
Representative Based Document Clustering

Arko Banerjee1 and Arun K. Pujari2

1 College of Engineering and Management, Kolaghat, WB, India
arko.banerjee@gmail.com

2 University of Hyderabad, Andhra Pradesh, India
arun.k.pujari@gmail.com

Abstract. In this paper we propose a novel approach to document clus-
tering by introducing a representative-based document similarity model
that treats a document as an ordered sequence of words and partitions it
into chunks for gaining valuable proximity information between words.
Chunks are subsequences in a document that have low internal entropy
and high boundary entropy. A chunk can be a phrase, a word or a part
of word. We implement a linear time unsupervised algorithm that seg-
ments sequence of words into chunks. Chunks that occur frequently are
considered as representatives of the document set. The representative
based document similarity model, containing a term-document matrix
with respect to the representatives, is a compact representation of the
vector space model that improves quality of document clustering over
traditional methods.

Keywords: document clustering, sequence segmentation, word segmen-
tation, entropy.

1 Introduction

Document clustering is an unsupervised document organization method that
put documents into different groups called clusters, where the documents in each
cluster share some common properties according to a defined similarity measure.
In most document clustering models similarity between documents is measured
on basis of matching with single words rather than matching with phrases. The
motivation of this paper is to bring the effectiveness of phrase based matching in
document clustering. Work related to phrase based document clustering that has
been reported in literature is limited. Zamir et al. [3][4] proposed an incremental
linear time algorithm called Suffix Tree Clustering (STC), which creates clusters
based on phrases shared between documents. They claim to achieve nlog(n)
performance and produce high quality clusters. Hammouda et al [5] proposed a
document index model which implements a Document Index Graph that allows
incremental construction of a phrase-based index of the document set and uses
an incremental document clustering algorithm to cluster the document set.

In this paper we introduce a representative based document clustering model.
The model involves three main phases: sequence segmentation, document rep-
resentation, and clustering. Let D be a set of documents containing documents

M.K. Kundu et al. (eds.), Advanced Computing, Networking and Informatics - Volume 1, 403
Smart Innovation, Systems and Technologies 27,
DOI: 10.1007/978-3-319-07353-8_47, c© Springer International Publishing Switzerland 2014



404 A. Banerjee and A.K. Pujari

d1, d2, ..., dr. Sequence segmentation begins with converting each document di
into an ordered sequence of words say si by removing stop-words and spaces
between words. Let S ← ⋃r

i=1 si and S =< e1, e2, .., eN >, where each ei is an
alphabet. Then parsing of the sequence S is performed using the entropy and
frequency measures to produce a set of chunks. The first phase is an essential
pre-processing method to gain valuable proximity information between words.
The document representation phase begins with identifying chunks that occur
frequently and are selected as representative chunks.The document set is then
represented as a term-document matrix where each document is represented by
a feature vector which contains metric scores such as binary score (presence or
absence of a term in the document), TF (i.e., within-document term frequency)
or TF.IDF with respect to the selected representatives. This phase reduces the
high dimensionality of the feature space, which in turn improves the clustering
efficiency and performance. In the final phase the target documents d1, d2, ..., dr
are grouped into distinct clusters by applying clustering algorithms on the term-
document matrix.To demonstrate the effectiveness of the model, we have run
our method on several datasets and found promising results.

The rest of this paper is organized as follows. Section 2 describes boundary en-
tropy and frequency as sequence segmentation measures. Section 3 explains our
proposed unsupervised sequence segmentation algorithm that we implemented
in the first phase of our model. Section 4 introduces the concept of representative
based document clustering method with a toy example which is implemented in
the second and third phases. Section 5 provides the detailed experimental eval-
uation of our method with other existing algorithms. Finally, some concluding
remarks and directions of future research are provided in Section 6.

2 Boundary Entropy and Frequency as Segmentation
Measures

A successful sequence segmentation algorithm seeks to maximize the unpre-
dictability between subsequences or chunks. To do that, alphabet that succeeds
and alphabet that precedes a chunk, should have their unpredictability maxi-
mized with respect to the chunk. The boundary entropy of a chunk is a measure
that expresses the magnitude of unpredictability at its end boundary and hence
we measure the boundary entropies of each chunk and its reverse chunk to predict
both boundaries.

To find boundary entropy of all the chunks and reverse chunks in S of length
less than equal to n, an ngram TRIE of depth n + 1 is generated by sliding a
window along the sequence S. Let w1

i,j =< ei, ei+1, ..., ej > represents a chunk

of length n starting and ending at ith and jth position in S, respectively, where
1 ≤ i < j ≤ N and j−i ≤ n−1 . Also let w2

i,j =< ej , ej−1, ..., ei > represents the

corresponding reverse chunk of the said chunk w1
i,j . A chunk or a reverse chunk

in S is represented by a node of the TRIE consisting of two frequency fields. For
example, in Fig. 1 a TRIE with depth 2 is generated using the sequence {e a b
c a b d}. Every chunk and the reverse chunk of length 2 or less in the sequence



Representative Based Document Clustering 405

is represented by a node in the tree. The right and left frequency fields represent
frequencies of the chunk and the reverse chunk, respectively. For example, the
chunk {a b} and the reverse chunk {b a} occurs twice. The reverse chunk {a c}
occurs once but the chunk {a c} does not occur. Let a node nk represents the
frequencies of a chunk and a reverse chunk in S by f1

k and f2
k , respectively. If nk

has m children, then they would be denoted by nk,1, ..., nk,m having frequencies
f t
k,1, ..., f

t
ki,m, respectively, where t = 1, 2.

Fig. 1. Two way TRIE structure of the sequence {e a b c a b d}

The conditional probability of an alphabet succeeding/preceding a chunk is
measured by the frequency of the alphabet succeeding/preceding the chunk di-
vided by the frequency of the chunk, which we denote by Pr(nt

kh) = f t
kh/f

t
k, t =

1, 2. The boundary entropy of the chunk/reverse chunk is then the summation of
entropy of the conditional probabilities of all such succeeding/preceding alpha-
bets, which we denote by H(nt

k) = −∑m
h=1 Pr(nt

kh) logPr(nt
kh) , t = 1, 2. For

example, the node a as a chunk in Fig. 1 has low entropy equal to 0 because it
has only one child b. Hence there is a chance that {a b} forms a chunk. Whereas
{b} as a chunk with high entropy equal to 1.0 has a high chance of being the
end of a chunk. Therefore we expect the segmented sequence as { e a b* c a b*
d }, where * denotes the end of a chunk. Again {b} as a reverse chunk has an
entropy equal to 0 hence high chance of{b a} to form a reverse chunk. Whereas
{a} as a reverse chunk has an entropy equal to 1.0 hence a high chance of being
the end of a reverse chunk. Therefore after combining forward and backward
segmentation the expected segmented sequence should be {e #a b*c#a b*d},
where # denotes the end of a reverse segment.

By sliding a window of length n along a sequence, where n varies from 2
(chunks with one alphabet not considered) to a maximum window size, say W (<
depth of the TRIE), each position in the sequence receives separate (W − 1)
boundary entropy values for chunks and for reverse chunks. We maintain a final
boundary score at each position by adding all (W − 1) boundary entropy values
separtely for chunks and for reverse chunks and we call them the forward entropy
score and backward entropy score, respectively. Let the forward entropy score
and backward entropy score are denoted by H1

j and H2
j for a position j in S,

respectively. Then Ht
j ← ∑

1≤i,0<j−i≤(W−1)H(Find Trie Node(wt
i,j)), t = 1, 2



406 A. Banerjee and A.K. Pujari

and 1 < j ≤ N . Here the Find Trie Node function returns the node of the TRIE
that represents wt

i,j . We will utilize the said scores to predict word boundaries
in our segmenation algorithm described in section 4. In the following we derive
the frequency information of chunks in the sequence to perform segmentation.

We make an effort to determine the boundary between two consecutive chunks
by comparing frequencies of the chunks with subsequences that straddle the
common boundary. We explain the situation using the following example. Fig.
2 shows a sequence of ten alphabets W O R D 1 W O R D 2 that represents
two consecutive words WORD1 and WORD2. The goal is to determine whether
there should be a word boundary between ”1” and ”W”. Let us assume that
at an instance a window of length 10 contains the words and it considers a hy-
pothetical boundary in the middle that is between WORD1 and WORD2. To
check whether the boundary is a potential one we count the number of times
the two chunks (words WORD1 and WORD2) are more frequent than subse-
quences inside the window of same length that straddle the boundary. Fig. 2
shows four possible straddling subsequences of length five. For example, fre-
quency of one of the straddling subsequence 1WORD should be low compared
to WORD1 or WORD2, since WORD2 has less chance of occurring just after
WORD1. We maintain a score that is incremented by one only if WORD1 or
WORD2 are more frequent than that of 1WORD. So, if both possible chunks
are higher in frequency than a straddling subsequence, the score to the hypo-
thetical boundary location is incremented twice. In our algorithm we consider
a window of length 2n, where n varies from 2 to the maximum length W . A
window of length 2n has its hypothetical boundary separating alphabets at nth

and (n + 1)th positions, hence number of straddling subsequences across the
boundary would be (n− 1). Therefore, by comparing all (n− 1) straddling sub-
sequences with both chunks inside the right and left windows the boundary
location receives total 2(n − 1) scores.To normalize the scores of different win-
dow length we average the scores by dividing it with 2(n− 1). The final score at
each location is then the sum of all (n− 1) average scores contributed by chunks
inside the window having length of 2 to W . The final score at each location
of the sequence, which we call the frequency score, measures the potentiality of
the location to be a word boundary and is utilized by segmentation algorithm
in section 4. Let the frequency score at jth position in S using a window of
length 2n(2 ≤ n ≤ W ) is denoted by Fj . If a straddling sequence starts in-
side the window from the kth position in S, then Fj can be written as Fj ←
∑W

n=2(
∑j

k=j−n+2(δFreq(Find Trie Node(w1
k,k+n−1))<Freq(Find Trie Node(w1

j−n+1,j))
+

δFreq(Find Trie Node(w1
k,k+n−1))<Freq(Find Trie Node(w1

j+1,j+n))))/2(n−1),

where δTRUE = 1 and δFALSE = 0. Here Freq function returns the frequency
of a node in the TRIE.

In most iterations the window may partially contain two consecutive actual
words of different length or it may contain one of the two actual words, where
in both cases the words or part of words contained by the window contribute
properly to the boundary score. For a long window the left and right windows



Representative Based Document Clustering 407

Fig. 2. Detection of word boundary by comparing frequencies of WORD1 and WORD2
with all four possible straddling subsequences of length five

would contain many consecutive actual words. In that case, like all straddling
subsequences across the boundary, the consecutive words in the left and right
windows would occur mostly once in the sequence. So they would contribute
almost nothing to the boundary score. As window length is increased after a
certain length, the contribution becomes mostly zero, which is a kind of getting
rid of window-size parameter. In the following section we explain the segmen-
tation algorithm that segments an input sequence using boundary entropy and
frequency scores.

3 The Sequence Segmentation Algorithm

The segmentation method implements three segmentation scores at jth position
in S namely, forward entropy score H1

j , backward entropy score H2
j and fre-

quency score Fj (derived in section 2) to perform three separate segmentations
of S say, SS1

ent, SS
2
ent and SSfreq, respectively . Instead of taking threshold

values from the user the method cuts the text at locations that have locally
maximum segmentation scores. We implemented entropy scores and frequency
scores separately to perform segmentation of sequences, and discovered that
chunking is more robust if both entropy and frequency works together.Therefore
the segmentation method combines all the three segmented sequences into a fi-
nal consensus sequence. Cuts that are common in all three segmentations are
considered to be very accurate but less in number. To get moderate number
of accurate cuts the segmentation method considers cuts that are common in
at least two segmentations. We will call the segmentation method the Con-
sensus Segmentation using Entropy and Frequency (CSEF) algorithm. If SS is
denoted as the final segmentation of the sequence S derived by CSEF, then
SS ← (SS1

ent ∩SS2
ent)∪ (SS1

ent∩SSfreq)∪ (SS2
ent∩SSfreq). In the following we

compare CSEF with an existing sequence segmentation algorithm using a Toy
example.

The CSEF algorithm is a linear time sequence segmentation algorithm that
requires the maximum window length as the only input parameter. The CSEF
algorithm is a robust unsupervised algorithm that works without the help of
an existing lexicon and performs good even for small input document set. We
compare CSEF with the Voting Experts (VE) algorithm of Cohen et al [1].
The VE algorithm is a linear time one way sequence segmentation algorithm
that detects chunks by giving voting scores for each location in the sequence by



408 A. Banerjee and A.K. Pujari

maintaining a TRIE structure. In the following, we compare the performances
of CSEF and VE with an example.

Input: Miller was close to the mark when he compared bits with segments.
But when he compared segments with pages he was not close to the mark. his
being close to the mark means that he is very close to the goal. segments may
be identified by an information theoretic signatures. page may be identified by
storage properties. bit may be identified by its image.
Output of VE: Mi*lle*rwas*close*tot*he*ma*rk*whe*nhe*co*mpa*re*dbi*ts*
wi* thse*gmen*ts*But*whe*nhe*co*mpa*re*dse*gmen*ts*wi*thpa*ge*she*was
*not*close *tot*he*ma*rkhi*sbe*ingc*lose*tot*he*ma*rkme*ans*that*he*isve*
ryclose *tot*he*goa*lse*gmen*ts*ma*ybe*ide*nti*fie*dbya*ni*nfo*rmati*ont*
he*ore*ti* csi *gnat*ure*spa*ge*ma*ybe*ide*nti*fie*dbys*tora*ge*pro*pe
*rtie*sbi*tma*y be*ide *nti*fie*dbyi*tsi*mage
Output of CSEF: Mill*er*was*close*to*the*mark*when*he*compar*ed* bitswit
h* segments*But* when*he*compa*red*segments*with*page*she*was*not*clo
se* to*the*mark*his*bei*ng* close*to*the*mark*me*an*stha*the*isvery*close
* to*the*goal*segments*may*beid*ent*ifi*ed by*an*inf*or*ma*tion*the*oretic
*si*gn*atures*page*may*beid*ent*ifi*edby*st*or*age*prop*er* ti*es*bit*may
*beid*ent*ifi*edby*itsimage

Overall the output of CSEF shows better performance than that of VE. In
experimental section we show that though VE performs better when the input
document is large in size, the CSEF outperforms VE over most of the bench-
marks. We have also compared (but not reported) results of CSEF with another
improved version of VE called Bootstrap Voting Algorithm (BVE) by Cohen
et al [2]. We found that BVE does not perform better than CSEF for most of
the datasets, whereas BVE suffers from higher space and time complexity due
to maintaining a knowledge tree as another voting expert. In the next section
we introduce the concept of Representative based Document Clustering, where
we implement CSEF to perform document clustering and explain it with a toy
example.

4 Representative Based Document Clustering

We implement CSEF algorithm to find word segmentation to perform document
clustering. The frequency fields in TRIE are updated with normalized frequencies
of chunks. Chunks occurring more than mean frequency are marked as repre-
sentatives of the document set. Representative chunks may represent stems of
important terms(words or phrases) derived unsupervisely. By sliding the repre-
sentatives along each document we compute the corresponding feature vector
and gradually form the term-document matrix. A clustering algorithm is imple-
mented on the term-document matrix to group the documents {d1, d2, ..., dr}
into clusters. We explain the document clustering method with a toy example.
Here input documents and their outputs are separated with semicolons.



Representative Based Document Clustering 409

A Toy Example
Input(set of documents formed from the input of section 3): Miller was close
to the mark when he; compared bits with segments. But when he; compared
segments with pages he was not; close to the mark. his being close to; the mark
means that he is very close to; the goal. segments may be identified by an;
information theoretic signatures. page may; be identified by storage properties.
Bit; may be identified by its image.;

Representatives found after chunking by CSEF:
close; to; the; mark; when; he; segments; page; may; beid;
Given K=3, Output of K-means:

Cluster1: compared bits with segments. But when he; compared segments with
pages he was not; Cluster 2: the goal. segments may be identified by an; be
identified by storage properties. bit; may be identified by its image; information
theoretic signatures. page may;Cluster 3: Miller was close to the mark when he;
close to the mark. his being close to; the mark means that he is very close to;

In the following experimental section we produce the performance of our clus-
tering method on some large datasets.

5 Experiments

In this section, we present an empirical evaluation of our representative based
document clustering method in comparison with some other existing algorithms
on a number of benchmark data sets[11][10].The results of only four document
datasets are recorded as for most of other datasets we got almost similar results.
The first five columns of Table 1 summarize the basic properties of the data sets.
To compare the performances of CSEF with VE, F1 score[13] is used to determine
quality of segmentation from both methods. The F1 score is the harmonic mean
of precision and recall and reaches its best value at 1 and worst score at 0. In
the 6th and 7th column of Table 1 F1 scores of VE and CSEF are recorded,
respectively. The results show that CSEF achieves better performance on all the
four data sets.

Table 1. Detailed description of datasets along with comparison of VE and CSEF

Data Source points words classes F1 score of VE F1 score of CSEF

Tr31 TREC 927 10128 7 0.58 0.71

Tr41 TREC 878 7454 10 0.55 0.68

Tr45 TREC 690 8261 10 0.56 0.68

re0 Reuters-21578 1504 2886 13 0.52 0.61

The datasets considered in the experiment have their class labels known to
the evaluation process. To measure the accuracy of class structure recovery by a
clustering algorithm we use a popular external validity measure called Normal-
ized Mutual Information (NMI) [12]. The value of NMI equals 1 if two clusterings



410 A. Banerjee and A.K. Pujari

are identical and is close to 0 if one is random with respect to the other. Thus
larger values of NMI indicate better clustering performance. We have chosen
K-means and Cluto, by Ying Zhao et al. [9], as our document clustering al-
gorithms. In table 2 CSEF-Cluto and CSEF-Kmeans denote our representative
based clustering model with Cluto and Kmeans, respectively. In most of the cases
number of representatives chosen by CSEF is half the number of the words in
the document set. We compare our results with four other document clustering
algorithms namely, Clustering via local Regression (CLOR)[6], Spectral cluster-
ing with normalized cut (NCUT)[7], Local learning based Clustering Algorithm
(LLCA1) and its variant (LLCA2)[8]. The NMI performances of the four algo-
rithms are taken from the paper ”Clustering Via Local Regression, by Jun Sun
et al. [6] and are verified. The output of the algorithms depends on a parameter
k, which they have mentioned as neighbourhood size. By drawing NMI/k graphs
they have provided the outcomes that we recorded numerically in Table 2. max
and avg in Table 2 means maximum and average NMI values attended in the
range of k=5 to 120, respectively. For re0 data, only the best result they have
recorded which happened for k=30.

Table 2. Comparison of performances of clustering algorithms

tr41 (max/avg) tr45(max/avg) tr31(max/avg) re0 (for k=30)

LLCA1 0.63/0.62 0.61/0.55 0.53/0.5 0.3905

LLCA2 0.63/0.6 0.61/0.53 0.53/0.47 0.3847

NCUT 0.64/0.6 0.57/0.55 0.53/0.45 0.4030

CLOR 0.66/0.64 0.65/0.61 0.57/0.5 0.4302

Cluto 0.6751 0.6188 0.6410 0.3753

CSEF-Cluto 0.7390 0.7338 0.6512 0.4134

Kmeans 0.33 0.31 0.28 0.15

CSEF-Kmeans 0.38 0.38 0.28 0.22

Table 2 shows that K-means does not give satisfactory results when applied
alone but with CSEF quality of results improve. Generally in practice, Cluto
produces very good results compared to other algorithms. But it performs even
better when associated with CSEF, which demonstrates the effectiveness of rep-
resentative based similarity approach to document clustering. Here we see that
CSEF-Cluto outperforms other algorithms for most of the datasets.

6 Conclusions and Future Work

In this paper, we proposed a new approach to document clustering which is
based on a representative based similarity concept that uses the idea of consen-
sus sequence segmentation. Experimental results on many data sets show that
our method together with a good clustering algorithm improves the quality of
the result and outperforms other well known clustering algorithms. In the future,



Representative Based Document Clustering 411

we want to do a deeper analysis on the underlying reason for good performance
of our algorithm and also to understand when it fails to give good results. We
are also looking for comparing our method with other phrase-based algorithms.
A more sound concept we need to develop that would resist in generating unnec-
essary small segments. We will also try to automatically detect optimum window
size in CSEF to make it fully automatic.

References

1. Cohen, P., Adams, N., Heeringa, B.: Voting experts: An unsupervised algorithm
for segmenting sequences. Journal of Intelligent Data Analysis (2006)

2. Hewlett, D., Cohen, P.: Bootstrap Voting Experts. In: IJCAI, pp. 1071–1076 (2009)
3. Zamir, O., Etzioni, O.: Web Document Clustering: A Feasibility Demonstration.

In: Proc. 21st Ann. Int’l ACM SIGIR Conf., pp. 45–54 (1998)
4. Zamir, O., Etzioni, O.: Grouper: A Dynamic Clustering Interface to Web Search

Results. Computer Networks 31(11-16), 1361–1374 (1999)
5. Hammouda, K., Kamel, M.: Efficient Phrase-Based Document Indexing for Web

Document Clustering. IEEE Trans. Knowl. Data Eng. 16(10), 1279–1296 (2004)
6. Sun, J., Shen, Z., Li, H., Shen, Y.: Clustering Via Local Regression. In: Daelemans,

W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI),
vol. 5212, pp. 456–471. Springer, Heidelberg (2008)

7. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

8. Wu, M., Scholkopf, B.: A local learning Approach for Clustering. In: Advances in
Neural Information Processing Systems, vol. 19 (2006)

9. Zhao, Y., Karypis, G.: Empirical and Theoretical Comparisons of Selected Criterion
Functions for Document Clustering. Machine Learning 55, 311–331 (2004)

10. Lewis, D.D.: Reuters-21578 text categorization test collection,
http://www.daviddlewis.com/resources/testcollections/reuters21578

11. TREC: Text REtrieval Conference, http://trec.nist.gov
12. Strehl, A., Ghosh, J.: Cluster Ensembles - A Knowledge Reuse Framework for

Combining Multiple Partitions. Journal of Machine Learning Research 3, 583–617
(2002)

13. Van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Dept. of Computer Science,
University of Glasgow (1979)

http://www.daviddlewis.com/resources/testcollections/reuters21578
http://trec.nist.gov

	Representative Based Document Clustering
	1 Introduction
	2 Boundary Entropy and Frequency as Segmentation Measures
	3 The Sequence Segmentation Algorithm
	4 Representative Based Document Clustering
	5 Experiments
	6 Conclusions and Future Work
	References




