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Abstract. Particle filter (PF)-based method has been widely used for machinery 
condition-based maintenance (CBM), in particular, for prognostics. It is 
employed to update the nonlinear prediction model for forecasting system 
states. In this work, we applied PF techniques to Auxiliary Power Unit (APU) 
prognostics for estimating remaining useful cycle to effectively perform APU 
health management. After introducing the PF-based prognostic method and 
algorithms, the paper presents the implementation for APU Starter prognostics 
along with the experimental results. The results demonstrated that the 
developed PF-based method is useful for estimating remaining useful cycle for 
a given failure of a component or a subsystem.   

Keywords: Particle filter (PF), data-driven prognostics, remaining useful cycle 
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1 Introduction 

Condition-based maintenance(CBM) is an emerging technology that recommends 
maintenance decisions based on the information collected through system condition 
monitoring (or system state estimation) and equipment failure prognostics (or system 
state forecasting), in which prognostics still remains as the least mature element in 
real-world applications [1]. Prognostics entail the use of the current and previous 
system states (or observations) to predict the likelihood of a failure of a dynamic 
system and to estimate remaining useful life (RUL). Reliable forecast information can 
be used to perform predictive maintenance in advance and provide an alarm before 
faults reach critical levels so as to prevent system performance degradation, 
malfunction, or even catastrophic failures [2]. 

In general, prognostics can be performed using either data-driven methods or 
physics-based approaches. Data-driven prognostic methods use pattern recognition 
and machine learning techniques to detect changes in system states [3, 4]. The 
classical data-driven methods for nonlinear system prediction include the use of 
stochastic models such as the autoregressive (AR) model [5], the threshold AR model 
[6], the bilinear model [7], the projection pursuit [8], the multivariate adaptive 
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regression splines [9], and the Volterra series expansion [10]. Since the last decade, 
more interests in data-driven system state forecasting have been focused on the use of 
flexible models such as various types of neural networks (NNs) [11, 12] and neural 
fuzzy (NF) systems [13, 14]. Data-driven prognostic methods rely on past patterns of 
the degradation of similar systems to project future system states; their forecasting 
accuracy depends on not only the quantity but also the quality of system history data, 
which could be a challenging task in many real applications [2, 15]. Another principal 
disadvantage of data-driven methods is that the prognostic reasoning process is 
usually opaque to users [16]; consequently, they sometimes are not suitable for some 
applications where forecast reasoning transparency is required. Physics-based 
approaches typically involve building models (or mathematical functions) to describe 
the physics of the system states and failure modes; they incorporate physical 
understanding of the system into the estimation of system state and/or RUL [17-19]. 
Physics-based approaches, however, may not be suitable for some applications where 
the physical parameters and fault modes may vary under different operation 
conditions [20]. On one hand, it is usually difficult to tune the derived models in situ 
to accommodate time-varying system dynamics. On the other hand, physics-based 
approaches cannot be used for complex systems whose internal state variables are 
inaccessible (or hard) to direct measurement using general sensors. In this case, 
inference has to be made from indirect measurements using techniques such as 
particle filtering (PF). Recently the PF-based approaches have been widely used for 
prognostic applications [21-25], in which the PF is employed to update the nonlinear 
prediction model and the identified model is applied for forecasting system states. It is 
proven that FP-based approach, as a Sequential Monte Carlo (SMC) statistic method 
[26, 27], is affective for addressing the issues that data-driven and physic-based 
approach face.  In this work, we apply the PF method to Auxiliary Power Unit (APU) 
Starter prognostics by updating the models of the performance-monitoring 
parameters. This paper presents the developed PF-based methods for prognostics 
along with the experimental results from APU Starter prognostic application.  

The rest of this paper is organized as follows. Section 2 briefly describes the 
background of the APU. Section 3 presents the PF-based method for prognostics; 
Section 4 provides some experimental results. Section 5 discusses the results and 
future work. The final section concludes the paper.  

2 APU Overview  

2.1 APU and APU Data 

The APU engines on commercial aircrafts are mostly used at the gates. They provide 
electrical power and air conditioning in the cabin prior to the starting of the main 
engines and also supply the compressed air required to start the main engines when 
the aircraft is ready to leave the gate. APU is highly reliable but they occasionally fail 
to start due to failures of components such as the Starter Motor. APU starter is one of 
the most crucial components of APU. During the starting process, the starter 
accelerates APU to a high rotational speed to provide sufficient air compression for 
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self-sustaining operation. When the starter performance gradually degrades and its 
output power decreases, either the APU combustion temperature or the surge risk will 
increase significantly. These consequences will then greatly shorten the whole APU 
life and even result in an immediate thermal damage. Thus the APU starter 
degradation can result in unnecessary economic losses and impair the safety of airline 
operation. When Starter fails, additional equipment such as generators and 
compressors must be used to deliver the functionalities that are otherwise provided by 
the APU. The uses of such external devices incur significant costs and may even lead 
to a delay or a flight cancellation. Accordingly, airlines are very much interested in 
monitoring the health of the APU and improving the maintenance.   

For this study, we considered the data produced by a fleet of over 100 commercial 
aircraft over a period of 10 years. Only ACARS (Aircraft Communications 
Addressing and Reporting System) APU starting reports were made available. The 
data consists of operational data (sensor data) and maintenance data. The maintenance 
data contains reports on the replacements of many components which contributed the 
different failure modes. Operational data are collected from sensors installed at 
strategic locations in the APU which collect data at various phases of operation (e.g., 
starting of the APU, enabling of the air-conditioning, and starting of the main 
engines). The collected data for each APU starting cycle, there are six main variables 
related to APU performance: ambient air temperature (T1), ambient air pressure ( ଵܲሻ, 
peak value of exhaust gas temperature in starting process (ܩܧ ௣ܶ௘௔௞ሻ, rotational speed 
at the moment of ܩܧ ௣ܶ௘௔௞  occurrence ( ௣ܰ௘௔௞ ), time duration of starting process 
 exhaust gas temperature when air conditioning is enable after starting with ,(௦௧௔௥௧ݐ)
100% ܰ ሺܩܧ ௦ܶ௧௔௕௟௘ሻ. There are 3 parameters related to starting cycles: APU serial 
number (Sn), cumulative count of APU operating hours (hop) , and cumulative count of 
starting cycles(cyc).  In this work, in order to find out remaining useful cycle, we 
define a remaining useful cycle (RUC) as the difference of cyc0 and cyc. cyc0  is the 
cycle count when a failure happened and a repair was token. When RUC is equal to 
zero (0), it means that APU failed and repair is needed.  RUC will be used in PF 
prognostic implementation in the following.  

2.2 APU Data Correction 

The APU data collected in operation covers a wide range of ambient temperatures 
from െ20௢ to 40௢ and ambient pressures relevant to the airport elevations from sea 
level to 3557ft. Since the ambient conditions have a significant impact on gas turbine 
engine performance, making the engine parameters comparable requires a correction 
from the actual ambient conditions to the sea level condition of international standard 
atmosphere (ISA). To improve the data quality, the data correction is performed 
based on the March number similarity from gas turbine engine theory. Two main 
parameters ( ܩܧ ௣ܶ௘௔௞ ሺnoted as EPሻ and  ௣ܰ௘௔௞  ሺnoted as NPሻ ) related APU 
performance are corrected using Equation 1 and 2.  
ܲܧ    ൌ ܩܧ ௖ܶ ൌ ܩܧ ௣ܶ௘௔௞Θ௔ಶಸ೅                                                             ሺ1ሻ 
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NP ൌ ௖ܰ ൌ ௣ܰ௘௔௞Θ௔ಿ                                                                     ሺ2ሻ 

Here the empirical exponents ܽாீ்  and ܽே  are normally determined by running a 
calibrated thermodynamic computer model provided by engine manufacturers. 

3 PF-Based Prognostics  

3.1 PF-Based Prognostic Approach 

In forecasting the system state, if internal state variables are inaccessible (or hard) to 
direct measurement using general sensors, inference has to be made from indirect 
measurements. Bayesian learning provides a rigorous framework for resolving this 
issue. Given a general discrete-time state estimation problem, the unobservable state 

vector n
k RX ∈  evolves according to the following system model 

 ( ) kkk wXfX += −1 ,                             (3) 

where nn RRf →:  is the system state transition function and n
k Rw ∈  is a noise 

whose known distribution is independent of time. At each discrete time instant, an 

observation (or measurement) p
k RY ∈  becomes available. This observation is related 

to the unobservable state vector via the observation equation 

 ( ) kkk vXhY += ,                                     (4) 

where pn RRh →:  is the measurement function and p
k Rv ∈  is another noise whose 

known distribution is independent of the system noise and time. The Bayesian 
learning approach to system state estimation is to recursively estimate the probability 
density function (pdf) of the unobservable state kX  based on a sequence of noisy 

measurements kY :1 , k = 1, …, K. Assume that kX has an initial density )( 0Xp and the 

probability transition density is represented by )|( 1−kk XXp . The inference of the 

probability of the states kX  relies on the marginal filtering density )|( :1 kk YXp . 

Suppose that the density ( )11 | −− kk YXp  is available at step k-1. The prior density of 

the state at step k can then be estimated via the transition density )|( 1−kk XXp , 

 ( ) ( ) ( ) 11:1111:1 ||| −−−−− = kkkkkkk dXYXpXXpYXp .                 (5) 

Correspondingly, the marginal filtering density is computed via the Bayes’ theorem, 

 ( ) ( ) ( )
( )1:1

1:1
:1 |

||
|

−

−=
kk

kkkk
kk YYp

YXpXYp
YXp ,                  (6) 

where the normalizing constant is determined by 

 ( ) ( ) ( ) kkkkkkk XdYXpXYpYYp  −− = 1:11:1 ||| .                 (7) 
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Equations (5)-(7) constitute the formal solution to the Bayesian recursive state 
estimation problem. If the system is linear with Gaussian noise, the above method 
simplifies to the Kalman filter. For nonlinear/non-Gaussian systems, there are no 
closed-form solutions and thus numerical approximations are usually employed [28].  

The PF or so-called sequential important sampling (SIS), is a technique for 
implementing the recursive Bayesian filtering via Monte Carlo simulations, whereby 
the posterior density function )|( :1 kk YXp  is represented by a set of random samples 

(particles) x୩୧ ሺi ൌ 1,2, … , Nሻ and their associated weights  w୩୧ ሺi ൌ 1,2, … , Nሻ.  ݌ሺݔ௞| ଵܻ:௞ሻ ൎ ∑ ௞௜ݓ ௞ݔ൫ߜ െ ௞௜ݔ ൯ே௜ୀଵ , ∑ ௞௜ே௜ୀଵݓ ൌ 1.                (8) 

The w୩୧ , normally known as importance weight, is the approximation of the 
probability density of the corresponding particle. In a nonlinear/non-Gaussian system 
where the state’s distribution cannot be analytically described, the w୩୧  of a dynamic 
set of particles can be recursively updated through Equation 9. w୩୧ ן w୩ିଵ୧ ୮ቀ୷ౡቚ୶ౡ౟ ቁ୮ቀ୶ౡ౟ ቚ୶ౡషభ౟ ቁ୯൫୶ౡ౟ ห୶ౡషభ౟ ,୷ౡ൯ ,                            (9) 

where ݍሺݔ௞௜ ௞ିଵ௜ݔ| ,  .௞ሻ is a proposal function called importance density functionݕ
There are various ways of estimating the importance density function. One common 
way is to select ݍ൫ݔ௞௜ หݔ௞ିଵ௜ , ௞൯ݕ ൌ ௞௜ݔሺ݌ ௞ିଵ௜ݔ| ሻ so that ݓ௞௜ ן ௞ିଵ௜ݓ ௞௜ݔ௞หݕ൫݌ ൯.                               (10) 

3.2 Implementation for APU Prognostics 

This section presents an implementation of PF-based prognostics for APU starter. As 
we mentioned in Section 2, two key parameters related to APU starter degradation are NP and EP from data correction. We conducted statistic analysis of these two 
parameters using data collected during 10 years’ operation. It is clear that these two 
parameters are identical to show two phases: normal operation and degraded 
operation. In order to apply PF-based prognostic methods to these parameters, we 
take EP as an example to demonstrate the implementation. Figure 1 shows an example 
of EP moving average during evolution of APU degradation. It shows that the moving 
average ߤ௑ೃೆ಴ and the moving standard deviation ߪ௑ೃೆ಴ are relatively stable in the 
normal phase, but increase dramatically in the degraded phase. In the normal 
operation phase, EP measurements satisfy a stationary Gaussian ࣨሺߤ௡௢௥, ௡௢௥ଶߪ ሻ. The 
starter is healthy in this phase, and this healthy state is indicated by the starter signal 
which is a relative constant value equivalent to ߤ௡௢௥. Meanwhile, the noise signal is a 
stationary white noise with variance of ߪ௡௢௥ଶ . In the degraded phase,  ܲܧ
measurements satisfy a non-stationary distribution that cannot be analytically 
described. The starter is experiencing degradation in this phase, and the degradation 
level is indicated by the starter signal which is the estimation of the measurements. 
Meanwhile, the noise signal is a non-stationary white noise with a variance that varies 
with the degradation level of starter.  
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Fig. 1. an example of moving average for EP statistic analysis 

Therefore, we can apply PF method to filter out the white noise and identify the 
degradation trend. To this end, we developed APU states estimation models for EP. 
These models are as follows: 

ଵೖݔ :തതതത௞ܲܧ  ൌ ଵೖషభݔ ቆ ଷೖషభቇݔଷೖݔ expൣݔଶೖሺܴܷܥ௞ െ ௞ିଵሻ൧, (11)ܥܷܴ

ଶೖݔ :௞ߣ  ൌ ଶೖషభݔ ൅ ߱ଶೖ, (12)

ଷೖݔ :௞ܥ  ൌ ଷೖషభݔ ൅ ߱ଷೖ, (13)

ܧ  ௞ܲ: ݕ௞ ൌ ଵೖݔ ൅ ௞. (14)ݒ

where the subscript ݇  represents the ݇ th time step and ܴܷܥ௞  represents the 
starting cycle in this ݇th time step. There are three system states, ܲܧതതതത, ܥ ,ߣ, and one 
measurement, ܲܧ, in this system state model. These states and measurement are also 
denoted as ݔଵ ଶݔ , ଷݔ ,  and ݕ  respectively. ߱ଶ  and ߱ଷ  are independent Gaussian 
white noise processes, the ݒ is approximate by the standard deviation of ܴܷܥ  in the 
collected dataset. 

The first system state, ܲܧതതതത, represents the starter signal. As described in Equation 
11, its value at time step ݇ is determined from the system states at the previous time 
step. The second system state ߣ represents the starter degradation rate. It is located in 
the exponential part of Equation 11. Therefore, the starter degradation rate between 
two adjacent starting cycles is indicated by ݁ఒ. The higher ߣ is, the faster a starter 
degrades along an exponential growth. When ߣ ൌ 0, no degradation develops between 
two starting cycles. The third system state ܥ  represents a discrete change of the 
starter degradation between two adjacent starting cycles. During the PF iterations, the 
systems states are estimated in the framework of recursive Bayesian by constructing 
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It is worth to note that the results of NP for APU starter prognostic are similar to 
EP. It is also assume that the APU starter degradation follows a certain exponential 
growth pattern when we implemented PF-based prognostic for APU starter. This may 
not be effective for repetitive fluctuations of the starter degradation. In the future we 
should integrate data-driven prognostic techniques with PF-based prognostics to 
develop a hybrid framework for prognostics.  

The results in this work only demonstrated one failure mode, “Inability to Start”. The 
threshold value described above is determined only for this failure mode. For other 
failure modes, the corresponding statistics analysis is needed and the threshold values 
may vary. However, the developed PF-based method is still useful and applicable.     

6 Conclusions 

In this paper we developed a PF-based method for prognostics and applied it to APU 
Starter prognostics.  We implemented the PF-based prognostic algorithm by using 
sequential importance sampling, and conducted the experiments with 10 years historic 
operational data provided by an airline operator. From the experimental results, it is 
obvious that the developed PF-based prognostic technique is useful for performing 
predictive maintenance by estimating relative precise remaining useful life for the 
monitored components or machinery systems.     
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