
Maritta Heisel Wouter Joosen
Javier Lopez Fabio Martinelli (Eds.)

Engineering Secure
Future Internet
Services and Systems

St
at

e-
of

-th
e-

Ar
t

Su
rv

ey
LN

CS
 8

43
1

 123

Current Research

Lecture Notes in Computer Science 8431
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Maritta Heisel Wouter Joosen
Javier Lopez Fabio Martinelli (Eds.)

Engineering Secure
Future Internet
Services and Systems

Current Research

13

Volume Editors

Maritta Heisel
Universität Duisburg-Essen, INKO, Software Engineering
47048 Duisburg, Germany
E-mail: maritta.heisel@uni-due.de

Wouter Joosen
KU Leuven, Department of Computer Science
Celestijnenlaan 200A, 3001 Heverlee, Belgium
E-mail: wouter.joosen@cs.kuleuven.be

Javier Lopez
University of Malaga, Computer Science Department
Network, Information and Computer Security (NICS) Lab
29071 Malaga, Spain
E-mail: jlm@lcc.uma.es

Fabio Martinelli
Consiglio Nazionale delle Ricerche (CNR)
Istituto di Informatica e Telematica (IIT)
Via G. Moruzzi 1, 56124 Pisa, Italy
E-mail: fabio.martinelli@iit.cnr.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-07451-1 e-ISBN 978-3-319-07452-8
DOI 10.1007/978-3-319-07452-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014939218

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains a selection of papers representing state-of-the-art results
in the engineering of secure software-based Future Internet services and systems,
produced by the NESSoS project researchers (www.nessos-project.eu).

The Network of Excellence NESSoS has been set up in order to create and
consolidate a long-lasting research community on engineering secure software-
based services and systems. The basis of this community has been created
through the inception of European funding. The continuation of the NESSoS ac-
tivities is currently addressed through the establishment of a new IFIP working
group on Secure Engineering (WG11.14) focusing on the topics of the project.

The NESSoS engineering approach of secure software-based services is based
on the principle of addressing security concerns from the very beginning in all
software development phases, thus contributing to reducing the amount of soft-
ware vulnerabilities and enabling the systematic treatment of security needs
through the engineering process.

NESSoS joint research activities fall into six areas: (1) security requirements
for Future Internet services; (2) creating secure service architectures and secure
service design; (3) supporting programming environments for secure and com-
poseable services; (4) enabling security assurance; integrating the former results
in (5) a risk-aware and cost-aware software development life cycle (SDLC); and
(6) the delivery of case studies of Future Internet application scenarios.

The selection of papers of this volume represents examples of NESSoS re-
search, often by means of joint activities of the partners.

In addition to knowledge dissemination, NESSoS contributed to fostering the
research on security engineering and to increasing the collaboration among the
researchers involved.

NESSoS training and education activities in Europe created a new generation
of skilled researchers and practitioners in the area. The project also collaborated
with industrial stakeholders to improve the industry best practices and support
a rapid growth of software-based service systems in the Future Internet.

March 2014 Maritta Heisel
Wouter Joosen
Javier Lopez

Fabio Martinelli

Table of Contents

A Structured Comparison of Security Standards . 1
Kristian Beckers, Isabelle Côté, Stefan Fenz, Denis Hatebur, and
Maritta Heisel

Empirical Assessment of Security Requirements and Architecture:
Lessons Learned . 35

Riccardo Scandariato, Federica Paci, Le Minh Sang Tran,
Katsiaryna Labunets, Koen Yskout, Fabio Massacci, and
Wouter Joosen

STS-Tool: Security Requirements Engineering for Socio-Technical
Systems . 65

Elda Paja, Fabiano Dalpiaz, and Paolo Giorgini

Model-Driven Development of a Secure eHealth Application 97
Miguel A. Garćıa de Dios, Carolina Dania, David Basin, and
Manuel Clavel

Modeling Security Features of Web Applications . 119
Marianne Busch, Nora Koch, and Santiago Suppan

On the Synthesis of Secure Services Composition . 140
Jose A. Mart́ın, Fabio Martinelli, Ilaria Matteucci,
Ernesto Pimentel, and Mathieu Turuani

Privacy and Access Control in Federated Social Networks 160
Animesh Pathak, George Rosca, Valerie Issarny,
Maarten Decat, and Bert Lagaisse

Engineering Trust-Awareness and Self-adaptability in Services and
Systems . 180

Francisco Moyano, Carmen Fernandez-Gago, Benoit Baudry, and
Javier Lopez

Validation of Access Control Systems . 210
Antonia Bertolino, Yves Le Traon, Francesca Lonetti,
Eda Marchetti, and Tejeddine Mouelhi

Evaluation of Engineering Approaches in the Secure Software
Development Life Cycle . 234

Marianne Busch, Nora Koch, and Martin Wirsing

VIII Table of Contents

A Toolchain for Designing and Testing Access Control Policies 266
Antonia Bertolino, Marianne Busch, Said Daoudagh,
Francesca Lonetti, and Eda Marchetti

Verification of Authorization Policies Modified by Delegation 287
Marina Egea and Fabian Büttner

ISMS-CORAS: A Structured Method for Establishing an ISO 27001
Compliant Information Security Management System 315

Kristian Beckers, Maritta Heisel, Bjørnar Solhaug, and Ketil Stølen

Divide and Conquer – Towards a Notion of Risk Model
Encapsulation . 345

Atle Refsdal, Øyvind Rideng, Bjørnar Solhaug, and Ketil Stølen

Preserving Data Privacy in e-Health . 366
Riccardo Conti, Alessio Lunardelli, Ilaria Matteucci,
Paolo Mori, and Marinella Petrocchi

Author Index . 393

A Structured Comparison of Security Standards∗

Kristian Beckers1, Isabelle Côté3, Stefan Fenz2,
Denis Hatebur1,3, and Maritta Heisel1

1 paluno - The Ruhr Institute for Software Technology -
University of Duisburg-Essen, Germany

{firstname.lastname}@paluno.uni-due.de
2 Vienna University of Technology, Austria

stefan.fenz@tuwien.ac.at
3 ITESYS

Dortmund, Germany
{i.cote,d.hatebur}@itesys.de

Abstract. A number of different security standards exist and it is dif-
ficult to choose the right one for a particular project or to evaluate if
the right standard was chosen for a certification. These standards are
often long and complex texts, whose reading and understanding takes
up a lot of time. We provide a conceptual model for security standards
that relies upon existing research and contains concepts and phases of
security standards. In addition, we developed a template based upon
this model, which can be instantiated for given security standard. These
instantiated templates can be compared and help software and security
engineers to understand the differences of security standards. In par-
ticular, the instantiated templates explain which information and what
level of detail a system document according to a certain security stan-
dard contains. We applied our method to the well known international
security standards ISO 27001 and Common Criteria, and the German
IT-Grundschutz standards, as well.

Keywords: structured comparison, security standards, conceptual
model, template.

1 Introduction

IT systems become increasingly complex considering the amount of stakeholders
and technical parts involved. This complexity makes it hard for customers to
trust IT systems. In order to gain their customers’ trust, companies have to
achieve an acceptable security level. Security standards, e.g. the ISO 27000 series

∗ This research was partially supported by the EU project Network of Excellence
on Engineering Secure Future Internet Software Services and Systems (NESSoS,
ICT-2009.1.4 Trustworthy ICT, Grant No. 256980) and the Ministry of Innovation,
Science, Research and Technology of the German State of North Rhine-Westphalia
and EFRE (Grant No. 300266902 and Grant No. 300267002).

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 1–34, 2014.
c© Springer International Publishing Switzerland 2014

2 K. Beckers et al.

of standards [1] or the Common Criteria (CC) [2], offer a way to achieve this goal.
Security standard implementation concerns the development of secure systems,
processes, and documents. Implementing security standards is difficult, due to
the limited support for system development and documentation provided in the
standards.

Security concerns protecting a system against an attacker, who exploits vul-
nerabilities in the system to harm assets of stakeholders. Security vulnerabilities
in software can be treated with countermeasures against threats. However, elim-
inating all vulnerabilities is difficult, due to monetary and time constraints. Risk
management in the context of security concerns the reduction of the probability
of a threat and the limitation of its consequences. Thus, the remaining risk can
be used as a criteria for countermeasures for vulnerabilities. In addition, the risk
of an entire system has to be calculated using risk management. Risk manage-
ment is a part of security standards, but specific risk management standards
exist, e.g. ISO 31000 [3], which consider the topic in more detail. Hence, we
investigate risk management as considered in security standards in this work.

We contribute a conceptual model of security standards, based on existing
research such as the works of Sunyaev [4] and the experience of the authors.
Moreover, we use this model to investigate methodologies for security and risk
management in order to understand their similarities and differences. We de-
veloped a template that is based on this model. In particular, fields in the
template correspond to the concepts in the model. The template can be in-
stantiated for different security standards. Hence, the instantiated templates
can be used to compare different security standards by comparing the instan-
tiated fields, e.g., which kind of environment description the different stan-
dards demand. The instantiated templates provide a process independent high
level overview of the complete security standards, which helps to learn about
standards, what to expect from a system documentation according to a spe-
cific standard, and select an appropriate standard for certification. We provide
tool support for collecting, storing, and comparing the information collected
using our template. Our tool support offers the functionality to compare in-
stantiated templates by displaying their attributes next to each other. The re-
sults of this comparison can support the selection of a security standard or
an evaluation if further standards should be considered. Moreover, the instan-
tiated template can also provide a simple overview of different standards in
order to gain an understanding of relevant concepts of a standard with lit-
tle effort. Moreover, an understanding of the prescribed process of the stan-
dards and its documentation demands helps to judge an existing certification
of an IT system. Our template provides an overview of the security analy-
sis demanded by the standards and one can decide if this analysis is suffi-
cient enough in order to trust the certification of a system. We applied our
method to the international security standards ISO 27001 [1] and Common Cri-
teria [2]. These standards were chosen because of their wide spread application

A Structured Comparison of Security Standards 3

in the industry1,2,3. In addition, we added the German IT-Grundschutz stan-
dards [5] as an example for a national security standard.

2 A Method for Comparing Security Standards

In the following, we present the steps of our method for CompAring SecuriTy
standards (CAST) (see Fig. 1).

1. Define a Common Terminology. The Jason institute evaluated the re-
search field of security [6] and concluded that the field is missing a common
terminology and a basic set of well defined concepts. We address this concern
by defining a common terminology against which the terms of the standards
are evaluated. We use the terminology of the ISO 27001 standard and the
terms defined in the common body of knowledge (CBK)4 of the EU project
Network of Excellence on Engineering Secure Future Internet Software Ser-
vices and Systems (NESSoS)5 as a basis.

2. Analyze Existing Work. We aim to base our work on existing research
and analyze approaches that provide meta-models for security and risk stan-
dards. In particular, we focus on the works of Sunyaev [4], who created a
security analysis method by identifying common activities in several security
standards and the work of Stoneburner et al.[7], who created a model for risk
management as part of the NIST SP 800-30 standard. This analysis results
in a set of activities, which are often prescribed in security standards.

 e
xt

er
na

l
in

pu
t

m
et

ho
d

in
pu

t/
ou

tp
ut

2. Analyse
Existing Work

3. Define a
Conceptual Model

and Template

4. Apply
Template to
Standards

Differences and
commonalities
between standards

Common
Terminology

1. Define a
Common

Terminology

Terms
in ISO
27001

Conceptual Model for
Security and Risk

Security and Risk
Management
Steps

ISO
27001 Common

Criteria NESSoS
CBK

Common
Terms in the
NESSoS CBK

Security Standard
Template

5. Compare
Standards

IT
Grundschutz

Stoneburner

Sunyaev

Instantiated
Security Standard
Templates

……

Fig. 1. A Method for CompAring SecuriTy standards (CAST)

1 ISO statistic: http://www.iso.org/iso/iso_survey_executive-summary.pdf
2 Common Criteria statistic:
http://www.commoncriteriaportal.org/products/stats/

3 ISO statistics about ISO 27001 certifications:
http://www.iso.org/iso/database_iso_27001_iso_survey.xls

4 http://www.nessos-cbk.org
5 http://www.nessos-project.eu/

http://www.iso.org/iso/iso_survey_executive-summary.pdf
http://www.commoncriteriaportal.org/products/stats/
http://www.iso.org/iso/database_iso_27001_iso_survey.xls
http://www.nessos-cbk.org
http://www.nessos-project.eu/

4 K. Beckers et al.

3. Define a Conceptual Model and Template. We use the information
from the existing work to create a novel conceptual model, which considers
the steps identified by Sunyaev and Stoneburner et al. We propose a novel
model based on these related works. Hence, our conceptual model considers
the phases of security standards and also considers risk management activi-
ties explicitly. In order to apply the conceptual model to security standards,
we transform it into a template that can be instantiated. The template con-
tains all phases of security standards considered in the conceptual model,
as well as a description on how these phases have to be instantiated for a
particular standard.

4. Apply Template to Standards. In this phase, we instantiate the template
for well-known security standards such as Common Criteria [2] , ISO 27001
[1], and the IT Grundschutz standards [5].

5. Compare Standards. We compare the standards via comparing the differ-
ent instantiations of our templates. In addition, we consider which of our
common terms are considered by the standards and which are not. These
insights shall provide a basis for the evaluation of a particular standard.

3 CAST Step 1: Define a Common Terminology

We propose a common terminology for security standards and define terms based
on different sources. The purpose of the common terminology is to provide fixed
definitions of important terms with regard to security standards as a baseline
to which the terms in the individual standards can be compared. Using this
comparison, it can be analyzed, which terms are used in the standards for the
terms with the meaning defined below. We selected relevant terms for security
standards in the terminology based on the experience of the authors and their
industry contacts. In addition, we used definitions of these terms from well-
known sources. In the following, we list the terms related to security defined in
the ISO 27001 standard [1].

Asset anything that has value to the organization
Availability the property of being accessible and usable upon demand by an

authorized entity
Confidentiality the property that information is not made available or dis-

closed to unauthorized individuals, entities, or processes
Security Control a control shall reduce the risk of an information security

incident occurring. Note that we refer to controls also as security control for
the remainder of the paper. Note that the ISO 27001 uses just control, but
we use security control instead to make it explicit that the control addresses
a security concern.

A Structured Comparison of Security Standards 5

Information Security Incident a single or a series of unwanted or unex-
pected information security events that have a significant probability of com-
promising business operations and threatening information security

Integrity the property of safeguarding the accuracy and completeness of assets

We also include the following terms from the NESSoS Common Body of
Knowledge (CBK)’s common terminology [8]. These definitions are based on
the work of Fabian et al [9].

Stakeholder. A stakeholder is an individual, a group, or an organization that
has an interest in the system under construction. A stakeholder view de-
scribes the requirements of a particular stakeholder. The stakeholders may
express different types of requirements.

Vulnerability. Stakeholders require a security property to hold for a resource,
whose violation implies a potential loss to the stakeholder. This violation
can be caused by a vulnerability.

Threat. A vulnerability could potentially be exploited by a threat. A realized
threat is an attack that actually exploits a vulnerability and is initiated by
an attacker.

attacker. An attack actually exploits a vulnerability, and the person initiating
the attack is an attacker.

Security Goal. A stakeholder’s security goal expresses his or her security con-
cerns towards an asset. Security goals are traditionally classified into in-
tegrity, confidentiality, and availability goals.

Security requirements. Security requirements capture security goals in more
detail. A security requirement refines one or more security goals. It refers to
a particular piece of information or service that explicates the meaning of
the asset it concretizes in the context of the system under construction.

We also include the following terms to determine the focus of security stan-
dards.

Machine. Jackson [10] defines that the machine is the system or software to
be developed. In our context the machine is the thing in the focus of the
security analysis process described in security standards.

Environment. The environment includes a description of all relevant entities
in the environment of the machine and, in particular, the interfaces to these
entities to the machine.

Policy. Security requirements influence formulating security policies, which con-
tain more information than security requirements. “Security policies state
what should be protected, but may also indicate how this should be done.”
[11, p. 5]. “A security policy is a statement of what is, and what is not,
allowed” [12, p. 9] “for us, security boils down to enforcing a policy that
describes rules for accessing resources” [13, p. 14] and “security policy is a
[...] policy that mandates system-specific [...] criteria for security” [14, p. 34].

6 K. Beckers et al.

Security Functions. The machine has descriptions of actual implementable
functions that concern the fulfillment of security requirements. The descrip-
tions of these functions are security functions.

4 CAST Step 2: Analyse Existing Work

We base our conceptual model for security standards on the HatSec Method (see
Sect. 4.1) and the NIST SP 800-30 standard (see Sect. 4.2),

4.1 The HatSec Method

We base our conceptual model for comparing security standards on the HatSec
method, because the author analyzed existing security standards and based his
method on the resulting common building blocks of the analyzed standards.
Only a few standards in the analysis are specific to the health care domain, but
most of them are generic security standards such as ISO 27001 [1]. Moreover, the
HatSec method does not create specific building blocks for the medical domain.
Hence, the mining of security standard specific building blocks can be re-used
for our conceptual model. We rely on the HatSec method as a foundation for
our conceptual model, but the difference to our work is that the HatSec method
provides a means to conduct a security analysis, while we provide a method to
compare the processes, documentation demands, and methodologies in security
standards.

The Healthcare Telematics Security (HatSec) method by Sunyaev [4] is a
security analysis method developed for the healthcare domain. Sunyaev focuses
on security analysis in the investigated standards, even though several of the
standards the author investigates concern risk management, as well. However,
in these cases the author did not consider the parts in the standards that concern
risk in detail. The method consists of seven building blocks, which are derived
from the following security and risk management standards: ISO27799 [15] ISO
27001 [1], IT Grundschutz [5], NIST SP 800-30 [7], CRISAM [16], CRAMM
[17], ISRAM [18], ISMS JIPDEC for Medical Organisations [19], HB 174-2003
[20], US Department of Health and Human Services - Guideline for Industry,
Q9 Quality Risk Management [21]. Note that only the last four standards are
specific to the health care domain.

The building blocks of the HatSec method are related to the standard as fol-
lows. Each building block of the HatSec method occurs also in these standards.
However, not all of the steps in the standards occur in the HatSec method. Fig. 2
shows the seven building blocks of the method. These are further divided into
three phases. The Security Analysis Context and Preparation phase establishes
the context of the security problem. The Scope Identification describes the lim-
its of the environment and the system-to-be followed by the Asset Identification.

A Structured Comparison of Security Standards 7

The Security Analysis Process covers the actual analysis activities of the method.
The Basic Security Check reveals countermeasures already in place and the
Threat Identification shows dangers resulting from possible attacks on the system-
to-be. The Vulnerability Identification reveals vulnerabilities to security prop-
erties that are potentially exploited by threats. The original HatSec method
demands an iteration between the Basic Security Check and the Threat Identifi-
cation. However, we propose to rather iterate between the Vulnerability Identi-
fication and the Basic Security Check, because countermeasures are in place to
mitigate vulnerabilities and only subsequent threats. These two building blocks
shall be executed in iterations, e.g., if a threat is detected, it shall be checked
if a countermeasure for the vulnerability is already in place. The Security As-
sessment concludes the Security Analysis Process by determining the level of
security required and the risks remaining. In addition, the Security Assessment
also initiates the Security Analysis Product phase, because the Security Measures
activity evaluates the results of the Security Assessment in order to determine
if the chosen level of security is adequate or if changes have to be made, e.g.,
adding additional security controls.

1. Scope Identification

2. Asset Identification

3. Basic Security Check4. Threat Identification

Security Analysis Context and Preparation

Security Analysis Process

Security Analysis Product

5. Vulnerability Identification

7. Security Measures

6. Security Assesment

Fig. 2. The HatSec Method by Sunyaev [4]

8 K. Beckers et al.

4.2 NIST SP 800-30 Standard

The entire information security risk management methodology by Stoneburner
et al. [7] is subdivided into three main phases: (1) risk assessment, (2) risk mit-
igation, and (3) evaluation. Risk assessment identifies and evaluates potential
risks and their impacts, to recommend preventive and risk-reducing controls. In
the risk mitigation phase, the identified risks are prioritized and adequate pre-
ventive controls are implemented and maintained. After the control implemen-
tation, a continual evaluation phase determines whether the implemented risk-
reducing controls decrease the risk to an acceptable level or if further controls are
required.

We briefly describe the NIST SP 800-30 risk management methodology, which
we use as a basis for adding further building blocks to the HatSec method in
order to create a conceptual model to compare security standards and also their
approaches towards risk management in more detail. The reasons for having
chosen the information security risk management methodology by Stoneburner
et al. [7] are: (1) it gives very detailed identification and guidance of what should
be considered in the phases of risk assessment, mitigation, and evaluation, (2)
the methodology is well-accepted and well-established, (3) it is freely available,
and (4) it supports organizations of all sizes. The comparison of the methodology
against others shows that the proposed concepts could be easily applied to similar
information security risk management methodologies such as ISO 27005 [22] or
EBIOS [23] due to the similar structures of these methodologies.

5 CAST Step 3: Define a Conceptual Model

We extended the HatSec Method with several concepts from the NIST SP 800-30
and refined several concepts to ensure a more detailed comparison of security
standards. Moreover, we integrated the conceptual model into a sequence of
Standard Activities, which are the activities that have to be conducted to establish
a security standard. Our conceptual model is shown in Fig. 3, we show example
instantiations in Sect. 6. We structure our conceptual model using the three
phases Security Analysis Context and Preparation, Security Analysis Process,
and Security Analysis Product (see Sect. 4).

We explain the building blocks of the Security Analysis Context and Prepa-
ration in the following. We split the scope identification of the HatSec method
into an environment description and a stakeholder description. The reason is
that security is about protection of assets and harm to assets results in a loss
to stakeholders. We have to understand the significance of the loss by describ-
ing the stakeholder. Moreover, stakeholders can cause threats to assets, and the
identification of stakeholders in a scope is a research problem [24,25]. Moreover,
we included the building block Risk Level Description to include a mechanism
to categorize assets already in the beginning of the security analysis. This is
done to focus security analysis on assets with a high risk level, as is suggested
by NIST SP 800-30 [7] and IT Grundschutz [26].

A Structured Comparison of Security Standards 9

Security Analysis Context and Preparation

Asset Identification

Stakeholder Description

Environment Description

Risk Level Definition

Security Analysis Process

Vulnerability and Threat Analysis

Security Property Description

Control Assessment

Security Analysis Product

Security and Risk Documentation

Security Assessment

Security Measures

Risk Determination

Risk Acceptance

Fig. 3. A Conceptual Framework for Security Standards

10 K. Beckers et al.

We describe our building blocks for the Security Analysis Context and Prepa-
ration phase in the following.

Environment Description. The environment description states the scope of
the standard. Hence, the environment in which the security system shall
be integrated into should be, e.g., an organization or an Information and
Communication Technology (ICT)-based System or combinations of both.

Stakeholder Description. The stakeholder description describes all relevant
persons, organizations, and government bodies that have a relation to the
environment.

Asset Identification. The asset identification for the stakeholders collects all
information or resources that have a value to the stakeholders. The assets
shall be protected from harm caused by the environment.

Risk Level Description. For each asset, a risk level description states the im-
pact the loss of an asset has on a stakeholder. Hence, the risk level description
classifies the assets into categories according to their significance for the en-
vironment. In this building block the risk level determination is based on the
opinion of stakeholders and described on a high level of abstraction.

We explain the building blocks of the Security Analysis Process in the follow-
ing. We divided the building block Basic Security Check into a security property
definition for assets and an assessment of existing controls. The security proper-
ties provide an overview of high level security goals, which should be separated
from the Control Assessment, since it considers existing security solutions. More-
over, we combined the threat analysis and vulnerability identification, because
threats are exploited vulnerabilities [9] and should be considered together in our
view. We add also a Risk Determination building block to the Security Analysis
Process that describes how likelihoods and consequences for the resulting threats
are assessed.

Security Property Description. We initiate the Security Analysis Process
with a high level security property description, which determines security
goals for assets. For example, the ISO 27001 standard uses high level security
objectives to “establish an overall sense of direction and principles for action
with regard to information security” [1, p. 4] as part of their ISMS policy,
the superset of all security policies that the standard establishment creates.

Control Assessment. The control assessment determines which controls (ei-
ther technical ones such as encryption mechanisms or non-technical controls
such as security policies) are already in place and their ability to ensure a
security property of an assets.

Vulnerability and Threat Analysis. The threat analysis assumes vulnera-
bilities of an asset. Moreover, threats have to be validated by showing that
the potentially exploited vulnerability exists. In general, a threat requires a
source and an existing vulnerability to become effective. The threat source
can either intentionally or accidentally exploit a potential vulnerability. The
aim of the threat identification step is to determine potential threats and
their corresponding sources such as human threats (e.g. active network at-
tacks, theft, unintentional data alternation, etc.), or environmental threats

A Structured Comparison of Security Standards 11

Table 1. NIST 800-30 probability definitions [7]

Probability
Level

Probability Definition

High The threat-source is highly motivated and sufficiently capable, and controls to prevent
the vulnerability from being exercised are ineffective.

Medium The threat-source is motivated and capable, but controls are in place that may impede
successful exercise of the vulnerability.

Low The threat-source lacks motivation or capability, or controls are in place to prevent, or
at least significantly impede, the vulnerability from being exercised.

(e.g. power failure, water leakage, etc.). On the basis of the threat analy-
sis, the vulnerability analysis shows potential vulnerabilities present in the
scope, including the consideration of vulnerabilities in the field of (1) man-
agement security (e.g. no assignment of responsibilities, no risk assessment,
etc.), (2) operational security (e.g. no external data distribution and labeling,
no humidity control, etc.), and (3) technical security (e.g. no cryptography
solutions in use, no intrusion detection in place, etc.).

Risk Determination. The risk determination determines useful likelihood and
impact scales to conduct risk management for assets. The risk determination
considers the output of all previous steps and evaluates these results with
regard to risk, considering the likelihood and impact scales. We explain this
step further based on the NIST 800-30 standard in the following.
Firstly, a probability determination is concerned with the probability of a
threat exploiting a certain vulnerability in the given system. Therefore, the
organization has to deal with the following factors: (1) motivation and ca-
pability of the attacker, (2) nature of the vulnerability, and (3) existence
and effectiveness of the current controls. Stoneburner et al. [7] propose a
qualitative probability rating as stated in Table 1.
Secondly, an impact analysis determines the impact on the organization’s
ability to perform its mission if a threat should successfully exploit a cer-
tain vulnerability. The NIST SP 800-30 information security risk manage-
ment methodology recommends measuring the impact in terms of the loss
of integrity, availability, and/or confidentiality. While some impacts can be
measured quantitatively in terms of the revenue lost, NIST recommends the
measurement of impacts on a qualitative level (e.g. high, medium, and low).
The main problem with quantitative measurement methods is that it is very
hard to determine if the impact of a certain threat exactly corresponds to
a certain amount of money. How can someone determine that a fire would
cause a loss of exactly EUR 923.343 and not EUR 923.443? In most cases,
people tend to use quantitative methods in a qualitative way, for example
assigning monetary ranges (e.g. EUR 0 - EUR 200.000, EUR 200.000 - EUR
400.000, etc.) to the different impact levels.
Thirdly, the organization now knows the components necessary to deter-
mine the actual risk: (1) the probability that a given threat source exploits a
certain vulnerability, (2) the impact caused if the threat exploited the very
vulnerability, and (3) the adequacy of the existing controls for reducing or

12 K. Beckers et al.

Table 2. NIST 800-30 risk scale and necessary actions [7]

Risk
Level

Risk Description and Necessary Actions

High If an observation or finding is evaluated as a high risk, there is a strong need for corrective
measures. An existing system may continue to operate, but a corrective action plan must be
put in place as soon as possible.

Medium If an observation is rated as medium risk, corrective actions are needed and a plan must be
developed to incorporate these actions within a reasonable period of time.

Low If an observation is described as low risk, the system’s administrator must determine whether
corrective actions are still required or decide to accept the risk.

eliminating the risk. By multiplying the threat probability with the magni-
tude of the impact, the organization is able to determine the risk level and
thus to plan the necessary actions as stated in Tab. 2.

Finally, we explain the building blocks of the Security Analysis Product phase.
We use the Security Assessment and Security Measures building blocks as de-
scribed in the HatSec method and we add explicit building blocks for Risk Ac-
ceptance and Security and Risk Documentation. Risk Acceptance is an essential
step of finishing the security analysis product, and if risks are accepted to soon,
the entire security analysis product might not be effective. Hence, we aim to
document in the template how the standards address this issue. In addition, the
certification process of a security standard is usually based on the documenta-
tion of the security analysis product. That is why we want to add a description
of the demanded documentation in our conceptual model and template.

Security Assessment. The security assessment evaluates if the existing se-
curity controls satisfy the security properties of the assets considering the
results of the Vulnerability and Threat Analysis, as well as the Risk Deter-
mination. This step also describes how further security controls have to be
selected. For example, the ISO 27001 standard [1] has a mandatory ANNEX
A from which controls have to be selected.

Security Measures. The security measures activity specifies a list of new, re-
fined or existing security controls that are required to improve the protection
of the assets. This final result of the selection of controls are the Security
Measures. For example, the ISO 27001 demands a so-called Statement of
Applicability that reasons about the necessity of the controls in ANNEX A.

Risk Acceptance. The risk acceptance evaluates if the Security Measures re-
duce the risk of attacks on assets to acceptable levels. Often a clear cut
criteria has to be defined that is fulfilled or not. For example, the controls
prevent threats from attackers with a mediocre skills level and a limited
amount of time.

Security and Risk Documentation. The security system description finishes
with the security and risk documentation of the security analysis product.
The documentation has to usually follow certain guidelines of a standard.

We mapped our conceptual model to a template presented in Tabs. 14, 15,
and 16 in the appendix. We have elicited a series of questions for each building

A Structured Comparison of Security Standards 13

block, which shall help to fill in the required information. In addition, we stated
which common terms are relevant for each part of the template.

6 CAST Step 4: Instantiate Template with Standards

We instantiate our template with the ISO 27001 standard (Sect. 6.1), IT Grund-
schutz (Sect. 6.2), and Common Criteria (Sect. 6.3).

6.1 ISO 27001

The ISO 27001 defines the requirements for establishing and maintaining an In-
formation Security Management System (ISMS) [1]. In particular, the standard

Table 3. Instantiation for ISO 27001 of the Security Analysis Context and Preparation
Part of the Template for Security Standard Description

Security Analysis Context and Preparation

Environment Description

The machine in this standard is the ISMS and the environment is anything outside the scope
of the ISMS. “The standard demands an ISMS scope definition and its boundaries in terms
of the characteristics of the business, the organization, its location, assets and technology, and
including details of and justification for any exclusions from the scope” [1, p.4,Sect. 4.2.1 a].
The standard mentions the scope explicitly in the following sections. Sect. 4.2.1 d concerns risk
identification and the section recommends to consider the scope definition for identifying assets.
Section 4.2.3 demands management reviews of the ISMS that also includes to check for possible
changes in the scope of the ISMS. Section 4.3 lists the documentation demands of the standard
and Sect. 4.3.1 d requires a documentation of the scope of the ISMS. Moreover, the standard
demands an explicit to creating an ISMS. In particular, Section 5.1 Management commitment
concerns proof the management shall provide for establishing an ISMS objectives, plans, re-
sponsibilities and accepting risks. Section 5.2 Resource management concerns the provision of
resources for establishing the ISMS and the training of the members of the organization for
security awareness and competence.

Stakeholder Description

The stakeholder definition is part of the scope definition. The standard uses the term Interested
Parties [1, p. vi] instead of stakeholders, who have security “expectations” that are input for
the ISMS implementation as well as “security requirements”.

Asset Identification

The design goal of the ISO 27001 ISMS is to protect assets with adequate security controls
and this is stated already on page 1 of the standard. This is relevant in particular in Section 4
that describes the ISMS and in particular in Sect. 4.2 - Establishing and managing the ISMS
states the scope definition. Section 4.2.1 a demands the definition of assets. Section 4.2.1 b
concerns the definition of ISMS security policies demands that the policy shall consider assets.
Section 4.2.1 d that concerns risk identification uses the scope definition to identify assets, to
analyze threats to assets, and to analyze the impacts of losses to these assets. Section 4.2.1 e
concerns risk analysis, which also clearly define to analyze assets and to conduct a vulnerability
analysis regarding assets in light of the controls currently implemented.

Risk Level Definition

The standard requires a risk level definition in the steps following the scope definition. Sec-
tion 4.2.1 b states that the ISMS policy has to align with the risk management. Section 4.2.1 c
demands a risk assessment that includes criteria for accepting risks and identify the acceptable
risk levels.

14 K. Beckers et al.

Table 4. Instantiation for ISO 27001 of the Security Analysis Process Part of the
Template for Security Standard Description

Security Analysis Process

Security Property Description

The standard demands the elicitation of high level security goals in the section after the scope
definition, this Section 4.2.1 b concerns the definition of ISMS policies of which high level
security goals are a part. “The ISMS policy is considered as a superset of the information
security policy.” [1, p. 4].

Control Assessment

The assessment concerns likelihoods of security failures with regard to threats and vulnerabili-
ties. In addition, impacts to assets should be considered of the controls currently implemented
according to ISO 27001 Section 4.2.1 e 2.

Vulnerability and Threat Analysis

The ISO 27001 standard concerns threat analysis in several sections for determining the risks
to assets. Section 4.2.1 d demands a threat analysis for assets for the purpose of identifying
risks and the vulnerabilities that might be exploited by those threats. Section 4.2.1 e concerns
risk analysis and evaluation and demands to determine likelihoods and consequences for threats.
Section 4.2.4 d concerns the review process of the ISMS and also demands a threat identification.
Section 7.2 that concerns the management review of the ISMS also demands a threat analysis.

Risk Determination

The standard demands a description of a methodology for risk management and it mentions
several related activities explicitly. Section 4.2.1 d concerns risk identification and Sect. 4.2.1 e
demands risk analysis and evaluation.

describes the process of creating a model of the entire business risks of a given
organization and to specify specific requirements for the implementation of se-
curity controls. The resulting ISMS provides a customized security level for an
organization.

The ISO 27001 standard contains a description of the so-called ISO 27001
process [1]. The process contains phases for establishing an ISMS, implement-
ing and operating an ISMS and also monitoring, reviewing, maintaining and
improving it.

In the initial phase, the scope and boundaries of the ISMS, its interested
parties, environment, assets, and all the technology involved are defined. In this
phase, also the ISMS policies, risk assessments, evaluations, and controls are
defined. Controls in the ISO 27001 are measures to modify risk.

The ISO 27001 standard demands a set of documents that describe the re-
quirements for the ISMS. Furthermore, the standard demands periodic audits
towards the effectiveness of an ISMS. These audits are also conducted using
documented ISMS requirements. In addition, the ISO 27001 standard demands
that management decisions, providing support for establishing and maintaining
an ISMS, are also documented. This support has to be documented via man-
agement decisions. This has to be proven as part of a detailed documentation of
how each decision was reached and how many resources (e.g., personal, budget,
time, etc.) are committed to implement this decision. Moreover, certification
of an ISMS according to the ISO 27001 standard is possible, based upon the
documentation of the ISMS.

A Structured Comparison of Security Standards 15

Table 5. Instantiation for ISO 27001 of the Security Analysis Product Part of the
Template for Security Standard Description

Security Analysis Product

Security Assessment

Threats to assets have to be analyzed and existing security controls documented. The risk has
to be evaluated of these threats according to the criteria set previously, considering the existing
security controls.
For all unacceptable risks security controls have to be selected to reduce the risk to acceptable
level. The control selection is based on security requirements, which are refinements of the high
level security goals. This is explained in the following.

Security Measures

The ISO 27001 standard concerns high level ISMS policies during the establishment of the
ISMS to guide the focus of security and security policies as controls that define in detail what a
specific security controls should achieve. In particular, the Annex A of the ISO 27001 standard
describes the normative controls of the standard. This is stated in Section 4.2.1 f concerning
risk treatment and Section 4.2.1 g discussing controls for risk treatment.

Risk Acceptance

Criteria for acceptable have to be defined in the beginning of the risk analysis (Section 4.2.1 c)
and after the control selection it has to be shown that the criteria for acceptable risk are
fulfilled. The standard also demands management approval for acceptable levels of risk (see
Section 4.2.1 h).

Security and Risk Documentation

The ISO 27001 standard demands the following documents:

– ISMS policies and objectives
– Scope and boundaries of the ISMS
– Procedures and controls
– The risk assessment methodology
– Risk assessment report
– Risk treatment plan
– Information security procedures
– Control and protection of records that can provide evidence of compliance to the require-

ments of the ISMS
– Statement of Applicability describing the control objectives and controls that are relevant

and applicable to the organization’s ISMS.

In addition, the ISO 27001 standard demands the documentation of Management Decisions
that provide support for establishing and maintaining an ISMS.

6.2 IT-Grundschutz

The German Bundesamt für Sicherheit in der Informationstechnik (BSI) issued
the so-called BSI series of standards for information security [26] (see left hand
side of Fig. 4). These are based on the ISO 27001 and ISO 27002 standards
and refine them with a new methodology. The series of standards consists of
BSI-Standard 100-1 that concerns the management issues of the standard such
as planning IT processes. The BSI-Standard 100-2 [27] describes the method-
ology of how to build an ISMS, BSI-Standard 100-3 [5] concerns risk manage-
ment, and BSI 100-4 [28] considers Business Continuity Management, e.g., data

16 K. Beckers et al.

Fig. 4. BSI IT-Grundschutz Overview taken from [26]

Fig. 5. IT Grundschutz Method taken from [27]

A Structured Comparison of Security Standards 17

Table 6. Instantiation for BSI 100.2 of the Security Analysis Context and Preparation
Part of the Template for Security Standard Description

Security Analysis Context and Preparation

Environment Description

The standard demands a description of the scope and in particular [27, p. 37]:
- “Specify which critical business processes, specialised tasks, or parts of an organisation will
be included in the scope
- Clearly define the limits of the scope
- Describe interfaces to external partners”The machine in this standard is an ISMS and the
environment are described via interfaces to external partners.
The scope definition is accompanied by a structure analysis, which demands a separate doc-
umentation of the following parts of the scope: information, application, IT systems, rooms,
communication networks.

Stakeholder Description

The employees of the organization that take part in the business processes have to be docu-
mented. Moreover, the users of the scope elements such as applications are documented, as well.
These are both part of the scope definition. The standard refers to users or employees of the
organization instead of stakeholders.

Asset Identification

For each business process in the scope a level of protection has to be determined. The entire pro-
cesses and in particular the information technology used and information processed it contains
are considered as assets.

Risk Level Definition

The standard uses the protection requirements as an indicator for high level risks.

recovery plans. In the following, we focus on BSI 100-2, because it contains the
methodology. The BSI standard 100-2 describes how an ISMS can be established
and managed. It is compatible to the ISO 27001 standard, meaning that an im-
plementation of the BSI standard 100-2 can be used for an ISO 27001 certification
with the German BSI [26, p. 12]. In addition, the standard aims towards reducing
the required time for an ISMS implementation. This is achieved by provisioning
the IT Grundschutz Catalogues (see right hand side of Fig. 4). This catalog con-
tains a significant collection of IT security threats and controls, and a mapping
between them. Note that controls are called safeguards in the BSI terminology.
The standard offers a method depicted in Fig. 5 that starts with a structural
analysis of the organization and the environment. The standard suggests a focus
on at least the areas organization, infrastructure, IT-systems, applications, and
employees. The next step is to determine the required security level, followed by
modeling the security measures, and a basic security check. This security check
classifies the assets and executes a risk analysis for the 20 percent of assets with
the highest security level. The remaining 80 percent are not considered in a risk

18 K. Beckers et al.

Table 7. Instantiation for BSI 100.2 of the Security Analysis Process Part of the
Template for Security Standard Description

Security Analysis Process

Security Property Description

All general security concerns are specified in an information security policy, which describes the
general direction of information security in the organization. In addition, for each asset security
goals have to be determined in terms of confidentiality, integrity, and availability. The standard
calls them protection requirement, which have to be categorized in the levels: normal, high, and
very high [27, p. 48]. These categories have the meaning [27, p. 48]:
Normal “The impact of any loss or damage is limited and calculable.”
High “The impact of any loss or damage may be considerable.”
Very High “The impact of any loss or damage may be of catastrophic proportions which could
threaten the very survival of the organisation.”
Note that the standard also allows to define a different scale, but this is the scale recommended.
The protection requirements are refined with damage scenarios [27, p. 48]:
“Violations of laws, regulations, or contracts
Impairment of the right to informational self-determination Physical injury
Impaired ability to perform the tasks at hand
Negative internal or external effects
Financial consequences”
These damage scenarios have to be put in relation to the protection requirement for each
organization that establishes the standard. This means it has to be defined for each category
what the damage scenario means, e.g., what means normal financial consequences.

Control Assessment

The standard relies on the security controls listed in the IT Grundschutz catalog. These are
categorized into [27, p. 48]:
S 1 Infrastructure,
S 2 Organization,
S 3 Personnel,
S 4 Hardware and software,
S 5 Communication,
S 6 Contingency planning.
Several of the threats listed in the IT Grundschutz Catalogues have existing mappings to pos-
sibly relevant safeguards. These have to be considered as relevant if a threat is selected. The
safeguards have to be refined for the scope. The standard refers to safeguards instead of security
controls.

Vulnerability and Threat Analysis

The standard demands a model of the scope. The IT Grundschutz catalog provides modules
that support this modeling. These modules are categorized in the following domains [27, p. 48]:
General aspectsInfrastructureIT systemsNetworksApplication. The modules contain a mapping
to the following threat categories:
T 1 Force majeure,
T 2 Organisational shortcomings,
T 3 Human error,
T 4 Technical failure,
T 5 Deliberate acts.
All of the threats in each threat category of the IT Grundschutz catalog have to be analyzed
with regard to the scope and the relevant threats have to be documented. The threats have to
be refined for the scope of the analysis.

Risk Determination

A risk analysis can be conducted either after the basic security check or the supplementary
security check. The management has to make a choice, for which assets a risk analysis has
to be conducted. The standard does not prescribe a strict methodology for risk management,
but provides rather advice for how to consider threats and safeguards and in which step of the
method use to apply the threat analysis. It is not providing a method for e.g. eliciting likelihood
or consequences scales.

A Structured Comparison of Security Standards 19

Table 8. Instantiation for BSI 100.2 of the Security Analysis Product Part of the
Template for Security Standard Description

Security Analysis Product

Security Assessment

A security assessment is done using a so-called basic security check. The model of the scope
and the protection requirements are used to develop a security test plan, which determines the
effectiveness of existing security controls. Each test has to describe a target state and after
conducting the test it is determined if a control is effective by analyzing the state of the tested
scope elements. In a sense the security testing plans are based on security requirements, which
refine the protection requirements.
This basic security check consists of three different steps. “The first step consists of making
the organisational preparations and, in particular, selecting the relevant contact people for the
target/actual state comparison. In Step 2, the target state is compared to the actual state
by conducting interviews and performing random checks. In the final step, the results of the
target/actual state comparison are documented together with the reasoning behind the results.
” [27, p. 66].

Security Measures

After considering the threats and safeguards in the IT Grundschutz catalog a supplementary
security analysis is conducted.
“The supplementary security analysis is to be performed on all target objects in the information
domain to which one or more of the following applies:
- The target objects have high or very high protection requirements in at least one of the three
basic values – confidentiality, integrity, or availability
- The target objects could not be adequately depicted (modelled) with the existing modules in
the IT-Grundschutz Catalogues
- The target objects are used in operating scenarios (e.g. in environments or with applications)
that were not foreseen in the scope of IT-Grundschutz.
” [27, p. 66].

Risk Acceptance

Accepted risks have to be documented with a reasoning.

Security and Risk Documentation

Each step of the methodology presented in the standard has to be documented.

Countermeasure Risk

AssetThreat Agent Threat

Owner value
wish to

minimize

wish to abuse and / or may damage

give rise to

increase to

reduce

impose

to

Fig. 6. The Common Criteria Basic Security Model taken from [2]

20 K. Beckers et al.

Table 9. Instantiation for Common Criteria of the Security Analysis Context and
Preparation Part of the Template for Security Standard Description

Security Analysis Context and Preparation

Environment Description

The common criteria demands a description of the TOE in its environment. Hence, the TOE
is the machine. The environment contains stakeholders, other software components the TOE
requires, e.g., a specific operating system. The standard discusses the environment simply as
outside the TOE.
“An ST introduction containing three narrative descriptions of the TOE ” [2, p. 64, Part 1:
Introduction and general model]. The TOE reference provides a description of unique identifi-
cations for an ST that describes the TOE such as a version numbers for the revision of the ST.
The TOE overview describes the intended functionality of the TOE and security features on a
high level of abstraction. The standard describes the TOE and its environment, which is simply
referred to as outside or operational environment of the TOE. Hence, the system consists of the
TOE and its operational environment.

Stakeholder Description

The Common Criteria focuses on describing a software product and it describes stakeholders
just as much as they are required to understand the TOE’s functionality or security features.
For example, a TOE shall display certain information to a user.
The standard uses the term external entity for all stakeholders that interact with the TOE
from the outside. It explicitly states that a user is a external entity. Note that the term external
entities also includes IT entities [2, p. 16 and p. 20, Part 1: Introduction and general model].

Asset Identification

“Security is concerned with the protection of assets. ” [2, p. 38, Part 1: Introduction and general
model]. Stakeholders consider assets valuable (see below), which is highly subjective. Thus, the
identification of assets depends upon information from stakeholders, because “almost anything
can be an asset ” [2, p. 38, Part 1: Introduction and general model]. Hence, assets should have
a description and also some information regarding the need for protection. This is aligned with
descriptions of existing PPs such as [29]. Furthermore, in PPs the concept of a SecondaryAssets
is used [29], whose loss do not cause harm to the ToE Owner directly, but the harm can cause
harm to an Asset. This in turn can cause a loss to a ToE Owner.
The standard defines “assets entities that the owner of the TOE presumably places value
upon. ” [2, p. 16 and p. 20, Part 1: Introduction and general model].

Risk Level Definition

The Common Criteria concerns risks arising from attacks and the standard does not define
basic risk levels, but attack potentials. The scale is basic, enhanced-basic, moderate, high.

analysis and simply suggested safeguards in the IT Grundschutz Catalogues for
these assets are implemented. After the security check, the measures are consol-
idated and another basic security check is executed. The last step is realizing
the measures.

6.3 The Common Criteria

The ISO/IEC 15408 - Common Criteria for Information Technology Security
Evaluation is a security standard that can achieve comparability between the
results of independent security evaluations of IT products. These are so-called
targets of evaluation (TOEs).

A Structured Comparison of Security Standards 21

Table 10. Instantiation for Common Criteria of the Security Analysis Process Part of
the Template for Security Standard Description

Security Analysis Process

Security Property Description

Security needs of assets are expressed in terms of confidentiality, integrity, and availability or
other not specified security goals. “Security-specific impairment commonly includes, but is not
limited to: loss of asset confidentiality, loss of asset integrity and loss of asset availability.” [2,
p. 39].
These terms are not defined in the general term definition section of Part 1, but refined terms
are defined in Part 2: security functional components. For example, FDP UCT describes the
meaning of user data confidentiality.

Control Assessment

“Subsequently countermeasures are imposed to reduce the risks to assets. These countermea-
sures may consist of IT countermeasures (such as firewalls and smart cards) and non-IT coun-
termeasures (such as guards and procedures). ” [2, p. 39, Part 1: Introduction and general
model].
The standard uses the term countermeasure for security control.

Vulnerability and Threat Analysis

The common criteria considers threats from malicious attackers and also from attackers that
present unintentional threats such as accidental disconnecting a server from a power supply.
“The Common Criteria is applicable to risks arising from human activities (malicious or other-
wise) and to risks arising from non-human activities. ” [2, p. 16 and p. 20, Part 1: Introduction
and general model].
The common criteria suggests further to describe the attack potential that “measure of the effort
to be expended in attacking a TOE, expressed in terms of an attacker’s expertise, resources and
motivation. ” [2, p. 14, Part 1: Introduction and general model]. The description of attackers
leads to threats the attacker present by exploiting vulnerabilities.

Risk Determination

The Common Criteria focuses on identifying vulnerabilities and attackers that might exploit
these vulnerabilities. “These threats therefore give rise to risks to the assets, based on the like-
lihood of a threat being realised and the impact on the assets when that threat is realised. ” [2,
p. 39, Part 1: Introduction and general model]. However, the standard does not follow a risk
management approach like ISO 31000, but focuses on documenting vulnerabilities and coun-
termeasures of a TOE. An ST shall help to decide if a stakeholder is willing to accept the
risk of using a TOE. “Once an ST and a TOE have been evaluated, asset owners can have
the assurance (as defined in the ST) that the TOE, together with the operational environment,
counters the threats. The evaluation results may be used by the asset owner in deciding whether
to accept the risk of exposing the assets to the threats. ” [2, p. 58, Part 1: Introduction and
general model].

The Common Criteria (CC) is based upon a general security model
(see Fig. 6). The model considers TOE owners that value their assets and wish
to minimize risk to these assets via imposing countermeasures. These reduce
the risk to assets. Threat agents wish to abuse assets and give rise to threats
for assets. The threats increase the risk to assets. The concepts of the Common
Criteria consider that potential TOE owners infer their security needs for spe-
cific types of TOEs, e.g., a specific firewall. The resulting documents are called
Security Targets (ST). Protection profiles (PP) state security needs for an en-
tire class of TOEs, e.g., client VPN application. The evaluators check if a TOE

22 K. Beckers et al.

Table 11. Instantiation for Common Criteria of the Security Analysis Product Part
of the Template for Security Standard Description (1/2)

Security Analysis Product

Security Assessment

Each of the threats previously identified leads to the formulation of a security objective, which is
equal to a security requirement in the common terminology. The Common Criteria distinguishes
between security objectives, which concern the TOE, and the ones concerning the environment.
The latter ones are so-called security objectives for the environment. Moreover, the Common
Criteria considers organization security policies, which are equal to the policy term.
The Common Criteria uses cross-tables that present a mapping of all identified threats to secu-
rity objectives, security objectives for the environment, assumptions, or organization security
policies.
Each threat has to mapped to at lease one security objectives, security objectives for the envi-
ronment, or assumptions.

Security Measures

Security objectives are refined by security functional requirements, which are gap texts that
concern specific security functions such as access control functions. Security objectives are on a
high abstraction level, while security functional requirements concern concrete implementable
security functionalities.
All security objectives have to be refined using security functional requirements. A cross-table
has to show that all security objectives are refined by at least one security functional require-
ment.

Risk Acceptance

“Owners of assets may be (held) responsible for those assets and therefore should be able to
defend the decision to accept the risks of exposing the assets to the threats. ” [2, p. 39, Part
1: Introduction and general model].

meets its ST. Protection profiles (PP) state the security requirements of TOE
owners. TOE developers or vendors publish their security claims in security tar-
gets (ST). A CC evaluation determines if the ST is compliant to a specific PP.
The standard relies upon documents for certification, which state information
about security analysis and taken measures.

7 CAST Step 5: Compare Standards

We analyze the instantiated templates (Sect. 6) of the ISO 27001 standard
(Sect. 6.1), IT Grundschutz (Sect. 6.2), and Common Criteria (Sect. 6.3) in
Sect. 7.1. In addition, we describe the tool support for our method in Sect. 7.2.

7.1 Comparison

We compared the terminology of the security standards ISO 27001, IT Grund-
schutz, and Common Criteria in Tab. 7.1 with the terminology introduced in
Sect. 3. The symbol ”∼“ means that the term is equal to the definition in our
terminology (Sect. 3). A ”−“ states that the standard does not consider that
term explicitly.

A Structured Comparison of Security Standards 23

Table 12. Instantiation for Common Criteria of the Security Analysis Product Part
of the Template for Security Standard Description (2/2)

Security Analysis Product

Security and Risk Documentation

The concepts of the Common Criteria consider that potential ToE owners infer their security
needs for specific types of ToE, e.g., a specific database. The resulting documents are called
Security Targets (ST). Protection profiles (PP) state security needs for an entire class of ToEs,
e.g., client VPN application. The evaluators check if a ToE meets its ST. PPs state the security
requirements of ToE owners. ToE developers or vendors publish their security claims in an
ST. A CC evaluation determines if the ST is compliant to a specific PP. The standard relies
upon documents for certification, which state information about security analysis and taken
measures.
The structure of a CC security target starts with an ST Introduction that contains the descrip-
tion of the ToE and its environment. The Conformance Claims describe to which PPs the ST
is compliant. The Security Problem Definition refines the external entities, e.g., stakeholders in
the environment and lists all assets, assumptions about the environment and the ToE, threats
to assets and organizational security policies. The Security Objectives have to be described for
the ToE and for the operational environment of the ToE. The Extended Component Defini-
tions describe extensions to security components described in the CCs part 2. The Security
Requirements contain two kinds of requirements. The security functional requirements (SFR)
are descriptions of security functions specific to the ToE. The security assurance requirements
(SAR) describe the measures taken in development of the ToE. These are evaluated against the
security functionality specified in the SFR. The Evaluation Assurance Level (EAL) is a numeri-
cal rating ranging from 1 to 7, which states the depth of the evaluation. Each EAL corresponds
to an SAR package. EAL 1 is the most basic level and EAL 7 the most stringent.
The Common Criteria defines a set of Security Assurance Components that have to be consid-
ered for a chosen Evaluation Assurance Level (EAL). For these components, developer activities,
content of corresponding components, and actions for an evaluator are defined. The Common
Criteria defines security assurance components for the following Assurance classes:

– Protection Profile Evaluation (APE)
– Security Target Evaluation (ASE)
– Development (ADV)
– Life-Cycle support (ALC)
– Tests (ATE)
– Vulnerability Assessment (AVA)

In the Security Target, Security Objectives are defined for the TOE on for the TOE’s envi-
ronment. The Security Objectives are related to Security Functional Requirements. Part of
the assurance classes for the development documentation (ADV) is the functional specification
(ADV FSP). In this document, the security functions (SFs) are defined. According to the secu-
rity architecture (as required in ADV ARC), the TOE design with details about the subsystems
and modules are documented in the TOE design (ADV TDS). This design document brakes
down the security functions (SFs) and relates all subsystems and modules to the security func-
tional requirements (SFRs) they implement. Vulnerabilities are assessed in the corresponding
document according to the claimed attack potential (high, medium, low)(AVA VAN).

Furthermore, we show the results of our comparison in the following by il-
lustrating relevant statements for each of our building blocks of our security
standard template instances.

Security Analysis Context and Preparation
Environment description - The ISO 27001 demands a scope definition includ-
ing assets and justifications. The standard refers explicitly to use the scope in
subsequent steps such as risk identification. Moreover, the scope is also referred

24 K. Beckers et al.

Table 13. Term Comparison between Security Standards

terms \standards ISO 27001 IT Grundschutz Common Criteria

machine ISMS ISMS TOE

environment outside the boundaries of
the ISMS

interfaces to external
partners

operational environment

stakeholder interested parties employees and users TOE owner, users

asset ∼ ∼ ∼
security control controls safeguards countermeasure

attacker - - threat agent

vulnerability ∼ ∼ ∼
threat ∼ * ∼ * ∼
policy ISMS policy, security pol-

icy
information security pol-
icy

organizational security
policy

security goals security objectives protection requirements security needs

security requirements ∼ (security test plans)** security objective

security functions - - security functional re-
quirements

* Note that attackers can be seen as threats.
** Note that the security test plan are not requirements, but are based on refined protection
requirements.

to in the documented management commitment. The IT Grundschutz demands
also explicitly to document external partners and to document certain parts
of the scope separately, such as applications. The Common Criteria focuses on
functionalities of the TOE and its environment in the scope description.

Stakeholder description - The ISO 27001 demands stakeholder description
as part of the scope description including their security expectations. The IT
Grundschutz considers all employees and external staff involved in relevant busi-
ness processes as stakeholders. The Common Criteria concerns all users of the
TOE as stakeholders.

Asset identification - ISO 27001 demands the definition of assets, but does
not provide methodological support for it. The IT Grundschutz considers all
information technology and information in the business processes as assets. The
Common Criteria considers also the concept of a secondary assets. But the stan-
dard does not provide a method for identifying them, either.

Risk level determination - The ISO 27001 demands a high level risk definition
in alignment with the risk management of the organization. The IT Grundschutz
standards use protection requirements as high level risk indicators. The Common
Criteria standard does not consider high level risks, but it does define attack
potentials.

Security Analysis Process
Risk Determination - The ISO 27001 demands a description of the risk man-
agement methodology. The IT Grundschutz proposes a categorization of assets
and to conduct a risk analysis only for the assets with significant security con-
cerns. The standard does not demand a specific method for risk management,
but it provides advice for considering risk, threats, and security controls. The
Common Criteria focuses on documenting vulnerabilities and security controls
of the TOE. It does not consider risk management per se, but rather provides

A Structured Comparison of Security Standards 25

the information about threats and countermeasures to stakeholders. Afterwards
the stakeholders can use this information to conduct a risk analysis.

Security Property Description - ISO 27001 demands high level security goals
as part of the ISMS policy, which defines the focus of security of the ISMS and
is described right after the scope. The IT Grundschutz demands to describe pro-
tection requirements using confidentiality, integrity, and availability. In addition,
the standard demands a categorization into the levels: normal, high, very high.
The Common Criteria demands that security concerns are described in terms
of confidentiality, integrity, and availability. The standard contains a catalog of
refinements of these terms, which have to be used in TOE descriptions.

Control Assessment - The ISO 27001 focuses on likelihoods of threats exploit-
ing existing vulnerabilities and the effect already implemented controls have on
these likelihoods. The IT Grundschutz has mappings from threats to security
controls and it has to be checked if the recommended security controls are im-
plemented for all identified threats. The Common Criteria documents existing
security controls by describing existing security functionalities of the TOE. The
gap texts in the security functional requirements of the standard have to be used
for these descriptions.

Vulnerability and Threat Analysis - The ISO 27001 concerns threat analysis in
order to determine risks for assets. The threat analysis is based on a vulnerability
identification. The IT Grundschutz standard relies on a list of threats for the
identified scope parts, e.g., applications from the IT Grundschutz Catalogues.
The Common Criteria demands to describe threats from malicious and from
unintentional attackers. The capabilities of these attackers have to be described
in terms of expertise, resources, and motivation.

Security Analysis Product
Security Assessment - The ISO 27001 demands to evaluate the risks to assets
considering threats and existing security controls. For all assets with unaccept-
able risks, additional security controls have to be selected from the normative
ANNEX A of the standard. The IT Grundschutz standards begin with a ba-
sic security check, which is based on security tests derived from the protection
requirements. The tests are used for an effectiveness evaluation of the existing
security controls. The Common Criteria relies on cross-tables that map threats
to security objectives. All threats have to be addressed by at least one security
objective or assumption.

Security Measures - The ISO 27001 demands first high level security policies,
which are refined into a set of relevant security controls considering the con-
trols listed in the mandatory ANNEX A of the standard. The IT Grundschutz
demands using the mapping from scope elements to threats, and subsequently
to security controls in the IT-Grundschutz Catalogues. Only assets that are not
considered adequately in the IT-Grundschutz Catalogues demand a separate se-
curity analysis. The Common Criteria refines security objectives using a catalog
of security functional requirements. A further cross-table has to proof that each
security objective is addressed by at least one security functional requirement.

26 K. Beckers et al.

Risk Acceptance - The ISO 27001 demands to define criteria for risk accep-
tance in the management approval document. The standard demands a reasoning
why the selected security controls reduce the risk to acceptable limits for each
asset. The IT Grundschutz simply demands a documentation of accepted risks
including a reason why these risks are accepted. The Common Criteria demands
risk acceptance decisions from asset owners. They have to make an informed
decision to accept the risks of the identified threats.

Security and Risk Documentation - The ISO 27001 demands documentation
about the scope and security policies, and extensive documentation of the risk
management. The IT Grundschutz standards simply demand to document all the
steps of the method. The Common Criteria demands an extensive documentation
of the security reasoning and the resulting software product, and in particular
the security functions of the product.

To sum up, the ISO 27001 concerns a high level process with regard to se-
curity. The IT Grundschutz refines the ISO 27001 process and provides further
guidances for identifying threats and security controls based on the IT Grund-
schutz Catalogues. In contrast, the Common Criteria focuses on documenting a
software or hardware product including details of its implementation. The rea-
soning about which security standard is applicable should be based on the con-
cerned application domain. A vendor of a hardware router might want to select
the Common Criteria, due to the detailed security analysis of its implementa-
tion. A cloud computing provider who offers scalable IT resources and particular
business processes concerning these resources might favor ISO 27001. A reason
could be that documenting a high level security process allows changes within
the cloud implementation, because the process does not consider the implemen-
tation in detail. Using the Common Criteria would demand a documentation of
its implementation and a re-certification each time the implementation changes.

7.2 CAST Tool Support

We base our tool support on the NESSoSCBK (Sect. 2) that aims to collect knowl-
edge on engineering secure systems. The structure of the CBK relates Knowledge
Objects (KOs) for specific fields (referred to as Knowledge Areas – KAs). We de-
fine the following four types of KOs. Methods define a set of activities used to
tackle problems in engineering secure software and services in a systematic way.
Techniques describe an approach that contains only a single activity. Tools sup-
port a software engineer in achieving a development goal in an (at least partially)
automated way. A Notation defines symbols, a syntax, and semantics to express
relevant artifacts [30]. We included security standards as a fifth type of KO,mean-
ing we implemented the security standard template in its underlying ontology. In
addition, the CBK offers the functionality to compare KOs by displaying their at-
tributes next to each other. Hence, we can display two instantiated security stan-
dard templates next to each other. This way the comparison of them is supported.
Furthermore, a search functionality allows to search the instantiated templates for
specific search terms. In the future, we are planning to implement an automatic

A Structured Comparison of Security Standards 27

search for supporting KOs for security standards and a comparison of security
standard support methodologies.

7.3 Discussion

Our method provides the means to describe three building blocks of security
standards. The first block states how context description and preparation of a
security analysis has to be done in a standard. This provides an overview of the
level of detail demanded for a security standard compliant system documenta-
tion. For example, the IT-Grundschutz standards demand to treat every item in
the scope as an asset and conduct a security analysis for it, while the ISO 27001
demands a reasoning about which are the assets in the scope. Hence, the ISO
27001 allows more flexibility in the security analysis.

The security analysis process shows how existing controls, risk, threats and
vulnerabilities have to be analyzed. For example, the IT-Grundschutz demands
a characterization of the existing controls according to certain categories, while
the ISO 27001 simply refers to a statement of how the existing controls reduce
the likelihoods of security failures. This is another indication that the ISO 27001
demands a less structured documentation than the IT-Grundschutz standards.
In contrast, the Common Criteria controls are clearly separated into IT and
non-IT countermeasures. For this reason, the standard can be applied especially
for product development.

Finally, the security analysis product shows the overall security assessment
and in particular how security measures have to be described, risk acceptance
to be determined, and what documentation is required for a certification. As an
example, the ISO 27001 demands a specific set of a few documents, while the
IT-Grundschutz simply demands to document the entire process.
Our method creates the following main benefits:

– A simple overview of the core activities of security standards.
– Enabling a structured comparison of standard activities by storing the knowl-

edge about standards in defined template fields.
– Providing indication of the focus, level of detail, and effort for providing or

even reading a system documentation according to a specific standard.

We could identify the following points for improvement of our work:

– The approach could be extended to compare also support tools for standard
compliant system documentation and analysis.

– Our templates can be analyzed for re-using artifacts and results of the cer-
tification of one standard for another. This could lead to a possible optimal
sequence of certifications of different standards with regard to resources spent
in terms of time and money.

– The overview is provided on an abstract level and the engineers still have to
read the standards to compare these on a more granular level. Our method
could be extended to support a more detailed analysis of the standard
documents.

28 K. Beckers et al.

8 Related Work

To the best of our knowledge, no structured method exists to compare security
standards using a conceptual model, template and a common terminology.

The U.S. Department of Energy compared the ISO/IEC 17799, NIST PC-
SRF, ISA-TR99.00.01-2004 and ISA-TR99.00.02-2004 security standards [31].
The authors compare terms and notions of the standards, but they do not rely
on a conceptual model or template.

Siponen and Willison [32] analyzed to which kinds of organizations the stan-
dards and guidelines BS7799, BS ISO/IEC17799: 2000, GASPP/GAISP, and the
SSE-CMM are helpful. They do not compare notions, concepts or terminology.

Sommestad et al. [33] compare standards for Cyber security of Supervisory
Control And Data Acquisition (SCADA). SCADA systems are crucial for crit-
ical infrastructures, e.g., electrical power system. Sommestad et al. compare a
number of SCADA standards and the ISO 27002 standard. The authors compare
the sets of threats and countermeasures stated in the standards. Sommestad et
al. divide the standards into those that focus on technical countermeasures and
those that focus on organizational countermeasures and analyze their common-
alities and differences. This research can complement our own by refining our
building block that concerns countermeasures using their results.

Phillips et al. [34] analyze security standards for the RFID market: ISO/IEC
15693, ISO/IEC10536, ISO/IEC11784-11785, ISO/IEC18000-3, ISO/IEC18000-
2. The authors list the availability, integrity, and confidentiality demands of these
standards. Their aim is to provide a complete set of security goals for the RFID
market and not to compare the standards.

Kuligowski [35] compares the FISMA security standards and the ISO 27001
standard by comparing terminology and mapping their activities. The work does
not provide a common terminology or conceptual model that could be applied
to further standards.

NIST [36] compares the standards FIPS 140-1 AND FIPS 140-2 regarding
their specification of cryptographic modules. The authors also compare termi-
nologies and description of cryptographic functionalities. This work does not aim
at creating a terminology or conceptual model for security standards.

Arora [38] compares the ISO 27001 and the COBIT standard using a template
that contains the fields: focus, paradigm, scope, structure, organizational model,
and certification. The author does not provide a conceptual model or terminology
comparison. Moreover, the template is lacking a detailed focus on security and
risk management activities.

The government of Hong Kong released a report about security standards
[37]. The report provides summaries of the standards ISO 27001, ISO 27002,
COBIT, ITIL, etc. and also legal norms such as SOX and HIPAA. The report is
not comparing the standards, but just aims at providing easily readable intro-
ductions into these standards. Hence, the report does not provide terminology
comparisons, conceptual models, or templates.

A Structured Comparison of Security Standards 29

9 Conclusion and Future Work

We contributed a conceptual model of security standards based on existing re-
search such as the HatSec method and the NIST SP 800-30 standard. Further-
more, we derived a template from the conceptual model that can be instantiated
for different security standards. We applied this idea to several security standards
and compared the resulting template instances.

Our approach offers the following main benefits:

– A structured method for comparing security standards.
– A common terminology and a conceptual model of security standards.
– A template that supports the structured collection of knowledge by using

common security standard activities, e.g., asset identification
– A set of instantiated security standard templates for the standards ISO

27001, IT Grundschutz, and Common Criteria. The templates provide an
overview of the most relevant standard activities.

– Improving the understanding of commonalities and differences of security
standards by analyzing the difference in the common standard activities,
e.g., how do ISO 27001 and Common Criteria identify assets?

– Supporting security engineers in the decision which certification scheme to
pursue and what kind of information to expect from a security standard
documentation.

– Providing tool support for the comparison of security standards.

In the future, we will compare further standards and include also the compari-
son of risk management standards such as ISO 31000. In addition, we will extend
the common terminology and also add a change template specifically designed
to compare different versions of a standard.

References

1. International Organization for Standardization (ISO), International Electrotechni-
cal Commission (IEC): Information technology - Security techniques - Information
security management systems - Requirements (2005)

2. ISO/IEC: Common Criteria for Information Technology Security Evaluation.
ISO/IEC 15408, International Organization for Standardization (ISO) and Inter-
national Electrotechnical Commission, IEC (2012)

3. ISO/IEC: Risk management Principles and guidelines. ISO/IEC 31000, Interna-
tional Organization for Standardization (ISO) and International Electrotechnical
Commission, IEC (2009)

4. Sunyaev, A.: Health-Care Telematics in Germany - Design and Application of a
Security Analysis Method. Gabler (2011)

5. Bundesamt für Sicherheit in der Informationstechnik (BSI): Standard 100-3 Risk
Analysis based on IT-Grundschutz, Version 2.5 (2008)

6. JASON: Science of Cyber-Security. Technical report, The MITRE Corporation,
JSR-10-102 (2010)

30 K. Beckers et al.

7. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for informa-
tion technology systems. NIST Special Publication 800-30, National Institute of
Standards and Technology (NIST), Gaithersburg, MD 20899-8930 (July 2002)

8. Beckers, K., Eicker, S., Faßbender, S., Heisel, M., Schmidt, H., Schwittek, W.:
Ontology-based identification of research gaps and immature research areas. In:
Quirchmayr, G., Basl, J., You, I., Xu, L., Weippl, E. (eds.) CD-ARES 2012. LNCS,
vol. 7465, pp. 1–16. Springer, Heidelberg (2012)

9. Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of security
requirements engineering methods. Requirements Engineering – Special Issue on
Security Requirements Engineering 15(1), 7–40 (2010)

10. Jackson, M.: Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley (2001)

11. Gollmann, D.: Computer Security, 2nd edn. John Wiley & Sons (2005)

12. Bishop, M.: Computer Security: Art and science, 1st edn. Pearson (2003)

13. Viega, J., McGraw, G.: Building secure software: How to avoid security problems
the right way, 1st edn. Addison-Wesley (2001)

14. Firesmith, D.: Common concepts underlying safety, security, and survivability en-
gineering. Technical report sei-2003-tn-033, Carnegie Melon University (2003)

15. ISO/FDIS: ISO/IEC 27799:2007(E), Health Informatics - Information Security
Management in health using ISO/IEC 27002 (November 2007)

16. Stallinger, M.: CRISAM - Coporate Risk Application Method - Summary V2.0
(2004)

17. Farquhar, B.: One approach to risk assessment. Computers and Security 10(10),
21–23 (1991)

18. Karabacak, B., Sogukpinar, I.: Isram: Information security risk analysis method.
Computers & Security 24(2), 147–159 (2005)

19. Japan Information Processing Development Corporation and The Medical Infor-
mation System Development Center: ISMS User’s Guide for Medical Organizations
(2004)

20. Standards Australia International; Standards New Zealand: Guidelines for man-
aging risk in healthcare sector: Australian/ New Zealand handbook, Standards
Australian International (2001)

21. Food and Drug Administration: Guideline for Industry, Q9 Quality Risk Manage-
ment (2006); In US Department of Health and Human Services

22. ISO/IEC: ISO/IEC 27005: 2007, Information technology - Security techniques -
Information security risk management (November 2007)

23. DCSSI: Expression des Besoins et Identification des Objectifs de Scurit (EBIOS) -
Section 2 - Approach. General Secretariat of National Defence Central Information
Systems Security Division (DCSSI) (February 2004)

24. Sharp, H., Finkelstein, A., Galal, G.: Stakeholder identification in the requirements
engineering process. In: DEXA Workshop, pp. 387–391 (1999)

25. Pouloudi, A.: Aspects of the stakeholder concept and their implications for infor-
mation systems development. In: HICSS (1999)

26. Bundesamt für Sicherheit in der Informationstechnik (BSI): Standard 100-1 Infor-
mation Security Management Systems (ISMS), Version 1.5 (2008)

27. BSI: IT-Grundschutz-Vorgehensweise. BSI standard 100-2, Bundesamt für Sicher-
heit in der Informationstechnik (BSI) (2008)

28. BSI: BSI Standard 100-4 Business Continuity Management, Version 1.0. BSI stan-
dard 100-4, Bundesamt für Sicherheit in der Informationstechnik (BSI) (2009)

A Structured Comparison of Security Standards 31

29. BSI: Protection Profile for the Gateway of a Smart Metering System (Gateway
PP). Version 01.01.01 (final draft), Bundesamt für Sicherheit in der Information-
stechnik (BSI) - Federal Office for Information Security Germany, Bonn, Germany
(2011), https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/

PP-SmartMeter.pdf? blob=publicationFile

30. Schwittek, W., Schmidt, H., Eicker, S., Heisel, M.: Towards a Common Body
of Knowledge for Engineering Secure Software and Services. In: Proceedings of
the International Conference on Knowledge Management and Information Sharing
(KMIS), pp. 369–374. SciTePress - Science and Technology Publications (2011)

31. U.S. Department of Energy: A comparison of cross-sector cyber security standards.
Technical report, Idaho National Laboratory (2005)

32. Siponen, M., Willison, R.: Information security management standards: Problems
and solutions. Inf. Manage 46(5), 267–270 (2009)

33. Sommestad, T., Ericsson, G., Nordlander, J.: Scada system cyber security: A com-
parison of standards. In: 2010 IEEE Power and Energy Society General Meeting,
pp. 1–8 (July 2010)

34. Phillips, T., Karygiannis, T., Kuhn, R.: Security standards for the rfid market.
IEEE Security Privacy 3(6), 85–89 (2005)

35. Kuligowski, C.: Comparison of IT Security Standards. Technical report (2009),
http://www.federalcybersecurity.org/CourseFiles/

WhitePapers/ISOvNIST.pdf

36. NIST: A Comparison of the Security Requirements For Cryptographic Modules
In FIPS 140-1 and FIPS 140-2. Nist special publication 800-29, National Insti-
tute of Standards and Technology (NIST), Gaithersburg, United States (2001)
http://csrc.nist.gov/publications/nistpubs/800-29/sp800-29.pdf

37. HKSAR: An Overview of Information Security Standards. Technical report, The
Government of the Hong Kong Special Administrative Region (HKSAR), Hong
Kong, China (2008),
http://www.infosec.gov.hk/english/technical/files/overview.pdf

38. Arora, V.: Comparing different information security standards: COBIT vs. ISO
27001. Technical report, Carnegie Mellon University, Qatar, United States (2010),
http://qatar.cmu.edu/media/assets/CPUCIS2010-1.pdf

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/PP-SmartMeter.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/PP-SmartMeter.pdf?__blob=publicationFile
http://www.federalcybersecurity.org/CourseFiles/WhitePapers/ISOvNIST.pdf
http://www.federalcybersecurity.org/CourseFiles/WhitePapers/ISOvNIST.pdf
http://csrc.nist.gov/publications/nistpubs/800-29/sp800-29.pdf
http://www.infosec.gov.hk/english/technical/files/overview.pdf
http://qatar.cmu.edu/media/assets/CPUCIS2010-1.pdf

32 K. Beckers et al.

Appendix

A Template for Security Standards

Table 14. Security Analysis Context and Preparation Part of the Template for Security
Standard Description

Security Analysis Context and Preparation

Environment Description

– Which essential parts of the environment have to be described?
– How do relations between these parts have to be described?
– What is the required abstraction level of the description?

Relevant common terms: machine, environment

Stakeholder Description

– How are stakeholders defined?
– Which relation to the machine is required to be a stakeholder?
– Are there restrictions on stakeholders, e.g., do they have to be humans?

Relevant common terms: stakeholder

Asset Identification

– How are assets identified?
– Which relation does a stakeholder have to an asset?
– Are assets categorized?

Relevant common terms: asset

Risk Level Definition

– What kinds of risk levels are defined?
– What is the required abstraction for these risk levels?
– How do the risk levels relate to assets and stakeholders?

A Structured Comparison of Security Standards 33

Table 15. Security Analysis Process Part of the Template for Security Standard De-
scription

Security Analysis Process

Security Property Description

– Do specific security goals have to be considered for assets, e.g., confidentiality?
– Which further security properties are used and how are they defined?
– What kind of methodology is required to elicit security goals?

Relevant common terms: security goal, availability, confidentiality, integrity

Control Assessment

– How are existing security controls identified?
– Is it mandatory to described the threats that existing controls mitigates?
– Is it required to describe which assets an existing control protects?

Relevant common terms: security control

Vulnerability and Threat Analysis

– What kind of attacker model does the standard consider?
– Which activities does the standard demand for threat and vulnerability analysis?
– When is the threat and vulnerability analysis complete?

Relevant common terms: attacker, vulnerability, threat

Risk Determination

– How is risk defined e.g. as a product of likelihoods and consequences?
– Is a process for risk management defined?
– Is a qualitative or quantitative risk determination required?

34 K. Beckers et al.

Table 16. Security Analysis Product Part of the Template for Security Standard
Description

Security Analysis Product

Security Assessment

– How are controls selected?
– Does a categorization exist for controls, e.g., types of threats the controls protect against?
– Do relations between controls have to be considered, e.g., one control has a working access

control as a precondition?

Relevant common terms: security requirements, policies

Security Measures

– What criteria are used to determine that a control is relevant to mitigate a particular
threat?

– Is there a demand to describe the improved protection these controls provide?
– How is the reasoning done that the selected controls are sufficient and no further controls

are required?

Relevant common terms: security functions, policies

Risk Acceptance

– How are acceptable risk levels defined?
– Which kind of assessment determines that a security control reduces the risk to an accept-

able risk?
– What kind of review is required to ensure that the risk is acceptable?

Security and Risk Documentation

– What methods are used to document the results e.g. templates, check lists?
– What kind of documents are required for certification?
– Can documents from other certifications be re-used?

Empirical Assessment of Security Requirements

and Architecture: Lessons Learned

Riccardo Scandariato2, Federica Paci1, Le Minh Sang Tran1,
Katsiaryna Labunets1, Koen Yskout2, Fabio Massacci1, and Wouter Joosen2

1 Università degli Studi di Trento, I-38100 Trento, Italy
2 iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium

Abstract. Over the past three years, our groups at the University of
Leuven and the University of Trento have been conducting a number of
experimental studies. In particular, two common themes can be easily
identified within our work. First, we have investigated the value of sev-
eral threat modeling and risk assessment techniques. The second theme
relates to the problem of preserving security over time, i.e., security
evolution. Although the empirical results obtained in our studies are
interesting on their own, the main goal of this chapter is to share our ex-
perience. The objective is to provide useful, hands-on insight on this type
of research work so that the work of other researchers in the community
would be facilitated. The contribution of this chapter is the discussion
of the challenges we faced during our experimental work. Contextually,
we also outline those solutions that worked out in our studies and could
be reused in the field by other studies.

Keywords: security, empirical research, requirements, software
architecture.

1 Introduction

Over the past three years, our groups at the University of Leuven and the Uni-
versity of Trento have been conducting a number of experimental studies. Given
the expertise of the two research groups, our work has focused on the early
phases of the software development life-cycle. In particular, the group in Trento
specializes in security requirements while the group in Leuven focuses on secu-
rity in the architectural design. It is well-known that requirements and software
architecture have a close relationship and it is sometimes difficult to draw a
crisp separating line between these two development phases [1,2]. Therefore, our
empirical work is highly complementary and there are a number of touch points
between our respective studies.

In particular, two common themes can be easily identified within our work.
First, we both have investigated the value of several threat modeling and risk as-
sessment techniques. Most of the textbooks on software security identify threat
modeling as one of the most important activities to identify security issues early

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 35–64, 2014.
c© Springer International Publishing Switzerland 2014

36 R. Scandariato et al.

Table 1. Empirical studies reported in this chapter

Descriptive studies Controlled experiments

Threat modeling STRIDE [7] CORAS vs. SREP [8]
Evolution Requirements evolution in Si∗ [9] Change Patterns [10]

on [3,4]. Moreover, those textbooks suggest to continue performing threat mod-
eling at later stages, e.g., whenever the software system is refined. Several tech-
niques for threat modeling have become well-known over the years and have
been used in case studies. However, no rigorous, empirically-founded assessment
has been performed prior to our own work. Overall, we have considered three
techniques: Microsoft’s STRIDE [3], CORAS [5], and SREP [6].

The second common theme relates to the problem of preserving security over
time, i.e., security evolution. Many modern software systems are characterized
by a long life and are subject to changes over time. On one hand, new function-
ality is often added to satisfy the changing nature of users’ requirements and,
consequently, the security mechanisms need to be updated. On the other hand,
the assumptions initially made on the system’s deployment environment also
change (e.g., a new security threat emerges) and the security mechanisms need
to adapt. Our research teams have assessed how well different requirements and
design techniques provide support for evolving the security of a system over time.
In particular, we have studied the Si∗ security requirements evolution approach
and the Change Patterns secure design technique.

As summarized in Table 1, this chapter reports on four empirical studies: two
for each of the above mentioned themes. In the table we underscore a fundamen-
tal distinction in the type of studies. Controlled experiments are a well-known
technique to compare two approaches. Typically, a number of participants (or
subjects) are randomly divided in two ‘treatment groups’. The two groups are
assigned the same task, like, for instance, identify security requirements or de-
sign a software architecture. However, each group carries out the task by means
of a different approach, which is often referred to as the ‘treatment’ in medical
terminology. The results of the two groups are compared according to quanti-
tative and qualitative criteria in order to understand which treatment performs
better. An experiment is executed under controlled conditions so that, with high
confidence, the differences in the outcomes are due to the treatments.

In a descriptive study, instead, there is only one treatment. That is, a single
approach is tested under controlled conditions with the collaboration of the
participants, which are assigned to a single group. The goal is to understand
how the approach performs on average. While a typical research question in a
controlled experiment could be “which approach is completed in shorter time?”,
in a descriptive study the question would be “how fast is the approach?”.

Although the empirical results obtained in our studies are interesting on their
own, the main goal of this chapter is to share our experience. The objective is to
provide useful, hands-on insight on this type of research work so that the work
of other researchers in the community would be facilitated. The contribution of

Empirical Assessment of Security Requirements and Architecture 37

this chapter is the discussion of the challenges we faced during our experimental
work. Contextually, we also outline those solutions that worked out in our studies
and could be reused in the field by other studies.

The rest of the chapter is organized as follows. Section 2 discusses the related
work in the area of empirical studies applied to the early phases of the secure
software development life-cycle. Sections 3 and 4 summarize the four studies that
have been mentioned earlier. Sections 5 and 6 discuss the challenges and oppor-
tunities in this research area. Finally, Section 7 gives the concluding remarks.

2 Related Work

In this section we review the literature related to the empirical evaluation of
threat modeling and security risk assessment methods and of approaches to
requirements evolution.

2.1 Empirical Studies on Threats Modeling and Security
Requirements

Organizations look to standards bodies for guidance on security best practices.
In this respect there are many standards, practices, and methods available for
security risk assessment and threat modeling, which differ in terms of focus and
process. Therefore, there is the need of conducting experimental comparisons of
existing methods and standards for security risk assessment and threat modeling
to understand which are their main strengths and weaknesses and to guide their
application by security professionals.

Despite the need of practical evidence of effectiveness of threat modeling and
security risk assessment methods, little research has been devoted to understand
whether existing methods are successful in practice.

Massacci et al. [11] reported the results of eRISE (engineering RIsk and SE-
curity Requirements) challenge, an empirical study conducted in 2011 with 36
practitioners and 13 master students. The aim of the study was to compare the
effectiveness of four academic methods for elicitation and analysis of threats and
security requirements and to study their strengths and limitations. The partic-
ipants were divided into groups composed by students and practitioners and
were asked to identify the security requirements of a health care collaborative
network using one of the methods under evaluation. The aim of eRISE challenge
is similar to the one of the experiments reported in this chapter: assessing meth-
ods’ effectiveness. However, in eRISE effectiveness is assessed using a qualitative
approach through questionnaires, post-it notes and focus group interviews with
the participants.

Threat modeling has been put to the test of empirical validation. Opdahl
and Sindre compared misuse cases to attack trees, which represent a well-known
technique based on brainstorming by security experts [12]. Their study involved
63 students and shows that attack trees might lead to a higher number of
identified threats. However, the study did not evaluate the correctness of the

38 R. Scandariato et al.

identified threats. The participants did not show any preference with regard to
the two techniques.

Diallo et al. assessed common criteria, misuse cases and attack trees by means
of a comparative evaluation [13]. In a case study, the authors applied the three
techniques andperformed an evaluation with respect to the ease of learning of
each technique, the usability and the correctness of the results. Despite the
limitations of this type of study (case study performed by the authors), the
paper provides useful insights. For instance, the common criteria appears to be
hard to learn and use, while attack tree misuse cases are easier.

Hogganvik et al. studied the role played by graphical models in the field of
risk modeling [14–16]. The goal of these user studies was to optimize the repre-
sentation in the diagrams that are used in CORAS (a risk analysis technique).
The authors showed that the CORAS graphical notation provides advantages
over UML.

No evaluation of the Microsoft STRIDE threat modeling technique has been
performed so far. Dhillon has criticized STRIDE openly and compared it to an
alternative, derivative technique that has been developed in-house [17]. Citing 30
industrial projects, the author reports that this technique is more time-efficient.
However, the comparison is only anecdotal.

2.2 Empirical Studies on Requirements Evolution

There is little research that uses an empirical basis to understand the impact of
requirements evolution, why and when it happens and to assess the effectiveness
of methods to manage requirements change.

Villela et al. [18] present a quasi-experiment in the field of Ambient Assisted
Living to study the adequacy and feasibility of PLEvo-Scoping method [19].
That method is based on a software evolution model to help requirements engi-
neers and product managers identify the unstable features of an embedded sys-
tem and their potential needed adaptations. It allows to identify and prioritize
likely future adaptation needs and to select solutions to deal with them. Their
quasi-experiment follows the Goal-Question-Metric template [20] and involves
three kinds of roles: method expert, stakeholder, and domain expert. The quasi-
experiment took place in the form of two two-day workshops where two groups
consisting of three domain experts applied PLEvo-Scoping. The first part of each
workshop was dedicated to the presentation of the application domain, and the
quasi-experiments task. Both quantitative and qualitative measures were used
to evaluate the adequacy and the feasibility of the method. However, due to the
small number of subjects, the authors were not able to perform any statistical
tests.

McGee and Greer [21] conducted a case study [22] to assess if a changed
taxonomy proposed by the authors helps to understand the consequences of
requirements change, why and when it happens. The study was conducted during
the execution of a software development project in the government sector and
involved 15 software developers and analysts. Data on requirements changes
were collected during the different phases of the software development life cycle.

Empirical Assessment of Security Requirements and Architecture 39

The quality of changes was assessed by a researcher and a project manager.
The authors defined quantitative metrics to answer their research questions like
the number of changes and the cost of changes and used hypothesis testing to
evaluate the hypotheses related to their research questions.

Another study on requirements evolution by Herrmann et al. [23] is one of
the pioneers in specifying the delta requirements without having to describe a
complete system in details. Delta requirements refer to changes in requirements
identified when comparing the as-is system with the system-to-be. Herrmann et
al. investigate the applicability of TORE, a requirements engineering approach
to identify delta requirements for an engineering tool. The study measures im-
provements in the as-is-analysis, the to-be-analysis, and the prioritization of
requirements.

Maiden et al. [24–26], have presented several case studies in the Air Traffic
Management (ATM) domain to validate RESCUE, a scenario-driven require-
ments engineering process. In the studies, the authors ran several creativity
workshops with ATM experts with different expertise to study how RESCUE
helps to discover stakeholder and system requirements. The workshops were or-
ganized in three main phases: a training phase about RESCUE, a brainstorming
phase, and then an application phase where the experts applied RESCUE to dis-
cover requirements for different ATM tools. During the workshops, color-coded
idea cards, post-it notes, A3 papers have been used to collect the results. The
authors claimed that, although not all the workshop sessions were a success, the
overall process definitely was – as it helped to set up a common understanding
and facilitated the interaction among people involved.

3 Experiments on Threat and Risk Modeling

Threat modeling is recognized as one of the most important activities in software
security. A threat modeling technique guides the security analyst to the discovery
of the actions that a malicious agent (insider or outsider) might perform in order
to misuse a software system. Threats are often referred to as anti-requirements
and are an important driver for the definition of the security requirements of
a system. Threat modeling can be used to analyze the soundness of software
architectures and to spot flaws early on.

Several techniques to perform threat modeling have emerged. However, few
empirical studies have been carried out to quantify the cost and effectiveness
of these techniques. In the following sections we summarize the results from
two studies. The first characterizes Microsoft’s STRIDE, a technique that is
commonly used in the industry. The second study compares two types of risk-
based methods, namely visual and textual methods.

3.1 Assessing the STRIDE Approach1

Microsoft’s STRIDE is a popular threat modeling technique commonly used to
discover the security weaknesses of a software system. The interested reader can

1 This sub-section contains excerpts from [7].

40 R. Scandariato et al.

find a detailed description of STRIDE in the book of Howard and Lipner [3]. This
section presents a descriptive study evaluating STRIDE by means of quantitative
observations that have been performed in controlled, laboratory conditions in
the context of a university course. The study involved 41 students (organized
in 10 teams) in their last year of the master in computer science. Contrary to
controlled experiments, in a descriptive study a phenomenon is characterized and
no attempt is made to analyze the effects of variables on the phenomenon itself.
This type of study was instrumental in order to understand a technique and
eventually formulate research hypotheses to be further investigated by means
of comparative experiments. Incisively, Grimes and Schulz portray descriptive
studies as “the first scientific toe in the water in new areas of inquiry” [27].

The participants of the study were asked to perform the threat analysis of a
medium-sized distributed system. The main goal of the study was to evaluate
STRIDE by providing an answer to the following research questions:

RQ1: Productivity. How many valid threats per hour are produced?
RQ2: Correctness. Is the number of incorrect threats small?
RQ3: Completeness. Is the number of overlooked threats small?

Design of the Study. In the study, the participants analyzed a Digital Pub-
lishing System (DPS), which is a medium-scale distributed system developed in
the context of an industry-oriented research project carried out in partnership
with major news publishers in European countries. The main stakeholder of the
system is a news publisher (like a company publishing newspapers) transitioning
to Internet-based distribution channels. The main purpose of the system is (i) to
support the journalists and the editors during the creation and the updating of
a digital edition and (ii) to provide subscribed consumers on-line access to the
editions, e.g., via e-paper terminals.

The participants were given a description of the above system (including the
use cases and the architectural model in UML) and were requested to perform
the STRIDE analysis of the DPS according to the four steps of STRIDE:

Step 1 Model the system by means of a DFD, which includes elements like
external entities, processes, data flows and data stores.

Step 2 Map the DFD elements into the six threat categories of STRIDE (spoof-
ing, tampering, repudiation, information disclosure, denial of service, eleva-
tion of privilege).

Step 3 Elicit the threats by means of the threat catalogs provided in [3].
Step 4 Document the elicited threats.

Prior to the study, the participants had been familiarized with the STRIDE
technique by means of a series of three lectures. The study was conducted during
a laboratory session of 4 hours. The assigned task was of a rather realistic size
and certainly not a “toy example”. Therefore, the students were expected to
get started during the four laboratory hours and then complete the assignment
(and compile the report) as homework. As the teams also worked outside the

Empirical Assessment of Security Requirements and Architecture 41

Fig. 1. Boxplot of time per STRIDE step

Fig. 2. True positives, false negatives and false positives by threat category

supervised laboratory hours, we asked them to track the time they spent on
the project. The reports turned in by the teams were assessed by two security
experts, which counted the number of correctly identified threats (true positives),
the number of mistakenly reported threats (false positives), and the number of
missing threats (false negatives). The experts compared their results, and in case
of mismatches, they discussed until a consensus was reached. This happened in
a very small number of cases (less than 4 % of the 260 threats reviewed).

Results. Fig. 1 reports the boxplot of the time spent by the participants in each
of the four steps of the STRIDE methodology (see the white boxes). The gray
boxes refer to the aggregate time. Fig. 2 reports the boxplot of the true positives
(TP), false negative (FN) and false positives (FP) produced by the participants
during the study.

The first research question refers to the productivity of the participants. We
measured productivity as the ratio TP

TIME . Considering only the time spent in
identifying (and not documenting) the threats, an average productivity of 1.8

42 R. Scandariato et al.

threats per hour (standard deviation of 1.5) was to be expected for a system
similar to the analyzed one. The confidence interval was [0.94, 3.25] threats
per hour (one-sample Wilcoxon test). That is, it took an average of 33 minutes
to identify a correct threat. Considering the overall time (i.e., including the
time spent documenting the threats as misuse cases), the average productivity
dropped to 0.9 threats per hour with a confidence interval of [0.48, 1.33].

The second research question refers to the correctness of the produced results.
We measured correctness by means of the precision indicator, which is defined
as P = TP

TP+FP . In our study, the average precision was 81% with a standard
deviation of 11%.

The third research question refers to the completeness of the produced results.
We measured completeness by means of the recall indicator, which is defined as
R = TP

TP+FN . In our study, the average recall was 36% with a standard deviation
of 25%.

In summary, the participants did not make too many mistakes (precision is
quite high), but the number of overlooked threats was worrying (recall is quite
low).

Threats to Validity. Concerning the conclusion validity, the time each team
spent on the task was reported by the participants themselves. To prevent this
threat, we kept reminding the participants to track the time they were spending
on the assignment. Concerning the external validity, the main issue threatening
the generalization of the results concerns the use of master students instead of
professionals. Finally, the results might be influenced by the experimental object
used in this study. For instance the results might not apply to other application
domains or to systems of different size and complexity.

3.2 Empirical Comparison of Two Types of Risk-Based Methods2

This section reports a controlled experiment conducted with 28 master students
to compare two classes of risk-based methods, visual methods (CORAS [5]) and
textual methods (SREP [6]). CORAS is a visual method which consists of three
tightly integrated parts, namely, a method for risk analysis, a language for risk
modeling, and a tool to support the risk analysis process. The risk analysis in
CORAS is a structured and systematic process which uses diagrams (see Fig. 3a)
to document the result of the execution of each step. The Security Requirements
Engineering Process (SREP) is an asset-based and risk-driven method for the
establishment of security requirements in the development of secure Information
Systems. The result of the execution of each step of the process is represented us-
ing tables or natural language (see Fig. 3b). For additional details about CORAS
and SREP we refer the reader to [5, Chap. 3] and [6]. Note that, in the rest of the
section, we denote with “security requirements” both the concepts “treatments”
in CORAS and “security requirements” in SREP because they have the same

2 This sub-section contains excerpts from [8].

Empirical Assessment of Security Requirements and Architecture 43

(a) CORAS - Threat Diagram

Name of Misuse Case: Spoof of information

ID 1

Summary: the attacker gains access to the message exchange between the SM and SNN and
disclose the secret exchange of information
Probability: Frequent
Preconditions:
1) The attacker have access to the communication channel between SM and SNN

User Interactions Misuser interactions System Interaction
The SM sends the information
about power consumption

 The attacker reads the
information

 The SSN receives the
information without
knowing that someone
have read the message

Postconditions:
1) The attacker knows personal information about the power consumption of the

customer

(b) SREP - Threat Specification using
misuse cases

Fig. 3. Examples of Visual (CORAS) and Textual (SREP) Methods’ Artifacts

semantics: they are both defined as a means to reduce the risk level associated
with a threat.

The goal of the experiment was to evaluate the effectiveness of visual and
textual methods, and the participants’ perception of the methods. Hence, the
dependent variables were the effectiveness of the methods measured as the num-
ber of threats and security requirements and the participants’ perceived ease of
use, perceived usefulness and intention to use of the two methods. The inde-
pendent variable was the method. The experiment involved 28 participants: 16
students of the master in Computer Science and 12 students of the EIT ICT
LAB master in Security and Privacy. They were divided into 16 groups using
a randomized block design. Each group applied the two methods to identify
threats and security requirements for different facets of a Smart Grid appli-
cation scenario (ranging from security management to database security). The
experiment was complemented with participants’ interviews to gain insights on
why the methods are effective or they are not.

We wanted to investigate the following research questions:

RQ1 Is the effectiveness of the methods significantly different between the two
types of methods?

RQ2 Does the effectiveness of the methods vary with the assigned tasks?
RQ3 Is the participants’ preference of the method significantly different between

the two types of methods?
RQ4 Is the participants’ perceived ease of use of the method significantly different

between the two types of methods?
RQ5 Is the participants’ perceived usefulness of the method significantly different

between the two types of methods?
RQ6 Is the participants’ intention to use the method significantly different be-

tween the two types of methods?

Design of the Study. Participants of the experiments were recruited among
master students enrolled in the Security Engineering course at the University

44 R. Scandariato et al.

Fig. 4. Experimental Procedure

of Trento. The participants had no previous knowledge of the methods under
evaluation. A within-subject design where all participants apply both methods
was chosen to ensure a sufficient number of observations to produce significant
conclusions. In order to avoid learning effects, the participants had to identify
threats and mitigations for different types of security facets of a Smart Grid
application scenario. The Smart Grid is an electricity network that can integrate
in a cost-efficient manner the behavior and actions of all users connected to
it like generators, and consumers. They use information and communication
technologies to optimize the transmission and distribution of electricity from
suppliers to consumers.

The experiment was performed during the Security Engineering course held
at the University of Trento from September 2012 to January 2013. The partici-
pants were divided into 16 groups so that each group applied the visual method
(CORAS) to exactly two facets and the textual method (SREP) to the remaining
two facets. For each facet, the method to be applied by the groups was randomly

8
10

12
14

16
18

All Groups

M
ea

n
nu

m
be

rs
 o

f i
de

nt
ifi

ed
 th

re
at

s G1

G10

G11

G12
G15

G17

G19

G2

G20G3

G4

G5

G6

G7

G8
G9

Textual

Visual

Group Method

8
10

12
14

16
18

Good Groups

M
ea

n
nu

m
be

r
of

 id
en

tif
ie

d
th

re
at

s

G1

G12
G15

G17

G2

G4

G8

Textual

Visual

Group Method

Fig. 5. Means of identified threats in all groups (left) and good groups (right)

Empirical Assessment of Security Requirements and Architecture 45

Table 2. Post Task Questionnaire

QN Type Left statement 1 2 3 4 5 Right statement
Q1 PEOU I found X hard to use ❍ ❍ ❍ ❍ ❍ I found X easy to use
Q2 PU X made the security analysis eas-

ier than an ad hoc approach
❍ ❍ ❍ ❍ ❍ X made the security analysis

harder than an ad hoc approach
Q3 PEOU X was difficult to master ❍ ❍ ❍ ❍ ❍ X was easy to master
Q4 ITU If I need to identify threats and

security requirements in a future
project course, I would not use X

❍ ❍ ❍ ❍ ❍ If I need to identify threats and
security requirements in a future
project course I would use X

Q5 PU I would have found threats and se-
curity requirements more quickly
using common sense

❍ ❍ ❍ ❍ ❍ X made me find threats and se-
curity requirements more quickly
than using common sense

Q6 ITU If I need to identify threats and
security requirements in a future
project at work, I would avoid X
if possible

❍ ❍ ❍ ❍ ❍ If I need to identify threats and
security requirements in a future
project at work, I would use X if
possible

Q7 PEOU I was often confused about how to
apply X to the problem

❍ ❍ ❍ ❍ ❍ I was never confused about how
to apply X to the problem

Q8 PU X made the search for threats and
security requirements less system-
atic

❍ ❍ ❍ ❍ ❍ X made the search for threats and
security requirements more sys-
tematic

Q9 ITU If a company Im employed by in
the future discusses what tech-
nique to introduce for early secu-
rity analysis argue and someone
suggests X, I would against that

❍ ❍ ❍ ❍ ❍ If a company Im employed by in
the future discusses what tech-
nique to introduce for early se-
curity analysis and someone sug-
gests X, I would support that

Q10 PEOU X will be easy to remember (in
case I must use it again in the fu-
ture)

❍ ❍ ❍ ❍ ❍ X will be hard to remember (in
case I must use it again in the fu-
ture)

Q11 PU X made me less productive in
finding threats and security re-
quirements

❍ ❍ ❍ ❍ ❍ X made me more productive in
finding threats and security re-
quirements

Q12 ITU If working as a freelance consul-
tant for a customer who needs
help finding security threats and
security requirements to his soft-
ware, I would not use X in discus-
sions with that customer

❍ ❍ ❍ ❍ ❍ If working as a freelance consul-
tant for a customer who needs
help finding security threats and
security requirements to his soft-
ware, I would like to use X in dis-
cussions with that customer

Q13 Control X process is well detailed ❍ ❍ ❍ ❍ ❍ X process is not well detailed
Q14 Control A catalog of threats would have

made the identification of threats
easier with X

❍ ❍ ❍ ❍ ❍ A catalog of threats would have
made the identification of threats
harder with X

Q15 Control A catalog of security requirements
would have made the identifica-
tion of security requirements eas-
ier with X

❍ ❍ ❍ ❍ ❍ A catalog of security requirements
would have made the identifi-
cation of security requirements
harder with X

Q16 Control X helped me in brainstorming on
the threats for the tasks

❍ ❍ ❍ ❍ ❍ X did not help me in brainstorm-
ing on the threats for the tasks

Q17 Control X helped me in brainstorming on
the security requirements for the
tasks

❍ ❍ ❍ ❍ ❍ X did not help me from brain-
storming on the security require-
ments for the tasks

Q18*Tool CORAS tool is hard to use ❍ ❍ ❍ ❍ ❍ CORAS tool is easy to use
* - This question is asked only in the questionnaire about CORAS

determined. The facets differed in the security tasks for which the groups had to
identify threats and security requirements. The security facets included Security
Management (Mgmnt), Application/Database Security (App/DB), Network/
Telecommunication Security (Net/Teleco), and Mobile Security (Mobile). For
example, in the App/DB facet, groups had to identify application and database
security threats like cross-site scripting or aggregation attacks and propose mit-
igations. Fig. 4 illustrates the experimental procedure.

46 R. Scandariato et al.

The post-task questionnaire was adapted from the questionnaire reported in
[12] which was inspired to the Technology Acceptance Model (TAM) [28]. The
questionnaire is reported in Table 2.

Results. In this subsection we present the main findings regarding each of the
research questions and possible explanations for the findings.

Methods’ effectiveness To assess the effectiveness of visual and textual meth-
ods, the final reports delivered by the groups were coded by the researchers to
count the number of threats and security requirements. An expert on security
of the Smart Grid was asked to assess the quality of the threats and security
requirements. The level of quality was evaluated on a four item scale: Unclear
(1), Generic (2), Specific (3) and Valuable (4).

Based on this scale, the groups who got an assessment Valuable or Specific
were classified as good groups because they produced threats and security re-
quirements of good quality. On the contrary, the groups who were assessed
Generic or Unclear were considered as not so good (bad) groups.

Fig. 5 and Fig. 6 show the means of identified threats and security require-
ments in all groups and good groups.

The results of report analysis showed that visual method was more effective
in identifying threats than textual method and this was statistically significant
for all groups (ANOVA test returned F = 18.49, p-value = 1.03 · 10−4) and
good groups (F = 26.10, p-value = 1.59 · 10−4). This result was also confirmed
when we considered the number of threats identified with visual and textual
methods across the task assigned to the groups (ANOVA test returned a p-value
2.78·10−3 (F = 9.95)). Since the difference in the number of threats identified by
the two methods was statistically significant, we could positively answer RQ1
and RQ2 in part related to threat identification. Instead, with respect to a

5
10

15
20

All Groups

M
ea

n
nu

m
be

rs
 o

f i
de

nt
ifi

ed
 s

ec
ur

ity
 r

eq
ui

re
m

en
ts

G1

G10G11

G12

G15

G17

G19

G2

G20G3

G4G5

G6

G7

G8

G9

Textual
Visual

Group Method

5
10

15
20

Good Groups

M
ea

n
nu

m
be

rs
 o

f i
de

nt
ifi

ed
 s

ec
ur

ity
 r

eq
ui

re
m

en
ts

G12

G2

G8

Textual

Visual

Group Method

Fig. 6. Means of identified security requirements in all groups (left) and good groups
(right)

Empirical Assessment of Security Requirements and Architecture 47

number of security requirements, textual method was slightly more effective than
the visual one in identifying security requirements, but the difference was not
statistically significant across all groups (F = 1.18, p-value = 0.28) and tasks
(F = 10.66, p-value = 1.79 · 10−3). The research questions RQ1 and RQ2 with
respect to the security requirements identification could be answered negatively.

Methods’ perception To test participants’ responses on post-task questionnaire
we used the exactWilcoxon signed-ranks test with Wilcoxon method for handling
ties [29]. We set the significance level α to 0.05. The results of the analysis showed
that participants’ overall preference is higher for visual method than for textual
one. Among all the groups the difference had 10% significance level, while for
the participants who were part of groups who produced good quality threats and
security requirements, the difference in the overall preference was statistically
significant. The conclusion was that the null hypothesis H3 of no difference
in the overall preference of the two methods was not upheld. Similarly, for all
participants, there was no statistically significant difference in perceived ease
of use and usefulness, while for “good” participants the difference had a 10%
significance level. For this reason, the research questions RQ4 and RQ5 remained
open. With respect to intention to use, “good” participants intended to use more
visual than textual method and the difference in participants’ perception was
statistically significant. The research question RQ6 could be answered positively,
i.e., there was a difference in the participants’ intention to use of the methods.

Qualitative Explanation The different number of threats and security require-
ments identified with visual and textual methods could be likely explained by
the differences between the two methods indicated by the participants during
the interviews. Diagrams in visual method helped brainstorming on the threats
because they gave an overview of the possible threats (who initiates the threats),
the threat scenarios (possible attacks) and the assets, while the identification of
threats in textual method was not facilitated by the use of tables because it was
difficult to keep the link between assets and threats. As suggested by the answers
to question Q14 in the post-task questionnaire, the identification of threats in
textual method could be made easier if a catalog of common threats was avail-
able. In addition, during the interviews some of the participants indicated that
a visual representation of threats was better than a tabular one.

Textual method was slightly more effective in eliciting security requirements
than visual approach because the order of steps in the textual method process
guides the analyst in the identification of security requirements, while the same
it seemed not to hold for the visual method’s process.

Threats to Validity. The main threats to the validity of our studies were
related to bias in subjects’ training and to bias in methods’ effectiveness. Differ-
ences in the methods’ performance may occur if a method was presented in a
better way than the other. In our experiment we limited this threat by giving
the same structure and the same duration to the tutorials on textual and visual

48 R. Scandariato et al.

methods. To avoid bias in the evaluation of effectiveness of the two methods, the
coding of the participants’ reports was conducted by the authors of the paper
independently. In addition, the quality of the threats and security requirements
identified by each group was assessed by an expert external to the experiment.

4 Experiments on Software Evolution

Supporting evolution in a principled way is becoming of uttermost importance
for larger and larger classes of software systems. Modern software systems are
continuously updated in their functionality and seamlessly re-deployed. For in-
stance, mobile applications and cloud-based applications provide a good exam-
ple of this type of continuous development. Obviously, evolution and adaptation
pose a challenge to the soundness of the security posture of a changed software.
Therefore, some software engineering techniques have emerged to deal with the
impact of change on security. We evaluated two of these approaches.

4.1 Assessing Requirements Evolution 3

In this section we present the results of an empirical evaluation, which aimed
to assess the effectiveness of a requirements engineering approach [30, 31] in
modeling requirements evolution and whether the effectiveness depends on the
analyst’s level of knowledge of the approach and of the application domain.

Requirements Evolution in Si∗ Modeling Language. Here we sketch an
approach to deal with requirements evolution and its uncertainty [30, 31]. In
this approach, evolution was captured by two kinds of evolution rules : observ-
able rules and controllable rules. The former captures different possibilities that
a requirements model before evolution happens – before model – could evolve
into other models after evolution happens – after models – with different lev-
els of uncertainty – evolution probabilities. The latter captures different design
alternatives of both before models and after models.

Example 1 (Before Model). Figure 7 presents an excerpt of the goal model 4 –
a requirements model in Si∗ language – for the Sector Team who are in charge
of managing the arrival sequence of aircrafts at the airport. Their top goal is to
have the arrival sequence managed (goal g1). For this goal, they want to have
the arrival sequence optimally generated (goal g2), and to deliver this sequence
to aircrafts (goal g3). In order to achieve g3, they have to prepare the advisories
for aircrafts by themselves (goal g4), and deliver these advisories to aircrafts
(goal g5).

3 This sub-section contains excerpts from [9].
4 Note that this model is kept simple for illustrative purposes.

Empirical Assessment of Security Requirements and Architecture 49

[3] Arrival sequence
delivered to aircrafs

[4] Advisories
to aircrafts
prepared

[5] Advisories to
aircrafts delivered

Sector
Team

AND

[1] Arrival sequence
managed

[2] Arrival sequence
optimally generated

AND

Fig. 7. An excerpt of the goal model for the Sector Team

Example 2 (Evolution Rules). We now illustrate how the Sector Team’s goal
model in Figure 7 can evolve due to the introduction of a new tool, namely
Arrival Manager (AMAN). We focus on goal g3:“Arrival sequence delivered to
aircrafts”. We call Before the sub-model rooted at g3. Figure 8 represents one
observable rule and one controllable rule. The observable rule consists of three
evolution branches (i.e., evolution possibilities): each branch corresponds to the
arrow that links the before model Before to one of the after models After1,
After2 and Before. In the first evolution possibility, g4 is delegated to AMAN.
This dependency is presented by the line labeled with De connecting goal g4
to the actor AMAN. The actor AMAN satisfies g4 by either g9:“Basic advisory
generator”, or by g10:“Detail advisory generator”. The probability that this pos-
sibility becomes true is 0.35. In the second evolution possibility, Before might
evolve into After2 where a new goal g11:“Detail advisories to aircrafts prepared”
replaces g4. The g11 is also delegated to AMAN, and it is fulfilled by g10:“Detail
advisory generator”. The probability that this possibility occurs is 0.4. The third
evolution possibility is that the model Before does not change with probability
0.25.

The controllable rule is represented by the OR-decomposition of g4 into goals
g9 and g10 in After1. This rule has only two branches corresponding to the
branches of the OR-decomposition.

Research Questions and Hypotheses. Following the Goal-Question-Metric
template [20], the goal of our studies was to assess if the method proposed
in [30, 31] is effective in capturing potential requirements changes and whether
effectiveness is influenced by knowledge of the domain or the method itself. Given
the goal of our research, we wanted to answer the following research questions:

RQ1 Is the approach effective in modeling requirements evolution?
RQ2 How is the effectiveness of the approach impacted by domain knowledge

and method knowledge?

We borrowed the definition of effectiveness from the Method EvaluationModel
proposed by Moody [32] where the effectiveness of a method was defined as how
well it achieves its objectives. We used the following variables that correspond

50 R. Scandariato et al.

Before

After2

0.25

0.35 0.4

After1

[3] Arrival sequence
delivered to aircrafs

[4] Advisories
to aircrafts
prepared

[5] Advisories
to aircrafts
delivered

Sector
Team

AND

[1] Arrival sequence
managed

[2] Arrival sequence
optimally generated

AND

[4] Advisories
to aircrafts
prepared

OR

AMAN

[9] Basic
advisory
generator

[10] Detail
Advisory
generator

[3] Arrival sequence
delivered to aircrafs

[4] Advisories
to aircrafts
prepared

[5] Advisories
to aircrafts
delivered

Sector
Team

AND

[1] Arrival sequence
managed

[2] Arrival sequence
optimally generated

AND

[3] Arrival sequence
delivered to aircrafs

[5] Advisories
to aircrafts
delivered

AND

AMAN [11] Detail
advisories to

aircrafts prepared

[10] Detail
Advisory
generator

[1] Arrival sequence
managed

[2] Arrival sequence
optimally generated

AND

[11] Detail
advisories to

aircrafts prepared

Sector
Team

The rectangles with label on top are the containers of before and after models. The label is the
name of the contained model. Each container has a chevron at the bottom to collapse/expand its
content. The arrows labeled with probability connecting two containers indicate that the source
model evolves into the target model.

Fig. 8. The graphical representation of the observable rule for goal g3

to the main characteristics of evolution rules, which represent the main outcome
of the method’s application:

– size of baseline. It is the number of unique model elements and interconnec-
tions in the before model of an observable rule.

– size of change. It is the number of unique model elements and interconnec-
tions across all after models that are not in the before model or disappeared
from the before model of an observable rule.

– number of evolution rules.
– number of branches for evolution rules.

To investigate the second research question RQ2, we used as control variables
the method knowledge and the domain knowledge of subjects participating in our
studies. We also defined the following set of null hypothesesHn.m.0: n denotes the
research question to which the hypothesis is related, m denotes the progressive
hypothesis number, and 0 denotes that it is a null hypothesis.

H2.1.0 There is no difference in the size of baseline identified by researchers,
practitioners and master students.

H2.2.0 There is no difference in the size of changes identified by researchers,
practitioners and master students.

H2.3.0 There is no difference in the number of evolution rules identified by re-
searchers, practitioners and master students.

Empirical Assessment of Security Requirements and Architecture 51

ATM Workshop
Visit to ATM

Simulation Center
Preliminary Study within

the Research Group

WS1
Training Workshop
with ATM Experts

WS2
Validation Workshop

with ATM Experts
WS3

Application Workshop
with ATM experts

Study with Master
Students

2010
Sep Oct Nov Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Jan

2011
Dec

2012

Fig. 9. Chronology of the family of empirical studies

H2.4.0 There is no difference in the number of branches for evolution rules iden-
tified by researchers, practitioners and master students.

Experiment Design. Figure 9 summarizes how our empirical studies devel-
oped along a two-year horizon. We conducted three empirical studies with par-
ticipants having different levels of knowledge of the modeling approach and of
the application domain. First, we ran a preliminary study where the partici-
pants were the same researchers who proposed the approach: the researchers
had a good knowledge of the approach but were domain ignorant. Second, we
conducted a study with domain experts (also referred to as ATM experts, or
practitioners) who were novice to the approach, but had a very good knowl-
edge of the ATM domain. Third, we conducted a study with master students
who were method and domain ignorant (i.e., they had no prior knowledge of the
approach and of the ATM domain).

Study 1: Preliminary Study within the Research Group. Three researchers par-
ticipated in the study. The researchers first gained the domain knowledge in the
ATM workshop (Sep 2010, Figure 9). The researchers then identified evolution
and produced Si∗ models (both before and after models) for three scenarios
related to the ATM domain.

Study 2: Workshops with ATM experts. The study was organized into three
separated workshops: WS1, WS2 andWS3, see Figure 9. The workshops involved
both researchers and ATM experts. The training workshop (WS1) trained the
ATM experts about the modeling approach. The validation workshop (WS2)
focused on the evaluation of the quality of the models and the evolution rules
drawn by the researchers. The application workshop (WS3) asked ATM experts
to apply the approach by drawing an original model and one possibility of the
evolution model. Due to the limited time availability of the participants, the
application phase did not terminate with the third workshop, but continued
remotely over a three-month period going from September to November 2011.

Study 3: Study with Master Students. Eleven students enrolled in the Master in
Computer Science at the University of Trento participated in the study. Students
were trained about the approach for evolving requirements (by giving lectures),
and were introduced to the ATM scenarios (by giving documents). Students were

52 R. Scandariato et al.

practitioner

researcher

student

practitioner
researcher

student

practitioner
researcher

student

2
3
4

6

8

12

17

All Rules Observable Controllable

M
ed

ia
n

nu
m

be
rs

 o
f r

ul
es

(a) Number of Rules

practitioner
researcher

student practitioner
researcher

student

practitioner

researcher
student

2

3

4

All Rules Observable Controllable

M
ed

ia
n

nu
m

be
rs

 o
f b

ra
nc

he
s

(b) Number of Branches

Fig. 10. Number of Rules and Branches for Participants Type

diveded into four groups. Each group worked on different scenarios, which are
related to the ATM domain, to identify and model evolution.

Data Analysis and Results. We collected the artifacts produced by re-
searchers, practitioners and students. Researchers, practitioners and students
were able to produce requirements models of medium size and identify new
requirements associated with evolution scenarios. The quality of models by re-
searchers and students were assessed by an ATM expert in terms of requirements
and identified evolution. All produced models were qualified with good quality;
the identified evolution rules are qualified as specific to the scenarios. Since the
number and the quality of the requirements model and evolution rules identified
by the participants were reasonably good, we can conclude that the proposed
framework is effective in modeling requirements evolution.

We compared the difference in the number of evolution rules and number of
branches for evolution rules across the different type of participants.
Figure 10a shows the median of the number of evolution rules by participants,
and Figure 10b reports the median of the number of branches. Students pro-
duced significantly more evolution rules than researchers and practitioners, who
produced around the same number of rules. The same holds if we consider the
number of controllable rules, but not the number of observable rules.

We then compared the size of baseline and size of changes identified by re-
searchers, practitioners and students. Figure 11a shows that researchers sketched
requirement models of lower size but considered changes of small, medium and big
size. Similarly, practitioners produced a single big requirement model and changes
of similar complexity of researchers. Students produced two different kinds of ar-
tifacts: some group of students produced small models and small changes; other
groups identified one big model and changes of increasing complexity like prac-
titioners. However, Figure 11b shows that there was no difference in the size of
changes identified by researchers, practitioners, and students. We checked with

Empirical Assessment of Security Requirements and Architecture 53

●

●●●

●

●●

●●

●

●●●●

●●●●●

●

●●

●
●

0 50 100 150 200 250

5
10

15
20

25
30

Size of Baseline

S
iz

e
of

 C
ha

ng
es

●

practitioner
researcher
student

(a)

practitioner researcher student

5
10

15
20

25
30

S
iz

e
of

 C
ha

ng
es

(b)

Fig. 11. Size of Baseline and Size of Changes for Type of Participants

Kruskal-Wallis test if these results were statistically significant. The results are
summarized in the second column of Table 3. These results were confirmed by the
pairwise comparison that we ran withWilcoxon rank-sum test as shown in the last
three columns of Table 3. In these tables, bold values indicate significant difference
among the participants.

With respect to the hypotheses, we could conclude that the hypothesis H2.1.0

was rejected because there was a significant difference in the size of baseline
(p−value ≈ 0 for Kruskal-Wallis test, and p−value ≈ 0 for the pair researchers–
students). The hypothesis H2.2.0 was inconclusive because a significant difference
in the size of change was shown in the Kruskal-Wallis test (p − value = 0.04)
but not in the pairwise test (all p − value(s) > 0.017). The hypothesis H2.3.0

was accepted because there was no significant difference in the observable rule,
controllable rule, and total of rules. The last hypothesis H2.4.0 was rejected for
the observable branches because the Kruskal-Wallis test gave the p − value =
0.002, and the pairwise test gave the p−value = 0.016 (practitioners–researchers)
and p−value = 0.003 (researchers–students), but non conclusive for controllable
branches and total of branches.

Threats to Validity. A main threat is low statistical power. The size of our
sample was too small to have a power of 0.80. Therefore, it would be necessary to
run the experiment again with more subjects for each user’s cohorts - researchers,
practitioners and students. Another relevant threat was represented by a com-
munication gap between the research team and the domain experts. The research
team and domain experts might use the same terms with different meanings and
this could lead to misunderstandings; therefore, wrong or unrelated feedback
might be provided. To mitigate this threat we included a “mediator” who occa-
sionally reformulated questions of the research team for the domain experts and
reformulated domain experts’ feedback to the researchers.

54 R. Scandariato et al.

Table 3. Summary of test results

For the Kruskal-Wallis tests, the significant level α = 0.05. For the pairwise tests, the Bonferroni-
correction for multiple comparisons, the modified significant level α′ is 0.05/3 = 0.017.

Effect
Kruskal-
Wallis test

Pairwise-Test

Practitioners– Practitioners– Researchers–
Researchers Students Students

Size of Baseline 0.000 0.025 0.171 0.000
Size of Change 0.042 1.000 0.111 0.035
Observable Rule 0.098 0.637 0.468 0.074
Observable Branches 0.002 0.637 0.016 0.003
Controllable Rule 0.060 0.637 0.400 0.057
Controllable Branches 0.246 0.00 0.340 0.175
Total of Rules 0.060 0.637 0.400 0.057
Total of Branches 0.013 0.556 0.051 0.023

4.2 Assessing Co-Evolution5

Change has a multi-level impact, where change in the requirements analysis
reaches down to the run-time configuration of systems. As illustrated by Mens
et al. [33], achieving co-evolution between different types of software artifacts is a
challenging task that is still open to seminal research. Intuitively, some artifacts
expose a tighter relationship vis-a-vis change. That is, they co-evolve in ways that
go beyond a generic, imprecise ripple effect. In particular, the interdependency
of requirements and software architecture is known in the literature [1]: changing
one will likely affect the other. Change Patterns are an approach to deal with
the co-evolution of requirements and architecture in a precise and practical way.

Change Patterns. In general, a change pattern is a reusable source of knowl-
edge concerning the co-evolution of two related artifacts. The changes in a given
artifact (e.g., the requirements) are characterized via a change scenario. In or-
der to cope with this change, a change pattern provides guidance about how
to transform the second artifact (e.g., the architecture). The guidance provides
a principled way of executing a model transformation that fulfills certain con-
straints, e.g., the minimization of the architectural impact.

A generic kind of change at the requirements level is captured by means
of a change scenario, which consists of a pair of requirements templates that
describe, in a generic way, the situations before and after the anticipated change.
To interpret a scenario in the context of a concrete system, a binding needs to be
defined in order to link a requirements template to that system’s requirements
model.

The pattern provides a collection of architecture-level solutions that enable
the system to respond to the change, while minimizing the effort required to

5 This sub-section contains excerpts from [10].

Empirical Assessment of Security Requirements and Architecture 55

evolve the architecture. Additionally, the principled solutions suggested by a
change pattern aim at reducing the impact (in terms of disruptive change) of
the evolution. This is important when the system that evolves has already been
deployed, and recalling the system to carry on major changes to the architecture
is prohibitive.

Example. Consider a crisis management system (CMS). When an eyewitness
of a traffic accident calls the crisis management center, an operator answers the
call. Based on the information provided by the caller, the operator locates the
position of the accident and enters it into the system. An available coordinator
is assigned to the accident and handles the situation by starting a sequence of
missions, like transporting the injured to the hospital, redirecting traffic, and
towing the vehicle.

In this system, a possible change scenario could be that the stakeholders want
to have the possibility to switch their custom geocoding application (to translate
the location information provided by the witnesses to GPS coordinates) to a more
powerful geocoding system, which will likely be offered by an external party in
the future. The (simplistic) scenario is represented in the top part of Fig. 12 by
means of the Si∗ notation, which has been introduced previously. The solution
(in the lower part of the figure) suggests to prepare the architecture by adding
an adaptation layer (proxy), so that the switch-over to the external service has
less impact.

Experiment and Hypotheses. To validate the efficiency of the change pat-
terns approach, a controlled experiment was devised. For the experiment, the
master students of a course on software architecture at KU Leuven were enrolled.
In summary, we divided a total of 12 participants into two equally sized groups.
The participants were given the two evolution scenarios described in Table 4.
For each scenario, the first group (treatment group) had to prepare the archi-
tecture of the CMS system (described above) for the upcoming evolution, using
the change patterns. Then, they had to evolve the architecture according to the
change patterns approach, so that the changed requirements in the scenario were
fully supported. The second group (control group) carried out the same assign-
ment consisting of the same scenarios, but used common software engineering
knowledge instead of the change patterns.

The goal was to understand whether the change patterns approach gives an
overall competitive edge and if the effort in the evolution phase is reduced.
Therefore, the following two null hypotheses were formulated:

H ′
0 The combined effort of preparing (T1) and evolving (T2) the architecture is
the same in the control group and the treatment group.

H ′′
0 The effort to evolve (T2) the architecture is the same in the control group
and the treatment group.

Each participant attended two lab sessions in total. In Lab 1, the partici-
pants were given the Si∗ model for the system. The assignment was asking the

56 R. Scandariato et al.

(a) Before (b) After

In te rna l Geocod ing Serv ice

Geocoding Serv ice Proxy

Traf f ic Accident F i le Management

In te rna l Geocod ing Serv ice

Geocoding Serv ice Proxy

Traf f ic Accident F i le Management

C M S S y s t e m

(c) Preparation

Traf f ic Accident F i le Management

Geocoding Serv ice Proxy

Exte rna l Geocoding Serv ice

In te rna l Geocod ing Serv ice

Traf f ic Accident F i le Management

Geocoding Serv ice Proxy

In te rna l Geocod ing Serv ice

C M S S y s t e m

(d) Evolution

Fig. 12. A change scenario

participant to prepare the architecture according to the tasks in Table 4. They
performed the tasks sequentially. The order of the tasks for each participant,
however, was randomized. The students had to complete the assignment using
both lab hours and homework, while preparing a lab report on their actions and
rationale.

In Lab 2, the participants were asked to execute the evolution phase for the
change scenarios. The participants had to reuse the architecture they prepared in
Lab 1. They performed the tasks sequentially but the order of the tasks for each
participant was randomized. Again, the students had to complete the assignment
using both lab hours and home work. They turned in a lab report before the
exam period started.

Empirical Assessment of Security Requirements and Architecture 57

Table 4. Change scenarios

Scenario Description

A Over time, some service providers (e.g., the towing services) may no
longer perform their assigned missions correctly. To avoid liability prob-
lems, the architecture should be designed such that these liability issues
can be resolved if they occur.

B The police shares its availability information with the crisis manage-
ment center, without restrictions. The representatives of the police have
the fear that this sensitive information might be abused. In the future
some stronger guarantee should be put in place.

The tasks entailed the modification of UML and Si∗ models. To this aim, a
tailored tool was provided to the participants. The tool integrated with Eclipse
(Helios release) the Si∗ tool [34] and the Topcased UML editor [35]. The tool was
instrumented to keep track of the modification to the models executed by the
participants and the time they spent on each task. The tool had a “pause” button
that the participant could press when taking a break. Further, the participants
were asked to work exclusively via the tool. For instance, the use of pen and
paper for drafting was discouraged. The rationale for this request was to make
the measure more accurate.

The study was semi-supervised. The students were fully supervised during
lab hours and, for instance, the instructors were taking care that the tool was
used at all times and that the pause button was pressed during breaks. However,
the students had to complete the assignments during homework. They used the
tool at home as well, but we had to trust that they were following the above
instructions.

Results. The analysis of the data revealed that there are some outliers. Because
of the already limited sample size, however, these points were retained. However,
since outliers were present, it was more meaningful to report the median value
rather than the mean, as it was less biased by extreme values. Due to the limited
sample size, the non-parametric two-tailed Mann-Whitney-Wilcoxon was used
as location test. Table 5 gives the median values for T 2 and T 1 + T 2.

Table 5. Descriptive and test statistics

Median effort in minutes
T2 T1 + T2

Scenario A Scenario B Scenario A Scenario B

Control group 49.26 41.80 68.10 89.97
Treatment group 21.22 42.42 53.47 61.86

p-value 0.240 0.699 0.485 0.589

58 R. Scandariato et al.

In summary, the treatment group performed better than the control group in
terms of overall effort (H ′

0). For the treatment group using change patterns, the
median of T 1+T 2 was 21% smaller for scenario A and 31% smaller for scenario
B. For H ′′

0 , the effort spent in the evolution phase (T 2) in the experiment was
about the same (for scenario B) or 57% lower (scenario A).

The results of the 2-tailed Mann-Whitney-Wilcoxon test are shown in the
second-last row of Table 5. Statistical significance (p < 0.05) was never achieved.
Hence, the null hypotheses could not be rejected.

Threats to Validity. The subjects were not familiar with all the technologies
that were used in the experiment (in particular, the Si∗ notation). This may
have negatively influenced their performance.

The main issue threatening the generalization of the results concerns the use
of master students instead of professionals. However, it is generally advised to
test new theories starting with students via exploratory studies [36,37]. Further,
Runeson observes that the differences can be small between graduate students
(our case) and professionals [38].

The tasks are also of a small size with respect to real-world design endeavors.
Larger tasks require more time for the experiment execution, and loosen the
control on the experiment itself.

5 Challenges and Lessons Learned

Our studies highlighted a number of aspects that should be considered when
designing an empirical study because, as they may introduce threats to the
validity.

Students as Subjects? In our studies, we used students as subjects rather
than practitioners, which was known as a major threat to external validity. We
mitigated this threat by using master students enrolled in a course on software
security or in a software engineering course with a strong focus on security.
Further, the topic of the empirical study was well integrated with the syllabus
of the hosting course. This allowed us to rely on students with the required
expertise in security and to ensure that they had the same level of knowledge
on the subject.

Which Applications? In a typical study set up, we asked the participants to
apply an approach on a given application (the so-called object). Hence, another
important aspect referred to the selection of the scenario to be analyzed by the
participants during the study. Indeed, a lack of understanding of the application
scenario may introduce bias in the effectiveness of the studied methodologies.
In our studies, we chose realistic scenarios like ATM, a content management
system, or a smart metering infrastructure. However, it was difficult to deter-
mine which was the right amount of information to be provided to the partici-
pants so that they could gain a good understanding of the application scenario.

Empirical Assessment of Security Requirements and Architecture 59

Some subjects complained that they had not enough information to understand
the application domain, others complained that there was too much information.
A possible solution that we adopted in our studies was to have a domain expert
who introduced the participants to the application scenario and is available
(physically or remotely) during the study to provide any additional information
missing in the scenario description. An alternative solution if a domain expert
could not be involved was to select an application scenario that was very familiar
to the students, like a banking system or a hospital system. When the study was
embedded in a course, it was also useful to let the students get gradually ac-
quainted with the application scenario during the course and prior to the study
itself. In any case, the scenario description should cover at least the following
aspects: humans involved and their roles with respect to the system, physical
equipment, services and functionalities provided by the system, information and
computational assets, communication channels, and operational scenarios (pos-
sibly with model diagrams). In order to make the results of the studies more
comparable (or repeatable), it could be useful to develop the documentation of
reference application scenarios and to make it publicly available.

What Is More Secure? Another aspect to consider is how to evaluate the
effectiveness of the methodologies under evaluation. A methodology is effective
based on the quality of the results that it produces. If we consider just the num-
ber of results (e.g., number of threats identified) but not the quality, threats
to conclusion validity may arise. In our studies, we followed two approaches to
evaluate the quality of methodologies’ outcomes. They both require the involve-
ment of security experts. In the first approach, we asked the security experts to
produce a reference solution for the task that is given to the participants. This
solution was used as a yardstick to objectively assess the correctness and com-
pleteness of results of the participants. We successfully applied this approach
in the descriptive study of Section 3.1. Of course, the quality of the reference
solution must be flawless. To this aim, we employed multiple experts, where
each expert prepared a reference solution independently, compared the results
to those of other experts and, finally, came to an agreement on what the final
solution should have looked like. The second approach requires a panel of se-
curity experts that directly evaluate the results the subjects have produced. In
order to even out the discrepancies of opinions that might emerge among the
experts, we resorted to either majority voting or consensus after discussion. In
any case, it is important to keep track of the number of diverging assessments
and to report them, if possible. For instance, in case of voting, it is useful to
compute the inter-rater agreement statistic (Cohen’s kappa).

What Is the Ideal Length of a Study? Most experiments in the literature
have a duration of about two hours. Clearly, a study that can be executed in
the turn of one lab session has some advantages. First, the whole study can
be closely supervised in order to avoid that the participants share information.
Further, it can be easier to measure the outcome (e.g., time) in a precise and
reliable way. However, if the duration of the experiment is too short for the

60 R. Scandariato et al.

subjects to understand the application scenario and to apply the methodologies
under evaluation, there may be bias in the evaluation. Subjects may produce bad
results not because a methodology is not effective but rather because the time
for training was not sufficient. To avoid this threat, it is important to schedule
enough time dedicated to the training of the participants and to ‘warm them
up’, e.g., by letting them apply the methodologies under evaluation on a simple
example (before the actual study begins). Further, if the time for the execution of
the study is short, it is impossible to use a realistically-sized application scenario.
Hence, the methodologies under evaluation are applied to toy applications and
the results might not generalize to real-world scenarios.

How to Collect the Measurements? In a quantitative study, the accuracy
of the measurements is key. However, if the task assigned to the participants
is large, it is necessary to ‘spread’ the study over a longer period of time and
multiple lab sessions. In this case, the experimenters must rely on the diligence
of the participants when these are working at home on their task (and, for
instance, they must keep track the effort they spent on the task). In general, it is
acceptable to rely on self-reported measures for some of the parameters. However,
the experimenters need to provide some level of tool support, which facilitates
the tracking of the necessary parameters on the side of the participants. For
instance, in our experiments we routinely resorted to simple and seamless time-
sheeting tools whenever we asked the participants to track their own effort. If
the number of participants is large and the study spans a longer time (than a
single lab), it is beneficial to invest in the development of more advanced, ad-hoc
tools for the measurement of the participant activity. In one case, for instance,
we modified the tool that the participants were supposed to use in order to
apply the methodology. This way, the measurements were very accurate and
completely un-intrusive from the participant’s perspective.

How to Overcome Language Gaps? Another interesting lesson concerns
the language gap among participants. The level of engagement of the subjects
depends on two main factors: the means to provide feedback, and the language
in which such feedback needs to be provided. Some of our studies included par-
ticipants of different nationalities (e.g., from Italy, France and some African
countries) who sometimes had difficulties to understand the tasks they had to un-
dertake during the experiment. Also, they faced difficulties in providing feedback
to the experimenters about their perception of the methodologies under evalua-
tion. A possible solution is that the subjects can discuss in their mother tongue
language and then provide summary feedback in English, but this hampers the
immediacy of the feedback, and “minority opinions” might not be reported (we
noticed this phenomenon during our studies). The alternative solution is to have
a mediator who occasionally reformulates questions of the research team for the
subjects and reformulates subjects’ feedback to the researchers.

Empirical Assessment of Security Requirements and Architecture 61

6 A Roadmap for Future Research

Given the limited reach of existing results in the area of empirical secure software
engineering, there is a lot of room for novel research. In this section, we outline
some interesting research themes that lend themselves to an empirical approach.
It is not our intention to be complete or exhaustive. Rather, we try to focus on
the most promising research questions that have the potential, if answered, to
contribute to the foundational knowledge of secure software engineering.

How to Deal with Lack of Information about Requirements Evolution?
Requirements evolution is inevitable due to changes in the working environment,
business agreement, or growing user demands; however, it is not possible to
predict all the possible changes in advance, especially for complex systems. This
issue was pointed out and agreed by the ATM experts during our focus group
interviews in the studies presented in Section 4.1. Eliciting the evolution of
requirements, hence, is problematic and should be an iterative process with
the essential work amount. Although there exist empirical studies on this issue
such as the work by Herrmann et al. [23] and Maiden et al. [24–26], it would
be promising to run empirical studies on different subjects of users (such as
experts in a specific domain, or requirement analysts and more) to understand
to which level of abstraction and completeness that requirements evolution could
be produced.

How are Security Concerns Conceptualized? In the introduction, we men-
tioned the concept of ‘twin peaks’: requirements and architecture are closely
related and their refinement intertwines and goes hand-in-hand [1]. This phe-
nomenon is assumed to have a general applicability, including the software qual-
ity of security [2]. However, this phenomenon belongs to the field of intuitions
(or axioms). It is believed to hold in the reality and practice of requirements
engineering and architectural design. No one, however, has studied how this
phenomenon unfolds in the software development process and how it influences
the activities of requirements engineers and software architects. Characterizing
this phenomenon with some degree of precision would improve our knowledge
on how security requirements are conceptualized and how security solutions take
shape accordingly. Possibly, this research question can be tackled best via a de-
scriptive study, like the one presented in Section 3.1.

How to Represent Security? Concerning security in software architectures,
several proposals have emerged to represent security concepts in design models.
A selection of these methods is presented by van den Berghe et al. [39]. However,
none of these proposals has gone through the lens of empirical validation. Hence,
there is a significant amount of work to be done in order to understand which
approaches are more effective (i.e., produce more secure designs), are more usable
by practitioners and are easier to learn. These research questions lend themselves
to an investigation based on controlled experiments comparing two or more
techniques.

62 R. Scandariato et al.

When to Build Security in? In the process of designing a software archi-
tecture, several software qualities like performance, maintainability and security
compete for the ‘attention’ of the architect. Often, trade-offs need to be made
between these qualities and priorities need to be set, e.g., when conflicting re-
quirements emerge or when time and budget are limited. It is key to understand
when it is the right time to start tackling the security concerns in the above
mentioned design process. Too soon could be problematic, as the key software
assets needing protection have not emerged in the design yet. Too late could
be cumbersome, as too many design constraints due to other qualities might be
already in place. Finding the soft spot is a non-trivial task that is often a matter
of trial and error. This research question could be addressed with a combination
of case studies and controlled experiments.

7 Conclusion

In this chapter, we have summarized our most relevant experience in the field
of empirical secure software engineering. Through the description of four stud-
ies, we have provided basic guidelines on how to structure either a descriptive
study or a controlled experiment in the domain of security requirements and
secure software architecture. We have also collected the most significant chal-
lenges that experimenters are likely to face, should they venture in this difficult
yet rewarding research area. In this respect, the chapter also outlines several
interesting directions for future work. They represent an engaging opportunity
for, say, a newly started PhD scholar. We hope that this chapter has been inspi-
rational for some of the readers, as the secure software engineering community
has the utter necessity of providing more quantitatively-rooted evidence that the
methodologies it has produced are indeed advancing the state of the practice for
the many security engineers out there.

Acknowledgement. This research is partially funded by the Research Fund
KU Leuven, and by the EU FP7 project NESSoS. With the financial support
from the Prevention of and Fight against Crime Programme of the European
Union (B-CCENTRE).

References

1. Nuseibeh, B.: Weaving together requirements and architectures. IEEE Com-
puter 34, 115–119 (2001)

2. Heyman, T., Yskout, K., Scandariato, R., Schmidt, H., Yu, Y.: The security twin
peaks. In: Erlingsson, Ú., Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS,
vol. 6542, pp. 167–180. Springer, Heidelberg (2011)

3. Howard, M., Lipner, S.: The Security Development Lifecycle. Microsoft Press
(2006)

4. McGraw, G.: Software Security: Building Security. Addison-Wesley (2006)

Empirical Assessment of Security Requirements and Architecture 63

5. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS
Approach. Springer (2011)

6. Mellado, D., Fernández-Medina, E., Piattini, M.: Applying a security requirements
engineering process. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS
2006. LNCS, vol. 4189, pp. 192–206. Springer, Heidelberg (2006)

7. Scandariato, R., Wuyts, K., Joosen, W.: A descriptive study of Microsoft’s threat
modeling technique. Requirements Engineering (2014)

8. Labunets, K., Massacci, F., Paci, F., Tran, L.M.: An experimental comparison of
two risk-based security methods. In: Proceedings of the 7th International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM), pp. 163–172
(2013)

9. Massacci, F., Paci, F., Tran, L.M.S., Tedeschi, A.: Assessing a requirements evo-
lution approach: Empirical studies in the air traffic management domain. Journal
of Systems and Software (2013)

10. Yskout, K., Scandariato, R., Joosen, W.: Change patterns: Co-evolving require-
ments and architecture. Software and Systems Modeling (2012)

11. Massacci, F., Paci, F.: How to select a security requirements method? a comparative
study with students and practitioners. In: Jøsang, A., Carlsson, B. (eds.) NordSec
2012. LNCS, vol. 7617, pp. 89–104. Springer, Heidelberg (2012)

12. Opdahl, A.L., Sindre, G.: Experimental comparison of attack trees and misuse
cases for security threat identification. Information and Software Technology 51,
916–932 (2009)

13. Diallo, M.H., Romero-Mariona, J., Sim, S.E., Alspaugh, T., Richardson, D.J.: A
comparative evaluation of three approaches to specifying security requirements.
In: Proceeding of the 12th International Working Conference on Requirements
Engineering: Foundation for Software Quality, REFSQ (2006)

14. Hogganvik, I., Stølen, K.: On the comprehension of security risk scenarios. In: Pro-
ceedings of the 13th International Workshop on Program Comprehension (IWPC),
pp. 115–124. IEEE (2005)

15. Hogganvik, I., Stølen, K.: A graphical approach to risk identification motivated
by empirical investigations. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 574–588. Springer, Heidelberg (2006)

16. Hogganvik, I., Lund, M., Stølen, K.: Reducing the effort to comprehend risk models:
Textlabels are often preferred over graphical means. Risk Analysis 51, 916–932
(2009)

17. Dhillon, D.: Developer-driven threat modeling: Lessons learned in the trenches.
IEEE Security & Privacy 9, 41–47 (2011)

18. Villela, K., Dörr, J., John, I.: Evaluation of a method for proactively managing
the evolving scope of a software product line. In: Wieringa, R., Persson, A. (eds.)
REFSQ 2010. LNCS, vol. 6182, pp. 113–127. Springer, Heidelberg (2010)

19. Villela, K., Dörr, J., Gross, A.: Proactively managing the evolution of embedded
system requirements. In: Proceeding of the 16th IEEE International Requirements
Engineering Conference (RE), pp. 13–22. IEEE Computer Society (2008)

20. Basili, V., Rombach, H.: The TAME project: Towards improvement-oriented soft-
ware environments. IEEE Transactions on Software Engineering 14, 758–773 (1988)

21. McGee, S., Greer, D.: Software requirements change taxonomy: Evaluation by case
study. In: Proceeding of the 19th IEEE International Requirements Engineering
Conference (RE), pp. 25–34 (2011)

22. Runeson, P., Host, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14, 131–164 (2009)

64 R. Scandariato et al.

23. Herrmann, A., Wallnöfer, A., Paech, B.: Specifying changes only — a case study
on delta requirements. In: Glinz, M., Heymans, P. (eds.) REFSQ 2009 Amsterdam.
LNCS, vol. 5512, pp. 45–58. Springer, Heidelberg (2009)

24. Ncube, C., Lockerbie, J., Maiden, N.: Automatically generating requirements from
i* models: Experiences with a complex airport operations system. In: Sawyer, P.,
Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 33–47. Springer,
Heidelberg (2007)

25. Maiden, N., Robertson, S.: Integrating creativity into requirements processes: Ex-
periences with an air traffic management system. In: Proceeding of the 13th IEEE
International Requirements Engineering Conference (RE), pp. 105–116 (2005)

26. Maiden, N.A.M., Jones, S.V., Manning, S., Greenwood, J., Renou, L.: Model-driven
requirements engineering: Synchronising models in an air traffic management case
study. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 368–383.
Springer, Heidelberg (2004)

27. Grimes, D., Schulz, K.: Descriptive studies: what they can and cannot do. The
Lancet 359, 145–149 (2002)

28. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 319–340 (1989)

29. Conover, W.J.: On methods of handling ties in the wilcoxon signed-rank test.
Journal of the American Statistical Association 68, 985–988 (1973)

30. Tran,L.M.S.,Massacci, F.:Dealingwith knownunknowns:Towards a game-theoretic
foundation for software requirement evolution. In: Mouratidis, H., Rolland, C. (eds.)
CAiSE 2011. LNCS, vol. 6741, pp. 62–76. Springer, Heidelberg (2011)

31. Tran, L.M.S.: Managing the Uncertainty of the Evolution of Requirements Model.
PhD thesis, University of Trento (2014)

32. Moody, D.L.: The method evaluation model: A theoretical model for validating
information systems design methods. In: Proceeding of the European Conference
on Information Systems (ECIS), pp. 1327–1336 (2003)

33. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.:
Challenges in software evolution. In: Proceeding of the 8th International Workshop
on Principles of Software Evolution, pp. 13–22 (2005)

34. Si* Tool website: http://sesa.dit.unitn.it/sistar_tool
35. Topcased UML editor: http://www.topcased.org/
36. Tichy, W.: Hints for reviewing empirical work in software engineering. Empirical

Software Engineering 5, 309–312 (2000)
37. Carver, J., Jaccheri, L., Morasca, S.: A checklist for integrating student empirical

studies with research and teaching goals. Empirical Software Engineering 15, 35–59
(2010)

38. Runeson, P.: Using students as experiment subjects - an analysis on graduate and
freshmen student data. In: Proceeding of the International Conference on Empirical
Assessment in Software Engineering (EASE), pp. 95–102 (2003)

39. van den Berghe, A., Scandariato, R., Joosen, W.: Towards a systematic literature
review on secure software design. In: Doctoral Symposium of the International
Symposium on Engineering Secure Software and Systems, ESSoS-DS (2013)

http://sesa.dit.unitn.it/sistar_tool
http://www.topcased.org/

STS-Tool: Security Requirements Engineering
for Socio-Technical Systems

Elda Paja1, Fabiano Dalpiaz2, and Paolo Giorgini1

1 University of Trento, Italy
{elda.paja,paolo.giorgini}@unitn.it

2 Utrecht University, The Netherlands
f.dalpiaz@uu.nl

Abstract. We present the latest version of STS-Tool, the modelling and analysis
support tool for STS-ml, an actor- and goal-oriented security requirements mod-
elling language for socio-technical systems. We show how the STS-Tool supports
requirements analysts and security designers in (i) modelling socio-technical sys-
tems as a set of interacting actors, who have security needs over their interactions,
and (ii) deriving security requirements for the system-to-be. The tool integrates
a set of automated reasoning techniques that allow checking if a given STS-ml
model is well-formed, verifying whether there are any conflicts among security
requirements, and calculating the threat trace of events threatening actors’ assets.
We first illustrate the modelling and reasoning activities supported by STS-ml, to
then guide the design of a secure socio-technical system from the eGovernment
domain through a series of exercises.

1 Introduction

Socio-technical systems are an interplay of social actors (human and organizations)
and technical subsystems, which interact with one another to reach their objectives [2].
Each participant acts, guided by its objectives, according to its business policies, and
the socio-technical system comes into existence when the participants interact to get
things done. In e-commerce, buyers and sellers interact with one another (social actor
- social actor interaction) making use of the web application (social actor - technical
actor interaction), which relies on secure channels (technical actor - technical actor
interaction) to ensure the transactions among the buyer and the seller are secure. The
diversity and autonomy of participants makes the design of a secure socio-technical
system a challenging task, for which the study of technical aspects alone is not enough,
instead social aspects need to be investigated too.

STS-ml [3,7] (Socio-Technical Security modelling language), is an actor (to repre-
sent the various stakeholders) and goal-oriented (capturing their main objectives) se-
curity requirements modelling language based upon these principles. It allows tackling
security issues already in the early phases of socio-technical system design. STS-ml is
based on the idea of relating security requirements to interaction. The language allows
stakeholders to express security needs over their interactions to constrain the way in-
teraction is to take place. For example, if a buyer sends its personal data to a seller, the
buyer may require the data not to be disclosed to third parties, only the seller should

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 65–96, 2014.
c© Springer International Publishing Switzerland 2014

66 E. Paja, F. Dalpiaz, and P. Giorgini

have access to them. STS-ml specifies security requirements in terms of social commit-
ments [8], promises with contractual validity made by an actor to another. One actor
commits (responsible) to another (requester) that, while delivering some service, it will
comply with the required security needs. In the example above, a security requirement
is that the seller commits not to disclose buyer’s personal data to other parties.

Differently from other goal-oriented approaches to security requirements engineer-
ing [4,5,6], STS-ml offers a more expressive ontology. It supports expressing fine-
grained and contradictory authorisations over information, which allow to effectively
represent real-world information security requirements [1,9].

We show how STS-Tool, the case tool for STS-ml, supports requirements analyst and
security engineers in designing secure socio-technical systems. The tool is the result of
an iterative development process, following several evaluation activities, in the scope
of the FP7 European Project Aniketos 1. It has been used in modelling and reasoning
over models of a large size from different domains, such as eGovernment, Telecommu-
nications, and Air Traffic Management Control. We first introduce STS-ml in Sect. 2
as the baseline for using STS-Tool, briefly presenting its modelling features (Sect. 2.1)
and then providing the users with a modelling process to design socio-technical systems
with STS-ml and STS-Tool (Sect. 2.2). Sect. 3 describes the main features of STS-Tool,
while Sect. 4 demonstrates the use of the tool in modelling a scenario from eGovern-
ment, guiding the user step by step through a series of exercises that follow the phases
of the modelling method. Finally, Sect. 5 concludes with a discussion of related work
and future directions.

2 Baseline: STS-ml

STS-ml is an actor- and goal-oriented security requirements engineering modelling lan-
guage. It includes high-level organisational concepts such as actor, goal, delegation, etc.

STS-ml is a diagrammatical language, i.e., graphical concepts and relations are used
to create the models. A particular feature of STS-ml is that it allows modelling socio-
technical systems by focusing on different perspectives (views) at a time. This feature is
known as: multiview modelling. Below, we introduce STS-ml constructs and show how
they are used to model socio-technical systems. Additionally, we present an iterative
process to model socio-technical system with STS-ml, as well as to analyze the models
built, to then derive security requirements for the system to be.

2.1 Multiview Modelling with STS-ml

STS-ml modelling consists of three complementary views, social, information, and au-
thorisation view. The three views together form the overall model for the system-at-
hand (STS-ml model). To facilitate the description of STS-ml, we will use a small
running example.

Example 1 (Travel Planning). A tourist wants to organise a trip using a Travel Agency
Service (TAS). TAS allows end users to read about various destinations, book flights and

1 http://www.aniketos.eu

http://www.aniketos.eu

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 67

hotels, hire a car, etc., and uses the Amadeus flight service to book flight tickets. To book
hotels, the Tourist has chosen to directly contact the Hotel himself, without interacting
with TAS.

The social view (Fig. 1a) represents actors as intentional and social entities. Actors
are intentional as they aim to attain their objectives (goals), and they are social, for
they interact with others to fulfill their objectives (by delegating goals) and obtain in-
formation (by exchanging documents). STS-ml supports two types of actors: agents—
concrete participants, and roles—abstract actors, used when the actual participant is
unknown. In our example, we represent the TAS as a role, and the Amadeus Service
as an agent, as it refers to a specific flight service. Actors may possess documents,
they may use, modify, or produce documents while achieving their goals. For instance,
Tourist wants to achieve the goal Trip planned, for which it needs to both have Tickets
booked and Hotel booked. To book the hotel it needs document ID Doc copy.

agent role

goal delegation

document provision

interaction
security
needs

event goal

document

organisational constraint

Tab to change views

List of security requirements

Textual description of selected requirement

Tool Palette

Analysis results

Textual description of selected finding

(a) Social view

(b) Information view

Amadeus
Service

authorisation
requirements

(c) Authorisation view

Fig. 1. Multi-view modelling for the travel planning scenario

68 E. Paja, F. Dalpiaz, and P. Giorgini

The information view (Fig. 1b) shows how information and documents are intercon-
nected to identify which information actors manipulate, when they use, modify, pro-
duce, or distribute documents to achieve their goals in the social view. Additionally, it
gives a structured representation of actors’ information and documents. Information can
be represented by one or more documents (throughTangible By), and on the other hand
one or more information entities can be part of some document. For instance, informa-
tion Personal data is represented by both ID Doc copy and Flight tickets documents.

The authorisation view (Fig. 1c) shows the authorisations actors grant to others over
information, specifying which operations they are allowed (prohibited) to do, for which
goals (scope), and whether authorisation can be further transferred or not. For instance,
Tourist authorises TAS to use (U selected) information Personal data and Itinerary in the
scope of the goal Tickets booked granting a transferrable authorisation (authorisation’s
arrow line is continuous).

Through its three views, STS-ml supports different types of security needs:

– Interaction (security) needs are security-related constraints on goal delegations and
document provisions, e.g., non-repudiation, integrity of transmission, etc.;

– Authorisation needs determine which information can be used, how, for which pur-
pose, and by whom, e.g. non-disclosure, need-to-know;

– Organisational constraints constrain the adoption of roles and the uptake of re-
sponsibilities, e.g. separation or binding of duties, conflicting or combinable goals.

Together, these needs constitute the security needs of STS-ml, from which the se-
curity requirements can be derived. In STS-ml, security requirements are social rela-
tionships where an actor (responsible) commits to another actor (requester) to comply
with a requested security need. That is, for each security need, a security requirement
to satifsy the need is generated. For more details, see Section 2.2, Phase 5.

How can we construct the presented views, and have the model presented in Fig. 1?
How can we express actors’ security needs to then derive security requirements? How
can we verify validity of the model and verify compliance with security requirements?

In the following section we will describe in detail how to built the various views, how
to capture security requirements, while introducing and expressing the security needs
supported by STS-ml, and how to analyze the created models.

2.2 The STS Method

We provide an iterative process, which supports modelling and analysing socio-technical
systems, namely the STS method (see Fig. 2), to facilitate the work of the requirements
analysts. Note, however, that the provided steps are a guideline for them, not necessarily
mandatory to be followed in the indicated order.

Phase 1. Modelling the Social View
Step 1.1. Identify stakeholders. As described above, stakeholders in STS-ml are rep-
resented via agents and roles 2. Role is an abstract characterization of the behavior of
an active entity within some context. Most participants are unknown at design time,

2 We use the general term actor whenever relationships are applicable to both agents and roles.

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 69

Fig. 2. The STS method

e.g., Tourist, Travel Agency Service (TAS), Hotel, etc. Agents play (adopt) roles at run-
time, and they can change the roles they play, e.g., Bob, John, CheapTravels Inc. Some
agents are known already at design time when we build STS-ml models, e.g., Amadeus
Service. Fig. 3 shows how roles and agents are represented graphically in STS-ml. See
the identified roles and agents for the tourist example in Fig. 1.

Fig. 3. Graphical representation of roles and agents

Step 1.2. Identify assets and interactions. When talking about security, stakeholders
of a system wish to protect their important assets. Stakeholders in the socio-technical
system participate in order to achieve their desired objectives—modelled in STS-ml
through the concept of goal. A goal is a state of affairs that an actor intends to achieve,
e.g., trip planned, flight tickets booked. They are used to capture motivations and re-
sponsibilities of actors. Thus, we consider goals as assets for an actor, and refer to them
as intentional assets. In addition, their owned information entities are another important
asset for stakeholders. We refer to them as informational assets. The graphical repre-
sentation of goals and actors’ intention to fulfil them is shown in Fig. 4.

Information as is, cannot be exchanged among actors, nor can it be manipulated by
them. We use the concept of documents—representing information—to allow stake-
holders to make use of and exchange information. Information and documents are
graphically represented as shown in Fig. 5.

In Fig. 1, Amadeus Service has the goal Flight tickets booked, for which it
is responsible. Goals can be refined into subgoals through and/or-decompositions:

70 E. Paja, F. Dalpiaz, and P. Giorgini

(a) Goal (b) Intention

Fig. 4. Graphical representation of goals and intentions

(a) Document (b) Information

Fig. 5. Graphical representation of informational assets

and-decomposition (Fig. 6a) represents the process of achieving a goal, while or-
decomposition (Fig. 6b) represents alternative ways for achieving a goal. In Fig. 1a,
TAS or-decomposes goal Tickets booked into goals Flight ticket booked and Train ticket
booked.

(a) And-decomposition (b) Or-decomposition

Fig. 6. Graphical representation of goal and/or decompositions

The goal model of an actor ties together goals and documents, in various ways: an
actor possesses a set of documents; an actor needs one or more documents to fulfil a
goal; an actor produces documents while fulfilling a goal; an actor modifies a document
while fulfilling a goal, see Fig. 7. The relation possesses indicates that actors have a
specific document, i.e., they can furnish or provide it to other roles. Graphically, this is
represented by including a document in the actor’s scope, see Fig. 8a. Note that this is
different from ownership (Fig. 8b), an actor might have a document without necessarily
being the owner of the information it contains. For instance, TAS possesses document
Traveling order, but it is not the owner of information Personal data, the Tourist is, see
Fig. 1a and 1b.

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 71

Fig. 7. Graphical representation of goal-document relationships

(a) Possession (b) Ownership

Fig. 8. Graphical representation of document possession and information ownership

(a) Goal delegation

(b) Document provisions

Fig. 9. Graphical representation of goal delegation and document provision

Within the same step, we need to identify interactions among actors as well. Goal
delegations capture the transfer of responsibility for the fulfillment of the goal from
one actor to another, i.e., a delegator actor delegates the fulfillment of a goal (delega-
tum) to another actor (delegatee), see Fig. 9a. Note that in STS-ml, only leaf goals can
be delegated, in Figure 1a Tourist delegates to TAS the fulfillment of Tickets booked.
Document provision, on the other hand, specifies the exchange of information between

72 E. Paja, F. Dalpiaz, and P. Giorgini

actors, a sender actor provides a document to a receiver actor, see Fig. 9b. Providing the
document refers strictly to the actual supply or delivery of the document. Information
as is (e.g. ideas) cannot be transferred if not explicitly made concrete by a document
(e.g. a paper, an e-mail). In STS-ml, a document can be provided only by an actor that
possesses it, see in Fig. 1a how Tourist provides document Traveling order to TAS.

Step 1.3. Express security needs. STS-ml allows actors to express security needs
over their interactions, in this step we analyze these interactions (goal delegations and
document provisions) actors participate in to elicit their needs with regard to security.
To specify security needs over goal delegations and document provisions, these rela-
tionships are annotated via security needs the interacting parties (being them agents or
roles) want each other to comply with.

STS-ml supports the following interaction security needs:

1. Over goal delegations:
(a) No-redelegation—the re-delegation of the fulfilment of a goal is forbidden; In

Fig. 10, Tourist requires Hotel not to redelegate goal Hotel booked.
(b) Non-repudiation—the delegator cannot repudiate he delegated (non-

repudiation of delegation); and the delegatee cannot repudiate he accepted
the delegation (non-repudiation of acceptance); for instance, TAS requires
Amadeus Service non-repudiation of the delegation of goal Flight ticket
booked, see Fig. 10.

Fig. 10. Security needs over goal delegations

(c) Redundancy—the delegatee has to employ alternative ways of achieving a goal;
We consider two types of redundancy: True and Fallback. True redundancy: at
least two or more different strategies are considered to fulfil the goal, and they
are executed simultaneously to ensure goal fulfillment. Fallback redundancy: a
primary strategy is selected to fulfill the goal, and at the same time a number
of other strategies is considered and maintained as backup to fulfill the goal.
None of the backup strategies is used as long as the first strategy successfully

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 73

fulfils the goal. Within these two categories of redundancy, two sub-cases exist:
(i) only one actor employs different strategies to ensure redundancy: single
actor redundancy; and (ii) multiple actors employ different strategies to ensure
redundancy: multi actor redundancy. In total, we can distinguish four types of
redundancy, which are all mutually exclusive, so we can consider them as four
different security needs, namely, (i) fallback redundancy single, (ii) fallback
redundancy multi, (iii) true redundancy single, and (iv) true redundancy multi.
In Fig. 10, Tourist requires TAS true redundancy multi for goal Tickets booked.

(d) Trustworthiness—the delegation of the goal will take place only if the dele-
gatee is trustworthy; for instance, the delegation of goal Hotel booked from
Tourist to Hotel will take place only to trustworthy hotels, see Fig. 10.

(e) Availability—the delegatee should ensure a minim availability level for the del-
egated goal; for instance, TAS requires Amadeus Service 85% availability for
goal Flight ticket booked, see Fig. 10.

2. Over document provisions:
(a) Integrity of transmission—the sender should ensure that the document shall not

be altered while providing it;
(b) Confidentiality of transmission—the sender should ensure the confidentiality

of transmission for the provided document;
(c) Availability—the sender should ensure a minimal availability level (in percent-

age) for the provided document. In Fig. 11, TAS should ensure integrity and
confidentiality of transmission, as well as an availability level of 98% when
providing the document Itinerary details to Amadeus flight service.

Fig. 11. Security needs over document provisions

3. From organisational constraints 3:
(a) Separation of duties (SoD)—defines incompatible roles and incompatible goals,

so we define two types: role-based SoD—two roles are incompatible, i.e., can-
not be played by the same agent, and goal-based SoD—two goals shall be
achieved by different actors; for instance, the goals eticket generated and credit
card verified are defined as incompatible (unequals sign, see Fig. 12).

(b) Combination of duties (CoD)—defines combinable roles and combinable goals,
so we distinguish between role-based CoD—two roles are combinable, i.e.,
shall be played by the same agent; and goal-based CoD—two goals shall be
achieved by the same actor. Note that these security needs from organisational
constraints are translated to a set of relationships, incompatible (represented
as a circle with the unequal sign within) and combines (represented as a circle

3 Organisational constraints are imposed either by the rules and regulations of the organisation,
or by law.

74 E. Paja, F. Dalpiaz, and P. Giorgini

Fig. 12. Security needs from organisational constraints

with the equals sign within) respectively. This is related to the fact that they
are not directly expressed over a social relationship, but constrain the uptake
of responsibilities of stakeholders. Both relationships are symmetric, therefore
there are no arrows pointing to the concepts they relate.

Step 1.4. Modelling threats. In STS-ml we represent events threatening stakeholders’
assets. STS-ml proposes the concept event and the relationship threaten relating the
event to the asset it threatens. As introduced earlier, we consider two types of assets,
intentional assets and informational assets respectively. However, in the social view
stakeholders exchange and manipulate information via documents, so in this step we
model the events that threaten actors’ goals and documents respectively, see Fig. 13.
For instance, the event ID Doc Copy lost threatens document ID Doc Copy, see Fig. 1.
Broadly, an event threatening a goal means that the goal cannot be reached, while an
event threatening a document means that the document becomes unavailable.

Fig. 13. Graphical representation of events threatening actors’ assets in STS-ml

Phase 1. Summary. Each of the above steps is repeated until all stakeholders have
been modelled, all their assets and interactions have been represented, their desired
security needs have been expressed, and events threatening actors’ assets have been
modelled. The result of this iterative modelling process supported by Phase 1 is Fig. 1a.

Phase 2. Modelling the Information View
To protect information, it is important to first identify information, its representation
(documents), and to know who information owners are, for they are the ones concerned
with what happens to their information.

Step 2.1. Identify information and its owner. Documents represent information, so
when modelling the information view we first identify which are the informational en-
tities represented by each document in the social view. For each identified information,

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 75

we identify who are the owners of this information. For instance, Tourist is the owner
of his Personal data, see Fig. 1b. Note that there can be multiple owners for the same
information, to represent shared ownership.

Step 2.2. Represent information structure. Information view gives a structured rep-
resentation of actors’ information and documents, and the way they are interconnected.
Information can be represented by one or more documents (through the Tangible By
relationship), see Fig. 14a. On the other hand, one or more information pieces can be
made tangible by the same document. In Fig. 1b, information Personal data is made
tangible by document Eticket and document ID Doc Copy.

(a) Tangible by (b) Part-of (c) Part-of

Fig. 14. Graphical representation of part-of and tangible by

Another feature of the information view is to support composite information (docu-
ments). We enable that by means of the part Of relations (see Fig. 14b and 14c), which
can be applied between information (documents). For instance, this allows representing
that information Destination and Schedule are part of the information Itinerary, while
document ID Doc Copy is part of document Traveling Order (see Fig. 1b).

Phase 2. Summary. These steps are repeated till all important information entities
are represented, their owners are identified and they are connected to their correspond-
ing documents or parts of information. The result of the iterative modelling process
supported by Phase 2 is Fig. 1b.

Phase 3. Modelling the Authorisation View
An adequate representation of authorisations is necessary to determine if information is
exchanged and used in compliance with confidentiality restrictions. Information owners
are the unique actors that can legitimately transfer rights to other actors. However, when
they transfer full rights to another actor, the latter becomes entitled to transfer the same
rights the owner can grant.

Step 3.1. Model authorisations. Authorisations support the transfer of rights between
two actors. An actor can grant (receive) an arbitrary number of authorisations about
information, specifying:

– Operations: refer to actions that an actor can perform on the information. STS-ml
supports four basic operations: use (U), modify (M), produce (P), and distribute
(D). The four supported operations are directly linked to the way information is
manipulated within an actor’s model in the social view. Usage goes in parallel with
the need relation; modification relates to the modify relation, production is reflected
by the produce relation, and distribution relates to the document provision relation

76 E. Paja, F. Dalpiaz, and P. Giorgini

between actors. Graphically the allowed operation is highlighted in yellow (see
Fig. 15). In Fig. 1c, Tourist authorises TAS on usage (U is selected).

– Information: the transferred rights are granted over at least one information entity.
In Fig. 15, authority to use and modify information Info1 and Info2 is granted to
Role2. In our running example, the authorisation from Tourist to TAS is granted
over information Personal data and Itinerary, see Fig. 1c.

Fig. 15. Graphical representation of authorisations

– Scope: authority over information can be limited to their usage in the scope of a
certain goal. Our notion of goal scope includes the goal tree rooted by that goal.
As a result, authority is given to manipulate information not only for the specified
goal, but for its sub-goals as well. For instance, the Tourist permits the TAS to use
his Personal data only to book the tickets (i.e., for goal Tickets booked), see Fig. 1c.

– Transferability: this dimensions allows to specify whether the actor receiving
the authorisation can further re-authorise actors, that is, the authorisee not only
is granted the permission to perform operations, but also that of further prop-
agating rights over the specified information to other actors. Note that reau-
thorisation should be compatible with the authority scope the delegator has.
Non-transferrability is represented through a dashed authorisation line to show that
the authorisation chain should end with the authorisee. For instance, the authorisa-
tion from Tourist to TAS is transferrable, while that from TAS to Amadeus Service
is not, see Fig. 1c.

Implicitly express security needs. Security needs over authorisations are expressed
by allowing only certain operations and limiting the scope:

– limiting the scope expresses a security need on Need-to-know—requires informa-
tion is used, modified, produced only for the specified scope; for instance, Tourist
expresses a need-to-know security need to Hotel, which can use Personal data only
in the scope of Hotel booked, see Fig. 16.

– not allowing usage expresses a security need on Non-usage— requires the infor-
mation is not used in an unauthorised way; it implies that the authorisee should
not make use of (need) any documents making tangible the specified information.
There are no cases of non-usage from our running example.

– not allowing modification expresses a security need on Non-modification—requires
the information is not modified in an unauthorised way; it implies that the au-
thorisee should not modify any documents making tangible this information. In
Fig. 16, Hotel cannot modify documents representing Personal data.

– not allowing production expresses a security need on Non-production—requires
the information is not produced in an unauthorised way; it implies that no new

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 77

Fig. 16. Security needs over authorisations

document, representing the given information, is produced. In Fig. 16, TAS cannot
produce documents that represent Personal data or Itinerary.

– not allowing distribution expresses a security need on Non-disclosure—requires the
information is not disclosed in an unauthorised way; it implies that no document,
representing the given information, is transmitted to other actors. In Fig. 16, TAS
cannot distribute documents representing Personal data or Itinerary.

– not allowing transferrability expresses a security need on Not-reauthorise—requires
the authorisation is not transferrable, i.e., the authorisee does not further transfer
rights either for operations not granted to him (implicitly) or when the transfer-
ability of the authorisation is set to false (explicitly). This means that any non-
usage, non-modification, non-production or non-disclosure security need implies
a not-reauthorise security need for the operations that are not allowed. In Fig. 16,
Amadeus Service cannot further authorise other actors, for the authorisation coming
from TAS is non-transferable.

Phase 3. Summary. The steps are repeated until all authorisation relationships have
been drawn and authorisation needs have been expressed. The result of the iterative
modelling process supported by Phase 3 is Fig. 1c.

Phase 4. Automated Analysis
After the security requirements engineer has performed the modelling activities, the

STS method allows him to perform automated analysis over the created STS-ml model.
The analyses are supported by the case tool of STS-ml, namely STS-Tool. Details on
the tool will follow in Section 3. Currently three types of analysis are supported:

– Consistency Analysis (step 4.1.)
– Security Analysis (step 4.2.)
– Threat Analysis (step 4.3.)

78 E. Paja, F. Dalpiaz, and P. Giorgini

Step 4.1. Consistency Analysis. The purpose of consistency analysis is to verify
whether the diagram built by the designer is consistent and valid. It is also referred to as
Offline well-formedness analysis: some well-formedness rules of STS-ml are computa-
tionally too expensive for online verification, or their continuous analysis would limit
the flexibility of the modelling activities. Thus, some analyses about well-formedness
are performed upon explicit user request. Examples of verifications include delegation
cycles, part-of cycles, inconsistent or duplicate authorisations, etc.

The results of the analysis are shown in the Analysis tab (under Diagram consistency,
see Fig. 17) and once selected are visualised graphically over the model (Fig. 17), using
red for errors and yellow for warnings. The tabular representation allows filtering and
ordering of results depending on the type. Along with the visualisation over the STS-ml
model, a textual description is provided for the selected warning or error. In Fig. 17, this
analysis has found a warning on a delegation child cycle (highlighted in yellow color),
the description better explains it: There is a delegation cycle created by the delegation
of goal “Room selected”, which is a subgoal of “Hotel booked”, back to “Hotel”. No
errors were found by the consistency analysis for the running scenario. Warnings may
be disregarded by the designer, while errors must be solved.

Fig. 17. Results of the consistency analysis

Step 4.2. Security Analysis. For each elicited security need, a security requirement
is generated in STS-ml, see Phase 5. for more detail. Security analysis is concerned
with verifying: (i) if the security requirements specification is consistent—no require-
ments are potentially conflicting; (ii) if the STS-ml model allows the satisfaction of the
specified security requirements. This analysis is implemented in disjunctive Datalog
and consists of comparing the possible actor behaviors that the model describes against
the behavior mandated by the security requirements. The results are again shown in the
Analysis tab visualised on the STS-ml model itself (in red color) when selected, see
Fig. 18, which shows a violation of no-redelegation by Hotel for goal Hotel booked. A
textual description provides details on the selected error. In this case, the description
states that this is an error because: “Tourist” has expressed a no-redelegation security

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 79

Fig. 18. Results of the security analysis

Fig. 19. Results of the threat analysis: threat trace from the event ID Doc Stolen

need over the delegation of the goal “Hotel booked” to “Hotel”, and yet “Hotel” is
re-delegating goal “Hotel booked” to “Hotel Service”.

Step 4.3. Threat Analysis. This analysis calculates the propagation of threatening
events over actors’ assets. It answers the question: How does the specification of events
threatening actors’ assets affect their other assets?’ The results are shown in the Analy-
sis tab, see Fig. 19, which shows the threat trace (highlighted in red color), i.e., the threat
propagation for the event ID Doc Stolen threatening document ID Doc Copy (given this
is the one selected). Threatened document affects the goals that need and modify it,

80 E. Paja, F. Dalpiaz, and P. Giorgini

as well as the goal of the delegator, should this be a delegated goal. The description
for the selected threat propagation states that: The event “ID Doc Stolen” threatening
“ID Doc Copy”, threatens also “Trip planned”, “Hotel booked”, “Traveling Order”,
“Tickets booked”, and “Traveling Order”.

Phase 5. Derive Security Requirements
Requirements models are useful for communication purposes with the stakeholders.
Requirements specifications tell designers what the system has to implement. In STS-
ml, security requirements specifications are automatically derived from the constructed
requirements model. Security requirements in STS-ml constrain interactions in contrac-
tual terms. These contracts are expressed for each required security need, i.e., for each
security need expressed from one actor to the other, a security requirement is generated
on the opposite direction to express compliance with the required security need.

Table 1. Security Requirements for the running example

Responsible Security Requirement Requester

TAS
non-repudiation-of-acceptance(delegated
(Tourist,TAS,Tickets booked))

Tourist

Tourist
non-repudiation-of-delegation(delegated
(Tourist,TAS,Tickets booked))

TAS

TAS true-redundancy-multiple-actor(Tickets booked) Tourist
Hotel no-redelegation(hotel booked) Tourist

Amadeus Service
integrity-of-transmission(provided(TAS, Amadeus Ser-
vice, Itinerary details)

TAS

All Agents not-achieve-both(eticket generated, credit card verified) Org
Amadeus Service availability(flight ticket booked, 85%) TAS
Tourist delegatedTo(trustworthy(Hotel)) Tourist

TAS
need-to-know(Personal data ∧ Itinerary, Tickets
booked)

Tourist

TAS non-modification(Personal data ∧ Itinerary) Tourist
TAS non-production(Personal data ∧ Itinerary) Tourist
TAS non-disclosure(Personal data ∧ Itinerary) Tourist

The security requirements for the running example are listed in Table 1. For each
requirement, we present the Responsible actor, the Security Requirement itself corre-
sponding to the security need required by the Requester actor. We present security re-
quirements showing the responsible actor first, in order to present who are the actors
in charge for bringing about or complying with these security requriements. Note that
organisational constraints are applicable to “All agents” since they are derived by the
organisational rules and regulations, which we denote as Org.

Step 5.1. Generate security requirements document. As an output of the fifth phase
the method supports the creation of a security requirements document, which contains
the list of security requirements derived from the created STS-ml model, as well as
information describing the views (information that is customisable by the designers by
selecting which concepts or relations they want more information about), and the details
of the findings of the automated analyses.

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 81

3 STS-Tool: The Case Tool for STS-ml

The STS-Tool is the modelling and analysis support tool for STS-ml. It is an Eclipse
Rich Client Platform application written in Java, it is distributed as a compressed archive
for multiple platforms (Win 32/64, Mac OS X, Linux). The current version of STS-Tool
(v1.3.2) is ready for public use, it is freely available for download from www.sts-tool.eu.
The website includes extensive documentation including manuals, video tutorials, and
lectures. STS-Tool has the following features:

– Diagrammatic: the tool enables the creation (drawing) of diagrams. Apart from
typical create/modify/save/load operations, the tool also supports:
• different views on a diagram, specifically: social view, information view, and

authorisation view. STS-Tool ensures inter-view consistency to facilitate the
modelling process.

• ensuring diagram validity (online): the models are checked for syntactic/ well-
formedness validity while being drawn. Examples include enforcing the draw-
ing of relationships over the allowed elements and not others.

• exporting diagrams to different file formats, such as png, jpg, pdf, svg, etc.
– Automatic derivation of security requirements: security requirements are derived

from an STS-ml model as relationships between a requester (expressing a security
need) and a responsible actor (in charge of bringing about the security need) for the
satisfaction of a security need.

– Automated analysis: STS-Tool integrates the three automated analyses described
in Section 2—consistency, security, and threat analysis. The results of the analyses
are enumerated in tabular form below the diagram, and visualised on the diagram
itself when selected (see Fig. 1).

– Generating requirements documents: the modelling process terminates with the
generation of a security requirements document: the requirements analyst can cus-
tomise this document by for instance including only a subset of the actors, concepts
or relations, views, etc. The diagrams are described in detail both in textual and tab-
ular form. See 4 for an example.

4 Modelling and Reasoning with STS-Tool

We demonstrate the features of STS-Tool by modelling a scenario from a case study on
e-Government following the steps of the STS method and using the constructs of the
STS-ml language. The demonstration is organised in terms of modelling and analysis
exercises to guide the users in building and analysing STS-ml models, and deriving
security requirements for the system-to-be.

4.1 Illustrating Scenario: Lot Searching

The Department of Urban Planning (DoUP) wants to build an application which inte-
grates the existing back-office system with the available commercial services to facili-
tate the interaction of involved parties when searching for a lot. The Lot Owner wants

4 http://www.sts-tool.eu/Documentation.php

http://www.sts-tool.eu
http://www.sts-tool.eu/Documentation.php

82 E. Paja, F. Dalpiaz, and P. Giorgini

to sell the lot, he defines the lot location and may rely on a Real Estate Agency (REA)
to sell the lot. REA then creates the lot record with all the lot details, and has the re-
sponsibility to publish the lot record together with additional legal information arising
from the current Legal Framework. Ministry of Law publishes the accompanying law on
building terms for the lot. The Interested Party is searching for a lot and: (i) accesses the
DoUP application to invoke services offered by the various REAs; (ii) defines a trust-
worthiness requirement to allow only trusted REAs to contact him; (iii) sets a criteria
to search and select a Solicitor and a Civil Engineer (CE) to asses the conditions of the
lot; (iv) assigns solicitor and CE to act on his behalf so that the lot information is avail-
able for evaluation; and (v) populates the lot selection for the chosen CE and Solicitor.
Aggregated REA defines the list of trusted sources to be used to search candidate lots,
it collects candidate lots from trusted sources, and ranks them to visualize to the user.
The Chambers provide the list of creditable professionals (CE and Solicitors).

4.2 Modelling Activities

We present here the steps the designer will follow in order to perform the modelling
steps, depicted in see Fig. 2, Section 2.2, while illustrating them building the models
for the Lot searching scenario. This activity, apart from guiding the designer through the
modelling phases, shows how the tool facilitates and supports the modelling process.

Phase 1. Modelling the Social View
We start the tool (Fig. 20) to begin with the modelling activities, for which we can use
the concepts and relations from the Palette.

Fig. 20. The STS-Tool

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 83

Exercise 1. Identify Stakeholders. Which are the stakeholders we can identify from
the Lot Searching scenario? How can they be represented in terms of roles and agents?
Explain why. Draw identified roles and agents using STS-Tool. Use properties to better
describe them.

Solution: This corresponds to step 1.1 of STS method. Make sure you are on the
Social View, selecting it as shown in Fig. 21.

Fig. 21. STS-Tool screenshot: selecting the social view

The identified roles and agents are:

– Roles: Lot owner, REA, Map Service Provider, Interested Party, Solicitor, CE Cham-
bers, and Solicitor Chambers

– Agents: DoUP Application, Aggregated REA, and Ministry of Law

The reason for this is that roles refer to general actors that are instantiated at run time,
while agents refer to concrete entities already known at design time. So we do not know
who Lot owner or Interested Party is going to be, but there is only one Aggregated REA
and one Ministry of Law in this scenario, so we know them already at design time.

We draw the identified roles and agents as shown in Fig. 22, and use the properties
tab to better describe these roles and agents. In this case, we provide a description for
the role Lot owner. This feature is helpful because the tool sets a limit of 25 characters
on concept names, allowing longer descriptions to be inserted in the properties tab.

Fig. 22. Stakeholders for the Lot searching scenario

Exercise 2. Building actor models. For each modelled actor (role and agent) iden-
tify its assets. What are the goals they have and how they are achieved? What are the
documents actors have and manipulate (use, modify, produce)?

84 E. Paja, F. Dalpiaz, and P. Giorgini

Solution: This corresponds to the first part of step 1.2 of STS method, identifying
actors’ assets. We start with role Lot Owner, whose actor model is shown in Fig. 23.
The Lot Owner wants to sell a lot, therefore his main goal is to have lot sold. He could
sell the lot either privately or through an agency. In the Lot searching scenario, the
lot owner interacts with a real estate agency (REA), hence we can further refine how
this is achieved. To sell the lot through an agency: a lot record should be created, lot
information needs to be provided, the lot location needs to be defined and finally the lot
price needs to be approved. This is represented through the and-decomposition of goal
lot sold via agency into the above enumerated goals. In order to create the lot record,
the owners personal data are needed (goal lot record created needs document owner
personal info). In order to provide lot info, details about the lot are needed (goal lot info
provided needs document lot info). The tool helps the designer by allowing this relation
to be drawn only starting from the goal to the document, not vice-versa.

The same modelling is performed for the other identified actors, we will provide
more details for some of them in the following.

Fig. 23. Actor models: Lot owner

When first created, roles and agents come together with their rationale (open com-
partment), so that we can specify the goals or documents (assets) they have. The ratio-
nales can be hidden or expanded, to give the designer the possibility to focus on some
role or agent at a time. We place actor goals within their rationale. STS-Tool facilitates
a correct modelling of goal trees, by not allowing goal cycles. Several checks are per-
formed live by the tool for this purpose, such as not permitting the designer to draw a
decomposition link from a subgoal to a higher level goal in a goal tree.

Exercise 3. Identifying actors’ interactions. For each actor identify: (i) the goals for
which he needs to rely on others (goal delegations); (ii) the documents which he needs
to get from (provide to) others (document provisions).

Solution: This corresponds to the second part of step 1.2 of STS method, identify-
ing actors’ interactions. We start with Lot Owner’s interactions. To have the lot record
published Lot Owner delegates goal lot record created to REA, see Fig. 24.

Note that, when drawing a delegation, the tool makes sure that the actor does have a
goal it wants to pursue, before allowing the designer to draw the goal delegation rela-
tionship starting from the given actor. It is worth emphasising that STS-ml allows only

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 85

Fig. 24. Actor interactions: lot owner

the delegation of leaf goals, delegation of upper level goals is forbidden, and STS-Tool
support this. If a leaf goal is delegated and the designer decides to further decompose
this goal within the delegator, the tool will prompt him with a message and not allow
the further decomposition. Once the goal delegation relationship is drawn, the dele-
gated goal is automatically created within the compartment of the delegatee. This goal
is represented in a darker color than the original goal, in order to clearly distinguish for
each actor its own goals from the goals delegated to it. Additionally, the tool does not
allow the goal to be deleted from the delegatee’s compartment unless the delegation is
deleted. Importantly, delegation cycles are not permitted by the tool.

STS-ml models are built iteratively, so now we will iteratively build actors’ models.
For this, the designer should think of: How can the delegatee achieve the delegated
goal? Answering this question allows one to find out more details on the interacting
actors: goal and/or-decompositions, document, goal-document relationships, document
provisions and re-delegations if applicable. We continue the solution of Exercise 2 by
building the actor model for REA, see Fig. 25.

Fig. 25. Actor models: REA

Exercise 4. Expressing security needs. Analyze goal delegations and identify any
applicable security needs.

Solution: This solution follows step 1.3. of the STS method. We have represented
two actors so far and the interactions among them, so at this step we consider security
needs applicable to this interaction, analysing the drawn goal delegations and document

86 E. Paja, F. Dalpiaz, and P. Giorgini

Fig. 26. Expressing security needs: REA

provisions. We focus on the identified goal delegation, and consider which of the sup-
ported security needs (Non-repudiation, Redundancy, No-redelegation, Trustworthiness,
Availability) applies to it.

In Fig. 26 Lot Owner requires the Real Estate Agency no-redelegation of the goal lot
record created, and an availability level of 85% for the same goal. To specify this using
the tool, the designer needs to right-click on the delegated goal, to have a drop down list
of security needs and select the desired ones. Graphically security needs can be speci-
fied by right-clicking on the goal or document and selecting the desired security needs
from a given list. The selection of at least one security need, shows a padlock on the
goal or document (see Fig. 26). The selected security need can be shown explicitly by
clicking on the padlock, which shows small boxes below the delegated goal or provided
document; each box has a different colour and different label (see Fig. 26).

Iteratively building actor models. What about other actors? This is another iteration
of step 1.2. in identifying actors’ assets. We consider now the Interested Party and build
its actor model as shown in Fig. 27.

Fig. 27. Actor models: Interested Party

Iteratively identifying actors’ interactions. Identify goal delegations and document
provisions (iteration of step 1.2.) the Interested Party relies upon. In addition to goal
delegations, we need to consider document provisions. The Interested Party needs best

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 87

lots to perform a search over lots and find the best one, the document is provided by
DoUP Application, see Fig. 28.

Iteratively expressing security needs. Considering Interested Party and his interac-
tions, we determine which are the applicable security needs (iteration of step 1.3.). See
Fig. 28 for the details of the actor model for Interested Party, its interactions, and the
security needs expressed over them. For instance, Interested Party expresses a trust-
worthiness security need over the delegation of goal trusted REA selected to DoUP
Application. Additionally, a combination of duties is specified between the goals solic-
itor selected and CE selected, among others.

Fig. 28. Actor model and expressing security needs for Interested Party

Exercise 5. Modelling threats. Which actors’ goals and documents are threatened?
Represent threats over goals and over documents. Use properties to describe the threats.

Solution: This corresponds to step 1.4. of the STS method. Fig. 29 represents the
events identified to threaten actors’ assets. For instance, event file stolen threatens doc-
ument credible CE of CE Chambers.

Fig. 29. Modelling threats

Phase 1. Summary. As it can be inferred by the above exercises (1–4), modelling an
STS-ml model is an iterative process, step 1.2. and step 1.3. are repeated till all actor
models are built and all security needs are captured. Termination criteria is defined by
answering these questions: Are there any remaining actors? Who are they? Have we

88 E. Paja, F. Dalpiaz, and P. Giorgini

captured all their interactions? What about security needs? If there are still actors to
be represented, then answer: How can they achieve their goals by themselves? What
documents do they manipulate? What operations do they need to perform over these
documents? Do they posses the said documents? Do they need to rely on other actors
for some goals? Are there any events threatening their assets?

Exercise 6. Completing the Social View. Complete the modelling of the social view
for the Land searching scenario. As identified in the beginning of this phase, the re-
maining actors are: DoUP application, Aggregated REA, Ministry of Law, The Cham-
bers (Solicitors’ Chambers and CE Chambers), and Solicitor. For the remaining actors:
(i) draw their models, (ii) draw their interactions (goal delegations and document pro-
visions), (iii) express security needs over their interactions, and (iv) represent threats
over their goals and documents.

Phase 2. Modelling the Information View
We switch to Information View (see Fig. 30) and represent information entities relating
them together with the documents within which they are contained. The tool inherits
the roles and agents together with their documents from the social view, so the designer
is left with the modelling of the information entities, to then relate them to documents
via TangibleBy relationships.

Fig. 30. STS-Tool screenshot: switching to the information view

Exercise 7. Identify information and owners What is the informational content of
the documents represented in the social view? Who are the owners of this information?
What is the structure of information? Is there a structure of documents?

Solution: This corresponds to steps 2.1 and 2.2 of the STS method. We first need
to identify information entities and relate them with documents. We determine who is
the owner of the identified information. For instance, Lot Owner provides information
about the lot, we identify information lot info details, which is owned by the Lot Owner
himself and is represented (made tangible) by document lot info (see Fig. 31). STS-
Tool allows the relation owns to be drawn starting from the role or agent towards the
information it owns, and the relationship Tangible By to be drawn only starting from
information to documents.

Then, we model the information hierarchy (relate information with information). In
Fig. 31, information lot geo location is part of information lot info details. Finally, we
model the document hierarchy (relate documents with documents). Documents trusted
REA and best lots are part of document trusted sources, see Fig. 31.

The tool helps the designer in building this structure by allowing the Part Of rela-
tions to be drawn only between information or documents respectively. Additionally,
cycles of Part Of are not allowed by the tool.

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 89

Fig. 31. Part of information view for the Land searching scenario

Iteratively building the Information View. Similarly to the previous identified infor-
mation, the designer considers for each document what is its informational content. An
information could be made tangible by more documents, as well as the same document
can make tangible more information pieces. The designer continues modelling until all
the relevant information entities have been represented.

Phase 2. Summary. Steps 2.1. and 2.2. are repeated till all information entities have
been modelled, their owners have been identified, they have been related to their corre-
sponding documents and information or document structure is determined.

Exercise 8. Completing the Information View. Complete the modelling of the infor-
mation view for the Land searching scenario.

Phase 2. Modelling the Authorisation View
We switch to the authorisation view. Starting from information owners, we draw the
authorisations they grant to other actors.

Fig. 32. STS-Tool screenshot: switching to the authorisation view

Exercise 9. Modelling transfer of authorisations. Are there any authorisations
granted from the information owners? Is authority to transfer authorisations granted?
Which are the information for which authorisation is granted? Are there any limitations
of authority?

Solution: This corresponds to step 3.1. of the STS method. Starting from informa-
tion owners or authorised parties, we identify authorisation relationships between ac-
tors. Fig. 33 depicts the authorisations granted by information owners. For instance,
the Lot Owner authorises REA to use, produce, and distribute information lot info

90 E. Paja, F. Dalpiaz, and P. Giorgini

Fig. 33. Authorisation view: authorisations from information owners

details and lot geo location in the scope of goal lot record created, granting a trans-
ferable authorisation.

Fig. 33 shows the authorisations granted by authorised parties. For instance, the So-
licitor authorises the DoUP Application to use and distribute the information legal info
for goal citizens helped granting a transferable authorisation.

Fig. 34. Authorisation view: authorisations from authorised parties

Implicitly express security needs. Security needs over authorisations are captured
implicitly. For instance, from the authorisation relationship from the Lot Owner to the
Real Estate Agency we can derive that a security need for non-modification of informa-
tion lot info details and lot geo location is expressed, as well as a need-to-know security
need of using and producing this information for goal lot record created.

Iteratively building the Authorisation View. For all the represented actors, consider
whether there are permissions being granted to them or whether they grant any permis-
sions to the interacting actors.

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 91

Phase 3. Summary. Step 3.1 is repeated till all authorisation relationships have been
drawn. Termination criteria is established depending on whether all authorisations have
been captured and all the correct authorisation security needs have been expressed.

Exercise 10. Completing the Authorisation View. Complete the modelling of the
authorisation view for the Land searching scenario.

Modelling Activities Summary. The modelling process (Phases 1—3) is iterative.
The views can be further refined, depending on the level of detail that is needed. The
changes in one view have effects on other views. As described above, the different roles
or agents are maintained throughout the views, so the addition or deletion of some role
or agent would affect the other views. However, even in these cases, the tool provides
support by checking that a role or agent is deleted only when it does not have any inter-
actions with other roles (agents). Termination criteria is established by answering these
questions: Did I capture all important interconnections? Did I express all the security
needs? For a more comprehensive model, use properties to better describe its elements.

4.3 Running Automated Analysis

After constructing the STS-ml model for the Lot searching scenario, we can run the
automated analyses to verify its consistency, the satisfaction (possible violation) of se-
curity needs, and the threat propagation over actors’ assets.

Phase 4. Automated Analysis
Exercise 11. Consistency Analysis. Is the STS-ml model for the Lot searching scenario
well-formed?

Fig. 35. Executing consistency analysis

Solution: This corresponds to step 4.1. of the STS method. The consistency analysis
can be executed in the tool by using the Consistency Analysis tab, see Fig. 35. The
consistency analysis for the lot searching scenario did not find any warnings or errors.

Exercise 12. Security Analysis. Is it possible in the model that a security requirement
is violated? Identify violations.

Solution: This corresponds to step 4.2. of the STS method. The security analysis can
be executed in the tool by using the Security Analysis tab, see Fig. 36. Whenever the
designer runs the security analysis the tool automatically call the consistency analysis,
in order to ensure that the constructed model is well-formed. Only when the consistency
analysis finds no errors, the tool continues with the execution of the security analysis.

The results of the analysis are shown in the Analysis tab, and once selected are
visualised graphically over the model (Fig. 37).

In our example, the security analysis found several violations of the specified security
needs (errors), such as for instance the violation of non-production by the Map Service

92 E. Paja, F. Dalpiaz, and P. Giorgini

Fig. 36. Executing security analysis

Fig. 37. Executing security analysis: visualisation of results

Provider. As it can be seen by the diagram in Fig. 33 and 34 showing authorisation
relations, there is no authorisation relationship towards Map Service Provider, but Map
Service Provider can produce lot geo location since there is a produce relationship from
its goal location map added towards document map representing (making tangible)
information lot geo location, information that is owned by Lot Owner.

Similarly, there is a possible violation of a combination (binding) of duties between
the goals lot price approved and lot location defined of Lot Owner, as there appears to
be no single actor achieving both these goals, see Fig. 37 showing this warning.

Fig. 38. Executing threat analysis

Exercise 13. Threat Analysis. What are the effects of the events threatening actors’
assets? Identify the threat propagation.

Solution: This corresponds to step 4.3. of the STS method. Go to the Threat Analysis
tab, Fig. 39. The results of the threat analysis are shown in the Analysis tab, and once
selected are visualised graphically over the model (Fig. 39), which shows the impact of
the event List not found threatening goal credible solicitor provided.

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 93

Fig. 39. Executing threat analysis

4.4 Deriving Security Requirements

Requirements specifications define what the system has to implement.

Phase 5. Derive Security Requirements
In STS-ml, security requirements specifications are automatically derived from require-
ments models.

Fig. 40. Security requirements for the Lot searching scenario

Exercise 14. Generate security requirements document. What are the security re-
quirements for non-modification in the Lot searching scenario? What about security
requirements for non-disclosure of legal information?

94 E. Paja, F. Dalpiaz, and P. Giorgini

Solution: This corresponds to step 5.1 of the STS method. Security requirements
are automatically generated in STS-Tool. To identify security requirements for non-
modification, we consider the security requirements for the Lot searching scenario
(see Fig. 40) and order them with respect to the requirement, so to group together re-
quirements on non-modification. Similarly, we identify security requirements on non-
disclosure, and identify only one on legal information, to be satisfied by Aggregated
REA (no violation was identified by the security analysis).

Exercise 15. Generate security requirements document. Generate the document for
the Lot searching scenario.

Solution: We generate the security requirements document for the Lot searching
scenario by using the tab as shown in Fig. 41.

Fig. 41. STS-Tool screenshot: selecting the social view

This opens up a sequence of dialogue windows to determine the title and author for
the document (Fig. 42a), and deciding what to include, which views, elements within
the views, or analysis results (see Fig. 42b).

(a) (b)

Fig. 42. Customising the security requirements document

STS-Tool: Security Requirements Engineering for Socio-Technical Systems 95

5 Conclusions

Many security requirements engineering frameworks and methods are available in the lit-
erature. Secure Tropos [6] models security concerns throughout the whole development
process. It expresses security requirements as security constraints, considers potential
threats and attacks, and provides methodological steps to validate these requirements
and overcome vulnerabilities.

Liu et al. [5] extend i* to deal with security and privacy requirements. Their method-
ology defines security and privacy-specific analysis mechanisms to identify potential
attackers, derive threats and vulnerabilities, thereby suggesting countermeasures. Their
solution falls short when considering security issues through the later phases of the
development process [6].

SI* [4] is a security requirements engineering framework that builds on i* [10] by
adding security-related concepts, including delegation and trust of execution or permis-
sion. SI* uses automated reasoning to check security properties of a model, reasoning
on the interplay between execution and permission of trust and delegation relationships.
Our framework supports a more expressive ontology (featuring sophisticated authori-
sations) to represent information security requirements, and clearly decouples business
policies (the goals of an individual actor) from security requirements.

We have presented how STS-Tool—the case tool for STS-ml—allows an effective
security requirements engineering process, following the steps of the STS method. STS-
Tool supports modelling and reasoning activities, while aiding the requirements analyst
and the security engineer at each step.

We have demonstrated how modelling and reasoning activities can be performed
with the help of a case study from eGovernment. STS-ml supports a rich set of security
requirements that are derived from security needs expressed over actors’ interactions.

Our future work includes improving the usability of STS-Tool for a better user expe-
rience, as well as extending its reasoning capabilities for more sophisticated reasoning.

Acknowledgments. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grant no
257930 (Aniketos) and 256980 (NESSoS).

References

1. Bertino, E., Jajodia, S., Samarati, P.: A flexible authorization mechanism for relational data
management systems. ACM Transactions on Information Systems 17(2), 101–140 (1999)

2. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Adaptive Socio-Technical Systems: A
Requirements-driven Approach. Requirements Engineering 18(1), 1–24 (2013)

3. Dalpiaz, F., Paja, E., Giorgini, P.: Security requirements engineering via commitments. In:
Proceedings of STAST 2011, pp. 1–8 (2011)

4. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security requirements
through ownership, permission and delegation. In: Proc. of RE 2005, pp. 167–176 (2005)

5. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within a social
setting. In: Proc. of RE 2003, pp. 151–161 (2003)

6. Mouratidis, H., Giorgini, P.: Secure Tropos: A security-oriented extension of the tropos
methodology. IJSEKE 17(2), 285–309 (2007)

96 E. Paja, F. Dalpiaz, and P. Giorgini

7. Paja, E., Dalpiaz, F., Giorgini, P.: Managing security requirements conflicts in socio-technical
systems. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 270–
283. Springer, Heidelberg (2013)

8. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law 7(1), 97–113 (1999)

9. Whitman, M.E., Mattord, H.J.: Principles of Information Security, 4th edn. Course Technol-
ogy Press (2011)

10. Yu, E.: Modelling strategic relationships for process reengineering. PhD thesis, University of
Toronto, Canada (1996)

Model-Driven Development of a Secure eHealth

Application

Miguel A. Garćıa de Dios1, Carolina Dania1, David Basin2, and Manuel Clavel1

1 IMDEA Software Institute, Madrid, Spain
{miguelangel.garcia,carolina.dania,manuel.clavel}@imdea.org

2 ETH Zürich, Switzerland
basin@inf.ethz.ch

Abstract. We report on our use of ActionGUI to develop a secure
eHealth application based on the NESSoS eHealth case study. ActionGUI
is a novel model-driven methodology with an associated tool for de-
veloping secure data-management applications with three distinguishing
features. First, it enables a model-based separation of concerns, where
behavior and security are modeled individually and subsequently com-
bined. Second, it supports model-based quality assurance checks, where
the properties proven about the models transfer to the generated appli-
cations. Finally, for data-management applications, the ActionGUI tool
automatically generates complete, ready-to-deploy, security-aware, web
applications. We explain these features in the context of the eHealth
application.

1 Introduction

In [3] we proposed a novel methodology, called ActionGUI, for the model-driven
development of secure data-management applications. This methodology enables
a model-based separation of concerns, where an application’s behavior and secu-
rity are modeled individually and subsequently combined. Moreover, it supports
model-based quality assurance checks, where relevant properties may be proven
about the combined models. These properties then transfer to the automatically
generated data-management applications.

We report here on our use of ActionGUI to develop a secure data-mana-
gement application. This application is based on a case study proposed within
NESSoS, the European Network of Excellence on Engineering Secure Future
Internet Software Services and Systems [12]. The eHealth case study consists of a
web-based system for electronic health record management (EHRM). Electronic
health records (EHR) store information created by, or on behalf of, a health
professional in the context of the care of a patient.

Electronic health records are highly sensitive and therefore their access must
be controlled. Part of the challenge in this case study was to model the access
control policy and build an application that enforces it at runtime. The policy
consists of various authorization rules along the lines of: The access control cri-
teria for an EHR depends, among others, on the type of EHR. For instance,

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 97–118, 2014.
© Springer International Publishing Switzerland 2014

98 M.A.G. de Dios et al.

a highly sensitive record might be only available to the patient’s treating doctor
(and perhaps a few others, in rare situations). Such rules necessitate fine-grained
access control, where access control decisions depend not only on the user’s cre-
dentials but also on the satisfaction of constraints on the state of the persistence
layer, i.e. on the values of stored data items.

We show how ActionGUI’s modeling languages can be used to specify the
application’s data model (e.g., hospital staff, health records), security policy
(e.g., rules like the above) and behavior. Moreover, by illustrative examples, we
highlight various features of the ActionGUI methodology and associated tool.
Overall, the eHealth case study is interesting as an example of developing a
secure data-management application and it provides a proof-of-concept for the
application of the ActionGUI methodology to an industry-relevant problem.

Organization. In Section 2 we provide background on the ActionGUI methodol-
ogy and tool. In Section 3 we give an account of our modeling and generation of
the EHRM application with ActionGUI. In Section 4 we describe a proof method
for checking that the behavior of the modeled data-management application re-
spects the invariants of the application’s underlying data model, and we apply
it to our EHRM models. Finally, in Section 5, we draw conclusions.

2 ActionGUI

ActionGUI [3] is a methodology for the model-driven development of secure
data-management applications. It consists of languages for modeling multi-tier
systems, and a toolkit for generating these systems. Within this methodology, a
secure data-management application is modeled using three interrelated models:

1. A data model defines the application’s data domain in terms of its classes,
attributes, associations, and methods.

2. A security model defines the application’s security policy in terms of autho-
rized access to the actions on the resources provided by the data model.

3. A graphical user interface, or GUI model, defines the application’s graphical
interface and application logic. Note, in particular, that this model formalizes
both UI structure and behavior.

The heart of this methodology, illustrated in Figure 1, is a model-transfor-
mation function that automatically lifts the policy that is specified in the security
model to the GUI model. The idea is simple but powerful. The security model
specifies under what conditions actions on data are authorized. The control in-
formation in the GUI model specifies which actions are executed in response
to which events. Lifting essentially consists of prefixing each data action in the
GUI model with the authorization check specified in the security model. The
resulting GUI model is security aware. It specifies UI structure, information flow
with persistent storage, and all authorization checks.

The ActionGUI methodology is implemented within a toolkit, also called Ac-
tionGUI [1], which performs the aforementioned many-models-to-model trans-
formation. From the resulting security-aware GUI model, ActionGUI generates

Model-Driven Development of a Secure eHealth Application 99

Fig. 1. Model-driven development of security-aware GUIs

a deployable application along with all support for access control. In particular,
when the security-aware GUI model contains only calls to execute CRUD actions,
i.e., those actions that create, read, update, and delete data, then ActionGUI
will generate the complete implementation automatically.

In the remaining part of this section we briefly introduce the languages that
are used within the ActionGUI methodology to model the applications’ data,
security, and GUI models, including their constraints, as well as the tools sup-
porting the ActionGUI methodology. In the next section we will use the NESSoS
EHRM application scenario to illustrate these modeling languages as well as the
model-based separation of concerns supported by the ActionGUI methodology.

2.1 Data Models

Data models provide a data-oriented view of a system. They typically specify
how data is structured, the format of data items, and their logical organization,
i.e., how data items are grouped and related. ActionGUI employs Component-
UML [4] for data modeling. ComponentUML provides a subset of UML class
models where entities (classes) can be related by associations and may have
attributes and methods.

100 M.A.G. de Dios et al.

2.2 Constraints

The Object Constraint Language (OCL) [13] is a language for specifying con-
straints and queries using a textual notation. ActionGUI supports different uses
of OCL: it is used in data models to specify data invariants, in security models
to specify authorization constraints, and in GUI models to specify if-then-else
conditions and action arguments.

Every OCL expression is written in the context of a model (called the con-
textual model), and is evaluated on an object model (also called the instance or
scenario) of the contextual model. This evaluation returns a value but does not
alter the given object model, since OCL’s evaluation is side-effect free.

OCL is strongly typed. Expressions either have a primitive type, a class type,
a tuple type, or a collection type. OCL provides: standard operators on primitive
data, tuples, and collections; a dot-operator to access the values of the objects’
attributes and association-ends in the given scenario; and operators to iterate
over collections. Particularly relevant for its use in ActionGUI models, OCL
includes two constants, null and invalid, to represent undefinedness. Intuitively,
null represents unknown or undefined values, whereas invalid represents error and
exceptions. To check if a value is null or invalid, OCL provides, respectively, the
Boolean operators oclIsUndefined() and oclIsInvalid().

2.3 Security Models

SecureUML [4] extends Role-Based Access Control (RBAC) [9] with authoriza-
tion constraints. These constraints are used to specify policies that depend on
properties of the system state. SecureUML supports the modeling of roles and
their hierarchies, permissions, actions, resources, and authorization constraints.

In ActionGUI, we use an extension of SecureUML for specifying security poli-
cies over data models. In this extension:

– The protected resources are the entities, along with their attributes, meth-
ods, and association-ends.

– The controlled actions are: to create and delete entities; to read and up-
date attributes; to read, create, and delete association-ends; and to execute
methods.

– The authorization constraints are specified using OCL.

The contextual model of the authorization constraints is the underlying data
model. Additionally, authorization constraints may contain the variables self,
caller, value, and target, which are interpreted as follows:

– self refers to the root resource upon which the action will be performed if
permission is granted. The root resource of an attribute, a method, or an
association-end is the entity to which it belongs.

– caller refers to the user that will perform the action if the permission is
granted.

– value refers to the value that will be used to update an attribute if the
permission is granted.

Model-Driven Development of a Secure eHealth Application 101

– target refers to the object that will be added to (or removed from) the (root)
resource at an association-end if the permission is granted.

2.4 GUI Models

GUI models provide a human-interface oriented view of a system. A GUI consists
of widgets, which are visual elements that display information and trigger events
that execute actions. In ActionGUI, we use GUIML [3] for modeling both

– the GUI’s structure, i.e, the elements (widgets) that comprise it,

– and the GUI’s behavior, i.e., how its elements will react (actions) in response
to user interactions with them (events).

Behavioral modeling is a key feature of GUIML and uses OCL to specify both the
conditions and the arguments for the different actions; the contextual model of
these conditions and arguments is again the underlying data model. This enables
both the security model and the GUI model to “speak” the same language,
namely OCL in the context of the common, underlying data model. This allows
us to define rigorously the transformation function that lifts the security policy
to the GUI level.

We next briefly describe the main elements of GUIML, namely, widgets (with
their associated variables), events, and actions.

Widgets. A GUI model consists of widgets of different kinds. Examples include
windows (pages, when referring to web applications), combo-boxes (selectable
lists), tables, date fields, boolean fields (check boxes), buttons, text fields, and
labels.

Variables. Widgets may own variables, which store values for later use. Each
widget declaration may contain variable declarations, listing the variables owned
by the widget. There are variables that are, by default, owned by every widget
of a given type. In particular, the variables caller and role are predefined in every
window. They store, respectively, the application’s user and the user’s role.1 The
variable text is predefined in every label, button, and text field. This variable
stores the string displayed on the screen within the label, button, and text field.
The variable rows is predefined in every combo-box and table. This variable stores
the collection of items that can be selected from the combo-box or table. The
variable row is also predefined in every combo-box and table where, for each row,
it stores the item that corresponds to this row. Finally, the variable selected is
also predefined in every combo box or table where it stores the item(s) selected
in the combo box or table.

1 Currently, it is a task for the GUI modeler to guarantee that the variables caller
and role always store an authenticated user and a valid role. This can be done, for
example, by modeling a login window, where the users will need to enter a valid
nickname and password before accessing the application.

102 M.A.G. de Dios et al.

Events. Widgets may trigger events, which execute actions either on data or
on other widgets. The actions executed when an event is triggered are specified
using statements. A statement is either an action, a conditional statement, an
iteration, a try-catch, or a sequence of statements. The conditions in conditional
statements are specified using OCL expressions, whose context is the underlying
data model. Additionally, they can refer to the widget variables. Note that each
sequence of statements associated to an event is executed as a single transaction:
either all statements in the sequence successfully execute in the given order, or
none of them are executed at all.

Actions. Events trigger actions that can be executed either on objects belonging
to the persistence tier or on objects belonging to the presentation tier. The former
are called data actions and the latter are called GUI actions. Data actions are
precisely those controlled in the security model, namely: to create and delete
entities; to read and update attributes; to read, create, and delete association-
ends; and to execute methods. GUI actions include those for setting the value
of a widget variable, opening a window (open), moving back to the previous
window (back), and forcing a rollback of the current transaction (fail). Note that
some actions may take arguments. The values of these arguments are specified
using OCL expressions, whose context is the underlying data model, and they
can also refer to the widget variables.

2.5 Security-Aware GUI Models

The heart of ActionGUI is a model-transformation function Sec that, given a
GUIML model G and a SecureUML model S, automatically generates a new
GUIML model Sec(G,S). The generated model is identical to G except that it
is security aware with respect to S. The transformation function Sec works by
wrapping around every data action act in G an if-then-else statement with the
following arguments:

– a condition that reflects the constraints associated to the permissions speci-
fied in S, for each of the different roles, to execute the action act ;

– a then branch that contains the action act ; and
– an else branch that contains the action fail.

Thus, the semantics of an if-then-else statement ensures that act will only be
executed if the constraints associated to the corresponding permissions are sat-
isfied. Moreover, if these constraints are not satisfied, then the action fail will be
executed, forcing a rollback in the current transaction.

2.6 Tool Support

Security-aware GUI models are platform independent and can be mapped to
implementations employing different technologies. This includes desktop appli-
cations, web applications, and mobile applications. The ActionGUI Toolkit [1],

Model-Driven Development of a Secure eHealth Application 103

automatically generates web-based data-management applications from security-
aware GUIML models.

The ActionGUI Toolkit features model editors for constructing and manip-
ulating ComponentUML, SecureUML, and GUIML models. Crucially, the Ac-
tionGUI Toolkit implements our model transformation to generate security-aware
GUIML models. Moreover, it includes a code generator that, given a security-
awareGUIMLmodel, produces a web application based on the following three-tier
architecture:

1. Presentation tier (also known as front-end): Users access web applications
through standard web browsers, which render the content (HTML and Java-
Script) dynamically provided by the application server.

2. Application tier: The toolkit generates Java Web Applications, implemented
using the Vaadin framework. The applications run in a servlet container
(such as Tomcat or GlassFish), process client requests and generate content,
which is sent back to the client for rendering.

3. Persistence tier (also known as data tier or back-end): The generated appli-
cation manages information stored in a database.

3 The EHRM ActionGUI Application

The NESSoS EHRM application scenario defines different system use cases along
with the associated access control policy. The use cases include: register new
patients in a hospital and assign them to clinicians, such as nurses or doctors;
retrieve patient information; register new nurses and doctors in a hospital and
assign them to a ward; change nurses or doctors from one ward to another; and
reassign patients to doctors. Due to space limitations, we will not describe how
we model all of these use cases. We focus instead on a representative use case as
a running example: reassigning patients to doctors. We will use this example to
illustrate ActionGUI’s modeling languages as well as the model-based separation
of concerns supported by the ActionGUI methodology.

3.1 The EHRM’s Data Model

The full data model for the EHRM application contains 18 entities, 40 at-
tributes, and 48 association-ends. We discuss below just the entities, attributes,
and association-ends that are required for our running example.

Figure 2 presents this data model, formalized using ActionGUI’s textual syn-
tax. In this syntax, entities are declared with the keyword entity followed by the
entity’s name, and its attributes and association-ends, which are enclosed within
brackets. Attributes and association-ends are declared together with their types.
Moreover, since associations are binary, each association-end is declared together
with its opposite association-end, designated by the keyword oppositeTo.

As this example shows, ActionGUI data models specify how the application’s
data is structured, independently of how it will be visualized or accessed.

104 M.A.G. de Dios et al.

Professional. This entity represents the EHRM’s users. The role assigned to each
user is specified by its role attribute. The roles considered are DIRECTOR, ADMIN-

ISTRATOR, DOCTOR, NURSE, and SYSTEM. The medical centers where a user
works are linked to the user through the association-end worksIn. If a user is a
doctor, then it is linked to the corresponding doctor information through the
association-end asDoctor. Similarly, if a user is an administrative staff, then it is
linked to staff information through the association-end asAdministrative.

MedicalCenter. This entity represents medical centers. The departments belonging
to a medical center are linked to the medical center through the association-end
departments. The professionals working for a medical center are linked to the
medical center through the association-end employees.

Doctor. This entity represents doctor information. Doctor information is linked
to the corresponding professional through the association-end doctorProfessional.
The departments where a doctor works are linked to the doctor’s information
through the association-end doctorDepartments. The patients treated by a doctor
are linked to the doctor’s information through the association-end doctorPatients.

Administrative. This entity represents administrative staff information. Adminis-
trative staff information is linked to the corresponding professional through the
association-end administrativeProfessional.

Department. This entity represents departments. The medical center to which
a department belongs is linked to the department through the association-end
belongsTo. The doctors working in a department are linked to the department
through the association-end doctors. The patients treated in a department are
linked to the department through the association-end patients.

Patient. This entity represents patients. The doctor treating a patient is linked to
the patient through the association-end doctor. The department where a patient
is treated is linked to the patient through the association-end department.

3.2 The EHRM Data Model’s Invariants

The full EHRM application data model is constrained by 66 data invariants,
formalized using OCL. The following three invariants are representative.

1. Each patient is treated by a doctor.
Patient.allInstances()→forAll(p|not(p.doctor.oclIsUndefined()))

2. Each patient is treated in a department.
Patient.allInstances()→forAll(p|not(p.department.oclIsUndefined()))

3. Each patient is treated by a doctor who works for a set of departments, in-
cluding the department where the patient is treated.
Patient.allInstances()→forAll(p|p.doctor.doctorDepartments→includes(p.department))

Model-Driven Development of a Secure eHealth Application 105

entity Professional {
Role role
Set(MedicalCenter) worksIn oppositeTo employees
Doctor asDoctor oppositeTo doctorProfessional
Administrative asAdministrative oppositeTo administrativeProfessional }

entity MedicalCenter {
Set(Department) departments oppositeTo belongsTo
Set(Professional) employees oppositeTo worksIn }

entity Doctor {
Professional doctorProfessional oppositeTo asDoctor
Set(Department) doctorDepartments oppositeTo doctors
Set(Patient) doctorPatients oppositeTo doctor }

entity Administrative {
Professional administrativeProfessional oppositeTo asAdministrative }

entity Department {
MedicalCenter belongsTo oppositeTo departments
Set(Doctor) doctors oppositeTo doctorDepartments
Set(Patient) patients oppositeTo department }

entity Patient {
Doctor doctor oppositeTo doctorPatients
Department department oppositeTo patients }

enum Role { DIRECTOR ADMINISTRATOR DOCTOR NURSE SYSTEM }

Fig. 2. The eHRMApp’s data model (partial)

These invariants make precise the intended meaning of the associations be-
tween the entities Patient, Doctor, and Department. The first two invariants state
that the doctor and the department associated to a patient cannot be undefined,
i.e., null. The third invariant states that a doctor who treats a patient must work
in the department where the patient is treated, although the doctor may also
work in other departments.

3.3 The EHRM’s Security Model

Electronic health records are by their nature highly sensitive and the NESSoS
case study informally defines the policy that regulates their access. As expected,
the authorization to carry out certain actions is not only role-based, but also
context-based. In other words, the EHRM access control policy is fine grained.

The full EHRM application’s security model contains 5 roles and 573 permis-
sions, where each permission authorizes users in a role to execute an action upon
the satisfaction of an authorization constraint formalized in OCL. In Figure 3 we
present examples of two permissions, modeled using ActionGUI’s textual syn-
tax. In this syntax, the roles that users can take are declared with the keyword
role followed by the role’s name, and its permissions, which are enclosed within
brackets. Permissions are introduced by naming the root resources to which they
grant access. Each permission consists of a list of actions through which the cor-
responding root resource can be accessed. Actions on attributes, methods, or
association-ends are declared along with their names. For example, update(attr)

106 M.A.G. de Dios et al.

denotes the update action on the attribute attr. The keyword constrainedBy is
used to declare that the permission to execute an action is constrained by the
given condition (enclosed in square brackets).

The first permission authorizes a user (caller) with the role ADMINISTRATOR

to reassign a patient to a department (value) provided that the user works in a set
of medical centers that includes the one to which the department belongs where
the patient will be reassigned. The second permission authorizes a user (caller)
with the role ADMINISTRATOR to reassign a patient (self) to a doctor (value)
provided two conditions are satisfied: (i) among the medical centers where the
user works, there is at least one where the doctor to which the patient will be
reassigned also works; and (ii) the user works in medical centers that includes
the center to which the department belongs where the patient is currently being
treated. Note that no other role has permissions associated to the actions of
reassigning a patient to a department or to a doctor.

As this example illustrates, ActionGUI security models are formulated in
terms of the application’s data. This formalization is independent of how the
data is visualized or accessed through the application’s graphical user interface.

1 role ADMINISTRATOR {
2 Patient{
3 update (department) constrainedBy [caller.worksIn→includes(value.belongsTo)] }
4 Patient{
5 update (doctor) constrainedBy
6 [caller.worksIn→exists(m | value.doctorProfessional.worksIn→includes(m))
7 and caller.worksIn→includes(self.department.belongsTo)] }

Fig. 3. Examples of the EHRM security model’s permissions

3.4 The EHRM’s GUI Model

The full EHRM application’s GUI model contains 8 windows for the following
use cases: login to the application; access a medical center’s information; register
a new patient; review a patient’s information; reassign a patient to a doctor and
department; access options reserved for the medical center’s director; introduce
a professional into the system; and reassign a professional to a department.2

We discuss below the window relevant for our running example: the window
movePatientWI for reassigning a patient to a doctor and a department. Figures 4
and 5 present our model of this window, in ActionGUI’s textual syntax. Figure 6
contains a screenshot of the actual window generated from this model.

2 Here are some other concrete figures about the size of the GUI model: i) Widgets:
19 buttons; 73 labels; 19 text fields; 5 boolean fields; 1 date field; 1 combo box;
and 9 tables; ii) Statements: 34 if-then-else statements; iii) Data actions: 11 create
actions; 41 update actions; 5 add link actions; and 2 remove link actions; iv) GUI
actions: 157 set actions; and 7 open actions; v) OCL expressions: 361 expressions
(77 non-literals).

Model-Driven Development of a Secure eHealth Application 107

In ActionGUI’s textual syntax, a widget is declared with a keyword like Win-

dow, Button, and TextField, according to its type, followed by the widget’s name,
and the declaration of the variables it owns, the events it triggers, and the wid-
gets it contains, all enclosed in brackets. A variable declaration consists of the
variable’s type followed by its name, possibly followed by the variable’s initial
assignment (if any) and by the statement that will be executed every time the
variable’s value changes (if any), the latter enclosed in brackets. Events are de-
clared by indicating their types followed by the sequence of statements that they
execute, enclosed in brackets. The syntax for declaring the different data and
GUI actions should be clear from the example below.

The window movePatientWI assumes that both a medical center and a patient
have previously been selected. This information is stored, respectively, in the
variables medicalCenter and patient (lines 2-3). The window movePatientWI contains
the following widgets:

– A label patientLa that displays the name and surname of the selected patient
(lines 5–7).

– A label departmentLa that displays the name of the department where the
selected patient is treated (lines 8–9).

– A label doctorLa that displays the name and surname of the doctor who treats
the selected patient (lines 10–13).

– A label departmentsLa that displays a message inviting the user to select a
department (lines 14–15).

– A label doctorsLa that displays a message inviting the user to select a doctor
(lines 16–17).

– A table departmentsTa that displays information about the departments that
belong to the selected medical center (line 22); in particular, the name of
each of these departments is shown (line 31-34). Also, when the user selects a
department from this list, it refreshes the list of doctors displayed in the table
doctorsTa (see below) with the doctors who work for the selected department
(lines 19–21).

– A table doctorsTA that is initially empty (line 24). As previously explained,
upon selection of a department in the table departmentsTa, it displays in-
formation about the doctors who work for the selected department (lines
19–21); in particular, the name and surname of each of these doctors are
shown (lines 35-41).

– A button moveBu that, when clicked upon, if there is a department selected
in the table departmentsTa (line 44), and there is also a doctor selected in the
table doctorsTa (line 45), then:

• it reassigns the selected department to the selected patient (line 46);
• it reassigns the selected doctor to the selected patient (line 47);
• it notifies the user that the reassignment succeeded (lines 48).

Otherwise, it notifies the user that either a doctor (line 50) or a department
(line 52) must first be selected.

– A button backBU that, when the user clicks on it, it returns to the previous
window (line 55).

108 M.A.G. de Dios et al.

As this example illustrates, ActionGUI GUI models depend on how the ap-
plication’s data is structured — after all, they describe how users interact with
this data — but not on the application’s security policy. Of course, in terms of
the final application’s usability, there is a dependency: a GUI can end up being
unusable precisely because of the application’s security policy.

3.5 The EHRM’s Security-Aware GUI Model

As explained in Section 2.5, the heart of ActionGUI is a model-transformation
function that, essentially, prefixes each data action in the GUI model with the
authorization check specified in the security model. The full EHRM application’s
GUI model contains 59 data actions, and therefore the automatically generated
EHRM application’s security-aware GUI model contains the same number of
authorization checks.

To illustrate our model-transformation function, we show in Figure 7 the part
of the security-aware GUI model for the button moveBu’s event onClick that is
relevant for our running example. The action of reassigning the selected patient
to the department selected in the table departmentsTa (line 46 in Figure 5) is
now wrapped by an if-then-else statement (lines 46.1-46.5 in Figure 7) whose
condition reflects the permission for executing this action given by line 3 in
Figure 3. Similarly, the action of reassigning the selected patient to the doctor
selected in the table doctorsTa (line 47 in Figure 5) is wrapped by an if-then-else
statement (lines 47.1-47.7 in Figure 7) whose condition reflects the permission
for executing this action given by lines 5–7 in Figure 3.

3.6 Generating the EHRM Application

The ActionGUI Toolkit automatically generates the complete EHRM application
in under 10 seconds. The generated .war file includes the Vaadin library as well
as other external libraries. The Vaadin library is responsible of 70% of the size
of the generated file and only 10% of this file corresponds to the code that
ActionGUI automatically generates to interpret the application’s model. The
size of the .war file containing the complete application is roughly 15 MB.

4 Analyzing the EHRM ActionGUI Application

Model-Driven Architecture supports the development of complex software sys-
tems by generating software from models. Of course, the quality of the generated
code depends on the quality of the source models. If the models do not properly
specify the system’s intended behavior, one should not expect the generated sys-
tem to do so either. Quod natura non dat, Salmantica non praestat.3 Experience
shows that even when using powerful, high-level modeling languages, it is easy
to make logical errors and omissions. It is critical not only that the modeling

3 Less elegantly said, garbage in, garbage out.

Model-Driven Development of a Secure eHealth Application 109

1 Window movePatientWi {
2 MedicalCenter medicalCenter
3 Patient patient
4 String text := [’Move a patient’]

5 Label patientLa {
6 String text := [’Patient: ’.concat($movePatientWi.patient$.contact.name)
7 .concat(’ ’).concat($movePatientWi.patient$.contact.surname)] }
8 Label departmentLa {
9 String text := [’Department: ’.concat($movePatientWi.patient$.department.name)] }

10 Label doctorLa {
11 String text := [’Doctor: ’.concat($movePatientWi.patient$.doctor.
12 doctorProfessional.name).concat(’ ’).
13 concat($movePatientWi.patient$.doctor.doctorProfessional.surname)] }

14 Label departmentsLa {
15 String text := [’Select the new department:’] }

16 Label doctorsLa {
17 String text := [’Select the new doctor:’] }

18 Table departmentsTa {
19 Department selected {
20 if [not $selected$.oclIsUndefined()] {
21 movePatientWi.doctorsTa.rows := [$selected$.doctors] } }
22 Set(Department) rows := [$movePatientWi.medicalCenter$.departments] }

23 Table doctorsTa {
24 Set(Doctor) rows := [Doctor.allInstances()→select(false)]
25 Doctor selected }

26 Button moveBu {
27 String text := [’Move the patient’] }

28 Button backBu {
29 String text := [’Back’]
30 }

Fig. 4. A window for reassigning a selected patient (part I)

110 M.A.G. de Dios et al.

31 Table movePatientWi.departmentsTa {
32 columns{
33 [’Department’] : Label department {
34 String text := [$departmentsTa.row$.name] } } }

35 Table movePatientWi.doctorsTa {
36 columns {
37 [’Doctor’] :Label doctor {
38 String text :=
39 [$doctorsTa.row$.doctorProfessional.name
40 .concat(’ ’)
41 .concat($doctorsTa.row$.doctorProfessional.surname)]}}}

42 Button movePatientWi.moveBu {
43 event onClick {
44 if [not $departmentsTa.selected$.oclIsUndefined()] {
45 if[not $doctorsTa.selected$.oclIsUndefined()] {
46 [$movePatientWi.patient$.department] := [$departmentsTa.selected$]
47 [$movePatientWi.patient$.doctor] := [$doctorsTa.selected$]
48 notification([’Success’],[’The patient has been reassigned.’],[0]) }
49 else {
50 notification([’Error’],[’Please, select first a doctor.’],[0]) } }
51 else {
52 notification([’Error’],[’Please, select first a department.’],[0]) } } } }

53 Button movePatientWi.backBu {
54 event onClick {
55 back } }

Fig. 5. A window for reassigning a selected patient (part II)

Fig. 6. Screenshot of the window for reassigning a selected patient

Model-Driven Development of a Secure eHealth Application 111

46.1 if [[$movePatientWi.role$ = ADMINISTRATOR
46.2 and $movePatientWi.caller$.worksIn
46.3 →includes($departmentsTa.selected$.belongsTo)] {
46.4 [$movePatientWi.patient$.department] := [$departmentsTa.selected$] }
46.5 else { fail }

47.1 if [[$movePatientWi.role$ = ADMINISTRATOR
47.2 and $movePatientWi.caller$.worksIn→exists(m |
47.3 $doctorsTa.selected$.doctorProfessional.worksIn→includes(m))
47.4 and $movePatientWi.caller$.worksIn
47.5 →includes($movePatientWi.patient$.department.belongsTo))] {
47.6 [$movePatientWi.patient$.doctor] := [$doctorsTa.selected$] }
47.7 else { fail }

Fig. 7. The security-aware actions for reassigning a selected patient

language has a well-defined semantic, so one can know what one is doing, but
also that there is tool support for analyzing the modeled systems’ properties.

In this section we explain how we can reason about an important property
of ActionGUI models, called data invariant preservation. We use the EHRM
application for illustration.

4.1 Data Invariant Preservation

We first introduce some terminology. Recall that the actions triggered by an
event may be specified using if-then-else statements. At execution time, the
exact sequence of actions taken is determined by how the different conditions of
each if-then-else statements are evaluated in the system’s state at the time of
evaluation. Note that this state includes both the state of the persistence layer
and the state of the GUI, in particular, its widget variables. Since each action
may update the system’s state, a sequence of actions gives rise to a sequence of
states, which we call an execution path.

ActionGUI’s data model may include data invariants. We have given several
examples of these in Section 3.2. These are properties that are required to be
satisfied in every (reachable) system state. Invariance of a property must be
proven and the standard way to do this is to show that the property is inductive,
that is, it is satisfied in the system’s initial state and, whenever it is satisfied in
a state, it is satisfied in all possible successor states. Below we shall focus on the
inductive step: proving invariant preservation.

Formally, let Φ be a collection of data invariants. An event preserves a data
invariant φ ∈ Φ if and only if for every execution path triggered by the event, if
every data invariant ψ ∈ Φ is satisfied at the initial state of the execution path,
then φ is also satisfied at the final state. Here we leverage ActionGUI’s trans-
action semantics and that transactions are implemented in a way that ensures
their atomicity: The intermediate states of an execution path may be considered

112 M.A.G. de Dios et al.

to be internal and may therefore (temporarily) violate ψ. An event is Φ-data
invariant preserving when it preserves all data invariants in Φ.

Our proof procedure, illustrated below, is based on the fact that each event
defines an action tree. The nodes in this tree are the actions triggered by the
event and branching corresponds to the if-then-else conditions governing the
execution of these actions. As expected, every successful transaction corresponds
to executing a sequence of actions given by one of the branches of the action
tree, from the root to a leaf. Note that, to simplify our exposition we omit both
iteration statements and event-triggering actions; including these would lead to
action graphs rather than trees.

1 Each patient is treated by a doctor.
Patient.allInstances()→forAll(p|not(p.doctor.oclIsUndefined()))

2 Each patient is treated in a department.
Patient.allInstances()→forAll(p|not(p.department.oclIsUndefined()))

3 Each patient is treated by a doctor who works for a set of departments that
includes the department where the patient is treated.
Patient.allInstances()→forAll(p|

p.doctor.doctorDepartments→includes(p.department))

Fig. 8. Examples of the EHRM data model’s invariants

Reassigning Doctors and Departments to Patients. We show in Figure 9
the action tree defined by the the button moveBu’s event onClick. For ease of
later reference, we assign labels for the actions and the if-then-else conditions.
Note that:

– Branch 1 corresponds to the case when a department and a doctor are both
selected when the button moveBU is clicked-on. In this situation, the patient
will be first assigned to the selected department, and then to the selected
doctor; finally, a message confirming these actions will be displayed.

– Branch 2 corresponds to the case when a department is not selected when
the button moveBU is clicked-on. In this situation, a message stating that a
department must be first selected will be displayed.

– Branch 3 corresponds to the case when a department is selected, but a doctor
is not, when the button moveBU is clicked-on. In this situation, a message
stating that a doctor must first be selected will be displayed.

Next, we use this action tree to reason about whether the button moveBu’s
event onClick preserves the data invariants 1–3.

Branch 1: Data invariants 1 and 2. Recall that these data invariants state that
every patient is assigned to exactly one doctor and one department. Observe that

Model-Driven Development of a Secure eHealth Application 113

Actions

assign dept = [$movePatientWi.patient$.department] := [$departmentsTa.selected$]
assign doctor = [$movePatientWi.patient$.doctor] := [$doctorsTa.selected$]
notify reassign = notification([’Success’],[’The patient is reassigned.’],[0])
error select doctor = notification([’Error’],[’Select first a doctor.’],[0])
error select dept = notification([’Error’],[’Select first a department.’],[0])

If-then-else conditions

a dept is selected = not $departmentsTa.selected$.oclIsUndefined()
a doctor is selected= not $doctorsTA.selected$.oclIsUndefined()

Branch 1

a dept is selected = true ∧ a doctor is selected = true
nodes actions

1 assign dept

2 assign doctor

3 notify reassignment

Branch 2

a dept is selected = false

nodes actions

1 error select dept

Branch 3

a dept is selected = true ∧ a doctor is selected = false

nodes actions

1 error select doctor

Fig. 9. Action tree for the button moveBU’s onClick

the initial state in every successful transaction in this branch will satisfy the con-
ditions a dept is selected and a doctor is selected. Therefore the arguments of the
actions assign dept and assign doctor will necessarily not be null when these ac-
tions are called. Thus, the conditions a dept is selected and a doctor is selected,
together with the postconditions of the actions assign dept and assign doctor,
guarantee that every successful transaction in this branch preserves the data
invariants 1 and 2.

Branch 1: Data invariant 3. Recall that this data invariant states that every
patient is assigned to a department where its doctor works. Interestingly, there
is no guarantee that every successful transaction in this branch preserves the
data invariant 3. This is because the doctors shown in the table doctorsTa are
those belonging to the selected department at the time of this selection (line
19–21 in Figure 4); however, there is no guarantee that, by the time the user
clicks on the button moveBu, this relationship still holds for the selected doctor.

To guarantee that data invariant 3 is preserved by every successful transac-
tions in this branch, we can simply enclose the sequence of actions assing dept,

114 M.A.G. de Dios et al.

assig dept, and notifiy reassignment (lines 46-54 in Figure 5) within an (addi-
tional) if-then-else with the following condition:

$departmentsTa.selected$.doctors→includes($doctorsTa.selected$).

Branch 2 and 3. Since these branches do not contain any data actions, every
successful transaction in these branches will trivially preserve all the data model’s
invariants.

We conclude this section by summarizing in Figure 10(a) our analysis of data
invariant preservation for the button moveBu’s event onClick. For the sake of
illustration, we also consider in Figures 10(b) and 10(c) data invariant preserva-
tion for two modified versions of the button moveBu’s event onClick. In the first
case, we have removed the innermost if-then-else, i.e., the one whose condition
checks that a doctor has been selected. In the second case, we have removed the
outermost if-then-else, i.e., the one whose condition checks that a department
has been selected. As expected, if we remove the innermost if-then-else, there is
no guarantee that data invariant 1, i.e., that every patient is assigned to exactly
one doctor, will be preserved. Similarly, if we remove the outermost if-then-else,
there is no guarantee that data invariant 2, i.e., that every patient is assigned
to exactly one department, will be preserved.

Branches
Invs. 1 2 3

1 ✓ ✓ ✓

2 ✓ ✓ ✓

3 ✗ ✓ ✓

(a) Original

Branches
Invs. 1 2

1 ✗ ✓

2 ✓ ✓

3 ✗ ✓

(b) With-
out a dept -
is selected

Branches
Invs. 1 2

1 ✓ ✓

2 ✗ ✓

3 ✗ ✓

(c) With-
out a doctor-
is selected

Fig. 10. Checking data invariants preservation for different versions of the button
moveBu’s onClick

4.2 Checking Data Invariant Preservation

We now describe how we check whether modeled events preserve data invariants.
Fix a data model D and a GUI model G. Let Φ be D’s declared invariants.

Let ev be an event in G and let B be a branch of ev ’s action tree containing
n actions. To check that every instance of B preserves the invariants in Φ, we
proceed as follows:

1. We define a ComponentUML data model Dn that represents all sequences
of n states. Recall that a state is any instance of the data model D along
with any assignment to the widget variables in G.

2. For 1 ≤ i < n, we formalize an OCL expression, in the context of Dn, that
the i-th action’s postconditions are satisfied in the (i+1)-th state. We denote
by Posts(B) the resulting set of OCL expressions.

Model-Driven Development of a Secure eHealth Application 115

3. For 1 ≤ i ≤ n, we formalize an OCL expression, in the context of Dn,
that the guard of the i-th action is satisfied in the i-th state. We denote by
Guards(B) the resulting set of OCL expressions.

4. For each invariant φ ∈ Φ, we formalize an OCL expression, in the context
of Dn, that φ is satisfied in the first state (initial state). We denote by Φ(1)
the resulting set of OCL expressions.

5. For each invariant φ ∈ Φ, we formalize an OCL expression ψ(n), in the
context of Dn, stating that ψ is satisfied in the n-th (final) state.

6. We prove that there is no instance of Dn that satisfies

Φ(1) ∪ Posts(B) ∪Guards(B) ∪ {¬ψ(n)} .
This formula expresses that there is no sequence of n states where the first state
satisfies all the invariants, each state satisfies the postcondition of the action
leading to it, each state satisfies the condition that guards the action leading to
the next state, and the final state does not satisfy ψ.

We have built a tool that implements the above steps. For every data model
D with invariants Φ, GUI model G, and event ev in G, our tool automatically
generates the set of branches Π corresponding to ev . Then, for each branch
B ∈ Π and invariant ψ ∈ Φ, it generates the data model Dn and the sets
of OCL expressions Φ(1), Posts(B), Guards(B), and {¬ψ(n)}, where n is B’s
length. Finally, our tool uses the mapping OCL2FOL+ [8] to generate the first-
order proof-score corresponding to step 6 above, both in SMT-LIB syntax [2]
and DFG syntax [14].

4.3 Analyzing the EHRM Application

We report here on preliminary experiments where we used our tool to check
data invariant preservation for the EHRM application. The application’s full
GUI model only contains 8 events whose associated statements include data
actions, and therefore must be checked. Moreover, the action trees defined by
these events contain 49 branches in total, but only 8 of these branches include
data actions. Therefore, since the full EHRM application’s data model contains
66 invariants, we must perform a total of 528 checks (8 branches × 66 invariants)
to prove data invariant preservation for this application.

We ran these checks on a laptop computer, with a 2.66GHz Intel Core 2
Duo processor and 4Gb 1067MHz. memory, using SPASS [15] as the back-end
theorem-prover. Here we summarize the results. First, for branches containing up
to 3 data actions (50% of the non-trivial checks fall into this category, including
our running example) checking takes less than 10 milliseconds to return “proof
found” when the invariants are preserved. Second, when checking branches con-
taining 8-10 actions and 8-10 conditions (45% of the non-trivial checks), we also
obtain “proof found” in less than 30 seconds when the invariants are preserved,
except for some complex invariants where checking takes up to 3 minutes. Third,
for a branch containing 30 actions and 6 conditions, checking also takes less than
40 seconds to return “proof found” when the invariants are preserved, except again
for some complex invariants where it takes up to 5 minutes.

116 M.A.G. de Dios et al.

Finally, note that all these results depend on the interaction between (i) the
way we formalize sequences of n states, OCL invariants, actions’ guards, and
actions’ post-conditions, and (ii) the heuristics implemented in the verification
back-end we use, here SPASS. We are currently analyzing this interaction in
depth to better understand the scope and limitations of our tool. For example,
we already know that SPASS seems not able to return “completion found” (we
timed out after four days) when, for the sake of experiment, we remove some
conditions from the branches, thereby violating some of the invariants.

5 Conclusions

This chapter complements the article [3], where we present the ActionGUI
methodology and tool in detail. [3] also contains an extensive comparison with
related work and provides summary statistics from five different developments.
The eHealth application was one of the smallest examples considered there and
other examples are roughly an order of magnitude larger, e.g., with hundreds
of windows, buttons, labels, and if-then-else-statements and thousands of OCL
statements. In contrast, in this paper, we present one case study in detail. We
also describe model-based property checking, which was not addressed in [3].

Among the methodologies and tools reviewed in [3], UWE [7,6,11] and
ZOOM [10] are the most closely related to our work. As a modeling tool, UWE
provides the modeler with a higher-level of abstraction than ActionGUI. In par-
ticular, the actions executed by the widgets’ events are described in UWE using
natural language. Thus, unless the models are appropriately refined, as discussed
in [11], UWE does not support code-generation. In contrast, UWE provides spe-
cific diagrams for modeling GUI presentations and navigations, which facilitate
the task of GUI modeling. [6] extends UWE to use SecureUML for modeling
security policies. However, this work does not use model-transformation to lift
automatically the security policy to the GUI level. Instead the UWE modeler
is responsible for adding all the appropriate authorization checks to the GUI
model. Like ActionGUI, ZOOM allows GUI modelers to specify widgets, their
events, and their actions. Moreover, using an extension of Z [16], one can specify
the conditions of the actions and their arguments, similar to how this is done
in ActionGUI using OCL. In contrast to ActionGUI, ZOOM does not provide a
language for modeling security and security aspects are not explicitly considered
in this approach. Moreover, ZOOM does not support code-generation. It only
provides interpreters for model animation.

In the following we draw some conclusions based on our experience with the
eHealth application and developing other applications with ActionGUI. First,
ActionGUI’s security modeling language is well suited for modeling access con-
trol policies that combine both declarative and programmatic aspects. Declar-
ative access control policies depend on static information, namely the assign-
ments of users and permissions to roles. Programmatic access control depends
on dynamic information, namely the satisfaction of authorization constraints
in the current system state. Programmatic access control is formalized using

Model-Driven Development of a Secure eHealth Application 117

authorization constraints and, as Section 3.3 illustrates, this allows us to model
directly the kinds of authorization rules considered in the eHealth case study.

Second, ActionGUI’s graphical user interface modeling language is well suited
for modeling dynamic web pages. These are pages, displayed at the client, that
are generated at the time of access by a user or that change as a result of user
interaction. As Section 3.4 illustrates, an important aspect of our methodology is
that developers can model this behavior independent of the access control policy.
The policy is later lifted from the security model to this behavioral model, as
described in Section 3.5.

Third, as explained in Section 3.6, the ActionGUI code generator can auto-
matically generate ready-to-deploy, security-aware, data-management web ap-
plications. By data-management, we mean that most of the behavior described
in the GUI model is built from CRUD actions (which create, read, update and
delete data). When all behavior can be described this way, then the entire ap-
plication can be generated from the models, including a complete, configured
security infrastructure and back-end database support.

Finally, our case study illustrates how users can specify properties of Ac-
tionGUI models, such as invariant preservation. Moreover, as described in Sec-
tion 4, our approach to checking these properties based on translation to first-
order logic is practical, see also [5]. This is a form of model-checking and, as
in other domains, it has an important role to play in building and certifying
security-critical systems. Designers and system certifiers can reason about sys-
tems at the model level using automated tool support. Moreover, with our ap-
proach, they can afterwards generate model-conform, and therefore property
conform, systems simply by pressing a button. Our experience with ActionGUI
shows that this is not merely a vision for the future, but it is realizable today,
at least for small and medium-scale data-management applications.

Acknowledgements. This work is partially supported by the EU FP7-ICT
Project “NESSoS: Network of Excellence on Engineering Secure Future Inter-
net Software Services and Systems” (256980) and by the Spanish Ministry of
Economy and Competitiveness Project “StrongSoft” (TIN2012-39391-C04-04).

References

1. ActionGUI. The ActionGUI project (2013), http://www.actiongui.org

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories, Edinburgh, UK (2010)

3. Basin, D., Clavel, M., Egea, M., de Dios, M.A.G., Dania, C.: A model-driven
methodology for developing secure data-management applications. IEEE Trans-
actions on Software Engineering (to appear, 2014)

4. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From UML models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology 15(1), 39–91 (2006)

http://www.actiongui.org

118 M.A.G. de Dios et al.

5. Basin, D.A., Clavel, M., Egea, M.: A decade of model-driven security. In: Proceed-
ings of the 16th ACM Symposium on Access Control Models and Technologies
(SACMAT 2011), Innsbruck, Austria, vol. 1998443, pp. 1–10 (2011)

6. Busch, M.: Integration of security aspects in web engineering. Master’s thesis, In-
stitut für Informatik, Ludwig-Maximilians-Universität, München, Germany (2011)

7. Busch, M., Koch, N.: MagicUWE - a case tool plugin for modeling web applications.
In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS, vol. 5648,
pp. 505–508. Springer, Heidelberg (2009)

8. Dania, C., Clavel, M.: OCL2FOL+: Coping with Undefinedness. In: Cabot, J.,
Gogolla, M., Ráth, I., Willink, E.D. (eds.) OCL@MoDELS. CEUR Workshop Pro-
ceedings, vol. 1092, pp. 53–62. CEUR-WS.org (2013)

9. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST standard for role-based access control. ACM Transactions on Infor-
mation and System Security 4(3), 224–274 (2001)

10. Jia, X., Steele, A., Qin, L., Liu, H., Jones, C.: Executable visual software
modeling—the ZOOM approach. Software Quality Control 15, 27–51 (2007)

11. Kroiss, C., Koch, N., Knapp, A.: UWE4JSF: A model-driven generation approach
for web applications. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009.
LNCS, vol. 5648, pp. 493–496. Springer, Heidelberg (2009)

12. NESSoS. The European Network of Excellence on Engineering Secure Future in-
ternet Software Services and Systems (2010), http://www.nessos-project.eu

13. Object Management Group. Object constraint language specification version 2.3.1.
Technical report, OMG (2012), http://www.omg.org/spec/OCL/2.3.1

14. Weidenbach, C.: SPASS input syntax version 1.5 (1999)
15. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:

SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–145.
Springer, Heidelberg (2009)

16. Woodcock, J., Davies, J.: Using Z: specification, refinement, and proof. Prentice-Hall,
Inc., Upper Saddle River (1996)

http://www.nessos-project.eu
http://www.omg.org/spec/OCL/2.3.1

Modeling Security Features of Web

Applications�

Marianne Busch1, Nora Koch1, and Santiago Suppan2

1 Institute for Informatics, Ludwig-Maximilians-Universität München
Oettingenstraße 67, 80538 München, Germany

{busch,kochn}@pst.ifi.lmu.de
2 Siemens AG, Germany

Otto-Hahn-Ring 6, 81739 München, Germany
santiago.suppan.ext@siemens.com

Abstract. Securing web applications is a difficult task not only, be-
cause it is hard to implement bulletproof techniques, but also because
web developers struggle to get an overview of how to avoid security flaws
in a concrete application. This is aggravated by the fact that the de-
scription of a web application’s security concept is often scattered over
lengthy requirements documents, if documented at all. In this chapter,
we extend the graphical, UML-based Web Engineering (UWE) language
to model security concepts within web applications, thus providing the
aforementioned overview. Our approach is applied to a case study of an
Energy Management System that provides a web interface for monitor-
ing energy consumption and for configuring appliances. Additionally, we
give an overview of how our approach contributes to the development of
secure web applications along the software development life cycle.

Keywords: UML-based web engineering, secure web engineering, web
applications, UML, security, Energy Management System, Smart Home.

1 Introduction

The rising cybercrime and the growing awareness of data privacy due to global
surveillance disclosures imply an urgent need to secure web applications. Be-
sides confidential connections and authentication, both data access control and
navigational access control are the most relevant security features in this field.
However, adding such security features to already implemented web applications
is an error-prone task.

Therefore, the goal is to include security features in early stages of the de-
velopment process of web applications, i.e., at requirements specification and
design modeling level. Secure web engineering approaches as ActionGUI [1] and
the UML-based Web Engineering (UWE) [2] have been developed, trying to
abstract from as many implementational details as possible.

� This work has been supported by the EU-NoE project NESSoS, GA 256980.

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 119–139, 2014.
c© Springer International Publishing Switzerland 2014

120 M. Busch, N. Koch, and S. Suppan

The way that seems right for most modeling methods, raises questions when
dealing with design decisions related to more web-security specific concerns: How
should Cross-Site-Request-Forgery (CSRF) [3] be prevented, in order to avoid
end users to execute unintentionally malicious actions for an attacker, on a web
application in which they are currently authenticated? What should happen in
case the web application is under attack, e.g., under denial-of-service attack,
making the machine or network resource unavailable to its intended users?

So far, those questions tend to be answered in lengthy specification documents
or they are just documented by the code itself. However, a straightforward under-
standing of the way how web security is managed for a certain web application
is crucial.

Our approach aims at addressing the answer to these questions at design
level, extending the set of modeling elements provided by the UWE language in
order to be able to express protection-specific security concerns. The challenge
is to find means for recording security-related design decisions for the web, while
maintaining the necessary abstraction a modeling language needs. Therefore,
we extend UWE’s UML profile to support modeling solutions that should be
deployed to shield a web application and its users against attacks. Such is the
aim of providing language elements to model features like CSRF prevention and
injection prevention or special behavior for the case that an application is under
attack.

In this chapter, we not only introduce the latest UWE extension along with
a case study about the web interface of an Energy Management System (EMS),
but also give an overview of how UWE’s security features, which have been de-
veloped within the EU project NESSoS [4], support the phases of the software
development life cycle (SDLC). This begins with the requirement and design
phase, where UWE enables security engineers to get an overview of the appli-
cation, but also serves as a notation for documentation. Aside from that, UWE
models can be used as input for tools that generate artifacts for the implemen-
tation. For the testing phase, two approaches are available, (1) for testing that
a user can only navigate the web application using a predefined path and (2)
a toolchain for testing access control policies generated from UWE models. For
the latter, the interested reader is referred to chapter [5].

The remainder of this chapter is structured as follows: In Sect. 2 we introduce
the EMS case study, which is our running example. Section 3 gives an overview
of security features that play a major role in the web and which are required
for our case study, before the UWE approach is introduced in Sect. 4. In Sect. 5
we describe our UWE extensions for protection-specific security concerns, by
applying them to the case study. Section 6 positions UWE in the SDLC. Finally,
we present related work in Sect. 7 and conclude in Sect. 8.

2 Case Study: Energy Management System

This section describes the Energy Management System (EMS) case study and in
particular the web application of the EMS that controls Smart Homes, which are

Modeling Security Features of Web Applications 121

households with interconnected appliances. We start by introducing Smart Home
components, continue by presenting actors and conclude by explaining concrete
functionality, before we go in the next section into more security-related details.

2.1 Components of Smart Homes

Figure 1 visualizes the entities in a Smart Home. Generally, the EMS is an in-
terface for the Smart Grid customer that visualizes consumption data. Concrete
instantiations can be realized by means of mature web application technology,
which provides several ways of advanced functionality, as for energy trading or
for regulating the current drain. Ideally, most appliances, as e.g., ovens, dish-
washers, washing machines or lamps are so-called Smart Appliances (SAs), which
means they contain a small embedded-system, that receives control commands
from the EMS and that informs the EMS about the current status. Addition-
ally, SAs can be controlled by pushing a button or by using an integrated touch
screen.

For a household, exactly one EMS and one Smart Meter are installed locally,
in a place where they are protected from physical tampering. The Smart Meter
is responsible for monitoring the amount of energy that is sold or bought. As the
EMS is connected to the web, remote access to its web application allows users
to interact with the EMS and to monitor energy consumption from outside their
homes.

Data
Electricity

SA: solar cell

EMS: Energy
Management

System

SA: TV

SA: vehicle
charging

20°C

SA: thermostat

SA: washer

Smart Meter

Internet

Internet

energy supplier
server

SA Smart Appliance

power plant

Fig. 1. Entities in the Smart Home (adapted from [6])

122 M. Busch, N. Koch, and S. Suppan

A possibility to control energy consumption more globally is Demand Side
Management. It envisions to adapt the consumption level according to messages
sent by energy providers. For example, in situations when lots of energy is needed
in an area, the energy provider notifies all Energy Management Systems. Con-
sequently, the EMS can send command messages to SAs in order to turn them
off. The concrete behavior when receiving a Demand Side Management message
can be controlled by user defined policies in the EMS.

2.2 Actors

According to [7], the prosumer (producer / consumer) is the end customer, who
is consuming energy as well as producing energy, e.g., by using photovoltaic or
wind energy as decentralized energy resources. Prosumers are also able to store
energy, for instance in the batteries of the electric vehicle and to resell the energy
later to the so called microgrid1 when the prices are higher. We also refer to the
prosumer simply as “(private) user” or “customer”.

Figure 2 depicts a UML use case diagram, which gives an overview of the
actors in our case study and the main functionalities of the EMS. On the left,
the private user is shown. Users can create and configure other users, e.g., under-
aged family members can be allowed to sign into the EMS web application and to
see their energy consumption, but they should not be able to trigger electricity
vending or purchasing functions. On the right, the Meter Point Operator (MPO)
is depicted, who is responsible for installing, maintaining or replacing the EMS
as well as the Smart Meter. The tasks of the MPO are not considered in our
case study.

Fig. 2. Requirements overview (UML use case diagram)

1 The term microgrid [8] refers to areas where small communities trade local energy,
in addition to the energy supply provided by professional energy suppliers.

Modeling Security Features of Web Applications 123

2.3 Functionality

The main functionality of the EMS is shown in Fig. 2: a user can buy or sell
energy, control local energy consumption by configuring SAs, install plugins to
automate tasks or manage other users. These use cases are described in more
detail in the following:

Local Energy Control. As more and more Smart Appliances will be added to the
home network, their heterogeneous functionality has to be made available to the
customer. The EMS web application can present, in a uniform way, a coherent
view to the user in the form of a portal, presenting information that the EMS
has collected from diverse sources (appliances or external servers). SAs, even
new ones that were non-existent when the web application was programmed and
deployed, offer their services through a standard interface to the EMS (cf. lower
half of Fig. 3, use case InteractWithSA, depicted in bold font because it might
be used relatively often). Hereby, auto-configuration (in the sense of plug-and-
play support) is important, as many customers may not become acquainted with
the full potential of the EMS. This case applies particularly to senior citizens.

Fig. 3. Requirements of local energy control (UML use case diagram)

Easy access to real-time information supports the users, e.g., to pay attention
to their energy consumption, as depicted at the top of Fig. 3. Additionally, auto-
matic peak load management provides smart planning for reducing energy con-
sumption. This Smart Planning feature (cf. Configure Smart Planning Policy)
can be enriched by plugins, which have to be installed separately. Plugins might
also be allowed to access the local usage history from SAs. This way they can

124 M. Busch, N. Koch, and S. Suppan

base their plan on previous user’s behavior. For example, hydronic heating might
be reduced automatically at times where usually no great quantity of hot water
is needed.

Energy Trading. Selling and buying energy is a critical task, if the user wants the
system to perform a trade automatically. Consequently, policies have to ensure
that the system acts in the interest of the prosumer. The recommendation / trade
system can also be enriched by plugins, offering so called value added services.
A value added service, such as a price comparing third party service (e.g., when
and who is offering the best conditions for green energy?) functions as follows:
The third party provides a plugin which obtains current market prices from the
third party’s server. The plugin compares prices and consumption data locally.
The result of the comparison can either be a visual notification in the EMS or a
process is started to renegotiate Energy Supplier contracts, if the prosumer has
defined a policy that allows the process to negotiate automatically. In the latter
case, a notification is sent to the user after the (un-)successful provider change.

Plugin Management. As mentioned before, a key functionality is the interplay
of the EMS and value added services. Third parties can offer plugins that can
be deployed into the EMS to provide further functionality. Plugins are limited,
sandboxed algorithms that can enhance the EMS at two predefined interfaces:
the interface for smart planning (see local energy control) and/or the interface
for energy trading.

Fundamentally, the customer will access the EMS as the central administra-
tion point. No process should demand direct interaction between the customer
and an external third party service (provided as a website or otherwise). Users
can only search for plugins, (un)install or update them (if not done automati-
cally) or access a privacy dashboard for plugins. The dashboard allows the user
to restrict the personal information a certain plugin can access and the functions
a plugin can execute.

User Management. Prosumers can allow other persons to log into the web appli-
cation. However, not all users have to have the same rights. More details about
access control and other security features are given in the next section.

In this work, we focus on the EMS. The interested reader is referred to [9,
example section / EMS] for all use case diagrams. Additionally, more compre-
hensive descriptions of general Smart Grid functional requirements can be found
in [10,11].

3 Secure Web Applications

This section introduces common security features, including those which are
special for web applications. Security features, detailed in the following, are:
authentication, panic mode, reauthentication, secure connections, authorization,
user zone concept, cross-site-request-forgery prevention, under attack mode and
SQL-injection prevention.

Modeling Security Features of Web Applications 125

Implementing coherent authentication is a challenge, as users must be able to
log-in to their EMS internally, from their home, and externally, using a mobile
device, or a public terminal. A two-factor authentication should be employed
to access sensitive information of the EMS. Two-factor authentication requires
a knowledge factor (“something only the user knows”) and either a possession
factor (“something only the user has”) or an inherence factor (“something only
the user is”) from the user for the authentication to succeed. For example, a
password has to be entered together with a code that the user’s smart phone
generates.

A feature rarely implemented in current web applications, is the panic mode.
When the panic mode is activated, the user interface will be displayed with rea-
sonable information generated by the EMS that does not reflect the users real
information. This is especially needed for coercion situations, where criminals
might physically force users to reveal information of themselves or to conclude
long-term contracts with certain parties. The panic mode also protects threat-
ened users by pretending to malfunction or to execute functions successfully
without any real impact. Therefore, users have to authenticate themselves with
predefined credentials which differ from the usual ones: using the same username
in combination with a panic mode password loads the alternative user interface.

Besides the first authentication, prosumers can be forced to reauthenticate
themselves. This is often the case after a certain time of inactivity (often re-
ferred to as “automatic logout” in online banking applications), but it is also
common for critical areas. For example, web shops often allow to store cookies
to keep the user authenticated while browsing their offers. However, if the last
authentication is older than a certain amount of time, the users have to reau-
thenticate themselves before being able to make a purchase. Regarding the EMS
plugin installation functions, the last authentication of a prosumer should not
be older than 10 minutes, a typical time threshold also used in online banking.
The timeout avoids a takeover of a session by another person who has access to
the prosumers browser.

All kinds of authentication are useless, if the login process can be eaves-
dropped. Secure connections, as e.g., HTTP Strict Transport Security (HSTS)
connections can be used to ensure the confidentiality, integrity and freshness of
all user’s request as well as of all response of the EMS. As encrypting a connec-
tion is a time consuming task, it is an important design decision which parts of
an application should be secured. In the case of Energy Management, security
weights more than speed, even if Demand Side Management and energy trading
are very time demanding [12]. Compromises in speed can have impact on eco-
nomic aspects, but compromises in security could mean a total blackout of the
power supply, producing high economic damages.

Apart from secure session management after authentication, a well imple-
mented authorization (access control) concept is needed to satisfy customer
needs. There are several roles to be considered, as family members might be
involved in the customization of the Smart Home.

126 M. Busch, N. Koch, and S. Suppan

Many web applications require a user zone concept. If users are accessing the
EMS from the home area, they are permitted to access all prosumer managing
functions (depending on their roles). But if they are requesting access externally,
stricter policies have to be enforced, depending on the requester’s location, i.e.
the IP address of the requester’s device. To configure this policy, users inform
their MPO that they are on holiday and that a certain location is the source of
legitimate requests.

A telling example is an attack from a foreign country. An attacker that is
mimicking a user will, by policy enforcement, be denied to alter the Smart Ap-
pliances’ behavior, if he is accessing the EMS remotely from a very far place. This
feature will not hold up against versatile attackers, as several proxies or even
computers that have been compromised by an attacker, could be available in the
desired geo-location. Still, this mechanism represents a filter against unambitious
attackers. There are several other mature attacks on web based technologies that
also could have an impact on the EMS, mostly related to so-called “common web
application vulnerabilities” [13]. As the EMS is remotely accessible by means of
a web client, there is room for session riding attacks. Depending on the user’s
browsing application, cross-site-request-forgery (abbreviated “CSRF”) might be
used by a malicious attacker to trigger actions without the user’s consent. For
example, an attacker could trick users into interacting with the web server of a
Smart Appliance by letting them call an address like:
http://EMSremoteIP.com/SmartApplianceName/SmartApplianceFunction

This request cannot be called by an unauthorized person due to the policy en-
forcement inside the EMS, but it can be triggered by means of CSRF.

The under attack mode is a dynamic protection against attempts of com-
promising the EMS functionality, as the EMS reacts accordingly and reduces
the attackers possibilities. An example is the reduced functionality when un-
der denial of service attack. The EMS will try to reduce the number of allowed
connections and/or deny any connection from IPs that have exceeded a certain
number of requests in a certain time frame. Additionally, CAPTCHA-challenges
could be displayed to verify that the requester is a person and not merely a
program.

Another feature is the protection of the EMS database. The EMS database
should only accept statements that have been generated by the EMS itself. In
order to avoid SQL-injection attacks within generated statements, parameterized
queries should be used.

As announced in the introduction, some security features can be handled at
an abstract level, as e.g., authorization, whereas others are to be thought of at
the end of the design phase, as SQL-injection prevention. Note that we do not
claim to cover all possible web security features, although we try to cover the
most common ones.

4 Overview of UML-Based Web Engineering (UWE)

This section introduces the modeling language UML-based Web Engineering
(UWE) [9,2], which we use to model secure web applications.

Modeling Security Features of Web Applications 127

One of the cornerstones of the UWE language is the “separation of concerns”
principle using separate models for the different views of a web application, such
as the navigation and the presentation view. However, we can observe that se-
curity features are cross-cutting concerns which cannot be separated completely.
The views and corresponding UWE models are:

Requirements View defines (security) requirements of a project.
Content View contains the data structure used by the application.
Access Control View is given by a UWE Role Model and a Basic Rights

Model. The former describes the hierarchy of user groups to be used for
authorization and access control issues. It is usually part of a User Model,
which specifies basic structures, as e.g., that a user can take on certain roles
simultaneously. The latter defines the access control policies. It constrains
elements from the Content Model and from the Role Model.

Presentation View sketches the web application’s user interface.
Process View details the flow of actions to be executed.
Navigation View defines the navigation flow of the application and naviga-

tional access control policies. The former shows which possibilities of navi-
gation exist in a certain context. The latter specifies which roles are allowed
to navigate to a specific state and the action taken in case access cannot
be granted. In a web application such actions can be, e.g., to logout the
user and to redirect to the login form or just to display an error message.
Furthermore, secure connections between server and browser are modeled,
too.

The following table maps UWE views to security features that they can ex-
press. We introduce concrete modeling elements for this security features in the
next section.

View Security Features
Content SQL-injection prevention, cross-site-request-

forgery prevention
Navigation authentication, reauthentication, secure con-

nections, under attack mode
Access Control authorization, under attack mode, user zone

concept
Process user zone concept, panic mode

For each view, an appropriate type of UML diagram is selected, e.g., a state
machine for the navigation model. The UWE approach defines a UML profile
that consists of a set of stereotypes, tag definitions, constraints and patterns for
modeling secure web applications. The profile can be downloaded from the UWE
website [9].

Stereotypes can be applied to UML model elements (e.g. classes, states, de-
pendencies) and values can be assigned to tags. UML tags are always associated
to a stereotype and stereotypes can inherit tags from other stereotypes. In the
UWE profile, patterns are provided for modeling widely used elements, as e.g.,
different types of authentication mechanisms.

128 M. Busch, N. Koch, and S. Suppan

5 Designing Secure Web Applications with UWE

This section shows how to model security features with the most recently intro-
duced UWE profile elements. The main advantages of these specific modeling
elements for the modeler are on the one hand to promote the inclusion of security
aspects from the early phases of the development. On the other hand it enables
documentation and, due to brevity, a quick understanding of security features
that are or should be employed. The elements are introduced using our EMS
case study.

5.1 Content View

When modeling larger web systems, such as the EMS web application, it is useful
to divide the system into manageably small components. The main characteristic
of components is encapsulation, which means that components can only share
information using predefined interfaces. Encapsulation is advantageous, because
each component can be implemented and tested individually. Regarding model-
ing, components contribute to a clear structure, as the division of tasks within
an application becomes apparent. Consequently, it is easy to define appropriate
security properties for each part of a web application.

In the case of our EMS, a component EMScore is created, which contains
components that are built into the EMS system by default, as depicted in the
class diagram shown in Fig. 4. Smart Appliances (SAs) can communicate with
the EMS using the SA interface, shown on the lower left. According to the de-
scription in the previous section, plugins are also external components that can
enhance the smart planning or the trader / recommender. Some plugins might
provide both functionalities (as e.g., PluginA does).

The EMScore contains four internal components that correspond to the main
areas we identified in the requirements phase (cf. Fig. 2): local energy con-
trol, user management, energy trade system and plugin management. As can
be seen in Fig. 4, the user manager is used by all components, because the sys-
tem does not allow access without having granted permission first. The interface
PluginList publishes the list of installed plugins within the system so that
the user can advise the internal components to exchange the planing or trading
plugin.

As far as security is concerned, the UWE profile redefines the UML stereotype
�component� with the following tags:

csrfPrevention models how cross-site-request-forgery (CSRF) should be re-
pelled. The modeler can choose from the options presented at the OWASP
CSRF Cheat Sheet2. For the EMS example the most common “Synchronizer
Token Pattern” is used, which includes a randomly generated challenge to-
ken to all server requests in a web page. An attacker cannot hope to guess a
valid token when sending the user a prepared URL.

2 OWASP CSRF Prevention Cheat Sheet. https://www.owasp.org/index.php/

Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

Modeling Security Features of Web Applications 129

Fig. 4. UWE: Content model

130 M. Busch, N. Koch, and S. Suppan

injectionPrevention records how SQL injections (and others injection at-
tacks) are prevented. In most programming languages, SQL prepared state-
ments shield from SQL injection, but other solutions, as e.g., server-sided
stored procedures could also be used.

inputValidation explains how the component is shielded from unvalidated in-
put. The most secure way is to whitelist characters and not to accept any-
thing else. In a later phase of development, it could be useful to use this
tag for documenting the concrete technique which is used, e.g., a software
library.

Additionally to these security features, the UWE profile provides the tag
{usedInStates} to denote in which state of the application a certain component
is used. More about states can be found in Sect. 5.3. Note that it is the modelers’
decision which of the features offered by the UWE profile they like to use in
a diagram. In some scenarios, the modelers may decide to connect the UWE
Navigation model with the Content model using {usedInStates}, in others not.

5.2 Role and Access Control View

Figure 5 depicts the role model of the EMS. The stereotype �webUser� defines
the class that represents a user. It can later be referred to as caller when
defining access control. Per default, the DefaultUser plays all roles, although
this is not shown in the figure.

Fig. 5. UWE: Role model

Defining access control for web applications, has already been described in [2].
For our EMS application, Fig. 6 shows an excerpt. For example, someone with
the role UserManager is allowed to �delete� users, as long as the �authorization-
Constraint�, which has to be specified in OCL [14], is fulfilled. The constraint
defines that the user instance (referred to as self) is not equal to the caller

(referring to the �webUser� who executes this deletion). If the constraint would
not be given, users might delete their own accounts accidentally.

Modeling Security Features of Web Applications 131

Fig. 6. UWE: Basic Rights model excerpt

Regarding our security requirements, the UWE Basic Rights model has to
be extended to enable the specification of different modes. Therefore, the tag
{noAccessInMode} is added. It allows to choose from a set of states in which the
application should not be available. Please note that these states do not refer to
navigational states, but general states of an application. When modeling with a
CASE tool as MagicDraw [15], the UWE profile with its typed tags makes sure
that the value for the tag can only be chosen from all available state elements.

As depicted at the bottom of Fig. 6, the EMS only allows to install plugins
when it is not under attack.

5.3 Navigation and Process View

User navigation is one of the most distinguished web features. Since 2011, UML
state charts are used in UWE to express the navigation possibilities a user has
within a certain state of the web application [2]. By default, all states in the
UWE navigation model are thought to be stereotyped �navigationalNode�. The
{isHome} tag refers to the entry point of a web application (cf. Fig. 7).

The stereotype �integratedMenu� is defined to be a shortcut for showing
menus entries for all menus of Submachine States, in case the user is allowed
to access them. Submachine states contain a state machine by themselves,
so that more details can be shown in another diagram. Note that transitions
that start at the border of a state, leave the state and enter again when trig-
gered. Navigational access control can be specified using a rolesExpression as
“caller.roles.includes(PluginManager)”.

132 M. Busch, N. Koch, and S. Suppan

Fig. 7. UWE: Navigation model overview

As shown on the left in Fig. 7, a UWE pattern is used for the specification of
2-step authentication. The UWE profile includes such kind of patterns to reduce
the amount of modeling effort. In case a pattern should be adapted, it can easily
be copied from the profile to the model.

Additionally, we decided to include more implementation specific details in
the navigation model, which are relevant in the late design phase. Thus, HTTP
Strict Transport Security (HSTS) is specified as web security policy mechanism
to ensure secure HTTPS connections for the whole web application, indicated
by the �session�-related tag {transmissionType=HSTS}.

If needed, activity diagrams can be added to detail the process that is executed
behind the scenes. For example, Fig. 8 depicts what happens internally after the
login was completed successfully. For our EMS, this gives a hint to implement
the panic mode as well as the restricted access, when accessing the EMS from a
distant region.

Exemplarily, the submachine state diagram of the plugin management is
shown in Fig. 9. The stereotype �search� denotes that a search is done when
using the searchPlugins transition, as searching is a typical process in appli-
cations. The stereotype �collection� refers to a list of elements with the given
{itemType} tag from the Content model. For transitions, an underscore can be
used to denote an element of this type. In our example, the underscore is an
abbreviation for p : Plugin.

The UWE profile provides a new tag called {reauth} for the stereotype �ses-
sion� to specify critical areas. In those areas, as e.g., for plugin management,
users have to reauthenticate themselves, except when the previous login is not

Modeling Security Features of Web Applications 133

Fig. 8. UWE: Process after successful login

Fig. 9. UWE: Navigation model for plugin management

older than the given amount of time. In addition, the tag {noAccessInMode}
is specified for the stereotype �navigationalNode�. In our example, this pre-
vents navigating to the interface for (un)installing or updating plugins in the
UnderAttack mode.

All diagrams of our EMS case study can be found on the UWE web page [9,
example section / EMS]; the original model can be downloaded as MagicDraw
project or XMI file.

6 UWE in the Software Development Life Cycle

We consider an iterative Service Development Life Cycle (SDLC), consisting
of at least the phases: requirements, design, implementation, testing and de-
ployment [16]. In the following, we show how security-related UWE extensions

134 M. Busch, N. Koch, and S. Suppan

developed during the NESSoS project [4] can be positioned in this development
process.

In the requirements phase, use case diagrams and coarse-grained activity
diagrams record customer wishes. UWE enhances requirements models using
web-specific stereotypes, e.g., to denote use cases which require server-side pro-
cessing. However, the main focus of UWE is on the design phase, in which the
rest of the above-mentioned models are created or updated. To ease the design of
web applications with UWE within the CASE tool MagicDraw [15], the plugin
MagicUWE [17] has been developed. MagicUWE is presented in more detail in
chapter [5].

One of the main advantages of models built using UWE is to get an overview
of the web application and to quickly provide an impression of what is impor-
tant in the different views on it. This is especially needed when new developers
join an existing project, because clean documentation serves as a basis for a
concise introduction that helps to avoid misunderstandings. Being clear about
the conceptual structure of an application is of major importance when securing
a web application, as a single misconception or thoughtlessness can lead to a
vulnerability. If exploited, this vulnerability might then cause privacy violation
for customers, reputation damage of a company or financial damage right up
to bankruptcy or lawsuit. Providing an overview of a web application is also
valuable for documentation and for discussions between modelers and software
developers in order to reduce misunderstandings at the transition between design
and implementation.

Constraints as “customers can only submit their order after they have selected
a credit card to pay with” can be inferred from UWE Navigational State models.
How to extract so called Secure Navigation Paths (SNPs) and how to use them
for the generation of a monitor that shields the web application from illicit access
sequences, is described in [18]. Prototypical tool support can be downloaded
from [9].

Within the NESSoS project not only the web modeling approach UWE has
been improved, but also ActionGUI has been developed further, which strives
to implementing the whole application logic from models (cf. Sect. 7). Due to
ActionGUI’s different focus, it has been interesting to consider a model-to-model
transformation from UWE to ActionGUI, as described in [19].

In the implementation phase code is written, based on the models. Tool sup-
port is preferable, but as can be expected, code generation is only possible where
detailed information is given in the models. Therefore, modelers have to balance
the need for abstraction against the need for detailed information. Consequently,
UWE does not aim to generate complete web applications, as it turned out to
overload models and the maintenance for a code generator like UWE2JSF [20]
became unreasonable high, in order to keep up with the rapid development of
web features.

Nonetheless, it has proven to be helpful to transform some parts of the UWE
models to codeor other implementation-relatedartifacts.Anexample is the specifi-
cation of role based access control (RBAC) rules.Themodel to text transformation

Modeling Security Features of Web Applications 135

languageXPand [21] is used to transformUWEBasicRightmodels toXACML [22]
and to code snippets. For the latter, a prototypic transformation of the data struc-
ture, roles and RBAC rules to Apache Wicket with Apache Shiro and Hibernate
has been implemented [23].

Exporting XACML policies, which can include RBAC policies from the Basic
Rights model as well as from the navigational states model, is implemented in
a tool called UWE2XACML. In [24], Busch et al. explain how XACML can be
transformed to FACPL [25], a formal policy language with the advantage of
fully specified semantics. The transformation comprises several tools, which are
integrated in the Service Development Environment (SDE) [26,16]. The SDE is
a tool workbench, which allows to build tool chains of tools that are integrated,
i.e. that provide a wrapper for the SDE.

As far as the testing phase of the SDLC is concerned, UWE’s Basic Rights
model can be the starting point for generating test cases by using a tool chain,
as described in chapter [5]. The advantage is that policies are modeled at a high
level of abstraction so they are easy to understand and to maintain, whereas
policies written in XACML tend to become lengthy and error-prone so that
thorough testing is mandatory.

In addition to enforcing Secure Navigation Paths by monitors (as introduced
above), the modeled paths can also be used for automatic testing to check that
a web application correctly prohibits attempts to break out of the predefined
navigation structure [18].

7 Related Work

This section introduces related work for the Energy Management System (EMS)
case study and approaches for secure web engineering.

Energy Management Systems. The EMS is a component of a Smart Grid. Unfor-
tunately, literature [11,27,28] does not offer a coherent view of the components
of a Smart Grid. For our case study, we rely on the components as described
in [6,29].

In [11], the Energy Management System is described as a consumption dis-
play unit, which is regarded as an optional device that helps advanced metering
infrastructure (AMI) objectives, i.e., Demand Side Management events. For sus-
tainable energy supply, Demand Side Management has to be considered as a key
technology. Furthermore, the Energy Management System supports the user in
interacting with the Smart Home, which is another key to the successful accep-
tance of the Smart Grid. This requires to manifest the EMS as a crucial part of
the Smart Grid.

The Energy@Home Project3 illustrates Smart Meter and Home Energy Man-
agement implementations. The overall description matches with our case study,
but it does not give any insight on security or privacy.

3 Energy@Home. http://www.enel.com/en-GB/innovation/smart grids/

smart homes/smart info/

http://www.enel.com/en-GB/innovation/smart_grids/smart_homes/smart_info/
http://www.enel.com/en-GB/innovation/smart_grids/smart_homes/smart_info/

136 M. Busch, N. Koch, and S. Suppan

The OpenNode Project [27] emphasizes research on electrical distribution
grid operation. The prosumer endpoint is mentioned, but it does left out any
details on the required end point functionality. From a holistic point of view, the
OpenNode architecture is complementary with our view of Smart Homes and
the proposed EMS functionality depicted in this chapter.

The British Department of Energy and Climate Change give in their technical
reports in [28] detailed functional requirements on the Smart Home including
technical and functional descriptions of the Energy Management System (“In
Home Display”) in the report. The report’s functional requirements are equiva-
lent to the functionality from our case study. Security requirements on the other
hand are referenced, but clearly not in the report’s scope.

Secure Web Application Modeling. According to a survey, “86% of all websites
had at least one serious vulnerability in 2012”, which means that an “attacker
could take control over all, or some part of the website, compromise user ac-
counts on the system” or “access sensitive data” [30]. One way to counter this
trend is to use security-aware modeling approaches for web applications. Existing
approaches are briefly introduced in the following, adapted from [31].

ActionGUI [1] is an approach for generating complete, but simplified, data-
centric web applications from models. It provides an OCL specification of all
functionalities, so that navigation is only modeled implicitly by OCL constraints.
In general, ActionGUI abstracts less from an implementation than UWE does.

UMLsec [32] is an extension of UML with emphasis on secure protocols. It is
defined in form of a UML profile including stereotypes for concepts like authen-
ticity, freshness, secrecy and integrity, role-based access control, guarded access,
fair exchange, and secure information flow. In particular, the use of constraints
gives criteria to evaluate the security aspects of a system design, by referring to
a formal semantics of a simplified fragment of UML. UMLsec models, compared
to UWE models, are extremely detailed and therefore quickly become very com-
plex. Tool support is only partly adopted from UML1.4 to UML2. However, the
new tools4 have not been updated for almost two years.

SecureUML [33] is a UML-based modeling language for secure systems. It
provides modeling elements for role-based access control and the specification
of authorization constraints. A SecureUML dialect has to be defined in order
to connect a system design modeling language as, e.g., ComponentUML to the
SecureUML metamodel, which is needed for the specification of all possible ac-
tions on the predefined resources. In our approach, we specify role-based execu-
tion rights to methods in a basic rights model using dependencies instead of the
SecureUML association classes, which avoids the use of method names with an
access related return type. However, UWE’s basic rights models can easily be
transformed into a SecureUML representation.

A similar approach isUACML [34] which also comes with a UML-based meta-
metamodel for access control, which can be specialized into various meta-models
for, e.g., role-based access control (RBAC) or mandatory access control (MAC).

4 UMLsec tools. http://carisma.umlsec.de

http://carisma.umlsec.de

Modeling Security Features of Web Applications 137

Conversely to UWE, the resulting diagrams of SecureUML and UACML are
overloaded, as SecureUML uses association classes instead of dependencies and
UACML does not introduce a separate model to specify user-role hierarchies.

Other approaches address modeling of security aspects of service-oriented ar-
chitectures (SOAs), such as the SECTET framework [35], UML4SOA [36], and
SecureSOA [37]. The first one proposes the use of sequence diagrams for the
representation of a set of security patterns, in UML4SOA security features are
modeled as non-functional properties using class diagrams, and the latter relies
on FMC block diagrams and BPMN notation.

8 Conclusion and Future Work

In summary, it can be stated that our approach for engineering secure web
applications using UWE contributes to the task of securing web applications.
Consequently, a long-term impact should be the reduction of security flaws and
of necessary security patches. As it is not easy to measure the long-term impact
of UWE, we at least can tell that UWE helps to get clear about which secu-
rity features are important for certain functions of concrete web applications.
In particular, UWE addresses security features starting in the early phases of
development.

For future work, we plan to include more web-specific security features and to
validate our approach by modeling further case studies. Additionally, we extend
our approach to cover model validation. Therefore, we are working on a tex-
tual version of UWE, called TextualUWE, which is based on a domain specific
language. Our aim is to use functional Scala on TextualUWE to check for in-
consistencies in the models, as unreachable navigational states or contradictory
access control rules. Besides, it would also be interesting to investigate on trans-
ferring UWE’s security concepts to other web modeling languages that have not
yet incorporated security features.

References

1. Basin, D., Clavel, M., Egea, M., Schläpfer, M.: Automatic Generation of Smart,
Security-Aware GUI Models. In: Massacci, F., Wallach, D., Zannone, N. (eds.)
ESSoS 2010. LNCS, vol. 5965, pp. 201–217. Springer, Heidelberg (2010)

2. Busch, M., Knapp, A., Koch, N.: Modeling Secure Navigation in Web Information
Systems. In: Grabis, J., Kirikova, M. (eds.) BIR 2011. LNBIP, vol. 90, pp. 239–253.
Springer, Heidelberg (2011)

3. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: Proceedings of the 15th ACM Conference on Computer and Communications
Security, CCS 2008, pp. 75–88. ACM, New York (2008)

4. NESSoS: Network of Excellence on Engineering Secure Future Internet Software
Services and Systems (2014), http://nessos-project.eu/

5. Bertolino, A., Busch, M., Daoudagh, S., Lonetti, F., Marchetti, E.: A Toolchain for
Designing and Testing Access Control Policies. In: Heisel, M., Joosen, W., Lopez, J.,
Martinelli, F. (eds.) EngineeringSecureFuture Internet Services andSystems.LNCS,
vol. 8431, pp. 266–286. Springer, Heidelberg (2014)

http://nessos-project.eu/

138 M. Busch, N. Koch, and S. Suppan

6. Cuellar, J., Suppan, S.: A smart metering scenario (2013),
https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=research

activities:erise:erise 2013:erise2013-smartmeteering-description.pdf

7. Cuellar, J.: NESSoS deliverable D11.4 – Pilot applications, evaluating NESSoS
solutions (to appear, 2014)

8. Guerrero, J.M.: Microgrids: Integration of distributed energy resources into
the smart-grid. In: IEEE International Symposium on Industrial Electronics,
pp. 4281–4414 (2010)

9. LMU. Web Engineering Group.: UWE Website (2014),
http://uwe.pst.ifi.lmu.de/

10. Cubo, J., Cuellar, J., Fries, S., Mart́ın, J.A., Moyano, F., Fernández, G., Gago,
M.C.F., Pasic, A., Román, R., Dieguez, R.T., Vinagre, I.: Selection and documen-
tation of the two major applicationcase studies. NESSoS deliverable D11.2 (2011)

11. Gómez, A., Tellechea, M., Rodŕıguez, C.: D1.1 Requirements of AMI. Technical
report, OPEN meter project (2009)

12. Bennett, C., Wicker, S.: Decreased time delay and security enhancement recom-
mendations for ami smart meter networks. In: Innovative Smart Grid Technologies
(ISGT), pp. 1–6 (2010)

13. OWASP Foundation: OWASP Top 10 – 2013 (2013),
http://owasptop10.googlecode.com/files/OWASPTop10-2013.pdf

14. OMG.: OCL 2.0 (2011), http://www.omg.org/spec/OCL/2.0/
15. No Magic Inc.: Magicdraw (2014), http://www.magicdraw.com/
16. Busch, M., Koch, N.: NESSoS Deliverable D2.3 – Second Release of the SDE for

Security-Related Tools (2012)
17. Busch, M., Koch, N.: MagicUWE — A CASE Tool Plugin for Modeling Web

Applications. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS,
vol. 5648, pp. 505–508. Springer, Heidelberg (2009)

18. Busch, M., Ochoa, M., Schwienbacher, R.: Modeling, Enforcing and Testing Se-
cure Navigation Paths for Web Applications. Technical Report 1301, Ludwig-
Maximilians-Universität München (2013)

19. Busch, M., Garćıa de Dios, M.A.: ActionUWE: Transformation of UWE to
ActionGUI Models. Technical report, Ludwig-Maximilians-Universität München,
Number 1203 (2012)

20. Kroiss, C., Koch, N., Knapp, A.: UWE4JSF - A Model-Driven Generation Ap-
proach for Web Applications. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.)
ICWE 2009. LNCS, vol. 5648, pp. 493–496. Springer, Heidelberg (2009)

21. Eclipse: XPand (2013), http://wiki.eclipse.org/Xpand
22. OASIS: eXtensible Access Control Markup Language (XACML) Version 2.0 (2005),

http://docs.oasis-open.org/xacml/2.0/

access control-xacml-2.0-core-spec-os.pdf

23. Wolf, K.: Sicherheitsbezogene Model-to-Code Transformation für Webanwendun-
gen (German), Bachelor Thesis (2012)

24. Busch, M., Koch, N., Masi, M., Pugliese, R., Tiezzi, F.: Towards model-driven de-
velopment of access control policies for web applications. In: Model-Driven Security
Workshop in Conjunction with MoDELS 2012. ACM Digital Library (2012)

25. Masi, M., Pugliese, R., Tiezzi, F.: Formalisation and Implementation of the
XACML Access Control Mechanism. In: Barthe, G., Livshits, B., Scandariato,
R. (eds.) ESSoS 2012. LNCS, vol. 7159, pp. 60–74. Springer, Heidelberg (2012)

26. SDE: Service Development Environment (2014),
http://www.nessos-project.eu/sde

https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=research_activities:erise:erise_2013:erise2013-smartmeteering-description.pdf
https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=research_activities:erise:erise_2013:erise2013-smartmeteering-description.pdf
http://uwe.pst.ifi.lmu.de/
http://owasptop10.googlecode.com/files/OWASPTop10-2013.pdf
http://www.omg.org/spec/OCL/2.0/
http://www.magicdraw.com/
http://wiki.eclipse.org/Xpand
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.nessos-project.eu/sde

Modeling Security Features of Web Applications 139

27. Soriano, R., Alberto, M., Collazo, J., Gonzales, I., Kupzo, F., Moreno, L.,
Lugmaier, A., Lorenzo, J.: OpenNode. Open Architecture for Secondary Nodes
of the Electricity SmartGrid. In: 21st International Conference on Electricity Dis-
tribution (2011)

28. Department of Energy and Climate Change: Smart Metering Implementation Pro-
gramme, Response to Prospectus Consultation, Overview Document. Technical
report, Office of Gas and Electricity Markets (2011)

29. Beckers, K., Fabender, S., Heisel, M., Suppan, S.: A threat analysis methodology
for smart home scenarios. In: SmartGridSec 2014. LNCS. Springer (2014)

30. Grossman, J.: Website security statistics report. Technical report, WhiteHat Secu-
rity (2013), https://www.whitehatsec.com/resource/stats.html

31. Busch, M.: Secure Web Engineering supported by an Evaluation Framework. In:
Modelsward 2014. Scitepress (2014)

32. Jürjens, J.: Secure Systems Development with UML. Springer (2004), Tools and
further information: http://www.umlsec.de/

33. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Lan-
guage for Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

34. Slimani, N., Khambhammettu, H., Adi, K., Logrippo, L.: UACML: Unified Access
Control Modeling Language. In: NTMS 2011, pp. 1–8 (2011)

35. Hafner, M., Breu, R.: Security Engineering for Service-Oriented Architectures.
Springer (2008)

36. Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribastone, M., Varró, D.: Non-
functional Properties in the Model-Driven Development of Service-Oriented Sys-
tems. J. Softw. Syst. Model. 10(3), 287–311 (2011)

37. Menzel, M., Meinel, C.: A Security Meta-model for Service-Oriented Architectures.
In: Proc. 2009 IEEE Int. Conf. Services Computing (SCC 2009), pp. 251–259. IEEE
(2009)

https://www.whitehatsec.com/resource/stats.html
http://www.umlsec.de/

On the Synthesis of Secure Services

Composition�

Jose A. Mart́ın1, Fabio Martinelli2, Ilaria Matteucci2, Ernesto Pimentel1,
and Mathieu Turuani3

1 E.T.S. Ingenieŕıa Informática, Universidad de Málaga,
Campus de Teatinos, 29071 Málaga, Spain

{jamartin,ernesto}@lcc.uma.es
2 Istituto di Informatica e Telematica - C.N.R., Pisa, Italy

name.surname@iit.cnr.it
3 INRIA

Mathieu.Turuani@inria.fr

Abstract. Web service composition is one of the main research chal-
lenges of the last decades. Several frameworks have been developed to
compose services in order to meet requirements and constraints imposed
by a service consumer. Hereafter, we survey research work on evaluation
and automatic synthesis of service composition with a particular eye to
security aspects.

Furthermore, we describe our logical approach based on the partial
model checking technique and open system analysis for the synthesis of
secure service orchestrators that are also able to exploit some crypto-
graphic primitives. We also show two implementations able to automat-
ically generate an orchestrator process that composes several services in
such a way to guarantee both functional and security requirements.

Keywords: Synthesis of Functional and Secure Processes, Secure Ser-
vice Composition, Partial Model Checking, Process Algebras, Quantita-
tive Security.

1 Overview

Services are software components developed to be re-usable, which expose their
definition and which are accessible by third parties. Web services are the most
promising class of services. They offer various functionalities to their consumers
that range over data storage, information retrieval, social interaction and more.
Web Services export their description and are accessible through standard net-
work technologies, e.g., SOAP, WSDL, UDDI, WS-BPEL, WS-Transaction, etc..

Service Oriented Computing (SOC) investigates on new approach for build-
ing software applications by composing and configuring existing services. Web
Service composition combines existing services, available on the web, to provide

� The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grants no 256980 (NESSoS).

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 140–159, 2014.
c© Springer International Publishing Switzerland 2014

On the Synthesis of Secure Services Composition 141

added-value services featuring higher level functionalities. Every functionality
of a service network depends on how the services compose each other. Service
composition can be done in two ways: as a choreography or through an orchestra-
tion. Choreography identifies the end-to-end composition between two services
by mainly considering cooperation rules, e.g., the sequence of the exchanged
messages and their content. Orchestration deals with the composition of multi-
ple services in terms of the business process they generate.

In this chapter we survey about the existing literature on service composition
approaches and security aspects in the synthesis procedure. In particular, we dis-
cuss separately research work about i) logical approaches for service composition,
ii) security aspects in service composition, and iii) other synthesis approaches.
We then describe our framework based on partial model checking [1] and the
open system paradigm for the synthesis of secure service compositions with also
the possibility of introducing cryptographic primitives in the orchestrator pro-
cess. The framework we propose is both for verification and synthesis of secure
service composition using a secure and functional orchestrator.

The chapter is structured as follows: next section describes service composi-
tion approaches, other synthesis approaches that already exist in literature, and
the specification and verification of web service orchestrators in timed setting.
Section 4 presents our approach for the synthesis of secure service composition.
We also describe two possible implementation solutions for the automatic gen-
eration of such orchestrators. Section 5 drafts the conclusion of the chapter.

2 Security Aspects of Service Composition

A service and its clients, or two (or more) services, interact with one another
through specific interfaces defining the syntax and semantics of the exchanged
messages (and their parameters). Papazoglou [46] defines some key roles for Ser-
vice Oriented Computing, among them, the service consumer and the service
provider are the two most important ones. The two entities share knowledge
only about the service interface, i.e., the protocols that they use to communi-
cate. Existing protocols can guarantee security properties, e.g., authenticity and
secrecy, on these communications. However, messages can carry complex data or
even executable instructions, which makes the computation distributed over the
involved systems. Needless to say, the problem of providing security guarantees
is one of the most studied in the last decades. Indeed, the pervasiveness of web
services increases the necessity for consumers to access and use them in a secure
way. A service composition is secure if it satisfies a certain security property.
A security property is a statement that specifies acceptable executions of the
system. The research on several aspects of service composition has made a great
step further. In particular, several frameworks have been developed to compose
services in order to satisfy security and functional requirements and constraints
imposed by a service consumer. The composition of services presents a lot of
challenges in terms of security. For instance, services may not be able to directly
communicate with one another because they use different communication (cryp-
tographic) protocols. It is also possible that different services provide the same

142 J.A. Mart́ın et al.

functionality but in a different way and one could fit better than another with the
customer’s functional and security requirements. Furthermore, the distributive
nature of web services makes the development of some machinery to guaran-
tee security very important. Consumers should require strong guarantees that
their security policies are satisfied. Unfortunately, Service Oriented Computing
is adverse to most techniques of control and analysis which, usually, require the
direct access to either execution or implementation.

3 Automated Synthesis Mechanisms

In this section we discuss on some literature about synthesis mechanisms. During
the last decades, a lot of research work has been done in order to define different
strategies for synthesizing service composition. Some of them have addressed
also security issues. For the best of our knowledge, hereafter, we recall works
that deal with both functional and security aspects. Several works deal with a
possible modeling of orchestrators by process algebras, see e.g., [11,12,20,26,56],
by automata [52], or by an Architecture Description Language (ADL) [50,45].

In [13,15] the authors have developed a static approach to deal with the
composition of web services by the usage of plans. Only some of these take into
account also security aspects in the service composition procedure. In particular
they use a distributed, enriched λ-calculus for describing networks of services.
Both, services and their clients, can protect themselves, by imposing security
constraints on each other’s behavior. Then, service interaction results in a call-
by-property mechanism [14], that matches the client requests with services.

The planning approach is followed also by Pistore et al. [48,49] in order to
generate an orchestrator. As a matter of fact, the authors have proposed a novel
planning framework for the automated composition of Web Services in which
they generate automatically a concrete process that interacts asynchronously
with the published services. Basically they compose all services and then, after
building all possible plans, they extract the plan that satisfies the user’s request.

Also Zavattaro et. al [18], deals with the problem of composition on services.
They have studied choreography more than orchestration. They have introduced
a formal model for representing choreography. Their model is based on a declara-
tive part and on a conversational one. The declarative part of their choreography
formal model is based on the concept of role that represents the behavior that
a participant has to exhibit in order to fulfill the activity defined by the chore-
ography. Each role can store variables and exhibit operations.

In [19] the authors have formalized the concept of orchestrator as a process,
associated to an identifier, that is able to exchange information, represented by
variables, with other processes. This model takes inspiration form the abstract
non-executable fragment of BPEL and abstracts away from variables values
focusing on data-flow. Orchestrators are executed on different locations, thus
they can be composed by using only the parallel operator (‖). Processes can
be composed in parallel, sequence and alternative composition. Communication
mechanisms model Web Services One-Way and Request-Response operations.

On the Synthesis of Secure Services Composition 143

Enabling the specification of dynamic Web service-oriented architectures is a
key challenge for an Architecture Description Language (ADL). In [50,45] the
authors address three research challenges: i) support the description of dynamic
service-oriented architectures from structural and behavioral viewpoints; ii) sup-
port the description of service-oriented architectures where business processes are
modeled in visual notations such as BPMN [43]; and iii) support the description
of service-oriented architectures enabling to rigorously reason about and verify
their qualities, in particular related to conformance and correctness.

In [22], the automatic composition of services under security policies is inves-
tigated. Work in [22] uses the AVISPA tool [58,2] and acts in two stages: first, it
derives a protocol to allow composition of some services; then, some desired secu-
rity properties are implemented. The latter step uses the functionality of AVISPA
and, for the former step, the desired composition is turned into a security prop-
erty, so that AVISPA itself can be used to derive an “attacker”which actually is
the orchestrator. The AVANTSSAR Platform [21,3] extends the AVISPA tool.
It is an integrated toolset for the formal specification and automated validation
of trust and security of service-oriented architectures and other applications in
the Internet of Services. The authors extend this research line in [7,9] by pre-
senting a novel approach to automated distributed orchestration of Web Services
tied with security policies with a particular eye to trust and security relations.
The construction of an orchestration complying with the policies is based on
the resolution of deducibility constraint systems and has been implemented for
the non-distributed case as part of the AVANTSSAR Validation Platform. More
details are given in Section 4.5

The research line on the synthesis of secure controller programs [37] has been
extended with the introduction of cryptographic primitives in [23,24]. These
two works try to simplify the approach in [33] for the synthesis of deadlock-
free orchestrators that are compliant with security adaptation contracts [34].
Compared to [33], this new approach loses the ability to specify fine-grained
constrains in the desired orchestration but, on the other hand, there is no need
to design an adaptation contract. We discuss these works later on in Section 4.

In [31], Li et al. present an approach for securing distributed adaptation. A
plan is synthesized and executed, allowing the different parties to apply a set
of data transformations in a distributed fashion. In particular, the authors syn-
thesize “security boxes”that wrap services, providing them with the appropriate
cryptographic capabilities. Security boxes are pre-designed, but interchangeable
at run time. In our case the orchestrator is synthesized at run time and is able
to cryptographically arrange secure service composition.

In [30] the authors introduce COWS, calculus for orchestration of Web ser-
vices, as a new foundational language for service oriented computing. In order to
facilitate the use of model-checking techniques to business analysts, the authors
of [5] created a model-checking plugin for SAP NetWeaver Business Process Man-
agement. This plugin support the verification of secrecy properties with a push
of a button and the subsequent visualization of possible attack traces. However,

144 J.A. Mart́ın et al.

since this plugin is intended as a design tool, the designer is left with the task
to solve possible flaws in the business process.

A bunch of works deals with web services in timed settings. In particular,
some of those deal with modeling a timed BPEL with formal methods.

In [38] the authors proposed possible mapping of BPEL operators into pro-
cess algebra operators. Furthermore, a possible orchestrator operator has been
proposed in such a way to deal also with time. In [28] the authors propose the
Web Service Timed Transition System model, which adopts the formalism of
timed automata for capturing the specific aspects of the web service domain.
In this formalism, the fact that the operation takes a certain amount of time is
represented by time increment in the state, followed by the immediate execution
of the operation. Intuitively, WSTTS is a finite-state machine equipped with
a set of clock variables. The values of these clock variables increase with the
elapsing of time. Thus a Web Service composition is represented as a network of
several such automata, where all clocks progress synchronously. The semantic of
WSTTS is defined as a labeled transition system, where either the time passes
or a transition from one state to another immediately takes place. In [16,17]
the authors have discussed the augmentation of business protocols with specifi-
cations of temporal abstractions, focusing in particular on problems related to
compatibility and replaceability analysis. In [25] the authors, firstly, have de-
fined a timed automata semantics for the Orc language, introduced in order to
support a structured way of orchestrating distributed Web services. Orc is intu-
itive because it offers concise constructors to manage concurrent communication,
time-outs, priorities, failure of sites or communication and so forth. The seman-
tics of Orc is also precisely defined. Timed automata semantics is semantically
equivalent to the original operational semantics of Orc.

4 Synthesize a Secure and Functional Service
Composition

There are some papers proposing compositional approaches to synthesize pro-
cesses able to compose or coordinate components in such a way to ensure
security, depending on some runtime behavior of a possible attacker, e.g.,
[37,27,55,4,6,29,47,51,53,54].

Our works starts from the necessity to make systems secure regardless the
behavior of possible intruders, i.e., we suppose that the system we consider
works in parallel with unknown components, that represent a possible malicious
agent, and we have developed mechanisms to guarantee the system is secure
whatever the behavior of the possible malicious agent is. A lot of work has been
done in order to study and analyze systems to guarantee that they satisfy certain
security properties. In this chapter we present how the logical approach based
on the open system paradigm for the security analysis, in particular for the
specification and verification (see [36]). This research stream has been extended
to the synthesis of secure controller programs [37] and with the introduction of
cryptographic primitives in [23,24].

On the Synthesis of Secure Services Composition 145

The approach can be also used to guarantee security in service composition.
We aim to automatically synthesize an orchestrator process able to coordinate
the communication among several services in a secure and functionally correct
way.

Example 1. (cfr. [24]) Consider a user willing to receive a certificate of residence
by the city hall. In order to provide such document, the city hall has to retrieve
information by other two services, the healthcare office and the driving license
office, in order to have all the information that is required in order to produce
a certificate. As expected in the service-oriented approach, this can be achieved
by the orchestration of different services. The exchanged data circulating among
different services are encrypted in such a way the privacy issues are guaran-
teed. Hence, both the healthcare office and the driving license office receive the
identification number of the user (Id) and send back the identification number
of the health card (Id healthcare) and the identification number of the driving
license (Id driving), respectively. As soon as the city hall receives the required
information, it sends a residency certificate in which the health card and the
driving license are both associated to the address of the user. The user receives
the certificate encrypted with her public key. This guarantees that only the user
can open it. Once the user opens the certificate, she sends back a success mes-
sage. This message is encrypted with the private key of the user that, in this
way, proves her identity.

There are some communication issues in this apparently simple procedure.
For example, the user might be unable to manage both operations because she
does not know which information is needed for releasing the certificate. One
needs to synthesize a new service,orchestrator, whose aim is to make the system
functional, i.e., fully satisfying its goal (request and successfully obtain the cer-
tificate of residence). The correct execution of the whole procedure is guaranteed
by the reception of the certificate by the user that sends back a success message.

4.1 The Synthesis Problem

We refer to a formal definition of the synthesis problem given by Merlin and
Bochman in [41]. The synthesis problem occurs when one deals with a system in
which some components are completely or partially unspecified, e.g., a partially
implemented software or a Web service relying on components designed and
developed separately. Let us consider a partially specified system, we wonder if
there exists an implementation that can be plugged into the system, replacing
the missing one, such that the whole system satisfies the properties it needs to.

Hence the problem that must be solved is the following one:

∃Y S(Y) |= φ

where φ is a logic formula representing the property to be satisfied, S is a model
of the partially specified system, and Y is the plugged element.

The synthesis problem for secure systems is slightly different. Indeed, due to
the unpredictable behavior of the possible attacker, this can be seen as an un-
specified component of the system under investigation, i.e., as a black-box. Hence,

146 J.A. Mart́ın et al.

we model as an open system following the approach proposed in [35,32,36]. A
system is open if it has some unspecified components. We want to make sure
that the system with this unspecified component works properly, e.g., fulfills a
certain property. Thus, the intuitive idea underlying the verification of an open
system is the following:

An open system satisfies a property if and only if, whatever component is
substituted to the unspecified one, the whole system satisfies this property.

Whatever the unspecified term is, it is appealing that the resulting system works
properly, e.g., satisfies a consumer’s requirement. According to these premises,
the system must be secure regardless of their real behaviors, which is exactly
a verification problem of open systems. According to [36], the problem that we
want to study can be formalized as follows:

For every component X S‖X |= ϕ (1)

whereX stands for the possible attacker, S is the system under examination, con-
sisting of several services composed in parallel through the ‖ parallel-composition
operator, ϕ is a logic formula expressing the customer requirement. It roughly
states that the property ϕ holds for the system S, regardless of the component
(i.e., intruder, malicious user, hostile environment, etc.) which may possibly
interact with it.

4.2 Crypto-CCS and Partial Model Checking in a Nutshell

The preservation of secrecy properties is one of the main aspects that has to
be considered in secure service composition. This is because service composition
happens through communication among services [8].

Given the sensitive nature of a communication protocol, one can imagine the
presence of a hostile adversary trying to interfere with the normal execution
of the protocol in order to achieve some advantage. To this aim, hereafter, we
assume the Dolev-Yao threat model which has been widely accepted as threat
model for cryptographic protocols. This threat model assumes that:

– All communications are visible by the attacker, i.e., an attacker can receive
any message transmitted through the network.

– The attacker can alter, forge, replay or drop any message.
– The attacker can reroute messages to another principal.
– The attacker can be a principal or an outsider. This means that an attacker

can be a legitimate user of the network and thus in particular he is able to
initiate communication with any other principal or to act as a receiver to
any principal.

Crypto-CCS is a variant of CCS [42], endowed with cryptographic primitives.
A model defined in Crypto-CCS consists of a set of sequential agents able to
communicate by exchanging messages (e.g., data manipulated by the agents).

A
.
= 0 | c!m.A | c?x.A | [m1 · · ·mn
r x]A;A1

On the Synthesis of Secure Services Composition 147

Table 1. Operational semantics of Crypto-CCS. Symmetric rules are omitted

(!)
(c!m.A)φ

c!m−→ (A)φ
(?)

m :T ∈ Tmsgs(T)

(c?x :T.A)φ
c?m−→ (A[m/x])φ∪{m :T}

(τ)
(τ.A)φ

τ−→ (A)φ

(+)
(A1)φ

α−→ (A′
1)φ′

(A1 + A2)φ
α−→ (A′

1)φ′
(\L)S

α−→ S′ ch(α) �∈ L

S\L α−→ S′\L
([]1)

m = m′ (A1)φ
α−→ (A′

1)φ′

([m = m′]A1;A2)φ
α−→ (A′

1)φ′
([]2)

m �= m′ (A2)φ
α−→ (A′

2)φ′

([m = m′]A1;A2)φ
α−→ (A′

2)φ′

(D1)
〈〈mi :Ti〉〉i∈I 	IS m :T (A1[m/x])φ∪{m :T}

α−→ (A′
1)φ′

([〈〈mi〉〉i∈I 	IS x :T]A1;A2)φ
α−→ (A′

1)φ′

(D2)
�(m :T)〈〈mi :Ti〉〉i∈I 	IS m :T (A2)φ

α−→ (A′
2)φ′

([〈〈mi〉〉i∈I 	IS x :T]A1;A2)φ
α−→ (A′

2)φ′

(‖1) S
α−→ S′

S‖S1
α−→ S′‖S1

(‖2)S
c?m−→ S′ S1

c!m−→ S′
1

S‖S1
τ−→ S′‖S′

1

where m1, . . . ,mn,m are closed messages or variables, x is a variable and c is an
element of the set Ch of channels. Informally, the Crypto-CCS semantics used
in the remained of this text is: 0 denotes a process that does nothing; c!m.A
denotes a message m sent over channel c and then behave as A; c?x.A denotes
a message m received over channel c which replaces the variable x and then
behave as A; [m1 · · ·mn
r x]A;A1 denotes an inference test that a process
may use to check whether message m is derivable from premises m1, . . . ,mn; the
continuations in positive and negative cases are A (where m replaces x), or A1,
respectively. Deduction is the message-manipulating construct of the language,
responsible for its expressive power. In particular, it allows to model asymmetric
encryption. Let y be a key belonging to an asymmetric pair of keys. We denote by
y−1 the corresponding complementary key. If y is used for encryption, then y−1

is used for decryption, and vice versa. Given a set of messages φ, then message
m ∈ D(φ), the set of deduced messages, if and only if m can be deduced from
the rules modeling public key cryptography.

The control part of the language consists of compound systems :

S
.
= S1 ‖ S2 | S\L | Aφ

Informally, S1 ‖S2 denotes the parallel composition of S1 and S2, i.e., S1 ‖ S2

performs an action if either S1 or S2 does. A synchronization (or internal) action,
denoted by τ , is observed whenever S1 and S2 can perform two complementary
send and receive actions over the same channel; S\L prevents actions whose
channels belong to the set L, except for synchronization. Aφ is a single sequential
agent whose knowledge is described by φ. The formal semantics of the Crypto-
CCS agents are summarized in Table 1.

Figure 1 reports the Crypto-CCS description of the services introduced in
Example 1.

148 J.A. Mart́ın et al.

Fig. 1. Crypto-CCS description fo service in Example 1 [24]

Partial model checking is a technique that relies upon compositional methods
to provide properties of concurrent systems [1].

The intuitive idea underlying the partial model checking is the following:
let ϕ be a formula expressing a certain consumer’s requirement (see [36,23] for
some logical languages), then proving that E‖F satisfies ϕ is equivalent to prove
that F satisfies a modified specification ϕ = ϕ//E

, where //E is the partial
evaluation function for the parallel composition operator. Hence, the behavior
of a component has been partially evaluated and the requirements are changed
in order to respect this evaluation.

We give the following main result:

Lemma 1 ([1]). Given a process E‖F and an equational specification ϕ we
have:

E‖F |= ϕ iff F |= ϕ//E

A lemma similar to the previous one holds for each process algebra operator.
Using partial model checking, we aim to reduce such a verification problem

as in Formula (1) to a validity checking problem as follows:

∀X S‖X |= ϕ iff X |= ϕ//S
(2)

In this way we have found the sufficient and necessary condition on X , expressed
by a logical formula ϕ//S

, so the whole system S‖X satisfies ϕ.

On the Synthesis of Secure Services Composition 149

Several results exist about the decidability of such problems for temporal logic
and, for the more interesting properties, like several safety properties (“nothing
bad happens”), the validity problem of the formula obtained after the partial
evaluation may be solved in linear time in the dimension of the formula itself.
Another advantage of the partial model checking technique is that it is not
necessary to find the most general intruder and prove its attack capabilities.

4.3 Synthesis of Functional and Secure Orchestrators

Mathematical methods in program semantics and security very often need to be
validated through implementation and technology transfer. Traditionally, this
task has been hindered by the gap between abstract results and applications.
The advent of software engineering brought to light the so-called semi-formal
languages and methods, such as Unified Modeling Language (UML) [44] or Busi-
ness Process Model and Notation (BPMN) [43]. These formalisms provide clean
syntax to support abstraction in software and system design, and in the develop-
ment phase. Semi-formal methods are nowadays part of the standard background
of software engineers, and may be used to bridge the mentioned gap, providing
a clean path from theoretical results to implementation.

Our approach for the synthesis of secure system consists in using partial model
checking [36] and the extension of the PaMoChSA tool [39] for BPMN orches-
trator processes [23,24]. Indeed, we extend the line of research based on par-
tial model checking, logic languages and satisfiability, in order to synthesize an
orchestrator process able to i) combine several services and provide a unified
interface that satisfies a consumer’s request and ii) guarantee that the compos-
ite service is secure. Hereafter, from a functional perspective, we concentrate on
successful service completion, and from a security perspective, we concentrate
on the secrecy property.

The workflow we adopt is described in Figure 2.

Fig. 2. The workflow of the proposed approach

Indeed, let us assume that each service in the composition is not able to
communicate with the others for accomplishing the consumer’s requirements,
i.e., the set of channels over which Si is able to communicate does not intersect
the set of channels over which Sj is able to communicate, for each pair Si and Sj

in S. We may wonder if there exists an orchestrator O that, by communicating

150 J.A. Mart́ın et al.

with the services in S and assuming any unspecified component X , guarantees
that the overall system satisfies the required security property. This scenario
can be specified using BPMN as a set of white box, representing the services
Sj , and a black box, representing the orchestrator. According to [24], the BPMN
description of services can be encoded into Crypto-CCS processes. Hence, the
synthesis problem is specified as follow:

∃O ∀X S‖O‖X |= ϕ

The synthesized orchestrator process is consider functional and secure. Let mF

be a message that denotes the end of a service execution, φO be the knowledge
of the orchestrator, and φX be the knowledge of the attacker. An orchestrator
is functional and secure if it is able to:

– Functional: combine several services in such a way that mF falls into the
orchestrator’s knowledge φO. This implies that all services have successfully
terminated their execution. We consider the formula ϕT for this property.

– Secure: guarantee that the composite service is secure by checking that the
secret message m does not belong to φX . We consider the formula ϕsec for
this property.

Let us consider the process (S‖OφO‖XφX). No matter what the behavior of
X is, we require that this process satisfies both functional and security require-
ments. It is worth noting that in this case there are two components whose
behavior is unknown: the orchestrator O and the intruder X .

One issue is to decide if there exists an orchestrator O such that, for all the
possible behaviors of X , after the computation of maximal length γ(max), mF

is in the knowledge of O and m is not in the knowledge of X .

∃OφO∀XφX (S‖OφO‖XφX) |= ϕT ∧ ϕsec (3)

An important aspect is how to automatically synthesize the orchestrator. We
can use partial model checking to simplify Equation 3 by partially evaluating
the formula ϕT ∧ ϕsec with respect to the behavior of S.

Proposition 1. Let S be a system and OφO and XφX two sequential agents,
where φO and φX are finite sets representing the knowledge of O and X. If mi,
i = 1, . . . , n, are secret messages and mF is the final one, we have:

(S‖OφO‖XφX) |= ϕT ∧ ϕsec

iff
OφO‖XφX |= (ϕT ∧ ϕsec)//ns,S

This result identifies the necessary and sufficient conditions that the orchestrator,
interacting with every possibleX , must satisfy in order to guarantee that the final
message mF is delivered correctly without any disclosure of information to X .

On the Synthesis of Secure Services Composition 151

However, the presence of the universal quantifier on X makes the formula
ϕT = ∀γ(max) : mF ∈ KφO

O,γ(max) not satisfiable, since X can always interfere

with the normal execution of S getting the overall system stuck, so that the final
message mF is not delivered.

However, still keeping the intuition behind Equation 3, we can weaken the
property to the conjunction of the following properties:

A1. When there is not an intruder, the orchestrator always drives the services
to correct termination.

A2. When there is an intruder, no matter what actions it takes, it is not able
to learn the secret m.

Now we need to determine whether it is possible to determine an orchestra-
tor O satisfying this weaker assumption. Decidability comes from the following
proposition.

Proposition 2. Given a system S, and two finite sets φO and φX , it is decidable
if ∃OφO s.t. ∀XφX

A1 (S‖OφO) \ L |= ϕT

A2 (S‖OφO‖XφX) \ L |= ϕsec

In A1, we are assuming that the attacker X is the empty process, with an
empty initial knowledge φX .

According to Proposition 1, we can apply the partial model checking tech-
niques to A1 and A2 obtaining:

A1′ OφO |= (ϕT)//ns,S
A2′ (OφO‖Xφ) |= (ϕsec)//ns,S

Hence, since the formulas in A1 and A2 are finite, the application of the partial
model checking, in conjunction with the usage of some satisfiability procedure
allows us to synthesize an orchestrator, whenever it exists.

4.4 PaMoChSA 2012: Tool Description

The tool PaMoChSA2012 [23] is an extension of the Partial Model Checker
Security Analyser (PaMoChSA), see [39].

PaMoChSA: The Partial Model Checking Security Analyser. The development of
the theory has lead to the implementation of a partial model checker namely the
Partial Model Checking Security Analyser [40], for short, PaMoChSA, through
which it is possible to analyse distributed systems. As usual, only systems with
finite computations will be investigated. This is possible since:

1. the operational language used to specify protocols does not allow recursion;
2. the messages are of a fixed structure;
3. a finite number of parties and sessions running the protocol are considered;

152 J.A. Mart́ın et al.

4. even if the attacker is allowed to generate fresh messages, their structure is
subject to the same constraints mentioned above.

It is worth noting that, though maintaining the analysis over a finite number of
parties and sessions, the absence of attacks over a particular system running the
protocol does not guarantee that there are no attacks on larger systems running
the same protocol.

The PaMoChSA tool needs the following set of inputs: i) the protocol specifi-
cation; ii) the security property to be checked; iii) the initial knowledge of the
intruder. When developing the theory, the operational language Crypto-CCS has
been used for specifying the protocols. The PaMoChSA tool takes as input the
protocol description, the secret, i.e., the message that may not to be disclosed
to a possible intruder, and the initial knowledge of the possible intruder. The
tool gives as output the possible attacks if any, or states the absence of attacks.

PaMoChSA2012: The Synthesizer. The PaMoChSA tool has been extended in
order to be able to automatically synthesize a functional and secure orchestrator
starting from the description of services. The tool can be downloaded at
http://www.iit.cnr.it/staff/vincenzo.ciancia/tools.html.

We provide a security-aware execution semantics to BPMN, incorporating
secure communication facilities, by means of Crypto-CCS. We define BPMN
processes that exchange cryptographic messages. More precisely, we use existing
BPMN facilities to include asymmetric cryptography in the modeling language.
In this way, existing tools may be used to design cryptography-aware systems.
We provide a proof-of-concept implementation, in the form of two XQuery [59]
transformations. The first one translates a BPMN process into Crypto-CCS,
whose syntax is represented using a custom XML format. The second trans-
formation turns an XML representation of a sequential Crypto-CCS process
back into a BPMN process. The translation is made to interoperate with the
PaMoChSA2012 tool, performing synthesis of (sequential) Crypto-CCS orches-
trators [23].

The algorithm implements the two formulas of Proposition 2. It can be more
intuitively explained as path-finding in a state graph. In principle, the behavior
of an orchestrator is a tree. However, since the system and the orchestrator are
assumed to be deterministic, such a tree has an equivalent description in terms
of all its paths. The input of PaMoChSA2012 is the same as PaMoChSA plus
the initial knowledge of an orchestrator.

A practical way to account for possible attacks is to build the state graph in
such a way that additional transitions are present, simulating eavesdropping and
manipulation of messages by the intruder. Thus, whenever a service can receive
a message from the orchestrator, then it evolves and it can also be instantiated
with all messages of the same type that can be deduced from the knowledge of
the intruder KX . Likewise, whenever the service can send a message to the or-
chestrator, the knowledge K ′

O of the orchestrator can also be augmented with all
the messages of the same type that can be deduced from KX . This machinery

On the Synthesis of Secure Services Composition 153

implements the ability ofX to interfere with communications between the orches-
trator and the system.

Finally, the knowledge of the intruder is always augmented with the messages
that are exchanged between the orchestrator and the system, unless the used
channel is in H . The rationale is that the intruder can eavesdrop such commu-
nications in order to acquire new information.

The result is a tool that accepts a BPMN collaboration diagram, containing
a black-box process representing the orchestrator as input. The black-box in the
original collaboration diagram is filled with the synthesized process that orches-
trates the BPMN processes, driving all components to successful termination.
The orchestrator is secure, in the sense that it uses asymmetric cryptography to
forbid an attacker to learn a user-specified secret message.

The PaMoChSA 2012 specification of Example 1 is the following:

<GOAL>

success : Success

</GOAL>

<ORCH_KNOWLEDGE>

k_lo : EKey; k_u : EKey; k_ho : EKey; k_co : EKey ; k_sso : DKey

</ORCH_KNOWLEDGE>

<FORMULA>

residency_certificate : Residency_certificate

</FORMULA>

<KNOWLEDGE>

k_lo : EKey; k_ho : EKey; k_co : EKey ; k_sso : EKey

</KNOWLEDGE>

<HIDE_CHANNELS>

no_channels

</HIDE_CHANNELS>

<SPEC>

Parallel

(* User *)

Send(sso,id : Id).

Recv(sso,ENC_CERT : Enc(Residency_certificate * EKey)).

If Deduce (CERT = Decrypt(ENC_CERT, k_u : DKey)) Then

Send(sso,Encrypt(success : Success,k_u : DKey)). 0

End Deduce

And

(* City hall *)

154 J.A. Mart́ın et al.

Recv(co,ID_HEALTHCARE : Id_healthcare).

Recv(co,ID_DRIVING_LICENSE : Id_driving_licence).

Send(co,Encrypt(residency_certificate :

Residency_certificate, k_sso : EKey)). 0

And

(* Driving license office *)

Recv(c_do,ID : Id).

Send(c_do,id_driving_license : Id_driving_license). 0

And

(*Healthcare office*)

Recv(c_ho,ID : Id).

Send(c_ho,id_healthcare : Id_healthcare). 0

End Parallel

</SPEC>

As output, the tool returns the following orchestrator:

Orchestrator:

Recv(sso,id : Id).

Send(c_do,id : Id).

Send(c_ho,id : Id).

Recv(c_do,id_driving_license : Id_driving_license).

Recv c_ho,id_healthcare : Id_healthcare).

Send(co,id_driving_license : Id_driving_license).

Send(co,id_healthcare : Id_healthcare).

Recv(co,Enc[k_sso](residency_certificate) :

Enc(Residency_certificate*Ekey)).

Send(sso,Enc[k_u](residency_certificate) :

Enc(Residency_certificate*Ekey)).

Recv(sso,Enck[k_u](success) : Enc(Success*Dkey)).0

is secure.

Thus, the orchestrator is functional because it receives the success message from
the user and it is secure because its way of acting does not let a potential
intruder learn the secret message residency certificate. The tool also explores
the knowledge of the attacker in an exhaustive way and this guarantees that the
attacker cannot obtain the secret.

On the Synthesis of Secure Services Composition 155

4.5 Avantssar’s Orchestrator: Tool Description

The AVANTSSAR Orchestrator [22] is a tool for automatic orchestration of
Web Services with respect to their security policies. It is built over Cl-Atse [57],
a tool for solving web services and cryptographic protocols insecurity in pres-
ence of a Dolev-Yao intruder, which it uses as a black-box to generate traces
in presence of an active adversary. Systems are investigated with respect to a
bounded number of legal transitions, i.e., the number of actions done by honest
agents is bounded, while those done by the intruder are not. Note that the name
of the tool (AVANTSSAR’s Orchestrator) should not be mistaken for the name
of the agent OφO (called orchestrator) that it must produce to show a secure
orchestration.

AVANTSSAR’sOrchestrator: The Synthesis Method. The orchestration approach
of this tool follows the ideas of [7,9] and relies on the analogy with a state reacha-
bility problem in the analysis domain. Exploiting this idea, the tool converts the
input problem into an insecurity problem where the adversary plays the role of the
orchestrator OφO , and where a successful completion of the orchestration (prop.
ϕT) is converted into a successful attack by the adversary. This approach has the
advantage to provide secure orchestrations for the framework, the specification
languages, and the tools already defined and created for the AVANTSSAR’s plat-
form, but it requires to analyse the new system S‖OφO it produces with respect
to the security policies ϕsec using any or all of the three security analysers from
the AVANTSSAR’s platform (including Cl-Atse itself already used to produce the
orchestrator), to make sure that:

∀XφX (S‖OφO‖XφX) |= ϕsec (4)

Thus it is a two-pass method, while the PaMoChSA2012 generates the orches-
trator in one step. However, in practice usually only very few iterations are
needed to produce a secure orchestration, if any exists. This is primarily due
to an extension of Cl-Atse which permits it to generate attacks satisfying neg-
ative deductibility conditions for the intruder. This allows the AVANTSSAR’s
Orchestrator to produce an orchestrator OφO that already partially validates
the security policies ϕsec before the final verification, thus eliminating most use-
less iterations. Moreover, the iteration process guaranties to eliminate not only
wrong individual orchestrations from the system, but whole families of them at
once, thus reducing useless iterations even more.

The Input Problem. It is described in the ASLan language [10], extended with
some keywords in order to distinguish agents like, e.g., the client, some service,
etc. The client is a special agent, since the tool must automatically generate
an orchestrator OφO able to satisfy each client’s requests. The available services
and the client are specified in the form of transition systems in the ASLan
language, but the orchestrator is defined only by its initial knowledge. Another
type of input is allowed: instead of specifying a client, one may partially define
an orchestrator by providing only the part related to the communication with

156 J.A. Mart́ın et al.

the putative client. The iteration process can be either automatic or manual,
thus accepting a job identifier to continue solving a previously defined problem.

Output. In the case where a specification of the client is given, an ASLan spec-
ification of the orchestrator OφO that securely satisfies the client’s requests is
produced. In the case where a partial specification of the orchestrator is given,
a specification of the putative client is generated. Moreover, a new orchestrator
service is issued, which extends the one given in the input with the necessary
interactions with the available services. The tool can be downloaded or directly
queried online from the CASSIS website (http://cassis.loria.fr/). It is part
of the AVANTSSAR Platform, and has been integrated in the NESSoS’ SDE.

5 Conclusion

In the last decades, the research on several aspects of service composition has
been improved by a lot of research activities. In particular, several frameworks
have been developed in order to compose services that can satisfy requirements
and constraints imposed by a user. In this chapter, we have collected and dis-
cussed several research works outlining different approaches and techniques that
have been proposed to tackle specific security aspects in service composition.

We also present our framework based on partial model checking for guarantee-
ing security in web service composition. In particular, we exploit cryptographic
protocols analysis for checking that the communication among different services
happens in a secure way. Furthermore, we extend the same framework for synthe-
sizing an orchestrator process able to manage the communication among services
by using also cryptographic primitives.

We also present two different tools for the automatic synthesis of orches-
trators: the PaMoChSA2012 tool and the AVANTSSAR platform. Both tools
solve the same problem by using different mechanisms: PaMoChSA2012 using
partial model checking is able to generate an orchestrator in one step while
AVANTSSAR generates orchestrators in a 2-steps procedure.

References

1. Andersen, H.R.: Partial model checking. In: LICS, p. 398. IEEE (1995)
2. Armando, A., et al.: The avispa tool for the automated validation of internet

security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

3. Armando, A., et al.: The AVANTSSAR platform for the automated validation of
trust and security of service-oriented architectures. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 267–282. Springer, Heidelberg (2012)

4. Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with
partial observation. Theoretical Computer Science 303(1), 7–34 (2003)

5. Arsac, W., Compagna, L., Pellegrino, G., Ponta, S.E.: Security validation of busi-
ness processes via model-checking. In: Erlingsson, Ú., Wieringa, R., Zannone, N.
(eds.) ESSoS 2011. LNCS, vol. 6542, pp. 29–42. Springer, Heidelberg (2011)

http://cassis.loria.fr/

On the Synthesis of Secure Services Composition 157

6. Asarin, E., Maler, O., Pnueli, A.: Symbolic Controller Synthesis for Discrete and
Timed Systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS
1994. LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995)

7. Avanesov, T., Chevalier, Y., Anis Mekki, M., Rusinowitch, M., Turuani, M.: Dis-
tributed Orchestration of Web Services under Security Constraints. In: Garcia-
Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., de Capitani di Vimercati,
S. (eds.) DPM 2011 and SETOP 2011. LNCS, vol. 7122, pp. 235–252. Springer,
Heidelberg (2012)

8. Avanesov, T., et al.: Intruder deducibility constraints with negation. Decidability
and application to secured service compositions. CoRR, abs/1207.4871 (2012)

9. Avanesov, T., Chevalier, Y., Rusinowitch, M., Turuani, M.: Towards the Orches-
tration of Secured Services under Non-disclosure Policies. In: Kotenko, I., Skormin,
V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531, pp. 130–145. Springer, Heidelberg
(2012)

10. AVANTSSAR. Deliverable 2.3 (update): ASLan++ specification and tutorial
(2011), http://www.avantssar.eu

11. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Reasoning about interaction pro-
tocols for web service composition. Electr. Notes Theor. Comput. Sci. 105, 21–36
(2004)

12. Bao, L., Zhang, W., Zhang, X.: Describing and Verifying Web Service Using CCS.
pdcat, 421–426 (2006)

13. Bartoletti, M., Degano, P., Ferrari, G.L.: Plans for Service Composition. In: Work-
shop on Issues in the Theory of Security (WITS) (2006)

14. Bartoletti, M., Degano, P., Ferrari, G.-L.: Security issues in service composition.
In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 1–16.
Springer, Heidelberg (2006)

15. Bartoletti, M., Degano, P., Ferrari, G.L.: Types and Effects for Secure Service
Orchestration. In: Proc. 19th Computer Security Foundations Workshop (CSFW)
(2006)

16. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: Compatibility and replaceability
analysis for timed web service protocols. In: BDA (2005)

17. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On Temporal Abstractions of
Web Service Protocols. In: CAiSE Short Paper Proceedings (2005)

18. Bravetti, M., Zavattaro, G.: Service oriented computing from a process algebraic
perspective. The Journal of Logic and Algebraic Programming 70(1), 3–14 (2007)

19. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration: A synergic approach for system design. In: Benatallah, B., Casati, F.,
Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 228–240. Springer, Heidelberg
(2005)

20. Cámara, J., Canal, C., Cubo, J., Vallecillo, A.: Formalizing WSBPEL Business
Processes Using Process Algebra. ENTCS 154(1), 159–173 (2006)

21. Carbone, R., Minea, M., Mödersheim, S.A., Ponta, S.E., Turuani, M., Viganò, L.:
Towards Formal Validation of Trust and Security in the Internet of Services. In:
Domingue, J., et al. (eds.) Future Internet Assembly. LNCS, vol. 6656, pp. 193–207.
Springer, Heidelberg (2011)

22. Chevalier, Y., Mekki, M.A., Rusinowitch, M.: Automatic Composition of Services
with Security Policies. In: SERVICES 2008 - Part I, pp. 529–537. IEEE (2008)

23. Ciancia, V., Martin, J.A., Martinelli, F., Matteucci, I., Petrocchi, M., Pimentel,
E.: A tool for the synthesis of cryptographic orchestrators. In: ACM (ed.) Model
Driven Security Workshop, MDSEC (2012)

http://www.avantssar.eu

158 J.A. Mart́ın et al.

24. Ciancia, V., Martinelli, F., Matteucci, I., Petrocchi, M., Martn, J.A., Pimentel, E.:
Automated synthesis and ranking of secure BPMN orchestrators (2013) (to apper)

25. Dong, J.S., Liu, Y., Sun, J., Zhang, X.: Verification of Computation Orchestration
Via Timed Automata. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 226–245. Springer, Heidelberg (2006)

26. Ferrara, A.: Web services: A process algebra approach. In: ICSOC, pp. 242–251
(2004)

27. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002)

28. Kazhamiakin, R., Pandya, P., Pistore, M.: Timed modelling and analysis in web
service compositions. In: ARES 2006: Proceedings of the First International Con-
ference on Availability, Reliability and Security, ARES 2006, pp. 840–846. IEEE
Computer Society, Washington, DC (2006)

29. Kupferman, O., Madhusudan, P., Thiagarajan, P.S., Vardi, M.Y.: Open systems in
reactive environments: Control and synthesis. In: Palamidessi, C. (ed.) CONCUR
2000. LNCS, vol. 1877, pp. 92–107. Springer, Heidelberg (2000)

30. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

31. Li, J., Yarvis, M., Reiher, P.: Securing Distributed Adaptation. Computer Net-
works 38(3) (2002)

32. Marchignoli, D., Martinelli, F.: Automatic verification of cryptographic protocols
through compositional analysis techniques. In: Cleaveland, W.R. (ed.) TACAS
1999. LNCS, vol. 1579, pp. 148–162. Springer, Heidelberg (1999)

33. Mart́ın, J.A., Martinelli, F., Pimentel, E.: Synthesis of secure adaptors. J. Log.
Algebr. Program. 81(2), 99–126 (2012)

34. Mart́ın, J.A., Pimentel, E.: Contracts for security adaptation. J. Log. Algebr. Pro-
gram. 80(3-5), 154–179 (2011)

35. Martinelli, F.: Languages for description and analysis of authentication proto-
cols. In: Proceedings of 6th Italian Conference on Theoretical Computer Science,
pp. 304–315 (1998)

36. Martinelli, F.: Analysis of security protocols as open systems. Theoretical Com-
puter Science 290(1), 1057–1106 (2003)

37. Martinelli, F., Matteucci, I.: A framework for automatic generation of security
controller. In: STVR (2010)

38. Martinelli, F., Matteucci, I.: Synthesis of web services orchestrators in a timed set-
ting. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 124–138.
Springer, Heidelberg (2008)

39. Martinelli, F., Petrocchi, M., Vaccarelli, A.: Automated Analysis of Some Security
Mechanisms of SCEP. In: Chan, A.H., Gligor, V. (eds.) ISC 2002. LNCS, vol. 2433,
pp. 414–427. Springer, Heidelberg (2002)

40. Martinelli, F., Petrocchi, M., Vaccarelli, A.: Formal analysis of some secure proce-
dures for certificate delivery. STVR 16(1), 33–59 (2006)

41. Merlin, P., Bochmann, G.V.: On the Construction of Submodule Specification and
Communication Protocols. ACM Transactions on Programming Languages and
Systems 5, 1–25 (1983)

42. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

43. OMG. Business Process Model and Notation (BPMN)

On the Synthesis of Secure Services Composition 159

44. OMG. Introduction To OMG’s Unified Modeling Language
45. Oquendo, F.: p-ADL for WS-Composition: A Service-Oriented Architecture De-

scription Language for the Formal Development of Dynamic Web Service Compo-
sitions. In: SBCARS, pp. 52–66 (2008)

46. Papazoglou, M.P.: Web Services - Principles and Technology. Prentice-Hall, Inc.
(2008)

47. Pinchinat, S., Riedweg, S.: A Decidable Class of Problems for Control under Partial
Observation, vol. 95, pp. 454–460 (2005)

48. Pistore, M., Roberti, P., Traverso, P.: Process-Level Composition of Executable
WebServices: “On-the-fly”Versus “Once-for-all”Composition. In:Gómez-Pérez,A.,
Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 62–77. Springer, Heidelberg
(2005)

49. Pistore, M., Traverso, P., Bertoli, P.: Automated Composition of Web Services by
Planning in Asynchronous Domains. In: ICAPS, pp. 2–11 (2005)

50. Qayyum, Z., Oquendo, F.: .NET Extensions to the p-architecture Description Lan-
guages. In: SEKE, pp. 244–249 (2008)

51. Raclet, J., Pinchinat, S.: The control of non-deterministic systems: A logical ap-
proach. In: Proc. 16th IFAC Word Congress, Prague, Czech Republic (2005)

52. Reisig, W.: Modeling- and analysis techniques for web services and business pro-
cesses. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535,
pp. 243–258. Springer, Heidelberg (2005)

53. Riedweg, S., Pinchinat, S.: Quantified Mu-Calculus for Control Synthesis. In:
Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 642–651. Springer,
Heidelberg (2003)

54. Riedweg, S., Pinchinat, S.: You Can Always Compute Maximally Permissive Con-
trollers Under Partial Observation When They Exist. In: Proc. 2005 American
Control Conference, Portland, Oregon (2005)

55. Rosu, G., Havelund, K.: Synthesizing Dynamic Programming Algorithms from Lin-
ear Temporal Logic Formulae. Technical report (2001)

56. Salaun, G., Bordeaux, L., Schaerf, M.: Describing and Reasoning on Web Services
using Process Algebra. In: Proceedings of the IEEE International Conference on
Web Services (ICWS 2004), p. 43. IEEE Computer Society, Washington, DC (2004)

57. Turuani, M.: The CL-Atse Protocol Analyser. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

58. Viganò, L.: Automated Security Protocol Analysis with the AVISPA Tool.
ENTCS 155, 69–86 (2006)

59. W3C. Xquery 3.0: An xml query language

Privacy and Access Control in Federated Social

Networks

Animesh Pathak1, George Rosca1, Valerie Issarny1,
Maarten Decat2, and Bert Lagaisse2

1 Inria Paris-Rocquencourt, France
firstname.lastname@inria.fr

2 iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
firstname.lastname@cs.kuleuven.be

Abstract. Online social networks (OSNs) are increasingly turning mo-
bile and further calling for decentralized social data management. This
trend is only going to increase in the near future, based on the increased
activity, both by established players like Facebook and new players in
the domain such as Google, Instagram, and Pinterest. The increasing
adoption of social networks in the workplace has further led to the devel-
opment of corporate social networks such as those provided by Yammer,
which was recently acquired by Microsoft. As individuals from different
companies will need to interact as part of joint teams in these federated
social networks, questions of privacy and access control arise. This chap-
ter identifies the challenges concerning the above aspects, surveys the
state of the art, and identifies directions of future research.

Keywords: social networks, access control, privacy, federation.

1 Introduction

As recent trends show, online social networks (OSNs) are increasingly turning
mobile and further calling for decentralized social data management. This trend
is only going to increase in the near future, based on the increased activity, both
by established players like Facebook and new players in the domain such as
Google, Instagram, and Pinterest. Modern smart phones can thus be regarded
as social sensors, collecting data not only passively using, e.g., Bluetooth neigh-
borhoods, but actively in the form of, e.g., “check-in”s by users to locations. The
resulting (mobile) social ecosystems are thus an emergent area of interest.

The recent years have seen three major trends in the world of online social
networks: i) users have begun to care more about the privacy of their data
stored by large OSNs such as Facebook, and have won the right (at least in
the EU [1]) to remove it completely from the OSN if they want to; ii) OSNs
are making their presence felt beyond casual, personal interactions to corporate,
professional ones as well, starting with LinkedIn, and most recently with the
purchase by Microsoft of Yammer, the enterprise social networking startup [2],
and the launch of Google Plus for enterprise customers [3]; and iii) users are in-
creasingly using the capabilities of their (multiple) mobile devices to enrich their

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 160–179, 2014.
c© Springer International Publishing Switzerland 2014

Privacy and Access Control in Federated Social Networks 161

social interactions, ranging from posting cellphone-camera photos on Instagram
to “checking-in” to a GPS location using foursquare.

In view of the above, we envision that in the near future, the use of ICT to
enrich our social interactions will grow (including both personal and professional
interactions [4]), both in terms of size and complexity. However current OSNs act
mostly like data silos, storing and analyzing their users’ data, while locking in
those very users to their servers, with non-existent support for federation; this is
reminiscent of the early days of email, where one could only email those who had
accounts on the same Unix machine. The knee-jerk reaction to this has been to
explore completely decentralized social networks [5], which give the user complete
control over and responsibility of their social data, while resorting to peer-to-peer
communication protocols to navigate their social networks. Unfortunately, there
are few techniques available to reconcile with the fact that the same user might
have multiple devices, or that it is extremely resource-consuming to perform
complex analysis of social graphs on small mobile devices.

Our view lies somewhere in the middle of the two extremes, taking inspiration
from the manner in which users currently use email. While their inboxes contain
an immense amount of extremely personal data, most users are happy to entrust
it to corporate or personal email providers (or store and manage it individually on
their personal email servers) all the while being able to communicate with users
on any other email server. The notion of Federated Social Networks (FSNs)
—already gaining some traction [6]— envisions a similar ecosystem where users
are free to choose OSN providers which will provide storage and management of
their social information, while allowing customers using different OSN providers
to interact socially. Such a federation can be beneficial in three major ways,
among others: i) it allows users to enjoy properties such as reliability, availabil-
ity, and computational power of the hosting infrastructure of their choice, while
not being locked down in terms of whom they can communicate with; ii) much
like spam filtering services provided by modern email providers, that are tuned
by feedback from their users, FSN users can benefit from the behavior of oth-
ers sharing the same OSN provider1; and iii) this fits perfectly with enterprise
needs, where ad-hoc teams can be formed across corporate OSN providers of two
organizations to work on a joint project.

1.1 Illustrative Example and Challenges

As an example of the circumstances discussed above, let us consider two orga-
nizations, companies A and B, which already use social networking platforms
internally, but want to allow some of their employees to collaborate together as
part of a joint team in order to achieve some goal (Working group B in Figure 1).
This will involve exchanging messages, publishing shared contents, documents,
but also participating in events, etc. Additionally, Company A uses a third party
solution for behavior analysis of their employees based on their socializing logs

1 This also gives an incentive to commercial OSN providers to provide value-added
services.

162 A. Pathak et al.

Fig. 1. An Example for Federation Among Enterprise Social Networks

(e.g., for suggesting team constitutions to managers for future projects). Alice
from company A and Bob from company B are assigned to this working group,
and add each-other to their contacts. Later, Alice shares a private document
with her contacts. From a trust and privacy perspective, the following questions
may arise:

– Can the system warn of leaks caused by interaction of certain type? Remem-
bering that Alice shared the document with her contacts, from which Bob
is part of, should he be able to see it? How can the system either warn or
prevent such an incident?

– If Bob adds comments to the private document which Alice shared, are those
comments subject to the same access control policy? Can we pre-determine
that the social networking platform of company B will restrict access to these
comments only to those members of company B who received Alice’s initial
post?

– Can company B be assured that their employees interaction within the com-
mon project will not be analyzed by A’s third party solution?

– Is sharing information outside the company a decision held by the user itself
or network administrator?

Clearly, for addressing questions such as those posed above, expressive, flexible,
yet easy-to-specify privacy and access control policies are needed so that users can
feel safe as more and more of their (social) life is made available online, thanks in
large part to mobile clients for OSNs. As we have discovered in the course of our
recent work, most current policy and trust frameworks are unable to adequately

Privacy and Access Control in Federated Social Networks 163

address the complexity of social networks, resorting to simple role-based access
control. The need of the hour is a privacy and access control framework founded
on the clear data and interaction models discussed earlier. Such a framework will
also allow OSN providers to adequately evaluate whether or not a certain data of
a user should be shared with another OSN provider (e.g., replies to a Facebook
wall post have the privacy settings of the original post, while replies to a status
message on Twitter have those of the user posting the reply, thus rendering them
incompatible). Equally important is the availability of such techniques in mature,
ready-to-deploy software platforms.

This chapter presents the reader with a set of requirements (Section 2, fol-
lowed by a survey of the state of the art in social networking solutions, with
a special focus on their ability to support rich privacy and access control poli-
cies in federated settings (Section 3). Through this extensive analysis we offer
a broad vision on existing social networking platforms, protocols involved but
also their privacy and access policies. By doing so, we identify the main compo-
nents of a federated social platform together with presenting the current trends
in standards and security paradigms underlying actual open source solutions
which offers their implementation. Section 4 provides recommendations on con-
structing such systems. We then conclude in Section 5 with directions for future
research.

2 Social Networking Platform Requirements

Before presenting the survey of social networking platforms, proposed in litera-
ture as well as available on the market, we introduce the criteria which form the
basis of our assessment:

– Person to Person links: We will distinguish between symmetric and asym-
metric ‘friend’ relationships among resources of type ‘Person’ (users). Need-
less to say, in order to semantically describe social ties between people we
address a more realistic approach of being able to model both symmet-
ric friendship like those seen in traditional OSNs like Facebook (where one
is “friends” with all their friends) but also asymmetric links (e.g.‘follow’,
‘knows’, etc.).

– Ease of Application Development on the Platform: We highlight, if
needed, the programming language, license, the API offered, native mobile
support and the object model. The object model here refers to what kind of
social resources and the connections between these the system utilizes (e.g.
groups, events, etc.) with an emphasis on the ease of use but also the ability
to extend this model when it comes to creating applications on top of the
platform.

– Federation Support: Allowing the interaction between various decentral-
ized systems raises the need to establish or make use of existing open pro-
tocols on which all these systems must comply in regards to information
exchange. These protocols must provide identity, data interoperability and
real-time communication.

164 A. Pathak et al.

– Privacy and Access-control Policies: Between individuals or communi-
ties access policies must be defined. Towards this direction a decentralized
system must support a comprehensive set of mechanism which enable fine-
grain control over the users who will have access to the data generated within
such systems.

3 Existing Platforms

We now describe, based on the criteria identified previously, existing platforms
together (summarized in Table 1). Broadly, we categorize social networking
platforms as follows:

3.1 Siloed

Siloed social networks are the most common type found in commercial social
networks open to the public. In the systems below, all the users share the same
social networking service provider, and can not usually interact with users of
another provider.

Facebook. Currently one of the leading commercial online social networking
platforms, Facebook [7] offers a high level of API maturity allowing a large
variety of application to be built on top of it, both online but also mobile specific.
It offers a predefined data model which does not allow class extensions, offering
the ability only for resource of type ‘content’ to be customized based on one’s
needs as depicted from their Open Graph API (‘custom stories’). Between users
the notion of friendship is symmetric while it allows support for asymmetric
‘follow’ links acting as a subscription which aggregates data on the main activity
feed (‘timeline’). It provides native application support for mobile environments
so that applications build on top of the Facebook platform can benefit from
the Single Sign On feature for authentication while also enabling traditional
OAuth [8] through thin clients as well. It has a full-fledged mature API client and
search capabilities but it does not allow federation since users of this platform
are limited to interact with other users under the same centralized authority.

Privacy and Access Control. Since Facebook does not support federation no
Server-to-Server rules are supported; it provides a robust access control mecha-
nism for both the user and his data but also policies for third party applications
build on top of the Facebook platform which might use sensitive user informa-
tion. In regards to sharing data it offers a role-based policy mechanism (e.g.
share with custom list), while in terms of data re-sharing it preserves the origi-
nator’s policy. Note that in Facebook, tagging people in pictures will extend the
visibility of those causing a leak of information, though when a private content
is shared tagged comments will not have the same effect.

Privacy and Access Control in Federated Social Networks 165

Twitter. Twitter’s [9] online social networking platform is considered to be
a device-agnostic real-time message-routing infrastructure which relies on the
well known Redis [10] framework. Its object model is rather limited, it does
not have events or groups but the friend relationship is asymmetrical (‘follower’
or ‘followee’), while for authentication it offers OAuth support. The challenges
which Twitter as a platform addresses are real-time syndication of content among
connected users. It offers the ability to build applications on top of their platform
providing only thin web clients for mobile and desktop environments.

Privacy and Access Control. In Twitter social networking platform the user can
control by whom is he followed and each individual post’s visibility which can
be either public or visible by the ones who are following the user. However when
a ‘tweet’ is private that can not be re-tweeted which means that re-sharing of
the data is, in some ways, protected according to the originator’s policies.

Mosco. Though Mosco [11] as a social platform is intended to be for portable
devices (‘middleware for mobile social computing’) its architecture (see Figure 2)
is mixed between cloud (Google’s App Engine) and mobile implementation, hav-
ing a rather limited basic model (stored in databases) with the ability to extend.
The entities model is depicted in Figure 3 which better shows the connection
between them and also which entities can be extended: AbstractPrivacyData
for enriching the privacy policy access control manager and AbstractData for
new object types with no ability however to define new connection between
the resources available. The AbstractData extensions can be then accessed via
SQL-like queries.

Fig. 2. Mosco Architecture Overview

166 A. Pathak et al.

Fig. 3. UML diagram representing main entities in the data model present in Mosco
platform. The shaded entities are to be extended when implementing a new application.

Privacy and Access Control. The complex and flexible access control policy man-
ager of Mosco is an extension of the popular XACML [12] with a set of pre-
defined policies suitable for social computing. As an example it allows users
to create context-specific policy rules like sharing the current location with
people in the immediate proximity or patient records when some threshold is
reached. In order to define new privacy rules application developers must extend
AbstractPrivacyData.

3.2 Social Networking as a Service

These platforms employ the Software as a Service (SaaS) paradigm, thus enabling
organizations to define their own networks or domains, enabling individuals from
different organizations to co-operate. That said, the data and logic is hosted in
most cases under the control of the service provider.

Google Plus. Google’s online social networking platform is indeed similar with
other of its kind (e.g. Facebook), but it is the one which introduced the notion
of circles, differentiating itself with the asymmetric relationship between users.
The object model has no option of extending it but only to customize the objects
maintained. It allows application building on top of their platform both online
and mobile, having also native support for the most popular portable systems,
but also web clients to use based on one’s needs. It also offers a Domain API for
enterprise social networks in that sense being similar to Yammer (see below),
offering domain name support for individuals but more specifically for companies
and enterprises. The authentication method which applications can use is OAuth.

Privacy and Access Control. The access control policy mechanism is similar to
other social networking platforms of its kind (role-based) offering also support
for establishing per-domain access control rules which can scope the visibility
of content within a domain. Google Plus mixes between traditional OSNs and
Enterprise Social Networks (ESNs) by offering the ability for network admin-
istrators to specify domain specific policies as well as domain-wide delegation

Privacy and Access Control in Federated Social Networks 167

of authority. In that direction the scope of posts within a domain can be limited
to be only visible inside the organization. In terms of data re-sharing outside the
organization it is believed that the decision to allow data outside the domain
should reside with the user rather than administrators. When a private content
is being shared a simple comment with a tagged person will extend the content’s
visibility making the comments but also the original post available for the one
who has been tagged.

Ning. Ning [13] is an online social networking platform which allows people
or organization to create their own customized micro-blogging network which
will primarily be hosted on a subdomain of Ning. In terms of social resources
it has a limited model containing user profiles, groups, pictures, messages, con-
tents without the ability to extend or define new resource types. It implements
OpenSocial [14] protocol which allows the creation of applications which are
able to interact with the platform. It allows applications to be build for mobile
using Javascript and HTML5, so no real native support is available. Since it is
a commercial software it enables easy creation of networks inside Ning without
needing any programming experience (drag and drop) allowing users from dif-
ferent networks (or subnetworks) to interact as if they were in the same network.

Privacy and Access Control. From a privacy perspective, Ning offers its users
fine-grain access control, providing granular content moderation allowing anyone,
just friends or members of the same network to view information. Also, in the
same manner, users are able to choose who can comment on their content or even
moderate which comments can appear attached to their content or information.

Yammer. Yammer [15] is the leading software in enterprise social networking
platforms. It offers an Open Graph API with an actor-action-object structure
(as described in Figure 4) which is extensible and allows the description of any
kind of fact, offering the ability to describe new object types under different
namespaces. It offers virtual storage for companies and easy deployment and in-
stallation with further interaction between users on different companies further
maintaining their privacy policies (NDA). From a UI perspective Yammer main-
tained the same pattern as Facebook which they have identified as being the
‘DNA for socializing’ so that user adoption will be much easier. Cross-domain
collaboration can be achieved allowing companies to establish communities with
their customer in a secure manner thus providing federation among deployments
of Yammer.

Privacy and Access Control. It offers support for SAML [16] 1.1/2.0-based Single
Sign On mechanism supporting also OAuth both for desktop and mobile envi-
ronments. It provides TLS encrypted e-mail transport, session management and
built-in logical firewalls for the data centers. What is different from Google Plus
Domain API is the fact that the user starts in a private network and they can
collaborate with other corporate networks if invited.

168 A. Pathak et al.

{
"activity ":{

"actor":{
"name":"Sidd Singh",

"email":"sidd@xyz .com"

},
"action":"create",

"object": {
"url":"https://www.sched.do",

"title":"Lunch Meeting"

},
"message":"Hey, l e t s get sushi!",

"users":[{
"name":"Adarsh Pandit",

"email":"adarsh@xyz .com"

}]
}

}

Fig. 4. Example actor action object JSON code structure in Yammer

3.3 Federated Social Networks

Federated social networks are networking services that allow interactions be-
tween users across distinct social networking service providers. However, their
architecture is not completely distributed since the users in each network still
depend on servers whom they must trust regarding the processing of sensitive
data.

Status.net. One of the most powerful microblogging social networking plat-
form, Status.net [17] (formerly Laconica) is a ready-to-deploy decentralized so-
lution, written in PHP, which can be accessed via multiple standard protocols
including e-mail, sms, XMPP. Formerly it has been supporting identi.ca [18]
and pump.io [19], but since late December 2012, the latter decided to change
its infrastructure to NodeJS from performance reasons, while maintaining the
same concept of microblogging making use of ActivityStrea.ms. It also imple-
ments OStatus which allows notifications of status updates between distributed
social platforms including Friendica. For discovery it offers an implementation of
WebFinger [20] protocol. Its data model contains groups, asymmetric relation-
ships between people, being extensible through ActivityStrea.ms. It also provides
1 - 1 messaging support. It also offers support for updates through XMPP, cross
posting to Twitter, Facebook integration. It also implements the Salmon proto-
col which allows the unification of conversation through content from different
servers to happen. There is no native support for mobile environment but it has
an Open Source client for both Desktop and Mobile based on the Appcelera-
tor [21] platform.

Privacy and Access Control in Federated Social Networks 169

Privacy and Access Control. It implements OpenID [22] for identity, but offers
support for Apache Authentication which allows any kind of such mechanisms
to be integrated. The access control policies are limited to role-based policies as
well as domain specific policies.

Friendica. Friendica is a decentralized open source social networking platform
which provides fully distributed protocols for secure communication such as
DFRN [23] or Zot [24], the two complementing each other. It supports LDAP [25]
for authentication having a limited data model which can only be extended by
the support of server side plugins. As an example of the latter it offers plugins for
displaying locations on the map or connectors for popular social networks such
as Twitter or Google Plus. It does not offer native mobile support but since their
API is similar to Status.net, the latter’s mobile clients can be used along with
existing Friendica’s available clients. Since it was intended for small networks,
in order to solve the scalability problem they have introduced Red [26] which is
addressed for companies and organizations in which case it dramatically reduces
the abilities in cross-service federation.

Privacy and Access Control. In terms of security, Friendica offers both server-
to-server but also one-to-one advanced message encryption, while all the items
(messages, posts, etc.) are controlled by a fine grained access control mechanisms.
Groups can also have specific policies which are applicable to all the members
contained, profile visibility can as well be controlled by the individuals, together
with its data which can easily be backed-up on home computers.

Diaspora. The open source decentralized social networking platform Dias-
pora [27] addresses the privacy concerns related to centralized social networks
allowing users or developers to deploy their own server solution thus interacting
with other users from other deployment. It offers social aggregation facilities by
importing data from Twitter, Tumblr and Facebook. Written on Ruby on Rails
under AGPLv3 license, Diaspora has a fixed social data model without the abil-
ity to extend it. Regarding mobile integration there is no native support but
there are a couple of web clients which can be used, without allowing applica-
tions to be developed on top of the middleware. In terms of federation, Diaspora
facilitates this by providing an implementation of Salmon [28] protocol and for
discovery it provides support for the WebFinger open protocol.

Privacy and Access Control. Diaspora offers a fine grained aspect-oriented access
policy mechanism. This provides the ability to control posts’ visibility to either
public or limited, which is the traditional role-based but named ’aspects’ in this
case. It has some already built-in ‘aspects’ such as friends, family or co-workers
but other lists can be constructed as well.

OneSocialWeb. OneSocialWeb [29] is an interesting social networking plat-
form licensed under Apache 2.0, having a communication layer relying on XMPP

170 A. Pathak et al.

which allows federation to be achieved much easier. Though the code base is not
maintained anymore, it allows an already to deploy solution on the server side
with the possibility to use existing clients for mobile devices. It implements Ac-
tivityStrea.ms protocol as for data modeling and an activity based policy mech-
anism which ensures flexibility in terms of storage, offering an implementation
of OpenID for authentication.

Privacy and Access Control. Like in any other social networking platform One-
SocialWeb offers the ability to control the access for individual posts, profile
items or even relationships. It is interesting to note that their mechanism is fine
grained in the sense that you can define the subject or ‘accessor’ of the infor-
mation which can be either a contact, a group, people from a certain domain,
everyone or a specific individual. Also, the action performed on the data can be
customized which can be read, write, delete, update or append. Some real exam-
ples would include: a post visible to everyone but only friends can add comments
or a public photo album which only family can edit.

Buddycloud. buddycloud [30] is a decentralized open source social platform,
licensed under Apache 2.0. Working in collaboration with W3C, Mozilla Founda-
tion and XSF [31], they offer multiple open standards such as ActivityStrea.ms,
ATOM syndication format and XEP [32] which is an extension of XMPP proto-
col offering useful functionalities such as discovery. They offer an easy to install
federated server side code base, written in node.js (offer a version in java as
well) and as for mobile support an Android client is provided which relies on
Backbone (JavaScript library). It offers messaging support including a couple of
other useful social engines such as recommendation, real-time search, resource
discovery and push notification. The data model is rather limited (e.g. it does
not contain events or groups) having an asymmetric relation between users, but
it does give you the ability to extend the basic model in some ways by mak-
ing use of ActivityStre.ms. Users will authenticate via traditional basic HTTP
method with the option for using a secure connection. A summarization of the
platform architecture is depicted in Figure 5.

Privacy and Access Control. Users can share almost anything through media
channels having the ability to limit posts visibility through a rather simple access
control mechanism which allow black/white listing. Also, it provides a ‘butler’
which enables users to securely share their location with friends. It provides
support for SSL/TLS communication for both client - server and server - server
communication so that user’s privacy will be preserved.

ELGG. ELGG [33] is one of the most popular PHP open source social net-
working software platforms which is easy to deploy and configure, providing a
large variety of components for individuals and companies having an already
stable community with lots of already-made plugins for different purposes. Its
architecture is decentralized in the sense that multiple federated ELGG server

Privacy and Access Control in Federated Social Networks 171

Fig. 5. buddycloud Architecture Overview

instances can communicate while it is still preserving the traditional online so-
cial networking paradigm where all the data is stored on the server. It is lacking
of any mature client API for mobile devices thus applications build on top of
the platform will reside on the server as plugins. The data model is rather lim-
ited but enough for its purpose containing groups, asymmetric user relationship,
messaging support (only 1 - 1), contents which can be attached to groups. The
data and policy model are extensible only through server side plugins while from
the authentication perspective it provides a powerful pluggable authentication
module (PAM) which allows the implementation of any sort of authentication.

Privacy and Access Control. Users can control the visibility of profile informa-
tion, posts or groups so that the data can be private, accessed by friends, logged
in users or even public. By making use of plugins, enhanced authentication mech-
anisms can be added such as logging in using a Twitter account or even LDAP
credentials.

3.4 Decentralized

Decentralized networks are federated social networks which do not depend on
any central authority in order to function. Consequently, user data is completely
out of the cloud residing on user’s devices (which can be one or many).

Musubi. As a mobile social networking platform Musubi [34] offers a compre-
hensive peer-to-peer (P2P) encryption mechanism, both 1 to 1 but also multiple

172 A. Pathak et al.

peers key exchange, between users who authenticate themselves using e-mail
but also OAuth. While the social relationship between agents is symmetrically
mapped it is interesting to note that its communication layer is centered around
the notion of ‘feeds’. So that is why groups are modeled as a multi-party feed list,
making it easy to support group chats. Even though the access control mecha-
nism is rather limited offering just simple black/white listing, and events as a
social resource are missing from the basic model, it offers the ability to extend
the latter through subclassing the Obj class defined in Musubi which are then
stored in a database on the owner’s device. The SDK exposes a complete mobile
collaborative application middleware which provides identity, group formation,
reliable group messaging allowing a facile manner of applications development.
Its architecture is depicted in Figure 6.

Fig. 6. Musubi’s Egocentric Social Platform (ESP) Architecture Overview

Privacy and Access Control. Though the current platform depends on reliable
but not fully trusted traffic relay services to achieve P2P communication over
the Web, it provides encryption on data transfer, key management, as well as
it describes a Trusted Group Chat Protocol which involves a multi-peers key
exchange. The access control mechanism is simplistic thus error prone, but it
does not protect against data re-sharing.

Yarta. Yarta [35] is a flexible decentralized mobile social platform (see Fig-
ure 7) which keeps all of users data out of the cloud, on their devices in a se-
mantic manner (RDF) which offers a high level of information re-usability across
applications built on top of the platform by using the inherited inference from
ontology models. Moreover all these data is shared using a semantic aware access
control manager which allows the creation of complex policy models which can

Privacy and Access Control in Federated Social Networks 173

Fig. 7. Yarta Architecture Overview

also include context information which are gathered from mobile sensors. As for
the authentication Yarta currently provides an OAuth example but this can be
easily replaced with any flavor of one’s needs.

Privacy and Access Control. Yarta offers an extensible, powerful and comprehen-
sive semantic based access control mechanism [36] allowing the description of
semantically defined policy rules which sits at the gate of owner’s device before
sharing any data. Still there is the problem of data re-sharing, since another
peer which gathered the data might either not be aware of the sensitivity of that
information nor it should be trusted.

4 Recommendations for a Privacy-Aware Federated
Social Networking Architecture

Based on our survey above, we believe that there is a need for clear identification
of the components needed to create federated social networking platforms, with
a special emphasis on privacy and access control. Notably, in a federated social
ecosystem each entity participating in the production or consuming information
should comply to open standards which will further allow the integration of
heterogeneous systems. To that end, we identify below the main components
needed for a federated social network, as well as the currently existing solutions
for each. The overall architecture is shown in Figure 8, and includes the following
components:

– Storage: Whether it is present locally on the user’s device or in a trusted
federated server it is clear that the storage of a system needs to be done
in such a fashion that will allow the description of existing social resources
(e.g. person profiles, textual and multi-media contents, messages, etc.), but
also allow the ability to extend the model through defining new concepts,
complex data structure but also novel connections between these.

– Access Control: Users should be able to express rich policies in terms of
their social context, links, groups and domain, which should be enforced
before granting access to their data.

174 A. Pathak et al.

T
a
b
le

1
.
S
u
m
m
a
ry

o
f
m
a
jo
r
so
ci
a
l
n
et
w
o
rk
in
g
p
la
tf
o
rm

s

A
rc
h
it
ec
tu
re

N
et
w
o
rk

M
o
b
il
e
G
ro
u
p
s
P
er
so
n
-

P
er
so
n

li
n
k
s

E
v
en

ts
S
to
ra
g
e

A
cc
es
s
co
n
tr
o
l
A
u
th
en

ti
ca
ti
o
n

S
il
o
ed

F
a
ce
b
o
o
k

O
n
li
n
e

Y
es

S
y
m
m
et
ri
c

Y
es

F
ix
ed

L
im

it
ed

O
A
u
th

T
w
it
te
r

O
n
li
n
e

N
o

A
sy
m
m
et
ri
c

N
o

F
ix
ed

L
im

it
ed

O
A
u
th

M
o
sc
o

O
n
li
n
e

Y
es

S
y
m
m
et
ri
c

N
o

E
x
te
n
si
b
le

E
x
te
n
si
b
le

O
A
u
th

S
o
ci
a
l
N
et
w
o
rk
in
g
-a
a
S

G
o
o
g
le

P
lu
s

O
n
li
n
e

Y
es

A
sy
m
m
et
ri
c

Y
es

F
ix
ed

L
im

it
ed

O
A
u
th

N
in
g

O
n
li
n
e

Y
es

S
y
m
m
et
ri
c

Y
es

F
ix
ed

L
im

it
ed

O
A
u
th

Y
a
m
m
er

O
n
li
n
e

Y
es

A
sy
m
m
et
ri
c

Y
es

E
x
te
n
si
b
le

L
im

it
ed

O
A
u
th

F
ed

er
a
te
d

S
ta
tu
s.
n
et

O
n
li
n
e

Y
es

A
sy
m
m
et
ri
c

Y
es

E
x
te
n
si
b
le

E
x
te
n
si
b
le

A
p
a
ch

e
F
ri
en

d
ic
a

O
n
li
n
e

Y
es

S
y
m
m
et
ri
c

Y
es

F
ix
ed

L
im

it
ed

L
D
A
P

D
ia
sp

o
ra

O
n
li
n
e

Y
es

A
sy
m
m
et
ri
c

N
o

F
ix
ed

E
x
te
n
si
b
le

H
T
T
P

b
u
d
d
y
cl
o
u
d

O
n
li
n
e

N
o

A
sy
m
m
et
ri
c

N
o

E
x
te
n
si
b
le

E
x
te
n
si
b
le

H
T
T
P

O
n
eS

o
ci
a
lW

eb
O
n
li
n
e

N
o

A
sy
m
m
et
ri
c

N
o

E
x
te
n
si
b
le

E
x
te
n
si
b
le

O
p
en

ID
E
L
G
G

O
n
li
n
e

Y
es

A
sy
m
m
et
ri
c

N
o

E
x
te
n
si
b
le

E
x
te
n
si
b
le

P
A
M

D
ec
en

tr
a
li
ze
d

M
u
su
b
i

M
o
b
il
e

Y
es

S
y
m
m
et
ri
c

N
o

E
x
te
n
si
b
le

L
im

it
ed

O
A
u
th
,
E
m
a
il

Y
a
rt
a

M
o
b
il
e

Y
es

A
sy
m
m
et
ri
c

Y
es

E
x
te
n
si
b
le

E
x
te
n
si
b
le

O
A
u
th

Privacy and Access Control in Federated Social Networks 175

Fig. 8. Federated architecture which identifies the main components on the server side
together with those present on client side devices along with the interaction which can
happen between different peers

– Authentication: Authentication should be enabled whenever any peer com-
municates with a different one, allowing the problem of ‘to whom I am speak-
ing with’ to be solved in an easy manner offering trust and security through
an advanced cryptographic system.

– Communication: The communication module can be either part of the
system itself or an independent external module but should enable the com-
munication of any two peers which have social connections. In case the com-
munication is an external third party component then it is imperative to
employ adequate security measures to ensure data integrity as well as user-
anonymity, when needed.

– Discovery: This is an essential mechanism to allow resources be defined
over the web and also enables their discovery.

Wediscuss below thealternative solutions—bothopen sourceandcommercial—
which can be adopted for each component in part, noting that according toW3C’s
Federated Social Web group [37] the main trends towards federation would be to
adopt open standards.

4.1 Storage

In terms of storage current social networking trends are moving towards exten-
sible mechanisms such as mapping social resources as ontologies or JSON based

176 A. Pathak et al.

actor - action - object format as seen in Yammer’s case or ActivityStrea.ms
which has been adopted by many open source platforms. The latter is similar,
in terms of semantics, with RDF storage schema, since it implies the existing of
a subject, a predicate and an object such as triples.

If we are to consider storage of social information as triple stores then we would
have plenty of solutions which enables such capabilities, both open source but
also commercial, such as Parliament [38], AllegroGraph [39] and Mulgara [40]. If
we would consider a distributed synchronization of such models then tools like
RDFSync [41] would come in handy.

One standard which has been adopted by many open source federated social
networks, ActivityStrea.ms is becoming more and more popular. It provides an
extensible manner of activity description. Implementations can be found in many
open source projects such as OneSocialWeb, buddycloud, Status.Net or eXo [42]
platform.

4.2 Authentication and Access Control

From the authentication perspective OAuth and OpenID are becoming more
and more popular and has been adopted by the majority of social networks for
which there exists several implementation for both server and clients. Source
code in most popular programming languages can be found on each protocol’s
website. It we are considering federated authentication and authorization then
Shibboleth [43] and Gluu [44] are two interesting tools which we might consider
working with, noting that they both offer an open source implementation of
SAML protocol.

Access control have become an important aspect of nowadays social ecosys-
tem. As seen in [45], if we are to consider social networks as a SaaS, then both the
provider and the tenant should be able to express their privacy policies in a se-
cure manner since the latter has to disclose sensitive information. Access control
mechanisms should be able to describe both traditional policies but also complex
ones making use of context information as well. For simple access mechanism
one can choose an open source implementation of Access Control List (ACL)
protocols, more advanced ones such as XACML2 or an implementation of the
semantics-based policies of [36] which provides a highly extensible, generic yet
expressive access control policy management solution. In order to approach the
problem of re-sharing information one should consider sticky security policies
solutions described in works such as [46,47].

4.3 Communication and Discovery

For communication various open protocols can be adopted such as XMPP,
Salmon, PubSubHubbub or OStatus to achieve federation since those have been
adopted by many open source social networking platforms. More, one can make

2 Open Source XACML: http://sunxacml.sourceforge.net/

http://sunxacml.sourceforge.net/

Privacy and Access Control in Federated Social Networks 177

use of faster, light-weight communication middlewares such as MQTT [48], iBI-
COOP [49] which provides transportation relays between devices over the Inter-
net.

Coupled with the above, there are options for discovery which include open
ones such as WebFinger which has been adopted by Diaspora and Status.net,
XEP from XMPP, mDNS protocol which can be found in the Bonjour commer-
cial software, or even UPnP media discovery and of course iBICOOP.

5 Future Directions

It is evident that the future will see increased adoption of social networking,
and it will not all be managed by a single entity. Consequently, support for fed-
eration among social networks emerges as a necessary functionality, something
that currently available systems are not able to provide in a comprehensive
manner. We believe that in order to enable the federated social networking plat-
forms of the future, empowered with strong privacy and access-control policies,
the community should i) Adopt open standards for the necessary components
as much as possible, in order to prevent reinventing the wheel and speed-up
adoption; ii) Use semantic techniques for modeling of social knowledge, enabling
the easy and extensible re-use of data, both by applications executing on these
platforms and other social networking providers; and iii) provide rich privacy
and access-control mechanisms, preferably semantically-based sticky policies so
as to provide adequate protection to the users’ and organizations’ sensitive in-
formation. Following the above should lead to interoperable social networking
platforms which will gain wide acceptance.

References

1. European Commission: Commission proposes a comprehensive reform of the data
protection rules,
http://ec.europa.eu/justice/newsroom/data-protection/

news/120125 en.htm (accessed January 2014)
2. Microsoft: Microsoft to Acquire Yammer,

http://www.microsoft.com/en-us/news/press/2012/jun12/

06-25msyammerpr.aspx (accessed January 2014)
3. Ho, R.: Google+ is now available for Google Apps,

http://googleenterprise.blogspot.it/2011/10/

google-is-now-available-with-google.html (accessed January 2014)
4. Hinchcliffe, D.: Today’s Collaboration Platforms for Large Enterprises,

http://www.zdnet.com/the-major-enterprise-collaboration-

platforms-and-their-mobile-clients-7000018519/ (accessed January 2014)
5. Narayanan, A., Toubiana, V., Barocas, S., Nissenbaum, H., Boneh, D.: A critical

look at decentralized personal data architectures. CoRR abs/1202.4503 (2012)
6. Esguerra, R.: An introduction to the federated social network,

https://www.eff.org/deeplinks/2011/03/

introduction-distributed-social-network (accessed January 2014)

http://ec.europa.eu/justice/newsroom/data-protection/news/120125_en.htm
http://ec.europa.eu/justice/newsroom/data-protection/news/120125_en.htm
http://www.microsoft.com/en-us/news/press/2012/jun12/06-25msyammerpr.aspx
http://www.microsoft.com/en-us/news/press/2012/jun12/06-25msyammerpr.aspx
http://googleenterprise.blogspot.it/2011/10/google-is-now-available-with-google.html
http://googleenterprise.blogspot.it/2011/10/google-is-now-available-with-google.html
http://www.zdnet.com/the-major-enterprise-collaboration-platforms-and-their-mobile-clients-7000018519/
http://www.zdnet.com/the-major-enterprise-collaboration-platforms-and-their-mobile-clients-7000018519/
https://www.eff.org/deeplinks/2011/03/introduction-distributed-social-network
https://www.eff.org/deeplinks/2011/03/introduction-distributed-social-network

178 A. Pathak et al.

7. Facebook: Online Social Networking Platform, https://www.facebook.com/
(accessed January 2014)

8. OAuth: Secure authorization open protocol, http://oauth.net/ (accessed January
2014)

9. Twitter: Online Social Networking and Microblogging Service,
https://twitter.com/ (accessed January 2014)

10. Redis: Open source advanced key-value store, http://redis.io/ (accessed January
2014)

11. Tuan Anh, D.T., Ganjoo, M., Braghin, S., Datta, A.: Mosco: A privacy-aware
middleware for mobile social computing. Journal of Systems and Software (2013)

12. XACML: eXtensible Access Control Markup Language (XACML) Version 3.0,
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

(accessed January 2014)
13. Ning: Build and cultivate your own community, http://www.ning.com/ (accessed

January 2014)
14. Foundation, O.: OpenSocial protocol, http://opensocial.org/ (accessed January

2014)
15. Yammer: Enterprise Social Network, https://www.yammer.com/ (accessed January

2014)
16. SAML: Security Assertion Markup Language (SAML) v2.0,

https://www.oasis-open.org/standards#samlv2.0 (accessed January 2014)
17. Status.net: Free and open source social software, http://status.net/ (accessed

January 2014)
18. Identi.ca: Open source social networking service, https://identi.ca/ (accessed

January 2014)
19. pump.io: Open source social stream server, http://pump.io/ (accessed January

2014)
20. WebFinger: Personal web discovery protocol,

https://code.google.com/p/webfinger/wiki/WebFingerProtocol

(accessed January 2014)
21. Appcelerator: Portable software development platform,

http://www.appcelerator.com/ (accessed January 2014)
22. OpenID Foundation: The Internet Identity Layer, http://openid.net/ (accessed

January 2014)
23. Macgirvin, M.: DFRN - The Distributed Friends and Relations Network,

https://macgirvin.com/spec/dfrn2.pdf (accessed January 2014)
24. Zot: Secure decentralised communications framework,

https://github.com/friendica/red/wiki/zot (accessed January 2014)
25. Wahl, M., Howes, T., Kille, S.: Lightweight Directory Access Protocol,

https://www.ietf.org/rfc/rfc2251.txt
26. Friendica: Red design documentation,

https://github.com/friendica/red/wiki/red (accessed January 2014)
27. Diaspora: The Community-run, Distributed Social Network,

http://www.joindiaspora.com/ (accessed January 2014)
28. Salmon: Real-time Commenting Protocol, http://www.salmon-protocol.org/

(accessed January 2014)
29. OneSocialWeb: Creating a free, open, and decentralized social networking platform,

http://onesocialweb.org/ (accessed January 2014)
30. buddycloud: Federated social network, http://buddycloud.com/ (accessed January

2014)
31. XMPP: XMPP standards foundation, http://xmpp.org/about-xmpp/xsf/

(accessed January 2014)

https://www.facebook.com/
http://oauth.net/
https://twitter.com/
http://redis.io/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://www.ning.com/
http://opensocial.org/
https://www.yammer.com/
https://www.oasis-open.org/standards#samlv2.0
http://status.net/
https://identi.ca/
http://pump.io/
https://code.google.com/p/webfinger/wiki/WebFingerProtocol
http://www.appcelerator.com/
http://openid.net/
https://macgirvin.com/spec/dfrn2.pdf
https://github.com/friendica/red/wiki/zot
https://www.ietf.org/rfc/rfc2251.txt
https://github.com/friendica/red/wiki/red
http://www.joindiaspora.com/
http://www.salmon-protocol.org/
http://onesocialweb.org/
http://buddycloud.com/
http://xmpp.org/about-xmpp/xsf/

Privacy and Access Control in Federated Social Networks 179

32. XMPP: XMPP extension protocols, http://xmpp.org/extensions/xep-0001.html
(accessed January 2014)

33. Elgg: Open Source Social Networking Engine, http://elgg.org/ (accessed January
2014)

34. Dodson, B., Vo, I., Purtell, T., Cannon, A., Lam, M.: Musubi: Disintermediated
interactive social feeds for mobile devices. In: Proceedings of the 21st International
Conference on World Wide Web, pp. 211–220. ACM (2012)

35. Toninelli, A., Pathak, A., Issarny, V.: Yarta: A Middleware for Managing Mobile
Social Ecosystems. In: Riekki, J., Ylianttila, M., Guo, M. (eds.) GPC 2011. LNCS,
vol. 6646, pp. 209–220. Springer, Heidelberg (2011)

36. Hachem, S., Toninelli, A., Pathak, A., Issarny, V.: Policy-based Access Control in
Mobile Social Ecosystems. In: Proceedings of the IEEE International Symposium
on Policies for Distributed Systems and Networks, Pisa, Italy. IEEE computer
society (June 2011)

37. W3C: Federated social web community group,
http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/Main_Page

(accessed January 2014)
38. Parliament: High-performance triple store,

http://parliament.semwebcentral.org/ (accessed January 2014)
39. AllegroGraph: RDFStore Web 3.0’s Database,

http://franz.com/agraph/allegrograph/ (accessed January 2014)
40. Mulgara: Open source scalable rdf database, http://www.mulgara.org/ (accessed

January 2014)
41. Tummarello, G., Morbidoni, C., Bachmann-Gmür, R., Erling, O.: RDFSync: Ef-

ficient remote synchronization of rdf models. In: Aberer, K., et al. (eds.) ASWC
2007 and ISWC 2007. LNCS, vol. 4825, pp. 537–551. Springer, Heidelberg (2007)

42. eXo: Open Source Enterprise Social Network, http://www.exoplatform.com/
(accessed January 2014)

43. Shibboleth: Federated identity solutions, http://shibboleth.net/
(accessed January 2014)

44. Gluu: Open source access management, http://www.gluu.org/ (accessed January
2014)

45. Decat, M., Lagaisse, B., Van Landuyt, D., Crispo, B., Joosen, W.: Federated au-
thorization for software-as-a-service applications. In: Meersman, R., Panetto, H.,
Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.)
ODBASE 2013. LNCS, vol. 8185, pp. 342–359. Springer, Heidelberg (2013)

46. Mont, M.C., Pearson, S., Bramhall, P.: Towards accountable management of iden-
tity and privacy: Sticky policies and enforceable tracing services. In: IEEE Pro-
ceedings of the 14th International Workshop on Database and Expert Systems
Applications, pp. 377–382 (2003)

47. Fatema, K., Chadwick, D.W., Lievens, S.: A multi-privacy policy enforcement sys-
tem. In: Fischer-Hübner, S., Duquenoy, P., Hansen, M., Leenes, R., Zhang, G. (eds.)
Privacy and Identity 2010. IFIP AICT, vol. 352, pp. 297–310. Springer, Heidelberg
(2011)

48. MQTT: Machine to machine connectivity protocol, http://mqtt.org/ (accessed
January 2014)

49. Bennaceur, A., Singh, P., Raverdy, P.G., Issarny, V.: The iBICOOP middleware:
Enablers and services for emerging pervasive computing environments. In: IEEE
International Conference on Pervasive Computing and Communications, PerCom
2009, pp. 1–6. IEEE (2009)

http://xmpp.org/extensions/xep-0001.html
http://elgg.org/
http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/Main_Page
http://parliament.semwebcentral.org/
http://franz.com/agraph/allegrograph/
http://www.mulgara.org/
http://www.exoplatform.com/
http://shibboleth.net/
http://www.gluu.org/
http://mqtt.org/

Engineering Trust-Awareness and

Self-adaptability in Services and Systems

Francisco Moyano1, Carmen Fernandez-Gago1, Benoit Baudry2,
and Javier Lopez1

1 Department of Computer Science
University of Malaga, 29071 Malaga, Spain

{moyano,mcgago,jlm}@lcc.uma.es
2 INRIA Rennes Bretagne-Atlantique, Campus de Beaulieu, 35042 Rennes, France

Certus Software V&V Center, SIMULA RESEARCH LAB., Lysaker, Norway
benoit.baudry@irisa.fr

Abstract. The Future Internet (FI) comprises scenarios where many
heterogeneous and dynamic entities must interact to provide services
(e.g., sensors, mobile devices and information systems in smart city sce-
narios). The dynamic conditions under which FI applications must ex-
ecute call for self-adaptive software to cope with unforeseeable changes
in the application environment. Models@run.time is a promising model-
driven approach that supports the runtime adaptation of distributed,
heterogeneous systems. Yet frameworks that accommodate this paradigm
have limited support to address security concerns, hindering their us-
age in real scenarios. We address this challenge by enhancing mod-
els@run.time with the concepts of trust and reputation. Trust improves
decision-making processes under risk and uncertainty and constitutes a
distributed and flexible mechanism that does not entail heavyweight ad-
ministration. This chapter introduces a trust and reputation framework
that is integrated into a distributed component model that implements
the models@run.time paradigm, thus allowing software components to
include trust in their reasoning process. The framework is illustrated in
a smart grid scenario.

1 Introduction: The Need for Trust and Self-adaptability

The Future Internet (FI) scenarios are bringing two important changes in the
Information and Communication Technology (ICT) world. On the one hand,
the uprising of the service-oriented vision enables the on-the-fly improvement
of the features offered to users. Applications become more dynamic, which calls
for rapid adaptation strategies in order to meet new requirements or respond to
environmental changes. On the other hand, the coming of age of the Internet of
Things (IoT) entails that sensors and actuators are embedded in physical and
daily life objects, which are linked in networks and can produce a vast amount
of data that flow to services. This seamless integration between the physical
and the virtual worlds brings new challenges in terms of dynamicity, since both

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 180–209, 2014.
c© Springer International Publishing Switzerland 2014

Engineering Trust-Awareness and Self-adaptability 181

services and systems as a whole must adapt to dynamic changes in hardware,
firmware and software, including the unpredictable arrival or disappearance of
devices and software components. Figure 1 illustrates this situation.

The aforementioned changes blur boundaries between design and runtime [9]
as they prevent designers from envisioning all possible circumstances that might
appear during the execution of an application. The widespread adoption of FI
systems requires addressing three main concerns: complexity, dynamicity and
security.

As for complexity, the software engineering community has proposed sev-
eral approaches framed within the model-driven engineering paradigm, where
high-level abstractions of systems are created and refined until reaching a final
running system. These abstractions allow reasoning about system properties and
functionality without the need to understand every tiny detail.

As part of the model-driven engineering approaches, models@run.time [1] is
gaining relevance. It consists of keeping an abstract representation of a running
system. This representation is always synchronized with the system, in such a
way that when the former is changed, the latter adapts itself to match the new
configuration. This fosters complexity reduction as well as allowing dynamicity
reasoning, enabling the building of self-adaptive systems: a running system can
be changed either manually by designers or automatically by adaptation rules
that are executed upon environmental changes.

The complexity, dynamicity and distributed nature of FI systems call for new
security approaches that do not require heavyweight administration and that
can evolve automatically as a result of system dynamics. Addressing security
in these systems requires that trust relationships among users, components, and
system environments are not taken for granted; they must be explicitly declared,
monitored and changed according to the system evolution. The security commu-
nity has focused on developing methods and frameworks for traditional security
requirements, that is: confidentiality, integrity, and availability. Authorization
has also been a relevant field of study and some approaches like Role-Based Ac-
cess Control (RBAC) are nowadays a standard in industry. However, the new
conditions of the FI precludes the use of this approach and call for new flex-
ible and dynamic ways of managing security, in general, and access control in
particular [25].

In this chapter, we discuss the design and implementation of a trust and rep-
utation development framework, together with its integration into a platform
for self-adaptive, distributed component-based systems. This framework aims
to help designers and developers in building highly dynamic, self-adaptive and
trust-aware systems, enhancing the models@run.time paradigm with the inclu-
sion of trust and reputation notions.

The structure of the chapter is the following. Section 2 reviews how the soft-
ware engineering community has traditionally approached trust, specially during
the initial phases of the Software Development Life Cycle (SDLC). A conceptual
framework and some foundations of trust and reputation are discussed in Sec-
tion 3. Models@run.time and Kevoree, a component-based development platform

182 F. Moyano et al.

IoT

DEVELOPER

Fig. 1. Developers are confronted with the complexity of IoT and with the need to
update system functionality once it is already deployed and running

that accommodates this paradigm, are presented in Section 4. The trust frame-
work implementation and its integration in Kevoree are described in Section 5,
whereas the use of the framework is illustrated in a smart grid scenario in Section 6.
Finally, Section 7 concludes the chapter and provides hints for future research.

2 Trust in Software Development Life Cycle

This section reviews existing research from two different angles. Section 2.1 dis-
cusses contributions that consider trust during the initial phases of the Software
Development Life Cycle (SDLC). Section 2.2 explains how trust and reputation
have been used as decision enablers in Service-Oriented and Component-Based
Architectures.

2.1 Trust in Software Engineering

The software engineering and security communities have focused on specifying
traditional security requirements, such as confidentiality or authorization. In
this direction, Jürjens [15] presents UMLsec, a UML profile for secure system
development that allows designers to annotate diagrams with security informa-
tion. On the other hand, Lodderstedt, Basin and Doser [16] present SecureUML,
which uses the Object Constraint Language (OCL) to specify authorization con-
straints.

Engineering Trust-Awareness and Self-adaptability 183

Other works focus on detecting possible attacks on the system. Sindre and
Opdahl [27], and McDermott and Fox [18] propose using misuse cases and abuse
cases, respectively. These methods aim to capture use cases that may be initi-
ated by attackers or even stakeholders in order to harm the system. In a similar
direction, Schneier [26] presents a formal and methodical way of capturing dif-
ferent types of attacks that can be performed in a system by means of attack
trees.

The contributions mentioned up to now focus on hard security requirements,
but they lay trust aside. There are, however, other works that focus on trust. On
the one hand, we find policy languages for distributed trust management. Three
remarkable examples are SULTAN [10], PolicyMaker [2] and REFEREE [4].
Abstracting away their differences, these policy languages specify the conditions
under which entities of the system can be granted permission to a resource.
These entities must present some so-called credentials to prove that they satisfy
the conditions to be trusted.

Some methodologies aim to build secure systems by taking relationships be-
tween actors and agents into account. Mouratidis and Giorgini [20] present Se-
cure Tropos, a methodology that extends the Tropos methodology in order to
enable the design of secure systems. Actors in Tropos may depend on other actors
in order to achieve a goal. Thus, Tropos captures the social relationships in the
system by specifying the dependencies between actors using the notions of de-
pender, dependum and dependee, and by modeling the actors and agents in the
organization. In a similar direction, Lamsweerde and Letier presents KAOS [29],
a comprehensive goal-oriented methodology to elicit the requirements of a socio-
technical system. All these contributions put forward the idea of capturing social
aspects, but the notion of trust and its influence on the information systems is
barely explored. This is partially covered by Pavlidis, Mouratidis and Islam [24],
who extend the Secure Tropos modeling language in order to include some trust-
related concepts.

The work by Chakraborty and Ray [3] bridges a gap between traditional
security requirements modeling and soft-security considerations by incorporating
the notion of trust levels into the traditional Role-Based Access Control model.
These levels are measured by means of a trust vector, where each component in
the vector is a factor that influences trust, such as knowledge or experience.

Moyano, Fernandez-Gago and Lopez [22], and Uddin and Zulkernine [28]
present UML profiles that allow characterizing trust relationships and trust in-
formation in more detail than previous contributions during the initial phases of
the SDLC. The former allows specifying reputation and trust dynamics (e.g. how
trust is updated), whereas the latter is more focused on defining trust scenarios.

In spite of the works on specifying trust or social information, developers are
unarmed when it comes to implementing trust models and integrating them into
business applications.

184 F. Moyano et al.

2.2 Trust Decisions in Service-Oriented and Component-Based
Architectures

In Service-Oriented Architecture (SOA) environments, trust is used for either
protecting providers from potentially malicious clients or for shielding clients
against potentially malicious providers (e.g. providers that publish a higher Qual-
ity of Service (QoS) than offered). As an example of the first situation, Conner et
al. [5] present a feedback-based reputation framework to help service providers
to determine trust in incoming requests from clients. As an example of the sec-
ond approach, Crapanzano et al. [6] propose a hierarchical architecture for SOA
where there is a so-called super node overlay that acts as a trusting authority
when a service consumer looks for a service provider. When a client makes a
service invocation, the service provider records it together with its feedback and
a set of application-specific attributes, in such a way that this information can
be used by other service providers to determine whether they should grant access
to a future request from the same client.

Haouas and Bourcier [11] present a runtime architecture that allows a service-
oriented system to meet a dependability objective set up by an administrator.
System dependability is computed by aggregating ratings provided by service
consumers regarding QoS attributes. Then, a reconfiguration manager may look
up other available services to meet the dependability objective. Dependability of
the system is computed by the aggregation of the dependability of each service.
This, in turn, is computed by aggregating a weighted average of ratings provided
by service consumers regarding QoS attributes (e.g. response time) of service
providers. Then, a reconfiguration manager is in charge of querying the service
broker to find the available services that can meet the dependability objective.

Yan and Prehofer [30] discuss a procedure to conduct autonomic trust man-
agement in Component-Based Architectures (CBA). Several quality attributes
can be used to rate the trustee’s trustworthiness, such as availability, reliability,
integrity or confidentiality. Assessing these attributes requires defining metrics
and placing monitors to measure their parameters. Finally, trust is assessed at
runtime based on the trustor’s criteria and is automatically maintained.

Herrmann and Krumm [12] propose using security wrappers to monitor com-
ponents. The intensity of the monitoring activity by these wrappers is ruled by
the component’s reputation. This scheme was enhanced by Herrmann [13] in
order to take the reputation of components’ users into account so as to prevent
deliberate false feedbacks.

3 Trust Foundations

There has been a huge amount of different definitions of trust over the years.
This is due to mainly two factors: first, trust is very context dependent, and
each context has its own particularities. Second, trust spans across many disci-
plines, including psychology, economics and law, and has different connotations
in each of them. Finally, there are many factors that influence trust, and it is
not straightforward to identify them all.

Engineering Trust-Awareness and Self-adaptability 185

The singularity about trust is that everyone intuitively understands its un-
derlying implications, but an agreed definition has not been proposed yet due
to the difficulties in putting them down in words. The vagueness of this term is
well represented by the statement made by Miller [19]: “trust is less confident
than know, but also more confident than hope”.

We define trust as the personal, unique and temporal expectation that a trustor
places on a trustee regarding the outcome of an interaction between them. This
interaction comes in terms of a task that the trustee must perform and that can
negatively influence the trustor. The expectation is personal and unique because
it is subjective, and it is temporal because it may change over time.

3.1 Trust and Reputation

According to the Concise Oxford dictionary, reputation is “what is generally
said or believed about a person or the character or standing of a thing”. This
definition, and more concretely, the word generally, implies that reputation is
formed by an accumulation of opinions. This accumulation of information makes
reputation a more objective concept than trust.

We advocate that there exists a bidirectional relationship between trust and
reputation, in the sense that each one may build upon the other. A good ap-
proximation to the relationship between trust and reputation was suggested by
Jøsang [14], who made the following two statements: ‘I trust you because of your
good reputation and ‘I trust you despite your bad reputation’. In this sense, rep-
utation can be considered as a building block to determine trust but, as stated
by the second statement, reputation has not the final say. One could either trust
someone with low reputation or could distrust someone with high reputation,
because there are other factors that may have a bigger influence on trust determi-
nation, such as the trustor’s (the entity which places trust) disposition to believe
in the trustee (the entity onto which trust is placed), the trustor’s feelings, or
above all, the trustor’s personal experiences with the trustee.

3.2 Trust Models and Classification

The concept and implications of trust are embodied in the so-called trust models,
which define the rules to compute trust and update trust relationships. There are
different types of trust models, each one considering trust in different ways and
for different purposes. The origins of trust management date back to the nineties,
when Marsh [17] proposed the first comprehensive computational model of trust
based on social and psychological factors. Two years later, Blaze [2] coined the
term trust management as a way to simplify the two-step authentication and
authorization process into a single trust decision.

These two seminal contributions reveal the two main branches or categories of
trust models that have been followed until today, and which are further described
in [21]. On the one hand, and following Marsh’s approach, we find evaluation
models, where factors that influence trust are identified, quantified and then
aggregated into a final trust score. Uncertainty and evaluation play an important

186 F. Moyano et al.

role in these models, as one entity is never completely sure whether it should
trust another entity, and a quantification process is required to evaluate the
extent to which one entity trusts another one.

On the other hand and following Blaze’s approach, we find decision models,
which are tightly related to the authorization problem. An entity holds creden-
tials and a policy verify whether these credentials are enough to grant access to
certain resources. Here, trust evaluation is not so important in the sense that
there are no degrees of trust (and as a consequence, there is not such a big range
of uncertainty), and the outcome of the process is often a binary answer: access
granted or access denied.

A remarkable issue about trust and reputation models is that they often
present high coupling with the application context, as they are designed as ad-
hoc mechanisms that are plugged into existing applications, which in turn limits
their reusability [7]. Therefore, one of the goals of our approach is allowing
developers to implement different types of trust models. We achieve this by
identifying high level concepts that form trust and reputation metamodels, and
which abstract away from concrete instances.

3.3 Trust Conceptual Model

We are particularly interested in evaluation models, and this section presents
the most important concepts related to these trust models, which are summa-
rized in Figure 2 and Figure 3. These concepts were identified surveying relevant
literature and finding commonalities and variations in the definition of differ-
ent models. This conceptual model constitutes the basis for building a trust
metamodel that underlies the trust framework, as we discuss in Section 5.1.

A trust model aims to compute trust in a given setting. This setting should
have, at least, two entities that need to interact. An entity plays one or more
roles. The basic roles are trustor (the entity that places trust) and trustee (the
entity on which trust is placed). Once there is a trustor and a trustee, we claim
that a trust relationship has been established. A trust relationship has a purpose,
which can be for example controlling the access or provision of a resource, or
ensuring the identity of an entity. It may also serve to establish trust in the
infrastructure (e.g. devices, hardware, etc). In the very end, the purpose of a
trust model is to assist in decision making. At the higher level, it is a trust
decision in the sense of answering the question: would this entity behave as
expected under this context? At a lower level, an entity trusts a property of
another entity. For instance its capability to provide a good quality of service.
A trust model also makes some assumptions, such as “entities will provide only
fair ratings” and follows a modeling method.

Evaluation models often follow a trust life cycle with three phases. In the
bootstrapping or initialization phase, initial trust values are assigned to the trust
relationships of the entities of the system. Then, some monitoring is performed
to observe a set of factors. Finally, a trust assessment process is done in order to
assign values to these factors and to aggregate them into a final trust evaluation.

Engineering Trust-Awareness and Self-adaptability 187

Trust Model
Trust

computes

Context

Assumptions

Entities

Role

PurposeTrust Class

Access IdentiyProvision Infrastructure

Trust
Relationship

has

establishes

relates

plays

has

instantiates

has

1..*

2..*

1..*

2

1..*

1..*

Evaluation
Model

Trustee's
Objective
Properties

Trustee's
Subjective
Properties
Trustor's
Objective
Properties

Trustor's
Subjective
Properties

Factors

influence

Requester Provider Trusted Third
Party

Witness Trustor Trustee

Modeling
Method

LinguisticGraphicMathematic

uses

Decision
Model

Fig. 2. Concepts for Evaluation Models (i)

Trust relationships are tagged with a trust value that describe to what extent
the trustor trusts the trustee. This trust value has semantics and dimension,
which might be simple or a tuple. Trust values are assigned during trust assess-
ment through trust metrics, which receive a set of variables as input and produce
a measure of one or several attributes using a computation engine. There exists
several computation engines, ranging from the most simple ones such as sum-
mation engines, to complex ones that entail probability distributions or fuzzy
logic.

There are several sources of information that can feed a trust metric. The
most common one is the direct interaction of the entity with the trustee. Other
possible sources of information, although less frequent, are sociological informa-
tion (e.g. considering the roles of entities or their membership to a group) and
psychological information (e.g. prejudice).

Reputation models can be, in turn, another source of information where opin-
ions of a given trustee by different entities are made public and are used to
compute a score. Reputation can be centralized or distributed, depending on
whether reputation scores are computed and stored in a central location or indi-
vidually by each entity. Reputation models build upon the notion of reputation
statement, which is a tuple consisting of a source entity, a claim made by this
source entity, and the claim’s target entity.

4 Kevoree: A Models@Runtime Platform

Traditionally, the Model-Driven Development area has primarily focused on us-
ing models at design, implementation and deployment phases of the Software
Development Life Cycle (SDLC). However, as systems become more adaptable,
reconfigurable and self-managing, they are also more prone to failures, which
demands putting in place appropriate mechanisms for continuous design and
runtime validation and monitoring.

In this direction, model-driven techniques can also be used to model and
reason about a runtime system, leading to the models@runtime paradigm [1],

188 F. Moyano et al.

Fig. 3. Concepts for Evaluation Models (ii)

which brings some important benefits, as it is providing a richer semantic base
for runtime decision-making on adaptation and monitoring. Models@runtime
refers to model-driven approaches that aim to tame the complexity of software
and system dynamic adaptation, pushing the idea of reflection one step further.

Section 4.1 discusses Kevoree, a component model for building distributed
applications. Section 4.2 and Section 4.3 present how to develop and deploy
applications in Kevoree, respectively.

4.1 Kevoree: Component Model

Kevoree1 is an open-source dynamic component model that relies on models at
runtime to properly support the design and dynamic adaptation of distributed,
long-living systems [8]. Six concepts constitute the basis of the Kevoree compo-
nent metamodel, as shown in Figure 4. A node models a device on which software
components can be deployed, whereas a group defines a set of nodes that share
the same representation of the reflecting architectural model. A port represents
an operation that a component provides or requires. A binding represents the
communication between a port and a channel, which in turn models the seman-
tics of communication. The core library of Kevoree implements these concepts
for several platforms such as Java, Android or Arduino.

Kevoree adopts the models@run.time paradigm, enabling the so-called con-
tinuous design and the building of self-adaptive systems. Kevoree boils down
the reconfiguration process to moving from one configuration, represented by
a current model, to another configuration represented by a target model. This
transition consists of several steps, as depicted in Figure 5. First, the target
model is checked and validated to ensure a well-formed system configuration.
Then the target model is compared with the current model and this comparison

1 http://kevoree.org

http://kevoree.org

Engineering Trust-Awareness and Self-adaptability 189

Fig. 4. Kevoree Architectural Elements

generates an adaptation model that contains a set of abstract primitives that
allow the transition from the current model to the target model. The adaptation
engine instantiates the primitives to the current platform (e.g. Android) and ex-
ecutes them. If an action fails, the adaptation engine rollbacks the configuration
to ensure system consistency. Otherwise, all the nodes belonging to the same
group are informed about the changes, ensuring that they share a common view
and understanding about the current system.

Developing a system in Kevoree entails two steps. First, business components
are developed in the Java language using the Kevoree core library. Second, a
physical architecture consisting of nodes is designed, components are deployed
in these nodes and wired together through channels that connect their ports.

4.2 Development in Kevoree

Kevoree components are created by extending from AbstractComponentType,
which is an abstract component provided by the Kevoree core library. This com-
ponent gives access to a set of useful methods that allow managing the compo-
nent life cycle and that acts as an interface to the reflection layer.

Components can have dictionary attributes, which are properties of compo-
nents instances that can be changed at runtime. Additionally, components can
provide and require ports, which correspond to provided or required function-
ality. There are two types of ports: message ports and service ports. The for-
mer model asynchronous communication semantics through messages exchange,
whereas the latter represent synchronous service invocations defined in service
contracts.

190 F. Moyano et al.

Fig. 5. Adaptation in Kevoree

The following code defines a Console component with one required port, one
provided port and one dictionary attribute. The required port is a message port
that allows sending a text to other consoles, whereas the provided port, also
a message port, allows receiving and showing text from other consoles. The
dictionary attribute determines the appearance of the console frame and can be
changed easily at any time both from the editor and with Kevscript, a script
language provided by Kevoree.

@Provides({
@ProvidedPort(name=”showText”, type=PortType.MESSAGE)

})
@Requires({

@RequiredPort(name=”textEntered”, type=PortType.MESSAGE,
optional=true)

})
@DictionaryType({

@DictionaryAttribute(name=”singleFrame”, defaultValue=”true”,
optional=true)

})
public class Console extends AbstractComponentType

Kevoree makes a distinction between component types and component in-
stances. Each component type can be deployed several times over the same or
different nodes, leading to different component instances. Component instances
have an auto-generated string identifier (which can be manually modified). Com-
ponents on the same node need to have different identifiers, whereas components
in different nodes can have the same identifier. Therefore, a component remains

Engineering Trust-Awareness and Self-adaptability 191

uniquely identified by the name of the instance and the name of the node where
it is deployed.

Kevoree offers the possibility to query the system model programmatically
through an EMF2 auto-generated Application Programming Interface (API).
Developers can therefore iterate over the Kevoree metamodel and extract valu-
able information about the current configuration, such as which components are
connected through a given port. The following code snippet shows how to find
the name of all component instances of a given component type componentType
running in a node with name nodeName.

static List<String> getComponentInstanceName(ContainerRoot model, String
componentType, String nodeName)

{
List<String> components = new ArrayList<String>();
for (ContainerNode node : model.getNodes()) {

if (node.getName().equals(nodeName)) {
for(ComponentInstance component : node.getComponents()) {

if
(component.getTypeDefinition().getName().equals(componentType)) {

components.add(component.getName());
}

}
}

}
return components;

}

4.3 Deployment in Kevoree

Once business components are developed, they can be deployed in nodes and
connected through ports. This deployment phase can be realised through the
Kevoree editor or by Kevscript, which is a script language provided by Kevoree.

Kevoree editor provides a set of basic, built-in libraries (e.g. nodes, basic
components and channels) and allows loading custom libraries. It provides drag
and drop functionality and a visual representation of the system architecture, as
illustrated in Figure 6. The editor models are converted to Kevscript instructions
under the hood, being possible to save the model as a .kevs file containing these
instructions.

As the complexity of the system increases, the editor may end up overloaded
with too much information. In these cases, it is possible to deploy the system
by manually specifying Kevscript instructions. Figure 7 shows an excerpt of this
script language.

As part of the deployment, components dictionary attributes must be given
values, which can be changed at any time during the system execution. Also, re-
quired and provided ports of different components are connected through service

2 Eclipse Modelling Framework: http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

192 F. Moyano et al.

Fig. 6. Kevoree editor with three nodes. Three components are deployed in node0 and
two in node1 and node2. Components communicate through channels (orange circles)
that bind their ports. Dictionary attributes can be set for each component (bottom-
right grey dialog).

Fig. 7. Kevscript instructions. This script language can be used to both deploy the
system and change it at runtime.

Engineering Trust-Awareness and Self-adaptability 193

and message channels, depending on whether the ports are service or message
ports respectively.

Kevoree platform does not support reasoning about security concerns, there-
fore any architectural element such as a node or a software component can join
the system without further checks. Also, there is no criteria to guide the runtime
changes. Our goal is to provide components with trust and reputation capabili-
ties, which in turn can enable better decision-making on reconfigurations.

5 Trust Meets Models@Runtime: A Trust Framework for
Self-adaptive Systems

In this section we explain how the notions of trust and reputation are integrated
into Kevoree in order to enhance models@run.time with trust-awareness. This
integration is performed in the form of a framework that enriches the component
model of Kevoree and which consists of an API for developers, some base com-
ponents that can be extended or directly deployed on the Kevoree runtime, and
deployment guidelines on how to wire components together. The class diagram
for the framework is presented in Figure 8.

The rest of this section describes the most important aspects of the framework
implementation and its integration in the Kevoree component model.

5.1 Trust and Reputation Metamodels

We use EMF to create metamodels for trust and reputation. These metamodels
gather a set of concepts and relationships among these concepts that abstract
away from the particularities of different trust models, in such a way that dif-
ferent metamodels instantiations yield different models. The main source of in-
formation for elaborating these metamodels is the trust conceptual framework
discussed in Section 3.3. The trust metamodel is shown in Figure 9, and the
reputation metamodel in Figure 10.

The trust metamodel includes the concept of TrustRelationship, which is a
tuple of a Trustor, Trustee and TrustValue. Trustors useMetrics to evaluate their
trust in Trustees. Metrics use a set of Factors, which in turn have a FactorValue.
Different trust models are created by instantiating the entities that play the
trustor and trustee roles, the factors that are considered and the way these
factors are combined in a metric.

The core concept of a reputation metamodel is a ReputationStatement, which
is a tuple containing a Source entity, a Target entity and a Claim, which has a
ClaimValue. A ReputationMetric is used in order to aggregate Claims. Reputa-
tion models are created by instantiating the entities that play the source and
target roles, the way claims are generated and their type, and the way the metric
combines the claims.

In both metamodels, other important concepts from the conceptual framework
are included as attributes, like Context and Time. Other concepts from the con-
ceptual framework that are not presented explicitly in the metamodel are included

194 F. Moyano et al.

A
b

st
ra

ct
C

o
m

p
o

n
et

Ty
p

e

A
b

st
ra

ct
M

et
ri

c

Tr
u

st
E

n
ti

ty

Tr
u

st
E

ve
n

t

Tr
u

st
M

o
d

el

F
ac

to
rP

ro
d

u
ce

r
R

ep
u

ta
b

le
E

n
ti

ty

C
en

tr
aR

ep
u

ta
b

le
E

n
ti

ty

D
is

tR
ep

u
ta

b
le

E
n

ti
ty

R
ep

u
ta

ti
o

n
M

o
d

el

C
la

im
In

fo

<<
In

te
rf

ac
e>

>
IC

la
im

C
o

n
ta

in
er

<<
In

te
rf

ac
e>

>
IC

la
im

S
o

u
rc

e

<<
In

te
rf

ac
e>

>
IR

ep
u

ta
ti

o
n

M
o

d
el

F
ac

to
rI

n
fo

G
et

H
el

p
er

<<
In

te
rf

ac
e>

>
IF

ac
to

rC
h

an
g

eE
ve

n
t

<<
In

te
rf

ac
e>

>
IF

ac
to

rP
ro

d
u

ce
r

<<
In

te
rf

ac
e>

>
IT

ru
st

E
n

ti
ty

<<
In

te
rf

ac
e>

>
IT

ru
st

E
ve

n
t

<<
In

te
rf

ac
e>

>
IT

ru
st

M
et

ri
c

<<
In

te
rf

ac
e>

>
IT

ru
st

M
o

d
el

<<
In

te
rf

ac
e>

>
IT

ru
st

V
al

u
eC

h
an

g
eE

ve
n

t

Tr
u

st
E

ve
n

tI
n

fo

<<
en

u
m

>>
Tr

u
st

E
ve

n
tT

yp
e

N
E

W
FA

C
T

O
R

FA
C

T
O

R
U

P
D

A
T

E
N

E
W

T
R

U
S

T
V

A
LU

E
A

V
A

IL
A

B
LE

Tr
u

st
E

xc
ep

ti
o

n

Tr
u

st
R

el
at

io
n

In
fo

Tr
u

st
V

al
u

eI
n

fo

<
<

im
pl

em
en

ts
>

>

<
<

us
es

>
>

<
<

im
pl

em
en

ts
>

>

<
<

im
pl

em
en

ts
>

>

<
<

im
pl

em
en

ts
>

>

<
<

im
pl

em
en

ts
>

>

<
<

im
pl

em
en

ts
>

>
<

<
im

pl
em

en
ts

>
>

<
<

im
pl

em
en

ts
>

>
<

<
im

pl
em

en
ts

>
>

<
<

im
pl

em
en

ts
>

>

<
<

im
pl

em
en

ts
>

>

<
<

us
es

>
>

<
<

us
es

>
>

<
<

us
es

>
>

<
<

us
es

>
>

<
<

us
es

>
>

<
<

us
es

>
>

<
<

us
es

>
>

<
<

us
es

>
>

<
<

us
es

>
>

<
<

us
es

>
>

<
<

us
es

>
>

<
<

us
es

>
>

<
<

us
es

>
>

Fig. 8. Class Diagram of the Trust and Reputation Framework. In grey, the Kevoree
component from which the rest of components inherits; in green, components that
provide some extension points for developers.

Engineering Trust-Awareness and Self-adaptability 195

Fig. 9. Trust Metamodel

Fig. 10. Reputation Metamodel

implicitly in the implementation. For example, factors can be objective and sub-
jective, but the difference is only made at the implementation level with meth-
ods available to entities, such as addSubjectiveFactor. We consider that En-
gines are concrete implementations ofMetrics. Another example concerns central-
ized and distributed reputation models. As we see in the next section, centralized

196 F. Moyano et al.

reputation models include entities that must send their claims to a component
that stores them and which compute reputation, whereas distributed reputation
models comprise entities that store their own claims and which compute repu-
tation themselves. In summary, metamodels provide a basic skeleton of relevant
concepts, which are enriched during implementation to accommodate more con-
cepts discussed in the conceptual framework.

From these metamodels, the EMF generates code that constitutes an API to
manage these metamodels. This code does not need to be visible to developers,
who can be oblivious about how trust models are managed and instantiated.
Therefore, we use this code as an internal API that acts as an interface between
the trust and reputation components, discussed in the next section, and the
underlying trust or reputation model.

5.2 Trust and Reputation Components

This section describes how the framework is implemented. This implementation
is hidden from developers, as they do not need to know all the details in order
to use the framework. Section 6 illustrates how to use the framework in a smart
grid application.

Trust and reputation concepts are added to Kevoree in the form of compo-
nents, dictionary attributes, and data structures passed among these compo-
nents. These components, attributes and data structures are concepts of the
trust and reputation metamodels.

As an example, consider the following code snippet that implements a TrustEn-
tity component, which represents an entity capable of trusting (i.e. holding trust
values in other entities) or capable of being trusted.

@DictionaryType({
@DictionaryAttribute(name=”trustContext”, defaultValue=”myContext”),
@DictionaryAttribute(name=”defaultTrustValue”, defaultValue=”0”),
@DictionaryAttribute(name=”role”, defaultValue=”trustor”, vals= {”trustor”,
”trustee”, ”both”})

})
@Requires({

@RequiredPort(name = ”trustRelationUpdate”, type = PortType.MESSAGE),
@RequiredPort(name = ”factorAddition”, type = PortType.MESSAGE)),
@RequiredPort(name = ”trustManagement”, type = PortType.SERVICE),
@RequiredPort(name = ”compute”, type = PortType.SERVICE)

})
@Provides({

@ProvidedPort(name=”trustEntityNotification”, type=PortType.MESSAGE)
})
public abstract class TrustEntity extends AbstractComponentType

implements ITrustEntity, ITrustValueChangeEvent

The role played by the entity can be trustor, trustee or both, and this role
can be specified by a dictionary attribute associated to this component. Other

Engineering Trust-Awareness and Self-adaptability 197

dictionary attributes are default value, which determines the initial trust values
for all trust relationships of the entity, and trust context, which specifies the
context under which the entity establishes its relationships.

TrustEntity requires two service ports and two message ports. Trust entities
playing the trustor role use the service port trustManagement in order to initial-
ize trust relationships and retrieve trust values. These services are provided in
the service contract defined by the interface ITrustModel3. The other service port
used by trust entities is compute, which computes trust of the trust entity (in
case it is a trustor) in another trust entity. We want this port to be synchronous
because this service is typically invoked prior to making a trust decision. Trust
entities use the factorAddition message port to add subjective factors about it-
self (e.g. disposition to trust in a given trustee) in the trust model. The message
port trustRelationUpdate is used by trust entities to update the model with new
trust relationships.

The initialization of trust entities is performed in the start() method pro-
vided by the AbstractComponentType Kevoree component. The following code
snippet shows the initialization of trust entities, which is performed in the
start() method provided by the AbstractComponentType Kevoree component:

public void start() throws TrustException
{

if (getDictionary.get(”role”).equals(”trustor”) ||
getDicitionary .get(”role”).equals(”both”))

{
if (! isPortBound(”compute”))
{

//throw trust exception
}
getPortByName(”trustManagement”, ITrustModel.class).

initializeTrustRelationships
(

getDictionary.get(”trustContext”).toString() ,
getModelElement().getName(),
getDictionary.get(”defaultTrustValue”).toString()

) ;
}

}

If the entity is a trustor, its trust relationships are initialized through the ser-
vice initializeTrustRelationships provided by ITrustModel. The arguments
for this service are the name of the context where this relationship takes place,
the name of the current trust entity, and the default value of all trust relation-
ships of this particular entity. The following code depicts how the actual trust
initialization is performed in the TrustModel component:

3 In general, all elements whose name start with I are interfaces that define a contract
with which the associated component must comply.

198 F. Moyano et al.

@Port(name=”trustManagement”, method=”initializeTrustRelationships”)
public void initializeTrustRelationships (String context, String trustor ,

String defaultValue)
{

Map<String, List<String>> trustees =
GetHelper.getTrusteesInstanceName
(
getModelService().getLastModel(),
context
) ;

for (String nodeName: trustees.keySet()) {
// ... get the list of trustees running on that node
idTrustee.addAll(trustees.get(nodeName));

}
//Create necessary entities in the trust metamodel
for (String t : idTrustee) {

addTrustRelationship(context, trustor, t , defaultValue);
}

}

First, we need to retrieve all the trustees of the trustor. This is done through the
static method getTrusteesInstanceNameof the auxiliary classGetHelper, which
we developed in order to provide an interface to the reflection layer of Kevoree.
Thismeans that we can use this class to query the systemmodel and to extract cer-
tain information. The method getModelService().getLastModel(), provided
by AbstractComponentType, allows us to retrieve a reference to the last deployed
model, which can be queried by iterating over nodes and their components. We
identify trustees of the trustor according to the following rule: a component is
trustee of another component if the role of the former is trustee and its context
is the same as the context of the latter. Once we have all the trustees, we create
a trust relationship for each of them in the model through the API generated by
EMF (see Section 5.1). This is what the method addTrustRelationship does.

As another example, consider the following code, which declares a FactorPro-
ducer component:

@DictionaryType({
@DictionaryAttribute(name = ”node”, optional = false),
@DictionaryAttribute(name = ”component”, optional = false),
@DictionaryAttribute(name = ”updateRate”, optional = false)

})

@Requires({
@RequiredPort(name = ”factorAddition”, type = PortType.MESSAGE,

optional = false)
})
@ComponentType
@Library(name = ”Trust”)
public class FactorProducer extends AbstractComponentType

implements IFactorProducer

Engineering Trust-Awareness and Self-adaptability 199

Factor producers are entities capable of producing trust factors about a given
target entity. The target entity of a factor producer is specified by means of the
dictionary attributes node and component. The rate at which factor producers
generate factors for their target entities is given by the dictionary attribute
updateRate. Factor producers require one message port, which they use to send
the factor to the TrustModel component. It also provides a method to retrieve
the target, abstracting developers away from dictionary management.

The rest of implemented components and a brief description are shown in
Table 1. We provide more insight about other components in Section 6.

Table 1. Trust Framework Components

Trust Component Description

TrustModel Encapsulation and information hiding. It provides
interface to EMF trust metamodel.

TrustEntity Base class for any trust-aware business logic com-
ponent.

AbstractMetric Base class for any trust engine.

TrustEvent Entities and metric notification about changes in
the model.

FactorProducer It yields trust factors used by the engines.

Reputation Components Description

ReputationModel Encapsulation and information hiding. It com-
putes reputation scores.

ReputableEntity Entity that can be source or target in reputation
statements.

DistReputableEntity Reputable entity that stores its own claims and
which computes reputation.

CentralReputableEntity Reputable entity that sends claims to the reputa-
tion model. It uses ReputationModel to compute
reputation scores.

The following section discusses two important concepts of the framework: data
structures and trust events.

5.3 Trust Events and Data Structures

Fault-tolerant designs foster the use of asynchronous communication, as it allows
components to continue their execution even if other components fail. Therefore,
most of the framework components communicate through asynchronous message
exchanges. These messages are data structures with trust or reputation infor-
mation. For example, FactorInfo stores the identification of the sender (which
may be an instance of a FactorProducer or a TrustEntity), the factor name, the
context where that factor must be interpreted, the factor value, and the target
entity to which the factor refers. Table 2 summarizes other data structures.

200 F. Moyano et al.

Fig. 11. Sequence Diagram of Trust Events

Trust events represent changes in the trust model and it is the way in which
trust engines and trust entities are notified of changes that may require their
attention. The process starts when a new factor is introduced in the model.
The model sends a notification to the TrustEvent component, which forwards
it to the trust engines. Upon receiving this notification, trust engines can either
send notifications to trust entities through the TrustEvent component or capture
these notifications and only send them when some application-specific condition
occurs. When trust entities receive notifications, they know that a new trust
value for at least one of its relationships is available, and they can take actions.
The typical action is to update this trust relationship in the model. These steps
are depicted in Figure 11.

Table 2. Data Structures Exchanged by Components

Data Structure Description

FactorInfo Factor information, including the sender, the con-
text and the value.

TrustEventInfo Event information, including the type of the event
and extra information (e.g. factor information).

TrustRelationship Trust relationship information, including context,
trustor, trustee and the value.

TrustValueInfo Information about trust values, including context,
the sender (i.e. engine) and the value itself.

Claim Information about a claim, including the context,
the source and the target.

The next section illustrates how the trust framework can be used by developers
to implement trust-aware and self-adaptive systems in a smart grid scenario.

6 Case Study: Smart Grid Scenario

Smart grids use Information and Communication Technology (ICT) to optimise
the transmission and distribution of electricity from suppliers to consumers,

Engineering Trust-Awareness and Self-adaptability 201

allowing smart generation and bidirectional power flows [23]. The smart grid is
one of the addressed scenarios in NESSoS4.

The scenario is depicted in Figure 12. Consumers want to retrieve electric
consumption information from their Controllable Local Systems (CLS), which
are devices that can be controlled using the network communication technology
of the grid. The interaction between consumers and the CLS go through a Smart
Metering Gateway (SMG), the actual responsible for collecting and processing
meter data, and for providing communication and security capabilities for de-
vices. Authorized External Entities (AEEs) can also access the CLS for billing
or maintenance purposes through the SMG.

Fig. 12. Smart Grid Scenario

We want to implement this system in Kevoree. The first step is to map the
scenario to nodes and business components according to the component model
of Kevoree, resulting in the system depicted in Figure 13. In this configuration,
there are four nodes: the consumer node, which models the device with which
the consumer wants to control the CLS; the SMG node, which represents the
SMG; the AEE nodes, which model devices used by AEEs in order to access
CLS; and a CLS node, which represents CLS.

The consumer node hosts a component that communicates with the SMG-
Manager component deployed on the SMG. The latter offers services to the
consumer for receiving electricity consumption information from CLS, and for
forwarding commands to the CLS. CLSManager component on CLS provide ser-
vices to control the CLS and to send electricity consumption information about
the CLS. The CLSConfiguration component on the AEE node allows AEEs to

4 http://www.nessos-project.eu

http://www.nessos-project.eu

202 F. Moyano et al.

Fig. 13. Smart Grid Scenario in Kevoree

obtain billing information and to analyse status information about the CLS for
maintenance purposes.

We want to enrich this system model with trust awareness by using the trust
framework discussed in the previous section. First, we need to define the trust
and reputation models that we want to implement. In this case, the trust model
uses a trust engine that considers three factors: consumer’s disposition to trust
in the CLS, reputation of the CLS, and time to response of the CLS. Trust values
are computed by adding the former two factors, and dividing the addition by
the latter factor. The rationale is that the higher the disposition to trust and
the CLS reputation, and the lower the time to response of the CLS, the higher
the trust that the consumer places on the CLS.

Consumer’s disposition to trust is provided by the consumer itself at instal-
lation time5. CLS reputation is computed by averaging the satisfaction ratings
provided by AEEs after each interaction. CLS time to response can be measured
by performing regular pings on the CLS.

Once we define the trust and reputation models, we need to implement them
and to integrate them with the system depicted in Figure 13. The final trust-
aware system is illustrated in Figure 14.

The reputation model is implemented by adding one new component,
MyReputationModel, which is hosted by the SMG, and by specifying that the
CLSConfiguration component is a centralized reputable entity6. The following
code snippet shows this latter component:

5 We can assume that the SMGManager component provides a service for setting this
value for each installed CLS.

6 We decide to use a centralized reputation model.

Engineering Trust-Awareness and Self-adaptability 203

Fig. 14. Trust-Aware Smart Grid Scenario in Kevoree

public class CLSConfiguration extends CentralKevReputableEntity
{

...
public Status getStatus()
{

//Obtain status of CLS through dedicated port
//Check status
Dialog d = createDialog(”Please enter a satisfaction number between 0

and 10: ”)
claim = d.readTextFromDialog();
makeClaim(”repContext”, getTarget(”status”), claim);

}
}

204 F. Moyano et al.

Notice that inheriting from CentralKevReputableEntity gives access to two
methods: makeClaim, which sends a claim to the reputation model; and
getTarget, which determines the target of the claim by inspecting an associated
dictionary attribute.

Regarding the MyReputationModel component, which is deployed on the
SMG, developers must inherit from ReputationModel and override the method
computeReputation, which in this case calculates an average of all the claims
about a given target, as depicted in the following code:

public final class ReputationEngine extends ReputationModel
{

@Override
public String computeReputation(String context, String idTarget) {

List<Claim> claims = getClaims(context, idTarget);
for (Claim c : claims)

res += Float.parseFloat(c.getClaimValue()) / claims.size() ;

return String.valueOf(res);
}

At this point, the reputation model is implemented and integrated in the
system. Now we need to implement the trust model. First, we define the trust
entities in the system, which are ConsumerApp and CLSManager. The former
plays the trustor role, whereas the latter is a trustee. This is done by inheriting
from TrustEntity component and by defining the appropriate role in its asso-
ciated dictionary. As an example, the following code shows an excerpt of the
ConsumerApp component:

@Requires({
@RequiredPort(name=”commandEntered”, type=PortType.MESSAGE),
@RequiredPort(name=”retrieveConsumption”,

type=PortType.MESSAGE)
})
@DictionaryType({

@DictionaryAttribute(name = ”singleFrame”, defaultValue = ”true”)
})
public class ConsumerApp extends TrustEntity
{

public void start() throws TrustException
{

// Initialize trust relationships
super.start();
createUserInterface () ;

}

public void onSendCommandButtonPressed()
{

String command = textField.readString();

Engineering Trust-Awareness and Self-adaptability 205

sanitized (command);
getPortByName(”commandEntered”, MessagePort.class).

process(command);
}
...

}

This component requires two ports which are provided by the SMG: comman-
dEntered, to send a command to the CLS through the SMGManager component,
and retrieveConsumption, to receive electricity consumption from the CLS. It
also defines a dictionary attribute that determines the appearance of the user
interface. The code shows that when the user presses the button Send Com-
mand, the command written in a text field is read, sanitized and asynchronously
sent through the commandEntered port. At deployment time, the role dictionary
attribute must be set to trustor.

Regarding CLSManager component, it must inherit from TrustEntity and its
role must be set to trustee. The context dictionary attribute of both the Con-
sumerApp and CLSManager components must have the same value. This way,
when ConsumerApp initializes its trust relationships, it will identify CLSMan-
ager as its trustee (see Section 5.2).

Other trust application-specific components are the trust engine and the factor
producer. The following code shows an excerpt of the former:

public class MyTrustEngine extends AbstractMetric
{

@Override
public Object compute(String idTrustor, String idTrustee) {

Factor disp = getFactor(”myContext”, ”disposition”, idTrustor);
Factor ttr = getFactor(”myContext”, ”timeToResponse”, idTrustee);
Object reputation = getReputation(”myContext”, idTrustee);
return (disp + reputation) / ttr;

}
}

The trust engine must inherit from the AbstractMetric component and over-
ride the compute method. Inheriting from AbstractMetric provides access to two
methods: getFactor and getReputation, which allows the engine to retrieve
any factor and the reputation, respectively, from the trustor or the trustee. The
trust engine behaves as we explained in the description of the model: it adds
trustor’s trust disposition and trustee’s reputation, and divide this addition by
the trustee’s time to response.

The next step is creating the factor producer that generates the time to re-
sponse of CLS. Factor producers are classes that inherit from the FactorProducer
component. Given that we want factor producers to generate factors at a rate
expressed by the updateRate attribute, factor producers must create a thread
at start-up and implement the run() method of the Runnable interface. In the

206 F. Moyano et al.

run() method, the factor producer executes a PingService7 to its target by using
ExecutorService8, and adds a factor with the time to response obtained from the
service. The following code snippet shows this factor producer, although we omit
some details for simplicity:

public class TimeToResponseProducer extends FactorProducer
implements Runnable

{
public void start()
{

thread = new Thread(this);
alive = true; thread.start() ;

}

public void run()
{

while (alive)
{

executorService.execute(new PingService(map time,
node.getName(), getModelService().getLastModel()));

addFactor(”chatContext”, ”timeToResponse”,
map time.get(getTargetNode()), getTargetNode());

}
Thread.sleep(getUpdateRate());

}
}

Note that there are two trust components that the developer does not need to
develop, but which must be deployed: TrustEvent, to enable events notifications
between the model, the engine, and the trust entities; and TrustModel, which
provides the interface to store and retrieve trust information according to the
underlying metamodel discussed in Section 5.1.

Enriching the system model with trust relationships and reputation infor-
mation provides two advantages. First, trust entities are empowered with new
information that can help them to make decisions at certain points during their
execution. Second, as this trust integration is done in a models@run.time plat-
form, it allows the adaptation engine to make reconfiguration decisions based on
trust and reputation values.

As an example of the first case, consider the following code in the Consumer-
App component, where now the component can decide whether to send com-
mands or retrieve status information from a CLS depending on its trust in it.

7 We develop PingService as a wrapper over jpingy(https://code.google.com/p/
jpingy/), an existing library for performing pings to hosts.

8 http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/

ExecutorService.html

https://code.google.com/p/jpingy/
https://code.google.com/p/jpingy/
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html

Engineering Trust-Awareness and Self-adaptability 207

public void onSendCommandButtonPressed()
{

String command = textField.readString();
if (getTrustValue(”myContext”, trustee) > THRESHOLD)
{

getPortByName(”commandEntered”, MessagePort.class).
process(command);

}
}

A more powerful mechanism is the automatic reconfiguration of the system
in terms of trust and reputation values. Reconfiguration is realized through
Kevscript instructions. In this scenario, one possible reconfiguration would take
place when the reputation of a CLS falls below a given threshold. Under this
condition, a Kevscript script would execute in order to remove the CLS from
the system. Another possible reconfiguration would entail adding new compo-
nents. For example, if the trust of the ConsumerApp in a CLS falls below a given
threshold, the current CLSManager component could be removed and substi-
tuted by a new one. Also, new components could be deployed in order to encrypt
commands before being sent and to decrypt them before being executed.

7 Conclusions and Future Work

As the complexity of software increases, self-adaptability and security become
first-class requirements and the software engineering and security communities
must join efforts in order to tackle the new challenges that arise. The highly dis-
tributed nature of FI systems and their increasing dimensions and heterogeneity
limit the use of traditional security measures that often require heavyweight
administration, and more flexible and self-controlled mechanisms are required.
We advocate that trust and reputation fit nicely in this context, and therefore
we integrate these notions together with self-adaptability in a component-based
development framework that adopts the models@run.time paradigm.

We have learned that this kind of integration must overcome several technical
challenges. First, a robust identity management system must be in place in order
to uniquely identify trust and reputation entities, and to allow access at any mo-
ment to these identities. In our case, we could use the reflection layer of Kevoree
to access this information. Second, more research on declarative reconfiguration
policies is required. Current models@run.time platforms lack usable procedures
to specify advanced reconfiguration policies. Third, as systems become more
complex, visual editors become less useful, as they end up being overloaded with
too much information. Therefore, there is a clear need for development of usable
declarative languages to specify the architectural elements of these systems, like
nodes and components.

Regarding the trust framework, there is enough room for further improve-
ments, specially with regards to the API usability. One direction is allowing
policy-based development of trust and reputation models. This would reduce

208 F. Moyano et al.

the amount of code that developers must write, would provide a better decou-
pling of business logic and trust logic, and would foster the separation of duties;
the business expert could be oblivious to the trust requirements and the trust
expert would not need to understand the business needs. Achieving these goals,
and pushing this research forward, requires a tight and continuous cooperation
between software and security engineers.

Acknowledgements. Thisworkhasbeenpartially fundedby theEuropeanCom-
mission through the FP7/2007-2013projectNESSoS (www.nessos-project.eu) un-
der grant agreement number 256980. The first author is funded by the Spanish
Ministry of Education through the National F.P.U. Program.

References

1. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(2009)

2. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Proceed-
ings of the 1996 IEEE Symposium on Security and Privacy, SP 1996, p. 164. IEEE
Computer Society, Washington, DC (1996)

3. Chakraborty, S., Ray, I.: Trustbac: Integrating trust relationships into the rbacmodel
for access control in open systems. In: Proceedings of the Eleventh ACM Symposium
on Access Control Models and Technologies, SACMAT 2006, pp. 49–58. ACM, New
York (2006)

4. Chu, Y.-H., Feigenbaum, J., LaMacchia, B., Resnick, P., Strauss, M.: REFEREE:
Trust management for Web applications. In: Selected Papers From the Sixth Inter-
national Conference on World Wide Web, pp. 953–964. Elsevier Science Publishers
Ltd., Essex (1997)

5. Conner, W., Iyengar, A., Mikalsen, T., Rouvellou, I., Nahrstedt, K.: A trust man-
agement framework for service-oriented environments. In: Proceedings of the 18th
International Conference on World Wide Web, WWW 2009, pp. 891–900. ACM,
New York (2009)

6. Crapanzano, C., Milazzo, F., De Paola, A., Re, G.L.: Reputation Management for
Distributed Service-Oriented Architectures. In: 2010 Fourth IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshop (SASOW),
pp. 160–165 (2010)

7. Farmer, R., Glass, B.: Building Web Reputation Systems, 1st edn. Yahoo! Press,
USA (2010)

8. Fouquet, F., Barais, O., Plouzeau, N., Jézéquel, J.-M., Morin, B., Fleurey, F.: A
Dynamic Component Model for Cyber Physical Systems. In: 15th International
ACM SIGSOFT Symposium on Component Based Software Engineering, Berti-
noro, Italie (July 2012)

9. Ghezzi, C.: The fading boundary between development time and run time. In:
Zavattaro, G., Schreier, U., Pautasso, C. (eds.) ECOWS, p. 11. IEEE (2011)

10. Grandison, T.: Trust management for internet applications. PhD thesis, University
of London (July 2002)

11. Hanen, H., Bourcier, J.: Dependability-Driven Runtime Management of Service
Oriented Architectures. In: PESOS - 4th International Workshop on Principles of
Engineering Service-Oriented Systems - 2012, Zurich, Suisse (June 2012)

Engineering Trust-Awareness and Self-adaptability 209

12. Herrmann, P., Krumm, H.: Trust-adapted enforcement of security policies in dis-
tributed component-structured applications. In: Proceedings of the Sixth IEEE
Symposium on Computers and Communications, pp. 2–8 (2001)

13. Herrmann, P.: Trust-Based Protection of Software Component Users and Design-
ers. In: Nixon, P., Terzis, S. (eds.) iTrust 2003. LNCS, vol. 2692, pp. 75–90.
Springer, Heidelberg (2003)

14. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decision Support Systems 43(2), 618–644 (2007)

15. Jürjens, J.: UMLsec: Extending UML for Secure Systems Development. In:
Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460,
pp. 412–425. Springer, Heidelberg (2002)

16. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Lan-
guage for Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

17. Marsh, S.: Formalising Trust as a Computational Concept. PhD thesis, University
of Stirling (April 1994)

18. McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements Anal-
ysis. In: Proceedings of the 15th Annual Computer Security Applications Confer-
ence, ACSAC 1999, p. 55. IEEE Computer Society, Washington, DC (1999)

19. Miller, K.W., Voas, J., Laplante, P.: In Trust We Trust. Computer 43, 85–87 (2010)
20. Mouratidis, H., Giorgini, P.: Secure Tropos: A Security-Oriented Extension of the

Tropos Methodology. International Journal of Software Engineering and Knowledge
Engineering 17(2), 285–309 (2007)

21. Moyano, F., Fernandez-Gago, C., Lopez, J.: A conceptual framework for trust
models. In: Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus 2012.
LNCS, vol. 7449, pp. 93–104. Springer, Heidelberg (2012)

22. Moyano, F., Fernandez, C., Lopez, J.: Towards engineering trust-aware future in-
ternet systems. In: Franch, X., Soffer, P. (eds.) CAiSE Workshops 2013. LNBIP,
vol. 148, pp. 490–501. Springer, Heidelberg (2013)

23. NESSoS. Initial version of two case studies, evaluating methodologies. Deliverable
11.3: http://www.nessos-project.eu/ (October 2012)

24. Pavlidis, M., Mouratidis, H., Islam, S.: Modelling Security Using Trust Based Con-
cepts. IJSSE 3(2), 36–53 (2012)

25. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and
privacy in distributed internet of things. Computer Networks 57, 2266–2279 (2013)

26. Schneier, B.: Attack Trees: Modeling Security Threats. Dr. Dobb’s Journal (1999)
27. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requir.

Eng. 10(1), 34–44 (2005)
28. Uddin, M.G., Zulkernine, M.: Umltrust: Towards developing trust-aware software.

In: Proceedings of the 2008 ACM Symposium on Applied Computing, SAC 2008,
pp. 831–836. ACM, New York (2008)

29. van Lamsweerde, A., Letier, E.: Handling Obstacles in Goal-Oriented Requirements
Engineering. IEEE Trans. Softw. Eng. 26(10), 978–1005 (2000)

30. Yan, Z., Prehofer, C.: Autonomic Trust Management for a Component-Based Soft-
ware System. IEEE Transactions on Dependable and Secure Computing 8(6),
810–823 (2011)

http://www.nessos-project.eu/

Validation of Access Control Systems�

Antonia Bertolino1, Traon Yves Le2, Francesca Lonetti1, Eda Marchetti1,
and Tejeddine Mouelhi2

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
CNR, Pisa, Italy

{firstname.lastname}@isti.cnr.it
2 Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg, Luxembourg
{firstname.lastname}@uni.lu

Abstract. Access Control is among the most important security mech-
anisms to put in place in order to secure applications, and XACML is
the de facto standard for defining access control policies. Due to the
complexity of XACML language it is important to perform efficient test-
ing to identify potential security flaws and bugs. However, in practice,
exhaustive testing is impossible due to budget constraints. Test cases se-
lection and prioritization are two well-known solutions to maximize the
effectiveness of the test suite in terms of discovered faults, reducing as
much as possible the required effort for tests execution and results anal-
ysis. In this chapter, after providing a survey on validation approaches
for XACML based access control systems, we present a coverage based
selection strategy and a similarity based test prioritization solution, both
applied to XACML test cases. Then we compare the effectiveness of the
two approaches in terms of mutation score and number of test cases.
Experimental results show that coverage based selection outperforms
similarity based prioritization, hinting to future improvements of the
proposed approaches.

Keywords: testing, access control, XACML language, test cases selec-
tion, test cases prioritization, coverage criterion, similarity.

1 Introduction

In the modern pervasive ICT systems, in which resources and data are continu-
ously exchanged and shared, security is becoming a crucial feature. Thus appro-
priate mechanisms that guarantee the confidentiality, integrity, and availability
(the so-called CIA triad) must be put in place to protect data and resources
against unauthorized, malicious, improper, or erroneous usage.

Among security mechanisms, one of the most important components is the
access control system, which mediates all requests of access to protected data,
ensures that only the intended (i.e., authorized) users are given access and pro-
vides them with the level of access that is required to accomplish their tasks.

� This work has been supported by the EU-NoE project NESSoS, GA 256980.

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 210–233, 2014.
c© Springer International Publishing Switzerland 2014

Validation of Access Control Systems 211

In the access control systems, the eXtensible Access Control Markup Language
(XACML) [22] is today the de facto standard for specifying access control poli-
cies. It is an XML-based language which is platform-independent and specifies
the access control system architecture: incoming access requests are transmit-
ted to the Policy Decision Point (PDP) that grants or denies the access based
on the defined XACML policies. However, XACML policies themselves may be
complex, distributed and subject to continuous change. Any fault in the policies
or in the engine evaluating them could lead to security flaws, by either denying
accesses that should be allowed or even worse allowing accesses to non autho-
rized users. To guarantee the correctness of the policies specification and their
implementation a careful testing activity is needed. The basic approach for test-
ing XACML based systems consists of probing the PDP with a set of XACML
requests and checking its responses against the expected decisions.

In this chapter we first provide a survey of validation approaches for XACML
based access control systems focusing on the test cases generation problem. Most
of the testing approaches for XACML policies are based on combinatorial tech-
niques [3,18], then the generated number of test cases can rapidly grow to cope
with the policy complexity. Executing a huge number of test cases can drasti-
cally increase the cost of the testing phase, mainly due to the effort of checking
the test oracle’s results. As a matter of fact, in the context of access control
systems this step is usually performed manually, because the complexity of the
XACML language prevents the use of automated support. Considering the strict
constraints on testing budget, a challenge of software testing is to maximize the
effectiveness of the test suite in terms of discovered faults reducing as much as
possible the required effort for tests execution and results analysis. To address
this issue two different solutions have been proposed in the literature: selection
and prioritization of test cases. Test case selection aims to identify the test cases
that are more relevant according to some defined criteria. Test case prioritization
aims at defining a test execution order according to some criteria, e.g., coverage,
fault detection, so that those tests that have a higher priority are executed before
the ones having a lower priority. Both approaches have been proven efficient to
get the maximum effectiveness of the test suite [31]. However, their applicability
and performance are dependent on the target language and context [25]. In this
chapter we want to compare the effectiveness of selection and prioritization so-
lutions applied to XACML test cases. Specifically, first we present: i) a selection
strategy named XACML smart coverage that relies on an XACML rule coverage
criterion; and ii) a test prioritization approach based on similarity of XACML
requests. Then we provide a comparison of the proposed approaches in terms
of fault detection effectiveness and size of the derived test suites. By means of
mutation analysis we inject faults into the XACML policy and challenge the
tests to detect these seeded faults. The goal is to end up with an effective test
suite able to minimize both the number of test cases and the loss in mutation
score with respect to the overall test suite. The experimental results on six real
policies show that with the same number of test cases the XACML smart cov-
erage selection approach outperforms similarity based prioritization in terms of

212 A. Bertolino et al.

fault detection effectiveness. Moreover, to get the same mutation score similarity
based prioritization requires a higher number of test cases than XACML smart
coverage selection.

The remainder of this chapter is organized as follows. Section 2 introduces the
XACML language. Section 3 presents the results of a survey on access control
systems validation. Then, Section 4 details the XACML smart coverage selec-
tion and similarity based prioritization approaches while their comparison is
presented in Section 5. Finally, Section 6 provides discussion and conclusions.

2 XACML Language

XACML [22] is a de facto standard specification language that defines access
control policies and access control decision requests/responses in an XML for-
mat. An XACML policy defines the rules regulating the users access to the
system resources. When an XACML request is evaluated, the XACML policy
is used to find which rules match that given request, which contains subject,
resource, action, and environment attributes. The access decision is computed
based on the matching rule and the access is then either granted or denied. More
specifically, the XACML specification defines an access control system architec-
ture interacting with the XACML policy. The main entities of this architecture
are the Policy Enforcement Point (PEP) and the Policy Decision Point (PDP).
A PEP intercepts a user’s request, transforms it into an XACML request and
transmits it to the PDP. The PDP evaluates the request against the rules in the
policy and returns the access response (Permit/Deny/NotApplicable) according
to the specified XACML policy. The main elements of an XACML policy are:

Policy Set. A policy set contains one or more policy sets or one or more poli-
cies. It includes a policy-combining algorithm, which states which policy
(policy set) to consider when several policies (policy sets) are applicable to a
given request. It also contains a target to be matched from a request before
considering the policies (policy sets) in that policy set to be applicable.

Policy. A policy includes a set of rules and a rule-combining algorithm that
states which rule decision to return in case the request is applicable to more
than one rule. It also contains a target to be matched from a request before
considering the rules in that policy to be applicable.

Rule. A rule contains a decision type (Permit or Deny) and a target. When the
request matches the target then the request is applicable to the rule. In that
case the decision type is to be returned. A rule might also contain a condition
element, which is a boolean function that is used to specify constraints on the
subjects, resources, actions, and environments values so that if the condition
evaluates to true, then the rule’s decision type is returned.

Target. A target contains four parameters: a set of subjects, a set of resources,
a set of actions and finally a set of environments. A request is matching a
target, if the subject, resource, action, and environment of the request are
included in the corresponding target sets.

Validation of Access Control Systems 213

Combining Algorithms. A combining algorithm selects which policy (policy-
combining algorithm) or rule (rule-combining algorithm) is to be considered
in case the request matches more than one policy (or rule). For instance, the
first-applicable combining algorithm will select the first applicable policy
(or rule).

At the decision making time, the Policy Decision Point evaluates an access
request against a policy, by comparing all the attributes in an access request
against the attributes in all the target and condition elements of the policy set,
policy and rule elements. If there is a match between the attributes of the request
and those of the policy, the effect of a matching rule is returned, otherwise the
NotApplicable decision is drawn.

1 <PolicySet PolicySetId= " p o l i c y S e t E x a m p l e "

2 PolicyCombiningAlgId= " f i r s t - a p p l i c a b l e " >
3 <Target/>
4 <Policy PolicyId = " p o l i c y E x a m p l e " RuleCombiningAlgId= " p e r m i t - o v e r r i d e s " >
5 <Target ><Resource ><ResourceMatch MatchId = " a n y U R I - e q u a l " >
6 <AttributeValue DataType = " a n y U R I " >
7 books
8 </AttributeValue>
9 <ResourceAttributeDesignator AttributeId= " r e s o u r c e - i d " />

10 </ResourceMatch></Resource ></Target >
11 <Rule RuleId= " r u l e A " Effect= " D e n y " >
12 <Target ><Resources>
13 <Resource ><ResourceMatch MatchId = " a n y U R I - e q u a l " >
14 <AttributeValue DataType = " a n y U R I " >
15 books
16 </AttributeValue>
17 <ResourceAttributeDesignator AttributeId= " r e s o u r c e - i d " />
18 </ResourceMatch></Resource >
19 <Resource ><ResourceMatch MatchId = " a n y U R I - e q u a l " >
20 <AttributeValue DataType = " a n y U R I " >
21 documents
22 </AttributeValue>
23 <ResourceAttributeDesignator AttributeId= " r e s o u r c e - i d " />
24 </ResourceMatch></Resource ></Resources>
25 <Actions ><Action ><ActionMatch MatchId = " s t r i n g - e q u a l " >
26 <AttributeValue DataType = " s t r i n g " >
27 read
28 </AttributeValue>
29 <ActionAttributeDesignator AttributeId= " a c t i o n - i d " />
30 </ActionMatch></Action ></Actions ></Target ></Rule>
31 <Rule RuleId= " r u l e B " Effect= " P e r m i t " >
32 <Target ><Subjects ><Subject ><SubjectMatch MatchId = " s t r i n g - e q u a l " >
33 <AttributeValue DataType = " s t r i n g " >
34 Julius
35 </AttributeValue>
36 <SubjectAttributeDesignator AttributeId= " s u b j e c t - i d " />
37 </SubjectMatch></Subject ></Subjects >
38 <Actions ><Action ><ActionMatch MatchId = " s t r i n g - e q u a l " >
39 <AttributeValue DataType = " s t r i n g " >
40 write
41 </AttributeValue>
42 <ActionAttributeDesignator AttributeId= " a c t i o n - i d " />
43 </ActionMatch></Action ></Actions >
44 </Target ></Rule></Policy ></PolicySet>

Listing 1.1. An XACML Policy

214 A. Bertolino et al.

Listing 1.1 shows an example of a simplified XACML policy for library access.
The policy set target (line 3) is empty, which means that it applies to any subject,
resource, action, and environment. The policy target (lines 5-10) says that this
policy applies to any subject, any action, any environment and the “books”
resource. This policy has a first rule (ruleA) (lines 11-30) with a “deny” decision
and with a target (lines 12-30) specifying that this rule applies only to the
access requests of a “read” action of “books” and “documents” resources with
any environment. The effect of the second rule (ruleB) (lines 31-44) is Permit
when the subject is “Julius”, the action is “write”, the resource is also “books”
(inherited from the policy target) and any environment.

1 <Request xmlns= " u r n : o a s i s : n a m e s : t c : x a c m l : 2 . 0 : c o n t e x t : s c h e m a : o s " >
2 <Subject >
3 <Attribute AttributeId= " s u b j e c t - i d 1 " DataType = " s t r i n g " >
4 <AttributeValue>Julius </AttributeValue>
5 </Attribute>
6 </Subject >
7 <Resource >
8 <Attribute AttributeId= " r e s o u r c e - i d " DataType = " s t r i n g " >
9 <AttributeValue>books</AttributeValue>

10 </Attribute>
11 </Resource >
12 <Action >
13 <Attribute AttributeId= " a c t i o n - i d " DataType = " s t r i n g " >
14 <AttributeValue>write</AttributeValue>
15 </Attribute>
16 </Action >
17 <Environment/>
18 </Request >

Listing 1.2. First XACML request

1 <Request xmlns= " u r n : o a s i s : n a m e s : t c : x a c m l : 2 . 0 : c o n t e x t : s c h e m a : o s " >
2 <Subject >
3 <Attribute AttributeId= " s u b j e c t - i d 1 " DataType = " s t r i n g " >
4 <AttributeValue>Julius </AttributeValue>
5 </Attribute>
6 </Subject >
7 <Resource >
8 <Attribute AttributeId= " r e s o u r c e - i d " DataType = " s t r i n g " >
9 <AttributeValue>documents</AttributeValue>

10 </Attribute>
11 </Resource >
12 <Action >
13 <Attribute AttributeId= " a c t i o n - i d " DataType = " s t r i n g " >
14 <AttributeValue>read</AttributeValue>
15 </Attribute>
16 </Action >
17 <Environment/>
18 </Request >

Listing 1.3. Second XACML request

Listing 1.2 shows an example of a simple request specifying that the subject
Julius wants to write the “books” resource while the request in Listing 1.3 says
that Julius wants to read the “documents” resource.

Validation of Access Control Systems 215

3 Survey of Testing Techniques and Tools for Access
Control Systems

In this section we provide a survey on validation approaches for access control
systems focusing on test cases generation and assessment of the derived tests
suites. Specifically, the work presented in this chapter spans over the following
research directions: model-based test cases derivation; XACML policy-based test
cases derivation; test cases selection and prioritization; assessing the test suite
effectiveness.

3.1 Model-Based Test Cases Derivation

In model-based testing, the test cases are automatically (or semi-automatically)
derived from a model. This model can be a model of the application, of the
policy or a combination of both. Among the available proposals that rely on a
model, combining the application and the policy, the approach promoted by Xu
et al. [30] is based on high level petri-nets. Moreover, there is the work done by
Pretschner et al. [23], which presents a new approach which relies on a model of
RBAC based access control and enables as well an automated generation of test
cases. These two approaches are presented in detail in the following.

Petri-Net Based Access Control Testing. The strategy presented in [30]
aims at considering the whole system and the access control security mecha-
nisms in it as a black box. To validate these security mechanisms, the tester
should create test cases that test the system functions using scenarios that will
trigger the access control mechanisms and enforce all the rules. The abstract
policy is thus taken into consideration when constructing the model of the sys-
tem under test. In this case, it is important to take into account all the rules
defined in the XACML policy. More concretely, this approach generates exe-
cutable access control tests from a MID (Model-Implementation Description)
specification, which consists of an access control test model and a MIM (Model-
Implementation Mapping) description. The underlying test model, represented
by a Predicate/Transition (PrT) net [10], is constructed from the given access
control rules and functional requirements. This model is build according to the
way the SUT (System Under Test) is designed and implemented. PrT nets are
high-level Petri nets, a well-studied formal method for system modeling and ver-
ification. Contracts are used (preconditions and post-conditions) to construct
test models for two main reasons. First, design by contracts [20] is a widely
accepted approach to functional specification. Second, access control rules, as
security constraints on system functionality, cannot be tested without involving
system functionality. Access control testing requires understanding the precon-
ditions and post-conditions of the related activities. Let us consider, testing for
instance, the rule that a student is allowed to return books on working days. The
test cannot be performed unless the functional precondition “book is borrowed”
is satisfied. The accurate test oracle cannot be determined without knowing its

216 A. Bertolino et al.

post-condition “book becomes available”. For test generation purposes, declar-
ative access control rules and contracts are integrated into an operational PrT
net. For code generation purposes, a MIM description is created by mapping the
elements in a test model to the implementation constructs based on the SUT
programming interface. The generated code can then be executed with the SUT.
This approach has been implemented in MISTA1, a framework for automated
generation of test code in a variety of languages, including Java, C, C++, C#,
and HTML/Selenium IDE (a Firefox plugin for testing web applications). Ex-
periments were performed using two Java based applications. To assess the fault
detection capability of the proposed approach, mutation analysis of access con-
trol implementation was applied. Mutants were created by seeding faulty rules
in the policy implementation. For each case study, the authors constructed the
access control test models in the subject program, generated executable tests
from the test models, and executed the tests against the mutants. The exper-
iments show that the proposed approach is highly effective in detecting policy
violations since the generated tests killed a large percentage of mutants.

Policy Model Based Access Control Testing. The approach in [23] focuses
on the access control policy to select the test targets by relying on pair-wise
testing. A test target is an abstract test case, which is related to an access
control request to be tested. The approach creates concrete tests for testing
the scenarios based on these selected test targets. More precisely, it proposes
to proceed in two steps. In a first step, it generates abstract tests. Test targets
represent classes of actual requests. They are generated (1) regardless of any
policy, i.e., by only taking into account roles, permissions, and contexts; (2) by
considering all the rules in a given policy, that is the model; and (3) completely at
random. Relying on a fault model that considers incorrect decisions of the PDP
to be a consequence of n-wise interactions of rule elements, combinatorial testing
is used to automatically generate a test suite of manageable size. In a second
step, concrete tests are derived (code) from these abstract test targets. Because
this involves application-specific program logic and usually also a particular state
of the application, this activity can in general not be fully automated and we
need to rely on an application model (for instance sequence diagrams, class
diagrams etc.).

3.2 XACML Policy Based Test Cases Derivation

Testing Access Control Systems is a critical issue and the complexity of the
XACML language specification prevents the manual specification of a set of test
cases capable of covering all the possible interesting critical situations or faults.
This implies the need of automated test cases generation for testing on one side the
XACML policy specification and on the other that the PDP behavior conforms
to the policy specification. Among the available proposals, the Targen tool [18]

1 A release of MISTA can be downloaded from
http://www.homepages.dsu.edu/dxu/research/MBT.html

http://www.homepages.dsu.edu/dxu/research/MBT.html

Validation of Access Control Systems 217

generates test inputs using combinatorial coverage of the truth values of indepen-
dent clauses of XACML policy values. This approach has been proven to be more
effective than random generation strategy in terms of structural coverage of the
policy and fault detection capability [18]. Amore recent tool is X-CREATE [3,4,6]
that provides different strategies based on combinatorial approaches of the sub-
ject, resource, action and environment values taken from the XACML policy for
deriving the access requests. Experimental results presented in [6] show that the
fault detection effectiveness of X-CREATE test suites is similar or higher than
that of Targen test suite. Specifically, three main generation strategies are defined
into X-CREATE: i) the Simple Combinatorial testing strategy [3] that derives an
XACML request for each of the possible combinations of the subject, resource,
action and environment values taken from the policy; ii) the XPT-based testing
strategy [3, 6] that generates requests using the structures obtained applying the
XPT strategy [5] to the XACML Context Schema [22]; iii) the Multiple Combi-
natorial strategy that relies on combinations of more than one subject, resource,
action and environment values for generating XACML requests. This last strategy
automatically establishes the number of subjects, resources, actions and environ-
ments of each request according to the complexity of the policy structure, and tar-
gets the policy rules in which the effect is simultaneously dependent on more than
one constraint [4]. A detailed comparison of X-CREATE test generation strategies
in terms of fault detection is presented in [3, 4]. Among the X-CREATE genera-
tion strategies we select in this chapter the Simple Combinatorial one for deriving
test suites used to empirically validate the effectiveness of the proposed selection
and prioritization approaches. This strategy is simple and easy-to-apply and at
the same time able to reach the coverage of the policy input domain represented
by the policy values combinations. More detail about this strategy are presented
in the Section 5.1.

3.3 Test Cases Selection and Prioritization

The work in [33] provides a survey on test adequacy criteria presenting code cov-
erage as a good criterion for test cases selection and test suite effectiveness eval-
uation. Many frameworks for test coverage measurement and analysis have been
proposed dealing with different programming languages. The proposal of [19]
provides a first coverage criterion for XACML policies defining three structural
coverage metrics targeting XACML policies, rules and conditions respectively.
These coverage metrics are used for reducing test sets and the effects of test
reduction in terms of fault detection are measured. The authors of [1] integrate
and extend the coverage approach proposed in [19], also addressing the policy
set and proposing the Rule Target Set concept and the inclusion of the request
values in that Rule Target Set as selection criterion. However, differently from
the approach presented in [19], the solution of [1] does not require the policy
execution and PDP instrumentation to be applied, then reducing the effort for
coverage measurement.

218 A. Bertolino et al.

Many proposals address test cases selection for regression systems. The work
in [31] presents a survey of selection techniques able to identify the test cases
that are relevant to some set of changes and addresses the emerging trends in the
field. The main proposal for regression testing of access control systems is the
work done by Xie et al. [12], in which they promote a new approach that aims
at selecting a superset of fault-revealing test cases, i.e., test cases that reveal
faults due to the policy modification. This approach includes three regression-
test selection techniques: the first one based on mutation analysis, the second
one based on coverage analysis, and the third one based on recorded requests
evaluation. The first two techniques are based on correlation between test cases
and rules Rimp where Rimp are rules being involved with syntactic changes across
policy versions. The first technique selects a rule ri in P and creates P s mutant
M(ri) by changing ris decision. This technique selects test cases that reveal
different policy behaviors by executing test cases on program code interacting
with P and M(ri), respectively. However, if a test case is correlated with ri, the
test case may reveal different system behaviors affected by modification of ri in
P . This first technique is considered to be costly because it requires at least 2n
executions of each test case to find all correlations between test cases and rules
where n is the number of rules in P . The second technique uses coverage analysis
to establish correlations between test cases and rules by monitoring which rules
are evaluated (i.e., covered) for requests issued from program code. Compared
with the first technique, this technique substantially reduces cost during the
correlation process because it requires execution of each test case once. The
third one first captures requests issued from program code while executing test
cases. This technique evaluates these requests against P and P ′, respectively,
then selects only test cases that issue requests evaluated to different decisions.
According to experiments the third technique reveals to be better in terms of
performance and efficiency. The above described test selection techniques can
be applied to XACML based systems and can reveal regression faults caused
by policy changes, thus reducing the number of test cases. Differently from the
work in [12], the selection approach proposed in this chapter does not target
regression systems and does not require the execution of test cases against the
security policy for selecting test cases, then reducing cost and time effort of the
overall testing process.

Another solution for increasing test suite effectiveness reducing the size of
the test set is represented by tests case prioritization. It relies on test cases
re-ordering techniques to improve fault detection rate at a given test execution
time [26]. In [8], the authors have conducted a series of controlled experiments
to evaluate test case prioritization techniques based on time constraints and
fault detection rate. Their results have been in favor of applying heuristics when
the software contains considerable faults number and when the testing process
has no time constraints. In [9, 27], the authors have conducted experimental
studies to show the effectiveness of prioritization techniques to improve fault
detection rate in the context of regression testing. While most of the techniques
that have been introduced in the literature rely on code coverage to achieve

Validation of Access Control Systems 219

prioritization [14,15,29] some recent approaches have adopted different metrics:
in [28], the authors use system models and system behavior to prioritize test
cases, they have compared this approach with other prioritization techniques and
have shown its effectiveness in early fault detection; the authors in [32] have used
expert knowledge to achieve pair-wise comparison of test cases and have proposed
similarity metrics between test cases clusters to achieve test case prioritization.
Differently from existing works, the prioritization approach proposed in this
chapter addresses XACML access control systems and provides similarity metrics
between XACML requests.

3.4 Assessing the Test Suite Effectiveness

In software testing mutation analysis [13] is commonly used to assess the effec-
tiveness of a test suite. It aims at introducing single faults in a given program
and running tests to assess their capability to detect the faults. Mutation analysis
has been applied on access control policies [2, 17, 21] to qualify security tests. By
means of mutation operators, the policy under test is modified to derive a set of
faulty policies (mutants) each containing a fault. A mutant policy is killed if the
response of an XACML request executed on the mutant policy differs from the
response of the same request executed on the original policy. In [17] the authors
define a fault model for access control policies and a set of mutation operators ma-
nipulating the predicates and logical constructs of target and condition elements
of an XACML policy. They have used mutation analysis applied on access control
policies to assess coverage criteria for test generation and test selection in terms
of fault-detection capability. In [21] the authors try to extend the mutation oper-
ators of [17], focusing on the use of a metamodel that allows to simulate the faults
in the security models independently from the used role-based formalism (RBAC
or OrBAC). Finally, the work in [2] includes and enhances the mutation operators
of [17] and [21] addressing specific faults of the XACML 2.0 language and provid-
ing a tool, called XACMUT, for the derivation of XACML mutation operators
and their application to XACML policies. In this chapter, we use the XACMUT
tool to generate mutants of XACML policies and assess the effectiveness of the
proposed selection and prioritization approaches.

4 Maximize Test Suite Effectiveness for Access Control
Systems

Testing XACML access control systems is a critical activity and many solutions
have been proposed to generate XACML tests, including Targen [18] and X-
CREATE [3, 4, 6]. The main limitation of these approaches is that, as for any
strategy that relies on combinatorial techniques, the generated test suites tend
to grow in size as policy complexity increases, often making it too costly to ex-
ecute entire test suites and check if the test results are correct or not. Different
approaches have been studied to maximize the effectiveness of the obtained test
suite, among them we focus on selection and prioritization. Test case selection

220 A. Bertolino et al.

seeks to select the test cases that are relevant according to some defined criteria.
Test case prioritization aims to order test cases in such a way that early fault de-
tection is maximized. In this chapter we provide a comparison of two approaches
for improving the effectiveness of an XACML test suite: the former is a selection
strategy named XACML smart coverage that relies on an XACML rule cover-
age criterion, the latter is an access control test prioritization approach based on
similarity. In the following we describe both approaches while in Section 5.3 we
compare their effectiveness in terms of mutation score and size of the test suite.

4.1 XACML Smart Coverage Selection

In this section we present the XACML smart coverage selection approach [7].
It relies on an XACML rule coverage criterion and an algorithm developed to
select a set of requests that achieve this coverage criterion. We first provide
some generic definitions concerning the policy (Definitions 1 and 2) and request
elements (Definition 3) and then we define the XACML rule coverage criterion
(Definition 4). Finally, the selection algorithm is presented.

Definition 1 (Target Tuple). Given a Rule R, a Policy P, a PolicySet PS,
with R ∈ P and P ∈ PS, and given the set of XACML Elements, called XE
= {xe : xe is PS or P or R}, the Target Tuple of an xe ∈ XE, called TTxe,
is a 4-tuple (S, Res, A, E), where: S (Res, A, E) is a finite set of subjects
(resources, actions, environments) in the XACML target of xe.

Definition 2 (Rule Target Set). Given a Rule R, its Target Set is a set of
Target Tuple, ordered by the XACML hierarchy elements relation, defined as

TSR =

⎧
⎨

⎩
TTxe : TTxe =

⎧
⎨

⎩

TTPS if R ∈ PS
TTP if R ∈ P
TTR otherwise

⎫
⎬

⎭
.

Definition 3 (Request Target Tuple). Given a request Req, the Request
Target Tuple, called TTreq is a 4 tuple (S r, Res r, A r, E r) where S r, Res r,
A r, E r are the subject, resource, action and environment belonging to the re-
quest Req.

Definition 4 (XACML Rule Coverage). Given a rule R, the condition C
of R, the Rule Target Set TSR, and the request Req with Request Target Tuple
TTreq=(S r, Res r, A r, E r), Req covers R if and only if

– for each Target Tuple TTE =(S, Res, A, E) ∈ TSR such that TTE is a
TTPS, TTP or TTR, S r ∈ S or S is ∅, Res r ∈ Res or Res is ∅, A r ∈ A
or A is ∅, and E r ∈ E or E is ∅.

– C is evaluated to True or False against TTreq
2.

2 Note that only the condition is evaluated against the request values, without having
policy execution.

Validation of Access Control Systems 221

Considering the policy of Listing 1.1, according to Definition 2, the Target
Set of ruleA is
TSRuleA = {TTPSpolicySetExample

, TTPpolicyExample
, TTRuleA} = {(∅, ∅, ∅, ∅), (∅,

{books}, ∅, ∅),(∅, {books, documents}, {read}, ∅)}
while the Target Set of ruleB is
TSRuleB = {TTPSpolicySetExample

, TTPpolicyExample
, TTRuleB} = {(∅, ∅, ∅, ∅), (∅,

{books}, ∅, ∅), ({Julius}, ∅, {write}, ∅)}.
Considering the XACML request of Listing 1.2, according to Definition 3, the

Request Target Tuple of this request is TTrequestExample = ({Julius}, {books},
{write}, ∅).

According to Definition 4, the request of Listing 1.2 covers ruleB but it does
not cover ruleA since the action of the request (write) is not included in the
Target Set of RuleA.

In a nutshell, the defined XACML rule coverage criterion involves selecting
tests that match the Rule Target Sets. The Rule Target Set is the union of the
target of the rule, and all enclosing policy and policy sets targets. The main
idea is that, according to the XACML language, in order to match the rule
target, requests must first match the enclosing policy and policy sets targets
(note that there could be several enclosing policy sets). For instance, if a rule
contains no condition, and it has a target containing the elements Subject1,
Action1, Resource1, and the policy and policy set targets which it belongs to
are both empty, then in order to match that rule a request should contain exactly
these three elements. If the rule target has several subjects, resources, actions,
and environments and the enclosing policy and policy set targets are empty, to
cover the rule target the request should include a subject contained in the target
subjects set, a resource contained in the target resources set, an action contained
in the target actions set, an environment contained in the target environments
set. Finally, if the Rule Target Set of a rule is empty and its condition is evaluated
to True or False, all requests are covering this rule.

Algorithm 1 is used to select the test cases. Roughly, it takes as input the
Rule Target Sets and a set of requests. Then, it loops through the requests and
selects those ones that match one Rule Target Set. Once a Rule Target Set is
matched, it is removed from the set of Rule Target Sets. This prevents selecting
all requests for empty Rule Target Sets.

Algorithm 2 allows all Rule Target Sets and Rule Conditions to be computed
by taking into consideration the rule and its enclosing policy and policy sets.
In addition, when a target contains more than one subject, action or resource,
the algorithm divides that target into several targets, each having only one of
these elements. For instance, a target with 2 subjects, 1 action and 3 resources
leads to creating 6 targets (each one with 1 subject, 1 action and 1 resource). In
fact, according to the XACML language a rule containing for instance a tar-
get with 3 subjects is equivalent to three rules having a target with 1 sub-
ject. XACML offers this facility to avoid creating several rules, however for the
sake of rule evaluation, it is safer to consider several rules having each a target
with only one element. For test cases selection, having targets with one subject,

222 A. Bertolino et al.

Algorithm 1. Coverage-Based Selection of Test Cases

1: input: S = {Req1, ..., Reqn} � Unordered set of n XACML requests
2: input: P � The XACML policy
3: output: Result � Set of m selected XACML requests with m ¡ n
4: Result ← {}
5: TargetsConds ← computeAllRulesTargetsConds(P)
6: i ← 0
7: while size(TargetsConds) > 0 do � Loop until all targets are covered
8: ContainsReq ← False
9: j ← 0
10: while doNot ContainsReq � Loop until a matching request is found
11: ReqTargetj ← extractReqTarget(Reqj)
12: if containsReq(TargetCondi, ReqTargetj) then
13: Result ← Result ∪ {Reqj}
14: ContainsReq ← True
15: end if
16: j ← j + 1
17: if j == n then � not matching request then leave loop and carry on
18: Break
19: end if
20: end while
21: i ← i+ 1
22: end while
23: return Result

Algorithm 2. Compute All Targets and Conditions

1: input: P = {Rule1, ..., Rulen} � XACML policy having n rules
2: output: L � Set of n Targets with Condition
3: L ← {}
4: i ← 0
5: while i < n do
6: TargCondi ← {}
7: EnclosingPol ← retrievePolForRule(Rulei)
8: PolTargeti ← extractPolicyTarget(EnclosingPol)
9: TargCondi ← L ∪ {PolTargeti}
10: EnclosingPolSet ← retrievePolSetForPol(EnclosingPol)
11: PolSetTargeti ← extractPolicySetTarget(EnclosingPolSet)
12: TargCondi ← L ∪ {PolSetTargeti}
13: while isPolicySetEnclosedInPolicySet(EnclosingP olSet) do
14: PolSet ← getParent(PolSet)
15: PolSetTargeti ← extractPolicySetTarget(EnclosingPolSet)
16: TargCondi ← L ∪ {PolSetTargeti}
17: end while
18: TargCondi ← TargCondi ∪ {Condi}
19: L ← L ∪ {TargCondi}
20: end while
21: return L

Validation of Access Control Systems 223

action, resource and environment enables us to select test cases covering all sub-
jects, actions, resources and environments and helps improving the quality of
test cases.

4.2 Similarity Based Test Cases Prioritization

In this section we present a new approach for access control test prioritization
that relies on similarity [1]. Similarity is a heuristic that is used here to order ac-
cess control requests (i.e. the test cases). Previous work on model-based testing,
such as [11], has shown that dissimilar test cases bestow a higher fault detection
power than similar ones. Analogously, the experimental results presented in [1]
showed that two dissimilar access control requests are likely to find more access
control faults than two similar ones. In the following, we consider a test suite of r
access control requests {R1, ..., Rr}. A similarity approach consists of two steps.
The first step involves the definition of a metric d between any two access control
requests Ri and Rj , where 1 ≤ i, j ≤ r. This metric is used to evaluate the de-
gree of similarity between two given requests: the highest the resulting distance,
the most dissimilar are the two requests; a distance value equal to 0 means that
two requests are identical. The second step is the ordering of these r requests.
To this end, we first compute the distance between each pair of requests. Then,
a selection algorithm uses the distances to select the most dissimilar requests,
resulting in a list where the first selected requests are the most dissimilar ones.

Given two requests (Ri, Rj), a similarity metric (called simple similarity)
dss(Ri, Rj) is defined based on a comparison between the request attributes
values. There are four attributes in each request, namely the subject, the action,
the resource, and the environment. For each attribute, the simple similarity
compares the values in the two requests (Ri, Rj). The distance increases each
time a given attribute is different in the two requests. Since the evaluation is
based on four attributes, the final distance varies between 0 and 4. Formally, the
simple similarity is defined as follows:

dss(Ri, Rj) =

4∑

k=1

dkattribute(Ri, Rj)

where

dkattribute(Ri, Rj) =

{
1 Ri.attribute[k] �= Rj .attribute[k]
0 otherwise

.

For instance, considering the requests R1 and R2 shown in Listings 1.2 and
1.3 respectively, and obtained by the application of the Simple Combinatorial
strategy (Section 5.1) to the policy of Listing 1.1,

224 A. Bertolino et al.

the dss(R1, R2) = 2 since both the resource and the action differ in the two
requests.

The similarity distance values relative to a set of requests {R1, ..., Rr} are
represented by r × r matrix, called Simple Similarity Matrix (SSM).

SSM : (R ×R) −→ {0, 1, 2, 3, 4} .
defined as:

[SSM]i,j = dss(Ri, Rj) i, j = 1, 2, . . . , r and i < j .

This matrix is the input of the following algorithm used for the prioritization
of the requests.

Algorithm 3. Prioritization

1: input: S = {R1, ..., Rn}, distMatrix
2: output: L � Prioritized list of n XACML requests
3: L ← []
4: Select Ri, Rj where max (distMatrix(Ri, Rj)), 1 ≤ i, j ≤ n
5: � Take the first ones in case of equality
6: L.add(Ri)
7: L.add(Rj)
8: S ← S \ {Ri, Rj}
9: while #S > 0 do
10: s ← size(L)

11: Select Ri ∈ S where max
(∑s

j=1 distMatrix(Ri, L.get(j)
)
, 1 ≤ i ≤ n

12: � Take the first one in case of equality
13: L.add(Ri)
14: S ← S \ {Ri} � Remove Ri from S
15: end while
16: return L

The idea is to order the requests so that the first executed are those most
dissimilar, i.e. the requests sharing the higher distance. Informally, the algo-
rithm aims at selecting the request that is the most distant to all the requests
already selected during the previous steps of the approach. It takes as input
the set of XACML request S = {R1, ..., Rn} and the SSM distance matrix
(distMatrix).Using the distances between the requests collected into the matrix,
it first selects the two XACML requests having the highest distance (Algorithm
3, line 4). In case of equality the first couple of requests is selected. Then these
two requests are removed from the set of XACML requests to be prioritized, i.e
the set S (Algorithm 3, line 8). Among the remaining XACML requests, in the
next step the algorithm considers that having the maximum of the sum of the
distances with respect to all the already selected requests (Algorithm 3, line 11).
In case of equality the first request is selected. As before the selected request is
removed from the XACML requests to be prioritized (Algorithm 3, line 14) and
this process is repeated until all requests are selected.

Validation of Access Control Systems 225

Table 1. Description of the six policies

Name # Rul. # S # Res # A # E # Pol.set # Pol.

LMS 42 8 3 10 3 1 1
VMS 106 7 3 15 4 1 1
ASMS 117 8 5 11 3 1 1
pluto 21 4 90 1 0 1 1
itrust 64 7 46 9 0 1 1
continue-a 298 16 29 4 0 111 266

5 An Experimental Comparison

In this section we present an experimental comparison between the XACML
smart coverage selection strategy (detailed in Section 4.1) that relies on an
XACML rule coverage criterion, and the access control test prioritization ap-
proach based on similarity, presented in Section 4.2. The comparison has been
performed to evaluate the effectiveness of the two proposals in terms of mutation
score. In the following subsections we present: first the case study and the test
cases generation strategy, then the mutation operators used for the test suites
evaluation and finally the experimental results.

5.1 Setup

We consider in our experiment six real world policies, which differ from each
other in terms of the complexity of their structure and the number of elements
they include. This information is summarized in Table 1, which shows the size
of the XACML policies in terms of the number of subjects, resources, actions
and environments, and their structure in terms of rules, policy sets and policies.

Briefly, the policy labeled LMS rules a Library Management System, VMS
represents a Virtual Meeting System and ASMS is conceived for an Auction
Sales Management System. All these policies are relative to three Java-based
systems, which have been used in previous works (e.g., [23]). pluto policy is
used by the ARCHON system, a digital library management tool [16]; itrust
policy is part of the iTrust system, a health-care management system [24]. The
policy named continue-a [26] is used by the Continue application, a web-based
conference management tool.

Test Cases Generation. A critical issue in testing XACML access control sys-
tems is the generation of an effective test suite. Most of the common approaches
for generating XACML requests are based on combinatorial approaches, as sur-
veyed in Section 3. In this chapter, among the proposals available for test cases
generation we refer to the tool X-CREATE [3, 4, 6]3. In particular, we use the

3 A release of the X-CREATE tool is available at
http://labse.isti.cnr.it/tools/xcreate

226 A. Bertolino et al.

Simple Combinatorial test strategy implemented in this tool for deriving the test
suites used to empirically compare the effectiveness of the proposed approaches.

Before explaining the test case generation strategy, we need to define the
notion of XACML test case:

XACML Test Case. Atest case is anXACMLrequest derived fromanXACML
policy. It is composed of four values, a subject, a resource, an action and an en-
vironment. The values and types of these four elements should be among the
values and types defined by the policy rules or targets. For instance, Listings
1.2 and 1.3 are two examples of test cases derived from the policy of Listing
1.1.

The Simple Combinatorial strategy applies a combinatorial approach to the
policy values. Specifically, four data sets called SubjectSet, ResourceSet, Action-
Set and EnvironmentSet are defined. Those sets are filled with the values of
elements and attributes referring to the <Subjects>, <Resources>, <Actions>
and <Environments> of the policy respectively. These elements and attributes
values are then combined in order to obtain the entities. Specifically, a subject
entity is defined as a combination of the values of elements and attributes of
the SubjectSet set, and similarly the resource entity, the action entity and the
environment entity represent combinations of the values of the elements and at-
tributes of the ResourceSet, ActionSet, and EnvironmentSet respectively. Then,
an ordered set of combinations of subject entities, resource entities, action enti-
ties, and environment entities is generated in the following way:

– First, pair-wise combinations are generated to obtain the PW set
– Then, three-wise combinations are generated to obtain the TW set
– Finally, four-wise combinations are generated to obtain the FW set

These sets have the following inclusion propriety PW ⊆ TW ⊆ FW.
The maximum number of requests derived by this strategy is equal to the size

of the FW set. The X-CREATE framework provides an ordered set of requests
guaranteeing a coverage first of all pairs, then of all triples and finally of all
quadruples of values entities derived by the policy. Since the Simple Combinato-
rial strategy relies only on the values entities specified in the policy, the derived
test suite can be used either for testing the policy or the PDP. More details
about this strategy are in [3].

5.2 Mutation Analysis

We compared the effectiveness of the selection and prioritization approaches in
terms of fault detection. A mutation approach specifically conceived for XACML
language has been used for introducing faults in the six XACML policies, then
the selected and prioritized test suites have been run to asses their capability to
detect the introduced faults. It is important to note that we do not consider the
running time because for all the approaches, it took less than one second and
therefore this running time can be neglected. In addition, the running time is

Validation of Access Control Systems 227

Table 2. Mutation Operators [2]

ID Description

PSTT Policy Set Target True

PSTF Policy Set Target False

PTT Policy Target True

PTF Policy Target False

RTT Rule Target True

RTF Rule Target False

RCT Rule Condition True

RCF Rule Condition False

CPC Change Policy Combining Algorithm

CRC Change Rule Combining Algorithm

CRE Change Rule Effect

RPT (RTT) Rule Type is replaced with another one

ANR Add a New Rule

RER Remove an Existing Rule

RUF Remove Uniqueness Function

AUF Add Uniqueness Function

CNOF Change N-OF Function

CLF Change Logical Function

ANF Add Not Function

RNF Remove Not Function

CCF Change Comparison Function

FPR First the Rules having a Permit effect

FDR First the Rules having a Deny effect

not an important factor because usually, prioritization is performed only once
and testers can afford to wait for few seconds or even few minutes. In fact, the
manual checking of the oracle that is done manually, will take much more time.

In this chapter we used XACMUT tool4 [2] to generate mutant policies. To
the best of our knowledge, XACMUT is currently the most complete tool for
mutants derivation, since it combines together XACML mutants taken from the
literature with new ones that have been conceived to address the specific fea-
tures of XACML 2.0 policies. Specifically, Table 2 lists the XACMUT mutation
operators. For instance, the Policy Set Target True (PSTT) removes the Target
of each PolicySet ensuring that the PolicySet is applied to all requests while
the Policy Set Target False (PSTF) modifies the Target of each PolicySet such
that the PolicySet is never applied to a request. We refer to [2] for a complete
description of these operators.

5.3 Results

As for any test strategy that relies on a combinatorial approach, the size of the
test suite derived by the Simple Combinatorial strategy may rapidly grow up in

4 A release of the XACMUT tool is available at http://labse.isti.cnr.it/tools/xacmut

228 A. Bertolino et al.

relation with the policy complexity. As we discussed in Section 1, this may result
into a huge increase of time and effort due to test execution and results analysis.
To deal with this problem we propose in this chapter two different solutions:
the former based on the XACML smart coverage selection approach, the latter
relying on a test prioritization approach based on similarity. Here we provide
some experimental results to answer to the following research questions:

– RQ1: Is the XACML smart coverage selection better than test prioritization
based on similarity in terms of fault detection effectiveness?

– RQ2: Considering the same level of mutation score, is the difference in terms
of number of test cases between XACML smart coverage selection and sim-
ilarity based prioritization negligible?

To tackle these research questions we first derived for each policy in Table
1 the set of test cases by applying the Simple Combinatorial strategy provided
by the X-CREATE tool. Table 3 third column shows the size of each derived
test suite: as shown, the number of test cases has a large variation (from the
360 of pluto to the 2835 of iTrust) reflecting the differences in structures and
values of the considered set of policies. Then for a fair comparison we applied the
XACML smart coverage selection and the similarity based prioritization to the
derived test suites, using the number of test cases selected from XACML smart
coverage selection as a stopping criterion for the second one. The second column
of Table 3 shows the size of the test suites selected using the XACML smart
coverage selection criterion. As shown in the last column of the table, for most
cases (except pluto) the number of selected tests is quite low (less than 12%) and
the size of the reduced test suite remains manageable in terms of requests to be
run and manually checked. This evidences a good performance of the XACML
smart coverage selection approach in terms of test reduction. Finally, by means
of the XACMUT tool, for each of the six policies we generated the respective
set of mutants and used them for evaluating the test effectiveness of the various
test suites.

To tackle RQ1, first we derived the number of mutants killed by the test
suite selected using the XACML smart coverage criterion; then we applied to
the overall test suite the prioritization based on similarity and we calculated the
number of mutants killed by the subset of test cases having the same size of
the test suite derived by the XACML smart coverage selection criterion; finally
we computed the percentage of mutants killed by these two reduced sets with
respect to the mutants killed by the overall test suite. It is out of the scope of
this chapter to evaluate the effectiveness of the test strategy used in this ex-
periment; the objective is the evaluation of the capability of the two presented
approaches to provide a fault detection effectiveness as close as possible to that
of the overall test suite (whatever its effectiveness). The results are shown in
Table 4. In particular, the second column (labeled Cov.-Based) reports the num-
ber of mutants killed by the XACML smart coverage selection and summarizes

Validation of Access Control Systems 229

Table 3. Test Reduction of the Coverage Based Selection

Policy # Selected Tests # Tests % Selected Tests

LMS 42 720 6%

VMS 106 945 11%

ASMS 130 1760 7%

pluto 175 360 49%

iTrust 61 2835 2%

continue-a 169 1382 12%

Table 4. Test suites effectiveness in terms of mutation results

Policy Cov.-Based Sim.-Based # Killed Mutants

LMS 1357 (62%) 446 (20%) 2183

VMS 4031 (72%) 1151 (20%) 5550

ASMS 4771 (71%) 1440 (22%) 6649

pluto 13968 (94%) 8489 (58%) 14721

iTrust 11782 (98%) 8664 (72%) 11949

continue-a 1333 (76%) 783 (45%) 1741

in brackets the percentage of fault detection effectiveness reached by the reduced
test suite with respect to the complete one; similarly the third column (labeled
Sim.-Based) reports the number of mutants killed by the similarity based priori-
tization approach and in brackets the percentage. The fourth column of the same
table (labeled # Killed Mutants) reports the number of mutants killed by the
complete test suite. Considering column Cov.-Based, the loss in fault detection
(except LMS) varies from the 29% to the 2% , with an average value of 18%
while for Sim.-Based the loss varies from 80% to 28% with an average value of
60%. Thus using the number of test cases selected from XACML smart cover-
age selection as a stopping criterion for similarity based prioritization, the loss
in fault detection of Sim.-Based is on average more than triple score of that of
Cov.-Based. The data collected in this experiment give a positive answer to RQ1,
i.e. XACML smart coverage is better than prioritization based on similarity in
terms of fault detection effectiveness.

The second experiment focused on RQ2, i.e., we wanted to evaluate the differ-
ence in terms of derived number of test cases, between XACML smart coverage
selection and similarity based prioritization, in order to obtain comparable val-
ues of fault detection effectiveness. Thus we repeated a similar experiment of the
one performed for RQ1 considering as a stopping criterion for similarity based
prioritization the mutation score obtained by the XACML smart coverage selec-
tion. The results are shown in Table 5. In particular, the second column (labeled
#Sim.-Based TCs) reports the number of test cases necessary with the similar-
ity based prioritization to get the mutation scores of XACML smart coverage
selection reported in Table 4 second column (labeled Cov.-Based). For aim of

230 A. Bertolino et al.

Table 5. Test cases of Sim.-Based to get Cov.-Based mutation score

Policy # Sim.-Based TCs # Cov.-Based TCs

LMS 234 42

VMS 555 106

ASMS 843 130

pluto 335 175

iTrust 2502 61

continue-a 674 169

completeness we duplicated in the third column of Table 5 (labeled #Cov.-Based
TCs) the number of test cases selected with XACML smart coverage selection
criterion. As shown in the table, for four of the considered policies, the num-
ber of test cases of the similarity based prioritization is in average more than
4 times the size of the test sets of XACML smart coverage selection. For pluto
the size of the test suite selected by XACML smart coverage selection is around
half of that of the similarity based prioritization, while for the remaining iTrust
the difference between the two approaches is extremely high: the prioritization
based on similarity requires a number of test cases more than 41 times that of
the XACML smart coverage test suite. This second experiment evidenced that
the difference in terms of number of test cases between XACML smart coverage
selection and similarity based prioritization is not negligible and that XACML
smart coverage selection outperforms in all the cases the prioritization approach.
This negatively replies to RQ2.

6 Discussion and Conclusions

The results presented in the previous section show that the proposed coverage
criterion is very effective in terms of fault detection and test reduction, when
compared to similarity based prioritization. However, the main issue with this
approach is that it is not possible to improve further the test suite. Once the test
suite covering all rules is selected, there is no possibility to apply the criterion
to choose more tests to improve further the mutation scores (simply because
100% coverage is reached). Especially in cases where testing resources are still
available, it would be better to be able to run more requests. It is therefore im-
portant to provide a solution that enables to select more test cases. Moreover,
the experiments show that similarity based prioritization approach gets a low
mutation score evidencing that prioritizing requests according to a similarity
metric which is policy-independent and involves comparing only the content of
the requests does not allow to address the peculiarities and complex structure
of XACML policies. A possible solution to this issue would be to rely on a bet-
ter similarity based approach that takes into account the applicability of the
requests to the XACML policy. This approach will be thus tailored to the policy

Validation of Access Control Systems 231

under test and will be able to prioritize the requests triggering the rule decision
of an XACML policy, leading then to better results.

The threats to external validity of our work mainly relate to the fact that the
six policies used in the experiments may not be representative of true practice.
Therefore further experiments on a larger set of policies may be required to re-
duce this threat. In fact, several other real policies were available to us. However,
they included a quite small set of tests (they had 2 or 3 rules only). In those
cases, test selection did not make much sense because the policies are quite small
and they could easily be checked manually. On the other hand, our six policies
have quite different structures. Some have relatively few rules, while others have
a large number of rules. For some policies the number of resources is bigger than
the number of subjects (while for others it is not the case). Therefore, we are
confident in the general relevance of the results.

Furthermore, our current version of the coverage criteria does not take into
consideration the combining algorithm, which plays an important role when it
comes to selecting which rule applies in case of conflicts. Therefore, for some
cases, it is important to consider the combining algorithm at policy and policy
set level. It is therefore important to improve the coverage criterion by taking
this into consideration. Nevertheless, it is unclear whether combining algorithms
have an important impact on the quality of the selected test cases in terms of
fault detection effectiveness. This issue should therefore be investigated by using
other policies having many conflicts.

Finally, the effectiveness of the selection and prioritization approaches was
evaluated based on mutation analysis. As always, when mutation is used, there
is the issue whether the artificial faults represent or not real faults. However, in
the presented work, we have combined three different sets of mutation operators,
which are implemented by the XACMUT tool [2]. We are confident in the quality
of the mutation operators even though it would be interesting to perform a large
empirical study to assess the quality of access control mutation operators.

To conclude, we have presented in this chapter a survey on existing valida-
tion techniques of access control systems (focusing on XACML-based strategies
for test cases generation and reduction). We also have showed a comparison
between a test cases selection approach that relies on rule coverage and a simi-
larity based prioritization approach. The experiments showed that the proposed
coverage based selection approach is able to reach high mutation scores and to
select a test suite with a higher fault detection capability than the similarity
based prioritization approach. This evidenced that a better prioritization ap-
proach is needed for XACML test cases. In the future we plan to improve the
similarity criterion taking into account, as in the XACML smart coverage selec-
tion approach, also the XACML policy and the applicability of the requests to
the XACML policy. Moreover, we plan to extend the similarity-based prioritiza-
tion in order to consider other test case generation strategies, also based on the
combination of more than one subject, resource, action, environment.

232 A. Bertolino et al.

References

1. Bertolino, A., Daoudagh, S., El Kateb, D., Henard, C., Le Traon, Y., Lonetti, F.,
Marchetti, E., Mouelhi, T., Papadakis, M.: Similarity testing for access-control.
Submitted to Information and Software Technology (2013)

2. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: XACMUT: XACML 2.0
Mutants Generator. In: Proc. of 8th International Workshop on Mutation Analysis,
pp. 28–33 (2013)

3. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: Automatic XACML re-
quests generation for policy testing. In: Proc. of The Third International Workshop
on Security Testing, pp. 842–849 (2012)

4. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Schilders, L.: Automated
testing of extensible access control markup language-based access control systems.
IET Software 7(4), 203–212 (2013)

5. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Automatic test data generation for
XML schema-based partition testing. In: Proc. of Second International Workshop
on Automation of Software Test (AST), pp. 4–10 (2007)

6. Bertolino, A., Lonetti, F., Marchetti, E.: Systematic XACML Request Generation
for Testing Purposes. In: Proc. of 36th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), pp. 3–11 (2010)

7. Bertolino, A., Le Traon, Y., Lonetti, F., Marchetti, E., Mouelhi, T.: Coverage-based
test cases selection for XACML policies. In: Proc. of Fifth International Workshop
on Security Testing, SECTEST (2014)

8. Do, H., Mirarab, S., Tahvildari, L., Rothermel, G.: The effects of time constraints
on test case prioritization: A series of controlled experiments. IEEE Transactions
on Software Engineering 36(5), 593–617 (2010)

9. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: A family
of empirical studies. IEEE Transactions on Software Engineering 28(2), 159–182
(2002)

10. Genrich, H.J.: Predicate/transition nets. In: Brauer, W., Reisig, W., Rozenberg,
G. (eds.) APN 1986. LNCS, vol. 254, pp. 207–247. Springer, Heidelberg (1987)

11. Hemmati, H., Arcuri, A., Briand, L.: Achieving scalable model-based testing
through test case diversity. ACM Trans. Softw. Eng. Methodol. 22(1) (March 2013)

12. Hwang, J., Xie, T., El Kateb, D., Mouelhi, T., Le Traon, Y.: Selection of regres-
sion system tests for security policy evolution. In: Proc. of the 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 266–269
(2012)

13. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering 37(5), 649–678 (2011)

14. Kaur, A., Goyal, S.: A genetic algorithm for regression test case prioritization using
code coverage. International Journal on Computer Science and Engineering 3(5),
1839–1847 (2011)

15. Leon, D., Podgurski, A.: A comparison of coverage-based and distribution-based
techniques for filtering and prioritizing test cases. In: Proc. of 14th Interna-
tional Symposium on Software Reliability Engineering (ISSRE), pp. 442–453. IEEE
(2003)

16. Maly, K., Zubair, M., Nelson, M., Liu, X., Anan, H., Gao, J., Tang, J., Zhao, Y.:
Archon - A digital library that federates physics collections

17. Martin, E., Xie, T.: A fault model and mutation testing of access control poli-
cies. In: Proc. of 16th International Conference on World Wide Web (WWW),
pp. 667–676

Validation of Access Control Systems 233

18. Martin, E., Xie, T.: Automated Test Generation for Access Control Policies. In:
Supplemental Proc. of 17th International Symposium on Software Reliability En-
gineering, ISSRE (November 2006)

19. Martin, E., Xie, T., Yu, T.: Defining and measuring policy coverage in testing
access control policies. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 139–158. Springer, Heidelberg (2006)

20. Meyer, B.: Applying’design by contract’. Computer 25(10), 40–51 (1992)
21. Mouelhi, T., Fleurey, F., Baudry, B.: A generic metamodel for security policies

mutation. In: Proc. of Software Testing Verification and Validation Workshop
(ICSTW), pp. 278–286 (2008)

22. OASIS. extensible access control markup language (xacml) version 2.0 (February
1, 2005)

23. Pretschner, A., Mouelhi, T., Le Traon, Y.: Model-based tests for access control poli-
cies. In: Proc. of First International Conference on Software Testing, Verification
(ICST), pp. 338–347 (2008)

24. Realsearch Group at NCSU. iTrust: Role-Based Healthcare,
http://agile.csc.ncsu.edu/iTrust/wiki/doku.php

25. Rothermel, G., Harrold, M.J., Ostrin, J., Hong, C.: An empirical study of the
effects of minimization on the fault detection capabilities of test suites. In: Proc.
of International Conference on Software Maintenance, pp. 34–43 (1998)

26. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization: An
empirical study. In: Proc. of IEEE International Conference on Software Mainte-
nance (ICSM), pp. 179–188. IEEE (1999)

27. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for
regression testing. IEEE Transactions on Software Engineering 27(10), 929–948
(2001)

28. Tahat, L., Korel, B., Harman, M., Ural, H.: Regression test suite prioritization
using system models. Software Testing, Verification and Reliability 22(7), 481–506
(2012)

29. Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., Roos, R.S.: Timeaware test suite
prioritization. In: Proc. of the 2006 International Symposium on Software Testing
and Analysis, pp. 1–12. ACM (2006)

30. Xu, D., Thomas, L., Kent, M., Mouelhi, T., Le Traon, Y.: A model-based ap-
proach to automated testing of access control policies. In: Proc. of the 17th ACM
Symposium on Access Control Models and Technologies (SACMAT), pp. 209–218
(2012)

31. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
A survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

32. Yoo, S., Harman, M., Tonella, P., Susi, A.: Clustering test cases to achieve effective
and scalable prioritisation incorporating expert knowledge. In: Proc. of the 18th
International Symposium on Software Testing and Analysis, pp. 201–212. ACM
(2009)

33. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM
Comput. Surv. 29(4), 366–427 (1997)

http://agile.csc.ncsu.edu/iTrust/wiki/doku.php

Evaluation of Engineering Approaches

in the Secure Software Development Life Cycle�

Marianne Busch, Nora Koch, and Martin Wirsing

Institute for Informatics
Ludwig-Maximilians-Universität München

Oettingenstraße 67, 80538 München, Germany
{busch,kochn,wirsing}@pst.ifi.lmu.de

Abstract. Software engineers need to find effective methods, appropri-
ate notations and tools that support the development of secure applica-
tions along the different phases of the Software Development Life Cycle
(SDLC). Our evaluation approach, called SecEval, supports the search
and comparison of these artifacts. SecEval comprises: (1) a workflow
that defines the evaluation process, which can be easily customized and
extended; (2) a security context model describing security features, meth-
ods, notations and tools; (3) a data collection model, which records how
data is gathered when researchers or practitioners are looking for arti-
facts that solve a specific problem; (4) a data analysis model specifying
how analysis, using previously collected data, is performed; and (5) the
possibility to easily extend the models, which is exemplarily shown for
risk rating and experimental approaches. The validation of SecEval was
performed for tools in the web testing domain.

1 Introduction

The development of software requires among others decisions regarding meth-
ods, notations and tools to be used in the different phases of the Software De-
velopment Life Cycle (SDLC). In the development of secure applications, such
decisions might even be more relevant as new threats continuously appear and
more and more methods, notations and tools are developed to increase the level
of security. Therefore it is important to be able to identify, e.g., authentication-
related threats that can be mitigated by a method and to find out which tools
support this method. Furthermore, it is advantageous to know which tools can
work together.

However, often the selection of methods, tools and notations is performed
based on the experience of the developers, as all too frequent there is neither
time to investigate on alternatives to the artifacts used so far, nor to document
choices and lessons learned. In other cases engineers have to search in a time-
consuming process for appropriate artifacts, decide about the relevant research

� This work has been supported by the EU-NoE project NESSoS, GA 256980.

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 234–265, 2014.
c© Springer International Publishing Switzerland 2014

Evaluation of Engineering Approaches 235

questions and repeat evaluations. What could help is a systematic way of col-
lecting information on methods, tools and notations driven by specific research
questions and a subsequent selection.

To ease the tasks of recording information and of getting an overview of
existing artifacts the Common Body of Knowledge (CBK) [1] was implemented
as a semantic Wiki within the scope of the EU project NESSoS [2]. It provides
a useful knowledge base and underlying model, but leaves open the following
questions: (a) How could security-related features also be included as first-class
citizens in the knowledge base? (b) How can we use the approach not only
for recording and comparing features of methods, notations and tools, but also
for documenting the search process? (c) How is the process of data collection
and data analysis specified, to make sure that emerging research results are
comprehensible and valid?

The aim of our evaluation approach is to give answers to these questions and to
provide software and security engineers with mechanisms to ease the selection
and comparison of methods, tools and notations. Our conceptual framework
for evaluating security-related artifacts is called SecEval [3,4]. We selected
a graphical representation for SecEval, which comprises (1) a workflow that
defines the evaluation process, which can be easily customized and extended;
(2) a security context model describing security properties, vulnerabilities and
threats as well as methods, notations and tools; (3) a data collection model,
which records how data is gathered when researchers or practitioners do research
to answer a question; and (4) a data analysis model specifying, how reasoning
on the previously collected data, is done. However, we do not claim to provide a
one-fits-all approach for IT-security (which would overload any model), instead
we introduce an extensible basis.

In this chapter we focus on the evaluation process and its placement within
the software development life cycle. Conversely to [3] in which we presented the
architectural features of SecEval, we go into more details, concerning its re-
quirements, the process supported by SecEval, and the case study. In addition,
we show how the conceptual framework can be extended to cover approaches
like the OWASP’s Risk Rating Methodology [5] and Moody’s method evalua-
tion approach [6]. The applicability of an approach like SecEval is given by
an appropriate tool support and the usability of its user interface. Therefore we
plan an implementation of SecEval as an online knowledge base and present
the requirements of such an implementation.

The remainder of this chapter is structured as follows: Section 2 discuss re-
lated work and background. Section 3 gives an overview of the SDLC for the
development of secure software and systems. Section 4 describes our evaluation
approach SecEval in detail, before Sect. 5 presents its extensions. In Sect. 6 we
validate the approach by a case study in the area of security testing of web ap-
plications. We give an overview of the requirements for a future implementation
of SecEval in Sect. 7 and conclude in Sect. 8.

236 M. Busch, N. Koch, and M. Wirsing

2 Related Work

In this section, we discuss approaches that focus on security during the Soft-
ware Development Life Cycle (SDLC). We continue with general evaluation ap-
proaches and conclude with security-specific evaluation frameworks.

Secure Software Development Life Cycles. Incorporating security into the SDLC
means to add activities to ensure security features in every phase of SDLC.
Adopting a secure SDLC in an organization’s framework has many benefits and
helps to produce a secure product. These approaches enrich the software devel-
opment process by, e.g., security requirements, risk assessment, threat models
during software design, best practices for coding, the use of static analysis code-
scanning tools during implementation, and the realization of code reviews and
security testing. Hereby, the concrete phases of the SDLC and how they are
arranged is less important than the focus on security during all phases.

Therefore, many companies define their own secure SDLC in order to be able
to ensure the software they developed has as few vulnerabilities as possible. A
main contribution in this area is the Microsoft Security Development Lifecycle
(SDL) [7]. It is a software development process used to reduce software main-
tenance costs and increase reliability of software concerning software security-
related bugs. The SDL can be adapted to be used in a classical waterfall model,
a spiral model, or an agile model.

Besides, cybersecurity standards, as ISO 27001 [8] can be applied. They go
beyond software development and define an information security management
system that requires the specification of security guidelines for policies, processes
and systems within an organization. Important is that most standards do not de-
fine how to increase security, but which areas have to be taken into consideration
in order to create meaningful security guidelines.

Another example for supporting secure development along the SDLC is the
Open Web Application Security Project (OWASP). It comprises, beyond oth-
ers, a set of guides for web security requirements, cheat sheets, a development
guide, a code review and a testing guide, an application security verification
standard (ASVS), a risk rating methodology, tools and a top 10 of web security
vulnerabilities [9].

General Evaluation Approaches. Our approach is based on the so called “Sys-
tematic Literature Review” of Kitchenham et al. [10], which is an evaluation
approach used in software engineering. Their aim is to answer research questions
by systematically searching and extracting knowledge of existing literature. We
go even further using arbitrary resources in addition to available literature, such
as source code or experiments that are carried out to answer a research ques-
tion. The systematic literature review is executed in three main steps: first, the
review is planned, then it is conducted and finally results are reported (this pro-
cess is depicted in deliverable D5.2 [11, Fig. 3.2]). In contrast to Kitchenham’s
approach, our data collection process is iterative, and more specific for a chosen
domain as we specify a detailed structure of the context for which we pose the
research questions.

Evaluation of Engineering Approaches 237

The CBK (Common Body of Knowledge) [11] defines a model to collect and
describe methods, techniques, notations, tools and standards. We use the CBK
as a starting point for our SecEval’s approach. However, in our model we do
not consider standards and we aggregate the concepts of technique and method,
as an instance model immediately shows whether actions (in our case called
steps) are defined. In contrast to the CBK, SecEval focuses on security-related
features providing a fine-grained model. In addition, it defines a process for
the evaluation of methods, tools and notations. The CBK is implemented as a
semantic Wiki [1] and serves as a knowledge base to which queries can be posted.
Unlike the CBK, SecEval is not implemented yet.

SIQinU (Strategy for understanding and Improving Quality in Use) [12] is
an approach defined to evaluate the quality of a product version. It is based
on the conceptual framework C-INCAMI (Contextual-Information Need, Con-
cept model, Attribute, Metric and Indicator), which specifies general concepts
and relationships for measurement and evaluation. The latter consists of six
modules: measurement and evaluation project definition, nonfunctional require-
ments specification, context specification, measurement design and implementa-
tion, evaluation design and implementation, and analysis and recommendation
specification. Although C-INCAMI is used for the domain of quality evaluation,
we recognized several properties we considered relevant for our approach. Re-
garding the framework specification technique SIQinU provides an evaluation
strategy that is sketched as UML activity diagrams whereas C-INCAMI con-
cepts and relationships are specified as a UML class diagram. We also stick to
use UML for graphical representation of our approach and implemented separa-
tion of concerns through UML packages.

Moody [6] proposes an evaluation approach which is based on experiments
and centers the attention on practitioners’ acceptance of a method, i.e. its prag-
matic success, which is defined as “the efficiency and effectiveness with which
a method achieves its objectives”. Efficiency is related to the effort required to
complete a task and effectiveness to the quality of the result. In [6] practitioners
use methods and afterwards answer questions about perceived ease of use, per-
ceived usefulness and intention to use. This approach is integrated into SecEval

(cf. Sect. 5).

Security-Specific Evaluation Approaches. Security-related frameworks often con-
sider concrete software systems for their evaluation. An example is the OWASP

Risk Rating Methodology [5], where the risk for a concrete application or
system is estimated. We added vulnerability-dependent features of the OWASP
model to SecEval, as e.g., the difficulty of detecting or exploiting a vulnerabil-
ity. Features that are related to a concrete system and the rating of a possible
attack are introduced as an extension of SecEval, which can be found in Sect. 5.

The i* [13] metamodel is the basis of a vulnerability-centric requirements engi-
neering framework introduced in [14]. The extended, vulnerability-centric
i* metamodel aims at analyzing security attacks, countermeasures, and re-
quirements based on vulnerabilities. The metamodel is represented using UML
class models.

238 M. Busch, N. Koch, and M. Wirsing

Another approach that focuses on vulnerabilities is described by Wang et
al. [15]. Their concept model is less detailed than the i* metamodel. They create
a knowledge base that can be queried using the Semantic Web Rule Language
(SWRL) [16]. Unlike our approach, they do not use graphical models.

Moyano et al. [17] provide aConceptual Framework for Trust Models

which is also represented using UML. As trust is an abstract concept, which
emerges between communication partners, we do not consider it in SecEval.

3 Engineering Secure Software and Systems

In the NESSoS project, we address the development of secure software and sys-
tems starting from the early phases of the secure Software Development Life Cy-
cle (SDLC). The life cycle on which this section is based [18], considers not only
the traditional phases, such as requirements engineering, design, implementation,
testing and deployment, but also stresses the relevance of service composition and
adaptation. In addition, we have to ensure that the developed software is secure;
therefore we include assurance as an orthogonal topic of paramount importance.
Another aspect is risk and cost awareness, which is a key research direction we
foresee also as transversal since it links security concerns with business.

Figure 1 gives an overview of tools, methods and notations for which informa-
tion is available in the NESSoS Common Body of Knowledge (CBK) [1] relating
them to the phases of the SDLC in which they can be used. The graphical rep-
resentation includes both the traditional phases and the orthogonal ones men-
tioned above. On the left bottom corner Fig. 1 includes tools and methods that
correspond to a metalevel as they help developers to build more secure software
along the whole SDLC: On the one hand the Service Development Environment
(SDE) and the CBK, which were already implemented and are available online.
On the other hand two methods: our evaluation framework for security artifacts
(SecEval) and the Microsoft Security Development Lifecycle (SDL) [7].

The CBK provides the descriptions of methods, tools, notations and standards
in the area of engineering secure software; several of the tools described in the
CBK are integrated in the SDE tool workbench, which allows for connecting and
executing tools in a toolchain (see chapter [19]). The amount of these artifacts
that support the different phases makes it difficult to select the appropriate ones
for a project, lead to the development of the SecEval approach that provides
a systematic evaluation and comparison of methods, notations and tools, which
is further detailed in Sect. 4.

Security Requirements Engineering. The main focus of the requirements engi-
neering phase is to enable the modeling of high-level security requirements of the
system under construction. These requirements can be expressed in terms of con-
cepts such as compliance, privacy or trust and should be subsequently mapped
into more specific requirements that refer to technical solutions. Indeed, it is
important that security requirements are addressed from a higher-level perspec-
tive, e.g., in terms of the actors’ relationships with each other and by considering

Evaluation of Engineering Approaches 239

Requirements
Engineering

Deployment

Design

Implementation
Service

Composition

Testing

Assurance

Risk /Cost
Management

ActionGUI

Arachni

CL-Atse

Avantsaar Orchestrator

CARiSMA

BitBlaze

CORAS Risk Monitor

CORAS Tool

CacheAudit

CoSeRMaS

EOS

Experimental Platform JTrust

Jalapa

MasterDesign
Workbench

MONOPOLY

MagicSNP

MagicUWE

Maude-NPA

Metasploit

NICS CryptoLibrary

Nessus

New Relic Monitoring

Nexpose

OFMC

SDL Threat Modeling

PRRS

Parametric Relationship

Proverif

RIGER

Risk-aware usage control

SATMC

SECTET Framework

Si*

SSG GUI Builder

STS

SYNTHESIS

SAMOA

SCYTHER

Sec-MoSC

SecMER

SDE

Srijan

Tamarin

Tulafale

SecTro

UWE2XACML

VeriFast

WS-Taxi

X-CREATE

XACML2FACPL Zenoss Core /ZenPacks

ASLan

UML-based pattern
specification language

Expressive Aspect Composition
Language for For UML Stae Diagrmas

FACPL

Misuse Case

Ponder2

STS-ML

SecureUML

Si* Modeling Language

UML4PF

UMLl4SOA

UML Profile for Trust
and Reputation

UMLsec

USDL.SEC

UWE

XACML

Pattern-Based Law Analysis

Pattern-Based Cloud ISMS Problem-based CCThreadt Analysis

CBK

Abuse Frames

Acr@r : AC reconfiguration @
runtime

CLASP

Coras Method

Change Patterns

Contextual Requirements

GBRAM

ISMS-CORAS

KAOS

LINDDUN

MSRA

ProPAN

PriS

Probabilistic Security
by Contract

RheoStat

Risk Analysis Secure i*

SQUARE

SREF

SREP

SecEval

SecureTropos

SAC

Touchpoints

ATL Verification

Legend
SDLC
phase

Methods

Tools

Notation

Microsoft SDL

Tools & Methods for complete SDLCs

Fig. 1. Overview of Security-Related methods, notations and tools in the SDLC

security not only at the technological level. It is essential to analyze how secu-
rity may impact on other functional and non-functional requirements, including
Quality of Service/Protection (QoS/P), both at design-time and at run-time.
In this respect, agent-oriented and goal-oriented approaches such as Secure Tro-
pos [20] and KAOS [21] are currently well recognized as means to explicitly take
the stakeholders’ perspective into account.

Elicitation, specification – in particular modeling and documentation – and
verification of security requirements is a major challenge and will be even more
relevant in applications in the Future Internet (FI), as systems are becoming
more autonomous [22]. A significant number of methods has been proposed to
elicit and analyze security requirements, but there is a lack of empirical compar-
ative evaluations that support decisions to favor one over another. The SecEval
approach was developed to close this gap.

For the evaluation it is important to define the relevant research objectives,
i.e. which are the criteria for a comparison and selection. For example: “Which
methods exist that support the elicitation of security requirements for the embed-
ded domain?” or “Which notations can be used for the specification of security
requirements of web applications?”

240 M. Busch, N. Koch, and M. Wirsing

Design of Secure Software and Services. Separation of concerns is an essential
principle of software design that aims at managing the growing complexity of
software intensive systems [23]. Since the early 2000’s this software engineering
principle has been integrated in model-driven engineering, through a large re-
search and tooling effort. The aim is to provide convenient modeling techniques
that enable developers not only to graphically represent what customers need
regarding security in a concrete and intuitive manner, but also to seamlessly
implement it afterwards in any selected framework.

For example, modeling access control is currently supported in two major
UML-based methods: UMLsec [24] and SecureUML [25]. For web applications
the methods ActionGUI [26] (cf. chapter [27]) and UWE [28] (cf. chapter [29])
also extend UML. Both methods model access control using a variant of Se-
cureUML. Additionally, concepts as authentication and privacy, besides others,
are taken into account.

Alternative domain-specific languages emerged, which allow stakeholders with
heterogeneous backgrounds to model their concerns in the early development
phases. This reduces the cognitive distance between the abstract formal concepts
and domain experts’ knowledge, reduces the risk of errors in requirements elici-
tation and can thus drastically improve the quality of the implemented system.
As an example, recent work integrated security concerns in a business modeling
language to let project managers and company executives reason on security
issues on models expressed in concepts they can apprehend [30]. Other works
include access control policy enforcement mechanisms generated automatically
from high-level requirements models. The policies need to be submitted to checks
in order to ensure security aspects being modeled are preserved in the code [31].

Effective methods and tools to deal with security concerns in design models
are needed to manage the major threat of increasing cost to deploy, fix and
maintain security mechanisms. If we are able to design abstract models for these
concerns, they are much more difficult to understand at the code level, and even
more difficult to maintain, because of all the technical details introduced at the
code level.

The selection of appropriate methods and corresponding tools for the design
of secure applications remains a crucial decision and definitely will influence
other phases of the SDLC. A typical research question could be: “Are there any
tools that support secure web engineering and that can be used by non-experts?”
or “Which UML CASE tools support model-driven development with reduced
learning effort?”

Implementation of Secure Applications. Many security vulnerabilities arise from
programming errors that allow for their exploitation. For example, the OWASP
top ten list [9] for web application security flaws, clearly shows how coding issues
as injection, cross scripting and generally speaking wrong programming practices
are major issues to be tackled. The aim is therefore to use languages and tools
that minimize this threat. This can be partially achieved by emphasizing the
use of well-known programming principles and best practices in secure software

Evaluation of Engineering Approaches 241

development. In particular, language extensions or security patterns can be used
during development to guarantee adherence to best practices.

The main focus of this research area is not only language based security, se-
cure coding principles and practices but also programming platforms enforcing
security properties. Indeed, reliable programming environments are crucial to
minimize the presence of exploitable vulnerabilities in software-based services.
Research questions for selecting appropriate languages, methods and program-
ming environments are: “What are common security flaws in applications im-
plemented with C++?” and “Which methods and tools exists to harden the
application against these vulnerabilities?”

Testing. The implemented software has to be tested in different ways; both if it
fulfills the structural and functional goals, i.e. it has to be checked whether the
requirements are all achieved and it has to be tested for bugs. In particular, se-
curity testing consists of verifying that data is safe and of ensuring functionality.

The following are typical research questions that could be defined for the selec-
tion of appropriate vulnerability scanners for web applications. “Which vulner-
ability scanners are available for testing security features of web applications?”,
“Can these scanners run on Microsoft Windows, be freeware or provide at least
a free trial version and come with a command line or web interface?”

Deployment. When deploying applications at the end of the build process, this
is the appropriate moment to evaluate runtime characteristics of the applica-
tions in the context of the real environment. Deployment reviews for security
focus on evaluating security design and implementation and the configuration
of the application and the network. The objective is to verify if the settings
of the web server are correct like the configuration of file encryption, the use
of authentication and the applied personalization issues. Within the scope of
the Microsoft SDL, a checklist for the deployment reviews is provided, which
includes, e.g., checks for latest patches, installed updates or strong passwords.
A research question that arises in the deployment context is “Which methods
support systematic deployment reviews?”

Service Composition and Adaptation. The capability to achieve trustworthy se-
cure composition is a main requirement in security engineering. Building secure
services that cannot be further composed is an inherent obstacle that needs to
be avoided. The integration and interoperability of services in order to tailor and
enhance new services require adapting the service interfaces at different levels,
including the semantic level. Another aspect to consider include assessing the
trustworthiness of composition of services.

Integration and interoperability of services, is achieved among others using
techniques such as semantic annotations and secure adaptation contracts, as well
as decentralized secure composition and distributed component models. Services
and components need to be more open, with clearer interfaces and need to be
easily accessible from known repositories. Moreover, a research question could
investigate for example techniques that provide security measures for composed
services [18].

242 M. Busch, N. Koch, and M. Wirsing

Assurance. During the SDLC, there is a need to ensure security from many
perspectives. On the one hand, the security design decisions and the choices
of security mechanisms that are used must fulfil the identified security require-
ments. On the other hand, it is important that engineers are able to select the
appropriate mechanisms for implementing required security features.

As shown in Fig. 1 many tools were implemented to check different secu-
rity aspects of software that is under development. The focus of the assurance
activities are: (1) Security support for service composition languages; (2) Run
time and platform support for security enforcement; and (3) Security support
for programming languages, aiming for verification. For example, tools such as
Dafny [32] (for Dafny programs) and Verifast [33] (for C and Java programs)
address assurance aspects in order to verify correctness, i.e. that software ful-
fills their requirements. A research question regarding methods and tools could
be: “Which are helpful tools for assessing the trustworthiness of a system under
development?”

Risk and Cost Management. The value of security solutions and their return on
investment must be demonstrated from a business oriented perspective. There-
fore, risk analysis plays an important role when selecting security solutions and
implementing security measures. The integration of risk and cost analysis in the
whole SDLC, and an extension of the overall approach towards execution time,
is the necessary response to these needs.

The main objective of the identification and assessment of risks and the analy-
sis of the costs of associated countermeasures is to exploit an engineering process
that optimizes value-for-money in terms of minimizing effective risk, while keep-
ing costs low and justified. A set of methods and tools are available in this
context, among others those of the CORAS tool suite [34].

Relevant research questions in the area of security risk and associated cost
management are: “What are most appropriate methodologies for performing risk
management and cost assessment through the complete SDLC?” and “Which
tools support conduction of risk management?”

4 Systematic Evaluation of Engineering Approaches

This section, which is an extension of [3], provides the description of SecEval,
a conceptual evaluation framework for methods, notations and tools supporting
the development of secure software and systems. The framework can be used to
collect security-related data and to describe security-relevant metrics, using them
for reasoning and obtaining the appropriate techniques for a specific project. An
example for a simple evaluation is required to answer the question posted in
the implementation phase: “Which library for authentication should be used?”
A more elaborated one could be the evaluation of risks for a concrete software
system, which is a question that is relevant for all SDLC phases.

The conceptual framework comprises a structural part and a behavioral part,
defined as a model for evaluation and an evaluation process, respectively. For the

Evaluation of Engineering Approaches 243

graphical representation of the evaluationmodel a UML class diagramwas chosen;
the evaluation process is represented as a UML activity diagram. In the remainder
of the section, we present the requirements engineering work done to elicit the
main steps of the process, followed by the main concepts of SecEval.

4.1 Evaluation Process

We start by eliciting the requirements of such a framework, i.e. which stakehold-
ers are involved, which concepts play a role in secure software and evaluation
of methods, tools and notations, and how those concepts are related. Therefore,
the first step was to name common stakeholders for secure software: security
engineers (i.e. security designers and developers), normal users of the software
and attackers. In some cases, users can attack software without being aware of it,
e.g., when they have a virus installed on their computer. We consider those users
also attackers, as well as developers which are, e.g., trying to smuggle malicious
code into software. Figure 2 depicts stakeholders and use cases in a UML use
case diagram.

We grouped use cases based on their purpose in evaluation and development
use cases. The Evaluation package at the top contains all use cases related to
collecting, reasoning and selecting, e.g., tools, whereas the package Development
at the bottom of the diagram refers to security-related tasks within the SDLC,
such as identification of security requirements, design and implementation of
these security requirements, identification and patch of vulnerabilities. The �in-
clude� dependencies show the order these use cases have in the SDLC: imple-
menting secure software requires having a design, and a design implies that
requirements were elicited beforehand. Both, the attacker and the security en-
gineer can identify vulnerabilities, whereas the former usually attacks them and
the latter tries to patch them, which is modeled using an �extend� dependency.
Those patches can then be installed by users (which also might happen by using
an automatic update function).

From time to time, tasks within the development package require evaluation
activities to respond for example to questions like “Which tool should be used
for gathering security requirements or for designing secure web applications?”.
In fact, for security experts it is helpful to be aware of common security methods
and tools that can be used for a specific task. For further examples of research
questions related to the different SDLC phases the reader is referred to Sect. 3.

Figure 3 depicts the process of working with SecEval, which is represented
as a UML activity diagram. The first step of the process is the data collection
based on the defined research questions. Therefore different sources (as papers,
reports, websites, . . .) are gathered, which are then analyzed in the second step.
This analysis process consists of extracting information from the data collected,
activating some reasoning activities and expressing the results using SecEval’s
security context model. Notice that this process has to be adapted (and usually
simplified) for a specific evaluation. Writing down the exact process might not
always be necessary, as many tasks can be executed in parallel or in any order
(indicated by horizontal bars).

244 M. Busch, N. Koch, and M. Wirsing

Fig. 2. Stakeholders and Use Cases

In practice the basic ingredients of the evaluation process are a set of tasks that
has to be performed and information pieces relevant for these tasks. Tasks are
represented as UML activities like select queries, execute search/experiments and
define filters. Information pieces are represented as objects in the UML model
showing which input is required for a task and which are the results. Examples for
identified objects are: research question, used resource, query, filter and criterion.

4.2 Systematic Evaluation – Model Overview

The use cases from our requirements analysis and the objects of the evaluation
process were a starting point to identify relevant concepts related to security for
using and evaluating methods, notations and tools during the software engineer-
ing process. We clustered these concepts in three packages: Security Context,
Data Collection and Data Analysis. Figure 4 shows the model represented as a
UML class diagram that can be instantiated with concrete methods, tools and
notations whenever needed.

Evaluation of Engineering Approaches 245

Fig. 3. SecEval’s Evaluation Process

246 M. Busch, N. Koch, and M. Wirsing

Fig. 4. SecEval: Model Overview [3]

4.3 Security Context

The Security Context package provides a structure for the classification of
(security-related) methods, notations and tools together with security properties,
vulnerabilities and threats. Within this package we represent a security feature
as a class element and introduce an abstract class Mechanism from which the
classes Method, Notation and Tool inherit common attributes such as goals,
costs, basedOnStandards, etc. We focus on security aspects, but the model can
also record non-security mechanisms.

In Fig. 5, for convenience enumerations’ texts are grey and the background of
classes which can directly be instantiated is colored. All attributes and roles are
typed; however the types are not shown in the figures due to brevity. The main
characteristics of the class Mechanism are specified as boolean types (can.., has..,
is..). In an implementation of our model, it should be possible to add further
items to the enumerations.

A Mechanism is described by a problem statement, by the goals it strives
for, by its costs and by the consequences it implies. Mechanisms can be based
on standards or be standardized themselves. Before applying a mechanism, the
preconditions that are necessary for using it have to be fulfilled. Furthermore, an

Evaluation of Engineering Approaches 247

Fig. 5. SecEval: Security Context [3]

estimation regarding technical maturity and adoption in practice should be given.
Several levels of usability can be stated indicating the experience users need in or-
der to employ a mechanism, e.g., they need to be experts.

The classes Method, Tool and Notation inherit all these properties from
the class Mechanism and have their own characteristics defined by a set of specific
attributes. For example, a Method has some general attributes, such as input,
output and if it is model-driven. These attributes are used to describe the method
at a high level of abstraction. Note that a method or step can be supported by
notations or tools. These facts are represented in the model with corresponding
associations between the classes.

For a Notation, we consider characteristics such as whether the notation is
graphical, textual or based on a tabular representation. We also added a level
of formality, which ranges from informal to formal. Notations can be based on
other notations, for example many context-specific extensions for UML exist.

The description of a Tool is given among others by the information of lan-
guages it is written in, operating systems it supports, frameworks it uses and
licenses under which it is released. A tool can be based on other tools, which is
the case when libraries are used or when plugins are written.

248 M. Busch, N. Koch, and M. Wirsing

A distinguishing characteristic of our evaluation framework SecEval is the
refinement of methods and tools based on the phases of the SDLC. As far as we
know, no phase-related attributes are needed to describe features of notations.

Figure 6 depicts our Tool class and the abstract class TAreasOfDev, which is
a wildcard for detailed information about the tool in relationship to the phases
of the NESSoS SDLC [35]: requirements, design, implementation, testing, assur-
ance, risk & cost management, service composition and deployment. We added
an additional category to distinguish methods and tools that operate at the run-
time of a system. A tool can eventually support several development phases. The
meaning of attributes should be self-explaining, but is described in more detail
in [36].

Fig. 6. Security Context: Details of Tools

Similarly, a method can be redefined according to the phases in the SDLC
it covers, as depicted in Fig. 7. For example a method, such as Microsoft’s
Security Development Lifecycle [7], can be used as a basis for designing secure
applications, but also covers other phases. In this case, the attributes of the
classes DesignM and ImplementationM and others would be used to describe
this method.

As seen before, a tool supports a certain method. However, we have not yet
defined the quality of this support. Does the tool fully support the method?
Does it provide partial support? Which features are not supported? We add this
information to the model using the association class ToolSupportedMethod,
as depicted in Fig. 8 with a dotted line. The association class itself is in-
herited from the class Method, thus can redefine its attributes. For instance,
a design tool can partly support a model-driven method (e.g., by facilitating

Evaluation of Engineering Approaches 249

Fig. 7. Security Context: Details of Methods [3]

the modeling process), although it cannot generate artifacts. In this case, De-
signM.canGenerateArtifacts (cf. Fig. 7) would be set to false.

A method can extend other methods, which means it might also change them.
In this case the role extendedMethods should be further specified, we recommend
to add an association class which inherits from the class Method (similar to the
association between method and tool). In this way, it can be exactly described if
and how the original methods are modified. It is also possible that other methods
are used without any changes (role usesMethods).

We adopted the abstract class KnowledgeObject which is used in the
CBK as a super class for all elements which are described by SecEval. In Sec-

Eval, we applied separation of concerns so that only very general descriptions
remain as attributes in a knowledge object, which can be applied to all elements
(cf. Fig. 5). Therefore, the class KnowledgeObject has associated names, tags
and related sources, which could be any kinds of sources, as publications or
URLs. We represent security issues, such as confidentiality, integrity and pri-
vacy by the class Security Property. The attribute SecurityGoal, which is
denoted by a string, describes the goal of the property. For instance “integrity
refers to the trustworthiness of data or resources” [37].

A Vulnerability is “a weakness that makes it possible for a threat to
occur” [37]. Thus, it endangers security properties. Examples are XSS, SQL Injec-
tion,BufferOverflows, etc.The objective of certainmethods is to detect vulnerabil-
ities or shield them from being exploited by a threat. Every vulnerability is located
at least in one location (which is modeled as a UML enumeration). Furthermore,
we include the categorization scheme from OWASP TOP 10 [9] (which is adapted
from the OWASP Risk Rating Methodology [5]) using prevalence, impact level,
detectability and exploitability. Regarding the latter two roles, the Difficulty

250 M. Busch, N. Koch, and M. Wirsing

Fig. 8. Security Context: Connections between Tools, Notations and Methods

“theoretical” means that it is practically impossible to detect or exploit a vulner-
ability (cf. Fig. 5).

A Threat is “a potential occurrence that can have an undesirable effect on
the system assets or resources” [37, p.498]. We treat a threat as a kind of method
which is vicious. At least one vulnerability has to be involved, otherwise a threat
is not malicious (and the other way around), which is denoted by the multiplicity
[1..*]. Additionally, threats can be mitigated by other methods.

4.4 Data Collection

High-quality data is the basis needed to obtain good evaluation results. There-
fore we create a rigorous schema which describes a set of properties that have
to be defined before starting collecting data. The model we build contains all
the relevant features needed during data collection. It is a approach based on
Kitchenham’s systematic literature review [10]. Conversely to Kitchenham’s ap-
proach, we do not restrict ourselves to reviewing literature; we also include in-
formation about tools which cannot always be found in papers, but on websites
and on information which is obtained from benchmarks or experiments.

Data collection comprises among others a search process that can be per-
formed in different ways, e.g., the search can be automated or not, or it can be a
depth-first or a breadth-first search (c.f. Fig. 9). Depth-first means, that the aim
of a search is to extract a lot of detail information about a relatively small topic,
whereas a breadth-first search is good to get an overview of a broader topic.

Similar to Kitchenham’s literature review, research questions are used to de-
fine the corner stones and the goals of the search. Please note that for us the
term “research” does not necessarily refer to scientific research. Queries can be
derived from research questions. As different search engines support different
types of queries, concrete queries are specific for each resource, as e.g., Google
Scholar. Queries can also refer to questions which are used as a basis for ex-
periments (cf. Sect. 6). In addition, resources that will serve as data sources for
the evaluation need to be chosen. If a concrete query matches sources, as pa-
pers, websites or personal answers, we classify the source at least by author and

Evaluation of Engineering Approaches 251

Fig. 9. SecEval: Data Collection [3]

description (as an abstract) and provide information about the type of source
and at least one reference where to find it. The process of data collection and
data analysis is depicted in Fig. 3.

In Fig. 9 the use of an association class for ConcreteQuery (depicted by a
dashed line) denotes that for each pair of ProcessPhase and UsedResource, the
class ConcreteQuery is instantiated. The concrete search expression is derived
from a general search expression.

For example, the general search expression could be “recent approaches in Se-
curity Engineering” and we want to ask Google Scholar and a popular researcher.
For Google Scholar we could use “"Security Engineering" 2012..2013” as a con-
crete search expression and the concrete expression for asking a researcher could
read: “I’m interested in Security Engineering. Which recent approaches in Secu-
rity Engineering do you know?”

4.5 Data Analysis

Data is collected with the purpose to obtain an answer to research questions
based on the analysis of the data.

Figure 10 depicts relevant concepts for analyzing data. First, we have to spec-
ify which type of strategy we want to use. Are we limited to quantitative anal-
ysis or do we focus on qualitative analysis? Accordingly, one can later refer to
Kitchenham’s checklists for quantitative and qualitative studies [10] to ensure
the quality of the own answers to the research questions.

The analysis strategy defines which algorithm is employed and makes sure
that the result of the algorithm fits to a criterion regarding meaning and metric.
The algorithm does not have to be executable on a computer, but it might be
implemented by a tool.

252 M. Busch, N. Koch, and M. Wirsing

Fig. 10. SecEval: Data Analysis [3]

Criteria can be grouped by categories. A criterion gives more information
about data values as it defines the data type (string, list of booleans, ..) and the
metric (milliseconds, ..). In addition, a priority can be defined which is useful
when methods, tools or notations should be compared.

Information can be extracted from the sources which were found in the data
collection phase (see �use� dependency starting from the class ExtractedInfo
in Fig. 4), or they can be processed using an analysis algorithm.

For example, a relation IsCompatible NxN ToolIO can be seen as instances
of an analysis algorithm. It expresses that “two notations are compatible if there
exists a tool chain that can transform the first given notation into the second
one” [35]. In this case, the algorithm might contain the depth-first search for a
tool-chain consisting of tools where the output of one tool serves as input for
the second one. The automation of such an algorithm is challenging, because in-
and output of tools may differ.

Besides, a filter can be specified to disqualify results according to certain
criteria as costs or quality. This filter is finer grained than the filter that is defined
by UsedResource’s attribute exclusionCriteria used in the data collection,
which only can be based on obvious criteria, such as the language the source is
written in. In addition to this, the filter for data analysis accesses information
as well as criteria and thus can exclude, e.g., methods, tools or notations from
the evaluation that do not meet a high-priority requirement.

Evaluation of Engineering Approaches 253

A valid question is how information, criteria and the security context model fit
together. This is shown in Fig. 4: information can be stored in an instance of our
security context model, which provides a sound basis when collecting data about
methods, tools and notations. Consequently, the attributes name and dataType

of a Criterion can be left blank when information is stored in an instance of our
model, as attributes have a name and are typed. However, these attributes are
needed when describing information which is not directly related to an instance
of an artifact or not meaningful without their connection to a concrete analysis
process.

Contrary to the context model, neither the collection of data nor the data
analysis are security specific and thus can be applied in the same way to other
domains.

5 Extensions of SecEval

As stated in the introduction, the core of SecEval cannot include all attributes
which could be needed in the future. Therefore, SecEval’s models are exten-
sible, which means that users can add classes and attributes for their domain
of research. In this section, we introduce an extension to show how SecEval

can be enhanced in order to support OWASP’s Risk Rating Methodology [5]. In
addition, we provide an extension for Moody’s method evaluation approach [6].

OWASP’s Risk Rating. To rate risks for concrete IT systems is a common task
for security engineers. OWASP’s Risk Rating Methodology provides categories
and terms for this task. Figure 11 depicts the extended model whereby added
connections use thick line linkings.

The class Threat, known from the basic context model, inherits its features
to a concrete Attack. The severity of the risk (which is an attribute of Threat)
can be calculated by likelihood multiplied with impact. The likelihood is de-
rived from the factors which describe the vulnerabilities and the threat agents,
whereas the impact is determined by the concrete technical and business-related
consequences. Therefore, each enumerations’ literal is mapped to a likelihood
rating from 0 to 9. For more information the interested reader is referred to [5].

Moody’s Method Evaluation Approach. Experimental approaches are used to
evaluate the success of using a method in practice. Our extension of SecEval
to express Moody’s concepts is shown in Fig. 12: we introduce a Test class that is
connected to at least one method and vice versa. The test uses the method on at
least one example and is executed by TestingParticipants. Each participant
assesses the method using Moody’s evaluation criteria:

– “Actual Efficiency: the effort required to apply a method.
– Actual Effectiveness: the degree to which a method achieves its objectives.
– Perceived Ease of Use: the degree to which a person believes that using a
particular method would be free of effort.

254 M. Busch, N. Koch, and M. Wirsing

Fig. 11. Inclusion of basic risk evaluation approach

– Perceived Usefulness: the degree to which a person believes that a particular
method will be effective in achieving its intended objectives.

– Intention to Use: the extent to which a person intends to use a particular
method.

– Actual Usage: the extent to which a method is used in practice” [6].

Usually, the average value of the participants’ results is used as final evaluation
result for the method under test.

6 Validation of the Evaluation Approach

The soundness of our SecEval evaluation approach is proved by a case study
on security testing of web applications.

Web applications are the focus of many attacks. Thus, many methods such as
“penetration testing” or “vulnerability scanning” are used to identify security
flaws. These methods are supported by many commercial and open-source tools
and frequently it is not easy to decide which one is the more suitable for the
tests to be performed. In this section, we use our SecEval approach to evaluate
vulnerability scanners for web applications.

Data Collection. According to the SecEval approach the first step consists of
specifying the data that should be collected. This is done by an instance model as

Evaluation of Engineering Approaches 255

Fig. 12. Method extension using Moody’s method evaluation approach

shown in Fig. 13, which depicts instances of the classes we have already defined in
Fig. 9. For example, instances of the class ResearchQuestion define two research
questions, a high-level and a concrete one. We used identical background colors
for instances of the same classes and omitted all name attributes in case a name
(e.g., p3) is given in the header of an instance.

Research question q1 (“Which security-related tools and methods are avail-
able and how do they compare?”, cf. Fig. 13) is very general. In the first process
phase p1, 13 methods and 18 tools were selected [38]. More detailed information
was gathered in the second process phase p2 about: vulnerability scanning, pen-
etration testing, fuzzing and the classification into black- grey- and white-box
testing. Examples for tools are WSFuzzer, X-Create and WS-Taxi, just to men-
tion a few. As we already added most of the methods and tools we found to the
CBK [1], we focus on q2 in this section.

Research question q2 (“Which vulnerability scanners are available for testing
security features of web applications?”) is a typical question which could be
asked by security engineers working in a company. The “sources” (i.e., tools)
we selected for analysis were [39]: a) Acunetix Web Vulnerability Scanner1, b)
Mavituna Security - Netsparker2, c) Burp Scanner3, d) Wapiti4, e) Arachni5, f)
Nessus6, g) Nexpose7 and h) Nikto8.

The instance experienceWithTestScenario describes how the data is gath-
ered by testing the vulnerability scanners. Please note that SecEval does not
impose the completion of the data collection phase before the data is analyzed.
This means that the tests were partly executed on tools which were later classi-
fied as inappropriate. This becomes clear when we think of how evaluation works
in practice: sometimes we have to collect a bunch of data before we observe infor-
mation which, e.g., leads to the exclusion of a tool from the result set.

1 Acunetix. http://www.acunetix.com
2 Netsparker. https://www.mavitunasecurity.com/netsparker
3 Burp Scanner. http://portswigger.net/burp/scanner.html
4 Wapiti. http://www.ict-romulus.eu/web/wapiti
5 Arachni. http://www.arachni-scanner.com
6 Nessus. http://www.tenable.com/de/products/nessus
7 Nexpose. https://www.rapid7.com/products/nexpose
8 Nikto. http://www.cirt.net/Nikto2

http://www.acunetix.com
https://www.mavitunasecurity.com/netsparker
http://portswigger.net/burp/scanner.html
http://www.ict-romulus.eu/web/wapiti
http://www.arachni-scanner.com
http://www.tenable.com/de/products/nessus
https://www.rapid7.com/products/nexpose
http://www.cirt.net/Nikto2

256 M. Busch, N. Koch, and M. Wirsing

Fig. 13. Case Study: Data Collection

Data Analysis. The analysis phase consists in defining the analysis strategy
and selecting a filter that enforces the requirements (limitations) defined for
question q2. Figure 14 depicts instances of the data analysis model we defined
in Fig. 10.

Before going into detail about particular results of our experiments, we first
take a look at the overall result regarding our research question q2. Figure 14 thus
depicts an instance of the class ProcessedInfo, which is called weightedResult

Values.
Only four tools passed our filter: Arachni and Nikto, which provide command-

line interfaces and Nessus and Nexpose, which also provide web interfaces. From
our list of tools from above, the trial of a) only allows to scan predefined sites.
Tools b) and c) do not support a command line or web interface in the versions
that are free. A run of tool d) on our test target Multidae9 took six hours.

9 NOWASP (Mutillidae). http://sourceforge.net/projects/mutillidae

http://sourceforge.net/projects/mutillidae

Evaluation of Engineering Approaches 257

Fig. 14. Case Study: Data Analysis – Results [3]

Apart from information available online, we experimented with the tools that
passed the filter, in order to obtain data for our tool evaluation (q2). We eval-
uated the following criteria (and weighted them as indicated in the brackets,
cf. queryForTestScenario):

– Installation simplicity (0.5)
Do any problems occur during installation?

– Costs (1)
How much do the tool cost? Is it a one-time payment or an annual license?

– Processor load (1)
How high is the CPU load while running the scanner

– Clarity and intuitiveness (1)
Is the tool easy to understand, clearly structured and user-friendly

– Run duration (1)
How long does a scan take?

– Quality of the report (2)
How detailed is the report of the scan? Which information does it contain?

– Number of detected vulnerabilities (4)
How many vulnerabilities does the tool detect on our test environment?

As we can see in Fig. 14, an algorithm is involved, which calculates results
according to a rating. The rating is depicted in Fig. 15.

Lower factors of a criterions’ priority denote that we consider the criterion
less important. Table 1 contains the measured results as well as the average10

and weighted11 results.
In addition, we show how intermediate values of our tests could be described in

our data analysis model in Fig. 16, as e.g., the costs of the tools or the operating
systems it runs on. Concrete instances of Information classes are not depicted;
the interested reader is referred to [39].

10 AVG: average
11 WAVG: weighted average according to ratings

258 M. Busch, N. Koch, and M. Wirsing

Fig. 15. Case Study: Data Analysis – Ratings

Table 1. Case Study: Final Tool Ranking (adapted from [39])

Tool Inst. Costs CPU Clarity Time Vuln. Report AVG10 WAVG11

Nessus 1 2 2 1 4 1 2 1,86 1,86

Arachni 1 1 4 4 2 1 3 2,29 2,42

Nexpose 4 4 1 2 3 3 1 2,57 2,10

Nikto 1 1 3 4 1 4 4 2,57 3,19

Security Context Model. We integrated all four tools into the NESSoS tool work-
bench, called SDE [40]. If they are executed from within the SDE, URL and port
of the web application under test have to be provided by the user. To try out the
vulnerability scanners it is possible to use Multidae as a target, as we did above.
Multidae comes with Metasploitable12, an intentionally vulnerable Linux virtual
machine. Therefore, the default configuration for the integrated SDE tools point
to a local Multidae instance, but can be changed at any time.

As SecEval’s context model is more detailed, we modeled the context of
vulnerability scanning of web applications and two of the tested tools: Nessus
and Nikto. Figure 17 shows an instance diagram of the context model, which we
have already depicted in Fig. 5. The association between vulnerabilities, as well
as further supported methods are not depicted in Fig. 5; the interested reader
is referred to the model example that can be downloaded [36].

12 Metasploitable.
http://www.offensive-security.com/metasploit-unleashed/Metasploitable

http://www.offensive-security.com/metasploit-unleashed/Metasploitable

Evaluation of Engineering Approaches 259

Fig. 16. Case Study: Data Analysis – Values

The vulnerabilities that are modeled are the top 3 from OWASP’s top 10
project 2013 [9]. Vulnerabilities may be caused by other vulnerabilities, for ex-
ample invalidated input can lead to injection vulnerabilities.

We recommend using additional classes for extensions, such as a class to detail
a test run, using attributes as run duration or processor load. Although building
the instance model was straight forward, our experience with SecEval and the
UML CASE tool MagicDraw showed us that the layout is not inviting to read
the containing information. Consequently, we are looking forward to a future
implementation of SecEval as a kind of semantic Wiki, as described in the
following section.

7 Towards an Implementation of SecEval

Currently, we are implementing the concept of SecEval as a flexible web appli-
cation. The aim is to provide a Wiki-like knowledge base for software and security
engineers as well as for developers. Advantages of a web-based implementation of
SecEval would be that connections to existing elements (like other methods or
vulnerabilities), can be added without building the knowledge base from scratch
and that data sets of previous evaluations remain available for future research.

The SecEval Wiki will support the following use cases: (1) viewing Knowl-
edge Objects (knowledge objects), (2) editing knowledge objects, (3) import-
ing external information and (4) searching for information to answer research

260 M. Busch, N. Koch, and M. Wirsing

Fig. 17. Case Study: Instances of the Context Model (excerpt) [3]

Evaluation of Engineering Approaches 261

questions, which can result in executing a tool-supported SecEval evaluation
process.

Viewing knowledge objects. For the implementation of SecEval’s context model,
we experiment with a system that provides three views on each knowledge object:

– A tabular view that shows attributes’ values, grouped by classes (presented
as boxes) of SecEval’s models. Which attributes are shown can be defined
by the user. This view is especially useful for comparing knowledge objects.

– A UML view that presents an instance model of SecEval’s UML model.
The advantage of this view is that it is easy to examine links between several
knowledge objects.

– A view that shows continuous text, enriched by boxes that can be placed
between paragraphs or beside the text, similar to Wikipedia13.

The user should be able to switch between these views at any time.

Editing knowledge objects. When creating a new element in the Wiki, the page
is empty at first and shown in the continuous text view so that text can by
written and structured by headings and paragraphs immediately, like in most
Wikis. Additionally, on the side of the screen, common attributes are presented
in a sidebar which can be dragged onto the Wiki page in order to fill them with
actual values and to arrange them within the text or in boxes. These attributes
correspond to attributes from SecEval models. For example, the user can spec-
ify some attributes of the Tool class, as technical requirements, licenses or the
language the tool is written in.

Usually, information about knowledge objects has already been stored in con-
tinuous text form. In such a case, the application should allow to easily mark
text and to click on an attribute on the sidebar. The attribute is then linked to
the text so that it changes automatically when the text is altered. It is important
to store previous versions not only for continuous text, but also for attributes,
as both can easily be changed or deleted.

For the sidebar (which is resizable up to full-screen) it is also useful to imple-
ment different views, for example:

– a UML view, showing the full SecEval class diagrams for experts. This is
the counterpart to the instance view for a concrete entry of the Wiki.

– an auto-suggestion view in which single attributes are shown according to
an attribute-based suggestion system. This system can then recommend at-
tributes which seem to be useful in the current context, as e.g., attributes of
testing tools, as soon as it becomes clear that a user describes a tool from
the domain of testing.

Recommendation includes that the system needs to explain rules inferred by
SecEval , as e.g. that it is useful to describe a tool and a corresponding notation
in two separate entries, even if the notation has only been used by this tool so

13 Wikipedia. https://www.wikipedia.org/

https://www.wikipedia.org/

262 M. Busch, N. Koch, and M. Wirsing

far. A focus is on the connection between several knowledge objects in our Sec-
Eval system and on the possibility to add data which is not only associated
with one knowledge object, as e.g., evaluation results.

Importing external information. Another useful feature is syndication, i.e. to be
able to insert text from other web pages, as from Wikipedia or from vulnerability
management systems, which are correctly cited and updated automatically. This
task could be eased by step-by-step wizards and good attribute recommendation
according to the attributes selected so far and the information provided. For
example, if the user inserts the URL of aWikipedia article, the article is displayed
in a window that allows selecting passages and to transfer them to the SecEval
system immediately, along with a linked cite.

Another requirement is the import of text from PDF files. Hereby, a challenge
is to deal with licensed books or papers, because citing small passages is usually
allowed, whereas publishing the whole document in the web is prohibited.

Searching for information to answer research questions. In addition to the im-
plementation of SecEval’s context model, the application should support the
process of collecting and analyzing data to answer a concrete research question.

Simple questions can be answered using a full-text search. More complex
questions can involve several knowledge objects and their attributes, so that the
search function has to be able to rely on the associations between knowledge
objects stored in the knowledge base.

If the requested information cannot be found in the knowledge base, a wizard
might suggest using SecEval’s process to collect and analyze information. Ide-
ally, the wizard allows jumping between several process steps while offering to
record information for SecEval’s data collection and data analysis models. The
users can decide whether their research question should be public14. At the end
of a complex evaluation process, artifacts as research questions, used sources and
the concrete approach of a research can be published to save time and money in
case a similar question will arise again in the future.

A general requirement for our implementation is the usability of the interface.
For example, the CBK provides a complex search function, but it turned out that
it is rarely used, because attributes have to be selected by using their technical,
short names. For SecEval, it might be helpful to present descriptions and to
suggest attributes according to a catalogue that learns how users tend to name
a concept. Ideally, this search does not require a complex interface, but supports
the user with auto-completion or wizards when typing a query into a text box.

8 Conclusions

We presented a conceptual framework, called SecEval, for the structured evalua-
tion of so-called knowledge objects –methods, tools, notations, security properties,

14 Discussions can also help to answer a research question, therefore it is desirable to
connect the Wiki with question/answer systems as, e.g., Stackoverflow
http://stackoverflow.com/.

http://stackoverflow.com/

Evaluation of Engineering Approaches 263

vulnerabilities and threats – in the area of secure software. SecEval is based on
the structured literature review by Kitchenham et al. [10] and inspired by the C-
INCAMI framework of Becker et al. [12], to name a few. Our approach is designed
to ease the process of doing research or obtaining pragmatic answers in the area of
security whether the research question aims at scientific or engineering issues.

SecEval is represented as a UML model and follows the separation of con-
cerns principles. These concerns are:

– An evaluation process that specifies the set of tasks and information pieces
needed to evaluate methods, tools and notation in the security area.

– A security context model for describing features of the security-relevant
knowledge objects.

– A data collection model that records the way how data is gathered. It mainly
comprises the research question, collection process, used resources and the
queries for finding sources that might be used to answer the question.

– An analysis model which defines the analysis strategy and the filters and
algorithms it uses on the collected sources. Furthermore, the data structure
for information is exactly specified, regardless of whether the data is to be
stored in the security context model or not.

An advantage of our context model is that it can describe tools and meth-
ods according to their placement within the software development life cycle.
In case SecEval does not provide all attributes for expressing elements of re-
lated domains, it can easily be extended, as demonstrated for Moody’s method
evaluation approach and OWASP’s Risk Rating Methodology.

To validate our SecEval approach, we performed a case study about methods
and tools from the area of security focusing on a research question about the
selection of vulnerability scanners for web applications. For the case study all
elements were presented as UML objects. To improve the practicability of our
approach, we envisioned how an implementation of a SecEval knowledge base
might look like and which requirements might be important.

Summarizing, SecEval provides a sound basis for evaluating research ques-
tions related to secure software engineering. This might ease the process of doing
research in the area of security no matter whether a research question aims at
scientific or engineering issues. In the future we plan to evaluate further research
questions using SecEval, describing knowledge objects that are security-related
and those that are related to other domains. Besides, it would be interesting to
implement SecEval as a smart and flexible knowledge base and to execute
empirical studies to measure the utility of our framework.

References

1. CBK: Common Body of Knowledge (2013), http://nessos-project.eu/cbk
2. NESSoS: Network of Excellence on Engineering Secure Future Internet Software

Services and Systems (2014), http://nessos-project.eu/
3. Busch, M., Koch, N., Wirsing, M.: SecEval: An Evaluation Framework for Engi-

neering Secure Systems. In: MoK 2014 (2014)

http://nessos-project.eu/cbk
http://nessos-project.eu/

264 M. Busch, N. Koch, and M. Wirsing

4. Busch, M., Koch, N.: NESSoS Deliverable D2.4 – Second release of Method and
Tool Evaluation (2013)

5. OWASP Foundation: OWASP Risk Rating Methodology (2013),
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

6. Moody, D.L.: The method evaluation model: A theoretical model for validating
information systems design methods. In: Ciborra, C.U., Mercurio, R., de Marco,
M., Martinez, M., Carignani, A. (eds.) ECIS, pp. 1327–1336 (2003)

7. Lipner, S., Howard, M.: The Trustworthy Computing Security Development Life-
cycle. Developer Network - Microsoft (2005),
http://msdn.microsoft.com/en-us/library/ms995349.aspx#sdl2_topic2_5

8. ISO/IEC: 27001: Information technology – Security techniques – Information secu-
rity management systems – Requirements. Technical report, International Organi-
zation for Standardization (ISO) and International Electrotechnical Commission,
IEC (2013)

9. OWASP Foundation: OWASP Top 10 – 2013 (2013),
http://owasptop10.googlecode.com/files/OWASPTop10-2013.pdf

10. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Re-
views in Software Engineering. Technical Report EBSE 2007-001, Keele University
and Durham University Joint Report (2007)

11. Beckers, K., Eicker, S., Heisel, M. (UDE), W.S.: NESSoS Deliverable D5.2 – Iden-
tification of Research Gaps in the Common Body of Knowledge (2012)

12. Becker, P., Papa, F., Olsina, L.: Enhancing the Conceptual Framework Capability
for a Measurement and Evaluation Strategy. In: 4th International Workshop on
Quality in Web Engineering (6360), pp. 1–12 (2013)

13. RWTH Aachen University: i* notation, http://istar.rwth-aachen.de/
14. Elahi, G., Yu, E., Zannone, N.: A vulnerability-centric requirements engineering

framework: analyzing security attacks, countermeasures, and requirements based
on vulnerabilities. Requirements Engineering 15(1), 41–62 (2010)

15. Wang, J.A., Guo, M.: Security data mining in an ontology for vulnerability man-
agement. In: International Joint Conference on Bioinformatics, Systems Biology
and Intelligent Computing, IJCBS 2009, pp. 597–603 (2009)

16. RWTH Aachen University: SWRL: A Semantic Web Rule Language Combining
OWL and RuleML (2004), http://www.w3.org/Submission/SWRL/

17. Moyano, F., Fernandez-Gago, C., Lopez, J.: A conceptual framework for trust
models. In: Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus 2012.
LNCS, vol. 7449, pp. 93–104. Springer, Heidelberg (2012)

18. Fernandez, C., Lopez, J., Moyano, F.: NESSoS Deliverable D4.2 – Engineering Se-
cure Future Internet Services: A Research Manifesto and Agenda from the NESSoS
Community (2012)

19. Bertolino, A., Busch, M., Daoudagh, S., Lonetti, F., Marchetti, E.: A Toolchain
for Designing and Testing Access Control Policies. In: Heisel, M., Joosen, W.,
Lopez, J., Martinelli, F. (eds.) Engineering Secure Future Internet Services. LNCS,
vol. 8431, pp. 266–286. Springer, Heidelberg (2014)

20. Giorgini, P., Mouratidis, H., Zannone, N.: Modelling Security and Trust with Secure
Tropos. In: Integrating Security and Software Engineering: Advances and Future
Vision (2006)

21. Dardenne, A., Fickas, S., Van Lamsweerde, A.: Goal-directed Requirements Acqui-
sition 20(1-2), 3–50 (1993)

22. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://msdn.microsoft.com/en-us/library/ms995349.aspx#sdl2_topic2_5
http://owasptop10.googlecode.com/files/OWASPTop10-2013.pdf
http://istar.rwth-aachen.de/
http://www.w3.org/Submission/SWRL/

Evaluation of Engineering Approaches 265

23. Gedik, B., Liu, L.: Protecting Location Privacy with Personalized k-anonymity:
Architecture and Algorithms 7(1), 1–18 (2008)

24. Jürjens, J.: Secure Systems Development with UML. Springer (2004)
25. Basin, D., Doser, J., Lodderstedt, T.: Model Driven security: From UML Models to

Access Control Infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1), 39–91
(2006)

26. Basin, D., Clavel, M., Egea, M., Garcia de Dios, M., Dania, C.: A model-driven
methodology for developing secure data-management applications. IEEE Transac-
tions on Software Engineering PP(99), 1 (2014)

27. de Dios, M.A.G., Dania, C., Basin, D., Clavel, M.: Model-driven Development of
a Secure eHealth Application. In: Heisel, M., Joosen, W., Lopez, J., Martinelli, F.
(eds.) Engineering Secure Future Internet Services. LNCS, vol. 8431, pp. 97–118.
Springer, Heidelberg (2014)

28. Busch, M., Knapp, A., Koch, N.: Modeling Secure Navigation in Web Information
Systems. In: Grabis, J., Kirikova, M. (eds.) BIR 2011. LNBIP, vol. 90, pp. 239–253.
Springer, Heidelberg (2011)

29. Busch, M., Koch, N., Suppan, S.: Modeling Security Features of Web Applications.
In: Engineering Secure Future Internet Services. LNCS, vol. 8431, pp. 119–139.
Springer, Heidelberg (2014)

30. Goldstein, A., Frank, U.: Augmented Enterprise Models as a Foundation for
Generating Security-related Software: Requirements and Prospects. In: Model-
Driven Security Workshop in Conjunction with MoDELS 2012 (MDsec 2012). ACM
Digital Library (2012)

31. Busch, M., Koch, N., Masi, M., Pugliese, R., Tiezzi, F.: Towards Model-Driven
Development of Access Control Policies for Web Applications. In: Model-Driven
Security Workshop in Conjunction with MoDELS 2012 (MDsec 2012). ACMDigital
Library (2012)

32. Microsoft: Dafny (2014),
https://research.microsoft.com/en-us/projects/dafny/

33. Jacobs, B., Smans, J., Piessens, F.: VeriFast (2013),
http://www.cs.kuleuven.be/~bartj/verifast/

34. CORAS method: CORAS tool (2013), http://coras.sourceforge.net/
35. Busch, M., Koch, N.: NESSoS Deliverable D2.1 – First release of Method and Tool

Evaluation (2011)
36. Busch, M.: SecEval – Further Information (2014),

http://www.pst.ifi.lmu.de/~busch/SecEval

37. Bishop, M.: Computer Security: Art and Science, 1st edn. Addison-Wesley Profes-
sional (2002)

38. Schreiner, S.: Comparison of Security-related Tools and Methods for Testing Soft-
ware, Bachelor Thesis (2013)

39. Lacek, C.: In-depth Comparison and Integration of Tools for Testing Security fea-
tures of Web Applications, Bachelor Thesis (2013)

40. Busch, M., Koch, N.: NESSoS Deliverable D2.3 – Second Release of the SDE for
Security-Related Tools (2012)

https://research.microsoft.com/en-us/projects/dafny/
http://www.cs.kuleuven.be/~bartj/verifast/
http://coras.sourceforge.net/
http://www.pst.ifi.lmu.de/~busch/SecEval

A Toolchain for Designing and Testing

Access Control Policies�

Antonia Bertolino2, Marianne Busch1, Said Daoudagh2, Francesca Lonetti2,
and Eda Marchetti2

1 Institute for Informatics, Ludwig-Maximilians-Universität München
Oettingenstraße 67, 80538 München, Germany

busch@pst.ifi.lmu.de
2 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR

via G. Moruzzi 1, 56124, Pisa, Italy
{firstname.lastname}@isti.cnr.it

Abstract. Security is an important aspect of modern information man-
agement systems. The crucial role of security in this systems demands
the use of tools and applications that are thoroughly validated and ver-
ified. However, the testing phase is an effort consuming activity that
requires reliable supporting tools for speeding up this costly stage. Ac-
cess control systems, based on the integration of new and existing tools
are available in the Service Development Environment (SDE). We in-
troduce an Access Control Testing toolchain (ACT) for designing and
testing access control policies that includes the following features: (i) the
graphical specification of an access control model and its translation into
an XACML policy; (ii) the derivation of test cases and their execution
against the XACML policy; (iii) the assessment of compliance between
the XACML policy execution and the access control model. In addition,
we illustrate the use of the ACT toolchain on a case study.

1 Introduction

Security is a crucial aspect of modern information management systems; when
stored data and other resources are sensitive, a proper support must be put in
place to protect them against unauthorized, malicious, improper or erroneous
usage. In this context access control systems allow for the specification of ac-
cess control policies, which rule various protection aspects such as: the level of
confidentiality of data, the procedures for managing data and resources, the clas-
sification of resources and data into category sets with different access controls.

Software and security engineers constantly make decisions about which tech-
nology should be used for testing and verifying access control behavior. Un-
fortunately due to time and effort constraints, often there is no possibility to
investigate on either the best choice of tools and applications to be used in the
different stages of testing process or on how chosen tools work together.

� This work has been supported by the EU-NoE project NESSoS, GA 256980.

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 266–286, 2014.
c© Springer International Publishing Switzerland 2014

A Toolchain for Designing and Testing Access Control Policies 267

In this chapter, considering in particular the XACML [1] language, which
has become the de facto standard for specifying access control policies in many
application domains, we focus on solving two issues of access control systems
development: the designing and testing XACML policies. To tackle the problem
of selecting compatible tools for the prefixed purpose we rely on the Service
Development Environment (SDE) [2], a tool workbench that allows to combine
functions of integrated tools into toolchains. Toolchains execute tools’ function-
alities in a row in order to improve the process of software development.

Concerning the policy creation the most critical steps are (1) the definition
of the access control constraints and conditions a subject needs to comply with
accessing a resource in a given environment and (2) the subsequent translation
of access control constraints into the XACML language, as the complexity of the
XACML language makes this a difficult and error prone process. In recent years,
the adoption of model-driven approaches that abstract from the complexity of
the XACML language by, e.g., using graphical access control models, has been
proposed as a possible solution.

However, the simplified view proposed by model-driven approaches, some-
times hides security inaccuracies, due to an inappropriate use of graphical mod-
eling constructs. Consequently, testing of the derived XACML policies becomes
a necessary step for discovering possible weaknesses and avoiding security flaws.
Unfortunately, the available model-driven proposals rarely provide facilities for
verifying the derived policy against the requirements expressed in the model [3,4].

The testing approach of this chapter, which expands our work presented in [5],
is inspired by the conformance testing process. It uses XACML-based testing
strategies for generating appropriate test cases that are able to validate func-
tional aspects, constraints, permissions and prohibitions of the XACML policy.
The test cases are generated independently from the structure of the graphical
access control model and the generated XACML policy, so that their execution
could provide (partial) input/output traces of XACML policy behavior. These
traces, categorized into different sets called traces sets, can be used for verifying
the compliance of the XACML policy behavior with the access control require-
ments expressed in the graphical model.

The innovation of our proposal is based on two aspects: the exploitation of a
testing process for deriving the actual policy behavior (the traces sets); and the
use of typical model assessment techniques for discovering possible gaps between
the access control design model and the traces sets.

All tools that support our approach can work together as a toolchain, the
so-called Access Control Testing toolchain (ACT), which includes three main
components:model-driven policy design for developing the graphical specification
of access control requirements and converting it into an XACML policy; test
case generation and execution for deriving test cases and executing them on the
XACML policy; trace analysis and model compliance for analyzing the requests
execution results and assessing their compliance with the access control model.

The ACT toolchain is a proposal of tool integration for designing and testing
access control policies. Different application scenarios can be considered:

268 A. Bertolino et al.

1. Detecting policy errors: the ACT toolchain can be used to find errors in the
policy. Differences between the policy executor’s response and the graphi-
cal model will be highlighted in the graphical model and reported in the
toolchain’s log. As long as all tools work correctly, no errors occur.

2. Replacing tools in the toolchain: for instance another transformation tool can
be used to transform graphical access control specifications into an XACML
policy or another tool for executing the policies can be employed. In these
cases the testing facilities provided by ACT toolchain can be exploited for
testing the tool integration.

3. Deriving the graphical model: if an XACML policy is already available and
a graphical access control model should be created, e.g., for documentation
purposes, the ACT toolchain toolchain can be used for testing that the cre-
ated model conforms to the XACML policy. This can help developers to get
a clearer idea of the constraints and permissions expressed in the policy and
to ease improvements or modifications. Additionally, the traces of XACML
policy behavior help the modeler to design a correct graphical model.

In this chapter we focus on the first two scenarios.
The remainder of this chapter is structured as follows: Section 2 introduces

background information about notations we use and about the SDE. In Sect. 3
we present our ACT toolchain and its underlying functions, while a case study
shows how to use the different components of the toolchain in Sect. 4. Section 5
outlines related work regarding the graphical modeling of access control policies
and regarding the generation of test cases for XACML policies. Finally Sect. 6
concludes and sketches future work.

2 Background

In this section, we show how to model access control using the graphical mod-
eling notation called UWE (UML-based Web Engineering) and we introduce
the XACML policy language. In addition, we present the Service Development
Environment (SDE), which is used to connect the functions of our toolchain.

2.1 UML-Based Web Engineering (UWE)

UML-basedWeb Engineering (UWE) [6] is the chosen security-aware engineering
approach. It focuses on modeling web applications and supports access control.
One of the cornerstones of UWE is the “separation of concerns” principle using
separate models for different views. In this chapter, we focus on three views:

Content Model contains the data structure used by the application.
UWE Role Model describes a hierarchy of roles to be used for authorization

and access control issues. It is usually part of a User Model, which specifies
basic structures, as e.g. that a user can take on certain roles simultaneously,
which is also allowed in this work.

A Toolchain for Designing and Testing Access Control Policies 269

Basic Rights Model describes access control policies, i.e., it is the graphical
access control model we use in this chapter. It constrains elements from the
Content Model and from the Role Model.

We use UML class diagrams to model all mentioned views. In addition, the
UWE Profile adds a set of stereotypes, tag definitions and constraints, which can
be downloaded from the UWE website [7]. Stereotypes can then be applied to
UML model elements and values can be assigned to tags. UML tags are always
associated to a stereotype and stereotypes can inherit tags from other stereo-
types. A UWE modeling example can be found in Sect. 4. Further information
about UWE is provided in chapter [8].

2.2 eXtensible Access Control Markup Language (XACML)

XACML [1] is a platform-independent XML-based language for the specification
of access control policies.

A policy consists of a target, a set of rules and a rule combining algorithm.
The target specifies the subjects, resources, actions and environments on which
a policy can be applied. Each subject, resource, action and environment con-
tains two main attributes that are <AttributeId> and <DataType> and an
<AttributeValue> element that specifies the associated value. If a request sat-
isfies the target of the policy, then the set of rules of the policy is checked, else
the policy is skipped.

The rule is composed of a target, which specifies the constraints of the requests
to which the rule is applicable; a condition which is a boolean function evaluated
when the rule is applicable to a request. If the condition is evaluated to true,
the result of the rule evaluation is the rule effect (Permit or Deny), otherwise
a NotApplicable result is given. If an error occurs during the application of a
policy to the request, Indeterminate is returned.

The rule combining algorithm specifies the approach to be adopted to compute
the decision result of a policy when more than one rule may be applicable to a
given request. For instance, the permit-overrides algorithm specifies that Permit
takes the precedence regardless of the result of evaluating any of the other rules
in the policy, then it returns Permit if there is a rule that is evaluated to Permit,
otherwise it returns Deny if there is at least a rule that is evaluated to Deny
and all other rules are evaluated to NotApplicable. If there is an error in the
evaluation of a rule with Permit effect and the other policy rules with Permit
effect are not applicable, the Indeterminate result is given.

The access decision is given by a so-called Policy Decision Point (PDP) while
considering all attribute and element values describing the subject, resource,
action and environment of an access request and comparing them with the at-
tribute and element values of a policy.

2.3 Service Development Environment (SDE)

The NESSoS project uses a service-oriented tool integration approach, which en-
ables developers to loosely integrate their tools as services to a workbench named

270 A. Bertolino et al.

Service Development Environment (SDE). We used the SDE’s functionality to
connect the tools we work with to the ACT toolchain. The following descrip-
tion of the SDE is adapted and abridged from [9, p.5]; integrated NESSoS tools
can be downloaded from [2]. The SDE was developed within the SENSORIA
project [10], a FET initiative funded by the EU from 2005 to 2010. It is cur-
rently maintained and extended by LMU within the scope of the NESSoS and
the ASCENS [11] projects.

The SDE is an Integrated Development Environment (IDE) based on a Service-
Oriented Architecture (SOA) approach, where each tool is represented as a ser-
vice. Technically, the service-oriented OSGi framework in Eclipse [12] is used.
OSGi is based on so-called bundles, which are components grouping a set of
Java classes and metadata providing among other things name, description and
version. An OSGi bundle may provide arbitrary services to the platform and
therefore all tools are integrated as bundles which offer certain functions for in-
vocation by the SDE platform. Furthermore, it provides the ability to compose
new tools out of existing ones, by building toolchains (called “orchestration”).
The main features of the tool workbench are:

– The SDE Browser that contains a categorized listing of all available tools.
– The SDE Function Browser that provides the description of the tool and its
functions.

– The SDE Blackboard which stores Java object values in-between service
invocations when executing tool’s functions.

– The SDE Shell which is an orchestrator that can be used to employ JavaScript
to call tool functions.

– The SDE Orchestrator which provides graphical interface for creating
toolchains by linking functions of (different) tools in order to create a new
service that manages these tools, functions, inputs and outputs.

Tools to be used as part of the SDE must be implemented as OSGi bundles
and contain a declarative description of the entry points of their functionality
but are otherwise unlimited in their implementation. For the ACT toolchain,
we integrated our tools into the SDE so that it is possible to use the SDE
Orchestrator for building the toolchain, as detailed in the following section.

3 The Access Control Testing Toolchain “ACT”

In this section we present the proposed Access Control Testing toolchain “ACT”,
which includes the following main functionalities:

Model-driven Policy Design: The possibility to design a graphical specifica-
tion of access control requirements and to convert the model into an XACML
policy.

Test Case Generation and Execution: The selection of different testing
strategies useful for deriving test cases and the possibility of executing them
on the XACML policy.

A Toolchain for Designing and Testing Access Control Policies 271

Trace Analysis and Model Compliance: The analysis of test results and
consequent derivation of the traces sets, i.e. the execution of test cases exe-
cution on the XACML policy. The assessment of the compliance of the traces
sets with the graphical access control model is also included.

For realizing the ACT toolchain different tools were integrated into the SDE.
Within the SDE, the tools are represented as services. In Fig. 1 the toolchain is
depicted in the SDE’s graphical orchestrator.

Fig. 1. SDE: toolchain for designing and testing access control policies

As shown in Fig. 1, different activities are considered, each one involving a
tool available in the SDE. In the following we list orchestrator activities and
briefly describe the corresponding services (tools) that implement them:

editProjectWithMagicUWE: MagicDraw[13] this is a modeling framework
for specifying access control requirements, i.e. a graphical access control
model, to simplify the designing of authorization constraints. MagicUWE [6]
is integrated as a plugin into MagicDraw.

272 A. Bertolino et al.

transformUwe2xacml: UWE2XACML [14] provides an automatic translation
of the graphical access control model into an XACML policy to avoid com-
mon errors and problems of manually written XACML policies.

multipleCombinatiorialStrategy: The X-CREATE tool [15,16,17] enables
automatic tests generation (i.e. XACML request generation) according to
different testing strategies to speed up and improve the verification by re-
ducing as much as possible time and effort due to test cases specification.

checkXACMLRequestWithPDP: The Sun PDP [18] is used to automati-
cally execute test cases. Its output are XACML responses.

createTraces: The Trace Creator provides an automatic analysis of test results
for deriving the model of the test execution called traces sets, followed by a
transformation of the traces sets into sets of requests and responses expressed
in the JSON format.

checkConsistency: MagicUWE offers this function (also called the “Checker”)
to automatically assess the compliance of the traces sets with the graphical
access control model.

More technical details about the tools used for the implementation of the
toolchain are provided in the following sections.

3.1 Model-Driven Policy Design

The tool MagicUWE allows to graphically specify access control requirements
whereas the tool UWE2XACML automatically transforms the derived model
into an XACML policy.

MagicUWE. The tool MagicUWE [19] is a plugin for the CASE tool Magic-
Draw [13], written in Java. As has already been described in NESSoS deliver-
able [9, p.45], MagicUWE supports the UWE notation and the UWE develop-
ment process. MagicUWE comprises (1) extensions of the toolbar for comfortable
use of UWE elements including shortcuts for some of them, (2) a specific menu
to create UWE default packages and new diagrams for the different views of
web applications, and to execute model transformations, (3) additional context
menus not only within diagrams, but also for the containment tree, i.e. the tree
containing all modeling elements.

For our toolchain, we use MagicUWE’s support for modeling UWE dia-
grams [6]. In particular, the toolchain first opens an existing UML project for
modeling access control using the Basic Rights model of UWE. When the user
finished modeling, he or she uses MagicUWE’s menu to export the project as
XMI [20]. In the same step, a link to the exported project is sent back to the
SDE so that the toolchain can continue with the transformation to XACML.

UWE2XACML. The prototype UWE2XACML [14] is a tool for transforming
role based access control policies modeled in the UML-based Web Engineer-
ing (UWE) language into XACML policies. UWE2XACML is written using the
transformation language XPand [21] with Java extensions.

A Toolchain for Designing and Testing Access Control Policies 273

The input for UWE2XACML is an XMI-formatted UML model of an applica-
tion modeled using the UWE profile. UWE2XACML iterates over the available
roles while taking the role hierarchy into account. Additionally, the UML de-
pendencies between the roles and the constrained elements are examined, i.e.,
the allowed actions are extracted. While iterating over the structure of the UML
model, the XACML policy is written. In the end it is formatted automatically
according to the nesting of XML tags.

In our toolchain, UWE2XACML is immediately followed by X-CREATE for
generating XACML requests for the newly generated XACML policy.

3.2 Test Case Generation and Execution

The automatic test cases generation and execution is implemented by means of
the tool X-CREATE and the use of an available access control system imple-
mentation (Sun PDP).

X-CREATE. The XACML policy derived by the tool UWE2XACML is then
used for deriving a set of test cases. For this we relied on the tool X-CREATE
(XaCml REquests derivAtion for TEsting) [15,16,17], which implements different
strategies for deriving XACML requests from an XACML policy. These strategies
are based on combinatorial analysis [22] of the values specified in the XACML
policy with the aim of testing both policy evaluation engines and access control
policies.

In the toolchain implementation among the various X-CREATE proposals,
we decided to use the Multiple Combinatorial test strategy, because it provides
a good compromise between test effectiveness and cost reduction [23]. In partic-
ular, for each policy, four sets are generated, the SubjectSet, the ResourceSet,
the ActionSet, and the EnvironmentSet, containing the values of elements and
attributes of the subjects, resources, actions and environments respectively. Ran-
dom entities are also included in each set so that the resulting test plan could
be used also for robustness and negative testing purposes. The entities are then
combined to derive the XACML requests.

However, to avoid the possibility of an exponential cardinality of requests X-
CREATE allows to fix the number of entities to be considered in each subset.
Indeed the necessary condition for an XACML request to be applicable on a field
of the XACML policy (rule, target, condition) is that this request simultaneously
includes all entities that are specified in that policy field. Thus X-CREATE
exploits the minimum and maximum number of entities of the same type that
have to be included in a request for reducing the set of generated test cases.
The XACML requests are then generated by combining the subject, resource,
action and environment subsets applying first a pair-wise, then a three-wise,
and finally a four-wise combination, obtaining all possible combinations. In this
process X-CREATE automatically eliminates the duplicated combinations. For
more details we refer to [15,16,17].

274 A. Bertolino et al.

Sun PDP. This component integrates a Policy Decision Point (PDP) engine
(specifically the Sun PDP [18]) which provides a support for parsing both pol-
icy and request/response documents, determining applicability of policies, and
evaluating requests against policies giving the corresponding response (Permit,
Deny, NotApplicable or Indeterminate).

In ACT we included the Sun PDP engine, which is an open source imple-
mentation of the OASIS XACML standard, written in Java. This choice was
not mandatory and different PDP implementations could be considered. We
decided for Sun’s PDP engine because it is currently one of the most mature
and widespread used engine for XACML policy implementation, which provides
complete support for all the mandatory features of XACML as well as a num-
ber of optional features. This engine supports also all the standard attribute
types, functions and combining algorithms and includes APIs for adding new
functionalities as needed.

3.3 Results Analysis and Verdicts Generation

The XACML requests and the corresponding PDP responses are used to trace
the policy execution and to assess the compliance of the derived policy with
the graphical access control model. Consequently, possible inconsistencies in the
access control model due to an inappropriate / misinterpreted use the UWE
modeling elements or errors in the XACML generation can be detected. The
report supports debugging in order to avoid security flaws. Details of the SDE
components used in this stage are provided in the following.

Trace Creator. The Trace Creator gets as input the set of XACML requests
and the corresponding responses from the Sun PDP components and derives
the traces sets. For this different methodologies for classify the couples (request,
response) are available, which rely on the opportune combination of the subjects,
resources, actions, environments and the corresponding responses. In our ACT
toolchain we consider the classification according to the PDP responses. Thus the
couples (request, response) are divided into three groups: those having Permit
as response (i.e. the Permit set), those having Deny as response (i.e. the Deny
set), and those having either NotApplicable or Indeterminate (the Other set) as
response.

To simplify the validation process the elements of the traces sets are trans-
lated into JavaScript Object Notation (JSON)-formatted couples. The choice of
the JSON language instead of XML was made because JSON is a lightweight
format that is easier to read and parse than XML language1. Moreover, in the
development of the ACT toolchain the JSON format turned out to be very useful
for manual debugging.

MagicUWE Checker. The final element of our toolchain is the MagicUWE
Checker, which validates the compliance of the elements of the traces sets against
the original graphical access control model, i.e. the UWE Basic Rights model.

1 Comparisons of JSON and XML. http://www.json.org/xml.html

http://www.json.org/xml.html

A Toolchain for Designing and Testing Access Control Policies 275

The main function of the MagicUWE Checker is checkConsistency, which
takes two arguments: the UML project and the JSON-formatted traces sets. The
checker’s functionality is implemented as a part of MagicUWE. If the MagicDraw
project is already open when executing the checker function within our tool-chain
(e.g., because it was opened during the first step of the ACT toolchain), it is not
re-opened.

Considering the elements of the three sets distinguished by the Trace Creator,
the Checker tests if each couple (request, Permit) of the Permit set can be
associated to stereotyped dependencies between roles and concepts expressed in
the model. In particular if a request contains a user that has more than one role,
the Checker verifies if there exists at least one stereotyped dependency between
one of the mentioned roles and concepts expressed in the model.

Additionally, each couple (request, Deny) is tested, to make sure that there
is an action in the request which does not appear in the UWE model. If a user
requested more than one action the Checker verifies if at least one of these actions
is not shown in the UWE model (i.e. denied in the model).

The elements belonging to the Other set of traces are not considered in the
current version of the toolchain implementation.

Fig. 2. Output of MagicUWE Checker

As depicted in Fig. 2, MagicDraw provides three main windows: on the right,
a UWE Basic Rights diagram is shown, which will be covered in our case study
(cf. Sect. 4, Fig. 4). On the top left, the element tree of the model is depicted,
together with the root of the UML profile and UWE profile. On the lower left, the
log of MagicUWE’s Checker provides details of the requests under test. There,
it is indicated if the PDP allows a request that is not permitted in the model
or the PDP denied a request that is modeled in the Basic Rights diagram. In
the latter case, the Checker also flags mistakenly denied dependencies in the

276 A. Bertolino et al.

graphical model. These bold, (red) dependencies and the Checker’s log can then
be used for debugging.

In the end, the log is automatically handed back to the SDE where it is
shown as result of the ACT toolchain. In the future, new tools could extend our
toolchain, as e.g., a dashboard tool that parses the log to show a green light if
the checker reported no errors.

3.4 Toolchain Integration

Technically, the assembly of our toolchain is done in three steps: first, we iden-
tified the tools which had already been integrated into the SDE. Second, we
created a SDE wrapper for tools that were not integrated and third, we con-
nected them to a toolchain using SDE’s graphical Orchestrator.

MagicDraw, UWE2XACML and X-CREATE had already been integrated
into the SDE, however a function for MagicDraw’s new Checker had to be added.
Furthermore, X-CREATE did not provide a return value, which also had to be
changed in the wrapper.

Creating a SDE wrapper for tools that had not been integrated, is done using
the demo wrapper that is described in the SDE Tutorial [24]. We just had to
execute our tools from within the wrapper and to return their results back to
the SDE. Additionally, we created an Eclipse update site [2] for each wrapper,
so that it can be installed using the Eclipse Update Manager.

As depicted in Fig. 1, the SDE Orchestrator is easy to use: we created a new
Function, called “actToolchain” using the Palette on the right hand side. Using
drag & drop, we added an input and an output pin and the tools’ functions
(e.g. MagicUWE: checkConsistency). After connecting inputs and outputs with
Links, the toolchain can be executed using the green play-button on the upper
right corner. At the moment, there is a minor drawback, as plugins based on
XPand, such as UWE2XACML, only function when they are executed in the
Eclipse development mode.

In practice, developers can also get the advantages of parts of the toolchain.
For example, already existing XACML policies can be modeled with UWE, as
long as they are restricted to role based access control (cf. third scenario in
Sect. 1). This might help developers to regain an overview of their policy and
to debug it. In this case, a part of our toolchain would be used, starting with
the tool X-CREATE. The UWE Basic Rights model, which is needed by the
Checker, would then be the new model of which the developers want to know if
it is yet compliant to the XACML policy they provided. If it is not, the Checker’s
log provide hints to missing or misplaced modeling elements.

4 Case Study

In this section we apply the ACT toolchain on a Smart Grid application, which
allows offers to be created and bought. Offers can be bought from a list of offers,
which is generated individually for each user. Offers are connected to energy

A Toolchain for Designing and Testing Access Control Policies 277

transactions, i.e. an amount of energy that is provided. Two types of offers exist:
normal offers and special offers. Special offers are promoted, which means they
are advertised at the beginning of the list of offers. Special offers can only be
created by commercial users that provide a great quantity of energy, as owners
of power stations do. Normal offers can be submitted by commercial users as
well as by private households, which e.g., want to sell surplus energy from their
solar panels. We assume that a concrete user can play one or both roles at the
same time.

Our case study comprises two scenarios: in the former we describe a run of
the toolchain from the design of the policy to the successful assessment of its
consistency. In the latter we show the use of the toolchain for debugging. In the
following subsections more details are provided.

4.1 First Scenario: Clean Run

In this section we detail the use of the ACT toolchain, by showing all the pro-
posed steps from the derivation of the access control model to the final verifica-
tion of the policy compliance.

Step 1: modeling Access Control. In the first step of our toolchain, we use Magic-
Draw with MagicUWE installed to model the classes and their associations, as
shown in Fig. 3. It is noticeable that Role and its subclasses are located in UWE’s
role model and are just shown in the Content diagram in order to present the
connection between roles and content.

Fig. 3. UWE: Content Model, also containing roles from the Role Model

The Basic Rights Model constrains classes, attributes or methods from the
Content Model by connecting them with role instances using stereotyped UML
dependencies. Actions can be read, update, execute, create and delete. Figure 4
depicts the Basic Rights diagram (i.e. the access control model) of our Smart
Grid case study. For example a user with the role PrivateUser is allowed to
read all attributes of an instance of ListOfApplicableOffers, which refers to
the customized list of energy offers that is presented to a user. The stereotype

278 A. Bertolino et al.

�readAll� is a shortcut, which allows a dependency to point to a class instead
of pointing to each attribute of that class. (Additionally, {except} tags can be
used to exclude specific attributes.)

Fig. 4. UWE: Basic Rights Model

However, nobody should be allowed to access a list of someone else, which is
expressed using the OCL [25] authorization constraint: “pre: self.user = caller”.
The term self is defined as a referrer to the current class, user is an attribute
of ListOfApplicableOffers (cf. Fig. 3) and caller refers to the user which
is executing an action. In UML this is expressed by adding comments that are
stereotyped by �authorizationConstraint�.

Step 2: transforming the UWE model to an XACML policy. After the UWE
model is exported as XMI, the tool UWE2XACML transforms it to an XACML
policy.

According to [14], the transformation intuitively works as follows: It generates
an XACML PolicySet for each role, each of which contains one Policy for any
class connected to the considered role. Furthermore, a single Policy is used to
deny access to all resources not specified in the PolicySet, which is the default
behavior of UWE’s basic rights models.

Attributes targeted by *All actions are divided into a set of Resources, omit-
ting those from the {except} tag. OCL constraints inside UML comments with
authorizationConstraint stereotype are transformed to a Condition. The condi-
tion is located within a Rule representing the appropriate action. For the time
being, we have implemented only a few basic OCL constraints.

A Toolchain for Designing and Testing Access Control Policies 279

Generally XACML policies generated by UWE2XACML are structured as
follows (in brackets we show the policy for the uppermost �readAll� dependency
in Fig. 4, which connects PrivateUser and the class ListOfApplicableOffers):

PolicySet root element, permit-overrides
PolicySet for each role (e.g., contains what a PrivateUser

is allowed to do)
Target role (and sub-roles if any) (e.g., PrivateUser)
Policy for each pair of role and target (e.g., for actions a

PrivateUser can do on ListOfApplicableOffers)
Target constrained target element (e.g.,

listofapplicableoffers, as we use lower
cased class names in the policy)

Rule permission for each action (e.g., concrete per-
mission what to read)

Resources . . attributes of the target class (e.g.,
listofapplicableoffers.user,
listofapplicableoffers.specialOffers,
listofapplicableoffers.normalOffers)

Actions permitted action (e.g., read)
Condition . . transformed OCL constraints (e.g., we use the

XACML function integer-equal to make sure
that self.user.id equals caller.id). Besides, we re-
strict the number of actions and the number of
classes per request to 1.

Policy default: deny all, which is not allowed explicitly

Step 3: generating requests for the XACML policy. Using the tool X-CREATE
a set of XACML requests is derived starting from the XACML policy. Specifi-
cally, 192.290 XACML requests are generated using the Multiple Combinatorial
testing strategy provided by X-CREATE (see Sect. 3.2), which combines all the
possible values of elements and attributes of the subjects, resources, actions and
environments respectively. As described in Sect. 3.2, by construction the derived
requests can have more then one subject, resource, action or environment.

In the following, we present three request examples. The former two denote
that a user with the role of PrivateUser (or CommercialUser) wants to create an
instance of the class NormalOffer.

Request root element
Subject the subject is PrivateUser
Resource the resource is NormalOffer
Action the action is create

280 A. Bertolino et al.

Request root element
Subject the subject is CommercialUser
Resource the resource is NormalOffer
Action the action is create

The third request asks permission to create an instance of NormalOffer for a
user with the both roles PrivateUser and CommercialUser.

Request root element
Subject the subject is PrivateUser
Subject the subject is CommercialUser
Resource the resource is NormalOffer
Action the action is create

Step 4: checking XACML requests on the PDP. The set of requests generated
with X-CREATE are evaluated against the XACML policy on the Sun PDP and
the corresponding XACML responses containing the access results are collected.
Specifically, from the total number of requests 192.100 requests get Deny as a
result, while the remaining 190 get Permit as a result. All three requests listed
in step 3 get a Permit result.

Step 5: creating traces. A request / response values based filter is applied for
deriving the traces sets. Then the couples (request, response) are divided into
three groups: the Permit set, the Deny set, and the Other set. Specifically, all
three requests listed in the step 3 are included in the Permit set. The traces are
then converted to JSON.

In the following we give an example for a JSON-formatted trace.

{"XacmlRequest":{

"Attributes":[],

"InstanceIDs":{"self.seller.id":"94","self.caller.id":"94"},

"Classes":["normaloffer"],

"Decision":"Permit",

"Actions":["delete"],

"Roles":["PrivateUser"]}

}

Step 6: checking consistency of responses and initial model. The resulting dif-
ferences between the XACML responses and the initial model are logged, if any.
Additionally, actions which are denied by the PDP, but permitted in the model
are highlighted in bold (and red) in the model. Considering in particular the
requests presented in step 3. The Checker confirms the conformance between
all the requests and the access control model. Indeed the access control model
of Fig. 2 shows a create association between PrivateUser and NormalOffer

and between the CommercialUser and NormalOffer. This means that the access
control system has to authorize a user with role PrivateUser (CommercialUser)
who wants to create a NormalOffer. Because the Sun PDP responses corre-
sponding to the three requests of step 3 are Permit as required by the access

A Toolchain for Designing and Testing Access Control Policies 281

control model no violation or inconsistency is detected and the requests are
compliant with the model.

4.2 Second Scenario: Error Detection

The second scenario demonstrates how the ACT toolchain can be used for test-
ing and debugging an access control policy. We considered the case in which a
developer uses the toolchain to design the policy of our case study, but this time,
errors are found while testing. In the following more details about all steps are
provided:

Step 1: modeling Access Control. As in the previous section the we use Magic-
Draw with MagicUWE installed to derive the access control model.

Step 2: transforming the UWE model to an XACML policy. In this case we
simulate the use of a faulty transformation tool by simply providing a modified
version of the XACML policy derived in the step 2 of Sect. 4.1. In particular we
alter the policy so that it is not allowed to create normal offers.

Step 3: generating requests for the XACML policy. As in Sect. 4.1 we use the tool
X-CREATE to derive the set of XACML requests from the modified XACML
policy. The requests shown in the Step 3 of the previous section are still generated
by the X-CREATE tool.

Step 4: checking XACML requests on the PDP. Again the set of requests are
evaluated against the XACML policy on the Sun PDP. In this case, the first two
requests listed in Step 3 of Sect. 4.1 get a Permit result while the last one gets
a Deny result.

Step 5: creating traces. The couples (request, response) are divided into three
groups: the Permit set, the Deny set, and the Other set. In this case the first
two requests listed in Step 3 of Sect. 4.1 are included in the Permit set while
the last one is included in the Deny set.

Afterwards, the requests are transformed into JSON-formatted traces.

Step 6: checking consistency of responses and initial model. In this case consid-
ering the requests presented in Step 3 of Sect. 4.1, the Checker:

– confirms the conformance between the first two requests and the access con-
trol model, similar to the previous scenario.

– detects an inconsistency between the access control model and the last request
of step 3 of the previous scenario. Indeed the execution on the Sun PDP of this
request having a user with the roles PrivateUser and CommercialUser, ac-
tion create and resource NormalOffer provides as response Deny. However,
in the access control model of Fig. 4 users are authorized to create a normal
offer. Consequently, an inconsistency is detected and highlighted with a bold
(and red) line in the access control model (see Fig. 2).

282 A. Bertolino et al.

Consequently, the developer can start debugging by studying the checker’s
log which points to the faulty trace file(s). Backtracking along the toolchain is
easy, as the intermediate data that is handed over from one tool to the next is
saved locally. Errors might occur, e.g., because: (a) the Basic Rights model was
exchanged during the run of the toolchain, e.g., to compare changes to a previous
version; (b) the transformation from UWE to XACML or the PDP produced an
incorrect output. The latter is especially interesting if UWE2XACML or the Sun
PDP were replaced in the toolchain, as the need to replace tools often arises due
to discontinuation of tool support, as it is the case with Sun PDP.

As evidenced by this simple case study the ACT toolchain can help developers
to create thoroughly tested XACML policies. In particular, it contributes to
avoid possible inconsistencies in the access control models since inappropriate /
misinterpreted use XACML constructs can be highlighted.

5 Related Work

In this chapter, we first introduce related work for modeling access control poli-
cies graphically. Then, we provide information about approaches for generating
test cases for XACML policies.

5.1 Modeling Access Control Policies Graphically

Security-aware modeling approaches are briefly introduced in the following and
compared to the UWE approach (cf. Sect. 2.1) that we have chosen for our
toolchain [description adapted from [26]].

SecureUML [27] is a UML-based modeling language for secure systems. It
provides modeling elements for role-based access control and the specification
of authorization constraints. A SecureUML dialect has to be defined in order to
connect a system design modeling language as, e.g., ComponentUML to the Se-
cureUML metamodel, which is needed for the specification of all possible actions
on the predefined resources. In UWE’s Basic Rights model, we specify role-based
execution rights to methods using dependencies instead of the SecureUML as-
sociation classes, which avoids the use of method names with an access related
return type. However, UWE’s Basic Rights models can easily be transformed
into a SecureUML representation.

A similar approach to SecureUML is UACML [28] which also comes with a
UML-based meta-metamodel for access control, which can be specialized into
various meta-models for, e.g., role-based access control (RBAC) or mandatory
access control (MAC). Conversely to UWE, the resulting diagrams of SecureUML
and UACML are overloaded, as SecureUML uses association classes instead of
dependencies and UACML does not introduce a separate model to specify user-
role hierarchies.

ActionGUI [29] is an approach for generating complete, but simplified, data-
centric web applications from models. E.g, web applications using nested menus
are not supported yet. Functionality of a web application has to be modeled
using the formal language OCL. Access control is modeled using SecureUML.

A Toolchain for Designing and Testing Access Control Policies 283

UMLsec [30] is an extension of UML with emphasis on secure protocols. It is
defined in form of a UML profile including stereotypes for concepts like authen-
ticity, freshness, secrecy and integrity, role-based access control, guarded access,
fair exchange, and secure information flow. In particular, the use of constraints
gives criteria to evaluate the security aspects of a system design, by referring to
a formal semantics of a simplified fragment of UML. UMLsec models, compared
to UWE models, are extremely detailed and therefore quickly become very com-
plex. Tool support is only partly adopted from UML1.4 to UML2. However, the
new tools have not been updated for almost two years.

5.2 Generating Test Cases for XACML Policies

Testing of access control systems is a critical issue and the complexity of the
XACML language prevents the manual specification of a set of test cases capable
of covering all the possible interesting critical situations or faults. This implies
the need of automated test cases generation.

Some existing approaches consider the policy values in the test cases deriva-
tion. In particular, [31] presents the Targen tool that derives the set of requests
satisfying all the possible combinations of truth values of the attribute id-value
pairs found in the subject, resource, and action sections of each target included
in the policy under test. A different approach is provided by Cirg [32] that is
able to exploit change-impact analysis for test cases generation starting from
policies specification. In particular, it integrates the Margrave tool [33] which
performs change-impact analysis so to reach high policy structural coverage.
The X-CREATE tool [34,16,17] exploits the potentiality of the XACML Con-
text schema defining the format of the test inputs, and also applies combinatorial
approaches to the policy values. In [34] a comparison between X-CREATE and
the tool Targen [31] has been performed in terms of fault-detection capability,
and the obtained results showed that X-CREATE has a similar or superior fault
detection effectiveness, and yields a higher expressiveness, as it can generate re-
quests showing higher structural variability. In [16,17] we present the advantages
in terms of fault detection effectiveness of the testing strategies implemented into
X-CREATE tool. Our proposal here consists in a new testing strategy and its
application for testing the XACML PDP used by a real-world Trusted Service
Provider in the healthcare domain.

The authors of [35] address testing of the XACML PDP by running different
XACML implementations for the same test inputs and detecting not correctly
implemented XACML functionalities when different outputs are observed. Dif-
ferently from our proposal, this approach randomly generates requests for a given
policy and requires more PDP implementations for providing an oracle facility
by means of a voting mechanism. Our focus is on test cases derivation for PDP
testing and not on oracle definition. A different solution for testing a PDP is pre-
sented in [36] where the authors provide a fault model and a test strategy able to
highlight the problems, vulnerabilities and faults that could occur during the PDP
implementation. The authors also provide a testing framework for the automatic
generation of a test suite that covers the fault model. This approach deals with a

284 A. Bertolino et al.

specific authorization system supporting usage control and history-based control
and is specifically conceived for PolPA language.

Other approaches target the testing of XACML policy and are based on the
representation of policy implied behavior by means of models [37,38,39,4]. Usu-
ally, these approaches provide methodologies or tools for automatically gener-
ating abstract test cases that have to be then refined into concrete requests for
being executed.

6 Conclusion

In this chapter, considering the specific context of access control systems, we
presented a toolchain, called Access Control Testing toolchain (ACT) that can
be used for designing access control policies as well as for testing their execution
against the initial graphical access control models. ACT has been realized using
a set of tools available in the SDE framework and includes the following features:
(i) a modeling framework for specifying a graphical access control model; (ii) an
automatic translation of this model into an XACML policy; (iii) an automatic
tests generation and execution and (iv) an automatic assessment of the compli-
ance of the XACML policy execution with the graphical access control model.
Furthermore, we presented how to employ the ACT toolchain on a case study.

Preliminary test results obtained from the case study confirm the effectiveness
of the ACT toolchain in evidencing possible security problems and inconsisten-
cies between the model and the derived policy. Of course the trustworthiness of
validation results depends on the correctness of the used testing tools. Indeed as
a side effect the realization of this toolchain, caused the discovery of several in-
consistencies between the input/output of the different components. These have
been detected and improvements have been realized.

The most critical part in our toolchain is the prototype UWE2XACML, es-
pecially the part which parses the OCL should be improved to be able to parse
arbitrary OCL constraints. In particular although XACML is a standard, sev-
eral PDPs interpret the policies in different ways. Therefore the translation of
the access control model into an XACML policy could be improved taking into
consideration the various differences. As the toolchain allows to simply replace
UWE2XACML by other transformation tools, according to our experience, we
suggest to base a future transformation on Acceleo [40] instead of XPand as it
is more flexible and programs are easier to maintain.

References

1. OASIS: eXtensible Access Control Markup Language (XACML) Version 2.0 (2005),
http://docs.oasis-open.org/xacml/2.0/

access control-xacml-2.0-core-spec-os.pdf

2. SDE: Service Development Environment (2014),
http://www.nessos-project.eu/sde

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.nessos-project.eu/sde

A Toolchain for Designing and Testing Access Control Policies 285

3. Massacci, F., Zannone, N.: A model-driven approach for the specification and anal-
ysis of access control policies. In: Proc. of the OTM Confederated International
Conferences, CoopIS, DOA, GADA, IS, and ODBASE, pp. 1087–1103 (2008)

4. Pretschner, A., Mouelhi, T., Le Traon, Y.: Model-based tests for access control
policies. In: Proc. of ICST, pp. 338–347 (2008)

5. Bertolino, A., Busch, M., Daoudagh, S., Koch, N., Lonetti, F., Marchetti, E.: A
Toolchain for Designing and Testing XACML Policies. In: Proceedings of ICST
2013, Poster (2013)

6. Busch, M., Knapp, A., Koch, N.: Modeling Secure Navigation in Web Information
Systems. In: Grabis, J., Kirikova, M. (eds.) BIR 2011. LNBIP, vol. 90, pp. 239–253.
Springer, Heidelberg (2011)

7. LMU. Web Engineering Group: UWE Website (2014),
http://uwe.pst.ifi.lmu.de/

8. Busch, M., Koch, N., Suppan, S.: Modeling Security Features of Web Applications.
In: Heisel, M., Joosen, W., Lopez, J., Martinelli, F. (eds.) Engineering Secure
Future Internet Services. LNCS, vol. 8431, pp. 119–139. Springer, Heidelberg (2014)

9. Busch, M., Koch, N.: NESSoS Deliverable D2.3 – Second Release of the SDE for
Security-Related Tools (2012)

10. Sensoria Project: Software Engineering for Service-Oriented Overlay Computers
(2011), http://www.sensoria-ist.eu/

11. ASCENS: Autonomic Service Component Ensembles (2012),
http://www.ascens-ist.eu/

12. Eclipse Foundation: Eclipse Modeling Project (2014),
http://eclipse.org/modeling/

13. No Magic Inc.: Magicdraw (2014),
http://www.magicdraw.com/

14. Busch, M., Koch, N., Masi, M., Pugliese, R., Tiezzi, F.: Towards model-driven de-
velopment of access control policies for web applications. In: Model-Driven Security
Workshop in Conjunction with MoDELS 2012. ACM Digital Library (2012)

15. Bertolino, A., Lonetti, F., Marchetti, E.: Systematic XACML request generation
for testing purposes. In: Proceedings of the 36th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA), Lille, France, Septem-
ber 1-3, pp. 3–11 (2010)

16. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: The X-CREATE frame-
work: a comparison of XACML policy testing strategies. In: Proceedings of 8th In-
ternational Conference on Web Information Systems and Technologies (WEBIST),
Porto, Portugal, April 18-21 (2012)

17. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: Automatic XACML Re-
quests Generation for Policy Testing. In: Proceedings of IEEE Fifth International
Conference on Software Testing, Verification and Validation (ICST), pp. 842–849
(2012)

18. Sun Microsystems: Sun’s XACML Implementation (2006),
http://sunxacml.sourceforge.net/

19. Busch, M., Koch, N.: MagicUWE — A CASE Tool Plugin for Modeling Web
Applications. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS,
vol. 5648, pp. 505–508. Springer, Heidelberg (2009)

20. OMG.: XMI 2.1 (2005), http://www.omg.org/spec/XMI/
21. Eclipse: XPand (2013), http://wiki.eclipse.org/Xpand
22. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: An ap-

proach to testing based on combinatiorial design. IEEE Trans. on Soft. Eng. 23(7),
437–444 (1997)

http://uwe.pst.ifi.lmu.de/
http://www.sensoria-ist.eu/
http://www.ascens-ist.eu/
http://eclipse.org/modeling/
http://www.magicdraw.com/
http://sunxacml.sourceforge.net/
http://www.omg.org/spec/XMI/
http://wiki.eclipse.org/Xpand

286 A. Bertolino et al.

23. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Schilders, L.: Automated
testing of extensible access control markup language-based access control systems.
IET Software 7(4), 203–212 (2013)

24. SDE.: Tutorial (2012), http://sde.pst.ifi.lmu.de/trac/sde/wiki/Tutorial
25. OMG.: OCL 2.0 (2011), http://www.omg.org/spec/OCL/2.0/
26. Busch, M.: Secure Web Engineering supported by an Evaluation Framework. In:

Modelsward 2014. Scitepress (2014)
27. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Lan-

guage for Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

28. Slimani, N., Khambhammettu, H., Adi, K., Logrippo, L.: UACML: Unified Access
Control Modeling Language. In: NTMS 2011, pp. 1–8 (2011)

29. Basin, D., Clavel, M., Egea, M., Schläpfer, M.: Automatic Generation of Smart,
Security-Aware GUI Models. In: Massacci, F., Wallach, D., Zannone, N. (eds.)
ESSoS 2010. LNCS, vol. 5965, pp. 201–217. Springer, Heidelberg (2010)

30. Jürjens, J.: Secure Systems Development with UML. Springer (2004), Tools:
http://carisma.umlsec.de/

31. Martin, E., Xie, T.: Automated Test Generation for Access Control Policies. In:
Supplemental Proc. of 17th International Symposium on Software Reliability En-
gineering, ISSRE (2006)

32. Martin, E., Xie, T.: Automated test generation for access control policies via
change-impact analysis. In: Proc. of Third International Workshop on Software
Engineering for Secure Systems (SESS), pp. 5–12 (2007)

33. Fisler, K., Krishnamurthi, S., Meyerovich, L., Tschantz, M.: Verification and
change-impact analysis of access-control policies. In: Proc. of ICSE, pp. 196–205.
ACM, New York (2005)

34. Bertolino, A., Lonetti, F., Marchetti, E.: Systematic XACML Request Generation
for Testing Purposes. In: Proc. of 36th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), pp. 3–11 (2010)

35. Li, N., Hwang, J., Xie, T.: Multiple-implementation testing for XACML implemen-
tations. In: Proc. of TAV-WEB, pp. 27–33 (2008)

36. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Martinelli, F., Mori, P.:
Testing of PolPA Authorization Systems. In: Proc. of AST, pp. 8–14 (2012)

37. Traon, Y., Mouelhi, T., Baudry, B.: Testing security policies: going beyond func-
tional testing. In: Proc. of ISSRE, pp. 93–102 (2007)

38. Mallouli, W., Orset, J.M., Cavalli, A., Cuppens, N., Cuppens, F.: A formal ap-
proach for testing security rules. In: Proc. of SACMAT, pp. 127–132 (2007)

39. Li, K., Mounier, L., Groz, R.: Test generation from security policies specified in
or-BAC. In: Proc. of COMPSAC, pp. 255–260 (2007)

40. Eclipse: Acceleo (2014), http://www.eclipse.org/acceleo/

http://sde.pst.ifi.lmu.de/trac/sde/wiki/Tutorial
http://www.omg.org/spec/OCL/2.0/
http://carisma.umlsec.de/
http://www.eclipse.org/acceleo/

Verification of Authorization Policies Modified
by Delegation

Marina Egea1 and Fabian Büttner2

1 Atos, Research & Innovation, Madrid
marina.egea@atos.net

2 Database Systems Group, University of Bremen
green@tzi.de

Abstract. Delegation is widely used in large organizations where access to sys-
tems needs to be controlled and often depends on the role of a user within the
organization. Delegation allows to grant access rights under certain, often tem-
poral conditions. Usually, a delegation policy specifies the authority to delegate,
and an administrative delegation operation performs the changes in the autho-
rization policy accordingly. Unfortunately, the consequences of these changes are
not checked in common practice before delegation is ‘in-effect.’ In this work, we
present a systematic, automated approach to verify, before the actual enforcement
in the system, whether a subject has the right to perform delegation, and that this
delegation will not introduce Separation of Duties’ (SoD) conflicts. We imple-
ment the delegation operation as an ATL transformation and apply our previous
work on automatic transformation verification to check an authorization policy
that is modified by a delegation policy. Our approach allows us to check, follow-
ing an automated process: i) that delegation is only performed when conditions,
for legitimate delegation, that we formalize using OCL, hold; ii) that the output
of our transformation is always a valid authorization policy when it is obtained
by executing the delegation operation using as input a valid authorization and
delegation policy; iii) the absence of SoD’ conflicts in the resulting authorization
policy, for which we provide patterns that can be instantiated following policy’s
rules, as we illustrate.

1 Introduction

Delegation is widely used in large organizations where access to systems needs to be
controlled and often depends on the role of a subject within the organization. Delega-
tion allows to grant or to transfer access rights under certain, often temporal conditions.
Delegation may occur in two forms [10]: administrative delegation and subject delega-
tion. An administrative delegation allows an administrator to assign access rights to a
subject and does not, necessarily, require that the subject possesses these access rights.
In contrast, a subject delegation allows a subject to assign a subset of its available rights
to another subject. In the latter form of delegation, a delegation policy contains the au-
thority to delegate and an administrative delegation operation performs the changes in
the authorization policy accordingly. In this chapter we only consider subject delega-
tion. We work with a delegation language that supports delegation of actions from one

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 287–314, 2014.
© Springer International Publishing Switzerland 2014

288 M. Egea and F. Büttner

subject to another, optionally under certain conditions. Yet, we note that the concept
of delegation cannot substitute the permanent assignment of permissions to subjects by
administrators. Access control policies must be modified to cover this need, instead.
The subject who performs a delegation is referred to as a ‘grantor’ and the subject who
receives a delegation is referred to as a ‘grantee’. The delegation of rights from one
subject to another needs to be controlled since not always a subject is allowed to del-
egate them. These controls are called in the literature delegation legitimacy conditions
[1]. Who and when can delegate certain permissions to another subject is a critical issue
in systems allowing cascade delegation of access rights. Yet, one step delegation may
already create conflicts in the security policies, e.g. separation of duties’ rules viola-
tions. In this chapter, we will focus on one-step delegation, but we plan to extend our
approach to cascade delegation of rights in the future. Also, delegation of privileges
may be classified into (at least) two kinds: grant and transfer [4]. A grant delegation
model, following a successful delegation operation, allows a delegated access right to
be available to both the grantor and the grantee. In contrast, in transfer delegation mod-
els, following a successful delegation operation, the ability to use a delegated access
right is transferred to the grantee and it is no longer available to the grantor. In this
work, we follow the grant model since, in our experience, it is more used in an organi-
zation environment, while the transfer of rights would be usually performed by a change
in the access control policy.

As we have already mentioned, in subject delegation a delegation policy specifies the
authority to delegate and an administrative delegation operation performs the changes in
the authorization policy accordingly. Unfortunately, the consequences of these changes
are not checked in common practice before delegation is ‘in-effect’. In this work, we
present a systematic approach to verify, before the actual enforcement in the system,
that a subject has the right to perform delegation and that this delegation will not
introduce authorization conflicts. We implement the delegation operation as an Atlas
Transformation Language (ATL) transformation [15] and apply our previous work on
automatic transformation verification [9] to analyze an authorization policy that is mod-
ified by a delegation policy. This work is contextualized in the area of Model Driven
Security (MDS) [6], where models constitute pivotal elements of the security software
to be built. These models can serve, for instance, to specify the vocabulary of a domain
and the domain knowledge, to elicit the security requirements and as a basis for differ-
ent types of verification, e.g. model based testing or monitoring, satisfiability checking,
etc.. Moreover, if models of security policies are well specified, model transformations
can be employed for various purposes, e.g., by model refinement to get the designs
close to code, or to directly enforce the security policies in code. Yet, the confidence on
these model-to-model transformations not to lose or mix important information in their
execution needs of assurance techniques to be reliable and adopted by developers. In
our approach, we translate rule-based model-to-model transformations into a constraint-
based representation (in OCL) and apply automatic bounded satisfiability checking (us-
ing SAT solving) to this representation. This methodology allows us to advance the state
of the art by supporting the automated checking of the following properties, namely, i)
that delegation is only performed when conditions for legitimate delegation hold; ii)
that the output of our transformation is always a valid authorization policy when it is

Verification of Authorization Policies Modified by Delegation 289

obtained by executing the delegation operation using as input a valid authorization and
delegation policy; iii) the absence of separation of duties’ conflicts in the resulting au-
thorization policy, that often arise after the delegation of different actions by various
subjects is performed. When the resulting authorization policies are shown valid and
conflict free for the requirements of interest, they are ready to be enforced at runtime in
the final system.

Organization. Section 2 provides some background about the Ponder language that we
primarily followed to specify authorization and delegation policies. Section 3 describes
the authorization and delegation metamodels that we use to specify authorization and
delegation policies (respectively). In Section 4 we propose patterns that allow detection
of separation of duties’ conflicts in our policies; we also explain how they are used with
a running example. Section 5 explains the ATL transformation that is implemented to
perform the delegation operation. Section 6 explains how our verification method works
in practice while and shows the results of applying the verification method to the ATL
delegation operation. We summarize related work in Section 7. We outline future work
and conclusions in Section 8.

2 Background

Our work is inspired by the Ponder language [11]. Ponder is a declarative, object-
oriented language for the specification of security and management policies in networks
and distributed systems. Ponder policies relate to system objects and control the activ-
ities between them through authorization, obligation, refrain, and delegation policies
within a defined set of constraints. In this chapter we focus on Ponder authorization
and delegation policies.1Ponder authorization policies are essentially access control
policies to protect resources from unauthorized access. A positive authorization pol-
icy (indicated by the header inst auth+, see Fig. 1) defines the actions that subjects are
permitted to perform on target objects. We do not consider negative authorization poli-
cies (indicated by the header inst auth−) that deny subjects access to certain resources
since delegation of prohibitions does not make sense. Positive delegation policies allow
subjects to grant privileges, which they must possess (due to an existing authoriza-
tion policy) to grantees, so that they can perform the delegated actions on their behalf.
For example, the botton-left part of Fig. 1 shows a Ponder authorization policy in the
banking domain that allows a teller to perform the actions input, and modify on target
deposit accounts during weekdays. The bottom-right part of Fig. 1 also shows a Ponder
delegation policy in which a customer service representative intends to delegate to a
teller the actions create and delete on target deposit accounts during weekdays (and this
delegation would expire in 15 days).

Ponder is the language of our choice for various reasons: i) it supports separation
of concerns, i.e., the authorization and the delegation policy are written separately; ii)
it supports the main concepts that can be found in existing works on authorization and

1 To the best of our knowledge, Ponder2 only adds to Ponder authorization policies the concept
‘focus’ that tells the policy that it is protecting the target object(s) indicated [28]. Delegation
policies are not revised in Ponder2.

290 M. Egea and F. Büttner

delegation policies’ modeling; iii) it has shown a broad applicability in different settings
where Ponder authorization policies are known to be mappable onto a variety of hetero-
geneous security platforms and mechanisms [28,11]. We have built a metamodel that
allows us to model Ponder authorization and delegation policies. Their syntax is shown
in the top part of Figure 1. Our metamodel leverages the use of model analysis tech-
niques for the verification of these policies. However, the approach could be similarly
applied to other authorization and delegation languages.

∗Authorization policy syntax∗
inst (auth+ |auth−) policyName ‘{′
subject ([〈type〉] domainScopeExp;)

target ([〈type〉] domainScopeExp;)

action (actionList ;)

[when constraintExp;] ‘}′

∗Authorization policy example∗
inst auth+ bankAuthEx{
subject teller;

target depositAccount;

action input,modify;

when weekdays;}

∗Delegation policy syntax∗
instdeleg+ ‘(′refAuthPolicy ‘)′ policyName ‘{′
grantee ([〈type〉] domainScopeExp;)

subject ([〈type〉] domainScopeExp;)

target ([〈type〉] domainScopeExp;)

action (actionList ;)

[when constraintExp;]

[valid constraintExp;] ‘}′

∗Delegation policy example∗
instdeleg+ (bankAuthEx) delegEx {
grantee teller;

subject customerServiceRep;

target depositAccount;

action create, delete;

when weekdays;

valid 15 days; }

Regarding Ponder syntax, we note that choices are enclosed in (and) separated by |, optional elements are specified with
square brackets [] and repetition is specified with braces { }. Constraints are optional in all types of policies.

Fig. 1. Ponder syntax and examples of authorization and delegation policies

To the best of our knowledge, there have not been previous works on the automated
verification of delegation legitimacy conditions for Ponder policies prior to the enforce-
ment of the rules in the final system. Neither, the resulting authorization policy for a
system that takes delegation rules into account has been systematically analyzed. How-
ever, for Ponder policies it is explicitly described that when a delegation operation is
executed, a separate authorization policy should be created turning the grantee into the
subject [11]. This is exactly the idea that we follow when executing the transformation
that automatically performs the delegation operation in our approach.

Verification of Authorization Policies Modified by Delegation 291

3 A Metamodel to Specify Authorization and Delegation Policies

In this section, we present the metamodel that we have specified in order to leverage the
use of model analysis techniques, in particular our work in [9], for the verification of
Ponder authorization and delegation policies. The metamodel is supported as an Ecore
metamodel in the Eclipse Modeling Framework [13]. Ecore modelling supports a sub-
set of Meta Object Facilities (MOF) [21] elements which suffice for our purpose of
specifying authorization and delegation policies. In particular, the modeling elements
that we employ are metaclasses, attributes, and associations.

Fig. 2. Authorization policy metamodel

The Authorization Policy Metamodel (APM), shown in Figure 2, contains six meta-
classes to specify a (positive) authorization policy, mirroring the Ponder syntax ele-
ments.

– Inst is the root Ecore metaclass that brings together all the other metaclasses that
are needed to specify and authorization policy. Thus, this metaclass is linked to:
• authactionitems[1..*]:ActionItem, to specify action items;
• authactions[1..*]:Action, to specify action holders;
• targetdomain[1..*]:Target, to specify domains;
• authSubject[1..*]:Subject, to specify authorized subjects;
• condition[1]:When to optionally specify conditions for the authorization rules.

– Subject is the metaclass that is used to specify the role with granted access. This
metaclass is linked to:
• policy[1]:Inst, to specify the policy to which the subject belongs;
• allowedAction[1]:Action, to specify the category of actions which the subject

has access to;
• domain[1]:Target, to specify the domain which the subject has access to;

292 M. Egea and F. Büttner

Fig. 3. Delegation policy metamodel

– Target, is the metaclass used to specify the domain on which the actions are per-
formed. This metaclass is linked to:
• policy[1]:Inst, to specify the policy which it belongs to;
• authSubject[1]:Subject, to specify the subject that is authorized to access this

domain;
• onAction[1]:Action, to declare the category of actions that can be performed

on this domain;
– Action, is the metaclass that is used as an action holder, to group action items;

• policy[1]:Inst, to specify the policy which it belongs to;
• myitems[1..*]:ActionItem, to specify the action items that belong to each ac-

tion group;
• target[1]:Target, to specify the domain on which each action group can be per-

formed;
• allowedSubject[1]:Subject, to specify the subject that can perform each action

group;
• undercondition[0..1]:When, to optionally specify the constraints under which

the action group can be performed;
– ActionItem, is the metaclass that holds each action item that is granted to a subject

through an action holder. This metaclass is linked to:
• policy[1]:Inst, to specify the policy which it belongs to;
• action[1]:Action, to specify the action group which the item belongs to;

– When, is the metaclass used to specify the conditions under which the policy ap-
plies. This metaclass is linked to:
• policy[1]:Inst, to specify the policy which it belongs to;
• onAction[1]:Action, to specify the action group that the condition constrains.

Verification of Authorization Policies Modified by Delegation 293

Note that our metamodel contains many multiplicity constraints that restrict its valid
instances. Interestingly, that the authorization policies are well formed in Ponder syn-
tax (cf. Figure 1) are captured by these multiplicity constraints and the OCL constraints
shown in Figure 4. Hence, we will consider that an instance of the APM is valid if it
fulfills both metamodel multiplicy constraints and the OCL constraints shown in Fig-
ure 4. Essentially, these constraints ensure that there is just one authorization policy
instantiated, i.e., only one instance of the metaclass Inst is allowed. We note that the
metaclass Inst is acting as an aggregating class for all the authorization rules that may
be involved in the authorization policy. The Inst instance may have associated many
triple of instances’ names 〈Subject, Target, Action〉, the latter optionally linked to a
When metaclass’ name to express a condition. Of course, each action instance is linked
to their items, as it is enforced by the corresponding multiplicity constraint. Notice that
the metaclasses Subject, Target, and Action act a references – there may be more than
one instances of each sharing the same name. This way we can authorize the same sub-
ject to access different actions while keeping the metamodels as closer as possible to
the structure of Ponder textual policies. Also because of this design decision we require
that two equally named action holders own either the same items or a subset of them.
This enables granting different subjects access to distinct items in the same group of
actions, e.g., the administrator may be authorized to create and delete a database, while
a supervisor may be authorized to create and delete database tables, all being action
items grouped as database actions.

inv AuthIntegrity1: -- there is only one
Inst.allInstances()->size()=1 -- auth.policy, i.e.,

-- Inst has just one instance

inv AuthIntegrity2:
Action.allInstances()->forAll(a,a1 | (a<>a1 and -- if an instance of an action
a.name=a1.name and -- holder appear more than once
a.myitems->size()>=a1.myitems->size()) -- in a policy, the items
implies a1.myitems->forAll(i1| a.myitems -- linked to them must have
->exists(i| i.name=i1.name and i.type=i1.type))) -- the same name and type

Fig. 4. OCL constraints to follow Ponder syntax with metamodel instances

The Delegation Policy Metamodel (DPM), shown in Figure 3, contains the meta-
classes DSubject, DAction, DActionItem, DTarget, DWhen that are similar to those
already described for the APM. Moreover, DPM’s root metaclass is called DInstDeleg,
and it also contains:

– DGrantee, that is the metaclass used to specify the role to whom access rights are
delegated. This metaclass is linked to:
• policy[1]:DInstDeleg, to specify the delegation policy which the grantee be-

longs to;
• grantor[1]:DSubject, to specify the subject who delegates some of its rights to

the grantee.

294 M. Egea and F. Büttner

– DValid, is the metaclass used to specify validity conditions under which the delega-
tion holds. These are typically temporal conditions. This metaclass owns the links:
• inst[1]:DInstDeleg, to specify the delegation policy to which the grantee be-

longs;
• onAction[1]:DAction, to specify the delegated group of actions. The opposite

association end is valid[0..1]:Valid, to optionally specify a validity condition
(in addition to the when-condition) to further restrict the access to a group of
delegated actions.

Again, the rules for writing delegation policies in Ponder syntax (please, recall
Figure 1) are captured by the metamodel multiplicity constraints, and similar OCL con-
straints to those shown in Figure 4, but contextualized by the delegation metamodel.
Hence, we will consider that an instance of the DPM is valid if it fulfills both meta-
model multiplicy constraints and the OCL constraints shown in Figure 4. Yet, we note
that although the grantee element is the only element that is mandatory in the specifi-
cation of a Ponder delegation policy, we are also requiring the developer to specify the
other modeling elements for the delegation policy, so as to be able to check the legit-
imacy constraints and potential separation of duties’ conflicts directly, before running
the delegation transformation. As we do for the authorization metamodel, we assume
that these tuples contain a reference by name to other domain metamodel that defines
the subject, potential grantee, action and domain’s objects. Thus, in this metamodel,
those instances having the same name are the same instance.

Essentially, the constraints imposed on the DPM ensure that there is just one delega-
tion policy instantiated (only one instance of the metaclass InstDeleg is allowed). Note
that the metaclass InstDeleg is acting as an aggregating class for all the delegation rules
that may be involved in a delegation policy. The InstDeleg instance may own many
4-tuples of names 〈Grantee, Subject, Target, Action〉, the latter optionally linked to a
When metaclass’ name to express an authorization condition. Moreover, it can be also
optionally linked to a Valid metaclass to express the condition under which the delega-
tion is valid. Finally, since a delegation policy refers to an authorization policy (please,
recall Figure 1), we introduce a one-to-one link from Inst to InstDeleg metaclasses so
this reference gets specified. This link is also shown in Figure 2. Thus, we obtain just
one metamodel that allows the specification of an authorization and a delegation policy
(APM+DPM). The ATL transformation that we define to perform the delegation oper-
ation in section 5, takes as input instances of the APM+DPM metamodel and outputs
instances of a final APM only.

4 Patterns to Check Separation of Duties in Authorization Policies

In this section, we define patterns that help to detect Separation of Duties (SoD) con-
flicts that may exist in an authorization policy or that delegation may introduce in an
authorization policy.

The patterns shown in Figure 5 allow us to check Separation of Duty’s conflicts at
different levels:

– Pattern 1 checks that a subject is not granted access on two conflicting domains T1

and T2, e.g., in a bank office a teller is not granted access into loan accounts, and
deposit accounts.

Verification of Authorization Policies Modified by Delegation 295

– Pattern 2 checks that a subject is not granted access on two conflicting groups of
actions A1 and A2, e.g., authoring and reviewing actions are not granted to the
same teller;

– Pattern 3 checks that a subject is not granted access on two conflicting action items
I1 and I2, e.g., create and delete a loan account are not granted to the same teller.

– Pattern 4 checks that a subject with access to a domain T2 does not get rights on a
conflicting domain T1 by delegation. E.g., a teller who can access to loan accounts
cannot get access to deposit accounts by delegation.

– Pattern 5 checks that a subject with access to certain group of actions A1 does not
get rights on a conflicting group of actions A2 by delegation. E.g., a teller who is in
charge of authoring reports does not get access to reviewing reports by delegation.

– Pattern 6 checks that a subject with access to a specific action item I2 does not get
rights on a conflicting action item I1 by delegation. E.g., a teller who is in charge
of creating loan accounts does not get rights to delete loan accounts by delegation.

– Pattern 7 checks that two subjects with access to conflicting domains T1 and T2

cannot delegate on the same grantee.
– Pattern 8 checks that two subjects with access to conflicting actions A2 and A2

cannot delegate on the same grantee.
– Pattern 9 checks that two subjects with access to conflicting action items I1 and I2

in certain domains T1 and T2 cannot delegate on the same grantee.

Patterns are instantiated to be of practical use. Instances of patterns 1 to 3 can be
checked over an authorization model instance, and instances of patterns 4 to 9 can be
checked over a delegation model instance. In section 4.1, we introduce a banking ex-
ample partially borrowed from [25]. We model this example and illustrate how patterns
can be instantiated to detect SoD conflicts in this setting. Later, in section 6, we will
show how we integrate patterns instances in the analysis of the delegation operation
that we perform, and the results of the analysis itself.

4.1 Banking Application Example

Let us consider a banking application that allows bank officers to perform transactions
on customer deposit accounts and customer loan accounts, and to generate and verify
financial account data. The roles in the banking system contain teller, customer service
representative, loan officer, and accountant. The actions that may be assigned to these
roles include (a) create, delete, input, or modify customer deposit accounts, (b) create,
or modify customer loan accounts, (c) create general ledger report, and (d) modify,
or verify ledger posting rules. Figure 6 shows the authorization model instance that
correspond to the following participating roles and actions granted to each role in the
banking system:

1. teller – input and modify customer deposit accounts during weekdays.
2. customerServiceRep – create and delete customer deposit accounts during

weekdays.
3. loanOfficer – create and modify loan accounts (Monday-to-Thursday).
4. accountant – create general ledger reports on Fridays.

296 M. Egea and F. Büttner

Pattern 1: a subject cannot access two conflicting domains, T1 and T2,
in the auth. policy

not(Inst.allInstances().authSubject->exists(s, s1 |
s.name=s1.name and
s.domain.name ='T1' and s1.domain.name='T2')), T1<>T2

Pattern 2: a subject cannot access two conflicting action groups, A1 and A2,
in the auth.policy

not(Inst.allInstances().authSubject->exists(s, s1 |
s.name=s1.name and
s.allowedActions.name = 'A1' and s1.allowedActions.name = 'A2')), A1<>A2

Pattern 3: a subject cannot access two conflicting action items, I1 and I2,
from certain domain, T1 and T2, in the auth.policy

not(Inst.allInstances().authSubject->exists(s, s1 |
s.name=s1.name and
s.domain.name='T1' and s1.domain.name='T2' and
s.allowedActions.myitems->exists(i| i.name='I1') and
s1.allowedActions.myitems->exists(i1| i1.name='I2')))

Pattern 4: A subject with access to a domain 'T2' cannot get delegation
of rights on a conflicting domain 'T1'

context Subject inv:
self.domain= 'T2' implies
not(self.policy.delegationPolicies.authSubject->exists(s|
s.grantee.name=self.name and s.domain='T1')

Pattern 5: Actions of certain type 'A2' cannot be delegated to a subject
with access to actions of a conflicting type 'A1'

context Subject inv:
self.allowedActions.name='A1' implies
not(self.policy.delegationPolicies.authSubject->exists(s|
s.grantee.name=self.name and s.allowedActions.name='A2')

Pattern 6: specific actions 'I2' cannot be delegated to a subject with
access to specific actions 'I1'

context Subject inv:
self.allowedActions.myitems.name->includes('I1') implies
not(self.policy.delegationPolicies.authSubject->exists(s|
s.grantee.name=self.name and s.allowedActions.myitmes.name->includes('I2'))

Pattern7: two subjects with access to conflicting domains cannot delegate
on the same grantee
inv: not DSubject.allInstances()->exists(s,s1| s<>s1 and s.domain.name='T1' and

s1.domain.name='T2' and s.grantee.name=s1.grantee.name), with 'T1' and
'T2' conflicting domains.

Pattern8: two subjects with access to conflicting actions cannot delegate
on the same grantee
inv: not DSubject.allInstances()->exists(s,s1| s<>s1 and

s.allowedActions.name='A1' and s1.allowedActions.name='A2' and
s.grantee.name=s1.grantee.name), with 'A1' and 'A2' conflicting actions.'

Pattern 9: two subjects with access to conflicting action items of certain
domains cannot delegate on the same grantee

inv: not DSubject.allInstances()->exists(s,s1| s<>s1 and s.domain.name='T1'
and s1.domain.name='T2' and s.allowedActions.myitems->exists(i
i.name='I1') and s1.allowedActions.myitems->exists(i1|i1.name ='I2') and
s.grantee.name=s1.grantee.name), with 'I1' and 'I2' conflicting actions
items on domains 'T1' and 'T2' (respectively)

Fig. 5. Separation of Duty’s constraints patterns

Verification of Authorization Policies Modified by Delegation 297

Fig. 6. Banking application authorization policy (excerpt)

Fig. 7. Delegation model instance for the banking example

In the banking application, several organizational authorization rules need to be en-
forced to support common security principles such as separation of duties. We exem-
plify these rules next:

– Rule 1: There must not be a bank officer who can interact with both domains ‘loan
accounts’ and ‘deposit accounts’.

– Rule 2: There must not be a subject who can both edit deposit accounts and create
ledger reports.

– Rule 3: The operations create loan account and create deposit account cannot be
performed by the same subject. (This rule is a weaker alternative to Rule 1)

– Rule 4: The teller and accountant privileges cannot be delegated to the same
grantee.

298 M. Egea and F. Büttner

inv Pattern1Inst:
not Inst.allInstances().authsubject->exists(s,s1|
s.name=s1.name and s.domain.name = 'loan accounts' and
s1.domain.name='deposit accounts')

inv Pattern2Inst:
not Inst.allInstances().authsubject->exists(s,s1|
s.name=s1.name and s.allowedActions.name = 'Edit' and
s1.allowedActions.name = 'Create Report')

inv Pattern3Inst:
not Inst.allInstances().authsubject->exists(s,s1|
s.name=s1.name and s.domain.name='loan accounts' and
s1.domain.name='deposit accounts' and
s.allowedActions.myitems->exists(i| i.name='create account') and
s1.allowedActions.myitems->exists(i1| i1.name='create account')

inv Pattern4Inst:
not Subject.allInstances()->exists(s| (s.domain.name = 'loan accounts'
and s.policy.delegationPolicies.authSubject->exists(s1|
s1.grantee.name = s.name and
s1.domain.name = 'deposit accounts')) or
(s.domain.name = 'deposit accounts' and
s.policy.delegationPolicies.authSubject->exists(s1|
s1.grantee.name = s.name and s1.domain.name = 'loan accounts')))

inv Pattern5Inst:
not Subject.allInstances()->exists(s| (s.allowedActions.name='Edit' and
s.policy.delegationPolicies.authSubject->exists(s1 |
s1.grantee.name=s.name and s1.allowedActions.name='Create Report')) or
(s.allowedActions.name='Create Report' and
s.policy.delegationPolicies.authSubject
->exists(s1 | s1.grantee.name=s.name and
s1.allowedActions.name='Edit')))

inv Pattern6Inst:
not Subject.allInstances()->exists(s |
s.policy.delegationPolicies.authSubject->exists(s1|
s.name = s1.grantee.name and
((s.domain.name = 'loan accounts' and
s1.domain.name = 'deposit accounts' and
s.allowedActions.myitems->exists(i| i.name='create account') and
s1.allowedActions.myitems->exists(i1| i1.name='create account')) or
(s.domain.name = 'deposit accounts' and
s1.domain.name = 'loan accounts' and
s.allowedActions.myitems->exists(i| i.name='create account') and
s1.allowedActions.myitems->exists(i1| i1.name='create account')))))

inv Pattern7Inst:
not DSubject.allInstances()->exists(s,s1| s<>s1 and
s.domain.name=`loan accounts' and s1.domain.name=`deposit accounts' and
s.grantee.name=s1.grantee.name)

inv Pattern8Inst:
not DSubject.allInstances()->exists(s,s1| s<>s1 and
s.allowedActions.name=`Edit' and s1.allowedActions.name=`Create
Report' and s.grantee.name=s1.grantee.name)

inv Pattern9Inst:
not DSubject.allInstances()->exists(s,s1| s<>s1
and s.domain.name='loan accounts' and
s1.domain.name='deposit
accounts' and s.allowedActions.myitems->exists(i|i.name=`create
account') and s1.allowedActions.myitems >exists(i1|i1.name
=`create account') and s.grantee.name=s1.grantee.name)

Fig. 8. Instances of Patterns 1-9 that detect violation of Rules 1-4

Verification of Authorization Policies Modified by Delegation 299

The patterns formalized in Figure 5 are instantiated in Figure 8 to enable checking of
rules 1-3 (respectively).2 Rule 4 is illustrating another source of SoD violation, i.e.,
two subjects with access to conflicting domains, actions or action items delegate their
rights on a grantee who originally does not own access rights conflicting with any of its
grantors. In delegation literature, this type of constraints are usually called pre-requisite
constraints. They can be checked in the delegation policy by using constraints like the
following at subject-level. For instance, the following constraint would check Rule 4 in
the source DPM instance.
prereq: two conflicting subjects cannot delegate on the same grantee

not DSubject.allInstances()->exists(s,s1 |s.name='accountant' and s1.name='teller'
and s.grantee.name=s1.grantee.name)

However, to prevent this situation attending to the protected resources, we have included
patterns 7-9 that impede that two different subjects with access to conflicting domains,
actions, or action items delegate on the same grantee.

If any of these patterns is not applied and subjects are allowed to delegate on the
same grantee, this is a potential source of conflict on the resulting authorization policy
that the transformation delegationExecution generates. Fortunately, the conflict would
be detected by evaluating appropriate instances of patterns 1, 2, or 3, on the resulting
the authorization policy. For instance, in the model shown in Figure 7 a teller and an
accountant delegate their rights on the accounting manager for certain periods of time.
The evaluation of the instance of Pattern 2 of Figure 8 on the resulting authorization
policy obtained by modifying the initial policy shown in Figure 6 by the delegation
transformation specified in Figure 10, would detect violation of Rule 2. Prior to del-
egation, if patterns 2, 5 and 8 are enforced in the original policy, they ensure that the
conflicting actions ‘Edit’ and ‘Create Report’ are not delegated on the same grantee,
i.e., they make Rule 2 to hold in the target policy after the delegation is executed.

5 An ATL Transformation to Perform the Delegation Operation

ATL (ATL Transformation Language) is a model transformation language and toolkit
[13] that provides ways to produce a set of target models from a set of source models.
In this section, we explain first the structure and execution semantics of ATL matched
rules which we use to define the delegation transformation and are the main constructs
of ATL. Then, we continue by introducing the ATL transformation shown in Figure 10.
This is the transformation that we implemented to perform the delegation operation. It
is composed only of matched rules.

5.1 ATL Matched Rules

A matched rule is composed of a source pattern and a target pattern (i.e., the from and
to-clauses in the rules of Fig. 10). The source pattern specifies a set of objects of the
source metamodel and uses, optionally, an OCL expression as a filtering condition, that
is enclosed in parenthesis after the from-clause that contains the source objects pat-
terns. The target pattern specifies a set of objects of the target metamodel plus a set

2 Notice that patterns 3-6 are instantiated commutatively, in both forms that could lead to a
separation of duty’s violation for pairs of conflicting domains, actions, and action items.

300 M. Egea and F. Büttner

of bindings, that are also enclosed in parenthesis after the to-clause and separated by
commas. The bindings describe assignments to features (i.e., attributes, references, and
association ends) of the target objects. The interested reader can find the precise rule
pattern that we consider in [9]. The execution semantics of matched rules can be de-
scribed in three steps: First, the source patterns of all rules are matched against input
model elements. Second, for every matched source pattern, the target pattern is followed
to create objects in the target model. The execution of an ATL transformation always
starts with an empty target model. In the third step, the bindings of the target patterns
are executed. These bindings are performed straight-forwardly with one exception: An
implicit resolution strategy is applied as follows when assigning a value to a property of
an object of the output model (i.e., to an object created by one of the rules). If the value
is referencing an object value of the source model, and this object has been matched by
a matched rule (more exactly, by a rule having a single input pattern element), then the
object value of the first output pattern element of this rule is assigned instead. By de-
fault, the ATL execution engine would report an error if no or multiple of such matches
exist.3

5.2 An ATL Delegation Transformation

The ATL transformation delegationExecution shown in Figure 10 takes as input in-
stances of the APM+DPM metamodel presented in section 3, and outputs instances of
a final APM metamodel. The ATL transformation always copies the source authoriza-
tion policy instance to the target authorization metamodel. In addition, it creates new
access rights in the target authorization policy according to the source delegation policy
instance, but only if what we have called legitimacy constraints are met. The legitimacy
constraints that apply to our case are itemized next (based on the description provided
in [11]). We show our formalization of these legitimacy constraints as an OCL helper
called checkDelegation() in Figure 9. After each of the following items, we indicate the
number of line that contains its formalization in Figure 9.

1 helper context DSubject def: checkDelegation() : Boolean =
2 not(self.grantee.oclIsUndefined()) and
3 self.policy.authpolicy.authsubject->exists(s |
4 s.name=self.name and s.allowedActions.name=
5 self.allowedActions.name and
6 s.domain.name=self.domain.name and
7 s.allowedActions.target.name=
8 self.allowedActions.target.name and
9 self.allowedActions.myitems->forAll(i |
10 s.allowedActions.myitems->exists(i1 |
11 i1.name=i.name and i1.type=i.type)) and
12 self.allowedActions.undercondition.expression =
13 s.allowedActions.undercondition.expression);

Fig. 9. checkDelegation() helper definition

3 We note that we only consider executions of a transformation that actually yield a target model.

Verification of Authorization Policies Modified by Delegation 301

– each grantor must exist as a subject in the authorization policy [line 2];
– each grantor must have access as a subject in the authorization policy to the action

holder that she wants to delegate and in exactly that target domain [lines 3–8];
– each grantor must also have access as subject in the authorization policy to the

particular action items that she wants to delegate [lines 9–11];
– each grantor must have access as a subject in the authorization policy to the actions

that she wants to delegate and under the same circumstances in which she wants to
delegate them [lines 12–13].

Only if the helper checkDelegation() returns true for the rules that map the source
delegation policy instance to the target authorization policy instance, these rules will
carry out their work. If this helper did not have evaluated prior to the transformation
execution, several inconsistencies may arise, e.g., one subject could delegate privileges
that she does not own. Next, we explain the rules that compose the delegationExecution
transformation that is shown in Figure 10:

– the rule Inst2FInst maps a source authorization policy’s root instance to a target
authorization policy’s root instance. More concretely, this rule maps an instance of
Inst to an instance of FInst; 4

– the rule Grantee2FSubject maps a grantee of the source delegation policy to a sub-
ject in the target authorization policy only if the grantor fulfills the legitimacy con-
straints. More concretely, this rule maps an instance of DGrantee to an instance of
FSubject, only if the grantee is linked to a grantor for whom the helper checkDel-
egation() returns true. This rule also links to the new subject created in the target
policy those actions that were linked to the grantor in the source policy;

– the rule DAction2FAction maps an action holder of the source delegation policy
to an action holder in the target authorization policy, only if the grantor fulfills the
legitimacy constraints. More concretely, this rule maps an instance of DAction to an
instance of FAction only if the helper checkDelegation() returns true for the allowed
subject that is linked to the action group instance in the source delegation policy;

– the rule DActionItem2FActionItem maps an action item of the source delegation
policy to an action item in the target authorization policy, only if it is linked to an
action group for which the allowed subject fulfills the legitimacy constraints. More
concretely, this rule maps an instance of DActionItem to an instance of FActionItem
only if the helper checkDelegation() returns true for the allowed subject linked to
the action group instance in the source delegation policy which the action item
belongs to.

– the rule DTarget2FTarget maps a domain of the source delegation policy to a do-
main in the target authorization policy, only if the source domain can be accessed by
a grantor that fulfills the legitimacy constraints. More concretely, this rule maps an
instance of DTarget to an instance of FTarget only if the helper checkDelegation()
returns true for the grantor instance that is linked to the source domain instance.

4 Notice that the target authorization policy’s (i.e., APM) metaclasses are prefixed by ‘F’, for
clarity.

302 M. Egea and F. Büttner

– the rule Conditions2FWhen maps when and valid conditions of the source delega-
tion policy to a target when condition for which its expression is the conjunction of
the expressions held by both types of source conditions. But these conditions are
mapped only if they restrict an action group for which the allowed subject fulfills
the legitimacy constraints. More concretely, this rule maps an instance of When and
an instance of Valid to an instance of FWhen only if the helper checkDelegation()
returns true for the grantor linked to the action group instance constrained by both
types of conditions.

– the rule When2FWhen is triggered instead of the rule Conditions2FWhen when
a validity condition is not specified in the delegation policy for a given group of
actions. It maps a when condition of the delegation policy that is constraining an
action group for which the allowed subject fulfills the legitimacy constraints to a
when condition in the target policy. More concretely, this rule maps an instance of
When to an instance of FWhen if validity conditions are not specified on the action
group that is constrained by the source when-condition, and its allowed subject
fulfills the legitimacy constraints.

– the rule MapSubject maps a subject of the source authorization policy to a subject
in the target authorization policy. More concretely, this rule maps an instance of
Subject to an instance of FSubject and links to the target subject the transformed
properties from those linked to the source subject, i.e., name, policy, domain and
allowed actions.

– the rule MapAction maps an action of the source authorization policy to an action in
the target authorization policy. More concretely, this rule maps an instance of Action
to an instance of FAction and links to the target action the transformed properties
from those linked to the source action, i.e., name, policy and target domain.

– the rule MapTarget maps a target of the source authorization policy to a target in the
resulting authorization policy. More concretely, this rule maps an instance of Target
to an instance of FTarget and links to the target instance the transformed properties
from those linked the source instance, i.e., name and policy.

– the rule MapActionItem maps an action item that belongs to an action of the source
authorization policy to an action item belonging to the corresponding action in
the target authorization policy. More concretely, this rule maps an instance of Ac-
tionItem to an instance of FActionItem and links to the target instance the trans-
formed properties from those linked to the source instance, i.e., name, type, action
and policy.

– the rule MapWhen maps a when condition of the source authorization policy to a
when condition in the resulting authorization policy. More concretely, this rule maps
an instance of When to an instance of FWhen and links to the target instance the
transformed properties from the source instance, i.e., expression, onAction and inst.

In short the rules named following the pattern ‘name2name’ turn the source delega-
tion policy, i.e., a DPM instance, into a final APM instance. The remaining rules copy
the source authorization policy, i.e., APM instances, to final APM instances.

Verification of Authorization Policies Modified by Delegation 303

module delegationExecution;
create OUT : fauthPolicy from IN1 : auth-delegPolicy;

rule Inst2FInst {
from ds: Inst (ds.delegationPolicies.authSubject->exists(f|

f.checkDelegation()))
to aps: FInst (name<-ds.name, positiveAuth<-ds.positiveAuth) }

rule Grantee2FSubject {
from s: DGrantee, ds: DSubject (s.policy = ds.policy and

ds.grantee=s and ds.checkDelegation())
to aps: FSubject (name<-s.name, policy<-ds.policy.authpolicy,

allowedActions<-ds.allowedActions, domain<-ds.domain)
}

rule DAction2FAction {
from a: DAction (a.allowedSubject.checkDelegation())
to fa: FAction (name<-a.name, policy<-a.policy.authpolicy,

target<-a.target) }

rule DActionItem2FActionItem {
from ai: DActionItems, a: DAction (a.myitems->includes(ai) and

a.allowedSubject.checkDelegation())
to fai: FActionItems (name<-ai.name, type<-ai.type, action<-a,

policy<-a.policy.authpolicy) }

rule DTarget2FTarget {
from t: DTarget (t.authSubject.checkDelegation())
to ft: FTarget (name<-t.name,policy<-t.delpolicy.authpolicy) }

rule Conditions2FWhen {
from w: DWhen, v: DValid, a:DAction, ds:DInstDeleg

(not(a.valid.oclIsUndefined()) and
a.undercondition=w and a.valid= v and w.inst=ds and
a.allowedSubject.checkDelegation())

to fw: FWhen (expression<-w.expression.concat(' and ' + v.expression),
onAction<-a, inst<-ds.authpolicy) }

rule DWhen2FWhen {
from w: DWhen, ds: DInstDeleg, a: DAction (a.valid.oclIsUndefined() and

a.undercondition=w and w.inst=ds and
a.allowedSubject.checkDelegation())

to fw: FWhen (expression<-w.expression, inst<-ds.authpolicy,
onAction<-w.onAction)}

rule MapSubject {
from s: Subject
to fs: FSubject (name<-s.name, policy<-s.policy, domain<-s.domain,

allowedActions<-s.allowedActions)}

rule MapAction {
from a: Action
to fa: FAction (name<-a.name,policy<-a.policy,target<-a.target)}

rule MapActionItem {
from ai: ActionItems, a: Action (a.myitems->includes(ai))
to fai: FActionItems (name<-ai.name,type<-ai.type,action<-a,

policy<-a.policy)}

rule MapTarget {
from t: Target
to t1: FTarget (name<-t.name,policy<-t.policy)}

rule MapWhen {
from w: When, a: Action (a.undercondition=w)
to fw: FWhen (expression<-w.expression, onAction<-a, inst<-w.inst)}

Fig. 10. ATL transformation to modify an authorization policy by delegation

304 M. Egea and F. Büttner

6 Verification of the ATL Delegation Transformation

In the previous sections we have provided metamodels and well-formedness rules for
Ponder authorization and delegation policies, OCL patterns to capture separation of
duty constraints, and an ATL transformation to actually perform the delegation opera-
tion. Next, we explain how we can automatically check the Hoare-style notion of partial
correctness of our ATL transformation with respect to these various OCL constraints us-
ing a verification methodology that is based on constraint-satisfiability checking. More
specifically, we check the notion of correctness that we formalized in [9]. Verifying the
correctness of our transformation will involve checking the properties of our interest,
namely, i) that delegation is only performed when conditions for legitimate delegation
hold; ii) that the output of our transformation is always a valid authorization policy
when it is obtained by executing the delegation operation using as input a valid autho-
rization and delegation policy; iii) the absence of separation of duties’ conflicts, in the
resulting authorization policy, that often arise after the delegation of different actions
by various subjects is performed.

6.1 Verification Methodology

Our verification approach is based on transformation models. Transformation models
are a specific kind of what is commonly called a ‘trace model’. Given an ATL trans-
formation, a transformation model MMT is a metamodel that integrates the source and
target metamodels of the transformation and includes additional structural modelling
elements and constraints that capture the execution semantics of the transformation.
We apply the automated verification methodology presented in [9] to the transforma-
tion specified in Figure 10. In a nutshell, the procedure that we follow is described next:
We first generate from the ATL transformation T , its source metamodel MMsrc, and its
target metamodel MMtar, a transformation model MMT , consisting of the elements of
MMsrc and MMtar, and additional model elements that represent the transformation
rules specified. Moreover, a set Sem of OCL constraints is generated for the combined
model that characterizes the execution semantics of the ATL rules. For declarative ATL
rules without recursion, the constraints describe the ATL semantics one-to-one, i.e.,
each valid instance of the transformation model corresponds to an execution of the
transformation and vice-versa. In [9] the interested reader can find the general algorithm
that we use to derive transformation models for ATL transformations; the formalization
of the Hoare-style notion of partial correctness that we consider, and a discussion about
the validity and limitations of our translation to verify this notion of partial correctness
of T using off-the-shelf model finders.

Using this representation we can check partial correctness of the transformation with
respect to properties specified as OCL constraints over the source and/or the target
model, by checking if there exists a counterexample within a specific scope (i.e., max-
imum number of objects per class). More specifically, for a set of transformation pre-
conditions (or assumptions) Pre1, . . . ,Pren and a set of postconditions (or assertions)
Post1, . . . ,Postm, we want to show that for each instance M of the transformation
model, the following formula

Verification of Authorization Policies Modified by Delegation 305

(
Sem1 andSem2 and . . . andSemk andPre1 andPre2 and . . . andPren

)

implies
(
Post1 andPost2 and . . . andPostm

) (1)

holds. This formula can be expressed equivalently as follows: For each postcondition
Post i (1 ≤ i ≤ m), the formula (2) must be unsatisfiable (i.e., there is no model M
that makes it ‘true’):

Sem1 and . . . andSemk andPre1 and . . . andPren and not(Post i) (2)

Figure 11 illustrates the transformation model generated for our transformation. No-
tice that the transformation model contains a new class for each rule declared in the
delegationExecution transformation. Each of these new classes contains associations
to the source and target classes of the rule, which target multiplicy 1 to force the in-
stantiation of these classes for each instantiation of a rule-based class. Notice that the
associations’ multiplicities from the original source and target metamodels have been
weakened to 0..1 and 0..*. For our analysis purpose, we turn them into explicit OCL
constraints and include them in the sets Pre and Post , in order to check whether they
are fulfilled. The same procedure is followed with the composition relationships.

The additional set of constraints Sem that characterizes the transformation execution
semantics contains four kinds of elements:

– Matching Constraints. These constraints characterize the matching of ATL rules
in the source model – every combination of input model objects that would be
matched by an ATL rule has to be connected to the corresponding rule-based object
in the transformation model, and no additional rule-based objects may exist. For
example, for the rule Grantee2Subject, the following constraints are generated:
context DGrantee inv MATCH_Grantee2Subject:

Fig. 11. The transformation model generated for our transformation (excerpt)

306 M. Egea and F. Büttner

DGrantee.allInstances()->forAll(l_s:DGrantee |
DSubject.allInstances()->forAll(l_ds:DSubject |

l_s.policy = l_ds.policy and
l_ds.grantee = l_s and
l_ds.checkDelegation() implies
Grantee2Subject.allInstances()->one(l_Grantee2Subject:Grantee2Subject |

l_Grantee2Subject.s = l_s and l_Grantee2Subject.ds = l_ds)))

context Grantee2Subject inv MATCH_Grantee2Subject_COND:
self.s.policy = self.ds.policy and self.ds.grantee = self.s and
self.ds.checkDelegation()

– Creation constraints. These constraints control the existence of objects in the target
model – a target object may only exist if it is created by an ATL rule (hence, only if
it is connected to a corresponding rule-based object)5, and target objects cannot be
‘re-used’ between different rules. A creation constraint like the following is added
for each class type in the target metamodel of the transformation:
context fauthPolicy_FSubject inv CREATE_fauthPolicy_FSubject:

self.oclIsTypeOf(fauthPolicy_FSubject) implies
self.grantee2subject_aps->size() = 1

– Binding Constraints. The constraints characterize the binding (each assignment of a
property of an output object) of the ATL rules. In ATL, the new values for property
assignments are expressed as OCL expressions. These OCL expressions are the
basis for the corresponding source-target constraints on the transformation model.
They are, however, further modified to capture the implicit resolution semantics
of ATL. The first of the following two constraints illustrates a simple case where
a primitive type value is bound. In the second case, we can see how the binding
(policy <– ds.policy) of the rule Grantee2FSubject is transformed into an OCL
expression that explicitly follows the navigation via the Inst2FInst rule to resolve
the Inst type (which is the result type of ds.policy to an FInst type. 6

context Grantee2Subject inv BIND_Grantee2FSubject_aps_name:
self.aps.name = self.s.name

context Grantee2FSubject inv:
self.aps.policy.oclIsUndefined() =

self.ds.policy.authpolicy.oclIsUndefined() and
self.aps.policy = self.ds.policy.authpolicy.inst2finst_ds.aps

– Overlapping-avoid Constraints. In general, ATL rules can overlap in their pattern
types, but each tuple of input objects can only be matched once (ATL raises an ex-
ecution error otherwise). Hence, for each pair of potentially overlapping ATL rules
(i.e., each pair having compatible input types), a corresponding mutual exclusion
constraint is required. However, the ATL transformation delegationExecution does
not have any overlapping rules.

The semantics constraints that we generate establishes a one-to-one relationship be-
tween the actual ATL transformation and its transformation model. Whenever an in-
put model Msrc is transformed into a target model Mtrg by the ATL transformation,

5 Unlike Query/Views/Transformations (QVT) Relations [20], ATL assumes an initially empty
target model.

6 There are several other kinds of binding shapes that can be processed by our approach. We
refer the interested reader to [9] for a detailed discussion.

Verification of Authorization Policies Modified by Delegation 307

an instance of the transformation model exists that is valid with respect to the seman-
tics constraints and that comprises Msrc and Mtrg (connected by rule-based objects).
The converse holds, too. Because of this one-to-one relationship, the transformation
model and the semantics constraints can be used as a surrogate to verify the actual
transformation.

In order to verify that some constraint Posti is implied by the transformation (given
some other constraints as preconditions), we have to check that Eq. (2) is unsatisfiable.
This can be tested using a metamodel satisfiability checker, or model finder, such as the
UML Software Engineering (USE) Validator [17] which is publicly available [12]. The
USE Validator translates the UML model and the OCL constraints into a relational logic
formula and employs the SAT-based solver Kodkod [27] to check the unsatisfiability of
Eq. (2) for each of the post-conditions Posti within a given scope.

6.2 Tooling

We have integrated the whole chain as a verification prototype (Fig. 12). We have imple-
mented the ATL-to-OCL transformation [9] as a higher-order ATL transformation [26],
i.e., a transformation from Ecore and ATL metamodels to Ecore (transformation) meta-
models (ATL-to-TM),where the Ecore model can contain OCL constraints as annota-
tions. Our implementation automatically generates the Sem constraints from the ATL
transformation as well as Pre and Post constraints from the structural constraints of the
source and target metamodels (further constraints to be verified can be added manu-
ally). Since the USE validator has a proprietary metamodel syntax, we had to create a
converter from Ecore to generate a USE specification. We also generate a default search
space configuration, which is a file specifying the scopes and ranges for the attribute
values. In the search configuration file, we can disable or negate individual invariants
or constraints. This prototype has also shown its applicability and scalability in our
previous work on the industrial automotive domain [22]. For this reason, we are quite
confident on its performance for the analysis of larger authorization and delegation
policies.

transformations
higher−order ATL once per

postcondition

Counterexample

Additional pre− /

(to be verified)
postconditions (OCL)

− or −

UNSAT

Source metamodel
(Ecore + OCL)

Target metamodel
(Ecore + OCL)

T
yp

e
ch

ec
ke

r

A
T

L−
to

−
T

M

C
on

ve
rt

er

U
S

E
 V

al
id

at
or

model
Transformation

(Ecore + OCL)

Search
configurations

USE
specificationTransformation

(ATL)

Fig. 12. The tool chain used to perform the transformation verification

To check Eq. (2) for a postcondition, we have to negate the respective postcondition
and disable all other postconditions in the generated search configuration file (Fig. 12)
and then run USE. If USE reports ‘unsat’, this means that there is no input model in the

308 M. Egea and F. Büttner

search space for which the transformation can produce an output model that violates
the postcondition. If there exists a counterexample, USE provides the object diagram of
the counterexample which can be analyzed using many browsing features of the tool.

6.3 Results

We now present the results that we have obtained from the integrated prototype that
supports the application of the verification methodology described to the delegationEx-
ecution transformation and the constraints presented earlier. Table 1 shows several se-
lections of pre- and postconditions and, for each line, whether the USE model valida-
tor could find a counter-example for the corresponding instance of formula 2 or not.
The structure of the table has two parts. The first part is focused on the integrity of
the generated authorization policy model. Hence, it contains the results of checking
under which conditions the ATL transformation guarantees the well-formedness con-
straints from Fig. 4 and the APM multiplicity constraints for the resulting models. As
explained before, our tool automatically turns all multiplicity constraints other than
0..1 and 0..∗ into OCL invariants before they are checked. In particular, the first part
of the table shows that the integrity constraints are established by the transformation.
Interestingly, fulfillment of some of the multiplicity constraints on the output models
require more that just valid multiplicities on the input models. For example, Fig. 13
illustrates a counter-example that we get if the constraint AuthIntegrity1 is not as-
sumed as a precondition. It shows that the transformation could not generally handle
input models with more than one Inst object: In the counter-example, the object ftar-
get2 is generated without an associated subject because it is connected to a grantee in
the source side which belongs to an authority instance which is not mapped. However, if
we assume the constraint AuthIntegrity1 as a precondition for the transformation, all
multiplicity postconditions hold. Like the multiplicity constraints, all other constraints
from Fig. 4 are established by the transformation on the output, too.

The second part of Table 1 considers the three separation of duty pattern instances
from Fig. 8 on the final authorization policy. In all three cases, just assuming the pattern
on the initial authorization policy does not guarantee that the same pattern holds after
delegation. Fig. 14 illustrates this for the separation of conflicting domains pattern (pat-
tern 1): Although no subject in the initial authorization policy had access to both deposit
and loan accounts, a domain conflict is introduced into the final authorization policy by
delegation for the subject (randomly) named ‘String2’. We have to additionally assume
an instance of pattern 4 and pattern 7 to guarantee pattern 1 on the final authorization
policy. Also, we have to additionally assume an instance of pattern 5 and pattern 8
to guarantee pattern 2 on the final authorization policy; and to assume an instance of
pattern 6 and pattern 9 to guarantee pattern 3 on the final authorization policy.

6.4 A Remark on Scalability

While our approach is per se independent from a specific model finder for OCL, we
have only applied the USE Model Validator [17] to a larger extent. The USE Model
Validator is based on Kodkod, which is based on a configurable SAT solver. Thus, we
have to consider several tool layers when discussing scalability and limitations of this

Verification of Authorization Policies Modified by Delegation 309

Fig. 13. Counter-example for multiplicity constraint FTarget::authSubject when the constraint
AuthIntegrity1 is not assumed. Only objects of relevant classes shown. The highlighted objects
illustrate the problem: The object ftarget3 is not connected to any FSubject, because the cor-
responding object dgrantee2 is connected to dsubject1 that comes from a different delegation
policy.

Fig. 14. Counter-example showing a violation of pattern 1 in the final authorization policy, even
when pattern 1 holds for the initial authorization policy. Only objects of relevant classes shown.

(bounded) verification approach [9]. From a user-perspective, both solving time and
space consumption of the tool chain are, in practice, mainly dependent on two factors:
(1) The size of the search space in terms of the number of instances per metamodel class
(which reflects in the relation size on the level of the relational logic solver Kodkod),
and (2) the complexity of the OCL constraints in terms of nested (implicit and explicit)

310 M. Egea and F. Büttner

Table 1. Verification results. Mults. denotes the set of all multiplicity constraints derived from the
respective metamodels. Mult.[C::p] denotes the multiplicity constraint derived from the property
p of class C.

Pre Post Result
Metamodel integrity constraints (Figs 2, 3, and 4)

Mults. Mult.[FWhen::onAction] holds
Mults. Mult.[FWhen::inst] holds
Mults. Mult.[FActionItems::policy] holds
Mults. Mult.[FActionItems::action] holds
Mults. Mult.[FTarget::policy] holds
Mults. Mult.[FTarget::authSubject] counter ex. (Fig. 13)
Mults., AuthInt1 Mult.[FTarget::authSubject] holds
Mults. Mult.[FTarget::onAction] holds
Mults. Mult.[FTarget::policy] holds
Mults. Mult.[FTarget::myitems] holds
Mults. Mult.[FTarget::allowedSubject] counter ex.
Mults., AuthInt1 Mult.[FTarget::allowedSubject] holds
Mults. Mult.[FTarget::target] holds
Mults. Mult.[FSubject::policy] holds
Mults. Mult.[FSubject::allowedActions] holds
Mults. Mult.[FSubject::domain] holds
Mults., AuthInt1 AuthIntegrity1 holds
Mults., AuthInt2 AuthIntegrity2 holds

Separation of duty constraints (Fig. 8)
Mults., AuthInt1, Pattern1, Pattern7 Pattern1 counter ex.(Fig. 14)
Mults., AuthInt1, Pattern1, Pattern4 Pattern1 counter ex.
Mults., AuthInt1, Pattern4, Pattern7 Pattern1 counter ex.
Mults., AuthInt1, Pattern1, Pattern4, Pattern7 Pattern1 holds
Mults., AuthInt1, Pattern2, Pattern8 Pattern2 counter ex.
Mults., AuthInt1, Pattern2, Pattern5 Pattern2 counter ex.
Mults., AuthInt1, Pattern5, Pattern8 Pattern2 counter ex.
Mults., AuthInt1, Pattern2, Pattern5, Pattern8 Pattern2 holds
Mults., AuthInt1, Pattern3, Pattern9 Pattern3 counter ex.
Mults., AuthInt1, Pattern3, Pattern6 Pattern3 counter ex.
Mults., AuthInt1, Pattern6, Pattern9 Pattern3 counter ex.
Mults., AuthInt1, Pattern3, Pattern6, Pattern9 Pattern3 holds

quantifiers. Both factors influence the size of the final Boolean satisfiability problem,
which is often quite large, but not very hard to solve (in several cases, the time spent on
generating the SAT problem is larger than the actual time spent in the SAT solver).

For the presented case study, the checks in Table 1 that report unsat (i.e., find no
counter-example), all run in less than one second using a search scope of up to 4 objects
per metaclass and in less than ten seconds for a search scope of up to 5 objects per meta-
class7. Larger search spaces require larger search times, and the growth is exponential.

While the specific maximum number of objects per class that can be solved in rea-
sonable time (say, less than a minute) is dependent on the case study, it is always com-
parably low (say, less than ten). This is independent on the number of classes in the

7 Conducted on typical office laptop, running Kodkod 2.0 bundled with MiniSat.

Verification of Authorization Policies Modified by Delegation 311

metamodel, which can be often be quite high (say, several hundreds [22]), as long as
the number of objects per class remains low.

7 Related Work

In this section we primarily focus on works that fall within a Model Driven Develop-
ment (MDD) scope in which our work is also contextualized. Yet, we include some
other works from a formal ground that either have influenced much our vision of this
chapter, or seem particularly interesting as delegation languages or analysis methods.
In this area, there have been many works that have proposed or employed models
to specify role-based access control policies. Some prominent approaches are, e.g.,
[23,2,5,16,24]. None, of them, however, allow the modeling of delegation policies or
the analysis of how delegation would modify access rights.

There are also MDD approaches focused on delegation policies modeling and ad-
ministration. The work most related to ours is [19] where they present a model driven
security method to transform RBAC policies by delegation rules, which they execute
using an ATL transformation. Their approach also supports validation of OCL invari-
ants over the source and target models. However, they do not investigate conflicts that
may arise from the delegation of rights, e.g., separation of duties’ conflicts, or verify
that the policies resulting from the execution of their ATL transformation are valid from
any valid input policies. Namely, they do not apply a verification process similar to ours
to their ATL transformation.

In [25], they present a UML-based Domain Specific Languages (DSL) to model role
based delegation and revocation. They can also validate OCL constraints, e.g., SoD
constraints, on object diagrams using the USE tool. Yet, they do not execute any admin-
istrative operation to perform the delegation. In [3] they propose an extension of RBAC
models to deal with delegation and revocation of privileges, but they do not perform
any automated analysis on their models. In [18], they present a validation mechanism
for delegation and revocation of roles assignments to users under specific conditions.
They execute USE state manipulation commands to perform the administrative delega-
tion operation that enables checking pre- and post-conditions for the policies. However,
their metamodel does not suffice to deal with fine-grained delegation policies that may
give access to a grantee only to subsets of roles’ actions.

There are other works that study delegation of rights using a more formal ground. In
[1] they discuss a language to capture delegation and revocation of rights’ processes and
point out the need of the verification of these processes. In particular, (1) delegation le-
gitimacy verification when a delegation request is submitted, and (2) policy consistency
verification when the policy is updated. However, they are not able to perform any kind
of verification analysis due to the lack of tool support for their language. In [7] they
introduce a self-administrative formal model to deal with delegation and revocation of
rights in access control policies. They also present a prototype for the management of
the policies, but it does not support a verification process for the delegation operation
similar to the one that we have explained in this chapter. The same difference applies to
[10] and [29]. In the former, they use a formal model to study the impact of the trans-
ference and grant of access rights by user delegation. In the latter, they propose a rule

312 M. Egea and F. Büttner

based delegation language that considers, in particular, the effects of delegation in pres-
ence of role hierarchies, which is a feature that we would have liked to integrate in our
work but since they were not included in the Ponder policies of our study, we will leave
it for future work. Finally, the work presented in [14] consider delegation in relation to
the tasks a user has to perform, which we find very interesting. However, although they
check that delegation meets global policy constraints, they do not support a verification
process for the delegation operation.

8 Conclusion and Future Work

In this work, we have presented an approach that eases the verification of user delegation
by using an ATL transformation that transforms an input authorization and delegation
policy into an authorization policy (that is modified to attend the delegation policy spec-
ification). Prior to the execution of our transformation, we are able to validate delegation
legitimacy constraints in OCL on the source authorization and delegation models, and
we provide a set of OCL constraints’ patterns that can be instantiated to check Sepa-
ration of Duties’ conflicts that may exist in the authorization policy or may have been
introduced by delegation in the resulting authorization policy. As its core, our analysis
is based on a previous work of us [9] that translates an ATL transformation into a trans-
formation model, which is a constrained metamodel that can be used as a surrogate for
the verification of partial transformation correctness w.r.t. to the constraints of the input
and output metamodels.

The verification approach is of practical use for two reasons. First, it employs an
automated translation from ATL and its constrained metamodels to relational logic.
Actually, this mapping is composing three different translations: from ATL to an OCL
constrained metamodel [9], from OCL to relational logic [17], and from relational logic
to SAT [27]. Finally, we employ a SAT solver to check the existence of counterexam-
ples. The approach provides a fully automated verification of the generated translation
that seems reliable since, even when applied to a realistic case study [22], it scaled to a
scope that was large enough to strongly suggest that the analysis does not overlook bugs
in the transformation due to the boundedness of the underlying satisfiability solving ap-
proach. Second, regarding the coverage of ATL, our previous work [9,22] translates a
substantial subset of ATL for verification, i.e., all rules except for imperative blocks,
recursive lazy rules and recursive query operations other than relational closures. Thus,
the approach takes advantage of the ways declarative, rule-based transformation lan-
guages (e.g., ATL) provide to iterate over the input model without requiring recursion
or looping. This simplifies verification by, for instance, obviating the need for loop
invariants. Although this subset of ATL is not Turing-complete, it can be used to im-
plement many non-trivial transformations. We want to emphasize that the verification
process can be automated as a ‘black box’ technology, since the idea is that the user
specifying a delegation would only write a Ponder-like policy that can be automatically
mapped to an instance of our delegation metamodel, under legitimacy conditions our
ATL transformation would be executed obtaining a well formed final authorization pol-
icy that can be checked free of SoD conflicts, before being mapped again to a Ponder
policy and enforced in the system at runtime. Thus, the user is in contact only with
the simple Ponder syntax and is not aware of the analysis performed before delegation

Verification of Authorization Policies Modified by Delegation 313

takes place. In the future, we want to apply a similar validation of delegation policies
in the context of a health care scenario, where transfer of rights on a personal health
record is needed from one physician to another (not only granting) when, e.g., the pa-
tient is moved from one hospital department to another due to his diagnosis. On the side
of verification, we hope that we will be also able to perform unbounded verification of
delegation tranformations using Satisfiability Modulo Theories (SMT) solvers by ap-
plying also our previous work [8]. Another further line of work will be to extend our
transformation to deal with revocation of rights and obligation policies, and perform
our analysis taking into account the interleaving of all these kinds of policies, which
may easily lead to different types of conflicts. Finally, let us note that the analysis of the
conditions contained in both authorization and delegation policies is particularly impor-
tant and would usually require a logic able to deal with temporal conditions. It should
allow, e.g., to check that loan officers are only eventually delegating their right to create
loan accounts in any of the days of the time frame (Monday-to-Thursday) in which they
are allowed to execute this action. This line of work seems also very interesting to us.

References

1. Abassi, R., Fatmi, S.G.E.: Delegation management modeling in a security policy based
environment. In: Bouhoula, A., Ida, T., Kamareddine, F. (eds.) SCSS. EPTCS, vol. 122,
pp. 85–95 (2013)

2. Alam, M., Hafner, M., Breu, R.: Constraint based role based access control in the sectet–
framework model-driven approach. Journal of Computer Security 16(2), 223–260 (2008)

3. Barka, E., Sandhu, R.: Role-based delegation model/hierarchical roles (rbdm1). In: 20th An-
nual Computer Security Applications Conference, pp. 396–404 (2004)

4. Barka, E., Sandhu, R.S.: Framework for role-based delegation models. In: 16th Annual Com-
puter Security Applications Conference (ACSAC 2000), December 11-15. IEEE Computer
Society, New Orleans (2000)

5. Basin, D., Clavel, M., Doser, J., Egea, M.: A metamodel-based approach for analyzing
security-design models. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 420–435. Springer, Heidelberg (2007)

6. Basin, D.A., Clavel, M., Egea, M.: A decade of model-driven security. In: Breu, R., Cramp-
ton, J., Lobo, J. (eds.) Proceedings of the 16th ACM Symposium on Access Control Models
and Technologies, SACMAT 2011, June 15-17, pp. 1–10. ACM (2011)

7. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: A delegation
model for extended rbac. Int. J. Inf. Sec. 9(3), 209–236 (2010)

8. Büttner, F., Egea, M., Cabot, J.: On verifying atl transformations using ‘off-the-shelf’ smt
solvers. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 432–448. Springer, Heidelberg (2012)

9. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of atl transformations using trans-
formation models and model finders. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS,
vol. 7635, pp. 198–213. Springer, Heidelberg (2012)

10. Crampton, J., Khambhammettu, H.: Delegation in role-based access control. In: Gollmann,
D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 174–191. Springer,
Heidelberg (2006)

11. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The ponder policy specification language.
In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp. 18–38.
Springer, Heidelberg (2001)

314 M. Egea and F. Büttner

12. Database Systems Group–University of Bremen: UML-based Specification Enviroment
(2013), http://sourceforge.net/projects/useocl/

13. Eclipse Community: Eclipse modeling project – Kepler release (2013),
http://www.eclipse.org/modeling/

14. Gaaloul, K., Zahoor, E., Charoy, F., Godart, C.: Dynamic authorisation policies for event-
based task delegation. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 135–149.
Springer, Heidelberg (2010)

15. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool. Sci. Comput.
Program. 72(1-2), 31–39 (2008)

16. Jürjens, J.: UMLsec: Extending uml for secure systems development. In: Jézéquel, J.-
M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425. Springer,
Heidelberg (2002)

17. Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational Logic and Back. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590,
pp. 415–431. Springer, Heidelberg (2012)

18. Memon, M.A., Hashmani, M., Sohr, K.: Validation of temporary delegation and revocation
of roles with uml and ocl. International Journal of Computer Theory and Engineering 2(1),
1793–8201 (2010)

19. Nguyen, P.H., Nain, G., Klein, J., Mouelhi, T., Traon, Y.L.: Model-driven adaptive delega-
tion. In: AOSD, pp. 61–72 (2013)

20. OMG: Meta Object Facility (MOF) 2.0 Query/Views/Transformation Specification v1.1).
Object Management Group, Inc. (2011), Internet: http://www.omg.org/spec/QVT/1.1

21. OMG: Meta Object Facility (MOF) Core Specification 2.4.1 (Document formal/2013-06-
01). Object Management Group, Inc. (2013), Internet:
http://www.omg.org/spec/MOF/2.4.1/PDF

22. Selim, G.M.K., Büttner, F., Cordy, J.R., Dingel, J., Wang, S.: Automated verification of
model transformations in the automotive industry. In: Moreira, A., Schätz, B., Gray, J.,
Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 690–706. Springer,
Heidelberg (2013)

23. Shin, M.E., Ahn, G.J.: Uml-based representation of role-based access control. In: IEEE Inter-
national Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE 2000), pp. 195–200. IEEE Computer Society (2000)

24. Sohr, K., Ahn, G.-J., Gogolla, M., Migge, L.: Specification and validation of authorisation
constraints using uml and ocl. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 64–79. Springer, Heidelberg (2005)

25. Sohr, K., Kuhlmann, M., Gogolla, M., Hu, H., Ahn, G.J.: Comprehensive two-level analysis
of role-based delegation and revocation policies with uml and ocl. Information & Software
Technology 54(12), 1396–1417 (2012)

26. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order model
transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS,
vol. 5562, pp. 18–33. Springer, Heidelberg (2009)

27. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

28. Twidle, K.P., Dulay, N., Lupu, E., Sloman, M.: Ponder2: A policy system for autonomous
pervasive environments. In: Calinescu, R., Liberal, F., Marín, M., Herrero, L.P., Turro, C.,
Popescu, M. (eds.) Fifth International Conference on Autonomic and Autonomous Systems,
ICAS 2009, Valencia, Spain, April 20-25, pp. 330–335. IEEE Computer Society (2009)

29. Zhang, L., Ahn, G.J., Tseng Chu, B.: A rule-based framework for role-based delegation and
revocation. ACM Trans. Inf. Syst. Secur. 6(3), 404–441 (2003)

http://sourceforge.net/projects/useocl/
http://www.eclipse.org/modeling/
http://www.omg.org/spec/QVT/1.1
http://www.omg.org/spec/MOF/2.4.1/PDF

ISMS-CORAS: A Structured Method

for Establishing an ISO 27001 Compliant
Information Security Management System

Kristian Beckers1, Maritta Heisel1, Bjørnar Solhaug2, and Ketil Stølen2,3

1 Paluno, University of Duisburg-Essen, Germany
2 SINTEF ICT, Norway

3 Dep. of Informatics, University of Oslo, Norway
{kristian.beckers,maritta.heisel}@paluno.uni-due.de,

{bjornar.solhaug,ketil.stolen}@sintef.no

Abstract. Established standards on security and risk management pro-
vide guidelines and advice to organizations and other stakeholders on
how to fulfill their security needs. However, realizing and ensuring com-
pliance with such standards may be challenging. This is partly because
the descriptions are very generic and have to be refined and interpreted
by security experts, and partly because they lack techniques and prac-
tical guidelines. In previous work we showed how existing security re-
quirements engineering methods can be used to support the ISO 27001
information security standard. In this chapter we present ISMS-CORAS,
which is an extension of the CORAS method for risk management that
supports the ISO 27001 standard. ISMS-CORAS comes with techniques
and guidelines necessary for establishing an Information Security Man-
agement System (ISMS) compliance with the standard, as well as the
artifacts that are needed for the required documentation. We validate
the method by applying it to a scenario from the smart grid domain.

Keywords: Information security, risk analysis, security standard com-
pliance, ISO 27001, CORAS.

1 Introduction

The management of security and risk, as well as identifying and fulfilling the
security needs, is challenging for many organizations and other stakeholders.
Fortunately, several security standards, such as ISO 27001 [19], offer ways to
attain this goal in a structured and systematic way. The mentioned standard
prescribes a process for establishing and maintaining an Information Security
Management System (ISMS), which tailors security to the specific needs of any
kind of organization. However, several ambiguities in the standard need to be
handled, and the organizations need to understand and decide how to opera-
tionalize the standard, and how to document the ISMS.

This security standard is ambiguous on purpose, because it should serve a
multitude of different domains and stakeholders. The ambiguity is nevertheless

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 315–344, 2014.
c© Springer International Publishing Switzerland 2014

316 K. Beckers et al.

a problem for the stakeholders who have to choose a method for security analysis
that is compliant with the standard. The stakeholders moreover need to decide
the abstraction level for the required documentation without any support from
the standard. For example, security experts have to describe the business, pro-
cesses, actors and roles, technologies, etc., and decide on their own what is the
most relevant scope elements to consider. In addition, the security experts have
to find a method that allows them to achieve completeness of identifying stake-
holders, security objectives, assets and other elements within the desired scope.
Moreover, the standard does not provide any techniques or methods for assem-
bling the necessary information, or a pattern or template for structuring and
documenting this information. The importance of these steps becomes apparent
when one realizes that essential further steps of ISO 27001 depend upon them,
including the identification of threats, vulnerabilities and security controls.

In this chapter we propose an extension of the CORAS method [28] to sup-
port the establishment of an ISO 27001 compliant ISMS. In previous work we
analyzed the relations between different security requirements engineering and
risk analysis methods [7], and our results showed that the ISO 27001 standard
has a significant focus on risk analysis. It describes how to build an ISMS, and
CORAS already supports many of these steps due to its focus on risk manage-
ment. A further motivation for building on CORAS is that the method is based
on the ISO 31000 [18] risk management standard, which is also the basis for
the information security risk management process of ISO 27005 [20]. The latter
standard refines the risk management process described in the ISO 27001.

In addition, the ISO 27001 standard demands legal aspects (such as laws,
regulations, contracts and legally binding agreements) to be considered. CORAS
provides support for this during the risk analysis by an extension called Legal
CORAS [28]. CORAS also comes with tool and modeling support for all phases
of the process. The approach moreover facilitates the reporting of the results by
a formal mapping of its diagrams to English prose, which is useful for generating
the documentation that is required by ISO 27001.

In summary, we use CORAS as a basis because of its structured method for
risk management, its compliance to ISO 31000, the consideration of legal as-
pects, the tool support and the support for document generation. The CORAS
approach has moreover undergone thorough industrial validation in many differ-
ent domains over more than a decade [28].

We refer to the CORAS extension presented in this report as ISMS-CORAS.
We show how we extend CORAS, and we present a mapping from the resulting
ISMS-CORAS artifacts to the ISMS documentation compliant with ISO 27001.
We apply our method to a smart grid scenario provided by the industrial partners
of the NESSoS project [35].

Compared to standard CORAS, which is a method for risk analysis in gen-
eral, there are a number of novel features and artifacts of ISMS-CORAS. First
of all, ISMS-CORAS comes with diagrams and templates to support all docu-
mentation requirements of the ISO 27001 standard. This documentation support
goes well beyond the modeling support of CORAS. It moreover comes with a

ISMS-CORAS 317

classification of attacker types, templates for attacker description, and attacker
overview diagrams to facilitate the attacker identification. It has support for
identification of attacker motivation and entry points, and for modeling this
information in the threat diagrams. These and other novelties in combination
provide a systematic support for establishing and documenting an ISMS in com-
pliance with the standard.

The outline of this chapter is as follows. In Section 2 we describe the back-
ground to ISMS-CORAS, and in Section 3 we describe the method, the documen-
tation artifacts and how ISMS-CORAS supports the ISO standard. In Section 4
we demonstrate and exemplify ISMS-CORAS by using the smart grid scenario.
The section also describes in more details the documentation artifacts intro-
duced in Section 3. Related work is presented in Section 5 before we conclude in
Section 6.

The presentation of ISMS-CORAS in this chapter is a shortened version of a
technical report with the same title [10]. We refer the reader to the report for the
full description of ISMS-CORAS and for a more detailed description of all the
documentation artifacts. The report also gives more detailed references to the
ISO 27001 demands, as well as a more elaborated presentation of the application
of ISMS-CORAS to the smart grid scenario.

The security and risk terminology that we use in this chapter is based on both
CORAS and the above mentioned standards. The technical report comes with
an appendix with a comparison of the respective terminologies and a clarification
of the underlying terminology of ISMS-CORAS.

2 Background

In this section we briefly describe the main background to the ISMS-CORAS
method, namely the CORAS method and its extension Legal CORAS [28], as
well as the ISO 27001 standard [19].

2.1 CORAS

CORAS is a model-driven approach to risk analysis that follows the process
defined by the ISO 31000 risk management standard [18]. The approach consists
of three tightly integrated artifacts, namely the CORAS method, the CORAS
language and the CORAS tool. The method comes with techniques and practical
guidelines, and the language provides modeling and documentation support for
all steps of the method. The tool is a diagram editor for creating any CORAS
diagram. The overall process consists of the five following consecutive steps,
which is also according to ISO 31000.

Establishing the context involves setting the scope and focus of the analysis,
identifying the assets with respect to which risks are identified, and defining the
risk evaluation criteria. The target of analysis is specified at the desired level
of abstraction using a precise and well-understood notation, such as UML [36].
The documentation of the context establishment is used as input to and a basis
for the subsequent risk assessment.

318 K. Beckers et al.

The risk assessment includes the three steps of risk identification, risk esti-
mation and risk evaluation. Risk identification is to identify and document un-
wanted incidents, together with the threats and vulnerabilities that may cause
them, using CORAS threat diagrams. The risk estimation involves the estima-
tion of likelihoods and consequences for the unwanted incidents using the threat
diagrams. In order to facilitate the risk estimation and to identify the most
important sources of risk, likelihoods are estimated also for threats and threat
scenarios. The results of the risk estimation are documented using CORAS risk
diagrams. The risk evaluation involves comparing the identified risks with the
risk evaluation criteria, and to determine which risks are unacceptable. In addi-
tion to structured brainstorming, a technique for risk identification and estima-
tion that brings together people with different expert insight into the target of
analysis, CORAS makes use of any other input such as statistics, security logs,
questionnaires, and so forth.

Finally, the risk treatment is to identify means for mitigating unacceptable
risks. This is also conducted by structured brainstorming, and is supported by
CORAS treatment diagrams.

2.2 Legal CORAS

Legal CORAS is an extension of CORAS specifically for considering legal aspects
and legal risk. The method elicits relevant legal aspects based on the target of
analysis and the target description.

The source of legal risk is legal norms, which are norms that stem from a
legal source such as laws, regulations, contracts and legally binding agreements.
When assessing legal risk, there are two kinds of uncertainties that must be esti-
mated. First, the legal uncertainty is the uncertainty of whether a specific norm
actually applies to circumstances that may arise. Second, the factual uncertainty
is the uncertainty of whether the circumstances will actually occur, and thereby
potentially trigger the legal norm. It is by combining the estimates for these two
notions of uncertainty that we can estimate the significance of a legal norm and
its impact on the risk picture. Legal CORAS comes with the necessary analysis
techniques and modeling support, but the involvement of a lawyer or other legal
experts is usually required.

2.3 ISO 27001

The ISO 27001 standard is structured according to the Plan-Do-Check-Act
(PDCA) model, which is referred to as the ISO 27001 process. In the Plan
phase an ISMS is established, in the Do phase the ISMS is implemented and
operated, in the Check phase the ISMS is monitored and reviewed, and in the
Act phase the ISMS is maintained and improved.

We focus in our work on the Plan phase, because we provide a specific method
for building an ISMS, and because it is during this phase that the security risk
analysis is stressed the most. In future work we will also develop support for the
other phases of the PDCA model.

ISMS-CORAS 319

Table 1. ISO 27001 documentation demands

Name

1. The scope of the ISMS
2. The ISMS policy statements that contain general directions

towards security and risk
3. Procedures and controls in support of the ISMS
4. A description of the applied risk assessment methodology
5. A risk assessment report
6. A risk treatment plan
7. Documented procedures to the effective planning, operation

and control of the ISMS
8. ISMS records
9. Statement of applicability

10. Management decisions

The Plan phase considers the scope and boundaries of the ISMS, its inter-
ested parties, the environment, and the assets. All the technologies involved are
moreover defined, as well as the ISMS policies, risk assessments, evaluations, and
controls. Controls in the ISO 27001 are measures to modify risk.

The ISO 27001 standard demands a set of documents for certification, which
we introduce in Table 1. Note that the names of the ten documents are given
by us to simplify the reference to them when presenting ISMS-CORAS through-
out this chapter. The standard itself describes these documents only by their
contents.

Document 8, the ISMS records, is for providing evidence of compliance to
the requirements of the ISMS. This is out of the scope of ISMS-CORAS, which
rather concerns the establishment of the ISMS, and is therefore not among the
ISMS-CORAS documentation artifacts. ISMS-CORAS is also not providing doc-
ument 4, since the risk assessment method is part of ISMS-CORAS itself. Docu-
ment 9 is for describing the control objectives and controls that are relevant and
applicable to the organization’s ISMS, whereas document 10 provides support
for establishing and maintaining an ISMS.

3 The ISMS-CORAS Method

The ISMS-CORAS method is conducted according to the five steps depicted to
the left in Figure 1. These consecutive steps comprise the risk analysis process as
defined by the ISO 31000 risk management standard that also CORAS complies
with. ISMS-CORAS is defined as an extension of CORAS, and while keeping
the names of the steps we focus in our description of ISMS-CORAS on the novel
artifacts and the changes with respect to standard CORAS. We explain how our
changes to CORAS are related to ISO 27001 and its documentation requirements
as described in the previous section. The reader is referred to existing literature
for details about standard CORAS [28].

320 K. Beckers et al.

1. Establish the Context

2. Identify Risks

3. Estimate Risks

4. Evaluate Risks

5. Treat Risks

Method Artifacts

Risk Diagrams

formal-/semi-formal-
Target Description

Extended High-level
Risk Table

Scope Exclusion
Table

Asset Diagram Asset Table

Threat
Diagrams

Risk
Matrices

Treatment
Diagrams

Treatment
Overview
Diagrams

Treatment Overview
Table

ISMS Procedures
and Controls Table

Likelihood and
Consequences Scales*

* All outputs of step 1 are inputs to all subsequent steps.

Legal, Factual
Uncertainty, and

Consequences Scales

Relevant Legal
Aspects

Existing Controls Table

Control Effectiveness
Table

Instantiated Attacker
Templates

Attacker Overview
Diagrams

Fig. 1. ISMS-CORAS method and artifacts

The CORAS steps that we have modified are depicted in grey in Figure 1. The
same is the case for the novel or modified documentation artifacts as depicted to
the right. Note that the ISO 27001 standard does not have specific demands on
the form of the documentation, as “documents and records may be in any form
or type of medium” [19]. When introducing the ISMS-CORAS method in this
section we explain the steps and tasks, as well as the documentation artifacts
that are produced and used. We refer to Section 4 for examples of the artifacts.

Also note that in addition to the ISMS-CORAS documentation artifacts, the
results should be documented by accompanying prose and textual documents.
The main purpose of the artifacts is to support the method, structure the results
in adequate ways, and ensure completeness of fulfilling the tasks and require-
ments of the ISO standard.

3.1 Step 1: Establish the Context

The first step of ISMS-CORAS is to establish the context of the ISMS. The main
objective of this step is as for CORAS, namely to build the target description and
to set the scope and focus of the analysis. There are, however, several extensions
that are needed in order to fulfill the standard. We have also developed additional
support for increasing the focus on information security as compared to CORAS,

ISMS-CORAS 321

thereby facilitating the subsequent risk identification and threat modeling. Due
to the extensions we have structured Step 1 of ISMS-CORAS into five sub-steps.

Step 1.1: Develop the Target Description. This task is to build the descrip-
tion of the target of analysis, including the relevant actors, roles, components,
work processes, business processes, networks, etc. The description should in-
clude all parts of the system or organization that are included in the analysis
and governed by the ISMS. It will serve as part of the basis of the subsequent
risk identification and estimation, and it is therefore important that the level of
abstraction reflects the desired level of details for the security risk analysis.

ISMS-CORAS requires an explicit description of the geographical location of
the elements in the target description due to demands in the ISO 27001 standard.
Such location information may also be important for the required identification
of relevant legal issues. For example, according to the German Federal Data
Protection Act, it is not allowed to store personal information outside of the
European Union.

As for CORAS, ISMS-CORAS does not require a specific notation or language
to be used for creating the target description. This is the decision of the customer
and/or the risk analysts, but the description should be sufficiently precise or
formal to avoid ambiguities and misunderstandings. Notations like UML [36] or
similar are recommended.

A task that is specific for ISMS-CORAS is the justification of any exclusions
from the scope of the ISMS. This is documented in a scope exclusion table that
refers to target elements and provides the reason for the exclusion.

Step 1.2: Specify Security Objectives and Assets. The identification of
the security objectives and the assets is an essential step in defining the focus of
the analysis. CORAS is asset-driven, which means that all activities of the risk
assessment are targeting these assets, which means that threats and vulnerabili-
ties that are irrelevant for the identified assets are disregarded. The related task
of characterizing the security objectives is required by the ISO standard.

The security objectives concern the protection of information security prop-
erties such as confidentiality, integrity and availability. An asset is anything of
value to the organization for which the ISMS is established, and ISMS-CORAS
focuses on information assets related to the target of analysis and the identified
security objectives. The identified assets are documented using CORAS asset
diagrams. ISMS-CORAS moreover requires a prioritization of assets, as well as
the assignment of an asset owner to each asset, both of which are documented in
an asset table. According to the ISO standard, the asset owner is the individual
or entity responsible for the asset and its security, and is not an assignment of
property right.

ISMS-CORAS requires also the documentation of existing controls for each
of the identified assets using a table format. This is a detailing of the target
description, and facilitates both the risk identification and the identification of
any further necessary controls.

322 K. Beckers et al.

Step 1.3: Conduct High-Level Security Risk Analysis. In addition to the
specification of the target of the analysis and the asset identification, CORAS
recommends conducting a high-level risk analysis in order to identify the main
concerns. ISMS-CORAS extends this activity with tasks specifically related to
the security objectives and the preservation of security properties. For this pur-
pose ISMS-CORAS provides three documentation artifacts, namely attacker
templates, attacker overview diagrams and a high-level risk table.

The attacker template is a table format for describing attacker types, the
assets and security properties they may threaten, the attack entry points and
paths, attacker skills and motivation, as well as further relevant information.
The instantiation of these templates not only serves as a basis for the subse-
quent and more detailed risk identification; it also documents attackers that
are excluded from the scope, including the justification. This will help focusing
the risk analysis, and also facilitate future maintenance and management of the
ISMS, in particular when there are any changes in the organization or in the
security objectives.

An attacker overview diagram is a graphical and high-level representation of
an instantiated attacker template. It gives an intuitive representation of the iden-
tified attackers, and is a useful means for checking completeness of the attacker
description.

The high-level risk analysis is an initial identification of scenarios and incidents
that can be caused by the attackers, the vulnerabilities that may be exploited, as
well as the related security objectives. The results are documented in the high-
level risk table which serves as a basis for structuring the risk identification.

Step 1.4: Define the Scales and the Risk Evaluation Criteria. This task
is similar to CORAS and most other approaches to risk analysis. It involves
defining the scales that are needed for estimating the risks, as well as developing
the criteria for accepting risks.

Risks are estimated by estimating the likelihoods and consequences of un-
wanted incidents. Hence, the scales to be defined are for making and docu-
menting these estimates. Both likelihoods and consequences can be specified
quantitatively or qualitatively, and we can use intervals or continuous scales.
ISMS-CORAS uses the risk matrix format for specifying the risk level of each
combination of a likelihood and a consequence, and for defining the risk evalua-
tion criteria.

Step 1.5: Identify Legal Aspects. All relevant legal issues must be con-
sidered during the context establishment of the ISMS-CORAS method due to
requirements of the ISO 27001 standard. The identification of legal aspects can
be achieved by using our law pattern method [8,14], methods for legal risk man-
agement [30], or by involving lawyers or other domain experts.

While taking legal aspects into account, the focus of ISMS-CORAS is still on
information security. Hence, the legal aspects to consider are mostly those that
can arise due to information related issues such as privacy and data protection.

ISMS-CORAS 323

However, it may also be related to other laws and regulations, and to contractual
obligations or legally binding agreements.

ISMS-CORAS makes use of Legal CORAS where legal norms that may cause
risks are identified and analyzed. This requires the specification of scales for
estimating legal uncertainty.

Further Considerations. In addition to the five sub-steps of the context es-
tablishment, Step 1 of ISMS-CORAS cannot be concluded until a written man-
agement and resource commitment for the ISMS has been provided as demanded
by the ISO 27001 standard. ISMS-CORAS moreover requires the decision makers
to formally approve the documentation of the context establishment.

The standard finally requires the identification of risk assessment methodology
that will be applied when establishing the ISMS. In our case, the method is
ISMS-CORAS as it has been developed for conducting security risk assessment
compliant with the standard.

3.2 Step 2: Identify Risks

The objective of this step is to identify the risks that must be managed by de-
termining where, when, why and how they may occur. The risk identification
is conducted by a systematic walkthrough of the target description in order to
identify incidents that may arise with respect to the identified assets. Following
CORAS, the risk identification may be conducted by structured brainstorming
involving people from different backgrounds and with different expert insight
into the target of analysis. The task may also be supported by historical data,
statistics, available repositories and databases of known threats and vulnerabil-
ities, etc.

The risk identification is supported by CORAS threat diagrams, which are
designed to support on-the-fly risk modeling during brainstorming sessions. The
diagrams moreover document the results of this step. In particular, threat di-
agrams model how threats may exploit vulnerabilities in order to cause threat
scenarios that lead to unwanted incidents.

ISMS-CORAS makes use of the instantiated attacker templates and attacker
overview diagrams from Step 1. The resulting threat diagrams are therefore re-
finements of the initial attacker descriptions and the high-level risk analysis.
ISMS-CORAS moreover extends the CORAS threat diagram notation with sup-
port for specifying attacker types and relating elements of the threat diagram to
the models from the target description. ISMS-CORAS also makes use of Legal
CORAS to make legal aspects explicit in the analysis and in the threat diagrams.

3.3 Step 3: Estimate Risks

The objective of this step is to estimate the identified risks by estimating the
likelihoods and consequences of the identified unwanted incidents. CORAS makes
use of structured brainstorming and any available data also for this task, and the

324 K. Beckers et al.

results are documented by annotating the threat diagrams. Likelihoods of threat
scenarios as well as conditional likelihoods for one scenario to lead to another
are estimated in order to provide a stronger basis for the risk estimation and to
understand the most important sources of risk. The CORAS calculus supports
the estimation, and can also be used for consistency checking.

ISMS-CORAS focuses on the likelihoods of misuses and exploits by consid-
ering the attacker types and attacker skills documented during Step 1, which is
similar to the descriptions proposed by the Common Criteria [21].

3.4 Step 4: Evaluate Risks

The objective of the risk evaluation is to determine which risks are acceptable
and which risks need to be evaluated further for possible treatment. The step is
identical to CORAS, and involves using the risk evaluation criteria from Step 1
together with the results from the risk estimation.

3.5 Step 5: Treat Risk

The objective of this step is to identify cost-effective means to mitigate unac-
ceptable risks by reducing the likelihood and/or the consequence of unwanted
incidents. CORAS uses treatment diagrams for this tasks, where identified treat-
ments are related to the risk elements that are treated. ISMS-CORAS extends
the notation by relating treatments to the relevant part of the target of analysis.

A further requirement of ISMS-CORAS is that the treatment identification
is restricted to the normative controls defined in Appendix A of ISO 27001.
Additional support for treatment identification is provided by a mapping from
the ISMS-CORAS attacker types to ISO 27001 controls. This mapping includes
a description of the objective of each control, as well as the kinds of target
elements that are relevant.

As part of the risk treatment step, the existing controls must be taken into
account, and treatment responsibility assigned to the asset owner. The residual
risks must be documented and approved by the management. The treatment
plan should be made by use of cost-benefit reasoning, for example by using the
CORAS extension we proposed in earlier work [46].

ISMS-CORAS moreover requires the justification for why any Appendix A
control is left out. For this purpose the treatment documentation incudes filling
out a treatment overview table. For each treatment, this table specifies the re-
lated asset, asset owner and security objective, as well as a reasoning of why the
treatment is sufficient. A control exclusion table specifies for each Appendix A
control the reason for excluding each control that is not considered.

A further demand is the documentation of how to measure the effectiveness
of each control, which is supported in ISMS-CORAS by a control effectiveness
measure table. Finally, an analysis of possible conflicts between the identified
treatments on the one hand and legal, regulatory and contractual requirements
on the other hand must be identified. For this purpose Legal CORAS can be
applied.

ISMS-CORAS 325

The identified controls, the existing controls and the justification of excluded
controls form the documentation that is required by the ISO standard to make
the so-called statement of applicability.

3.6 Contribution to ISMS Documents

In Table 2 we give an overview of how the ISMS-CORAS documentation artifacts
depicted in Figure 1 support the ISO 27001 demands on the documentation of the
ISMS. The first column refers to the ISO 27001 documents listed in Table 1, the
second column lists the ISMS-CORAS artifacts that provide the documentation,
and the third column refers to the ISMS-CORAS method steps that produce the
artifacts.

Recall from Section 2.3 that documenting the risk assessment method (doc-
ument 4) and creating the ISMS records (document 8) are outside the scope of
ISMS-CORAS. Note also that the ISMS-CORAS artifacts need to be accom-
panied with complementary written documentation whenever additional clarifi-
cations are needed. For the management decisions (document 10) such written
documentation is required as there are no supporting ISMS-CORAS artifacts.

Table 2. ISMS-CORAS support for ISO 27001 documentation; the first column refers
to the documents listed in Table 1

ISMS-CORAS artifacts Steps

1. Target description and model; Scope exclusion table 1
2. High-level risk tables 1
3. Existing controls table ISMS procedure and controls table 1, 5
4. N/A
5. Asset diagrams; Asset tables; Attacker templates; 1–4

Attacker overview diagrams; Likelihood and consequence scales;
Risk matrices (criteria); Threat diagrams; Risk diagrams

6. Treatment diagrams; Treatment overview diagrams; 5
7. Treatment overview table; Control effectiveness table 5
8. N/A
9. Treatment diagrams; Treatment overview table 5

10. Prose 1,5

4 Applying the ISMS-CORAS Method to a Smart Grid
Scenario

In this section we demonstrate and exemplify the use of ISMS-CORAS by apply-
ing the method to a smart grid scenario. The section also introduces in more de-
tail the ISMS-CORAS modeling and documentation artifacts that we mentioned
in the previous section. The example is a simplified and shortened presentation
of the corresponding demonstration in the technical report [10].

326 K. Beckers et al.

A smart grid provides energy on demand from distributed generation stations
to customers. The grid intelligently manages the behavior and actions of its par-
ticipants using information and communication technology (ICT). One of the
novelties as compared to existing energy networks is the two-way communica-
tion between consumers and electric power companies. The envisioned benefits
of the smart grid include a more economic, sustainable and reliable supply of
energy. However, significant security concerns arise due to the possible dangers
of missing availability of energy for customers, as well as threats to the secu-
rity of customer data. These concerns are of particular relevance for the smart
grid, because energy grids have a significantly longer lifespan than telecommu-
nication networks [4]. In addition, privacy concerns have risen due, for example,
to the possibility of creating behavioral profiles of customers when their energy
consumption is transmitted over the grid in small time intervals [27].

In the following we present each of the five steps of ISMS-CORAS in turn, fo-
cusing in particular on the tasks and artifacts that go beyond standard CORAS.
The reader is referred to existing literature for details on the latter [28].

4.1 Step 1: Establish the Context

The context establishment includes understanding and documenting the target
of analysis, setting the scope and focus, identifying the assets and security objec-
tives, and specifying the risk evaluation criteria. We structure the presentation
of this step according to the five sub-steps of this initial phase of ISMS-CORAS.

Step 1.1: Establish the Target Description. The smart grid scenario we use
for the example is provided by the industrial partners of the NESSoS network of
excellence [35]. It concerns a smart home, which in our example is a house that
is divided into two living units of separate electricity consumers.

For the purpose of describing the target of analysis at the desired level of
abstraction, we use UML class diagrams and activity diagrams. As shown in
Figure 2, the class diagram includes information about geographical locations,
which is demanded by ISMS-CORAS. In the following we present some of the
details about two of the diagrams that we developed.

In the class diagram of Figure 2 the associations represent communication
connections, as the focus of the analysis is on the communication and security of
information. The elements within the indicated scope are inside the smart home,
and the indicated locations are based on real smart grid experiments conducted
in Germany [43].

The ICT Gateway (ICTG) is the connection between the smart home and
the information systems of the Energy Supplier (ES). The Consumers (CO) are
the house dwellers who use Smart Appliances (SA). SAs are connected to the
internet via the ICTG. An SA may, for example, be a fridge that can be remotely
configured to cool down to a specific temperature at a specified time. The parties
can use services offered by the energy providers via a Consumer Home Energy
Display (CHED). A Thermostat (TH) measures the temperature of the home or

ISMS-CORAS 327

Consumer Home
Energy Display (CHED)

Location: München, Germany

Thermostat (TH)Home Agent(HA)

Smart Appliance (SA)

ICT Gateway (ICTG)

Smart Meter (SM)

Secondary Substation
(SS)

Secondary Substation
Node (SSN)

Energy Supplier (ES)

Low / Medium Voltage
Related Company
System (LMVRCS)

Middleware (MW)

 Information Systems
(IS)

Consumer (CO)

Other Company (OC)

Location: Nürnberg, Germany

Location: München, Germany

Location: Nürnberg, Germany

Location: München, Germany

Location: Arbon, Germany

Location: Arbon,
Germany

Location: Arbon, Germany

Location: Arbon, Germany

Location: Arbon, Germany

Location: Arbon, Germany

Location: Arbon, Germany

Location: Arbon, Germany

Location: Arbon,
Germany

Scope

Billing Management
Information System

(BMIS)

Location: München, Germany

SSN Database

MW Database

Location: Arbon,
Germany

Location:
Nürnberg,
Germany

SM Database

Location: Arbon,
Germany

1

1

1

1

0..*

1..*

1..*

1

1 1

1

1

1..*
1

1..*
1

0..*

1

0..*

0..* 1

1..*

1..* 1

1..*

Fig. 2. Elements of the smart home scenario; the indicated scope (left part) includes
the elements of the smart home, whereas the remaining elements (right part) belongs
to the grid

of SAs. The temperature information is used, for example, for safety purposes,
such as preventing a stove from overheating. They are also used by applications
that control SAs. In addition, customers can use THs to configure SAs, for
example to configure a heater to warm the smart home to a specific temperature
during daytime. This information is used by the Home Agent (HA) to offer the
CO a selection of different energy rates from different ESs [41]. Every consumer
has its own Smart Meter (SM), which is placed in the cellar of the smart home.
The SM transfers the energy consumption/production data to the Secondary
Substation Node (SSN), which is part of the Secondary Substation (SS).

The two consumers in this scenario share the cellar. The SM measures the
energy consumption and sends the consumption information at specified intervals
to the ES via the ICTG. Intermittently the energy consumption information is
stored in the SM Database. Consumers can also produce energy and sell it to
the ES. The SM measures this production and sends the information to the ES.

All of the communications in the smart grid are two-way and form the so-
called Advanced Metering Infrastructure (AMI). This scenario is in alignment
with other European projects regarding smart grids [13,16,26,40].

Figure 3 shows one of the activity diagrams we specified in order to capture
relevant behaviors of the target of analysis, namely the SM electricity reading
for billing purposes. The SSN initiates the process every 24 hours, which is
a configurable time interval. The SM receives the request, queries its internal
database and sends the result back to the SSN. The process continues with
some validation and verification checks before the LMVRCS eventually receives
the reading. Note that we used three dots to simplify the diagram at places
where activities are repeated. We refer to the technical report for the detailed
description, and for the data structure model and further activity diagrams for
the smart home scenario.

328 K. Beckers et al.

Receive request
for SM

 reading

Q
uery SM

reading

LMVRCS Middleware Secondary Substation Node Smart Meter

[24 hours]*

Read m
eter data from

SM

 database

Send SM

reading

Receive SM

reading

Conduct data
validation and

verification check

[fail]

[pass]
Store m

eter reading
in SSN

 database
Report SM

reading

Q
uery SM

reading again

Report failed
SM

 reading

Receive SM

reading error

Forw
ard SM

reading failure

Receive SM

reading

Conduct data
validation and

verification check

[fail]

[pass]
Store m

eter reading
in M

W
 database

Report SM

reading

Q
uery SM

reading again

Report failed
SM

 reading

Receive SM

reading
Receive SM

reading failure

Store failed SM

reading

* The tim
e period in w

hich the SM
 readings occur is configurable

Fig. 3. Smart Meter reading process

ISMS-CORAS 329

Table 3. Scope exclusion table

Target element Reason for scope exclusion

Secondary Substation (SS) The SS is provided by the government and is
protected by its security team

Secondary Substation Node (SSN) The SSN is provided by the government and is
protected by its security team

Middleware (MW) The MW has a Common Criteria certification
.

Before concluding the description of the target, ISMS-CORAS requires the
documentation and justification of any exclusions from the scope of the ISMS.
This is documented in a scope exclusion table as exemplified in Table 3, which
is an excerpt from the full table in the technical report.

Step 1.2: Specify Security Objectives and Assets. The client of the anal-
ysis (i.e. the commissioning party) is the energy supplier. Hence, the security
risk analysis and the establishment of the ISMS is conducted for this party, and
the security risks that we aim to identify are with respect to the security objec-
tives and the assets of this party. However, the analysis is conducted from the
viewpoint of the consumers in order to understand how security risks may arise
due to the information processes involving the consumers and the smart homes.

The energy supplier is interested in analyzing privacy, integrity and confiden-
tiality concerns of the consumers, and how these can be assured by establishing
an ISMS. The following high-level security objectives are stated:

– The integrity, confidentiality, and availability of consumers’ Home Agent
configuration data shall be preserved

– The privacy of the consumers’ energy consumption data shall be preserved
– The integrity, confidentiality, and availability of the consumers’ Smart Ap-

pliances configuration data shall be ensured

The assets of the analysis are depicted in the CORAS asset diagram of Fig-
ure 4. The Consumers’ energy consumption data shall be protected from at-
tackers that may use this data for creating behavioral profiles. The value of the
Smart Appliances’ configuration to the consumer is essential, because without it
the consumer loses control of the appliances in their home. For example, a stove
could heat up during the night and cause a fire. The Home Agents’ configuration
states from/to which energy supplier the consumer buys/sells energy. An unau-
thorized change in the configuration could, for example, lead to the purchase of
electricity at a too high price.

The arrows in the CORAS asset diagrams are so-called harms relations; a
relation from one asset to another means that harm to the former may lead to
harm to the latter. Hence harm to any of the three mentioned assets may cause
harm to the Consumers’ security and privacy.

330 K. Beckers et al.

Energy
supplier

Consumers’ energy
consumption data

Consumers’
security and

privacy

Home Agents’
configuration

Public’s trust in
Smart Home

Smart Appliances’
configuration

Fig. 4. Assets

In order to identify and assess risk, CORAS also includes so-called indirect
assets. An indirect asset is an asset that, with respect to the target and scope
of the analysis, is harmed only via harm to other assets. Hence, the risks are
identified only with respect to the direct assets, but the risk estimation and
evaluation also take into account the harm to the indirect ones. In our scenario
the Public’s trust in Smart Home is an indirect asset. We do not treat the indirect
asset further in this chapter, and rather refer the reader to CORAS [28].

As a means to further focus the risk analysis, ISMS-CORAS requires the
ranking of assets according to their relative importance. This is documented in
an asset table as shown in Table 4, where 1 denotes the highest importance.
The asset table also specifies the asset owner. Note that indirect assets are not
included as risks with respect to these are identified via the direct assets, and
the protection of these assets is the responsibility of the owners of the related
direct assets.

Table 4. Asset table with ranking and owner

Asset Rank Owner

Consumers’ energy consumption data 1 Mr. Jones
Smart Appliances’ configuration 2 Mrs. Smith
Home Agents’ configuration 3 Mr. Jones
Consumers’ security and privacy 2 Mrs. Jackson

Existing controls for each asset are documented in the table format shown in
Table 5, which is an excerpt from the corresponding table in the full technical
report. These refer to controls implemented by the energy supplier, and are based
on the controls specified by the ISO 27001 standard.

ISMS-CORAS 331

Table 5. Existing controls table

Asset Existing Control

Consumers’ energy Secure communications between the SM and the SSN by
consumption data encrypted data communication and encryption of all data on

removable devices like SD-cards; data integrity by certificates
and hash values

Home Agents’ Access control: The prices and tariffs the SM can only be read
configuration by the customer; only the energy supplier is allowed to update

prices and tariffs
.

Step 1.3: Conduct High-Level Security Risk Analysis. The high-level
security analysis is conducted in order to get an initial understanding of the
most important security risks, and to narrow down the scope of the analysis.
The results are used to prioritize and structure the risk identification in Step 2.
The attacker template and the attacker overview diagrams are ISMS-CORAS
artifacts, whereas the high-level risk table is an extended version of the corre-
sponding CORAS artifact. We have based the attacker template and attacker
overview diagrams on the ideas behind misuse cases [37,44], which also rely on
textual templates for describing misuse cases that attackers conduct, as well as
corresponding UML use case diagrams [36]. The difference to our work is that
ISMS-CORAS has a strong focus on security risk analysis, which is required for
compliance with the ISO 27001 standard.

The ISMS-CORAS attacker template is shown in Table 6, and its instantia-
tions give a structured way of describing attacker types, motivations, assump-
tions and resulting threat scenarios. The template consists of three parts, namely
a basic attacker description, a refined attacker description, and results.

The basic attacker description starts with the definition of the attacker type,
which is based on our previous work [6,9] where attackers are classified into
the following categories. Physical attackers threaten the physical elements of
the system, e.g., hardware or buildings that host computers. Network attackers
threaten network connections within the target of analysis. Software attackers
threaten software components of the system, e.g., the smart meter. Social engi-
neering attackers threaten humans, e.g., the consumers. We reason about these
types of attackers to determine whether they are relevant to our target of anal-
ysis, given its scope and assets. The reason for any exclusion of an attacker is
that it cannot pose a threat to the target system and its assets. For example,
if we analyze an autonomous system that has no humans in its scope, social
engineering attackers do not need to be considered in the remaining analysis.
All such reasons for exclusion of an attacker from the scope of the analysis have
to be documented.

The usage of the template requires a statement about which assets are threat-
ened by the attackers. The template has to be adjusted for each analysis according
to the identified assets. We also state which of the security goals of confidentiality,

332 K. Beckers et al.

Table 6. Attacker template

Basic Attacker Description

Attacker Type �Physical Attacker �Network Attacker �Software Attacker�Social Engineering Attacker
Threatened Assets �Asset 1�Asset 2�. . .
Threatened Security Goals �Availability�Confidentiality�Integrity

Reasoning

– Explain why the selected security goals of an asset are threatened.
– Reason also why the remaining security goals are excluded.

Entry Points �Target Description Element 1 �Target Description Element 2 �. . .
Reasoning

– State why the selected elements are entry points for this attacker.
– Reason why the remaining entry points are not relevant.

Attack Paths

(possible vulnerabilities)

Describe all attack paths from the entry points to the assets.

Assumptions of the �Target Description Element 1 �Target Description Element 2 �. . .
Target Description Describe all assumptions about the target description.

Refined Attacker Description

Required Attack Skills State which kind of skills the attacker needs to succeed.
Attacker Motivation �financial gain �self-interest �revenge �external pressure �curiosity

Reasoning

– Describe why the selected attacker motivations are relevant.
– Explain also all exclusions of attacker motivations.

Required Resources Describe the resources required for the attacker to conduct the attack.
Assumptions about

the Attacker

Describe the assumptions about the motivation, skills, and resources of the at-
tacker.

Insider / Outsider Describe the difference if persons that are inside the scope and persons that are
outside are the attacker.

Results

Threats Describe the high-level threats the attacker presents.
Reasons for Scope Exclusion Describe the reasons for excluding the attacker or variants of the attacker from

the scope of the threat analysis.

integrity, and availability that is/are threatened, and a reasoning of why any assets
and security goals are selected or ruled out. The reasoning should be based on the
attacker type.

The entry points and attack paths are based on Microsoft Threat Modeling
[45]. This technique focuses on analyzing all interfaces of the target description
elements to the outside world, and afterwards analyzing how an attacker can
reach a particular asset from these entry points. A sequence of actions of an
attacker leading him/her to the asset is a so-called attack path. An attack path
without mitigating controls represents a vulnerability. Our attacker template has
to be instantiated with the elements of the target description for each analysis.

ISMS-CORAS 333

A subsequent task is to reason about why an attacker can use an entry point or
not, and to describe resulting attack paths. The last task for instantiating the
first part of the attacker template is to specify assumptions about elements of
the target description that reduce the number of entry points or attack paths.

The refined attacker description requires a description of the skills an attacker
needs in order to succeed in harming the assets. The field attacker motivation
is based on a study from the SANS Institute [3] that revealed four fundamental
motivations of social engineering attackers: Financial gain, self-interest, revenge,
and external pressure. We also added the motivation curiosity, which we identi-
fied in discussions with the industrial partners of the NESSoS project.

A subsequent task is to reason about why motivations are part of the scope of
a particular attacker or why the motivations in regard to the attacker type and
the threatened assets do not make sense. Existing threat classifications (such as
the STRIDE classification [17]) can be used in combination with motivations to
further facilitate the reasoning about attackers, in case threats do not come to
mind immediately.

The required resources field describes the kind of resources, such as material
and money, that the attacker requires to succeed in the attack. The instantiation
of the template also involves the elicitation of assumptions about the attacker.
The insider/outsider field shall invoke a reasoning of attackers that are part of
the target description (insiders) and those that are not (outsiders). The results
part of the template sums up the information collect about an attacker. This
includes specifying the threats an attacker causes and also the reasons for scope
exclusions of attackers.

In the technical report [10] we give examples of instantiated attacker templates
for the smart home scenario for four kinds of attackers, namely a physical at-
tacker, a network attacker, a software attacker and a social engineering attacker.
Due to space constraints we omit these tables here, and show only the corre-
sponding attacker overview diagram for the network attacker in Figure 5. Each
such diagram always refers to one specific instantiation of the attacker template,
and gives a brief and intuitive overview of the attacker, the attack entry points,
the assets that may be harmed, as well as which of the security properties of
confidentiality (C), integrity (I) and availability (A) that are affected. We have
also identified a number of validation conditions to check the correctness and
completeness of the attacker descriptions that are presented in the report.

The high-level security risk analysis takes into account the description of the
target, the identified assets, and the instantiated attacker templates. The results
serve as a means to further refine the scope and focus of the analysis, and to
structure the risk identification of Step 2. The high-level risk table is exemplified
with two entries in Table 7.

Note that there obviously are cases of attacks that involve the combination of
attacker types. An attacker could, for example, target both network and software
vulnerabilities at the same time. ISMS-CORAS allows for this by the possibil-
ity of considering more than one attacker type in the template. Such possible

334 K. Beckers et al.

Network
attacker

Consumers’ energy
consumption data

Home Agents’
configuration

Smart Appliances’
configuration

Consumer Home
Energy Display (CHED)

Home Agent (HA)

Smart Appliance (SA)

Thermostat (TH)

ICT Gateway (ICTG)

Consumer (CO) Smart Meter (SM) Smart Home

CIACIACIA

Fig. 5. Attacker overview diagram for network attacker

Table 7. High-level risk table

Who/what What is the incident? What makes What are the
causes it? What is harmed? it possible? security objectives?

Software Theft of energy Insufficient Consumers’ privacy
attacker consumption data malware detection

Physical Housebreaking and Insufficient Availability of energy
attacker destruction of physical protection consumption data

Smart Meter

.

combinations should also be identified and analyzed in more detail during the
subsequent risk identification of Step 2.

Step 1.4: Define the Scales and the Risk Evaluation Criteria. This
step is identical to CORAS, and includes the definition of scales for likelihoods
and consequences. In the smart grid scenario we use qualitative scales of five
values. In increasing order, the likelihoods are rare, unlikely, possible, likely and
certain, whereas the consequences are insignificant, minor, moderate, major and
catastrophic. We refer to the technical report for the more precise definition of
the values since they are not important for the purpose of this chapter.

The risk evaluation criteria are shown in Figure 6, and distinguish between
acceptable and unacceptable risks. The acceptable combinations of likelihoods
and consequences are in light shading, whereas the unacceptable combinations
are in dark shading.

ISMS-CORAS 335

Step 1.5: Identify Legal Aspects. The smart home scenario involves certain
legal issues, and in our example both the German Energy Industry Act and
the German Federal Data Protection Act (BDSG) apply. The latter refers to
personal information, and according to [22,25,39], energy consumption data is
personal information. We refer to the technical report for a detailed discussion of
the implied legal issues, but mention only that the BDSG requires the informed
consent of the person whose data is collected. In our scenario the metering data
is collected once a day, and the shift to shorter intervals is an example of a
possible violation.

In order to make the legal risk explicit in the analysis we introduce the asset
of Legal compliance. We also define a consequence scale for this asset using the
same terms as before, ranging from insignificant to catastrophic. See the technical
report for further details.

4.2 Step 2: Identify Risks

The risk identification involves the identification and documentation of how
threats and attackers may exploit vulnerabilities in order to initiate threat sce-
narios that lead to unwanted incidents. We give here a small and quite high-level
example in order to illustrate the artefacts.

The risk identification refines the attacker descriptions and the high-level risk
table by using CORAS threat diagrams. Figure 7 illustrates how ISMS-CORAS
extends the CORAS threat diagram notation with the attacker motivation (de-
picted as a cloud) and the references from vulnerability to the target element
that contains it. In our example a software attacker changes the Smart Meter
configuration such that the frequency of readings is increased to every 15 min-
utes. A network attacker exploits a vulnerability in the ICT Gateway in order
to steal energy consumption data.

In Figure 8 we show how Legal CORAS is used to take into account legal issues.
As explained above, an increase in the frequency of Smart Meter readings may be

Certain

Likely

Possible

Unlikely

Rare

Insignificant Minor Moderate Major Catastrophic

Consequence

L
ik
el
ih
oo
d

Fig. 6. Risk evaluation criteria; the light shading represents acceptable risk levels, while
the dark shading represent unacceptable risk levels

336 K. Beckers et al.

Software
attacker

Curiosity

Insufficient
access control

System break-in into
Smart Meter and change

of its configuration

Smart Meter
sends energy
consumption data
every 15 minutes

Network
attacker

Curiosity

Insufficient
network

protection

System break-in and
sniffing of network

configuration

Theft of energy
consumption data

Consumers’ energy
consumption data

Consumers’
security and

privacy

ICT Gateway (ICTG)

Smart Meter (SM)

Fig. 7. Threat diagram

a violation of the BDSG. The diagram documents the legal norm that may apply
when the incident Smart Meter sends energy consumption data every 15 minutes
occurs. If the norm applies, this may lead to the incident of prosecution.

4.3 Step 3: Estimate Risks

This step is identical to CORAS, and involves the estimation of likelihoods and
consequences of unwanted incidents. The results are documented by annotating
the threat diagrams as illustrated in Figure 8. Legal uncertainties are also es-
timated and annotated on the identified legal norms. The latter is an estimate
of the likelihood that the norm will actually apply under the identified circum-
stances. For the detailed explanation of the specific estimates we refer the reader
to the full technical report.

4.4 Step 4: Evaluate Risks

The likelihood and consequence estimates are combined into risks using CORAS
risk diagrams as exemplified in Figure 9. The risk levels (acceptable or unac-
ceptable) are determined using the risk evaluation criteria as specified in the
risk matrix of Figure 6. Note that because a risk is the combination of an un-
wanted incident and an asset, the incidents identified in Figure 8 represent four
risks. In order to distinguish between them we give each risk a unique identifier
(such as SMS1 and SMS2). From Figure 9 and the filled in matrix in Figure 10
we see that there is one acceptable risk and three unacceptable.

ISMS-CORAS 337

Software
attacker

Curiosity

Insufficient
access control

System break-in into
Smart Meter and change of

its configuration
[Possible]

Smart Meter
sends energy
consumption data
every 15 minutes
[Possible]

Network
attacker

Curiosity

Insufficient
network

protection

Consumers’ energy
consumption data

Consumers’
security and

privacy

ICT Gateway (ICTG)

Smart Meter (SM)

Energy supplier is
prosecuted for storing/
processing personal
information without
informed consent
[Possible]

German Federal Data Protection Act
(BDSG)

The energy supplier is liable according to
BDSG Sect. 43(2)1 for collection or

processing of personal data which are not
generally accessible without authorization.

[Possible]

System break-in and
sniffing of network

configuration
[Likely]

Theft of energy
consumption data
[Possible]

§

Legal
compliance

Moderat
e

Minor

Major

Major

Fig. 8. Threat diagram with estimates

4.5 Step 5: Treat Risk

The unacceptable risks have to be evaluated for possible treatment. Appendix A
of ISO 27001 describes a set of normative controls, and ISMS-CORAS requires
these to be considered.

ISMS-CORAS provides support for the selection of controls by a mapping
of controls to attacker types. Due to space constraints we do not present this
mapping here, but rather refer to the full report. Each mapping refers to an ISO
control (e.g. A.10.4 Protection against malicious and mobile code), an attacker
type (e.g. software attacker), a control objective (e.g. integrity of software and
information), and the relevant kind of target elements (e.g. critical software and
services).

The identification and documentation of risk treatments are exemplified by
the treatment diagram in Figure 11. The novelty of ISMS-CORAS is that the
ISO 27001 controls have to be considered. The attacker motivation and related
target elements are moreover specified, as for the extended threat diagram no-
tation.

Each identified treatment points to the element of the threat diagram that
it treats. The analyst may optionally annotate this relation with the treatment
effect, which may be reduction of likelihood (RL) or reduction of consequence

338 K. Beckers et al.

Software
attacker

Network
attacker

Consumers’ energy
consumption data

Consumers’
security and

privacy

Legal
compliance

PP: Energy supplier is prosecuted
for storing/processing personal
information without informed

consent
[Unacceptable]

SMS1: Smart Meter sends energy
consumption data every 15

minutes
[Unacceptable]

SMS2: Smart Meter sends energy
consumption data every 15

minutes
[Acceptable]

TED: Theft of energy
consumption data

[Unacceptable]

Fig. 9. Risk diagram

Certain

Likely

Possible

Unlikely

Rare

Insignificant Minor Moderate Major Catastrophic

Consequence

L
ik
el
ih
oo
d

SMS2 PP SMS1 TED

Fig. 10. Risk evaluation

(RC). In Figure 11, controls for the protection of the ICT Gateway have been
identified where, for example, improved network protection control may reduce
the likelihood of a system break-in by a network attacker. Further treatments
and their explanations are given in the report.

For the example of the use of the treatment overview diagrams, the treatment
overview tables, the control exclusion table, the control effectiveness measure
table and the ISMS procedure and control table, we refer the reader to the

ISMS-CORAS 339

Network
attacker

Curiosity

Insufficient
network

protection

Consumers’ energy
consumption data

ICT Gateway (ICTG)

System break-in and
sniffing of network

configuration
[Likely]

A.11.4.6 Network
connection control

A.11.4.2 User
authentication for external

connections A.12.5.4 Information
leakage control

A.13.2.2 Learning
from information security

incidents
RL

RL

RL

RC

TED: Theft of energy
consumption data

[Unacceptable]

Fig. 11. Treatment diagram

full technical report. These documentation artifacts documents the rationale for
the treatment selection, including the related assets and security objectives, the
responsible entities, as well as the necessary procedures and controls.

5 Related Work

To the best of our knowledge no specific methods for security requirements
engineering or security risk analysis exist that support the establishment of an
ISO 27001 compliant ISMS, and that satisfies the standard’s documentation
demands as is the goal of ISMS-CORAS.

Looking at established standards and methods for security risk analysis, sev-
eral alternatives could be considered for facilitating the establishment of an
ISMS, but none of them provide systematic support for ISO 27001 compliance.
OCTAVE [2] is a suite of tools, techniques and methods for risk-based infor-
mation security assessment and planning. Although the security risk analysis
process is similar to ISMS-CORAS, the aim of OCTAVE is not to create and
document an ISMS. The same is the case for CRAMM [42]. Both CRAMM and
OCTAVE are compliant with the BS 7799 information security standard, which
was adopted by ISO 27001. However, the focus is still on the security risk anal-
ysis, and less on systematically fulfilling the standard’s requirements to ISMS
establishment and documentation. The CRAMM repositories of assets, threats
and countermeasures could, however, support the ISMS-CORAS process.

EBIOS [1] is a method for assessing and treating risks related to informa-
tion systems security, and is consistent with the ISO 31000, ISO 27001 and
ISO 27005 standards. While consistent with these standards, the method is de-
signed for security risk identification and mitigation and provides therefore only
partial support for establishing an ISO 27001 ISMS. The Microsoft Security

340 K. Beckers et al.

Risk Management Guide [33] is developed to support organizations in the over-
all security management and risk assessment. The fulfillment of ISO 27001 is
beyond the scope, although there are many overlaps. The similar is the case
for FRAAP [38], which is a method for analysis of information security related
issues, focusing on protection of data confidentiality, integrity and availability.

Other existing works provide some guidance in interpreting the demands of
the ISO 27001 standard. Calder [11] and Kersten et al. [23] provide advice for
an ISO 27001 realization. In addition, Klipper [24] focuses on risk management
according to ISO 27005. The author also includes an overview of the ISO 27000
series of standards. However, none of these works consider using structured meth-
ods to fully support the standard and its documentation requirements, as is the
aim of ISMS-CORAS.

Other authors try to capture the most important relations presented in the
standard by using models. Cheremushkin and Lyubimov [12] present a UML-
based meta-model for several terms of the ISO 27000. These meta-models can
be instantiated and, thus, support the refinement process [29]. However, the
authors do not present a holistic method to information security.

Some existing approaches aim at improving the establishment of an ISMS
via automation. Montesino et al. [34] investigate possible automation of controls
that are listed in the ISO 27001 and ISO 27002. Their work can complement our
own by providing some automation, but does not provide a complete method for
establishing and documenting an ISMS.

For the Common Criteria (CC) standard [21] there exists a security re-
quirements engineering approach that uses the standard as a baseline for a
method. Mellado et al. [31] created the Security Requirements Engineering Pro-
cess (SREP), which is an iterative and incremental security requirements engi-
neering process. In addition, SREP is asset-based, risk driven, and follows the
structure of the Common Criteria [32]. The work differs from ours, because the
authors do not support the ISO 27001 standard and also do not aim at se-
curity standard compliance or satisfying the Common Criteria documentation
demands. In addition, Ardi and Shahmehri [5] extend the CC Security Target
document with a section that considers knowledge of existing vulnerabilities.
The authors aim at improving the CC and not at supporting its establishment.

6 Conclusion

In this chapter we have presented ISMS-CORAS, which is a structured method
for establishing an information security management system (ISMS) that is com-
pliant with the ISO 27001 standard. ISMS-CORAS is supported by techniques,
modeling guidelines and documentation templates to ensure that all require-
ments to tasks and documentation are fulfilled. ISO 27001 defines the so-called
Plan-Do-Check-Act (PDCA) model that specifies how to establish, implement,
monitor and maintain an ISMS. ISMS-CORAS is developed to support the
plan phase, and therefore focuses on the establishment and documentation of
an ISMS.

ISMS-CORAS 341

Establishing an ISMS involves conducting a security risk analysis following a
process similar to those defined by ISO 31000 and ISO 27005. Because CORAS
is based on the former standard it already fulfills many of the ISO 27001 re-
quirements to risk analysis and documentation. CORAS moreover comes with
techniques, guidelines, modeling support and tool support that facilitate several
parts of the ISO 27001 tasks. A further useful feature of CORAS in the ISMS
context is the support for modeling and analyzing legal aspects.

ISMS-CORAS extends CORAS with the features, artefacts and techniques
that are needed to provide complete support for establishing and document-
ing an ISMS. Some of the main novelties of ISMS-CORAS are the following.
The method comes with detailed steps for asset identification, threat analysis,
risk management and security reasoning; it is supported by attacker templates,
classification of attacker types and attacker overview diagrams to facilitate and
ensure completeness of attacker identification; it is supported by several kinds of
diagrams for threat and risk modeling with attacker types, modeling of vulnera-
bilities and attacker entry points, as well as legal aspects; it provides a mapping
between attacker types and ISO 27001 controls to facilitate treatment identifica-
tion. These and other novelties in combination provide a systematic support for
generating the required ISMS documentation in compliance with the standard.

As part of future work we plan to extend the approach to support all phases
of the PDCA model, and not only the ISMS establishment of the plan phase.
We will also conduct empirical studies to evaluate ISMS-CORAS and improve
its usability. As part of the evaluation and validation, we moreover plan to
compare ISMS-CORAS with alternative approaches to establish and document
an ISO 27001 compliant ISMS. In particular, we will use publicly available tools
such as verinice [47] and templates like the free ISO27k Toolkit [15] to create
ISMS artifacts using the smart grid scenario presented in this chapter. The
artifacts will serve as a basis for comparison and evaluation of ISMS-CORAS.

Acknowledgments. The research presented in this chapter was partially funded
by the European Commission FP7 via the NESSoS (256980) network of excel-
lence and the RASEN (316853) project.

References

1. Agence nationale de la sécurité des systèmes d’information: EBIOS 2010 – Expres-
sion of Needs and Identification of Security Objectives (2010) (in French)

2. Alberts, C.J., Dorofee, A.J.: OCTAVE Criteria. Tech. Rep. CMU/SEI-2001-TR-
016, CERT (2001)

3. Allen, M.: Social engineering: A means to violate a computer system. SANS Insti-
tute Reading Room (2007)

4. Aloul, F., Al-Ali, A.R., Al-Dalky, R., Al-Mardini, M., El-Hajj, W.: Smart grid
security: Threats, vulnerabilities and solutions. International Journal of Smart Grid
and Clean Energy 1(1), 1–6 (2012)

5. Ardi, S., Shahmehri, N.: Introducing vulnerability awareness to Common Crite-
ria’s security targets. In: Fourth International Conference on Software Engineering
Advances (ICSEA 2009), pp. 419–424. IEEE Computer Society (2009)

342 K. Beckers et al.

6. Beckers, K., Côté, I., Hatebur, D., Faßbender, S., Heisel, M.: Common Criteria
CompliAnt Software Development (CC-CASD). In: Proceedings of the 28th Sym-
posium on Applied Computing, pp. 937–943. ACM (2013)

7. Beckers, K., Faßbender, S., Heisel, M., Küster, J.-C., Schmidt, H.: Supporting
the development and documentation of ISO 27001 Information Security Manage-
ment Systems through security requirements engineering approaches. In: Barthe,
G., Livshits, B., Scandariato, R. (eds.) ESSoS 2012. LNCS, vol. 7159, pp. 14–21.
Springer, Heidelberg (2012)

8. Beckers, K., Faßbender, S., Küster, J.-C., Schmidt, H.: A pattern-based method
for identifying and analyzing laws. In: Regnell, B., Damian, D. (eds.) REFSQ 2011.
LNCS, vol. 7195, pp. 256–262. Springer, Heidelberg (2012)

9. Beckers, K., Hatebur, D., Heisel, M.: A problem-based threat analysis in compli-
ance with Common Criteria. In: Proceedings of the International Conference on
Availability, Reliability and Security (ARES 2013), pp. 111–120 (2013)

10. Beckers, K., Heisel, M., Solhaug, B., Stølen, K.: ISMS-CORAS – A structured
method for establishing an ISO 27001 compliant information security management
system. Tech. Rep. A25626, SINTEF ICT (2013)

11. Calder, A.: Implementing Information Security based on ISO 27001/ISO 27002: A
Management Guide. Haren Van Publishing (2009)

12. Cheremushkin, D.V., Lyubimov, A.V.: An application of integral engineering tech-
nique to information security standards analysis and refinement. In: Proceedings
of the 3rd International Conference on Security of Information and Networks (SIN
2010), pp. 12–18. ACM (2010)

13. Evaluation of general requirements according state of the art. OpenNode project
deliverable D1.2 (2010)

14. Faßbender, S., Heisel, M.: From problems to laws in requirements engineering –
Using model-transformation. In: International Conference on Software Paradigm
Trends (ICSOFT 2013), pp. 447–458. SciTePress (2013)

15. FREE ISO27k Toolkit,
http://www.iso27001security.com/html/iso27k_toolkit.html

(accessed January 21, 2014)

16. Functional use cases. OpenNode project deliverable D1.3 (2010)

17. Howard, M., LeBlanc, D.: Writing Secure Code, 2nd edn. Microsoft Press (2003)

18. International Organization for Standardization: ISO 31000 – Risk management –
Principles and guidelines (2009)

19. International Organization for Standardization / International Electrotechnical
Commission: ISO/IEC 27001 – Information technology – Security techniques –
Information security management systems – Requirements (2005)

20. International Organization for Standardization / International Electrotechnical
Commission: ISO/IEC 27005 – Information technology – Security techniques -
Information security risk management (2008)

21. International Organization for Standardization / International Electrotechnical
Commission: ISO/IEC 15408 – Common Criteria for Information Technology Se-
curity Evaluation (2009)

22. Karg, M.: Datenschutzrechtliche Bewertung des Einsatzes von “intelligenten” Mes-
seinrichtungen für die Messung von gelieferter Energie (Smart Meter). Tech. rep.,
Unabhängiges Landeszentrum für Datenschutz (ULD) (2009) (in German)

23. Kersten, H., Reuter, J., Schröder, K.W.: IT-Sicherheitsmanagement nach ISO
27001 und Grundschutz. Vieweg+Teubner (2011) (in German)

http://www.iso27001security.com/html/iso27k_toolkit.html

ISMS-CORAS 343

24. Klipper, S.: Information Security Risk Management mit ISO/IEC 27005: Risiko-
management mit ISO/IEC 27001, 27005 und 31010. Vieweg+Teubner (2010)
(in German)

25. Knyrim, R., Trieb, G.: Smart metering under EU data protection law. International
Data Privacy Law 1(2), 121–128 (2011)

26. Kreutzmann, H., Vollmer, S.: Protection profile for the gateway of a smart metering
system (Smart meter gateway PP). Tech. Rep. BSI-CC-PP-0073, Federal Office for
Information Security, version 1.2, Final Release (2013)

27. Lin, H., Fang, Y.: Privacy-aware profiling and statistical data extraction for smart
sustainable energy systems. IEEE Transactions on Smart Grid 4(1), 332–340 (2013)

28. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis – The CORAS
Approach. Springer (2011)

29. Lyubimov, A., Cheremushkin, D., Andreeva, N., Shustikov, S.: Information secu-
rity integral engineering technique and its application in ISMS design. In: Sixth
International Conference on Availability, Reliability and Security (ARES 2011),
pp. 585–590. IEEE Computer Society (2011)

30. Mahler, T.: Legal Risk Management – Developing and Evaluating Elements of a
Method for Proactive Legal Analyses, With a Particular Focus on Contracts. Ph.D.
thesis, University of Oslo (2010)

31. Mellado, D., Fernandez-Medina, E., Piattini, M.: A comparison of the Common
Criteria with proposals of information systems security requirements. In: The First
International Conference on Availability, Reliability and Security (ARES 2006),
pp. 654–661. IEEE Computer Society (2006)

32. Mellado, D., Fernández-Medina, E., Piattini, M.: Applying a security requirements
engineering process. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS
2006. LNCS, vol. 4189, pp. 192–206. Springer, Heidelberg (2006)

33. Microsoft Solutions for Security and Compliance and Microsoft Security Center of
Excellence: The Security Risk Management Guide (2006)

34. Montesino, R., Fenz, S.: Information security automation: How far can we go?
In: Sixth International Conference on Availability, Reliability and Security (ARES
2011), pp. 280–285. IEEE Computer Society (2011)

35. Network of Excellence on Engineering Secure Future Internet Software Services
and Systems (NESSoS), http://www.nessos-project.eu/ (accessed December 19,
2013)

36. Object Management Group: OMG Unified Modeling Language (OMG UML), Su-
perstructure. Version 2.3, OMG Document: formal/2010-05-03 (2010)

37. Opdahl, A.L., Sindre, G.: Experimental comparison of attack trees and misuse
cases for security threat identification. Inf. Softw. Technol. 51, 916–932 (2009)

38. Peltier, T.R.: Information Security Risk Analysis, 3rd edn. Auerbach Publications
(2010)

39. Raabe, O., Lorenz, M., Pallas, F., Weis, E.: Datenschutz im Smart Grid und in
der Elektromobilität. Tech. rep., Karlsruher Institut für Technologie, KIT (2011)
(in German)

40. Report on the identification and specification of functional, technical, economi-
cal and general requirements of advanced multi-metering infrastructure, including
security requirements. OPEN meter project deliverable D1.1 (2009)

41. Rodden, T.A., Fischer, J.E., Pantidi, N., Bachour, K., Moran, S.: At home with
agents: Exploring attitudes towards future smart energy infrastructures. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
2013, pp. 1173–1182. ACM (2013)

http://www.nessos-project.eu/

344 K. Beckers et al.

42. Siemens: CRAMM – The total information security toolkit,
http://www.cramm.com/ (accessed: January 15, 2013)

43. Siemens: No longer a one-way street,
http://www.siemens.com/innovation/apps/pof microsite/

pof-spring-2011/ html en/smart-grids.html (accessed December 19, 2013)
44. Sindre, G., Opdahl, A.L.: Templates for misuse case description. In: Procedings

of the 7th International Workshop on Requirements Engineering, Foundation for
Software Quality (REFSQ 2001), pp. 4–5 (2001)

45. Swiderski, F., Snyder, W.: Threat Modeling. Microsoft Press (2004)
46. Tran, L.M.S., Solhaug, B., Stølen, K.: An approach to select cost-effective risk

countermeasures. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964,
pp. 266–273. Springer, Heidelberg (2013)

47. verinice, http://www.verinice.org (accessed January 21, 2014)

http://www.cramm.com/
http://www.siemens.com/innovation/apps/pof_microsite/_pof-spring-2011/_html_en/smart-grids.html
http://www.siemens.com/innovation/apps/pof_microsite/_pof-spring-2011/_html_en/smart-grids.html
http://www.verinice.org

Divide and Conquer – Towards a Notion of Risk

Model Encapsulation

Atle Refsdal1, Øyvind Rideng2, Bjørnar Solhaug1, and Ketil Stølen1,3

1 SINTEF ICT, Norway
2 Oilfield Technology Group, Norway

3 Dep. of Informatics, University of Oslo, Norway
{atle.refsdal,bjornar.solhaug,ketil.stolen}@sintef.no,

oyvind.rideng@otg.no

Abstract. The criticality of risk management is evident when consider-
ing the information society of today, and the emergence of Future Inter-
net technologies such as Cloud services. Information systems and services
become ever more complex, heterogeneous, dynamic and interoperable,
and many different stakeholders increasingly rely on their availability
and protection. Managing risks in such a setting is extremely challeng-
ing, and existing methods and techniques are often inadequate. A main
difficulty is that the overall risk picture becomes too complex to under-
stand without methodic and systematic techniques for how to decompose
a large scale risk analysis into smaller parts. In this chapter we introduce
a notion of risk model encapsulation to address this challenge. Encap-
sulation facilitates compositional risk analysis by hiding internal details
of a risk model. This is achieved by defining a risk model interface that
contains all and only the information that is needed for composing the
individual risk models to derive the overall risk picture. The interface
takes into account possible dependencies between the risk models. We
outline a method for compositional risk analysis, and demonstrate the ap-
proach by using an example on information security from the petroleum
industry.

Keywords: Risk analysis, risk modeling, risk model encapsulation, risk
composition, security, ICT.

1 Introduction

For most organizations, risk management is an indispensable part of the overall
management process. Risk management is coordinated activities to direct and
control an organization with regard to risk [11], and the objective is to system-
atically and proactively identify the current risk picture and to ensure that the
necessary controls are in place to maintain risks at an acceptable level.

Risk management may be with respect to many different kinds of risk, such as
financial, safety, operational, security and environmental damage. In this chapter
we focus on (information) security [12]. The criticality of security is particularly
evident when considering the information society of today, and the emergence of
Future Internet technologies. Information systems and services become ever more

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 345–365, 2014.
c© Springer International Publishing Switzerland 2014

346 A. Refsdal et al.

complex, heterogeneous, dynamic and interoperable. Businesses, enterprises, gov-
ernments, citizens and many other stakeholders rely more and more on the avail-
ability of services and information over the Internet, with Cloud services as a
prominent example. Managing risks in such a setting is extremely challenging,
and established methods and techniques are often inadequate. The main prob-
lems are that the overall risk picture becomes too complex to understand, and
that the risk picture quickly and continuously changes and evolves.

Risk analysis is a core part of the risk management process, and should be
conducted regularly in order to identify, assess and document risks, as well as
identifying controls and means to mitigate risks. For most risk analyses only
selected parts or aspects of a system or an organization are addressed. This is
because it is infeasible or too costly to conduct a full analysis of the whole sys-
tem or organization at the same time. For such risk analyses addressing selected
parts or aspects we can make use of established methods and techniques (e.g.
[1,2,6,11,15,16,19]). Such a traditional approach is fine when we can reach an
adequate understanding of the risks by analyzing separate parts of the target
in isolation. However, for large, complex systems or organizations we may need
to consider all parts of the target in combination in order to adequately under-
stand the full risk picture. Taking into account the infeasibility of addressing
the full system or organization at once, we need novel techniques for sound and
systematic composition of separate risk analyses in order to deduce an overall
risk model.

The challenge we address in this chapter is how to facilitate a compositional
[18] approach to risk analysis by applying the principle of encapsulation. Follow-
ing a divide-and-conquer strategy we aim for an approach to risk management
where separate parts of a system or organization can be analyzed individually.
By risk model we mean any representation of risk information, such as threats,
vulnerabilities, unwanted incidents and how they are related, as well as estimates
of likelihoods and consequences. Compositional techniques should then enable
the systematic and sound composition of the individual risk models in order to
derive the overall combined result without having to reconsider the details of
the individual models.

A compositional approach has several advantages. First, for systems or orga-
nizations that are to be analyzed from scratch, a compositional approach allows
the analysis to be split-up top-down in manageable chunks in such a way that
the details of each individual analysis do not have to be reconsidered when the
results of the individual analyses are aggregated back into an overall risk model
for the system or organization as a whole. Second, when there already are sev-
eral risk analyses of different parts or aspects of some system or organization
available, a compositional approach enables the overall risk picture to be derived
bottom-up without re-analyzing what has already been analyzed. Third, if the
target of one individual analysis is reused in another context, also the risk anal-
ysis for the target in question should be reusable in the new context. Fourth,
when a system changes due to replacement or introduction of new parts, we
should be able to deduce the risk level by re-analyzing only the modified parts.

Divide and Conquer – Towards a Notion of Risk Model Encapsulation 347

In the example of this chapter we focus mainly on the first of these usage
scenarios, namely the top-down one. The three others are however equally im-
portant but only partly addressed by the method presented in this chapter.

The contribution of the presented work is an approach to compositional risk
analysis that is based on a new notion of risk model encapsulation. By encapsu-
lation we mean that only the elements that are essential for the composition of
risk models are externally observable via its interface. As already mentioned, we
outline a method for compositional risk analysis from a top-down perspective
where a large target is decomposed into sub-targets that are analyzed individu-
ally. We introduce techniques for risk model composition that make use of the
risk interface of each individual risk model. We demonstrate the approach by
using an example drawn from the petroleum industry.

The structure of the chapter is as follows. In Section 2 we present our notion
of risk model encapsulation. In Section 3 we present the petroleum industry
example that we use to illustrate our approach and techniques. In Section 4 we
outline our method for compositional risk analysis, and in Section 5 to Section 7
we present and exemplify the method in more details. In Section 8 we discuss
related work before we conclude in Section 9.

2 Risk Model Encapsulation

In this section we introduce and explain our notion of risk model encapsulation.
The objective is to allow different risk models to be composed without having
to know or understand all the interior details of the individual models. For this
purpose we need to define a notion of risk model interface, where the interface
contains all and only the information that is needed for risk model composition.
Moreover, the resulting combined risk model should possess all the information
that is needed for understanding the risk situation of the overall target.

A further challenge that needs to be tackled is how to take into account
possible dependencies between the individual risk models. Each sub-target is
analyzed separately, and the other sub-targets belong to the environment of the
sub-target being analyzed. This means that the other sub-targets can serve as
environmental causes of risk that need to be taken into account for the sub-
target being analyzed, and that the sub-target in question can be the cause of
risks for the sub-targets in its environment.

In the following we introduce our notion of risk model encapsulation by pre-
senting our underlying conceptual model. The concrete modeling support is pre-
sented in Section 5 to Section 7.

In the UML [17] class diagram of Figure 1 the term target denotes the target
of analysis. The goal of the analysis is to build the risk model for the target. The
target may be decomposed into a number of more fine-grained targets (which
we often refer to as sub-targets). There are two crucial features of our approach
to risk model encapsulation. First, for each target we need to understand how it
relates to its environment. Second, we need a precise notion of interface which
consists of the risk information that is needed in order to compose the risk model
in question with other risk models.

348 A. Refsdal et al.

Target

Risk model

Environment
**

*

1

Interface1

*

Fig. 1. Risk model

Figure 2 depicts the interface for risk model encapsulation in further detail. The
interface consists of three sets of ingredients. The first one is a set of threat rela-
tions originating from the environment and impacting the target. These relations
represent ways in which the environment may influence the risk model of the
target.

Interface

Threat relation
from environment

Impact relation on
target asset

Threat relation to
environment

* **

Fig. 2. Interface for risk model encapsulation

The second ingredient is a set of impact relations describing potential harm
on target assets. A target asset is something of value inside the target that must
be protected from unacceptable risk. For example, if the target is a database, a
target asset could be the integrity of the information on the database. This in
contrast with an environment asset that is something of value in the environment.
Such an asset could, for example, be the reliability of a web service that uses
the database.

The third ingredient is a set of threat relations from the target to the envi-
ronment that represent ways in which the target may influence the risk model
of the environment.

Before demonstrating the application of these concepts we next introduce our
example.

3 The Petroleum Work Permit Example

Accidents on oil & gas rigs can have large consequences in terms of loss of life,
damage to the environment and economic loss. Non-routine work that takes place

Divide and Conquer – Towards a Notion of Risk Model Encapsulation 349

on a rig, such as welding or replacement of defect gas detectors, may increase
the risk. Therefore, all work except daily routine tasks requires a work permit
(WP). This allows decision makers to obtain an overview of all the different
types of work that is planned and ongoing on all locations on the rig at all
times, to oversee all extra safety measures related to the work, and to reject or
stop work if necessary. Every 12th hour, a WP meeting is held on the rig to
decide which work permits to release for the next shift. When deciding whether
to release (accept) or reject a WP, the decision makers need to take a number of
safety considerations into account, including potential conflicts or interference
with other work, the current state of safety barriers, and the weather. This is
very challenging as the number of applications can be very high, meaning that
only a few minutes or even less is available for each decision.

In the following we assume that a petroleum operator has initiated a project
in collaboration with a software tool and service provider to update their ICT
system for work permit management. In addition to functionality for registering,
releasing and rejecting WP applications, the system will provide decision support
in the form of an automated smart agent that collects relevant information for
each WP application and provides advice to the human decision makers. The
advice will be either a warning that the agent has detected something that
might indicate that the WP should be rejected or considered extra carefully,
accompanied by an explanation, or simply an empty message. Human decision
makers will still be fully responsible for the final decision.

The UML collaboration diagram of Figure 3 shows an overall view of the
system. The class RigSystem represents all ICT infrastructure related to WPs
that are installed on the rig itself. WPAgent represents the automated agent. This
will be developed and maintained by the software provider, as represented in Fig-
ure 3 by WPAgent maintainer. WeatherService is an Internet-based meteorological

WPSystem

Applicant

DecisionMaker

:Weather
Service

wa

WPAgent
maintainer

rs

:RigSystem

wa

ws ui

:WPAgent maws
rs en

cr
yp

te
d

open

open

Fig. 3. Overall view of the system

350 A. Refsdal et al.

service offering weather forecasts. The small boxes on the borders represent com-
munication ports. The port ui onRigSystem represents the user interface of RigSys-
tem, while the port ma on WPAgent represents the interface through which the
WPAgent maintainer performs maintenance. All other ports represent technical
interfaces.

The WPAgent will need information from WeatherService. It will also need
to interact with the components of RigSystem, which explains the lines that
are included between WPAgent and each of these entities. The communication
between WPAgent and RigSystem goes via an encrypted Internet connection,
while the communication with WeatherService uses an open line.

The internal details of RigSystem are shown in the UML internal structure
diagram of Figure 4. Each of the internal components of RigSystem is available
to WPAgent through the port wa on RigSystem. We have not assigned names
to the internal communication ports. WPManager handles WP applications and
release/reject decisions. All communication with users goes through WPMan-
ager, which also includes a screen showing weather data and forecasts that are
continuously updated from WeatherService. DeviationsDB is a database where
deviations related to the state, maintenance, testing etc. of equipment on the
rig are recorded. For example, this includes information about any faults that
have been detected, as well as tests and maintenance that have not been carried
out. WPDB is a database that stores all WPs and related information, such as
the location where the work takes place, who does the work, when the work
starts and stops, what type of equipment will be used, and so on. WPManager
includes a user interface for querying DeviationsDB and WPDB, as the Decision-
Maker might want to obtain information from these databases before deciding
whether to release or reject a new WP.

The WP application process is shown in the UML sequence diagram of
Figure 5. Note that the update of weather data from WeatherService to RigSys-
tem/WPManager is a continuous process that is independent from the WP
application process and has therefore not been included. The process starts
with the Applicant registering a new application for a WP, represented by the

:RigSystem

:WPManager

:DeviationsDB

:WPDB

wa

ws ui

Fig. 4. Internal structure of RigSystem

Divide and Conquer – Towards a Notion of Risk Model Encapsulation 351

Decision
Maker

rs:RigSystem
ref RigSys

Applicant
applyForWP

presentApplication

release
released

alt

reject

sd Release

:WPAgent

newApplication
getWeatherData

:WeatherService

weatherData
getRelatedWPs

relatedWPs

getRelatedDeviations
relatedDeviations

advice

rejected

presentAdvice

ref getAdditionalInfo

opt

Fig. 5. Message exchange for the WP application process

applyForWP message. This information is forwarded to WPAgent, as represented
by the newApplication message. WPAgent then collects the information it needs
from the WeatherService and (the internal components of) RigSystem, as repre-
sented by the next six messages going from and to WPAgent. After collecting this
information, the WPAgent produces its advice (a purely internal process that is
not shown) and sends it to RigSystem, which then presents the application and
the advice from WPAgent to DecisionMaker. At this point DecisionMaker may
optionally decide to retrieve information about other WPs, deviations, and the
weather. All this information is stored in WPDB, DeviationsDB and WeatherSer-
vice, and made available to DecisionMaker through a user interface that is a part
of WPManager (and therefore also RigSystem). In Figure 5 this is represented by
the reference getAdditionalInfo, which has not been detailed further as its content
is of little relevance for our purpose here. Finally, the DecisionMaker may either
release or reject the WP, as illustrated by the two operands of the alt operator.

The UML sequence diagram in Figure 6 shows a decomposition of the RigSys-
tem lifeline of Figure 5. All communication with external components go to/from
WPManager, except the requests from WPAgent to WPDB and DeviationsDB.

352 A. Refsdal et al.

sd RigSys

:WPManager

release
released

alt

:DeviationsDB :WPDB

applyForWP
newApplication

getRelatedWPs
relatedWPs

getRelatedDeviations

relatedDeviations
advice

presentApplication

presentAdvice

reject
rejected

ref RigSys_getAdditionalInfo

opt

Fig. 6. Details of message exchange within RigSystem

4 Outline of a Method for Compositional Risk Analysis

In this section we outline a method for compositional risk analysis that makes
use of target decomposition and risk model encapsulation. The method follows
a top-down approach where we start with a high-level view of the target as a
whole. The target is then decomposed before a risk analysis is conducted for
each sub-target separately.

Our method is closely based on the risk analysis process as defined by the
ISO 31000 standard on risk management. The process consists of five consecutive
steps described as follows. 1) Establish the context involves defining the external
and internal parameters to be accounted for when managing risk, and to set the
scope and risk criteria for the risk management policy. 2) Risk identification is
to find, recognize and describe risks. 3) Risk estimation is to comprehend the
nature of risk and to determine the risk level. 4) Risk evaluation is to compare
the risk estimation results with the risk criteria to determine whether each risk
and its magnitude are acceptable or tolerable. 5) Risk treatment is the process
of modifying the risk. Step 2–4 are referred to as risk assessment.

The main novelties of our compositional method are the target decomposition,
the sub-target risk assessment, and the risk model composition. The remaining

Divide and Conquer – Towards a Notion of Risk Model Encapsulation 353

activities mainly follow the standardized process. The target decomposition hap-
pens during the context establishment, whereas the risk model composition hap-
pens at the end of the risk assessment. In the following method overview we focus
on the steps that are specific for our method, omitting details that are explained
in the ISO 31000 standard.

– Context establishment
• Model and document the overall target of analysis
• Identify the assets of the overall target of analysis
• For each asset, identify the part of the target to which the asset belongs
• Decompose the target (and possibly the assets) such that each asset
belongs to exactly one sub-target

– Compositional risk assessment
• Conduct risk assessment for each sub-target separately
• Specify the risk model interface for each sub-target
• Build the overall risk model by composing the sub-target risk models
using their interfaces

A part of the context establishment in any risk analysis consists of describing
and documenting the target of analysis at an adequate level of detail. In our top-
down approach to compositional risk analysis we start by modeling the whole
target of analysis at a level that is suitable for providing a high-level overview
and for identifying the system level assets that should be the focus of the overall
analysis. For each of the assets we next identify to which part of the target it
belongs, i.e. where it is located. This means that the assets must be sufficiently
specific. For example, if confidentiality of health records is an asset and the
records are stored at different places, we may need to split this asset up and
rather specify assets like confidentiality of health data as stored on a specific
database. The target is then decomposed according to the location of assets.
Note that while an asset can belong to one sub-target only, one sub-target can
have several assets.

In addition to taking the asset location into account, the target decomposi-
tion should ensure that each sub-target is of a size and complexity that can be
handled in one analysis. If the complexity of one sub-target is too high, it must
be decomposed further.

Once the target is decomposed into adequate sub-targets separate risk assess-
ments are conducted for each sub-target individually. This basically follows the
standard risk assessment process, but we also need to take into account envi-
ronment threats and environment assets. Once the sub-target risk models are
completed, the respective encapsulated risk models are created. This is done by
a straightforward mapping from the sub-target risk model that easily can be
automated. Finally, the overall risk model is built by composing the sub-target
risk models using their interfaces.

We demonstrate and exemplify the method and our techniques for composi-
tional risk analysis over the next three sections using the petroleum work permit
system. The examples illustrate essential aspects of our approach, and also serve

354 A. Refsdal et al.

to elaborate and further explain our notion of risk model encapsulation as in-
troduced in Section 2.

The initial modeling and documentation of the overall target of analysis that is
part of the context establishment was presented in Section 3. Before proceeding
with the risk assessment, the assets need to be identified, and the target needs
to be decomposed.

There are of course a number of critical information and service assets in the
WP scenario. For the purpose of the example we select only a few that we focus
on. Considering the rig system, it is obvious that availability of the WP data
and availability of the WP advice are essential for both WP manager and for
the decision maker. The availability of WP data is also essential for the WP
agent that needs data for creating the advice. Considering the WP system as a
whole, it is also critical to ensure the dependability of the WP agent. Because
the WP agent is a software for automated decision support, the integrity of
the software—including the implemented algorithms—needs to be protected. In
the WP system analysis we are concerned about information security risks with
respect to these assets.

Based on the identified assets we have decomposed the target into two sub-
targets as indicated in Figure 7. Two of the assets are associated with the rig
system, and two of them with the WP agent and its communication line to the
rig system. In the remainder of the chapter we refer to the former as sub-target A
and to the latter as sub-target B. Note that in this analysis the Internet weather
service is part of the environment of the overall target of analysis.

In Section 5 and Section 6 we do the risk assessment and modeling for sub-
target A and sub-target B, respectively. Subsequently we do the composition of
the results in Section 7.

5 Risk Modeling for Sub-Target A

In this section we give a stepwise introduction to how we do the risk assessment
for sub-target A by describing three different cases. We start with the simple
situation where all threats and assets are internal, i.e. Case I is the identification
of risks with respect to threats and assets only within sub-target A. Then we
also consider external threats, i.e. Case II takes into account also environment
threats, namely the external causes that can stem for other sub-targets or from
the environment of the overall target. Finally, we address the general situation,
i.e. Case III considers also environment assets, namely the assets of other sub-
targets for which sub-target A can act as a source of risk. Note, importantly, that
this stepwise introduction is only for pedagogical reasons, and does not indicate
a specific order of what to consider during the risk assessment.

5.1 Case I: Internal Threats and Assets Only

The main purpose of our compositional approach to risk analysis is to allow in-
dividual parts of the target of analysis to be analyzed separately. In our example

Divide and Conquer – Towards a Notion of Risk Model Encapsulation 355

WPSystem

Applicant

DecisionMaker

:Weather
Service

wa

WPAgent
maintainer

rs

:RigSystem

wa

ws ui

:WPAgent maws
rs en

cr
yp

te
d

open

open

Integrity of
WPAgent
software

Availability
of WP data

Dependability
of WPAgent

Availability
of WP advice

A

B

Fig. 7. Target assets and target decomposition

we have used the CORAS approach [15] for the risk assessment and risk model-
ing. CORAS is based on the ISO 31000 risk analysis process and comes with a
language for specifying, assessing and documenting the identified risks by using
so-called threat diagrams. However, our principles for risk model encapsulation
and composition can be applied using also other notations for risk modeling.

Figure 8 shows our format for compositional risk modeling. It consists of
three compartments, where the middle compartments includes all the threats,
vulnerabilities, assets, etc. that are internal to the sub-target in question, i.e. to
sub-target A in Figure 7. In the compartment to the left we model environment
threats, and in the compartment to the right we model environment assets,
neither of which are relevant when we restrict our attention to internal threats
and assets only. The use of the latter two compartments are exemplified and
further explained in the next two sub-sections.

Our example diagrams are rather small as the purpose is only to illustrate
the approach. While they are based on a real industrial scenario we do not show
here the actual results of a real risk analysis.

The threat diagram in Figure 8 identifies risk with respect to sub-target A.
One of the identified unwanted incidents is that WP advice cannot be accessed
from WPManager, which could be due to a software error that leads to malfunc-
tion of the WP manager. This incident harms the asset of Availability of WP

356 A. Refsdal et al.

Availability
of WP data

Employee

Employee
accidentally tampers

with WPDB
[5:1year]Insufficient

routines

Software
error

Lack of
qualified ICT

support on rig

WPManager
malfunction

[6:1year]

WPDB fails
[10:1year]

WP data cannot
be accessed from
WPManager
[16:1year]

H

Availability
of WP advice

WP advice cannot
be accessed from
WPManager
[]

H

Threat diagram for A

Fig. 8. Internal threats and assets only

advice. Another incident is that WP data cannot be accessed from WPManager,
which may be due to software error or an employee that accidentally tampers
with the WPDB. The asset that is harmed is Availability of WP data.

After the risk identification and modeling, the risk assessment proceeds with
the risk estimation. This includes estimating the likelihood of the unwanted
incidents to occur, as well as their consequences for the assets they harm. In the
diagram the consequences are annotated on the impacts relations from unwanted
incidents to assets. In our example we have used frequencies for the likelihood
estimation, and we have used a scale of the three consequence levels high (H),
medium (M) and low (L) for the consequences. The consequence values must be
precisely defined for each asset, but this is omitted here as it is not important
for the purposes of the chapter.

When estimating the frequencies for incidents to occur, we make use of like-
lihood estimates also for the threats and threat scenarios that lead to the inci-
dents. The reader is referred to existing literature on CORAS for the calculus to
reason about likelihoods and to do consistency checking [15,20]. In Figure 8 we
have estimated that WP data cannot be accessed from WPManager occurs 16
times per year. The likelihood of the other incident, however, is not estimated
at this point. This is because the analysts know that the availability of the WP
advice depends also on the WP agent. Hence, we need to take into account also
environment threats.

5.2 Case II: Also Considering Environment Threats

For a given sub-target the environment threats are the causes or origins of risks
that are external to the sub-target. In Figure 9 we see that one such external
threat to sub-target A is that WPAgent fails to deliver advice. Importantly,

Divide and Conquer – Towards a Notion of Risk Model Encapsulation 357

Availability
of WP data

Employee

Employee
accidentally tampers

with WPDB
[5:1year]Insufficient

routines

Software
error

Lack of
qualified ICT

support on rig

WPManager
malfunction

[6:1year]

WPDB fails
[10:1year]

WP data cannot
be accessed from
WPManager
[16:1year]

H

Availability
of WP advice

WP advice cannot
be accessed from
WPManager
[x1+6:1year]

H

WPAgent
fails to
deliver
advice

WPManagers receives
no advice from WPAgent

[x1:1year]

x1:1year

Threat diagram for A

Fig. 9. Also considering environment threats

because this threat occurs outside of A, the estimation of its likelihood is not
part of the risk assessment of A. Instead the variable x1 is used such that we get
a parameterized specification of the likelihoods of the scenarios and incidents
that this threat may cause.

The environment threat in question may lead to the threat scenario WPMan-
ager receives no advice from WPAgent. Assuming that the identified threat is the
only cause of this scenario, the estimated frequency is x1 per year as annotated
in the diagram. The estimation of the frequency of the resulting incident is done
on the basis of the two scenarios that lead to it. As specified in Figure 9 the
estimated frequency is the sum x1 + 6 occurrences per year.

As we will see later the estimation of x1 is done as part of the assessment
of sub-target B, and this input is used when composing the threat diagrams to
generate the risk picture for the overall target.

5.3 Case III: Also Considering Environment Assets

As we explained in the previous sub-section, compositional risk assessment must
take into account also environment threats. In order to understand and analyze
how one sub-target can act as an environment threat for another sub-target, we
need a way to systematically consider all the other sub-targets.

Our approach to do this is to take into account all assets of the overall target
in each individual risk assessment. However, while considering all assets, we
still distinguish between the internal assets and the environment assets. This is
illustrated in the threat diagram for sub-target A shown in Figure 10. One of the

358 A. Refsdal et al.

Availability
of WP data

Employee

Employee
accidentally tampers

with WPDB
[5:1year]Insufficient

routines

Software
error

Lack of
qualified ICT

support on rig

WPManager
malfunction

[6:1year]

WPDB fails
[10:1year]

WP data cannot
be accessed from
WPManager
[16:1year]

H

Availability
of WP advice

WP advice cannot
be accessed from
WPManager
[x1+6:1year]

H

WPManagers receives
no advice from WPAgent

[x1:1year]

Loss of WPDB
[6:1year]

Dependability
of WPAgent

Threat diagram for A

WPAgent
fails to
deliver
advice

x1:1year

Fig. 10. Also considering environment assets

assets of the analysis that do not belong to A is Dependability of WPAgent. In
the diagram this asset is placed in the environment compartment to the right.
As part of the risk assessment of A we identify all incidents that may have an
impact on any of the environment assets. In the example diagram, one such
incident is Loss of WPDB. We use the environment impacts relation to specify
this potential impact from A to the environment asset in question.

Note importantly that the consequence estimation for the environment assets
is not done as part of the risk assessment of the sub-target in question. Exactly
how incidents of the sub-target in question may impact assets belonging to other
sub-targets needs to be analyzed as part of the risk assessment of each of the
impacted sub-targets. This includes the estimation of the consequences.

6 Risk Modeling for Sub-Target B

In Figure 11 we exemplify a completed threat diagram for sub-target B. We see
here that the incident WPAgent fails to deliver advice may impact the external
asset Availability of WP advice. This asset belongs to A, which is why this
incident occurs as an external threat in the threat diagram for A shown in
Figure 10. From the diagram in Figure 11 we also see that incidents of one
sub-target may impact its own assets as well as environment assets.

In the threat diagram for B there are two environment threats, namely Cyber
threat and Loss of WPDB. The latter stems from A, while the former stems
from the environment of the overall target. More specifically, in this case the
cyber threat initiates an attack on the weather service that is provided over
the Internet. Such a threat could, for example, be denial of service or malware.

Divide and Conquer – Towards a Notion of Risk Model Encapsulation 359

Integrity of
WPAgent
software

Mistake
during update of

WPAgent
[4:1year]WPAgent

maintainer

Flaw introduced
to WPAgent
algorithm
[2:1year]

High
workload WPAgent

malfunction
[5:1year]

Availability
of WP advice

Cyber
threat

Dependence
on external

service

Loss of
weather service

[4:1year]

4:1year

WPAgent fails
to deliver advice
[x2+6:1year]

Loss of
WPDB

WPAgent cannot
retrieve WP data

[x2:1year]

Dependability
of WPAgent

H

M

M

Threat diagram for B

x2:1year

Fig. 11. Threat diagram for sub-target B

For the assessment of B it suffices to take into account the potential loss of the
weather service and to estimate the likelihood.

Recall from the previous section that in principle we do not estimate the
likelihoods of environment threats. This is why Loss of WPDB is assigned the
variable x2 in Figure 11. However, for environment threats that are part of the
environment of the overall target, we can choose to make an estimate. This is
exemplified for the cyber threat where we have specified the frequency 4 : 1
year. Such an estimate can be based, for example, on logs or historical data.
Alternatively these estimates can be done during the risk composition. In that
case the risk assessment for the sub-target in question gives a parameterized
specification of also these kinds of environment threats.

The frequency estimation of the incident WPAgent fails to deliver advice is
based on the estimates of the two scenarios and the incident that lead to it.
Using x2 as input variable, the estimate for this incident is x2 + 6 occurrences
per year.

7 Risk Composition

The threat diagrams introduced in the previous sections give the white-box view
of the risk model for each sub-target; their purpose is to support the full risk
assessment of the sub-targets, including all the internal threats, vulnerabilities
and threat scenarios. To facilitate their composition, however, we create their
corresponding interface diagrams.

The interface diagrams for A and B are depicted in Figure 12 and Figure 13,
respectively. The interface diagrams contain the information that is needed to

360 A. Refsdal et al.

Availability
of WP data

WP data cannot be
accessed from WPManager
[16:1year]

H

Availability
of WP advice

WP advice cannot be
accessed from WPManager
[x1+6:1year]

H

WPAgent
fails to
deliver
advice

Loss of WPDB
[6:1year]

Dependability
of WPAgent

Interface diagram for A

x1:1year

Fig. 12. Interface diagram for A

Integrity of
WPAgent
software

Flaw introduced to
WPAgent algorithm
[2:1year]

WPAgent malfunction
[5:1year]

Cyber
threat

WPAgent fails
to deliver advice
[x2+6:1year]

Loss of
WPDB

M

Interface diagram for B

Availability
of WP advice

Dependability
of WPAgent

H

M

4:1year

x2:1year

Fig. 13. Interface diagram for B

compose the different diagrams to yield the overall risk picture, and to document
all of the risks with their risk levels.

When composing the threat interface diagrams the variable x2 in Figure 13
is instantiated with the value 6 from the incident Loss of WPDB in Figure 12.
The likelihood of the unwanted incident WPAgent fails to deliver advice is then
calculated by x2 + 6, which gives 12 : 1 year.

The resulting threat interface diagram for A and B composed, and hence for
our overall target of analysis, is depicted in Figure 14. Since the diagram covers
the whole target the set of environment assets is empty. Moreover, the only
environment threat is the one that belongs to the environment of the overall
target.

The interface diagram for the full target shows all unwanted incidents with
respect to the assets we identified during the context establishment. It also shows

Divide and Conquer – Towards a Notion of Risk Model Encapsulation 361

Integrity of
WPAgent
software

Flaw introduced to
WPAgent algorithm
[2:1year]

WPAgent malfunction
[5:1year]

Cyber
threat

Availability
of WP data

WP data cannot be
accessed from WPManager
[16:1year]

H

Availability
of WP advice

WP advice cannot be
accessed from WPManager
[18:1year]

H

WPAgent fails to deliver
advice
[12:1year]

Dependability
of WPAgent

H

M

M

Interface diagram for A+B

4:1year

Fig. 14. Interface diagram for the composition of A and B

the likelihood and consequence estimates for each of the incidents. Because a risk
is defined as an unwanted incident with its likelihood and consequence, we have
in our example identified five risks. The risk levels are calculated by using a risk
function such as a risk matrix.

In this paper we have focused on risk model encapsulation and compositional
risk assessment. The steps of our outlined method cover the first four steps of
the risk analysis process as defined by the ISO 31000 standard. The last step is
the risk treatment, which is outside the scope of this chapter. Deciding which
risks that need to be considered for possible treatment is done by comparing the
resulting risk levels with the risk evaluation criteria that are defined during the
context establishment.

8 Related Work

Few approaches to risk management and security assessment provide support
for modularity, decomposition and compositionality. Similar to [18], by compo-
sitionality we mean that risk models can be composed without considering their
internal details.

Traditional risk assessment methods typically do not take into account that
the risk level towards component-based systems may change given changes in
the environment of the systems [21]. Instead, they rely on analyzing systems as a
whole [14], without providing means for deducing the effect of composition with

362 A. Refsdal et al.

respect to risk. However, there also exist approaches that provide some degree
of support for a modular and compositional approach. In the following we give
an overview of these.

Some approaches to hazard analysis address the propagation of failures in
component-based systems by matching ingoing and outgoing failures of individ-
ual components. In [7,8] UML [17] component diagrams and deployment dia-
grams support a method for compositional hazard analysis. Fault trees [10] are
used to describe hazards and the combination of component failures that can
cause them. For each component, the method is used to describe a set of in-
coming failures, outgoing failures, local failures (events) and the dependencies
between the former two. Failure information of components can be composed by
combining their failure dependencies. Likelihood of failure can be analyzed in
terms of probability. In the case of AND ports, this is done by multiplication,
which means that there is an assumption about independence between incoming
elements. This differs from our approach, which allows the use of frequencies
rather than probabilities for threat scenarios and unwanted incidents in order to
facilitate better understanding [9]. Furthermore, the CORAS approach makes no
assumptions about independence or overlap between threat scenarios and does
not impose strong restrictions on the propagation of likelihood values, although
a number of rules for likelihood reasoning and checking consistency of diagrams
are offered [15].

A technique for compositional fault tree analysis (FTA) is proposed in [13].
Component failures are described by specialized component fault trees that can
be combined into system fault trees via input and output ports. Similar to our
approach, different component fault trees can be developed by different user
groups, composed without considering internal details, and reused. However, as
usual for FTA-based approaches, likelihood analysis is performed in terms of
probability and makes independence assumptions. Moreover, there is no spe-
cific support for risk analysis concepts such as unwanted incidents, threats and
vulnerabilities, or links to an overall risk management process.

A denotational model for component-based risk analysis is presented in [4].
Here, a component model is provided that integrates the explicit representation
of risks as part of the component behavior. Similar to our notion of encapsulation,
a hiding operator is defined which allows partial hiding of internal interactions.
However, interactions affecting the component risks are not hidden. Unlike our
approach, the intention is to provide a theoretical foundation. Hence, the focus
is on formal representation and analysis rather than direct support for prac-
titioners. Component behavior is represented by probability distributions over
communication histories, and the use of frequencies is not supported. The model
is aimed exclusively at component-based systems.

In [3] dependent risk graphs are introduced as a technique to support modular
risk modeling and assessment. Dependent risk graphs provide support for docu-
menting and reasoning about assumptions and dependencies. The approach uses
an assumption-guarantee style by dividing a risk graph into an assumption part
and a target part. Typically, the assumptions concern the environment of the

Divide and Conquer – Towards a Notion of Risk Model Encapsulation 363

target. This facilitates modular risk assessment by the support for decomposing
the target of analysis and later combining the assessment results. For example,
when decomposing a target system into two, the target in one may serve as the
assumptions in the other and vice versa. Once the two separate risk assessments
are completed, a calculus provides rules for combining the results into one risk
graph. However, no notion of risk model encapsulation is provided.

The use of risk graphs as the basis facilitates instantiation in other graph-
based risk modeling approaches. In [3] this is demonstrated by the instantiation
in CORAS. In [5] this modular and component-based approach to risk assessment
using CORAS is integrated into a component-based system development process
to support risk assessment in the development process. The instantiation in
CORAS is further elaborated in [15], resulting in an extension referred to as
Dependent CORAS.

In [22] an extension of CORAS is suggested that explicitly supports compo-
nents by representing them with reusable threat interfaces. Threat composition
diagrams representing more complex systems can then be composed from the
threat interfaces, although the approach is not fully compositional. Unlike our
approach, threat interfaces have (only) vulnerabilities as input ports and un-
wanted incidents as output ports. In addition, relations between input ports and
output ports show propagation of likelihood. Even if the original CORAS method
is asset-driven, assets are not included in the threat interface for a component,
and there is no distinction between internal and external assets. Likelihood cal-
culations are done in terms of probability in a similar way as for fault trees,
although [22] allows directed acyclic graphs, rather than just trees. To this end,
AND/OR gates and dependency sets are introduced. The dependency sets dis-
tinguish between different occurrences of an unwanted incident depending on
triggering conditions and their dependencies. These additions facilitate detailed
analysis of probability at the cost of significantly increasing the complexity of
the approach.

While some of the above works share certain characteristics with our approach,
we are not aware of existing approaches similar to the one we propose. It is
designed to be compositional, simple and general. The approach is simple in the
sense that no new constructs are added to the modeling language except from
the diagram frames. It is general in the sense of being applicable not only for
component-based systems, but also for other settings where a partitioning of
risk models is appropriate, for example based on aspects or business concerns.
As illustrated above, most methods and techniques focus primarily on failure
rate, likelihood or risk level assessment in a component-based setting. While
this is an important ingredient of component-based risk analysis, the lack of an
encapsulation mechanism for many existing techniques complicates composition
and means that composed models may become very large and complex, and thus
hard to understand and work with.

364 A. Refsdal et al.

9 Conclusion

We have presented a top-down approach to compositional risk analysis where the
target of analysis is decomposed in such a way that each identified asset belongs
to exactly one sub-target. A separate risk model is then developed for each sub-
target, and the individual risk models are eventually combined to arrive at a
risk model for the whole target. The approach follows ISO 31000, but provides
additional support for the context establishment and risk assessment phases
specifically aimed to facilitate decomposition and composition.

At the core of the approach is a novel notion of risk model encapsulation,
where only the elements that are essential for composition are exposed through
an explicitly defined risk model interface, while internal details are hidden. All
one needs to know in order to compose risk models is the contents of their
interfaces. By hiding the internal details we make it easier for practitioners to
compose risk models, while at the same time reducing the size and complexity
of the resulting model. An added benefit is that a risk model interface contains
the information that would typically be of interest for managers and decision
makers who often have little time and have not themselves taken part in the risk
assessment.

Encapsulation is a key reason for the success of object-oriented programming.
We believe that significant benefits can be achieved by introducing this concept
into risk management and analysis. We are not aware of any other approach
offering a clear encapsulation concept for risk analysis allowing compositional
reasoning.

The work presented here opens up a number of interesting directions for fur-
ther research that we hope to pursue. In particular, a more complete method
with detailed techniques and guidelines for practitioners should be developed.
We would also like to explore how our notion of encapsulation could be applied
in a bottom-up approach. The added challenge here is that we cannot assume
that the environment of a target is known at the time when the corresponding
risk model is developed. Finally, we would of course like to validate and refine
our results by applying them on a variety of case studies.

Acknowledgments. The research presented in this chapter was partially funded
by the European Commission via the FP7 projects NESSoS (256980) and RASEN
(316853), by the ARTEMIS Joint Undertaking and the Norwegian Research
Council via the CONCERTO project (333053 and 232059), and by the Norwe-
gian Research Council via the Dynamic Risk Assistant project (217213).

References

1. Agence nationale de la sécurité des systèmes d’information: EBIOS 2010 – Expres-
sion of Needs and Identification of Security Objectives (2010) (in French)

2. Alberts, C.J., Dorofee, A.J.: OCTAVE Criteria. Tech. Rep. CMU/SEI-2001-TR-
016, CERT (December 2001)

Divide and Conquer – Towards a Notion of Risk Model Encapsulation 365

3. Brændeland, G., Refsdal, A., Stølen, K.: Modular analysis and modelling of risk
scenarios with dependencies. Journal of Systems and Software 83(10), 1995–2013
(2010)

4. Brændeland, G., Refsdal, A., Stølen, K.: A denotational model for component-
based risk analysis. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS,
vol. 7253, pp. 12–41. Springer, Heidelberg (2012)

5. Brændeland, G., Stølen, K.: Using model-driven risk analysis in component-based
development, pp. 330–380. IGI Global (2011)

6. CRAMM – The total information security toolkit, http://www.cramm.com/
(accessed June 13, 2012)

7. Giese, H., Tichy, M.: Component-based hazard analysis: Optimal designs, product
lines, and online-reconfiguration. In: Górski, J. (ed.) SAFECOMP 2006. LNCS,
vol. 4166, pp. 156–169. Springer, Heidelberg (2006)

8. Giese, H., Tichy, M., Schilling, D.: Compositional hazard analysis of UML compo-
nent and deployment models. In: Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.)
SAFECOMP 2004. LNCS, vol. 3219, pp. 166–179. Springer, Heidelberg (2004)

9. Gigerenzer, G.: Calculated Risks – How to Know When Numbers Deceive You.
Simon & Schuster (2002)

10. International Electrotechnical Commission: IEC 61025 Fault Tree Analysis, FTA
(1990)

11. International Organization for Standardization: ISO 31000 Risk management –
Principles and guidelines (2009)

12. International Organization for Standardization/International Electrotechnical
Commission: ISO/IEC 27001 – Information technology – Security techniques –
Information security management systems – Requirements (2005)

13. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: Proc. 8th Australian Workshop on Safety Critical Systems and Software (SCS),
vol. 33, pp. 37–46. Australian Computer Society (2003)

14. Lund, M.S., Solhaug, B., Stølen, K.: Evolution in relation to risk and trust man-
agement. Computer 43(5), 49–50 (2010)

15. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis – The CORAS
Approach. Springer (2011)

16. Microsoft Solutions for Security and Compliance and Microsoft Security Center of
Excellence: The Security Risk Management Guide (2006)

17. Object Management Group: OMG Unified Modeling Language (OMG UML), Su-
perstructure. Version 2.3, OMG Document: formal/2010-05-03 (2010)

18. de Roever, W.: The quest for compositionality – A survey of assertion-based proof
systems for concurrent programs, part 1: Concurrency based on shared variables.
In: Proc. IFIP Working Conference on the Role of Abstract Models in Computer
Science. North-Holland (1985)

19. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for information
technology systems. Tech. Rep. 800-30, NIST (2001)

20. Tran, L.M.S., Solhaug, B., Stølen, K.: An approach to select cost-effective risk
countermeasures exemplified in CORAS. Tech. Rep. A24343, SINTEF ICT (2013)

21. Verdon, D., McGraw, G.: Risk analysis in software design. IEEE Security & Pri-
vacy 2(4), 79–84 (2004)

22. Viehmann, J.: Reusing risk analysis results – An extension for the CORAS risk
analysis method. In: Proc. 4th International Conference on Information Privacy,
Security, Risk and Trust (PASSAT), pp. 742–751. IEEE (2012)

http://www.cramm.com/

Preserving Data Privacy in e-Health�

Riccardo Conti, Alessio Lunardelli, Ilaria Matteucci,
Paolo Mori, and Marinella Petrocchi

Istituto di Informatica e Telematica - C.N.R., Pisa, Italy
name.surname@iit.cnr.it

Abstract. Privacy of data is a crucial aspect in nowadays life, from
economy to leisure, from public administration to healthcare. Specifica-
tion, authoring, and validation of appropriate policies are the basis for
the sound application of such policies during the subsequent enforce-
ment phase. This chapter reviews different components in a framework
for privacy policy management and specifically focuses on the e-health
scenario. Starting from different existing approaches to policy authoring
and policy validation, we then focus on a specific solution aiming at inte-
grating three tools covering the whole phase of policy generation, i.e., a
user-friendly authoring tool allowing definition of privacy preferences in
natural language, a formal analysis tool to detect conflicts among poli-
cies, and a conflict solver implementing a solution strategy that privileges
the most specific policy among a set of conflicting ones.

Keywords: Privacy, e-Health, Policy Languages, Policy Authoring, Pol-
icy Validation, Conflict Detector and Solver, Analytic Hierarchy Process.

1 Overview

Daily, hospitals, medical labs, and specialized research centers provide benefits
and services to their patients, producing, at the same time, a huge amount of
electronic documents, such as reservations, diagnosis, prescriptions, and reports.
Such a myriad of electronic documents naturally contains sensitive information,
whose improvident management can be detrimental to the privacy of patients
and people such reports refer to. The legislation of several countries protects
sensitive clinical data in compliance with privacy regulations, which ensure the
use and sharing of data for the purposes intended by law and according to
specific protocols dictated by the healthcare organizations where the data are
produced. Also, the European Directive on Data Protection (95/46/EC, and its
reform IP/12/46 of January 25, 2012), embraced by the legislation of different
European countries, recognizes the right of the individuals to consciously control
the use of their personal data.

� The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant no 256980 (NESSoS)
and from the Registro.it project MobiCare.

M. Heisel et al. (Eds.): Engineering Secure Future Internet Services, LNCS 8431, pp. 366–392, 2014.
c© Springer International Publishing Switzerland 2014

Preserving Data Privacy in e-Health 367

To protect clinical data from abusive access/disclosure/processing, appropri-
ate access rules, known as “privacy policies”, have to be defined. In principle,
these rules can be defined by multiple individuals, with various roles and from
different organizations, guided by the intention to protect data that, directly or
not, refer to them. However, there is both a technological and social gap between
the need to protect sensitive data from unauthorized online access and the ability
of stakeholders to generate consistent machine-readable privacy policies.

First, the specification of the rules is, today, a not simple task. Indeed, com-
mon users are not expert of technical languages for privacy policies specification.
Policy composition is essentially dark and tedious, with the result that citizens
see the way of ensuring privacy to their data more a difficulty than a personal ad-
vantage. Furthermore, the lack of familiarity with technical language for writing
privacy policies prevents the non-expert both from defining fine-grained access
rights to their data, and from frequently renewing their preferences, to possibly
meet new privacy requirements. Secondly, since distinct individuals specify their
own policies for data processing, and given that the policies written by distinct
individuals can refer to the same data, different policies may be applicable to
the same access request, with opposite effects (i.e., one policy could allow the
access, another one could deny it). In this case, the applicable policies are in
conflict with each other.

This chapter aims at offering an overview of technical solutions for user-
friendly policy authoring and effective policy validation (with an eye to conflict
detection and solution), focusing on the e-Health scenario. The remainder of the
chapter is organised as follows. In the next section, we recall the notion and
structure of privacy policies. In Section 3, we describe a general privacy policy-
based infrastructure, whose components are devoted to sustain the lifecycle of a
policy, from its generation to its enforcement. Section 4 recalls several existing
solutions for policy authoring and analysis, while the remaining sections, from 5
to 8, focus on a specific architecture, whose components are being integrated in
a unique framework. Finally, Section 9 summarises and gives conclusions.

2 Examples of Privacy Policies

This section describes the reference structure for the privacy policies considered
later on, and depicts a very simple, but plausible, set of policies regulating the
controlled exchange of medical information.

Each time a subject tries to access a medical document (i.e., the object), an
access request including all the required data is created, and it is subsequently
evaluated against the set of privacy policies in order to determine whether this
access should be allowed or denied.

Privacy policies are expressed in terms of the following elements: subject, object
(or resource), action, and environment. Furthermore, policies can be divided into
two main classes, according to their effect:

368 R. Conti et al.

– Authorizations express the actions that a subject is allowed to perform on
an object within an environment.

– Prohibitions express the actions that a subject is not allowed to perform
on an object within an environment.

The above assumptions are not unrealistic: for example, the eXtensible Access
Control Markup Language (XACML), the well known, de facto, standard for
access control [33], relies on similar assumptions. Hence, we consider a privacy
policy as a set of rules that are evaluated, for each access request, to decide
whether a given subject is allowed to perform a given action on a given resource,
in a given environment. The features of the four policy elements, i.e., subjects,
objects, actions, and environment, are expressed through attributes. Policy rules
evaluate the value of these attributes to determine which rule can be applied to
each access request.

For the aim of the chapter, hereafter we consider a restricted set of attributes
for each policy element.

Subject. The attributes for subjects are: ID, Role, and Organization.

– ID expresses an unique identifier of the subject, e.g., “abcde123”.
– Role specifies the functions and the capabilities of a subject. As an ex-

ample:

• general practitioner has a general view of the medical history of his
patients;

• psychiatrists, orthopedists . . . identify doctors that are highly spe-
cialised;

• rescue team member retrieves the first information at the incident
location;

• patient is used when the subject acts as a patient.

– Organization represents the organization the subject belongs to, e.g., the
“Red Cross” or “Psychiatric Hospital ABCD”.

Object. The attributes for objects are: ID, Patient, Issuer, and Category.

– ID is a code that expresses the identifier of the object, e.g., “xyz”.
– Patient is the ID of the patient referred by the document;
– Issuer is the ID of the subject who produces that object;
– Category is medical, including documents that collect medical informa-

tion about the patient, and administrative, including documents collect-
ing personal information, such as the patient’s name, surname, address.

Action. We consider their IDs only, e.g., “Read”, “Print”, “Create”, “Append”,
“Delete”.

Environment. The attributes of the environment are:

– Time, with the obvious meaning;
– Location, which represents a physical position (contextualising, it could

be either of the object or of the subject);
– Status, which specifies the exceptionality of a situation, such as an emer-

gency one.

Preserving Data Privacy in e-Health 369

The Reference Healthcare Scenario. Hereafter we provide a very simple example
of set of Authorization and Prohibition policies that could have been emitted
by the National Healthcare System (NHS) and by a patients, such as Mr. Paul
Red. We recall that this is a simple example meant to describe our approach.

National Healthcare System

N1 Subjects having the role “General Practitioner” can read documents having
category “medical” of patients;

N2 Subjects having the role “General Practitioner” can read documents having
category “administrative” of patients;

N3 Subjects having the role “Rescue Team Member” and belonging to the or-
ganization “Red Cross” can read documents having category ”medical” of
patients in an emergency situation;

N4 Subjects having the role “Emergency Doctor” can read documents having
category “medical” of patients in an emergency situation;

N5 Subjects having the role “Administrative Personnel” can read/print docu-
ments having category “administrative”;

N6 Subjects can read documents they have issued;
N7 Patients can read documents that refer to them.

Mr. Paul Red

P1 Subjects not having role “Psychiatrist” cannot read/print/append the doc-
ument with ID “xyz” if the current date is before 31/12/2020;

P2 Subject with ID “dr12345” cannot read the document with ID “xyz”;
P3 Subjects having role “General Practitioner” can read/print/append the doc-

ument with ID “abc” from 16/07/2013 to 24/07/2013;
P4 Subjects having the role “Administrative Personnel” cannot read/print doc-

uments having category “administrative” until 31/12/2020.

Either in case a privacy policy is defined by an organization over data it hosts,
or which it has rights on (e.g., the National Healthcare System, the hospital, etc..
) or by an individual over data she has rights on, an inclusive support is needed
that offers the appropriate technology to enable setting and applications of such
policies, over all their lifetime. Considering the above policies in the reference
healthcare scenario, we may assume that the prohibition policies P1 and P2
have been set by a patient, say Mr. Paul Red, because the document with ID
xyz, issued by a Psychiatrist, is a drug prescription and the patient does not
want to disclose it to anyone but Psychiatrists. Dr. Jack Brown, whose unique
ID is dr12345, is the General Practitioner of Mr. Paul Red, and he is also a
Psychiatrist, but the patient does not want to disclose that document to him,
for some reason that is immaterial here. Finally, it is worth noticing that, in the
above example, the patient has expressed both authorization and prohibitions
policies.

In a real scenario, a wider set of attributes can generally be used in order to
define more complex policies. For example, the policy N1 could be refined spec-
ifying that subjects having the role “General Practitioner” can read documents
having category “medical” related to their patients only.

370 R. Conti et al.

3 A General Policy-Based Infrastructure

This section describes the architecture of a policy-based privacy infrastructure,
general enough to encompass different use cases in the e-Health privacy man-
agement scenario, and supporting the two main phases of a policy lifetime: the
i) policy generation and the ii) policy enforcement. In the first phase, the policy
administrators at the healthcare organizations set general privacy policies over
the data they host, according to National laws and internal organization plan-
ning. Patients as well may express privacy preferences over their medical data,
and these preferences are translated in privacy policies. In the second phase, in-
stead, each time a request for accessing a medical data is received, the evaluation
of the policies governing access to those data is executed to decide whether the
access must be granted or denied.

Figure 1 gives the graphical representation of the architecture along with the
operation workflow.

Fig. 1. Policy-based Infrastructure

The policy generation phase consists of the following steps.

1 At system initialisation, the policy experts compose the privacy policies that
represent the rules stated by the healthcare organization that produces and
stores the data. In some countries, such rules are defined by public agencies
and follow requirements for protecting sensitive data of private citizens and
organizations. The experts use a desktop interface that requires some specific
skills in policy specification (1a). In real environments, policy makers set a
not negligible number of policies regulating the management and sharing

Preserving Data Privacy in e-Health 371

of all the data produced and stored at their healthcare organizations. To
come up with a consistent set of policies, policy experts are supported by a
validation tool, that guide them in composing conflict-free policies (1b). It
is worth noticing that it is an offline analysis that guides the policy experts
to compose conflict-free policies. The validation tool alerts the user that a
conflict occurs between two policies, in such a way that the user is able to
come back to the authoring phase and eventually modifies the conflicting
policies. Sections 5.1 and 7 describe, respectively, the desktop interface and
the policy validation steps.

2 In the healthcare scenario the subject who produced a document, e.g., a Gen-
eral Practitioner who issued an e-prescription, is entitled to define some ac-
cess restrictions on this document. Moreover, patients should also be able to
set privacy preferences on their medical documents (such requirement is de-
fined, for example, by the European Directive for Data Protection 95/46/EC,
and its reform IP/12/46 of 25 January 2012). In our model, we assume that,
as soon as a new medical document is produced, the patient is notified (2a),
and he can set up the privacy preferences on that document through the
mobile interface (2b). Each subject can also modify his preferences in a
successive step, by querying the medical document repository and choosing
which documents will be the object of their privacy preferences. Obviously,
patients can express privacy preferences only on their documents and, in
general, subjects can only express privacy preferences on the document they
have some rights on, e.g., the issuer of a document has the right to express
her preferences on the document she issued. The mobile interface is described
in Section 5.1.

3 Both the general policies written by experts and the privacy preferences
expressed by patients and document issuers are given as input to a mapper
that converts them into enforceable policies (3a and 3b). A standard and
well supported formalism for enforceable policies is XACML, the well known
language for specifying machine-readable access control and data protection
rules [33]. It is worth noticing that there is no validation phase of the global
set of policies due to the possible huge amount of edited policy. They are
evaluated at run-time by for each access rquest considering only the ones
applicable to that particular request.

4 The enforceable policies are stored in the Policy Repository (4) and they will
be processed in the policy enforcement phase.

The policy enforcement phase consists of the following steps.

5 Different users, such as patients, administrative personnel, doctors, and re-
searchers at the healthcare organizations, try to access some medical docu-
ments by formulating an access request through a search and visualization
interface (5).

6 The access request is intercepted by a Policy Enforcement Point (PEP) that
temporarily suspends the request and invokes a Policy Decision Point (PDP)
(6) to evaluate the privacy policies associated to the document whose access

372 R. Conti et al.

is being requested. In our model, we assume that PEP retrieves the attribute
values necessary to evaluate the policy (e.g., the requester’s credentials, as
her identifier and role, and the date, location, and time at which the request
has been sent).

7 The PDP retrieves the privacy policies produced in the policy generation
phase (7).

8 The PDP evaluates the privacy policies against the access request. In case
more than one policy applies to the access request, their results could be in
conflict one of each other. A conflict exists when at least two out of a set
of policies return a different result (e.g., one policy would allow the request,
the other one would deny it). A policy conflict solver is in charge to detect
possible conflicts and eventually solve them (8). Section 8 depicts a possible
strategy for resolution of conflicts, based on the degree of specificity of a
policy.

9 The PDP returns the evaluation result to the PEP. Finally, according to
the evaluation result, the PEP allows, or denies, the access request to the
medical data.

4 Related Work on Policy Authoring and Validation

Over the last decades, researchers have investigated several solutions for
(platform-independent) policy-based infrastructures, to specify, analyze, and de-
ploy privacy, security, and networking policies. Hereafter we revise some work
focused on policy authoring, with an eye to usability issues. Then we discuss
some results about policies conflict detection and resolution.

4.1 Authoring Frameworks

Series of work in [20,5,35,6,18] connect policy authoring tools with the capabil-
ity of common users to use them. In [20], the authors carry out a laboratory
evaluation of a variety of user-centered methods for privacy policies authoring,
to identify which design decisions should be taken for flexible and usable privacy
enabling techniques. Work in [5] continues this line of research, by providing a
parser which identifies the privacy policy elements in rules entered in natural lan-
guages: identification of such elements is a key step for subsequent translation of
natural sentences in enforceable constructs (such as the XACML language [33]).
Authors of [35] recall security and privacy policy-authoring tasks in general, and
discover further usability challenges that policy authoring presents. In [6] the
authors present the Coalition Policy Management Portal for policy authoring,
verification, and deployment, with the goal of providing “easy to use mechanisms
for refining high-level user-specified goals into low-level controls”. Recently, work
in [18] advances the notion of templates-based authoring tools, for users with
different roles and different skill sets, such as, e.g., patients, doctors, and IT
administrators could be in the e-health scenario. The authors propose different
templates to edit privacy policies, each of them needing different user skills to
compose high-quality policies.

Preserving Data Privacy in e-Health 373

The FP7-EU project Consequence (Context Aware Data Centric Information
Sharing) designed and developed an integrated framework for the authoring,
analysis, and enforcement of Data Sharing Agreements (DSA), that are formal
documents regulating data exchange in a controlled manner. The authoring tool
developed within the project was intended for users with some knowledge on
policy specification, see, e.g., [10,29]. The use of a controlled natural language
(cfr. CNL4DSA [28]) and the insertion of a help-on-line facility partly mitigate
usability issues, whose complete solution need however further investigation.

The FP7-EU project CoCoCloud (Confidential and Compliant Clouds) is
aimed at designing and developing a framework for the writing, understand-
ing, analysis, management, enforcement and dissolution of DSA, thus allowing
users to securely and privately share their data in the Cloud environment. The
high level descriptions of DSA (close to natural language) will be translated to
system enforceable data usage policies.

From a business perspective, Axiomatics [3] offers an authorization framework
based on the XACML standard [33], that covers all the phases of the policy
life-cycle, including policy creation, exploiting a graphical user interface for pol-
icy authoring, policy test and validation, and policy deployment and enforcing.
Moreover, the Axiomatics framework also provide a policy auditor that, through
a simple and user-friendly graphical interface, simplifies policy the analysis and
validation phase by supporting the execution of several type of queries to analize
the policy effects.

From a social networking perspective, work in [41] presents a collaborative
authoring tool, allowing several individuals to specify policies over data published
on social networks, and whose disclosure may affect their privacy. The authors
acknowledge some usability issues in their prototype implementation, and future
work are foreseen towards a user-friendly authoring interface.

4.2 Policy Conflict Detection and Resolution Frameworks

Data protection policy analysis is essential to detect inconsistencies and con-
flicts before the actual enforcement. Work in [28,29,27,24] focus on Data Sharing
Agreements (DSA), legal contracts regulating data sharing. In [28], the authors
propose a controlled natural language for formally specifying DSAs without loos-
ing simplicity of use for end-users. Subsequent work [29] deals with DSA usabil-
ity, by presenting, besides the above-cited authoring tool, an analysis tool to
visualise all the authorisations and prohibitions present in a set of DSA clauses
and identify possible conflicts among such clauses. The authors of [27] apply the
policy analysis framework in [29] to detect conflicts among medical data pro-
tection policies, as presented in Section 7 of this chapter. Finally, work in [24]
distinguishes between unilateral and multilateral DSAs (the latter being agree-
ments constituting of data sharing policies coming from multiple actors) and
proposes a refined conflict detection technique, with respect to previous papers.
In [4], it is shown that the Event-B language (www.event-b.org) can be used
to model obliged events. The Rodin platform provides animation and model
checking toolset for analyzing specifications written in Event-B, thus leading to

374 R. Conti et al.

capability of obligations analysis [2]. The authors of [32] propose a compre-
hensive framework for expressing highly complex privacy-related policies, featur-
ing purposes and obligations. Also, a formal definition of conflicting permission
assignments is given, together with efficient conflict-checking algorithms. The
Policy Design Tool [34] offers a sophisticated way for modeling and analysing
high-level security requirements in a business context and create security pol-
icy templates in a standard format. To conclude, there exists generic formal
approaches that could a priori be exploited for the analysis of some aspects of
data protection policies. As an example, the Klaim family of process calculi [13]
provides a high-level model for distributed systems, and, in particular, exploits a
capability-based type system for programming and controlling access and usage
of resources. Also, work in [16] exploits a static analyzer for a variant of Klaim.

Policy conflict detection is generally followed by resolutions of conflicts. Not
necessarily tied to data protection, existing work concerns general conflict res-
olution methods for access control in various areas. The approach adopted by
the eXtensible Access Control Markup Language (XACML) [33] is a very gen-
eral one, defines standard rule-combining algorithms: Deny-Overrides, Permit-
Overrides, First-Applicable, and Only-One-Applicable. As an example, the
Deny-Overrides algorithm states that the result of the policy is Deny if the
evaluation of at least one of the rules returns Deny. A classification of anomalies
that may occur among firewall policies is presented in [1]. In the same work, an
editing tool allows a user to insert, modify, and remove, policy rules in order
to avoid anomalies. Also, work in [15] proposes methods for preventing policy
conflicts, more than a strategy for solving them when they occur.

In [17], the authors propose a conflict resolution strategy for medical policies,
by presenting a classification of conflicts and suggesting a strategy based on high
level features of the policy as a whole (such as the recency of a policy). If such
characteristics are not sufficient for deciding which policy should be applied, the
default deny approach is applied. With respect to that solution, the approach in
[26] aims at defining a finer grained strategy, based on a finer definition of the
policy specificity. In particular, it firstly evaluates the specificity of the policy
in identifying each element, namely: subject, object, action and environment.
Then, it combines these values through a weighted sum, that allows the authors
to assign more relevance to the specificity of the definition of one the policy
element with respect to the others (e.g., we could choose that the specificity in
defining the subject is 2 times more relevant than the specificity in defining the
object).

In [23,39] the authors deal with both the detection and resolution of conflicts.
Work in [23] defines a policy precedence relationship that takes into account
the following principles: a) Rules that deny the access have the priority on the
others; b) Priorities could be explicitly assigned to policy rules by the system
administrators; c) Higher priority is given to the rule whose distance with the
object it refers to is the lowest, where a specific function should be defined to
measure such distance; and d) Higher priority is given to the rule that is more
specific according to the domain nesting criteria. In [39], the authors investigate

Preserving Data Privacy in e-Health 375

policy conflict resolution in pervasive environments. They discussed different
strategies for conflict detection but the part dedicated to the conflict resolution
strategy just refers to quite standard strategies, i.e., role hierarchies override and
obligation precedence. Also in [14], four different strategies for solving conflicts
are considered. They distinguish among solving conflicts at compile-time, at run-
time, in a balanced way leaving to run-time only potential conflicts, or in ad-hoc
way accordingly to the particular conflicts. In general they take into account the
role of the requester for deciding which policy wins the conflict. Also in this case,
the strategy is based only on one criterion.

The approach in [23,39] is extended in [25]. Indeed, the authors introduce
the definition and employment of the precedence establishment principals in a
context-aware-manner, i.e., according to the relation among the specificity of the
context. The decision criterion is a unique one that groups a set of contextual
conditions.

Work in [7] presents a formal model, based on deontic logic, to detect and,
possibly, solve conflicts among security policies. An implementation of the model
is left as future work. In [12], the authors present Or BAC, a methodology to
manage conflicts occurring among permissions and prohibitions. Within this
approach, rules are grouped according to the organizations that emit them. The
advantage of this proposal is to reduce the problem of redundant policies.

The procedure known as Break the Glass [19] may be applied in extraordinary
situations, bypassing all the existing applicable rules. As an example, by applying
this methodology, rescue team members can access patient medical documents
in an emergency situation, whatever the policies related to those documents are.
A proper audit support should be used to monitor the accesses.

In the rest of this chapter, we show more in detail three approaches for pol-
icy authoring, policy validation, and policy conflict solution. In particular, the
authoring tool presented in Section 5 will mix features of the tool developed
within the Consequence project (see [10]) with the “user-expertise level” ap-
proach of [18]. On the one hand, the former guarantees that the authored policies
are amenable for analysis, because the controlled natural language that is at the
basis of the authoring tool is CNL4DSA [28] (mappable to executable formal
languages in input to automatic analysers, see, e.g., [29]). On the other hand,
by following the former approach, users with few, or no, expertise in policy spec-
ification (as it is reasonable that the majority of patients will be) will have the
opportunity to set their privacy preferences in few clicks. The policy validator
that we will describe in Section 7 is a strongly revised version of that proposed
in [10]: the validator is able to automatically detect conflicts amongst a set of
privacy policies, against all the possible access requests that may happen given
a pre-defined set of contextual conditions. This will allow the policy experts
responsible for policy validation (at organisation side) to perform the analysis
in a “user-friendly fashion”. Instead of asking the tools for conflicts between
two specific policies, the policy expert will only select the contextual conditions
under which the validation will have to be executed. Then, the validator will

376 R. Conti et al.

automatically checks for conflicts amongst all the available policies that has been
set at organisation side, against all the possible access requests. The upgraded
version of the validator tool has been presented in [24]. Finally, we will present in
Section 8 a strategy for dynamic conflict solution that is actuated to solve, at the
time an access request takes place, possible conflicts that arise among policies
set by different authors. In pus scenario, the different authors are, on the one
hand, the patients of an healthcare organisation and, on the other hand, the
organisation itself, that have set their policies offline, and have already validated
them through the policy validator of [24]. At the time a requestor will actuate
a real access request, the policies applicable to such request will be translated
into an enforceable format. This is the main reason why the policy strategy we
propose is envisaged to be applied to a set of enforceable policies in language à
la XACML [26,22].

5 Policy Authoring

With reference to Figure 1, this section focuses on design and implementation
of an authoring tool specifically tailored for the creation and management of
healthcare privacy policies, see [11].

The architecture of the authoring tool is shown in Figure 2. It has been
designed according to the three-tier paradigm, where the three levels are: 1)
the User Interface (Mobile + Desktop), developed using HTML and Javascript;
2) the internal engine, composed by the Server Modules, the Controller and the
Model Module, both implemented using the PHP language; and 3) a Relational
Database, developed as a MySQL database server.

Fig. 2. The authoring tool architecture

Preserving Data Privacy in e-Health 377

(a) Object selection

(b) Subject selection

Fig. 3. Object and Subject selection

378 R. Conti et al.

The user interface, the controller, and the model module have been designed
according to the Model-view-controller (MVC) pattern [21] which separates the
representation of information from the user’s interaction with it. The view con-
sists of the user interface. The controller mediates inputs converting them to
commands for the model or view. The model interacts with the controller and
the database, by querying the latter according to which form is being filled at
the interface by the user.

The database has the following structure: Users data base schema, that con-
tains user tables linking policy subjects to their attributes, e.g., their roles, and
tables linking subject attributes to their values, e.g., General Practitioner; Doc-
uments data base schema, that contains tables linking policy objects to their
attributes, e.g., their categories, and tables linking object attributes to their val-
ues, e.g., medical; Places data base schema, consisting of tables of environmen-
tal attributes, like time and date, and tables linking attributes to their values;
Policies data base schema, storing the authored policies in a XACML-fashion
language. This schema also stores policy actions.

Following the workflow in Figure 1, the User Interface actually consists of
two interfaces, the desktop one, designed for policy experts, and the mobile one,
for common users with no technical skills on policy specification. The Desktop
interface, for each policy element, retrieves the whole set of attributes available
in the Data Base interacting with the Server Modules. The graphical interface
helps the user to combine these attributes with the proper operation in order to
produce a policy rule. The Mobile interface, instead, retrieves a set of predefined
policy skeletons, along with a restricted set of attributes that can be exploited to
instantiate those skeletons. The policy resulting from the choices performed by
the user though the interface is stored in the Data Base. The Desktop interface
produces policies expressed in controlled natural language, CNL4DSA [28], while
the preferences authored through the Mobile interface are stored in the Data
Base using a custom format. Then the policies are mapped to XACML policies
(step (4) of Figure 1) in order to be stored in the Policy Repository component.
Indeed, the Policy Mapper component operates differently according to the input
language. The privacy preferences set trough the mobile interface are composed
by some pre-defined fields that are written in XACML format as XACML rules
and some customizable fields that can be set by the user that are mapped in
XACML at runtime. The CNL4DSA policies (from the desktop interface) is
mapped into a new XACML policy in which all the elements and their attributes
are mapped in the corresponding XACML format.

5.1 User Interface

The User Interface has been designed and implemented considering that 1) users
have different expertise; 2) the interface provides different sets of features ac-
cording to the user expertise; and, 3) the interface is accessible by mobile phones,
tablets, and desktops. As in [18], two user categories are considered:

Common Users, e.g., patients or doctors that produced the medical docu-
ments, that are unaware of the constraints they can impose on their data. These

Preserving Data Privacy in e-Health 379

authors are driven in the authoring phase through the Mobile Interface, that
1) is document-centric, i.e., it allows users to compose their privacy preferences
over specific documents they own in few clicks; 2) it offers a simple and guided
way to compose such preferences; and, 3) is accessible from smart-phones and
tablets.

Policy Experts, with a high-level understanding of the policy domain. These
authors may be driven in the authoring phase through the Desktop Interface.
The policy experts are not expected to have in-depth technical knowledge of how
the policy will be evaluated and enforced, but they are familiar with high-level
policy specification languages. Examples of policy experts are policy makers of
national healthcare systems, that assess standard guidelines for access control
and usage of sensitive medical data in their countries. The desktop interface has
been especially designed for them, since, reasonably, setting the high level privacy
policies fixed by national healthcare systems and healthcare organisations is an
activity carried out during ordinary workdays. Obviously, a policy expert could
act as a common user, in the sense that also policy experts can use the mobile
interface to compose policies over specific documents they own.

Mobile Interface. Some screenshots of the mobile interface are shown in Fig-
ures 3 and 4. Designed for non expert people, possibly ignoring technical aspects
of policy specification, its design is minimalist, to reduce the cognitive load of
the user. Commands are grouped in a sliding panel on the left side of the screen,
see Figure 3 a). The menu is retractable to leave space to the content that, in
this way, appears not to be crushed and it is usable at different resolutions. The
bar at the top of the screen allows the user to return to the homepage and to
previously visited pages, and to open the panel menu (on which there is the
logout button).

The Mobile Interface is document-centric because it allows the user to set
privacy preferences on documents by firstly selecting such documents. Filling
the form in Figure 3 a), the user obtains a list of the documents for which she is
allowed to edit access preferences. In particular, patients are allowed to set the
access preferences of their medical document, while doctors are allowed to set
the access preferences of the document they produced. The visualization of such
list can be constrained by requiring to visualize only those documents issued
within a certain time interval, or on a certain date, or of a certain category (e.g.,
only radiological reports). Constraints on how to visualize the document list are
enacted by selecting specific values from an autocomplete input.

Pairing users with the list of documents available to be visualized is possible
through a two-step phase of authentication and authorization. First, a user logs
into the interface by presenting her own credentials. Once logged in, the system
automatically retrieves the set of profiles associated to the user. Each profile
represents a set of attributes paired with the user. For example, with reference
to the attribute set defined in Section 2, a given user could have two profiles:
the profile patient, which includes the role attribute, whose value is, obviously,
patient, and the profile doctor, which includes the role attribute, with value

380 R. Conti et al.

Psychiatrist, and the Organization attribute with value Psychiatric Hospital
ABCD. The profiles are defined by the entities that issue the users attributes.
A user with more than one profile, e.g., patient and doctor, must choose to use
the interface selecting one of them. Selecting the profile patient, the user will
be able to edit preferences only on medical documents regarding herself as a
patient. Instead, the same user, which selects the profile doctor, will be able to
compose preferences over all the medical documents she issued, although these
documents refer to different patients.

Upon document selection, the interface shows to the user different buttons
associated to commands that encode partly customizable authorizations. Con-
sider a user that has the role patient. First, she selects the document over which
she may want to compose her privacy preferences. This document becomes the
object of the policy. As an example, in Figure 3 a), she searches and selects the
medical report “Right Arm X-Ray 09/11/2012”. Then, she chooses the subjects
of her policy, i.e., the subject to whom this rule will be applicable (see Figure 3
b), in which she can select either subjects with role General Practitioner or Spe-
cialist). Upon subject selection, she can further select 1) the kind of action that
the subject is allowed to perform on the object, e.g., “read”; and 2) the tempo-
ral validity of the authorisation (Figure 4). In such a way, the user sets policies
as the following one: The General Practitioner with ID ”dr12345” can read the
medical report with ID ”abc” from 16/07/2013 to 24/07/2013. Such policy is
saved when the user presses “Ok”. Instead, “Cancel” allows the user to go back
to the previous step without saving.

It is worth noticing that the Mobile Interface can be conveniently adapted
to support the editing of general attribute-based policies, considering, e.g., the
location of the requestor, or the organisation she belongs to, or the purpose
of use. As a final remark, we acknowledge that specifying policies on a per-
document basis could not provide a scalable management. Indeed, physicians

Fig. 4. Action and Environment selection

Preserving Data Privacy in e-Health 381

may not want to be burdened with managing each document individually, espe-
cially not in large organisations. One possible solution could be to define specific
groups of documents, and let the physician to set privacy preferences over those
groups, instead of over one specific document. Another solution is discussed in
the following section: a Desktop interface has been realised in order to define
default rules at the healthcare organisations. Such rules deal with categories of
documents, rather than single ones.

Desktop Interface. The Desktop Interface is shown in Figure 5. It allows the
editing of privacy policies in a more complex way with respect to simple setting
of privacy preferences provided by the mobile interface. Its usage is reserved
to Policy Experts (see above in this section). This interface presents four tabs,

Fig. 5. Desktop Interface

one for each policy element (subject, action, object, and environment), plus one
tab labeled conditions. The latter drives the user to set comparisons between
attributes. For each element, the users can select from a drop-down menu which
attributes to set and the attributes values (from another menu). As an example,
let the reader suppose that the user aims at composing the following authoriza-
tion: “The rescue team member can read any medical report in emergency situ-
ations”. First, she selects the subject attribute role from the drop-down menu.
Second, she selects the values for this attributes, i.e., rescue team member. Then,
she selects the object attributes category, plus their values, medical. The same
procedure is applied for specifying the action and the environment attribute.
Finally, to add, or remove, an attribute for the same element, there are the plus
and minus buttons, respectively, at the end of value field.

382 R. Conti et al.

The conditions tab allows to refine the policy by adding comparisons between
attributes of the elements that constitute the policy. The drop down menus pro-
pose only the attributes that have been set in the previous tabs. As an example, a
comparison could state that “Location of the subject must be equal to Location
of the object”, or “ID of the subject must be equal to Issuer of the object”.

The resulting policy is shown in a text box located under the tabs, and it is
expressed exploiting the controlled natural language CNL4DSA, defined in [28].
The resulting policy for the considered example is
if hasRole(Subject, Rescue Team Member)
and hasDataCategory(Object,medical)
and hasState(Environment,Emergency)
then can read(Subject,Object)

In a real environment, policy makers are supposed to set a not negligible num-
ber of policies regulating the management and sharing of all the data produced
and stored at their healthcare organizations. Thus, it becomes probable to have
two, or more, policies that would apply to the same access request and return
different results (e.g., one policy denies the access to the requester, while the
other policy allows it). In order to avoid the co-existence of conflicting policies
among all the policies set by the policy makers through the desktop interface,
in Section 7 we will illustrate a methodology for policy validation, aiming at
detecting conflicts among a policy set. Before illustrating the methodology, we
give a brief overview of kind of existing conflicts among policies.

6 Classification of Conflicting Policies

Conflicts can arise between authorization and prohibition policies when they are
going to be applied for allowing (or not allowing) the access to some resources.
Similar to [17], we distinguish the following kind of conflicting policies:

Contradictions. Two policies are contradictory if one allows and the other
denies the right to perform the same action by the same subject on the
same object under the same environment. The policies are exactly the same,
except for their effect.

Exceptions. One policy is an exception of another one, if they have different
effects (allow and deny) on the same action, but one policy is a “subset” of
the other one, i.e., the subject (and/or the object, and/or the environment)
is specified with more specific attributes than those of the other. Let the
reader consider Authorization N1 and Prohibition P2:

N1 Subjects having the role “General Practitioner” can read documents
having category “medical” of patients;

P2 Subject with ID “dr12345” cannot read the document with ID “xyz”;

P2 is an exception of N1, since the subject with ID dr12345, i.e., Dr. Jack
Brown, cannot access the document with ID “xyz” even if he is a “General
Practitioner” and that document has category “medical”.

Preserving Data Privacy in e-Health 383

Correlations. Two policies are correlated if they have different effects (allow
and deny) and the attribute set of a policy intersects the attribute set of the
other one.
As an example, the following policies are correlated:
N5 Subjects having the role “Administrative Personnel” can read/print doc-

uments having category “administrative”;
P4 Subjects having the role “Administrative Personnel” cannot read/print

documents having category “administrative” until 31/12/2020;
Both the policies exploit the attribute role of the subject and the attribute
category of the object, but the second one also exploits the environmental
attribute Time.
In the following, we will present a technique to spot conflicts over the three
categories of conflicting policies.

7 Policy Validation

In this section, we describe a policy validator performing a series of static anal-
yses over a set of privacy policies. The analysis process allows to detect con-
flicts between policies, and, complimentary, to answer questions related to single
clauses and visualize the complete table of authorised accesses. As illustrated
in Figure 1, Section 3, the validator works in conjunction with the authoring
desktop interface and it is reserved to policy experts, supporting them to edit
complex policies.

The validation process checks if a set of policies is conflict-free, by performing
pairwise analysis over all pairs of authorisation and prohibition clauses. The
validator exhaustively simulates all the possible access requests, under a set of
contextual conditions defined by the policy expert (e.g., she can set date and
time of the access request, role of subject, category of data, etc.). Thus, the
validator checks if there exist, at least, one authorisation and one prohibition
that, simultaneously, allows and denies the same subject to perform the same
action on the same object, under the given set of contextual conditions. Also,
the validator answers questions on specific authorisations, like, e.g., “is it true
that subject x is authorized to perform action z on object y, under a set of
contextual conditions?”. Finally, the validator shows, for a given set of contextual
conditions, all the authorised actions within a policy set.

The validator consists of two parts:

– a formal engine that actually performs the analysis of the policies;
– a graphical user interface that allows the user to dynamically load contextual

conditions and launch the analysis of the set of policies.

The validator has as input the CNL4DSA policies written through the au-
thoring desktop interface.

384 R. Conti et al.

The Engine. The formal engine performing the analysis of policies is Maude [8].
Maude is an executable programming language that models distributed sys-
tems and the actions within those systems [8]. The validator input language,
CNL4DSA [28], has been designed with precise formal semantics rules, regulating
states and transitions between these states. This allows for a precise translation
of CNL4DSA in Maude, as shown in [30].

The choice of using Maude for policy validation is driven by the fact that
rewrite rules (which Maude build upon) are a natural way to model the be-
haviour of distributed systems, and we see a policy exactly as a process where
different subjects may interact with each other, possibly on the same set of ob-
jects. Maude is executable and comes with built-in commands allowing to search
for allowed traces, i.e., sequence of actions, of a policy specified in CNL4DSA.
These traces represent the sequences of actions that are authorized, or denied, by
the policy. Also, exploiting the implementation of modal logic over the CNL4DSA
semantics, as done in [40,9] for process algebras such as CCS [31], it is possible
to prove that a modal formula, representing a certain query, is satisfied by the
Maude specification of the policy.

The Validator User Interface. The validator user interface is deployed as a
Web Application and it allows the user to query Maude and visualize human-
readable results. The user interface is in charge of retrieving the set of policies
that the policy expert wants to analyze and the associated vocabulary (the set
of specific terms associated with those policies). The vocabulary is that in the
database of the authoring tool (see Figure 2, Section 5). The inner logic of the
validator user interface exploits the vocabulary to create and show the interface
menus.

The interface helps the policy expert to define the contextual conditions under
which the analysis will be performed (Figure 6).

It is possible to compose different types of queries, related to authorisations
and prohibitions (Figure 7). Once the policy expert has selected contextual con-
ditions and queries, the interface sends all the inputs, i.e., the vocabulary, the
high level description of the policies, the context defining the conditions on which
the policies have to be evaluated, and the set of queries, to Maude. When the
analysis has been performed, the results are sent back and shown by the user in-
terface. As an example, Figure 8 shows a pop-up window, alerting that a conflict
occurs between an authorization and a prohibition.

It is worth noticing that the validator is enhanced with an help on line facility
suggesting the operators the right way to set contextual conditions and queries
for performing the analysis. A further improvement could be to set up a wizard
that automatically proposes specific conditions and queries. Finally, as usual
for automated tools operating an exhaustive search on the system state, the
internal engine of the validator may suffer from the problem of state explosion.
Appropriate test should be set up in order to evaluate its performance, and we
leave this as a further step in future work.

Preserving Data Privacy in e-Health 385

Fig. 6. Screenshot of the context insertion box

Fig. 7. Alternative analyses

Fig. 8. Conflict detection

386 R. Conti et al.

8 Conflict Resolution Strategy

Possible conflicts between the set of privacy policies of the healthcare organi-
zation, defined by the policy experts through the desktop interface, and the
privacy preferences defined by the other subjects of the scenario, e.g., patients
and doctors, are solved at runtime exploiting the Analytical Hierarchy Process
(AHP), a well know multi-criteria decision system [37,38]. It is worth noticing
that, although the validation process presented in Section 7 could a priori be
exploited to check conflicts among this enlarged set of policies (defined by the
policy experts as well as by the other subjects of the scenario), this would act
as a bottleneck in the system, mainly because privacy preferences by common
users are not expressed in CNL4DSA, that is the basis of the validator tool
in [24]. Thus, it is more convenient to let policy experts use the validator tool,
to guarantee a conflict-free set of standard data protection policies at the or-
ganisation. Instead, the conflict resolution strategy presented in this section is
actuated whenever at least two policies (stored in the repository in Figure 1)
are applicable to the same real access request, and they conflict one with each
other. Since this occurs within the enforcement process, policies have been al-
ready translated into an enforceable language. We will thus assume that conflicts
are first detected by means of native algorithms of the XACML authorisation
framework, and then solved with the approach proposed hereafter.

AHP allows to prioritize the execution of a privacy policy with respect to a set
of conflicting ones. To this aim, AHP evaluates the specificity of the conflicting
policies in identifying each of their elements, namely: subject, object, action, and
environment. The adoption of AHP to solve conflicts among policies has been
described in [26,22]. We recall that, in the scenario illustrated within this chapter,
the internal conflicts among the privacy policies of the healthcare organization
have been already statically solved after the policy authoring, as described in
Section 7.

AHP is a multi-criteria decision making technique, which has been largely
used in several fields of study. Given a decision problem, within which different
alternatives can be chosen to reach a goal, AHP returns the most relevant alter-
native with respect to a set of criteria. This approach requires to subdivide a
complex problem into a set of sub-problems, equal in number to the chosen cri-
teria, and then computes the solution (i.e., choose the most relevant alternative)
by properly merging all the local solutions for each sub-problem. Furthermore,
AHP features the capability to further refine each criterion in sub-criteria.

In the conflict resolution scenario, the elements of the AHP hierarchy are the
following:

– The goal is ranking two conflicting policies.
– The alternatives are the two conflicting policies.
– The criteria are the following:

Specificity of the subject. This criterion evaluates the attributes ex-
ploited in the two policies to identify the subject, to determine which of
the policies define a more specific set of subjects.

Preserving Data Privacy in e-Health 387

Specificity of the object. This criterion evaluates the attributes exploited
in the two policies to identify the object.

Specificity of the environment. This criterion evaluates the attributes
to identify the environment.

– Each criterion has a set of subcriteria that are the attributes of the criterion:

Subcriteria for subject: ID, role, and organization.
Subcriteria for object: ID, category, and issuer.
Subcriteria for environment: status, time, and location.

Fig. 9. AHP Hierarchy for Policy Conflict Resolution

Figure 9 represents the hierarchy previously described. However, the method-
ology allows the insertion of further criteria and subcriteria that may be helpful
to evaluate the alternatives.

Once the hierarchy is built, the method performs pairwise comparison, from
the bottom to the top, in order to compute the relevance, hereafter called local
priority: i) of each alternatives with respect to each sub-criteria, ii) of each sub-
criterion with respect to the relative criterion, and finally, iii) of each criterion
with respect to the goal. Note that, in case of a criterion without sub-criteria,
the local priority of each alternative is computed with respect to the criterion.

Comparisons are made through a scale of numbers typical to AHP (see Ta-
ble 1) that indicates how many times an alternative is more relevant than an-
other.

Computation of Local Priorities. Let the reader suppose that Policy1 and Policy2
are two conflicting policies. They become the two alternatives in the hierarchy
and they are evaluated with respect to subcriteria. To this aim, k 2x2 pairwise
comparison matrices, where k is the number of subcriteria (in our case, k=9),
are built according to a very simple approach, based on the presence of the
attributes in the policies. Given that aij is the generic element of one of these
matrices:

388 R. Conti et al.

Table 1. Fundamental Scale for AHP

Intensity Definition Explanation

1 Equal Two elements contribute equally to the objective

3 Moderate One element is slightly more relevant than another

5 Strong One element is strongly more relevant over another

7 Very strong One element is very strongly more relevant over another

9 Extreme One element is extremely more relevant over another

– Policy1 and Policy2 contain (or do not contain) attribute A: then a12 =
a21 = 1.

– If only Policy1 contains A, than a12 = 9, and a21 = 1
9 .

– If only Policy2 contains A, than a12 = 1
9 , and a12 = 9.

Once a comparison matrice has been defined, the local priorities can be com-
puted as the normalized eigenvector associated with the largest eigenvalue of
such matrice [36].

Then, moving up in the hierarchy, we quantify how subcriteria are relevant
with respect to the correspondent criterion. Hence, we evaluate how the at-
tributes are relevant to identify the subject, the object and the environment.
In particular, in our example we use the matrices in Table 2, with the local
priorities shown in the last column of each matrice. As an example, in the ma-
trice that compares the subject’s attributes (the left-most one in Table 2), we
write a12 = 9 since we think that the subject ID allows to identify the subject
extremely better than the subject role. Indeed, the subject ID exactly identifies
one subject. For the same reason, we put a13 = 9 (ID vs the organization the
subject belongs to). More details are in [26].

We remark that the values in these matrices simply represent the perception
of the authors on the relative relevance of the attributes. Other values could
have been chosen as well.

Finally, we quantify how the three criteria are relevant for achieving the goal
of solving conflicts. Without loss of generality, we hypothesize that all the criteria
equally contribute to meet the goal. In this straightforward case, the pairwise
comparison matrice is a 3x3 matrice with all the elements equal to 1, and the

Table 2. Comparison matrices and local priorities for subcriteria w.r.t. criteria

SUBJ ID role organiz. p̄Subj

ID 1 9 9 0.818182

role 1
9

1 1 0.0909091

org 1
9

1 1 0.0909091

OBJ ID issuer category p̄Obj

ID 1 5 7 0.7454

issuer 1
5

1 4
3

0.1454

category 1
7

3
4

1 0.1091

ENV status time location p̄Env

status 1 7 7 0.777778

time 1
7

1 1 0.111111

location 1
7

1 1 0.111111

Preserving Data Privacy in e-Health 389

local priorities of the criteria with respect to the goal are simply 0.33 each.
Hence, for the computation of the global priorities, p

cj
g = 0.33, j = 1,. . . ,3 (see

below).

Computation of Global Priorities. Once all local priorities are computed, the
following formula computes the global priorities. For the sake of simplicity, we
have in mind a hierarchy tree where the leftmost n1 criteria have a set of sub-
criteria each, while the rightmost n2 criteria have no sub-criteria below them,
and n1 + n2 = n is the number of total criteria.

P ai
g =

n1∑

w=1

q(w)∑

k=1

pcwg · pscwkcw · pai

scwk
+

n2∑

j=1

pcjg · pai
cj (1)

q(w) is the number of sub-criteria for criterion cw, p
cw
g is the local priority of

criterion cw with respect to the goal g, p
scwk
cw is the local priority of sub-criterion

k with respect to criterion cw, and pai

scwk
is the local priority of alternative ai

with respect to sub-criterion k of criterion cw. p
scwk
cw and pai

scwk
are computed by

following the same procedure of the pairwise comparisons matrices illustrated
above.

It is worth noticing that, in our approach, we do not consider as a decisional
criterion the specificity of the action. This is because we evaluate the action
only according to its ID, always present in a policy. So the evaluation of the
alternative policies with respect to the criterion action is constant, and it does
not add any meaningful information for taking the final decision.

In [22], we developed a prototype implementation of the conflict solver, high-
lighting a twofold advantage. First, the prototype is specifically based on the
XACML engine and it extends the native XACML combining algorithms for
conflict resolution, aiming at a finer granularity in the evaluation of conflicting
rules. Secondly, we experienced good results in terms of execution time, negligi-
ble to human beings up to a quite large amount of conflicting rules (for example,
execution time is 275 milliseconds with 64 conflicting rules composed by three
attributes each).

9 Conclusions

Protecting personal data from abuses is an issue regulated by the legislation of
different European countries, with the support of common European directives.
Technically, data access, processing, and sharing can be regulated defining (and
enacting) appropriate privacy policies. Technologically enabling data protection
means simple but powerful tools guiding both expert personnel and common peo-
ple to compose consistent policies. This chapter offered an overview of technical
solutions for user-friendly policy authoring and effective policy validation (with
an eye to conflict detection and solution), focusing on the e-Health scenario. In
particular, starting from a general policy-based infrastructure and its operative

390 R. Conti et al.

workflow, we focused on three techniques for authoring, validation, and conflict
resolution, that operate in an integrated framework for medical data protection.
The effectiveness of the approach has been shown by the prototype implementa-
tion of the described tools, based on the XACML standard. As future work, we
will focus on usability issues and we will validate our approach on a real scenario,
testing the authoring tool with real users, defining with doctors and patients of
a healthcare organization which is the set of privacy preferences they would be
interested in, and verifying whether those preferences can be easily expressed
and managed.

References

1. Al-Shaer, E.S., Hamed, H.H.: Firewall policy advisor for anomaly discovery and
rule editing. In: Goldszmidt, G., Schönwälder, J. (eds.) Integrated Network Man-
agement VII. IFIP, vol. 118, pp. 17–30. Springer, Boston (2003)

2. Arenas, A.E., Aziz, B., Bicarregui, J., Wilson, M.D.: An Event-B Approach to Data
Sharing Agreements. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396,
pp. 28–42. Springer, Heidelberg (2010)

3. Axiomatics.com. Policy Administrator Point, http://goo.gl/A5OEHW (last checked
July 24, 2013)

4. Bicarregui, J., Arenas, A., Aziz, B., Massonet, P., Ponsard, C.: Towards Modelling
Obligations in Event-B. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 181–194. Springer, Heidelberg (2008)

5. Brodie, C., et al.: An Empirical Study of Natural Language Parsing of Privacy
Policy Rules using the SPARCLE Policy Workbench. In: SOUPS. ACM (2006)

6. Brodie, C., et al.: The Coalition Policy Management Portal for Policy Authoring,
Verification, and Deployment. In: POLICY, pp. 247–249 (2008)

7. Cholvy, L., Cuppens, F.: Analyzing consistency of security policies. In: IEEE Sym-
posium on Security and Privacy, pp. 103–112 (1997)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

9. Colombo, M., Martinelli, F., Matteucci, I., Petrocchi, M.: Context-aware analysis
of data sharing agreements. In: Advances in Human-Oriented and Personalized
Mechanisms, Technologies and Services (2010)

10. Consequence Project. Infrastructure for data sharing agreements (December 2010),
http://goo.gl/is7cpR

11. Conti, R., Matteucci, I., Mori, P., Petrocchi, M.: Expertise-driven Authoring Tool
of Privacy Policies for e-Health. In: Computer-Based Medical Systems, Tech. Rep.
IIT-CNR TR-02-2014 (2014)

12. Cuppens, F., Cuppens-Boulahia, N., Ghorbel, M.B.: High level conflict manage-
ment strategies in advanced access control models. ENTCS 186, 3–26 (2007)

13. De Nicola, R., Ferrari, G.-L., Pugliese, R.: Programming Access Control: The
KLAIM Experience. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877,
pp. 48–65. Springer, Heidelberg (2000)

14. Dunlop, N., Indulska, J., Raymond, K.: Methods for conflict resolution in
policy-based management systems. In: Enterprise Distributed Object Computing,
pp. 98–109. IEEE (2003)

http://goo.gl/A5OEHW
http://goo.gl/is7cpR

Preserving Data Privacy in e-Health 391

15. Hall-May, M., Kelly, T.: Towards conflict detection and resolution of safety policies.
In: Intl. System Safety Conf. (2006)

16. Hansen, R.R., Nielson, F., Nielson, H.R., Probst, C.W.: Static Validation of Licence
Conformance Policies. In: ARES, pp. 1104–1111 (2008)

17. Jin, J., Ahn, G.-J., Hu, H., Covington, M.J., Zhang, X.: Patient-centric authoriza-
tion framework for electronic healthcare services. Computers & Security 30(2-3),
116–127 (2011)

18. Johnson, M., Karat, J., Karat, C.-M., Grueneberg, K.: Optimizing a policy au-
thoring framework for security and privacy policies. In: SOUPS, pp. 8:1–8:9. ACM
(2010)

19. Joint NEMA/COCIR/JIRA Security and Privacy Committee (SPC). Break-glass:
An approach to granting emergency access to healthcare systems (2004)

20. Karat, J., Karat, C.-M., Brodie, C., Feng, J.: Designing Natural Language and
Structured Entry Methods for Privacy Policy Authoring. In: Costabile, M.F.,
Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 671–684. Springer,
Heidelberg (2005)

21. Kransner, G.E., Pope, S.: Cookbook for using the Model-View-Controller User
Interface paradigm. Object Oriented Programming, 26–49 (1988)

22. Lunardelli, A., Matteucci, I., Mori, P., Petrocchi, M.: A Prototype for Solving Con-
flicts in XACML-based e-Health Policies. In: Computer-Based Medical Systems,
pp. 449–452. IEEE (2013)

23. Lupu, E.C., Sloman, M.: Conflicts in policy-based distributed systems manage-
ment. IEEE Trans. Softw. Eng. 25(6), 852–869 (1999)

24. Martinelli, F., Matteucci, I., Petrocchi, M., Wiegand, L.: A formal support for
collaborative data sharing. In: Quirchmayr, G., Basl, J., You, I., Xu, L., Weippl, E.
(eds.) CD-ARES 2012. LNCS, vol. 7465, pp. 547–561. Springer, Heidelberg (2012)

25. Masoumzadeh, A., Amini, M., Jalili, R.: Conflict detection and resolution in
context-aware authorization. In: Security in Networks and Distributed Systems,
pp. 505–511. IEEE (2007)

26. Matteucci, I., Mori, P., Petrocchi, M.: Prioritized Execution of Privacy Policies. In:
Di Pietro, R., Herranz, J., Damiani, E., State, R. (eds.) DPM 2012 and SETOP
2012. LNCS, vol. 7731, pp. 133–145. Springer, Heidelberg (2013)

27. Matteucci, I., Mori, P., Petrocchi, M., Wiegand, L.: Controlled data sharing in
e-health. In: STAST, pp. 17–23 (2011)

28. Matteucci, I., Petrocchi, M., Sbodio, M.L.: CNL4DSA: A Controlled Natural Lan-
guage for Data Sharing Agreements. In: SAC: Privacy on the Web Track. ACM
(2010)

29. Matteucci, I., Petrocchi, M., Sbodio, M.L., Wiegand, L.: A design phase for data
sharing agreements. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia,
N., de Capitani di Vimercati, S. (eds.) DPM 2011 and SETOP 2011. LNCS,
vol. 7122, pp. 25–41. Springer, Heidelberg (2012)

30. Matteucci, I., Petrocchi, M., Sbodio, M.L., Wiegand, L.: A design phase for data
sharing agreements. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia,
N., de Capitani di Vimercati, S. (eds.) DPM 2011 and SETOP 2011. LNCS,
vol. 7122, pp. 25–41. Springer, Heidelberg (2012)

31. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York,
Inc., Secaucus (1982)

32. Ni, Q., et al.: Privacy-aware Role-based Access Control. ACM Transactions on
Information and System Security 13 (2010)

33. OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0
(January 2013)

392 R. Conti et al.

34. Policy Design Tool (2009),
http://goo.gl/20wesa

35. Reeder, R.W., Karat, C.-M., Karat, J., Brodie, C.: Usability challenges in security
and privacy policy-authoring interfaces. In: Baranauskas, C., Abascal, J., Barbosa,
S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4663, pp. 141–155. Springer, Heidelberg
(2007)

36. Saaty, T.L.: A scaling method for priorities in hierarchical structures. Journal of
Mathematical Psychology 15(3), 234–281 (1977)

37. Saaty, T.L.: Decision-making with the AHP: Why is the principal eigenvector nec-
essary. European Journal of Operational Research 145(1), 85–91 (2003)

38. Saaty, T.L.: Decision making with the Analytic Hierarchy Process. International
Journal of Services Sciences 1(1), 83–98 (2008)

39. Syukur, E.: Methods for policy conflict detection and resolution in pervasive com-
puting environments. In: Policy Management for Web (WWW 2005), pp. 10–14.
ACM (2005)

40. Verdejo, A., Mart́ı-Oliet, N.: Implementing CCS in Maude 2. ENTCS 71 (2002)
41. Wishart, R., Corapi, D., Marinovic, S., Sloman, M.: Collaborative Privacy Policy

Authoring in a Social Networking Context. In: POLICY, pp. 1–8. IEEE (2010)

http://goo.gl/20wesa

Author Index

Basin, David 97
Baudry, Benoit 180
Beckers, Kristian 1, 315
Bertolino, Antonia 210, 266
Busch, Marianne 119, 234, 266
Büttner, Fabian 287

Clavel, Manuel 97
Conti, Riccardo 366
Côté, Isabelle 1

Dalpiaz, Fabiano 65
Dania, Carolina 97
Daoudagh, Said 266
Decat, Maarten 160

Egea, Marina 287

Fenz, Stefan 1
Fernandez-Gago, Carmen 180

Garćıa de Dios, Miguel A. 97
Giorgini, Paolo 65

Hatebur, Denis 1
Heisel, Maritta 1, 315

Issarny, Valerie 160

Joosen, Wouter 35

Koch, Nora 119, 234

Labunets, Katsiaryna 35
Lagaisse, Bert 160

Le Traon, Yves 210
Lonetti, Francesca 210, 266
Lopez, Javier 180
Lunardelli, Alessio 366

Marchetti, Eda 210, 266
Mart́ın, Jose A. 140
Martinelli, Fabio 140
Massacci, Fabio 35
Matteucci, Ilaria 140, 366
Mori, Paolo 366
Mouelhi, Tejeddine 210
Moyano, Francisco 180

Paci, Federica 35
Paja, Elda 65
Pathak, Animesh 160
Petrocchi, Marinella 366
Pimentel, Ernesto 140

Refsdal, Atle 345
Rideng, Øyvind 345
Rosca, George 160

Sang Tran, Le Minh 35
Scandariato, Riccardo 35
Solhaug, Bjørnar 315, 345
Stølen, Ketil 315, 345
Suppan, Santiago 119

Turuani, Mathieu 140

Wirsing, Martin 234

Yskout, Koen 35

	Preface
	Table of Contents
	A Structured Comparison of Security Standards
	1 Introduction
	2 A Method for Comparing Security Standards
	3 CAST Step 1: Define a Common Terminology
	4 CAST Step 2: Analyse Existing Work
	4.1 The HatSec Method
	4.2 NIST SP 800-30 Standard

	5 CAST Step 3: Define a Conceptual Model
	6 CAST Step 4: Instantiate Template with Standards
	6.1 ISO 27001
	6.2 IT-Grundschutz
	6.3 The Common Criteria

	7 CAST Step 5: Compare Standards
	7.1 Comparison
	7.2 CAST Tool Support
	7.3 Discussion

	8 Related Work
	9 Conclusion and Future Work
	References

	Empirical Assessment of Security Requirementsand Architecture: Lessons Learned
	1 Introduction
	2 Related Work
	2.1 Empirical Studies on Threats Modeling and Security Requirements
	2.2 Empirical Studies on Requirements Evolution

	3 Experiments on Threat and Risk Modeling
	3.1 Assessing the STRIDE Approach1
	3.2 Empirical Comparison of Two Types of Risk-Based Methods2

	4 Experiments on Software Evolution
	4.1 Assessing Requirements Evolution
	4.2 Assessing Co-Evolution5

	5 Challenges and Lessons Learned
	6 A Roadmap for Future Research
	7 Conclusion
	References

	STS-Tool: Security Requirements Engineering for Socio-Technical Systems
	1 Introduction
	2 Baseline: STS-ml
	2.1 Multiview Modelling with STS-ml
	2.2 The STS Method

	3 STS-Tool: The Case Tool for STS-ml
	4 Modelling and Reasoning with STS-Tool
	4.1 Illustrating Scenario: Lot Searching
	4.2 Modelling Activities
	4.3 Running Automated Analysis
	4.4 Deriving Security Requirements

	5 Conclusions
	References

	Model-Driven Development of a Secure eHealthApplication
	1 Introduction
	2 ActionGUI
	2.1 Data Models
	2.2 Constraints
	2.3 Security Models
	2.4 GUI Models
	2.5 Security-Aware GUI Models
	2.6 Tool Support

	3 The EHRM ActionGUI Application
	3.1 The EHRM’s Data Model
	3.2 The EHRM Data Model’s Invariants
	3.3 The EHRM’s Security Model
	3.4 The EHRM’s GUI Model
	3.5 The EHRM’s Security-Aware GUI Model
	3.6 Generating the EHRM Application

	4 Analyzing the EHRM ActionGUI Application
	4.1 Data Invariant Preservation
	4.2 Checking Data Invariant Preservation
	4.3 Analyzing the EHRM Application

	5 Conclusions
	References

	Modeling Security Features of WebApplications
	1 Introduction
	2 Case Study: Energy Management System
	2.1 Components of Smart Homes
	2.2 Actors
	2.3 Functionality

	3 Secure Web Applications
	4 Overview of UML-Based Web Engineering (UWE)
	5 Designing Secure Web Applications with UWE
	5.1 Content View
	5.2 Role and Access Control View
	5.3 Navigation and Process View

	6 UWE in the Software Development Life Cycle
	7 Related Work
	8 Conclusion and Future Work
	References

	On the Synthesis of Secure ServicesComposition
	1 Overview
	2 Security Aspects of Service Composition
	3 Automated Synthesis Mechanisms
	4 Synthesize a Secure and Functional Service Composition
	4.1 The Synthesis Problem
	4.2 Crypto-CCS and Partial Model Checking in a Nutshell
	4.3 Synthesis of Functional and Secure Orchestrators
	4.4 PaMoChSA 2012: Tool Description
	4.5 Avantssar’s Orchestrator: Tool Description

	5 Conclusion
	References

	Privacy and Access Control in Federated SocialNetworks
	1 Introduction
	1.1 Illustrative Example and Challenges

	2 Social Networking Platform Requirements
	3 Existing Platforms
	3.1 Siloed
	3.2 Social Networking as a Service
	3.3 Federated Social Networks
	3.4 Decentralized

	4 Recommendations for a Privacy-Aware Federated Social Networking Architecture
	4.1 Storage
	4.2 Authentication and Access Control
	4.3 Communication and Discovery

	5 Future Directions
	References

	Engineering Trust-Awareness andSelf-adaptability in Services and Systems
	1 Introduction: The Need for Trust and Self-adaptability
	2 Trust in Software Development Life Cycle
	2.1 Trust in Software Engineering
	2.2 Trust Decisions in Service-Oriented and Component-Based Architectures

	3 Trust Foundations
	3.1 Trust and Reputation
	3.2 Trust Models and Classification
	3.3 Trust Conceptual Model

	4 Kevoree: A Models@Runtime Platform
	4.1 Kevoree: Component Model
	4.2 Development in Kevoree
	4.3 Deployment in Kevoree

	5 Trust Meets Models@Runtime: A Trust Framework for Self-adaptive Systems
	5.1 Trust and Reputation Metamodels
	5.2 Trust and Reputation Components
	5.3 Trust Events and Data Structures

	6 Case Study: Smart Grid Scenario
	7 Conclusions and Future Work
	References

	Validation of Access Control Systems
	1 Introduction
	2 XACML Language
	3 Survey of Testing Techniques and Tools for Access Control Systems
	3.1 Model-Based Test Cases Derivation
	3.2 XACML Policy Based Test Cases Derivation
	3.3 Test Cases Selection and Prioritization
	3.4 Assessing the Test Suite Effectiveness

	4 Maximize Test Suite Effectiveness for Access Control Systems
	4.1 XACML Smart Coverage Selection
	4.2 Similarity Based Test Cases Prioritization

	5 An Experimental Comparison
	5.1 Setup
	5.2 Mutation Analysis
	5.3 Results

	6 Discussion and Conclusions
	References

	Evaluation of Engineering Approachesin the Secure Software Development Life Cycle
	1 Introduction
	2 Related Work
	3 Engineering Secure Software and Systems
	4 Systematic Evaluation of Engineering Approaches
	4.1 Evaluation Process
	4.2 Systematic Evaluation – Model Overview
	4.3 Security Context
	4.4 Data Collection
	4.5 Data Analysis

	5 Extensions of SecEval
	6 Validation of the Evaluation Approach
	7 Towards an Implementation of SecEval
	8 Conclusions
	References

	A Toolchain for Designing and TestingAccess Control Policies
	1 Introduction
	2 Background
	2.1 UML-Based Web Engineering (UWE)
	2.2 eXtensible Access Control Markup Language (XACML)
	2.3 Service Development Environment (SDE)

	3 The Access Control Testing Toolchain “ACT”
	3.1 Model-Driven Policy Design
	3.2 Test Case Generation and Execution
	3.3 Results Analysis and Verdicts Generation
	3.4 Toolchain Integration

	4 Case Study
	4.1 First Scenario: Clean Run
	4.2 Second Scenario: Error Detection

	5 Related Work
	5.1 Modeling Access Control Policies Graphically
	5.2 Generating Test Cases for XACML Policies

	6 Conclusion
	References

	Verification of Authorization Policies Modified by Delegation
	1 Introduction
	2 Background
	3 A Metamodel to Specify Authorization and Delegation Policies
	4 Patterns to Check Separation of Duties in Authorization Policies
	4.1 Banking Application Example

	5 An ATL Transformation to Perform the Delegation Operation
	5.1 ATL Matched Rules
	5.2 An ATL Delegation Transformation

	6 Verification of the ATL Delegation Transformation
	6.1 VerificationMethodology
	6.2 Tooling
	6.3 Results
	6.4 A Remark on Scalability

	7 Related Work
	8 Conclusion and Future Work
	References

	ISMS-CORAS: A Structured Methodfor Establishing an ISO 27001 CompliantInformation Security Management System
	1 Introduction
	2 Background
	2.1 CORAS
	2.2 Legal CORAS
	2.3 ISO 27001

	3 The ISMS-CORAS Method
	3.1 Step 1: Establish the Context
	3.2 Step 2: Identify Risks
	3.3 Step 3: Estimate Risks
	3.4 Step 4: Evaluate Risks
	3.5 Step 5: Treat Risk
	3.6 Contribution to ISMS Documents

	4 Applying the ISMS-CORAS Method to a Smart Grid Scenario
	4.1 Step 1: Establish the Context
	4.2 Step 2: Identify Risks
	4.3 Step 3: Estimate Risks
	4.4 Step 4: Evaluate Risks
	4.5 Step 5: Treat Risk

	5 Related Work
	6 Conclusion
	References

	Divide and Conquer – Towards a Notion of RiskModel Encapsulation
	1 Introduction
	2 Risk Model Encapsulation
	3 The Petroleum Work Permit Example
	4 Outline of a Method for Compositional Risk Analysis
	5 Risk Modeling for Sub-Target A
	5.1 Case I: Internal Threats and Assets Only
	5.2 Case II: Also Considering Environment Threats
	5.3 Case III: Also Considering Environment Assets

	6 Risk Modeling for Sub-Target B
	7 Risk Composition
	8 Related Work
	9 Conclusion
	References

	Preserving Data Privacy in e-Health
	1 Overview
	2 Examples of Privacy Policies
	3 A General Policy-Based Infrastructure
	4 Related Work on Policy Authoring and Validation
	4.1 Authoring Frameworks
	4.2 Policy Conflict Detection and Resolution Frameworks

	5 Policy Authoring
	5.1 User Interface

	6 Classification of Conflicting Policies
	7 Policy Validation
	8 Conflict Resolution Strategy
	9 Conclusions
	References

	Author Index

