
Tutorial on Parameterized Model Checking

of Fault-Tolerant Distributed Algorithms�

Annu Gmeiner, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder

Vienna University of Technology (TU Wien), Austria

Abstract. Recently we introduced an abstraction method for parame-
terized model checking of threshold-based fault-tolerant distributed al-
gorithms. We showed how to verify distributed algorithms without fixing
the size of the system a priori. As is the case for many other published ab-
straction techniques, transferring the theory into a running tool is a chal-
lenge. It requires understanding of several verification techniques such as
parametric data and counter abstraction, finite state model checking and
abstraction refinement. In the resulting framework, all these techniques
should interact in order to achieve a possibly high degree of automation.
In this tutorial we use the core of a fault-tolerant distributed broadcast-
ing algorithm as a case study to explain the concepts of our abstraction
techniques, and discuss how they can be implemented.

1 Introduction

Distributed systems are crucial for today’s computing applications, as they en-
able us to increase performance and reliability of computer systems, enable com-
munication between users and computers that are geographically distributed, or
allow us to provide computing services that can be accessed over the Internet.
Distributed systems allow us to achieve that by the use of distributed algo-
rithms. In fact, distributed algorithms have been studied extensively in the liter-
ature [62,11], and the central problems are well-understood. They differ from the
fundamental problems in sequential (that is, non-distributed) systems. The cen-
tral problems in distributed systems are posed by the inevitable uncertainty of
any local view of the global system state, originating in unknown/varying proces-
sor speeds, communication delays, and failures. Pivotal services in distributed
systems, such as mutual exclusion, routing, consensus, clock synchronization,
leader election, atomic broadcasting, and replicated state machines, must hence
be designed to cope with this uncertainty.

As we increasingly depend on the correct operation of distributed systems,
the ability to cope with failures becomes particularly crucial. To do so, one ac-
tually has to address two problem areas. On the one hand, one has to design

� Some of the presented material has been published in [53,52]. Supported by the
Austrian National Research Network S11403 and S11405 (RiSE) of the Austrian
Science Fund (FWF) and by the Vienna Science and Technology Fund (WWTF)
through grants PROSEED.

M. Bernardo et al. (Eds.): SFM 2014, LNCS 8483, pp. 122–171, 2014.
c© Springer International Publishing Switzerland 2014

Tutorial on Parameterized Model Checking 123

algorithms that can deal with partial failure that is outside the control of a
system designer. Typical examples are temporary disconnections of the network
(e.g., due to mobility), power outages, bit-flips due to radiation in space, or
hardware faults. On the other hand, we have to prevent, or rather find and re-
move, design faults, which are often termed as bugs. The former area of fault
tolerance is classically addressed by means of replication and fault-tolerant dis-
tributed algorithms [62,11,25], while the latter is dealt with by rigorous software
engineering methods such as model checking [31,12,47]. In order to maximize
the reliability, one should deploy fault-tolerant distributed algorithms that have
been verified.

We prefer model checking to verification using proof checkers such as PVS
or Isabelle, as model checking promises a higher degree of automation, and still
allows us to verify designs and implementation. Testing, on the other hand,
can be completely automated and it allows us to validate large systems. How-
ever, there are still many research challenges in testing of distributed systems,
and in general, testing suffers from being incomplete. Hence, model checking
strikes a good balance between automatization and completeness. In verification
of fault-tolerant distributed algorithms we are not looking for a push-button
technology: First, as we will see below, distributed algorithms are naturally pa-
rameterized, and parameterized model checking is undecidable even for very
simple systems [10,77]. Second, distributed algorithms are typically only given
in natural language or pseudo code. Hence, in contrast to software model check-
ing where the input is given as a program in, e.g., C, currently the input for
the verification of distributed algorithms is not machine readable, and we re-
quire expert knowledge from the beginning. Finally, a method where the user
(or rather the system designer) guides the model checking tool is acceptable if
we can check automatically that the user input does not violate soundness.

Only very few fault-tolerant distributed algorithms have been automatically
verified. We think that this is because many aspects of distributed algorithms
still pose research challenges for model checking:

– The inherent concurrency and the uncertainty caused by partial failure lead
to many sources of non-determinism. Thus, fault-tolerant distributed algo-
rithms suffer from combinatorial explosion in the state-space and in the
number of behaviors.

– For many applications, the size of the distributed system, that is, the number
of participants is a priori unknown. Hence, the design and verification of
distributed algorithms should work for all system sizes. That is, distributed
systems are parameterized by construction.

– Distributed algorithms are typically only correct in certain environments,
e.g., when there is only a certain fraction of the processes faulty, when the
interleaving of steps is restricted, or when the message delays are bounded.

– Faults change the semantics of primitives (send, receive, FIFO, access ob-
ject), classic primitives such as handshake may be impossible or impractical
to implement.

– There is no commonly agreed-upon distributed computing model, but
rather many variants, which differ in subtle details. Moreover, distributed

124 A. Gmeiner et al.

algorithms are usually described in pseudocode, typically using different (alas
unspecified) pseudocode languages, which obfuscates the relation to the un-
derlying computing model.

In this tutorial we discuss practical aspects of parameterized model checking of
fault-tolerant distributed algorithms. We use Srikanth and Toueg’s broadcasting
primitive [76] as a case study, and discuss various aspects using encodings in
Promela and Yices. The reader is thus expected to have basic knowledge of
of Spin and Yices [2,5,49,38].

Srikanth and Toueg’s broadcasting primitive is an example for threshold-
based fault-tolerant algorithms, and our methods are tailored for this kind of
distributed algorithms. We thus capture important mechanisms in distributed
algorithms like waiting for messages from a majority of processes. Section 2 con-
tains more detailed discussion on our motivations. We will discuss in detail the
formalization of such algorithms in a parametric variant of Promela in Section 3.
We then show in Section 4 how to use abstraction to reduce the parameterized
model checking problem to a finite state model checking problem, and discuss
how to deal with many practical issues that are due to abstraction. We show the
efficiency of our method by experimental evaluation in Section 6.

2 Context

2.1 Parameterized Model Checking

In its original formulation [30], Model Checking was concerned with efficient pro-
cedures for the evaluation of a temporal logic specification ϕ over a finite Kripke
structureK, i.e., decision procedures forK |= ϕ. Since K can be extremely large,
a multitude of logic-based algorithmic methods including symbolic verification
[64,18] and predicate abstraction [46] were developed to make this decidable
problem tractable for practical applications. Finite-state models are, however,
not always an adequate modeling formalism for software and hardware.

(i) Infinite-state models. Many programs and algorithms are naturally mod-
eled by unbounded variables such as integers, lists, stacks etc. Modern model
checkers are using predicate abstraction [46] in combination with SMT solvers
to reduce an infinite-state model I to a finite state model h(I) that is amenable
to finite state model checking. The construction of h assures soundness, i.e., for
a given specification logic such as ACTL∗, we can assure by construction that
h(I) |= ϕ implies I |= ϕ. The major drawback of abstraction is incompleteness:
if h(I) �|= ϕ then it does in general not follow that I �|= ϕ. (Note that ACTL∗

is not closed under negation.) Counterexample-guided abstraction refinement
(CEGAR) [27,13] addresses this problem by an adaptive procedure, which an-
alyzes the abstract counterexample for h(I) �|= ϕ on h(I) to find a concrete
counterexample or obtain a better abstraction h′(I). For abstraction to work in
practice, it is crucial that the abstract domain from which h and h′ are cho-
sen is tailored to the problem class and possibly the specification. Abstraction

Tutorial on Parameterized Model Checking 125

thus is a semi-decision procedure whose usefulness has to be demonstrated by
practical examples.

(ii) An orthogonal modeling and verification problem is parameterization:
Many software and hardware artifacts are naturally represented by an infinite
class of structures K = {K1,K2, . . . } rather than a single structure. Thus, the
verification question is ∀i.Ki |= ϕ, where i is called the parameter. In the most
important examples of this class, the parameter i is standing for the number of
replications of a concurrent component, e.g., the number of processes in a dis-
tributed algorithm, or the number of caches in a cache coherence protocol. It is
easy to see that even in the absence of concurrency, parameterized model check-
ing is undecidable [10]; more interestingly, undecidability even holds for networks
of constant size processes that are arranged in a ring and that exchange a single
token [77,41]. Although several approaches have been made to identify decidable
classes for parameterized verification [41,40,81], no decidable formalism has been
found which covers a reasonably large class of interesting problems. The diver-
sity of problem domains for parameterized verification and the difficulty of the
problem gave rise to many approaches including regular model checking [6] and
abstraction [70,28]— the method discussed here. The challenge in abstraction is
to find an abstraction h(K) such that h(K) |= ϕ implies Ki |= ϕ for all i.

Most of the previous research on parameterized model checking focused on
concurrent systems with n + c processes where n is the parameter and c is a
constant: n of the processes are identical copies; c processes represent the non-
replicated part of the system, e.g., cache directories, shared memory, dispatcher
processes etc. [45,50,65,28]. Most of the work on parameterized model checking
considers only safety. Notable exceptions are [56,70] where several notions of
fairness are considered in the context of abstraction to verify liveness.

2.2 Fault-Tolerant Distributed Algorithms

In this tutorial we are not aiming at the most general approach towards param-
eterized model checking, but we are addressing a very specific problem in the
field, namely, parameterized verification of fault-tolerant distributed algorithms
(FTDA). This work is part of an interdisciplinary effort by the authors to develop
a tool basis for the automated verification, and, in the long run, deployment of
FTDAs [51,57]. FTDAs constitute a core topic of the distributed algorithms
community with a rich body of results [62,11]. FTDAs are more difficult than
the standard setting of parameterized model checking because a certain num-
ber t of the n processes can be faulty. In the case of e.g. Byzantine faults, this
means that the faulty processes can send messages in an unrestricted manner.
Importantly, the upper bound t for the faulty processes is also a parameter, and
is essentially a fraction of n. The relationship between t and n is given by a
resilience condition, e.g., n > 3t. Thus, one has to reason about all systems with
n− f non-faulty and f faulty processes, where f ≤ t and n > 3t.

From a more operational viewpoint, FTDAs typically consist of multiple pro-
cesses that communicate by message passing over a completely connected com-
munication graph. Since a sender can be faulty, a receiver cannot wait for a

126 A. Gmeiner et al.

message from a specific sender process. Therefore, most FTDAs use counters
to reason about their environment. If, for instance, a process receives a certain
message m from more than t distinct processes, it can conclude that at least one
of the senders is non-faulty. A large class of FTDAs [39,75,44,37,36] expresses
these counting arguments using threshold guards:

i f r e c e i v ed <m> from t+1 d i s t i n c t p r o c e s s e s
then act ion (m) ;

Note that threshold guards generalize existential and universal guards [40],
that is, rules that wait for messages from at least one or all processes, respectively.
As can be seen from the above example, and as discussed in [51], existential and
universal guards are not sufficient to capture advanced FTDAs.

2.3 The Formalization Problem

In the literature, the vast majority of distributed algorithms is described in
pseudo code, for instance, [75,8,79]. The intended semantics of the pseudo code
is folklore knowledge among the distributed computing community. Researchers
who have been working in this community have intuitive understanding of key-
words like “send”, “receive”, or “broadcast”. For instance, inside the community
it is understood that there is a semantical difference between “send to all” and
“broadcast” in the context of fault tolerance. Moreover, the constraints on the
environment are given in a rather informal way. For instance, in the authen-
ticated Byzantine model [39], it is assumed that faulty processes may behave
arbitrarily. At the same time, it is assumed that there is some authentication
service, which provides unbreakable digital signatures. In conclusion, it is thus
assumed that faulty processes send any messages they like, except ones that look
like messages sent by correct processes. However, inferring this kind of informa-
tion about the behavior of faulty processes is a very intricate task.

At the bottom line, a close familiarity with the distributed algorithms com-
munity is required to adequately model a distributed algorithm in preparation of
formal verification. When the essential conditions are hidden between the lines
of a research paper, then one cannot be sure that the algorithm being verified is
the one that is actually intended by the authors. With the current state of the
art, we are thus forced to do verification of a moving target.

We conclude that there is need for a versatile specification language which can
express distributed algorithms along with their environment. Such a language
should be natural for distributed algorithms researchers, but provide unambigu-
ous and clear semantics. Since distributed algorithms come with a wide range of
different assumptions, the language has to be easily configurable to these situ-
ations. Unfortunately, most verification tools do not provide sufficiently expres-
sive languages for this task. Thus, it is hard for researchers from the distributed
computing community to use these tools out of the box. Although distributed
algorithms are usually presented in a very compact form, the “language primi-
tives” (of pseudo code) are used without consideration of implementation issues
and computational complexity. For instance sets, and operations on sets are often

Tutorial on Parameterized Model Checking 127

used as they ease presentation of concepts to readers, although fixed size vectors
would be sufficient to express the algorithm and more efficient to implement.
Besides, it is not unusual to assume that any local computation on a node can
be completed within one step. Another example is the handling of messages. For
instance, how a process stores the messages that have been received in the past
is usually not explained in detail. At the same time, quite complex operations
are performed on this information.

2.4 Verified Fault-Tolerant Distributed Algorithms

Several distributed algorithms have been formally verified in the literature. Typ-
ically, these papers have addressed specific algorithms in fixed computational
models. There are roughly two lines of research. On the one hand, the semi-
manual proofs conducted with proof assistants that typically involve an enor-
mous amount of manual work by the user, and on the other hand automatic
verification, e.g., via model checking. Among the work using proof assistants,
Byzantine agreement in the synchronous case was considered in [61,73]. In the
context of the heard-of model with message corruption [15] Isabelle proofs are
given in [24]. For automatic verification, for instance, algorithms in the heard-of
model were verified by (bounded) model checking [78]. Partial order reductions
for a class of fault-tolerant distributed algorithms (with “quorum transitions”)
for fixed-size systems were introduced in [19]. A broadcasting algorithm for crash
faults was considered in [43] in the context of regular model checking; however,
the method has not been implemented so it is not clear how practical it is. In [9],
the safety of synchronous broadcasting algorithms that tolerate crash or send
omission faults has been verified. Another line of research studies decidability of
model checking of distributed systems under different link semantics [7,22].

Model checking of fault-tolerant distributed algorithms is usually limited to
small instances, i.e., to systems consisting of only few processes (e.g., 4 to 10).
However, distributed algorithms are typically designed for parameterized sys-
tems, i.e., for systems of arbitrary size. The model checking community has
created interesting results toward closing this gap, although it still remains a big
research challenge. For specific cache coherence protocols, substantial research
has been done on model checking safety properties for systems of arbitrary size,
for instance, [65,26,68]. Since these protocols are usually described via message
passing, they appear similar to asynchronous distributed algorithms. However,
issues such as faulty components and liveness are not considered in the litera-
ture. The verification of large concurrent systems by reasoning about suitable
small ones has also been considered [41,29,32,70].

3 Modeling Fault-Tolerant Distributed Algorithms

3.1 Threshold-Guarded Distributed Algorithms

Processes, which constitute the distributed algorithms we consider, exchange
messages, and change their state predominantly based on the received messages.

128 A. Gmeiner et al.

In addition to the standard execution of actions, which are guarded by some
predicate on the local state, most basic distributed algorithms (cf. [62,11]) add
existentially or universally guarded commands involving received messages:

i f r e c e i v ed <m>
from some proce s s

then act ion (m) ;

(a) existential guard

i f r e c e i v ed <m>
from a l l p r o c e s s e s

then act ion (m) ;

(b) universal guard

Depending on the content of the message <m>, the function action performs
a local computation, and possibly sends messages to one or more processes. Such
constructs can be found, e.g., in (non-fault-tolerant) distributed algorithms for
constructing spanning trees, flooding, mutual exclusion, or network synchroniza-
tion [62]. Understanding and analyzing such distributed algorithms is already far
from being trivial, which is due to the partial information on the global state
present in the local state of a process. However, faults add another source of non-
determinism. In order to shed some light on the difficulties faced a distributed
algorithm in the presence of faults, consider Byzantine faults [69], which allow a
faulty process to behave arbitrarily: Faulty processes may fail to send messages,
send messages with erroneous values, or even send conflicting information to
different processes. In addition, faulty processes may even collaborate in order
to increase their adverse power.

Fault-tolerant distributed algorithms work in the presence of such faults and
provide some “higher level” service: In case of distributed agreement (or consen-
sus), e.g., this service is that all non-faulty processes compute the same result
even if some processes fail. Fault-tolerant distributed algorithms are hence used
for increasing the system-level reliability of distributed systems [71].

If one tries to build such a fault-tolerant distributed algorithm using the con-
struct of Example (a) in the presence of Byzantine faults, the (local state of
the) receiver process would be corrupted if the received message <m> originates
in a faulty process. A faulty process could hence contaminate a correct process.
On the other hand, if one tried to use the construct of Example (b), a correct
process would wait forever (starve) when a faulty process omits to send the
required message. To overcome those problems, fault-tolerant distributed algo-
rithms typically require assumptions on the maximum number of faults, and
employ suitable thresholds for the number of messages that can be expected
to be received by correct processes. Assuming that the system consists of n
processes among which at most t may be faulty, threshold-guarded commands
such as the following are typically used in fault-tolerant distributed algorithms:

i f r e c e i v ed <m> from n−t d i s t i n c t p r o c e s s e s
then act ion (m) ;

Assuming that thresholds are functions of the parameters n and t, threshold
guards are just a generalization of quantified guards as given in Examples (a)
and (b): In the above command, a process waits to receive n− t messages from
distinct processes. As there are at least n− t correct processes, the guard cannot

Tutorial on Parameterized Model Checking 129

be blocked by faulty processes, which avoids the problems of Example (b). In
the distributed algorithms literature, one finds a variety of different thresholds:
Typical numbers are �n/2+1� (for majority [39,67]), t+1 (to wait for a message
from at least one correct process [76,39]), or n− t (in the Byzantine case [76,8]
to wait for at least t+ 1 messages from correct processes, provided n > 3t).

In the setting of Byzantine fault tolerance, it is important to note that the
use of threshold-guarded commands implicitly rests on the assumption that a
receiver can distinguish messages from different senders. This can be achieved,
e.g., by using point-to-point links between processes or by message authentica-
tion. What is important here is that Byzantine faulty processes are only allowed
to exercise control on their own messages and computations, but not on the
messages sent by other processes and the computation of other processes.

3.2 Reliable Broadcast and Related Specifications

The specifications considered in the field of fault tolerance differ from more
classic fields, such as concurrent systems where dining philosophers and mutual
exclusion are central problems. For the latter, one is typically interested in local
properties, e.g., if a philosopher i is hungry, then i eventually eats. Intuitively,
dining philosophers requires us to trace indexed processes along a computation,
e.g., in LTL, ∀i. G (hungryi → (F eatingi)), and thus to employ indexed temporal
logics for specifications [21,28,29,41].

In contrast, fault-tolerant distributed algorithms are typically used to achieve
global properties. Reliable broadcast is an ongoing “system service” with the
following informal specification: Each process i may invoke a primitive called
broadcast by calling bcast(i,m), where m is a unique message content. Processes
may deliver a message by invoking accept(i,m) for different process and message
pairs (i,m). The goal is that all correct processes invoke accept(i,m) for the same
set of (i,m) pairs, under some additional constraints: all messages broadcast by
correct processes must be accepted by all correct processes, and accept(i,m) may
not be invoked, unless i is faulty or i invoked bcast(i,m). Our case study is to
verify that the algorithm from [76] implements these primitives on top of point-
to-point channels, in the presence of Byzantine faults. In [76] the specifications
where given in natural language as follows:

(U) Unforgeability. If correct process i does not broadcast (i,m), then no
correct process ever accepts (i,m).

(C) Correctness. If correct process i broadcasts (i,m), then every correct pro-
cess accepts (i,m).

(R) Relay If a correct process accepts (i,m), then every other correct process
accepts (i,m).

In [76], the instances for different (i,m) pairs do not interfere. Therefore, we
will not consider i and m. Rather, we distinguish the different kinds of invoca-
tions of bcast(i,m) that may occur, e.g., the cases where the invoking process
is faulty or correct. As we focus on the core functionality, we do not model the

130 A. Gmeiner et al.

broadcaster explicit. We observe that correct broadcasters will either send to all,
or to no other correct processes. Hence, we model this by initial values V1 and
V0 at correct processes that we use to model whether a process has received the
message by the broadcaster or not, respectively. Then the precondition of cor-
rectness can be modeled that all correct processes initially have value V1, while
the precondition of unforgeability that all correct processes initially have value
V0. Depending on the initial state, we then have to check whether every/no cor-
rect process accepts (that is, changes the status to AC). To capture this kind of
properties, we have to trace only existentially or universally quantified proper-
ties, e.g., a part of the broadcast specification (relay) states that if some correct
process accepts a message, then all (correct) processes accept the message, that
is, G ((∃i. accepti) → F (∀j. acceptj)).

We are therefore considering a temporal logic where the quantification over
processes is restricted to propositional formulas. We will need two kinds of quan-
tified propositional formulas that consider (i) the finite control state modeled as a
single status variable sv , and (ii) the possible unbounded data. We introduce the
set APSV that contains propositions that capture comparison against some sta-
tus value Z from the set of all control states, i.e., [∀i. sv i = Z] and [∃i. sv i = Z].

This allows us to express specifications of distributed algorithms:

G ([∀i. sv i �= V1] → G [∀j. sv j �= AC]) (U)

G ([∀i. sv i = V1] → F [∃j. sv j = AC]) (C)

G ([∃i. sv i = AC] → F [∀j. sv j = AC]) (R)

We may quantify over all processes as we only explicitly model those processes
that follow their code, that is, correct or benign faulty processes. More severe
faults that are unrestricted in their internal behavior (e.g., Byzantine faults) are
modeled via non-determinism in message passing.

In order to express comparison of data variables, we add a set of atomic
propositions APD that capture comparison of data variables (integers) x, y,
and constant c; APD consists of propositions of the form [∃i. xi + c < yi]. The
labeling function of a system instance is then defined naturally as disjunction or
conjunction over all process indices.

Observe that the specifications (C) and (R) are conditional liveness proper-
ties. Intuitively, a process has to find out that the condition is satisfied a run,
and in distributed systems this is only possible by receiving messages. Specifi-
cation (C) can thus only be achieved if some messages are received. Indeed, the
algorithm in [76] is based on a property called reliable communication which
ensures that every message sent by a correct process to a correct process is
eventually received by the latter. Such properties can be expressed by justice re-
quirements [70], which is a specific form of fairness. We will express justice as an
LTL\X formula ψ over APD . Then, given an LTL\X specification ϕ over APSV ,
a process description P in Promela, and the number of (correct) processes N ,
the parameterized model checking problem is to verify whether

P ‖ P ‖ · · · ‖ P
︸ ︷︷ ︸

Ntimes

|= ψ → ϕ.

Tutorial on Parameterized Model Checking 131

Algorithm 1. Core logic of the broadcasting algorithm from [76].

Code for processes i if it is correct:
Variables
1: vi ∈ {false,true}
2: accepti ∈ {false,true} ← false

Rules
3: if vi and not sent 〈echo〉 before then
4: send 〈echo〉 to all;
5: if received 〈echo〉 from at least t+ 1 distinct processes

and not sent 〈echo〉 before then
6: send 〈echo〉 to all;
7: if received 〈echo〉 from at least n− t distinct processes then
8: accepti ← true;

3.3 Threshold-Guarded Distributed Algorithms in Promela

Algorithm 1 is our case study for which we also provide a complete Promela
implementation later in Listing 3. To explain how we obtain this implementation,
we proceed in three steps where we first discuss asynchronous distributed algo-
rithms in general, then explain our encoding of message passing for threshold-
guarded fault-tolerant distributed algorithms. Algorithm 1 belongs to this class,
as it does not distinguish messages according to their senders, but just counts
received messages, and performs state transitions depending on the number of
received messages; e.g., line 7. Finally we encode the control flow of Algorithm 1.
The rationale of the modeling decisions are that the resulting Promela model
(i) captures the assumptions of distributed algorithms adequately, and (ii) allows
for efficient verification either using explicit state enumeration or by abstraction.

Computational Model for Asynchronous Distributed Algorithms. We
recall the standard assumptions for asynchronous distributed algorithms. A
system consists of n processes, out of which at most t may be faulty. When
considering a fixed computation, we denote by f the actual number of faulty
processes. Note that f is not “known” to the processes. It is assumed that
n > 3t∧ f ≤ t ∧ t > 0. Correct processes follow the algorithm, in that they take
steps that correspond to the algorithm. Between every pair of processes, there
is a bidirectional link over which messages are exchanged. A link contains two
message buffers, each being the receive buffer of one of the incident processes.

A step of a correct process is atomic and consists of the following three parts.
(i) The process possibly receives a message. A process is not forced to receive
a message even if there is one in its buffer [42]. (ii) Then, it performs a state
transition depending on its current state and the (possibly) received message.
(iii) Finally, a process may send at most one message to each process, that is, it
puts a message in the buffers of the other processes.

Computations are asynchronous in that the steps can be arbitrarily inter-
leaved, provided that each correct process takes an infinite number of steps.

132 A. Gmeiner et al.

Algorithm 1 has runs that never accept and are infinite. Conceptually, the stan-
dard model requires that processes executing terminating algorithms loop forever
in terminal states [62]. Moreover, if a message m is put into process p’s buffer,
and p is correct, then m is eventually received. This property is called reliable
communication.

From the above discussion we observe that buffers are required to be un-
bounded, and thus sending is non-blocking. Further, the receive operation does
never block the execution; even if no message has been sent to the process. If we
assume that for each message type, each correct process sends at most one mes-
sage in each run (as in Algorithm 1), non-blocking send can in principle natively
be encoded in Promela using message channels. In principle, non-blocking re-
ceive also can be implemented in Promela, but it is not a basic construct. We
discuss the modeling of message passing in more detail in Section 3.3.

Fault types. In our case study Algorithm 1 we consider Byzantine faults, that
is, faulty processes are not restricted, except that they have no influence on the
buffers of links to which they are not incident. Below we also consider restricted
failure classes: omission faults follow the algorithm but may fail to send some
messages, crash faults follow the algorithm but may prematurely stop running.
Finally, symmetric faults need not follow the algorithm, but if they send mes-
sages, they send them to all processes. The latter restriction does not apply to
Byzantine faults which may send conflicting information to different processes.

Verification goal in the concrete (non-parameterized) case. Recall that there is
a condition on the parameters n, t, and f , namely, n > 3t ∧ f ≤ t ∧ t > 0. As
these parameters do not change during a run, they can be encoded as constants
in Promela. The verification problem for a distributed algorithm with fixed
n and t is then the composition of model checking problems that differ in the
actual value of f (satisfying f ≤ t).

Efficient Encoding of Message Passing. In threshold-guarded distributed
algorithms, the processes (i) count how many messages of the same type they
have received from distinct processes, and change their states depending on this
number, (ii) always send to all processes (including the sender), and (iii) send
messages only for a fixed number of types (only messages of type 〈echo〉 are sent
in Algorithm 1).

Fault-free communication. We discuss in the following that one can model such
algorithms in a way that is more efficient in comparison to a straightforward
implementation with Promela channels. In our final modeling we have an ap-
proach that captures both message passing and the influence of faults on correct
processes. However, in order not to clutter the presentation, we start our discus-
sion by considering communication between correct processes only (i.e., f = 0),
and add faults later in this section.

In the following code examples we show a straightforward way to implement
“received 〈echo〉 from at least x distinct processes” and “send 〈echo〉 to all”

Tutorial on Parameterized Model Checking 133

using Promela channels: We declare an array p2p of n2 channels, one per pair
of processes, and then we declare an array rx to record that at most one 〈echo〉
message from a process j is received by a process i:

mtype = { ECHO }; /∗ one message type ∗/
chan p2p[NxN] = [1] of { mtype }; /∗ channels o f s i z e 1 ∗/
bit rx[NxN]; /∗ a b i t map to implement ” d i s t i n c t ” ∗/
active[N] proctype STBcastChan() {

int i, nrcvd = 0; /∗ nr . o f echoes ∗/
Then, the receive code iterates over n channels: for non-empty channels it

receives an 〈echo〉 message or not, and empty channels are skipped; if a message
is received, the channel is marked in rx:

i = 0; do
:: (i < N) && nempty(p2p[i * N + _pid]) ->

p2p[i * N + _pid]?ECHO; /∗ r e t r i e v e a message ∗/
if
:: !rx[i * N + _pid] ->

rx[i * N + _pid] = 1; /∗ mark the channel ∗/
nrcvd++; break; /∗ rece i ve at most one message ∗/

:: rx[i * N + _pid]; /∗ i gnore dup l i c a t e s ∗/
fi; i++;

:: (i < N) ->
i++; /∗ channel i s empty or postpone recept ion ∗/

:: i == N -> break;
od

Finally, the sending code also iterates over n channels and sends on each:

for (i : 1 .. N) { p2p[_pid * N + i]!ECHO; }

Recall that threshold-guarded algorithms have specific constraints: messages
from all processes are processed uniformly; every message is carrying only a
message type without a process identifier; each process sends a message to all
processes in no particular order. This suggests a simpler modeling solution. In-
stead of using message passing directly, we keep only the numbers of sent and
received messages in integer variables:

int nsnt; /∗ one shared va r i a b l e per a message type ∗/
active[N] proctype STBcast() {
int nrcvd = 0, next_nrcvd = 0; /∗ nr . o f echoes ∗/
...

step: atomic {
if /∗ rece i ve one more echo ∗/

:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd; /∗ or nothing ∗/
fi;
...
nsnt++; /∗ send echo to a l l ∗/

}

134 A. Gmeiner et al.

active[F] proctype Byz() {
step: atomic {

i = 0; do
:: i < N -> sendTo(i);i++;
:: i < N -> i++; /∗ sk i p ∗/
:: i == N -> break;

od
}; goto step;

}

active[F] proctype Omit() {
step: atomic {
/∗ rece i ve as a correc t ∗/
/∗ compute as a correc t ∗/
if :: correctCodeSendsAll ->
i = 0; do
:: i < N -> sendTo(i);i++;
:: i < N -> i++; /∗omit∗/
:: i == N -> break;

od
:: skip;

fi
}; goto step;

}

active[F] proctype Symm(){
step: atomic {
if
:: /∗ send to a l l ∗/

for (i : 1 .. N)
{ sendTo(i); }

:: skip; /∗ or none ∗/
fi

}; goto step;
}

active[F] proctype Clean(){
step: atomic {
/∗ rece i ve as a correc t ∗/
/∗ compute as a correc t ∗/
/∗ send as a correc t ∗/
};
if

:: goto step;
:: goto crash;

fi;
crash:
}

Fig. 1. Modeling faulty processes explicitly: Byzantine (Byz), symmetric (Symm),
omission (Omit), and clean crashes (Clean)

As one process step is executed atomically (indivisibly), concurrent reads and
updates of nsnt are not a concern to us. Note that the presented code is based
on the assumption that each correct process sends at most one message. We
show how to enforce this assumption when discussing the control flow of our
implementation of Algorithm 1 in Section 3.3.

Recall that in asynchronous distributed systems one assumes communica-
tion fairness, that is, every message sent is eventually received. The statement
∃i. rcvd i < nsnt describes a global state where messages are still in transit. It
follows that a formula ψ defined by

GF¬ [∃i. rcvd i < nsnt] (RelComm)

states that the system periodically delivers all messages sent by (correct) pro-
cesses. We are thus going to add such fairness requirements to our specifications.

Faulty processes. In Figure 1 we show how one can model the different types of
faults (discussed on page 132) using channels. The implementations are direct
consequences of the fault types description. Figure 2 shows how the impact of
faults on processes following the algorithm can be implemented in the shared

Tutorial on Parameterized Model Checking 135

/∗ N > 3T ∧ T ≥ F ≥ 0 ∗/
active[N-F] proctype ByzI() {
step: atomic {

if
:: (next_nrcvd < nsnt + F)
-> next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N > 2T ∧ T ≥ F ≥ 0 ∗/
active[N] proctype OmitI() {
step: atomic {

if
:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

Listing 1.

/∗ N > 2T ∧ T ≥ Fp ≥ Fs ≥ 0 ∗/
active[N-Fp] proctype SymmI(){
step: atomic {

if
:: (next_nrcvd < nsnt + Fs)
-> next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N ≥ T ∧ T ≥ Fc ≥ Fnc ≥ 0 ∗/
active[N] proctype CleanI() {
step: atomic {

if
:: next_nrcvd < nsnt - Fnc
-> next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

Listing 2.

Fig. 2. Modeling the effect of faults on correct processes: Byzantine (ByzI), symmetric
(SymmI), omission (OmitI), and clean crashes (CleanI)

memory implementation of message passing. Note that in contrast to Figure 1,
the processes in Figure 2 are not the faulty ones, but correct ones whose variable
next nrcvd is subject to non-deterministic updates that correspond to the
impact of faulty process. For instance, in the Byzantine case, in addition to the
messages sent by correct processes, a process can receive up to f messages more.
This is expressed by the condition (next nrcvd < nsnt + F).

For Byzantine and symmetric faults we only model correct processes explic-
itly. Thus, we specify that there are N-F copies of the process. Moreover, we
can use Property (RelComm) to model reliable communication. Omission and
crash faults, however, we model explicitly, so that we have N copies of processes.
Without going into too much detail, the impact of faulty processes is modeled by
relaxed fairness requirements: as some messages sent by these f faulty processes
may not be received, this induces less strict communication fairness:

GF¬ [∃i. rcvd i + f < nsnt]

136 A. Gmeiner et al.

Fig. 3. Visited states (left) and memory usage (right) when modeling message passing
with channels (ch) or shared variables (var). The faults are in effect only when f > 0.
Ran with SAFETY, COLLAPSE, COMP, and 8GB of memory.

By similar adaptations one models, e.g., corrupted communication (e.g., due
to faulty links) [72], or hybrid fault models [16] that contain different fault sce-
narios.

Comparing Promela Encodings: Channels vs. Shared Variables. Fig-
ure 3 compares the number of states and memory consumption when modeling
message passing using both solutions. We ran Spin to perform exhaustive state
enumeration on the encoding of our case study algorithm in Listing 3. As one
sees, the model with explicit channels and faulty processes ran out of mem-
ory on six processes, whereas the shared memory model did so only with nine
processes. Moreover, the latter scales better in the presence of faults, while the
former degrades with faults. This leads to the use the shared memory encoding
based on nsnt variables. In addition, we have seen in the previous section that
this encoding is very natural for defining abstractions.

Encoding the Control Flow. Recall Algorithm 1 on page 131, which is writ-
ten in typical pseudocode found in the distributed algorithms literature. The
lines 3-8 describe one step of the algorithm. Receiving messages is implicit and
performed before line 3, and the actual sending of messages is deferred to the
end, and is performed after line 8.

We encoded the algorithm in Listing 3 using custom Promela extensions
to express notions of fault-tolerant distributed algorithms. The extensions are
required to express a parameterized model checking problem, and are used by
our tool that implements the abstraction methods introduced in [52]. These
extensions are only syntactic sugar when the parameters are fixed: symbolic is
used to declare parameters, and assume is used to impose resilience conditions
on them (but is ignored in explicit state model checking). Declarations atomic
<var> = all (...) are a shorthand for declaring atomic propositions that
are unfolded into conjunctions over all processes (similarly for some). Also we
allow expressions over parameters in the argument of active.

Tutorial on Parameterized Model Checking 137

1 symbolic int N, T, F; /∗ parameters ∗/
2 /∗ the r e s i l i e n c e condi t ion ∗/
3 assume(N > 3 * T && T >= 1 && 0 <= F && F <= T);
4 int nsnt; /∗ number of echoes sent by correc t processes ∗/
5 /∗ quan t i f i e d atomic propos i t i ons ∗/
6 atomic prec_unforg = all(STBcast:sv == V0);
7 atomic prec_corr = all(STBcast:sv == V1);
8 atomic prec_init = all(STBcast@step);
9 atomic ex_acc = some(STBcast:sv == AC);

10 atomic all_acc = all(STBcast:sv == AC);
11 atomic in_transit = some(STBcast:nrcvd < nsnt);
12

13 active[N - F] proctype STBcast() {
14 byte sv, next_sv; /∗ s t a tu s of the a lgor i thm ∗/
15 int nrcvd = 0, next_nrcvd = 0; /∗ nr . o f echoes rece i ved ∗/
16 if /∗ i n i t i a l i z e ∗/
17 :: sv = V0; /∗ vi = false ∗/
18 :: sv = V1; /∗ vi = true ∗/
19 fi;
20 step: atomic { /∗ an i n d i v i s i b l e s t ep ∗/
21 if /∗ rece i ve one more echo (up to nsnt + F) ∗/
22 :: (nrcvd < nsnt + F) -> next_nrcvd = nrcvd + 1;
23 :: next_nrcvd = nrcvd; /∗ or nothing ∗/
24 fi;
25 if /∗ compute ∗/
26 :: (next_nrcvd >= N - T) ->
27 next_sv = AC; /∗ accepti = true ∗/
28 :: (next_nrcvd < N - T
29 && (sv == V1 || next_nrcvd >= T + 1)) ->
30 next_sv = SE; /∗ remember tha t <echo> i s sent ∗/
31 :: else -> next_sv = sv; /∗ keep the s t a tu s ∗/
32 fi;
33 if /∗ send ∗/
34 :: (sv == V0 || sv == V1)
35 && (next_sv == SE || next_sv == AC) ->
36 nsnt++; /∗ send <echo> ∗/
37 :: else; /∗ send nothing ∗/
38 fi;
39 /∗ update l o c a l v a r i a b l e s and r e s e t scratch va r i a b l e s ∗/
40 sv = next_sv; nrcvd = next_nrcvd;
41 next_sv = 0; next_nrcvd = 0;
42 } goto step;
43 }
44 ltl fairness { []<>(!in_transit) } /∗ f a i rn e s s −> formula ∗/
45 /∗ LTL−X formulas ∗/
46 ltl relay { [](ex_acc -> <>all_acc) }
47 ltl corr { []((prec_init && prec_corr) -> <>(ex_acc)) }
48 ltl unforg { []((prec_init && prec_unforg) -> []!ex_acc) }

Listing 3. Encoding of Algorithm 1 in parametric Promela

138 A. Gmeiner et al.

In the encoding in Listing 3, the whole step is captured within an atomic
block (lines 20–42). As usual for fault-tolerant algorithms, this block has three
logical parts: the receive part (lines 21–24), the computation part (lines 25–32),
and the sending part (lines 33–38). As we have already discussed the encoding
of message passing above, it remains to discuss the control flow of the algorithm.

Control state of the algorithm. Apart from receiving and sending messages, Al-
gorithm 1 refers to several facts about the current control state of a process:
“sent 〈echo〉 before”, “if vi”, and “accept i ← true”. We capture all possible
control states in a finite set SV . For instance, for Algorithm 1 one can collect
the set SV = {V0,V1, SE,AC}, where:

– V0 corresponds to vi = false, accepti = false and 〈echo〉 is not sent.
– V1 corresponds to vi = true, accepti = false and 〈echo〉 is not sent.
– SE corresponds to the case accepti = false and 〈echo〉 been sent. Observe

that once a process has sent 〈echo〉, its value of vi does not interfere anymore
with the subsequent control flow.

– AC corresponds to the case accepti = true and 〈echo〉 been sent. A process
only sets accept to true if it has sent a message (or is about to do so in the
current step).

Thus, the control state is captured within a single status variable sv over SV
with the set SV 0 = {V0,V1} of initial control states.

Formalization. This paper is a hands-on tutorial on parameterized model
checking. So we will use Promela to explain our methods in the following
sections. Note that we presented the theoretical foundations of these methods
in [52]. In this paper we will restrict ourselves to introduce some definitions that
make it easier to discuss the central ideas of our abstraction.

In the code we use variables of different roles: we have parameters (e.g., n,
t, and f), local variables (rcvd) and shared variables (nsnt). We will denote
by Π , Λ, and Γ the sets of parameters, local variables, and shared variables,
respectively. All these variables range over a domain D that is totally ordered
and has the operations of addition and subtraction, e.g., the set of natural num-
bers N0. We have discussed above that fault-tolerant distributed algorithms can
tolerate only certain fractions of processes to be faulty. We capture this using
the resilience condition RC that is a predicate over the values of variables in
Π . In our example, Π = {n, t, f}, and the resilience condition RC (n, t, f) is
n > 3t ∧ f ≤ t ∧ t > 0. Then, we denote the set of admissible parameters by
PRC = {p ∈ D|Π| | RC(p)}.

As we have seen, a system instance is a parallel composition of identical
processes. The number of processes depends on the parameters. To formalize
this, we define the size of a system (the number of processes) using a function
N : PRC → N, for instance, in our example we model only correct processes
explicitly, and so we use n− f for N(n, t, f).

Tutorial on Parameterized Model Checking 139

qI

q1

q2

q3

q4

sv = V1

sv �= V1∧
nsnt0 =
nsnt ∧
sv0 = sv

nsnt0 = nsnt + 1

sv0 = SE

q5

q6

q7

q8

q9
qF

rcvd ≤ rcvd ′ ∧ rcvd ′ ≤ nsnt + f

(t+1 > rcvd ′)∧
sv ′ = sv0 ∧
nsnt ′ = nsnt0

t+ 1 ≤ rcvd ′

sv0 = V0
sv0 �= V0∧
nsnt ′ =
nsnt0

nsnt ′ = nsnt0 + 1

n− t > rcvd ′
n− t ≤ rcvd ′

sv ′ = SE

sv ′ = AC

Fig. 4. CFA of our case study for Byzan-
tine faults

qI

q1

q2q3

q4

q5

qF

rcvd ≤ rcvd ′ ∧
rcvd ′ ≤ nsnt +
nsntf

sv = V1sv = V0

sv = AC

sv = CR

1 > rcvd ′

1 ≤ rcvd ′

sv ′ = CR

nsntf ′ =
nsntf + 1

sv ′ = AC

nsnt ′ =
nsnt + 1

Fig. 5. CFA of FTDA from [43]
(if x′ is not assigned, then x′ = x)

To model how the system evolves, that is, to model a step of a process,
we use control flow automata (CFA). They formalize fault-tolerant distributed
algorithms. Figure 4 gives the CFA of our case study algorithm. The CFA uses
the shared integer variable nsnt (capturing the number of messages sent by non-
faulty processes), the local integer variable rcvd (storing the number of messages
received by the process so far), and the local status variable sv , which ranges
over a finite domain (capturing the local progress w.r.t. the FTDA).

We use the CFA to represent one atomic step of the FTDA: Each edge is
labeled with a guard. A path from qI to qF induces a conjunction of all the
guards along it, and imposes constraints on the variables before the step (e.g.,
sv), after the step (sv ′), and temporary variables (sv0). If one fixes the variables
before the step, different valuations (of the primed variables) that satisfy the
constraints capture non-determinism.

Recall that a system consists of n− f processes that concurrently execute the
code corresponding to the CFA, and communicate via nsnt . Thus, there are two
sources of unboundedness: first, the integer variables, and second, the parametric
number of processes.

4 Abstraction

In this section we demonstrate how one can apply various abstractions to re-
duce a parameterized model checking problem to a finite-state model checking

140 A. Gmeiner et al.

Parametric Promela code static analysis + Yices

Parametric Interval Domain ̂D

Parametric data abstraction
with Yices

Parametric Promela code

Parametric counter ab-
straction with Yices

normal
Promela code

Spin

property holds

counterexample

Refine

Concrete counter rep-
resentation (VASS)

SMT formula

Yices

counterexample feasible

invariant candidates (by the user)

unsat
sat

Fig. 6. The abstraction scheme

problem. An overview is given in Figure 6. We show how the abstraction works
on the code level, that is, how the parametric Promela program constructed
in Section 3 is translated to a program in standard Promela. Since we are
interested in parameterized model checking, we need to ensure that the specifi-
cations are satisfied in concrete systems of all sizes. Hence, we need an abstract
system that contains all behaviors that are experienced in concrete systems.
Consequently, we use existential abstraction which ensures that if there exists
a concrete system and a concrete run in that system, this run is mapped to
a run in the abstract system. In that way, if there exists a system in which a
specification is violated, the specification will also be violated in the abstract
system. In other words, if we can verify a specification in the abstract system,
the specification holds in all concrete systems; we say the verification method is
sound. The formal exposition can be found in [52].

Usually abstractions introduce new behavior that is not present in the original
system. Thus, a finite-state model checker might find a spurious run, that is, one
that none of the concrete systems with fixed parameters can replay. In order to
discard such runs, one applies abstraction refinement techniques [27].

In what follows, we demonstrate three levels of abstraction: parametric in-
terval data abstraction, parametric interval counter abstraction, and parametric
interval data abstraction of the local state space. The first two abstractions are
used for reducing a parameterized problem to a finite-state one, while the third
abstraction helps us to detect spurious counterexamples.

Throughout this chapter we are using the core part of asynchronous reli-
able broadcast by Srikanth&Toueg as our running example. Its encoding in

Tutorial on Parameterized Model Checking 141

parametric Promela is given in Listing 3. Our final goal is to obtain a Promela
program that we can verify in Spin.

4.1 Parametric Interval Data Abstraction

Let us have a look at the code on Listing 3. The process prototype STBcast
refers to two kinds of variables, each of them having a special role:

– Bounded variables. These are local variables that range over a finite domain,
the size of which is independent of the parameters. In our example, the
variable of this kind are sv and next sv.

– Unbounded variables. These are the variables that range over an unbounded
domain. They may be local or shared. In our example, the variables nrcvd,
next nrcvd, and nsnt are unbounded. It might happen that the variables
become bounded, when one fixes the parameters, as it is the case in our
example with nsnt ≤ n− f . However, we need a finite representation inde-
pendent of the parameters, that is, the bounds on the variable values must
be independent of the parameter values.

We can partition the variables into the sets B (bounded) and U (unbounded)
by performing value analysis on the process body. Intuitively, one can imagine
that the analysis iteratively computes the set B of variables that are assigned
their values only using the following two kinds of statements:

– An assignment that copies a constant expression to a variable;
– An assignment that copies the value of another variable, which already be-

longs to B.

The variables outside of B, e.g., those that are incremented in the code, belong
to U . As this can be done by a simple implementation of abstract interpreta-
tion [33], we omit the details here.

The data abstraction that we are going to explain below deals with unbounded
variables by turning the operations over unbounded domains into operations
over finite domains. The threshold-based fault-tolerant distributed algorithms
give us a natural source of abstract values, namely, the threshold expressions. In
our example, the variable next nrcvd is compared against thresholds t+1 and
n− t. Thus, it appears natural to forget about concrete values of next nrcvd.
As a first try, we may replace the expressions that involve next nrcvd with
the expressions over the two predicates: p1 next nrcvd ≡ x < t + 1 and
p2 next nrcvd ≡ x < n− t. Then, the following code is an abstraction of the
computation block in lines (25)–(32) of Listing 3:

if /∗ compute ∗/
:: (!p2_next_nrcvd) -> next_sv = AC;
:: (!p2_next_nrcvd && (sv == V1 || !p1_next_nrcvd)) ->
next_sv = SE;

:: else -> next_sv = sv;
fi;

Listing 4. Predicate abstraction of the computation block

142 A. Gmeiner et al.

In principle, we could use this kind of predicate abstraction for our purposes.
However, we have seen that our modeling involves considerable amounts of arith-
metics, e.g., code line 22 in our example contains comparison of two variables as
well increasing the value of a variable. Such notions are not naturally expressed
in terms of predicate abstraction. Rather, we introduce a parametric interval ab-
straction PIA, which is based on an abstract domain that represents intervals,
whose boundaries are expressions to which variables are compared to; e.g., t+1
and n− t. We then use an SMT solver to abstract expressions, e.g., comparisons.

Hence, instead of using several predicates, we can replace the concrete domain
of every variable x ∈ U with the abstract domain {I0, It+1, In−t}. For reasons
that are motivated by the counter abstraction—to be introduced later in Sec-
tion 4.2—we have to distinguish value 0 from a positive value. Thus, we are
extending the domain with the threshold “1”, that is, ̂D = {I0, I1, It+1, In−t}.

The semantics of the abstract domain is as follows. We introduce an abstract
version of x, denoted by x̂; its values (from ̂D) relate to the concrete values of x
as follows: x̂ = I0 iff x ∈ [0; 1[and x̂ = I1 iff x ∈ [1; t + 1[and x̂ = It+1 iff
x ∈ [t + 1;n − t[and x̂ = In−t iff x ∈ [n − t;∞[. Having defined the abstract
domain, we translate the computation block in lines (25)–(32) of Listing 3 as
follows (we discuss below how the translation is done automatically):

1 if /∗ compute ∗/
2 :: next_nrcvd == In−t -> next_sv = AC;
3 :: (next_nrcvd == I0 || next_nrcvd == I1 || next_nrcvd== It+1)
4 && (sv == V1 || (next_nrcvd == It+1 || next_nrcvd == In−t))
5 -> next_sv = SE;
6 :: else -> next_sv = sv;
7 fi;

Listing 5. Parametric interval abstraction of the computation block

The abstraction of the receive block (cf. lines 21–24 of Listing 3) involves
the assignment next nrcvd = nrcvd + 1 that becomes a non-deterministic
choice of the abstract value of next nrcvd based on the abstract value of
nrcvd. Intuitively, next nrcvd could be in the same interval as nrcvd or in
the interval above. In the following, we provide the abstraction of lines 21–24,
we will discuss later how this abstraction can be computed using an SMT solver.

8 if /∗ rece i ve ∗/
9 :: (/∗ abs t rac t i on of (next nrcvd < nsnt + F) ∗/) ->

10 if :: nrcvd == I0 -> next_nrcvd = I1;
11 :: nrcvd == I1 -> next_nrcvd = I1;
12 :: nrcvd == I1 -> next_nrcvd = It+1;
13 :: nrcvd == It+1 -> next_nrcvd = It+1;
14 :: nrcvd == It+1 -> next_nrcvd = In−t;
15 :: nrcvd == In−t -> next_nrcvd = In−t;
16 fi;
17 :: next_nrcvd = nrcvd;
18 fi;

Listing 6. Parametric interval abstraction of the receive block

Tutorial on Parameterized Model Checking 143

There are several interesting consequences of transforming the receive block
as above. First, due to our resilience condition (which ensures that intervals do
not overlap) for every value of nrcvd there are at most two values that can be
assigned to next nrcvd. For instance, if nrcvd equals It+1, then next nrcvd
becomes either It+1, or In−t. Second, due to non-determinism, the assignment is
not anymore guaranteed to reach any value, e.g., next nrcvd might be always
assigned value I1.

Formalization. In the following, we explain the mathematics behind the idea of
parametric interval abstraction, and the intuition why it is precise for specific ex-
pressions. To do so, we start with some preliminary definitions, which allow us to
define parameterized abstraction functions and the corresponding concretization
functions. We then make precise what it means to be an existential abstraction
and derive questions for the SMT solver whose response will provide us with the
abstractions of the Promela code discussed above.

Consider the arithmetic expressions over constants and parameters that are
used in comparisons against unbounded variables, e.g., next nrcvd <= t+1.
From this we get expressions, e.g., t+1 to which variables are compared. Let
set T include all such expressions as well as the constants 0 and 1, and μ + 1
be the cardinality of T . We call the elements of T thresholds, and name them
as as e0, e1, . . . , eμ; with e0 corresponding to the constant 0, and e1 correspond-
ing to 1.1 Note that by evaluating threshold expressions for fixed parameters,
we obtain a constant value of the threshold. Given a parameter evaluation p
from PRC , we will denote by ei(p) the value of the ith threshold under p. Given

T , we define the domain of parametric intervals as: ̂D = {Ij | 0 ≤ j ≤ μ}.
Observe that in our running example we actually write ̂D = {I0, I1, It+1, In−t},
to make it more intuitive. This is an abuse of notation, and following the above
definition strictly, one has to write the domain as {I0, I1, I2, I3}.

Our abstraction rests on an implicit property of many fault-tolerant dis-
tributed algorithms, namely, that the resilience condition RC induces an order
on the thresholds used in the algorithm (e.g., t+ 1 < n− t).

Definition 1. The finite set T is uniformly ordered if for all p ∈ PRC , and all
ej(p) and ek(p) in T with 0 ≤ j < k ≤ μ, it holds that ej(p) < ek(p).

Assuming such an order does not limit the application of our approach: In
cases where only a partial order is induced by RC , one can simply enumerate
all finitely many total orders. As parameters, and thus thresholds, are kept un-
changed in a run, one can verify an algorithm for each threshold order separately,
and then combine the results.

1 We add 0 and 1 explicitely, because we will later see that these values precisely
capture an existential quantifier, similar to [70]. However, in our setting, the abstract
domain that distinguishes between 0, 1, and more [70] is too coarse to track whether
variables have surpassed certain thresholds.

144 A. Gmeiner et al.

Definition 1 allows us to properly define the parameterized abstraction function
αp : D → ̂D and the parameterized concretization function γp : ̂D → 2D.

αp(x) =

{

Ij if x ∈ [ej(p), ej+1(p)[for some 0 ≤ j < μ

Iμ otherwise.

γp(Ij) =

{

[ej(p), ej+1(p)[if j < μ

[eμ(p),∞[otherwise.

From e0(p) = 0 and e1(p) = 1, it immediately follows that for all p ∈ PRC , we
have αp(0) = I0, αp(1) = I1, and γp(I0) = {0}. Moreover, from the definitions
of α, γ, and Definition 1 one immediately obtains:

Proposition 1. For all p in PRC , for all a in D, it holds that a ∈ γp(αp(a)).

Definition 2. We define comparison between parametric intervals Ik and I� as
Ik ≤ I� iff k ≤ 	.

Compared to the predicate abstraction approach initially discussed, Defini-
tion 2 is very naturally written in our parametric interval abstraction, and we
can use it in the following. In fact, the central property of our abstract domain is
that it allows to abstract comparisons against thresholds in a precise way. That
is, we can abstract formulas of the form ej(p) ≤ x1 by Ij ≤ x̂1 and ej(p) > x1

by Ij > x̂1. This abstraction is precise in the following sense.

Proposition 2. For all p ∈ PRC and all a ∈ D:
ej(p) ≤ a iff Ij ≤ αp(a), and ej(p) > a iff Ij > αp(a).

We now discuss what is necessary to construct an existential abstraction of
an expression that involves comparisons against unbounded variables using an
SMT solver. Let Φ be a formula that corresponds to such an expression. We
introduce notation for sets of vectors satisfying Φ. Formula Φ has two kinds of
free variables: parameter variables from Π and data variables from Λ∪Γ . Let xp

be a vector of parameter variables (xp
1, . . . , x

p
|Π|) and xd be a vector of variables

(xd
1, . . . , x

d
k) over D

k. Given a k-dimensional vector d of values from D, by

xp = p,xd = d |= Φ

we denote that Φ is satisfied on concrete values xd
1 = d1, . . . , x

d
k = dk and

parameter values p. Then, we define:

||Φ||∃ = {d̂ ∈ ̂Dk | ∃p ∈ PRC ∃d = (d1, . . . , dk) ∈ Dk.

d̂ = (αp(d1), . . . , αp(dk)) ∧ xp = p,xd = d |= Φ}

Hence, the set ||Φ||∃ contains all vectors of abstract values that correspond
to some concrete values satisfying Φ. Parameters do not appear anymore due
to existential quantification. A PIA existential abstraction of Φ is defined to
be a formula Φ̂ over a vector of variables x̂ = (x̂1, . . . , x̂k) over ̂Dk such that

{d̂ ∈ ̂Dk | x̂ = d̂ |= Φ̂} ⊇ ||Φ||∃. See Figure 7 for an example.

Tutorial on Parameterized Model Checking 145

x̂2

x1

x̂1

1 t+ 1n− t

I0 I1 I2 I3

I0

I1

I2

I3

Φ ≡ x2 = x1 + 1 Φ̂ ≡ x̂1 = I0 ∧ x̂2 = I1

∨ x̂1 = I1 ∧ x̂2 = I1

∨ x̂1 = I1 ∧ x̂2 = I2

∨ x̂1 = I2 ∧ x̂2 = I2

∨ x̂1 = I2 ∧ x̂2 = I3

∨ x̂1 = I3 ∧ x̂2 = I3

Fig. 7. The shaded area approximates the line x2 = x1+1 along the boundaries of our
parametric intervals. Each shaded rectangle corresponds to one conjunctive clause in
the formula to the right. Thus, given Φ ≡ x2 = x1+1, the shaded rectangles correspond
to ||Φ||∃, from which we immediately construct the existential abstraction Φ̂.

Computing the abstractions. So far, we have seen the abstraction examples and
the formal machinery in the form of existential abstraction ||Φ||∃. Now we show
how to compute the abstractions using an SMT solver. We are using the input
language of Yices [38], but this choice is not essential. Any other solver that
supports linear arithmetics over integers, e.g., Z3 [35], should be sufficient for our
purposes. We start with declaring the parameters and the resilience condition:

1 (define n :: int)
2 (define t :: int)
3 (define f :: int)
4 (assert (and (> n 3) (>= f 0)
5 (>= t 1) (<= f t) (> n (* 3 t))))

Listing 7. The parameters and the resilience condition in Yices

Assume that we want to compute the existential abstraction of an expression
similar to one found in line 22, that is,

Φ1 ≡ a < b+ f.

According to the definition of ||Φ1||∃, we have to enumerate all abstract values
of a and b and check, whether there exist a valuation of the parameters n, t,
and f and a concretization γn,t,f of the abstract values that satisfies Φ1. In

the case of Φ1 this boils down to finding all the abstract pairs (â, b̂) ∈ ̂D × ̂D
satisfying the formula:

∃a, b : αn,t,f (a) = â ∧ αn,t,f (b) = b̂ ∧ a < b+ f (1)

Given â and b̂, Formula (1) can be encoded as a satisfiability problem in

linear integer arithmetics. For instance, if â = I1 and b̂ = I0, then we encode
Formula (1) as follows:

146 A. Gmeiner et al.

6 (push) ;; store the context for the future use
7 (define a :: int)
8 (define b :: int)
9 (assert (and (>= a 1) (< a (+ t 1)))) ;; αn,t,f (a) = I1

10 (assert (and (>= b 0) (< b 1))) ;; αn,t,f (b) = I0
11 (assert (< a (+ b f))) ;; Φ1

12 (check) ;; is satisfiable?
13 (pop) ;; restore the previously saved context

Listing 8. Are there a and b with a < b+ f , αn,t,f (a) = I1, and αn,t,f (b) = I0?

When we execute lines (1)–(13) of Listing 8 in Yices, we receive sat on

the output, that is, formula 1 is valid for the values â = I1 and b̂ = I0 and
(I1, I0) ∈ ||a < b + f ||∃. To see concrete values of a, b, n, t, and f satisfying
lines (1)–(13), we issue the following command:

14 (set-evidence! true)
15 ;; copy lines (1)− (13) here

Yices provides us with the following model:

(= n 7)
(= f 2)
(= t 2)
(= a 1)
(= b 0)

By enumerating all values from ̂D × ̂D, we obtain the following abstraction
of a < b+ f (this is an abstraction of line (22) in Listing 3):

a == In−t && b == In−t || a == It+1 && b == In−t

|| a == I1 && b == In−t || a == I0 && b == In−t

|| a == In−t && b == It+1 || a == It+1 && b == It+1

|| a == I1 && b == It+1 || a == I0 && b == It+1

|| a == It+1 && b == I1 || a == I1 && b == I1
|| a == I0 && b == I1 || a == I1 && b == I0 || a == I0 && b== I0

Listing 9. Parametric interval abstraction of a < b+ f

By applying the same principle to all expressions in Listing 3, we abstract
the process code. As the abstract code is too verbose, we do not give it here.
It can be obtained by running the tool on our benchmarks [1], as described in
Section 6.1.

Specifications. As we have seen in Section 3.2, we use only specifications that
compare status variable sv against a value from SV . For instance, the unforge-
ability property U (cf. p. 130) is referring to atomic proposition [∀i. sv i �= V1].
Interval data abstraction does neither affect the domain of sv , nor does it change
expressions over sv . Thus, we do not have to change the specifications when ap-
plying the data abstraction.

However, the specifications are verified under justice constraints, e.g., the reli-
able communication constraint (cf. RelComm on p. 134): GF¬ [∃i. rcvd i < nsnt].

Tutorial on Parameterized Model Checking 147

Our goal is that the abstraction preserves fair (i.e., just) runs, that is, if each
state of a just run is abstracted, then the resulting sequence of abstract states
is a just run of the abstract system. Intuitively, when we verify a property that
holds on all abstract just runs, then we conclude that the property also holds on
all concrete just runs. In fact, we apply existential abstraction to the formulas
that capture just states, e.g., we transform the expression ¬ [∃i. rcvd i < nsnt]
using existential abstraction ||¬ [∃i. rcvd i < nsnt] ||∃.

Let ψ be a propositional formula that describes just states, and �ψ�p be the
set of states that satisfy ψ in the concrete system with the parameter values
p ∈ PRC . Then, by the definition of existential abstraction, for all p ∈ PRC ,
it holds that �ψ�p is contained in the concretization of ||ψ||∃. This property
ensures justice preservation. In fact, we implemented a more general approach
that involves existential and universal abstractions, but we are not going into
details here. The interested reader can find formal frameworks in [56,74].

Remark on the precision. One may argue that domain ̂D is too imprecise
and it might be helpful to add more elements to ̂D. By Proposition 2, how-
ever, the domain gives us a precise abstraction of the comparisons against the
thresholds. Thus, we do not lose precision when abstracting the expressions like
next nrcvd < t+1 and next nrcvd ≥ n−t, and we cannot benefit from enriching
the abstract domain ̂D with expressions different from the thresholds.

4.2 Parametric Interval Counter Abstraction

In the previous section we abstracted a process that is parameterized into a finite-
state process. In this section we turn a system parameterized in the number of
finite-state processes into a one-process system with finitely many states. First,
we fix parameters p and show how one can convert a system of N(p) processes
into a one-process system by using a counting argument.

Counter representation. The structure of the Promela program after applying
the data abstraction from Section 4.1 looks as follows:

int nsnt: 2 = 0; /∗ 0 �→ I0 , 1 �→ I1 , 2 �→ It+1 , 3 �→ In−t ∗/
active[n - f] proctype Proc() {

int pc: 2 = 0; /∗ 0 �→ V 0 , 1 �→ V 1 , 2 �→ SE , 3 �→ AC ∗/
int nrcvd: 2 = 0; /∗ 0 �→ I0 , 1 �→ I1 , 2 �→ It+1 , 3 �→ In−t ∗/
int next_pc: 2 = 0, next_nrcvd: 2 = 0;
if :: pc = 0; /∗ V0 ∗/

:: pc = 1; /∗ V1 ∗/
fi;

loop: atomic {
/∗ rece i ve ∗/
/∗ compute ∗/
/∗ send ∗/ }

goto loop;
}

Listing 10. Process structure after data abstraction

148 A. Gmeiner et al.

Observe that a system consists of N(p) identical processes. We may thus
change the representation of a global state: Instead of storing which process is
in which local state, we just count for each local state how many processes are
in it. We have seen in the previous section that after the PIA data abstraction,
processes have a fixed number of states. Hence, we can use a fixed number of
counters. To this end, we introduce a global array of counters k that keeps the
number of processes in every potential local state. We denote by L the set of
local states and by L0 the set of initial local states. In order to map the local
states to array indices, we define a bijection: h : L → {0, . . . , |L| − 1}.

In our example, we have 16 potential local states, i.e., LST = {(pc, nrcvd) |
pc ∈ {V 0, V 1, SE,AC}, nrcvd ∈ ̂D}. In our Promela encoding, the elements

of ̂D and SV are represented as integers; we represent this encoding by the
function val : ̂D∪ SV → {0, 1, 2, 3} so that no two elements of ̂D are mapped to
the same number and no two elements of SV are mapped to the same number. We
allocate 16 elements for k and define the mapping hST : LST → {0, . . . , |LST |−1}
as hST ((pc, nrcvd)) = 4 · val(pc) + val(nrcvd). Then k[hST ()] stores how many
processes are in local state 	. Thus, a global state is given by the array k, and
the global variable nsnt .

It remains to define the transition relation. As we have to capture interleaving
semantics, intuitively, if a process is in local state 	 and goes to a different local
state 	′, then k[hST ()] must be decreased by 1 and k[hST (

′)] must be increased
by 1. To do so in our encoding, we first select a state 	 to move away from,
perform a step as above, that is, calculate the successor state 	′, and finally
update the counters. Thus, the template of the counter representation looks as
follows (we will discuss the select, receive, etc. blocks below):

int k[16]; /∗ number of processes in every l o c a l s t a t e ∗/
int nsnt: 2 = 0;
active[1] proctype CtrAbs() {

int pc: 2 = 0, nrcvd: 2 = 0;
int next_pc: 2 = 0, next_nrcvd: 2 = 0;
/∗ i n i t ∗/

loop: /∗ s e l e c t ∗/
/∗ rece i ve ∗/
/∗ compute ∗/
/∗ send ∗/
/∗ update counters ∗/

goto loop;
}

Listing 11. Process structure of counter representation

The blocks receive, compute, and send stay the same, as they were in Sec-
tion 4.1. The new blocks have the following semantics: In init, an initial combi-
nation of counters is chosen such that

∑

�∈L0
k[] = N(p) and

∑

�∈L\L0
k[] = 0.

In select, a local state 	 with k[] �= 0 is non-deterministically chosen; In update
counters, the counters of 	 and a successor of 	 are decremented and incremented
respectively.

Tutorial on Parameterized Model Checking 149

We now consider the blocks in detail and start with init. Each of n−f processes
start in one of the two initial states: (V 0, I0) with hST ((V 0, I0)) = 0 and (V 1, I0)
with hST ((V 1, I0)) = 3. Thus, the initial block non-deterministically chooses
the values for the counters k[0] and k[3], so that k[0] + k[3] = n − f and all
the other indices are set to zero. The following code fragment encodes this non-
deterministic choice. Observe that the number of choices needed is n− f +1, so
the length of this code must depend on the choices of these parameters. We will
get rid of this requirement in the counter abstraction below.

1 if /∗ 0 �→ (pc = V 0, nrcvd = I0) ; 3 �→ (pc = V 1, nrcvd = I0) ∗/
2 :: k[0] = n - f; k[3] = 0;
3 :: k[0] = n - f - 1; k[3] = 1;
4 ...
5 :: k[0] = 0; k[3] = n - f;
6 fi;

In the select block we pick non-deterministically a non-zero counter k[] and
set pc and nrcvd so that hST (pc, nrcvd) = 	. Again, here is a small fragment of
the code:

7 if
8 :: k[0] != 0 -> pc = 0 /∗ V 0 ∗/; nrcvd = 0 /∗ I0 ∗/;
9 :: k[1] != 0 -> pc = 0 /∗ V 0 ∗/; nrcvd = 1 /∗ I1 ∗/;

10 ...
11 :: k[15] != 0 -> pc = 3 /∗ AC ∗/; nrcvd = 3 /∗ In−t ∗/;
12 fi;

Finally, as the compute block assigns new values to next pc and next nrcvd,
which correspond to the successor state of (pc, nrcvd), we update the coun-
ters to reflect the fact that one process moved from state (pc, nrcvd) to state
(next pc, next nrcvd):

13 if
14 :: pc != next_pc || nrcvd != next_nrcvd ->
15 k[4 * pc + nrcvd]--; k[4 * next_pc + next_nrcvd]++;
16 :: else; /∗ do not update the counters ∗/
17 fi;

This representation might look inefficient in comparison to the one with ex-
plicit processes; e.g., Spin cannot use partial order reduction on this represen-
tation. However, this representation is only an intermediate step.

Specifications. In the original presentation of the system it is obvious how global
states are linked with atomic propositions of the form [∃i. Φ(i)] and [∀i. Φ(i)];
a process i must satisfy Φ(i) or all processes must do so, respectively. In the
counter representation we do not “have” processes in the system anymore, and
we have to understand which states to label with our atomic propositions.

In the counter representation, we exploit the fact that our properties are all
quantified, which naturally translates to statements about counters: Let �Φ� be
the set of local states that satisfy Φ. In our example we are interested in the

150 A. Gmeiner et al.

k[V0, I0] = I2
k[V1, I0] = I1

nsnt = I0
s0

k[V0, I0] = I2
k[V0, I1] = I1
k[V1, I0] = I1
nsnt = I0

s1

k[V0, I0] = I1
k[V0, I1] = I1
k[V1, I0] = I1
nsnt = I0

s2

k[V0, I1] = I1
k[V1, I0] = I1
nsnt = I0

s6

k[V0, I0] = I2
k[V0, I1] = I2
k[V1, I0] = I1
nsnt = I0

s3

k[V0, I0] = I1
k[V0, I1] = I2
k[V1, I0] = I1
nsnt = I0

s4

.

.

Fig. 8. A small part of the transition system obtained by counter abstraction

local states that satisfy sv = AC, as it appears in our specifications. There are
several such states (not all reachable, though) depending on the different values
of nsnt . Then, a global state satisfies [∃i. Φ(i)] if

∨

�∈�Φ� k[] �= 0. Similarly, a

global state satisfies [∀i. Φ(i)] if
∧

� �∈�Φ� k[] = 0.
As we are dealing with counters, instead of using disjunctions and conjunc-

tions, we could also use sums to evaluate quantifiers: the universal quantifier
could also be expressed as

∑

�∈�Φ� k[] = N(p). However, in the following counter
abstraction this formulization has drawbacks, due to the non-determinism of the
operations on the abstract domain, while the abstraction of 0 is precise.

Counter abstraction. The counter representation encodes a system of n − f
processes as a single process system. When, n, t, and f are fixed, the elements
of array k are bounded by n. However, in the parameterized case the elements
of k are unbounded. To circumvent this problem, we apply the PIA abstraction
from Section 4.1 to the elements of k.

In the counter abstraction, the elements of k range over the abstract do-
main ̂D. Similar to Section 4.1, we have to compute the abstract operations
over k. These are the operations in the init block and in the update block.

To transform the init block, we first compute the existential abstraction of
∑

�∈L0
k[] = N(p). In our example, we compute the set ||k[0] + k[3] = n− f ||∃

and non-deterministically choose an element from this set. Again, we can do it
with Yices. We give the initialization block after the abstraction (note that the
number of choices is fixed and determined by the size of the abstract domain):

1 if /∗ 0 �→ (pc = V 0, nrcvd = I0) ; 3 �→ (pc = V 1, nrcvd = I0) ∗/
2 :: k[0] = 3 /∗ In−t ∗/; k[3] = 0 /∗ I0 ∗/;
3 :: k[0] = 3 /∗ In−t ∗/; k[3] = 1 /∗ I1 ∗/;
4 ...
5 :: k[0] = 0 /∗ I0 ∗/; k[3] = 3 /∗ In−t ∗/;
6 fi;

Listing 12. Initialization of the counters

Tutorial on Parameterized Model Checking 151

In the update block we have to compute the abstraction of k[4 * pc +
nrcvd]-- and k[4 * next pc + next nrcvd]++. We have already seen
how to do this with the data abstraction. The update block looks as follows
after the abstraction:

18 if
19 :: pc != next_pc || nrcvd != next_nrcvd ->
20 if /∗ decrement the counter of the prev ious s t a t e ∗/
21 :: (k[((pc * 4) + nrcvd)] == 3) ->
22 k[((pc * 4) + nrcvd)] = 3;
23 :: (k[((pc * 4) + nrcvd)] == 3) ->
24 k[((pc * 4) + nrcvd)] = 2;
25 ...
26 :: (k[((pc * 4) + nrcvd)] == 1) ->
27 k[((pc * 4) + nrcvd)] = 0;
28 fi;
29 if /∗ increment the counter of the next s t a t e ∗/
30 :: (k[((next_pc * 4) + next_nrcvd)] == 3) ->
31 k[((next_pc * 4) + next_nrcvd)] = 3;
32 :: (k[((next_pc * 4) + next_nrcvd)] == 2) ->
33 k[((next_pc * 4) + next_nrcvd)] = 3;
34 ...
35 :: (k[((next_pc * 4) + next_nrcvd)] == 0) ->
36 k[((next_pc * 4) + next_nrcvd)] = 1;
37 fi;
38 :: else; /∗ do not update the counters ∗/
39 fi;

Listing 13. Abstract increment and decrement of the counters

In contrast to the counter representation, the increment and decrement of
the counters in the array k are now non-deterministic. For instance, the counter
k[((pc * 4) + nrcvd)] can change its value from In−t to It+1 or stay un-
changed. Similarly, the value of k[((next pc * 4) + next nrcvd)] can
change from I1 to It+1 or stay unchanged.

Observe that this non-determinism adds behaviors to the abstract systems:

– both counters could stay unchanged, which leads to stuttering
– the value of k[((pc * 4) + nrcvd)] decreases, while at the same time

the value of k[((next pc * 4) + next nrcvd)] stays unchanged, that
is, we lose processes, and finally

– k[((pc * 4) + nrcvd)] stays unchanged and k[((next pc * 4) +
next nrcvd)] increases, that is, processes are added.

Some of these behaviors lead to spurious counterexamples we deal with in Sec-
tion 5. Figure 8 gives a small part of the transition system obtained from the
counter abstraction. We omit local states that have the counter value I0 to fa-
cilitate reading. The state s0 represents the initial states with t+ 1 to n− t− 1
processes having sv = V0 and 1 to t processes having sv = V1. Each transition
corresponds to one process taking a step in the concrete system. For instance,

152 A. Gmeiner et al.

in the transition (s0, s2) a process with local state [V0, I0] changes its state to
[V0, I1]. Therefore, the counter κ[V0, I0] is decremented and the counter κ[V0, I1]
is incremented.

Specifications. Similar to the counter representations, quantifiers can be encoded
as expressions on the counters. Instead of comparing to 0, we compare to the
abstract zero I0: A global state satisfies [∃i. Φ(i)] if

∨

�∈�Φ� k[] �= I0. Similarly,

a global state satisfies [∀i. Φ(i)] if
∧

� �∈�Φ� k[] = I0.

4.3 Soundness

We do not focus on the soundness proofs here, the details can be found in [52].
The soundness is based on two properties:

First, between every concrete system and the abstract system, there is a sim-
ulation relation. The central argument to prove this comes from Proposition 2,
from which follows that if a threshold is satisfied in the concrete system, the
abstraction of the threshold is satisfied in the abstract systems. Intuitively, this
means that if a transition is enabled in the concrete system, then it is enabled
in the abstract system, which is required to prove simulation.

Second, the abstraction of a fair path (with respect to our justice properties)
in the concrete system is a fair path in the abstract system. This follows from
construction: we label an abstract state with a proposition if the abstract state
satisfies the existential abstraction of the proposition, in other words, if there is
a concretization of the abstract state that satisfies the proposition.

5 Abstraction Refinement

In Sections 4.1 and 4.2, we constructed approximations of the transition sys-
tems: First, we transformed parameterized code of a process into finite-state
non-parameterized code; Second, we constructed a finite-state process that ap-
proximates the behavior of n− f processes. Usually, abstraction introduces new
behavior that is not present in the concrete system. As a result, specifications
that hold in the concrete system, may be violated in the abstract system. In
this case, a model checker returns an execution of the abstract system that can-
not be replayed in the concrete system; such an execution is called a spurious
counterexample.

As it was suggested in Proposition 2, PIA data abstraction does not lose
precision for the comparisons against threshold expressions. In fact, in our ex-
periments we have not seen spurious counterexamples caused by the PIA data
abstraction. So, we focus on abstraction refinement of the PIA counter abstrac-
tion, where we have identified three sources of spurious behavior (a) the run
contains a transition where the number of processes is decreasing or increas-
ing; (b) the number of messages sent by processes deviates from the number of
processes who have sent a message; (c) unfair loops.

Tutorial on Parameterized Model Checking 153

Given a run of the counter abstraction, we have to check that the run is
spurious for all combinations of parameters from PRC . This problem is again
parameterized, and we are not aware of techniques to deal with it in the general
case. Thus, we limit ourselves to detecting the runs that have a uniformly spu-
rious transition, that is, a transition that does not have a concretization for all
the parameters from PRC .

We check for spurious transitions using SMT solvers. To do so, we have to
encode the transition relation of all concrete systems (which are defined by dif-
ferent parameter values) in SMT. We explain our approach in three steps: first
we encode a single Promela statement. Based on this we encode a process step
that consist of several statements. Finally, we use the encoding of a step to define
the transition relation of the system.

5.1 Encoding the Transition Relation

Encoding a single statement. As we want to detect spurious behavior, the SMT
encoding must capture a system on a less abstract level than the counter abstrac-
tion. One first idea would be to encode the transition relation of the concrete
systems. However, as we do parameterized model checking, we actually have
infinitely many concrete systems, and the state space and the number of pro-
cesses in these systems is not bounded. Hence, we require a representation whose
“degree of abstraction” lies between the concrete systems and the counter ab-
straction. In principle, the counter representation from Section 4.2 seems to be a
good candidate. Its state is given by finitely many integer counters, and finitely
many shared variables that range over the abstract domain. Although there are
infinitely many states (the counters are not bounded), the state space and tran-
sition relation can be encoded as an SMT problem. Moreover, threshold guards
and the operations on the process counters can be expressed in linear integer
arithmetic, which is supported by many SMT solvers.

However, experiments showed that we need a representation closer to the
concrete systems. Hence, we use a system whose only difference to the counter
representation from Section 4.2 is that the shared variables are not abstracted.
The main difficulty in this is to encode transitions that involve abstract local as
well as concrete global variables. For that, we represent the parameters in SMT.
Then, instead of comparing global variables against abstract values, we check
whether the global variables are within parametric intervals. Here we do not go
into the formal details of this abstraction. Rather, we explain it by example. The
most complicated case is the one where an expression involves the parameters,
local variables, and shared variables. For instance, consider the code on page 146,
where a is a local variable and b is a shared one. In this new abstraction a is ab-
stract and b is concrete. Thus, we have to encode constraints on b as inequalities
expressing which interval b belongs to. Specifically, we replace b = Ik with either
ek ≤ b < ek+1 (when k is not the largest threshold eμ), or eμ ≤ b (otherwise):

154 A. Gmeiner et al.

a == In−t && n− t ≤ b || a == It+1 && n− t ≤ b
|| a == I1 && n− t ≤ b || a == I0 && n− t ≤ b
|| a == In−t && t+ 1 ≤ b < n− t || a == It+1 && t+ 1 ≤ b < n− t
|| a == I1 && t+ 1 ≤ b < n− t || a == I0 && t+ 1 ≤ b < n− t
|| a == It+1 && 1 ≤ b < t+ 1 || a == I1 && 1 ≤ b < t+ 1
|| a == I0 && 1 ≤ b < t+ 1 || a == I1 && 0 ≤ b < 1
|| a == I0 && 0 ≤ b < 1

Apart from this, statements that depend solely on shared variables are not
changed. Finally, statements that consist of local variables and parameters are
abstracted as in Section 4.1. This level of abstraction allows us to detect spurious
transitions of both types (a) and (b).

Encoding a single process step. Our Promela code defines a transition system:
A single iteration of the loop expresses one step (or transition) which consists
of several expressions executed indivisibly. The code before the loop defines the
constraints on the initial states of the transition system. Recall that we can ex-
press Promela code as a control flow automaton (cf. Section 3.3 and Figure 4).
Formally, a guarded control flow automaton (CFA) is an edge-labeled directed
acyclic graph A = (Q, qI , qF , E) with a finite set Q of nodes called locations,
an initial location qI ∈ Q, and a final location qF ∈ Q. Edges are labeled with
simple Promela statements (assignments and comparisons). Each transition is
defined by a path from qI to qF in a CFA. Our goal is to construct a formula that
encodes the transition relation. We are doing this by translating a statement on
every edge from E into an SMT formula in a way similar to [17][Ch. 16]. What
we show below is not the most efficient encoding, but we omit optimizations to
keep presentation clear.

First, we have to take care of multiple assignments to the same variable, as
they can overwrite previously assigned values. Consider the following sequence
of Promela statements S: x=1; y=x; x=2; z=x corresponding to a path
of some CFA. If we naively encode it as x = 1 ∧ y = x ∧ x = 2 ∧ z = x, then
the formula is immediately unsatisfiable due to the conflicting constraints on x.
We thus need multiple versions of such variables, that is, we turn sequence S
into S1: x1=1; y1=x1; x2=2; z1=x2. Now we can construct formula x1 =
1∧ y1 = x1 ∧ x2 = 2; z1 = x2 that treats the assignments correctly. Such a form
is known as static single assignment (SSA); it can be computed by an algorithm
given in [34].

We assume the following notation for the multiple copies of a variable x in
SSA: x denotes the input variable, that is, the copy of x at location qI ; x′

denotes the output variable, that is, the copy of x at location qF ; x
i denotes

a temporary variable, that is, a copy of x that is overwritten by another copy
before reaching qF .

From now on we assume that the CFA in given in SSA form, and we can thus
encode the transition relation. This requires us to capture all paths of the CFA.
Our goal is to construct a single formula T over the following vectors of free
variables:

Tutorial on Parameterized Model Checking 155

– p is the vector of integer parameters from Π , which is not changed by a
transition;

– x is the vector of integer input variables from Λ ∪ {sv};
– x′ is the vector of integer output variables of x;

– g is the vector of integer input variables from Γ ;

– g′ is the vector of integer output variables of g;

– t is the vector of integer temporary variables of x and g;

– en is the vector of boolean variables, one variable ene per an edge e ∈ E,
which means that edge e lies on the path from qI to qF .

Let form(s) be a straightforward translation of a Promela statement s into
a formula as discussed above. Assignments are replaced with equalities and re-
lations (e.g., ≤, >) are kept as they are. Then, for an edge e ∈ E labeled with
a statement s, we construct a formula Te(p,x,x

′, g, g′, t, en) as follows:

Te ≡ ene → form(s),

Now, formula T is constructed as the following conjunction whose subformulas
are discussed in detail below:

T ≡ start ∧ follow ∧mux ∧
∧

e∈E

Te

Intuitively, start is saying that at least one edge outgoing from qI is activated;
follow is saying that whenever a location has an incoming activated edge, it also
has at least one outgoing activated edge; mux is expressing the fact that at most
one outgoing edge can be picked. Formally, the formulas are defined as follows:

start ≡
∨

(q,q′)∈E: q=qI

en(q,q′)

follow ≡
∧

(q,q′)∈E

(

en(q,q′) →
∨

(q′,q′′)∈E

en(q′,q′′)

)

mux ≡
∨

(q,q′),(q,q′′)∈E

¬en(q,q′) ∨ ¬en(q,q′′)

We have to introduce formula mux , because the branching operators in
Promela allow one to pick a branch non-deterministically, whenever the guard
of the branch evaluates to true. To pick exactly one branch, we have to introduce
the mutual exclusion constraints in the form of mux . In contrast, programming
languages like C do not need this constraint, as the conditions of the if-branch
and the else-branch cannot both evaluate to true simultaneously.

Having constructed formula T , we say that a process can make a transition
from state x to state x′ under some combination of parameters if and only if
the formula T (p,x,x′, g, g′, t, en) ∧ RC (p) is satisfiable.

156 A. Gmeiner et al.

Transition relation of the counter representation. Now we show how to encode
the transition relation R of the counter representation using the process transi-
tion relation T . The transition relation connects counters k and global variables
g before a step with their primed versions k′ and g′ after the step. Recall that
in Section 4.2, we introduced bijection h that maps states to numbers. In the
following, by abuse of notation, by h(x) we denote an SMT expression that
encodes the bijection h. We will use the formulas dec and inc: Informally, dec
ensures that the counter that corresponds to h(x) is not equal to zero and decre-
ments the counter, while inc increments the counter k[h(x′)]. Formula R is the
following conjunction

R ≡ dec ∧ T ∧ inc ∧ keep,

and we define dec, inc, and keep as follows:

dec ≡
∧

0≤�<|L|
h(x) = 	 → k[] > 0 ∧ k′[] = k[]− 1

inc ≡
∧

0≤�<|L|
h(x′) = 	 → k′[] = k[] + 1

keep ≡
∧

0≤�<|L|
(h(x) �= 	 ∧ h(x′) �=) → k′[] = k[]

Now we can say that a counter representation of a system makes a step from
(k, g) to (k′, g′) if and only if R(p,x,x′,k,k′, g, g′, t, en)∧RC (p) is satisfiable.
In what follows, we denote the latter formula by Step.

In order to encode operations on k, we are using arrays. In our case, however,
each array may be replaced with |L| integer variables. Thus, we do not actually
use important properties of array theory.

5.2 Spurious Behavior

Losing and introducing processes. We start with the first type of spurious be-
havior, where a transition “loses” or “introduces” processes. Consider the fol-
lowing sequence of abstract states, which introduces new processes due to non-
determinism of the counter updates:

1 k = {0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, nsnt =1
3 k = {0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0}, nsnt =2

Here we represent the abstract states in the format similar to the one used
in our tool (Section 6). The assignment “k = {. . . }” shows the contents of the
array k in C format, that is, the position i = h() gives the abstract number of
processes in local state 	. The assignment “nsnt = . . . ” shows the value of nsnt.

As one can see, counter k[8] changes its value from I0 to I1 and then to It+1.
The combination of k[8] = It+1 and k[4] = In−t indicates that the transition
from state 2 to state 3 is spurious. In fact, we can detect this kind of spurious
behavior with Yices:

Tutorial on Parameterized Model Checking 157

1 (set-evidence! true)
2 (set-verbosity! 3)
3 (define n::int)
4 (define t::int)
5 (define f::int)
6 (assert (and (> n (* 3 t)) (> t f) (>= f 0)))
7 (define k :: (-> (subrange 0 15) nat))
8 (assert+ (and (<= (- n t) (k 4))))
9 (assert+ (and (<= (+ t 1) (k 8)) (< (k 8) (- n t))))

10 ;; -> copy the assertion below for the indices 1-3, 5-7, 9-15
11 (assert+ (and (<= 0 (k 0)) (< (k 0) 1)))
12 (assert (= (- n f) (+
13 (k 0) (k 1) (k 2) (k 3) (k 4) (k 5) (k 6) (k 7)
14 (k 8) (k 9) (k 10) (k 11) (k 12) (k 13) (k 14) (k 15))))
15 (check)

Listing 14. Constraints on state 3 encoded in Yices

In lines (8) – (11), we constrain the values of process counters to reside within
the parametric intervals as defined by the abstract values of state 3. In lines (12) –
(14), we assert that the total number of processes equals n − f . Yices reports
that the constraints are unsatisfiable, which means that state 3 cannot be an ab-
straction of a system state with n−f processes. We conclude that the transition
from state 2 to state 3 is uniformly spurious, and we eliminate it.

In fact, Yices also reports that it did not use all the assertions to come up
with unsatisfiability. An unsatisfiable core—a minimal set of assertions that
leads to unsatisfiability—consists of the assertions in lines (8) – (9). Thus, we
can remove every transition leading to a state with k[4] = In−t and k[8] = It+1.

Now consider a sequence of abstract states, which is losing processes:

1 k = {0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, nsnt =1
3 k = {0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, nsnt =1

As with the case of introducing processes, we can detect with Yices that the
transition from state 2 to state 3 is uniformly spurious, and eliminate all the
transitions captured with an unsatisfiable core.

Losing messages. In our case study (cf. Figure 4) processes increase the global
variable nsnt by one, when they transfer to a state where the value of the status
variable is in {SE,AC}. Hence, in concrete system instances, nsnt should always
be equal to the number of processes whose status is in {SE,AC}, while due to
phenomena similar to those discussed above, we can “lose messages” in the ab-
stract system. When checking safety properties, this kind of spurious behavior
does not produce counterexamples. However, it generates spurious counterexam-
ples for liveness. Consider the following example:

1 k = {0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, nsnt =1
3 k = {0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0}, nsnt =1

158 A. Gmeiner et al.

Consider state 3. Here, the number of processes with sv = SE is at least t+1
(as k[8] = 2 corresponding to It+1), while the number of messages is always
strictly less than t+ 1 (as nsnt = 1 corresponding to I1). We can try to check,
whether the transition from state 2 to state 3 is spurious. This time, we also add
the constraints by Step:

1 (set-evidence! true)
2 (set-verbosity! 3)
3 (define n::int)
4 (define t::int)
5 (define f::int)
6 (assert (and (> n (* 3 t)) (> t f) (>= f 0)))
7 (define k :: (-> (subrange 0 15) nat))
8 (define k’ :: (-> (subrange 0 15) nat))
9 (assert+ (and (<= (+ t 1) (k 4)) (<= (k 4) (- n t))))

10 (assert+ (and (<= 1 (k 8)) (< (k 8) (+ t 1))))
11 (assert+ (and (<= 1 (k’ 4)) (<= (k’ 4) (+ t 1))))
12 (assert+ (and (<= 1 (k’ 8)) (< (k’ 8) (+ t 1))))
13 ;; copy the assertions below for the indices 1-3, 5-7, 9-15
14 (assert+ (and (<= 0 (k 0)) (< (k 0) 1)))
15 (assert+ (and (<= 0 (k’ 0)) (< (k’ 0) 1)))
16 ;; -> copy Step here <-
17 (check)

Listing 15. Concretization of transition from state 2 to state 3 in Yices

This time Yices reports that the constraints are satisfiable. Indeed, it is
possible to pick the number of processes that satisfy the constraints in lines (9) –
(12) in Listing 15 and still do not increase nsnt so that it reaches t+ 1. As we
know that this example represents spurious behavior, the user can introduce an
invariant candidate in Promela:

atomic tx_inv =
((card(Proc:pc == SE) + card(Proc:pc == AC)) == nsnt);

Then we can automatically test, whether the invariant candidate tx inv is
an invariant by checking that the following formula is unsatisfiable (tx inv ′ is a
copy of tx inv with x replaced by x′, and Init is a formula encoding the initial
states):

¬((Init → tx inv) ∧ ((tx inv ∧ Step) → tx inv ′))

As soon as we know that tx inv is an invariant, we can add the following
assertion to the previous query in Yices:

18 (assert (= nsnt (+
19 (k 8) (k 9) (k 10) (k 11) (k 12) (k 13) (k 14) (k 15))))

Listing 16. Constraint expressed by the invariant tx inv

With this assertion in place, we discover that the transition from state 2 to
states 3 is uniformly spurious.

Tutorial on Parameterized Model Checking 159

5.3 Removing Transitions in Promela

So far, we have been concerned with detecting uniformly spurious transitions.
Now we discuss how one can remove spurious transitions from the counter ab-
straction that we introduced in Section 4.2 (cf. code on p. 148).

Whenever we detect a uniformly spurious transition, we extract two sets of
constraints from the SMT solver: The constraints on the abstract state before
the transition (precondition), and the constraints on the abstract state after the
transition (postcondition). Consider the following uniformly spurious transition:

1 k = {1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {1, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =1

Here we extract the following constraints from an unsatisfiability core given
to us by the SMT solver (written in Promela notation):

pre = (nsnt == 0);
post = (k[0] == 1) && (k[1] == 2)

&& (k[4] == 3) && (k[15] == 0) && (nsnt == 0);

In order to remove the spurious transition, we have to enforce Spin to prune
the executions that include the transition. To this end, we introduce a boolean
variable is spur that turns true, whenever the current execution has at least
one spurious transition. Then for each refinement iteration K ≥ 1 we introduce
a boolean variable pK pre that turns true, whenever the current state satisfies
the precondition of the spurious transition detected in iteration K. We mod-
ify Promela code as follows:

bool is_spur = 0; /∗ i s the current execut ion spurious ∗/
bool p1_pre = 0; /∗ de tec ted at ref inement i t e r a t i o n 1 ∗/
...
bool pK_pre = 0; /∗ de tec ted at ref inement i t e r a t i o n K ∗/
...
active[1] proctype CtrAbs() {

...
/∗ i n i t ∗/

loop:
...
pK_pre = (nsnt == 0);
/∗ s e l e c t ∗/
/∗ rece i ve ∗/
/∗ compute ∗/
/∗ send ∗/
/∗ update counters ∗/
...
/∗ i s the current t r an s i t i on spurious? ∗/
spur = spur || pK_pre && k[0] == 1 && k[1] == 2

&& k[4] == 3 && k[15] == 0 && nsnt == 0;
goto loop;

}

Listing 17. Counter abstraction with detection of spurious transitions

160 A. Gmeiner et al.

Finally, we prune the spurious executions by modifying each LTL\X formula ϕ
in Promela specifications as follows:

[]!is_spur -> ϕ

5.4 Detecting Unfair Loops

There is a third kind of spurious behavior that is not present in our case study,
but it occurs in the experiments with omission faults (cf. Section 6). Modeling
omission faults introduces 12 local states instead of 16. Here is a counterexample
showing the violation of liveness property R (cf. Section 3):

3 k = {2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt = 0
4 k = {2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0}, nsnt = 1
5 k = {2, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0}, nsnt = 2
6 k = {2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0}, nsnt = 2
7 k = {1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0}, nsnt = 2
8 k = {0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0}, nsnt = 2
9 k = {0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0}, nsnt = 2

10 k = {0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0}, nsnt = 2
11 k = {0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0}, nsnt = 2
12 k = {0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1}, nsnt = 2
13 k = {0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2}, nsnt = 2
14 k = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2}, nsnt = 2
15 <<<<<START OF CYCLE>>>>>
16 k = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2}, nsnt = 2

Listing 18. A counterexample with a spurious (unfair) loop

Here state (16) is repeated in a loop, but it violates the following fairness
constraint saying that up to nsnt − F messages must be eventually delivered:

atomic in_transit = some(Proc:nrcvd < nsnt - F);
ltl fairness { []<>(!in_transit) && (...) }

Again, using the SMT solver we can check, whether the loop is unfair, that
is, no state within the loop satisfies the fairness constraint, e.g., !in transit.

1 (set-evidence! true)
2 (set-verbosity! 3)
3 (define n::int)
4 (define t::int)
5 (define f::int)
6 (assert (and (> n (* 2 t)) (> t f) (>= f 0)))
7 (define k :: (-> (subrange 0 11) nat))
8 ;; the constraints by the state 14:
9 (assert+ (and (<= 1 (k 7)) (< (k 4) (+ t 1))))

10 (assert+ (and (<= (+ t 1) (k 11))))
11 ;; -> repeat the assertion below for the indices 0-6, 7-10
12 (assert+ (and (<= 0 (k 0)) (< (k 0) 1)))
13 (assert+ (>= nsnt (+ t 1)))

Tutorial on Parameterized Model Checking 161

14 ;; constraints by !in_transit
15 (assert+ (not (or
16 (and (>= (- nsnt f) (+ t 1))
17 (or (/= (k 1) 0) (/= (k 4) 0) (/= (k 7) 0) (/= (k 10) 0)))
18 (and (>= (- nsnt f) (+ t 1))
19 (or (/= (k 0) 0) (/= (k 3) 0) (/= (k 6) 0) (/= (k 9) 0)))
20 (and (>= (- nsnt f) 1) (< (- nsnt f) (+ t 1))
21 (or (/= (k 0) 0) (/= (k 3) 0) (/= (k 6) 0) (/= (k 9) 0)))
22)))
23 (check)

Listing 19. Does state 16 have a concretization that meets justice constraints?

This query is unsatisfiable and Yices gives us an unsatisfiable core that we
track in Promela as we did with the spurious transitions:

/∗ update counters ∗/
...
r0 = k[0] == 0 && k[1] == 0

&& k[2] == 0 && k[3] == 0 && k[4] == 0
&& k[5] == 0 && k[7] == 1 && k[10] == 0;

and modify each specification ϕ to avoid infinite occurrences of r0:

(<>[]r0) || ϕ

6 Experiments

In this section we describe the tool chain ByMC implementing the approach
presented in Sections 3 – 5. We also demonstrate the results of experiments on
finite-state as well as parameterized model checking of fault-tolerant distributed
algorithms. The tool and the benchmarks are available at [1].

6.1 Running the Tool

In what follows, we use the tool on the running example bcast-byz.pml avail-
able in the set of benchmarks benchmarks-sfm14 at [1]. We also assume that
the tool resides in the directory ${bymc}.

The tool chain supports two modes of operation:

– Concrete model checking. In this mode, the user fixes the values of the
parameters p. The tool instantiates code in standardPromela and performs
finite-state model checking with Spin. This step is very useful to make sure
that the user code operates as expected without abstraction involved.

– Parameterized model checking. In this mode, the tool applies data and
counter abstractions (cf. Section 4), and performs finite-state model checking
of the abstract model with Spin.

For concrete-state model checking of the relay property, one issues com-
mand verifyco-spin as follows:

162 A. Gmeiner et al.

$ ${bymc}/verifyco-spin "N=4,T=1,F=1" bcast-byz.pml relay

The tool instantiates the model checking problem in directory
“./x/spin-bcast-byz-relay-N=4,T=1,F=1”. The directory contains file
concrete.prm that differs from the source code as follows: The parameters N ,
T , and F in the Promela code are replaced with the values 4, 1, 1 respectively.
The process prototype is replaced with N − F = 3 active processes.

In order to run parameterized model checking, one issues verifypa-spin
as follows:

$ ${bymc}/verifypa-spin bcast-omit.pml relay

The tool instantiates the model checking problem in a directory, whose name
follows the pattern “./x/bcast-byz-relay-yymmdd-HHMM.*”. The direc-
tory contains the following files of interest: abs-interval.prm is the result of
the data abstraction; abs-counter.prm is the result of the counter abstrac-
tion; abs-vass.prm is the auxiliary abstraction for the abstraction refinement;
mc.out contains the last output by Spin; cex.trace contains the counterex-
ample (if there is one); yices.log contains communication log with Yices.

6.2 Concrete Model Checking for Small System Sizes

Listing 3 provides the central parts of the code of our case study. For the ex-
periments we have implemented four distributed algorithms that use threshold-
guarded commands, and differ in the fault model. We have one algorithm for
each of the fault models discussed. In addition, the algorithms differ in the
guarded commands. The following list is ordered from the most general fault
model to the most restricted one. The given resilience conditions on n and t are
the ones we expected from the literature, and their tightness was confirmed by
our experiments:

Byz. tolerates t Byzantine faults if n > 3t,
symm. tolerates t symmetric (identical Byzantine [11]) faults if n > 2t,
omit. tolerates t send omission faults if n > 2t,
clean. tolerates t clean crash faults for n > t.

In addition, we verified a folklore reliable broadcasting algorithm that toler-
ates crash faults, which is given, e.g., in [23]. Further, we verified a Byzantine
tolerant broadcasting algorithm from [20]. For the encoding of the algorithm
from [20] we were required to use two message types and thus two shared vari-
ables—opposed to the one type of the 〈echo〉 messages in Algorithm 1. Fi-
nally, we implemented the asynchronous condition-based consensus algorithm
from [67]. We specialized it to binary consensus, which resulted in an encoding
which requires four shared variables.

The major goal of the experiments was to check the adequacy of our formal-
ization. To this end, we first considered the four well-understood variants of [76],
for each of which we systematically changed the parameter values. By doing so,
we verify that under our modeling the different combination of parameters lead

Tutorial on Parameterized Model Checking 163

Table 1. Summary of experiments related to [76]

parameter values spec valid Time Mem. Stored Transitions Depth

Byz

B1 N=7,T=2,F=2 (U) ✓ 3.13 sec. 74 MB 193 · 103 1 · 106 229
B2 N=7,T=2,F=2 (C) ✓ 3.43 sec. 75 MB 207 · 103 2 · 106 229
B3 N=7,T=2,F=2 (R) ✓ 6.3 sec. 77 MB 290 · 103 3 · 106 229
B4 N=7,T=3,F=2 (U) ✓ 4.38 sec. 77 MB 265 · 103 2 · 106 233
B5 N=7,T=3,F=2 (C) ✓ 4.5 sec. 77 MB 271 · 103 2 · 106 233
B6 N=7,T=3,F=2 (R) ✗ 0.02 sec. 68 MB 1 · 103 13 · 103 210

omit

O1 N=5,To=2,Fo=2 (U) ✓ 1.43 sec. 69 MB 51 · 103 878 · 103 175
O2 N=5,To=2,Fo=2 (C) ✓ 1.64 sec. 69 MB 60 · 103 1 · 106 183
O3 N=5,To=2,Fo=2 (R) ✓ 3.69 sec. 71 MB 92 · 103 2 · 106 183
O4 N=5,To=2,Fo=3 (U) ✓ 1.39 sec. 69 MB 51 · 103 878 · 103 175
O5 N=5,To=2,Fo=3 (C) ✗ 1.63 sec. 69 MB 53 · 103 1 · 106 183
O6 N=5,To=2,Fo=3 (R) ✗ 0.01 sec. 68 MB 17 135 53

symm

S1 N=5,T=1,Fp=1,Fs=0 (U) ✓ 0.04 sec. 68 MB 3 · 103 23 · 103 121
S2 N=5,T=1,Fp=1,Fs=0 (C) ✓ 0.03 sec. 68 MB 3 · 103 24 · 103 121
S3 N=5,T=1,Fp=1,Fs=0 (R) ✓ 0.08 sec. 68 MB 5 · 103 53 · 103 121
S4 N=5,T=3,Fp=3,Fs=1 (U) ✓ 0.01 sec. 68 MB 66 267 62
S5 N=5,T=3,Fp=3,Fs=1 (C) ✗ 0.01 sec. 68 MB 62 221 66
S6 N=5,T=3,Fp=3,Fs=1 (R) ✓ 0.01 sec. 68 MB 62 235 62

clean

C1 N=3,Tc=2,Fc=2,Fnc=0 (U) ✓ 0.01 sec. 68 MB 668 7 · 103 77
C2 N=3,Tc=2,Fc=2,Fnc=0 (C) ✓ 0.01 sec. 68 MB 892 8 · 103 81
C3 N=3,Tc=2,Fc=2,Fnc=0 (R) ✓ 0.02 sec. 68 MB 1 · 103 17 · 103 81

to the expected result. Table 1 and Figure 9 summarize the results of our exper-
iments for broadcasting algorithms in the spirit of [76]. Lines B1 –B3, O1 –O3,
S1 – S3, and C1 –C3 capture the cases that are within the resilience condition
known for the respective algorithm, and the algorithms were verified by Spin.
In Lines B4 –B6, the algorithm’s parameters are chosen to achieve a goal that is
known to be impossible [69], i.e., to tolerate that 3 out of 7 processes may fail.
This violates the n > 3t requirement. Our experiment shows that even if only 2
faults occur in this setting, the relay specification (R) is violated. In Lines O4 –
O6, the algorithm is designed properly, i.e., 2 out of 5 processes may fail (n > 2t
in the case of omission faults). Our experiments show that this algorithm fails
in the presence of 3 faulty processes, i.e., (C) and (R) are violated.

Table 2 summarizes our experiments for the algorithms in [23], [20], and [67].
The specification (F) is related to agreement and was also used in [43]. Prop-
erties (V0) and (V1) are non-triviality, that is, if all processes propose 0 (1),
then 0 (1) is the only possible decision value. Property (A) is agreement and
similar to (R), while Property (T) is termination, and requires that every correct
process eventually decides. In all experiments the validity of the specifications
was as expected from the distributed algorithms literature.

164 A. Gmeiner et al.

Fig. 9. Spin memory usage (left) and running time (right) for Byz

For slightly bigger systems, that is, for n = 11 our experiments run out of
memory. This shows the need for parameterized verification of these algorithms.

6.3 Parameterized Model Checking

To show feasibility of our abstractions, we have implemented the PIA abstrac-
tions and the refinement loop in OCaml as a prototype tool ByMC. We eval-
uated it on different broadcasting algorithms. They deal with different fault
models and resilience conditions; the algorithms are: (Byz), which is the algo-
rithm from Figure 4, for t Byzantine faults if n > 3t, (symm) for t symmetric
(identical Byzantine [11]) faults if n > 2t, (omit) for t send omission faults if
n > 2t, and (clean) for t clean crash faults [80] if n > t. In addition, we verified
the folklore broadcasting algorithm FBC—formalized also in [43]—whose CFA
is given in Figure 5.

From the literature we know that we cannot expect to verify these FT-
DAs without restricting the environment, e.g., without communication fairness,
namely, every message sent is eventually received. To capture this, we use justice
requirements, e.g., J = {[∀i. rcvd i ≥ nsnt]} in the Byzantine case.

Table 3 summarizes our experiments run on 3.3GHz Intel R© CoreTM 4GB.
In the cases (A) we used resilience conditions as provided by the literature,
and verified the specification. The model FBC is the folklore reliable broadcast
algorithm also considered in [43] under the resilience condition n ≥ t ≥ f . In
the bottom part of Table 3 we used different resilience conditions under which
we expected the algorithms to fail. The cases (B) capture the case where more
faults occur than expected by the algorithm designer (f ≤ t + 1 instead of
f ≤ t), while the cases (C) and (D) capture the cases where the algorithms were
designed by assuming wrong resilience conditions (e.g., n ≥ 3t instead of n > 3t
in the Byzantine case). We omit (clean) as the only sensible case n = t = f (all
processes are faulty) results into a trivial abstract domain of one interval [0,∞).
The column “#R” gives the numbers of refinement steps. In the cases where it
is greater than zero, refinement was necessary, and “Spin Time” refers to the
Spin running time after the last refinement step. Finally, column | ̂D| indicates
the size of the abstract domain.

Tutorial on Parameterized Model Checking 165

Table 2. Summary of experiments with algorithms from [23,20,67]

parameter values spec valid Time Mem. Stored Transitions Depth

Folklore Broadcast [23]

F1 N=2 (U) ✓ 0.01 sec. 98 MB 121 7 · 103 77
F2 N=2 (R) ✓ 0.01 sec. 98 MB 143 8 · 103 48
F3 N=2 (F) ✓ 0.01 sec. 98 MB 257 2 · 103 76
F4 N=6 (U) ✓ 386 sec. 670 MB 15 · 106 20 · 106 272
F5 N=6 (R) ✓ 691 sec. 996 MB 24 · 106 370 · 106 272
F6 N=6 (F) ✓ 1690 sec. 1819 MB 39 · 106 875 · 106 328

Asynchronous Byzantine Agreement [20]

T1 N=5,T=1,F=1 (R) ✓ 131 sec. 239 MB 4 · 106 74 · 106 211
T2 N=5,T=1,F=2 (R) ✗ 0.68 sec. 99 MB 11 · 103 465 · 103 187
T3 N=5,T=2,F=2 (R) ✗ 0.02 sec. 99 MB 726 9 · 103 264

Condition-based consensus [67]

S1 N=3,T=1,F=1 (V0) ✓ 0.01 sec. 98 MB 1.4 · 103 7 · 103 115
S2 N=3,T=1,F=1 (V1) ✓ 0.04 sec. 98 MB 3 · 103 18 · 103 128
S3 N=3,T=1,F=1 (A) ✓ 0.09 sec. 98 MB 8 · 103 42 · 103 127
S4 N=3,T=1,F=1 (T) ✓ 0.16 sec. 66 MB 9 · 103 83 · 103 133
S5 N=3,T=1,F=2 (V0) ✓ 0.02 sec. 68 MB 1724 9835 123
S6 N=3,T=1,F=2 (V1) ✓ 0.05 sec. 68 MB 3647 23 · 103 136
S7 N=3,T=1,F=2 (A) ✓ 0.12 sec. 68 MB 10 · 103 55 · 103 135
S8 N=3,T=1,F=2 (T) ✗ 0.05 sec. 68 MB 3 · 103 17 · 103 135

7 Discussions

Input languages for software model checkers are designed to capture limited
degrees of non-determinism that are required to check, e.g., C/C++ industrial
software. However, distributed algorithms typically show higher degrees of non-
determinism, which makes them challenging for such existing tools. Promela,
the input language of the Spin model checker [2], was designed to simulate and
validate network protocols. Consequently, Promela contains several primitives
for concurrent and distributed systems, and we consider it the most suitable
language for our purposes. Still, as we discussed, the semantics of the constructs
do not match the ones required by distributed algorithms, and straight-forward
implementations do not scale well. Similarly, PlusCal [60] is a high-level lan-
guage to describe algorithms that can be translated to TLA+. It contains con-
structs to specify concurrent systems with shared variables. The UPPAAL model
checker [14] has channels that model synchronous communications similar to ren-
dezvous. Besides, it contains a broadcast primitive that is more closely related
to hardware than to broadcasts in distributed systems. The input for the SMV
model checker is also oriented towards hardware and provides rather low-level
communication and coordination primitives. Lustre [48] is the input language
for the SCADE tool set, and is limited to tightly coupled synchronous systems.

There have been two major undertakings of formalization that gained ac-
ceptance within the distributed algorithms community. Both were initiated by

166 A. Gmeiner et al.

Table 3. Summary of experiments in the parameterized case

M |= ϕ? RC Spin Spin Spin Spin | ̂D| #R Total

Time Memory States Depth Time

Byz |= U (a) 2.3 s 82 MB 483k 9154 4 0 4 s
Byz |= C (a) 3.5 s 104 MB 970k 20626 4 10 32 s
Byz |= R (a) 6.3 s 107 MB 1327k 20844 4 10 24 s

Symm |= U (a) 0.1 s 67 MB 19k 897 3 0 1 s
Symm |= C (a) 0.1 s 67 MB 19k 1113 3 2 3 s
Symm |= R (a) 0.3 s 69 MB 87k 2047 3 12 16 s
Omit |= U (a) 0.1 s 66 MB 4k 487 3 0 1 s
Omit |= C (a) 0.1 s 66 MB 7k 747 3 5 6 s
Omit |= R (a) 0.1 s 66 MB 8k 704 3 5 10 s

Clean |= U (a) 0.3 s 67 MB 30k 1371 3 0 2 s
Clean |= C (a) 0.4 s 67 MB 35k 1707 3 4 8 s
Clean |= R (a) 1.1 s 67 MB 51k 2162 3 13 31 s

FBC |= U — 0.1 s 66 MB 0.8k 232 2 0 1 s
FBC |= F — 0.1 s 66 MB 1.7k 333 2 0 1 s
FBC |= R — 0.1 s 66 MB 1.2k 259 2 0 1 s
FBC �|= C — 0.1 s 66 MB 0.8k 232 2 0 1 s

Byz �|= U (b) 5.2 s 101 MB 1093k 17685 4 9 56 s
Byz �|= C (b) 3.7 s 102 MB 980k 19772 4 11 52 s
Byz �|= R (b) 0.4 s 67 MB 59k 6194 4 10 17 s
Byz |= U (c) 3.4 s 87 MB 655k 10385 4 0 5 s
Byz |= C (c) 3.9 s 101 MB 963k 20651 4 9 32 s
Byz �|= R (c) 2.1 s 91 MB 797k 14172 4 30 78 s

Symm �|= U (b) 0.1 s 67 MB 19k 947 3 0 2 s
Symm �|= C (b) 0.1 s 67 MB 18k 1175 3 2 4 s
Symm |= R (b) 0.2 s 67 MB 42k 1681 3 8 12 s
Omit |= U (d) 0.1 s 66 MB 5k 487 3 0 1 s
Omit �|= C (d) 0.1 s 66 MB 5k 487 3 0 2 s
Omit �|= R (d) 0.1 s 66 MB 0.1k 401 3 0 2 s

researchers with a background in distributed algorithms and with a precise un-
derstanding of what needs to be expressed. These approaches are on the one
hand, the I/O Automata by Lynch and several collaborators [63,55,66], and on
the other hand, TLA by Lamport and others [59,54,60]. IOA and TLA are gen-
eral frameworks that are based on labeled transition systems and a variant of
linear temporal logic, respectively. Both frameworks were originally developed
at a time when automated verification was out of reach, and they were mostly
intended to be used as formal foundations for handwritten proofs. Today, the
tool support for IOA is still in preliminary stages [3]. For TLA [4], the TLC
model checker is a simple explicit state model checker, while the current version
of the TLA+ Proof System can only check safety proofs.

In all these approaches, specifying the semantics for fault-tolerant distributed
algorithms is a research challenge, and we believe that this research requires an
interdisciplinary effort between researchers in distributed algorithms and model
checking. In this tutorial we presented our first results towards this direction.

Tutorial on Parameterized Model Checking 167

The automatic verification of state-of-the-art distributed algorithm such as
Paxos [58], or even more importantly, their implementations are currently out
of reach, except possibly for very small system sizes. To be eventually able to
verify such algorithms, we have to find efficient means to address the many
problems these distributed algorithms pose to verification, for instance, large
degrees of non-determinism due to faults and asynchrony, parameterization, and
the use of communication primitives that are non-standard to the verification
literature. The work that is presented here provides first steps in this direction.
We focused on a specific class of fault-tolerant distributed algorithms, namely,
threshold-based algorithms and derived abstraction methods for them.

The only way to evaluate the practical use of an abstraction is to conduct
experiments on several case studies, and thus demonstrate that the abstraction
is sufficiently precise to verify correct distributed algorithms, and find coun-
terexamples in buggy ones. Hence, understanding implementations is crucial to
evaluate the theoretical work and they are thus of highest importance. This
motivates this tutorial that discussed the abstraction methods from an imple-
mentation point of view.

In more detail, we first added mild additions to the syntax of Promela to be
able to express the kind of parameterized systems we are interested in. We also
showed by experimental evaluation that the standard language constructs for
interprocess communication do not scale well, and do not naturally match the
required semantics for fault-tolerant distributed algorithms. We thus introduced
an efficient encoding of a fault-tolerant distributed algorithm in the extended
Promela. This representation builds the input for our tool chain, and we dis-
cussed in detail how it can be automatically translated into abstract models.
We have introduced several levels of abstractions. As our abstractions are over-
approximations, the model checker returned spurious counterexamples, such that
we were led to counter example guided abstraction refinement (CEGAR) [27].
In contrast to the classic CEGAR setting, in the parameterized case we have an
infinite number of concrete systems which poses new challenges. In this paper we
discussed several of them and presented the details of the abstraction refinement
approach that was sufficient to verify some of our case studies.

When taking a close look at our experiments, one observes that there are
several algorithms that we verified for small instances, while we could not verify
them in the parameterized setting. Developing new methods that allow us to
also verify them is subject to ongoing work.

Acknowledgments. We are grateful to Francesco Spegni whose constructive
comments helped us to improve the presentation.

References

1. ByMC 0.4.0: Byzantine model checker (2013),
http://forsyte.tuwien.ac.at/software/bymc/ (accessed March 2014)

2. Spin 6.2.7 (2014), http://spinroot.com/ (accessed March 2014)

http://forsyte.tuwien.ac.at/software/bymc/
http://spinroot.com/

168 A. Gmeiner et al.

3. Tempo toolset. Web page, http://www.veromodo.com/
4. TLA – the temporal logic of actions. Web page, http://research.

microsoft.com/en-us/um/people/lamport/tla/tla.html
5. Yices 1.0.40 (2013),

http://yices.csl.sri.com/yices1-documentation.shtml
(accessed March 2014)

6. Abdulla, P.A.: Regular model checking. International Journal on Software Tools
for Technology Transfer 14, 109–118 (2012)

7. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

8. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Consensus with
Byzantine failures and little system synchrony. In: DSN, pp. 147–155 (2006)

9. Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Universal guards,
relativization of quantifiers, and failure models in model checking modulo theories.
JSAT 8(1/2), 29–61 (2012)

10. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 15, 307–309 (1986)

11. Attiya, H., Welch, J.: Distributed Computing, 2nd edn. John Wiley & Sons (2004)
12. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT Press

(2008)
13. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate

abstraction of c programs. In: PLDI, pp. 203–213 (2001)
14. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal 4.0 (2006)
15. Biely, M., Charron-Bost, B., Gaillard, A., Hutle, M., Schiper, A., Widder, J.: Tol-

erating corrupted communication. In: PODC, pp. 244–253 (August 2007)
16. Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid process and

link failures. Theoretical Computer Science 412(40), 5602–5630 (2011)
17. Biere, A.: Handbook of satisfiability, vol. 185. IOS Press (2009)
18. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking

using SAT procedures instead of BDDs. In: DAC, pp. 317–320 (1999)
19. Bokor, P., Kinder, J., Serafini, M., Suri, N.: Efficient model checking of fault-

tolerant distributed protocols. In: DSN, pp. 73–84 (2011)
20. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J.

ACM 32(4), 824–840 (1985)
21. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many

identical finite state processes. Inf. Comput. 81, 13–31 (1989)
22. Chambart, P., Schnoebelen, P.: Mixing lossy and perfect fifo channels. In: van

Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355.
Springer, Heidelberg (2008)

23. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

24. Charron-Bost, B., Debrat, H., Merz, S.: Formal verification of consensus algorithms
tolerating malicious faults. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011.
LNCS, vol. 6976, pp. 120–134. Springer, Heidelberg (2011)

25. Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and Practice.
LNCS, vol. 5959. Springer, Heidelberg (2010)

26. Chou, C.T., Mannava, P., Park, S.: A simple method for parameterized verification
of cache coherence protocols. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 382–398. Springer, Heidelberg (2004)

27. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

http://www.veromodo.com/
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
http://yices.csl.sri.com/yices1-documentation.shtml

Tutorial on Parameterized Model Checking 169

28. Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy right: the environment abstrac-
tion framework for model checking concurrent systems. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg
(2008)

29. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decom-
position. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 276–291. Springer, Heidelberg (2004)

30. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

31. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

32. Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized ver-
ification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 126–141. Springer, Heidelberg (2006)

33. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

34. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

35. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

36. De Prisco, R., Malkhi, D., Reiter, M.K.: On k-set consensus problems in asyn-
chronous systems. IEEE Trans. Parallel Distrib. Syst. 12(1), 7–21 (2001)

37. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approx-
imate agreement in the presence of faults. J. ACM 33(3), 499–516 (1986)

38. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

39. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

40. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few.
In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer,
Heidelberg (2000)

41. Emerson, E., Namjoshi, K.: Reasoning about rings. In: POPL, pp. 85–94 (1995)

42. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

43. Fisman, D., Kupferman, O., Lustig, Y.: On verifying fault tolerance of distributed
protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 315–331. Springer, Heidelberg (2008)

44. Fuegger, M., Schmid, U., Fuchs, G., Kempf, G.: Fault-Tolerant Distributed Clock
Generation in VLSI Systems-on-Chip. In: EDCC 2006, pp. 87–96 (October 2006)

45. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.
ACM 39, 675–735 (1992)

46. Graf, S., Säıdi, H.: Construction of abstract state graphs with pvs. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

47. Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking. LNCS, vol. 5000.
Springer, Heidelberg (2008)

170 A. Gmeiner et al.

48. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time sys-
tems by means of the synchronous data-flow language lustre. IEEE Trans. Softw.
Eng. 18, 785–793 (1992)

49. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional (2003)

50. Ip, C., Dill, D.: Verifying systems with replicated components in murφ. In: Alur,
R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 147–158. Springer,
Heidelberg (1996)

51. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Starting a dialog be-
tween model checking and fault-tolerant distributed algorithms. arXiv CoRR
abs/1210.3839 (2012)

52. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD, pp.
201–209 (2013)

53. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Towards modeling and
model checking fault-tolerant distributed algorithms. In: Bartocci, E., Ramakrish-
nan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 209–226. Springer, Heidelberg
(2013)

54. Joshi, R., Lamport, L., Matthews, J., Tasiran, S., Tuttle, M.R., Yu, Y.: Checking
cache-coherence protocols with TLA+. Formal Methods in System Design 22(2),
125–131 (2003)

55. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: The Theory of Timed
I/O Automata. Synthesis Lectures on Computer Science. Morgan & Claypool
(2006)

56. Kesten, Y., Pnueli, A.: Control and data abstraction: the cornerstones of practical
formal verification. STTT 2, 328–342 (2000)

57. Konnov, I., Veith, H., Widder, J.: Who is afraid of Model Checking Distributed
Algorithms? (2012)

58. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16, 133–169
(1998)

59. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

60. Lamport, L.: The pluscal algorithm language. In: Leucker, M., Morgan, C. (eds.)
ICTAC 2009. LNCS, vol. 5684, pp. 36–60. Springer, Heidelberg (2009)

61. Lincoln, P., Rushby, J.: A formally verified algorithm for interactive consistency
under a hybrid fault model. In: FTCS-23, pp. 402–411 (June 1993)

62. Lynch, N.: Distributed Algorithms. Morgan Kaufman, San Francisco (1996)
63. Lynch, N., Tuttle, M.: An introduction to input/output automata. Tech. Rep.

MIT/LCS/TM-373, Laboratory for Computer Science, MIT (1989)
64. McMillan, K.: Symbolic model checking. Kluwer (1993)
65. McMillan, K.L.: Parameterized verification of the flash cache coherence protocol

by compositional model checking. In: Margaria, T., Melham, T.F. (eds.) CHARME
2001. LNCS, vol. 2144, pp. 179–195. Springer, Heidelberg (2001)

66. Mitra, S., Lynch, N.A.: Proving approximate implementations for probabilistic I/O
automata. Electr. Notes Theor. Comput. Sci. 174(8), 71–93 (2007)

67. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-
based approach to solve consensus. In: DSN, pp. 541–550 (2003)

68. O’Leary, J.W., Talupur, M., Tuttle, M.R.: Protocol verification using flows: An
industrial experience. In: FMCAD, pp. 172–179 (2009)

69. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

Tutorial on Parameterized Model Checking 171

70. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1,∞)-counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–111.
Springer, Heidelberg (2002)

71. Powell, D.: Failure mode assumptions and assumption coverage. In: FTCS-22,
Boston, MA, USA, pp. 386–395 (1992)

72. Santoro, N., Widmayer, P.: Time is not a healer. In: Cori, R., Monien, B. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989)

73. Schmid, U., Weiss, B., Rushby, J.: Formally verified Byzantine agreement in pres-
ence of link faults. In: ICDCS, July 2-5, pp. 608–616 (2002)

74. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. Inf.
Comput. 206(11), 1313–1333 (2008)

75. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. Journal of the
ACM 34(3), 626–645 (1987)

76. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing 2, 80–94 (1987)

77. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process.
Lett. 28(4), 213–214 (1988)

78. Tsuchiya, T., Schiper, A.: Verification of consensus algorithms using satisfiability
solving. Distributed Computing 23(5-6), 341–358 (2011)

79. Widder, J., Biely, M., Gridling, G., Weiss, B., Blanquart, J.P.: Consensus in the
presence of mortal Byzantine faulty processes. Distributed Computing 24(6), 299–
321 (2012)

80. Widder, J., Schmid, U.: Booting clock synchronization in partially synchronous
systems with hybrid process and link failures. Distributed Computing 20(2), 115–
140 (2007)

81. Wöhrle, S., Thomas, W.: Model checking synchronized products of infinite transi-
tion systems. LMCS 3(4) (2007)

	Tutorial on Parameterized Model Checkingof Fault-Tolerant Distributed Algorithms
	1 Introduction
	2 Context
	2.1 Parameterized Model Checking
	2.2 Fault-Tolerant Distributed Algorithms
	2.3 The Formalization Problem
	2.4 Verified Fault-Tolerant Distributed Algorithms

	3 Modeling Fault-Tolerant Distributed Algorithms
	3.1 Threshold-Guarded Distributed Algorithms
	3.2 Reliable Broadcast and Related Specifications
	3.3 Threshold-Guarded Distributed Algorithms in Promela

	4 Abstraction
	4.1 Parametric Interval Data Abstraction
	4.2 Parametric Interval Counter Abstraction
	4.3 Soundness

	5 Abstraction Refinement
	5.1 Encoding the Transition Relation
	5.2 Spurious Behavior
	5.3 Removing Transitions in Promela
	5.4 Detecting Unfair Loops

	6 Experiments
	6.1 Running the Tool
	6.2 Concrete Model Checking for Small System Sizes
	6.3 Parameterized Model Checking

	7 Discussions
	References

