters.
To circumvent this problem, relations to estimate D were developed such that
there is no need to find the initial contact plane. Ballufi [4] first derived the
solution for the interdiffusion coefficient for systems where the molar volume does
not change ideally. Sometime later, Sauer and Freise [5] generalized the Matano—
Boltzmann analysis for the same conditions. Wagner [6] then came to a similar
relation but by using a simpler and easy-to-understand method. Next came Den
Broeder [7] who developed the relation based on a much simpler graphical
interpretation. Here, the Den Broeder approach is first explained, as it is fairly easy
to follow. After that, we present the Wagner approach, which is very useful to
derive the equations to be used for the estimation of few other important diffusion
parameters along with the interdiffusion coefficients.

6.3 Den Broeder Approach to Determine
the Interdiffusion Coefficient

Den Broeder [7] followed an easy-to-understand graphical approach. The con-
centration-normalizing variable Y is introduced such that

_ GGy

Yo—=_—2 B
CTG-G

(6.16)
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Fig. 6.6 Calculation of the interdiffusion coefficients is shown following Den Broeder’s approach.
a Diffusion couple, b concentration profile, ¢ derivation of the Den Broeder’s approach, and d slope
at the concentration of interest

This leads to

dCp

dYe = ——— 6.17
Replacing Eqs. 6.16 and 6.17 in Eq. 6.12 results in
~ 1 ([ dx
DY) =——|-— Y — Yqd 6.18
( C) 2t (dYC)Yé XL / cax ( )

X~

To determine the interdiffusion coefficients using the relation expressed in
Eq. 6.18, it is necessary to convert the concentration profile (Fig. 6.6b) to Y¢
versus x, as shown in Fig. 6.6c. Note here that Yz = 0 and Y = 1. In terms of the
areas shown in Fig. 6.6c, Eq. 6.18 can be expressed as
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D(r}) = % (dd—;) Yé[S—i—R] (6.19)

The minus sign is missing in Eq. 6.19 (similar to Eq. 6.13) since the value of
S is negative and the value of R is positive. With respect to the position of the
initial contact plane x, we can write
R+S+M=P (6.20)
By adding N to both sides, we get

R+S+M+N=P+N

(6.21)
S+M+N=P+N-R
We can further write that
S+M+N=(x"—x,)Yl =x (6.22a)
Since Y/ = 1.
P+ N = / (1 —Yc)dx (6.22b)
R= / Yedx (6.22¢)
Replacing 6.22a, 6.22b and 6.22c¢ in 6.21, we get
X = / (1 —Yc)dx — / Yedx (6.23)
x* X7
Therefore, the following is obtained
x+5c x*
S=x"Y =Y, / (I —Yc)dx — Y¢ / Yedx (6.24)

x* x>
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S—‘,—R:Yé/ (l—Yc)dx—Yé/chx—i— / Ycdx

(6.25)

* xto©

=(1-7Y¢) / chx+Yg/ (1 — Yc)dx

x> x*

Replacing Eq. 6.25 in Eq. 6.19 gives

o0

~ 1 [/ dx N / X
D(Y'C):Z(CZ—YC>Yé (1—YC) / chx—l—YC/ (I—Yc)dx (626)

X

Following Fig. 6.6d, we can express Eq. 6.26 as
N * 1 dx * *
DY) == (-] [(1-Y.)R+Y:Q] (6.27)
2t \dY¢ Y;

This means that it is no longer necessary to locate the initial contact plane. We
measure the composition profile, i.e., Ng versus x, by using the composition-
measuring techniques. Np is the atomic fraction of the component B. Dividing the
atomic fractions by the respective molar volumes, the concentration profile can
then be estimated. The concentration profile is converted into the concentration-
normalizing variable Y. versus x. Next, the interdiffusion coefficients can be
estimated by determining the gradient at the point of interest and by estimating the
areas R and Q, as shown in Fig. 6.6d, considering the known annealing time ¢. That
means we do not have to consider an ideal variation or a fixed molar volume as
required for the calculation using the Matano—Boltzmann analysis. Note here that
Sauer-Freise [5] derived the same relation but differently.

6.4 Wagner’s Approach to the Calculation
of the Interdiffusion Coefficient

From Fick’s first law and the relations expressed in Sect. 1.18 (Eq. 1.150), the
following is obtained

~ ~0C ~ V4 ON,
Tp=— szDvA B

—— 6.28
Ox v2 Ox (6:28a)

Similarly, the interdiffusion flux with respect to the component A can be
expressed as


http://dx.doi.org/10.1007/978-3-319-07461-0_1
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~ ~0C, ~VpONsy ~VpONp Vg ~ V4 ON
JA:—D—A— DVB A_DVB B _ VB VA OB

TP oy TV o . ox
ox va Ox va Ox vy v Ox

Since Ny + Ng =1
From Egs. 6.28a and 6.28b, we can write

Vada +VpJg =0

253

(6.28b)

(6.29)

So it must be apparent that the interdiffusion fluxes are different when estimated
using the concentration profiles of different components. However, the interdif-
fusion coefficient is a material constant and the value is the same, whether

determined with respect to either of the component A or component B.

Using the relations presented in Eq. 1.144 (Sect. 1.18), Eq. 6.28a can be

rewritten as

7y N T NAVe) 5 Va O
Vi vZ Ox

~ Vi (NBVBJB + NAVAjB)
D=— —
Va (6N3/6x)

Using Eq. 6.29, we can write
Vm(_NB\_)AjA + NA‘_}AjB)

D=-—
\‘)A(aNg/dx)
5 _ Vm(NB:iA - NA73)
B aNB/ax

From Fick’s second law, as expressed in Eq. 3.4, we can write
0 (Ng\ dCy 3
or\v,) o  Ox

d (Ni\ 0Cs 4
or\v,) o  Ox
We introduce a composition-normalized variable as

_NB_NE

Yp=_—2 "B
PN N

This can be rewritten as

Np = N§Yg+ Ny (1 —Yp)

(6.30)

(6.31a)

(6.31b)

(6.32)

(6.33a)


http://dx.doi.org/10.1007/978-3-319-07461-0_1
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Substituting the left-hand side with Ng = 1 — Ny

1 =Ny =NyYp+Nz(1—Yp)

1 =Ny =NgYp+Ng(1—Yp)+Ys—Yp
Noa=1-NjYp—Nz(1-Yp)—Yp+7Yp (6.33b)
Ny = (Y5 — NjYg)+ [1l — Y5 — Ny (1 —Yp)]
Ny = (1—=Ng)Ys+ (1 —Nz)(1—Yp)

Substituting Eqgs. 6.33a and 6.33b in Eqgs. 6.31a and 6.31b, respectively, we

arrive at
0 (Y /1Y, oJz
+ >~ [ 25 = _ _ b
Ny ot (Vm> Ny 6t< Vi ) Ox (6:34a)
o (Ys Q1Y 0Ja
N = (-2 - — —_4
(1 NB)at (Vm>+(1 NB)at< . ) » (6.34b)

We know the Boltzmann parameter expressed in Eq. 6.3 to be

L= A(Cp) = —— (6.35)

dt =~ (6.36)

Replacing Eq. 6.36 in Eqs. 6.34a and 6.34b we obtain

Al ood (Ye\ o d (1-Yp\] s
ZANT (22 Na— = 6.37
2t { B aj <vm> MR di < Vin )] Ox (6:37a)

) d (Y v d [1-Yg aJa

—|(1=Ng)—(— 1 —-Ng)— =— 6.37b

2t {( B)d)y (vm) + ( B)d)v ( Vi )} Ox ( )
Next, the expressions are rewritten with respect to f—” and ICY“. Multiplying

Eq. 6.37a by (1 —Ng) and Eq. 6.37b by Ny and then subtracting the corre-
sponding sides, we get
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)+ vd (Y5 04 NG

In the same way, multiplying Eq. 6.37a by (1 — N4 ) and Eq. 6.37b by N and
then subtracting the corresponding sides leads to

i<l — YB> :N;%f (1 ng)% (6.38b)

(NG )
B7ax Vin Ox Ox

2t

(N5 —

By differentiating the Boltzmann parameter with respect to x, we get

dx

Next, we multiply d/ to the left-hand side and dx/r'’*

Eq. 6.38a so that

to the right-hand side of

A _ Y, 1 N
- 95 = Ny (22) = 5 (VgD — (1= Ny )T

From the Boltzmann parameter, we can write x=x ", A=41"" and
x=x" ="

Integrating for a fixed annealing time 7 from A = A~°° to a particular position of
interest A = A" (corresponds to the mole fraction Nj), we get

2 I Tp

1 (Vs 1| [~
_Z(AH Ny) / m(a) = Ny / dis—(1- )/dJB
Vi o 0
Note that the interdiffusion flux at the unaffected part x = x> or A= A" is

Zero.
Following integration by parts on the left-hand side, we get

N -

1 A Yo o 1 [~ N\

—Z(N+ Ny) *B—/;id/b :M[NBJA—(l—NB)JB]
VA J

2 - (6.39a)

1 _ Y Y, . 1 . N
5= n) |~ [ ad = T - (1= 4,)T)

m Y
A J

In the same way, we multiply Eq. 6.38b by dA on the left-hand side and by dx/

"2 on the right-hand side. Following integration from 2 = A* to A = A7 and then

by doing integration by parts on the left-hand side of the equation, we get
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Jtoe

NP7 1—Ys) 1 . ~.
Ny — Ng) ¥+/ (VimB)d/L Y NG T — (1= N )T

1
% (

2%
A

Note here the sign because of (1 — Yp).

)frac

(1 =Y} 1-Y 1 ~ ~
(i — Ny | =21 B)_/( Daa| = L wgTi+ (1- Np)T)

.
vE Vin 1t/

1
2t

J
(6.39b)

Ji and Jj are the fluxes at A= 2". Multiplying Eq. 6.39a by (1 - Y;) and
Eq. 6.39b by Y and subtracting the corresponding sides, we obtain

i Ato0
1 _ Yp (1—7Yp)
N+ N 1-Y; —dl+ Y5 ——dA
i =) | (-73) [ Srane [
A A

M3~ (1= N3)T3]

(6.40)

—an

Note here that the right-hand side of the relation can be found by replacing

Ni—Nyg N —N;,
* B B *
Y, = N N. and 1 — Yz = N,.

Since dA = t”f—j‘z, Eq. 6.40 can be written as

e 5+00

1 4 —_ % [ ﬁ * ’ (liYB)
5 (V5 = Nz) | (1= 13) / vmderYBF/ S o1
A A

=[N3 = (1= N) J]

Previously, we have derived the interdiffusion coefficient with respect to the
interdiffusion fluxes J4 and Jp in Eq. 6.30. At a particular composition of interest
N = N}, for the fluxes of J and Jj, it can be written as

v (N3 T3 = NiJ)
(dNB/dx)x*

D(N;) = (6.42)

Substituting Eq. 6.41 in Eq. 6.42 results in

x>

~ N;_NI; V:; * * — B
D(N;)—M 1-Y;) /d +Y/(l Y8) g (6.43)
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From Eq. 6.32, we can write

dN,
dYp = ——2— (6.44)
NB - NB

And replacing Eq. 6.44 in Eq. 6.43, we get

+00

= *\ an _ oy | * (I_YB)
B(Y%) = srapa | (1= 75) / ity / Ead 649

X x*

The calculation procedure is explained in Fig. 6.7. After measuring the com-
position profile in atomic fraction, presented in Fig. 6.7b, the normalized profile
should be plotted, as shown in Fig. 6.7c. Moreover, from the knowledge of the
variation of the molar volume with composition, f—’m’ and % versus x should be

m

plotted as shown in Fig. 6.7d and e, respectively. If we wish to estimate the
interdiffusion coefficient at the composition, N}, which is located at x* in the

diffusion couple, we need to estimate how the gradient Y5 gt Y}, corresponds to Nj;.

Afterward, the areas R = f; ,m %dx and § = j; . (- YR dx should be determined to

estimate the interdiffusion coefficients using the relatlon expressed in Eq. 6.45.

Further, the difference between the Den Broeder [7] or Sauer-Freise [5] treat-
ment with Wagner’s approach [7] should be noted. This should lead to some
difference in the diffusion data estimated, especially if the molar volume deviates
from the ideality. In fact, for a constant molar volume, these relations are the same.

It should be noted here that when interdiffusion coefficients are estimated over a
wide composition range, the impurity diffusion coefficients could be estimated by
extending the data to 0 and 100 atomic percent of an element. At 0 at.% B, we
have the impurity diffusion coefficient of B in pure A, and at 100 at.% B, we have
the impurity diffusion coefficient of A in pure B. This is commonly practiced in
many systems.

6.5 Change in Total Volume of the Diffusion Couple

In Sect. 6.2, we have already discussed that there could be a change in the total
volume of the diffusion couple depending on the deviation of the molar volume
from the ideality. In these couples, we are unable to locate the initial contact plane
x, exactly [8, 9]. In fact, the change in volume is related to the difference (in terms
of distance) between the locations found using the profiles C, versus x and Cp
versus x. In this section, we shall show the relation between the changes in total
volume with the location of the initial contact planes estimated following a
quantitative analysis based on a hypothetical diffusion couple.
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Fig. 6.7 Explanation of the calculation procedure of the interdiffusion coefficient following
Wagner’s approach. a An imaginary diffusion couple, b Np versus x, ¢ Yp versus x profile,
d Y3/V,, versus x profile, and e (1 — Y5)/V,, versus x profile

As shown in Fig. 6.8, suppose we couple two alloys Ny (or N, , expressed with
respect to the element A) and N (N, ). Note here that N is a B-lean alloy and N
is a B-rich alloy, such that Nj > Ny . Following the same argument, we can write
N, <Nj . As explained previously, the location of the initial contact plane should
be estimated with respect to C4 versus x and Cp versus x. Similarly, it can be
determined using the composition-normalized variable, introduced during the
derivation of Wagner’s relation, from the Yz /v,, versus x and Y4 /v,, versus x plots,

as can be seen from Fig. 6.9. Note that Yz = % and Y4 = x’f:};{ Further, we
B B A A
can write
1—YB:1—NB_NE _ Ny —-Ny 1-N;j—1+4N, N,—N; _y,

Ny —N;j Ny —Ny 1-N{—1+N;y N;y—-Ni
(6.46)
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Fig. 6.8 Effect of molar
volume change on the
dimension of the diffusion
couple

Ideal

Ng Positive deviation

NE Negative deviation

This means that it is now possible to identify the initial contact plane with
respect to the Yg/v,, versus x and (1 — Yg) /v, versus x plots, as Fig. 6.9 shows, by
equalizing the areas P and Q. For the sake of explanation, we consider the initial
contact plane found from the Yp/v,, versus x is x| and from the (1 — Y3)/v,, versus
x plot to be xI!. In terms of mathematical equations, these locations are expressed
by equalizing the areas P and Q as

Fy, oy
/ ZLax = / <—+ - —B> dx (6.47a)
Vin Vi Vm
X~ x}
xf,I Xt
1 (1-Y, 1-Y,
/ (— - M) dx = / U=Y), (6.47b)
Vin Vi Vim
X~ x}]l

Note that v, is the molar volume of the left-hand side end member with the
composition N; and v/ is the molar volume of the right-hand side of the end
member with the composition Ny .

Furthermore, we can write P + R = Q + R. Thus, based on Fig. 6.9a and
Eq. 6.47a, the following can be written
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Fig. 6.9 Profiles used for the derivation of the molar volume effect on the total volume of the
diffusion couple. a Yg/v,, versus x and b (1 — Yg)/v,, versus x plots

—+00

(6.48a)
x+oo _ )CI
V; B / Vin
" Y,
xtoe —xlo =v! / =B dx
Vi
Similarly, with the help of Fig. 6.9b and Eq. 6.47b, we can write
x([) x:,[ X:;‘ xtoe
1-Y 1 1-Y 1-7 1-Y,
/ =Yy / (———( B))dp / A=Yyt / A=),
Vin Vm Vin Vm Vm
X, x> x, > XLI
K e
1 1-7
— / dx= / gdx
vm i Yo Vm
x+
I _ -0 1-Y,
Xo _)C _ / ( B) dx
v, J Vin

-y
WM x> =y / Ma')c (6.48b)
Vi

X
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Adding Egs. 6.48a and 6.48b, we get

x+ﬁc x+oc
1-Y, Y,

A — x> px e i = / de—%v; Lax

Vin Vin

. ! (6.49)

xIOI _ +x+oo _ xl / Vm + (Vm m) Y dx

Vin

x>

When the molar volume varies ideally with the composition, i.e., linear between
v,, and v; with respect to N (and hence Yjz), we can write

Vi =V, + (v, = Vi) Y (6.50)

At a particular composition, if the deviation of the molar volume from the
connecting line of the molar volumes of the unaffected end members is +Av,, for
the positive deviation and —Av,, for the negative deviation, then Eq. 6.50 con-
sidering the deviations can be rewritten as

vm:v;—k(v;—v; Yz £+ Av,,

6.51
vm:FAvm:v;—F(vjn'—v;)YB ( )
Replacing Eq. 6.51 in Eq. 6.49, we can write
[ vnF Av
B g / VT}—vdx

X A .
B I R T L T / 2V (6.52)

Vm

Av,
x—x /de

+00
Here, fj . %dx measures the total volume change of the diffusion couple.

Since we have a line profile in the diffusion couple, we can assume that the volume
change will be mainly because of the change in the length of the diffusion couple.
It must be clear from Eq. 6.52 that in the case of ideal variation of the molar
volume (Av,, = 0), there will be no difference in the location of the initial contact
plane found from the two different profiles. In the case of positive or negative
deviation, the difference between the estimated values will be equal to the change
in the length of the diffusion couple.
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Fig. 6.10 a Imaginary phase diagram showing, b the positive deviation of the molar volume and
c its effect on the dimension of the diffusion couple

To explain the effect of the change in the total volume on the estimated values
of the initial contact plane, a very simple hypothetical diffusion couple is con-
sidered in Fig. 6.10. In the hypothetical phase diagram, as shown in Fig. 6.10a,
there are three compounds with narrow homogeneity range o, f§, and y which are
present. The average composition of these phases with respect to the element B, Ny
are 0.25 (A0.75B0_25), 0.6 (A0.4B0_6), and 0.75 (A0.25B0_75). As discussed in Chap 4,
if we couple o and y, the f§ phase will grow in the interdiffusion zone, as Fig. 6.10c
shows. If the molar volume varies ideally, as is the case in this system, then if the
molar volume of « is 1 unit and y is 2 units, the molar volume of  will be 1.7 units
(see Fig. 6.10b). Additionally, suppose that 0.6 mol of « and 1.4 mol of y get
consumed to produce 2 mol of f. In terms of the reaction equation, we can write

0.6A0.75Bo.2s5 () + 1.4A025B0.75(7) — 2A04Bos(f) (6.53)

Since the diffusion couple has a line profile, we can consider the unit cross-
sectional area. Consequently, the units consumed or produced can be directly
expressed in length units, such that

0.6x 1(x) +1.4x2(3) — 2x1.7(8) = 3.4 units (6.54)

This further means that 0.6 units of « and 2.8 units of y get consumed to
produce 3.4 units of . The composition profile developed is shown in Fig. 6.11b.
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Fig. 6.11 Estimation of the initial contact plane is explained when molar volume varies ideally.
a Diffusion couple, b composition profile, ¢ Y/v,, versus x plot showing the location of x/, and
d (1 — Yg) /v, versus x plot showing the location of x/

Following on from this, the Yz/v,, versus x and (1 — Yp)/v,, versus x plots are
shown in Fig. 6.11c, d. The values used in Fig. 6.11c, d are estimated as follows
o phase: Nj = Ng = 0.25,

Ny —N; Ni—Nj 025-025

Y=Y, = =1 = =0,
B— "B NS —Ny N,—Ni 0.75-0.25
vioo 1 vy 1

f phase: Ng = Np = 0.6,

Ny —N; Nj—Nj 06-025
Nj —Ng  Np—Ni 075-025

1-vl 03
=2 =0.1765
1.7

Yi—v, = 0.7,

s
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From Eq. 6.54, we know that the actual location of the initial contact plane is
0.6 units from the o/f interface. Now, let us examine whether it is possible to
locate this initial contact plane. By equating the areas P and Q in the Y3 /v,, versus
x plot—as seen from Fig. 6.11c—we get the location x! as

(0.412 — 0)x} = (0.5 —0.412)(3.4 — x})
x} =0.6

)

Similarly, we find the location of the initial contact plane xI from the

(1 = Yp) /vy versus x plot given in Fig. 6.11d by equating the areas R and S as

(1 —0.1765)x = 0.1765 (3.4 — x}})
WM=06

This means we are able to locate the exact position of the initial contact plane
from any of the profiles when molar volume varies ideally with composition.

Now let us consider the positive deviation of the molar volume for the f§ phase
as 1.85 units, as shown in Fig. 6.10b. Similar to the previous example, we consider
the growth of 2 mol of the product phase by consuming 0.6 mol of « and 1.4 mol
of 7. The reaction equation is therefore the same, as expressed in Eq. 6.53.
However, the units consumed or produced can be directly expressed in length
units, such that

0.6 x 1(a) + 1.4 x 2(y) — 2 x 1.85() = 3.7 units (6.55)

This means that 0.6 units of « and 2.8 units of y get consumed to produce 3.7
units of f, resulting in an expansion of (3.7 — 3.4 =) 0.3 units. There is expansion
on both sides of the initial contact plane inside the § phase. Now, let us see what
we find from the Yz/v,, versus x and (1 — Yg)/v,, versus x plots. The plots are
shown in Fig. 6.12.

o phase: Nj = Ng = 0.25,

Ny—Ny Ni—Ni 025-025

Yo=Y, = == = =0;
B= 7B "Ny —Ny N,—Ni 0.75-025
ve o1 Ve 1

m m
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Fig. 6.12 Estimation of the initial contact plane is explained when molar volume deviates
positively. a Diffusion couple, b composition profile, ¢ Y5/v,, versus x plot showing the location
of x!, and d (1 — Yg)/v,, versus x plot showing the location of x//
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By equating the areas P and Q in the Yg/v, versus x plot as shown in

Fig. 6.12c, we obtain the location xf) as

(0.378 — 0)x}, = (0.5 —0.378)(3.7 — x})
=09

S

Similarly, we find the location of the initial contact plane x! from the
(1 — Yg)/v versus x plot, as shown in Fig. 6.12d by equating the areas R and S as

(1 -0.162)x) =0.162 (3.7 — x))
=06

Thus, we find the two different locations from two different plots. These distances
from the o/ interface are 0.6 and 0.9. Actual, initial plane must be located between
these two, which we are unable to find. In this case, we have considered just one line
compound with a fixed composition. Therefore, when considering homogeneous
expansion, we can still locate the exact location of this plane, which should be at
0.6 + 0.6 x % = (0.653 units from the o/f interface. This is estimated based on the
expansion for the length of 0.6 units consumed from the « phase, that is, the length
from the o/f interface in the case of ideal variation of the molar volume. However, in
most practical examples, the expansion or the shrinkage of the interdiffusion zone
will not be homogeneous and it is almost impossible to locate the exact position of
this plane. The Wagner and Den Broeder methods, as discussed in the previous
sections, are useful to estimate the interdiffusion coefficients without locating the
exact position of the initial contact plane. However, as we shall discuss later in
Chap. 8, there is still a need to locate this position for the rationalization of the
possibilities of multiple Kirkendall marker planes. We shall discuss how it is possible
to still find this location indirectly with a small error (see Sect. 8.4).

6.6 The Kirkendall Effect

Till now, the estimation procedure of the interdiffusion coefficients has been
discussed, which is a kind of average of the intrinsic diffusion coefficients of
components. In fact, for long, it was a commonly held belief that the diffusivities
of the components are the same. Based on this belief, the atomic mechanisms of
diffusion were developed. However, on many occasions, scientists researching this
field noted a strange behavior. For example, in 1929, Pfeil [10] reported one
peculiar phenomenon while studying the oxidation of iron and steel:

It had frequently been noticed that small particles of foreign matter (such as pieces of
muffle) falling on the surface of oxidising iron were gradually buried. The scale grew up
round these particles until they finally disappeared beneath the surface, but they could
afterwards be found by breaking up the layer of scale.
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This is explained with the aid of a schematic diagram in Fig. 6.13. The foreign
matter, i.e., the muffle pieces, acted as an inert material and did not take any part in
the reaction and the diffusion process. This was an indication that Fe had a higher
diffusion rate compared to that of oxygen. After diffusing through the oxide layer,
Fe reacted with O, to produce the oxide layer. Since the product phase grew at the
oxide/air interface, the oxide layer covered the muffle pieces.

As indicated in the book written by Darken and Gurry [11], Hartley [12] was
the first to deliberately use foreign inert particles, titanium dioxide, in an organic
acetone/cellulose—acetate system, to study the inequality of the diffusing compo-
nents. Immediately after that, Smigelkas and Kirkendall [13] reported a similar
technique to study the inequality of the diffusivities of the components in the
Cu—-Zn binary system. Instead, they used molybdenum wires as inert markers.
Hartley’s work went unnoticed in the community working on the metallic systems,
and the work published by Kirkendall changed the viewpoints on the atomic
mechanism of diffusion. The movement of the inert markers caused by the dif-
ference in the diffusion coefficients of the components in an interdiffusion zone is
known as the Kirkendall effect.

The experiment followed by Smigelkas and Kirkendall [13] is explained with
the help of the schematic diagram represented in Fig. 6.14. A rectangular bar
(18 x 1.9 cm?) of 70-30 wrought brass (70 wt% Cu-30 wt% Zn) was first pre-
pared. After the standard metallographic preparation of grinding and polishing,
130 um Mo wires were placed on opposite sides of the surfaces. Next, a 2,500 um
thick electroplated copper layer was deposited. The diffusion couple was then
subjected to annealing at 785 °C. At different intervals, a small piece was cross-
sectioned and the rest of the block was annealed further. This way, it was possible
to examine the movement of the markers at different annealing times. With the
increase in annealing time, the thickness of the product phase o brass increased and
the distance between the markers decreased. The movement of the markers was
estimated after rectifying the volume change in the interdiffusion zone and found
to be parabolic with time. It should be noted here that the Mo markers neither took
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Fig. 6.14 Schematic illustration of the Kirkendall’s experiment

part in the diffusion process nor did they react with the diffusing components. The
equal diffusivities would have resulted in no movement of the markers because of
the transfer of equal amount of material on either side of the Kirkendall plane. The
movement of the markers, on the other hand, indicated the unequal diffusion rates
of the components in the o brass, Cu(Zn) solid solution. In the manuscript, they
reported [13]:

The movement of the insoluble molybdenum wire was conclusive evidence that the alpha
brass was being forced back as a whole (or attracted back) as a result of the diffusing out of
the zinc atoms individually.

From this study, two conclusions were drawn which had enormous impact at
that time on solid-state diffusion [13]:

1. The rate of diffusion of zinc is much greater than that of copper in alpha brass, and
2. When zinc diffuses more rapidly than copper in alpha brass, the interface shifts to
compensate at least partially for the diffusion rate.
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The results reported by Kirkendall not only showed that the diffusion rates of
the components in a solid are different, it also helped to establish the vacancy
mechanism for substitutional diffusion.

At first, this work was highly criticized mainly by the renowned scientist
R. F. Mehl, who was the reviewer of the article and did not accept it immediately
for the publication. He felt that this could be an experimental artifact and other
factors such as the transport of Zn vapor could have a significant effect. Ultimately,
he accepted the article for publication and the manuscript was published along
with the comments from many scientists. The impact of the work can be realized
from R. F. Mehl’s [14] comment:

If verified, this “Kirkendall effect” would greatly modify not only the treatment of dif-
fusion data but also the theory of mechanism of diffusion. It would, for example, be no
longer possible to represent diffusion data in a substitutional solid solution by one coef-
ficient, applying to both metal atoms since the separate coefficients are not equal, but one
would have to show two coefficients, one each for each of the two metal atoms.

The historical development of this discussion can be traced by reading the
article by Nakajima [15]. Immediately after the publication, R. F. Mehl along with
his student da Silva conducted many rigorous studies in many Cu-based solid
solutions with different types of markers [16]. Simultaneously, many other groups
also worked on this topic. Ultimately, everybody agreed with the results published
by Kirkendall, and this phenomenon thereafter was known as the Kirkendall effect.

In the mean time, which might not be known by many, in 1942, Huntington and
Seitz also established that substitutional diffusion in metals occurs by a vacancy
mechanism [17]. It should be noted here that the second manuscript [18] of Kir-
kendall’s career in which he mentioned for the first time the difference in diffusion
coefficients of components was published in the same year (before validating the
fact with a detailed experimental work in his third manuscript [13] in 1947).
However, because of ongoing Second World War, Huntington and Seitz’s paper
was overlooked. In fact, before all these developments, Zener [20] proposed a
direct interchange mechanism, where, as shown in Fig. 6.15a, two atoms exchange
their position directly. If this is true, then there should be no difference in the
diffusion rates of components. In their landmark article, Huntington and Seitz [17]
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estimated the activation energy for Cu self-diffusion for (i) a direct exchange
mechanism, (ii) an interstitial mechanism, and (iii) the vacancy mechanism. They
used the experimentally determined activation energy for the tracer diffusion
coefficient of Cu for comparison, which varied in the range of 2.1-2.5 eV
(202.6-241.2 kJ/mol). Based on their rudimentary calculations, they found the
theoretically calculated values to be 17.2 eV (1,659.6 kJ/mol) for the direct
interchange mechanism and 10 eV (964.9 kJ/mol) for the interstitial diffusion
mechanism. On the other hand, they got a value of about 2.8 eV (270.2 kJ/mol) for
the vacancy mechanism in which around 1.8 eV (173.7 kJ/mol) is required for
vacancy formation and 1 eV (96.5 kJ/mol) for migration. Therefore, the theoret-
ically estimated activation energy is very close to the value estimated by experi-
ments if the vacancy mechanism of diffusion is considered. They stated that [17]:

The results of these computations...seem to show beyond a reasonable doubt that the
vacancy mechanism of diffusion is greatly preferred over the other two considered here for
copper.

In a private communication, Zener criticized this rudimentary calculation.
Following this, Huntington and Seitz [19] refined their calculation and found that
the true value of the activation energy for the interchange mechanism is close to
10.3 eV (993.8 kJ/mol). They also assumed that the activation energy for inter-
stitial diffusion must be somewhat smaller than the value that they initially esti-
mated. Therefore, they felt that these two mechanisms are dubious for the diffusion
of components. Theoretically calculated values are much higher compared to the
experimentally estimated values of activation energy.

Zener still believed in a defect-free diffusion mechanism although he did not
show any proof against the vacancy mechanism. In 1949, he proposed a new ring
mechanism, as explained in Fig. 6.16 [20], where the movement of atoms will
produce a ring to exchange positions. He estimated the activation energy required
would be 4 eV/atom (386 kJ/mol), which is not as high as the direct interchange
mechanism. In the meantime, in 1947, Smigelkas and Kirkendall reported the
movement of a fiducial marker in a Cu(Zn) alloy. From the Cu(Zn) alloy, when
zinc diffuses away, all the sites are not occupied by the flow of Cu from the
opposite direction with the result that vacant sites are left unoccupied. In another
sense, there should be a flow of vacancies opposite to the faster diffusing
components (here Zn) to compensate for the difference between the Zn and Cu
fluxes. Ultimately, this leads to shrinking on the brass side and swelling on the
copper side so that the markers move toward the brass side. In many systems,
Kirkendall pores form in the interdiffusion zone, which will be discussed in the
next section.

After Zener’s ring mechanism [20] proposal, Seitz [21] discussed different
aspects to defend the vacancy mechanism of diffusion. The main difficulty in
accepting the validity of the vacancy mechanism was because of doubts that
lingered concerning existence of vacancies. However, he used the Kirkendall
marker experiments as a proof of the vacancy mechanism. As already mentioned,
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Fig. 6.16 Exchange of atoms by ring mechanism a two-, b three-, ¢ four-ring in FCC lattice, and
d four-ring in BCC lattice

R. F. Mehl’s group experimented on many systems to validate Kirkendall marker
experiment. On request, Mehl wrote a letter stating the outcome of the experiments
to Seitz as [21]:

(1) We have repeated this experiment some thirty times, in five metallic systems and at
various temperatures. We are able to attain a very satisfactory degree of precision in all
measurements, greater than that which Kirkendall attained.

(2) We were able to demonstrate that the Matano boundary does coincide with the initial
boundary in all cases, when correction is made for change of lattice parameter. This, to be
sure, is, as you say, merely the law of conservation of mass, with the sole qualification that
it demonstrates also that changing percentages of vacancies in the couples are not great
enough to affect the experiment, as might be expected.

(3) The fiducial markers move in all systems studied and at all temperatures by an amount
which varies markedly from system to system.

(4) For a time we entertained the thought that vapor pressure might be the controlling
factor, arguing that transport by vapor along the interface between the wire and the alloy
might give the movement of the wires observed. We have now investigated all types of
markers including various wires, powders and foils. All of them move and by the same
amount; even those which are wetted and which actually dissolve partially show the same
amount of movement.
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Based on these points, Seitz mentioned that [21]:

It is clear from the start that the Kirkendall experiment cannot be explained naturally in
terms of the diffusion mechanism if this is assumed to be exclusively of the interchange
type, that is, if one of the possible mechanisms studied by Zener is assumed to predom-
inate completely. For in this case an atom which shifts its position would always do so by
moving from one normal position to another and would always be replaced at once by
another atom. As a result the lattice array would be maintained completely intact, except
for the local expansion or contraction that arises from the variation of the average size of
the unit cell with composition, which does not appear to be sufficient to explain the
Kirkendall effect.

6.7 Darken Analysis: Relation Between Interdiffusion
and Intrinsic Diffusion Coefficients

From Kirkendall’s experiment, it was apparent that the diffusion process in solid
solutions could not be explained by a single diffusion coefficient. Rather, it is
necessary to consider the diffusion rates of all the components. This was first
treated mathematically in 1948 by Darken [22]. Almost at the same time, Hartley
and Crank [23] studied the same subject and they named the diffusivities of the
components as intrinsic diffusion coefficients. Seitz [24] and Bardeen [25]
described the diffusion process more extensively. Before discussing the assump-
tions or the limitations of the Darken analysis, it is pertinent to first explain the
concepts introduced by Darken. In Sect. 6.11, we have described different facts
and limitations of this analysis.

Let us consider a hypothetical binary diffusion couple of components A and
B of the compositions N5 (A-rich) and N (B-rich), as shown in Fig. 6.17. Before
annealing, fiducial (inert) markers are applied at the interface and annealed at an
elevated temperature so that interdiffusion takes place. When interdiffusion starts,
the markers are trapped at a certain fixed composition and cannot escape at a later
stage. Thus, the movement of the markers actually indicates the movement of a
particular composition. If the intrinsic diffusivity of Dp is higher than that of D, at
that marker plane (called the Kirkendall plane), then the marker plane will move to
the right-hand side from the initial contact interface x,. The intrinsic flux and the
intrinsic diffusion coefficient of the components can be estimated at the Kirkendall
marker plane, which are related following Fick’s first law as

0Cy
Jy=—Dy, (—) (6.56a)
ox )¢

0Cp
Jg = —Dp () (6.56b)
ox /g
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Fig. 6.17 Movement of the

inert markers with the Nz
increase in annealing time, B
where t, >t; >t=0

This Kirkendall reference plane xx (denoted by K) is not fixed but moves
relative to the laboratory frame of reference, that is, the initial contact plane x, as
shown in Fig. 6.17. Suppose the velocity of the Kirkendall marker plane is vg.
Darken [22] explained the relation between the interdiffusion fluxes at the

Kirkendall marker planes J4 and J measured with respect to x,, and the intrinsic
diffusion fluxes J4 and Jp measured with respect to xx as

Ja=J, +vkC, (6.57a)
Jp=Jy+vkCy (6.57b)
From Eq. 6.29, in an infinite diffusion couple, the following can be derived

Vada +vplp =T+ T =0 (6.58)

where J}° and J}*'are the volume fluxes (volume flux = partial molar volume of

component, ¥; x molar flux) with respect to elements A and B, respectively. From
Eq. 6.58, we arrive at

I = V4T = Vada + vkTaCa (6.59a)

I = vgdp = gy + vipCl (6.59b)

Substituting Egs. 6.59a and 6.59b in Eq. 6.58 and then using the relations
expressed in Egs. 6.56a and 6.56b, we obtain
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oC oC
— T/ADA (—A) +‘7ACAVK — T/BDB <—B> +‘7)BCBVK =0
ox J ox ) g (6.60)
0Cy '

(74Ca + 7Cy) vk = TaDs (E)K”BDB (a_)

By using the standard thermodynamic relations expressed in Eqgs. 1.146 and
1.149, the following can be derived

aC
Vg = —(\_/’BJB + \_/AJA) = ‘_}B(DB — DA) (a—xB> (6613)
K

Similarly, with respect to the concentration profile of the component A, we can
derive

aC,
VK = TlA (DA - DB) (6A> (661b)
X /K
Further from Eq. 1.150
o VaVB aNB
Vg = Vl% (DB DA)( x )K (662)

If the molar volume is constant in a phase, then Eq. 6.62 can be written as

ve = (Dy — D) (aaﬁ) (6.63)

The marker velocity can also be estimated directly from the known locations of
the initial contact plane x, and the Kirkendall marker plane xg. The relation can be
derived using the Boltzmann parameter, as expressed above in Eq. 6.3.

XKk — Xo XK

)LK:)V(CK):IITZW
_dﬂ_d(iﬂ'/z)_ Ak _ Xk — X _ Xk (6.64)
K= T ar a2

Therefore, if it is possible to estimate the location of the initial contact plane
correctly, we can therefore estimate the Kirkendall marker velocity using Eq. 6.64.
From Egs. 6.57b and 6.61a, we can write

~0C oC
f = —Dp—2+ Cprg
ox Ox

~ aCB 6CB _ aCB
—-D|—) =-Dp|— C Dp —Dy)| —
(@x),( B<ax>l<+ o75(Ds A)<ax>l<
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Utilizing the standard thermodynamic relations that were presented earlier in
Sect. 1.18 (Eq. 1.146), this turns into

~ (0Cp B 0Cp _ oCp
—-D|— —(1 — Dpl— | — Dy —
(ax)[( ( Ca¥s) B(ax)l( Covs A<ax)1(

~ (0C oC
-D (—B) —(CavADg + CgvpDy) (—B>
ox /g ox ) g
D = v,C,Dp + v5CyD,

(6.65)

In a rare case, if the molar volume is constant such that v,, = v4 = vp, Eq. 6.65
reduces to

D = NyDg + NgDy (6.66)

Equation 6.66 is known as the Darken equation.

Note here that the interdiffusion coefficients can be measured at any position in a
concentration profile; however, the intrinsic diffusivities can only be measured at
compositions indicated by the inert markers. Therefore, Eq. 6.66 can be used only at the
marker plane to estimate all the parameters such as interdiffusion and intrinsic diffusion
coefficients. At other compositions, only the interdiffusion coefficient can be estimated.

The basic conditions of the previous equations are that the system is under
isothermal and isobaric conditions, that no high external force is present (which
might cause plastic deformation of the sample or, possibly, pressure-dependent
diffusion coefficients), and time-dependent effects are absent such as the recrys-
tallization process. This might cause a gradual transition from the grain boundary
diffusion to the much slower bulk (lattice) diffusion.

6.8 Relations for the Estimation of the Intrinsic
Diffusion Coefficients

As mentioned previously, the intrinsic diffusivities can be measured only at the
Kirkendall plane position, xg. Heumann [26] and van Loo [27] derived relations
following which the intrinsic diffusion coefficients can be estimated from the
composition profile. Wagner [6] did not derive these relations; however, on the
similar line of treatment, we can derive the same relations. In this section, different
ways to estimate the intrinsic diffusion coefficients will be discussed [8]. We shall
first explain the Heumann approach. Next, the relations for the calculation of the
intrinsic diffusion coefficients will be developed using the approach followed by
Wagner for the calculation of the interdiffusion coefficients. These were derived
differently by van Loo [27]. In the end, the multifoil technique will be described
following which these parameters can be estimated over the whole interdiffusion
zone at different compositions in a single diffusion couple instead of at one par-
ticular composition by following the previous two methods.
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6.8.1 Heumann’s Method

As already explained, the markers are trapped in a plane with a particular com-
position in a diffusion couple and move depending on the relative mobilities of the
components. Since the diffusion parameters are fixed for a particular composition
at a particular temperature, we can integrate the intrinsic flux of the element
B crossing the Kirkendall marker plane over the annealing time ¢ as

t t
dcC
Qp = — / JKdr = DB/ <—B> dt (6.67)
dx ) g
0 0
Note here that since the element B diffuses from right to left, the intrinsic flux

should be taken as negative.
dCp dCg\ di
— =—) — 6.68
(dx)K (dz),(dx (6.68a)

where 4 = A(C) = 7j; is the Boltzmann parameter explained above in Eq. 6.3.
Therefore, Eq. 6.68a can be written as

dCg\ 1 (dCg
(W)K— ﬂ/z(cu)K (6.680)

As explained previously that every A corresponds to one particular concentra-
tion in a diffusion couple, we can write Eq. 6.67 as

t

dCp dt 1 dCpg
Qp =Dp| —— — —2pp'?(=E 6.6
‘B B(d/1>l(/tl/2 B (dl),( ( 9)
0

Replacing Eq. 6.68b in Eq. 6.69, we get (using the standard thermodynamic
relations given in Sect. 1.18)

dCB VA dNB
Qp =2Dpt| —— | =2Dpt— | —— 6.70
K B(dX>K BVi<dX>K (6709

According to Fig. 6.18, since the direction of the diffusion of the component
A is opposite to that of B—that is, from left to right—the sign for the intrinsic flux
should be taken positive for component A, and we can write

t
dCy Vg (dNa Vg (dNp
Qy= [ Jdt =—2Dgt| =2 ) = —2D4t— | —2 ) =2Dut— [ —
. /A A(dx>1( A"z(dx>1( A"z(dx)K
0
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From Egs. 6.70a and 6.70b, we can write the ratio of the intrinsic diffusion
coefficients as

Dy _ v (6.71)
Dy vau

The cumulative intrinsic fluxes Q that cross the Kirkendall marker plane are
shown graphically in Fig. 6.18, which are estimated by taking the differences of
the area under the concentration profile at time r = 0 and t = ¢, as shown in
Fig. 6.18b, c.

In the A-rich side (that is, in the left-hand side), in which the component B has
diffused from the right-hand side:

For t = 0, the area is X. For t = ¢, the areais B + P. Therefore, the difference is

QB:B+P—X:B+P—(P+Q):B—Q:B—l—xK(v%—C;), since xg is

negative in this example.

In the B-rich side, that is, in the right-hand side, in which the component A has
diffused from the left-hand side:

For t = 0, the area is Y. For t = ¢, the area is A + R + S. Consequently, the
difference is Q4 = A + R(note S = Y) = A — x¢C;| . Therefore,

1 — 1 N,
Dg _\73B+XK(ﬁ_CA) _T/BBJ'_XK(ﬁ_V_A;)

DA B 17A A— 'XKCX ‘jA
N (6.72a)
Dp v fo(CX — CA)dx—’—xK(é_Té)

Dy vy fxm(CA —Cl)dx — xKIZ—’E

XK

Note that for a constant molar volume, (v,, = v4 = vp), and Egs. 6.72a and
6.72b, following similar analysis using Fig. 6.17d, e, reduces to

Dy By +xg(1—Ny)
Dy Ay —xgN{
Dp [ (Nj — Na)dx +xg (1 = Ny)

Di [*7(Ny — Nj)dx — xgkNf

XK

(6.72b)

00

Note here that the need for locating the initial contact plane (i.e., the Matano
plane), for the calculation of the intrinsic diffusion coefficients, is similar to its
need for the calculation of the interdiffusion coefficient using the Matano—Boltz-
mann analysis, as explained previously in Sect. 6.1. It is not necessary only in the
case of diffusion couples with pure components as the end members, since N; = 1
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Fig. 6.18 Explanation of the Huemman’s approach for estimating the intrinsic diffusion
coefficients. a An imaginary diffusion couple with corresponding composition profile, b Concen-
tration profile before interaction, ¢ plot of concentration profile by converting it to C, = N4 /V,,
d composition profile, and e estimation of the intrinsic diffusion coefficients after considering
constant molar volume

(for pure A) and N = 0 (for pure B). One should be careful about taking proper
signs in the above equations, when the marker plane is found in other side of the
Matano plane, especially in an incremental couple.
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6.8.2 Relations Developed with the Help of Wagner’s
Treatment

Equation 6.39a and 6.39b at the Kirkendall marker plane can be written as

1K

1 I 7 S I 7 R s
2t(N* Np) |- V,’f,B+ / V—:d/u :t—%[NBJff(lfNB)Jﬂ (6.73a)
)'*C)C
e
1 B (1 —YX 1-Y, 1 ~ ~
2t(N+ Ng) |- (VK B)—/( . 8) 4 :g[—Nz{Jf—k(l—Ng)Jﬂ
m © m

(6.73b)

To write a relation with respect to 7{5 only, we multiply Eq. 6.73a by NJ and
Eq. 6.73b by N . Subsequently, we add them and after rearranging, we get [8]

+00

1 . Yk 1—vk) (1 Yg)
5, (Ng = Ng) | =25 {VMN++( }+ Ny /—d)— /TBW
1 o~ _ ~
:g[*Nz?(l*NB)JgJFNB(l*N;)Jg]
Ny =Ny

o yK _ NENg _yk _
Replacing Yy = NN, and 1 —Yp = NN,

[ (N5 = Ng) 5]

1, _K +/_ 3 /( Ys) _
2I(N —Nz) |- + N, da o dio | =7

~ 12 NK 1-Y,

JK=— ;.K —N;f /—d)JrN /Mm
2t Vm
K

A2 NE AR A

g LN T / LYYy
V]71
A

By replacing the Boltzmann parameter X = - and then using the relation of
the velocity of the marker plane vk = %%, as expressed in Eq. 6.64, we arrive at
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K PR

~ tl/2 ~ YB X B ) (1 _ YB)
A 1K
Note that the concentration of the marker plane is C§ = IX,I:

m

From the Boltzmann parameter, we know that d1 = i /2 and we can write

x+©(
~ 1-Y,
Jg:VKCg 7 N+ / 7dx7N37 / (‘}de

Compared to Eq. 6.57b, the intrinsic flux of the element B at the Kirkendall
marker plane can be written as

-y
J,’,@Lf— Ny / —dfog/ U=Y)
Vm
XK

From Fick’s first law, it follows that

Dy = 2t<6C3>K /—dfo/ U=Ys), (6.74)

Further, using the standard thermodynamic relations given in Eq. 1.150

~+00

1v2 [ ox (1 —Yp)
Dp=—"(— N} Bax - Ny ——d 6.75
B 2t vy (aNB) K B / Vin o B / Vin A ( )

XK

Equation 6.75 can be used if we wish to determine the intrinsic diffusion coef-
ficients using the profiles Np versus x, Yg /v, versus x, and (1 — Yz)/v,, versus x.

The equation for the interdiffusion flux J, can be written in the same way.
Multiplying Eq. 6.73a by (1 — Njj) and Eq. 6.73b by (1 — Ny ) and following the
similar procedure, the intrinsic diffusivity for the component A can be derived as

1 Ox 1 — YB
Dy=—|— N+ —d - Ny 6.76
Y <©CA>K S v * / (670)
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By once again utilizing the Eq. 1.150, the following is obtained

+00

1V2 Ox T YB 7X (1—YB)
=—"— Nf —dx —N ——d 6.77
A 2t T)B (aNA) K A / Vm * A / Vm 3 ( )

XK

From Egs. 6.75 and 6.77, we can write

Dp vp

Dy _ Ny [ B — Ng [ S dx :V_B[M} (6.78)
Da v [N [ et Ny [o7 O] v NG R =N S]

Vm Vm

The calculation procedure is shown in Fig. 6.19. R and S are the areas as shown
in the figure. Note here that, unlike the Heumann method, there is no need to locate
the initial contact position, a task which is not easily accomplished.

In general, instead of estimating the intrinsic diffusion coefficients using
Egs. 6.75 and 6.77 directly, one can estimate the interdiffusion coefficient using
Eq. 6.45 and the ratio of diffusivities using Eq. 6.78. Afterward, the intrinsic
diffusion coefficients can be estimated using Eqs. 6.65 or 6.66. Note that it is just a
matter of choice.

6.8.3 Multifoil Technique to Estimate the Intrinsic
Diffusion Coelfficients

In the example above, we have seen that the intrinsic diffusion coefficients could
be estimated only at the Kirkendall marker plane only, since this is the only
marked plane that moved from the beginning depending on the relative mobilities
of the components. Therefore, many diffusion couples with different end-member
compositions need to be prepared (leading to marker planes at different compo-
sitions), if we want to determine the intrinsic diffusion coefficients at different
compositions. This was done in the f phase of the Ni—Al system [28], which could
be a tedious task depending on the system. The multifoil technique is developed in
such a way that we are able to estimate these parameters over the whole com-
position range of interest from only a single experiment. This is explained with the
help of experimental results in the Ni-Pt system [29]. In this technique, many foils
of two dissimilar materials are stacked together. Therefore, it is relatively easy to
follow this technique if the foils could be made. Fortunately, this is relatively
straightforward in the case of metals. The number of foils used for these experi-
ments is decided based on the thickness of the interdiffusion zone developed in the
bulk diffusion couple experiments. After the interdiffusion process, according
to the boundary condition of the equations, some unaffected parts should be left
at the ends of the diffusion couple. The back scattered electron image of the
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Fig. 6.19 Explanation of van Loo’s approach for the estimation of the intrinsic diffusion
coefficients. a Diffusion couple with corresponding composition profile, b Yz /v, versus x plot,
and ¢ (1 — Yg) /v, versus x plot

interdiffusion zone developed is shown in Fig. 6.20a. The velocity v of the markers
at different planes can be determined by the relation developed by Levasseur and
Philibert [30], Cornet [31] and van Loo et al. [32]

1 dy
V= Z <y — X d—_xo) (679)

Here, x, is the initial position of markers before interdiffusion and x is the new
position after the interdiffusion, such that y = (x — x,) is the net displacement. It
can be seen that for xo = 0 (i.e., the Kirkendall plane), according to Eq. 6.79,
v = y/2¢t, which is the Kirkendall marker displacement similar to Eq. 6.64.

The composition profile of the Pt/Ni diffusion couple is shown in Fig. 6.20b.
The displacement of the markers is measured using the backscattered electron
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Fig. 6.20 Explanation of procedure for estimating intrinsic diffusion coefficients using multifoil
technique. a Diffusion couple, b composition profile, ¢ displacement curve, d corrected
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image. All variations of y with x are plotted in Fig. 6.20c. The markers outside the
interdiffusion zone also experienced some displacement due to deformations, i.e.,
creep at annealing temperature. For that, a correction procedure, suggested by
Heumann and Grundhoff [33] (followed by van Dal et al. [34]) for plastic
deformation, is used in this study. A baseline is drawn which passes through the
unreacted parts of the end members, and the difference between the position of
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markers and this baseline gives the actual displacement of the markers, which is
shown in Fig. 6.20d. Thus, we assume the deformation rate of the end members of
the couple to be equal and constant. The difference between the marker dis-
placement measured in the diffusion couple and the value corresponding to the
baseline—i.e., the dashed line in Fig. 6.20c giving the actual marker shift (plotted
in Fig. 6.20d)—was constructed. It should be noted that the maximum displace-
ment need not to be necessarily at the Kirkendall marker plane only, as is found in
this system.

The displacement is then plotted versus xg (= x — y) to determine dy/dx,.
Following on from this, the velocities of the different marker planes are estimated
from Eq. 6.79 as plotted in Fig. 6.20e. Furthermore, we can derive

Dy vsDg
Dy vgDy

Dy vp(vpCp +vaCa)Dp
Dy vg(vsCp + V4Ca)Dy

Since, as shown previously in Eq. 1.146, vgCpy +v4Cs =1

& _ VB(VACADB + \_’BCBDB)
Dy vpvaCaDy + vpvpCpDy
Dy Vp[(vaCaDp + vgCpDy) + vgCp(Dp — Dy

Dy V(vaCuDp + vgCpDs) — vavpCa(Dp — Dy)

Since according to Eq. 6.65 D= vaC,Dp +vgCpDy, we can write

Dy Vg [D + v3Cp(Dp — Dy)]

Dy D — v4v3Ca(Dg — Dy)

Dy D +v3Cp(Dg — Da)

Dy D —%Cy(Dy — Dy)

Ds D(acﬂ) +95(Dp — Da) (%2) Cp
Da~ D(%) —vs(Dy — Da) (&) 2

Since according to Egs. 6.61a and 6.61b v = v3(Dp — DA)( 2), we can write

&_ b(aCB/ax)+vC3
Dy E(GCB/GX)—VE—’;CA

1 v
Dp +D(6CB/6x)

Dy 1—=—t—Cy22
D(0Cp/0x) B
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Therefore, from the values of v, as shown in Fig. 6.20e, it is possible to estimate
Dp/Dy4. After estimating D following previously explained approaches, we can the
estimate intrinsic diffusion coefficients using Eq. 6.65. The interdiffusion coeffi-
cients estimated in a bulk diffusion couple must be compared with the estimated
values from a multifoil experiment in order to validate the results. It can be seen in
Fig. 6.21a that the interdiffusion coefficients are more or less the same. This helps
to understand if stacking of foils created any problem in the diffusion couple. The
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variation of the molar volume is shown in Fig. 6.21b. The intrinsic diffusion
coefficients that were subsequently estimated by multifoil technique are given in
Fig. 6.21c.

6.9 Different Ways to Detect the Kirkendall
Marker Plane

As already explained, it is important to use inert markers at the mating interface of
a diffusion couple and anneal it to detect the Kirkendall marker plane after
interdiffusion. Following, these inert particles are found under a scanning electron
microscope (SEM) by image analysis or by detecting the X-ray peak originated
from the material used as marker in an energy dispersive spectrometer (EDS) or
wavelength dispersive spectrometer (WDS) detectors. Depending on the system in
which they are used, different materials are used as markers, and these materials
can be used in wire or powder form. Powders are used more often because of ease
of use. It is important to note that the markers selected do not react with the
diffusing components, which will otherwise not move ideally depending on their
relative mobilities. Markers are made from should be impervious to the diffusing
components, and there should be enough space between them to not hinder the
movement of the diffusing components. Marker size should be much smaller than
the total interdiffusion zone thickness. On the other hand, the markers should not
be so small that they are dragged along by the grain boundaries, a phenomenon we
have often witnessed, especially when we have used the particles in powder form
and the particle size was less than 0.1 pum. As a