
A. Moonis et al. (Eds.): IEA/AIE 2014, Part I, LNAI 8481, pp. 301–310, 2014.
© Springer International Publishing Switzerland 2014

A Modified Maintenance Algorithm for Updating FUSP
Tree in Dynamic Database

Ci-Rong Li1, Chun-Wei Lin2,3,*, Wensheng Gan2, and Tzung-Pei Hong4,5

1 Faculty of Management,
Fuqing Branch of Fujian Normal University, Fujian, China
2 Innovative Information Industry Research Center (IIIRC)

3 Shenzhen Key Laboratory of Internet Information Collaboration
School of Computer Science and Technology,

 Harbin Institute of Technology Shenzhen Graduate School
HIT Campus Shenzhen University Town, Xili, Shenzhen, China
4 Department of Computer Science and Information Engineering
National University of Kaohsiung, Kaohsiung, Taiwan, R.O.C.

5 Department of Computer Science and Engineering
National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C.

{cirongli,wsgan001}@gmail.com, jerrylin@ieee.org,
tphong@nuk.edu.tw

Abstract. In the past, we proposed a pre-large FUSP tree to preserve and
maintain both large and pre-large sequences in the built tree structure. In this
paper, the pre-large concept is also adopted for maintaining and updating the
FUSP tree. Only large sequences are kept in the built tree structure for reducing
computations. The PreFUSP-TREE-MOD maintenance algorithm is proposed
to reduce the rescans of the original database due to the pruning properties of
pre-large concept. When the number of modified sequences is smaller than the
safety bound of the pre-large concept, better results can be obtained by the
proposed PreFUSP-TREE-MOD maintenance algorithm for sequence
modification in the dynamic database.

Keywords: Data mining, pre-large concept, dynamic database, FUSP tree,
sequence modification.

1 Introduction

It is a critical issue to efficiently mine the desired knowledge or information to aid
managers in decision-making from a very large database. The mostly common
knowledge can be classified as association-rule mining [1, 2, 6], classification [12],
clustering [5], and sequential pattern mining [4, 11, 21], among others [16-18].
Finding sequential patterns in temporal transaction database has become an important
issue since it allows the modeling of customer behaviors.

* Corresponding author.

302 C.-R. Li et al.

Agrawal et al. then proposed AprioriAll algorithm [4] for mining sequential patters
in a level-wise way. Although customer behaviors can be efficiently extracted by
several sequential-pattern-mining algorithms [4, 11, 21] to assist managers in making
decisions, the discovered sequential patterns may become invalid since sequences are
inserted [13, 20], deleted [15] or modified [14] in real-world applications. Developing
an efficient approach to maintain and update sequential patterns is thus a critical issue
in real-world applications.

Few studies [13-15, 20] are, however, designed to handle the sequential patterns in
the dynamic database compared to those on maintaining association rules. In the past,
a pre-large concept [9] was adopted to maintain the build pre-large FUSP tree. Since
the pre-large sequences are kept in the tree structure, more computations are required
to maintain both the large and pre-large sequences for finding the corresponding
branches [19]. In this paper, the pre-large concept is also adopted in the FUSP tree but
only large sequences are kept in the built tree structure. A pre-large fast updated
sequential pattern tree for sequence modification (PreFUSP-TREE-MOD)
maintenance algorithm is designed to easier facilitate the updating process of the built
FUSP tree. A FUSP tree [13] is initially built to completely preserve customer
sequences with only large items in the given databases. When some sequences are
modified from the original database, the proposed PreFUSP-TREE-MOD
maintenance algorithm is then processed to maintain the built FUSP tree and the
Header_Table. Experimental results show that the proposed PreFUSP-TREE-MOD
maintenance algorithm balances the trade-off between execution time and tree
complexity and has the better performance than the batch methods.

2 Review of Related Works

In this section, works related to mining sequential patterns, FUSP-tree structure, and
maintenance approach of pre-large concept are briefly reviewed.

2.1 Mining Sequential Patterns

Agrawal et al. first proposed the AprioriAll algorithm [4] for level-wisely mining
sequential patterns in a static database. Conventional approaches may re-mine the
entire database to update the sequential patterns in the dynamic database. Lin et al.
thus proposed the FASTUP algorithm [20] to maintain sequential patterns. Hong and
Wang et al. then extended the pre-large concept of association-rule mining [9] to
handle the sequential patterns [10, 22]. Cheng et al. proposed the IncSpan
(incremental mining of sequential patterns) algorithm for efficiently maintaining
sequential patterns in a tree structure [7]. Lin et al. designed a fast updated sequential
pattern (FUSP)-tree and developed the algorithms for efficiently handling sequence
insertion [13], sequence deletion [15], and sequence modification [14] to maintain and
update the built FUSP tree for efficiently discovering sequential patterns in the
dynamic database. Other algorithms for mining various sequential patterns are still
developed in progress [11, 20].

 A Modified Maintenance Algorithm for Updating FUSP Tree in Dynamic Database 303

2.2 FUSP-Tree Structure

The FUSP tree [13] is used to store customer sequences with only large 1-sequences
in the original database. An example is given to briefly show the FUSP tree. Assume
a database shown in Table 1 is used to build the FUSP tree.

Table 1. Original customer sequences

Customer ID Customer sequence
1 (AC)(E)(I)
2 (A)(I)(B)
3 (BE)(CD)
4 (AC)(DF)
5 (A)(B)(F)
6 (A)(B)(D)(EF)
7 (AC)(B)(E)
8 (AC)(E)(F)(G)
9 (BG)(D)

10 (DE)(GH)

Also assume that the minimum support threshold is set at 60%. For the given
database, the large 1-sequnces are (A), (B), and (E), from which Header_Table can be
constructed. The results are shown in Figure 1.

i

{root}

Header_Table
Item Count

A 7

B 6

E 6

A:7

E:2 B:4

E:2

B:2

E:1

E:1

s s

s

s ss

Fig. 1. Initial constructed FUSP tree with its Header_Table.

In Figure 1, only the customer sequences with large items (1-sequences) are stored
in the FUSP tree. The link between two connected nodes is marked by the symbol s
(representing the sequence relation) if the sequence is within the sequence relation in
a sequence; otherwise, the link is marked by the symbol i, which indicates the
sequence is within the itemset relation in a sequence [7]. A FP-growth-like algorithm
can be used to mine the sequential patterns [8].

2.3 Maintenance Approach of Pre-large Concept

A pre-large sequence is not truly large, but has highly probability to be large when the
database is updated [9-10]. A lower support threshold and an upper support threshold

304 C.-R. Li et al.

are used to define pre-large concept. Pre-large sequences act like buffers and are used
to reduce the movement of sequences directly from large to small and vice-versa in
the maintenance process. Therefore, when few sequences are modified, the originally
small sequences will at most become pre-large and cannot become large, thus
reducing the amount of rescanning necessary. Considering an original database and
some customer sequences to be modified, the following nine cases in Figure 2 may
arise.

Large
sequences

Original
database

New
transactions

Case 4 Case 5 Case 6
Original
customer
sequences

Count
difference

Case 1 Case 2 Case 3

Case 7 Case 8 Case 9

Pre-large
sequences

Small
sequences

Positive
difference

Zero
difference

Negative
difference

Fig. 2. Nine cases arising from the original database and the modified sequences

Cases 1, 2, 5, 6, 8 and 9 above will not affect the final sequential patterns. Case 3
may remove some existing sequential patterns, and cases 4 and 7 may add some new
sequential patterns. It has been formally shown that a sequence in case 7 cannot
possibly be large for the entire updated database when the number of modified
sequences is smaller than the number f shown below [22]:

 dSSf lu)(−= ,

where f is the safety number of modified sequences, Su is the upper threshold, Sl is the
lower threshold, and d is the number of customer sequences in the original database.

3 Proposed PreFUSP-TREE-MOD Algorithm

In this paper, the pre-large concept is adopted to maintain and update the built FUSP
tree [13] for sequence modification [14] in dynamic database. A FUSP tree must be
built in advance from the initial original database. When sequences are modified from
the original database, the FUSP tree and its corresponding Header_Table are required
to be modified and updated by the proposed PreFUSP-TREE-MOD maintenance
algorithm. The details of the proposed algorithm are stated below.

Proposed PreFUSP-TREE-MOD maintenance algorithm:
INPUT: An old database consisting of d sequences, its corresponding Header_Table,

and the built FUSP tree, a lower support threshold Sl, an upper support
threshold Su, a set of pre-large 1-sequences Prelarge_Seqs from the original
database, and a set of t modified sequences.

 A Modified Maintenance Algorithm for Updating FUSP Tree in Dynamic Database 305

OUTPUT: An updated FUSP tree.
STEP 1: Calculate the safety number f for modified sequences as [22]:

 dSSf lu)(−= .

STEP 2: Find all 1-sequences in the t modified sequences before and after
modification. Denote them as a set of modified 1-sequences, M.

STEP 3: Find the count difference (including zero) of each 1-sequence in M for the
modified sequences.

STEP 4: Divide the 1-sequences in M into three parts according to whether they are
large, pre-large or small in the original database.

STEP 5: For each 1-sequence s in M which is large in the original database
(appearing in the Header_Table), do the following substeps (for cases 1, 2
and 3):
Substep 5-1: Set the new count SU(s) of s in the entire updated database as:

SU(s) = SD(s) + SM(s),
where SD(s) is the count of s in the Header_Table (from the
original database) and SM(s) is the count difference of s from
sequence modification.

Substep 5-2: If SU(s) ≥ (Su × d), update the count of s in the Header_Table
as SU(s), and put s in both the sets of Increase_Seqs and
Decrease_Seqs, which will be further processed to update the
FUSP tree in STEP 9;

 Otherwise, If (Sl × d) ≤ SU(s) ≤ (Su × d), connect each parent
node of s directly to its corresponding child nodes; remove s
from the FUSP tree and the Header_Table; put s in the set of
Prelarge_Seqs with its updated count SU(s);

 Otherwise, s is small after the database is updated; connect
each parent node of s directly to its corresponding child nodes
and remove s from the FUSP tree and the Header_Table;

STEP 6: For each 1-sequence s in M which is pre-large in the original database (in
the set of pre-large sequences), do the following substeps (for cases 4, 5 and
6):
Substep 6-1: Set the new count SU(s) of s in the entire updated database as:

SU(s) = SD(s) + SM(s).
Substep 6-2: If SU(s) ≥ (Su × d), 1-sequence s will become large after the

database is updated; remove s from the set of Prelarge_Seqs,
put s in the set of Branch_Seqs with its new count SU(s), and
put s in the set of Increase_Seqs;
Otherwise, if (Sl × d) ≤ SU(s) ≤ (Su × d), 1-sequence s is still
pre-large after the database is updated; update s with its new
count SU(s) in the set of Prelarge_Seqs;
Otherwise, 1-sequence s is small after the database is updated;
remove s from the set of Prelarge_Seqs.

STEP 7: For each 1-sequence s which is neither large nor pre-large in the original
database but has positive count difference in M (for case 7), put s in the set

306 C.-R. Li et al.

of Rescan_Seqs, which is used when rescanning the database in STEP 8 is
necessary.

STEP 8: If (t + c) ≤ f or the set of Rescan_Seqs is null, do nothing;
Otherwise, do the following substeps for each 1-sequence s in the set of
Rescan_Seqs:
Substep 8-1: Rescan the original database to determine the original count

SD(s) of s (before modification).
Substep 8-2: Set the new count SU(s) of s in the entire updated database as:

SU(s) = SD(s) + SM(s).
Substep 8-3: If SU(s) ≥ (Su × d), 1-sequence s will become large after the

database is updated; put s in both the sets of Increase_Seqs
and Branch_Seqs;

 Otherwise, if (Sl × d) ≤ SU(s) ≤ (Su × d), 1-sequence s will
become pre-large after the database is updated; put s in the set
of Prelarge_Seqs with its updated count SU(s);
Otherwise, neglect s.

STEP 9: For each updated sequence before modification (T) and with a 1-sequence J
existing in the Decrease_Seqs, find the corresponding branch of J in the
FUSP tree and subtract 1 from the count of the J node in the branch; if the
count of the J node becomes zero after subtraction, remove node J from its
corresponding branch and connect the parent node of J directly to the child
node of J.

STEP 10: Insert the 1-sequences in the Branch_Seqs to the end of the Header_Table
according to the descending order of their counts.

STEP 11: If the set of Branch_Seqs is null, nothing is done in this step;
 Otherwise, for each unmodified sequence (D-) with a 1-sequence J in

Branch_Seqs, if J has not been at the corresponding branch of the FUSP
tree, then insert J at the end of the branch and set its count as 1; Otherwise,
add 1 to the count of the node J.

STEP 12: For each updated sequence after modification (T’) with a 1-sequence J
existing in Increase_Seqs, if J has not been at the corresponding branch of
the FUSP tree, insert J at the end of the branch and set its count as 1;

 Otherwise, add 1 to the count of the J node.
STEP 13: If (t + c) > f , set c = 0; otherwise, set c = t + c.

After STEP 13, the final updated FUSP tree is thus maintained by the proposed

PreFUSP-TREE-MOD maintenance algorithm for sequence modification. Based on
the FUSP tree, the desired large sequences can then be found by the FP-growth-like
mining approach [8].

4 An Illustrated Example

A FUSP tree [13] was firstly built from the original database shown in Figure 2. An
upper support threshold was set at 60% and the lower support threshold is set at 30%.

 A Modified Maintenance Algorithm for Updating FUSP Tree in Dynamic Database 307

The pre-large 1-sequences with their counts are then found and then put in the set of
Prelarge_Seqs. The results are shown in Table 2, and the modified customer
sequences are shown in Table 3.

Table 2. Pre-large 1-sequences

1-sequence Count
(C) 5
(D) 5
(F) 4
(G) 3

Table 3. Modified customer sequences

Cust_ID Before modification After modification
2 (A)(I)(B) (A)(BC)(FH)
10 (DE)(GH) (BD)(H)

The safety bound for the modified sequences is calculated as f = (0.6 0.3) 10− ×  

(= 3). The proposed PreFUSP-TREE-MOD maintenance algorithm is the performed
to maintain and update the FUSP tree by the following steps. The count differences of
the sequences before and after modification are then calculated. After that, the results
of count difference are then divided into three parts according to whether they are
large (appearing in Header_Table), pre-large (appearing in the set of Prelarge_Seqs)
or small in the original customer sequences.

For each 1-sequence from the divided part, which is large in the original database
(appearing in Header_Table shown in Figure 1), is then processed. For each 1-
sequence from the divided part, which is pre-large in the original database (appearing
in Prelarge_Seqs shown in Table 2), is then processed. For each 1-sequence from the
divided part, which is small in the original database (not appearing either in the
Header_Table or the set of Prelarge_Seqs) but has positive count difference is then
processed. Since only two sequences are modified from the original database, which
is smaller than the safety bound (2 < 3); nothing has to be processed for the set of
Rescan_Seqs.

The 1-sequences in the Decrease_Seqs are then processed to subtract their counts
before sequence modification in the built FUSP tree. The 1-sequenecs in the
Branch_Seqs are then sorted in descending order of their counts. The 1-sequences
from Branch_Seqs are then inserted into the end of the Header_Table. The
corresponding branches of 1-sequences in Branch_Seqs are then found from the
unmodified sequences in the original database. The 1-sequences in the Increase_Seqs
are then processed to find the corresponding branches after sequence modification.
After that, the final result of the FUSP tree is shown in Figure 3. Since the number of
the modified sequences is 2 in this example, variable c is then accumulated as (0 + 2)
(= 2), which indicates that one more sequence can be modified without rescanning the
original database for case 7.

308 C.-R. Li et al.

{root}

A:7

B:4

B:3

s

ss
Header_Table
Item Count

A 7

B 7

C 6 C:4

i

C:1

s

C:1

i

Fig. 3. Final updated FUSP tree

5 Experimental Results

Experiments were made to compare the performance of the GSP algorithm [21], the
FUSP-TREE-BATCH [13] algorithm, the pre-large maintenance algorithm for
sequence modification (defined as PRE-APRIORI-MOD) [22], and the proposed
PreFUSP-TREE-MOD maintenance algorithm. The S10I4N1KD10K is a simulated
database generated from IBM Quest Dataset Generator [3]. The percentage of the
modified sequences is set at 1%. The Sl values are respectively set as 50% of Su values
for the PRE-APRIORI-MOD algorithm and the proposed PreFUSP-TREE-MOD
maintenance algorithm. The performance of execution time is shown in Figure 4.

Fig. 4. The comparisons of the execution time

From Figure 4, the proposed PreFUSP-TREE-MOD maintenance algorithm has the
better performance than the other algorithms. The number of tree nodes are also
compared to show the performance. Since only the tree-based approaches involved
tree nodes for the comparisons, the FUSP-TREE-BATCH algorithm and the proposed
PreFUSP-TREE-MOD maintenance algorithm are then compared and shown in
Figure 5.

 A Modified Maintenance Algorithm for Updating FUSP Tree in Dynamic Database 309

Fig. 5. The comparisons of the tree nodes

From Figure 5, it can be seen that the proposed PreFUSP-TREE-MOD
maintenance algorithm generates nearly the same number of tree nodes.

6 Conclusion

In this paper, the pre-large fast updated sequential pattern tree for sequence
modification (PreFUSP-TREE-MOD) maintenance algorithm is proposed to
efficiently and effectively maintain the FUSP tree based on pre-large concept for
deriving sequential patterns. From the experiments, the proposed PreFUSP-TREE-
MOD maintenance algorithm can thus achieve a good trade-off between execution
time and tree complexity.

Acknowledgement. This research was partially supported by the Shenzhen Peacock
Project, China, under grant KQC201109020055A, by the Natural Scientific Research
Innovation Foundation in Harbin Institute of Technology under grant BD29100003,
and by the Shenzhen Strategic Emerging Industries Program under grant
ZDSY20120613125016389.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Database mining: A performance perspective.
IEEE Transactions on Knowledge and Data Engineering 5, 914–925 (1993)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases.
In: The International Conference on Very Large Data Bases, pp. 487–499 (1994)

3. Agrawal, R., Srikant, R.: Quest synthetic data generator (1994),
http://www.Almaden.ibm.com/cs/quest/syndata.html

4. Agrawal, R., Srikant, R.: Mining sequential patterns. In: The International Conference on
Data Engineering, pp. 3–14 (1995)

5. Berkhin, P.: A survey of clustering data mining techniques. In: Grouping
Multidimensional Data, pp. 25–71 (2006)

310 C.-R. Li et al.

6. Chen, M.S., Han, J., Yu, P.S.: Data mining: An overview from a database perspective.
IEEE Transactions on Knowledge and Data Engineering 8, 866–883 (1996)

7. Cheng, H., Yan, X., Han, J.: Incspan: Incremental mining of sequential patterns in large
database. In: ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 527–532 (2004)

8. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A
frequent-pattern tree approach. Data Mining and Knowledge Discovery 8, 53–87 (2004)

9. Hong, T.P., Wang, C.Y., Tao, Y.H.: A new incremental data mining algorithm using pre-
large itemsets. Intelligent Data Analysis 5, 111–129 (2001)

10. Hong, T.P., Wang, C.Y., Tseng, S.S.: An incremental mining algorithm for maintaining
sequential patterns using pre-large sequences. Expert Systems with Applications 38, 7051–
7058 (2011)

11. Huang, Z., Shyu, M.L., Tien, J.M., Vigoda, M.M., Birnbach, D.J.: Prediction of uterine
contractions using knowledge-assisted sequential pattern analysis. IEEE Transactions on
Biomedical Engineering 60, 1290–1297 (2013)

12. Kotsiantis, S.B.: Supervised machine learning: A review of classification techniques. In:
The Conference on Emerging Artificial Intelligence Applications in Computer
Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information
Retrieval and Pervasive Technologies, pp. 3–24 (2007)

13. Lin, C.W., Hong, T.P., Lu, W.H., Lin, W.Y.: An incremental fusp-tree maintenance
algorithm. In: The International Conference on Intelligent Systems Design and
Applications, pp. 445–449 (2008)

14. Lin, C.W., Hong, T.P., Lu, W.H., Chen, H.Y.: An fusp-tree maintenance algorithm for
record modification. In: IEEE International Conference on Data Mining Workshops, pp.
649–653 (2008)

15. Lin, C.W., Hong, T.P., Lu, W.H.: An efficient fusp-tree update algorithm for deleted data
in customer sequences. In: International Conference on Innovative Computing,
Information and Control, pp. 1491–1494 (2009)

16. Lin, C.W., Hong, T.P., Lu, W.H.: An effective tree structure for mining high utility
itemsets. Expert Systems with Applications 38, 7419–7424 (2011)

17. Lin, C.W., Hong, T.P.: A new mining approach for uncertain databases using cufp trees.
Expert Systems with Applications 39, 4084–4093 (2012)

18. Lin, C.W., Lan, G.C., Hong, T.P.: An incremental mining algorithm for high utility
itemsets. Expert Systems with Applications 39, 7173–7180 (2012)

19. Lin, C.W., Hong, T.P., Lee, H.Y., Wang, S.L.: Maintenance of pre-large FUSP trees in
dynamic databases. In: International Conference on Innovations in Bio-inspired
Computing and Applications, pp. 199–202 (2011)

20. Lin, M.Y., Lee, S.Y.: Incremental update on sequential patterns in large databases. In:
IEEE International Conference on Tools with Artificial Intelligence, pp. 24–31 (1998)

21. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance
improvements. In: The International Conference on Extending Database Technology:
Advances in Database Technology, pp. 3–17 (1996)

22. Wang, C.Y., Hong, T.P., Tseng, S.S.: Maintenance of sequential patterns for record
modification using pre-large sequences. In: IEEE International Conference on Data
Mining, pp. 693–696 (2002)

	A Modified Maintenance Algorithm for Updating FUSP Tree in Dynamic Database
	1 Introduction
	2 Review of Related Works
	2.1 Mining Sequential Patterns
	2.2 FUSP-Tree Structure
	2.3 Maintenance Approach of Pre-large Concept

	3 Proposed PreFUSP-TREE-MOD Algorithm
	4 An Illustrated Example
	5 Experimental Results
	6 Conclusion
	References

