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Abstract. Sensor fusion brings the advantage of combining data from various 
sensors and there by generating a more accurate prediction or estimation of da-
ta. Over dependency of sensor and estimation from unreliable data are the most 
challenging tasks in mobile robotics. In this paper, a framework of sensor fu-
sion technique is presented. The data from the multiple sensors are fused to-
gether and the parameters and crash time are estimated. The experiment results 
show that the sensor fusion technique provides solution to over dependency of 
sensor and problems with estimation of data from unreliable data. The tech-
nique finds application in obstacle avoidance and localization of mobile robots.  

1 Introduction 

For an autonomous mobile robot, the most challenging task is the perception of the 
environment using sensors. In most of the cases the robots tend to depend heavily on 
dedicated sensors, which often tend to be unreliable. So, for autonomous robots in 
fault tolerant applications, sensor fusion techniques help to perceive the environment 
in a better way. 

Sensor fusion is a technique by which the data from multiple sensors are fused to-
gether to get an exact information. The fusion of sensor data can be from redundant 
sensors or complementary sensors. The simplest case of sensor fusion is to combine 
the data from the sensors, by averaging the sensor reading, if all the sensors have 
same belief. If the sensors have different belief, a weighted average would help to 
some extent. However, this simple combining of sensor data would not work, when 
the system is complex or requires a precise data.  

A range of sensor fusion techniques are reviewed in [1,4,6].  Over the years, many 
techniques of sensor fusion have been emerged. Kalman Filter and Extended Kalman 
Filter are the most researched technique in sensor fusion for robotic navigation [2,3].   

This paper focuses on a simple sensor fusion technique of redundant sensors (IR 
range finder), in which data from multiple sensors are fused together to determine the 
three parameters, namely perpendicular distance from center of robot to the wall, dis-
tance to the wall and angle between the horizontal axis of robot and obstacle wall. 
Another important parameter which needs to be considered in applications like ob-
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stacle avoidance is the crash time, the time left before crashing in to the wall or ob-
stacle. The crash time can be predicted from the current velocity and acceleration of 
robot and distance to the wall from the robot. Some application of the proposed me-
thod is also presented. 

The paper is organized as follows: section 2 describes the calibration of the IR 
range finder, followed by mathematical modelling of the system in section 3. The de-
sign of the proposed system is stated in section 4, followed by experimental results in 
section 5 and conclusion in section 6.  

2 Characterization of IR Sensor 

SHARP IR sensor (GP2Y0A02) is chosen as the range sensor. The output voltage of 
the sensor is a nonlinear function of the distance between the object and the receiver. 
The distance value depends on a non-linear way from the sensor analogical value. The 
best function to fit the sensor curve is given by the expression: ݕ ൌ  ஺௫௫ା஻ ൅  (1)                                                   ܥ

Where x is the analog voltage output from the sensor, y is the distance to the object 
from the sensor. 

Fig. 1 shows the real acquired values and the result of best fit that makes it possible 
to compute the distance, measuring the analogical Sharp's value. The best relation was 
obtained optimizing, on MATLAB, the sum of the quadratic error between the real 
acquired values and the fitting curve. The parameters A,B and C are optimised by 
MATLAB lsqcurvefit function. 

       

Fig. 1. Plot of distance Vs ADC volt after curve fitting by lsqcurvefit  function in MATLAB 
(Comparison between actual data and fit data) 

3 Mathematical Modelling 

xk and yk are the points on the line (wall), where the IR sensor beam gets reflected. 
The parameters of interest are d, ׎ and ݀௞, where d is the distance from the robot to 
the wall, ݀௞,  is the perpendicular distance from the origin of the robot to the wall and ׎ is the angle between horizontal axis of robot and axis parallel to the wall. 
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Fig. 2. Layout of sensor deployment ߙ and ߚ are the angle at which the IR sensors are mounted on the robot. ݌௞ is 
the depth to the wall from the robot measured by sensor k. a,b and c are the distances 
from the axes of robot to the sensors as shown in Fig. 2.The parameters can be de-
rived from the following expressions.  

൦ݔ௜ݔ௝ݕ௜ݕ௝൪=   ൦ ߙ݊݅ݏ 0 0 00 ߚ݊݅ݏ 0 00 0 ߙݏ݋ܿ 00 0 0 ൪ߚݏ݋ܿ כ   ൦݌௜݌௝݌௜݌௝൪ +  ቎ܾܽܿ
ܿ቏                         (2) 

ቂݕ௜ݕ௝ቃ=   ൤ ݔ௜ ௝ݔ1 1൨ כ   ቂ݉݊ቃ                                      (3) 

This is in the form of, ܻ ൌ ܨ כ ܺ ,     (4) 

Applying least square estimation (LSE) method to eq. (4)   ܺ ൌ ሺܨ ்ܨሻିଵ(5)                          ܻ ்ܨ ݀ ൌ ݊ െ ׎ (6)               ܿ ൌ tanିଵሺ ݉ሻ                    (7) ݀௞ ൌ ሺ݀ ൅ ܿሻ כ sinሺΠ 2⁄ െ  ሻ                                    (8)׎

From each pair of sensors the corresponding parameters can be calculated and 
these values can be represented as ݌௜௝௞, where i,j,k represents the parameter (d, ݀௞ or ׎), first sensor and second sensor respectively. The variables m and n represents slope 
and intercept respectively.  
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4 Design of Sensor Fusion System 

Fig. 3 shows the basic design of sensor fusion system adopted in the paper. The first 
step is preprocessing of the signal acquired from the sensor. In this stage, a series of 
sample are averaged to get an initial rough data. Using this data (݌௜ሻ, the parameters ሺ݌௜௝௞ሻ are calculated using eq. (1) – (8). These set of parameter have to be validated, 
for knowing the reliability of the sensors. At the data validation stage, the data is vali-
dated and a weighing factor ݒ௜௝௞ is calculated. The following sections will explain the 
stages in detail.  

 
Fig. 3. Sensor fusion system 

4.1 Data Validation 

Data from the sensors has to be validated before proceeding to sensor fusion. The data 
from the sensor is only allowed to fuse, if it confirms certain criteria. The criteria are 
correlation coefficient and closeness coefficient. Correlation coefficient is given by 
the expression,  ݎ݋ܥሺ݆, kሻ ൌ  ே ∑ ௉೔ೕೖ௉೔ೖೕ ష   ∑ ௉೔ೕೖ  ∑ ௉೔ೖೕబಿ   బಿబಿሾே ∑ ௉೔ೕೖమି బಿ ሺ∑ ௉೔ೕೖ  ሻమሿ బಿ భమ   ሾே ∑ ௉೔ೖೕమି బಿ ሺ∑ ௉೔ೖೕ  ሻమሿ బಿ భమ                   (9) ݎ݋ܥሺ݆, kሻ is the correlation of parameter ௜ܲ  , calculated from sensor j and sensor k 
and N is the number of samples. Closeness coefficient [5] is given by the expression, ߛ ൌ 1 െ ห ௉೔ೕି ௉ೕ೔ ห஼௟௢௦௘௡௘௦௦                                                   (10) 

Where ݏݏ݁݊݁ݏ݋݈ܥ is the parameter which allows choosing the data which are closer. 
When the new data (parameters) falls in a range, say magnitude of correlation coeffi-

cient is above 0.75 and closeness coefficient is less than 0.8, the data is selected. Other-
wise the data is rejected and not chosen for data fusion. This allows the system to 
choose only reliable sensor data by comparing with all the other sources. A weighing 
factor, ݒ௜௝௞ gives the weightage of each parameter, so that the corresponding parameter 
can either selected or rejected. This factor is calculated by the following expression ݒ௜௝௞ ൌ ൜0, ,1ݏ݈݂݅ܽ ܽ݅ݎ݁ݐ݅ݎܿ ݄݁ݐ ݂݋ ݕ݊ܽ ݂݅  ௜௝௞ݒ ݂݀݁݅ݏ݅ݐܽݏ ݁ݎܽ ܽ݅ݎ݁ݐ݅ݎܿ ݄݁ݐ ݄ݐ݋ܾ ݂݅ , will help to choose the most reliable parameters for fusion, calculated from 
different sensors. 
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4.2 Sensor Fusion 

The parameters which confirms the criteria of data validation are selected and fused 
together [7] by the following expression 

௜݂ ൌ ෍ ௝௞ଶߪ௞௝ଶߪ ൅ ߪ௞௝ଶ ௜௝௞௜ୀଷ,௝ୀ௡,௞ୀ௡݌ 
௜ୀ଴,௝ୀ଴,௞ୀ଴ כ     ௜௝௞                                    ሺ11ሻݒ

Where is the final parameter, ߪ௞௝ଶ  is the variance and ݌௜௝௞  is the parameter i, calcu-
lated from sensor j and k. 

 

Fig. 4. Flow chart of sensor fusion system 

Fig. 4 illustrates the process, step by step. For making the system faster, a variable 
N (period), is introduced to validate data on regular intervals, thereby avoiding the 
sensor validation process in each iteration. 

4.3 Prediction of Crash Time 

For autonomous robots, the time to crash is an important criterion. If robot can predict 
the crash time, it could avoid the obstacle by making the appropriate decision. The 
crash time can be predicted from the parameters estimated by sensor fusion. The crash 
time T, derived from basic laws of motion, is given by the expression 

 



390 R. Sharma, H. Daniel, and F. Dušek 

 

ܶ ൌ  െݒ േ ටݒଶ െ 2ܽሺ2ݖ כ tan Ø ൅ ݀ሻܽ                             ሺ12ሻ 

Where v, a and z represents velocity of robot, acceleration of robot and width of 
the robot respectively. 

5 Experimental Results 

Experiments were conducted using Arduino Due board and Sharp GP2Y0A02, IR 
range finders.  Three IR range sensors were fixed on the front side of the robot with 
a=0, b=10, c=10, α=0 and β=5 ̊. Three sets of parameters were calculated from the 
sensor readings. As a first step the IR sensor data were preprocessed by averaging a 
sample set of 10. This data was then validated by using the correlation coefficient 
threshold as 0.75 and closeness coefficient as 0.8. If the data fall in the range of the 
criteria, it was selected to fusion. Three sets of data were then fused together as ex-
plained in section sensor fusion.  

 

Fig. 5. Comparison of fused and non-fused data a) parameter d, b) parameter dk, c) parame-
ter ׎, where P(1,2) is the parameters calculated from sensor 1 and sensor 2, P(1,3) is the para-
meters calculated from sensor 1 and sensor 3 
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Several experiments were conducted by varying distances and angles. Fig. 5 shows 
the variation from actual data to fused and non-fused data from a series of experi-
ments. The fused data tends to follow more closely to actual data, compared to non-
fused data P(1,2) and P(1,3), which had larger variations. 

 

 

Fig. 6. Experiments with faulty sensors (Actual vs Observed and calculated variables) 

Experiments were also conducted by making one or more sensors faulty intention-
ally. Fig. 6 shows that even if sensor data is unreliable, the sensor fusion system is 
still able to estimate an accurate data. For example, in experiment 1, sensor 2 was 
made faulty and by fusing the data from all the three sensors, the system could reject 
the data from the sensor, identifying the reliability of sensor through data validation 
process, and estimate the data which was closer to the actual data. Crash time was al-
so predicted by measuring current velocity and acceleration of robot. 

It was noticed that, the proposed system performed better even in case of unreliable 
data from faulty sensors. Furthermore, the treat of over dependency of dedicated sen-
sors was also avoided to some extent, by making use of multiple sensors instead of 
dedicated sensor. This will allow the robots to perform better when working in un-
known dangerous environments. In another words the system works better where 
there is a requirement of fault tolerant system. 

The proposed system finds two applications in robotics. Firstly, in case of decision 
making during obstacle avoidance, where the parameter ׎, can be used to take a right 
decision. For example, if the ׎ is negative, the robot must take a LEFT turn and vice 
versa. The second application is localization of robot. The ׎ will give a better orienta-
tion estimate with the help of multiple sensor input. The approximation from multiple 
sensor input will give more accurate estimate of orientation of the robot.  

0

10

20

30

40

50

60

Sensor1 Sensor2 Sensor3 P(1,2) P(1,3) sensor 
fusion

A
ct

ua
l d

is
ta

nc
e 

(c
m

)

Raw data and processed data (cm)

Experiment 1, Robot at 40cm 
from wall and Ø =0 ̊

Experiment 2, Robot at 50cm 
from wall and Ø =0 ̊



392 R. Sharma, H. Daniel, and F. Dušek 

 

6 Conclusion 

The proposed system is modeled, simulated and tested in various environments. The 
results show that the system performs better by making use of multiple sensor inputs. 
The fusion of multiple sensor inputs allows the robot to work in fault tolerant applica-
tions. The system finds applications in obstacle avoidance decision making and loca-
lization (orientation estimate) of robots. When combined with absolute positioning 
sensors (GPS) or dead-reckoning sensors (IMU), the can be further extended to real 
world applications in robotics. 
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