
Model-Based Testing

Malte Lochau1, Sven Peldszus1, Matthias Kowal2, and Ina Schaefer2

1 TU Darmstadt, Germany
{malte.lochau,sven.peldszus}@es.tu-darmstadt.de

2 TU Braunschweig, Germany
{kowal,schaefer}@isf.cs.tu-bs.de

Abstract. Software more and more pervades our everyday lives. Hence,
we have high requirements towards the trustworthiness of the software.
Software testing greatly contributes to the quality assurance of mod-
ern software systems. However, as today’s software system get more and
more complex and exist in many different variants, we need rigorous and
systematic approaches towards software testing. In this tutorial, we, first,
present model-based testing as an approach for systematic test case gen-
eration, test execution and test result evaluation for single system testing.
The central idea of model-based testing is to base all testing activities
on an executable model-based test specification. Second, we consider
model-based testing for variant-rich software systems and review two
model-based software product line testing techniques. Sample-based test-
ing generates a set of representative variants for testing, and variability-
aware product line testing uses a family-based test model which contains
the model-based specification of all considered product variants.

1 Introduction

Software more and more pervades our everyday lives. It controls cars, trains and
planes. It manages our bank accounts and collects our personal information for
salary or tax purposes. It comes to our homes with smart home technology in our
fridges or washing machines which get increasingly connected with the Internet
and personal mobile devices. Because of the ubiquity and pervasiveness of mod-
ern software systems, we have high requirements towards their trustworthiness.

Software testing greatly contributes to the quality assurance of modern soft-
ware systems [55,41]. In general, testing is a partial verification technique as it
only checks a software system on a selected set of inputs, while formal meth-
ods, such as model checking or program verification, allow a complete verifica-
tion by considering all possible system runs. One major advantage of software
testing over formal methods, however, is that testing can be performed in the
actually runtime environment of the software, including all hardware and pe-
ripheral devices, while formal methods usually abstract from certain details.
However, today’s software system get more and more complex. They exist in
many different variants in order to satisfy changing environment conditions,

M. Bernardo et al. (Eds.): SFM 2014, LNCS 8483, pp. 310–342, 2014.
c© Springer International Publishing Switzerland 2014

Model-Based Testing 311

such as user, technical or legal requirements. Hence, in order to ensure safety-
critical, business-critical or mission-critical requirements, we need rigorous and
systematic approaches for software testing.

In this tutorial, we, first, present model-based testing as an formal approach
for dynamic functional testing of single systems [54]. The central idea of model-
based testing is to base all testing activities on an executable formal test model
of the expected system behavior. The test model can be used for test case gen-
eration, for test case execution and and for test result evaluation. In main ad-
vantages of model-based testing over classical manual testing activities is that
test cases can be derived in a systematic and automatic fashion from the test
models with defined coverage metrics. Furthermore, model-based testing allows
the automation of test execution and test result evaluation by comparing the
actual test results with the expected results expressed in the test model. When
software evolves, the test models allow regression test selection by automatic
change impact analysis on the test models. After an introduction of the general
notions of model-based testing, we introduce the formal notions of model-based
input/output conformance testing.

Second, we consider model-based testing for variant-rich software systems [50],
in form of software product lines. Testing software product lines is particularly
complex because the number of possible product variants is exponential in the
number of product features. Hence, it is generally infeasible to test all product
variants exhaustively. We review two model-based software product line testing
techniques which can be used in combination to facilitate efficient testing of
variant-rich software systems. First, sample-based testing allows to automatically
generate a set of representative variants which should be tested instead of testing
all possible product variants. Second, we present variability-aware product line
testing which uses a family-based test model which contains the model-based
specification of all considered product variants and define the notion of product
line conformance testing.

This tutorial is structured as follows. In Sect. 2, we introduce the key notions
and concepts of (software) testing. In Sect. 3, the principles of model-based
testing techniques are described together with a formalization of model-based
input/output conformance testing following Tretmans [54]. In Sect. 4, we extend
the model-based testing principles to software product lines and describe two
recent techniques for variability-aware product line testing. Sect. 5 concludes
the tutorial.

2 Foundations of Software Testing

Generally speaking, (software) testing deals with the quality assurance of a (soft-
ware) product. The IEEE defines the purpose of testing as

[...] an activity performed for evaluating product quality, and for
improving it, by identifying defects and problems [17].

312 M. Lochau et al.

Specification SUT

Test Case Design Test Case Execution

Tester

I

O

Platform Environment

Fig. 1. General Setting of Software Testing

It characterizes the testing activity itself as

[...] the process of operating a system or component under specified
conditions, observing or recording the results, and making an evaluation
of some aspects of the system or component [17].

Thus, the notion of testing comprises any kind of activity explicitly aiming at
ensuring quality requirements a software product must meet. This includes ar-
bitrary activities and properties somehow relevant for the product quality goals.
Hence, a wide range of testing approaches exists, differing in the methods ap-
plied and the test aims pursued. For instance, a testing method may be either
static, e.g., systematic code inspections, or dynamic by means of experimental
executions of the system under test (SUT).

The general setting for conducting (dynamic) tests on an SUT is illustrated in
Fig. 1. In each test case execution, the SUT is run by a Tester under controlled
environmental/platform conditions by stimulating accessible inputs I and ob-
serving the expected output behaviors O of the SUT. The Tester might be a
real person, a virtual process, e.g., a test script for test automation etc. The
category of dynamic testing is often further subdivided into active testing, i.e.,
real executions are enforced under experimental input sequences I and passive
testing, e.g., by just monitoring output behaviors of the system under operation.
According to Tretmans, the actual aspects to be observed as outputs during test
case execution depend on the charateristics under considertion.

(Software) testing is an activity for checking or measuring some qual-
ity characteristics of an executing object by performing experiments in
a controlled way w.r.t. a specification [54].

Therefore, the design principles for appropriate test cases depend on those as-
pects under consideration. In particular, characteristics to be investigated by
testing may be

– functional, i.e., related to some behavioral aspect expected from the system,
e.g., by means of (visible) actions,

Model-Based Testing 313

– extra-functional, i.e., concerning robustness, performance, reliability, avail-
ability etc. of (software) functions as well as

– non-functional, i.e., massively depending on the (hardware) platform, e.g.,
energy consumption, resource consumption etc.

We concentrate on test case design for finding functional errors. This may include
finding errors in all parts of the system potentially interacting with the software.
Test case executions perform determined sequences of input actions (stimuli)
together with sequences of output actions expected from the SUT as defined by
the system specification The resulting test verdict denotes whether the actual
product reaction conforms to this expected behavior. The following notions are
used in the literature for situations in which a test case execution fails [55].

– A failure is an undesired observable behavior of an SUT.
– A fault in an SUT causes a failure, e.g., by reaching a human/software error,

hardware defects etc., during test execution.
– A (software) error is a logical error in the implementation of a requirement

thus potentially leading to a fault.

A software is erroneous if it fails to satisfy its requirements. Hence, an imple-
mentation is tested against the requirements, which are either represented in an
informal, e.g., textual, or in a formal way, e.g., a formal specification such as a
test model [55].

Depending on the development phase in which test cases are applied onto an
implementation, test cases are to be defined according to the current represen-
tation of the implementation available. For instance, test cases may be applied
to an abstract implementation model, to implementation code fragments run-
ning on a hardware emulator, as well as to the final software fully deployed
onto the target platform. Summarizing, we use the following characterization of
(dynamic) software testing.

Definition 1 (Software Testing). Software testing consists of the dynamic
validation/verification of the behavior of a program on a finite set of test cases
suitably selected from the usually infinite input/execution domain against the
expected behavior.

This definition essentially reflects the notion proposed in [55]. Applying testing
as a verification technique is often considered as a counter part to formal ver-
ification techniques such as model checking. Both approaches can be opposed
as follows. Testing allows a partial, i.e., incomplete verification of the correct-
ness of an implementation with respect to a specification and thus constituting
a heuristic verification method. The implementation can be tested at any level
of abstraction as long as it is executable. In particular, tests can be applied
to the final system implementation including any factor potentially influencing
the software such as hardware components etc. Furthermore, testing can be per-
formed by engineers at any skill level in a totally informal and pragmatic way. In
contrast, formal verification permits a complete verification of the correctness of
an implementation with respect to a specification. The implementation must be

314 M. Lochau et al.

represented by means of a formal abstraction of the real implementation. Hence,
the major challenges when applying formal methods like model checking are (1)
to ensure an implementation to be a valid refinement of the verified abstraction,
(2) scalability issues, and (3) ensuring correctness of the verification tools. Both
methods have advantages and disadvantages, thus complementing rather than
excluding each other.

The goal of software testing is to design and apply test suites for a software
product under test. Test suites contain a set of test case specifications. In practice,
the design of a test suite consists of selecting sample input data for the SUT,
where the concrete test derivation techniques and test case representation depend
on several factors, e.g., the test method, e.g., static, dynamic testing, the test
aim, e.g., functional, non-functional tests, the test scale, e.g., unit, component,
integration, system tests, and the information base, e.g., black box, white box,
gray box tests. The test scale corresponds to the level of abstraction considered
in particular development phases where the test cases are applied. In addition,
the actual testing technique heavily depends on the information base available
for the system under test, e.g., accessibility to the implementation source code
and platform details. Thus, black box tests comprise, e.g., combinatorial testing
strategies and model-based testing as both solely consider the I/O interface
of the system under test. In white box testing, the source code and further
implementation details are fully accessible, whereas in gray box testing only
some of those details, e.g., an architectural description, are available.

The quality of a test suite, e.g., with respect to the reliability of the verification
results obtainable from a test suite execution is estimated by means of adequacy
criteria. Those criteria define metrics not only to measure the suitability of a
test suite, but also to guide the test case selection process, e.g., by constitut-
ing test end criteria for test case generation algorithms. For instance, structural
coverage criteria constitute the most widespread notion for measuring test suite
adequacy. Those criteria require test cases of a test suite to sufficiently traverse
structural elements, i.e., test goals, either located in a (test) model representa-
tion, or in the code under test. Therefore, either an explicit coverage of control
flow constructs like statements, decision structures, loops, and entire paths, or
implicit coverage of data flows, e.g., by means of def-use coverage is enforced.
Closely related to structural coverage criteria are data coverage criteria requiring
appropriate coverage of the input data space, e.g., one-value, boundaries, equiva-
lence classes, random-value, and all-values. Furthermore, combinatorial coverage
criteria over input value domains are frequently used, e.g., pairwise, T -wise for
a constant T and N -wise coverage for a variable N . Further adequacy and test
selection criteria are based, e.g., on fault-models capturing well-known typical
implementation faults, on mappings of test cases to requirements and scenarios,
on explicit test case specification languages, and statistical methods for random
generation of test data.

For further details on principles and practices of (software testing), we re-
fer to interested reader, amongst others, to the classical text books on soft-
ware testing of Myers [41] and Beizer [6], to the Dagstuhl Tutorial on formal

Model-Based Testing 315

foundations of model-based testing by Broy et al. [9] and recent standardiza-
tions from industries [17,18,56]. Here, we limit our considerations to dynamic
testing of functional characteristics at component-level based on model-based
black-box knowledge in the following. This testing discipline is usually referred
to as model-based input/output conformance testing.

3 Model-Based Testing

In this section, we provide an introduction into the fundamental concepts of
model-based testing and review a formal approach to model-based input/output
conformance testing initially introduced by Tretmans [54].

3.1 Fundamentals and Concepts

In model-based testing, a test model serves as a specification of the implemen-
tation under test (cf. Fig. 1). Depending on the model-based testing practices
applied, test models may provide a comprehensive basis for any activity during
the testing processes including test case derivation, test coverage measurement,
test case execution, test result evaluation, and test reporting [55]. In combination
with appropriate test interfaces and tool support, model-based software testing
campaigns are executable in a more or less fully automated way once a (val-
idated) test model specification, as well as a well-defined testing interface are
available.

Definition 2 (Model-Based Testing [55]). Model-based testing is the au-
tomation of black box tests.

The implementation under test to constitutes a black box solely offering prede-
fined input/output interfaces for the tester to interact with the system during
testing. Beyond that, nothing is known about the internal implementation de-
tails and the computational states, data structures, hardware usage etc., during
(test) executions.

In model-based testing, the test model constitutes an explicit, but usually
highly abstracted representation of all behavioral aspects being relevant for
the system implementation to behave correctly. Therefore, formalisms used for
test modeling should offer natural notions and artifacts apparent in the testing
method, e.g., a concept for test case specifications that makes distinctions be-
tween input and output behaviors and that allows the identification of test goals
covered by test executions. Concerning functional testing, we are, in particular,
interested in capturing the dynamics of a system, i.e., in test models that define
the behavior of a system under test. Therefore, a test model should provide a
finite representation of the potentially infinite execution domain of a software
system under test, e.g., by means of high-level modeling languages such as state
machines and other behavioral models as, e.g., defined by the UML [55]. There-
upon, the modeling language under consideration must incorporate a rigorous,
accurate formalization together with a precise operational semantics that allows

316 M. Lochau et al.

for a clear definition of behavioral conformance of experimental executions of an
SUT with respect to the expected behavior.

Testing in general constitutes a semi-formal, pragmatic approach for soft-
ware verification/validation. The representative executions performed on the
SUT may be designed ad hoc. In contrast, model-based conformance testing
relies on formal specifications by means of formalized test models. Hence, the
purpose of behavioral conformance testing is to compare the intended and the
actually implemented behaviors and to decide whether they differ only up to
some degree of confidence [55]. Recent literature on the formal foundations of
conformance testing provides corresponding conceptual frameworks to denote
testing principles by means of notions known from formal operational semantics
and behavioral equivalences [54]. In general, verifying the correctness of a (soft-
ware) system implementation i with respect to a formal behavioral specification
s requires to verify an implementation relation

i � s

to hold between both, where � denotes the particular equivalence relation under
consideration for behavioral conformance [16]. Intuitively, this notation denotes
the implementation i to be correct if it shows the same set of behaviors as permit-
ted by the specification s. The formal semantics ��� for characterizing those sets
of behaviors depends on the representation and comparability of the specifica-
tion s and the implementation i as well as the relation � under consideration. In
many cases, it is sufficient, or even only possible, to establish a preorder relation

i � s

to hold between an implementation and a specification, i.e., requiring the set of
behaviors of the implementation to be included in the set of specified behaviors.
In that sense, implementation i is correct if it shows at most the sets of (visible)
behaviors as specified in s. When applying model-based testing as a verification
technique, the specification s is given as a test model, e.g., represented as a state
machine model. Correspondingly, a conformance relation

i conforms s :� �i� � �s�

is established between the implementation and test model specification in the
context of model-based testing.

Considering model-based testing, i constitutes a black box, i.e., the internal
structure of the implementation under test is unknown to the tester. Thus, the
verification of the behavioral conformance requires to relate a black box, i.e., a
monolithic object solely offering an I/O interface that hides any internal details
of the system under test, with a formal test model represented by abstract mod-
eling entities, e.g., in terms of algebraic objects. In addition, even if an exhaustive
testing campaign has been successfully executed on the implementation under
test, no guaranteed statements about the correctness of the implementation can
be stated as test result confidence and reproducibility depends on the inter-
nal properties of the implementation, e.g., whether non-deterministic behaviors

Model-Based Testing 317

are potentially apparent. To overcome this mismatch, Bernot was the first to
propose i to represent an (imaginary) implementation model i to be assumed
for establishing a conformance relation conforms between a test model and a
black box SUT [7]. This way, both the implementation i and the specification
s share the same semantic domain defined by �i� and �s�, respectively. Based
on Bernot’s abstract framework, this idea was later adopted, amongst others,
by Tretmans for formalizing model-based testing frameworks with concrete test
modeling formalisms under consideration [54].

The definition of behavioral conformance by means of (implicit) behavioral
inclusion relation conforms between SUT i and specification s constitutes an
intentional characterization of model-based testing. In contrast, extensional de-
scriptions make use of the class U of all possible external observers (tester)
explicitly comparing particular observable behaviors of i with those of s, i.e.,

i conforms s :� �u � U : obs�u, i� 	 obs�u, s�.

We now give instantiations of both kinds of characterizations of behavioral con-
formance in terms of the ioco relation and a respective test case derivation
algorithm as proposed by Tretmans [54].

3.2 A Formal Approach to Model-Based Testing

Formal approaches to I/O conformance testing abstract from the concrete syn-
tax of (high-level) test modeling languages. Instead, labeled transition systems
(LTS) are used constituting a well-established semantic model for discrete, event-
driven reactive control systems. To serve as test model specification for I/O con-
formance testing, the special sub class of input/output labeled transition systems
is considered in the following [9]. A labeled transition system specifies system
behaviors by means of a transition relation
� Q� act�Q defined over a set
Q of states and a label alphabet act of actions. In case of I/O labeled transition
systems, the set act � I
 U
 �τ� of actions is subdivided into disjoint subsets
of controllable input actions I, observable output actions U and internal actions
summarized under the special symbol τ � �I
U �.

Definition 3 (I/O Labeled Transition System). An I/O labeled transition
system is a tuple �Q, q0, I,U,�
�, where Q is a countable set of states, q0 � Q
is the initial state, I and U are disjoint sets of input actions and output actions,
respectively, and �
� Q� act�Q is a labeled transition relation.

By LT S�act� we denote the set of LTS defined over label alphabet act. Each
computation of a system specified by an LTS refers to some path

q0
μ1�
 s1

μ2�
 s2
μ3�
 � � �

μn�1���
 sn�1
μn��
 sn

of the state-transition graph starting from the initial state q0. Please note that
we often identify an LTS s with its initial state q0 in the following. The be-
havior of a computation is defined by the trace σ � μ1μ2 � � �μn � act �, i.e.,

318 M. Lochau et al.

the respective sequence of actions occurring as transition labels in the computa-
tion. The following notations for LTS trace semantics are frequently used in the
literature [54].

Definition 4 (LTS Trace Semantics). Let s be an I/O LTS, μi � I
 U
 �τ�
and ai � I
 U.

s
μ1���μn����
 s � :� �s0, . . . , sn : s � s0

μ1�
 s1
μ2�
 � � �

μn��
 sn � s�

s
μ1���μn����
 :� �s� : s

μ1���μn����
 s �

�s
μ1���μn����
 :� �s� : s

μ1���μn����
 s �

s
ε
�� s� :� s � s� or s

τ ���τ���
 s�

s
a
�� s� :� �s1, s2 : s

ε
�� s1

a�
 s2
ε
�� s�

s
a1���an�� s� :� �s0, . . . , sn : s � s0

a1�� s1
a2�� . . .

an�� sn � s�

s
σ
�� :� �s� : s

σ
�� s�

�s
σ
�� :� �s� : s

σ
�� s�

The set of traces of an LTS s is defined as

Tr�s� :� �σ � �I
 U �� � �s� � Q : q0
σ
�� s��.

To illustrate the notions and concepts of I/O conformance testing based on LTS,
we consider as our running example a simple vending machine.

Example 1. The graphical representation of an LTS is illustrated in Fig. 2 denot-
ing different behavioral specifications of a vending machine for beverages, where
I � �1e, 2e� and U � �coffee, tea�. By convention, transition labels referring
to input actions are prefixed by “ ? ” and outputs actions by “ ! ”. Each vending
machine accepts different types of coins as inputs and (optionally) returns a cup
of coffee and/or tea. The trace semantics of the different specifications are given
as

– Tr�q1� � �?1e, ?1e�!coffee, ?1e�!tea�,
– Tr�q2� � �?1e, ?2e, ?1e�!coffee, ?1e�!tea, ?2e�!coffee, ?2e�!tea�,
– Tr�q3� � �?1e, ?2e, ?1e�!coffee, ?2e�!coffee�,
– Tr�q4� � �?1e, ?2e, ?1e�!coffee, ?2e�!tea�,
– Tr�q5� � �?1e, ?2e�,
– Tr�q6� � �?1e, ?1e�!coffee�,
– Tr�q7� � �?1e, ?1e�!coffee�,
– Tr�q8� � ��,

where � denotes concatenation as usual.

According to the test assumption formulated by Bernot [7], we require both
a test model specification s as well as an implementation i, i.e., the SUT, to
be represented by LTS models, i.e., s, i � LT S�act�. We further restrict our
considerations to LTS being image finite and with finite τ -sequences [54].

Model-Based Testing 319

?

(a)

?

(b)

?

(c)

?

(d)

?

(e)

?

(f)

?

(g)

(h)

Fig. 2. Sample LTS Vending Machine Specifications

320 M. Lochau et al.

?

?

? , ? ? , ?

? , ?

(a)

?

 δ

δ δ

(b)

Fig. 3. Adapted Sample LTS Vending Machine Specifications

Due to the black-box setting of model-based testing, the internal structure
of LTS i is unknown. However, as the SUT is assumed to never reject any in-
puts from the environment/tester, we require i to be at least input-enabled thus
constituting a so-called I/O transition system as follows.

Definition 5 (I/O Transition System). An LTS is input-enabled iff for ev-
ery state s � Q with q0 ��� s and for all a � I it holds that s

a
��.

This property is usually referred to as weak input-enabledness as it only requires
a system s to eventually react on inputs a � I in every reachable state s� after
potentially performing arbitrary many internal τ -steps. By

IOT S�I,U � � LT S�I
U �

we denote the sub class if (weak) input-enabled LTS over alphabet act � �I
U �.

Example 2. None of the sample LTS shown in Fig. 2 is (weak) input enabled. A
canonical construction to achieve input-enabledness for a given specification is
illustrated in Fig. 3(a) adapting the sample LTS in Fig. 2(a).

For every input action a � I, additional transitions s
a�
 s are introduced for

states s � Q if �s� : s
a
�� s�. This way, every input is accepted in every possible

state without causing any additional behavior.

Based on LTS trace semantics, a simple conformance relation might be formu-
lated in terms of traces inclusion, i.e.,

i conforms s :� Tr�i� � Tr�s�.

However, this definition fails (1) to refuse trivial implementations showing no
behaviors (cf. Fig. 2(h) and Fig. 2(e)) and (2) to take the asymmetric nature of
LTS traces with input/output actions into account. Both aspects are explicitly
addressed by the concept of observational input/output conformance (ioco).

Model-Based Testing 321

The intentional characterization of observational conformance is based on
the notion of suspension traces [54]. For an implementation i to conform to a
specification s, the observable output behaviors of i after any possible sequence of
inputs must be permitted by s. For this to hold, the set out�P � of output actions
enabled in any possible state p � � P of i reachable via a sequence σ, denoted
P � p after σ, must be included in the corresponding set of s. To further rule out
trivial implementations i never showing any outputs, the concept of quiescence
by means of a special output action δ is introduced to explicitly permit the
absence (suspension) of any outputs after an input.

Definition 6. Let s be an LTS, p � Q, P � Q and σ � �I
 U ��.

– init�p� :� �μ � �I
 U � � p
μ
�
�,

– p is quiescent, denoted δ�p�, iff init�p� � I,
– p after σ :� �q � Q � p

σ
�� q�,

– out�P � :� �μ � U � �p � P : p
μ
�
�
 �δ � �p � P : δ�p��,

– Straces�p� :� �σ � � �IS
 US
 �δ��� � p
σ�

��� where q
δ�
 q iff δ�p�.

If not stated otherwise, we assume a given LTS to be implicitly enriched by tran-
sitions q

δ�
 q for all quiescent states q with δ�p�. Action δ may be interpreted
as observational quiescence, i.e., if δ is observed, then the system awaits some
input to proceed. We write actδ � �act � �τ��
�δ� as a short hand for the set of
visible actions including quiescence.

Example 3. By adding δ-transitions to quiescent states in the sample LTS spec-
ifications in Fig. 2, we are able to define the specified behaviors in terms of their
suspension traces. For instance, in Fig. 3(b) the resulting LTS for q1 is shown,
where we have

Straces�q1� � �δ, ?1e, δ�?1e, ?1e�!coffee, ?1e�!coffee � δ, . . .�.

This way, we are now able to further discriminate the behaviors of the different
specifications, e.g., ?1e�δ � Straces�q6�, whereas ?1e�δ � Straces�q7�

As described in Sect. 3.1, A behavioral conformance relation conforms to hold
between implementation i and specification s requires the inclusion of all ob-
servable behaviors of i in those of s. When applying a conformance relation
conforms the input/output conformance relation ior by means of suspension
trace inclusion, we obtain the following definition.

Definition 7 (I/O Conformance). Let s � LT S�I
U � and i � IOT S�I,U �.

i ior s :� �σ � act �δ : out�i after σ� � out�s after σ�.

Thus, input/output conformance i ior s ensures for every state reachable in i
via a trace σ to (1) show at most those outputs as permitted by respective states
in s reachable via σ and (2) to be quiescent iff a quiescent state is reachable in
s via σ. Note that in case of deterministic behaviors, p after σ contains at most
one element for all traces σ.

As a direct consequence of the definition of I/O conformance, we obtain a
preorder correspondence between i and s as follows.

322 M. Lochau et al.

Lemma 1. Let s � LT S�I
U � and i � IOT S�I,U �. Then it holds that

i ior s � Straces�i� � Straces�s�.

Hence, input/output conformance requires that the reaction of i to every possible
environmental behavior σ is checked against those of s independent of the fact
whether a proper reaction to σ is actually specified in s. In practice, conformance
testing is usually limited to positive cases. I.e., only for those behaviors which
are explicitly specified in s, the corresponding reaction of i has to be checked for
behavioral input/output conformance (ioco).

Definition 8 (IOCO [54]). Let s � LT S�I
U � and i � IOT S�I,U �.

i ioco s :� �σ � Straces�s� : out�i after σ� � out�s after σ�.

Again, from i ioco s it follows that i shows at most the behaviors that are
specified in s. But, in contrast to ior, i may show arbitrary reactions for those
behaviors not specified in s. As a consequence, Lemma 1 does not hold for ioco
and we obtain the following correspondence.

Lemma 2. ior � ioco.

Example 4. Again, consider the sample LTS specifications in Fig. 2 assuming δ-
transitions to be added to quiescent states. Investigating the observable behavior
for the possible environmental stimuli σ �?1e and σ� �?2e, this leads to

– out�q1 after σ� � �coffee, tea�, out�q1 after σ�� � ��
– out�q2 after σ� � �coffee, tea�, out�q2 after σ�� � �coffee, tea�,
– out�q3 after σ� � �coffee�, out�q3 after σ�� � �coffee�,
– out�q4 after σ� � �coffee�, out�q4 after σ�� � �tea�
– out�q5 after σ� � �δ�, out�q5 after σ�� � �δ�
– out�q6 after σ� � �coffee�, out�q6 after σ�� � ��
– out�q7 after σ� � �coffee, δ�, out�q7 after σ�� � ��
– out�q8 after σ� � ��, out�q8 after σ�� � ��.

For instance, assume that q6 is adapted to be weak input-enabled, then it holds
that q6 ioco q7, but not vice versa due to the additional quiescent state of q7.
Similarly, we have q2 ioco q1 as no behavior for !2e in q2 is specified in q1, thus,
leaving open implementation freedom in q2. In contrast, q1 ioco q2 does not hold
as q1 shows quiescent behavior for !2e which is not permitted by q2.

Although the set of suspension traces which has to be verified on i for establishing
ioco to some s is now limited to Straces�s�, this set is, however, still potentially
infinite making input/output conformance verification impracticable. The set of
suspension traces under consideration is further restricted to (finite) sub sets
F � act �δ and the resulting restricted ioco-relation is denoted as

i iocoF s :� �σ � F : out�i after σ� � out�s after σ�,

where ior � iocoact�δ
and ioco � iocoStraces�s� holds.

Model-Based Testing 323

The notions considered so far constitute intentional characterizations of be-
havioral input/output conformance. In addition, an extensional characterization
of ioco is given by means of test cases t, i.e., observer processes derivable from
a specification s and applicable to SUT i such that

i passes t :� obs�i, t� 	 obs�s, t�.

In order to define the interaction of a test case t with SUT i during test case ex-
ecution in a formal way, test cases are also represented as I/O labeled transition
systems. In particular, considering a specification s � LT S�I,U � and a corre-
sponding SUT i � IOT S�I,U �, the domain T EST � LT S�U, I � contains those
test cases derived from s and applied to i for verifying input/output conformance
of i with respect to s. Due to the asymmetric nature of communication between
I/O-labeled LTS, the input and output alphabets are reversed in t � T EST
compared to those of s and i. In addition, the special input action Θ � U
 I
represents the counterpart of δ, i.e., when observed during test case execution,
Θ denotes the occurrence of a quiescent state in i.

Definition 9 (Test Case). A test case t is an LTS such that

– t is deterministic and has a finite set of traces,
– Q contains terminal states pass and fail with init�pass� � init�fail� � �

and
– for each non-terminal state q � Q either (1) init�q� � �a� for a � I or (2)

init�q� � U
 �Θ�

holds.

Thus, each test case corresponds to a suspension trace of s such that in every
test step, i.e., a transition in t, either (1) one particular input is stimulated in
i, or (2) every possible output potentially emitted by i is accepted (including
quiescence). If an unexpected output is observed, termination state fail is im-
mediately entered and, otherwise, termination state pass is eventually reached
after a finite sequence of (alternating) test steps. An algorithm for deriving test
cases t from specifications s after a transformation into a respective suspension
automaton can be found in [54].

Example 5. Consider the test case in Fig. 4(a) derived from specification q1 in
Fig. 2(a). For an implementation i to pass this test case, it has to accept the
input !1e and then either to return a coffee, or a tea as output, whereas no
output, i.e., quiescence Θ, is an erroneous behavior. In contrast, the test case
in Fig. 4(b) is derived from q7 in Fig. 8(c) permitting coffee as well as nothing
as outputs after inserting 1e as input. Thus, this test case is, e.g., capable to
distinguish implementations complying q7 from those complying q6 for which no
quiescence is allowed after inserting 1e.

A test suite T � T EST is a finite set of test cases. The following properties have
been proven to hold for input/output conformance testing based test suites T
designed on the basis of suspension traces [54].

324 M. Lochau et al.

!

 θ

pass pass fail

(a)

!

 θ

pass fail pass

(b)

Fig. 4. Sample Test Cases for the Vending Machine

Theorem 1. Let s � LT S�I
 U �, i � IOT S�I
 U � and F � Straces�s�.
Then it holds that

1. any derivable test case t � T EST is sound, i.e., i ioco o implies that i passes
t and

2. the set T EST of all derivable test cases is exhaustive, i.e., i ioco o if i
passes all t � T EST .

Based on this fundamental concept of formal input/output conformance, various
enhanced results, e.g., concerning compositionality properties of ioco [8], as
well as extensions to ioco concerning advanced system characteristics, e.g., real
time [52] and hybrid behaviors [43] have been proposed.

4 Model-Based Testing of Software Product Lines

Until now, we assumed an SUT to constitute a monolithic software system with
predefined and fixed amount of functionality. However, modern software sys-
tems usually expose various kinds of diversity, e.g., due to extensible config-
urability [50]. The corresponding software implementations comprise families of
similar, yet well-distinguished software product variants. Software product line
engineering [12] is a well-established paradigm for concisely engineering those
kinds of variant-rich software implementations including strategies for efficiently
testing families of similar product variants under test.

4.1 Software Product Line Engineering and Testing

A software product line constitutes a configurable software system built upon
a common core platform [12]. Product implementation variants are derivable
from those generic implementations in an automated way by selecting a set of
domain features, i.e., user-visible product characteristics, to be assembled into
a customized product variant. Software product line engineering defines a com-
prehensive process for building and maintaining a product line. During domain

Model-Based Testing 325

engineering, a product line is designed by (1) identifying the set of relevant do-
main features within the problem space and (2) by developing corresponding
engineering artifacts within the solution space associated with a feature (combi-
nation) for assembling implementation variants for feature selections. During do-
main engineering, logical dependencies between features further refine the valid
configuration space by restricting combinations of features. For instance, domain
feature models provide an intuitive, visual modeling language for specifying the
configuration space of a product line [27] (cf. Sect. 4.2).

Features not only correspond to configuration parameters within the problem
space of a product line, but also refer (to assemblies of) engineering artifacts
within the solution space at any level of abstraction. For instance, concerning the
behavioral specification of variable software systems at component level, mod-
eling approaches such as state machines are equipped with feature parameters
denoting well-defined variation points within a generic product line specification
including any possible model variant [11]. This way, explicit specifications of
common and variable parts among product variants within the solution space
allow for a systematic reuse of engineering artifacts among the members of a
product family.

Also testing is considered an integral part of software product line engineering.
Reusable test artifacts, e.g., variable test models and test cases designed during
domain engineering are applied to those SUT assembled for the respective prod-
uct variants under test during application engineering. McGregor was one of the
first to provide a systematic overview of how to adopt recent testing notions and
activities to product line engineering [37]. He identified different scopes under
consideration in SPL testing, namely the entire SPL, a particular product, as well
as individual assets, i.e., feature components and their integration. In order to
facilitate large-scale reuse of test artifacts among product variants when testing
an SPL, common test artifacts can be organized as SPL artifacts as well. In [38],
McGregor et al. further elaborate reuse potentials in SPL testing by proposing
SPL testing approaches explicitly taking variability among products under test
into account. A first survey on product family testing approaches is given by
Tevanlinna et al. [53]. The authors focus on the adoption of regression testing
principles for variability-aware testing collections of similar products. The ap-
plication of model-based testing principles to SPL testing was first mentioned
in [42] as well as in [49]. In [46], Oster et al. provide a survey on SPL testing
approaches focusing on model-based testing. Further comprehensive surveys on
recent SPL testing approaches can be found in [20] and in the mapping study
provided in [40].

The general setting for the (model-based) testing of a product line is illus-
trated in Fig. 5 extending the previous setting for single system testing in Fig.1.
Testing a product line implementation with n possible product variants against
a product line specification essentially requires to verify that

ik conforms sk, 1 � k � n,

holds, i.e., to test every individual product implementation variant ik against
its corresponding specification variant sk. As the number n of product variants

326 M. Lochau et al.

Product Line
Specification

Product Line
Implementation

Under Test

Test Case Design Test Case Execution

Tester

I

O

Platform Environment

P1
Specification

P1
SUT

P2
Specification

Pn
Specification

11

P2
SUT

Pn
SUT

.

Fig. 5. General Setting of Product Line Testing

grows exponentially with the number of features, this product-by-product
approach is, in general, infeasible. In addition, due to the high degree of similar-
ity and corresponding (specification and implementation) artifact reuse potentials
among the different variants, repetitive exhaustive test modeling, test suite deriva-
tion and test execution for every particular variant causes lots of redundant efforts.
To cope with those challenges, different product line testing strategies have been
proposed in the literature and are explained in the following.

Reusable Product Line Test Model. In contrast to (re-)modeling every product
variant test model specification anew from scratch, a reusable product line test
model is built that (virtually) comprises every possible model variant. Those
model elements that are common to all members of the product line become
part of every test model variant, whereas variable elements are only mapped
into those model variants for which they are relevant. One of the most common
approaches for reusable product line test modeling are so-called 150% specifica-
tions, where all common and variable elements are part of one model whose set
of elements constitutes a superset of the test model variants. The projection of
a particular test model variant from a 150% model is done, e.g., by adding ex-
plicit annotations to the variable elements by means of selection conditions over
feature parameters [14], or by defining implicit behavioral restrictions by means
of modal specifications combined with deontic logics [4,3,2]. Hence, a product
line test model comprises two parts, i.e., (1) a configuration model, e.g., given
by a domain feature model (cf. Sect. 4.2) defining the valid product space of the
product line under test and (2) a 150% test model, e.g., by means of a modal I/O
labeled transition system (cf. Sect.4.3). Based on a 150% test model, a product
line may be tested product-by-product without re-modeling every variant anew.

Model-Based Testing 327

However, to also reduce the efforts for test suite derivations and executions,
further strategies have been proposed.

Sample-based Product Line Testing. In this strategy, only a representative subset
of variants is considered for which product-specific test suites are generated,
whereas those variants that are unselected remain untested. Various coverage
criteria and subset selection heuristics have been proposed, e.g., inspired by
combinatorial testing [33,25,44,13,47,23,29,24].

Regression-based Product Line Testing. In this strategy, only those test cases are
generated anew for a variant under test that are not reusable from a previously
tested variant. The required test case reuse analysis is similar to change impact
analysis techniques known from regression testing [53,19,34]. Again, every single
variant has to be considered to guarantee a complete product line test coverage.

Family-based Product Line Testing. In this strategy, a test suite is derived from
a 150% test model rather than from the test model variants. This way, each
test case is connected to the subset of product variants for which it is valid. A
complete test coverage of a product line is achievable without considering any
particular product variant [11].

In this tutorial, we will focus on two approaches for model-based product line
testing. In Sect. 4.2, we present a technique for sample-based product line testing
using a domain feature model for selecting a representative product subset under
test, and in Sect. 4.3, a family-based approach for variability-aware product line
test modeling and test suite design is presented based on modal input/output
LTS specifications.

4.2 Sample-Based Software Product Line Testing

The domain model (sometimes referred to as variability model) plays a pivotal
role in software product line engineering plays, because it contains information
about the product features and its dependencies. A common representation for
the domain model are feature models (FM), which are usually created during
a (feature-oriented) domain analysis [15,27]. In Fig. 6, we show an exemplary
feature model of a vending machine where features refer to different drinks or
payment methods. A feature model is a hierarchical structure, where features
can be selected in a top-down manner. Different constraints can be modeled
for the contained features: First, each feature can be optional (denoted by the
white bullet, e.g. Tea) or mandatory (denoted by the black bullet, e.g. Coffee).
Second, features may be used for grouping (e.g. feature Beverage) and contain
no functionality themselves. Additionally, we can specify group constraints on
sibling features, like alternative and or groups. Alternative-features are mutually
exclusive and cannot be selected for the same variant, whereas or-features have
no upper bound. Finally, we can express dependencies between features using
cross-tree constraints, which are expressed by propositional formulas.

328 M. Lochau et al.

Vending
Machine

Beverage

Coffee Tea

Restock
Cups Coins

1€ 2€

Change

Fig. 6. Domain Feature Model of Vending Machine SPL

In most cases, features are developed and tested separately by several teams.
But even if we assume that they work without errors for themselves, it is not
assured that they still work error-free after an integration of several features
into a larger system. Such erroneous and unexpected behavior is referred to as
feature interaction (FI). One of the most promising techniques to detect feature
interactions is sample-based combinatorial interaction testing (CIT), because is
uses the domain feature model to derive a small number of variants which have to
be tested. This set of product variants is supposed to cover relevant combinations
of features. The sample-based product line testing technique is subdivided into
three steps:

1. Create the feature model
2. Generate a subset of variants based on the FM, covering relevant combina-

tions of features
3. Apply single system testing to the selected variants

One method for CIT is pairwise testing, which tries to cover all combinations
of two features by the selected set of variants and is able find FIs between
two features. To this end, both features must be present, not present and only
one must be present in at least one tested variant to fulfill the pairwise testing
criterion. It is possible to cover combinations of one, three, four, five and six
features as well, but there exists a trade-off between computation time and test
coverage. The higher t (where t is the number of features), the higher is the test
coverage, but also the computation time to find a corresponding set of product
variants [30] and the resulting number of product variants to be tested. Pairwise
testing detects about 70% of all errors in a system (3-wise 95% error detection).

The selected set of products to be tested is also called covering array. Gen-
erating covering arrays is equivalent to the set covering problem which is a
NP-complete decision problem in combinatorics. We explain the problem in the
following by means of a small example. Given a set S with S � �a, b, c, d, e�. S is
divided into several subsets M � ��a, b, c� , �b, d� , �c, d� , �d, e��, which represent
valid product configurations. The challenge of the set covering problem is to

Model-Based Testing 329

find the minimal number of sets in M that cover the complete set of S. In our
example, the solution is L � ��a, b, c� , �d, e��.

However, this approach requires that all product variants are already known.
Since, the number possible solutions in a FM grows exponentially with the num-
ber of features, it is almost impossible to compute all valid variants before [25].
Even finding a single valid variant in a large feature model is equal to the NP-
complete Boolean Satisfiability Problem (SAT). Luckily, we are mostly dealing
with realistic FMs. Actual customers should be able to configure the FM of the
SPL in a decent amount of time. No company would introduce a FM, where a
customer needs thousands of years to select a valid variant. Mendonca et al. [39]
proved the efficient satisfiability of realistic FMs with additional cross-tree con-
straints.

Chvátal’s Algorithm (1979). One of the first heuristic greedy algorithms to solve
the set covering problem was developed in 1979 by Chvátal [10]. The algorithm
does not calculate the optimal solution. It is also not yet specialized for product
variant selection.

The algorithm is divided into four separate steps. The solution, i.e., the set
cover, is stored in the set L which is empty at the beginning. The set M contains
the set of possible subsets Mi. The algorithm selects the set M � with the highest
number of uncovered elements. This set is added to the solution L and removed
from all sets Mi. The algorithm terminates if there are no more elements to
select.

1. Step: Set L � �
2. Step: If Mi � �,� i, i � �1, 2, ..., n� Stop. Else find M �, where number of

uncovered elements is maximized
3. Step: Add M � to L and replace each Mi by Mi �M �

4. Step: Jump to Step 2

The worst case is if M only consists of subsets with different elements so that
the algorithm must add each subset to L and L �M holds at the end.

Adaptation of Chvátal’s Approach to FMs. Johansen et al. [25,26] have done an
extensive amount of research in adapting and improving the original algorithm
of Chvátal for product variant selection on the basis of FMs. In the following,
we explain their algorithm shown as Algorithm 1.

Initially, the algorithm needs an FM as input. All possible t-tuple combi-
nations of features are generated and written into the set S. This set includes
invalid tuples as well. For, e.g. t � 2, all combinations of two features are present
in S after the first step. After the creation of a new empty product configuration
k (line 3), the algorithm iterates through all tuples in S and tries to add the tuple
p � S to the configuration k. This is only possible, if the configuration stays valid
with the selected tuple with respect to the feature model. The validity check is
done by a standard SAT-Solver. As a result, the configuration grows, and the set
S shrinks, since covered tuples are removed from S. A configuration k is added

330 M. Lochau et al.

input : arbitrary FM
output: t-wise covering array

1 S � all t-tuples
2 while S � � do
3 k � new and empty configuration
4 counter � 0
5 foreach tuple p in S do
6 if FM is satisfiable with k � p then
7 k � k � p
8 S � S� �p�
9 counter � counter � 1

10 end
11 end
12 if counter 	 0 then
13 L� L � (FM satisfy with �k�)
14 end
15 if counter < # of features in FM then
16 foreach tuple p in S do
17 if FM not satisfiable with p then
18 S � S� �p�
19 end
20 end
21 end
22 end

Algorithm 1. Adaptation of the algorithm for FMs

to the final solution L (line 13) in case that at least one tuple is contained. A
configuration is extended with other features, e.g., mandatory features, in order
to generate a valid product variant for the feature model based on the tuples in
k (cf. "FM is satisfiable with k").

The variable counter in the last loop makes sure that all invalid t-tuples
are removed from S at some point during computation. This point has been
identified by empirical studies. It would be inefficient, e.g., to remove the invalid
feature tuples at he beginning, because the SAT-Solver must check too many
valid tuples [25].

The vending machine example (see Fig.6) has exactly 12 valid configurations.
The covering array for t � 2 contains only six variants (see Table 1). Even in such
small FMs, we are able to save 50% time for tests with the help of sample-based
product line testing.

Improved algorithm ICPL. ICPL is one of the most advanced and efficient algo-
rithms for computing a t-wise covering array. It is based on the above algorithm
with several logical and technical improvements. The main goal is to find all
valid tuples to be covered by the t-wise covering array as fast as possible since
checking invalid tuples slow the whole process down. Single satisfiability checks

Model-Based Testing 331

Table 1. Covering array for the vending machine

Feature�Product 0 1 2 3 4 5

Coffee X X X X X X
Beverage X X X X X X
2e X X X X
Change X X
Tea X X X
Restock Cups X X X
1e X X X X X X
Coins X X X X X X
Vending Machine X X X X X X

for each tuple are not efficient to identify invalid tuples. ICPL takes advantage
of the property that a covering array of strength t is a subset of an array with
strength t � 1, which is proved in [26]. The algorithm calculates all t-wise cov-
ering arrays 1 � n � t, where n, t � N, at first. This step improves the overall
tuple covering process and provides an earlier identification of invalid tuples
(see [25] for more detailed information). In one iteration, one t-tuple is covered
after the other. ICPL uses the knowledge that an already covered tuple cannot
be added to the current configuration with another assignment of the features
which means that t-tuples with other assignments for the contained features can
be skipped instantly. The skipped tuples must not be deleted from the set, since
they may be valid in another configuration. Likewise, if all features of the FM
are already contained in the current configuration, it is not possible to add any
other tuple. All remaining tuples can be skipped for this iteration.

The parallelization of the algorithm allows shortening the computation time
significantly. With respect to the number of CPU cores, the original t-sets are
split up and equally divided over the cores. It is done in several points in ICPL,
e.g., for finding invalid t-tuples. The whole computation time of ICPL is almost
inversely proportional with the number of cores due to high parallelism.

To provide an impression of the computation time of ICPL and the size of
the computed covering array, Table 2 shows the results for four larges FMs in
terms of the number of features and the number of constraints. The largest FM
with nearly 7000 features is one version of the popular Linux kernel. Instead
of testing millions or billions of variants, we only need to test the 480 product
configurations, which are calculated by the ICPL algorithm for the Linux kernel.
The computation time with roughly nine hours is quite fast.

Further Improvements to Feature Interaction Coverage. The main goal of sample-
based software product line testing is to identify errors caused by feature
interactions. The standard CIT methods, as decried above, use all t-tuple com-
binations for features to ensure a 100% coverage of the FM. It is possible to
be more efficient at this point, since not all features interact with each other.
Feature interactions usually occur via shared resources or communication. These

332 M. Lochau et al.

Table 2. ICPL Evaluation [25]

Feature Model Features Constraints 2-wise size 2-wise time (s)

2.6.28.6-icse11.dimacs 6,888 187,193 480 33,702
freebsd-icse11.dimacs 1,396 17,352 77 240
ecos-icse11.dimacs 1,244 2,768 63 185
Eshop-fm.xml 287 22 21 5

two interaction types are identified as the most crucial ones [35,21]. The infor-
mation about such interactions is present in development documents, such as
system specifications or architectural descriptions. Based on such specifications,
we can annotate FMs with the respective information about shared resources
and communication between features. Annotating the FM with this additional
information provides us with the advantage of reducing the t-tuple input set for
the CIT algorithm. We generate only the most important tuples, where interac-
tions are most likely to occur with regard to the specification. Less tuples have
to be covered, which results in a faster computation time and a smaller covering
array [29].

4.3 Variability-Aware Software Product Line Testing

Interface theories provide formal approaches for the definition of the observable
behaviors which a component implementation is allowed to show by abstract-
ing from the concrete implementation details [48,5]. Modal interface specifica-
tions further distinguish between optional and mandatory behaviors by means
of may/must modality in order to leave open implementation freedom up to a
certain degree. In a modal transition system (MTS) each transition is either a
may, or a must transition [32,48,5,36]. The set of valid implementations of a
modal specification correspond to the set of modal refinements of that specifica-
tion each comprising at least all must behaviors and at most all may behaviors.
In addition, a compatibility notion defines criteria for valid compositions of com-
ponents with respect to their modal specifications.

Various approaches for applying modal specifications as product line model-
ing formalism have been proposed [22,31,4]. By interpreting must behaviors as
commonality and may behaviors as variability among the product line variants,
each implementation corresponds to one particular product configuration. Hence,
modal refinement corresponds to component implementation variant derivation
within the solution space. Those sets of variants may be further restricted in
terms of compatibility to other components and/or the environment/user [31].
Recent approaches focus on family-based product line model checking based on
modal specifications [4,3,2]. In contrast, we consider MTS to denote variable test
model specifications as a basis for an intentional characterization of model-based
input/output conformance testing for a software product line implementations
under test.

Model-Based Testing 333

?

!

(a)

?

!

(b)

Fig. 7. Sample MTS Vending Machine Product Line Specifications

Formally, modal transition systems extend LTS by incorporating two transi-
tion relations to distinguish two different transition modalities, namely (possible)
may and (mandatory) must transitions.

Definition 10 (Modal I/O Transition System). A model I/O transition
system is a tuple �Q, q0, I,U,�
�,�
��, where Q is a countable set of states,
q0 � Q is the initial state, I and U are disjoint sets of input actions and output
actions, respectively, �
�� Q�act�Q is a may-transition relation, and �
��
Q� act�Q is a must-transition relation such that �
���
� holds.

Requiring �
���
� ensures an MTS to be syntactically consistent, i.e.,
mandatory behaviors are always also allowed. By MT S�act� we denote the set
of modal transition systems labeled over alphabet act. Again, we often use an
MTS m and its initial state q0 as synonyms in the subsequent definitions and
examples.

Example 6. The graphical representation of an MTS is illustrated in Fig. 7 spec-
ifying two modal versions of a vending machine extending the simple vend-
ing machines from Sect. 3. We now have I � �1e, 2e, coffee, tea, cups� and
U � �c1e, cup, error�, respectively. Transitions with may modality are denoted
by dashed arrows, whereas those with must modality are denoted by solid ar-
rows. Hence, a vending machine implementing specification m1 in Fig. 7(a) must
accept 1e coins as inputs and may optionally also accept 2e coins. As each bev-
erage costs 1e, the vending machine may further output 1e change (output
action c1e) if 2e have been thrown in. The machine offers coffee per default
but may also allow for choosing tea via inputs coffee and tea. A cup containing
the selected beverage is dispensed as long as cups are available within the ma-
chine. Otherwise, an (optional) error output may be given and new cups may
be inserted. The alternative specification m2 alters m1 in two ways: (1) pro-
viding change after inserting 2e must be implemented whereas omitting c1e is

334 M. Lochau et al.

optionally allowed via the τ -transition and (2) whenever tea is selectable and
the machine is running out of cups, error handling must take place.

We adapt the notion of traces previously defined for LTS to MTS by taking the
modality γ � ��,�� of transitions s

μ
�
γ s� into account.

Definition 11 (MTS Trace Semantics). Let m be an MTS. The set of modal
traces is defined as

Trγ�m� :� �σ � �I
 U �� � �s � Q : q0
σ
��γ s�.

From syntactical consistency, it follows that Tr��s� � Tr��s� holds. Thereupon,
an adaption of the further trace notations for LTS (cf. Def. 4) to MTS can be
done, correspondingly.

An MTS m constitutes a partial system specification in which those behav-
iors corresponding to may-traces are considered optional leaving open imple-
mentation freedom within well-defined bounds. Retrieving an implementation
variant from a modal specification by selecting/neglecting optional behaviors
corresponds to the concept of modal refinement. A modal specification m1 is a
refinement of a modal specification m2 if (1) the mandatory behaviors of m2 are
preserved by m1 and (2) the possible behaviors of m1 are permitted by m2.

Definition 12 (Modal Refinement). Let s, t be two MTS with act � acts �
actt. A relation R � Qs�Qt is a (weak) modal refinement iff whenever sRt and
a � act � �τ� it holds that

1. if t a�
� t� then �s� : s τ�

�� a�
� s� and �s�, t�� � R,

2. if s a�
� s� then �t� : t τ�

�� a�
� t� and �s�, t�� � R, and

3. if s τ�
� s� then �t� : t τ�

�� t� and �s�, t�� � R.

The largest (weak) modal refinement relation is denoted by �m and s is a (weak)
model refinement of t iff there is weak modal refinement containing �s0, t0�.

A modal refinement s is complete if �
���
� holds. A complete refinement
s of t is an implementation of t.

Example 7. Consider the complete refinements in Fig. 8 referring to the modal
vending machine specifications in Fig. 7. Please note that we assume an (implicit)
pruning of the state-transition removing those transitions becoming unreachable
after a modal refinement. We observe the following (complete) refinements.

– s1 �m m1 and s1 �m m2

– s2 �m m1 and s2 �m m2

– s3 �m m1 and s3 �m m2

– s4 �m m1 and s4 �m m2

– s5 �m m1 and s5 �m m2

– s6 �m m1 and s6 �m m2

Model-Based Testing 335

?

!

(a)

?

(b)

?

!

(c)

?

(d)

?

(e)

?

!

(f)

Fig. 8. Sample MTS Vending Machine Implementations

336 M. Lochau et al.

In [31], Larsen et al. proposed an approach for behavioral variability modeling
and formal verification of a product line based on modal transition systems.
A product line specification is given as modal LTS s comprising the set of all
product variants p of s by means of complete modal refinements p �m s. To
further tailor the set of valid product variants, the notion of compatibility defined
by a partial modal composition operator is used. This way, refinements of variable
product line components are implicitly restricted to those which are compatible
to other components and/or an environmental specification. Alternatively, the
product line modeling theory of Asirelli et al. uses deontic logics to restrict the
set of modal refinements [4,3,2].

Here, we limit our considerations to a modal product line test modeling theory
with unrestricted modal refinements for product variant derivations. According
to the model-based testing assumption of Bernot [7], we assume a product line
specification s �MT S�I
U � and a product line implementation i �MT S�I

U � which both correspond to a modal input/output labeled transition system.
By adopting the notion of input-enabledness to modal specifications, we obtain
the following definition.

Definition 13 (Modal I/O Transition System). An MTS is γ-input-enabled
iff for every state s � Q with q0 ���

γ s and for all a � I it holds that s a
��γ . By

IOMT Sγ�I,U � we denote the set of γ-input-enabled MTS labeled over act �
�I
U
 �τ�� and conclude that

IOMT S��I,U � � IOMT S��I,U � �MT S�I
U �

holds.

For instance, considering the sample MTS models in Fig. 7, both m1 and m2 are
neither may-input-enabled, nor must -input-enabled. Again, γ-input-enabledness
for a given MTS may be achieved by adding corresponding transitions s

a�
γ s

for every input action a � I to every reachable state s with �s� : s
a
��γ s�.

Similar to single system testing, we require a product line implementation i as
well as all derivable product implementation variants i� �m i to be input-enabled.
Unfortunately, γ-input-enabledness is not preserved under modal refinement. As
an example, consider some state s with q0 ���

γ s and s
a�
γ for every a � I.

– For γ � �, assume some transition s
a�
� s� which is removed such that

�s a�
� holds after refinement.
– For γ � �, assume some transition s

a�
� s� with �q0 ���� s� which is
refined to s

a�
� s� and s� to obstruct must -input-enabledness.

To solve this problem, we consider the following assumptions for applying modal
LTS as a basis for a product line testing theory.

– Product line implementations i under test are may-input-enabled, i.e., i �
IOMT S��I,U �, whereas for product line specification we only require s �
MT S�I
U � as usual.

Model-Based Testing 337

– Derivations of product implementation variants i� are restricted to those
preserving may-input-enabledness denoted i� ��

m i such that

��
m� IOMT S��I,U � � IOMT S��I,U � ��m .

As a result, it holds that i� � IOMT S��I,U � for every complete refinement i�

of i. Similar to the notions of traces and input-enabledness, also the auxiliary
definitions for defining input/output conformance relations on LTS are adaptable
to MTS as follows.

Definition 14. Let s be an MTS, p � Q, P � Q, σ � �I
 U ��, and γ � ��,��.
1. initγ�p� :� �μ � �I
 U � � p

μ
�
γ�,

2. p is may-quiescent, denoted by δ��p�, iff init��p� � I, p is must-quiescent,
denoted by δ��p�, iff init��p� � I,

3. p afterγ σ :� �q � Q � p
σ
��γ q�,

4. Outγ�P � :� �μ � U � �p � P : p
μ
�
γ�
 �δγ � �p � P : δγ�p��, and

5. Stracesγ�p� :� �σ� � �I
 U
 �δ��� � p
σ�

��γ� where q
δ�
γ q iff δγ�p�.

Again, if not stated otherwise, we assume a given MTS to be implicitly enriched
by transitions q

δ�
γ q for γ-quiescent states q.

Example 8. Considering the sample MTS specifications in Fig. 7 and σ �?1e�?tea
it holds that

– Out��m1 after� σ� � �cup, error �
– Out��m2 after� σ� � �cup, error �
– Out��m1 after� σ� � ��
– Out��m2 after� σ� � �error �
– Out��m1 after� σ� � ��
– Out��m2 after� σ� � ��

whereas for σ� �?2e

– Out��m1 after� σ�� � �c1e, δ �
– Out��m2 after� σ�� � �c1e, δ �
– Out��m1 after� σ�� � �δ �
– Out��m2 after� σ�� � �c1e �
– Out��m1 after� σ�� � ��
– Out��m2 after� σ�� � ��

holds.

According to the intuition of modal consistency, we observe the following corre-
spondences.

Proposition 1. Let s be an MTS, p � Q, P � Q, σ � �I
 U ��.

1. init��p� � init��p�,
2. δ� � δ�,

338 M. Lochau et al.

3. p after� σ � p after� σ,
4. Out��P � � Out��P �, and
5. Straces��p� � Straces��p�.

Testing a modal implementation i � IOMT S��I,U � against a modal specifica-
tion s � MT S�I,U � aims at verifying that every derivable product implemen-
tation variant i� ��

m i conforms to a corresponding product specification variant
s� �m s. For this to hold, an intuitive notion of modal input/output conformance
should ensure that

– all possible behaviors of a product line implementation are allowed and that
– all mandatory behaviors of a product line implementation are required

by the respective product line specification. Hence, for a model I/O conformance
relation i mior s to hold, it requires trace inclusion of both may-suspension-
traces and must -suspension-traces, respectively.

However, if we interpret the set of must -behaviors specified by s as the product
line core behavior to be shown by all product variants, this notion of I/O con-
formance fails to fully capture this intuition. Similar to the non-modal version,
suspension trace inclusion solely ensures some behavior of the specified behav-
iors to be actually implemented (if any), but it does not differentiate within the
set of allowed behaviors between mandatory and optional ones. To overcome
this drawback, we consider an alternative definition for modal I/O conformance,
i mior� s, that is closer to the very essence of modal refinement requiring al-
ternating suspension trace inclusions as follows.

Definition 15 (Modal I/O Conformance). Let s � MT S�I,U � and i �
IOMT S��I,U �.
i mior s :�

1. �σ � act�δ : Out��i after� σ� � Out��s after� σ� and
2. �σ � act�δ : Out��i after� σ� � Out��s after� σ�.

i mior� s :�

1. �σ � act�δ : Out��i after� σ� � Out��s after� σ� and
2. �σ � act�δ : Out��s after� σ� � Out��i after� σ�.

Hence, the mior� relation requires a product line implementation i to show

– at least all mandatory behaviors and
– at most the allowed behaviors

of a product line specification s. The respective modal versions of the ioco
relation can be defined, accordingly.

Definition 16 (Modal IOCO). Let s �MT S�I,U � and i � IOMT S��I,U �.
i mioco s :�

Model-Based Testing 339

1. �σ � Straces��s� : Out��i after� σ� � Out��s after� σ� and
2. �σ � Straces��i� : Out��i after� σ� � Out��s after� σ�.

i mioco� s :�

1. �σ � Straces��s� : Out��i after� σ� � Out��s after� σ� and
2. �σ � Straces��i� : Out��s after� σ� � Out��i after� σ�.

Based on the previous observations, we conclude the following notion of sound-
ness for modal ioco.

Theorem 2 (Soundness). Let Let s � MT S�I,U �, i � IOMT S��I,U � and
i mioco� s. Then it holds that �i� ��

m i : i� mioco� s.

Hence, family-based product line conformance testing in terms of the presented
intentional characterization of modal I/O conformance ensures (1) safety as it
permits implementation variants to only show allowed behaviors and (2) liveness
as it enforces implementation variants to at least show all core behaviors. Further
results, e.g., concerning completeness and exhaustiveness notions, as well as an
extensional characterization of modal ioco is open for future work. Concerning
the latter, two main adaptations with respect single system testing are required.

1. The modality γ � ��,�� of an action a (including quiescence) occurring at
a transition s

a�
γ s� is observable, e.g., by defining two separate alphabets
act� � act� ��� and act� � act� ���, respectively.

2. The definition of a test case (cf. Fig. 4) is to be adopted for modal testing to
require every must-behavior to be observed before giving the verdict pass,
therefore, potentially requiring multiple test runs.

Clause 2. reflects that verifying the inclusion of all must -behaviors of the spec-
ification to be contained in the respective set of the implementation literally
requires the specification to be (implicitly) tested against the implementation.

5 Conclusion

In this tutorial, we have presented the foundations of model-based testing. We
have considered dynamic testing of functional characteristics at component-
level based on model-based black-box knowledge for single system testing. This
testing discipline is usually referred to as model-based input/output confor-
mance testing. Furthermore, we have presented model-based testing techniques
for variant-rich software systems, such as software product lines. We have
explained sample-based product line testing based on variant selection tech-
niques and a theory for variability-aware product line conformance testing.

340 M. Lochau et al.

References

1. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating Refinement
Relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

2. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Model-Checking Tool for
Families of Services. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE 2011.
LNCS, vol. 6722, pp. 44–58. Springer, Heidelberg (2011)

3. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal Description of Vari-
ability in Product Families. In: SPLC 2011, pp. 130–139 (2011)

4. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A Logical Framework to Deal
with Variability. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp.
43–58. Springer, Heidelberg (2010)

5. Bauer, S.S., Hennicker, R., Janisch, S.: Interface Theories for (A)synchronously
Communicating Modal I/O-Transition Systems. Electronic Proceedings in Theo-
retical Computer Science 46, 1–8 (2011)

6. Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand Reinhold Co.,
New York (1990)

7. Bernot, G.: Testing against Formal Specifications: A Theoretical View. In: Abram-
sky, S. (ed.) TAPSOFT 1991, CCPSD 1991, and ADC-Talks 1991. LNCS, vol. 494,
pp. 99–119. Springer, Heidelberg (1991)

8. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004)

9. Broy, M. (ed.): Model-Based Testing of Reactive Systems: Advanced Lectures, 1st
edn. Springer, Heidelberg (2005)

10. Chvatal, V.: A Greedy Heuristic For The Set-Covering Problem. Mathematics of
Operations Research (1979)

11. Cichos, H., Oster, S., Lochau, M., Schürr, A.: Model-Based Coverage-Driven Test
Suite Generation for Software Product Lines. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 425–439. Springer, Heidelberg (2011)

12. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. SEI
Series in Software Eng. Addison-Wesley (2001)

13. Cohen, M.B., Dwyer, M.B., Shi, J.: Coverage and Adequacy in Software Product
Line Testing. In: ISSTA, pp. 53–63. ACM (2006)

14. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

15. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley (2000)

16. De Nicola, R.: Extensional Equivalence for Transition Systems. Acta Informat-
ica 24, 211–237 (1987), http://portal.acm.org/citation.cfm?id=25067.25074

17. of Electrical, I., Engineers, E.: IEEE Standard Glossary of Software Engineering
Technology 610.121990 (1990)

18. of Electrical, I., Engineers, E.: IEEE Standard for Software Test Documentation
IEEE Std 829-1998 (1998)

19. Engström, E.: Exploring Regression Testing and Software Product Line Testing -
Research and State of Practice. Lic dissertation, Lund University (May 2010)

20. Engström, E., Runeson, P.: Software Product Line Testing – A Systematic Mapping
Study. Information and Software Technology 53(1), 2–13 (2011)

http://portal.acm.org/citation.cfm?id=25067.25074

Model-Based Testing 341

21. Ferber, S., Haag, J., Savolainen, J.: Feature Interaction and Dependencies: Mod-
eling Features for Reengineering a Legacy Product Line. In: Chastek, G.J. (ed.)
SPLC 2002. LNCS, vol. 2379, p. 235. Springer, Heidelberg (2002)

22. Fischbein, D., Uchitel, S., Braberman, V.A.: A Foundation for Behavioural Con-
formance in Software Product Line Architectures. In: Hierons, R.M., Muccini, H.
(eds.) ISSTA 2006, pp. 39–48. ACM (2006)

23. Gustafsson, T.: An Approach for Selecting Software Product Line Instances for
Testing. In: SPLiT (2007)

24. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y.L.: Multi-objective
Test Generation for Software Product Lines. In: SPLC (2013)

25. Johansen, M.F., Haugen, O., Fleurey, F.: An Algorithm for Generating t-wise Cov-
ering Arrays from Large Feature Models. In: SPLC, pp. 46–55. ACM (2012)

26. Johansen, M.F., Haugen, Ø., Fleurey, F.: Properties of Realistic Feature Models
Make Combinatorial Testing of Product Lines Feasible. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 638–652. Springer,
Heidelberg (2011)

27. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep., Carnegie-Mellon
University Software Engineering Institute (November 1990)

28. Kim, C.H.P., Batory, D., Khurshid, S.: Reducing Combinatorics in Testing Product
Lines. In: AOSD, pp. 57–68. ACM (2011)

29. Kowal, M., Schulze, S., Schaefer, I.: Towards Efficient SPL Testing by Variant
Reduction. In: VariComp, pp. 1–6. ACM (2013)

30. Kuhn, D.R., Wallace, D.R., Gallo, J. A.M.: Software fault interactions and impli-
cations for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)

31. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

32. Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: LICS, pp. 203–210 (1988)
33. Lochau, M., Oster, S., Goltz, U., Schürr, A.: Model-based Pairwise Testing for Fea-

ture Interaction Coverage in Software Product Line Engineering. Software Quality
Journal, 1–38 (2011)

34. Lochau, M., Schaefer, I., Kamischke, J., Lity, S.: Incremental Model-Based Testing
of Delta-Oriented Software Product Lines. In: Brucker, A.D., Julliand, J. (eds.)
TAP 2012. LNCS, vol. 7305, pp. 67–82. Springer, Heidelberg (2012)

35. Lochau, M., Goltz, U.: Feature Interaction Aware Test Case Generation for Em-
bedded Control Systems. Electron. Notes Theor. Comput. Sci. 264, 37–52 (2010)

36. Lüttgen, G., Vogler, W.: Modal Interface Automata. In: Baeten, J.C.M., Ball, T.,
de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 265–279. Springer, Heidelberg
(2012)

37. McGregor, J.D.: Testing a Software Product Line. Tech. Rep. CMU/SEI-2001-TR-
022, Carnegie Mellon, Software Engineering Inst. (2001)

38. McGregor, J.D., Sodhani, P., Madhavapeddi, S.: Testing Variability in a Software
Product Line. In: Proceedings of the Software Product Line Testing Workshop
(SPLiT), pp. 45–50. Avaya Labs, Boston (2004)

39. Mendonca, M., Wąsowski, A., Czarnecki, K.: SAT-based Analysis of Feature Mod-
els is Easy. In: Proc. Int’l Software Product Line Conference, pp. 231–240 (2009)

40. da, M.S., Neto, P.A., Carmo Machado, I.D., McGregor, J.D., de Almeida, E.S.,
de Lemos Meira, S.R.: A Systematic Mapping Study of Software Product Lines
Testing. Inf. Softw. Technol. 53, 407–423 (2011)

342 M. Lochau et al.

41. Myers, G.J.: The Art of Software Testing. Wiley, New York (1979)
42. Olimpiew, E.M.: Model-Based Testing for Software Product Lines. Ph.D. thesis,

George Mason University (2008)
43. van Osch, M.: Hybrid input-output conformance and test generation. In: Havelund,

K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS,
vol. 4262, pp. 70–84. Springer, Heidelberg (2006)

44. Oster, S., Lochau, M., Zink, M., Grechanik, M.: Pairwise Feature-Interaction
Testing for SPLs: Potentials and Limitations. In: 3rd International Workshop on
Feature-Oriented Software Development (FOSD) (2011)

45. Oster, S., Zorcic, I., Markert, F., Lochau, M.: MoSo-PoLiTe - Tool Support for
Pairwise and Model-Based Software Product Line Testing. In: VaMoS (2011)

46. Oster, S., Wübbeke, A., Engels, G., Schürr, A.: Model-Based Software Product
Lines Testing Survey. In: Model-based Testing for Embedded Systems. CRC Press
Taylor & Francis (2010) (to appear)

47. Perrouin, G., Sen, S., Klein, J., Le Traon, B.: Automated and Scalable T-wise Test
Case Generation Strategies for Software Product Lines. In: ICST, pp. 459–468
(2010)

48. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone,
R.: Modal Interfaces: Unifying Interface Automata and Modal Specifications. In:
EMSOFT 2009, pp. 87–96. ACM (2009)

49. Reuys, A., Kamsties, E., Pohl, K., Reis, S.: Model-Based System Testing of Soft-
ware Product Families. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005.
LNCS, vol. 3520, pp. 519–534. Springer, Heidelberg (2005)

50. Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G.,
Pathak, A., Trujillo, S., Villela, K.: Software diversity: state of the art and per-
spectives. STTT 14(5), 477–495 (2012)

51. Scheidemann, K.: Verifying Families of System Configurations. Ph.D. thesis, TU
Munich (2007)

52. Schmaltz, J., Tretmans, J.: On Conformance Testing for Timed Systems. In:
Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250–264.
Springer, Heidelberg (2008)

53. Tevanlinna, A., Taina, J., Kauppinen, R.: Product Family Testing: A Survey. ACM
SIGSOFT Software Engineering Notes 29, 12–18 (2004)

54. Tretmans, J.: Testing concurrent systems: A formal approach. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, p. 46. Springer, Heidelberg
(1999)

55. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann, San Francisco (2007)

56. van Veenendaal, E. (ed.): ISTQB-Glossary-of-Testing-Terms-2-0. Glossary Working
Party (2007)

	Model-Based Testing
	1 Introduction
	2 Foundations of Software Testing
	3 Model-Based Testing
	3.1 Fundamentals and Concepts
	3.2 A Formal Approach to Model-Based Testing

	4 Model-Based Testing of Software Product Lines
	4.1 Software Product Line Engineering and Testing
	4.2 Sample-Based Software Product Line Testing
	4.3 Variability-Aware Software Product Line Testing

	5 Conclusion
	References

