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Abstract. In the past, we proposed a pre-large FUSP tree to preserve and 
maintain both large and pre-large sequences in the built tree structure. In this 
paper, the pre-large concept is also adopted for maintaining and updating the 
FUSP tree. Only large sequences are kept in the built tree structure for reducing 
computations. The PreFUSP-TREE-MOD maintenance algorithm is proposed 
to reduce the rescans of the original database due to the pruning properties of 
pre-large concept. When the number of modified sequences is smaller than the 
safety bound of the pre-large concept, better results can be obtained by the 
proposed PreFUSP-TREE-MOD maintenance algorithm for sequence 
modification in the dynamic database. 
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1 Introduction 

It is a critical issue to efficiently mine the desired knowledge or information to aid 
managers in decision-making from a very large database. The mostly common 
knowledge can be classified as association-rule mining [1, 2, 6], classification [12], 
clustering [5], and sequential pattern mining [4, 11, 21], among others [16-18]. 
Finding sequential patterns in temporal transaction database has become an important 
issue since it allows the modeling of customer behaviors. 
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Agrawal et al. then proposed AprioriAll algorithm [4] for mining sequential patters 
in a level-wise way. Although customer behaviors can be efficiently extracted by 
several sequential-pattern-mining algorithms [4, 11, 21] to assist managers in making 
decisions, the discovered sequential patterns may become invalid since sequences are 
inserted [13, 20], deleted [15] or modified [14] in real-world applications. Developing 
an efficient approach to maintain and update sequential patterns is thus a critical issue 
in real-world applications.  

Few studies [13-15, 20] are, however, designed to handle the sequential patterns in 
the dynamic database compared to those on maintaining association rules. In the past, 
a pre-large concept [9] was adopted to maintain the build pre-large FUSP tree. Since 
the pre-large sequences are kept in the tree structure, more computations are required 
to maintain both the large and pre-large sequences for finding the corresponding 
branches [19]. In this paper, the pre-large concept is also adopted in the FUSP tree but 
only large sequences are kept in the built tree structure. A pre-large fast updated 
sequential pattern tree for sequence modification (PreFUSP-TREE-MOD) 
maintenance algorithm is designed to easier facilitate the updating process of the built 
FUSP tree. A FUSP tree [13] is initially built to completely preserve customer 
sequences with only large items in the given databases. When some sequences are 
modified from the original database, the proposed PreFUSP-TREE-MOD 
maintenance algorithm is then processed to maintain the built FUSP tree and the 
Header_Table. Experimental results show that the proposed PreFUSP-TREE-MOD 
maintenance algorithm balances the trade-off between execution time and tree 
complexity and has the better performance than the batch methods. 

2 Review of Related Works 

In this section, works related to mining sequential patterns, FUSP-tree structure, and 
maintenance approach of pre-large concept are briefly reviewed. 

2.1 Mining Sequential Patterns 

Agrawal et al. first proposed the AprioriAll algorithm [4] for level-wisely mining 
sequential patterns in a static database. Conventional approaches may re-mine the 
entire database to update the sequential patterns in the dynamic database. Lin et al. 
thus proposed the FASTUP algorithm [20] to maintain sequential patterns. Hong and 
Wang et al. then extended the pre-large concept of association-rule mining [9] to 
handle the sequential patterns [10, 22]. Cheng et al. proposed the IncSpan 
(incremental mining of sequential patterns) algorithm for efficiently maintaining 
sequential patterns in a tree structure [7]. Lin et al. designed a fast updated sequential 
pattern (FUSP)-tree and developed the algorithms for efficiently handling sequence 
insertion [13], sequence deletion [15], and sequence modification [14] to maintain and 
update the built FUSP tree for efficiently discovering sequential patterns in the 
dynamic database. Other algorithms for mining various sequential patterns are still 
developed in progress [11, 20]. 
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2.2 FUSP-Tree Structure 

The FUSP tree [13] is used to store customer sequences with only large 1-sequences 
in the original database. An example is given to briefly show the FUSP tree. Assume 
a database shown in Table 1 is used to build the FUSP tree. 

Table 1. Original customer sequences 

Customer ID Customer sequence 
1 (AC)(E)(I) 
2 (A)(I)(B)  
3 (BE)(CD) 
4 (AC)(DF) 
5 (A)(B)(F) 
6 (A)(B)(D)(EF)  
7 (AC)(B)(E) 
8 (AC)(E)(F)(G) 
9 (BG)(D) 

10 (DE)(GH) 
 

Also assume that the minimum support threshold is set at 60%. For the given 
database, the large 1-sequnces are (A), (B), and (E), from which Header_Table can be 
constructed. The results are shown in Figure 1.  
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Fig. 1. Initial constructed FUSP tree with its Header_Table. 

In Figure 1, only the customer sequences with large items (1-sequences) are stored 
in the FUSP tree. The link between two connected nodes is marked by the symbol s 
(representing the sequence relation) if the sequence is within the sequence relation in 
a sequence; otherwise, the link is marked by the symbol i, which indicates the 
sequence is within the itemset relation in a sequence [7]. A FP-growth-like algorithm 
can be used to mine the sequential patterns [8]. 

2.3 Maintenance Approach of Pre-large Concept 

A pre-large sequence is not truly large, but has highly probability to be large when the 
database is updated [9-10]. A lower support threshold and an upper support threshold 
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are used to define pre-large concept. Pre-large sequences act like buffers and are used 
to reduce the movement of sequences directly from large to small and vice-versa in 
the maintenance process. Therefore, when few sequences are modified, the originally 
small sequences will at most become pre-large and cannot become large, thus 
reducing the amount of rescanning necessary. Considering an original database and 
some customer sequences to be modified, the following nine cases in Figure 2 may 
arise. 
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Fig. 2. Nine cases arising from the original database and the modified sequences 

Cases 1, 2, 5, 6, 8 and 9 above will not affect the final sequential patterns. Case 3 
may remove some existing sequential patterns, and cases 4 and 7 may add some new 
sequential patterns. It has been formally shown that a sequence in case 7 cannot 
possibly be large for the entire updated database when the number of modified 
sequences is smaller than the number f shown below [22]: 

 dSSf lu )( −= , 

where f is the safety number of modified sequences, Su is the upper threshold, Sl is the 
lower threshold, and d is the number of customer sequences in the original database.  

3 Proposed PreFUSP-TREE-MOD Algorithm 

In this paper, the pre-large concept is adopted to maintain and update the built FUSP 
tree [13] for sequence modification [14] in dynamic database. A FUSP tree must be 
built in advance from the initial original database. When sequences are modified from 
the original database, the FUSP tree and its corresponding Header_Table are required 
to be modified and updated by the proposed PreFUSP-TREE-MOD maintenance 
algorithm. The details of the proposed algorithm are stated below.  
 
Proposed PreFUSP-TREE-MOD maintenance algorithm: 
INPUT: An old database consisting of d sequences, its corresponding Header_Table, 

and the built FUSP tree, a lower support threshold Sl, an upper support 
threshold Su, a set of pre-large 1-sequences Prelarge_Seqs from the original 
database, and a set of t modified sequences. 
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OUTPUT: An updated FUSP tree. 
STEP 1: Calculate the safety number f for modified sequences as [22]: 

 dSSf lu )( −= . 

STEP 2: Find all 1-sequences in the t modified sequences before and after 
modification. Denote them as a set of modified 1-sequences, M. 

STEP 3: Find the count difference (including zero) of each 1-sequence in M for the 
modified sequences. 

STEP 4: Divide the 1-sequences in M into three parts according to whether they are 
large, pre-large or small in the original database. 

STEP 5: For each 1-sequence s in M which is large in the original database 
(appearing in the Header_Table), do the following substeps (for cases 1, 2 
and 3): 
Substep 5-1: Set the new count SU(s) of s in the entire updated database as:  

SU(s) = SD(s) + SM(s), 
where SD(s) is the count of s in the Header_Table (from the 
original database) and SM(s) is the count difference of s from 
sequence modification. 

Substep 5-2: If SU(s) ≥ (Su × d), update the count of s in the Header_Table 
as SU(s), and put s in both the sets of Increase_Seqs and 
Decrease_Seqs, which will be further processed to update the 
FUSP tree in STEP 9;  

              Otherwise, If (Sl × d) ≤ SU(s) ≤ (Su × d), connect each parent 
node of s directly to its corresponding child nodes; remove s 
from the FUSP tree and the Header_Table; put s in the set of 
Prelarge_Seqs with its updated count SU(s);  

              Otherwise, s is small after the database is updated; connect 
each parent node of s directly to its corresponding child nodes 
and remove s from the FUSP tree and the Header_Table; 

STEP 6: For each 1-sequence s in M which is pre-large in the original database (in 
the set of pre-large sequences), do the following substeps (for cases 4, 5 and 
6): 
Substep 6-1: Set the new count SU(s) of s in the entire updated database as:  

SU(s) = SD(s) + SM(s). 
Substep 6-2: If SU(s) ≥ (Su × d), 1-sequence s will become large after the 

database is updated; remove s from the set of Prelarge_Seqs, 
put s in the set of Branch_Seqs with its new count SU(s), and 
put s in the set of Increase_Seqs; 
Otherwise, if (Sl × d) ≤ SU(s) ≤ (Su × d), 1-sequence s is still 
pre-large after the database is updated; update s with its new 
count SU(s) in the set of Prelarge_Seqs; 
Otherwise, 1-sequence s is small after the database is updated; 
remove s from the set of Prelarge_Seqs. 

STEP 7: For each 1-sequence s which is neither large nor pre-large in the original 
database but has positive count difference in M (for case 7), put s in the set 
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of Rescan_Seqs, which is used when rescanning the database in STEP 8 is 
necessary. 

STEP 8: If (t + c) ≤ f or the set of Rescan_Seqs is null, do nothing; 
Otherwise, do the following substeps for each 1-sequence s in the set of 
Rescan_Seqs:  
Substep 8-1: Rescan the original database to determine the original count 

SD(s) of s (before modification). 
Substep 8-2: Set the new count SU(s) of s in the entire updated database as:  

SU(s) = SD(s) + SM(s). 
Substep 8-3: If SU(s) ≥ (Su × d), 1-sequence s will become large after the 

database is updated; put s in both the sets of Increase_Seqs 
and Branch_Seqs; 

              Otherwise, if (Sl × d) ≤ SU(s) ≤ (Su × d), 1-sequence s will 
become pre-large after the database is updated; put s in the set 
of Prelarge_Seqs with its updated count SU(s); 
Otherwise, neglect s. 

STEP 9: For each updated sequence before modification (T) and with a 1-sequence J 
existing in the Decrease_Seqs, find the corresponding branch of J in the 
FUSP tree and subtract 1 from the count of the J node in the branch; if the 
count of the J node becomes zero after subtraction, remove node J from its 
corresponding branch and connect the parent node of J directly to the child 
node of J. 

STEP 10: Insert the 1-sequences in the Branch_Seqs to the end of the Header_Table 
according to the descending order of their counts. 

STEP 11: If the set of Branch_Seqs is null, nothing is done in this step;  
           Otherwise, for each unmodified sequence (D-) with a 1-sequence J in 

Branch_Seqs, if J has not been at the corresponding branch of the FUSP 
tree, then insert J at the end of the branch and set its count as 1; Otherwise, 
add 1 to the count of the node J. 

STEP 12: For each updated sequence after modification (T’) with a 1-sequence J 
existing in Increase_Seqs, if J has not been at the corresponding branch of 
the FUSP tree, insert J at the end of the branch and set its count as 1; 

           Otherwise, add 1 to the count of the J node. 
STEP 13: If (t + c) > f , set c = 0; otherwise, set c = t + c. 

 
After STEP 13, the final updated FUSP tree is thus maintained by the proposed 

PreFUSP-TREE-MOD maintenance algorithm for sequence modification. Based on 
the FUSP tree, the desired large sequences can then be found by the FP-growth-like 
mining approach [8]. 

4 An Illustrated Example 

A FUSP tree [13] was firstly built from the original database shown in Figure 2. An 
upper support threshold was set at 60% and the lower support threshold is set at 30%. 
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The pre-large 1-sequences with their counts are then found and then put in the set of 
Prelarge_Seqs. The results are shown in Table 2, and the modified customer 
sequences are shown in Table 3. 

Table 2. Pre-large 1-sequences 

1-sequence Count 
(C) 5 
(D) 5 
(F) 4 
(G) 3 

Table 3. Modified customer sequences 

Cust_ID Before modification After modification 
2 (A)(I)(B) (A)(BC)(FH) 
10 (DE)(GH) (BD)(H) 

 
The safety bound for the modified sequences is calculated as f = (0.6 0.3) 10− ×    

(= 3). The proposed PreFUSP-TREE-MOD maintenance algorithm is the performed 
to maintain and update the FUSP tree by the following steps. The count differences of 
the sequences before and after modification are then calculated. After that, the results 
of count difference are then divided into three parts according to whether they are 
large (appearing in Header_Table), pre-large (appearing in the set of Prelarge_Seqs) 
or small in the original customer sequences. 

For each 1-sequence from the divided part, which is large in the original database 
(appearing in Header_Table shown in Figure 1), is then processed. For each 1-
sequence from the divided part, which is pre-large in the original database (appearing 
in Prelarge_Seqs shown in Table 2), is then processed. For each 1-sequence from the 
divided part, which is small in the original database (not appearing either in the 
Header_Table or the set of Prelarge_Seqs) but has positive count difference is then 
processed. Since only two sequences are modified from the original database, which 
is smaller than the safety bound (2 < 3); nothing has to be processed for the set of 
Rescan_Seqs.  

The 1-sequences in the Decrease_Seqs are then processed to subtract their counts 
before sequence modification in the built FUSP tree. The 1-sequenecs in the 
Branch_Seqs are then sorted in descending order of their counts. The 1-sequences 
from Branch_Seqs are then inserted into the end of the Header_Table. The 
corresponding branches of 1-sequences in Branch_Seqs are then found from the 
unmodified sequences in the original database. The 1-sequences in the Increase_Seqs 
are then processed to find the corresponding branches after sequence modification. 
After that, the final result of the FUSP tree is shown in Figure 3. Since the number of 
the modified sequences is 2 in this example, variable c is then accumulated as (0 + 2) 
(= 2), which indicates that one more sequence can be modified without rescanning the 
original database for case 7.  
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Fig. 3. Final updated FUSP tree 

5 Experimental Results 

Experiments were made to compare the performance of the GSP algorithm [21], the 
FUSP-TREE-BATCH [13] algorithm, the pre-large maintenance algorithm for 
sequence modification (defined as PRE-APRIORI-MOD) [22], and the proposed 
PreFUSP-TREE-MOD maintenance algorithm. The S10I4N1KD10K is a simulated 
database generated from IBM Quest Dataset Generator [3]. The percentage of the 
modified sequences is set at 1%. The Sl values are respectively set as 50% of Su values 
for the PRE-APRIORI-MOD algorithm and the proposed PreFUSP-TREE-MOD 
maintenance algorithm. The performance of execution time is shown in Figure 4.  

 

 

Fig. 4. The comparisons of the execution time 

From Figure 4, the proposed PreFUSP-TREE-MOD maintenance algorithm has the 
better performance than the other algorithms. The number of tree nodes are also 
compared to show the performance. Since only the tree-based approaches involved 
tree nodes for the comparisons, the FUSP-TREE-BATCH algorithm and the proposed 
PreFUSP-TREE-MOD maintenance algorithm are then compared and shown in 
Figure 5.  
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Fig. 5. The comparisons of the tree nodes 

From Figure 5, it can be seen that the proposed PreFUSP-TREE-MOD 
maintenance algorithm generates nearly the same number of tree nodes. 

6 Conclusion 

In this paper, the pre-large fast updated sequential pattern tree for sequence 
modification (PreFUSP-TREE-MOD) maintenance algorithm is proposed to 
efficiently and effectively maintain the FUSP tree based on pre-large concept for 
deriving sequential patterns. From the experiments, the proposed PreFUSP-TREE-
MOD maintenance algorithm can thus achieve a good trade-off between execution 
time and tree complexity. 
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