
VEWE: A Vehicle ECU Wireless Emulation Tool
Supporting OBD-II Communication

and Geopositioning

Óscar Alvear, Carlos T. Calafate, Juan-Carlos Cano, and Pietro Manzoni

Department of Computer Engineering (DISCA),
Universitat Politècnica de València, Spain

oalvear@gmail.com, {calafate,jucano,pmanzoni}@disca.upv.es

Abstract. Almost all the vehicles built during the last decade integrate
an On Board Diagnostic (OBD-II) interface, through which it is possi-
ble to monitor and manage multiple operational parameters. In the past
few years, Bluetooth OBD-II devices have been introduced in the mar-
ket to facilitate connection to mobile devices. With the increased use
of these devices, many applications for real-time control and monitoring
of different parameters are being developed in the automotive sector.
This infrastructure has opened a broad research area related to "smart
driving". The main problem in the development and testing of these ap-
plications is the need to debug and validate them using different vehicles,
under different configurations and scenarios. Our proposal to address this
problem is VEWE: Vehicle Wireless Emulator offering realistic vehicle
dynamics, which allows testing the correctness and the performance of
mobile applications using off-the-shelf computers, thereby speeding up
the development time and lowering costs. Another useful functionality
of VEWE is the emulation of Geo-positions in Android systems through
a GPS-Emulator. By combining both functionalities, VEWE provides
a complete and flexible development environment for mobile vehicular
applications.

1 Introduction

Mobile devices have experienced a technological breakthrough in recent years,
evolving towards high performance terminals with multi-core microprocessors,
being smartphones a clear representative exponent of this trend. In addition, the
On Board Diagnostics (OBD-II) [1] standard, available since 1994, has recently
become an enabling technology for in-vehicle applications due to the appearance
of Bluetooth OBD-II connectors [2]. These connectors enable a transparent con-
nectivity between the mobile device and the engine’s Electronic Control Unit
(ECU).

The range of possibilities that arise when combining cars and smartphones
is endless, allowing, for example, diagnosing the car via mobile devices which
assume the tasks that are typically performed by the On Board Unit (OBU) of
the vehicle, sending the collected data to a platform where diagnosis and vehicle

S. Guo et al. (Eds.): ADHOC-NOW 2014, LNCS 8487, pp. 432–445, 2014.
© Springer International Publishing Switzerland 2014



VEWE: A Vehicle ECU Wireless Emulation Tool 433

maintenance can be done, detecting possible failures automatically, or developing
solutions to automatically analyze driver behavior and suggest corrective actions
when necessary.

Currently, it is already possible to find several smartphone-based applications
that rely on OBD-II communications [3]. However, the development of these ap-
plications is costly since the developer has to deal with real ECUs from different
manufacturers in order to test and debug the applications, usually requiring tak-
ing the vehicle for short test trips. To avoid this requirement, and to speed-up
the development process, in this paper we propose VEWE, a vehicle wireless em-
ulator that includes map-based mobility modeling, and a simulated engine ECU
accessible through a wireless interface. The functionality provided by VEWE al-
lows the developers to test OBD-II based smartphone applications as if moving
in a real vehicle.

This paper is organized as follows: in section 2 we present some related works,
evidencing how our work differs from previous ones. In section 3 we provide an
overview of the OBD-II standard. The VEWE solution is introduced in section
4, and technical details are provided in section 5. Finally, section 6 presents the
main conclusions of this paper.

2 Related Works

Currently we can find a broad range of smartphone applications able to commu-
nicate with a vehicle’s ECU to provide enhanced services to drivers in the scope
of Intelligent Transportation Systems (ITS) area.

Torque [4] is a well known Android application that allows monitoring all sorts
of parameters available through the OBD-II interface (e.g. vehicle speed, engine
RPM, Fuel pressure), offering the user a comfortable visualization by allowing
to personalize the actual size and position of data displays.

Teng et al. [5] implement an Android-based mobile device platform able to
read data on the vehicle ECUs; results are graphically displayed as a virtual
instrument on the mobile panel.

Meseguer et al. proposed DrivingStyles [6], a solution combining an Android-
based application and a web platform that is able to determine the type of road
where the driver is circulating, as well as his driving habits. Its main goal is to
help promoting a safer and more ecological driving style by making drivers more
conscious about their behavior on the road.

Zaldivar et al. [7] proposed an Android-based application that monitors the
vehicle through the On Board Diagnostics (OBD-II) interface, being able to
detect accidents and sending details about the accident to pre-defined destina-
tions through either e-mail or SMS; these tasks are immediately followed by an
automatic phone call to the emergency services.

Tahat et al. [8] developed an Android application able to monitor the vehicle’s
fuel consumption and other vital electromechanical parameters. Data can also be
sent to the vehicle’s manufacturer maintenance department, allowing to detect
and predict vehicle faults while moving.



434 Ó. Alvear et al.

The aforementioned research works highlight the interest in developing smart-
phone applications that interact with vehicles. Nevertheless, since available OBD-
II emulation tools are too simple and lack GPS integration [9,10], developers
should perform test driving to evaluate their proposals, which is expensive and
time consuming. The platform presented in this paper aims to simplify and ac-
celerate development by modeling vehicle dynamics in detail and allowing to
jointly emulate OBD-II communications and geopositioning, thus meeting the
basic requirements of mobile application developers working in this field.

3 The OBD-II Standard

The On-board Diagnostic (OBD) standards [11] were developed in the USA to
detect car engine problems that can provoke an increase of CO2 gas emission
levels beyond acceptable limits. To achieve this purpose, the system is constantly
monitoring the different elements related to gas emissions, including engine man-
agement functions, being a powerful tool to diagnose problems on vehicles’ elec-
trical systems. When a failure is detected, the system must store it in its memory
so that technicians may analyze it later on.

The first OBD standard, known as OBD-I, defined just a few parameters to
monitor, and did not establish a specific emission level for vehicles. Thus, failures
resulted in just a visual warning to the driver and the storage of the error. The
second generation of OBD, known as OBD-II, standardizes different elements
such as the connector used for diagnostic, the electrical signaling protocols, and
the message format. Additionally, it defines a list of parameters that can be
monitored, assigning a specific code to each parameter. A detailed list of DTCs
(Diagnostic Trouble Codes) is also defined in the standard (see [11]).

Several operating modes are defined by the OBD-II standard to provide an
easier interaction with the system, and achieve the desired functionality. Most
automobile manufacturers have introduced additional operation modes that are
specific to their own vehicles, thus offering a full control of the available func-
tionality.

The European version of the OBD-II standard, known as EOBD, is mandatory
for all gasoline and diesel vehicles since 2001 and 2003, respectively. Despite it
introduces some small improvements, EOBD strongly resembles OBD-II, sharing
the same connectors and interfaces.

Figure 1 shows an example of both male and female OBD-II connectors. In
particular, the male connector shown in the figure is part of a Bluetooth-enabled
OBD-II device that offers a bridge between the vehicle’s internal bus and a
smartphone using a Bluetooth connection.

3.1 Communication Protocols

Although the physical interface is well defined, the communications protocol
varies depending on the manufacturer. Different protocols are available: (i) SAE
J1850 PWM (Pulse-Width Modulation) [12], (ii) SAE J1850 VPW (Variable



VEWE: A Vehicle ECU Wireless Emulation Tool 435

(a) Female connector (b) Male connector.

Fig. 1. Example of a) an in-vehicle OBD-II female connector, and b) a Bluetooth-
enabled OBD-II device with male connector

Pulse Width) [12], (iii) ISO 9141-2 [13], (iv) ISO 14230 KWP2000 (Keyword
Protocol 2000) [1], and (v) ISO 15765 CAN [11]; these protocols present signifi-
cant differences between them in terms of the electrical pin assignments. Notice
that most vehicles implement only one of these protocols. For instance, Chrysler
uses the ISO 9141-2 protocol, General Motors uses SAE J1850 VPW, and Ford
uses SAE J1850 PWM.

3.2 Diagnostic Trouble Codes (DTCs)

Diagnostic Trouble Codes were standardized in document ISO 15031-6 [14], and
allows engine technicians to easily determine why a vehicle is malfunctioning
using generic scanners. The proposed format assigns alphanumeric codes to the
different causes of failure, although extensions to the standard are allowed to
support manufacturer-specific failures.

3.3 OBD Message Formats

The OBD system was designed to offer a flexible communications system. Mes-
sage delivery among different devices requires defining the type of message to be
delivered, along with the transmitter and the receiver devices. The adoption of
different message priorities is also supported in order to make sure that critical
information is processed first.

However, depending on the protocol using by each vehicle, the format of this
message may vary slightly (see figure 2). Notice that both frame formats allow
up to 7 data bytes, and they also include a checksum field in order to detect any
transmission errors.

3.4 OBD-II PIDs

The OBD-II PIDs (OnBoard Diagnostics Parameter IDs) are identification codes
of the different parameters that can be measured in a vehicle. The OBD-II
standard, defined by the Society of Automotive Engineers as SAE J1979, defines



436 Ó. Alvear et al.

(a) Frame format adopted by the SAE J1850, ISO 9141-2 and ISO 14230-4
standards.

(b) Frame format adopted by the ISO 15765-4 (CAN) standard.

Fig. 2. OBD frame formats

Table 1. OBD-II operation modes

Mode Description
01 Show current data
02 Show freeze frame data
03 Show stored Diagnostic Trouble Codes
04 Clear Diagnostic Trouble Codes and stored values
05 Test results, oxygen sensor monitoring (non CAN only)
06 Test results, other component/system monitoring (Test results,

oxygen sensor monitoring for CAN only)
07 Show pending Diagnostic Trouble Codes (detected during current or

last driving cycle)
08 Control operation of on-board component/system
09 Request vehicle information
0A Permanent Diagnostic Trouble Codes (DTCs) (Cleared DTCs)

some parameters, although vehicle manufacturers usually introduce their own
codes.

As shown in table 1, the SAE J1979 standard defined some operation modes
for accessing OBD-II information.

The SAE J1979 standard also defines several OBD-II PIDs for the different
modes of operation. We focus on mode 01 since it provides access to the current
vehicle data. Numerical values are sent and received in hexadecimal format. Ta-
ble 2 shows some codes along with their description and the parameters required
to interpret them.

The "PID" column indicates the code identifier, the “Size” column indicates
the length in number of bytes, the "Description" column describes the code,
columns "Min" and "Max" indicate the minimum and maximum values, respec-
tively, column "Units" indicates the units in which the code is read, and finally
the "Formula" column shows which formula must be applied to interpret the
received value.



VEWE: A Vehicle ECU Wireless Emulation Tool 437

Table 2. OBD-II PIDs

PID Size Description Min Max Units Formula
00 4 Supported PIDs
05 1 Engine coolant

temperature
-40 215 °C A-40

0A 1 Fuel pressure 0 765 kPa (gauge) A*3
0C 2 Engine RPM 0 16,383.75 rpm ((A*256)+B)/4
0D 1 Vehicle speed 0 255 km/h A

When communicating via OBD-II two codes are required: one indicating the
mode, and another one to specify the monitored parameter. For example, when
requesting the vehicle speed, the identifier is "010D" where "01" indicates the
mode, and "0D" the speed parameter. The response to this request would be
"410D XX"; notice that the first digit identifier is changed from "0" to "4" to
indicate an answer, and "XX" is the returned value.

In the "Formula" column, letter A represents the first byte returned, letter B
represents the second byte, letter C the third byte, and so on.

4 VEWE: Vehicle ECU Wireless Emulator

VEWE is a solution developed to simulate vehicular behavior, and offer access to
the vehicle’s ECU parameters through a Bluetooth OBD-II interface. By using
VEWE, the developers of OBD-II based smartphone applications are able to
test them as if they were moving in a real vehicle, thereby speeding up the
development time and lowering costs.

VEWE is able to generate all the parameters of a moving vehicle, and it allows
the user to control the vehicle’s mobility within a map through a joystick, as
well as manually setting new parameters and have control over the Bluetooth
communications. Map information is obtained from OpenStreetMap [15].

The VEWE platform is composed of three components: the main application,
called VEWE server, and two Android based applications: GPSEmulator and
OBDIICapture. Together, they provide a complete test system for Android-based
mobile vehicular applications.

VEWE has the following features:

Multiplatform. It was developed in Java, using the Bluecove library for Blue-
tooth connectivity [16] and JMapViewer library for the map viewing func-
tionality, making it a multiplatform system fully functional on both Windows
and Linux operating systems.

Friendly graphical interface. It has a friendly and intuitive graphical user
interface, developed using the Java Swing library. The user simply "turns
on" the vehicle, and then it controls its path over a map (taken from Open-
StreetMap) using a joystick.



438 Ó. Alvear et al.

Fig. 3. VEWE Server application including the vehicle mobility simulator (left) and
the OBD-II/Bluetooth connection manager (right)

Flexible. You can add or remove different simulated parameters, as well as
specify the formula for calculating their value; other input parameters can
be referenced in such a formula.

Geocoding simulation. Using the GPSEmulator application, we can emulate
geopositions on any Android system based on data generated by VEWE in
real-time. GPS coordinates are transferred between the VEWE Server and
the GPSEmulator via Bluetooth.

Control of Bluetooth/OBD-II communications. The applications dis-
plays, in real-time, all the information exchanged between the simulator and
the mobile device, as well as all the events generated therein. This is useful to
debug OBD-II based applications being developed.

4.1 VEWE Server

The VEWE Server is the main Java application, being responsible for simulating
the behavior of a moving vehicle, its engine Electronic Control Unit (ECU),
and its location. For this endeavor it relies on different components: (1) Vehicle
Mobility Simulator, (2) Map Manager, (3) Engine ECU, and (4) an OBD-II
Emulator.

Concerning the Vehicle Mobility Simulator (1), this component is responsible
for simulating a real vehicle, and dynamically determining the value of all rel-
evant parameters, including those registered in the engine ECU. Among these
parameters we can find:



VEWE: A Vehicle ECU Wireless Emulation Tool 439

Fig. 4. VEWE OBD-II parameter management

– Speed: Updated according to the simulated vehicle speed.
– Engine RPM: Indicates the engine speed in terms of Revolutions Per

Minute at any time.
– Time: Registers the time since the simulation started.
– Gear: Registers the current gear being used by the vehicle.
– Engine Load: Percentage value indicating the current load of the engine.
– Throttle Position: Percentage value indicating the relative position of the

throttle pedal.
– Brake Position: Percentage value indicating the relative position of the

brake pedal.
– Latitude/Longitude: Register the current vehicle coordinates.

The Map Manager (2) retrieves the actual street map from the OpenStreetMap
platform [15], and provides a visual representation of the vehicle’s position; such
position is updated throughout time, and can be served to clients upon request.

Concerning the Engine ECU (3), it is a component used to store the value
of all relevant PIDs being simulated, and the values stored can be requested
through requests coming from the OBD-II interface. The VEWE Server also
provides an OBD-II PID management interface (see figure 4), which contains
a list of all parameters being simulated. From this interface it is possible to
manually manipulate all the parameters handled by the Engine ECU.

The attributes associated to each parameter are:

OBD-II PID. Identifies the PID parameter and has a length of 4 hexadecimal
digits, where the first two digits indicate the mode, and the following two
PID identifier.

Response ID. Indicates the response ID for that specific PID, usually by chang-
ing the first digit from "0" to "4" .



440 Ó. Alvear et al.

Value. Indicates the value of the PID at that time. When a new parameter is
introduced, this attribute indicates the default parameter value.

Name. Indicates the name or description of the PID.
Units. Specifies the unit associated to the PID value.
Length. States the size, in number of bytes, for each PID.
Min Value. Indicates the minimum value allowed for the PID.
Max Value. Indicates the maximum value allowed for the PID.
Formula. Indicates the formula used to transform the PID value into OBD-II

format.
Simulation Formula. Indicates the formula used for calculating the PID value

based on other PID values (if applicable).

Finally, regarding the Bluetooth OBD-II interface emulator (4), it is the com-
ponent is responsible for controlling the Bluetooth connection. In particular, it
creates and maintains the OBD-II Bluetooth connection, and registers all data
sent through the established Bluetooth channel. The registered data is split into
three parts:

1. Request: Shows the data requests received from clients.
2. Response: Displays the system responses returned to clients.
3. Logs: Registers important events related to the connection, such as connec-

tion status, missing codes, etc.

Besides the VEWE server application described above, our solution also includes
two Android components - GPSEmulator and OBDIICapture -, which have quite
different goals. These are described below.

4.2 GPSEmulator

Concerning GPSEmulator, it is used to emulate a (fake) location on Android
systems (see Figure 5.a). Basically it creates a service which retrieves simulated
geo-positioning data from the VEWE-Server via Bluetooth, and then injects
the simulated locations on the Android system; other sources of localization
data, such as GPS, WiFi or GSM-based triangulation, are disabled to avoid con-
flicts. This way the simulated coordinates are assumed as real by other running
applications.

The application interface is quite simple. When the service starts, the Blue-
tooth device connected to VEWE is selected for coordinate retrieval; when the
service is stopped, the Bluetooth connection to the VEWE server is closed, and
emulated georeferencing ends.

4.3 OBDIICapture

With regard to OBDIICapture (see Figure 5.b), it is a different Android compo-
nent designed to support the manual introduction of AT commands and OBD-II
PID requests, and through which data from a real Bluetooth OBD-II interface
is captured. It is useful to analyze the initial message exchange when using real



VEWE: A Vehicle ECU Wireless Emulation Tool 441

(a) GPS Emulator. (b) OBDIICapture.

Fig. 5. VEWE Android Components

OBD-II interfaces by providing a log service, and to validate the message output
of the VEWE server. In addition, it was also useful to measure the response
times and the maximum message rate in a real environment, allowing to tune
VEWE so as to achieve a similar behavior.

5 VEWE Implementation Details

VEWE was built using a layered architecture through which the different fea-
tures of the system become independent, allowing to tweak each of them inde-
pendently, thereby simplifying the development and maintenance of the system.

The VEWE server is a multithreaded system where separate threads are re-
sponsible for handling: (i) data generation, (ii) the graphical environment, and
(iii) Bluetooth communications. Communication between threads is achieved
through the shared variable paradigm, so that changes introduced by one thread
are automatically detected by other threads.

VEWE follows a client-server paradigm, where an Android-based client ap-
plication queries a Java-based server to retrieve the values of the different pa-
rameters stored in the emulated engine ECU (see figure 6). To this purpose it
relies on a Bluetooth connection between the client and the server, upon which
an OBD-II serial connection is established.

Below we provide details about the vehicle simulator, the emulation of GPS
coordinates, and the OBD-II parameter database.



442 Ó. Alvear et al.

Fig. 6. VEWE architecture

5.1 The Vehicle Simulator

The vehicle simulator is a key element in the VEWE Server, being responsible
for modeling vehicle mobility according to the user input, the vehicle charac-
teristics, and the terrain profile. To that purpose it relies on the acceleration
calculator module which, by taking into account the different forces affecting
the vehicle’s mobility - traction, friction, aerodynamic and gravity - determines
the acceleration value (see figure 7) using realistic vehicle dynamics. Based on
the acceleration value, it then updates the vehicle position on the map, as well
as the desired parameters on engine’s ECU (e.g. speed, RPM, gear).

Fig. 7. Overview of the vehicle simulator



VEWE: A Vehicle ECU Wireless Emulation Tool 443

Real-time updating of the vehicle position on the map provides the user with
a feeling of control over the simulated vehicle using the joystick available on
screen. Notice that, by modifying the vehicle characteristics element, different
types of vehicles can be modeled.

5.2 Emulating GPS Coordinates

The Map Manager component obtains updated vehicle coordinates from the
vehicle simulator described above. In particular, vehicle positions are updated
by taking as reference: (i) the current vehicle position, (ii) the orientation, and
(iii) the distance traversed; the latter is calculated by combining the vehicle’s
speed with the inter-sample times.

The Map Manager component is able to provide geopositioning information
to external applications through a Bluetooth channel. In our framework, we de-
veloped an Android application whose only purpose is to generate fake positions
based on the information retrieved from the Map Manager via Bluetooth (see
Figure 8). This application, called GPS Emulator, uses the mock location func-
tionality provided in the Android API to introduce the fake locations into the
system; to avoid interferences, it also cancels all other sources of localization
information, including GPS, WiFi, or cellular-based positioning. This way, all
running applications that register for localization services will receive the mock
locations generated by the VEWE Server Map Manager component.

By making the speed calculated using GPS coordinates match the speed value
returned by the OBD-II interface, we are able to provide consistent data to
application developers.

Fig. 8. Emulated position update procedure



444 Ó. Alvear et al.

5.3 Emulated OBD-II Interface

Providing an emulated OBD-II interface accessible via Bluetooth is one of the
main goals of the VEWE platform. The OBD-II interface emulator is able to
maintain a serial connection with a client, and adequately process AT commands
and PID requests as would occur when using real OBD-II devices.

In order to retrieve the actual PID values, the OBD-II layer communicates
with the Engine ECU element, responsible for storing and maintaining all PIDs
supported. The Engine ECU handles a data structure (see Figure 9) capable of
storing all the vehicle parameters (OBD-II Codes) as well as AT parameters.

The OBD-II interface emulator then converts the retrieved valuers to the
appropriate format for delivery through the serial port.

Fig. 9. Structure of the OBD-II parameter database

6 Conclusions

The evolution path towards sophisticated solutions in the ITS sector include
smartphone/vehicle integration approaches. Based on current technologies, such
approaches require smartphones to communicate with the vehicle’s ECU through
the OBD-II interface by relying on wireless connectors, typically Bluetooth-
based.

In the literature different solutions are starting to emerge that make use of
smartphone/vehicle integration using wireless OBD-II interfaces. However, de-
veloping such solutions is costly and time consuming, typically requiring several
test drives to properly debug and tune the functionality of the applications being
developed. In this paper we provide an efficient solution to this problem by intro-
ducing a platform able to emulate a Bluetooth-based OBD-II connection, along
with the GPS coordinates of the vehicle. To this aim we provide VEWE, which
is able to simulate the mobility of a vehicle controlled by a user using realistic
acceleration/deceleration dynamics, registering data in a simulated engine ECU
accordingly.



VEWE: A Vehicle ECU Wireless Emulation Tool 445

Overall, the proposed solution is expected to boost application development in
the ITS area, reducing the development effort and costs, and making it feasible
for developers without access to vehicles to develop this type of applications as
well.

Acknowledgments. This work was partially supported by the Ministerio de
Ciencia e Innovación, Spain, under Grant TIN2011-27543- C03-01.

References

1. International Organization for Standardization, ISO 14230-1:1999: Road vehicles,
Diagnostic systems, Keyword Protocol 2000 (1999)

2. Elm Electronics - Circuits for the Hobbyist, Obd to rs232 interpreter (2013)
3. Martinez, S., Meseguer, J., Zaldivar, J., Calafate, C., Cano, J.-C., Manzoni, P.,

Fogue, M., Martinez, F.: Smartphones as the keystone for leveraging the diffusion
of ITS applications. In: 9th ITS European Congress (2013)

4. Hawkins, I.: Torque: OBD2 Performance and Diagnostics for your Vehicle (2014),
http://torque-bhp.com/

5. Teng, H.-F., Wang, M.-J., Lin, C.-M.: An implementation of android-based mobile
virtual instrument for telematics applications. In: 2nd International Conference
on Innovations in Bioinspired Computing and Applications (IBICA), pp. 306–308
(2011)

6. Meseguer, J.E., Calafate, C.T., Cano, J.C., Manzoni, P.: Drivingstyles: A smart-
phone application to assess driver behavior. In: 2013 IEEE Symposium on Com-
puters and Communications (ISCC), pp. 535–540 (July 2013)

7. Zaldivar, J., Calafate, C., Cano, J.-C., Manzoni, P.: Providing accident detection
in vehicular networks through OBD-II devices and Android-based smartphones.
In: 2011 IEEE 36th Conference on Local Computer Networks (LCN), pp. 813–819
(2011)

8. Tahat, A., Said, A., Jaouni, F., Qadamani, W.: Android-based universal vehicle
diagnostic and tracking system. In: IEEE 16th International Symposium on Con-
sumer Electronics (ISCE), pp. 137–143 (2012)

9. Freematics, Freematics OBD-II Emulator (2013)
10. Briggs, G.: OBDSim (2013)
11. International Organization for Standardization, ISO 15765: Road vehicles, Diag-

nostics on Controller Area Networks (CAN) (2004)
12. SAE International - Vehicle Architecture For Data Communications Standards,

Class B Data Communications Network Interface (2006)
13. International Organization for Standardization, ISO 9141-2:1994/Amd 1:1996

(1996)
14. International Organization for Standardization, ISO 15031-6: Road vehicles – Com-

munication between vehicle and external equipment for emissions-related diagnos-
tics – Part 6: Diagnostic trouble code definitions (2010)

15. The OpenStreetMap Project (2014), http://www.openstreetmap.org/
16. Bluecove Team, Bluecove (2008), http://bluecove.org/

http://torque-bhp.com/
http://www.openstreetmap.org/
http://bluecove.org/

	VEWE: A Vehicle ECU Wireless Emulation Tool Supporting OBD-II Communication and Geopositioning
	1 Introduction
	2 Related Works
	3 The OBD-II Standard
	3.1 Communication Protocols
	3.2 Diagnostic Trouble Codes (DTCs)
	3.3 OBD Message Formats
	3.4 OBD-II PIDs

	4 VEWE: Vehicle ECU Wireless Emulator
	4.1 VEWE Server
	4.2 GPSEmulator
	4.3 OBDIICapture

	5 VEWE Implementation Details
	5.1 The Vehicle Simulator
	5.2 Emulating GPS Coordinates
	5.3 Emulated OBD-II Interface

	6 Conclusions
	References




