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Preface

This volume presents a set of papers accompanying the lectures of the 14th
International School on Formal Methods for the Design of Computer, Commu-
nication and Software Systems (SFM). This series of schools addresses the use
of formal methods in computer science as a prominent approach to the rigorous
design of the above-mentioned systems. The main aim of the SFM series is to
offer a good spectrum of current research in foundations as well as applications
of formal methods, which can be of help for graduate students and young re-
searchers who intend to approach the field. SFM 2014 was devoted to executable
software models and covered topics such as variability models, automated analy-
sis techniques, deductive verification, and run-time assessment and testing. The
eight papers collected in the two parts of this volume represent the broad range
of topics of the school.

The first part is concerned with modeling and verification; it consists of five
papers. The paper by Bubel, Flores Montoya, and Hähnle focusses on ABS,
the Abstract Behavioral Modeling (ABS) language, and shows how resource
consumption analysis, deadlock detection, and functional verification work on
ABS models. Giachino and Laneve address recursive programs that admit dy-
namic resource creation and define a deadlock-detection algorithm based on
a generalization to mutations of the theory of permutations of names. The
paper by Ábrahám, Becker, Dehnert, Jansen, Katoen, and Wimmer surveys
explicit and symbolic techniques for the computation and representation of
probabilistic counterexamples for discrete-time Markov chains and probabilis-
tic automata. Gmeiner, Konnov, Schmid, Veith, and Widder illustrate how to
integrate parametric data and counter abstraction, finite-state model checking,
and abstraction refinement in the setting of threshold-based fault-tolerant dis-
tributed algorithms. The paper by Amighi, Blom, Darabi, Huisman, Mostowski,
and Zaharieva-Stojanovski discusses the VerCors approach to concurrent soft-
ware verification, by showing the use of permission-based separation logic to
reason about multithreaded Java programs as well as kernel programs following
the Single Instruction Multiple Data paradigm.

The second part is on run-time assessment and testing; it contains three pa-
pers. De Boer and De Gouw present a method for preventing, isolating, and fixing
software bugs, which is based on automated run-time checking of a combination
of protocol- and data-oriented properties of object-oriented programs. The paper
by Albert, Arenas, Gómez-Zamalloa, and Rojas overviews white-box test-case
generation techniques relying on symbolic execution, with emphasis on an im-
plementation in constraint logic programming and an extension to actor-based
concurrent software. Finally Lochau, Peldszus, Kowal, and Schaefer describe the
activity of model-based testing for single systems and then review techniques
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specific to software product lines such as sample-based testing and variability-
aware product line testing.

We believe that this book offers a useful view of what has been done and what
is going on worldwide in the field of formal methods for executable software
models. This school was organized in collaboration with the EU FP7 project
Envisage, whose support we gratefully acknowledge. We wish to thank all the
speakers and all the participants for a lively and fruitful school. We also wish to
thank the entire staff of the University Residential Center of Bertinoro for the
organizational and administrative support.

June 2014 Marco Bernardo
Ferruccio Damiani

Reiner Hähnle
Einar Broch Johnsen

Ina Schaefer
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Analysis of Executable Software Models�

Richard Bubel, Antonio Flores Montoya, and Reiner Hähnle

TU Darmstadt, Dept. of Computer Science, Germany
{bubel,aeflores,haehnle}@cs.tu-darmstadt.de

Abstract. In this tutorial we focus on the Abstract Behavioral Model-
ing (ABS) language, a highly modular, executable modeling language
for concurrent systems. We show how three analyses for ABS models
are working: resource consumption, deadlock detection, and functional
verification. The acceptance of incomplete ABS models together with
the capability to analyse them makes ABS extremely useful as a precise
modeling language to be used in the design phases of software develop-
ment.

1 Introduction

Modern software is complex, often runs in a concurrent or distributed envi-
ronment, and undergoes frequent evolutionary changes driven by rapid changes
stemming from business and technological factors. Software is an essential and in-
tegral part of most contemporary consumer products, machinery, communication
systems, transport systems, etc. The growing ubiquity of software in commodi-
ties, but also in safety- and security-critical applications implies that software
defects more and more have direct consequences for end users and are of central
importance for the acceptance, quality, and safety of many products.

Recall the well-known cost increase for fixing defects during successive soft-
ware development phases [14]. IBM Systems Sciences Institute estimates that a
defect that costs one unit to fix in design, costs 15 units to fix in testing (sys-
tem/acceptance) and 100 units or more to fix in production (see Fig. 1), and
this cost estimation does not even consider the impact cost due to, for example,
delayed time to market, lost revenue, lost customers, and bad public relations.
Together with the ubiquity of software, the penalty for late discovery of defects
makes a very powerful case for software development methods and tools that
permit to analyze the consequences of design choices, and possibly erroneous
decisions, at an as early stage as possible.

Conventional, informal and semi-formal notations, such as the UML or fea-
ture diagrams, however, are not rich and formal enough to admit simulation,
automated analysis, or rapid prototyping. It is with this gap in mind that in the
past years there has been a lot of interest in executable modeling languages.

In this tutorial we focus on the Abstract Behavioral Specification (ABS) lan-
guage [25,1], a highly modular, executable modeling language for concurrent

� Partly funded by the EU project FP7-610582 Envisage.

M. Bernardo et al. (Eds.): SFM 2014, LNCS 8483, pp. 1–25, 2014.
c© Springer International Publishing Switzerland 2014
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20

40

60

80

100

120

Design

1×
Implementation

6.5×
Testing

15×

Maintenance

100×

Fig. 1. Relative costs to fix software defects for static infrastructure (source: IBM Sys-
tems Sciences Institute). The columns indicate the phase of the software development
at which the defect is found and fixed.

systems that exhibit a high degree of product variability. ABS is a rich, object-
oriented language with strong typing, strong encapsulation, abstract data types,
a simple, but powerful concurrency model. What sets it apart from mainstream
programming languages are three aspects: first, ABS comes with a formal, op-
erational semantics [17]; second, ABS has been carefully designed so as to make
automated analyses of various kinds feasible; third, ABS models can be par-
tially specified. Because of the first two features, it is possible to construct a
range of automatic and semi-automatic analysis tools for the full ABS language.
In the present tutorial we show how three analyses of particular importance
are working: resource consumption (Sect. 3.1), deadlock detection (Sect. 3.2),
and functional verification (Sect. 3.3). The acceptance of incomplete ABS mod-
els together with the capability to analyse them makes ABS extremely use-
ful as a precise modeling language to be used in the design phases of software
development.

To make this chapter self-contained, we include a very concise introduction
into the ABS language in Sect. 2, however, we strongly recommend to read the
tutorial [23] as a background. To make the content of this chapter manageable,
we focus on two analysis methods for ABS, but we stress that a whole range of
tools is available for ABS [34]. In the present volume, the interested reader can
find more information on an alternative approach to deadlock analysis in the
chapter by Laneve et al., on test generation in the chapter of Albert et al., and
on runtime assertion checking in the chapter of de Boer et al.

2 Setting the Context: Abstract Behavioral Modeling

2.1 The Abstract Behavioral Specification (ABS) Language

In this section we briefly introduce the Abstract Behavioral Specification (ABS)
language [25,1]. The text is based on the ABS introduction given in [35]. For
readers unfamiliar with ABS, we recommend the tutorial [23].
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ABS is an abstract, executable, object-oriented modeling language [25]. It has
been designed as a modeling language that is in particular well equipped for the
modeling needs of distributed systems with a high degree of variability.

Formal treatment of ABS models is possible, because the ABS modeling lan-
guage is properly defined in terms of a formal SOS-style semantics. In partic-
ular, all design decisions are carefully crafted to ensure that ABS models are
amenable to formal analyses. ABS is under active development and current re-
search targets modeling and analysis of cloud-based services with respect to
service contracts [16].

Fig. 2 shows the layered architecture of ABS. The base are functional abstrac-
tions around a standard notion of parametric algebraic data types (ADTs). Next
we have an object-oriented imperative layer similar but much simpler than Java.
The concurrency model of ABS is two-tiered: at the lower level it is similar to that
of JCoBox [32] that generalizes the concurrency model of Creol [26] from single
concurrent objects to concurrent object groups (COGs). COGs encapsulate syn-
chronous, multi-threaded, shared state computation on a single processor. On
top of this is an actor-based model with asynchronous calls, message passing,
active waiting, and future types. An essential difference to thread-based con-
currency is that task scheduling is cooperative, i.e., switching between tasks of
the same object happens only at specific scheduling points during the execution,
which are explicit in the source code and can be syntactically identified. This
allows to write concurrent programs in a much less error-prone way than in a
thread-based model and makes ABS models suitable for static analysis. Specifi-
cally, the ABS concurrency model excludes race conditions on shared data.

Delta Modeling Language

Local Contracts, Assertions

Asynchronous Communication

Concurrent Object Groups (COGs)

Imperative Language

Object Model

Pure Functional Programs

Algebraic (Parametric) Data Types

Fig. 2. Layered Architecture of ABS

Local contracts and assertions allow to specify a wide variety of functional prop-
erties about ABS programs in a Design-by-Contract [28] style. The top layerDelta
Modeling Language (DML) adds delta-oriented programming [31] to ABS.
Although being a central feature in ABS, delta modeling and variability-aware



4 R. Bubel, A. Flores Montoya, and R. Hähnle

analyses are out of scope for this paper. The contribution of Clarke et al. in this
volume contains more information on variability modeling.

2.2 ABS Example

In this tutorial we use a simple banking system as a running example. Fig. 3
shows some of its interfaces.

interface Account {

Int getAid();

Int deposit(Int x);

Int withdraw(Int x);

Bool transfer(Int amount, Account target);

}

interface DB {

Unit insertAccount(Account a);

Maybe<Account>getAccount(Int aid);

}

Fig. 3. Banking example: Interfaces

The interface Accountmodels a bank account with the expected services such
as deposit and withdrawal of money. The interface DB models the bank database
used to manage accounts. In particular, it provides means to query for an account
using its unique account number.

class AccountImpl(Int aid, Int balance) implements Account {

Int getAid() { return aid; }

Int deposit(Int x) {

balance = balance + x;

return balance;

}

Int withdraw(Int x) {

if (balance - x >= 0) {

balance = balance - x;

}

return balance;

}

Bool transfer(Int amount, Account target) { ... }

}

Fig. 4. Banking example: Account implementation
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class DBImpl implements DB {

List<Account> as = Nil;

Account getAccount(Int aid) {

Account result = null;
Int n = length(as);

Int cnt = 0;

while (cnt < n) {

Account a = nth(as,cnt);

Fut<Int>idFut = a!getAid();

Int id=idFut.get;
if (aid == id) {

result = a;

}

cnt = cnt+1;

}

return result;
}

...

}

Fig. 5. Simplified example of bank database query

In Fig. 4 an implementing class of interface Account is shown. A major design
decision is that the balance of accounts must never be negative. Hence, in case
of a withdrawal it is checked, whether the account has a sufficient balance to
perform the withdrawal. Otherwise, no money is withdrawn and the method
returns the unchanged balance.

Fig. 5 shows how class DatabaseImpl implements the DB interface. The method
getAccount(Int) implements the lookup for a given account number aid as fol-
lows: it iterates through the list of all accounts managed by the database. For
each managed account it looks up the account number via an asynchronous
method call a!getAid(). In case of success, the found account is returned, oth-
erwise null is returned.

3 Analysis Methods

3.1 Resource Analysis

Automatic resource analysis attempts to infer safe upper bounds on the amount
of resources that might be consumed by a program or model during its exe-
cution as a function of its input variables. A resource can be any magnitude
that we are interested to measure for a given model execution. Time or memory
consumption are typical examples of resources. There is an extensive literature
on program resource analysis, both for the functional and imperative paradigm
[5,22,21,24,10,36,33,15]. However, most approaches are focused on sequential pro-
grams and do not treat concurrent programs. This is not a coincidence, given that
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concurrency adds both inherent and accidental complexity to a resource analy-
sis. Inherent complexity stems mainly from the increased non-determinism that
comes with concurrency. Accidental complexity is a consequence of the choice
of concurrency models that derive from low-level primitives that are prevalent
in current mainstream programming languages. Collaborative scheduling, as re-
alized in ABS, reduces the inherent complexity of the analysis as it reduces the
number of possible interleavings that might occur. On the other hand, the use of
future variables and synchronization on guards reduces its accidental complex-
ity. As a consequence, in contrast to languages such as Java or C/C++, it is
possible to automatically analyze concurrent ABS models and obtain resource
consumption upper bounds for many interesting and realistic examples.

Basic Approach. We introduce the basic approach to resource analysis of se-
quential programs [6,5] that we later adapt to concurrent ABS models. Before
analyzing a program we abstract away from all information that is not relevant
for resource consumption. An abstract representation that turns out to be useful
is based on cost equations. Cost equations are a specific kind of non-deterministic
recurrence relations enriched with a constraint ϕ that relates the variables that
appear in the cost equation and imposes applicability conditions on it. A cost
equation 〈c(x̄) = e, ϕ〉 represents a fragment of code (typically a method or
a loop) with integer variables x̄, where e represents the cost of executing the
fragment of code as a function of x̄ and might contain references to other cost
equations.

Example 1. The (simplified) cost equations of the method getAccount from Fig. 5
are:

getAccount(as, aid) = 3 + length(as) + while(0, n, aid, as) n = as
while(cnt, n, aid, as) = 4 + nth(as, cnt) + getAid(a)+

if(cnt, n, aid, a) + while(cnt+ 1, n, aid, as) cnt < n
while(cnt, n, aid, as) = 0 cnt ≥ n
if(cnt, n, aid, a) = 1 a = aid
if(cnt, n, aid, a) = 0 a �= aid

The cost equations of length, nth and getAid have been omitted.

The cost expression e is obtained by applying a cost model to the ABS model.
Intuitively, a cost model maps each instruction to a cost. The choice of the cost
model determines the resources that we want to observe. For example, if our
cost model maps every instruction to a cost of 1, we will infer an upper bound
on the number of executed instructions. Or we could assign a different cost to
each new C instruction according to the type of object created (and 0 to any
other instruction) to measure the heap memory consumption.

Example 2. The cost model applied in our example counts the number of as-
signments. The cost equation

〈getAccount(as, aid) = 3 + length(as) + while(0, n, aid, as), n = as〉 (1)
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contains the constant 3, because of the assignments Account result = null;,
Int n = length(as);, and Int cnt = 0; in getAccount.

To obtain the constraint ϕ of a cost equation, each variable is abstracted to its
“size” according to a chosen size measure and the instructions are substituted
by constraints that represent the effect of the instructions on the size of the
variables. The set of constraints obtained in this way for a code fragment are
then conjoined to a single predicate ϕ. A typical size measure for arrays and
lists is their length. The constraint ϕ can be enriched with invariants generated
using abstract interpretation techniques.

Example 3. The constraint of cost equation (1) reflects the use of size measures
and invariants. The list as has been abstracted to its length and through invari-
ant generation techniques we obtain that the result value n of length(as) is the
length of the list as, that is n = as.

There are multiple techniques to solve systems of cost equations [4,9,11]. In
general, the strongly connected components (SCCs) in a system of cost equations
are determined and incrementally solved. For each SCC, we look for a ranking
function that bounds the number of its possible iterations. Then, we approximate
the cost of each iteration as a function of the initial variables.

Example 4. We compute the cost of while following the approach of [4]. Assume
the cost of nth(as, cnt) is cnt and the cost of getAid(a) and if(cnt, n, aid, a) are 0
and 1, respectively. The cost of one iteration of while is 4+ cnt+1. The value of
cnt changes in each iteration, but we can use the invariant cnt ≤ n to infer that
cnt is bounded by n. Now we can approximate any iteration by 5 + n. Finally,
the function n − cnt is a valid ranking function of while, because it is always
non-negative and it decreases with each iteration. A valid upper bound of while
is, therefore, (n− cnt) ∗ (5 + n).

Concurrency. ABS’s concurrency model poses additional challenges to resource
analysis [3]. During the execution of a task, other interleaving tasks can modify
the values of the shared variables (that is, object fields). This has to be taken
into account when generating a suitable abstraction of ABS models. A safe
approximation consists in “forgetting” all the information related to object fields
every time when an interleaving might occur (at await and suspend instructions).
This loss of information can reduce the precision of the analysis or even prevent
obtaining upper bounds.

Example 5. In Fig. 6 we consider a small modification of the code in Fig. 5. We
have removed the auxiliary variable n and we do not block the complete database
each time we want to obtain an account’s id. In the cost equation abstraction of
instruction await idFut?; we lose the information about the object’s fields. The
resulting cost expressions of while are:

while(cnt, n, aid, as) = 4 + length(as) + nth(as, cnt) + getAid(a)+
+ if(cnt, n, aid, a) + while(cnt+ 1, n, aid, as′) cnt < as

while(cnt, n, aid, as) = length(as) cnt ≥ as
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class DBImpl implements DB {

List<Account> as = Nil;

Account getAccount(Int aid) {

Account result = null;
Int cnt = 0;

while (cnt < length(as)) {

Account a = nth(as,cnt);

Fut<Int>idFut = a!getAid();

await idFut?;

Int id = idFut.get;
if (aid == id) {

result = a;

}

cnt = cnt + 1;

}

return result;
}

...

}

Fig. 6. Bank database query with concurrency

In these new cost equations we are not able to find a ranking function, because
as can vary at every iteration. Therefore, no upper bound is found.

This approximation can be improved using class invariants. A class invariant
in ABS is a predicate on the object fields that holds not only at the beginning
and end of each method, but also at every release point.

Example 6. If we can infer the class invariant as ≤ asmax, we can include this
invariant after each release point:

while(cnt, n, aid, as) = 4 + length(as) + nth(as, cnt) + getAid(a)+

if(cnt, n, aid, a) + while(cnt+ 1, n, aid, as′)
cnt < as ∧ as′ ≤ asmax

With that invariant, we can find the ranking function asmax − cnt and obtain
an upper bound.

A more advanced technique for proving termination and for inferring upper
bounds of loops with interleavings was presented in [8]. That technique follows
a rely-guarantee style of reasoning. Assume we have a loop whose termination
proof fails because of the information lost at the release points. First, we assume
that the shared variables are not modified at the release points, but we do not
assume any initial value. Given this assumption we try to prove termination again
using standard techniques. If we fail to prove termination, the interleavings were



Analysis of Executable Software Models 9

not the cause of the failure. If we succeed, we know that without interleavings
the loop terminates. We can also conclude that if the number of interleavings
that modify the fields involved in the termination proof is finite, then the loop
will also terminate. As we did not assume any initial value on the fields to
prove termination, after any modification, the loop is still terminating. If the
modifications are finite, the overall system will terminate.

In addition, one has to prove the assumption, that is, the number of times the
fields are modified during execution of the loop is finite. To this end, examine the
program points that modify fields. These points can be filtered through a May-
Happen-in-Parallel (MHP) analysis [7] (see also Sect. 3.2) to keep only those
points that can possibly be executed during the execution of the loop. Then
try to prove that the remaining program points are executed a finite number
of times by proving termination of all the loops that can reach these program
points. If we find a circular dependency, that is, the need to prove termination
of a loop to prove its own termination, the process terminates with a failure.

Cost Centers. Distributed systems are usually composed of multiple machines,
each with its own resources. But traditionally the output of a resource analysis
consists only of a single cost expression of the overall cost. This is not appropriate
for distributed systems. It is more interesting to obtain separate cost expressions
for each distributed component. This can be achieved with the notion of cost
centers [3].

A cost center is a part of a distributed system with resources whose con-
sumption we want to measure independently from other parts of the system.
For example, in ABS cost centers might correspond to COGs or single objects.
We can generate cost equations where each part of the cost is multiplied by a
constant that represents the cost center where that cost is incurred. For exam-
ple, the cost equation 〈C(x̄) = 2 ∗ c1 + 3 ∗ c2, ϕ〉 represents code that consumes
2 resource units in cost center c1 and 3 units in cost center c3. Once a set of
cost equations parameterized with cost centers c1, c2, . . . , cn is obtained, we can
compute the resources consumed by a cost center ci. We set ci = 1 and cj = 0
for every j �= i and solve the cost equations as usual.

3.2 Deadlock Analysis

As explained in Sect. 2.1, ABS models use a high-level concurrency model that
does not deal explicitly with primitives such as locks or semaphores. This allows
us to implement static deadlock analyses that are both precise and efficient. In
general, deadlock situations are produced when a concurrent model reaches a
state in which one or more tasks are waiting for each others’ termination and
none of them can make any progress. The combination of blocking (get) and non-
blocking (await) operations in ABS can result in complex deadlock situations.

To realize a deadlock analysis we have to identify the elements that can con-
tribute to a deadlock situation and their mutual dependencies. In the case of
ABS, these elements can be tasks and COGs. There can be three kinds of de-
pendencies among tasks and COGs:
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1. task-task dependencies, when a task waits for the termination of another
task with a non-blocking operation (await);

2. COG-task dependencies, when a task waits for the termination of another
task but keeps the COG’s lock (using get);

3. task-COG dependencies that occur between each task and the COG they
belong to.

The set of these dependencies form a dependency graph, where the nodes of the
graph are the tasks and COGs involved. A deadlock can occur if, at some point
during the execution, there is circular dependency in the active dependencies at
that point. Given a concrete state, we can extract a dependency graph. If such
graph is cyclic, the state is a deadlock state.

Example 7. Given the following code:

1 class AImp() implements A {

2 Unit syncMessage(A x,String m) {

3 Fut<Unit> f=x!recv(m);

4 f.get
5 }

6

7 Unit AsyncMessage(A x,String m) {

8 Fut<Unit> f=x!recv(m);

9 await f?;

10 }

11

12 Unit recv(String m){ }

13 }

14

15 {

16 A a1=new cog AImp();

17 A a2=new cog AImp();

18 a1!syncMessage(a2,’’ping’’);

19 a2!AsyncMessage(a2,’’ping’’);

20 }

The corresponding dependency graph is:

main

a16a16.syncMessage

a16.recv

a17
a17.AsyncMessage

a17.recv

4

9

2

7

12

12

One possible approach for statically detecting deadlock situations is to infer a
safe, abstract dependency graph. That is, we want to infer a dependency graph



Analysis of Executable Software Models 11

such that any cycle in the dependency graph of any concrete execution can be
mapped to a cycle in the abstract dependency graph. If the abstract graph has
no cycles, no cycle will be possible in any concrete execution of the model.

We can approximate the dependency graphs with a points-to analysis, similar
to the one of [29]. A points-to analysis generates a set of abstract objects that
belong to abstract COGs forming an abstract configuration. Each object is ab-
stracted by a sequence of allocation points of a fixed length that determines the
precision of the analysis. For each abstract object o and method in that kind of
object m, we have an abstract task o.m. The points-to analysis also provides in-
formation on which objects may be pointed to by each reference at any program
point. Here, future variables are considered as special references that point to
abstract tasks. The dependency graph can be constructed as follows: The nodes
of the graph are the abstract COGs and the abstract tasks formed from the
method names and abstract objects. The edges can be obtained by examining
the points-to information of the future variables at the synchronization points
(the await and get instructions).

An important source of imprecision is the fact that we infer a single depen-
dency graph that “covers” all the possible concrete graphs. In the abstract graph
there might be dependencies that form a cycle but that cannot be active simulta-
neously in any concrete execution state. Such a situation would generate a false
positive. We can discard some of these unfeasible cycles with a May-Happen-in-
Parallel (MHP) analysis [7]. A MHP analysis tells us, given two program points,
whether there can be any concrete state in which those two points are being
executed in parallel. A dependency cycle is feasible if all the synchronization
points that generated its dependencies can happen in parallel.

This approach has shown to be efficient and precise enough for many practi-
cal cases. The major source of imprecision is the abstraction performed by the
points-to analysis which fixes the set of possible abstract objects beforehand. In
particular, all objects created inside a loop are abstracted to a single abstract
object. Whenever there are dependencies among these objects’ tasks, we will
get spurious deadlock alerts. The latter are handled better by contract-based
approaches, such as the one of Cosimo et al [19,20] (see also the Chapter by
Laneve at al. in this volume).

3.3 Deductive Verification

For real-world programming languages like Java, deductive verification of dis-
tributed and concurrent programs is hard. A major reason for this are concur-
rency models that are not well-defined, platform-dependent or too liberal. These
weaknesses cause a proliferation of the possible interleavings that have to be
checked for a given property. Hence, much research effort has been directed to-
wards techniques that allow to restrict the number of possible interleavings, for
example, symmetry reductions.

As explained in Sect. 2.1, the ABS language was designed around a concur-
rency model whose analysis stays manageable. Shared memory communication is
only possible within a concurrent object group (COG), for which ABS permits
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only cooperative scheduling. Hence, all interleaving points occur syntactically
explicit in an ABS program in form of an await statement which releases con-
trol. Communication between different COGs (which are executed in parallel on
distributed nodes) is restricted to message passing.

The limitations of the ABS concurrency model makes it possible to define a
compositional specification and verification method. This is essential for being
able to scale verification to non-trivial programs, because it is possible to specify
and verify each ABS method separately, without the need for a global invariant.
During formal verification of ABS, we do not model threads or process queues
explicitly, and hence, stay in an essentially sequential setting. This makes it
possible to largely reuse a well-understood specification approach for sequential,
imperative programs. We follow the Design-by-Contract [28] paradigm with an
emphasis on specification of interface and class invariants.

The ABS verification method instantiates a combination of the rely-guarantee
and assumption/commit paradigms [27,30]. The workflow is as follows: For each
interface and each implementing class appropriate invariants are specified:

Interface invariants express mostly restrictions on the control-flow, i.e., con-
straints on the order of asynchronous method calls.

Class invariants are mainly used to relate the state of an object to the local
history of the system. The history is a sequence of events such as method in-
vocations, method completions, or object creations. For instance, a method
invocation event is implicitly generated and recorded in the object-local his-
tory whenever a method is called asynchronously.

To verify an ABS model we prove that for each class an arbitrarily chosen
object preserves its interface and its class invariants. The compositionality of
our method then gives the guarantee that these invariants are preserved by all
objects of the system.

To specify history properties we use a formalisation of histories that was
developed in [18]. For the purpose of this tutorial, we restrict ourselves to the
four event types depicted in Fig. 7.

(1) Object s invokes asynchronously method m on object r . This asynchronous
invocation results in the creation of a future and is also recorded as an
invocation event in the history of the caller object s.

(2) Once the method invocation is scheduled for execution in r, an invocation
reaction event is created and recorded in the history of the callee r.

(3) After the execution of method m completes and resolves the future, an ac-
companying completion event is created and recorded in the history of r.

(4) When the future gets finally queried for the return value (usually by the
invoking object) a completion reaction event is added to the history of the
caller s.

Specification and verification of ABS models is done in ABS dynamic logic
(ABS DL). ABS DL is a typed first-order logic with the addition of a box modal-
ity: Let φ denote an ABS DL formula, and p be a sequence of executable ABS
statements, then
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s:T1 r:T2

(1)

(2)

(3)

(4)

m(. . . )
invocation
event

completion
reaction event

invocation
reaction event

completion
event

Fig. 7. History events and when they occur

– [p]φ (spoken: box p φ) is an ABS DL formula with the (informal) meaning:
If p terminates then φ hold in its final state.

In addition, ABS DL uses updates (taken from [13]) to capture state changes.
An elementary update has the form x:=t where x is a program variable and t a
term. Updates can be applied to formulas or terms: Let u be an update and ξ a
term (formula), then {u}ξ is a term (formula).

Example 8. Given a program variable i and the formula i > 0. Then evaluating
the formula

{i:=3}(i > 0)

in a program state s means that i > 0 is evaluated in a state s′ which coincides
with s on all program variables except for i, which has the value 3. The meaning
of an update is identical to the meaning of an assignment whose only side-effect
is the actual update of the value stored in the location on the left-hand side.
The above formula is this equivalent to

[i=3;](i > 0) .

To express properties of a system in terms of histories, ABS DL uses a dedi-
cated, globally defined program variable history, which contains the union of all
object-local histories as a sequence of events. The history events themselves are
elements of datatype Event , which defines for each event type a constructor func-
tion. For instance, an invocation event is represented as invocEv(s, r, fut ,m, args)
where s is the caller, r the callee, fut the created future, m the asynchronously
called method and args the method arguments.

In addition to the history formalization as a sequence of events, there are a
number of auxiliary and convenience predicates that allow to express common
properties concerning histories. For example, predicates like wfHist(History),
beginsWith(History ,Event), endsWith(History ,Event), etc., are used to specify
wellformedness of histories, etc.
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To verify that an ABS program satisfies a specified property, a Gentzen-style
sequent calculus is used. A sequent is a data structure of the form:

φ1, . . . , φm ⇒ ψ1, . . . , ψn

which has the same meaning as the formula∧
i∈{1...m}

φi →
∨

j∈{1...n}
ψj .

A sequent rule

name

premise︷ ︸︸ ︷
s1 . . . sn

s︸︷︷︸
conclusion

(s, si, i ∈ {1 . . . n} are sequents) has a name, a premise consisting of a possibly
empty sequence of sequents and a conclusion. A sequent rule is called correct if
the validity of the premise implies the validity of the rule’s conclusion. An axiom
is a sequent rule without premise.

A sequent proof is a tree where each node is labelled with a sequent and there
exists a sequent rule r for each inner node such that the conclusion of r matches
the node’s sequent and the rule’s premises match the sequents of the node’s
children. A branch (of the proof tree) is called closed if the last rule application
was an axiom. A proof is called closed if and only if all its branches are closed.

The sequent calculus as realized in ABS DL essentially simulates a symbolic
interpreter for ABS. The assignment rule for a local program variable is:

assign
Γ ⇒ {v := e} [rest]φ,Δ

Γ ⇒ [v=e;rest]φ,Δ

where v is a local program variable and e a pure (side effect free) expression.
The rule rewrites the formula by moving the assignment from the program into
an update. During symbolic execution the updates accumulate in front of the
modality containing the executed program. Once the program to be verified has
been completely executed and the modality is empty, these updates are applied to
the formula after the modality, resulting in a pure first-order formula (assuming
there are no nested modalities). An example for a rule that causes the proof tree
to split is

ifSplit
Γ, e

.
= True ⇒ [p;rest]φ,Δ Γ, e

.
= False ⇒ [q;rest]φ,Δ

Γ ⇒ [if (e) { p } else { q } rest]φ,Δ

where for each branch of the conditional statement a corresponding proof branch
is created. Each of the two branches has to be considered and closed to prove
that the property φ holds after the ABS program terminates.
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We conclude this section with the rules for asynchronous method invocation
and the await statement:

asyncMC

Γ ⇒ o � .= null ∧ wfHist(history), Δ
Γ ⇒ {U}(futureUnused(frc, history) →
{fr := frc || history := append(history, invocEv(this, o, frc, m, e))}[rest]φ)

{U}[r = o!m(args); rest]φ

In case of an asynchronous method invocation the proof splits into two
branches: the first branch (displayed on top) ensures that the callee is not null
and that the history is wellformed. The second branch introduces a new constant
frc which represents the future (placeholder for the method’s return value). The
left side of the implication ensures that the future is new and it has not yet
been used (futureUnused) and updates the history by appending the invocation
event for the asynchronous method call. Afterwards, execution continues with
the remaining program rest. The sequent rule for the await statement is:

awaitComp

Γ ⇒ Cinv(C)(heap, history, this), Δ
Γ ⇒ {heap := newHeap ||

history := append(history, append(newHist, compREv(. . .)))}
(Cinv(C)(heap, history, this) ∧ wfHist(history) → [rest]φ), Δ

Γ ⇒ [await r?; rest]φ,Δ

where newHist, newHeap are fresh Skolem constants; C is the class in which the
ABS code in the premise’s modality is executed.

The await statement releases control allowing other threads to take over. Once
the await guard is satisfied (here: the future is resolved), the waiting thread can
be rescheduled. As control of the COG is released by the currently executed
code, we must ensure that a state has been reached in which the invariant of
class C is satisfied, because the continuing thread will rely on it. The fulfillment
of that class invariant is checked by the first branch.

The second branch assumes that the await condition is satisfied and continues
the execution in a state where the completion reaction event has been appended
to the extended history. This means that the value of the history variable before
execution of the await statement has been some event sequence (modeled with
the Skolem constant newHist), representing those events that occurred between
control release and control resume. In our rely-guarantee-based setting, we can
safely assume that upon resume of control, the class invariant has been estab-
lished by the previous thread and holds again. But the heap might have been
changed and all previously accumulated knowledge about it must be removed.
This is achieved by assigning to the heap an unknown value (modeled with the
Skolem constant newHeap).
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4 Application Examples

4.1 Resource Analysis

We explore the possibilities of the different cost models, size measure, and
cost center definitions. We will analyze the example from Fig. 8. The
resource and termination analysis is part of the SACO tool [2] available at
http://costa.ls.fi.upm.es/web/saco.php. Once the SACO plugin has been
installed, please create an ABS project with the code of our example. To ana-
lyze the program, we select the method getAccount in the Outline view. Then,
we select SACO->Analyze with SACO. A dialog will appear showing the different
analyses available in SACO. We check Resource Analysis and click on Analyze.
Unfortunately, the result we obtain contains the term c(maximize failed) which
indicates a failure in the maximization process. This is, because even if there are
no concurrent interleavings, we need an invariant for the initial value of the field
as. So we add an invariant at the beginning of the method:

[as <= max(as)]

Account getAccount(Int aid) {

Account result = null;
· · ·

}

Once the invariant is added we obtain a valid upper bound. Instead of analyzing
directly, we can select SACO->Analyze with SACO, check Resource Analysis and
click on Configure+Analyze. Now we can select the parameters of the analysis.
Some of the options are:

Cost Model: indicates the type of resource that we are interested in measur-
ing. Some of the cost models are: Steps (counts the number of executed
instructions), Tasks (counts the number of asynchronous calls to methods),
Memory (measures the size of the created data structures).

Cost Centers: allows to decide whether we want to use cost centers or not. If
we decide to use cost centers, we can choose between class and object. The
option class associates a cost center to each class, whereas object associates
a cost center to each abstract object inferred in the points-to analysis.

Size Abstraction: allows choosing how data structures are abstracted into an
integer number. Two possibilities are provided: Size, which counts all nodes
in the structure, and Depth, which counts the length of the longest path.

Now we analyze the number of tasks that are created during the execution of
getAccount in total. We set the cost model to Tasks, no cost centers and size
abstraction Depth (Our main data structure is a list and Depth corresponds to
the length of the list). We obtain that the number of tasks is max(as) which
corresponds to the number of calls to getAid.

Next we perform an analysis with cost centers. We select the option cost center
class and the cost model Steps. The result is:

http://costa.ls.fi.upm.es/web/saco.php
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12+ 6 ∗ nat(max(as)− 1) + nat(max(as)− 1) ∗ (20+ 9 ∗ nat(max(as)− 2))
within cost-center ’DBImpl’

nat(max(as)− 1) within cost-center ’AccountImpl’

Here we can see how the cost in AccountImpl is linear but is quadratic in
DBImpl. This quadratic cost is due to the function nth that has linear cost and
is executed a linear number of times. Knowing that, we could try to improve the
method to avoid the quadratic cost.

Rely-Guarantee Termination. We try to prove termination of the example with
interleavings in Fig. 6. To apply the rely-guarantee method, we need a complete
model with a main block (termination depends on which other methods can be
executed in parallel). We add the the following main block:

{

Account a;

DB db = new cog DBImpl();

Int max = 10;

Int i = 1;

while(i <= max){

a = new cog AccountImpl(i,0);

Fut<Unit> aFut = db!insertAccount(a);

await aFut?;

i = i+1;

}

db!getAccount(3);

}

In this main block we create a database, then add 10 new accounts with
account ids ranging from 1 to 10, and finally we query the database with the
account 3.

To analyze the resulting program, we select the main block in the Outline

view, select SACO->Analyze with SACO, check Termination Analysis and click
on Analyze. The result is a list of strongly connected components (SCCs) and the
information whether they are terminating or not. In this case, all the SCCs turn
out to be terminating. The termination of getAccount depends on as. However,
when getAccount is executed, all the insertAccount calls must have termi-
nated. That is detected by the MHP analysis and thus termination is proven.

If we remove the instruction await aFut?;, this is not the case any more.
Several instances of insertAccountmight execute in parallel with getAccount.
But we can prove termination of the loop in the main block, and this implies
that as can be modified in parallel only a finite number of times (10 times) and,
therefore, getAccount is still guaranteed to terminate.

4.2 Deadlock Analysis

We illustrate the behavior of the analysis with the example code of Fig. 8. The
example has a main method (line 44) that creates a server and a client. Then, it
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19 ...//Module and Interface declarations have been omitted
20

21 class ClientI(Server server) implements Client {

22 Config config = null;
23 Unit setConfig(Config co) {

24 config=co;

25 }

26 Unit syncSend(String m) {

27 //await config!=null;
28

29 Fut<Unit> f = server!recv(m);

30 f.get;
31 }

32 }

33 class ServerI implements Server{

34 Config co = null;
35 Unit ini(Client client) {

36 co = new ConfigI();

37 Fut<Unit> f = client!setConfig(co);

38 f.get;
39 }

40 Unit recv(String message) {

41 }

42 }

43

44 {

45 Server s = new cog ServerI();

46 Client c = new cog ClientI(s);

47 s!ini(c);

48 c!syncSend("hello");

49 }

50 }

Fig. 8. Client-server deadlock example

initializes the server with a reference to the client at line 47. The method ini()

(line 35) creates a Config object and passes it to the client using the method
setConfig() (line 23). The server should not do anything until the client has
received the configuration so it waits holding the lock at line 38. Finally, the
main method calls syncSend() in line 48. Method syncSend() (line 26) sends
a message to the server by calling recv() (line 40) and blocks the client until
recv() is completed in line 30.

A deadlock can occur if syncSend() (line 26) starts before setConfig()

(line 23). The server will stay blocked at line 38 waiting for setConfig() to fin-
ish. At the same time the client will stay blocked at line 30 waiting for recv().
Neither setConfig() nor recv() is able to start as their COGs are blocked by
other methods.
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The deadlock analysis proceed as follows. First, is uses the points-to informa-
tion to identify the objects, COGs and tasks that can be created: c (the client),
s (the server) and their respective tasks: c.setConfig, c.syncSend, s.ini, and
s.recv. Second, it identifies the synchronization points and extracts their de-

pendencies: line 30 generates c
line 30−−−−−→ s.recv and c.syncSend

line 30−−−−−→ s.recv;

line 38 generates s
line 38−−−−−→ c.setConfig and s.ini

line 38−−−−−→ c.setConfig; also

the dependencies from each task to its COG: s.recv
line 40−−−−−→ s, s.ini

line 35−−−−−→ s,

c.setConfig
line 23−−−−−→ c, and c.syncSend

line 26−−−−−→ c.

c

s

main

c.setConfigc.syncSend

s.inis.recv

30
30 38

38

40
35

2326

Fig. 9. Deadlock dependency graph of example from Fig.8

In the thus constructed dependency graph (see Fig. 9), we look for cycles.

There is one cycle: c
line 30−−−−−→ s.recv

line 40−−−−−→ s
line 38−−−−−→ c. setConfig

line 23−−−−−→ c.
Finally, we check whether all program points involved in the cycle can happen
in parallel using the MHP analysis. In this case, all the involved points (line 30,
line 40, line 38 and line 23) can happen in parallel to each other and the tool
will report the deadlock cycle. If we uncomment line 27, setConfig() is forced
to finish before proceeding to line 30. Therefore, no deadlock is possible. The
dependency graph is the same, but the MHP analysis reports that line 30 and
line 23 now cannot happen in parallel and the cycle is discarded.

This deadlock analysis is part of the SACO tool (See Sec. 4.1). Lets use the
Eclipse plugin interface to analyze the example from Fig. 8. Once the SACO
plugin has been installed, we create a ABS project with the code of our example.
In order to analyze the program, we select the Main Block in the Outline view.
Then, we select SACO->Analyze with SACO. A dialog will appear showing the
different analyses of SACO. Check the option Deadlock Analysis and click
Analyze. Shortly after, a report of the possible deadlocks will appear in the
Eclipse console (See Fig. 10) and the synchronization instructions involved in the
deadlocks will appear highlighted. Again, if we uncomment line 27 and repeat
the analysis, we will see a new message in the console indicating that the program
has no deadlocks.
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cog ServerI(45,main) blocked in object ServerI(45,main) at ServerI.ini Line 38
|

(Waiting for)
\/

task ClientI.setConfig in object ClientI(46,main) in cog ClientI(46,main)
|

(MHP)
\/

cog ClientI(46,main) blocked in object ClientI(46,main) at ClientI.syncSend Line 30
|

(Waiting for)
\/

task ServerI.recv in object ServerI(45,main) in cog ServerI(45,main)

Fig. 10. Output of the deadlock analysis for the example of Fig. 8

4.3 Deductive Verification

We illustrate verification of ABS models along some examples. The account
types supported by the banking system example are not allowed to be in debt,
i.e., their balance must always be non-negative. To verify that our ABS model
implements this policy, we need to specify the property as an invariant of class
AccountImpl in Fig. 4. Invariants for interfaces and classes are specified in a
separate file whose suffix is .inv as follows:

\invariants(Seq historySV, Heap heapSV, ABSAnyInterface self) {

nonNegativeBalance : Account.AccountImpl {

int::select(heapSV, self, Account.AccountImpl::balance) >= 0

};

}

The keyword invariants opens a section wherein invariants can be specified. Its
parameters declare program variables that can be used to refer to the history
(historySV), the heap (heapSV), and the current object (self, similar as Java’s
this). These program variables can be used in the specification of class invariants.

The section declares an invariant with the name nonNegativeBalance for
class AccountImpl. The class invariant states that the value of field balance for
the current object must be non-negative. The built-in function int::select is
the standard heap selection function for return type Int.

Loading the problem in KeY-ABS opens the proof obligation selection dialog
shown in Fig. 11. On selection of the proof obligation Preserves Class Invari-
ant for method withdraw(Int) of class AccountImpl, a proof obligation of the
following (slightly simplified) form is generated:

{history := append(history, invocREv(. . .))}
((CInv(heap, history, self) ∧ wfHist(history)) → [mb;]CInv(. . .))

where mb denotes the body of method withdraw(Int). In this example the proof
obligation can be proven automatically with a few steps.

The attempt to prove that the invariant is preserved as well by method
deposit(Int) fails with one open goal. Inspecting the goal reveals that the
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Fig. 11. Proof-Obligation selection dialog

method cannot be proven for negative arguments of deposit(Int). This is not
an issue for method withdrawwhich has an explicit check, but for deposit(Int)
negative arguments need to be excluded using either a precondition or an invari-
ant. An invariant is more appropriate, because it reflects the design decision that
accounts never run a negative balance. Moreover, an invariant lets one reuse the
restriction also in other contexts.

\invariants(Seq historySV, Heap heapSV, ABSAnyInterface self) {

amountOfDepositNonNegative : Account.AccountImpl {

\forall Event ev; (

\forall int i; ( i >= 0 & i < seqLen(historySV) ->

( ev = Event::seqGet(historySV, i) &

( isInvocationEv(ev) | isInvocationREv(ev)) &

getMethod(ev) = Account.Account::deposit#ABS.StdLib.Int ->

int::seqGet(getArguments(ev), 0) >= 0 ) ) )

};

This invariant ensures that method deposit(Int) is in any event history
always invoked with a non-negative argument by inspecting the associated invo-
cation (reaction) events. With this additional invariant we can close the proof
for deposit(Int), requiring to instantiate the second quantifier in the invariant
once by hand.

As a final example, we specify how the value of field balance of class Account
relates to the history: it always coincides with the value returned by the most



22 R. Bubel, A. Flores Montoya, and R. Hähnle

recent call of the deposit(Int) or withdraw(Int) method. We specify this
property as follows:

\invariants (Seq historySV, Heap heapSV, ABSAnyInterface self) {

balanceConsistent : Account.AccountImpl {

\forall Event ev;(

(ev = Event::seqGet(historySV, seqLen(historySV) - 1) &

ev = compEv(self, getFuture(ev), getMethod(ev), getResult(ev)) &

( getMethod(ev) = Account.Account::withdraw#ABS.StdLib.Int |

getMethod(ev) = Account.Account::deposit#ABS.StdLib.Int ) )

->

getResult(ev) = int::select(heapSV,self,

Account.AccountImpl::balance) )

};

}

This invariant can be proven automatically for the methods deposit(Int)

and withdraw(Int). The proofs of all invariants combined require 954 proof
steps with only two user interactions for method deposit(Int) and 1700 proof
steps for method withdraw(Int) with no user interactions (see Fig. 12).

Fig. 12. Proof that method withdraw preserves the invariants

5 Conclusion and Future Perspectives

We discussed three complementary analyses techniques for the ABS modeling
language: deadlock detection, resource consumption, and deductive verification.
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None of the analyses in this tutorial would have been possible with the same
degree of automation and precision in implementation languages such as Java

or C/C++. It is a crucial insight that ABS was developed from the start with
analyzability in mind. As the ABS examples demonstrate (and, even more so,
industrial case studies [34]), it is nevertheless possible to create rich and realistic
software models.

The three presented analyses differ in difficulty of usage and in precision:
easiest to use is the deadlock detection analysis, which is fully automatic and
does not require any configuration. If the analysis finds a problem, the call
chain leading to the potential deadlock is shown and the involved statements
are highlighted in the Eclipse IDE. The deadlock analysis is correct, i.e., when
no deadlocks are reported, the analyzed ABS program is deadlock-free. But, as a
consequence of abstraction and over-approximation, not all reported deadlocks
need actually occur, so one has to carefully check the analysis report to reject
false positives.

The resource consumption analysis requires that a cost model was specified or
at least an a priori specified cost model needs to be selected. The actual analysis
is again fully automatic and the derived costs for the ABS model are shown. The
analysis might, however, not always return with a result. If it returns with an
upper bound, then this is sound, that is, no concrete run of the ABS model will
exceed the computed worst case. It is, however, possible that no concrete run
reaches the upper bound, that is, the analysis might not be tight.

Deductive verification clearly is the most difficult to use analysis presented
in this paper. It requires to specify invariants of the system and the verification
process requires some amount of user interaction. Both activities require consid-
erable expertise with formal specification and verification. On the positive side,
the deductive verification is precise and highly expressive with respect to the
properties that can be specified. It allows to verify data dependent, functional
properties of ABS models. An in-depth discussion of the trade-offs of various
verification scenarios can be found in [12].
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16. de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Wong, P.Y.H.: Formal mod-
eling of resource management for cloud architectures: An industrial case study. In:
De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592,
pp. 91–106. Springer, Heidelberg (2012)

17. Report on the Core ABS Language and Methodology: Parts A and B. Deliverable
1.1 of project FP7-231620 (HATS) (March 2010), http://www.hats-project.eu

18. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed
systems: Component reasoning for concurrent objects. Journal of Logic and Alge-
braic Programming 81(3), 227–256 (2012)

19. Giachino, E., Grazia, C.A., Laneve, C., Lienhardt, M., Wong, P.Y.H.: Deadlock
analysis of concurrent objects: Theory and practice (2013),
http://www.cs.unibo.it/~laneve (submitted)

20. Giachino, E., Laneve, C.: A beginner’s guide to the deadLock Analysis Model.
In: Palamidessi, C., Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191, pp. 49–63.
Springer, Heidelberg (2013)

21. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg
(2008)

http://www.hats-project.eu
http://www.cs.unibo.it/~laneve


Analysis of Executable Software Models 25

22. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and efficient static es-
timation of program computational complexity. In: Principles of Programming
Languages (POPL 2009), pp. 127–139. ACM (2009)
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Abstract. Deadlock detection in recursive programs that admit dy-
namic resource creation is extremely complex and solutions either give
imprecise answers or do not scale.

We define an algorithm for detecting deadlocks of linear recursive
programs of a basic model. The theory that underpins the algorithm
is a generalization of the theory of permutations of names to so-called
mutations, which transform tuples by introducing duplicates and fresh
names.

Our algorithm realizes the back-end of deadlock analyzers for object-
oriented programming languages, once the association programs/basic-
model-programs has been defined as front-end.

1 Introduction

Modern systems are designed to support a high degree of parallelism by en-
suring that as many system components as possible are operating concurrently.
Deadlock represents an insidious and recurring threat when such systems also
exhibit a high degree of resource and data sharing. In these systems, deadlocks
arise as a consequence of exclusive resource access and circular wait for accessing
resources. A standard example is when two processes are exclusively holding a
different resource and are requesting access to the resource held by the other. In
other words, the correct termination of each of the two process activities depends
on the termination of the other. Since there is a circular dependency, termination
is not possible.

The techniques for detecting deadlocks build graphs of dependencies �x, y�
between resources, meaning that the release of a resource referenced by x de-
pends on the release of the resource referenced by y. The absence of cycles in the
graphs entails deadlock freedom. The difficulties arise in the presence of infinite
(mutual) recursion: consider, for instance, systems that create an unbounded
number of processes such as server applications. In such systems, process inter-
action becomes complex and either hard to predict or hard to be detected during
testing and, even when possible, it can be difficult to reproduce deadlocks and
find their causes. In these cases, the existing deadlock detection tools, in order
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to ensure termination, typically lean on finite models that are extracted from
the dependency graphs.

The most powerful deadlock analyzer we are aware of is TyPiCal, a tool
developed for pi-calculus by Kobayashi [20,18,16,19]. This tool uses a clever
technique for deriving inter-channel dependency information and is able to deal
with several recursive behaviors and the creation of new channels without using
any pre-defined order of channel names. Nevertheless, sinceTyPiCal is based on
an inference system, there are recursive behaviors that escape its accuracy. For
instance, it returns false positives when recursion is mixed up with delegation. To
illustrate the issue we consider the following deadlock-free pi-calculus factorial
program

*factorial ?(n,(r,s)).

if n=0 then r?m. s!m else new t in

(r?m. t!(m*n)) | factorial !(n-1,(t,s))

In this code, factorial returns the value (on the channel s) by delegating this
task to the recursive invocation, if any. In particular, the initial invocation of
factorial, which is r!1 | factorial!(n,(r,s)), performs a synchronization
between r!1 and the input r?m in the continuation of factorial?(n,(r,s)).
In turn, this may delegate the computation of the factorial to a subsequent
synchronization on a new channel t. TyPiCal signals a deadlock on the two
inputs r?m because it fails in connecting the output t!(m*n) with them.

The technique we develop in this paper allows us to demonstrate the deadlock
freedom of programs like the one above.

To ease program reasoning, our technique relies on an abstraction process
that extracts the dependency constraints in programs

– by dropping primitive data types and values;
– by highlighting dependencies between pi-calculus actions;
– by overapproximating statement behaviors, namely collecting the dependen-

cies and the invocations in the two branches of the conditional (the set union
operation is modeled by �).

This abstraction process is currently performed by a formal inference system that
does not target pi-calculus, but it is defined for a Java-like programming lan-
guage, called ABS [17], see Section 6. Here, pi-calculus has been considered for ex-
pository purposes. The ABS program corresponding to the pi-calculus factorial
may be downloaded from [15]; readers that are familiar with Java may find the
code in the Appendix A. As a consequence of the abstraction operation we get
the function

factorial�r, s� � �r, s���r, t��factorial�t, s�

where �r, s� shows the dependency between the actions r?m and s!m and �r, t�
the one between r?m and t!(m*n). The semantics of the abstract factorial is
defined operationally by unfolding the recursive invocations. In particular, the
unfolding of factorial�r, s� yields the sequence of abstract states (free names
in the definition of factorial are replaced by fresh names in the unfoldings)
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factorial�r, s� ���r, s���r, t��factorial�t, s�
���r, s���r, t���t, s���t, u��factorial�u, s�
���r, s���r, t���t, s���t, u���u, s���u, v�

�factorial�v, s�
�� � � �

We demonstrate that the abstract factorial (and, therefore, the foregoing
pi-calculus code) never manifests a circularity by using a model checking tech-
nique. This despite the fact that the model of factorial has infinite states.
In particular, we are able to decide the deadlock freedom by analyzing finitely
many states – precisely three – of factorial.

Our Solution. We introduce a basic recursive model, called lam programs – lam
is an acronym for deadLock Analysis Model – that are collections of function
definitions and a main term to evaluate. For example,�

factorial�r, s� � �r, s���r, t��factorial�t, s� , factorial�r, s�
�

defines factorial and the main term factorial�r, s�. Because lam programs
feature recursion and dynamic name creation – e.g. the free name t in the defi-
nition of factorial – the model is not finite state (see Section 3).

In this work we address the

Question 1. Is it decidable whether the computations of a lam program will ever
produce a circularity?

and the main contribution is the positive answer when programs are linear re-
cursive.

To begin the description of our solution, we notice that, if lam programs are
non-recursive then detecting circularities is as simple as unfolding the invocations
in the main term. In general, as in case of factorial, the unfolding may not
terminate. Nevertheless, the following two conditions may ease our answer:

(i) the functions in the program are linear recursive, that is (mutual) recursions
have at most one recursive invocation – such as factorial;

(ii) function invocations do not show duplicate arguments and function defini-
tions do not have free names.

When (i) and (ii) hold, as in the program�
f�x, y, z� � �x, y��f�y, z, x�, f�u, v, w�

�
,

recursive functions may be considered as permutations of names – technically
we define a notion of associated (per)mutation – and the corresponding the-
ory [8] guarantees that, by repeatedly applying a same permutation to a tuple of
names, at some point, one obtains the initial tuple. This point, which is known
as the order of the permutation, allows one to define the following algorithm for
Question 1:

1. compute the order of the permutation associated to the function in the lam
and

2. correspondingly unfold the term to evaluate.
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For example, the permutation of f has order 3. Therefore, it is possible to stop
the evaluation of f after the third unfolding (at the state �u, v���v, w���w, u�
� f�u, v, w�) because every dependency pair produced afterwards will belong to
the relation �u, v���v, w���w, u�.

When the constraint (ii) is dropped, as in factorial, the answer to Question 1
is not simple anymore. However, the above analogy with permutations has been
a source of inspiration for us.

order

(
g(x0, x1, x2, x3, x4, x5, x6) = (x3, x1)�(x0, x8)�(x8, x7)�g(x2, x0, x1, x5, x6, x7, x8), g(x0, x1, x2, x3, x

g(x0, x1, x2, x3, x4, x5, x6)

(x3, x1)�(x0, x8)�(x8, x7) � g(x2, x0, x1, x5, x6, x7, x8)

(x5, x0)�(x2, x10)�(x10, x9) � g(x1, x2, x0, x7, x8, x9, x10)

(x7, x2)�(x1, x12)�(x12, x11) � g(x0, x1, x2, x9, x10, x11, x12)

(x9, x1)�(x0, x14)�(x14, x13) � g(x2, x0, x1, x11, x12, x13, x14)

(x11, x0)�(x2, x16)�(x16, x15) � g(x1, x2, x0, x13, x14, x15, x16)

g(x0, x1, x2, x3, x4, x5, x6)
)

Fig. 1. A lam program and its unfolding

Consider the main term factorial�r, s�. Its evaluation will never display
factorial�r, s� twice, as well as any other invocation in the states, because
the first argument of the recursive invocation is free. Nevertheless, we notice
that, from the second state – namely �r, s���r, t��factorial�t, s� – onwards,
the invocations of factorial are not identical, but may be identified by a map
that

– associates names created in the last evaluation step to past names,
– is the identity on other names.

The definition of this map, called flashback, requires that the transformation as-
sociated to a lam function, called mutation, also records the name creation.
In fact, the theory of mutations allows us to map factorial�t, s� back to
factorial�r, s� by recording that t has been created after r, e.g. r�t.

We generalize the result about permutation orders (Section 2):

by repeatedly applying a same mutation to a tuple of names, at some
point we obtain a tuple that is identical, up-to a flashback, to a tuple in
the past.

As for permutations, this point is the order of the mutation, which (we prove)
it is possible to compute in similar ways.
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However, unfolding a function as many times as the order of the associated
mutation may not be sufficient for displaying circularities. This is unsurprising
because the arguments about mutations and flashbacks focus on function invo-
cations and do not account for dependencies. In the case of lams where (i) and
(ii) hold, these arguments were sufficient because permutations reproduce the
same dependencies of past invocations. In the case of mutations, this is not true
anymore as displayed by the function g in Figure 1. This function has order 3
and the first three unfoldings of g�x0, x1, x2, x3, x4, x5, x6� are those above the
horizontal line. While there is a flashback from g�x0, x1, x2, x9, x10, x11, x12� to
g�x0, x1, x2, x3, x4, x5, x6�, the pairs produced up-to the third unfolding

�x3, x1���x0, x8���x8, x7���x5, x0���x2, x10���x10, x9�
��x7, x2���x1, x12���x12, x11�

do not manifest any circularity. Yet, two additional unfoldings (displayed below
the horizontal line of Figure 1), show the circularity

�x0, x8���x8, x7���x7, x2���x2, x10���x10, x9�
��x9, x1���x1, x12���x12, x11���x11, x0� .

flashback

L

(a)

L

flashback

L

(b)

L

saturated state
=   2 order

circularity

order

saturated state
=   2 order

circularity
order

Fig. 2. Flashbacks of circularities

In Section 4 we prove that a sufficient condition for deciding whether a lam
program as in Figure 1 will ever produce a circularity is to unfold the function g

up-to two times the order of the associated mutation – this state will be called
saturated. If no circularity is manifested in the saturated state then the lam is
“circularity-free”. This supplement of evaluation is due to the existence of two
alternative ways for creating circularities. A first way is when the circularity is
given by the dependencies produced by the unfoldings from the order to the
saturated state. Then, our theory guarantees that the circularity is also present
in the unfolding of g till the order – see Figure 2.a. A second way is when the
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dependencies of the circularity are produced by (1) the unfolding till the order
and by (2) the unfolding from the order till the saturated state – these are the
so-called crossover circularities – see Figure 2.b. Our theory allows us to map
dependencies of the evaluation (2) to those of the evaluation (1) and the flashback
may break the circularity – in this case, the evaluation till the saturated state
is necessary to collect enough informations. Other ways for creating circularities
are excluded. The intuition behind this fact is that the behavior of the function
(the dependencies) repeats itself following the same pattern every order-wise
unfolding. Thus it is not possible to reproduce a circularity that crosses more
than one order without having already a shorter one. The algorithm for detecting
circularities in linear recursive lam programs is detailed in Section 5, together
with a discussion about its computational cost.

We have prototyped our algorithm [15]. In particular, the prototype (1) uses
a (standard but not straightforward) inference system that we developed for
deriving behavioral types with dependency informations out of ABS programs [13]
and (2) has an add-on translationg these behavioral types into lams. We have
been able to verify an industrial case study developed by SDL Fredhoppper –
more than 2600 lines of code – in 31 seconds. Details about our prototype and a
comparison with other deadlock analysis tools can be found in Section 6. There
is no space in this contribution to discuss the inference system: the interested
readers are referred to [13].

2 Generalizing Permutations: Mutations and Flashbacks

Natural numbers are ranged over by a, b, i, j, m, n, . . . , possibly indexed. Let V
be an infinite set of names, ranged over by x, y, z, � � � . We will use partial order
relations on names – relations that are reflexive, antisymmetric, and transitive –,
ranged over by �,��, �, � � � . Let x � � if, for some y, either �x, y� � � or �y, x� � �.
Let also var ��� � 	x 
 x � ��. For notational convenience, we write �x when we
refer to a list of names x1, . . . , xn.

Let � � �x��z, with �x � � and �z 
 �, be the least partial order containing the
set � � 	�y, z� 
 x � �x and �x, y� � � and z � �z�. That is, �z become maximal
names in �� �x��z. For example,

– 	�x, x�� � x�z � 	�x, x�, �x, z�, �z, z��;
– if � � 	�x, y�, �x�, y��� (the reflexive pairs are omitted) then � � y�z is the
reflexive and transitive closure of 	�x, y�, �x�, y��, �y, z��;

– if � � 	�x, y�, �x, y��� (the reflexive pairs are omitted) then � � x�z is the
reflexive and transitive closure of 	�x, y�, �x, y��, �y, z�, �y�, z��.

Let x � y � � be �x, y� � �.

Definition 1. A mutation of a tuple of names, denoted � a1, � � � , an � where 1 �
a1, � � � , an � 2 � n, transforms a pair

�
�, �x1, � � � , xn�

�
into

�
��, �x�1, � � � , x

�
n�
�

as follows. Let 	b1, � � � , bk� � 	a1, � � � , an��	1, 2, � � � , n� and let zb1 , � � � , zbk be k
pairwise different fresh names. [That is names not occurring either in x1, � � � , xn

or in �.] Then
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– if 1 � ai � n then x�i � xai ;
– if ai � n then x�i � zai ;
– �� � �� x1, � � � , xn�zi1 , � � � , zik .

The mutation � a1, � � � , an � of
�
�, �x1, � � � , xn�

�
is written

�
�, �x1, � � � , xn�

�
� a1,��� ,an �
��

�
��, �x�1, � � � , x

�
n�
�
and the label �a1, � � � , an � is omitted when the mu-

tation is clear from the context. Given a mutation μ � � a1, � � � , an �, we define
the application of μ to an index i, 1 � i � n, as μ�i� � ai.

Permutations are mutations � a1, � � � , an � where the elements are pairwise dif-
ferent and belong to the set 	1, 2, � � � , n� (e.g. � 2, 3, 5, 4, 1 �). In this case the par-
tial order � never changes and therefore it is useless. Actually, our terminology
and statements below are inspired by the corresponding ones for permutations. A
mutation differs from a permutation because it can exhibit repeated elements, or
even new elements (identified by n� 1 � ai � 2� n, for some ai). For example,
by successively applying the mutation � 2, 3, 6, 1, 1 � to

�
�, �x1, x2, x3, x4, x5�

�
,

with � � 	�x1, x1�, � � � , �x5, x5�� and �x � x1, x2, x3, x4, x5, we obtain�
�, �x1, x2, x3, x4, x5�

�
��

�
�1, �x2, x3, y1, x1, x1�

�
��

�
�2, �x3, y1, y2, x2, x2�

�
��

�
�3, �y1, y2, y3, x3, x3�

�
��

�
�4, �y2, y3, y4, y1, y1�

�
�� � � �

where �1 � � � �x�y1 and, for i � 1, �i�1 � �i � yi�yi�1. In this example, 6
identifies a new name to be added at each application of the mutation. The new
name created at each step is a maximal one for the partial order.

We observe that, by definition, � 2, 3, 6, 1, 1 � and � 2, 3, 7, 1, 1 � define a same
transformation of names. That is, the choice of the natural between 6 and
10 is irrelevant in the definition of the mutation. Similarly for the mutations
� 2, 3, 6, 1, 6 � and � 2, 3, 7, 1, 7 �.

Definition 2. Let � a1, � � � , an � � � a�1, � � � , a
�
n � if there exists a bijective func-

tion f from �n� 1..2� n� to �n� 1..2� n� such that:

1. 1 � ai � n implies a�i � ai;
2. n� 1 � ai � 2� n implies a�i � f�ai�.

We notice that � 2, 3, 6, 1, 1 � � � 2, 3, 7, 1, 1 � and � 2, 3, 6, 1, 6 � � � 2, 3, 7, 1, 7 �.
However � 2, 3, 6, 1, 6 � � � 2, 3, 6, 1, 7 �; in fact these two mutations define different
transformations of names.

Definition 3. Given a partial order �, a �-flashback is an injective renaming
ρ on names such that ρ�x� � x � �.

In the above sequence of mutations of �x1, x2, x3, x4, x5� there is a �4-flashback
from �y2, y3, y4, y1, y1� to �x2, x3, y1, x1, x1�. In the following, flashbacks will be

also applied to tuples: ρ�x1, � � � , xn�
def
� �ρ�x1�, � � � , ρ�xn��.
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In case of mutations that are permutations, a flashback is the identity renam-
ing and the following statement is folklore. Let μ be a mutation. We write μm

for the application of μ m times, namely
�
�, �x1, � � � , xn�

� μm

��
�
��, �y1, � � � , yn�

�
abbreviates

�
�, �x1, � � � , xn�

� μ
�� � � �

μ
��

�
��, �y1, � � � , yn�

�����������������������������������������������������������������	
m times

.

Proposition 1. Let μ � � a1, � � � , an � and�
�, �x1, � � � , xn�

� μ
��

�
��, �x�1, � � � , x

�
n�
�

μm

��
�
��, �y1, � � � , yn�

�
μ
��

�
��, �y�1, � � � , y

�
n�
�

If there is a ��-flashback ρ such that ρ�y1, � � � , yn� � �x1, � � � , xn� then there
is a ��-flashback from �y�1, � � � , y

�
n� to �x

�
1, � � � , x

�
n�.

Proof. Let ρ� be the relation y�i �� x�i, for every i. Then
1) ρ� is a mapping: y�i � y�j implies x�i � x�j . In fact, y�i � y�j means that either

(i) 1 � ai, aj � n or (ii) ai, aj � n. In subcase (i) yai � yaj , by definition of
mutation. Therefore ρ�yai� � ρ�yaj � that in turn implies xai � xaj . From this
last equality we obtain x�i � x�j . In subcase (ii), ai � aj and the implication
follows by the fact that � a1, � � � , an � is a mutation.

2) ρ� is injective: x�i � x�j implies y�i � y�j . If x�i � 	x1, � � � , xn� then 1 �
ai, aj � n. Therefore, by the definition of mutation, xai � xaj and, because ρ is
a flashback, yai � yaj . By this last equation y�i � y�j . If x

�
i 
 	x1, � � � , xn� then

ai � n and ai � aj . Therefore y�i � y�j by definition of mutation.
3) ρ� is a flashback: x�i � y�i implies x�i � y�i � �

�. If 1 � ai � n then y�i � yai

and x�i � xai . Therefore yai � xai and we conclude by the hypothesis about ρ
that ρ��yai� satisfies the constraint in the definition of flashback. If ai � n then
x1, � � � , xn � x�i � �

�. Since ρ�yi� � xi, by the hypothesis about ρ, xi � yi � �
�.

Therefore, by definition of mutation, x�i � yi � �
�. We derive x�i � y�i � �

� by
transitivity because �� � �� and yi � y�i � �

�.

The following Theorem 1 generalizes the property that every permutation has
an order, which is the number of applications that return the initial tuple. In
the theory of permutations, the order is the least common multiple, in short
lcm , of the lengths of the cycles of the permutation. This result is clearly false
for mutations because of the presence of duplications and of fresh names. The
generalization that holds in our setting uses flashbacks instead of identities. We
begin by extending the notion of cycle.

Definition 4 (Cycles and sinks). Let μ � � a1, � � � , an � be a mutation and
let 1 � ai1 , � � � , ai� � n be pairwise different naturals. Then:

i. the term �ai1 � � � ai�� is a cycle of μ whenever μ�aij � � aij�1 , with 1 � j �
	� 1, and μ�ai�� � ai1 (i.e., �ai1 � � � ai�� is the ordinary permutation cycle);

ii. the term �ai1 � � � ai��1
�ai�

is a bound sink of μ whenever ai1 
 	a1, � � � , an�,
μ�aij � � aij�1 , with 1 � j � 	� 1, and ai� belongs to a cycle;
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iii. the term �ai1 � � � ai� �a, with n � a � 2 � n, is a free sink of μ whenever
ai1 
 	a1, � � � , an� and μ�aij � � aij�1 , with 1 � j � 	� 1 and μ�ai�� � a.

The length of a cycle is the number of elements in the cycle; the length of a sink
is the number of the elements in the square brackets.

For example the mutation � 5, 4, 8, 8, 3, 5, 8, 3, 3 � has cycle �3, 8� and has bound
sinks �1, 5�3, �6, 5�3, �9�3, �2, 4�8, and �7�8. The mutation � 6, 3, 1, 8, 7, 1, 8 � has
cycle �1, 6�, has bound sink �2, 3�1 and free sinks �4�8 and �5, 7�8.

Cycles and sinks are an alternative description of a mutation. For instance
�3, 8� means that the mutation moves the element in position 8 to the element in
position 3 and the one in position 3 to the position 8; the free sink �5, 7�8 means
that the element in position 7 goes to the position 5, whilst a fresh name goes
in position 7.

Theorem 1. Let μ be a mutation, 	 be the lcm of the length of its cycles, 	� and
	� be the lengths of its longest bound sink and free sink, respectively. Let also

k
def
� max		�	�, 	��. Then there exists 0 � h � k such that

�
�, �x1, � � � , xn�

� μh

���
��, �y1, � � � , yn�

� μk�h

��
�
��, �z1, � � � , zn�

�
and ρ�z1, � � � , zn� � �y1, � � � , yn�, for

some ��-flashback ρ. The value k is called order of μ and denoted by oμ.

Proof. Let μ � � a1, � � � , an � be a mutation, and let A � 	1, 2, . . . , n��	a1, � � � ,
an�.

If A � ∅, then μ is a permutation; hence, by the theory of permutations, the
theorem is immediately proved taking ρ as the identity and h � 0.

If A � ∅ then let a � A. By definition, a must be the first element of (i) a
bound sink or (ii) a free sink of μ. We write either a � A�i� or a � A�ii� if a is
the first element of a bound or free sink, respectively.

In subcase (i), let 	�a be the length of the bound sink with subscript a� and

	a� be the length of the cycle of a�. We observe that in
�
�, �x1, � � � , xn�

� μ��a

���
�, �x�1, � � � , x

�
n�
� μ�

a�

��
�
�, �x�1, � � � , x

�
n�
�
we have x�a� � x�a� .

In subcase (ii), let 	�a be the length of the free sink. We observe that in�
�, �x1, � � � , xn�

� μ��a

��
�
�, �x�1, � � � , x

�
n�
�
we have xa � x�a � �, by definition of

mutation.
Let 	, 	� and 	� as defined in the theorem. Then, if 	 � 	� � 	� we have that�

�, �x1, � � � , xn�
� μ��

��
�
��, �y1, � � � , yn�

� μ�

��
�
��, �z1, � � � , zn�

�
and ρ�z1, � � � , zn�

� �y1, � � � , yn�, where ρ � �z1 �� y1, � � � , zn �� yn� is a ��-flashback. If 	 �

	� � 	� then
�
�, �x1, � � � , xn�

� μ����

��
�
��, �y1, � � � , yn�

� μ�

��
�
��, �z1, � � � , zn�

�
and ρ�z1, � � � , zn� � �y1, � � � , yn�, where ρ � �z1 �� y1, � � � , zn �� yn� is a ��-
flashback.

For example, μ � � 6, 3, 1, 8, 7, 1, 8 �, has a cycle �1, 6�, bound sink �2, 3�1 and
free sinks �4�8 and �5, 7�8. Therefore 	 � 2, 	� � 2 and 	� � 2. In this case,
the values k and h of Theorem 1 are 4 and 2, respectively. In fact, if we apply
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the mutation μ four times to the pair
�
�, �x1, x2, x3, x4, x5, x6, x7�

�
, where � �

	�xi, xi� 
 1 � i � 7� we obtain�
�, �x1, x2, x3, x4, x5, x6, x7�

� μ
��

�
�1, �x6, x3, x1, y1, x7, x1, y1�

�
μ
��

�
�2, �x1, x1, x6, y2, y1, x6, y2�

�
μ
��

�
�3, �x6, x6, x1, y3, y2, x1, y3�

�
μ
��

�
�4, �x1, x1, x6, y4, y3, x6, y4�

�
where �1 � �� x1, x2, x3, x4, x5, x6, x7�y1 and, for i � 1, �i�1 � �i � yi	1�yi.
We notice that there is a �4-flashback ρ from �x1, x1, x6, y4, y3, x6, y4� (produced
by μ4) to �x1, x1, x6, y2, y1, x6, y2� (produced by μ2).

3 The Language of Lams

We use an infinite set of function names, ranged over f, f�, g, g�,. . ., which
is disjoint from the set V of Section 2. A lam program is a tuple

�
f1�
x1� �

L1, � � � , f�� �x�� � L�, L
�
where fi� �xi� � Li are function definitions and L is the

main lam. The syntax of Li and L is

L ::� 0 
 �x, y� 
 f��x� 
 L�L 
 L + L

Whenever parentheses are omitted, the operation “�” has precedence over
“ + ”. We will shorten L1�� � ��Ln into �i
1..nLi. Moreover, we use T to range
over lams that do not contain function invocations.

Let var �L� be the set of names in L. In a function definition f��x� � L, �x are
the formal parameters and the occurrences of names x � �x in L are bound ; the
names var �L���x are free.

In the syntax of L, the operations “�” and “ + ” are associative, commutative
with 0 being the identity. Additionally the following axioms hold (T does not
contain function invocations)

T�T � T T + T � T T��L� + L�� � T�L� + T�L�

and, in the rest of the paper, we will never distinguish equal lams. For instance,
f��u� + �x, y� and �x, y� + f��u� will be always identified. These axioms permit
to rewrite a lam without function invocations as a collection (operation + ) of
relations (elements of a relation are gathered by the operation �).

Proposition 2. For every T, there exist T1, � � � , Tn that are dependencies com-
posed with �, such that T � T1 + � � � + Tn.

Remark 1. Lams are intended to be abstract models of programs that highlight
the resource dependencies in the reachable states. The lam T1 + � � � + Tn of
Proposition 2 models a program whose possibly infinite set of states 	S1, S2, � � � �
is such that the resource dependencies in Si are a subset of those in some Tji , with
1 � ji � n. With this meaning, generic lams L1 + � � � + Lm are abstractions of
transition systems (a standard model of programming languages), where transi-
tions are ignored and states record the resource dependencies and the function
invocations.
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Remark 2. The above axioms, such as T��L� + L�� � T�L� + T�L� are re-
stricted to terms T that do not contain function invocations. In fact, f��u����x, y�
+ �y, z�� � �f��u���x, y�� + �f��u���y, z�� because the two terms have a differ-
ent number of occurrences of invocations of f, and this is crucial for linear
recursion – see Definition 6.

In the paper, we always assume lam programs
�
f1�
x1� � L1, � � � , f�� �x�� �

L�, L
�
to be well-defined, namely (1) all function names occurring in Li and L are

defined; (2) the arity of function invocations matches that of the corresponding
function definition.

Operational Semantics. Let a lam context, noted L� �, be a term derived by the
following syntax:

L� � ::� � � 
 L�L� � 
 L + L� �

As usual L�L� is the lam where the hole of L� � is replaced by L. The operational
semantics of a program

�
f1�
x1� � L1, � � � , f�� �x�� � L�, L��1

�
is a transition

system whose states are pairs
�
�, L

�
and the transition relation is the least one

satisfying the rule:

(Red)

f��x� � L var �L���x � �z �w are fresh
L� �w��z���u��x� � L��

�, L�f��u��� �� �
�� �u� �w, L�L���

By (red), a lam L is evaluated by successively replacing function invocations
with the corresponding lam instances. Name creation is handled with a mecha-
nism similar to that of mutations. For example, if f�x� � �x, y��f�y� and f�u�
occurs in the main lam, then f�u� is replaced by �u, v��f�v�, where v is a fresh
maximal name in some partial order. The initial state of a program with main

lam L is
�
�L, L

�
, where �L

def
� 	�x, x� 
 x � var �L��.

To illustrate the semantics of the language of lams we discuss three examples:

1.
�
f�x, y, z� � �x, y��g�y, z� + �y, z�, g�u, v� � �u, v� + �v, u�, f�x, y, z�

�
and � � 	�x, x�, �y, y�, �z, z��. Then�
�, f�x, y, z�

�
��

�
�, �x, y��g�y, z� + �y, z�

�
��

�
�, �x, y���y, z� + �x, y���z, y� + �y, z�

�
The lam in the final state does not contain function invocations. This is
because the above program is not recursive. Additionally, the evaluation of
f�x, y, z� has not created names. This is because names in the bodies of
f�x, y, z� and g�u, v� are bound.

2.
�
f��x� � �x, y��f��y� , f��x�

�
and �0 � 	�x0, x0��. Then�

�0, f
��x0�

�
��

�
�1, �x0, x1��f��x1�

�
��

�
�2, �x0, x1���x1, x2��f��x2�

�
��n

�
�n�2, �x0, x1��� � ���xn�1, xn�2��f��xn�2�

�
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where �i�1 � �i � xi�xi�1. In this case, the states grow in the number of
dependencies as the evaluation progresses. This growth is due to the presence
of a free name in the definition of f� that, as said, corresponds to generating
a fresh name at every recursive invocation.

3.
�
f��x� � �x, x�� + �x, x���f��x��, f��x0�

�
and �0 � 	�x0, x0��. Then�

�0, f
��x0�

�
��

�
�1, �x0, x1� + �x0, x1��f��x1�

�
��

�
�2, �x0, x1� + �x0, x1���x1, x2� + �x0, x1���x1, x2��f��x2�

�
��n

�
�n�2, �x0, x1� + � � � + �x0, x1��� � ���xn�1, xn�2��f��xn�2�

�
where �i�1 are as before. In this case, the states grow in the number of
“ + ”-terms, which become larger and larger as the evaluation progresses.

The semantics of the language of lams is nondeterministic because of the
choice of the invocation to evaluate. However, lams enjoy a diamond property
up-to bijective renaming of (fresh) names.

Proposition 3. Let ı be a bijective renaming and ı��� � 	�ı�x�, ı�y�� 
 �x, y� �
��. Let also

�
�, L

�
��

�
��, L�

�
and

�
ı���, L�ı��x���x�

�
��

�
��, L�

�
, where�x � var ���. Then

�i� either there exists a bijective renaming ı� such that�
��, L�

�
�
�
ı����, L��ı��x����x��

�
,

where �x� � var ����,
�ii� or there exist L� and a bijective renaming ı� such that

�
��, L�

�
��

�
��, L�

�
and

�
��, L�

�
��

�
ı�����, L��ı

���z���z�
�
, where �z � var ����.

The Informative Operational Semantics. In order to detect the circularity-
freedom, our technique computes a lam till every function therein has been
adequately unfolded (up-to twice the order of the associated mutation). This is
formalized by switching to an “informative” operational semantics where basic
terms (dependencies and function invocations) are labelled by so-called histories.

Let a history, ranged over by α, β, � � � , be a sequence of function names
fi1fi2 � � � fin . We write f � α if f occurs in α. We also write αn for α � � �α������	

n times

.

Let α � β if there is α� such that αα� � β. The symbol ε denotes the empty
history.

The informative operational semantics is a transition system whose states are
tuples

�
�, h�, �

�
where h� is a set of function invocations with histories and �,

called informative lam, is a term as L, except that pairs and function invocations
are indexed by histories, i.e. α�x, y� and αf��u�, respectively.

Let

addh�α, L�
def
�

�������

�������

α�x, y� if L � �x, y�

αf��x� if L � f��x�
addh�α, L���addh�α, L�� if L � L��L�

addh�α, L�� + addh�α, L�� if L � L� + L�
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For example addh�fl, �x4, x2��f�x2, x3, x4, x5�� �
fl�x4, x2��

flf�x2, x3, x4, x5�.
Let also hL� � be a lam context with histories (dependency pairs and function
invocations are labelled by histories, the definition is similar to L� �).

The informative transition relation is the least one such that
(Red+)

f��x� � L var �L���x � �z �w are fresh
L� �w��z���u��x� � L��

�, h�, hL�αf��u��� ��
�
�� �u� �w, h�� 	αf��u��, hL�addh�αf, L���

�
When

�
�, h�, �

�
��

�
��, h��, ��

�
by applying (Red+) to αf��u�, we say

that the term αf��u� is evaluated in the reduction. The initial informative state
of a program with main lam L is

�
�L, ∅, addh�ε, L�

�
.

For example, the flh-program�
f�x, y, z, u� � �x, z��l�u, y, z� ,
l�x, y, z� � �x, y��f�y, z, x, u� ,
h�x, y, z, u� � �z, x��h�x, y, z, u��f�x, y, z, u� ,
h�x1, x2, x3, x4�

�
has an (informative) evaluation�

�L, ∅, εh�x1, x2, x3, x4�
�

��
�
�L,

h�, �� hf�x1, x2, x3, x4�
�

��
�
�L,

h�1, �� hf�x1, x3��
hfl�x4, x2, x3�

�
��

�
�L�x4�x5,

h�2, �
� � hfl�x4, x2��

hflf�x2, x3, x4, x5�
�
,

where
� � h�x3, x1��

hh�x1, x2, x3, x4�
�� � ��hf�x1, x3�
h� � 	εh�x1, x2, x3, x4��
h�1 �

h�� 	hf�x1, x2, x3, x4��
h�2 �

h�1 � 	
hfl�x4, x2, x3��.

There is a strict correspondence between the non-informative and informative
semantics that is crucial for the correctness of our algorithm in Section 5. Let
����� be an eraser map that takes an informative lam and removes the histories.
The formal definition is omitted because it is straightforward.

Proposition 4. 1. If
�
�, h�, �

�
��

�
��, h��, ��

�
then

�
�, �����

�
���

��, ������
�
;

2. If
�
�, �����

�
��

�
��, L�

�
then there are h�, h��, �� such that ������ � L� and�

�, h�,�
�
��

�
��, h��,��

�
.

Circularities. Lams record sets of relations on names. The following function
����, called flattening, makes explicit these relations

��0� � 0, ���x, y�� � �x, y�, ��f��x�� � 0,
��L�L�� � ��L����L��, ��L + L�� � ��L� + ��L��.

For example, if L�f�x, y, z� + �x, y��g�y, z��f�u, y, z� + g�u, v���u, v� + �v, u�
then ��L� � �x, y� + �u, v� + �v, u�. That is, there are three relations in L: 	�x, y��
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and 	�u, v�� and 	�v, u��. By Proposition 2, ��L� returns, up-to the lam axioms,
sequences of (pairwise different) �-compositions of dependencies. The operation
����may be extended to informative lams � in the obviousway: ��α�x, y�� � α�x, y�
and ��αf��x�� � 0.

Definition 5. A lam L has a circularity if

��L� � �x1, x2���x2, x3��� � ���xm, x1��T� + T�

for some x1, � � � , xm. A state
�
�, L

�
has a circularity if L has a circularity.

Similarly for an informative lam �.

The final state of the fgh-program computation has a circularity; another func-
tion displaying a circularity is g in Section 1. None of the states in the examples
1, 2, 3 at the beginning of this section has a circularity.

4 Linear Recursive Lams and Saturated States

This section develops the theory that underpins the algorithm of Section 5.
In order to lightening the section, the technical details have been moved in
Appendix B.

We restrict our arguments to (mutually) recursive lam programs. In fact, cir-
cularity analysis in non-recursive programs is trivial: it is sufficient to evaluate
all the invocations till the final state and verify the presence of circularities
therein. A further restriction allows us to simplify the arguments without loos-
ing in generality (cf. the definition of saturation): we assume that every function
is (mutually) recursive. We may reduce to this case by expanding function invo-
cation of non-(mutually) recursive functions (and removing their definitions).

Linear Recursive Functions and Mutations. Our decision algorithm relies on
interpreting recursive functions as mutations. This interpretation is not always
possible: the recursive functions that have an associated mutation are the linear
recursive ones, as defined below.

The technique for dealing with the general case is briefly discussed in Section 8
and is detailed in Appendix C.

Definition 6. Let
�
f1�
x1� � L1, � � � , f�� �x�� � L�, L

�
be a lam program. A se-

quence fi0fi1 � � �fik is called a recursive history of fi0 if (a) the function names
are pairwise different and (b) for every 0 � j � k, Lij contains one invocation
of fij�1%k

(the operation % is the remainder of the division).
The lam program is linear recursive if (a) every function name has a unique

recursive history and (b) if fi0fi1 � � �fik is a recursive history then, for every
0 � j � k, Lij contains exactly one invocation of fij�1%k

.

For example, the program�
f1�x, y� � �x, y��f1�y, z��f2�y� + f2�z� , f2�y� � �y, z��f2�z� , L

�
is linear recursive. On the contrary
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�
f�x� � �x, y��g�x� , g�x� � �x, y��f�x� + g�y� , L

�
is not linear recursive because g has two recursive histories, namely g and gf.

Linearity allows us to associate a unique mutation to every function name.
To compute this mutation, let H range over sequences of function invocations.
We use the following two rules:

fiα 
 ε fi��xi� � Li

α 
 fi��xi�

fjα 
 Hfi��x� fi��xi� � Li
var �Li���xi � �z �w are fresh

L�fj��y�� � Li� �w��z���x��xi
�

α 
 Hfi��x�fj��y�
Let ε 
 f�x1, � � � , xn� � � �f�x

�
1, � � � , x

�
n� be the final judgment of the proof tree

with leaf fαf 
 ε, where fα is the recursive history of f. Let also x�1, � � � , x
�
n�x1,

� � � , xn � z1, � � � , zk. Then the mutation of f, written μf � � a1, � � � , an � is
defined by

ai �

�

�

j if x�i � xj

n� j if x�i � zj

Let of, called order of the function f, be the order of μf. For example, in the
flh-program, the recursive history of f is fl and, applying the algorithm above
to flf 
 ε, we get ε 
 f�x, y, z, u�l�u, y, z�f�y, z, u, v�. The mutation of f is
� 2, 3, 4, 5 � and of � 4. Analogously we can compute ol � 3 and oh � 1.

Saturation. In the remaining part of the section we assume a fixed linear recursive
program

�
f1�
x1� � L1, � � � , f�� �x�� � L�, L

�
and let of1 , � � � , of� be the orders of

the corresponding functions.

Definition 7. A history α is

f-complete
if α � βof , where β is the recursive history of f. We say that α is complete
when it is f-complete, for some f.

f-saturating
if α � β1 � � �βn	1α

2
n, where βi � �αi�

2, with αi complete, and αn f-complete.
We say that α is saturating when it is f-saturating, for some f.

In the flh-program, of � 4, ol � 3, and oh � 1, and the recursive histories of
f, l and h are equal to fl, to lf and to h, respectively. Then α � �fl�4 is the
f-complete history and h2�fl�8 and h�fl�8 are f-saturating.

The following proposition is an important consequence of the theory of muta-
tions (Theorem 1) and the semantics of lams (and their axioms). In particular,
it states that, if a function invocation f0�
u0� is unfolded up to the order of f0
then (i) the last invocation f0��v� may be mapped back to a previous invocation
by a flashback and (ii) the same flashback also maps back dependencies created
by the unfolding of f0��v�.
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Proposition 5. Let β � f0f1 � � �fn be f0-complete and let�
�, h�, hL0�

αf0�
u0��
�
��n�1

�
��, h��, hL0�

hL1�� � �
hLn�

αf0���fnf0��un�1�� � � � ��
�

where h�� � h�� 	αf0�
u0�,
αf0f1�
u1�, � � � ,

αf0���fn�1fn�
un�� and fi� �ui� � L�i and
addh�αf0 � � � fi, L

�
i� �

hLi�
αf0���fifi�1��ui�1�� (unfolding of the functions in the

complete history of f0). Then there is a αf0���fh�1fh�
uh� �
h�� and a ��-flashback

ρ such that

1. f0�ρ��un�1�� � fh�
uh� (hence f0 � fh);
2. let f0��un�1� � L and ��L� � T1 + � � � + Tk and
��hL0�

hL1�� � �
hLn�

αβf0��un�1�� � � � ��� �
hT�1 + � � � + hT�k� . Then, for every

1 � i � k, there exists 1 � j � k� such that hT�j � addh�αf0 � � � fh	1, Ti��
hT�j ,

for some hT�j .

The notion of f-saturating will be used to define a “saturated” state, i.e., a
state where the evaluation of programs may safely (as regards circularities) stop.

Definition 8. An informative lam
�
�, h�, �

�
is saturated when, for every hL� �

and f��u� such that � � hL�αf��u��, α has a saturating prefix.

It is easy to check that the following informative lam generated by the com-
putation of the flh-program is saturated:�

�7,
h�, h2h�x1, x2, x3, x4� � �0�i�8

hf�lf�i�xi�1, xi�3�

� �0�i�8
h�fl�i�xi�3, xi�1�

� h�fl�8f�x9, x10, x11, x12�
�
,

where �i�1 � �i � xi�4�xi�5, and
h� � 	εh�x1, x2, x3, x4�,

hh�x1, x2, x3, x4��

�	h�fl�
i

f�xi�1, xi�2, xi�3, xi�4� 
 0 � i � 7�

� 	hf�lf�
i

l�xi�4, xi�2, xi�3� 
 0 � i � 7�.

Every preliminary statement is in place for our key theorem that details the
mapping of circularities created by transitions of saturated states to past circu-
larities.

Theorem 2. Let
�
�L, ∅, addh�ε, L�

�
���

�
�, h�, �

�
and

�
�, h�, �

�
be a sat-

urated state. If
�
�, h�, �

�
��

�
��, h��, ��

�
then

1.
�
��, h��, ��

�
is saturated;

2. if �� has a circularity then � has already a circularity.

Proof. (Sketch) Item 1. directly follows from Proposition 5. However, this propo-
sition is not sufficient to guarantee that circularities created in saturated states
are mapped back to past ones. In particular, the interesting case is the one of
crossover circularities, as discussed in Section 1. Therefore, let

α1�x1, x2�, � � � ,
αh�1�xh	1, xh�,

αh�xh, xh�1�, � � � ,
αn�xn, x1�

be a circularity in �� such that αh�xh, xh�1�, � � � ,
αn�xn, x1� were already present

in �. Proposition 5 guarantees the existence of a flashback ρ that maps α1�x1, x2�
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�� � ��αh�1�xh	1, xh� to
α1�ρ�x1�, ρ�x2���� � ��

αh�1�ρ�xh	1�, ρ�xh��. However, it
is possible that

α1�ρ�x1�, ρ�x2���� � ��
αh�1�ρ�xh	1�, ρ�xh���

αh�xh, xh�1��� � ��
αn�xn, x1�

is no more a circularity because, for example, ρ�xh� � xh (assume that ρ�x1� �
x1). Let us discuss this issue. The hypothesis of saturation guarantees that tran-
sitions produce histories α2β, where α is complete. Additionally, α1, � � � , αh	1

must be equal because they have been created by
�
�, h�, �

�
��

�
��, h��, ��

�
.

For simplicity, let β � f and α � fα�. Therefore, by Proposition 5, ρ maps
α2f�x1, x2��� � ��

α2f�xh	1, xh� to
αf�ρ�x1�, ρ�x2���� � ��

αf�ρ��xh	1�, ρ�xh�� and,
ρ�xh� � xh when xh is created by the computation evaluating functions in α�.

To overcome this problem, it is possible to demonstrate using a statement
similar to (but stronger than) Proposition 5 that ρ maps αh�xh, xh�1� � � � �
�αn�xn, x1� to


αh��ρ�xh�, ρ�xh�1���� � ��

αn��ρ�xn�, ρ�x1�� where �αi� are “ker-

nels” of αi where every γk in αi, with γ a complete history and k � 2, is replaced
by γ. The proof terminates by demonstrating that the term

αf�ρ�x1�, ρ�x2���� � ��
αf�ρ��xh	1�, ρ�xh��

�
αh��ρ�xh�, ρ�xh�1���� � ��

αn��ρ�xn�, ρ�x1��

is in � (and it is a circularity).

5 The Decision Algorithm for Detecting Circularities
in Linear Recursive Lams

The algorithm for deciding the circularity-freedom problem in linear recursive
lam programs takes as input a lam program

�
f1�
x1� � L1, � � � , f�� �x�� � L�, L

�
and performs the following steps:

Step 1: find recursive histories. By parsing the lam program we create a graph
where nodes are function names and, for every invocation of g in the body of f,
there is an edge from f to g. Then a standard depth first search associates to
every node its recursive histories (the paths starting and ending at that node, if
any). The lam program is linear recursive if every node has at most one associated
recursive history.

Step 2: computation of the orders. Given the recursive history α associated to
a function f, we compute the corresponding mutation by running α 
 ε (see
Section 4). A straightforward parse of the mutation returns the set of cycles and
sinks and, therefore, gives the order of.

Step 3: evaluation process. The main lam is unfolded till the the saturated state.
That is, every function invocation f��x� in the main lam is evaluated up-to twice
the order of the corresponding mutation. The function invocation of f in the
saturated state is erased and the process is repeated on every other function
invocation (which, therefore, does not belong to the recursive history of f), till
no function invocation is present in the state. At this stage we use the lam axioms
that yield a term T1 + � � � + Tn.
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Step 4: detection of circularities. Every Ti in T1 + � � � + Tn may be represented
as a graph where nodes are names and edges correspond to dependency pairs. To
detect whether Ti contains a circular dependency, we run Tarjan algorithm [31]
for connected components of graphs and we stop the algorithm when a circularity
is found.

Every preliminary notion is in place for stating our main result; we also make
few remarks about the correctness of the algorithm and its computational cost.

Theorem 3. The problem of the circularity-freedom of a lam program is decid-
able when the program is linear recursive.

The algorithm consists of the four steps described above. The critical step, as
far as correctness is concerned, is the third one, which follows by Theorem 2 and
by the diamond property in Proposition 3 (whatever other computation may be
completed in such a way the final state is equal up-to a bijection to a saturated
state).

As regards the computational complexity Steps 1 and 2 are linear with re-
spect to the size of the lam program and Step 4 is linear with respect to the
size of the term T1 + � � � + Tn. Step 3 evaluates the program till the saturated
state. Let

omax be the largest order of a function;
mmax be the maximal number of function invocations in a body, apart the one

in the recursive history.

Without loss of generality, we assume that recursive histories have length 1 and
that the main lam consists of mmax invocations of the same function. Then an
upper bound to the length of the evaluation till the saturated state is

�2� omax �mmax � � �2� omax �mmax �
2 � � � � � �2� omax �mmax �

�

Let kmax be the maximal number of dependency pairs in a body. Then the size of
the saturated state is O�kmax��omax �mmax �

��, which is also the computational
complexity of our algorithm.

6 Assessments

The algorithm defined in Section 5 has been prototyped [15]. As anticipated in
Section 1, our analysis has been applied to a concurrent object-oriented language
called ABS [17], which is a Java-like language with futures and an asynchronous
concurrency model (ASP [6] is another language in the same family).

The prototype is part of a bigger framework for the deadlock analysis of ABS
programs called DF4ABS (Deadlock Framework for ABS). It is a modular frame-
work which includes two different approaches for analysing lams: DF4ABS/model-
check (which is the one described in the current paper) and DF4ABS/fixpoint

(which is the one described in [13,14]).
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The technique underpinning the DF4ABS/fixpoint tool derives the depen-
dency graph(s) of lam programs by means of a standard fixpoint analysis. To
circumvent the issue of the infinite generation of new names, the fixpoint is
computed on models with a limited capacity of name creation. This
introduces overapproximations that in turn display false positives (for exam-
ple, DF4ABS/fixpoint returns a false positive for the lam of factorial). In the
present work, this limitation of finite models is overcome (for linear recursive
programs) by recognizing patterns of recursive behaviors, so that it is possible
to reduce the analysis to a finite portion of computation without losing precision
in the detection of deadlocks.

The derivation of lams from ABS programs is defined by an inference sys-
tem [13,14]. The inference system extracts behavioral types from ABS programs
and feeds them to the analyzer. These types display the resource dependencies
and the method invocations while discarding irrelevant (for the deadlock analy-
sis) details. There are two relevant differences between inferred types and lams:
(i) methods’ arguments have a record structure and (ii) behavioral types have
the union operator (for modeling the if-then-else statement). To bridge this gap
and have some initial assessments, we perform a basic automatic transformation
of types into lams.

We tested our prototype on a number of medium-size programs written for
benchmarking purposes by ABS programmers and on an industrial case study
based on the Fredhopper Access Server (FAS) developed by SDL Fredhopp-
per [9]. This Access Server provides search and merchandising IT services to
e-Commerce companies. The (leftmost three columns of the) following table re-
ports the experiments: for every program we display the number of lines, whether
the analysis has reported a deadlock (D) or not (�), the time in seconds required
for the analysis. Concerning time, we only report the time of the analysis (and
not the one taken by the inference) when they run on a QuadCore 2.4GHz and
Gentoo (Kernel 3.4.9):

program lines
DF4ABS/model-check

result time
DF4ABS/fixpoint

result time
DECO

result time
PingPong 61 � 0.311 � 0.046 � 1.30
MultiPingPong 88 D 0.209 D 0.109 D 1.43
BoundedBuffer 103 � 0.126 � 0.353 � 1.26
PeerToPeer 185 � 0.320 � 6.070 � 1.63

FAS Module 2645 � 31.88 � 39.78 � 4.38

The rightmost column of the above table reports the results of another tool that
have also been developed for the deadlock analysis of ABS programs: DECO [11].
The technique in [11] integrates a point-to analysis with an analysis returning (an
over-approximation of) program points that may be running in parallel. As for
other model checking techniques, the authors use a finite amount of (abstract)
object names to ensure termination of programs with object creations underneath
iteration or recursion. For example, DECO (as well as DF4ABS/fixpoint) signals a
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deadlock in programs containing methods whose lam is1 m�x, y� � �y, x��m�z, x�
that our technique correctly recognizes as deadlock-free.

As highlighted by the above table, the three tools return the same results as
regards deadlock analysis, but are different as regards performance. In particu-
lar DF4ABS/model-check and DF4ABS/fixpoint are comparable on small/mid-
size programs, DECO appears less performant (except for PeerToPeer, where
DF4ABS/fixpoint is quite slow because of the number of dependencies pro-
duced by the fixpoint algorithm). On the FAS module, DF4ABS/model-check
and DF4ABS/fixpoint are again comparable – their computational complexity
is exponential – DECO is more performant because its worst case complexity is cu-
bic in the dimension of the input. As we discuss above, this gain in performance
is payed by DECO in a loss of precision.

Our final remark is about the proportion between linear recursive functions
and nonlinear ones in programs. This is hard to assess and our answer is perhaps
not enough adequate. We have parsed the three case-studies developed in the
European project HATS [9]. The case studies are the FAS module, a Trading
System (TS) modeling a supermarket handling sales, and a Virtual Office of
the Future (VOF) where office workers are enabled to perform their office tasks
seamlessly independent of their current location. FAS has 2645 code-lines, TS
has 1238 code-lines, and VOF has 429 code-lines. In none of them we found a
nonlinear recursion, TS and VOF have respectively 2 and 3 linear recursions
(there are recursions in functions on data-type values that have nothing to do
with locks and control). This substantiates the usefulness of our technique in
these programs; the analysis of a wider range of programs is matter of future
work.

7 Related Works

The solutions in the literature for deadlock detection in infinite state programs
either give imprecise answers or do not scale when, for instance, programs also
admit dynamic resource creation. Two basic techniques are used: type-checking
and model-checking.

Type-based deadlock analysis has been extensively studied both for process
calculi [19,30,32] and for object-oriented programs [3,10,1]. In Section 1 we have
thoroughly discussed our position with respect to Kobayashi’s works; therefore
we omit here any additional comment. In the other contributions about deadlock
analysis, a type system computes a partial order of the deadlocks in a program
and a subject reduction theorem proves that tasks follow this order. On the
contrary, our technique does not compute any ordering of deadlocks, thus being
more flexible: a computation may acquire two deadlocks in different order at
different stages, thus being correct in our case, but incorrect with the other
techniques. A further difference with the above works is that we use behavioral
types, which are terms in some simple process algebras [21]. The use of simple

1 The code of a corresponding ABS program is available at the DF4ABS tool website [15],
c.f. UglyChain.abs.



46 E. Giachino and C. Laneve

process algebras to guarantee the correctness (= deadlock freedom) of interacting
parties is not new. This is the case of the exchange patterns in ssdl [27], which
are based on CSP [4] and pi-calculus [23], of session types [12], or of the terms
in [26] and [7], which use CCS [22]. In these proposals, the deadlock freedom
follows by checking either a dual-type relation or a behavioral equivalence, which
amounts to model checking deadlock freedom on the types.

As regards model checking techniques, in [5] circular dependencies among pro-
cesses are detected as erroneous configurations, but dynamic creation of names
is not treated. An alternative model checking technique is proposed in [2] for
multi-threaded asynchronous communication languages with futures (as ABS).
This technique is based on vector systems and addresses infinite-state programs
that admit thread creation but not dynamic resource creation.

The problem of verifying deadlocks in infinite state models has been stud-
ied in other contributions. For example, [28] compare a number of unfolding
algorithms for Petri Nets with techniques for safely cutting potentially infinite
unfoldings. Also in this work, dynamic resource creation is not addressed. The
techniques conceived for dealing with dynamic name creations are the so-called
nominal techniques, such as nominal automata [29,25] that recognize languages
over infinite alphabets and HD-automata [24], where names are explicit part
of the operational model. In contrast to our approach, the models underlying
these techniques are finite state. Additionally, the dependency relation between
names, which is crucial for deadlock detection, is not studied.

8 Conclusions and Future Work

We have defined an algorithm for the detection of deadlocks in infinite state pro-
grams, which is a decision procedure for linear recursive programs that feature
dynamic resource creation. This algorithm has been prototyped [15] and cur-
rently experimented on programs written in an object-oriented language with
futures [17]. The current prototype deals with nonlinear recursive programs by
using a source-to-source transformation into linear ones. This transformation
may introduce fake dependencies (which in turn may produce false positives in
terms of circularities). To briefly illustrate the technique, consider the program�

h�t� � �t, x���t, y��h�x��h�y� , h�u�
�
,

Our transformation returns the linear recursive one:�
haux �t, t�� � �t, x���t, x����t�, x���t�, x���haux �x, x�� ,
h�u� � haux �u, u� , h�u�

�
.

To highlight the fake dependencies added by haux , we notice that, after two
unfoldings, haux �u, u� gives

�u, v���u,w���v, v����v, w����w, v����w,w���haux �v�, w��

while h�u� has a corresponding state (obtained after four steps)

�u, v���u,w���v, v����v, v����w,w����w,w��
�h�v���h�v���h�w���h�w�� ,
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and this state has no dependency between names created by different invocations.
It is worth to remark that these additional dependencies cannot be completely
eliminated because of a cardinality argument. The evaluation of a function in-
vocation f��u� in a linear recursive program may produce at most one invocation
of f, while an invocation of f��u� in a nonlinear recursive program may produce
two or more. In turn, these invocations of f may create names (which are ex-
ponentially many in a nonlinear program). When this happens, the creations
of different invocations must be contracted to names created by one invocation
and explicit dependencies must be added to account for dependencies of each
invocation. [Our source-to-source transformation is sound: if the transformed
linear recursive program is circularity-free then the original nonlinear one is also
circularity-free. So, for example, since our analysis lets us determine that the
saturated state of haux is circularity-free, then we are able to infer the same
property for h.] We are exploring possible generalizations of our theory in Sec-
tion 4 to nonlinear recursive programs that replace the notion of mutation with
that of group of mutations. This research direction is currently at an early stage.

Another obvious research direction is to apply our technique to deadlocks
due to process synchronizations, as those in process calculi [23,19]. In this case,
one may take advantage of Kobayashi’s inference for deriving inter-channel de-
pendency informations and manage recursive behaviors by using our algorithm
(instead of the one in [20]).

There are several ways to develop the ideas here, both in terms of the lan-
guage features of lams and the analyses addressed. As regards the lam language,
[13] already contains an extension of lams with union types to deal with assign-
ments, data structures, and conditionals. However, the extension of the theory of
mutations and flashbacks to deal with these features is not trivial and may yield
a weakening of Theorem 2. Concerning the analyses, the theory of mutations
and flashbacks may be applied for verifying properties different than deadlocks,
such as state reachability or livelocks, possibly using different lam languages and
different notions of saturated state. Investigating the range of applications of our
theory and studying the related models (corresponding to lams) are two issues
that we intend to pursue.
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A Java Code of the Factorial Function

There are several Java programs implementing factorial in Section 1. However
our goal is to convey some intuition about the differences between TyPiCal and
our technique, rather than to analyze the possible options. One option is the code

synchronized void fact(final int n,final int m,final Maths x)

throws InterruptedException {

if (n==0) x.retresult (m) ;

else {

final Maths y = new Maths() ;

Thread t = new Thread(new Runnable () {

public void run() {

try { y.fact(n-1,n*m,x) ;

} catch (InterruptedException e) { }

} }) ;

t.start();

t.join () ;

}

}

Since factorial is synchronized, the corresponding thread acquires the lock
of its object – let it be this – before execution and releases the lock upon ter-
mination. We notice that factorial, in case n>0, delegates the computation of
factorial to a separate thread on a new object of Maths, called y. This means
that no other synchronized thread on this may be scheduled until the recursive
invocation on y terminates. Said formally, the runtime Java configuration con-
tains an object dependency �this , y�. Repeating this argument for the recursive
invocation, we get configurations with chains of dependencies �this , y�, �y, z�, � � � ,
which are finite by the well-foundedness of naturals.

B Proof of Theorem 2

This section develops the technical details for proving Theorem 2.

Definition 9. A history α is

f-yielding
if α � αh1

1 β1 � � �α
hn
n βn such that, for every i, αi is a recursive history, βi �

αi, and α � α�fi implies the program has the definition fi��xi� � L�f��u��,
for some �u. The kernel of α, denoted �α�, is α

h�1
1 β1 � � �α

h�n
n βn, where h�i �

min�hi, 1�.

By definition, if α is f-saturating then it is also f-yielding. In this case, the
kernel �α� has a suffix that is f-complete. In the flh-program, of � 4, ol � 3,
and oh � 1, and the recursive histories of f, l and h are equal to fl, to lf and
to h, respectively. Then α � �fl�4 is the f-complete history and α� � h2f is
l-yielding, with �α�� � hf.
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We notice that every history of an informative lam (obtained by evaluating�
�L, ∅, addh�ε, L�

�
) is a yielding sequence. We also notice that, for every f, ε is

f-yielding. In fact, ε is the history of every function invocation in the initial lam,
which may concern every function name of the program. As regards the kernel,
in Lemma 1, we demonstrate that, if α � αh1

1 β1 � � �α
hn
n βn is a f-yielding history

such that every hi � 2, then every term αf��u� may be mapped by a flashback ρ
to a term 
α�f�ρ��u��; similarly for dependencies. This is the basic property that
allows us to map circularities to past circularities (see Theorem 2).

Next we introduce an ordering relation over renamings, (in particular, flash-
backs) and the operation of renaming composition. The definitions are almost
standard:

– ρ �fb ρ� if, for every x � dom�ρ�, ρ�x� � ρ��x�.
– ρ �ρ� be defined as follows:

�ρ �ρ���x�
def
�

�
ρ��x� if ρ��x� 
 dom�ρ�
ρ�ρ��x�� otherwise

We notice that, if both

1. ρ and ρ� are flashbacks and
2. for every x � dom�ρ�, ρ��x� � x

then ρ �fb ρ �ρ� holds. In the following, lams ��L� and ����, being + of terms
that are dependencies composed with �, will be written T1 + � � � + Tm and
hT1 + � � � + hTm, for some m, respectively, where Ti and

hTi contain dependen-
cies �x, y� and α�x, y�. Let also ρ��i
I�xi, yi�� � �i
I�ρ�xi�, ρ�yi��.

With an abuse of notation, we will use the set operation “�” for L and hL. For
instance, we will write L� � L when there is L� � such that L � L�L��. Similarly,
we will write T � T1 + � � � + Tn when there is Ti such that T � Ti.

A consequence of the axiom T��L� + L�� � T�L� + T�L� is the following
property of the informative operational semantics.

Proposition 6. Let
�
�1,

h�, hL0�
αf1�
u1��

�
be a state of an informative opera-

tional semantics. For every 1 � i � n, let fi� �ui� � L�i and addh�αf0 � � � fi, L
�
i� be

hLi�
αf1���fifi�1��ui�1��. Finally, let

��hL1�� � �
hLn�

αf1���fnfn�1��un�1�� � � � �� �
hT1 + � � � + hTr

��hLn�
αf1���fnfn�1��un�1��� �

hT�1 + � � � + hT�r� .

If αf1���fn�x, y��addh�α�, T� � hT1 + � � � + hTr then, for every 1 � j � r�,
hT�j�addh�α�, T� � hT1 + � � � + hTr.

The next lemma allows us to map, through a flashback, terms in a saturated
state to terms that have been produced in the past. The correspondence is defined
by means of the (regular) structure of histories.

Lemma 1. Let
�
�L, ∅, addh�ε, L�

�
���

�
�, h�, �

�
and

�
�, h�, �

�
be saturated

and ���� � hT1 + � � � + hTm. Then

1. if βαn�2β�f��u� � �, where βαn�2β� is f-yielding, then there are n � 1 �-

flashbacks ρ
�2�
β,α,β� , � � � , ρ

�n�2�
β,α,β� such that:
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(a) βαn�1β�f�ρ
�n�2�
β,α,β���u�� � h�;

(b) �j
Jaddh�βα
k�1βj , T

�
j� �

hT1 + � � � + hTm where, for every j, βj � α,

implies �j
Jaddh�βα
kβj , ρ

�k�1�
β,α,β��T

�
j�� �

hT1 + � � � + hTm;

(c) βαk�1β�f��u� � h� implies βαkβ�f�ρ
�k�1�
β,α,β���u�� � h�.

2. if α1, � � � , αk are f1-yielding, � � � , fk-yielding, respectively, then there are
flashbacks ρα1 , � � � , ραk

such that
(a) if α1f1��u� � � or α1f1��u� � h� then 
α1�f�ρα1��u�� � h�;
(b) if �1�j�kaddh�αj , Tj� �

hT1 + � � � + hTm then
�1�j�kaddh��αj�, ραj �T�� �

hT1 + � � � + hTm;
(c) if α1 � α2 then ρα1 �

fb ρα2 .
(In particular, if α1 � βαn�2β�, with β� � α, and α2 � βαn�3 then
ρα1 �

fb ρα2).

Proof. (Sketch) As regards item 1, let α � β�β� and let β�β� � ff1 � � � fm
(therefore the length of α is m � 1). The evaluation

�
�L, ∅, addh�ε, L�

�
����

�, h�, �
�
may be decomposed as follows�

�L, ∅, addh�ε, L�
�
���

�
��, h��, hL�βα

n�1β�f��u����
���

�
�, h�, �

�
By definition of the operational semantics there is the alternative evaluation�

��, h��, hL�βα
n�1β�f��u����

��
�
��, h��, hL�hL��βα

n�1β�ff1�
u1���
�

���
�
��, h��, hL�hL��hL1�� � �

hLm�
βαn�1β�ff1���fmf�
u��� � � � ����

[notice that βαn�1β�ff1 � � �fm � βαn�2β�]. Property (1.a) is an immediate con-

sequence of Proposition 5; let �
�n�2�
β,α,β� be the flashback for the last state. The

property (1.b), when k � n, is also an immediate consequence of Propositions 5
and of 6. In the general case, we need to iterate the arguments on shorter his-
tories and the arguments are similar for (1.c). In order to conclude the proof
of item 1, we need an additional argument. By Proposition 3, there exists an
evaluation �

��, h��, hL�hL��hL1�� � �
hLm�

βαn�1β�ff1���fmf�
u��� � � � ����
���

�
��, h��, ��

�
such that

�
��, h��, ��

�
and

�
�, h�, �

�
are identified by a bijective renaming, let

it be j. We define the ρ
�n�2�
β,α,β� corresponding to the evaluation

�
�L, ∅, addh�ε, L�

�
���

�
�, h�, �

�
as ρ

�n�2�
β,α,β�

def
� j!�

�n�2�
β,α,β� ! j

	1. Similarly for the other ρ
�k�1�
β,α,β� . The

properties of item 1 for
�
�, h�, �

�
follow by the corresponding ones for�

��, h��, hL�hL��hL1�� � �
hLm�

βαn�1β�ff1���fmf�
u��� � � � ���� .

We prove item 2. We observe that a term with history β0�α
�
1�

h1 β1 � � �βn	1

�α�n�
hn βn in h� or in � may have no corresponding term (by a flashback) with
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history β0�α
�
1�

h1	1β1 �α
�
2�

h2 � � �βn	1 �α
�
n�

hnβn. This is because the evaluation
to the saturated state may have not expanded some invocations. It is however
true that terms with histories �β0�α

�
1�

h1β1 � � �βn	1�α
�
n�

hnβn� (kernels) are either
in h� or in � and the item 2 is demonstrated by proving that a flashback to
terms with histories that are kernels does exist.

Let α1 � β0�α
�
1�

h1β1 � � �βn	1�α
�
n�

hnβn be a f-yielding sequence. We proceed
by induction on n. When n � 1 there are two cases: h1 � 1 and h1 � 2. In the
first case there is nothing to prove because �α� � α. When h1 � 2, since α fits

with the hypotheses of Item 1, there exist ρ
�2�
β0,α�1,β1

, � � � , ρ
�h1�
β0,α�1,β1

. Let δ
�2�
β0,α�1,β1

�

ρ
�2�
β0,α�1,β1

and δ
�i�1�
β0,α�1,β1

� ρ
�i�1�
β0,α�1,β1

�x �� x 
 x � dom�δ
�i�
β0,α�1,β1

��. We also let

ρα1 � δ
�2�
β0,α�1,β1

� � � � �δ
�h1�
β0,α�1,β1

and we observe that, by definition of renaming

composition, if α1 � α2 then ρα1 �
fb ρα2 . In this case, the items 2.a and 2.b

follow by item 1, Proposition 6 and the diamond property of Proposition 3.
We assume the statement holds for a generic n and we prove the case n �

1. Let α1 � ββn�α
�
n�1�

hn�1βn�1 and hn�1 � 0 (because �βn�α
�
n�1�

1βn�1� �
βnα

�
n�1βn�1). We consider the map

ρα1

def
� ρβ �δ

�2�
βn,α�n�1,βn�1

� � � � �δ
�hn�1�
βn,α�n�1,βn�1

where δ
�i�
βn,α�n�1,βn�1

, 2 � i � hn�1 are defined as above. As before, the items 2.a

and 2.b follow by item 1 for δ
�2�
βn,α�n�1,βn�1

� � � � � δ
�hn�1�
βn,α�n�1,βn�1

and by Proposi-

tion 6 and the diamond property of Proposition 3. Then we apply the inductive
hypothesis for ρβ . The property (2.c) α1 � α2 implies ρα1 �

fb ρα2 is an imme-
diate consequence of the definition.

Every preliminary statement is in place for our key theorem that details the
mapping of circularities created by transitions of saturated states to past circu-
larities. For readability sake, we restate the theorem.

Theorem 2. Let
�
�L, ∅, addh�ε, L�

�
���

�
�, h�, �

�
and

�
�, h�, �

�
be a sat-

urated state. If
�
�, h�, �

�
��

�
��, h��, ��

�
then

1.
�
��, h��, ��

�
is saturated;

2. if �� has a circularity then � has already a circularity.

Proof. The item 1. is an immediate consequence of Proposition 5. We prove 2.
Let

– � � hL�αf��u��;
– f��u� � L�

– �� � hL�addh�αf, L���;
– ���� � ��hL�αf��u��� � hT1 + � � � + hTp;
– ��L�� � T�1 + � � � + T�p� ;

– ����� � hT�1 + � � � + hT�q;
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– α0�x0, x1��� � ��
αn�xn, x0� �

hT�1 + � � � + hT�q (it is a circularity).

Without loss of generality, we may reduce to the following case (the general case
is demonstrated by iterating the arguments below).

Let αf � β�α��m�2β� and let

α0�x0, x1��� � ��
αn�xn, x0� � �0�j�n�

β�α��m�1β�βj �xj , xj�1�
�αn��1�xn��1, xn��2�
�� � ��αn�xn, x0�

with ε � βj � β�β�, where β�β� � α�, and n� � n (otherwise 2 is straightforward

because the circularity may be mapped to a previous circularity by ρ
�m�2�
β,α�,β� , see

Lemma 1(1.b), or it is already contained in �). This is the case of crossover
circularities, as discussed in Section 1.

By Lemma 1,

β�α��mβ�β0�ρ
�m�2�
β,α,β� �x0�, ρ

�m�2�
β,α,β� �x1���� � �

� β�α��m�1β�βn� �ρ
�m�2�
β,α,β� �xn��, ρ

�m�2�
β,α,β� �xn��1��

(1)

is in some hT�i . There are two cases.
Case 1 : for every n�� 1 � i � n, αi � β�α��m�1β�. Then, by Lemma 1(1), we

have ρ
�m�2�
β,α,β� �x0� � ρ

�m�1�
β,α,β� �x0� and ρ

�m�2�
β,α,β� �xn��1� � ρ

�m�1�
β,α,β� �xn��1�. Therefore,

by Lemma 1(2),

�1�� α�
n��1�ρ

�m�1�
β,α,β� �xn��1�, ρ

�m�1�
β,α,β� �xn��2��

� � � ��α�n�ρ
�m�1�
β,α,β� �xn�, ρ

�m�1�
β,α,β� �x0��

with suitable α�n��1, � � � , α
�
n, is a circularity in hT�1 + � � � + hT�q . In particular,

whenever, for every n� � 1 � i � n, αi � β�α��mβ�βi with ε � βi � β�β�, the

flashback ρ
�m�1�
β,α,β� maps dependencies αi�xi, xi�1� to dependencies

β�α��m�1β�βi�ρ
�m�1�
β,α,β� �xi�, ρ

�m�1�
β,α,β� �xi�1��

if m � 0. It is the identity, if m � 0.
Case 2 : there is n� � 1 � i � n such that αi � β�α��m�2β�. Let this i be

n� � 1. For instance, β � β�1�α
��m

�

β�1 and αn��1 � β�1�α
��m

��1β�1 �α
��m

�

β�1 with
m� � 2 and m� � 2. In this case it is possible that there is no pair γ�y, y��,
with γ � β�1�α

��m
�

, to which map αn��1�xn��1, xn��2� by means of a flashback.
To overcome this issue, we consider the flashbacks ρα0 , � � � , ραn�

, ραn��1
and we

observe that


α0��ρα0�x0�, ρα0�x1���� � ��

αn� ��ραn�

�xn��, ραn�
�xn��1��

� 
αn��1��ραn��1
�xn��1�, ραn��1

�xn��2���� � �

� 
αn��ραn�xn�, ραn�x1��

(2)

verifies
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(a) for every 0 � i � n, ραi�xi�1� � ραi�1�xi�1� and ραn�x0� � ρα0�x0�;
(b) the term (2) is a subterm of hT�1 + � � � + hT�q .

As regards (a), the property derives by definition of the flashbacks ραi and ραi�1

in Lemma 1. As regards (b), it follows by Lemma 1(2.b) because α0�x0, x1��� � ��
αn�xn, x1� �

hT�1 + � � � + hT�q .

C Nonlinear Programs: Technical Aspects

When the lam program is not linear recursive, it is not possible to associate a
unique mutation to a function. In the general case, our technique for verifying
circularity-freedom consists of transforming a nonlinear recursive program into
a linear recursive one and then running the algorithm of the previous section. As
we will see, the transformation introduces inaccuracies, e.g. dependencies that
are not present in the nonlinear recursive program.

C.1 The Pseudo-linear Case

In nonlinear recursive programs, recursive histories are no more adequate to
capture the mutations defined by the functions. For example, in the nonlinear
recursive program (called f�g�-program)�
f��x, y, z� � �x, y��g��y, z�, g��x, y� � g��x, z��f��z, y, y�, L

�
the recursive history of f� is f�g�. The sequence f�g�g� is not a recursive history
because it contains multiple occurrences of the function g�. However, if one com-
putes the sequences of invocations f��x, y, z� � � �f���u�, it is possible to derive the
two sequences f��x, y, z�g��y, z�f��z�, z, z� and f��x, y, z�g��y, z� g��y, u�f��u�, u, u�
that define two different mutations � 4, 3, 3 � and � 6, 5, 5 � (see the definition of
mutation of a function).

Definition 10. A program
�
f1�
x1� � L1, � � � , f�� �x�� � L�, L

�
is pseudo-linear

recursive if, for every fi, the set of functions 	f 
 closure�f� � closure�fi�� con-
tains at most one function with a number of recursive histories greater
than 1.

The f�g�-program above is pseudo-linear recursive, as well as the fibonacci

program in Section 1 and the following l�-program�
l��x, y, z� � �x, y��l��y, z, x� + �x, u��l��u, u, y�, L

�
.

In these cases, functions have a unique recursive history but there are multiple
recursive invocations. On the contrary, the f�g�-program below�

f��x, y� � �x, z��f��y, z� + g��y, x� ,
g��x, y� � �y, x��f��y, z��g��z, x� ,
f��x1, x2�

�
is not pseudo-linear recursive.

Pseudo-linearity has been introduced because of the easiness of transforming
them into linear recursive programs. The transformation consists of the three
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Table 1. Pseudo-linear to linear transformation

rechis�fi� � �fifkα, fiβ0, � � � , fiβn� �head�β0�, � � � , head�βn���fk � ∅

Li � L	fk��u�
 var�Lk���xk � �z �w are fresh

�
� � � fi� �xi� � Li, � � � , L

� pl ��l
��
1

�
� � � fi� �xi� � L	Lk	 �w��z
	�u� �xi

, � � � , L

�

rechis�fi� � �fiα� fk � head�α�
Li � L	fk��u0�
 � � � 	fk��un�1�
 fk � L

var�Lk���xk � �z �w0, � � � ,�wn�1 are fresh

L	Lk	�w0��z
	�u0��xk


 � � � 	Lk	�wn�1��z
	�un�1��xk



 � L�i

�
� � � fi� �xi� � Li, � � � , L

� pl ��l
��
2

�
� � � fi� �xi� � L�i, � � � , L

�

Li � L	fi��u0�
 � � � 	fi��un�1�
 fi � L �w0, � � � ,�wn�1 are fresh

Lauxi � fauxi ��u0	�w0� �xi

, � � � ,�un�1	�wn�1� �xi


����j�0..n�1�fi�Li�	�wj� �xi

�

�
� � � fi� �xi� � Li, � � � , L

� pl ��l
��
3�

� � � fi� �xi� � fauxi � �xi, � � � , �xi�����	����

n�2 times

�, fauxi ��w0, � � � ,�wn�1� � Lauxi , � � � , L
�

steps specified in Table 1, which we discuss below. Let
�
f1�
x1� � L1, � � � , f�� �x�� �

L�, L
�
be a lam program, let rechis�fi� be the set of recursive histories of fi, and

let head�ε� � ε and head�fα� � f.

Transformation
pl ��l
" # 1: Removing multiple recursive histories. We repeatedly ap-

ply the rule defining
pl ��l
" # 1. Every instance of the rule selects a function fi with

a number of recursive histories greater than one – the hypotheses rechis�fi� �
	fifkα, fiβ0, � � � , fiβn� and 	head�β0�, � � � , head�βn���fk � ∅ – and expands
the invocation of fk, with fk � fi. By definition of pseudo-linearity, the other
function names in rechis�fi� have one recursive history. At each application of
the rule the sum of the lengths of the recursive histories of fi decreases. Therefore
we eventually unfold the (mutual) recursive invocations of fi till the recursive
history of fi is unique. For example, the program�

f�x� � �x, y��g�x� , g�x� � �x, y��f�x� + g�y� , L
�

is transformed into�
f�x� � �x, y��g�x� , g�x� � �x, y���x, z��g�x� + g�y� , L

�
.

Transformation
pl ��l
" # 2: Reducing the histories of pseudo-linear recursive func-

tions. By
pl ��l
" # 1, we are reduced to functions that have one recursive history. Yet,

this is not enough for a program to be linear recursive, such as the l�-program
or the following h�l�-program�

h��x, y� � �x, z��l��y, z� + l��y, x� ,
l��x, y� � �y, x��h��y, z��h��z, x� ,
h��x1, x2�

�
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(the reason is that the bodies of functions may have different invocations of a

same function). Rule
pl��l
" # 2 expands the bodies of pseudo-linear recursive func-

tions till the histories of nonlinear recursive functions have length one. In this
rule (and in the following ), we use lam contexts with multiple holes, written
L� � � � � � �. We write f 
 Lwhenever there is no invocation of f in L.

By the hypotheses of the rule, it applies to a function fi whose next element
in the recursive history is fk (by definition of the recursive history, fi � fk) and
whose body Li contains at least two invocations of fk. The rule transforms Li by
expanding every invocation of fk. For example, the functions h� and l� in the
h�l�-program are transformed into

h��x, y� � �x, z��l��y, z� + l��y, x� ,
l��x, y� � �y, x����y, z���l��z, z�� + l��z, y��

���z, z���l��x, z�� + l��x, z��.

The arguments about the termination of the transformation
pl��l
" # 2 are straight-

forward.

Transformation
pl��l
" # 3: Removing nonlinear recursive invocations. By

pl ��l
" # 2 we

are reduced to pseudo-linear recursive programs where the nonlinearity is due to
recursive, but not mutually-recursive functions (such as fibonacci). The trans-

formation
pl ��l
" # 3 removes multiple recursive invocations of nonlinear recursive

programs. This transformation is the one that introduces inaccuracies, e.g. pairs
that are not present in the nonlinear recursive program.

In the rule of
pl ��l
" # 3 we use the auxiliary operator �f�L� defined as follows:

�f�0� � 0, �f��x, y�� � �x, y�,
�f�f��x�� � 0, �f�g��x�� � g��x�, if �f � g�,
�f�L�L�� � �f�L���f�L

��, �f�L + L�� � �f�L� + �f�L
��.

The rule of
pl ��l
" # 3 selects a function fi whose body contains multiple recursive

invocations and extracts all of them – the term �fi�Li�. This term is put in parallel
with an auxiliary function invocation – the function fauxi – that collects the
arguments of each invocation fi (with names that have been properly renamed).
The resulting term, called Lauxi is the body of the new function fauxi that is
invoked by fi in the transformed program. For example, the function fibonacci

fibonacci�r, s� � �r, s���t, s��fibonacci�r, t��fibonacci�t, s�

is transformed into

fibonacci�r, s� � fibonacciaux �r, s, r, s�,
fibonacciaux �r, s, r�, s�� � �r, s���r�, s��

�fibonacciaux �r, t, t, s��

where different invocations (fibonacci�r, s� and fibonacci�r�, s��) in the origi-
nal program are contracted into one auxiliary function invocation (fibonacciaux

�r, s, r�, s��). As a consequence of this step, the creations of names performed by
different invocations are contracted to names created by one invocation. This
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leads to merging dependencies, which, in turn, reduces the precision of the anal-
ysis. (As discussed in Section 1, a cardinality argument prevents the inaccuracies

introduced by
pl��l
" # 3 from being totally eliminated.)

As far as the correctness of the transformations in Table 1 is concerned, we
begin by defining a correspondence between states of a pseudo-linear program

and those of a linear one. We focus on
pl ��l
" # 3 because the proofs of the correctness

of the other transformations are straightforward.

Definition 11. Let L2 be the linear program returned by the Transformation 3
of Table 1 applied to L1. A state

�
�1, L1

�
of L1 is linearized to a state

�
�2, L2

�
of L2, written

�
�1, L1

�
$lin

�
�2, L2

�
, if there exists a surjection σ such that:

1. if�x, y� � �1 then �σ�x�, σ�y�� � �2.
2. if ��L1� � T1 + � � � + Tm and ��L2� � T�1 + � � � + T�n, then for every 1 �

i � m, there exists 1 � j � n, such that σ�Ti� � T
�
j;

3. if f��x1� � L1 then either (1) f�σ��x1�� in L2 or (2) there are f��x2� � � �f��xk�
in L1 and faux ��y1, � � � , �yh� in L2 such that, for every 1 � k� � k there exists
h� with σ��xk� � � �yh� ;

In the following lemma we use the notation L�L1� � � � �Ln� defined in terms of
standard lam context by �� � � ��L�L1���L2�� � � � ��Ln�.

Lemma 2. Let
�
�1, L1

�
$lin

�
�2, L2

�
. Then,

�
�2, L2

�
��

�
��2, L

�
2

�
implies

there exists
�
�1, L1

�
���

�
��1, L

�
1

�
such that

�
��1, L

�
1

�
$lin

�
��2, L

�
2

�
Proof. Base case. Initially L1 � L2 because the main lam is not affected by the
transformation. Therefore the first step can only be an invocation of a standard
function belonging to both programs. We have two cases:

1. the function was linear already in the original program, thus it was not
modified by the transformation. In this case the two programs performs the
same reduction step and end up in the same state.

2. the function has been linearized by the transformation. In this case the invo-
cation at the linear side will reduce to an invocation of an aux-function and
it will not produce new pairs nor new names. The corresponding reduction
in
�
�1, L1

�
is a zero-step reduction. It is easy to verify that

�
�1, L1

�
$lin�

��2, L
�
2

�
.

Inductive case. We consider only the case in which the selected function is an
aux-function. The other case is as in the base case. Let�

�
�n�
1 , L

�n�
1 �f��v1�� � � � �f��vk���

$lin

�
�
�n�
2 , L

�n�
2 �faux ��u1, � � � , �uh��

�
Without loss of generality we can assume that L

�n�
1 does not contain other invo-

cations to f and the “linearized to” relationship makes f��v1��� � ��f��vk� corre-
spond to faux ��u1, � � � , �uh�.Then we have�

�
�n�
2 , L

�n�
2 �faux��u1, � � � , �uh��

�
���

�
�n�
2 � �u1, � � � , �uh� �w, L�n�2 �Lfaux � �w��z���u1, � � � , �uh��y1, � � � , �yh��

�
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where, faux ��y1, � � � , �yh� � Lfaux , var�Lfaux ���y1 � � � �yh � �z and �w are fresh names.
By construction,

Lfaux � faux � �y�1� �y1��y�, � � � , �y�k��yk��y��� �i
1..k��f�Lf���yi��y��

where f��y� � Lf�f� �y�1�� � � � �f� �y�k�� � Lf and f 
 Lf.

The corresponding reduction steps of
�
�
�n�
1 , L

�n�
1 �f��v1�� � � � �f��vk��� are the

following ones:

�
�
�n�
1 , L

�n�
1 �f��v1�� � � � �f��vk��� f��v1�

�� � � �
f��vk�
���

�
�n�
1 � �v1� �w1 � � � � � �vk� �wk, L

�n�
1 �Lf��v1��y�� � � � �Lf��vk��y��

�
and �wi are the fresh names created by the invocation f��vi�, 1 � i � k. We need
to show that:�

�
�n�
1 � �v1� �w1 � � � � � �vk� �wk, L

�n�
1 �Lf��v1��y�� � � � �Lf��vk��y��

�
$lin�

�
�n�
2 � �u1, � � � , �uh� �w, L�n�2 �Lauxf �

�
where

Lauxf �faux � �y�1��u1��y�, � � � , �y�k��uk��y��� Laux and Laux � �i
1..k��f�Lf�� �ui��y��� �w��z�.

To this aim we observe that:

– for every 1 � k� � k there exists h� such that σ��vk� � � �uh� ; moreover �w �
σ�
w1� � � � � � σ�
wk�. This satisfies condition 1 of Definition 11;

– if �a, b� � Lf��vi��y�, with a, b � �wi, �vi, then �σ�a�, σ�b�� � �f�Lf���ui��y�� �w��z�,
being σ defined as in the previous item, therefore σ�a�, σ�b� � �w, �ui. Notice
that, due to the �i
1..k composition in the body of faux , two pairs sequen-
tially composed in Lf may end up in parallel (through σ). The converse never
happens. Therefore condition 2 of Definition 11 is satisfied.

– if g��a� � Lf we can reason as in the previous item. We notice that function
invocations g��u� that have no counterpart (through σ) in Lf��vi��y� may be

cointained in �i
1..k��f�Lf�� �ui��y��� �w��z�. We do not have to mind about them
because the lemma guarantees the converse containment.

– in Lf��vi��y� we have k new invocations of f��bi,1� � � �f��bi,k�, where �bi,j ��y�j��vj��y�� �wj��z�. Therefore in the pseudolinear lam we have k2 invocations
of f, while in the corresponding linear lam we find just one invocation of

faux � �y�1��u1��y�� �w��z�, � � � , �y�k��uk��y�� �w��z��. We notice that the surjection σ is

such that � �y�j��uj��y�� �w��z� � σ��b1,j� � � � � � σ��bk,j�, with 1 � j � k. This,
together with the previous item, satisfies condition 3 of Definition 11.

Lemma 3. Let
�
�1, L1

�
$lin

�
�2, L2

�
and

�
�1, L1

�
���

�
��1, L

�
1

�
. Then there

are
�
��1, L

�
1

�
���

�
��1, L

�
1

�
and

�
�2, L2

�
���

�
��2, L

�
2

�
such that

�
��1, L

�
1

�
$lin�

��2, L
�
2

�
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Proof. A straightforward induction on the length of
�
�1, L1

�
���

�
��1, L

�
1

�
. In

the inductive step, we need to expand the recursive invocations “at a same level”
in order to mimic the behavior of functions faux .

Theorem 4. Let L1 be a pseudo-linear program and L2 be the result of the
transformations in Table 1. If a saturated state of L2 has no circularity then no
state of L1 has a circularity.

Proof. The transformations
pl ��l
" # 1 and

pl ��l
" # 2 perform expansions and do not

introduce inaccuracies. By Lemma 2, for every
�
�2, L2

�
reached by evaluating

L2, there is
�
�1, L1

�
that is reached by evaluating L1 such that

�
�1, L1

�
$lin�

�2, L2
�
. This guarantees that every circularity in

�
�1, L1

�
is also present in�

�2, L2
�
. We conclude by Lemma 3 and Theorem 2.

We observe that, our analysis returns that the fibonacci program is circula-
rity-free.

C.2 The General Case

In non-pseudo-linear recursive programs, more than one mutual recursive func-

tion may have several recursive histories. The transformation
npl��pl
" # in Table 2

takes a non-pseudo-linear recursive program and returns a program where the
“non-pseudo-linearity” is simpler. Repeatedly applying the transformation, at
the end, one obtains a pseudo-linear recursive program.

More precisely, let
�
f1�
x1� � L1, � � � , f�� �x�� � L�, L

�
be a non-pseudo-linear

recursive program. Therefore, there are at least two functions with more than
one recursive history. One of this function is fj, which is the one that is be-

ing explored by the rule
npl ��pl
" # . Let also fi be another function such that

closure�fj� � closure�fi� (this fi must exists otherwise the program would be
already pseudo-linear recursive). These constraints are those listed in the first
line of the premises of the rule. The idea of this transformation is to defer the
invocations of the functions in 	head�α1fj�, � � � , head�αh�1fj���fi, i.e., the func-
tions different from fi that can be invoked within fj ’s body, to the body of the
function fi. The meaning of the second and third lines of the premises of the rule
is to identify the pk different invocations of these m functions (k � m). Notice
that every α1, � � � , αh�1 could be empty, meaning that fj is directly called. At
this point, what we need to do is (1) to store the arguments of each invocation of
fi1 , � � � , fim into those of an invocation of fi – actually, a suitable tuple of them,
thus the arity of fi is augmented correspondingly – and (2) to perform suitable
expansions in the body of fi. In order to augment the arguments of the invo-
cations of fi that occur in the other parts of the program, we use the auxiliary

rule
fi,n
" # that extends every invocation of fi with n additional arguments that

are always fresh names. The fourth line of the premises calculates the number
n of additional arguments, based on the number of arguments of the functions
that are going to be moved into fi’s body. The last step, described in the last
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Table 2. Non-pseudo-linear to pseudo-linear transformation

f � L �z1, � � � ,�zm are n-tuple of fresh names

L
f��u1�� � � � 
f��um��
f,n
��� L
f��u1,�z1�� � � � 
f��um,�zm��

rechis�fj� � �fjfiα0, fjα1, � � � , fjαh�1� f 
 fiα0 ��rechis�f�� � 1
�fi1 , � � � , fim� � �head�α1fj�, � � � , head�αh�1fj���fi

Lj � L
fp1 ��u1�� � � � 
fpk ��uk�� �fp1 , � � � , fpk� � �fi1 , � � � , fim� fi1 , � � � , fim � L

n � ���u1 � � � �uk� �Lh
fi,n
��� L�h�

h��1,��� ,��1� L�j � L�
fi1��u1�� � � � 
fim ��uk��
�z1
1, � � � ,

�z1
k, � � � ,

�zk
1 , � � � ,

�zk
k ,�z1, � � � ,�zk, are fresh

L�j � L�
fi��z1
1, �u1,�z1

2 , � � � ,
�z1
k�� � � � 
fi�

�zk
1 , � � � ,

�zk
k , �uk��

�
f1��x1� � L1, � � � fi��xi� � Li, � � � , fj��xj� � Lj , � � � , f���x�� � L�, L��1

� npl	
pl
����

f1��x1� � L�1, � � � fi��xi,�z1, � � � ,�zk� � L�i���q�1..kfpq ��zq��, � � � , fj��xj� � L�j , � � � , f���x�� � L��, L
�
��1

�

line of the premises of the rule, is to replace the invocations of the functions
fi1 , � � � , fim with invocations of fi. Notice that, in each invocation, the position
of the actual arguments is different. In the body of fi, after the transformation,
the invocations of those functions will be performed passing the right arguments.
For example, the f�g�-program�

f��x, y� � �x, z��f��y, z� + g��y, x� ,
g��x, y� � �y, x��f��y, z��g��z, x� ,
f��x1, x2�

�
is rewritten into�
f��x, y� � �x, z��g��x�, y�, y, z� + g��y, x, z�, z�� ,
g��x, y, u, v� � �y, x��f��y, z��g��z, x, x�, y���f��u, v� ,
f��x1, x2�

�
.

The invocation f��y, z� is moved into the body of g�. The function g� has
an augmented arity, so that its first two arguments refer to the arguments of
the invocations of g� in the original program, and the last two arguments refer
to the invocation of f�. Looking at the body of g�, the unchanged part (with
the augmented arity of g�) covers the first two arguments; whilst the last two
arguments are only used for a new invocation of f�.

The correctness of
npl��pl
" # is demonstrated in a similar way to the proof of the

correctness of
pl��l
" # 3. We begin by defining a correspondence between states of a

non-pseudo-linear program and those of a pseudo-linear one.

Definition 12. Let L2 be the pseudo-linear program returned by the transfor-
mation of Table 2 applied to L1. A state

�
�1, L1

�
of L1 is pseudo-linearized to

a state
�
�2, L2

�
of L2, written

�
�1, L1

�
$pl

�
�2, L2

�
, if there exists a surjection

σ such that:

1. if�x, y� � �1 then �σ�x�, σ�y�� � �2.
2. if ��L1� � T1 + � � � + Tm and ��L2� � T�1 + � � � + T�n, then for every 1 �

i � m, there exists 1 � j � n, such that σ�Ti� � T
�
j;
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3. if f��x� � L1 then either (1) f�σ��x�� in L2 or (2) there is f��y1 � � � �yk� in L2
such that, for some 1 � i � k, σ��x� � �yi;

We use the same notational convention for contexts as in Lemma 2.

Lemma 4. Let
�
�1, L1

�
$pl

�
�2, L2

�
. Then,

�
�1, L1

�
��

�
��1, L

�
1

�
implies

there exists
�
�2, L2

�
���

�
��2, L

�
2

�
such that

�
��1, L

�
1

�
$pl

�
��2, L

�
2

�
Proof. Base case. L1 is the main lam of the nonlinear program, and L2 its pseu-
dolinear transformation.

L1 � L1�f1��u1�� � � � �fm��uk��,

where L1 does not contain any other function invocations, and m � k, meaning
that some of the fi, 1 � i � m, can be invoked more than once on different
parameters.

After the transformation, L2 contains the same pairs as L1 and the same
function invocations, but with possibly more arguments:

L2 � L1�f1��u1, �z1�� � � � �fm��uk, �zk��.
Notice that some of the �zj, 1 � j � k, may be empty if the corresponding
function has not been expanded during the transformation. Moreover �1 and
�� contains only the identity relations on the arguments, so we have �1 � �2.
Therefore, all conditions of definition 12 are trivially verified.

Inductive case. We have

L1 � L1�f1��u1�� � � � �fm��uk��,

where L1 does not contain any other function invocations, and m � k, meaning
that some of the fi, 1 � i � m, can be invoked more than once on different
parameters.

We have
L2 � L2�f1��u1, �z1�� � � � �fm��uk, �zk��.

where L2 may contain other function invocations, but by inductive hypothesis
we know that Definition 12 is verified. In particular condition 3 guarantees that
at least the invocations of f1, . . . , fm, with suitable arguments, are in L2.

Now, let us consider the reduction�
�1, L1

�
��

�
��1, L

�
1

�
.

Without loss of generality, we can assume the reduction step performed an in-
vocation of function f1��u1�.

We have different cases:

1. the function’s lam Lf1 has not been modified by the transformation. In this
case the result follows trivially.
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2. the function’s lam Lf1 has been affected only in that some function invoca-
tions in it have an updated arity. Meaning that it was only trasformed by
g,l
" #, for some g and l, as a side effect of other function expansions. It follows
that ��Lf1� � ��L

�
f1
�, where L�f1 is the body of f1 after the transoformation

has been applied. This satisfies condition 2 of Definition 12. Those function
invocations that have not been modified satisfy trivially the condition 3 of
Definition 12. Regarding the other function invocations we have, by con-
struction, that if g��x� � Lf1 then g��x, �y� � L�f1 , where �y are fresh names. This
satisfies condition 3 of Definition 12, as well. As for condition 1, we have

��1 � �1 � ��u1 � �w1�,

where �w are fresh names created in Lf1 , and

��2 � �2 � ��u1, �z1 � �w1, �y1, � � � , �ys�,
where �y1, � � � , �ys are the fresh names augmenting the function arities within
L�f1 . We choose the same fresh names �w1 and condition 1 is satisfied.

3. the function’s lam Lf1 has been subject of the expansion of a function. Let

Lf1 � Lf1 �g1��v1�� � � � �gh��vn��,
where Lf1 contains only pairs, then, assuming without loss of generality that
g1 was expanded:

L�f1 � Lf1 �g1��v1, �z11 , . . . , �z1r�� � � � �g1��vn, �zr1 , . . . , �zrr��,
where r is obtained by subtracting from the number of invocations n the
number of occurrences of invocations of g1 in L�f1 .
Now, the psedulinear program has to perform the r invocations of g1 that
were not present in the original program, since they have been replaced r in-
vocations of g2 � � � gh, in order to reveal the actual invocations g2 � � � gh that
has been delegated to g1 body. By construction, the arguments of the invo-
cations where preserved by the transformation, so that if g2��x� is produced
by reduction of the nonlinear program, then the pseudolinear program will
produce g2��x, �y�, with �y fresh and possibily empty. This satisfy condition 3
of Definition 12.
However the body of g1 may have been transformed in a similar way by
expanding another method, let us say g2. Then all the invocations of g2 in
g1’s body that corresponds to the previously delegated function invocations
g2 � � �gh have to be invoked as well. This procedure has to be iterated until
all the corresponding invocations are encountered. Each step of reduction
will produce spurious pairs and function invocations, but all of these will be
on different new names.

Lemma 5. Let
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Proof. A straightforward induction on the length of
�
�1, L1

�
���

�
��1, L

�
1

�
.

Every preliminary result is in place for the correctness of the transformation
npl��pl
" # .

Theorem 5. Let L1 be a non-pseudo-linear program and L2 be the result of the
transformations in Table 2. If L2 is circularity-free then L1 is circularity-free.

Proof. By Lemma 4, for every
�
�1, L1

�
reached by evaluating L1, there is�

�2, L2
�

that is reached by evaluating L2 such that
�
�1, L1

�
$pl

�
�2, L2

�
.

This guarantees that every circularity in
�
�1, L1

�
is also present in

�
�2, L2

�
.

We conclude by Lemma 5.
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Abstract. This paper is an introductory survey of available methods
for the computation and representation of probabilistic counterexam-
ples for discrete-time Markov chains and probabilistic automata. In con-
trast to traditional model checking, probabilistic counterexamples are
sets of finite paths with a critical probability mass. Such counterex-
amples are not obtained as a by-product of model checking, but by
dedicated algorithms. We define what probabilistic counterexamples are
and present approaches how they can be generated. We discuss methods
based on path enumeration, the computation of critical subsystems, and
the generation of critical command sets, both, using explicit and symbolic
techniques.

1 Introduction

The importance of counterexamples. One of the main strengths of model check-
ing is its ability to automatically generate a counterexample in case a model re-
futes a given temporal logic formula [1]. Counterexamples are the most effective
feature to convince system engineers about the value of formal verification [2].
First and foremost, counterexamples provide essential diagnostic information for
debugging purposes. A counterexample-guided simulation of the model at hand
typically gives good insight into the reason of refutation. The same applies when
using counterexamples as witnesses showing the reason of fulfilling a property.
Counterexamples are effectively used in model-based testing [3]. In this setting,
models are used as blueprint for system implementations, i. e., the conformance
of an implementation is checked against a high-level model. Here, counterexam-
ples obtained by verifying the blueprint model act as test cases that, after an
adaptation, can be issued on the system-under-test. Counterexamples are at the
core of obtaining feasible schedules in planning applications. Here, the idea is
to verify the negation of the property of interest—it is never possible to reach
a given target state (typically the state in which all jobs have finished their
execution) within k steps—and use the counterexample as an example schedule
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illustrating that all jobs can complete within k steps. This principle is exploited in
e. g., task scheduling in timed model checking [4]. A more recent application is the
synthesis of attacks from counterexamples for showing how the confidentiality of
programs can be broken [5]. These so-called refinement attacks are important,
tricky, and are notorious in practice. Automatically generated counterexamples
act as attacks showing how multi-threaded programs under a given scheduler
can leak information. Last but not least, counterexamples play an important role
also in counterexample-guided abstraction refinement (CEGAR) [6], a successful
technique in software verification. Spurious counterexamples resulting from ver-
ifying abstract models are exploited to refine the (too coarse) abstraction. This
abstraction-refinement cycle is repeated until either a concrete counterexample
is found or the property can be proven.

Counterexample generation. For these reasons, counterexamples have received
considerable attention in the model checking community. Important issues have
been (and to some extent still are) how counterexamples can be generated effi-
ciently, preferably in an on-the-fly manner during model checking, how memory
consumption can be kept small, and how counterexamples themselves can be
kept succinct, and be represented at the model description level (rather than in
terms of the model itself). The shape of a counterexample depends on the prop-
erty specification language and the checked formula. The violation of linear-time
safety properties is indicated by finite paths that end in a “bad” state. Therefore,
for logics such as LTL, typically finite paths through the model suffice. Although
LTL model checking is based on (nested) depth-first search, LTL model check-
ers such as Spin incorporate breadth-first search algorithms to generate shortest
counterexamples, i. e., paths of minimal length. The violation of liveness prop-
erties, instead, require infinite paths ending in a cyclic behavior under which
something “good” will never happen. These lassos are finitely represented by
concatenating the path until reaching the cycle with a single cycle traversal. For
branching-time logics such as CTL, such finite paths suffice as counterexamples
for a subclass of universally quantified formulas. To cover a broader spectrum
of formulas, though, more general shapes are necessary, such as tree-like coun-
terexamples [7]. As model-checking suffers from the combinatorial growth of the
number of states—the so-called state space explosion problem—various success-
ful techniques have been developed to combat this. Most of these techniques, in
particular symbolic model checking based on binary decision diagrams (BDDs,
for short), have been extended with symbolic counterexample generation algo-
rithms [8]. Prominent model checkers such as Spin andNuSMV include powerful
facilities to generate counterexamples in various formats. Such counterexamples
are typically provided at the modeling level, like a diagram indicating how the
change of model variables yields a property violation, or a message sequence chart
illustrating the failing scenario. Substantial efforts have been made to generate
succinct counterexamples, often at the price of an increased time complexity.
A survey of practical and theoretical results on counterexample generation in
model checking can be found in [2].
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Probabilistic model checking. This paper surveys the state of the art in counterex-
ample generation in the setting of probabilistic model checking [9–11]. Probabilis-
tic model checking is a technique to verify system models in which transitions are
equipped with random information. Popular models are discrete- and continuous-
time Markov chains (DTMCs and CTMCs, respectively), and variants thereof
which exhibit non-determinism such as probabilistic automata (PA). Efficient
model-checking algorithms for these models have been developed, implemented
in a variety of software tools, and applied to case studies from various applica-
tion areas ranging from randomized distributed algorithms, computer systems
and security protocols to biological systems and quantum computing. The crux
of probabilistic model checking is to appropriately combine techniques from nu-
merical mathematics and operations research with standard reachability analysis
and model-checking techniques. In this way, properties such as “the (maximal)
probability to reach a set of bad states is at most 0.1” can be automatically
checked up to a user-defined precision. Markovian models comprising millions of
states can be checked rather fast by dedicated tools such as PRISM [12] and
MRMC [13]. These tools are currently being extended with counterexample gen-
eration facilities to enable the possibility to provide useful diagnostic feedback
in case a property is violated. More details on probabilistic model checking can
be found in, e. g., [9, 14, 15].

Counterexamples in a probabilistic setting. Let us consider a finite DTMC, i. e.,
a Kripke structure whose transitions are labeled with discrete probabilities. As-
sume that the property “the (maximal) probability to reach a set of bad states
is at most 0.1” is violated. That means that the accumulated probability of all
paths starting in the initial state s0 and eventually reaching a bad state ex-
ceeds 10%. This can be witnessed by a set of finite paths all starting in s0 and
ending in a bad state whose total probability exceeds 0.1. Counterexamples are
thus sets of finite paths, or viewed differently, a finite tree rooted at s0 whose
leafs are all bad. Evidently, one can take all such paths (i.e, the complete tree)
as a counterexample, but typically succinct diagnostic information is called for.
There are basically two approaches to accomplish this: path enumeration and
critical subsystems. In contrast to standard model checking, these algorithmic
approaches are employed after the model-checking phase in which the refutation
of the property at hand has been established. Up to now, there is no algorithm
to generate probabilistic counterexamples during model checking.

Path enumeration. For DTMCs, a counterexample can be obtained by explic-
itly enumerating the paths comprising a counterexample. A typical strategy is
to start with the most probable paths and generate paths in order of descend-
ing probability. This procedure stops once the total probability of all generated
paths exceeds the given bound, ensuring minimality in terms of number of paths.
Algorithmically, this can be efficiently done by casting this problem as a k short-
est path problem [16, 17] where k is not fixed a priori but determined on the fly
during the computation. This method yields a smallest counterexample whose
probability mass is maximal—and thus most discriminative—among all minimal
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counterexamples. This approach can be extended to until properties, bounded
versions thereof, ω-regular properties, and is applicable to non-strict upper and
lower bounds on the admissible probability. Whereas [16, 17] exploit existing
k shortest path algorithms with pseudo-polynomial complexity (in k), [18] uses
heuristic search to obtain most probable paths. Path enumeration techniques
have also been tackled with symbolic approaches like bounded model checking [19]
extended with satisfiability modulo theories (SMT ) techniques [20], and using
BDD-techniques [21]. The work [22] proposes to compute and represent coun-
terexamples in a succinct way by regular expressions. Inspired by [23], these
regular expressions are computed using a state elimination approach from au-
tomata theory that is guided by a k shortest paths search. Another compaction
of counterexamples is based on the abstraction of strongly-connected components
(SCCs, for short) of a DTMC, resulting in an acyclic model in which counterex-
amples can be determined with reduced effort [24]. An approach to compute
counterexamples for non-deterministic models was proposed in [25].

Critical subsystems. Alternatively to generating paths, here a fragment of the
discrete-time Markov model at hand is determined such that in the resulting sub-
model a bad state is reached with a likelihood exceeding the threshold. Such a
fragment is called a critical subsystem, which is minimal if it is minimal in terms
of number of states or transitions, and smallest if it is minimal and has a maximal
probability to reach a bad state under all minimal critical subsystems. A critical
subsystem induces a counterexample by the set of its paths. Determining smallest
critical subsystems for probabilistic automata is an NP-complete problem [26],
which can be solved using mixed integer linear programming techniques [27, 28].
Another option is to exploit k shortest path [29] and heuristic search [30] methods
to obtain (not necessarily smallest or minimal) critical subsystems. Symbolic
approaches towards finding small critical subsystems have been developed in [31,
32]. The approach [24] has been pursued further by doing SCC reduction in a
hierarchical fashion yielding hierarchical counterexamples [29].

Modeling-language-based counterexamples. Typically, huge and complex Markov
models are described using a high-level modeling language. Having a human-
readable specification language, it seems natural that a user should be pointed
to the part of the high-level model description which causes the error, instead
of getting counterexamples at the state-space level. This has recently initiated
finding smallest critical command sets, i. e., the minimal fragment of a model
description such that the induced (not necessarily minimal) Markov model vi-
olates the property at hand, thereby maximizing the probability to reach bad
states. For PRISM, models are described in a stochastic version of Alur and
Henzinger’s reactive modules [33]. In this setting, a probabilistic automaton is
typically specified as a parallel composition of modules. The behavior of a single
module is described using a set of probabilistic guarded commands. Computing a
smallest critical command set amounts to determining a minimal set of guarded
commands that together induce a critical subsystem, with maximal probability
to reach bad states under all such minimal sets. This NP-complete problem has
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been tackled using mixed integer linear programming [34]. This approach is not
restricted to PRISM’s input language, but it is also applicable to other modeling
formalisms for probabilistic automata such as process algebras [35].

Tools and applications. DiPro [36] and Comics [37] are the only publicly avail-
able tools supporting counterexample generation for Markov models.1 DiPro

applies directed path search to discrete- and continuous-time Markov models
to compute counterexamples for the violation of PCTL or CSL properties. Al-
though the search works on explicit model representations, the relevant model
parts are built on the fly, which makes DiPro very efficient and highly scalable.
Comics computes hierarchically abstracted and refinable critical subsystems for
discrete-time Markov models. Strongly connected components are the basis for
the abstraction, whereas methods to compute k shortest paths are applied in dif-
ferent contexts to determine critical subsystems. Probabilistic counterexamples
have been used in different applications. Path-based counterexamples have been
applied to guide the refinement of too coarse abstractions in CEGAR-approaches
for probabilistic programs [38]. Tree-based counterexamples have been used for
a similar purpose in the setting of assume-guarantee reasoning on probabilistic
automata [39]. Other applications include the identification of failures in FMEA
analysis [40] and the safety analysis of an airbag system [41]. Using the notion
of causality, [42, 43] have developed techniques to guide the user to the most re-
sponsible causes in a counterexample once a DTMC violates a probabilistic CTL
formula, whereas [44] synthesizes fault trees from probabilistic counterexamples.

Organization of this paper. This paper surveys the existing techniques for gen-
erating and representing counterexamples for discrete-time Markov models. We
cover both explicit as well as symbolic techniques, and also treat the recent
development of generating counterexamples at the level of model descriptions,
rather than for models themselves. The focus is on a tutorial-like presentation
with various illustrative examples. For a full-fledged presentation of all technical
aspects as well as formal proofs we refer to the literature. Section 2 provides the
necessary background on discrete-time Markov models as well as their reacha-
bility analysis. Section 3 defines what counterexamples are. Section 4 is devoted
to path-based counterexamples and their applications, whereas Section 5 deals
with critical subsystems. Section 6 presents the generation of smallest critical
command sets in terms of the model description language. A brief description
and comparison of the available tools is given in Section 7. Finally, Section 8
concludes the survey.

2 Foundations

In this section we introduce discrete-time Markovmodels (Section 2.1) along with
probabilistic reachability properties for them (Section 2.2). For further reading
we refer to, e. g., [9, 14, 15, 45].

1
DiPro is available from http://www.inf.uni-konstanz.de/soft/dipro/ and
Comics from http://www-i2.informatik.rwth-aachen.de/i2/comics/

http://www.inf.uni-konstanz.de/soft/dipro/
http://www-i2.informatik.rwth-aachen.de/i2/comics/


70 E. Ábrahám et al.

2.1 Models

When modeling real systems using formal modeling languages, due to the com-
plexity of the real world, we usually need to abstract away certain details of the
real system. For example, Kripke structures specify a set of model states repre-
senting the states of the real-world system, and transitions between the model
states modeling the execution steps of the real system. However, the model states
do not store any specific information about the real system state that they rep-
resent (e. g., concrete variable values in a program). To be able to specify and
analyze properties that are dependent on information not included in the model,
we can define a set of atomic propositions and label each model state with the
set of those propositions that hold in the given state.

Example 1. Assume a program declaring two Boolean variables b1 and b2, both
with initial value false, and executing b1 := true and b2 := true in parallel. We
use S = {s0, s1, s2, s3} as model state set with the following encoding:

Model state Program variable values
s0 b1 = false b2 = false
s1 b1 = true b2 = false
s2 b1 = false b2 = true
s3 b1 = true b2 = true

We are interested in the equality of b1 and b2. We define an atomic proposition
set AP = {a}, where a encodes the equality of b1 and b2, and a state labeling
function L : {s0, s1, s2, s3} → 2{a} mapping the set {a} to s0 and s3 and the
empty set ∅ to the other two states. �

In the following we fix a finite set AP of atomic propositions.
In systems that exhibit probabilistic behavior, the outcome of an executed

action is determined probabilistically. When modeling such systems, the transi-
tions must specify not only the successors but also the probabilities with which
they are chosen, formalized by probability distributions.

Definition 1 (Sub-distribution,distribution,support).A sub-distribution
over a countable set S is a function μ : S → [0, 1] such that

∑
s∈S μ(s) ≤ 1; μ

is a (probability) distribution if
∑

s∈S μ(s) = 1. The set of all sub-distributions
over S is denoted by SDistr(S), the set of probability distributions by Distr(S).
By supp(μ) = {s ∈ S |μ(s) > 0} we denote the support of a (sub-)distribution
μ.

Example 2. Consider again the program from Example 1 and assume that in
the initial state s0 the statement b1 := true is executed with probability 0.6
and b2 := true with probability 0.4. This is reflected by the distribution μ0 :
{s0, s1, s2, s3} → [0, 1] with μ0(s1) = 0.6, μ0(s2) = 0.4, and μ0(s0) = μ(s3) = 0.
The support of the distribution is supp(μ0) = {s1, s2}.

After executing b1 := true, the system is in state s1 and b2 := true will
be executed with probability 1. The corresponding distribution is specified by
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μ1(s3) = 1 and μ1(s0) = μ1(s1) = μ1(s2) = 0. Such a distribution, mapping the
whole probability 1 to a single state, is called a Dirac distribution.

For state s2, the distribution μ2 equals μ1. Finally for s3, the Dirac distribu-
tion μ3 defines a self-loop on s3 with probability 1, modeling idling. �

Discrete-time Markov chains. Discrete-time Markov chains are a widely
used formalism to model probabilistic behavior in a discrete-time model. State
changes are modeled by discrete transitions whose probabilities are specified by
(sub-)distributions as follows.

Definition 2 (Discrete-time Markov chain). A discrete-time Markov chain
(DTMC) over atomic propositions AP is a tuple D = (S, sinit, P, L) with S being
a countable set of states, sinit ∈ S the initial state, P : S → SDistr(S) the
transition probability function, and L a labeling function with L : S → 2AP.

We often see the transition probability function P : S → (S → [0, 1]) rather
as being of type P : (S × S) → [0, 1] and write P (s, s′) instead of P (s)(s′).

Example 3. The system from Example 2 can be modeled by the DTMC D =
(S, s0, P, L), where S and L are as in Example 1 and P assigns μi (defined in
Example 2) to si for each i ∈ {0, . . . , 3}. This DTMC model can be graphically
depicted as follows:

s0

s1

s2

s3

1

{a} {a}
0.6

0.4

1

1

�

Please note that in the above definition of DTMCs we generalize the standard
definition and allow sub-distributions. Usually, P (s) is required to be a proba-
bility distribution for all s ∈ S. We can transform a DTMC D = (S, sinit, P , L)
with sub-distributions into a DTMC αs⊥(D) = (S′, sinit, P ′, L′) with distribu-
tions using the transformation αs⊥ with

– S′ = S ∪̇ {s⊥} for a fresh sink state s⊥ /∈ S,

– P ′(s, s′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P (s, s′), for s, s′ ∈ S,

1−
∑

s′′∈S P (s, s′′), for s ∈ S and s′ = s⊥,
1, for s = s′ = s⊥,
0, otherwise (for s = s⊥ and s′ ∈ S),

and

– L′(s) = L(s) for s ∈ S and L′(s⊥) = ∅.

According to the DTMC semantics below, the reachability probabilities in D
and αs⊥(D) are equal for the states from S. The advantage of allowing sub-
stochastic distributions is that a subsystem of a DTMC, determined by a subset
of its states, is again a DTMC.
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∅
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Fig. 1. Completing sub-distributions of a DTMC (cf. Example 4)

Example 4. Consider again the DTMC from Example 3. If we are only inter-
ested in the behavior for executing the statement b1 := true first, then the
transition from s0 to s2 can be neglected. The DTMC model in this case has a
sub-distribution assigned to s0, as shown in Figure 1 on the left. We can trans-
form this DTMC with a sub-distribution into a reachability-equivalent DTMC
with distributions as shown in Figure 1 on the right. �

Assume in the following a DTMC D = (S, sinit, P, L). We say that there is a
transition (s, s′) from the source s ∈ S to the successor s′ ∈ S iff s′ ∈ supp

(
P (s)

)
.

We say that the states in supp
(
P (s)

)
are the successors of s.

We sometimes refer to the underlying graph GD = (S,ED) of D, with nodes
S and edges ED =

{
(s, s′) ∈ S × S

∣∣ s′ ∈ supp
(
P (s)

)
}.

Example 5. The underlying graph of the DTMC from Example 3 on page 71 can
be visualized as follows:

s0

s1

s2

s3

�

A path of D is a finite or infinite sequence π = s0s1 . . . of states si ∈ S such
that si+1 ∈ supp

(
P (si)

)
for all i ≥ 0. We say that the transitions (si, si+1) are

contained in the path π, written (si, si+1) ∈ π. Starting with i = 0, we write π[i]
for the (i + 1)th state si on path π. The length |π| of a finite path π = s0 . . . sn
is the number n of its transitions. The last state of π is denoted by last(π)=sn.

By PathsDinf(s) we denote the set of all infinite paths of D starting in s ∈
S. Similarly, PathsDfin(s) contains all finite paths of D starting in s ∈ S, and
PathsDfin(s, t) those starting in s ∈ S and ending in t ∈ S. For T ⊆ S we also
use the notation PathsDfin(s, T ) for

⋃
t∈T PathsDfin(s, t). A state t ∈ S is reachable

from another state s ∈ S iff PathsDfin(s, t) �= ∅.
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Example 6. The DTMC model D from Example 3 on page 71 has two infinite
paths starting in s0, specified by PathsDinf(s0) = {s0s1sω3 , s0s2sω3 }. The finite
paths starting in s0 are PathsDfin(s0) = {s0, s0s1, s0s1s+3 , s0s2, s0s2s+3 }. The fi-
nite paths starting in s0 and ending in s3 are Paths

D
fin(s0, s3) = {s0s1s+3 , s0s2s+3 }.

�

To be able to talk about the probabilities of certain behaviors (i. e., path sets),
we follow the standard way [46] to define for each state s ∈ S a probability space
(ΩD

s ,FD
s ,PrDs ) on the infinite paths of the DTMC D starting in s. The sample

space ΩD
s is the set PathsDinf(s). The cylinder set of a finite path π = s0 . . . sn of

D is defined as Cyl(π) = {π′ ∈ PathsDinf(s0) |π is a prefix of π′}. The set FD
s of

events is the unique smallest σ-algebra that contains the cylinder sets of all finite
paths in PathsDfin(s) and is closed under complement and countable union. The
unique probability measure PrDs (or short Pr) on FD

s specifies the probabilities
of the events recursively, for cylinder sets by

Pr
(
Cyl(s0 . . . sn)

)
=

n−1∏
i=0

P (si, si+1) ,

for the complement Π̄ of a set Π ∈ FD
s by PrDs (Π̄) = 1 − PrDs (Π), and for

the countable union Π =
⋃∞

i=1 Πi of pairwise disjoint sets Πi ∈ FD
s , i ∈ N, by

PrDs (Π) =
∑∞

i=1 Pr
D
s (Πi).

For finite paths π we set Prfin(π) = Pr
(
Cyl(π)

)
. For sets of finite paths R ⊆

PathsDfin(s) we define Prfin(R) =
∑

π∈R′ Prfin(π) with R′ = {π ∈ R | ∀π′ ∈
R. π′ is not a proper prefix of π}.

Example 7. Consider again the DTMC from Example 3 on page 71. For the
initial state s0, the probability space (ΩD

s0 ,FD
s0 ,Pr

D
s0) is given by the following

components:

– The sample space is ΩD
s0 = PathsDinf(s0) = {s0s1sω3 , s0s2sω3 }.

– The event set FD
s0 contains the cylinder sets of all finite paths starting in s0

and the empty set, i. e.,

FD
s0 = { ∅,

Cyl(s0) = PathsDinf(s0) = {s0s1sω3 , s0s2sω3 },
Cyl(s0s1) = Cyl(s0s1s

+
3 ) = {s0s1sω3 },

Cyl(s0s2) = Cyl(s0s2s
+
3 ) = {s0s2sω3 } } .

The empty set is added as the complement of Cyl(s0). The other cylinder
set complements and all countable unions over these elements are cylinder
sets themselves and therefore already included.

– The probability measure PrDs0 is defined by

PrDs0(∅) = 0, PrDs0(Cyl(s0)) = 1,

PrDs0(Cyl(s0s1)) = 0.6, PrDs0(Cyl(s0s2)) = 0.4.

�
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Besides using explicit model representations enumerating states and transi-
tions, a DTMC can be represented symbolically using (ordered) binary decision
diagrams (BDDs) and multi-terminal BDDs (MTBDDs). For an introduction to
(MT)BDDs we refer to, e. g., [9]. In a symbolic representation, states are encoded
using a set of Boolean variables such that each state is uniquely represented by
an assignment to the Boolean variables. State sets, like the state space, the ini-
tial state or a set of states having a certain label of interest, are represented by
some BDDs such that the variable evaluations along the paths leading to the
leaf with label 1 encode those states that belong to the given set. Additionally,
an MTBDD P̂ stores the transition probabilities. This MTBDD uses two copies
of the Boolean variables, one to encode the source states and one to encode the
successor states of transitions. The evaluation along a path encodes the source
and successor states, where the value of the leaf to which a path leads specifies
the transition probability. Operations on (MT)BDDs can be used to compute,
e. g., the successor set of a set of states or the probabilities to reach a certain set
of states in a given number of steps.

Example 8. The four system states of the DTMC D from Example 3 on page 71
can be encoded by two Boolean variables x and y:

s0 s1 s2 s3
x 0 0 1 1
y 0 1 0 1

The symbolic representation of D together with the state set T = {s3} of special
interest would involve the following (MT)BDDs:

Ŝ : 1 Ŝinit : x

y

0 1

T̂ : x

y

0 1

P̂ : x

y

x′ x′

y′ y′ y′

1 0 0.4 0.6

Though for this toy example the explicit representation seems to be more
convenient, for large models the symbolic representation can be smaller by orders
of magnitude. �

Markov Decision Processes and Probabilistic Automata. DTMCs be-
have deterministically, i. e., the choice of the next transition to be taken is purely
probabilistic. Enriching DTMCs by nondeterminism leads to Markov decision
processes and probabilistic automata.
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Definition 3 (Probabilistic automaton [47]). A probabilistic automaton
(PA) is a tuple M = (S, sinit,Act, P̂ , L) where S is a finite set of states, sinit ∈ S
is the initial state, Act is a finite set of actions, P̂ : S → (2Act×SDistr(S) \ ∅)
is a probabilistic transition relation such that P̂ (s) is finite for all s ∈ S, and
L : S → 2AP is a labeling function.

M is a Markov decision process (MDP) if for all s ∈ S and all α ∈ Act∣∣{μ ∈ SDistr(S) | (α, μ) ∈ P̂ (s)}
∣∣ ≤ 1 holds.

Intuitively, the evolution of a probabilistic automaton is as follows. Starting
in the initial state sinit, a pair (α, μ) ∈ P̂ (sinit) is chosen nondeterministically.
Then, the successor state s′ ∈ S is determined probabilistically according to the
distribution μ. A deadlock occurs in state sinit with probability 1−

∑
s′∈S μ(s′).

Repeating this process in s′ yields the next state and so on.
The actions Acts =

{
α ∈ Act | ∃μ ∈ SDistr(S). (α, μ) ∈ P̂ (s)

}
are said to be

enabled at state s ∈ S.
Note that DTMCs constitute a subclass of MDPs (apart from the fact that

the actions are not relevant for DTMC and are therefore typically omitted) and
MDPs build a subclass of PAs.

Example 9. To illustrate the difference between the different model classes, con-
sider the following probabilistic models:

s0

s1 a 1

s2 a 1

s3 a 1

s4 a 1

a

b

a

0.4

0.6

0.2

0.8

0.7

0.3

b 1

s0

s1 a 1

s2 a 1

s3 a 1

a

b

0.4

0.6

0.2

0.8

b 1

s0

s1 (a) 1

s2

(a)

0.4

0.6 (b) 1

The involved distributions are

μ1(s) =

⎧⎪⎨⎪⎩
0.4, if s=s1,

0.6, if s=s2,

0, else,

μ2(s) =

⎧⎪⎨⎪⎩
0.2, if s=s2,

0.8, if s=s3,

0, else,

μ3(s) =

⎧⎪⎨⎪⎩
0.7, if s=s3,

0.3, if s=s4,

0, else

and the Dirac distributions di, i = 1, 2, 3, 4, assigning probability 1 to si and 0
to all other states.

The model on the left is a PA. In state s0 there are two enabled actions a and
b, where a appears in combination with two different distributions. Therefore,
this model is not an MDP.

In contrast, the model in the middle is an MDP, since in each state and for
each enabled action there is a single distribution available.

The model on the right is a DTMC, because a single distribution is mapped
to each state. �
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An infinite path in a PA M is an infinite sequence π = s0(α0, μ0)s1(α1, μ1) . . .
such that (αi, μi) ∈ P̂ (si) and si+1 ∈ supp(μi) for all i ≥ 0. A finite path in M
is a finite prefix π = s0(α0, μ0)s1(α1, μ1) . . . sn of an infinite path in M with last
state by last(π) = sn. Let π[i] denote the (i + 1)th state si on path π. The sets
of all infinite and finite paths in M starting in s ∈ S are denoted by PathsMinf(s)
and PathsMfin(s), respectively, whereas Paths

M
fin(s, t) is the set of all finite paths

starting in s and ending in t. For T ⊆ S we also use the notation PathsMfin(s, T )
for

⋃
t∈T PathsMfin(s, t).

Example 10. The sequence s0 (a, μ1) s1 ((a, d1) s1)
ω is an infinite path in all three

models from Example 9 on page 75. (To be precise, the path of the DTMC does
not contain the action-distribution pairs.) �

To define a suitable probability measure on PAs, the nondeterminism has to
be resolved by a scheduler first.

Definition 4 (Scheduler, deterministic, memoryless)

– A scheduler for a PA M = (S, sinit,Act, P̂ , L) is a function

σ : PathsMfin(sinit) → Distr(Act× SDistr(S))

such that supp(σ(π)) ⊆ P̂
(
last(π)

)
for each π ∈ PathsMfin(sinit). The set of

all schedulers for M is denoted by SchedM.
– A scheduler σ for M is memoryless iff for all π, π′ ∈ PathsMfin(sinit) with

last(π) = last(π′) we have that σ(π) = σ(π′).
– A scheduler σ for M is deterministic iff for all π ∈ PathsMfin(sinit) and

(α, μ) ∈ Act× SDistr(S) we have that σ(π)((α, μ)) ∈ {0, 1}.

Schedulers are also called policies or adversaries. Intuitively, a scheduler re-
solves the nondeterminism in a PA by assigning probabilities to the nondeter-
ministic choices available in the last state of a finite path. It therefore reduces
the nondeterministic model to a fully probabilistic one.

Example 11. Consider the PA depicted on the left-hand-side in Example 9 on
page 75. We define a scheduler σ0 by specifying for all π ∈ PathsMfin(sinit) and
for all (α, μ) ∈ P̂

(
last(π)

)

σ0(π)(α, μ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.25, if last(π) = s0 and α = a,

0.5, if last(π) = s0 and α = b,

1, if last(π) ∈ {s1, s3, s4},
0.9, if π = π′ (α′, μ′) s2 and α′ = α,

0.1, if π = π′ (α′, μ′) s2 and α′ �= α,

and σ0(π)(α, μ) = 0 for all π ∈ PathsMfin(sinit) and (α, μ) ∈ (Act × SDistr(S)) \
P̂ (last(π)). The above scheduler σ0 is not memoryless, since the schedule for
paths with last state s2 depends on the last action on the path. This scheduler



Counterexample Generation for Discrete-Time Markov Models 77

is also not deterministic, since it assigns also probabilities different from 0 and
1 to action-distribution pairs.

Let scheduler σ1 be defined for all π ∈ PathsMfin(sinit) and for all (α, μ) ∈
P̂
(
last(π)

)
by

σ1(π)(α, μ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.25, if last(π) = s0 and α = a,

0.5, if last(π) = s0 and α = b,

1, if last(π) ∈ {s1, s2, s3, s4} and α = a,

0, else (if last(π) = s2 and α = b),

and σ1(π)(α, μ) = 0 for all π ∈ PathsMfin(sinit) and (α, μ) ∈ (Act × SDistr(S)) \
P̂ (last(π)). The scheduler σ1 is memoryless but not deterministic.

Finally, the following scheduler σ2 is deterministic and memoryless:

σ2(π)(α, μ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if last(π) = s0 and (α, μ) = (a, μ1),

1, if last(π) = s2 and (α, μ) = (b, d1),

1, if last(π) = si and (α, μ) = (a, di) for i ∈ {1, 3, 4},
0, else .

�

Definition 5 (Induced DTMC). Let M = (S, sinit,Act, P̂ , L) be a PA and
σ a scheduler for M. We define the DTMC Mσ = (Pathsfin(sinit), sinit, P

′, L′)
with

P ′(π, π′) =

{
σ(π)((α, μ)) · μ(s), if π′ = π (α, μ) s,

0, otherwise ,

and L′(π) = L(last(π)) for all π, π′ ∈ Pathsfin(sinit). We call Mσ the DTMC
induced by M and σ.

Example 12. The scheduler σ2 from Example 11 (on page 76) for the PA depicted
on the left in Example 9 (on page 75) induces the following DTMC:

s0

s0(a, μ1)s1 s0(a, μ1)s1(a, d1)s1

s0(a, μ1)s2 s0(a, μ1)s2(b, d1)s1 s0(a, μ1)s2(b, d1)s1(a, d1)s1

0.4

0.6

1

1 1 . . .

. . .

Since the scheduler σ2 is memoryless, each pair of states π and π′ with
last(π) = last(π′) are equivalent (bisimilar) in the sense that the set of all label
sequences (traces) along paths starting in those states are equal. (Note that the
labeling is not depicted in the above picture.) Since the logics we consider can
argue about the labelings only, such state pairs satisfy the same formulas. We
say that the observable behavior of our models is given by the their trace sets.

Based on this observation, we can build an abstraction of the above induced
DTMC by introducing abstract states s ∈ S (the states of the inducing PA)



78 E. Ábrahám et al.

representing all states π with last(π) = s of the induced DTMC. For the above
example, the scheduler is not only memoryless but also deterministic. For those
schedulers this abstraction defines a DTMC containing the states of the PA
and all distributions selected by the scheduler. For σ2 the result is the DTMC
depicted on the right in Example 9 on page 75.

In the following, when talking about the DTMC induced by a PA and a
memoryless deterministic scheduler, we mean this abstraction. �

For the probability measure on paths of a PA M under a scheduler σ for M,
we use the standard probability measure on paths of the induced DTMC Mσ, as
described previously. We denote this probability measure by PrM,σ

sinit (or, briefly,

PrM,σ).

2.2 Reachability Properties

As specification for both DTMCs and PAs we consider so-called reachability
properties. We are interested in a quantitative analysis such as:

“What is the probability to reach a certain set of states T starting in state s?”

Such a set of target states T might, e. g., model bad or safety-critical states,
for which the probability to visit them should be kept below a certain upper
bound. Formally, we identify target states by labeling them with some dedicated
label target ∈ AP such that T =

{
s ∈ S

∣∣ target ∈ L(s)
}
. Instead of depicting

target labels, in the following we illustrate target states in figures as double-
framed gray-colored nodes.

We formulate reachability properties like P��λ(♦target) for �� ∈ {<,≤,≥, >}
and λ ∈ [0, 1] ∩ Q. For simplicity, we will sometimes also write P��λ(♦T ). Such
a property holds in a state s of a DTMC D iff the probability to reach a state
from T when starting in s in D satisfies the bound �� λ. The DTMC satisfies the
property iff it holds in its initial state. For a PA M we require the bound to be
satisfied under all schedulers.

Example 13. For instance, P≤0.1(♦target) states that the probability of reach-
ing a state labeled with target is less or equal than 0.1, either for a DTMC or
under all schedulers for a PA. If the probability is larger in a state, this property
evaluates to false for this state. �

In this paper we deal with reachability properties only. Deciding some other
logics like, e. g., probabilistic computation tree logic (PCTL) or ω-regular prop-
erties can be reduced to the computation of reachability properties.

Furthermore, in the following we restrict ourselves to reachability properties
of the form P≤λ(♦target). Formulas of the form P<λ(♦target) can be handled
similarly. The cases ≥ and > can be reduced to < and ≤, respectively, using
negation, e. g., P>λ(♦target) is equivalent to P≤1−λ(♦¬target).

At some places we will also mention bounded reachability properties of the
form P≤λ(♦≤hT ) for a natural number h. The semantics of such formulas is
similar to the unbounded case P≤λ(♦T ), however, here the probability to reach
a state in T via paths of length at most h should satisfy the bound.
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Reachability for DTMCs. Assume a DTMC D = (S, sinit, P , L), a label
target ∈ AP and a target state set T =

{
t ∈ S

∣∣ target ∈ L(t)
}
. We want

to determine whether D satisfies the property P≤λ(♦T ), written D |= P≤λ(♦T ).
This is the case iff the property holds in the initial state of D, denoted by
D, sinit |= P≤λ(♦T ).

Let s ∈ S \ T . The set of paths contributing to the probability of reaching T
from s is given by

♦T (s) =
{
π ∈ PathsDinf(s)

∣∣∃i. target ∈ L(π[i])
}

where we overload ♦T to both denote a set of paths and a property, and also
write simply ♦T if s is clear from the context.

The above set ♦T (s) equals the union of the cylinder sets of all paths from
PathsDfin(s, T ):

♦T (s) =
⋃

π∈PathsDfin(s,T )

Cyl(π) .

Note that PathsDfin(s, T ) contains in general also prefixes of other contained paths
(if there are paths of length at least 1 from T to T ). When computing the
probability mass of ♦T (s), such extensions are not considered. We can remove
those extensions by restricting the finite paths to visit T only in their last state:
♦T (s) =

⋃
π∈♦Tfin(s)

Cyl(π) with

♦Tfin(s) =
{
π ∈ PathsDfin(s, T )

∣∣∀0 ≤ i < |π|. π[i] /∈ T
}
.

As no path in the set ♦Tfin(s) is a prefix of another one, the probability of this
set can be computed by the sum of the probabilities of its elements:

PrDs
(
♦T (s)

)
= PrDs

( ⋃
π∈♦Tfin(s)

Cyl(π)
)

=
∑

π∈♦Tfin(s)

PrDs
(
Cyl(π)

)
=

∑
s′∈S\T

P (s, s′) · PrDs′
(
♦T (s′)

)
+

∑
s′∈T

P (s, s′) .

Therefore, we can compute for each state s ∈ S the probability of reaching T
from s by solving the equation system consisting of a constraint

ps =

⎧⎪⎨⎪⎩
1, if s ∈ T,

0, if T is not reachable from s,∑
s′∈S P (s, s′) · ps′ , otherwise

for each s ∈ S. The unique solution ν : {ps | s ∈ S} → [0, 1] of this linear equation
system assigns to ps the probability of reaching T from s for each state s ∈ S.
That means, D |= P≤λ(♦T ) iff ν(psinit) ≤ λ.

We can simplify the above equation system if we first remove all states from
the model from which T is not reachable.
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s0 s1

s2 s4

s3 1

s5 s6

s7

s8 1

0.5

0.25

0.25

0.5

0.5

0.5

0.5

0.7

0.3

1

0.5

0.5

0.25
0.5

0.25

Fig. 2. An example DTMC (cf. Example 14)

Definition 6 (Relevant states of DTMCs). Let

S
rel(T )
D = {s ∈ S |PathsDfin(s, T ) �= ∅}

and call its elements relevant for T (or for target). States s �∈ S
rel(T )
D are called

irrelevant for T (or for target).

The set of relevant states can be computed in linear time by a backward reach-
ability analysis on D [9, Algorithm 46].

If a model does not contain any irrelevant states, the above equation system
reduces to the constraints

ps =

{
1, if s ∈ T,∑

s′∈S P (s, s′) · ps′ , otherwise

for each s ∈ S.

Example 14. Consider the DTMC illustrated in Figure 2 with target state set
T = {s3}. State s8 is irrelevant for T and can be removed. The probabilities to
reach s3 can be computed by solving the following equation system:

ps0 = 0.5 · ps1 + 0.25 · ps2 + 0.25 · ps5 ps1 = 0.5 · ps2 + 0.5 · ps3
ps2 = 0.5 · ps1 + 0.5 · ps4 ps3 = 1
ps4 = 0.7 · ps1 + 0.3 · ps3 ps5 = 1 · ps6
ps6 = 0.5 · ps3 + 0.5 · ps7 ps7 = 0.25 · ps5 + 0.25 · ps6

The unique solution ν defines ν(ps0) = 11/12, ν(ps1) = ν(ps2 ) = ν(ps3 ) =
ν(ps4) = 1, ν(ps5 ) = ν(ps6) = 2/3 and ν(ps7) = 1/3. �
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Reachability for PAs. Assume a PAM = (S, sinit,Act, P̂ , L), a label target ∈
AP and a target state set T =

{
t ∈ S

∣∣ target ∈ L(t)
}
. Intuitively, a reacha-

bility property holds for M if it holds under all possible schedulers. Formally,
M |= P≤λ(♦T ) if for all schedulers σ of M we have that Mσ |= P≤λ(♦T ).

It can be shown that there always exists a memoryless deterministic sched-
uler that maximizes the reachability probability for ♦T among all schedulers.
Therefore, to check whether Mσ |= P≤λ(♦T ) holds for all schedulers σ, it suf-
fices to consider a memoryless deterministic scheduler σ∗ which maximizes the
reachability probability for ♦T under all memoryless deterministic schedulers,
and check the property for the induced DTMC Mσ∗

. For the computation of σ∗

we need the notion of relevant states.

Definition 7 (Relevant states of PAs). We define

S
rel(T )
M = {s ∈ S | ∃σ ∈ SchedM. s ∈ S

rel(T )
Mσ }

and call its elements relevant for T (or for target). States s �∈ S
rel(T )
M are called

irrelevant for T (or for target).

Again, the set of relevant states can be computed in linear time by a backward
reachability analysis on M [9, Algorithm 46].

The maximal probabilities ps = PrM
σ∗

s

(
♦T (s)

)
, s ∈ S, can be characterized

by the following equation system:

ps =

⎧⎪⎨⎪⎩
1, if s ∈ T,

0, if s �∈ S
rel(T )
M ,

max
{∑

s′∈S μ(s, s′) · ps′
∣∣ (α, μ) ∈ P̂ (s)

}
, otherwise

for each s ∈ S. This equation system can be transformed into a linear optimiza-
tion problem that yields the maximal reachability probability together with an
optimal scheduler [9, Theorem 10.105].

Example 15. Consider the left-hand-side PA model from Example 9 on page 75.
The probability to reach s1 from s0 is maximized by the deterministic memory-
less scheduler σ2 choosing (a, μ1) in state s0, (b, d1) in state s2, and (a, di) in all
other states si ∈ {s1, s3, s4}. �

3 Counterexamples

When a DTMC D violates a reachability property P≤λ(♦T ) for some T ⊆ S
and λ ∈ [0, 1] ∩ Q, an explanation for this violation can be given by a set of
paths, each of them leading from the initial state to some target states, such
that the probability mass of the path set is larger than λ. Such path sets are
called counterexamples. For a PA M, a counterexample specifies a deterministic
memoryless scheduler σ and a counterexample for the induced DTMC Mσ.
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Counterexamples are valuable for different purposes, e. g., for the correction
of systems or for counterexample-guided abstraction refinement. However, coun-
terexamples may contain a very large or even infinite number of paths (note that
for a DTMC D the whole set PathsDfin(sinit, T ) is the largest counterexample).
Therefore, it can increase the practical usefulness if we aim at the computation
of counterexamples satisfying certain properties. Some important aspects are:

– The size of the counterexample, i. e., the number of paths in it.
– The probability mass of the counterexample.
– The computational costs, i. e., the time and memory required to obtain a

counterexample.
– Counterexamples can be given using representations at different language

levels.
• At the level of paths, besides path enumeration, a counterexample can
be represented by, e. g., computation trees or regular expressions. Path-
based representations will be discussed in Section 4.

• At the model level, a part of the model can represent a counterexample
by all paths leading inside the given model part from sinit to T . Such
representations are the content of Section 5.

• At a higher level, a fragment of a probabilistic program, for which a
PA or a DTMC was generated as its semantics, can also represent a
counterexample. We discuss such counterexamples in Section 6.

Important in our considerations will be the size of the representation.

We first formalize counterexamples and measures regarding the first two
points, and will discuss representation issues and computational costs in the
following sections.

Definition 8 (DTMC evidence and counterexample, [17]). Assume a
DTMC D = (S, sinit, P , L) violating a reachability property P≤λ(♦T ) with T ⊆ S
and λ ∈ [0, 1] ∩Q.

An evidence (for D and P≤λ(♦T )) is a finite path π ∈ PathsDfin(sinit, T ). A
counterexample is a set C of evidences such that PrDsinit(C) > λ. A counterex-
ample C is minimal if |C| ≤ |C′| for all counterexamples C′. It is a smallest
counterexample if it is minimal and PrDsinit(C) ≥ PrDsinit(C

′) for all minimal
counterexamples C′.

Example 16. Consider the DTMC from Example 3 on page 71 and the reach-
ability property P≤0.3

(
♦{s3}

)
. The path sets Π1 = {s0s1s3, s0s1s3s3}, Π2 =

{s0s1s3, s0s2s3}, Π3 = {s0s1s3}, and Π4 = {s0s2s3} are all counterexamples
(with probability mass 0.6, 1, 0.6, and 0.4, respectively). Only Π3 and Π4 are
minimal, where only Π3 is a smallest counterexample. �

For reachability properties of the form P≤λ(♦target) with a non-strict upper
bound on the admissible reachability property, a finite counterexample always ex-
ists, if the property is violated. For strict upper bounds P<λ(♦target), however,
an infinite number of paths can be required if the actual reachability probability
equals λ [17].
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Example 17. Consider the following DTMC:

s0

0.5

s1 1
0.5

The probability to reach s1 is 1, i. e., the property P<1

(
♦{s1}

)
is violated.

However, a counterexample must contain all the infinite number of paths s0s1,
s0s0s1, s0s0s0s1 etc. �

Even if the counterexample is finite, the number of required paths can be very
large. Han et al. [17] determine for the case study of a probabilistic synchronous
leader election protocol that the number of evidences is double exponential in
the system parameters.

Definition 9 (PA counterexample). Assume a PA M = (S, sinit,Act, P̂ , L)
violating a reachability property P≤λ(♦T ) with T ⊆ S and λ ∈ [0, 1] ∩Q.

A counterexample (for M and P≤λ(♦T )) is a pair (σ,C) such that σ is a
scheduler for M and C is a counterexample for Mσ. A counterexample (σ,C) is
minimal if |C| ≤ |C′| for all counterexamples (σ′, C′). It is a smallest counterex-
ample if it is minimal and PrMsinit(C) ≥ PrMsinit(C

′) for all minimal counterexam-
ples (σ′, C′).

Example 18. Consider the left-hand-side PA model from Example 9 on page
75 and the reachability property P≤0.9

(
♦{s1}

)
. A smallest counterexample is

(σ2, {s0s1, s0s2s1}) with σ2 as defined in Example 11 on page 76. �

4 Path-Based Counterexamples

After having introduced discrete-time probabilistic models and counterexamples
for reachability properties, in the following we discuss how we can compute such
counterexamples for the different model classes in different representations. We
start with methods that are based on the search for paths at the state-space
level.

4.1 Path-Based Counterexamples for DTMCs

Smallest Counterexamples. For DTMCs, Han, Katoen and Damman show
in [17] how the computation of a smallest counterexample can be reduced to
the computation of k shortest paths in a directed weighted graph for a suitable
k ∈ N.

We need in the following the property that the DTMC D = (S, sinit, P , L) we
consider has a single absorbing target state. If it is the case, we define D′ = D.
Otherwise, the DTMC D is first transformed by adding a new, absorbing target
state t �∈ S and redirecting all transitions starting in former target states to lead
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to the new one. This transformation yields the DTMC D′ = (S′, sinit, P ′, L′)
with S′ = S ∪̇ {t} and

P ′(s, s′)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P (s, s′), if s ∈ S \ T and s′ ∈ S,

1, if s ∈ T and s′ = t,

1, if s = s′ = t,

0, otherwise,

L′(s)=

{
{target}, if s = t,

∅, otherwise.

Note that the probability to reach t from s ∈ S in D′ equals the probability to
reach T from s in D.

As the next step, a directed weighted graph GD = (V,E,w) with nodes V ,
edges E and edge weights w : E → R≥0 is obtained from D′ as follows: V = S′,
(s, s′) ∈ E iff P ′(s, s′) > 0, and w(s, s′) = − logP ′(s, s′) (one could take any
basis, we take the natural logarithm with basis e).

We define the weight w(π) of a path π in GD as the sum of the weights of the
transitions in π. The relation between the weight of a finite path π = s0 . . . sn
in GD and the probability of the same path in D is as follows:

w(π) =
∑n−1

i=0 w(si, si+1) =
∑n−1

i=0 − logP ′(si, si+1)

= −
∑n−1

i=0 logP ′(si, si+1) = − log
∏n−1

i=0 P ′(si, si+1)

= − logPrD
′

s0 (π) .

Note that we can also compute the probabilities from the weights by PrD
′

s0 (π) =

e−w(π). Since the negative logarithm is monotonically decreasing in the interval

(0, 1], more probable paths in D′ have smaller weights in GD, i. e., PrD
′

s (π) ≥
PrD

′
s (π′) iff w(π) ≤ w(π′) for all states s ∈ S and paths π, π′ ∈ PathsDfin(s).
That means, the problem to find a sufficient number of most probable paths

in D can be solved by finding a sufficient number of shortest paths in GD. The
main advantage of this problem transformation, besides the lower complexity of
the addition operation compared to multiplication, is that we can apply shortest
path search algorithms without modification.

Definition 10 (k shortest path problem, [17]). Given a directed weighted
graph G = (V,E,w), nodes s, t ∈ V , and k ∈ N, the k shortest path problem
(KSP) is to find k different paths π1, . . . , πk from s to t in G (if they exist) such
that for all 1 ≤ i < j ≤ k, w(πi) ≤ w(πj) and for all paths π from s to t either
π ∈ {π1, . . . , πk} or w(π) ≥ w(πk).

Theorem 1 ([17]). A smallest counterexample C for D contains |C| shortest
paths in GD from sinit to t.

Example 19. Consider the DTMC D from Example 14 on page 80, depicted in
Figure 2, which already has a single absorbing target state. The corresponding
directed weighted graph GD is shown in Figure 3 (with rounded weights).
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0.69
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0.69

0.69

1.39
0.69

1.39

Fig. 3. The directed weighted graph for the DTMC from Figure 2 (cf. Example 19)

We would like to compute a counterexample for P≤0.4

(
♦{s3}

)
. Thus we search

for k shortest paths π1, . . . , πk in GD for an appropriate k such that∑k
i=1 e

−w(πi) > 0.4. The four shortest paths in GD, with their (rounded) weights
in GD and probabilities in D are as follows:

Path Weight (rounded) Probability
π1 = s0s1s3 1.39 1/4
π2 = s0s5s6s3 2.08 1/8
π3 = s0s2s1s3 2.77 1/16
π4 = s0s1s2s1s3 2.77 1/16

Since
∑

i∈{1,2,3} e
−w(πi) =

∑
i∈{1,2,4} e

−w(πi) = 1/4 + 1/8 + 1/16 = 0.4375 > 0.4,

both path sets {π1, π2, π3} and {π1, π2, π4} are smallest counterexamples. �

As the size of a smallest counterexample is not known in advance, we need k
shortest paths computation algorithms that can determine the value of k on the
fly. Examples of such algorithms are Eppstein’s algorithm [48], the algorithm
by Jiménez and Marzal [49], and the K* algorithm [50] by Aljazzar and Leue.
While the former two methods require the whole graph to be placed in memory
in advance, the K* algorithm (see also Section 4.2) expands the state space on
the fly and generates only those parts of the graph that are needed. Additionally,
it can apply directed search, i. e., it exploits heuristic estimates of the distance of
the current node to a target node in order to speed up the search. The heuristic
has thereby to be admissible, i. e., it must never over-estimate the distance.

For bounded reachability properties P≤λ(♦≤hT ), a hop-constrained k shortest
paths problem (HKSP) can be used to determine a smallest counterexample.
In this case the additional constraint that each evidence may contain at most
h transitions must be imposed. In [17] an adaption of Jiménez and Marzal’s
algorithm to the HKSP problem is presented.
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Heuristic Approaches. Besides the above methods to compute smallest coun-
terexamples, heuristic approaches can be used to compute not necessarily small-
est or even minimal ones. Bounded model checking (BMC ) [51] is applied by
Wimmer et al. in [19, 20] to generate evidences until the bound λ is exceeded.
The basic idea of BMC is to formulate the existence of an evidence of length k
(or ≤ k) for some natural number k as a satisfiability problem. In [19] purely
propositional formulas are used, which does not allow to take the actual prob-
ability of an evidence into account; in [20] this was extended to SMT formulas
over linear real arithmetic, which allows to enforce a minimal probability of evi-
dences. Using strategies like binary search, evidences with high probability (but
still bounded length) can be found first.

In both cases, the starting point is a symbolic representation of the DTMC
at hand as an MTBDD P̂ for the transition probability matrix. For generating
propositional formulas, this MTBDD is abstracted into a BDD P̂BDD by mapping
each leaf labeled with a positive probability to 1. Hence, the BDD P̂BDD stores
the edges of the underlying graph. The generation of propositional formulas
is done by applying Tseitin’s transformation [52] to this BDD, resulting in a
predicate trans such that trans(v, v′) is satisfied for an assignment of the variables
v and v′ if and only if the assignment corresponds to a transition with positive
probability in the DTMC. The same is done for the initial state, resulting in
a predicate init such that init(v) is satisfied if the assignment of v corresponds
to the initial state of the DTMC and a predicate target(v) for the set of target
states. With these predicates at hand, the BMC-formula is given as follows:

BMC(k) = init(v0) ∧
k−1∧
i=0

trans(vi, vi+1) ∧ target(vk) . (1)

This formula is satisfied by an assignment ν iff ν(vi) corresponds to a state si
for i = 1, . . . , k such that s0s1 . . . sk is an evidence for the considered reachability
property.

Starting at k = 0, evidences are collected and excluded from further search
by adding new clauses to the current formula, until either the set of collected
paths forms a counterexample or the current formula becomes unsatisfiable. In
the latter case we increase k and continue the search.

During the BMC search, loops on found paths can be identified. A found path
containing a loop can be added to the collection of evidences with arbitrary un-
rollings of the loop. However, since loop unrollings lead to longer paths, attention
must be payed to exclude those paths when k reaches the length of previously
added paths with unrolled loops.

The propositional BMC approach yields a counterexample consisting of evi-
dences with a minimal number of transitions, but the drawback is that the ac-
tual probabilities of the evidences are ignored. This issue can be solved by using
a SAT-modulo-theories formula instead of a purely propositional formula [20].
Thereby the transition predicate trans is modified to take the probabilities into
account: trans(vi, pi, vi+1) is satisfied by an assignment ν iff ν(vi) corresponds



Counterexample Generation for Discrete-Time Markov Models 87

to state si, ν(vi+1) to state si+1, P (si, si+1) > 0, and ν(pi) = logP (si, si+1).

By adding the constraint
∑k−1

i=0 pi ≥ log δ for some constant δ ∈ (0, 1], we can
enforce that only paths with probability at least δ are found.

Additionally, using an SMT formulation allows us to take rewards into ac-
count: we can extend the DTMC by a function ρ : S × S → R, which speci-
fies the reward of a transition. Rewards can—depending on the context—either
represent costs (e. g., energy consumption, computation time, etc.) or benefits
(number of packets transmitted, money earned, etc). Similar to constraints on
the probability of an evidence, we can enforce that the accumulated reward along
an evidence satisfies a linear constraint [20, 53].

Symbolic Methods. For a DTMC D = (S, sinit, P , L) together with a set of
target states T that are represented symbolically in the form of BDDs Î and T̂
for the initial state and the target states, respectively, and an MTBDD P̂ for
the transition probability matrix, Günther, Schuster and Siegle [21] propose a
BDD-based algorithm for computing the k most probable paths of a DTMC.
They use an adaption of Dijkstra’s shortest path algorithm [54], called flooding
Dijkstra, to determine the most probable path. Then they transform the DTMC
such that the most probable path of the transformed system corresponds to
the second-most-probable path in the original DTMC. For this they create two
copies of the DTMC: The new initial state is the initial state of the first copy,
the new target states are the target states in the second copy. The transitions
of the second copy remain unchanged. In the first copy, all transitions on the
already found most probable path also remain unchanged. All other transitions
lead from the first copy to the corresponding state in the second copy. Thus, to
reach a target state from the initial state, at least one transition has to be taken
which is not contained in the most probable path. The corresponding function
has as input BDDs the symbolic representation of the DTMC as well as a BDD
SP representing the current most probable path. Returned is a new symbolic
DTMC:

(P̂ , Î, T̂ ) := Change(P̂ , Î, T̂ , SP)

We illustrate this process using an example.

Example 20. Consider again the DTMC in Figure 2 on page 80. The first appli-
cation of Dijkstra’s algorithm yields the most probable path s0s1s3 with prob-
ability 1/2 · 1/2 = 1/4 from the initial state s0 to the target state s3. To obtain
the second-most-probable path, the DTMC in Figure 4 is constructed. In the
modified DTMC, the initial state is s00, the target state is s

1
3. The most probable

path from s00 to s13 is s00s
1
5s

1
6s

1
3 with probability 1/4 · 1 · 1/2 = 1/8. This path cor-

responds to s0s5s6s3 in the original DTMC, which is the second-most probable
path there. �

To obtain the next path, the same transformation is applied again. After k
paths the underlying graph has increased exponentially in k. Each transforma-
tion step requires to introduce two new BDD-variables and typically increases



88 E. Ábrahám et al.

s00 s01

s02 s04

s03 1

s05 s06

s07

s08 1

Copy 0

s10 s11

s12 s14

s13 1

s15 s16

s17

s18 1

Copy 1

0.5

0.250.25 0.5

0.5

0.5

0.5

0.7

0.3

1

0.5

0.5

0.25
0.5

0.25

0.5

0.25

0.25

0.5

0.5

0.5

0.5

0.7
0.3

1

0.5

0.5

0.25
0.5

0.25

Fig. 4. Exclusion of the most probable path (the states and transitions which are not
reachable from the initial state s00 have been colored grey to improve readability)

the size of the symbolic representation. Therefore this methods scales well to
large state spaces, but not for large values of k.

Compact Representations. Alone the mere number of evidences in a coun-
terexample can render the counterexample unusable for debugging purposes.
Therefore a number of approaches have been proposed to obtain smaller, better
understandable representations of counterexamples. Typically they exploit the
fact that many paths in a counterexample differ only in the number and order
of unrollings of loops.

Building upon ideas by Daws [55] for model checking parametric DTMCs,
Han, Katoen and Damman [17, 22] proposed the representation of counterexam-
ples as regular expressions: First the DTMC is turned into a deterministic finite
automaton (DFA), whose transitions are labeled with (state, probability) pairs:
Essentially, a transition from s to s′ with probability p = P (s, s′) > 0 in the

DTMC is turned into the transition s
(s′,p)−−−→ s′ of the DFA. State elimination is

used to turn the DFA into a regular expression. The state elimination removes
states iteratively, and for each removed state it connects its predecessors with its
successors by direct transitions. These new transitions are labeled with regular
expressions describing the inputs read on the possible path from a predecessor
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1/2

1/2 1/2

(b)
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(s1, 1) (s2, 1/2)

(s4, 1/2)
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(c)

s0 s2
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(s1, 1/2)(s3, 1/2)

s4

(s1, 1)(s3, 1/2)

(s4, 1/2)

(s1, 1/2)(s2, 1/2)

(s1, 1)(s2, 1/2)

(d)

s0 s2

s4

(s1, 1)(s3, 1/2)(
(s1, 1/2)(s3, 1/2)

)∗
(s4, 1/2)

(s1, 1)(s2, 1/2) |
(s1, 1)(s3, 1/2)(

(s1, 1/2)(s3, 1/2)
)∗

(s1, 1/2)(s2, 1/2)

Fig. 5. Representing counterexamples as regular expressions (cf. Example 21)

via the removed state to a successor. In order to obtain a small regular expression
for a counterexample, the authors proposed to iterate the following steps:

1. Find a most probable path in the remaining automaton using Dijkstra’s
shortest path algorithm.

2. Eliminate all states (except the first and last one) on this path; the order of
elimination is determined according to a heuristics like [56], well known from
the literature on automata theory. This gives a regular expression describing
the considered most probable path.

3. Evaluate the set of regular expressions generated so far and check whether
the joint probability mass of the represented paths is already beyond the
given bound λ. If this is the case, terminate and return the regular expres-
sions. Otherwise start a new iteration of the elimination loop.

Example 21. Consider the DTMC in Figure 5 (a) with target state s2. Its DFA
is depicted under (b). The first most probable path is s0s1s2, i. e., we eliminate
s1, resulting in the DFA (c). The probability value of the regular expression
generated for the found path is

val
(
(s1, 1)(s2, 1/2)

)
= val

(
(s1, 1)

)
· val

(
(s2, 1/2)

)
= 1 · 1/2 = 1/2 .

If this mass is not yet sufficient to violate the bound, we search for the most
probable path in (c), which is s0s3s2. We eliminate s3 resulting in the DFA (d).
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Fig. 6. The result of SCC abstraction applied to the DTMC in Figure 2 (cf. Exam-
ple 22)

The probability value of the regular expression for the second found path is

val
(
(s1, 1)(s3, 1/2) ((s1, 1/2)(s3, 1/2))

∗ (s1, 1/2)(s2, 1/2)
)

=

val
(
(s1, 1)(s3, 1/2)

)
· 1

1−val
(
(s1,1/2)(s3,1/2)

) · val
(
(s1, 1/2)(s2, 1/2)

)
=

1 · 1/2 · 4/3 · 1/2 · 1/2 =

1/6 .

Since there are no more paths from the initial state s0 to s2, the total proba-
bility to reach s2 from s0 is the value 1/2 + 1/6 = 2/3 of the regular expression
(s1, 1)(s2, 1/2) | (s1, 1)(s3, 1/2)((s1, 1/2)(s3, 1/2))∗(s1, 1/2)(s2, 1/2). �

The same can also be applied for bounded reachability properties P≤λ(♦≤hT ).
The only changes are the usage of a hop-constraint shortest path algorithm and
a different method for determining the probability of the represented path, such
that only the probability of those paths represented by the regular expressions
is counted whose length is at most h.

A different compaction of counterexamples is described by Andrés, D’Argenio
and van Rossum in [24]. As many paths only differ in the number and order of
unrollings of loops in the system, the non-trivial strongly connected components2

(SCCs) of the DTMC under consideration, i. e., those SCCs which contain more
than one state, are abstracted into direct edges from the input to the output
states of the SCC. Input states are states in the SCC which have an incoming
edge from outside the SCC, and output states are outside of the SCC, but
have an incoming edge from inside the SCC. The probability of these edges is
determined using model checking as the probabilities to reach the output states
from the input states. After this abstraction, counterexamples as sets of paths
can be easily determined in the resulting acyclic model.

Example 22. In the DTMC from Figure 2 on page 80, there are two non-trivial
SCCs consisting of the states (i) {s5, s6, s7} with input state s5 and output states

2 A strongly connected component (SCC) is a maximal set of states such that for all
s and s′ in the SCC, s′ can be reached from s inside the SCC.
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s3 and s8, and (ii) {s1, s2, s4} with input states s1 and s2 and output state s3.
Eliminating these SCCs results in the DTMC shown in Figure 6. The wave-like
edges represent paths through SCCs that have been abstracted. �

4.2 Path-Based Counterexamples for PA

The simplest way to generate path-based counterexamples for a PA M [25, 38]
is to first generate a memoryless deterministic scheduler σ∗ which maximizes
the reachability probability. Such a scheduler can be obtained as a by-product
from model checking. This scheduler σ∗ induces a DTMC Mσ∗

, such that

PrM
σ∗

sinit (♦T ) = maxσ∈SchedM PrM
σ

sinit(♦T ) > λ. In a second step, the methods

for counterexample generation described above are applied to Mσ∗
, resulting in

a counterexample C for Mσ∗
. Then (σ∗, C) is a counterexample for M.

However, as the computation of a maximizing scheduler requires to have the
whole state space of M residing in memory, the advantage of using an algorithm
like K* [50] which expands the state space on the fly when necessary, is lost.
Therefore, Aljazzar and Leue [25] proposed a method which allows to not only
compute the paths but also the scheduler on the fly as follows.

The problem when applying K* to a PA is that the generated paths are
in general not compatible to the same scheduler. Therefore all paths are kept
and clustered according to the scheduler choice made in each state. To do so an
AND/OR-tree is maintained, which is initially empty. The OR-nodes correspond
to the state nodes, in which the scheduler makes a decision. The AND-nodes
correspond to the probabilistic decisions after an action-distribution pair has
been chosen by the scheduler. Applying the K* algorithm to the PA M, the
next most probable path is determined. The new path π is inserted into the tree
by first determining the longest prefix which is already contained in the tree. The
remainder of the path becomes a new sub-tree, rooted at the node where the
longest prefix ends. By a bottom-up traversal, a counterexample and a (partial)
scheduler can be determined from the AND/OR-tree.

Example 23. Assume the MDP in Figure 7 left, which violates the reachability
property P≤0.75

(
♦{s4}

)
. Assume furthermore that the path search gives us the

following paths in this order:

Path Path probability
π1 = s0s1s4 0.5
π2 = s0s2s4 0.4
π3 = s0s2s0s1s4 0.25
π4 = s0s1s0s1s4 0.2
π5 = s0s2s0s2s4 0.2
π6 = s0s1s0s2s4 0.16
π7 = s0s2s0s2s0s1s4 0.125
π8 = s0s1s0s2s0s1s4 0.1
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Fig. 7. Example MDP (cf. Example 23)

The generated path tree is depicted in Figure 7 on the right-hand side. The
rectangular nodes are OR-nodes, the circles are AND-nodes. The value attached
to a leaf is the probability of the path from the root to the leaf. The value
attached to an inner AND-node is the sum of the values of its children, whereas
the value of an OR-node is the maximum of all children values. Thus the value
of the root specifies the maximal probability of found compatible paths, which
are possible under a common scheduler.

After having added the last path, the probability of the root is above 0.75;
the boldface subtree specifies a suitable scheduler to build a counterexample
with the path set {π1, π6, π8}. Note that this scheduler is deterministic but not
memoryless. �

4.3 Applications of Path-Based Counterexamples

Path-based counterexamples are mostly used in two main areas: Firstly, for ex-
tracting the actual causes why a system fails. This information can be used for
debugging an erroneous system [42–44]. Secondly, for counterexample-guided ab-
straction refinement of probabilistic automata [38]. We briefly sketch the main
ideas of these works.

The extraction of reasons why a system fails is based on the notion of causal-
ity [57]. The idea behind that is that an event A is critical for event B, if A had
not happened, then B would not have happened either. However, this simple
notion of criticality is sometimes too coarse to be applicable. Therefore Halpern
and Pearl [57] have refined it to take a side-condition into account: Essentially,
if the events in some set E did not have happened, then A would be critical for
the occurrence of B. In this case A is a cause of B.
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Example 24 (taken from [57]). Assume Suzy and Billy are both throwing stones
at a bottle, and both throw perfectly, so each stone would shatter the bottle.
But Suzy throws a little harder such that her stone reaches the bottle first.

Clearly we would say that the cause of the shattering of the bottle is Suzy
throwing a stone. However, Suzy throwing is not critical, since if she did not
throw, the bottle would be shattered anyway (by Billy’s stone). But under the
side-condition that Billy does not throw, Suzy’s throw becomes critical.3 �

For details on this notion of causality, its formal definition, and a series of ex-
amples we refer the reader to [57].

Chockler and Halpern [58] use a quantitative notion regarding causes, given
by the degree of responsibility dR(A) of a cause A: Essentially dR(A) = 1

1+k
where k is the size of the smallest side-condition needed to make A critical.

Debbi and Bourahla [42, 43] consider constrained reachability properties of
the form P≤λ(ϕ1 Uϕ2) where ϕ1 and ϕ2 are arbitrary Boolean combinations of
atomic propositions from the set AP, and U is the temporal until operator. As
potential causes for the violation of the property they consider propositions of
certain states, i. e., pairs 〈s, a〉 for s ∈ S and a ∈ AP: If the value of such a
proposition is switched (under some side-condition), some paths in the consid-
ered counterexample no longer satisfy the formula ϕ1 Uϕ2, and the probability
mass of the remaining paths is no longer above the bound λ. They assign weights
to the causes as follows: The probability Pr(s, a) of a cause (s, a) is the sum of
the probabilities of all paths π in the counterexample which contain state s.
The weight w(s, a) of a cause (s, a) is given by w(s, a) = Pr(s, a) · dR(s, a). The
causes are presented to the user with decreasing weight.

A different approach, also based on the notion of causality of [57], is described
by Leitner-Fischer and Leue in [44, 59]. The authors proposed to extract fault
trees from path-based probabilistic counterexamples. For this they do not con-
sider just evidences of the underlying DTMC, but they rather keep track of the
events which caused the transitions along an evidence. Since the order of events
along the evidences can be crucial for the failure, they extend the notion of
causality to also take the event order into account. Hence, a cause is a sequence
of events together with restrictions on the order of the events. Additionally, the
joint probability of the evidences which correspond to such a cause is computed.
A fault tree is generated from the causes by using the undesired behavior as the
root, which has one subtree per cause. Each cause is turned into a tree by using
an AND gate over those events whose order does not matter, and an ordered-
AND gate if the order does matter. Additionally the subtree corresponding to a
cause is annotated by the probability of the corresponding evidences.

An interactive visualization technique is proposed by Aljazzar and Leue in
[60] to support the user-guided identification of causal factors in large counterex-
amples. The authors apply this visualization technique to debug an embedded
control system and a workstation cluster.

3 The precise formal definition encompasses more constraints in order to avoid Billy
throwing being a cause.
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Failure mode and effects analysis (FMEA) allows to analyze potential system
hazards resulting from system (component) failures. An extension of the original
FMEA method can also handle probabilistic systems. In this context, path-based
probabilistic counterexamples were used by Aljazzar et al. in [41] to facilitate
the redesign of a potentially unsafe airbag system.

A different application of path-based counterexamples is described by Hermanns,
Wachter and Zhang in [38] for counterexample-guided abstraction refinement
(CEGAR): The starting point is an abstraction of a PA, over-approximating
the behavior of a concrete PA model. If this abstraction is too coarse, it might
violate a property even if the concrete system satisfies it. In this case counterex-
amples are used to refine the abstraction.

A PA is abstracted by defining a finite partitioning of its state space and repre-
senting each block of the partition by an abstract state; all transitions targeting a
concrete state are redirected to its abstract state, and similarly all outgoing tran-
sitions of a concrete state start in the abstract state to which it belongs.

Starting with an initial abstraction, model checking is performed to check
whether the property at hand is satisfied. If this is the case, one can conclude
that it is also satisfied in the concrete model. However, if the property is violated
by the abstraction, the optimal scheduler, obtained from the model checking pro-
cess, is used to compute the induced DTMC. Therein a path-based counterexam-
ple is determined. Now two cases are possible: Either the counterexample of the
abstract system corresponds to a counterexample in the concrete model, in which
case the property is also violated by the concrete model. Or the counterexample
is spurious, i. e., it exists only in the abstraction due to the over-approximating
behavior, in which case the abstraction needs to be refined. This is done by pred-
icate abstraction, splitting the abstract states according to a predicate P into a
subset satisfying P and one violating it. The predicate P is obtained from the
counterexample evidences via interpolation.

Experimental results show that in some cases a definite statement about the
satisfaction of the property at hand can be made on a very coarse approximation.
This speeds up the model checking process and allows to handle much larger
systems than with conventional methods.

5 Critical Subsystems

Path-based representations of counterexamples, as discussed in the previous Sec-
tion 4, have some major drawbacks: The number of paths needed might be very
large (or even infinite), leading to high memory requirements. As a consequence,
the number of search iterations in terms of path-searches is equally high, lead-
ing to high computational costs. Finally, a counterexample consisting of a high
number of potentially long paths is hard to understand and analyze, therefore
its usefulness is restricted.

An alternative is to use critical subsystems, which are fractions of DTMC,
MDP or PA models violating a property, such that the behavior of the models
restricted to the critical subsystems already violates the property. It is often
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possible to generate critical subsystems whose size is smaller by orders of magni-
tude in comparison to the input system. Thereby, the critical part of the original
system leading to the violation is highlighted.

Definition 11 (Critical subsystems of DTMCs). Assume a DTMC D =
(S, sinit, P , L), a target state set T ⊆ S and some λ ∈ [0, 1] ∩ Q such that
D �|= P≤λ(♦T ).

A subsystem D′ of D, written D′ � D, is a DTMC D′ = (S′, sinit, P ′, L′) such
that S′ ⊆ S, sinit ∈ S′, P ′(s, s′) > 0 implies P ′(s, s′) = P (s, s′) for all s, s′ ∈ S′,
and L′(s) = L(s) for all s ∈ S′.

Given S′ ⊆ S with sinit ∈ S′, the subsystem DS′ = (S′, sinit, P ′, L′) of D with
P ′(s, s′) = P (s, s′) and L′(s) = L(s) for all s, s′ ∈ S′ is called the subsystem of
D induced by S′.

A subsystem D′ of D is critical for P≤λ(♦T ) if T ∩ S′ �= ∅ and D′ �|=
P≤λ

(
♦(T ∩ S′)

)
.

Example 25. For the DTMC in Figure 2 on page 80 and the reachability property
P≤0.3

(
♦{s3}

)
, the following DTMC is a critical subsystem, since the probability

to reach s3 from s0 is 1
2 · 1

1− 1
2 · 12

· 1
2 = 1

3 > 0.3:

s0 s1

s2

s3
0.5

0.5

0.5

0.5

�
The above definition of critical subsystems of DTMCs is a special case of the

following definition generalized for PAs:

Definition 12 (Critical subsystems for PAs). Assume a PA M = (S, sinit,
Act, P̂ , L), a target state set T ⊆ S and some λ ∈ [0, 1] ∩ Q such that M �|=
P≤λ(♦T ).

A subsystem M′ of M, written M′ � M, is a PA M′ = (S′, sinit,Act, P̂ ′, L′)
such that S′ ⊆ S, sinit ∈ S′, L′(s) = L(s) for all s ∈ S′, and for each s ∈ S′

there is an injective function f : P̂ ′(s) → P̂ (s) such that for all (α′, μ′) ∈ P̂ ′(s)
with f

(
(α′, μ′)

)
= (α, μ) if it holds that α′ = α and μ′(s′) = μ(s′) for all

s′ ∈ supp(μ′).
A subsystem M′ of M is critical for P≤λ(♦T ) if T ∩ S′ �= ∅ and M′ �|=

P≤λ

(
♦(T ∩ S′)

)
.

To have well-understandable explanations for the property violation, for PAs
we are interested in their critical subsystems induced by deterministic memory-
less schedulers. Therefore, in the context of counterexamples in the following we
consider only DTMCs (as deterministic PAs) as critical subsystems.

The set of those paths of a critical subsystem D′ which are evidences for a
reachability property form a counterexample in the classical sense as in Defini-
tion 8, i. e.,

C := PathsD
′

fin(sinit, T )
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is a counterexample. Therefore, a critical subsystem can be seen as a symbolic
representation of a counterexample.

We define minimality of critical subsystems in terms of their state space size:
A critical subsystem is minimal if it has a minimal set of states under all crit-
ical subsystems. Analogously to counterexamples, we can also define a smallest
critical subsystem to be a minimal critical subsystem in which the probability
to reach a target state is maximal under all minimal critical subsystems. Note
that even if a critical subsystem is smallest or minimal, this does not induce a
smallest or minimal counterexample in the sense of [17].

Critical subsystems can be generated in various ways. In this section, we first
discuss the generation of critical subsystems for DTMCs: We start by describing
how solver technologies can be used to compute smallest critical subsystems of
DTMCs. This powerful method is also applicable to arbitrary ω-regular prop-
erties [27, 28, 61]. Afterward we describe heuristic algorithms which determine
a (small) critical subsystem by means of graph algorithms as presented by Al-
jazzar and Leue in [30] and by Jansen et al. in [29]. We also give the intuition
of an extension to symbolic graph representations [32]. The second part of this
section is devoted to the computation of smallest critical subsystems for MDPs
and PAs.

5.1 Critical Subsystems for DTMCs

Smallest Critical Subsystems. In [27, 28, 61] an approach to compute small-
est critical subsystems is proposed. The idea is to encode the problem of finding a
smallest critical subsystem as a mixed integer linear programming (MILP) prob-
lem (see, e. g., [62]). It is also possible to give an SMT-formulation over linear
real arithmetic, but the experiments in [27] clearly show that the MILP formu-
lation is much more efficiently solvable. We therefore restrict our presentation
here to the MILP formulation.

Definition 13 (Mixed integer linear program). Let A ∈ Qm×n, B∈Qm×k,
b ∈ Qm, c ∈ Qn, and d ∈ Qk. A mixed integer linear program (MILP) consists
in computing min cTx+ dT y such that Ax +By ≤ b and x ∈ Rn, y ∈ Zk.

In the following let D = (S, sinit, P, L) be a DTMC and P≤λ(♦T ) a reachability
property that is violated by D. We assume that D does not contain any state
that is irrelevant for reaching T from sinit.

We want to determine a minimal set S′ ⊆ S of states such that DS′ is a
critical subsystem. To do so, we introduce for each state s ∈ S a decision variable
xs ∈ {0, 1} ⊆ Z, which should have the value 1 iff s is contained in the selected
subsystem, i. e., if s ∈ S′. Additionally we need for each s ∈ S a variable ps ∈
[0, 1] ∩ Q which stores the probability to reach T from s within the selected
subsystem DS′ . The following MILP then yields a smallest critical subsystem of
D and P≤λ(♦T ):

minimize − 1

2
· psinit +

∑
s∈S

xs (2a)
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such that

∀s ∈ T : ps = xs (2b)

∀s ∈ S \ T : ps ≤ xs (2c)

∀s ∈ S \ T : ps ≤
∑

s′∈supp
(
P (s)

)P (s, s′) · ps′ (2d)

psinit > λ . (2e)

If ν is a satisfying assignment of this MILP, then DS′ with S′ = {s ∈
S | ν(xs) = 1} is a smallest critical subsystem. Constraint (2b) states that the
probability of a target state is 1 if it is contained in the subsystem, and 0 oth-
erwise. Constraint (2c) ensures that the probability contribution of states not
contained in the subsystem is 0. Constraint (2d) bounds the probability con-
tribution of each non-target state by the sum of the probabilities to go to a
successor state times the probability contribution of the successor state. Finally,
(2e) encodes that the subsystem is critical.

The objective function (2a) ensures (i) that the subsystem is minimal by
minimizing the number of xs-variables with value 1 and (ii) that the subsystem
is smallest by minimizing −1/2 · psinit .

Example 26. Consider again the DTMC D in Figure 2 on page 80 and the vi-
olated reachability property P≤0.3(♦{s3}). Note that s8 is irrelevant and can
therefore be ignored together with all its incident transitions. The constraints to
compute a smallest critical subsystem are as follows:

minimize −1/2 · ps0 + xs0 + xs1 + xs2 + xs3 + xs4 + xs5 + xs6 + xs7

such that
ps3 = xs3

ps0 ≤ xs0 ps0 ≤ 0.5ps1 + 0.25ps2 + 0.25ps5
ps1 ≤ xs1 ps1 ≤ 0.5ps2 + 0.5ps3
ps2 ≤ xs2 ps2 ≤ 0.5ps1 + 0.5ps4
ps4 ≤ xs4 ps4 ≤ 0.7ps1 + 0.3ps3
ps5 ≤ xs5 ps5 ≤ 1.0ps6
ps6 ≤ xs6 ps6 ≤ 0.5ps3 + 0.5ps7
ps7 ≤ xs7 ps7 ≤ 0.25ps5 + 0.25ps6
ps0 > 0.3

Solving this MILP yields the following assignment:

Variable xs0 ps0 xs1 ps1 xs2 ps2 xs3 ps3 xs4 ps4 xs5 ps5 xs6 ps6 xs7 ps7
Value 1 5/12 1 2/3 1 1/3 1 1 0 0 0 0 0 0 0 0

This solution corresponds to the DTMC DS′ with S′ = {s0, s1, s2, s3}, shown in
Figure 11(b) on page 102. �

The solution of this MILP is rather costly (solving MILPs in general is NP-
complete). However, the solution process can be accelerated by adding redundant
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model check
subsystem DS′

determine
states Se ⊆ S

S′ := S′ ∪ Se

DTMC D = (S, sinit, P , L)
probability bound λ

S′ := {sinit}
return DS′

> λ

≤ λ

Fig. 8. Incremental generation of critical subsystems

constraints which exclude non-optimal solutions from the search space [27, 61].
For example, one can require that each state s �∈ T contained in the subsystem
has a successor state which is also contained in the subsystem:

∀s ∈ S \ T : xs ≤
∑

s′∈supp
(
P (s)

) xs′ .

The described approach has been generalized to arbitrary ω-regular proper-
ties [28, 61].

Heuristic Approaches. An alternative approach to determine critical subsys-
tems is to use the classical path search algorithms as presented in Section 4 to
search for evidences and use the states or transitions of these evidences to incre-
mentally build a subsystem until it becomes critical. Here we focus on building
critical subsystems using the states in evidences. Analogously, we could also use
the transitions to build a subsystem with a similar approach.

Assume in the following a DTMC D = (S, sinit, P , L), a set T ⊆ S of target
states and an upper probability bound λ ∈ [0, 1] ∩ Q of reaching target states
from T . We assume this probability to be exceeded in D.

The process of computing a critical subsystem is depicted in Figure 8. We
start with the smallest possible subsystem containing just the initial state (see
Definition 11 for the definition of DS′). As long as the subsystem is not yet criti-
cal, we iteratively determine a new state set and extend the previous subsystem
with these states. Thereby the method that determines the state sets must assure
progress, i. e., that new states are added to the subsystem after a finite number
of iterations. Under this condition, the finiteness of the state space guarantees
termination.

Calling a model checker in every iteration is quite costly. Therefore, all ap-
proaches based on this framework use some heuristics to avoid this. For instance,
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one might think of performing model checking only after a certain number of
iterations or only start to check the system after a certain size of the subsystem
is reached.

We will now shortly discuss what approaches have been proposed to determine
the state sets to incrementally extend subsystems.

Extended best-first search. The first method to compute critical subsystems using
graph-search algorithms was given in [30] by Aljazzar and Leue. The authors
extend the best-first (BF ) search method [63] to what they call eXtended Best-
First (XBF ) search, implemented in [36]. Below we describe the XBF search,
without highlighting the differences to the BF search, which are discussed in [30].

For the XBF search, the system does not need to be given explicitly in the
beginning but is explored on the fly, which is a great advantage for very large
systems where a counterexample might be reasonably small. Instead, a symbolic
model representation can be used.

Starting from the initial state, new states are discovered by visiting the suc-
cessors of already discovered states. Two state lists open and closed store the
states discovered so far. The ordered list open contains discovered states whose
successors have not been expanded yet. In each step, one (with respect to the
ordering maximal) state s from open is chosen, its not yet discovered successors
are added to open, and s is moved from open to closed. To have all relevant
information about the explored part of the model, for all states in the above two
lists we also store all incoming transitions through which the state was visited.

The list open is ordered with respect to an evaluation function f : S → Q

which estimates for each discovered state s the probability of the most probable
path from the initial state to a target state through s. The estimation

f(s) = g(s) · h(s)

is composed by two factors: Firstly, g(s) estimates the probability of the most
probable path from sinit to s by the probability of the most probable such path
found so far. Secondly, h(s) uses further knowledge about the system at hand
(if available) to estimate the probability of the most probable path from s to T .
If the latter function is not constant, the search is called informed search.

Initially, g(sinit) = 1. When expanding the successor s′ of a state s, we define
g(s′) to be g(s) · P (s, s′) if s′ is encountered the first time, and the maximum
of g(s) · P (s, s′) and the old g(s′) value else. When in the latter case g(s′) is
updated to a larger value, if s′ was already in the closed set, it is moved back
to the open set to propagate the improvement.

The algorithm maintains an initially empty subsystem D′ of the already dis-
covered model part. Each time a state s is visited, such that s is either a target
state or it is included in D′, the subsystem D′ gets extended with the fragment
of the currently known model part that is backward reachable from s. The al-
gorithm terminates if this subsystem becomes critical ([30] calls it a diagnostic
subgraph).
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Fig. 9. Illustration of the XBF search (cf. Example 27)

Example 27. For the DTMC in Figure 2 on page 80 and the reachability property
P≤0.5

(
♦{s3}

)
, the computation of the XBF search is illustrated in Figure 9.

Rectangular nodes are stored in the closed list, circles in the open list. For
simplicity we assume h(s) = 1 for all states s ∈ S. Thus the current estimate
values f(s) = g(s) · 1 (shown beside the states in gray color) equal the highest
known path probability from s0 to s. The boldface fraction of the discovered
model part is the current subsystem, which is critical after the fifth iteration
(with probability 13/24 to reach s3 from s0). �

Search based on k shortest paths. In [29] two different graph search algorithms
are utilized. We distinguish the global search and local search approach.

The global search is an adaption of the k shortest paths search as described
in Section 4. However, paths are collected not until a counterexample as a list of
paths is formed, but until the subsystem DS′ induced by the states S′ on found
paths has enough probability mass, i. e., until it becomes critical.

Example 28. For the DTMC D in Figure 2 on page 80 and the violated property
P≤0.4

(
♦{s3}

)
, three most probable paths are:

Path Probability
π1 = s0s1s3 0.25
π2 = s0s5s6s3 0.125
π3 = s0s2s1s3 0.0625
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(c) Subsystem for paths π1, π2, π3

Fig. 10. Illustration of the global search approach (cf. Example 28)

Now, we subsequently add these paths to an initially empty subsystem, until
inside this system the probability to reach the state s3 exceeds 0.4. We highlight
the latest paths by thick edges in the subsystem. Starting with π1, the initial
subsystem consists of the states of this path, see Figure 10(a), with the reach-
ability probability 0.25 < 0.4. In the next iteration, the subsystem is extended
by the states of path π2, see Figure 10(b). The probability is now 0.375 which
is still not high enough. Adding path π3 in the next iteration effectively extends
the subsystem by state s2 as the other states are already part of the subsystem.
Note that we add to the subsystem not only the states and transitions along
found paths, but all transitions connecting them in the full model. The model
checking result is now 13/24 ≈ 0.542, so the subsystem depicted in Figure 10(c)
is critical and the search terminates. �

The local search also searches for most probable paths to form a subsystem,
however, not the most probable paths from the initial to target states, but the
most probable paths connecting fragments of already found paths. Intuitively,
every new path to be found has to be the most probable one that both starts
and ends in states that are already contained in the current subsystem while the
states in between are new.

Example 29. Reconsider the DTMC in Figure 2 on page 80 and the violated
property P≤0.4(♦s3) as in Example 28. Initially, we search for the most probable
path that connects the initial state and target states, i. e., again path π1 = s0s1s3
is found and added to the subsystem, depicted in Figure 11(a). The subsystem
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(b) Subsystem for paths π1, π2

Fig. 11. Illustration of the local search approach (cf. Example 29)

has probability 0.25 of reaching s3. Now, we search for the most probable path
that both starts and ends in one of the states s0, s1, or s3, and find π′

2 = s1s2s1
with probability 0.25. As adding state s2 induces also the transition from s0 to
s2 this already gives enough probability 5/12 ≈ 0.416 for the subsystem depicted
in Figure 11(b) to be critical. �

Symbolic Methods. In order to enable the generation of counterexamples for
very large input DTMCs, the computation of critical subsystems was adapted for
symbolic graph representations, in particular BDDs and MTBDDs, see Section 2.

The framework for the symbolic method is the same as depicted in Figure 8,
while special attention is required regarding certain properties of BDDs. As
methods to find new states to extend a subsystem, symbolic versions of the
global search and the local search were devised. This was done for both bounded
model checking and symbolic graph search algorithms ; for an introduction to the
underlying concepts see Section 4. The adaptions were first proposed in [31] and
improved and extended in [32].

Recall, that a DTMC D = (S, sinit, P , L) together with a set of target states
T ⊆ S is symbolically represented by a BDD Î representing the initial state sinit,
a BDD T̂ representing the target states T and an MTBDD P̂ representing the
transition probability matrix P . In the symbolic algorithms, an MTBDD SubSys
is maintained which stands for the current subsystem. The goal of all methods
given in the following is to compute a set of states that is used to extend the
current subsystem, saved in a BDD NewStates. The subsystem is verified by a
symbolic version of the standard DTMC model checking procedure, see [64, 65].
This is also used in PRISM [12].

Bounded Model Checking. Using the bounded model checking approach from [19]
for DTMCs in combination with the incremental generation of subsystems, this
directly yields a global search approach for symbolic graph structures. Recall
Formula 1 from Section 4.1, where from the (MT)BDDs Î, T̂ and P̂ predicates
init, target and trans are created. In every iteration, the SAT solver computes a
path of the DTMC starting at Î and ending in a state of T̂ using transitions of
P̂ . This is achieved by satisfaction of the corresponding predicates. NewStates is
assigned the states of this path and SubSys is extended accordingly. This goes on
until model checking reports that the subsystem has enough probability mass.
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In contrast to adapting the global search, for the local search, also referred
to as fragment search, we need predicates that are changed dynamically. This is
due to the fact that in each iteration a path starting at any state of the current
subsystem and ending in such a state is to be searched for. As SubSys is changed
all throughout the process, we need a predicate K that captures this changing set
of states. This is technically achieved by utilizing the assumption functionality
of the SAT solver in the sense that in every iteration the predicate K is satisfied
if the SAT solver assigns its variables such that a state of the current subsystem
corresponds to these variable values. The goal is now to find paths of arbitrary
but bounded length n by assigning the variable sets v0, . . . , vn such that they
correspond to such a path. The formula reads as follows:

K(v0) ∧ trans(v0, v1) ∧ ¬K(v1) ∧
n∨

i=2

K(vi)

∧
n−1∧
j=1

[(¬K(vj) → trans(vj , vj+1)) ∧ (K(vj) → vj = vj+1)]

Intuitively, every path starts in a state of K (K(v0)). From this state, a transi-
tion (trans(v0, v1)) has to be taken to a state that is not part of K (¬K(v1)). One
of the following states has to be part of K again (

∨n
i=2 K(vi)). For all states it has

to hold that as long as a state is not part of K, a transition is taken to another
state (¬K(vj) → trans(vj , vj+1)). As soon as a state is inside K, all following
variables are assigned the same values creating an implicit self-loop on this state
(K(vj−1) → vj = vj+1). For more technical details such as the handling of the
initial path starting in the initial state sinit and ending in a target state or how
to actually form the set K, we refer to the original publications. In addition, a
heuristic was given guiding the SAT solver to assign variables such that more
probable paths are found.

Symbolic Graph Search. In Section 4.1 we described how the k shortest path
search was implemented symbolically [21]. The key ingredients were a symbolic
version of Dijkstra’s shortest path, called flooding Dijkstra, and the method
Change(P̂ , Î, T̂ , SP) which transformed the input system given by P̂ , Î and T̂
with respect to the current shortest path SP such that SP is not found any
more by the flooding Dijkstra. Instead, the second most probable path in the
context of the original system is returned in this modified system. This process
is iterated until the sufficient number of paths is achieved. For the shortest path
algorithm we write

ShortestPath(P̂, Î, T̂)

for paths that have transitions out of P̂ , start in Î and end in T̂ .
Although this is conceptually working, the transition MTBDD P̂ is basically

doubled in each step by the graph transformation. This causes an exponen-
tial blow-up of the MTBDD-size which renders this approach not applicable for
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relevant benchmarks. Therefore, a straightforward adaption to the generation of
critical subsystems is not feasible.

In modification called the adaptive global search, the method for changing the
graph was used in a different way. Instead of incrementally changing the system
according to the current shortest path, in each step the original system (P̂ , Î, T̂ )
is transformed such that the new shortest path will have only states that are not
already part of SubSys:

(P̂ , Î, T̂ ) := Change(P̂ , Î, T̂ , SubSys)

Thereby, the size of the system only increases linearly in each step. Additionally,
the flooding Dijkstra computes not only one shortest path but actually the set of
all shortest paths that have the same probability and length. All of these paths
are added to the current subsystem at once. If the probability mass is exceeded
extensively, the adaptive algorithm performs a backtracking.

An adaption of the fragment search to symbolic graph algorithms was also
done. Consider a BDD SubSysStates which represents the states of the current
subsystem. Then, in every iteration the shortest path starting and ending in
states of the subsystem via transitions from the original system without the
subsystem is computed:

ShortestPath(P̂ \ SubSys, SubSysStates, SubSysStates)

These symbolic graph algorithms enabled the generation of counterexamples for
input DTMCs with billions of states in their explicit representation.

Compact Representations. Based on a hierarchical SCC abstraction pre-
sented in [66], the authors of [29] proposed a method for generating hierarchical
counterexamples for DTMCs. The starting point is an abstract model, for which
a critical subsystem is computed (in [29] the local and global search from Sec-
tion 5.1 are used, but any other approach could be also applied). In order to
explore the system in more detail, important parts of the critical subsystem can
be concretized and, to reduce its size, in this concretized system again a criti-
cal subsystem can be determined. This allows to search for counterexamples on
very large input graphs, as the abstract input systems are both very small and
simply structured. As concretization up to the original system can be done only
in certain parts of interest, no information is lost while only a fraction of the
whole system has to be explored.

We first describe the basic idea of the SCC abstraction from [66], which can
also be used for model checking. The underlying graph of the DTMC gets hi-
erarchically decomposed first into its SCCs, then the SCCs into sub-SCCs not
containing the input states and so on, until at the inner-most levels no further
non-trivial sub-SCCs exist.

Example 30. The hierarchical SCC decomposition of the DTMC in Figure 2 on
page 80 is illustrated in Figure 12, where the SCCs and sub-SCCs are indicated
by rectangles. When neglecting its input states, the SCC S1 = {s1, s2, s4} does
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Fig. 12. The SCC decomposition of a DTMC D (cf. Example 30)

not have any sub-SCCs. The SCC S2 = {s5, s6, s7} contains a sub-SCC S2.1 =
{s6, s7} ⊆ S2. �

In a bottom-up traversal starting at the inner-most sub-SCCs, the reach-
ability probabilities pabs(s, s

′) from each input state s to each output state
s′ inside the given sub-SCC are computed by utilizing certain properties of
DTMCs. This computation was inspired by the work of Andrés, D’Argenio and
van Rossum [24]. All non-input nodes and all transitions inside the sub-SCC
are removed and abstract transitions are added from each input state s to each
output state s′ carrying the whole probability mass pabs(s, s

′). Note that the
probability to reach target states from the initial state in the resulting DTMC
equals the probability in the DTMC before the transformation.

Example 31. Consider the hierarchically decomposed DTMC D in Figure 12. In
Figure 13(a), the abstraction of the sub-SCC S2.1 is shown. Basically, the sub-
SCC is abstracted by a single abstract state s6. We denote such abstract states
by a rectangular shape, and abstract transitions by thick lines. The abstract
probabilities are:

pabs(s6, s3) = 4/7 pabs(s6, s5) = 1/7 pabs(s6, s8) = 2/7 .

At the next outer level, now the SCC S2 can be abstracted. After abstracting
also SCC S1, an acyclic graph remains which is depicted in Figure 13(b). Note
that SCC S1 results in two abstract states as it has two input states, i. e., states
that have an incoming transitions from outside the SCC.

It is easy to compute the abstract probabilities therein, e. g., by solving the
simple linear equation system as explained in Section 2. The resulting abstract
graph is depicted in Figure 13(c). Here, only transitions from the initial state
s0 to all absorbing states including the target state s3 are contained. As this
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Fig. 13. SCC-based model checking (cf. Example 31)

corresponds to the probability of reaching state s3 in the original DTMC D, we
have the model checking result for the reachability property:

PrD
(
♦{s3}

)
= pabs(s1, s3) = 11/12 ≈ 0.9167 .

�

The key idea of the hierarchical counterexample generation is now to start
the search on the abstract graph. Following the general procedure as depicted in
Figure 8, states are collected using path search algorithms until the subsystem
has enough probability mass to be critical. If the resulting critical subsystem
gives enough debugging information, the process terminates, otherwise certain
abstract states, i. e., abstracted SCCs or sub-SCCs, inside the abstract critical
subsystem can be concretized with respect to the former SCC abstraction and
a new search can be started on this more detailed system. The choice of one or
more states to be concretized can either be done interactively by user input or
guided by certain heuristics.
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(b) DTMC D after concretization of s6

Fig. 14. Concretizing state s6 (cf. Example 32)

Example 32. To explain the procedure of concretizing states, consider a partially
abstracted version of the DTMC from Figure 12 depicted in Figure 14(a), where
states s0 and s5 are concretized, but s1, s2 and s6 are still abstract. Assume
now, s6 is chosen to be concretized. All abstract transitions leaving s6 are re-
moved and the SCC which was abstracted by them is inserted. The result of the
concretization step is depicted in Figure 14(b). �

5.2 Critical Subsystems for PAs

Let M = (S, sinit,Act, P̂ , L) be a PA and P≤λ(♦T ) be a reachability property
which is violated by M. We want to compute a smallest critical subsystem for
PA, which is an NP-hard problem. The approach below [27] is formalized for
reachability properties, but it can be extended to ω-regular properties.

The main difference to DTMCs is that the MILP has to be enriched by the
computation of an appropriate scheduler. Please note that a scheduler that max-
imizes the reachability probability does not necessarily induce a DTMC having
a critical subsystem which is minimal among all critical subsystems of the PA.
Hence, we cannot compute a scheduler beforehand, but have to integrate the
scheduler computation into the MILP.

Doing so we have to take into account that, for some state s ∈ S, under some
schedulers the target states T can be unreachable from s, but reachable for other
schedulers. Such states are called problematic. Let

Sp = {s ∈ S | ∃σ ∈ SchedM : PrM
σ

s (♦T ) = 0}

be the set of all problematic states and let S+
p the set of all problematic

states and their successors. If s �∈ Sp then s is called unproblematic for T .
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A transition (α, μ) ∈ P̂ (s) for some s ∈ S is problematic if all its successor
states are problematic:

P̂p =
{
(s, α, μ) | (α, μ) ∈ P̂ (s) ∧ supp(μ) ⊆ Sp

}
.

Problematic states and transitions can be determined in linear time in the size
of the PA using standard graph algorithms [9].

As before, we need variables xs ∈ {0, 1} ⊆ Z and ps ∈ [0, 1]∩Q for each state
s ∈ S. Additionally we need variables σs,α,μ ∈ {0, 1} ⊆ Z for s ∈ S \ T and

(α, μ) ∈ P̂ (s) to encode the chosen scheduler. We have to add constraints which
ensure that from each selected problematic state s ∈ Sp a target state is reachable
within the selected subsystem. For this we need further variables: rs ∈ [0, 1]∩Q

for problematic states and their successors s ∈ S+
p , and ts,s′ ∈ {0, 1} ⊆ Z for

each pair (s, s′) such that there is (s, α, μ) ∈ P̂p with s′ ∈ supp(μ).
With these variables the MILP is given as follows:

minimize − 1

2
psinit +

∑
s∈S

xs (3a)

such that

psinit > λ (3b)

∀s ∈ T : ps = xs (3c)

∀s ∈ S \ T : ps ≤ xs (3d)

∀s ∈ S \ T :
∑

(α,μ)∈P̂ (s)

σs,α,μ = xs (3e)

∀s ∈ S \ T ∀(α, μ) ∈ P̂ (s) : ps ≤ (1 − σs,α,μ) +
∑

s′∈supp(μ)

μ(s′) · ps′ (3f)

∀(s, α, μ) ∈ P̂p ∀s′ ∈ supp(μ) : ts,s′ ≤ xs′ (3g)

∀(s, α, μ) ∈ P̂p ∀s′ ∈ supp(μ) : rs < rs′ + (1− ts,s′) (3h)

∀(s, α, μ) ∈ P̂p : (1 − σs,α,μ) +
∑

s′∈supp(μ)

ts,s′ ≥ xs . (3i)

The objective function (3a) and the constraints (3b), (3c), and (3d) are the
same as for DTMCs. Constraint (3e) takes care that the scheduler selects exactly
one pair (α, μ) ∈ P (s) for each state s ∈ S that is contained in the subsystem,
and none for states not in the subsystem. Constraint (3f) is the pendant to
constraint (2d) of the MILP for DTMCs. The difference is the term (1−σs,α,μ).
It ensures that the constraint is trivially satisfied for all transitions that are not
selected by the scheduler. The remaining constraints (3g)–(3i) take care that
from each problematic state a non-problematic (and therefore a target) state
is reachable within the selected subsystem. For details on these reachability
constraints we refer the reader to [61].

Example 33. Consider the same MDP in Figure 7 (page 92) and the reachability
property P≤0.75(♦{s4}) as in Example 23 (page 91). To compute a smallest
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critical subsystem, we first remove the irrelevant states s3 and s5 from the model.
Note that the resulting MDP has no problematic states. Since the considered
model is an MDP, for readability we write σs,α instead of σs,α,μ for the scheduler
choices in the following MILP formulation:

minimize − 1
2ps0 + (xs0 + xs1 + xs2 + xs4) such that

ps0 > 0.75

ps4 = xs4

ps0 ≤ xs0

ps1 ≤ xs1

ps2 ≤ xs2

σs0,α + σs0,β = xs0

σs1,τ = xs1

σs2,τ = xs2

ps0 ≤ (1− σs0,α) + ps1
ps0 ≤ (1− σs0,β) + ps2
ps1 ≤ (1− σs1,τ ) + 0.4ps0 + 0.5ps4
ps2 ≤ (1− σs2,τ ) + 0.5ps0 + 0.4ps4

The assignment mapping (i) 1 to xs0 , xs1 , xs4 , ps4 , σs0,α and σs1,τ , (ii) 5/6 ≈
0.83 to ps0 and ps1 , and (iii) 0 to all other variables is a solution to the above
constraint system, specifying a scheduler choosing action α in state s0, and
determining a smallest critical subsystem of the induced DTMC with state set
{s0, s1, s4}. �

Example 34. To illustrate the need for the special handling of problematic states,
consider again the example MDP in Figure 7 on page 92, but assume that at
state s0 there would be an additional distribution with action γ, looping on s0
with probability 1.

Without the constraints (3g)–(3i), the assignment mapping (i) 1 to xs0 , ps0
and σs0,γ and (ii) 0 to all other variables would satisfy the remaining MILP
constraints, however, it would specify a subsystem containing the single state
s0, i. e., having the probability 0 to reach the target state s4.

The MILP with the constraints (3g)–(3i) exclude this possibility. Intuitively,
(3g)–(3i) exclude subsystems that have a bottom SCC containing problematic
states only. �

6 Description-Language-Based Counterexamples

Typically, probabilistic models are not explicitly given at the state space level,
but rather in a symbolic format that is able to succinctly capture large and
complex system behavior.

Prism’s Guarded Command Language. One example of such a symbolic
modeling formalism is the guarded-command language employed by the
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well-known probabilistic model checker Prism [12]. It is a stochastic variant of
Alur and Henzinger’s reactive modules [33].

In this language, a probabilistic program consists of a set of modules. Each
module declares a set of module variables and a set of guarded commands. A
module has read and write access to its own variables, but only read access to
the variables of other modules. The guarded commands have the form

[α] g → p1 : f1 + . . . + pn : fn

where α is a command label being either an action name or τ , the guard g is
a predicate over the variables in the program, fi are the variable update func-
tions that specify how the values of the module’s variables are changed by the
command, and the pi are the probabilities with which the corresponding updates
happen. A command with action label τ is executed asynchronously in the sense
that no other command is executed simultaneously. In contrast, commands la-
beled with an action name α �= τ synchronize with all other modules that also
have a command with this label, i. e., each of them executes a command with
label α simultaneously.

Example 35. The top of Figure 15 shows an example guarded-command pro-
gram in Prism’s input language. The program involves two modules coin and
processor.

Initially the module coin can (asynchronously) do a coin flip (command c1).
The variable f stores the fact whether the coin has been already flipped (f = 1)
or not (f = 0). After the coin flip, the variable c stores whether the coin shows
tails (c = 0) or heads (c = 1)

After the coin flip, both modules can process some data by synchronizing
on the proc action (c3 and c4). The variable p is used to make a bookkeeping
whether processing has taken place (p = 1) or not (p = 0). However, the pro-
cessing step can by mistake set the coin to show heads with probability 0.01
(c3).

Additionally, if the coin is flipped and it shows tails, the coin flip can be
undone by the synchronizing reset action (c2 and c6), leading the system back
to its initial state.

Finally, if data has been processed the system may loop forever (c5). �

Several modules can be casted to a single module using parallel composition.
The variable set of the composition is the union of the variable sets of the com-
posed modules. Each non-synchronizing command is also a command in the
composition. For each combination of synchronizing commands, the composi-
tion contains a single command whose guard is the conjunction of the involved
guards, and whose updates are all possible combinations of joint updates with
the product of the involved probabilities.

Example 36. The parallel composition of the two modules of the example prob-
abilistic program at the top of Figure 15 is given at the bottom of the same
figure. �
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module coin

f : bool init 0; c: bool init 0;
(c1)[τ] ¬f → 0.5 : (f ′ = 1)&(c′ = 1) + 0.5 : (f ′ = 1)&(c′ = 0);
(c2)[reset] f ∧ ¬c → 1 : (f ′ = 0);
(c3)[proc] f → 0.99 : (f ′ = 1) + 0.01 : (c′ = 1);

endmodule
module processor

p: bool init 0;
(c4)[proc] ¬p → 1 : (p′ = 1);
(c5)[τ] p → 1 : (p′ = 1);
(c6)[reset] true → 1 : (p′ = 0)

endmodule

module coin ‖ processor
f : bool init 0; c: bool init 0; p: bool init 0;

(ĉ1)[τ] ¬f → 0.5 : (f ′ = 1)&(c′ = 1) + 0.5 : (f ′ = 1)&(c′ = 0);
(ĉ2)[reset] f ∧ ¬c → 1 : (f ′ = 0)&(p′ = 0);
(ĉ3)[proc] f ∧ ¬p → 0.99 : (f ′ = 1)&(p′ = 1) + 0.01 : (c′ = 1)&(p′ = 1);
(ĉ4)[τ] p → 1 : (p′ = 1);

endmodule

Fig. 15. Top: The probabilistic program from Example 35, specified in Prism’s
guarded-command language; Bottom: The parallel composition of the two modules

The semantics of a module is given in terms of a probabilistic automaton [47].
The state space of the automaton is the set of all valuations of the variables
that appear in the program. The transitions between states are determined by
the module’s commands. More specifically, for every state and every guarded
command with label α whose guard evaluates to true in the given state, the
transition relation contains a pair (α, μ) such that μ defines for each update a
transition to the state after the update with the probability of the update.

Example 37. The (reachable part of the) probabilistic automaton specifying the
meaning of the probabilistic program in Figure 15 is depicted in Figure 16.

Note that the coin will finally show heads with probability 1 for all schedulers
which choose the reset action with a non-zero probability if it is enabled. This
behavior can be modified by, e. g., defining a scheduler with memory, which
bounds the number of reset executions by some finite bound. �

A probabilistic program satisfies a reachability property iff the PA specifying
its semantics does so. Thus explanations for the violation could be given by path-
and subsystem-based counterexamples at the state-space level. However, such
counterexamples tend to be too large and structureless to be easily interpretable
in the probabilistic program, and therefore they are not well suited to help the
designer to eliminate the unwanted behavior at the command level of modules.

Therefore, [34] proposed to naturally extend the computation of smallest crit-
ical subsystems to probabilistic programs by determining a subset of the com-
mands that gives rise to a sub-PA that still violates the property in question.
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Fig. 16. The PA specifying the semantics of the probabilistic program in Figure 15 (cf.
Example 37)

More precisely, the task is to compute a minimal number of commands such that
the reachability probability in the semantics of the restricted program exceeds
the threshold λ. Moreover, we aim at finding a smallest critical command set
which maximizes the reachability probability under all subsets of the commands.
It thus acts as a counterexample by pointing to a set of commands that already
generate erroneous behavior. Additionally, to increase usefulness, the commands
in a smallest critical command set can be further reduced by removing some of
their update branches without which the property is still violated.

Example 38. Consider our example probabilistic program from Figure 15 and
a reachability property P≤λ

(
♦{s4}

)
(where s4 describes the state in which all

variables evaluate to 1).
If 0 < λ < 0.5, at the level of the composed module coin‖ processor (at the

bottom of Figure 15), the commands ĉ1 and ĉ3 would build a smallest critical
command set. At the level of the modules coin and processor, we need to
include c1, c3 and c4.

For λ ≥ 0.5, a smallest critical command set would be {ĉ1, ĉ2, ĉ3} at the
composed level coin‖ processor. At the level of the modules, we can only
exclude c5. �

Linear Programming Approach. In [34], the authors show the problem of
finding a smallest critical command set to be NP-hard and present a mixed
integer linear programming (MILP) approach to solve it. The basic idea is to
describe the PA semantics of a smallest critical command set of a probabilistic
program, together with a maximal scheduler, by an MILP formulation. This
MILP formulation can be disposed to a state-of-the-art MILP solver to get an
optimal solution.

Assume a probabilistic program and let M = (S, sinit,Act, P̂ , L) be the PA
generated by it after removing all irrelevant states, and assume that the reach-
ability property P≤λ(♦T ) is violated by M. For each state s ∈ S and transition
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(α, μ) ∈ P̂ (s) let L(s, α, μ) denote the set of commands that generate the given
transition.4 Note that in case of synchronization several commands together
create a certain transition.

The idea to encode the selection of smallest critical command sets as an
MILP problem is similar to the MILP encoding of smallest critical subsystems
for PAs (see Section 5.1). However, now we want to select a minimal number of
commands of a probabilistic program instead of a minimal number of states of a
PA. The selected commands should induce a PA, for which there is a memoryless
deterministic scheduler inducing a critical subsystem of the PA.

Additionally to the variables used for the smallest critical subsystem encoding
for PAs, we encode the selection of a smallest critical command set using a
variable xc ∈ {0, 1} for each command c, which is 1 iff c is part of the smallest
critical command set. Using these variables, the MILP for a smallest critical
command set is as follows:

minimize − 1

2
· psinit +

∑
c

xc (4a)

such that

psinit > λ (4b)

∀s ∈ S \ T :
∑

(α,μ)∈P (s)

σs,α,μ ≤ 1 (4c)

∀s ∈ S ∀(α, μ) ∈ P (s) ∀c ∈ L(s, α, μ) : xc ≥ σs,α,μ (4d)

∀s ∈ T : ps = 1 (4e)

∀s ∈ S \ T : ps ≤
∑

(α,μ)∈P (s)

σs,α,μ (4f)

∀s ∈ S \ T ∀(α, μ) ∈ P (s) : ps ≤
∑

s′∈supp(μ)

μ(s′) · ps′ + (1 − σs,α,μ)

(4g)

∀(s, α, μ) ∈ P̂p : σs,α,μ ≤
∑

s′∈supp(μ)

ts,s′ (4h)

∀s ∈ Sp ∀(α, μ) ∈ P (s) ∀s′ ∈ supp(μ) : rs < rs′ + (1− ts,s′) . (4i)

By (4b) we ensure that the the subsystem induced by the selected scheduler
is critical. For reachability properties, we can restrict ourselves to memoryless
deterministic schedulers. So for each state at most one action-distribution pair is
selected by the scheduler (4c). Note that there may be states where no such pair is
chosen, which we call deadlocking. If the scheduler selects an action-distribution
pair, all commands involved in its generation have to be chosen (4d). For all
target states s ∈ T the probability ps is set to 1 (4e), while the probability is set

4 If several command sets generate the same transition, we make copies of the transi-
tion.
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to zero for all deadlocking non-target states (4f). Constraint (4g) is responsible
for assigning a valid probability to ps under the selected scheduler. The constraint
is trivially satisfied if σs,α,μ = 0. If (α, μ) is selected, the probability ps is bounded
from above by the probability to go to one of the successor states of (α, μ) and
to reach the target states from there.

For non-deadlocking problematic states, the reachability of at least one un-
problematic state is ensured by (4h) and (4i). First, for every state s with a
selected (α, μ) that is problematic regarding T , at least one transition variable
must be activated. Second, for a path according to these transition variables,
an increasing order is enforced for the problematic states. Because of this order,
no problematic states can be revisited on an increasing path which enforces the
final reachability of a non-problematic or deadlocking state.

These constraints enforce that each satisfying assignment corresponds to a
critical command set. By minimizing the number of the selected commands we
obtain a size-minimal critical command set. By the additional term − 1

2 ·psinit we
obtain a smallest critical command set. The coefficient − 1

2 is needed to ensure
that the benefit from maximizing the probability is smaller than the loss by
adding an additional command.

Example 39. We want to compute a smallest critical command set for the ex-
ample probabilistic program in Figure 15 and P≤0.4

(
♦{s4}

)
. Since the induced

PA is an MDP, for readability we write σs,α instead of σs,α,μ for the scheduler
choices in the following MILP formulation:

minimize − 1
2psinit + (xc1 + xc2 + xc3 + xc4 + xc5 + xc6) such that

psinit > 0.4

σsinit,τ ≤ 1
σs1,proc + σs1,reset ≤ 1
σs2,proc ≤ 1
σs3,reset + σs3,τ ≤ 1

σsinit,τ ≤ xc1 σs2,proc ≤ xc3

σs1,proc ≤ xc3 σs2,proc ≤ xc4

σs1,proc ≤ xc4 σs3,reset ≤ xc2

σs1,reset ≤ xc2 σs3,reset ≤ xc6

σs1,reset ≤ xc6 σs3,τ ≤ xc5

ps4 = 1

psinit ≤ σsinit,τ

ps1 ≤ σs1,proc + σs1,reset

ps2 ≤ σs2,proc

ps3 ≤ σs3,reset + σs3,τ

psinit ≤ 0.5ps1 + 0.5ps2 + (1− σsinit,τ )
ps1 ≤ 0.99ps3 + 0.01ps4 + (1− σs1,proc)
ps1 ≤ psinit + (1− σs1,reset)
ps2 ≤ ps4 + (1− σs2,proc)
ps3 ≤ psinit + (1− σs3,reset)
ps3 ≤ ps3 + (1− σs3,τ )

σs3,τ ≤ ts3,s3
rs3 < rs3 + (1− ts3,s3)
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It is easy to check that the assignment mapping 1 to σsinit,τ , σs2,proc, xc1 , xc3 , xc4

and ps4 , 0.5 to psinit and ps2 , and 0 to all other variables is a satisfying solution,
encoding the smallest critical command set {c1, c3, c4}. �

7 Tools and Implementations

In this section we give a short overview on public tools and prototype implemen-
tations for some of the approaches that were presented in this paper. We report
on the scalability of the different approaches as far as there were comparisons
made in the corresponding papers. We first present the publicly available tools.

7.1 DiPro — A Tool for Probabilistic Counterexample Generation

DiPro [36] was the first official tool for the counterexample generation of prob-
abilistic systems. Basically, most of the implemented approaches are based on
variations of best-first search. An extended best-first search is used to generate
critical subsystems of DTMCs and CTMCs, see Section 5 and the corresponding
paper [30]. Moreover a K∗ search [67] for finding the k most probable paths of
a DTMC together with some optimizations is implemented, see Section 4. Fi-
nally, DiPro is able to compute a path-based counterexample together with a
scheduler for MDPs, see Section 5 and [25].

Technically, the best-first search approaches of DiPro are implemented using
the simulation engine of a previous version of the probabilistic model checker
Prism [12]. Thereby, the state space is built incrementally and in many cases
not to its full extend. That enables the generation of counterexamples for rather
large graphs for many benchmarks.

In order to help the user understand the process of finding a counterexam-
ple, the tool offers a graphical user interface [60] where the search process is
illustrated.

7.2 COMICS — Computing Smallest Counterexamples for DTMCs

COMICS [37] implements the approaches of [29], namely the hierarchical coun-
terexample generation and the two search approaches called global search and
local search, see Section 5. The core functionality is to offer the computation of
counterexamples for reachability properties of DTMCs either automatically or
user-guided. A graphical user-interface offers to depict every stage of the hier-
archical counterexample generation. The user can interactively choose certain
states of interest to be concretized, while there are also several heuristics avail-
able to automate this choice. Furthermore, several heuristics can be used for
the search process, e. g., how many states to concretize in one step or how often
model checking is performed. Moreover, the tool has a mere command-line ver-
sion in order to perform benchmarking. It is always possible to compute smallest
critical subsystems without the hierarchical concretization. Finally, the k short-
est path approach, see Section 4 and [17], was implemented in order to provide
comparisons regarding scalability.



116 E. Ábrahám et al.

7.3 Other Implementations

Basically, we did not have access to the implementations on foreign approaches
as presented in this paper.

We are able to report on the implementations of the several approaches con-
cerning the computation of smallest critical subsystems, see Sections 5 and 6.
Parts of these implementations are summarized in a tool called LTLSubsys.
The high-level approaches are mainly implemented into the framework of a suc-
cessor of the probabilistic model checker MRMC [13]. These still prototypical
implementations utilize the SMT-solver Z3 [68] and the MILP solvers SCIP [69],
CPLEX [70] and GUROBI [71].

Moreover, we describe the scalability of the approaches to symbolic counterex-
ample generation, see Section 5 and the publications [31, 32].

7.4 Comparison of the Tools

We will now shortly report on comparisons of DiPro, COMICS and LTLSub-

sys that were made in previous publications.
First, COMICS and DiPro were directly compared for reachability prop-

erties of DTMCs in [32, 37, 61]. Summarizing the results we observe that for
benchmarks with up to one million states COMICS performs better in terms
of running times and of the size of the generated subsystem. However, for larger
benchmarks DiPro might be the better choice, as the state space is generated
on the fly. Thus, if the critical subsystem generated by DiPro is of moderate
size, a result is obtained even for very large graphs. Please keep in mind that
each tool has its own advantages such as the animated search process of DiPro

or the user-guided hierarchical counterexample search of COMICS.
LTLSubsys was compared to both publicly available tools in [61]. In terms

of running times, the creation of a smallest critical subsystem is almost always
worse than the heuristical tools. In terms of the system size, LTLSubsys nat-
urally always generates the smallest possible critical subsystem. For the bench-
marks tested in the paper, the local search approach in some cases generated
critical subsystems that were only around 10% larger than the actual minimal
subsystem while the running time was considerably lower. Note finally, that
within an MILP solver such as GUROBI, an intermediate solution and a lower
bound on the value of the optimal solution is maintained at every time. In many
cases, the minimal solution is obtained within seconds while it is a very hard
case to actually prove minimality. Thereby, if the intermediate result is already
sufficiently small, the search process can be stopped at any time.

The symbolic counterexample generation based on graph algorithms as
presented in [32] and Section 5 was compared to COMICS and DiPro. As
expected, on smaller benchmarks the other tools perform better in terms of
running times. The size of the subsystems was comparable to the results as ob-
tained by COMICS as the same approaches were used only on the one hand
for explicit graph representations and on the other hand for symbolic graph rep-
resentations. For benchmarks with millions of states, DiPro and the symbolic
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algorithms were the only ones to obtain results while the latter obtained better
running times the larger the benchmarks were. Finally, the symbolic algorithms
were able to generate counterexamples for systems with billions of states while
all other approaches failed.

8 Conclusion

This paper surveyed state-of-the-art methods for counterexample generation for
discrete-time Markov models. Three techniques have been covered: path-based
representations, minimal critical subsystems, and high-level representations of
counterexamples. In addition to techniques using explicit model representations,
we addressed methods that use symbolic BDD-based model representations and
symbolic computations.

It is fair to say, that probabilistic counterexamples are still at their infancy.
Although dedicated tools such as DiPro and Comics support (some of) the
techniques presented in this survey, the integration into mainstream probabilistic
model checkers is still open. This could make the usage of probabilistic counterex-
amples more popular in other application domains like, e. g., robotics or security.
Besides, it is a challenging task to consider counterexamples for continuous-time
or hybrid probabilistic models, in particular for time-constrained reachability
properties.
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generation for markov chains using SMT-based bounded model checking. In: Bruni,
R., Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 75–89. Springer,
Heidelberg (2011)

21. Günther, M., Schuster, J., Siegle, M.: Symbolic calculation of k-shortest paths
and related measures with the stochastic process algebra tool Caspa. In: Proc. of
DYADEM-FTS, pp. 13–18. ACM Press (2010)

22. Damman, B., Han, T., Katoen, J.P.: Regular expressions for PCTL counterexam-
ples. In: Proc. of QEST, pp. 179–188. IEEE Computer Society Press (2008)

23. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005)

24. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexam-
ples in probabilistic model checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008.
LNCS, vol. 5394, pp. 129–148. Springer, Heidelberg (2009)

25. Aljazzar, H., Leue, S.: Generation of counterexamples for model checking of Markov
decision processes. In: Proc. of QEST, pp. 197–206. IEEE Computer Society Press
(2009)

26. Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement
framework for Markov decision processes. ACM Transactions on Computational
Logic 12(1), 1–45 (2010)
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Abstract. Recently we introduced an abstraction method for parame-
terized model checking of threshold-based fault-tolerant distributed al-
gorithms. We showed how to verify distributed algorithms without fixing
the size of the system a priori. As is the case for many other published ab-
straction techniques, transferring the theory into a running tool is a chal-
lenge. It requires understanding of several verification techniques such as
parametric data and counter abstraction, finite state model checking and
abstraction refinement. In the resulting framework, all these techniques
should interact in order to achieve a possibly high degree of automation.
In this tutorial we use the core of a fault-tolerant distributed broadcast-
ing algorithm as a case study to explain the concepts of our abstraction
techniques, and discuss how they can be implemented.

1 Introduction

Distributed systems are crucial for today’s computing applications, as they en-
able us to increase performance and reliability of computer systems, enable com-
munication between users and computers that are geographically distributed, or
allow us to provide computing services that can be accessed over the Internet.
Distributed systems allow us to achieve that by the use of distributed algo-
rithms. In fact, distributed algorithms have been studied extensively in the liter-
ature [62,11], and the central problems are well-understood. They differ from the
fundamental problems in sequential (that is, non-distributed) systems. The cen-
tral problems in distributed systems are posed by the inevitable uncertainty of
any local view of the global system state, originating in unknown/varying proces-
sor speeds, communication delays, and failures. Pivotal services in distributed
systems, such as mutual exclusion, routing, consensus, clock synchronization,
leader election, atomic broadcasting, and replicated state machines, must hence
be designed to cope with this uncertainty.

As we increasingly depend on the correct operation of distributed systems,
the ability to cope with failures becomes particularly crucial. To do so, one ac-
tually has to address two problem areas. On the one hand, one has to design
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algorithms that can deal with partial failure that is outside the control of a
system designer. Typical examples are temporary disconnections of the network
(e.g., due to mobility), power outages, bit-flips due to radiation in space, or
hardware faults. On the other hand, we have to prevent, or rather find and re-
move, design faults, which are often termed as bugs. The former area of fault
tolerance is classically addressed by means of replication and fault-tolerant dis-
tributed algorithms [62,11,25], while the latter is dealt with by rigorous software
engineering methods such as model checking [31,12,47]. In order to maximize
the reliability, one should deploy fault-tolerant distributed algorithms that have
been verified.

We prefer model checking to verification using proof checkers such as PVS
or Isabelle, as model checking promises a higher degree of automation, and still
allows us to verify designs and implementation. Testing, on the other hand,
can be completely automated and it allows us to validate large systems. How-
ever, there are still many research challenges in testing of distributed systems,
and in general, testing suffers from being incomplete. Hence, model checking
strikes a good balance between automatization and completeness. In verification
of fault-tolerant distributed algorithms we are not looking for a push-button
technology: First, as we will see below, distributed algorithms are naturally pa-
rameterized, and parameterized model checking is undecidable even for very
simple systems [10,77]. Second, distributed algorithms are typically only given
in natural language or pseudo code. Hence, in contrast to software model check-
ing where the input is given as a program in, e.g., C, currently the input for
the verification of distributed algorithms is not machine readable, and we re-
quire expert knowledge from the beginning. Finally, a method where the user
(or rather the system designer) guides the model checking tool is acceptable if
we can check automatically that the user input does not violate soundness.

Only very few fault-tolerant distributed algorithms have been automatically
verified. We think that this is because many aspects of distributed algorithms
still pose research challenges for model checking:

– The inherent concurrency and the uncertainty caused by partial failure lead
to many sources of non-determinism. Thus, fault-tolerant distributed algo-
rithms suffer from combinatorial explosion in the state-space and in the
number of behaviors.

– For many applications, the size of the distributed system, that is, the number
of participants is a priori unknown. Hence, the design and verification of
distributed algorithms should work for all system sizes. That is, distributed
systems are parameterized by construction.

– Distributed algorithms are typically only correct in certain environments,
e.g., when there is only a certain fraction of the processes faulty, when the
interleaving of steps is restricted, or when the message delays are bounded.

– Faults change the semantics of primitives (send, receive, FIFO, access ob-
ject), classic primitives such as handshake may be impossible or impractical
to implement.

– There is no commonly agreed-upon distributed computing model, but
rather many variants, which differ in subtle details. Moreover, distributed
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algorithms are usually described in pseudocode, typically using different (alas
unspecified) pseudocode languages, which obfuscates the relation to the un-
derlying computing model.

In this tutorial we discuss practical aspects of parameterized model checking of
fault-tolerant distributed algorithms. We use Srikanth and Toueg’s broadcasting
primitive [76] as a case study, and discuss various aspects using encodings in
Promela and Yices. The reader is thus expected to have basic knowledge of
of Spin and Yices [2,5,49,38].

Srikanth and Toueg’s broadcasting primitive is an example for threshold-
based fault-tolerant algorithms, and our methods are tailored for this kind of
distributed algorithms. We thus capture important mechanisms in distributed
algorithms like waiting for messages from a majority of processes. Section 2 con-
tains more detailed discussion on our motivations. We will discuss in detail the
formalization of such algorithms in a parametric variant of Promela in Section 3.
We then show in Section 4 how to use abstraction to reduce the parameterized
model checking problem to a finite state model checking problem, and discuss
how to deal with many practical issues that are due to abstraction. We show the
efficiency of our method by experimental evaluation in Section 6.

2 Context

2.1 Parameterized Model Checking

In its original formulation [30], Model Checking was concerned with efficient pro-
cedures for the evaluation of a temporal logic specification ϕ over a finite Kripke
structureK, i.e., decision procedures forK |= ϕ. Since K can be extremely large,
a multitude of logic-based algorithmic methods including symbolic verification
[64,18] and predicate abstraction [46] were developed to make this decidable
problem tractable for practical applications. Finite-state models are, however,
not always an adequate modeling formalism for software and hardware.

(i) Infinite-state models. Many programs and algorithms are naturally mod-
eled by unbounded variables such as integers, lists, stacks etc. Modern model
checkers are using predicate abstraction [46] in combination with SMT solvers
to reduce an infinite-state model I to a finite state model h(I) that is amenable
to finite state model checking. The construction of h assures soundness, i.e., for
a given specification logic such as ACTL∗, we can assure by construction that
h(I) |= ϕ implies I |= ϕ. The major drawback of abstraction is incompleteness:
if h(I) �|= ϕ then it does in general not follow that I �|= ϕ. (Note that ACTL∗

is not closed under negation.) Counterexample-guided abstraction refinement
(CEGAR) [27,13] addresses this problem by an adaptive procedure, which an-
alyzes the abstract counterexample for h(I) �|= ϕ on h(I) to find a concrete
counterexample or obtain a better abstraction h′(I). For abstraction to work in
practice, it is crucial that the abstract domain from which h and h′ are cho-
sen is tailored to the problem class and possibly the specification. Abstraction
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thus is a semi-decision procedure whose usefulness has to be demonstrated by
practical examples.

(ii) An orthogonal modeling and verification problem is parameterization:
Many software and hardware artifacts are naturally represented by an infinite
class of structures K = {K1,K2, . . . } rather than a single structure. Thus, the
verification question is ∀i.Ki |= ϕ, where i is called the parameter. In the most
important examples of this class, the parameter i is standing for the number of
replications of a concurrent component, e.g., the number of processes in a dis-
tributed algorithm, or the number of caches in a cache coherence protocol. It is
easy to see that even in the absence of concurrency, parameterized model check-
ing is undecidable [10]; more interestingly, undecidability even holds for networks
of constant size processes that are arranged in a ring and that exchange a single
token [77,41]. Although several approaches have been made to identify decidable
classes for parameterized verification [41,40,81], no decidable formalism has been
found which covers a reasonably large class of interesting problems. The diver-
sity of problem domains for parameterized verification and the difficulty of the
problem gave rise to many approaches including regular model checking [6] and
abstraction [70,28]— the method discussed here. The challenge in abstraction is
to find an abstraction h(K) such that h(K) |= ϕ implies Ki |= ϕ for all i.

Most of the previous research on parameterized model checking focused on
concurrent systems with n + c processes where n is the parameter and c is a
constant: n of the processes are identical copies; c processes represent the non-
replicated part of the system, e.g., cache directories, shared memory, dispatcher
processes etc. [45,50,65,28]. Most of the work on parameterized model checking
considers only safety. Notable exceptions are [56,70] where several notions of
fairness are considered in the context of abstraction to verify liveness.

2.2 Fault-Tolerant Distributed Algorithms

In this tutorial we are not aiming at the most general approach towards param-
eterized model checking, but we are addressing a very specific problem in the
field, namely, parameterized verification of fault-tolerant distributed algorithms
(FTDA). This work is part of an interdisciplinary effort by the authors to develop
a tool basis for the automated verification, and, in the long run, deployment of
FTDAs [51,57]. FTDAs constitute a core topic of the distributed algorithms
community with a rich body of results [62,11]. FTDAs are more difficult than
the standard setting of parameterized model checking because a certain num-
ber t of the n processes can be faulty. In the case of e.g. Byzantine faults, this
means that the faulty processes can send messages in an unrestricted manner.
Importantly, the upper bound t for the faulty processes is also a parameter, and
is essentially a fraction of n. The relationship between t and n is given by a
resilience condition, e.g., n > 3t. Thus, one has to reason about all systems with
n− f non-faulty and f faulty processes, where f ≤ t and n > 3t.

From a more operational viewpoint, FTDAs typically consist of multiple pro-
cesses that communicate by message passing over a completely connected com-
munication graph. Since a sender can be faulty, a receiver cannot wait for a
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message from a specific sender process. Therefore, most FTDAs use counters
to reason about their environment. If, for instance, a process receives a certain
message m from more than t distinct processes, it can conclude that at least one
of the senders is non-faulty. A large class of FTDAs [39,75,44,37,36] expresses
these counting arguments using threshold guards:

i f r e c e i v ed <m> from t+1 d i s t i n c t p r o c e s s e s
then act ion (m) ;

Note that threshold guards generalize existential and universal guards [40],
that is, rules that wait for messages from at least one or all processes, respectively.
As can be seen from the above example, and as discussed in [51], existential and
universal guards are not sufficient to capture advanced FTDAs.

2.3 The Formalization Problem

In the literature, the vast majority of distributed algorithms is described in
pseudo code, for instance, [75,8,79]. The intended semantics of the pseudo code
is folklore knowledge among the distributed computing community. Researchers
who have been working in this community have intuitive understanding of key-
words like “send”, “receive”, or “broadcast”. For instance, inside the community
it is understood that there is a semantical difference between “send to all” and
“broadcast” in the context of fault tolerance. Moreover, the constraints on the
environment are given in a rather informal way. For instance, in the authen-
ticated Byzantine model [39], it is assumed that faulty processes may behave
arbitrarily. At the same time, it is assumed that there is some authentication
service, which provides unbreakable digital signatures. In conclusion, it is thus
assumed that faulty processes send any messages they like, except ones that look
like messages sent by correct processes. However, inferring this kind of informa-
tion about the behavior of faulty processes is a very intricate task.

At the bottom line, a close familiarity with the distributed algorithms com-
munity is required to adequately model a distributed algorithm in preparation of
formal verification. When the essential conditions are hidden between the lines
of a research paper, then one cannot be sure that the algorithm being verified is
the one that is actually intended by the authors. With the current state of the
art, we are thus forced to do verification of a moving target.

We conclude that there is need for a versatile specification language which can
express distributed algorithms along with their environment. Such a language
should be natural for distributed algorithms researchers, but provide unambigu-
ous and clear semantics. Since distributed algorithms come with a wide range of
different assumptions, the language has to be easily configurable to these situ-
ations. Unfortunately, most verification tools do not provide sufficiently expres-
sive languages for this task. Thus, it is hard for researchers from the distributed
computing community to use these tools out of the box. Although distributed
algorithms are usually presented in a very compact form, the “language primi-
tives” (of pseudo code) are used without consideration of implementation issues
and computational complexity. For instance sets, and operations on sets are often
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used as they ease presentation of concepts to readers, although fixed size vectors
would be sufficient to express the algorithm and more efficient to implement.
Besides, it is not unusual to assume that any local computation on a node can
be completed within one step. Another example is the handling of messages. For
instance, how a process stores the messages that have been received in the past
is usually not explained in detail. At the same time, quite complex operations
are performed on this information.

2.4 Verified Fault-Tolerant Distributed Algorithms

Several distributed algorithms have been formally verified in the literature. Typ-
ically, these papers have addressed specific algorithms in fixed computational
models. There are roughly two lines of research. On the one hand, the semi-
manual proofs conducted with proof assistants that typically involve an enor-
mous amount of manual work by the user, and on the other hand automatic
verification, e.g., via model checking. Among the work using proof assistants,
Byzantine agreement in the synchronous case was considered in [61,73]. In the
context of the heard-of model with message corruption [15] Isabelle proofs are
given in [24]. For automatic verification, for instance, algorithms in the heard-of
model were verified by (bounded) model checking [78]. Partial order reductions
for a class of fault-tolerant distributed algorithms (with “quorum transitions”)
for fixed-size systems were introduced in [19]. A broadcasting algorithm for crash
faults was considered in [43] in the context of regular model checking; however,
the method has not been implemented so it is not clear how practical it is. In [9],
the safety of synchronous broadcasting algorithms that tolerate crash or send
omission faults has been verified. Another line of research studies decidability of
model checking of distributed systems under different link semantics [7,22].

Model checking of fault-tolerant distributed algorithms is usually limited to
small instances, i.e., to systems consisting of only few processes (e.g., 4 to 10).
However, distributed algorithms are typically designed for parameterized sys-
tems, i.e., for systems of arbitrary size. The model checking community has
created interesting results toward closing this gap, although it still remains a big
research challenge. For specific cache coherence protocols, substantial research
has been done on model checking safety properties for systems of arbitrary size,
for instance, [65,26,68]. Since these protocols are usually described via message
passing, they appear similar to asynchronous distributed algorithms. However,
issues such as faulty components and liveness are not considered in the litera-
ture. The verification of large concurrent systems by reasoning about suitable
small ones has also been considered [41,29,32,70].

3 Modeling Fault-Tolerant Distributed Algorithms

3.1 Threshold-Guarded Distributed Algorithms

Processes, which constitute the distributed algorithms we consider, exchange
messages, and change their state predominantly based on the received messages.
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In addition to the standard execution of actions, which are guarded by some
predicate on the local state, most basic distributed algorithms (cf. [62,11]) add
existentially or universally guarded commands involving received messages:

i f r e c e i v ed <m>
from some proce s s

then act ion (m) ;

(a) existential guard

i f r e c e i v ed <m>
from a l l p r o c e s s e s

then act ion (m) ;

(b) universal guard

Depending on the content of the message <m>, the function action performs
a local computation, and possibly sends messages to one or more processes. Such
constructs can be found, e.g., in (non-fault-tolerant) distributed algorithms for
constructing spanning trees, flooding, mutual exclusion, or network synchroniza-
tion [62]. Understanding and analyzing such distributed algorithms is already far
from being trivial, which is due to the partial information on the global state
present in the local state of a process. However, faults add another source of non-
determinism. In order to shed some light on the difficulties faced a distributed
algorithm in the presence of faults, consider Byzantine faults [69], which allow a
faulty process to behave arbitrarily: Faulty processes may fail to send messages,
send messages with erroneous values, or even send conflicting information to
different processes. In addition, faulty processes may even collaborate in order
to increase their adverse power.

Fault-tolerant distributed algorithms work in the presence of such faults and
provide some “higher level” service: In case of distributed agreement (or consen-
sus), e.g., this service is that all non-faulty processes compute the same result
even if some processes fail. Fault-tolerant distributed algorithms are hence used
for increasing the system-level reliability of distributed systems [71].

If one tries to build such a fault-tolerant distributed algorithm using the con-
struct of Example (a) in the presence of Byzantine faults, the (local state of
the) receiver process would be corrupted if the received message <m> originates
in a faulty process. A faulty process could hence contaminate a correct process.
On the other hand, if one tried to use the construct of Example (b), a correct
process would wait forever (starve) when a faulty process omits to send the
required message. To overcome those problems, fault-tolerant distributed algo-
rithms typically require assumptions on the maximum number of faults, and
employ suitable thresholds for the number of messages that can be expected
to be received by correct processes. Assuming that the system consists of n
processes among which at most t may be faulty, threshold-guarded commands
such as the following are typically used in fault-tolerant distributed algorithms:

i f r e c e i v ed <m> from n−t d i s t i n c t p r o c e s s e s
then act ion (m) ;

Assuming that thresholds are functions of the parameters n and t, threshold
guards are just a generalization of quantified guards as given in Examples (a)
and (b): In the above command, a process waits to receive n− t messages from
distinct processes. As there are at least n− t correct processes, the guard cannot
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be blocked by faulty processes, which avoids the problems of Example (b). In
the distributed algorithms literature, one finds a variety of different thresholds:
Typical numbers are �n/2+1� (for majority [39,67]), t+1 (to wait for a message
from at least one correct process [76,39]), or n− t (in the Byzantine case [76,8]
to wait for at least t+ 1 messages from correct processes, provided n > 3t).

In the setting of Byzantine fault tolerance, it is important to note that the
use of threshold-guarded commands implicitly rests on the assumption that a
receiver can distinguish messages from different senders. This can be achieved,
e.g., by using point-to-point links between processes or by message authentica-
tion. What is important here is that Byzantine faulty processes are only allowed
to exercise control on their own messages and computations, but not on the
messages sent by other processes and the computation of other processes.

3.2 Reliable Broadcast and Related Specifications

The specifications considered in the field of fault tolerance differ from more
classic fields, such as concurrent systems where dining philosophers and mutual
exclusion are central problems. For the latter, one is typically interested in local
properties, e.g., if a philosopher i is hungry, then i eventually eats. Intuitively,
dining philosophers requires us to trace indexed processes along a computation,
e.g., in LTL, ∀i. G (hungryi → (F eatingi)), and thus to employ indexed temporal
logics for specifications [21,28,29,41].

In contrast, fault-tolerant distributed algorithms are typically used to achieve
global properties. Reliable broadcast is an ongoing “system service” with the
following informal specification: Each process i may invoke a primitive called
broadcast by calling bcast(i,m), where m is a unique message content. Processes
may deliver a message by invoking accept(i,m) for different process and message
pairs (i,m). The goal is that all correct processes invoke accept(i,m) for the same
set of (i,m) pairs, under some additional constraints: all messages broadcast by
correct processes must be accepted by all correct processes, and accept(i,m) may
not be invoked, unless i is faulty or i invoked bcast(i,m). Our case study is to
verify that the algorithm from [76] implements these primitives on top of point-
to-point channels, in the presence of Byzantine faults. In [76] the specifications
where given in natural language as follows:

(U) Unforgeability. If correct process i does not broadcast (i,m), then no
correct process ever accepts (i,m).

(C) Correctness. If correct process i broadcasts (i,m), then every correct pro-
cess accepts (i,m).

(R) Relay If a correct process accepts (i,m), then every other correct process
accepts (i,m).

In [76], the instances for different (i,m) pairs do not interfere. Therefore, we
will not consider i and m. Rather, we distinguish the different kinds of invoca-
tions of bcast(i,m) that may occur, e.g., the cases where the invoking process
is faulty or correct. As we focus on the core functionality, we do not model the



130 A. Gmeiner et al.

broadcaster explicit. We observe that correct broadcasters will either send to all,
or to no other correct processes. Hence, we model this by initial values V1 and
V0 at correct processes that we use to model whether a process has received the
message by the broadcaster or not, respectively. Then the precondition of cor-
rectness can be modeled that all correct processes initially have value V1, while
the precondition of unforgeability that all correct processes initially have value
V0. Depending on the initial state, we then have to check whether every/no cor-
rect process accepts (that is, changes the status to AC). To capture this kind of
properties, we have to trace only existentially or universally quantified proper-
ties, e.g., a part of the broadcast specification (relay) states that if some correct
process accepts a message, then all (correct) processes accept the message, that
is, G ((∃i. accepti) → F (∀j. acceptj)).

We are therefore considering a temporal logic where the quantification over
processes is restricted to propositional formulas. We will need two kinds of quan-
tified propositional formulas that consider (i) the finite control state modeled as a
single status variable sv , and (ii) the possible unbounded data. We introduce the
set APSV that contains propositions that capture comparison against some sta-
tus value Z from the set of all control states, i.e., [∀i. sv i = Z] and [∃i. sv i = Z].

This allows us to express specifications of distributed algorithms:

G ([∀i. sv i �= V1] → G [∀j. sv j �= AC]) (U)

G ([∀i. sv i = V1] → F [∃j. sv j = AC]) (C)

G ([∃i. sv i = AC] → F [∀j. sv j = AC]) (R)

We may quantify over all processes as we only explicitly model those processes
that follow their code, that is, correct or benign faulty processes. More severe
faults that are unrestricted in their internal behavior (e.g., Byzantine faults) are
modeled via non-determinism in message passing.

In order to express comparison of data variables, we add a set of atomic
propositions APD that capture comparison of data variables (integers) x, y,
and constant c; APD consists of propositions of the form [∃i. xi + c < yi]. The
labeling function of a system instance is then defined naturally as disjunction or
conjunction over all process indices.

Observe that the specifications (C) and (R) are conditional liveness proper-
ties. Intuitively, a process has to find out that the condition is satisfied a run,
and in distributed systems this is only possible by receiving messages. Specifi-
cation (C) can thus only be achieved if some messages are received. Indeed, the
algorithm in [76] is based on a property called reliable communication which
ensures that every message sent by a correct process to a correct process is
eventually received by the latter. Such properties can be expressed by justice re-
quirements [70], which is a specific form of fairness. We will express justice as an
LTL\X formula ψ over APD . Then, given an LTL\X specification ϕ over APSV ,
a process description P in Promela, and the number of (correct) processes N ,
the parameterized model checking problem is to verify whether

P ‖ P ‖ · · · ‖ P︸ ︷︷ ︸
Ntimes

|= ψ → ϕ.
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Algorithm 1. Core logic of the broadcasting algorithm from [76].

Code for processes i if it is correct:
Variables
1: vi ∈ {false,true}
2: accepti ∈ {false,true} ← false

Rules
3: if vi and not sent 〈echo〉 before then
4: send 〈echo〉 to all;
5: if received 〈echo〉 from at least t+ 1 distinct processes

and not sent 〈echo〉 before then
6: send 〈echo〉 to all;
7: if received 〈echo〉 from at least n− t distinct processes then
8: accepti ← true;

3.3 Threshold-Guarded Distributed Algorithms in Promela

Algorithm 1 is our case study for which we also provide a complete Promela

implementation later in Listing 3. To explain how we obtain this implementation,
we proceed in three steps where we first discuss asynchronous distributed algo-
rithms in general, then explain our encoding of message passing for threshold-
guarded fault-tolerant distributed algorithms. Algorithm 1 belongs to this class,
as it does not distinguish messages according to their senders, but just counts
received messages, and performs state transitions depending on the number of
received messages; e.g., line 7. Finally we encode the control flow of Algorithm 1.
The rationale of the modeling decisions are that the resulting Promela model
(i) captures the assumptions of distributed algorithms adequately, and (ii) allows
for efficient verification either using explicit state enumeration or by abstraction.

Computational Model for Asynchronous Distributed Algorithms. We
recall the standard assumptions for asynchronous distributed algorithms. A
system consists of n processes, out of which at most t may be faulty. When
considering a fixed computation, we denote by f the actual number of faulty
processes. Note that f is not “known” to the processes. It is assumed that
n > 3t∧ f ≤ t ∧ t > 0. Correct processes follow the algorithm, in that they take
steps that correspond to the algorithm. Between every pair of processes, there
is a bidirectional link over which messages are exchanged. A link contains two
message buffers, each being the receive buffer of one of the incident processes.

A step of a correct process is atomic and consists of the following three parts.
(i) The process possibly receives a message. A process is not forced to receive
a message even if there is one in its buffer [42]. (ii) Then, it performs a state
transition depending on its current state and the (possibly) received message.
(iii) Finally, a process may send at most one message to each process, that is, it
puts a message in the buffers of the other processes.

Computations are asynchronous in that the steps can be arbitrarily inter-
leaved, provided that each correct process takes an infinite number of steps.
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Algorithm 1 has runs that never accept and are infinite. Conceptually, the stan-
dard model requires that processes executing terminating algorithms loop forever
in terminal states [62]. Moreover, if a message m is put into process p’s buffer,
and p is correct, then m is eventually received. This property is called reliable
communication.

From the above discussion we observe that buffers are required to be un-
bounded, and thus sending is non-blocking. Further, the receive operation does
never block the execution; even if no message has been sent to the process. If we
assume that for each message type, each correct process sends at most one mes-
sage in each run (as in Algorithm 1), non-blocking send can in principle natively
be encoded in Promela using message channels. In principle, non-blocking re-
ceive also can be implemented in Promela, but it is not a basic construct. We
discuss the modeling of message passing in more detail in Section 3.3.

Fault types. In our case study Algorithm 1 we consider Byzantine faults, that
is, faulty processes are not restricted, except that they have no influence on the
buffers of links to which they are not incident. Below we also consider restricted
failure classes: omission faults follow the algorithm but may fail to send some
messages, crash faults follow the algorithm but may prematurely stop running.
Finally, symmetric faults need not follow the algorithm, but if they send mes-
sages, they send them to all processes. The latter restriction does not apply to
Byzantine faults which may send conflicting information to different processes.

Verification goal in the concrete (non-parameterized) case. Recall that there is
a condition on the parameters n, t, and f , namely, n > 3t ∧ f ≤ t ∧ t > 0. As
these parameters do not change during a run, they can be encoded as constants
in Promela. The verification problem for a distributed algorithm with fixed
n and t is then the composition of model checking problems that differ in the
actual value of f (satisfying f ≤ t).

Efficient Encoding of Message Passing. In threshold-guarded distributed
algorithms, the processes (i) count how many messages of the same type they
have received from distinct processes, and change their states depending on this
number, (ii) always send to all processes (including the sender), and (iii) send
messages only for a fixed number of types (only messages of type 〈echo〉 are sent
in Algorithm 1).

Fault-free communication. We discuss in the following that one can model such
algorithms in a way that is more efficient in comparison to a straightforward
implementation with Promela channels. In our final modeling we have an ap-
proach that captures both message passing and the influence of faults on correct
processes. However, in order not to clutter the presentation, we start our discus-
sion by considering communication between correct processes only (i.e., f = 0),
and add faults later in this section.

In the following code examples we show a straightforward way to implement
“received 〈echo〉 from at least x distinct processes” and “send 〈echo〉 to all”
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using Promela channels: We declare an array p2p of n2 channels, one per pair
of processes, and then we declare an array rx to record that at most one 〈echo〉
message from a process j is received by a process i:

mtype = { ECHO }; /∗ one message type ∗/
chan p2p[NxN] = [1] of { mtype }; /∗ channels o f s i z e 1 ∗/
bit rx[NxN]; /∗ a b i t map to implement ” d i s t i n c t ” ∗/
active[N] proctype STBcastChan() {

int i, nrcvd = 0; /∗ nr . o f echoes ∗/
Then, the receive code iterates over n channels: for non-empty channels it

receives an 〈echo〉 message or not, and empty channels are skipped; if a message
is received, the channel is marked in rx:

i = 0; do
:: (i < N) && nempty(p2p[i * N + _pid]) ->

p2p[i * N + _pid]?ECHO; /∗ r e t r i e v e a message ∗/
if
:: !rx[i * N + _pid] ->

rx[i * N + _pid] = 1; /∗ mark the channel ∗/
nrcvd++; break; /∗ rece i ve at most one message ∗/

:: rx[i * N + _pid]; /∗ i gnore dup l i c a t e s ∗/
fi; i++;

:: (i < N) ->
i++; /∗ channel i s empty or postpone recept ion ∗/

:: i == N -> break;
od

Finally, the sending code also iterates over n channels and sends on each:

for (i : 1 .. N) { p2p[_pid * N + i]!ECHO; }

Recall that threshold-guarded algorithms have specific constraints: messages
from all processes are processed uniformly; every message is carrying only a
message type without a process identifier; each process sends a message to all
processes in no particular order. This suggests a simpler modeling solution. In-
stead of using message passing directly, we keep only the numbers of sent and
received messages in integer variables:

int nsnt; /∗ one shared va r i a b l e per a message type ∗/
active[N] proctype STBcast() {
int nrcvd = 0, next_nrcvd = 0; /∗ nr . o f echoes ∗/
...

step: atomic {
if /∗ rece i ve one more echo ∗/

:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd; /∗ or nothing ∗/
fi;
...
nsnt++; /∗ send echo to a l l ∗/

}
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active[F] proctype Byz() {
step: atomic {

i = 0; do
:: i < N -> sendTo(i);i++;
:: i < N -> i++; /∗ sk i p ∗/
:: i == N -> break;

od
}; goto step;

}

active[F] proctype Omit() {
step: atomic {
/∗ rece i ve as a correc t ∗/
/∗ compute as a correc t ∗/
if :: correctCodeSendsAll ->
i = 0; do
:: i < N -> sendTo(i);i++;
:: i < N -> i++; /∗omit∗/
:: i == N -> break;

od
:: skip;

fi
}; goto step;

}

active[F] proctype Symm(){
step: atomic {
if
:: /∗ send to a l l ∗/

for (i : 1 .. N)
{ sendTo(i); }

:: skip; /∗ or none ∗/
fi

}; goto step;
}

active[F] proctype Clean(){
step: atomic {
/∗ rece i ve as a correc t ∗/
/∗ compute as a correc t ∗/
/∗ send as a correc t ∗/
};
if

:: goto step;
:: goto crash;

fi;
crash:
}

Fig. 1. Modeling faulty processes explicitly: Byzantine (Byz), symmetric (Symm),
omission (Omit), and clean crashes (Clean)

As one process step is executed atomically (indivisibly), concurrent reads and
updates of nsnt are not a concern to us. Note that the presented code is based
on the assumption that each correct process sends at most one message. We
show how to enforce this assumption when discussing the control flow of our
implementation of Algorithm 1 in Section 3.3.

Recall that in asynchronous distributed systems one assumes communica-
tion fairness, that is, every message sent is eventually received. The statement
∃i. rcvd i < nsnt describes a global state where messages are still in transit. It
follows that a formula ψ defined by

GF¬ [∃i. rcvd i < nsnt ] (RelComm)

states that the system periodically delivers all messages sent by (correct) pro-
cesses. We are thus going to add such fairness requirements to our specifications.

Faulty processes. In Figure 1 we show how one can model the different types of
faults (discussed on page 132) using channels. The implementations are direct
consequences of the fault types description. Figure 2 shows how the impact of
faults on processes following the algorithm can be implemented in the shared
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/∗ N > 3T ∧ T ≥ F ≥ 0 ∗/
active[N-F] proctype ByzI() {
step: atomic {

if
:: (next_nrcvd < nsnt + F)
-> next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N > 2T ∧ T ≥ F ≥ 0 ∗/
active[N] proctype OmitI() {
step: atomic {

if
:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

Listing 1.

/∗ N > 2T ∧ T ≥ Fp ≥ Fs ≥ 0 ∗/
active[N-Fp] proctype SymmI(){
step: atomic {

if
:: (next_nrcvd < nsnt + Fs)
-> next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N ≥ T ∧ T ≥ Fc ≥ Fnc ≥ 0 ∗/
active[N] proctype CleanI() {
step: atomic {

if
:: next_nrcvd < nsnt - Fnc
-> next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

Listing 2.

Fig. 2. Modeling the effect of faults on correct processes: Byzantine (ByzI), symmetric
(SymmI), omission (OmitI), and clean crashes (CleanI)

memory implementation of message passing. Note that in contrast to Figure 1,
the processes in Figure 2 are not the faulty ones, but correct ones whose variable
next nrcvd is subject to non-deterministic updates that correspond to the
impact of faulty process. For instance, in the Byzantine case, in addition to the
messages sent by correct processes, a process can receive up to f messages more.
This is expressed by the condition (next nrcvd < nsnt + F).

For Byzantine and symmetric faults we only model correct processes explic-
itly. Thus, we specify that there are N-F copies of the process. Moreover, we
can use Property (RelComm) to model reliable communication. Omission and
crash faults, however, we model explicitly, so that we have N copies of processes.
Without going into too much detail, the impact of faulty processes is modeled by
relaxed fairness requirements: as some messages sent by these f faulty processes
may not be received, this induces less strict communication fairness:

GF¬ [∃i. rcvd i + f < nsnt ]
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Fig. 3. Visited states (left) and memory usage (right) when modeling message passing
with channels (ch) or shared variables (var). The faults are in effect only when f > 0.
Ran with SAFETY, COLLAPSE, COMP, and 8GB of memory.

By similar adaptations one models, e.g., corrupted communication (e.g., due
to faulty links) [72], or hybrid fault models [16] that contain different fault sce-
narios.

Comparing Promela Encodings: Channels vs. Shared Variables. Fig-
ure 3 compares the number of states and memory consumption when modeling
message passing using both solutions. We ran Spin to perform exhaustive state
enumeration on the encoding of our case study algorithm in Listing 3. As one
sees, the model with explicit channels and faulty processes ran out of mem-
ory on six processes, whereas the shared memory model did so only with nine
processes. Moreover, the latter scales better in the presence of faults, while the
former degrades with faults. This leads to the use the shared memory encoding
based on nsnt variables. In addition, we have seen in the previous section that
this encoding is very natural for defining abstractions.

Encoding the Control Flow. Recall Algorithm 1 on page 131, which is writ-
ten in typical pseudocode found in the distributed algorithms literature. The
lines 3-8 describe one step of the algorithm. Receiving messages is implicit and
performed before line 3, and the actual sending of messages is deferred to the
end, and is performed after line 8.

We encoded the algorithm in Listing 3 using custom Promela extensions
to express notions of fault-tolerant distributed algorithms. The extensions are
required to express a parameterized model checking problem, and are used by
our tool that implements the abstraction methods introduced in [52]. These
extensions are only syntactic sugar when the parameters are fixed: symbolic is
used to declare parameters, and assume is used to impose resilience conditions
on them (but is ignored in explicit state model checking). Declarations atomic
<var> = all (...) are a shorthand for declaring atomic propositions that
are unfolded into conjunctions over all processes (similarly for some). Also we
allow expressions over parameters in the argument of active.
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1 symbolic int N, T, F; /∗ parameters ∗/
2 /∗ the r e s i l i e n c e condi t ion ∗/
3 assume(N > 3 * T && T >= 1 && 0 <= F && F <= T);
4 int nsnt; /∗ number of echoes sent by correc t processes ∗/
5 /∗ quan t i f i e d atomic propos i t i ons ∗/
6 atomic prec_unforg = all(STBcast:sv == V0);
7 atomic prec_corr = all(STBcast:sv == V1);
8 atomic prec_init = all(STBcast@step);
9 atomic ex_acc = some(STBcast:sv == AC);

10 atomic all_acc = all(STBcast:sv == AC);
11 atomic in_transit = some(STBcast:nrcvd < nsnt);
12

13 active[N - F] proctype STBcast() {
14 byte sv, next_sv; /∗ s t a tu s of the a lgor i thm ∗/
15 int nrcvd = 0, next_nrcvd = 0; /∗ nr . o f echoes rece i ved ∗/
16 if /∗ i n i t i a l i z e ∗/
17 :: sv = V0; /∗ vi = false ∗/
18 :: sv = V1; /∗ vi = true ∗/
19 fi;
20 step: atomic { /∗ an i n d i v i s i b l e s t ep ∗/
21 if /∗ rece i ve one more echo (up to nsnt + F) ∗/
22 :: (nrcvd < nsnt + F) -> next_nrcvd = nrcvd + 1;
23 :: next_nrcvd = nrcvd; /∗ or nothing ∗/
24 fi;
25 if /∗ compute ∗/
26 :: (next_nrcvd >= N - T) ->
27 next_sv = AC; /∗ accepti = true ∗/
28 :: (next_nrcvd < N - T
29 && (sv == V1 || next_nrcvd >= T + 1)) ->
30 next_sv = SE; /∗ remember tha t <echo> i s sent ∗/
31 :: else -> next_sv = sv; /∗ keep the s t a tu s ∗/
32 fi;
33 if /∗ send ∗/
34 :: (sv == V0 || sv == V1)
35 && (next_sv == SE || next_sv == AC) ->
36 nsnt++; /∗ send <echo> ∗/
37 :: else; /∗ send nothing ∗/
38 fi;
39 /∗ update l o c a l v a r i a b l e s and r e s e t scratch va r i a b l e s ∗/
40 sv = next_sv; nrcvd = next_nrcvd;
41 next_sv = 0; next_nrcvd = 0;
42 } goto step;
43 }
44 ltl fairness { []<>(!in_transit) } /∗ f a i rn e s s −> formula ∗/
45 /∗ LTL−X formulas ∗/
46 ltl relay { [](ex_acc -> <>all_acc) }
47 ltl corr { []((prec_init && prec_corr) -> <>(ex_acc)) }
48 ltl unforg { []((prec_init && prec_unforg) -> []!ex_acc) }

Listing 3. Encoding of Algorithm 1 in parametric Promela
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In the encoding in Listing 3, the whole step is captured within an atomic
block (lines 20–42). As usual for fault-tolerant algorithms, this block has three
logical parts: the receive part (lines 21–24), the computation part (lines 25–32),
and the sending part (lines 33–38). As we have already discussed the encoding
of message passing above, it remains to discuss the control flow of the algorithm.

Control state of the algorithm. Apart from receiving and sending messages, Al-
gorithm 1 refers to several facts about the current control state of a process:
“sent 〈echo〉 before”, “if vi”, and “accept i ← true”. We capture all possible
control states in a finite set SV . For instance, for Algorithm 1 one can collect
the set SV = {V0,V1, SE,AC}, where:

– V0 corresponds to vi = false, accepti = false and 〈echo〉 is not sent.
– V1 corresponds to vi = true, accepti = false and 〈echo〉 is not sent.
– SE corresponds to the case accepti = false and 〈echo〉 been sent. Observe

that once a process has sent 〈echo〉, its value of vi does not interfere anymore
with the subsequent control flow.

– AC corresponds to the case accepti = true and 〈echo〉 been sent. A process
only sets accept to true if it has sent a message (or is about to do so in the
current step).

Thus, the control state is captured within a single status variable sv over SV
with the set SV 0 = {V0,V1} of initial control states.

Formalization. This paper is a hands-on tutorial on parameterized model
checking. So we will use Promela to explain our methods in the following
sections. Note that we presented the theoretical foundations of these methods
in [52]. In this paper we will restrict ourselves to introduce some definitions that
make it easier to discuss the central ideas of our abstraction.

In the code we use variables of different roles: we have parameters (e.g., n,
t, and f), local variables (rcvd) and shared variables (nsnt). We will denote
by Π , Λ, and Γ the sets of parameters, local variables, and shared variables,
respectively. All these variables range over a domain D that is totally ordered
and has the operations of addition and subtraction, e.g., the set of natural num-
bers N0. We have discussed above that fault-tolerant distributed algorithms can
tolerate only certain fractions of processes to be faulty. We capture this using
the resilience condition RC that is a predicate over the values of variables in
Π . In our example, Π = {n, t, f}, and the resilience condition RC (n, t, f) is
n > 3t ∧ f ≤ t ∧ t > 0. Then, we denote the set of admissible parameters by
PRC = {p ∈ D|Π| | RC(p)}.

As we have seen, a system instance is a parallel composition of identical
processes. The number of processes depends on the parameters. To formalize
this, we define the size of a system (the number of processes) using a function
N : PRC → N, for instance, in our example we model only correct processes
explicitly, and so we use n− f for N(n, t, f).
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(if x′ is not assigned, then x′ = x)

To model how the system evolves, that is, to model a step of a process,
we use control flow automata (CFA). They formalize fault-tolerant distributed
algorithms. Figure 4 gives the CFA of our case study algorithm. The CFA uses
the shared integer variable nsnt (capturing the number of messages sent by non-
faulty processes), the local integer variable rcvd (storing the number of messages
received by the process so far), and the local status variable sv , which ranges
over a finite domain (capturing the local progress w.r.t. the FTDA).

We use the CFA to represent one atomic step of the FTDA: Each edge is
labeled with a guard. A path from qI to qF induces a conjunction of all the
guards along it, and imposes constraints on the variables before the step (e.g.,
sv), after the step (sv ′), and temporary variables (sv0). If one fixes the variables
before the step, different valuations (of the primed variables) that satisfy the
constraints capture non-determinism.

Recall that a system consists of n− f processes that concurrently execute the
code corresponding to the CFA, and communicate via nsnt . Thus, there are two
sources of unboundedness: first, the integer variables, and second, the parametric
number of processes.

4 Abstraction

In this section we demonstrate how one can apply various abstractions to re-
duce a parameterized model checking problem to a finite-state model checking
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Fig. 6. The abstraction scheme

problem. An overview is given in Figure 6. We show how the abstraction works
on the code level, that is, how the parametric Promela program constructed
in Section 3 is translated to a program in standard Promela. Since we are
interested in parameterized model checking, we need to ensure that the specifi-
cations are satisfied in concrete systems of all sizes. Hence, we need an abstract
system that contains all behaviors that are experienced in concrete systems.
Consequently, we use existential abstraction which ensures that if there exists
a concrete system and a concrete run in that system, this run is mapped to
a run in the abstract system. In that way, if there exists a system in which a
specification is violated, the specification will also be violated in the abstract
system. In other words, if we can verify a specification in the abstract system,
the specification holds in all concrete systems; we say the verification method is
sound. The formal exposition can be found in [52].

Usually abstractions introduce new behavior that is not present in the original
system. Thus, a finite-state model checker might find a spurious run, that is, one
that none of the concrete systems with fixed parameters can replay. In order to
discard such runs, one applies abstraction refinement techniques [27].

In what follows, we demonstrate three levels of abstraction: parametric in-
terval data abstraction, parametric interval counter abstraction, and parametric
interval data abstraction of the local state space. The first two abstractions are
used for reducing a parameterized problem to a finite-state one, while the third
abstraction helps us to detect spurious counterexamples.

Throughout this chapter we are using the core part of asynchronous reli-
able broadcast by Srikanth&Toueg as our running example. Its encoding in
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parametric Promela is given in Listing 3. Our final goal is to obtain a Promela

program that we can verify in Spin.

4.1 Parametric Interval Data Abstraction

Let us have a look at the code on Listing 3. The process prototype STBcast
refers to two kinds of variables, each of them having a special role:

– Bounded variables. These are local variables that range over a finite domain,
the size of which is independent of the parameters. In our example, the
variable of this kind are sv and next sv.

– Unbounded variables. These are the variables that range over an unbounded
domain. They may be local or shared. In our example, the variables nrcvd,
next nrcvd, and nsnt are unbounded. It might happen that the variables
become bounded, when one fixes the parameters, as it is the case in our
example with nsnt ≤ n− f . However, we need a finite representation inde-
pendent of the parameters, that is, the bounds on the variable values must
be independent of the parameter values.

We can partition the variables into the sets B (bounded) and U (unbounded)
by performing value analysis on the process body. Intuitively, one can imagine
that the analysis iteratively computes the set B of variables that are assigned
their values only using the following two kinds of statements:

– An assignment that copies a constant expression to a variable;
– An assignment that copies the value of another variable, which already be-

longs to B.

The variables outside of B, e.g., those that are incremented in the code, belong
to U . As this can be done by a simple implementation of abstract interpreta-
tion [33], we omit the details here.

The data abstraction that we are going to explain below deals with unbounded
variables by turning the operations over unbounded domains into operations
over finite domains. The threshold-based fault-tolerant distributed algorithms
give us a natural source of abstract values, namely, the threshold expressions. In
our example, the variable next nrcvd is compared against thresholds t+1 and
n− t. Thus, it appears natural to forget about concrete values of next nrcvd.
As a first try, we may replace the expressions that involve next nrcvd with
the expressions over the two predicates: p1 next nrcvd ≡ x < t + 1 and
p2 next nrcvd ≡ x < n− t. Then, the following code is an abstraction of the
computation block in lines (25)–(32) of Listing 3:

if /∗ compute ∗/
:: (!p2_next_nrcvd) -> next_sv = AC;
:: (!p2_next_nrcvd && (sv == V1 || !p1_next_nrcvd)) ->
next_sv = SE;

:: else -> next_sv = sv;
fi;

Listing 4. Predicate abstraction of the computation block
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In principle, we could use this kind of predicate abstraction for our purposes.
However, we have seen that our modeling involves considerable amounts of arith-
metics, e.g., code line 22 in our example contains comparison of two variables as
well increasing the value of a variable. Such notions are not naturally expressed
in terms of predicate abstraction. Rather, we introduce a parametric interval ab-
straction PIA, which is based on an abstract domain that represents intervals,
whose boundaries are expressions to which variables are compared to; e.g., t+1
and n− t. We then use an SMT solver to abstract expressions, e.g., comparisons.

Hence, instead of using several predicates, we can replace the concrete domain
of every variable x ∈ U with the abstract domain {I0, It+1, In−t}. For reasons
that are motivated by the counter abstraction—to be introduced later in Sec-
tion 4.2—we have to distinguish value 0 from a positive value. Thus, we are
extending the domain with the threshold “1”, that is, D̂ = {I0, I1, It+1, In−t}.

The semantics of the abstract domain is as follows. We introduce an abstract
version of x, denoted by x̂; its values (from D̂) relate to the concrete values of x
as follows: x̂ = I0 iff x ∈ [0; 1[ and x̂ = I1 iff x ∈ [1; t + 1[ and x̂ = It+1 iff
x ∈ [t + 1;n − t[ and x̂ = In−t iff x ∈ [n − t;∞[. Having defined the abstract
domain, we translate the computation block in lines (25)–(32) of Listing 3 as
follows (we discuss below how the translation is done automatically):

1 if /∗ compute ∗/
2 :: next_nrcvd == In−t -> next_sv = AC;
3 :: (next_nrcvd == I0 || next_nrcvd == I1 || next_nrcvd== It+1)
4 && (sv == V1 || (next_nrcvd == It+1 || next_nrcvd == In−t))
5 -> next_sv = SE;
6 :: else -> next_sv = sv;
7 fi;

Listing 5. Parametric interval abstraction of the computation block

The abstraction of the receive block (cf. lines 21–24 of Listing 3) involves
the assignment next nrcvd = nrcvd + 1 that becomes a non-deterministic
choice of the abstract value of next nrcvd based on the abstract value of
nrcvd. Intuitively, next nrcvd could be in the same interval as nrcvd or in
the interval above. In the following, we provide the abstraction of lines 21–24,
we will discuss later how this abstraction can be computed using an SMT solver.

8 if /∗ rece i ve ∗/
9 :: (/∗ abs t rac t i on of ( next nrcvd < nsnt + F) ∗/) ->

10 if :: nrcvd == I0 -> next_nrcvd = I1;
11 :: nrcvd == I1 -> next_nrcvd = I1;
12 :: nrcvd == I1 -> next_nrcvd = It+1;
13 :: nrcvd == It+1 -> next_nrcvd = It+1;
14 :: nrcvd == It+1 -> next_nrcvd = In−t;
15 :: nrcvd == In−t -> next_nrcvd = In−t;
16 fi;
17 :: next_nrcvd = nrcvd;
18 fi;

Listing 6. Parametric interval abstraction of the receive block
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There are several interesting consequences of transforming the receive block
as above. First, due to our resilience condition (which ensures that intervals do
not overlap) for every value of nrcvd there are at most two values that can be
assigned to next nrcvd. For instance, if nrcvd equals It+1, then next nrcvd
becomes either It+1, or In−t. Second, due to non-determinism, the assignment is
not anymore guaranteed to reach any value, e.g., next nrcvd might be always
assigned value I1.

Formalization. In the following, we explain the mathematics behind the idea of
parametric interval abstraction, and the intuition why it is precise for specific ex-
pressions. To do so, we start with some preliminary definitions, which allow us to
define parameterized abstraction functions and the corresponding concretization
functions. We then make precise what it means to be an existential abstraction
and derive questions for the SMT solver whose response will provide us with the
abstractions of the Promela code discussed above.

Consider the arithmetic expressions over constants and parameters that are
used in comparisons against unbounded variables, e.g., next nrcvd <= t+1.
From this we get expressions, e.g., t+1 to which variables are compared. Let
set T include all such expressions as well as the constants 0 and 1, and μ + 1
be the cardinality of T . We call the elements of T thresholds, and name them
as as e0, e1, . . . , eμ; with e0 corresponding to the constant 0, and e1 correspond-
ing to 1.1 Note that by evaluating threshold expressions for fixed parameters,
we obtain a constant value of the threshold. Given a parameter evaluation p
from PRC , we will denote by ei(p) the value of the ith threshold under p. Given

T , we define the domain of parametric intervals as: D̂ = {Ij | 0 ≤ j ≤ μ}.
Observe that in our running example we actually write D̂ = {I0, I1, It+1, In−t},
to make it more intuitive. This is an abuse of notation, and following the above
definition strictly, one has to write the domain as {I0, I1, I2, I3}.

Our abstraction rests on an implicit property of many fault-tolerant dis-
tributed algorithms, namely, that the resilience condition RC induces an order
on the thresholds used in the algorithm (e.g., t+ 1 < n− t).

Definition 1. The finite set T is uniformly ordered if for all p ∈ PRC , and all
ej(p) and ek(p) in T with 0 ≤ j < k ≤ μ, it holds that ej(p) < ek(p).

Assuming such an order does not limit the application of our approach: In
cases where only a partial order is induced by RC , one can simply enumerate
all finitely many total orders. As parameters, and thus thresholds, are kept un-
changed in a run, one can verify an algorithm for each threshold order separately,
and then combine the results.

1 We add 0 and 1 explicitely, because we will later see that these values precisely
capture an existential quantifier, similar to [70]. However, in our setting, the abstract
domain that distinguishes between 0, 1, and more [70] is too coarse to track whether
variables have surpassed certain thresholds.
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Definition 1 allows us to properly define the parameterized abstraction function
αp : D → D̂ and the parameterized concretization function γp : D̂ → 2D.

αp(x) =

{
Ij if x ∈ [ej(p), ej+1(p)[ for some 0 ≤ j < μ

Iμ otherwise.

γp(Ij) =

{
[ej(p), ej+1(p)[ if j < μ

[eμ(p),∞[ otherwise.

From e0(p) = 0 and e1(p) = 1, it immediately follows that for all p ∈ PRC , we
have αp(0) = I0, αp(1) = I1, and γp(I0) = {0}. Moreover, from the definitions
of α, γ, and Definition 1 one immediately obtains:

Proposition 1. For all p in PRC , for all a in D, it holds that a ∈ γp(αp(a)).

Definition 2. We define comparison between parametric intervals Ik and I� as
Ik ≤ I� iff k ≤ 	.

Compared to the predicate abstraction approach initially discussed, Defini-
tion 2 is very naturally written in our parametric interval abstraction, and we
can use it in the following. In fact, the central property of our abstract domain is
that it allows to abstract comparisons against thresholds in a precise way. That
is, we can abstract formulas of the form ej(p) ≤ x1 by Ij ≤ x̂1 and ej(p) > x1

by Ij > x̂1. This abstraction is precise in the following sense.

Proposition 2. For all p ∈ PRC and all a ∈ D:
ej(p) ≤ a iff Ij ≤ αp(a), and ej(p) > a iff Ij > αp(a).

We now discuss what is necessary to construct an existential abstraction of
an expression that involves comparisons against unbounded variables using an
SMT solver. Let Φ be a formula that corresponds to such an expression. We
introduce notation for sets of vectors satisfying Φ. Formula Φ has two kinds of
free variables: parameter variables from Π and data variables from Λ∪Γ . Let xp

be a vector of parameter variables (xp
1, . . . , x

p
|Π|) and xd be a vector of variables

(xd
1, . . . , x

d
k) over D

k. Given a k-dimensional vector d of values from D, by

xp = p,xd = d |= Φ

we denote that Φ is satisfied on concrete values xd
1 = d1, . . . , x

d
k = dk and

parameter values p. Then, we define:

||Φ||∃ = {d̂ ∈ D̂k | ∃p ∈ PRC ∃d = (d1, . . . , dk) ∈ Dk.

d̂ = (αp(d1), . . . , αp(dk)) ∧ xp = p,xd = d |= Φ}

Hence, the set ||Φ||∃ contains all vectors of abstract values that correspond
to some concrete values satisfying Φ. Parameters do not appear anymore due
to existential quantification. A PIA existential abstraction of Φ is defined to
be a formula Φ̂ over a vector of variables x̂ = (x̂1, . . . , x̂k) over D̂k such that

{d̂ ∈ D̂k | x̂ = d̂ |= Φ̂} ⊇ ||Φ||∃. See Figure 7 for an example.
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Fig. 7. The shaded area approximates the line x2 = x1+1 along the boundaries of our
parametric intervals. Each shaded rectangle corresponds to one conjunctive clause in
the formula to the right. Thus, given Φ ≡ x2 = x1+1, the shaded rectangles correspond
to ||Φ||∃, from which we immediately construct the existential abstraction Φ̂.

Computing the abstractions. So far, we have seen the abstraction examples and
the formal machinery in the form of existential abstraction ||Φ||∃. Now we show
how to compute the abstractions using an SMT solver. We are using the input
language of Yices [38], but this choice is not essential. Any other solver that
supports linear arithmetics over integers, e.g., Z3 [35], should be sufficient for our
purposes. We start with declaring the parameters and the resilience condition:

1 (define n :: int)
2 (define t :: int)
3 (define f :: int)
4 (assert (and (> n 3) (>= f 0)
5 (>= t 1) (<= f t) (> n (* 3 t))))

Listing 7. The parameters and the resilience condition in Yices

Assume that we want to compute the existential abstraction of an expression
similar to one found in line 22, that is,

Φ1 ≡ a < b+ f.

According to the definition of ||Φ1||∃, we have to enumerate all abstract values
of a and b and check, whether there exist a valuation of the parameters n, t,
and f and a concretization γn,t,f of the abstract values that satisfies Φ1. In

the case of Φ1 this boils down to finding all the abstract pairs (â, b̂) ∈ D̂ × D̂
satisfying the formula:

∃a, b : αn,t,f (a) = â ∧ αn,t,f (b) = b̂ ∧ a < b+ f (1)

Given â and b̂, Formula (1) can be encoded as a satisfiability problem in

linear integer arithmetics. For instance, if â = I1 and b̂ = I0, then we encode
Formula (1) as follows:
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6 (push) ;; store the context for the future use
7 (define a :: int)
8 (define b :: int)
9 (assert (and (>= a 1) (< a (+ t 1)))) ;; αn,t,f (a) = I1

10 (assert (and (>= b 0) (< b 1))) ;; αn,t,f (b) = I0
11 (assert (< a (+ b f))) ;; Φ1

12 (check) ;; is satisfiable?
13 (pop) ;; restore the previously saved context

Listing 8. Are there a and b with a < b+ f , αn,t,f (a) = I1, and αn,t,f (b) = I0?

When we execute lines (1)–(13) of Listing 8 in Yices, we receive sat on

the output, that is, formula 1 is valid for the values â = I1 and b̂ = I0 and
(I1, I0) ∈ ||a < b + f ||∃. To see concrete values of a, b, n, t, and f satisfying
lines (1)–(13), we issue the following command:

14 (set-evidence! true)
15 ;; copy lines (1)− (13) here

Yices provides us with the following model:

(= n 7)
(= f 2)
(= t 2)
(= a 1)
(= b 0)

By enumerating all values from D̂ × D̂, we obtain the following abstraction
of a < b+ f (this is an abstraction of line (22) in Listing 3):

a == In−t && b == In−t || a == It+1 && b == In−t

|| a == I1 && b == In−t || a == I0 && b == In−t

|| a == In−t && b == It+1 || a == It+1 && b == It+1

|| a == I1 && b == It+1 || a == I0 && b == It+1

|| a == It+1 && b == I1 || a == I1 && b == I1
|| a == I0 && b == I1 || a == I1 && b == I0 || a == I0 && b== I0

Listing 9. Parametric interval abstraction of a < b+ f

By applying the same principle to all expressions in Listing 3, we abstract
the process code. As the abstract code is too verbose, we do not give it here.
It can be obtained by running the tool on our benchmarks [1], as described in
Section 6.1.

Specifications. As we have seen in Section 3.2, we use only specifications that
compare status variable sv against a value from SV . For instance, the unforge-
ability property U (cf. p. 130) is referring to atomic proposition [∀i. sv i �= V1].
Interval data abstraction does neither affect the domain of sv , nor does it change
expressions over sv . Thus, we do not have to change the specifications when ap-
plying the data abstraction.

However, the specifications are verified under justice constraints, e.g., the reli-
able communication constraint (cf. RelComm on p. 134): GF¬ [∃i. rcvd i < nsnt ].
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Our goal is that the abstraction preserves fair (i.e., just) runs, that is, if each
state of a just run is abstracted, then the resulting sequence of abstract states
is a just run of the abstract system. Intuitively, when we verify a property that
holds on all abstract just runs, then we conclude that the property also holds on
all concrete just runs. In fact, we apply existential abstraction to the formulas
that capture just states, e.g., we transform the expression ¬ [∃i. rcvd i < nsnt ]
using existential abstraction ||¬ [∃i. rcvd i < nsnt ] ||∃.

Let ψ be a propositional formula that describes just states, and �ψ�p be the
set of states that satisfy ψ in the concrete system with the parameter values
p ∈ PRC . Then, by the definition of existential abstraction, for all p ∈ PRC ,
it holds that �ψ�p is contained in the concretization of ||ψ||∃. This property
ensures justice preservation. In fact, we implemented a more general approach
that involves existential and universal abstractions, but we are not going into
details here. The interested reader can find formal frameworks in [56,74].

Remark on the precision. One may argue that domain D̂ is too imprecise
and it might be helpful to add more elements to D̂. By Proposition 2, how-
ever, the domain gives us a precise abstraction of the comparisons against the
thresholds. Thus, we do not lose precision when abstracting the expressions like
next nrcvd < t+1 and next nrcvd ≥ n−t, and we cannot benefit from enriching
the abstract domain D̂ with expressions different from the thresholds.

4.2 Parametric Interval Counter Abstraction

In the previous section we abstracted a process that is parameterized into a finite-
state process. In this section we turn a system parameterized in the number of
finite-state processes into a one-process system with finitely many states. First,
we fix parameters p and show how one can convert a system of N(p) processes
into a one-process system by using a counting argument.

Counter representation. The structure of the Promela program after applying
the data abstraction from Section 4.1 looks as follows:

int nsnt: 2 = 0; /∗ 0 �→ I0 , 1 �→ I1 , 2 �→ It+1 , 3 �→ In−t ∗/
active[n - f] proctype Proc() {

int pc: 2 = 0; /∗ 0 �→ V 0 , 1 �→ V 1 , 2 �→ SE , 3 �→ AC ∗/
int nrcvd: 2 = 0; /∗ 0 �→ I0 , 1 �→ I1 , 2 �→ It+1 , 3 �→ In−t ∗/
int next_pc: 2 = 0, next_nrcvd: 2 = 0;
if :: pc = 0; /∗ V0 ∗/

:: pc = 1; /∗ V1 ∗/
fi;

loop: atomic {
/∗ rece i ve ∗/
/∗ compute ∗/
/∗ send ∗/ }

goto loop;
}

Listing 10. Process structure after data abstraction
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Observe that a system consists of N(p) identical processes. We may thus
change the representation of a global state: Instead of storing which process is
in which local state, we just count for each local state how many processes are
in it. We have seen in the previous section that after the PIA data abstraction,
processes have a fixed number of states. Hence, we can use a fixed number of
counters. To this end, we introduce a global array of counters k that keeps the
number of processes in every potential local state. We denote by L the set of
local states and by L0 the set of initial local states. In order to map the local
states to array indices, we define a bijection: h : L → {0, . . . , |L| − 1}.

In our example, we have 16 potential local states, i.e., LST = {(pc, nrcvd) |
pc ∈ {V 0, V 1, SE,AC}, nrcvd ∈ D̂}. In our Promela encoding, the elements

of D̂ and SV are represented as integers; we represent this encoding by the
function val : D̂∪ SV → {0, 1, 2, 3} so that no two elements of D̂ are mapped to
the same number and no two elements of SV are mapped to the same number. We
allocate 16 elements for k and define the mapping hST : LST → {0, . . . , |LST |−1}
as hST ((pc, nrcvd)) = 4 · val(pc) + val(nrcvd). Then k[hST (	)] stores how many
processes are in local state 	. Thus, a global state is given by the array k, and
the global variable nsnt .

It remains to define the transition relation. As we have to capture interleaving
semantics, intuitively, if a process is in local state 	 and goes to a different local
state 	′, then k[hST (	)] must be decreased by 1 and k[hST (	

′)] must be increased
by 1. To do so in our encoding, we first select a state 	 to move away from,
perform a step as above, that is, calculate the successor state 	′, and finally
update the counters. Thus, the template of the counter representation looks as
follows (we will discuss the select, receive, etc. blocks below):

int k[16]; /∗ number of processes in every l o c a l s t a t e ∗/
int nsnt: 2 = 0;
active[1] proctype CtrAbs() {

int pc: 2 = 0, nrcvd: 2 = 0;
int next_pc: 2 = 0, next_nrcvd: 2 = 0;
/∗ i n i t ∗/

loop: /∗ s e l e c t ∗/
/∗ rece i ve ∗/
/∗ compute ∗/
/∗ send ∗/
/∗ update counters ∗/

goto loop;
}

Listing 11. Process structure of counter representation

The blocks receive, compute, and send stay the same, as they were in Sec-
tion 4.1. The new blocks have the following semantics: In init, an initial combi-
nation of counters is chosen such that

∑
�∈L0

k[	] = N(p) and
∑

�∈L\L0
k[	] = 0.

In select, a local state 	 with k[	] �= 0 is non-deterministically chosen; In update
counters, the counters of 	 and a successor of 	 are decremented and incremented
respectively.
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We now consider the blocks in detail and start with init. Each of n−f processes
start in one of the two initial states: (V 0, I0) with hST ((V 0, I0)) = 0 and (V 1, I0)
with hST ((V 1, I0)) = 3. Thus, the initial block non-deterministically chooses
the values for the counters k[0] and k[3], so that k[0] + k[3] = n − f and all
the other indices are set to zero. The following code fragment encodes this non-
deterministic choice. Observe that the number of choices needed is n− f +1, so
the length of this code must depend on the choices of these parameters. We will
get rid of this requirement in the counter abstraction below.

1 if /∗ 0 �→ (pc = V 0, nrcvd = I0) ; 3 �→ (pc = V 1, nrcvd = I0) ∗/
2 :: k[0] = n - f; k[3] = 0;
3 :: k[0] = n - f - 1; k[3] = 1;
4 ...
5 :: k[0] = 0; k[3] = n - f;
6 fi;

In the select block we pick non-deterministically a non-zero counter k[	] and
set pc and nrcvd so that hST (pc, nrcvd) = 	. Again, here is a small fragment of
the code:

7 if
8 :: k[0] != 0 -> pc = 0 /∗ V 0 ∗/; nrcvd = 0 /∗ I0 ∗/;
9 :: k[1] != 0 -> pc = 0 /∗ V 0 ∗/; nrcvd = 1 /∗ I1 ∗/;

10 ...
11 :: k[15] != 0 -> pc = 3 /∗ AC ∗/; nrcvd = 3 /∗ In−t ∗/;
12 fi;

Finally, as the compute block assigns new values to next pc and next nrcvd,
which correspond to the successor state of (pc, nrcvd), we update the coun-
ters to reflect the fact that one process moved from state (pc, nrcvd) to state
(next pc, next nrcvd):

13 if
14 :: pc != next_pc || nrcvd != next_nrcvd ->
15 k[4 * pc + nrcvd]--; k[4 * next_pc + next_nrcvd]++;
16 :: else; /∗ do not update the counters ∗/
17 fi;

This representation might look inefficient in comparison to the one with ex-
plicit processes; e.g., Spin cannot use partial order reduction on this represen-
tation. However, this representation is only an intermediate step.

Specifications. In the original presentation of the system it is obvious how global
states are linked with atomic propositions of the form [∃i. Φ(i)] and [∀i. Φ(i)];
a process i must satisfy Φ(i) or all processes must do so, respectively. In the
counter representation we do not “have” processes in the system anymore, and
we have to understand which states to label with our atomic propositions.

In the counter representation, we exploit the fact that our properties are all
quantified, which naturally translates to statements about counters: Let �Φ� be
the set of local states that satisfy Φ. In our example we are interested in the
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k[V0, I0] = I2
k[V1, I0] = I1

nsnt = I0
s0

k[V0, I0] = I2
k[V0, I1] = I1
k[V1, I0] = I1
nsnt = I0

s1

k[V0, I0] = I1
k[V0, I1] = I1
k[V1, I0] = I1
nsnt = I0

s2

k[V0, I1] = I1
k[V1, I0] = I1
nsnt = I0

s6

k[V0, I0] = I2
k[V0, I1] = I2
k[V1, I0] = I1
nsnt = I0

s3

k[V0, I0] = I1
k[V0, I1] = I2
k[V1, I0] = I1
nsnt = I0

s4

. . . . . . . . .

. . . . . .. . .

Fig. 8. A small part of the transition system obtained by counter abstraction

local states that satisfy sv = AC, as it appears in our specifications. There are
several such states (not all reachable, though) depending on the different values
of nsnt . Then, a global state satisfies [∃i. Φ(i)] if

∨
�∈�Φ� k[	] �= 0. Similarly, a

global state satisfies [∀i. Φ(i)] if
∧

� �∈�Φ� k[	] = 0.
As we are dealing with counters, instead of using disjunctions and conjunc-

tions, we could also use sums to evaluate quantifiers: the universal quantifier
could also be expressed as

∑
�∈�Φ� k[	] = N(p). However, in the following counter

abstraction this formulization has drawbacks, due to the non-determinism of the
operations on the abstract domain, while the abstraction of 0 is precise.

Counter abstraction. The counter representation encodes a system of n − f
processes as a single process system. When, n, t, and f are fixed, the elements
of array k are bounded by n. However, in the parameterized case the elements
of k are unbounded. To circumvent this problem, we apply the PIA abstraction
from Section 4.1 to the elements of k.

In the counter abstraction, the elements of k range over the abstract do-
main D̂. Similar to Section 4.1, we have to compute the abstract operations
over k. These are the operations in the init block and in the update block.

To transform the init block, we first compute the existential abstraction of∑
�∈L0

k[	] = N(p). In our example, we compute the set ||k[0] + k[3] = n− f ||∃
and non-deterministically choose an element from this set. Again, we can do it
with Yices. We give the initialization block after the abstraction (note that the
number of choices is fixed and determined by the size of the abstract domain):

1 if /∗ 0 �→ (pc = V 0, nrcvd = I0) ; 3 �→ (pc = V 1, nrcvd = I0) ∗/
2 :: k[0] = 3 /∗ In−t ∗/; k[3] = 0 /∗ I0 ∗/;
3 :: k[0] = 3 /∗ In−t ∗/; k[3] = 1 /∗ I1 ∗/;
4 ...
5 :: k[0] = 0 /∗ I0 ∗/; k[3] = 3 /∗ In−t ∗/;
6 fi;

Listing 12. Initialization of the counters
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In the update block we have to compute the abstraction of k[4 * pc +
nrcvd]-- and k[4 * next pc + next nrcvd]++. We have already seen
how to do this with the data abstraction. The update block looks as follows
after the abstraction:

18 if
19 :: pc != next_pc || nrcvd != next_nrcvd ->
20 if /∗ decrement the counter of the prev ious s t a t e ∗/
21 :: (k[((pc * 4) + nrcvd)] == 3) ->
22 k[((pc * 4) + nrcvd)] = 3;
23 :: (k[((pc * 4) + nrcvd)] == 3) ->
24 k[((pc * 4) + nrcvd)] = 2;
25 ...
26 :: (k[((pc * 4) + nrcvd)] == 1) ->
27 k[((pc * 4) + nrcvd)] = 0;
28 fi;
29 if /∗ increment the counter of the next s t a t e ∗/
30 :: (k[((next_pc * 4) + next_nrcvd)] == 3) ->
31 k[((next_pc * 4) + next_nrcvd)] = 3;
32 :: (k[((next_pc * 4) + next_nrcvd)] == 2) ->
33 k[((next_pc * 4) + next_nrcvd)] = 3;
34 ...
35 :: (k[((next_pc * 4) + next_nrcvd)] == 0) ->
36 k[((next_pc * 4) + next_nrcvd)] = 1;
37 fi;
38 :: else; /∗ do not update the counters ∗/
39 fi;

Listing 13. Abstract increment and decrement of the counters

In contrast to the counter representation, the increment and decrement of
the counters in the array k are now non-deterministic. For instance, the counter
k[((pc * 4) + nrcvd)] can change its value from In−t to It+1 or stay un-
changed. Similarly, the value of k[((next pc * 4) + next nrcvd)] can
change from I1 to It+1 or stay unchanged.

Observe that this non-determinism adds behaviors to the abstract systems:

– both counters could stay unchanged, which leads to stuttering
– the value of k[((pc * 4) + nrcvd)] decreases, while at the same time

the value of k[((next pc * 4) + next nrcvd)] stays unchanged, that
is, we lose processes, and finally

– k[((pc * 4) + nrcvd)] stays unchanged and k[((next pc * 4) +
next nrcvd)] increases, that is, processes are added.

Some of these behaviors lead to spurious counterexamples we deal with in Sec-
tion 5. Figure 8 gives a small part of the transition system obtained from the
counter abstraction. We omit local states that have the counter value I0 to fa-
cilitate reading. The state s0 represents the initial states with t+ 1 to n− t− 1
processes having sv = V0 and 1 to t processes having sv = V1. Each transition
corresponds to one process taking a step in the concrete system. For instance,
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in the transition (s0, s2) a process with local state [V0, I0] changes its state to
[V0, I1]. Therefore, the counter κ[V0, I0] is decremented and the counter κ[V0, I1]
is incremented.

Specifications. Similar to the counter representations, quantifiers can be encoded
as expressions on the counters. Instead of comparing to 0, we compare to the
abstract zero I0: A global state satisfies [∃i. Φ(i)] if

∨
�∈�Φ� k[	] �= I0. Similarly,

a global state satisfies [∀i. Φ(i)] if
∧

� �∈�Φ� k[	] = I0.

4.3 Soundness

We do not focus on the soundness proofs here, the details can be found in [52].
The soundness is based on two properties:

First, between every concrete system and the abstract system, there is a sim-
ulation relation. The central argument to prove this comes from Proposition 2,
from which follows that if a threshold is satisfied in the concrete system, the
abstraction of the threshold is satisfied in the abstract systems. Intuitively, this
means that if a transition is enabled in the concrete system, then it is enabled
in the abstract system, which is required to prove simulation.

Second, the abstraction of a fair path (with respect to our justice properties)
in the concrete system is a fair path in the abstract system. This follows from
construction: we label an abstract state with a proposition if the abstract state
satisfies the existential abstraction of the proposition, in other words, if there is
a concretization of the abstract state that satisfies the proposition.

5 Abstraction Refinement

In Sections 4.1 and 4.2, we constructed approximations of the transition sys-
tems: First, we transformed parameterized code of a process into finite-state
non-parameterized code; Second, we constructed a finite-state process that ap-
proximates the behavior of n− f processes. Usually, abstraction introduces new
behavior that is not present in the concrete system. As a result, specifications
that hold in the concrete system, may be violated in the abstract system. In
this case, a model checker returns an execution of the abstract system that can-
not be replayed in the concrete system; such an execution is called a spurious
counterexample.

As it was suggested in Proposition 2, PIA data abstraction does not lose
precision for the comparisons against threshold expressions. In fact, in our ex-
periments we have not seen spurious counterexamples caused by the PIA data
abstraction. So, we focus on abstraction refinement of the PIA counter abstrac-
tion, where we have identified three sources of spurious behavior (a) the run
contains a transition where the number of processes is decreasing or increas-
ing; (b) the number of messages sent by processes deviates from the number of
processes who have sent a message; (c) unfair loops.
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Given a run of the counter abstraction, we have to check that the run is
spurious for all combinations of parameters from PRC . This problem is again
parameterized, and we are not aware of techniques to deal with it in the general
case. Thus, we limit ourselves to detecting the runs that have a uniformly spu-
rious transition, that is, a transition that does not have a concretization for all
the parameters from PRC .

We check for spurious transitions using SMT solvers. To do so, we have to
encode the transition relation of all concrete systems (which are defined by dif-
ferent parameter values) in SMT. We explain our approach in three steps: first
we encode a single Promela statement. Based on this we encode a process step
that consist of several statements. Finally, we use the encoding of a step to define
the transition relation of the system.

5.1 Encoding the Transition Relation

Encoding a single statement. As we want to detect spurious behavior, the SMT
encoding must capture a system on a less abstract level than the counter abstrac-
tion. One first idea would be to encode the transition relation of the concrete
systems. However, as we do parameterized model checking, we actually have
infinitely many concrete systems, and the state space and the number of pro-
cesses in these systems is not bounded. Hence, we require a representation whose
“degree of abstraction” lies between the concrete systems and the counter ab-
straction. In principle, the counter representation from Section 4.2 seems to be a
good candidate. Its state is given by finitely many integer counters, and finitely
many shared variables that range over the abstract domain. Although there are
infinitely many states (the counters are not bounded), the state space and tran-
sition relation can be encoded as an SMT problem. Moreover, threshold guards
and the operations on the process counters can be expressed in linear integer
arithmetic, which is supported by many SMT solvers.

However, experiments showed that we need a representation closer to the
concrete systems. Hence, we use a system whose only difference to the counter
representation from Section 4.2 is that the shared variables are not abstracted.
The main difficulty in this is to encode transitions that involve abstract local as
well as concrete global variables. For that, we represent the parameters in SMT.
Then, instead of comparing global variables against abstract values, we check
whether the global variables are within parametric intervals. Here we do not go
into the formal details of this abstraction. Rather, we explain it by example. The
most complicated case is the one where an expression involves the parameters,
local variables, and shared variables. For instance, consider the code on page 146,
where a is a local variable and b is a shared one. In this new abstraction a is ab-
stract and b is concrete. Thus, we have to encode constraints on b as inequalities
expressing which interval b belongs to. Specifically, we replace b = Ik with either
ek ≤ b < ek+1 (when k is not the largest threshold eμ), or eμ ≤ b (otherwise):
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a == In−t && n− t ≤ b || a == It+1 && n− t ≤ b
|| a == I1 && n− t ≤ b || a == I0 && n− t ≤ b
|| a == In−t && t+ 1 ≤ b < n− t || a == It+1 && t+ 1 ≤ b < n− t
|| a == I1 && t+ 1 ≤ b < n− t || a == I0 && t+ 1 ≤ b < n− t
|| a == It+1 && 1 ≤ b < t+ 1 || a == I1 && 1 ≤ b < t+ 1
|| a == I0 && 1 ≤ b < t+ 1 || a == I1 && 0 ≤ b < 1
|| a == I0 && 0 ≤ b < 1

Apart from this, statements that depend solely on shared variables are not
changed. Finally, statements that consist of local variables and parameters are
abstracted as in Section 4.1. This level of abstraction allows us to detect spurious
transitions of both types (a) and (b).

Encoding a single process step. Our Promela code defines a transition system:
A single iteration of the loop expresses one step (or transition) which consists
of several expressions executed indivisibly. The code before the loop defines the
constraints on the initial states of the transition system. Recall that we can ex-
press Promela code as a control flow automaton (cf. Section 3.3 and Figure 4).
Formally, a guarded control flow automaton (CFA) is an edge-labeled directed
acyclic graph A = (Q, qI , qF , E) with a finite set Q of nodes called locations,
an initial location qI ∈ Q, and a final location qF ∈ Q. Edges are labeled with
simple Promela statements (assignments and comparisons). Each transition is
defined by a path from qI to qF in a CFA. Our goal is to construct a formula that
encodes the transition relation. We are doing this by translating a statement on
every edge from E into an SMT formula in a way similar to [17][Ch. 16]. What
we show below is not the most efficient encoding, but we omit optimizations to
keep presentation clear.

First, we have to take care of multiple assignments to the same variable, as
they can overwrite previously assigned values. Consider the following sequence
of Promela statements S: x=1; y=x; x=2; z=x corresponding to a path
of some CFA. If we naively encode it as x = 1 ∧ y = x ∧ x = 2 ∧ z = x, then
the formula is immediately unsatisfiable due to the conflicting constraints on x.
We thus need multiple versions of such variables, that is, we turn sequence S
into S1: x1=1; y1=x1; x2=2; z1=x2. Now we can construct formula x1 =
1∧ y1 = x1 ∧ x2 = 2; z1 = x2 that treats the assignments correctly. Such a form
is known as static single assignment (SSA); it can be computed by an algorithm
given in [34].

We assume the following notation for the multiple copies of a variable x in
SSA: x denotes the input variable, that is, the copy of x at location qI ; x′

denotes the output variable, that is, the copy of x at location qF ; x
i denotes

a temporary variable, that is, a copy of x that is overwritten by another copy
before reaching qF .

From now on we assume that the CFA in given in SSA form, and we can thus
encode the transition relation. This requires us to capture all paths of the CFA.
Our goal is to construct a single formula T over the following vectors of free
variables:
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– p is the vector of integer parameters from Π , which is not changed by a
transition;

– x is the vector of integer input variables from Λ ∪ {sv};
– x′ is the vector of integer output variables of x;

– g is the vector of integer input variables from Γ ;

– g′ is the vector of integer output variables of g;

– t is the vector of integer temporary variables of x and g;

– en is the vector of boolean variables, one variable ene per an edge e ∈ E,
which means that edge e lies on the path from qI to qF .

Let form(s) be a straightforward translation of a Promela statement s into
a formula as discussed above. Assignments are replaced with equalities and re-
lations (e.g., ≤, >) are kept as they are. Then, for an edge e ∈ E labeled with
a statement s, we construct a formula Te(p,x,x

′, g, g′, t, en) as follows:

Te ≡ ene → form(s),

Now, formula T is constructed as the following conjunction whose subformulas
are discussed in detail below:

T ≡ start ∧ follow ∧mux ∧
∧

e∈E

Te

Intuitively, start is saying that at least one edge outgoing from qI is activated;
follow is saying that whenever a location has an incoming activated edge, it also
has at least one outgoing activated edge; mux is expressing the fact that at most
one outgoing edge can be picked. Formally, the formulas are defined as follows:

start ≡
∨

(q,q′)∈E: q=qI

en(q,q′)

follow ≡
∧

(q,q′)∈E

(
en(q,q′) →

∨
(q′,q′′)∈E

en(q′,q′′)

)
mux ≡

∨
(q,q′),(q,q′′)∈E

¬en(q,q′) ∨ ¬en(q,q′′)

We have to introduce formula mux , because the branching operators in
Promela allow one to pick a branch non-deterministically, whenever the guard
of the branch evaluates to true. To pick exactly one branch, we have to introduce
the mutual exclusion constraints in the form of mux . In contrast, programming
languages like C do not need this constraint, as the conditions of the if-branch
and the else-branch cannot both evaluate to true simultaneously.

Having constructed formula T , we say that a process can make a transition
from state x to state x′ under some combination of parameters if and only if
the formula T (p,x,x′, g, g′, t, en) ∧ RC (p) is satisfiable.
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Transition relation of the counter representation. Now we show how to encode
the transition relation R of the counter representation using the process transi-
tion relation T . The transition relation connects counters k and global variables
g before a step with their primed versions k′ and g′ after the step. Recall that
in Section 4.2, we introduced bijection h that maps states to numbers. In the
following, by abuse of notation, by h(x) we denote an SMT expression that
encodes the bijection h. We will use the formulas dec and inc: Informally, dec
ensures that the counter that corresponds to h(x) is not equal to zero and decre-
ments the counter, while inc increments the counter k[h(x′)]. Formula R is the
following conjunction

R ≡ dec ∧ T ∧ inc ∧ keep,

and we define dec, inc, and keep as follows:

dec ≡
∧

0≤�<|L|
h(x) = 	 → k[	] > 0 ∧ k′[	] = k[	]− 1

inc ≡
∧

0≤�<|L|
h(x′) = 	 → k′[	] = k[	] + 1

keep ≡
∧

0≤�<|L|
(h(x) �= 	 ∧ h(x′) �= 	) → k′[	] = k[	]

Now we can say that a counter representation of a system makes a step from
(k, g) to (k′, g′) if and only if R(p,x,x′,k,k′, g, g′, t, en)∧RC (p) is satisfiable.
In what follows, we denote the latter formula by Step.

In order to encode operations on k, we are using arrays. In our case, however,
each array may be replaced with |L| integer variables. Thus, we do not actually
use important properties of array theory.

5.2 Spurious Behavior

Losing and introducing processes. We start with the first type of spurious be-
havior, where a transition “loses” or “introduces” processes. Consider the fol-
lowing sequence of abstract states, which introduces new processes due to non-
determinism of the counter updates:

1 k = {0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, nsnt =1
3 k = {0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0}, nsnt =2

Here we represent the abstract states in the format similar to the one used
in our tool (Section 6). The assignment “k = {. . . }” shows the contents of the
array k in C format, that is, the position i = h(	) gives the abstract number of
processes in local state 	. The assignment “nsnt = . . . ” shows the value of nsnt.

As one can see, counter k[8] changes its value from I0 to I1 and then to It+1.
The combination of k[8] = It+1 and k[4] = In−t indicates that the transition
from state 2 to state 3 is spurious. In fact, we can detect this kind of spurious
behavior with Yices:
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1 (set-evidence! true)
2 (set-verbosity! 3)
3 (define n::int)
4 (define t::int)
5 (define f::int)
6 (assert (and (> n (* 3 t)) (> t f) (>= f 0)))
7 (define k :: (-> (subrange 0 15) nat))
8 (assert+ (and (<= (- n t) (k 4))))
9 (assert+ (and (<= (+ t 1) (k 8)) (< (k 8) (- n t))))

10 ;; -> copy the assertion below for the indices 1-3, 5-7, 9-15
11 (assert+ (and (<= 0 (k 0)) (< (k 0) 1)))
12 (assert (= (- n f) (+
13 (k 0) (k 1) (k 2) (k 3) (k 4) (k 5) (k 6) (k 7)
14 (k 8) (k 9) (k 10) (k 11) (k 12) (k 13) (k 14) (k 15))))
15 (check)

Listing 14. Constraints on state 3 encoded in Yices

In lines (8) – (11), we constrain the values of process counters to reside within
the parametric intervals as defined by the abstract values of state 3. In lines (12) –
(14), we assert that the total number of processes equals n − f . Yices reports
that the constraints are unsatisfiable, which means that state 3 cannot be an ab-
straction of a system state with n−f processes. We conclude that the transition
from state 2 to state 3 is uniformly spurious, and we eliminate it.

In fact, Yices also reports that it did not use all the assertions to come up
with unsatisfiability. An unsatisfiable core—a minimal set of assertions that
leads to unsatisfiability—consists of the assertions in lines (8) – (9). Thus, we
can remove every transition leading to a state with k[4] = In−t and k[8] = It+1.

Now consider a sequence of abstract states, which is losing processes:

1 k = {0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, nsnt =1
3 k = {0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, nsnt =1

As with the case of introducing processes, we can detect with Yices that the
transition from state 2 to state 3 is uniformly spurious, and eliminate all the
transitions captured with an unsatisfiable core.

Losing messages. In our case study (cf. Figure 4) processes increase the global
variable nsnt by one, when they transfer to a state where the value of the status
variable is in {SE,AC}. Hence, in concrete system instances, nsnt should always
be equal to the number of processes whose status is in {SE,AC}, while due to
phenomena similar to those discussed above, we can “lose messages” in the ab-
stract system. When checking safety properties, this kind of spurious behavior
does not produce counterexamples. However, it generates spurious counterexam-
ples for liveness. Consider the following example:

1 k = {0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, nsnt =1
3 k = {0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0}, nsnt =1
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Consider state 3. Here, the number of processes with sv = SE is at least t+1
(as k[8] = 2 corresponding to It+1), while the number of messages is always
strictly less than t+ 1 (as nsnt = 1 corresponding to I1). We can try to check,
whether the transition from state 2 to state 3 is spurious. This time, we also add
the constraints by Step:

1 (set-evidence! true)
2 (set-verbosity! 3)
3 (define n::int)
4 (define t::int)
5 (define f::int)
6 (assert (and (> n (* 3 t)) (> t f) (>= f 0)))
7 (define k :: (-> (subrange 0 15) nat))
8 (define k’ :: (-> (subrange 0 15) nat))
9 (assert+ (and (<= (+ t 1) (k 4)) (<= (k 4) (- n t) )))

10 (assert+ (and (<= 1 (k 8)) (< (k 8) (+ t 1))))
11 (assert+ (and (<= 1 (k’ 4)) (<= (k’ 4) (+ t 1) )))
12 (assert+ (and (<= 1 (k’ 8)) (< (k’ 8) (+ t 1))))
13 ;; copy the assertions below for the indices 1-3, 5-7, 9-15
14 (assert+ (and (<= 0 (k 0)) (< (k 0) 1)))
15 (assert+ (and (<= 0 (k’ 0)) (< (k’ 0) 1)))
16 ;; -> copy Step here <-
17 (check)

Listing 15. Concretization of transition from state 2 to state 3 in Yices

This time Yices reports that the constraints are satisfiable. Indeed, it is
possible to pick the number of processes that satisfy the constraints in lines (9) –
(12) in Listing 15 and still do not increase nsnt so that it reaches t+ 1. As we
know that this example represents spurious behavior, the user can introduce an
invariant candidate in Promela:

atomic tx_inv =
((card(Proc:pc == SE) + card(Proc:pc == AC)) == nsnt);

Then we can automatically test, whether the invariant candidate tx inv is
an invariant by checking that the following formula is unsatisfiable (tx inv ′ is a
copy of tx inv with x replaced by x′, and Init is a formula encoding the initial
states):

¬((Init → tx inv) ∧ ((tx inv ∧ Step) → tx inv ′))

As soon as we know that tx inv is an invariant, we can add the following
assertion to the previous query in Yices:

18 (assert (= nsnt (+
19 (k 8) (k 9) (k 10) (k 11) (k 12) (k 13) (k 14) (k 15))))

Listing 16. Constraint expressed by the invariant tx inv

With this assertion in place, we discover that the transition from state 2 to
states 3 is uniformly spurious.
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5.3 Removing Transitions in Promela

So far, we have been concerned with detecting uniformly spurious transitions.
Now we discuss how one can remove spurious transitions from the counter ab-
straction that we introduced in Section 4.2 (cf. code on p. 148).

Whenever we detect a uniformly spurious transition, we extract two sets of
constraints from the SMT solver: The constraints on the abstract state before
the transition (precondition), and the constraints on the abstract state after the
transition (postcondition). Consider the following uniformly spurious transition:

1 k = {1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =0
2 k = {1, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt =1

Here we extract the following constraints from an unsatisfiability core given
to us by the SMT solver (written in Promela notation):

pre = (nsnt == 0);
post = (k[0] == 1) && (k[1] == 2)

&& (k[4] == 3) && (k[15] == 0) && (nsnt == 0);

In order to remove the spurious transition, we have to enforce Spin to prune
the executions that include the transition. To this end, we introduce a boolean
variable is spur that turns true, whenever the current execution has at least
one spurious transition. Then for each refinement iteration K ≥ 1 we introduce
a boolean variable pK pre that turns true, whenever the current state satisfies
the precondition of the spurious transition detected in iteration K. We mod-
ify Promela code as follows:

bool is_spur = 0; /∗ i s the current execut ion spurious ∗/
bool p1_pre = 0; /∗ de tec ted at ref inement i t e r a t i o n 1 ∗/
...
bool pK_pre = 0; /∗ de tec ted at ref inement i t e r a t i o n K ∗/
...
active[1] proctype CtrAbs() {

...
/∗ i n i t ∗/

loop:
...
pK_pre = (nsnt == 0);
/∗ s e l e c t ∗/
/∗ rece i ve ∗/
/∗ compute ∗/
/∗ send ∗/
/∗ update counters ∗/
...
/∗ i s the current t r an s i t i on spurious? ∗/
spur = spur || pK_pre && k[0] == 1 && k[1] == 2

&& k[4] == 3 && k[15] == 0 && nsnt == 0;
goto loop;

}

Listing 17. Counter abstraction with detection of spurious transitions
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Finally, we prune the spurious executions by modifying each LTL\X formula ϕ
in Promela specifications as follows:

[]!is_spur -> ϕ

5.4 Detecting Unfair Loops

There is a third kind of spurious behavior that is not present in our case study,
but it occurs in the experiments with omission faults (cf. Section 6). Modeling
omission faults introduces 12 local states instead of 16. Here is a counterexample
showing the violation of liveness property R (cf. Section 3):

3 k = {2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0}, nsnt = 0
4 k = {2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0}, nsnt = 1
5 k = {2, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0}, nsnt = 2
6 k = {2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0}, nsnt = 2
7 k = {1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0}, nsnt = 2
8 k = {0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0}, nsnt = 2
9 k = {0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0}, nsnt = 2

10 k = {0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0}, nsnt = 2
11 k = {0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0}, nsnt = 2
12 k = {0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1}, nsnt = 2
13 k = {0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2}, nsnt = 2
14 k = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2}, nsnt = 2
15 <<<<<START OF CYCLE>>>>>
16 k = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2}, nsnt = 2

Listing 18. A counterexample with a spurious (unfair) loop

Here state (16) is repeated in a loop, but it violates the following fairness
constraint saying that up to nsnt − F messages must be eventually delivered:

atomic in_transit = some(Proc:nrcvd < nsnt - F);
ltl fairness { []<>(!in_transit) && (...) }

Again, using the SMT solver we can check, whether the loop is unfair, that
is, no state within the loop satisfies the fairness constraint, e.g., !in transit.

1 (set-evidence! true)
2 (set-verbosity! 3)
3 (define n::int)
4 (define t::int)
5 (define f::int)
6 (assert (and (> n (* 2 t)) (> t f) (>= f 0)))
7 (define k :: (-> (subrange 0 11) nat))
8 ;; the constraints by the state 14:
9 (assert+ (and (<= 1 (k 7)) (< (k 4) (+ t 1) )))

10 (assert+ (and (<= (+ t 1) (k 11))))
11 ;; -> repeat the assertion below for the indices 0-6, 7-10
12 (assert+ (and (<= 0 (k 0)) (< (k 0) 1)))
13 (assert+ (>= nsnt (+ t 1)))
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14 ;; constraints by !in_transit
15 (assert+ (not (or
16 (and (>= (- nsnt f) (+ t 1))
17 (or (/= (k 1) 0) (/= (k 4) 0) (/= (k 7) 0) (/= (k 10) 0)))
18 (and (>= (- nsnt f) (+ t 1))
19 (or (/= (k 0) 0) (/= (k 3) 0) (/= (k 6) 0) (/= (k 9) 0)))
20 (and (>= (- nsnt f) 1) (< (- nsnt f) (+ t 1))
21 (or (/= (k 0) 0) (/= (k 3) 0) (/= (k 6) 0) (/= (k 9) 0)))
22 )))
23 (check)

Listing 19. Does state 16 have a concretization that meets justice constraints?

This query is unsatisfiable and Yices gives us an unsatisfiable core that we
track in Promela as we did with the spurious transitions:

/∗ update counters ∗/
...
r0 = k[0] == 0 && k[1] == 0

&& k[2] == 0 && k[3] == 0 && k[4] == 0
&& k[5] == 0 && k[7] == 1 && k[10] == 0;

and modify each specification ϕ to avoid infinite occurrences of r0:

(<>[]r0) || ϕ

6 Experiments

In this section we describe the tool chain ByMC implementing the approach
presented in Sections 3 – 5. We also demonstrate the results of experiments on
finite-state as well as parameterized model checking of fault-tolerant distributed
algorithms. The tool and the benchmarks are available at [1].

6.1 Running the Tool

In what follows, we use the tool on the running example bcast-byz.pml avail-
able in the set of benchmarks benchmarks-sfm14 at [1]. We also assume that
the tool resides in the directory ${bymc}.

The tool chain supports two modes of operation:

– Concrete model checking. In this mode, the user fixes the values of the
parameters p. The tool instantiates code in standardPromela and performs
finite-state model checking with Spin. This step is very useful to make sure
that the user code operates as expected without abstraction involved.

– Parameterized model checking. In this mode, the tool applies data and
counter abstractions (cf. Section 4), and performs finite-state model checking
of the abstract model with Spin.

For concrete-state model checking of the relay property, one issues com-
mand verifyco-spin as follows:
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$ ${bymc}/verifyco-spin "N=4,T=1,F=1" bcast-byz.pml relay

The tool instantiates the model checking problem in directory
“./x/spin-bcast-byz-relay-N=4,T=1,F=1”. The directory contains file
concrete.prm that differs from the source code as follows: The parameters N ,
T , and F in the Promela code are replaced with the values 4, 1, 1 respectively.
The process prototype is replaced with N − F = 3 active processes.

In order to run parameterized model checking, one issues verifypa-spin
as follows:

$ ${bymc}/verifypa-spin bcast-omit.pml relay

The tool instantiates the model checking problem in a directory, whose name
follows the pattern “./x/bcast-byz-relay-yymmdd-HHMM.*”. The direc-
tory contains the following files of interest: abs-interval.prm is the result of
the data abstraction; abs-counter.prm is the result of the counter abstrac-
tion; abs-vass.prm is the auxiliary abstraction for the abstraction refinement;
mc.out contains the last output by Spin; cex.trace contains the counterex-
ample (if there is one); yices.log contains communication log with Yices.

6.2 Concrete Model Checking for Small System Sizes

Listing 3 provides the central parts of the code of our case study. For the ex-
periments we have implemented four distributed algorithms that use threshold-
guarded commands, and differ in the fault model. We have one algorithm for
each of the fault models discussed. In addition, the algorithms differ in the
guarded commands. The following list is ordered from the most general fault
model to the most restricted one. The given resilience conditions on n and t are
the ones we expected from the literature, and their tightness was confirmed by
our experiments:

Byz. tolerates t Byzantine faults if n > 3t,
symm. tolerates t symmetric (identical Byzantine [11]) faults if n > 2t,
omit. tolerates t send omission faults if n > 2t,
clean. tolerates t clean crash faults for n > t.

In addition, we verified a folklore reliable broadcasting algorithm that toler-
ates crash faults, which is given, e.g., in [23]. Further, we verified a Byzantine
tolerant broadcasting algorithm from [20]. For the encoding of the algorithm
from [20] we were required to use two message types and thus two shared vari-
ables—opposed to the one type of the 〈echo〉 messages in Algorithm 1. Fi-
nally, we implemented the asynchronous condition-based consensus algorithm
from [67]. We specialized it to binary consensus, which resulted in an encoding
which requires four shared variables.

The major goal of the experiments was to check the adequacy of our formal-
ization. To this end, we first considered the four well-understood variants of [76],
for each of which we systematically changed the parameter values. By doing so,
we verify that under our modeling the different combination of parameters lead
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Table 1. Summary of experiments related to [76]

# parameter values spec valid Time Mem. Stored Transitions Depth

Byz

B1 N=7,T=2,F=2 (U) ✓ 3.13 sec. 74 MB 193 · 103 1 · 106 229
B2 N=7,T=2,F=2 (C) ✓ 3.43 sec. 75 MB 207 · 103 2 · 106 229
B3 N=7,T=2,F=2 (R) ✓ 6.3 sec. 77 MB 290 · 103 3 · 106 229
B4 N=7,T=3,F=2 (U) ✓ 4.38 sec. 77 MB 265 · 103 2 · 106 233
B5 N=7,T=3,F=2 (C) ✓ 4.5 sec. 77 MB 271 · 103 2 · 106 233
B6 N=7,T=3,F=2 (R) ✗ 0.02 sec. 68 MB 1 · 103 13 · 103 210

omit

O1 N=5,To=2,Fo=2 (U) ✓ 1.43 sec. 69 MB 51 · 103 878 · 103 175
O2 N=5,To=2,Fo=2 (C) ✓ 1.64 sec. 69 MB 60 · 103 1 · 106 183
O3 N=5,To=2,Fo=2 (R) ✓ 3.69 sec. 71 MB 92 · 103 2 · 106 183
O4 N=5,To=2,Fo=3 (U) ✓ 1.39 sec. 69 MB 51 · 103 878 · 103 175
O5 N=5,To=2,Fo=3 (C) ✗ 1.63 sec. 69 MB 53 · 103 1 · 106 183
O6 N=5,To=2,Fo=3 (R) ✗ 0.01 sec. 68 MB 17 135 53

symm

S1 N=5,T=1,Fp=1,Fs=0 (U) ✓ 0.04 sec. 68 MB 3 · 103 23 · 103 121
S2 N=5,T=1,Fp=1,Fs=0 (C) ✓ 0.03 sec. 68 MB 3 · 103 24 · 103 121
S3 N=5,T=1,Fp=1,Fs=0 (R) ✓ 0.08 sec. 68 MB 5 · 103 53 · 103 121
S4 N=5,T=3,Fp=3,Fs=1 (U) ✓ 0.01 sec. 68 MB 66 267 62
S5 N=5,T=3,Fp=3,Fs=1 (C) ✗ 0.01 sec. 68 MB 62 221 66
S6 N=5,T=3,Fp=3,Fs=1 (R) ✓ 0.01 sec. 68 MB 62 235 62

clean

C1 N=3,Tc=2,Fc=2,Fnc=0 (U) ✓ 0.01 sec. 68 MB 668 7 · 103 77
C2 N=3,Tc=2,Fc=2,Fnc=0 (C) ✓ 0.01 sec. 68 MB 892 8 · 103 81
C3 N=3,Tc=2,Fc=2,Fnc=0 (R) ✓ 0.02 sec. 68 MB 1 · 103 17 · 103 81

to the expected result. Table 1 and Figure 9 summarize the results of our exper-
iments for broadcasting algorithms in the spirit of [76]. Lines B1 –B3, O1 –O3,
S1 – S3, and C1 –C3 capture the cases that are within the resilience condition
known for the respective algorithm, and the algorithms were verified by Spin.
In Lines B4 –B6, the algorithm’s parameters are chosen to achieve a goal that is
known to be impossible [69], i.e., to tolerate that 3 out of 7 processes may fail.
This violates the n > 3t requirement. Our experiment shows that even if only 2
faults occur in this setting, the relay specification (R) is violated. In Lines O4 –
O6, the algorithm is designed properly, i.e., 2 out of 5 processes may fail (n > 2t
in the case of omission faults). Our experiments show that this algorithm fails
in the presence of 3 faulty processes, i.e., (C) and (R) are violated.

Table 2 summarizes our experiments for the algorithms in [23], [20], and [67].
The specification (F) is related to agreement and was also used in [43]. Prop-
erties (V0) and (V1) are non-triviality, that is, if all processes propose 0 (1),
then 0 (1) is the only possible decision value. Property (A) is agreement and
similar to (R), while Property (T) is termination, and requires that every correct
process eventually decides. In all experiments the validity of the specifications
was as expected from the distributed algorithms literature.
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Fig. 9. Spin memory usage (left) and running time (right) for Byz

For slightly bigger systems, that is, for n = 11 our experiments run out of
memory. This shows the need for parameterized verification of these algorithms.

6.3 Parameterized Model Checking

To show feasibility of our abstractions, we have implemented the PIA abstrac-
tions and the refinement loop in OCaml as a prototype tool ByMC. We eval-
uated it on different broadcasting algorithms. They deal with different fault
models and resilience conditions; the algorithms are: (Byz), which is the algo-
rithm from Figure 4, for t Byzantine faults if n > 3t, (symm) for t symmetric
(identical Byzantine [11]) faults if n > 2t, (omit) for t send omission faults if
n > 2t, and (clean) for t clean crash faults [80] if n > t. In addition, we verified
the folklore broadcasting algorithm FBC—formalized also in [43]—whose CFA
is given in Figure 5.

From the literature we know that we cannot expect to verify these FT-
DAs without restricting the environment, e.g., without communication fairness,
namely, every message sent is eventually received. To capture this, we use justice
requirements, e.g., J = {[∀i. rcvd i ≥ nsnt ]} in the Byzantine case.

Table 3 summarizes our experiments run on 3.3GHz Intel R© CoreTM 4GB.
In the cases (A) we used resilience conditions as provided by the literature,
and verified the specification. The model FBC is the folklore reliable broadcast
algorithm also considered in [43] under the resilience condition n ≥ t ≥ f . In
the bottom part of Table 3 we used different resilience conditions under which
we expected the algorithms to fail. The cases (B) capture the case where more
faults occur than expected by the algorithm designer (f ≤ t + 1 instead of
f ≤ t), while the cases (C) and (D) capture the cases where the algorithms were
designed by assuming wrong resilience conditions (e.g., n ≥ 3t instead of n > 3t
in the Byzantine case). We omit (clean) as the only sensible case n = t = f (all
processes are faulty) results into a trivial abstract domain of one interval [0,∞).
The column “#R” gives the numbers of refinement steps. In the cases where it
is greater than zero, refinement was necessary, and “Spin Time” refers to the
Spin running time after the last refinement step. Finally, column |D̂| indicates
the size of the abstract domain.
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Table 2. Summary of experiments with algorithms from [23,20,67]

# parameter values spec valid Time Mem. Stored Transitions Depth

Folklore Broadcast [23]

F1 N=2 (U) ✓ 0.01 sec. 98 MB 121 7 · 103 77
F2 N=2 (R) ✓ 0.01 sec. 98 MB 143 8 · 103 48
F3 N=2 (F) ✓ 0.01 sec. 98 MB 257 2 · 103 76
F4 N=6 (U) ✓ 386 sec. 670 MB 15 · 106 20 · 106 272
F5 N=6 (R) ✓ 691 sec. 996 MB 24 · 106 370 · 106 272
F6 N=6 (F) ✓ 1690 sec. 1819 MB 39 · 106 875 · 106 328

Asynchronous Byzantine Agreement [20]

T1 N=5,T=1,F=1 (R) ✓ 131 sec. 239 MB 4 · 106 74 · 106 211
T2 N=5,T=1,F=2 (R) ✗ 0.68 sec. 99 MB 11 · 103 465 · 103 187
T3 N=5,T=2,F=2 (R) ✗ 0.02 sec. 99 MB 726 9 · 103 264

Condition-based consensus [67]

S1 N=3,T=1,F=1 (V0) ✓ 0.01 sec. 98 MB 1.4 · 103 7 · 103 115
S2 N=3,T=1,F=1 (V1) ✓ 0.04 sec. 98 MB 3 · 103 18 · 103 128
S3 N=3,T=1,F=1 (A) ✓ 0.09 sec. 98 MB 8 · 103 42 · 103 127
S4 N=3,T=1,F=1 (T) ✓ 0.16 sec. 66 MB 9 · 103 83 · 103 133
S5 N=3,T=1,F=2 (V0) ✓ 0.02 sec. 68 MB 1724 9835 123
S6 N=3,T=1,F=2 (V1) ✓ 0.05 sec. 68 MB 3647 23 · 103 136
S7 N=3,T=1,F=2 (A) ✓ 0.12 sec. 68 MB 10 · 103 55 · 103 135
S8 N=3,T=1,F=2 (T) ✗ 0.05 sec. 68 MB 3 · 103 17 · 103 135

7 Discussions

Input languages for software model checkers are designed to capture limited
degrees of non-determinism that are required to check, e.g., C/C++ industrial
software. However, distributed algorithms typically show higher degrees of non-
determinism, which makes them challenging for such existing tools. Promela,
the input language of the Spin model checker [2], was designed to simulate and
validate network protocols. Consequently, Promela contains several primitives
for concurrent and distributed systems, and we consider it the most suitable
language for our purposes. Still, as we discussed, the semantics of the constructs
do not match the ones required by distributed algorithms, and straight-forward
implementations do not scale well. Similarly, PlusCal [60] is a high-level lan-
guage to describe algorithms that can be translated to TLA+. It contains con-
structs to specify concurrent systems with shared variables. The UPPAAL model
checker [14] has channels that model synchronous communications similar to ren-
dezvous. Besides, it contains a broadcast primitive that is more closely related
to hardware than to broadcasts in distributed systems. The input for the SMV
model checker is also oriented towards hardware and provides rather low-level
communication and coordination primitives. Lustre [48] is the input language
for the SCADE tool set, and is limited to tightly coupled synchronous systems.

There have been two major undertakings of formalization that gained ac-
ceptance within the distributed algorithms community. Both were initiated by
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Table 3. Summary of experiments in the parameterized case

M |= ϕ? RC Spin Spin Spin Spin |D̂| #R Total

Time Memory States Depth Time

Byz |= U (a) 2.3 s 82 MB 483k 9154 4 0 4 s
Byz |= C (a) 3.5 s 104 MB 970k 20626 4 10 32 s
Byz |= R (a) 6.3 s 107 MB 1327k 20844 4 10 24 s

Symm |= U (a) 0.1 s 67 MB 19k 897 3 0 1 s
Symm |= C (a) 0.1 s 67 MB 19k 1113 3 2 3 s
Symm |= R (a) 0.3 s 69 MB 87k 2047 3 12 16 s
Omit |= U (a) 0.1 s 66 MB 4k 487 3 0 1 s
Omit |= C (a) 0.1 s 66 MB 7k 747 3 5 6 s
Omit |= R (a) 0.1 s 66 MB 8k 704 3 5 10 s

Clean |= U (a) 0.3 s 67 MB 30k 1371 3 0 2 s
Clean |= C (a) 0.4 s 67 MB 35k 1707 3 4 8 s
Clean |= R (a) 1.1 s 67 MB 51k 2162 3 13 31 s

FBC |= U — 0.1 s 66 MB 0.8k 232 2 0 1 s
FBC |= F — 0.1 s 66 MB 1.7k 333 2 0 1 s
FBC |= R — 0.1 s 66 MB 1.2k 259 2 0 1 s
FBC �|= C — 0.1 s 66 MB 0.8k 232 2 0 1 s

Byz �|= U (b) 5.2 s 101 MB 1093k 17685 4 9 56 s
Byz �|= C (b) 3.7 s 102 MB 980k 19772 4 11 52 s
Byz �|= R (b) 0.4 s 67 MB 59k 6194 4 10 17 s
Byz |= U (c) 3.4 s 87 MB 655k 10385 4 0 5 s
Byz |= C (c) 3.9 s 101 MB 963k 20651 4 9 32 s
Byz �|= R (c) 2.1 s 91 MB 797k 14172 4 30 78 s

Symm �|= U (b) 0.1 s 67 MB 19k 947 3 0 2 s
Symm �|= C (b) 0.1 s 67 MB 18k 1175 3 2 4 s
Symm |= R (b) 0.2 s 67 MB 42k 1681 3 8 12 s
Omit |= U (d) 0.1 s 66 MB 5k 487 3 0 1 s
Omit �|= C (d) 0.1 s 66 MB 5k 487 3 0 2 s
Omit �|= R (d) 0.1 s 66 MB 0.1k 401 3 0 2 s

researchers with a background in distributed algorithms and with a precise un-
derstanding of what needs to be expressed. These approaches are on the one
hand, the I/O Automata by Lynch and several collaborators [63,55,66], and on
the other hand, TLA by Lamport and others [59,54,60]. IOA and TLA are gen-
eral frameworks that are based on labeled transition systems and a variant of
linear temporal logic, respectively. Both frameworks were originally developed
at a time when automated verification was out of reach, and they were mostly
intended to be used as formal foundations for handwritten proofs. Today, the
tool support for IOA is still in preliminary stages [3]. For TLA [4], the TLC
model checker is a simple explicit state model checker, while the current version
of the TLA+ Proof System can only check safety proofs.

In all these approaches, specifying the semantics for fault-tolerant distributed
algorithms is a research challenge, and we believe that this research requires an
interdisciplinary effort between researchers in distributed algorithms and model
checking. In this tutorial we presented our first results towards this direction.
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The automatic verification of state-of-the-art distributed algorithm such as
Paxos [58], or even more importantly, their implementations are currently out
of reach, except possibly for very small system sizes. To be eventually able to
verify such algorithms, we have to find efficient means to address the many
problems these distributed algorithms pose to verification, for instance, large
degrees of non-determinism due to faults and asynchrony, parameterization, and
the use of communication primitives that are non-standard to the verification
literature. The work that is presented here provides first steps in this direction.
We focused on a specific class of fault-tolerant distributed algorithms, namely,
threshold-based algorithms and derived abstraction methods for them.

The only way to evaluate the practical use of an abstraction is to conduct
experiments on several case studies, and thus demonstrate that the abstraction
is sufficiently precise to verify correct distributed algorithms, and find coun-
terexamples in buggy ones. Hence, understanding implementations is crucial to
evaluate the theoretical work and they are thus of highest importance. This
motivates this tutorial that discussed the abstraction methods from an imple-
mentation point of view.

In more detail, we first added mild additions to the syntax of Promela to be
able to express the kind of parameterized systems we are interested in. We also
showed by experimental evaluation that the standard language constructs for
interprocess communication do not scale well, and do not naturally match the
required semantics for fault-tolerant distributed algorithms. We thus introduced
an efficient encoding of a fault-tolerant distributed algorithm in the extended
Promela. This representation builds the input for our tool chain, and we dis-
cussed in detail how it can be automatically translated into abstract models.
We have introduced several levels of abstractions. As our abstractions are over-
approximations, the model checker returned spurious counterexamples, such that
we were led to counter example guided abstraction refinement (CEGAR) [27].
In contrast to the classic CEGAR setting, in the parameterized case we have an
infinite number of concrete systems which poses new challenges. In this paper we
discussed several of them and presented the details of the abstraction refinement
approach that was sufficient to verify some of our case studies.

When taking a close look at our experiments, one observes that there are
several algorithms that we verified for small instances, while we could not verify
them in the parameterized setting. Developing new methods that allow us to
also verify them is subject to ongoing work.

Acknowledgments. We are grateful to Francesco Spegni whose constructive
comments helped us to improve the presentation.
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Abstract. This paper presents the VerCors approach to verification of
concurrent software. It first discusses why verification of concurrent soft-
ware is important, but also challenging. Then it shows how within the
VerCors project we use permission-based separation logic to reason about
multithreaded Java programs. We discuss in particular how we use the
logic to use different implementations of synchronisers in verification,
and how we reason about class invariance properties in a concurrent set-
ting. Further, we also show how the approach is suited to reason about
programs using a different concurrency paradigm, namely kernel pro-
grams using the Single Instruction Multiple Data paradigm. Concretely,
we illustrate how permission-based separation logic is suitable to ver-
ify functional correctness properties of OpenCL kernels. All verification
techniques discussed in this paper are supported by the VerCors tool set.

1 Introduction

The quest for software correctness is as old as software itself, and as the com-
plexity of software is steadily increasing, also the challenges to guarantee soft-
ware correctness are increasing. In the 60-ies, Floyd and Hoare for the first time
proposed static techniques to guarantee that a program functioned as it was
supposed to do [28,24]. For a long time, their ideas remained mainly theoretical,
but during the last decade or so, we have seen a dramatic increase in the appli-
cability of software verification tools for sequential programs. Several successful
tools and techniques in this area are Dafny [39], Spec# [6], ESC/Java2 [14],
OpenJML [17], KeY [7], and KIV [54].

However, this development is not sufficient to guarantee correctness of all
modern software. In particular, most modern software is inherently multithread-
ed – as this is often necessary to efficiently exploit the underlying multi-core
hardware – and often also distributed. This shift in software development has
also led in a shift of software verification technology: several groups are working
on tools and techniques to reason about multithreaded software. However, at the
moment, many of these techniques are still difficult to apply and require expert
knowledge about the underlying theory.

In this paper, we describe the current results of the VerCors project. Goal
of the VerCors project is to use the advance in program verification technology
for multithreaded programs to develop a practical and usable verification tech-
nology, that can also be used by non-verification-experts, and in particular by
experienced software developers.
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The basis for the VerCors approach to the verification of multithreaded pro-
grams is the use of permission-based separation logic. Separation logic [55] is an
extension of Hoare logic that was originally developed to reason about pointer
programs. In contrast to classical Hoare logic, separation logic explicitly distin-
guishes between the heap and the store. In particular, this means that one can
explicitly express that one has a pointer into a certain location at the heap. In
addition, separation logic uses the separating conjunction � to combine formulas.
A formula φ1 � φ2 is valid for a heap h, if the heap h can be separated into two
disjoint parts h1 and h2, such that φ1 is valid for the heap h1, and φ2 is valid
for the heap h2.

It was soon realised that separation logic is also suitable to reason about mul-
tithreaded programs. If threads operate on disjoint parts of the heap, they can
be verified in isolation, and there is no need to explicitly consider interferences
between the two threads [46]. However, classical separation logic in itself is not
flexible enough to verify all interesting multithreaded programs. In particular,
classical separation logic does not allow two threads to simultaneously read a
shared location, even though this is perfectly acceptable for a multithreaded
program. Therefore, we combine separation logic with the notion of access per-
missions [12]. Within the logic, one can express that a thread has read or write
permission on a location. Permissions can be transferred between threads at
synchronisation points, including thread creation and joining (i.e., waiting for
a thread to terminate). Soundness of permission-based separation logic ensures
that (1) there always is at most one thread that has write permission on a loca-
tion, and (2) if a thread has read permission, then all other threads also only can
have read permission. This implies that if a program can be verified with this
logic, it is free of data races. Moreover, it also allows each thread to be verified
in isolation, because when a thread has permission to access a location, its value
is stable. If a thread has write permission, it is only this thread that can change
this location. If a thread has read permission, all other threads also only have
read permissions, and thus the value stored in this location cannot be changed.
As a consequence, there is no need to explicitly check for non-interference free-
dom (in contrast to classical verification methods for concurrent programs, such
as Owicki-Gries [48]).

The concrete program annotation language that we use is an extension of
the JML annotation language [13]. JML, the Java Modeling Language, is a be-
havioural interface specification language for Java programs. It allows to specify
methods by pre- and postconditions (requires and ensures clauses, respectively).
Additionally, it also supports class level specifications, such as class invariants
and history constraints. JML is widely supported for sequential Java, with tools
for static and run-time verification [13], annotation generation [23], etc. To make
sure that all this work for sequential Java can be easily reused in a concurrent
setting, the VerCors annotation language combines JML with support for per-
missions and separation.

This paper introduces the full details of our logic and our Java program an-
notation language, and illustrates this on several examples. All examples are
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verifiable using the VerCors tool set, which underlies all our work. The on-line
version of the tool set as well as our library of examples are reachable through the
project’s home page [58]. The VerCors tool set encodes the verification problem
of programs annotated with our specification language, into verification problems
of existing verification tools, such as Chalice [37] and Boogie [38]. This allows
us to leverage existing verification technology, instead of rebuilding everything
from scratch.

Compared to other projects working on verification techniques for concurrent
programs, the VerCors project distinguishes itself because it provides support to
reason about different synchronisation mechanisms in a uniform way. Moreover,
it also provides support to reason about functional properties. In a concurrent
setting, it becomes more difficult to specify functional behaviour, because prop-
erties that hold for a thread in one state, might be invalidated by another thread
in the next state. Only properties for which a thread holds sufficient permissions
cannot be invalidated. This impacts what sort of properties can be specified for
multithreaded programs. However, we show that it is possible to reason about
class invariants in a concurrent setting. In particular, class invariants may be
temporarily broken, provided no thread is able to observe that the invariant is
broken. This technique allows one to specify and verify many meaningful reach-
ability properties of objects in concurrent programs.

The last part of this paper discusses how permission-based separation logic
also can be used to verify programs in a different concurrency paradigm: we show
how it is used to verify OpenCL kernels [47]. These are a typical example of vector
programs, where multiple threads execute the same instruction but on different
data. Essentially, the approach distinguishes two levels of specifications: for each
vector program a complete collection of permissions used by the program is
specified. Additionally, for each thread the permissions necessary for that thread
are specified, and it should be shown that the permissions used by the different
threads together are no more than the permissions available for the complete
vector program. Synchronisation between the threads in a vector program is
done by a barrier; the specifications specify how at each barrier, the permissions
can be redistributed between the threads. Finally, for this kind of programs, it
is also possible to prove functional correctness, i.e., one can specify and verify
what is computed by the program.

Overview of the Paper. The remainder of this paper is organised as follows.
Section 2 presents our version of permission-based separation logic, illustrates
how one can reason with it, and how this is supported by the VerCors tool set.
Next, Sect. 3 discusses how we can specify different synchronisation mechanisms,
while Sect. 4 discusses class invariants in a concurrent setting. Then, Sect. 5
discusses how the approach is used to reason about kernel programs. Finally,
Sect. 6 discusses related work, while Sect. 7 concludes and sketches our ideas for
future work.

Origins of the Material. More information about the details of our logic (de-
scribed in Section 2 is published in LMCS [27]. An overview and architecture



Verification of Concurrent Systems with VerCors 175

of the VerCors tool set is published at FM’2014 [10]. Our uniform specifications
of the different synchronisation mechanisms have appeared in PDP’14 [2]. The
modular specification and verification technique for concurrent class invariants is
published in FASE’14 [60]. Finally, the verification approach for OpenCL kernels
is published in Bytecode’13 and in SCP [30,11].

2 Permission-Based Separation Logic for Concurrent
Programs

Before precisely defining the VerCors property specification language, we first
give some background on separation logic and permissions in general. This de-
scription is mainly intuitive, and serves as background information.

2.1 Classical Separation Logic

The two main ingredients of formulas in classical separation logic are the points-
to predicate PointsTo(x, v) (often written as x �→ v), and the separating conjunc-
tion �. In the remainder of this paper, however, we will be using a different symbol
for the separating conjunction, namely a double star **. This is necessary to dis-
tinguish it from the multiplication operator of Java, whose meaning we want to
retain in our JML-compatible specification language. A formula PointsTo(x, v)
intuitively is valid for a heap h if the variable x points to a location that is in
the domain of this heap h, and this location contains the value v. As explained
above, a separating conjunction is valid for a heap h if the two conjuncts are
valid for disjoint parts of this heap.

The verification rules in classical separation logic for look-up and update of a
location on the heap contain an explicit precondition PointsTo(x, v), as follows:

local variable y
(look-up){PointsTo(x, v)}y := x{PointsTo(x, v) ** y = v}

(update){PointsTo(x, _)}x := v{PointsTo(x, v)}
This means that the PointsTo predicate also serves as an access permission:
the location on the heap can only be read or written if the program fragment
actually has a reference to it. This is in contrast to classical Hoare logic, where
any variable can be read or written.

2.2 Concurrent Separation Logic

When separation logic was introduced to reason about programs with pointers,
it was quickly realised that it would also be suitable to reason about concurrent
programs. In particular, since separation logic requires explicit access to the
fields on the heap that it reads and updates, the footprint of each thread is
known. If two threads have disjoint footprints, they work on different parts of
the heap, and thus their behaviours do not interfere.
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O’Hearn was the first to use this idea, and to propose Concurrent Separa-
tion Logic (CSL). A major ingredient of CSL was a rule for reasoning about
concurrent programs [46]. Given a collection of n parallel threads,

– if each thread i can be specified (and verified) with a pre- and postcondition
Pi and Qi, respectively,

– if all preconditions are disjoint (w.r.t. the heap), and
– all postconditions are disjoint,

then they can be combined to verify the complete parallel program. This is
expressed by the following rule:

{P1}S1{Q1} . . . {Pn}Sn{Qn} ∀ij.i �= j.var(Pi) ∪ var(Qi)
not modified in Sj{P1 ** . . . ** Pn}S1 || . . . || Sn{Q1 ** . . . ** Qn}

O’Hearn calls this the disjoint concurrency rule.
For concurrent programs, an important property is that a program is free of

data races. A data race occurs when two threads potentially might access the
same location simultaneously, and at least one of the two accesses is a write.
Clearly, when a program is verified using the rule for disjoint concurrency, it is
free of data races.

2.3 Permissions and Resources

However, it is also easy to see that the rule is overly restrictive. Any program
where two threads might read the same variable simultaneously cannot be veri-
fied with this rule.

To solve this problem, fractional permissions are introduced to specify the
access that a thread requires to a location in a more fine-grained way. A fractional
permission is a fraction in the interval (0,1] [12]. A permission with value 1, i.e., a
full permission is understood as a permission to write a location; any permission
with a value less than 1, i.e., a fractional permission, only gives access to read a
location.

In the specifications, permissions are explicitly added to the assertions. In
particular, the PointsTo operator is decorated with a fractional permission in the
interval (0, 1], such that PointsTo(x, v, π) means that the variable x has access
permission π to a location on the heap, and this location contains the value v.

Once permissions are introduced, the PointsTo predicate can be separated into
two parts:

PointsTo(x, v, π) ≡ Perm(x, π) ** x = v

Thus, Perm(x, π) means that a thread holds an access permission π on location
x. In our approach, we use the Perm operator as the primitive operator. As a
consequence, in our annotation language, it has to be checked explicitly that
all formulas are self-framed, i.e., only properties can be expressed for which one
has appropriate access conditions. This is crucial to maintain soundness of the
approach. The essential feature of fractional permissions that enables the flow of
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permissions between the different threads is that they can be split and combined.
Concretely, Perm(x, π) can be exchanged for Perm(x, π/2) ** Perm(x, π/2) and
vice versa.

In the verification rules for update and look-up, the permissions are explicitly
added to the precondition (and returned in the postcondition). Then, in the
context of Java that we are slowly moving to, memory locations are referred to
by a combination of object references and field expressions, i.e., they are of the
form e.f (cf. Parkinson’s separation logic for Java [49]). Furthermore, in Java
objects can be dynamically allocated with the new operator. In this case, the
allocation command returns an initial full write permission of 1 on all fields of
the newly created object. Thus, in permission-based separation logic for Java,
one has the following rules for update, look-up, and allocation, respectively:

(update){Perm(e.f, 1)}e.f := v{Perm(e.f, 1) ** e.f = v}
local variable y

(look-up){Perm(e.f, π) ** e.f = v}y := e.f{Perm(e.f, π) ** y = v}
(allocate){true}e := new C(){Perm(e.f1, 1) ** . . .Perm(e.fn, 1)}

where f1, . . . , fn are the fields of class C.
The soundness proof of the verification rules ensures an additional global

property on the permissions in the system, namely that the total number of
permissions to access a location simultaneously never exceeds 1. This ensures
that any program that can be verified is free of data races. If a thread holds a
full permission to access a location, there can never be any other thread that
holds a permission to access this location simultaneously. If a thread holds a read
permission to access a location, then any other thread that holds a permission
simultaneously must also have a read permission only. Thus, there can never be
conflicting accesses to the same location, where one of the accesses is a write,
thus a verified program is free of data races.

Abstract Predicates. Another commonly-used extension of separation logic are
abstract predicates [50]. An important purpose of abstract predicates is to add
inductive definitions to separation logic formulas, making it possible to define
and reason about permissions on linked data structures. Abstract predicates
can also be used to provide control over the visibility of specifications, which
allows one to encapsulate implementation details. Another feature of abstract
predicates is that they can be declared without providing a definition (similar
to abstract methods in Java). This allows one to use abstract predicates as a
token in specifications. This feature is used for example to specify behaviour of
a program as an abstract state machine, e.g., to specify mutual exclusion.

Since abstract predicates can be a token, without a predicate body, they
define more than just a set of access permissions. Therefore, we will use the
term resource when referring to abstract predicates and/or access permissions.
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public class Point {
private int x, y;
//@ invariant (x >= 0 && y >= 0) || (x <= 0 && y <= 0);

//@ requires Perm(this.x, 1) ** Perm(this.y, 1);
//@ ensures Perm(this.x, 1) ** Perm(this.y, 1);
public void set(int xv, int yv){ this.x = xv; this.y = yv; }

}

Lst. 1. Class Point

Abstract predicates can have parameters, which can be program variables or
(fractional) permissions. The latter can be used for example to specify differ-
ent access permissions to different parts of a data structure. However, many
separation logic tools do not support reasoning about abstract predicates with
arbitrary parameters.

2.4 The VerCors Property Specification Language

As mentioned above, the property specification language that we use in the
VerCors tool set combines separation logic with features from the Java Modeling
Language (JML).

Example 1. Lst. 1 shows a simple example of a Java class Point. Below, we
will use this class with extensions and variations as a running example. The
class Point encapsulates values for a point in a 2D Cartesian coordinate. The
contract of the method set specifies that write permissions on both x and y are
required to execute this method. Moreover, when the method is finished, the
same permission will be given back to the caller. As a functional property we
add a requirement that every point is always in the first or the third quarter of
the Cartesian space, we do this with the invariant clause.

More formally, in our VerCors property specification language we distinguish
between resource expressions (R, typical elements ri) and functional expressions
(E, typical elements ei), with the subset of logical expressions of type boolean (B,
typical elements bi). The grammar for our specification language is the following:

R ::= b
| Perm(e.f, π)
| (\forall* T v; b; r)
| r1 ** r2
| r1 –* r2
| b1 ==> r2
| e.P(e1, . . . , e2)

E ::= any pure expression
B ::= any pure expression of type boolean
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where T is an arbitrary type, v is a variable name, P is an abstract predicate of a
special type resource, f is a field reference, and π denotes a fractional permission
in the range (0, 1].

The permission property Perm and the separating conjunction ** have been
discussed above. Additionally, in our specifications, we use the separating im-
plication –*. A formula φ1 –* φ2 is valid for a heap h if for any heap h′ for
which φ1 is valid, the formula φ2 is valid for the heap h ** h′ (where h ** h′

denotes the heap composed of h and h′. Thus, in other words, given a heap that
satisfies the formula φ1, this can be exchanged for a combined heap that satisfies
the formula h′. Then, we also allow the separating quantification \forall*, which
is essentially an iterative separating conjunction. We have the standard logical
connectives to combine first-order formulas, and guarded resource expressions
denoted by ==>. This is used to state conditional resource properties, the most
typical condition being non-nullness of an object reference that is used in the
following resource formula, for example, x != null ==> Perm(x, 1). Finally, we
can refer to any predicate P declared and/or defined inside any Java classes.

The grammar above defines the language that can be used in all specification
clauses of a Java program annotated with JML. As we already mentioned, JML
allows one to state pre- and postconditions for methods with the requires and
ensures keywords, respectively, or class invariants with the invariant keyword.
Additionally, we extend the syntax of JML to allow one to declare and define
predicates. Each predicate is declared and defined by its signature, name and
an optional body in a class-level JML comment. Below, we will also use a spe-
cial class of predicates, called groups. Group predicates are splittable over their
permission predicates; why we need them and a more precise definition are dis-
cussed in Section 2.5 below, when discussing the specification of thread joining.
Additionally, our syntax also allows one to declare ghost class and method pa-
rameters, i.e., specification-only class and method parameters. Ghost class and
method parameters are specified using a given clause (for input parameters), and
a yields clause for result values. Classes can only have ghost input parameters,
methods can have both ghost input and output parameters.

Example 2. Lst. 2 extends the example from Lst. 1 with a predicate to encapsu-
late the permissions on the fields. Additionally, it adds two methods, which given
any permission on the fields read the values and perform their defined tasks.

The annotations for methods plot and getQuarter express that given any frac-
tional permission p on both x and y, the object can plot and identify the quar-
ter, respectively. Additionally, the method specifications ensure that the required
permissions are returned. Clearly, given any fraction 0 < p ≤ 1

2 , two threads can
simultaneously execute plot and getQuarter on the same point object. However,
two threads cannot execute set on the same point object simultaneously.

2.5 Reasoning about Dynamic Threads

As mentioned above, permissions are transferred between threads upon
synchronisation. In the next section we will look at how we specify different
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public class Point{
//@ resource state(frac p) = Perm(this.x, p) ** Perm(this.y, p);
private int x, y;

//@ requires state(1); ensures state(1);
public void set(int xv, int yv){ this.x = xv; this.y = yv; }

//@ given frac p; requires state(p); ensures state(p);
public void plot(){ /* plot the point on the screen */ }

//@ given frac p; requires state(p); ensures state(p);
public int getQuarter(){ /* return 1..4 to show the quarter. */ }

}

Lst. 2. Extended class of Point

synchronisation mechanisms in a uniform way. Here we discuss one special kind
of synchronisation between threads, namely thread start and thread termination.

In Java, threads are objects. When the native start method is invoked on a
thread object, the virtual machine will create a new thread of execution. This
new thread will execute the run method of the thread object. The new thread will
remain alive until it reaches the end of its run method. Other threads can wait
for a thread to terminate. They do this by invoking the join method on a thread
object. This will block the calling thread until the joined thread has terminated.

In Java, the correct way of using a thread is to first call start precisely once
and then call join as many times as one would like. To enforce this order, the
constructor of the Thread class ensures a start token that is required by the
start method. The start method in turn ensures a join token. This join token
has a fraction as argument and is defined as a group, so it can be shared between
threads. To specify what permissions are transferred when threads are created
and joined, we use the specification of the run method: the precondition of a
thread is the precondition of the run method; the postcondition of a thread is the
postcondition of the run method. For this purpose, we specify predicates preFork
and postJoin that denote this pre- and postcondition, respectively. These pred-
icates have trivial definitions to be extended in the thread implementing classes.
Thus, we specify that the start method requires both the start token and the
resources specified in preFork and gives them all up, i.e., it has postcondition
join(1). Finally, the specification of the join method ensures that the resources
specified in the postJoin predicate are obtained by executing this method. Notice
that the postJoin predicate should be a group. Below, we give the definition of
a group and describe the extended role of the join predicate in the precondition.
This results in the following specification for class Thread in Lst. 3.

Every class that defines a thread extends class Thread. It can extend the
predicates preFork and postJoin to denote extra permissions that are passed to
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class Thread implements Runnable {
2

//@ resource start();
4 //@ resource preFork() = true;

//@ group resource postJoin(frac p) = true;
6 //@ group resource join(frac p);

8 //@ requires true; ensures start();
public Thread();

10

//@ requires preFork(); ensures postJoin(1);
12 void run();

14 //@ requires start() ** preFork(); ensures join(1);
public void start();

16

//@ given frac p;
18 //@ requires join(p); ensures postJoin(p);

public void join();
20 }

Lst. 3. Specification of class Thread

the newly created thread. To verify that the thread functions correctly, the run
method is verified w.r.t. its specification. When verifying the thread that creates
or joins this thread, the calls to start and join are verified using the standard
verification rule for method calls.

Example 3. To illustrate how we reason about dynamic thread creation, we use
a common pattern of signal-processing applications in which a chain of threads
are connected through a shared buffer, in which we store several instances of
class Point defined in Lst. 2. In addition, this example also demonstrates how
the join predicate is used in case multiple threads join the same thread.

The complete application uses one shared buffer and four threads: a sampler,
filter processes A and B, and a plotter. The buffer encapsulates an input field
and two points, see Lst. 4. First, the sampler thread assigns a value to the input
field of the buffer. Next, it passes the buffer to processes A and B, which are
executed in parallel. Based on the value that the sampler thread stored in the
inp field of Buffer, each process calculates a point and stores its value in the

public class Buffer {
//@ resource state(frac p) = Perm(inp, p) ** Perm(outa, p) ** Perm(outb, p);
public int inp;
public Point outa, outb;

}

Lst. 4. Class Buffer
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shared buffer. Finally, the computation results of both processes are displayed
by the plotter.

What makes this example interesting is that both processes A and B join the
sampler thread, i.e., they wait for the sampler thread to terminate, and in this
way retrieve read permission on the input data that was written by the sampler
thread.

In addition, the plotter waits for the two processing threads to terminate
(by joining them), to retrieve their permissions on the shared buffer, and then
combines these into full write permissions on all fields of the shared buffer.

Lst. 5 shows the sampler thread, Lst. 6 shows the AFilter class (class BFilter
is similar and not shown here), Lst. 7 shows the Plotter class and finally Lst. 8
shows the main application. In the examples we sketch an outline of the cor-
rectness proof as comments in the code. We also indicate when predicates are
fold-ed and unfold-ed, to encapsulate predicate definitions and expand them,
respectively.

To understand the annotations, we need to explain the meaning of the join
predicate, and why the postJoin predicate should be a group. In Example 3, both
processes A and B join the sampler thread. If both joining threads would obtain
the full set of permissions specified in postJoin, this would lead to unsoundness,
because multiple threads would obtain a write permission on the same location
simultaneously.

Instead, the full permission on the input field from the buffer must be split
between these two processes. Therefore, a special join token predicate is intro-
duced, which holds a fractional permission p. This permission specifies which
part of the postJoin predicate can be obtained by the thread invoking the join
method. The actual fraction of the join token that the joining thread currently
holds is passed as an extra parameter to the join method, via the given clause.

However, to make this work, both predicates postJoin and join have to be
splittable w.r.t. this permission. Splittable predicates are called groups and are
declared with the group keyword. Formally, a predicate P , parametrised by per-
mission q is a group if it respects the following equivalence P (q) *–* P (q/2) **
P (q/2). That is, the group property transitively extends the splittability of
atomic permissions over fractions to predicates.

The thread that creates the thread object obtains the join token, containing
a full permission. Formally, the join token is defined as an abstract predicate
without a body. It can be split and distributed as any other permission. The join
token is created and returned upon thread construction, see line 14 in Lst. 3.

Example 3 continued. Inside the main method (Lst. 8), for each thread a Join
token is created upon initialisation. The main method splits the ticket to join the
sampler thread, and transfers each half to the processing threads, as specified by
their preFork predicates. Additionally, the join tokens for the processing threads
are transferred to the plotter.

Thus, the processing thread A (Lst. 6) uses a half join token to join the
sampler thread, and to obtain half the resources released by the sampler thread.
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public class Sampler extends Thread {
//@ resource preFork = Perm(buffer.inp, 1);
//@ group resource postJoin(frac p) = Perm(buffer.inp,p);
Buffer buffer;

// constructor

//@ requires preFork(); ensures postJoin(1); // inherited from thread
public void run(){

//@ unfold preFork;
// { Perm(buffer.inp,1) }
sample();
// { Perm(buffer.inp,1) }
//@ fold postJoin(1) ;

}

//@ requires Perm(buffer.inp, 1); ensures Perm(buffer.inp, 1);
private void sample(){

// fill buffer.inp
}

}

Lst. 5. Class Sampler

public class AFilter extends Thread {
private Sampler sampler;
private Buffer buffer;

//@ resource preFork() = Perm(buffer.outa, 1) ** sampler.join(1/2);
//@ group resource postJoin(frac p)=Perm(buffer.outa,p)**Perm(buffer.inp,p/2);

// constructor

//@ requires preFork(); ensures postJoin(1);
public void run(){

//@ unfold preFork; // { Perm(buffer.outa, 1) ** Join(sampler, 1/2) }
sampler.join(); // { Perm(buffer.outa, 1) ** sampler.postJoin(1/2) }
//@ unfold sampler.postJoin(1/2);
// { Perm(buffer.outa, 1) ** Perm(buffer.inp, 1/2) }
processA(); // { Perm(buffer.outa, 1) ** Perm(buffer.inp, 1/2) }
//@ fold this.postJoin(1);

}

//@ requires Perm(buffer.outa, 1) ** Perm(buffer.inp, 1/2);
//@ ensures Perm(buffer.outa, 1) ** Perm(buffer.inp, 1/2);
private void processA(){/* reading buffer.inp and fill buffer.outa. */}

}

Lst. 6. Class AFilter
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public class Plotter extends Thread {
private Buffer buffer; private AFilter ta; private BFilter tb;
//@ resource preFork() = ta.join(1) ** tb.join(1);
//@ group resource postJoin(frac p) = buffer.state(p);

//@ ensures start() ** Perm(buffer, 1) ** Perm(ta, 1) ** Perm(tb, 1);
public Plotter(Buffer buf, AFilter fa, BFilter fb){ buffer=buf; ta=fa; tb=fb; }

//@ requires preFork(); ensures postJoin(1);
public void run(){

//@ unfold preFork // { ta.join(1) ** tb.join(1) }
ta.join(); // { ta.postJoin(1) ** tb.join(1) }
tb.join(); // { ta.postJoin(1) ** tb.postJoin(1) }
//@ unfold ta.postJoin(1); unfold tb.postJoin(1); fold buffer.state(1);
// { buffer.state(1) }
plot(); // { buffer.state(1) }
//@ fold this.postJoin(1);

}

//@ requires buffer.state(1); ensures buffer.state(1);
private void plot(){ /* plots the calculated points from the buffer */ }

}

Lst. 7. Class Plotter

//@ requires buf.state(1); ensures buf.state(1);
void main(){

Sampler s=new Sampler(buf); // { s.join(1) ** buf.state(1) }
//@ unfold buf.state(1); fold s.preFork()
//{ s.preFork()**s.join(1)**Perm(buf.outa, 1)**Perm(buf.outb, 1) }
AFilter a = new AFilter(buf, s);
//{ s.preFork**s.join(1)**a.join(1)**Perm(buf.outa, 1)**Perm(buf.outb, 1) }
//@ fold a.preFork;
//{ s.preFork**a.preFork**s.join(1/2)**a.join(1)**Perm(buf.outb, 1) }
BFilter b = new BFilter(buf, s);
//{ s.preFork**a.preFork**s.join(1/2)**a.join(1)**b.join(1)**Perm(buf.outb, 1) }
//@ fold b.preFork;
//{ s.preFork**a.preFork**b.preFork**a.join(1)**b.join(1) }
Plotter p = new Plotter(buf, a, b);
//{ s.preFork**a.preFork**b.preFork**a.join(1)**b.join(1)**p.join(1) }
//@ fold p.preFork; //{ s.preFork**a.preFork**b.preFork**p.preFork**p.join(1) }
s.start(); a.start(); b.start(); p.start(); // { p.join(1) }
p.join(); /* { p.postJoin(1) } */ //@ unfold p.postJoin(1);
//@ fold buf.state(1);

}

Lst. 8. The main thread for the sampler, filters, and the plotter
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Similarly, the plotter thread obtains a 1/2 read permission on inp and a write
permission on outa by joining process A, and another 1/2 read permission on
inp and a write permission on outb by joining process B. It then combines the
read permissions into a write permission on inp to invoke its plot method.

2.6 Architecture of the VerCors Tool Set

The whole verification approach as outlined above is supported by our VerCors
tool set. Rather than building yet another verifier, the VerCors tool leverages
existing verifiers. That is, it is designed as a compiler that translates specified
programs to a simpler language. These simplified programs are then verified by
a third-party verifier. If there are errors then the error messages are converted
to refer to the original input code.

Chalice Boogie Z3

Java PVL OpenCL
C

Tool
VerCors

back ends

input languages

Common Object Language

Fig. 1. VerCors tool architecture

Figure 1 shows the overall architec-
ture of the tool. Its main input lan-
guage is Java. For prototyping, we use
the toy language PVL, which is a very
simple object-oriented language that can
express specified GPU kernels too. The
C language family front-end is work-in-
progress, but will support OpenCL in
the near future. We mainly use Chal-
ice [37], a verifier for an idealised con-
current programming language, as our
back-end, but for sequential programs we also use the intermediate program
verification language Boogie [38].

The implementation of the tool is highly modular. Everything is built around
the Common Object Language data structure for abstract syntax trees. For Java
and C, parsing happens in two passes. In the first pass an existing ANTLR4 [52]
grammar is used to convert the programs into an AST while keeping all com-
ments. In the second pass those comments that contain specifications are parsed
using a separate grammar. This prevents us from having to maintain heavily
modified grammars and makes it much easier to support multiple specification
languages. The transformations to encode the program consist of many simple
passes. Obviously, this impacts performance, but it is good for reusability and
checkability of the passes. Our back-end framework allows switching between dif-
ferent versions, by setting up their command line execution using environment
modules, a system for dynamic access to multiple versions of software modules1.

3 Synchroniser Specifications

3.1 Reasoning about Synchronisers

Another way for threads to synchronise their behaviour is by using a lock. Locks
provide a way to protect access to shared data. Only one thread at a time can
1 http://modules.sourceforge.net

http://modules.sourceforge.net
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hold a lock, thus if threads only access the protected data while holding the lock,
this means that there cannot be simultaneous access to the protected data. In
Java, there are two ways to declare locks: any object can function as a lock, and
be used via the synchronized statement. Alternatively, one can also define a lock
object, and use the lock and unlock methods, declared in the Lock interface.

To reason about locks, we follow OHearn’s approach for CSL and we associate
a resource invariant with each lock, which specifies access to the data protected
by the lock [46]. That is, the resource invariant makes the information about
which data is protected by the lock explicit by naming the corresponding memory
locations. A thread that acquires the lock, obtains the permissions specified
in the resource invariant; when it releases the lock, it also has to release the
permissions specified in the resource invariant. A particular challenge for Java
is that locks might be reentrant [26], i.e., if a thread already holds a lock, it can
obtain it once more. This does not change anything in the behaviour, except that
to release the lock, it should be unlocked twice as well. Formally, a reentrancy
level is maintained for the thread holding the lock. To ensure soundness, a thread
should only obtain permissions when it acquires a lock for the first time, and it
should only be forced to give up the permissions when it releases the lock for
the last time. To manage this properly, the multi-set of locks that a thread holds
has to be maintained in the specifications.

Originally, we added explicit verification rules for locks as primitives to the
specification language (see [26]). However, this has the drawback that for every
synchronisation mechanism, new rules have to be added to the logic. When
looking into this in more detail, we realised that also for other synchronisation
mechanisms, the notion of resource invariant is crucial to specify what resources
can be redistributed between threads upon synchronisation.

Therefore, we took an alternative approach and we lifted the specification
of synchronisation mechanisms to the API level of Java, i.e., we provide a
specification-based approach to reason about locks. To make the approach ap-
plicable to different synchronisation mechanisms, we generalise the notion of a
lock, i.e., we consider any routine that uses synchronisation to transfer a set of
permissions as a locking routine. With our approach, we can specify arbitrary
synchronisation mechanisms from the Java API in a similar way, and provide
the ability to reason with these specifications modularly. We illustrate how our
synchroniser specifications are used to verify code using the synchroniser.

In a separate line of work, we have derived program logic rules for atomic
operations set, get and compareAndSwap as a synchronisation primitive [1]. We
can use these specifications to show that (simplified versions of) Java’s reference
implementations of the various synchronisers indeed respect our specifications.
For more information about these verifications, we refer to our PDP 2014 paper
about synchroniser specifications [2].

3.2 Initialisation of Resource Invariants

A lock can only be used when it has been initialised, i.e., the access permissions
specified in the resource invariant are stored “into” the lock. This ensures that
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//@ ghost boolean initialized = false;
2 //@ group resource initialized(frac p) = PointsTo(initialized, p/2, true);

//@ requires inv(1) ** PointsTo(initialized, 1, false);
4 //@ ensures initialized(1);

public void commit();

Lst. 9. Specifications for lock initialisation

the resources can be passed to a user upon synchronisation without introducing
new resources. Initialisation of the resource invariant is done in the same way
for all synchronisation mechanisms: class Object declares a ghost boolean field
initialized that tracks information about the initialisation state of the resource
invariant. Newly created locks are not initialised; the specification-only method
commit, see Lst. 9, can be used by the client code to irreversibly initialise the
lock. This means that the resources protected by the lock, as specified in the re-
source invariant predicate inv, become shared. To achieve this, commit requires
the client to provide the complete resource invariant inv(1), together with an
exclusive permission to change initialized (line 3). The method consumes the
invariant (“stores it into the lock”). Moreover, it ensures that initialized cannot
be changed any more by consuming part of the permission to access this field,
effectively making it read-only (lines 2 and 4). For convenience, the result of
commit is encapsulated in a single resource predicate initialized, which can be
passed around and used as a permission ticket for locking operations, see below.
The default location for the call to commit is at the end of the constructor of
the synchronisation object. More complex lock implementations (which are not
discussed in this paper) may require moving this call to another location in the
program.

The actual resource invariant is typically decided by the user of the synchro-
nisation class, therefore it is passed as a class parameter with the type (frac ->
resource). For example, given a two-point coordinate class, such as in Lst. 1,
using a ReentrantLock, the resource invariant that protects the x coordinate
(only) is specified with xInv, which is passed both as a type parameter and dur-
ing instantiation of the lock. By adding it as a type parameter it is specified that
the declared local variable or field can only contain lock that use this particular
invariant. By adding the argument during instantiation and object that has this
particular invariant is created. For example:
//@ resource xInv(frac p) = Perm(x, p);
Lock/*@<xInv, . . . >@*/ xLock=new ReentrantLock/*@< xInv >@*/();

As mentioned in Sect. 2, in our specifications such parameters (of which there
will be more, hence the “. . . ” above) are received through parameters specified
with the given keyword.

3.3 Lock Hierarchy Specification

The synchronisation classes in the Lock hierarchy in the concurrency package
are devoted to resource locking scenarios where either full (write) access is given
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«interface»
Lock

+lock() : void
+unlock() : void

ReentrantLock

«interface»
ReadWriteLock

+readLock() : Lock
+writeLock() : Lock

ReentrantReadWriteLock

ReentrantReadWriteLock:
ReadLock

ReentrantReadWriteLock:
WriteLock

Fig. 2. The hierarchy of locks in the java.util.concurrent package

to one particular thread or partial (read) access is given to an indefinite number
of threads. The complete hierarchy of locks is depicted in Fig. 2. We first discuss
the specification of the Lock interface, and then we proceed with specifications
of different lock implementations.

Lock Interface Specification. As explained above, our specification approach
of the synchronisation mechanisms is inspired by the logic of Haack et al. [26].
However, we cannot just translate the rules from [26] into method specifications
of the Lock interface, because the Lock interface can be used in different and
wider settings than considered by Haack et al. In particular, Lock implemen-
tations may be non-reentrant; they may be used to synchronise non-exclusive
access; and they may be used in coupled pairs to change between shared and
exclusive mode (see the read-write lock specification below). Therefore, as an
extension to the work of Haack et al., for the specification given in Lst. 10 the
following aspects are considered:

– The locks use boolean parameters isExclusive and isReentrant, which can
be correspondingly instantiated by implementations (line 2).

– To allow non-exclusive synchronisation, resource invariants have to be groups
(line 1), see Sect. 2.5.

– For the non-exclusive locking scenarios, the client program has to record the
amount of the resource fraction that was obtained during locking, so that
the lock can reclaim the complete resource fraction upon unlocking. This
information is passed around in the held predicate, which holds this fraction
(line 5) (similar in spirit to the join predicate, as discussed in Section 2.5.
This is purposely not declared as a group, so that clients are obliged to return
their whole share of resources. The held predicate is returned during locking
in exchange for the initialized predicate which is temporarily revoked for
the time that the lock is acquired.
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//@ given group (frac -> resource) inv;
2 //@ given boolean isExclusive, isReentrant;

public interface Lock {
4 //@ group resource initialized(frac p);

//@ resource held(frac p);
6

//@ ghost public final Object parent;
8

/*@ given bag<Object> S, frac p;
10 requires LockSet(S) ** !(S contains this) ** initialized(p);

requires parent != null ==> !(S contains parent);
12 ensures LockSet(this::parent::S) **

inv(isExclusive ? 1 : p) ** held(p);
14 also

requires isReentrant ** LockSet(S) **
16 (S contains this) ** held(p);

ensures LockSet(this::S) ** held(p); @*/
18 void lock();

20 /*@ given bag<Object> S, frac p;
requires LockSet(this::S) ** (S contains this) ** held(p);

22 ensures LockSet(S) ** held(p);
also

24 requires held(p) ** inv(isExclusive ? 1 : p);
requires LockSet(this::parent::S) ** !(S contains this);

26 ensures LockSet(S) ** initialized(p); @*/
void unlock();

28 }

Lst. 10. Specification of the Lock interface

– For situations where several locks share the same resource and are effectively
coupled as one lock, we need to ensure that only one lock is locked at a time.
The coupling itself is realised by holding a reference to the parent object
that maintains the coupled locks (line 7). The exclusive use of coupled locks
is ensured by storing and checking this parent object in the set of currently
held locks.

– A separate specification case is given for reentrant locking (when isReentrant
is true).

As a result, in the specification of method lock() in Lst. 10, given the multi-set of
locks, i.e., bag<Object> S, when the lock is acquired for the first time (lines 9–
13), the locking thread gets permissions from the lock. If the lock is reentrant,
and the thread already holds the lock (lines 15–17), then no new permission is
gained, only the multi-set of locks held by the current thread is extended with
this lock (where :: denotes bag addition). For coupled locks (where the parent is
not null) the presence of the parent in the lock set is also checked and recorded, to
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//@ given group (frac -> resource) inv;
2 //@ given boolean reentrant;

interface ReadWriteLock {
4 //@ group resource initialized(frac p);

6 //@ given frac p;
//@ requires initialized(p);

8 //@ ensures \result.parent == this ** \result.initialized(p);
/*@ pure @*/ Lock /*@< inv, false, reentrant >@*/ readLock();

10

//@ given frac p;
12 //@ requires initialized(p);

//@ ensures \result.parent == this ** \result.initialized(p);
14 /*@ pure @*/ Lock /*@< inv, true, reentrant >@*/ writeLock();

}

Lst. 11. Specification of the ReadWriteLock interface

prevent parallel use of the coupled locks. The specification of method unlock()
in Lst. 10 describes the reverse process: if the multi-set of locks contains the
specific lock only once (lines 24–26), then this means the return of permissions
to the lock (i.e., inv does not hold in the postcondition) according to the held
predicate; otherwise (lines 20–22), the thread keeps the permissions, but one
occurrence of the lock is removed from the multi-set.

ReentrantLock Specification. Class ReentrantLock implements the Lock in-
terface as an exclusive, reentrant lock. Thus, it inherits all specifications from
Lock and appropriately instantiates the two class parameters isReentrant and
isExclusive both to true:

//@ given group (frac -> resource) inv;
class ReentrantLock implements Lock /*@< inv, true, true >@*/ {

ReadWriteLock Specification. The ReadWriteLock is not a lock itself, but
a wrapper of two coupled Lock objects: one of them provides exclusive ac-
cess for writing (WriteLock), while the other allows concurrent reading by sev-
eral threads (ReadLock). The two classes are commonly implemented as inner
classes of the class that implements the ReadWriteLock interface (see Fig. 2 on
page 188). The two locks are intended to protect the same memory resources.
Hence our specifications in Lst. 11 state that the two getter methods (declared
as pure) for obtaining the two locks return a lock object with the same resource
inv, but which are non-exclusive (line 9) and exclusive (line 14), respectively. The
aggregate read-write lock has to be initialised itself (lines 7 and 12). Further,
using the return value keyword \result, we state in the respective postconditions
of the getter methods (lines 8 and 13) that the obtained locks are initialised and
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hence can be acquired, and that they have the same parent object, which is an
instance of the class implementing the ReadWriteLock interface.

Example 4. In this example we show how the specification of ReadWriteLock
helps us to reason about a single-producer multiple-consumer application. As-
sume an application where one single producer produces data to be used by
two separate consumer threads. The producer implemented as a Producer class
obtains the write lock and then exclusively accesses the shared data field:
//@ given group (frac -> resource) pcinv;
public class Producer extends Thread {

private final Lock/*@<pcinv, true, true>@*/ lock;
private final SProdMCons example;

//@ given frac p; requires lock.initialized(p); ensures lock.initialized(p);
public void produce(){

// { lock.initialized(p) }
lock.lock(); // { lock.inv(1) ** lock.held(p) }
//@ unfold lock.inv(1);
// { Perm(example.data, 1) ** lock.held(p) } // from pcinv
sample(); // { Perm(example.data, 1) ** lock.held(p) }
//@ fold lock.inv(1);
lock.unlock(); // { lock.initialized(p) }

}
// method run

}

Then, each consumer is trying to obtain a fractional permission of the shared
data to use the value written by the producer:
//@ given group (frac -> resource) pcinv;
public class Consumer extends Thread {

private final Lock/*@<pcinv, false, true>@*/ lock;
private final SProdMCons example;
private boolean flag; private int value;

//@ given frac p; requires lock.initialized(p) ** Perm(this.value,1);
//@ ensures lock.initialized(p) ** Perm(this.value,1);
public void consume(){

// { lock.initialized(p) }
lock.lock(); // { lock.inv(p) ** lock.held(p) }
//@ unfold lock.inv(p);
// { Perm(example.data, p) ** lock.held(p) } // from pcinv
this.value = example.data;
if( flag == this.example.PRINT) print( );
if( flag == this.example.LOG) log( );
//@ fold lock.inv(p); // { lock.held(p) ** lock.inv(p) }
lock.unlock(); // { lock.initialized(p) }

}
// methods run, print and log

}
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The producer and consumers are then combined together in the following class:
public class SProdMCons {

//@ group resource pcinv(frac p) = Perm(data, p);
public final boolean PRINT = true, LOG = false;
public int data;
private ReadWriteLock/*@<pcinv, true>@*/ rwl;

void main(){
rwl = new ReentrantReadWriteLock/*@< pcinv >@*/();

Producer producer =
new Producer/*@< pcinv >@*/(this, rwl.writeLock());

Consumer printer =
new Consumer/*@< pcinv >@*/(this, PRINT, rwl.readLock());

Consumer log =
new Consumer/*@< pcinv >@*/(this, LOG, rwl.readLock());

producer.start(); printer.start(); log.start();
producer.join(); printer.join(); log.join();

}
}

3.4 Semaphore Specification

To illustrate that similar specifications can be used to describe the behaviour
of other synchronisers as well, we briefly discuss the specification of class Sem-
aphore, which represents a counting semaphore. It is used to control threads’
accesses to a shared resource, by restricting the number of threads that can access
a resource simultaneously. Each semaphore is provided with a property permits,
that represents the maximum number of threads that can access the protected
resource. Accessing the resource must be preceded by acquiring a permit from
the semaphore. A semaphore with n permits allows a maximum of n threads to
access the same resource simultaneously. If n threads are holding a permit, a
new thread that tries to acquire a permit blocks until it is notified that a permit
is released.

When initialised with more than 1 permit, a semaphore closely corresponds
to a non-reentrant ReadLock, but with the number of threads accessing the
shared resource explicitly stated and controlled. When initialised with 1 permit,
it provides exclusive access, and behaves the same as a non-reentrant WriteLock.
Therefore, the specification of the semaphore is a stripped-down version of the
Lock specification, see Lst. 12. In particular, semaphores are never reentrant, and
they are not used in coupled combinations. Moreover, since the maximum num-
ber of threads that can access the shared resource is predefined with the permits
field, we can also limit ourselves to simply providing each acquiring thread with
an equal split of 1/permits of the resource invariant (lines 11 and 14). Note also
that there is no access permission required for the permits field as it is declared
to be final and hence can never change after initialisation.
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//@ given group (frac -> resource) inv;
2 public class Semaphore {

//@ resource held(frac p) = initialized(p);
4 //@ ghost final int permits;

6 //@ requires inv(1) ** permits > 0;
//@ ensures initialized(1) ** this.permits == permits;

8 public Semaphore(int permits);

10 //@ given frac p; requires initialized(p);
//@ ensures inv(1/permits) ** held(p);

12 public void acquire();

14 //@ given frac p; requires inv(1/permits) ** held(p);
//@ ensures initialized(p);

16 public void release();
}

Lst. 12. Specification of the Semaphore class

4 Reasoning about Concurrent Class Invariants

In addition to proving the absence of data races and that data is correctly pro-
tected by a synchroniser, we also wish to show properties about the state of the
program. In a concurrent setting, many program state properties become unsta-
ble, i.e., they can be invalidated by other threads. However, this section shows
that also in a concurrent setting it is possible to reason about class invariants,
restricting the reachable states of an object.

4.1 Concurrent Class Invariants

In essence, a class invariant expresses a property that should always hold for
every object of a given class. Concretely, it is defined as a boolean predicate that
should be continuously maintained. Consider class Point in Lst. 1 with the two
fields x and y. As mentioned, we specified an invariant property that the point
object always is in the first or third quarter of the Cartesian space:

//@ invariant ((x >= 0 && y >= 0) || (x <= 0 && y <= 0));

We could also specify different invariant properties, such as that the relation
x + y >= 0 should always hold for every live Point object in the program:

//@ invariant I: (x + y >= 0);

Notice that we allow to explicitly name invariants (here the invariant is named
I) as we later need to refer to them symbolically. Although the primary definition
of a class invariant is a property that holds always, in practice this is impossible,
unless the invariant expresses a relation over non-mutable locations. Otherwise,
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any change of a location might break the invariant, i.e., invalidate the correct-
ness of the invariant predicate. Therefore, a verification technique should allow
temporarily breaking of a class invariant at certain invisible program states.

In a sequential setting, the standard verification technique suggests that class
invariants must hold in every pre- and poststate of a public method [43]. The
verifier may assume that the class invariant holds at the beginning of every
method, and has an obligation to prove that it still holds at the end of the
method. In particular, only these states are visible states in a program, and any
breaking (invalidating) of the invariant in a method’s internal state is allowed.
Therefore, a class invariant specified for a given class is treated as if it is implicitly
added in the pre- and postcondition of every method in this class.

However, in a concurrent program, this approach can not be directly applied.
An internal method’s state in which a thread invalidates an invariant, might be
a prestate of a method (a visible state) for another thread. Therefore, assuming
the validity of a class invariant at the entrance of a method would be unsound.
A technique for verifying concurrent class invariants should allow a thread to
break a class invariant only in a state that is invisible for the other program
threads, so that they would not be able to observe the invalidated state of the
object.

To get an intuition of visible states in a concurrent program, consider the
move method in the Point class in which both properties x and y are modified.

void move(){
lockx.lock(); // lockx protects the location x

x--;
lockx.unlock();
locky.lock(); // locky protects the location y

y++;
locky.unlock();

}

Clearly, having both updates protected by a lock, the scenario is data-race
free. However, in the state after the release of the lock lockx, the invariant I
may be invalidated, while both x and y are accessible by another thread: the
invalidated state of the Point object is then observable/visible. This problem
is sometimes called a high-level data race [4]. A class invariants verifier should
detect an error in this scenario, reporting a visible state in which an invariant
can be broken. The correct scenario could be protecting both updates with a
single lock:

lock.lock();
x--;
y++;

lock.unlock();

In this way, the invalidated state is hidden for the other active program threads.
Further, we discuss the class invariant protocol for verifying concurrent class

invariants. The protocol explains the conditions under which a class invariant
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may be safely broken, conditions that allow to assume that an invariant holds,
and the obligations when the invariant’s validity must be proved. The technique
is modular and is built on top of our permission-based separation logic.

4.2 Class Invariant Protocol

We consider that class invariants express properties over instance class fields
only. Therefore, we refer to an invariant I defined in a class C through a specific
object v of class C, and we write v.I. The set of locations referred to by an
invariant v.I is called a footprint of v.I, denoted fp(v.I).

To define a class invariant, special state formulas are used: these formulas
express only properties over the shared state and are free of permission expres-
sions. Note that the class invariant I defined in the Point class contains neither
PointsTo nor Perm predicate. This contrasts standard permission-based sepa-
ration logic, where every location in a formula must be framed by a positive
permission.

Assuming a Class Invariant. The control of the validity of a class invariant
v.I is kept by a predicate/token holds(v.I, 1). The token is produced after the
creation of the valid object v, and afterwards it might be distributed among
different threads. Thus, the holds token is a group, i.e., the equivalence mentioned
in Sect. 4 holds:

holds(v.I, π) *–* holds(v.I, π/2) ** holds(v.I, π/2)

The intuitive meaning of this predicate is the following: when a thread holds
(part of) this token, it may assume that the invariant v.I holds. This means
that at the same time several threads may rely on the validity of the invariant
(each of them holding part of the invariant’s holds token). The invariant is then
stable and no other thread may break it. The following verification rule states
that the property expressed by a class invariant can be used under the condition
that (part of) the holds token is held:

{holds(v.I, π) ** v.I}c{F }
{holds(v.I, π)}c{F}

Example 5. Lst. 13 shows how a class invariant may be used for verifying a
client code. The main thread creates initially a valid Point object s, for which
the invariant s.I holds (s.x + s.y >=0), and obtains the token holds(s.I, 1) (line
3). Then, a set of new threads are forked (lines 5, 6), and each thread gets a
reference to s and part of the holds token. Each forked thread has a task to create
a sequence of new points at specific locations calculated from the location of s
(lines 19–23). To prove that each new Point p is a valid object (p.x + p.y >=0)
(line 21), each thread uses the class invariant s.I, which is guaranteed by the
token holds(s.I, π).
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class DrawPoints {
2 void main(){

Point s = new Point(0, 0); // holds(s.I, 1) token is produced
4 for (int k = 1; k<=10; k++) {

Task t = new Task(s, k);
6 t.fork(); // each t gets part of holds token

}
8 // join all Task threads

}
10 }

12 class Task {
Point s; int k;

14 // . . . constructors

16 //@ given frac p; requires holds(s.I. p) ** . . . ;
//@ ensures holds(s.I. p) ** . . . ;

18 void run(){
for (int i = 1; i < 10; i ++) {

20 // s.I holds (because of the holds token)
Point p = new Point(s.x + i, s.y + k); // use s.I to verify p.I

22 draw(p);
}

24 }
}

Lst. 13. Using a class invariant for verifying a client class

Breaking a Class Invariant. A class invariant may be temporarily broken by
a specific thread, under the condition that the invalid state of the object is not
observable by any other thread. To this end, breaking is allowed in explicitly
specified parts of the program. The developer is expected to mark the program
segment where breaking of an invariant might happen with two specification
commands: the command unpack(v.I) indicates the start of the segment, while
the pack(v.I) specification command is required to specify the end of the seg-
ment. We call this an unpacked segment. In the example of the Point class, both
updates should be wrapped in an unpacked segment.

All changes in the unpacked segment should stay hidden for the other pro-
gram threads. To ensure that no other thread might assume the validity of the
invariant v.I within the unpacked segment, the unpack(v.I) command consumes
the full holds(v.I, 1) token, which ensures that no part of this token is still
owned by another thread. The unpack(v.I) command at the same time produces
a new predicate, the unpacked(v.I, 1) token, which serves as a license for the
thread to break the invariant v.I. Holding the unpacked token is a required con-
dition for assigning to any location that appears in the footprint of the invariant.
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//@requires holds(this.I, 1); ensures holds(this.I, 1);
void move() {

lock.lock(); // { Perm(x, 1) ** Perm(y, 1); }
// { Perm(x, 1) ** Perm(y, 1) ** holds(this.I, 1) }
// { Perm(x, 1) ** Perm(y, 1) ** holds(this.I, 1) ** this.I }
// { Perm(x, 1) ** Perm(y, 1) ** holds(this.I, 1) ** x + y >= 0 }
//@ unpack(this.I);
// { Perm(x, 1) ** Perm(y, 1) ** unpacked(this.I, 1) ** x + y >= 0 }

x--;
// { Perm(x, 1) ** Perm(y, 1) ** unpacked(this.I, 1) ** x + y >= -1 }

y++;
// { Perm(x, 1) ** Perm(y, 1) ** unpacked(this.I, 1) ** x + y >= 0 }
// { Perm(x, 1) ** Perm(y, 1) ** unpacked(this.I, 1) ** this.I }
//@ pack(this.I);
//@ { Perm(x, 1) ** Perm(y, 1) ** holds(this.I, 1) }
lock.unlock();
// { holds(this.I, 1); }

}

Lst. 14. An unpacked segment

Once all updates are done, the running thread must reestablish the validity of v.I
and call the pack(v.I) command, which trades the unpacked(v.I, 1) token for the
holds(v.I, 1) token. The unpack(v.I) command is always followed by pack(v.I)
within the same method and executed by the same thread. This thread is called
a holder of the unpacked segment. Lst. 14 shows the specified move method with
the proof outline.

Restrictions to Unpacked Segments. As explained above, the unpacked
segment may contain states in which a certain object is invalidated. Therefore,
all changes in the segment must not be publicly exposed, i.e., they should not
be observable for any thread except for the holder of the segment. Because
of this, within an unpacked segment it is forbidden for the running thread to
release permissions and to make them accessible to other threads. In particular,
only safe commands are allowed, i.e., commands that exclude any lock-related
operation (acquiring, releasing or committing a lock). Note that in the example
in Lst. 14, the lock is acquired and released outside the unpacked segment. A
call to a method m is a safe command if the called method m itself is safe, i.e.,
a method composed of safe commands only. A safe method should be specified
with the optional modifier safe.

Forking a safe thread, i.e., a thread with a /*@safe@*/run() method, within
an unpacked segment is also allowed, under the condition that the thread must
be joined before the unpacked segment ends. These threads are called local to
the segment. A safe thread may further fork other safe threads. The breaking
token might then be shared among all local threads of the unpacked segment,
and thus, they might all update different locations of the invariant footprint in
parallel. For this purpose, the unpacked token is also a splittable token. This
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void move(){
//@ unpack(this.I);
lock.lock(); // invalid call (must happen before unpacking)
t.fork(); // allowed if t is a safe thread
updateY(); // allowed if updateY is a safe method
lock.unlock(); // invalid call, must happen after packing
t.join(); // t is a safe thread, thus joining must be before packing
//@ pack(this.I);

}

Lst. 15. Restrictions to an unpacked segment

means that breaking an invariant v.I does not require full unpacked token, but
for any π > 0, the predicate unpacked(v.I, π) is valid breaking permission. The
example on Lst. 15 shows the restrictions in an unpacked segment.

Object Initialisation. Object initialisation (the object constructor) is divided
into two phases: (1) object construction creates an empty object v (all v’s fields
get a default value), and gives the running thread write permission for each of v’s
fields. (2) the init method follows mandatorily after object construction, where
object fields are initialised. After this phase, the object may be used.

For every invariant v.I the unpacked(v.I, 1) token is produced for the first
time at the end of the first phase of v’s initialisation: the created object v is then
still empty and might be in an invalid state in which some of its invariants are
broken. This means that after this first phase, every invariant of the object v is
in an unpacked state.

After the second phase and the initialisation of all v’s object fields, the object
v should be in a valid state. For every invariant v.I, the pack(v.I) specification
command is called by default at the end of the init method. Hence, at the end of
v’s initialisation, the invariant v.I is in a packed state. We show the initialisation
of a Point object in Lst. 16.

To conclude, we summarise the rules that define the invariant protocol:

R1. (Assuming) A thread t may assume (use) a class invariant v.I if t holds
the predicate holds(v.I, π), π > 0.
R2. (Breaking) A thread t may write on a location p.f if apart from holding
a write permission to p.f , it holds a breaking token unpacked(v.I, π), π > 0
for each invariant v.I that refers to p.f , i.e., p.f ∈ fp(v.I).
R3. (Reestablishing) An invariant v.I must have been reestablished when
pack(v.I) is executed.
R4. (Exchanging tokens) The token unpacked(v.I, 1) is produced at v’s con-
struction; commands unpack(v.I) and pack(v.I) exchange the holds(v.I, 1)
token for the unpacked(v.I, 1) token, and vice versa.
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class Point {
int x, y;
Lock lock;
//@ invariant I: (x + y >= 0);

//@ ensures Perm(x, 1) ** Perm(y, 1) ** unpacked(I, 1);
public Point() { /* effectively calls init */ }

//@ requires Perm(x, 1) ** Perm(y, 1) ** unpacked(I, 1);
//@ ensures holds(I, 1);
void init() {

x = 0; y = 0;
//@ resource rinv = Perm(x, 1) ** Perm(y, 1);
lock = new Lock/*@< rinv >@*/();
//@ pack(I);
// { Perm(x, 1) ** Perm(y, 1) ** holds(I, 1) }
lock.commit(); // permissions are transferred to the lock
// { holds(I, 1) }

}
}

Lst. 16. Object Initialisation

4.3 Modular Verification

To be practically useful, the verification technique should be modular. Rule R2,
listed above, requires a breaking token for all invariants that refer to p.f . How-
ever, in the context (class) where the assignment happens, not all invariants
in the program are known. Therefore, it is impossible for the verifier to check
modularly whether rule R2 is properly satisfied.

Consider the example in Lst. 17: the class Line contains references of two Point
objects (the rep modifiers in lines 2 and 3 are discussed later). The invariant I1
in the class Line refers to fields in p1 and p2. This means that assigning to a
field x or y of a Point object may break an invariant of an existing Line object:
therefore, this assignment should be allowed if the invariant I1 is also unpacked.
When verifying the Point class, the verifier should be aware of the Line class,
and possibly other classes that refer to the fields x and y in the Point class.
Thus, it is impossible to verify the Point class in isolation.

This problem with modularity is not typical for concurrent programs, but also
manifests itself when verifying class invariants in sequential programs. Several so-
lutions are suggested for modular verification of sequential invariants [44,5,42,20].
Mostly they use the restrictions from Müller’s ownership type system [19].

Using the restrictions of the ownership type system can also help to provide
modular verification of concurrent class invariants. Below we first shortly discuss
the ownership-type system and then we explain the verification technique for
concurrent class invariants based on this type system. In general, in rule R2, to
assign a location p.f , only the invariants of the object p are explicitly checked,
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class Line {
2 /*@ rep @*/ Point p1;

/*@ rep @*/ Point p2;
4

//@ invariant I1: (p1.x + p2.x <= 10 ** p1.y + p2.y <= 10);
6

//@ requires unpacked(I1, 1) ** . . . (permissions) . . . ;
8 //@ ensures holds(I1, 1) ** holds(p1.I, 1) ** holds(p2.I, 1);

//@ ensures . . . (permissions) . . . ;
10 void init(){

p1 = new /*@ rep @*/ Point(0, 0);
12 p2 = new /*@ rep @*/ Point(0, 5);

//@ pack(this.I1);
14 }

16 //@ requires holds(this.I1, 1) ** holds(p1.I, 1);
//@ requires Perm(p1.x, 1) ** Perm(p1.y, 1);

18 //@ ensures holds(this.I1, 1) ** holds(p1.I, 1);
//@ ensures Perm(p1.x, 1) ** Perm(p1.y, 1);

20 void moveP1() {
//@ unpack(this.I1);

22 p1.move();
//@ pack(this.I1); // trades the unpacked token for holds token

24 }

26 class Point{
int x;

28 int y;
//@ invariant I: (x + y >= 0);

30

//@ given frac p;
32 //@ requires Perm(x, 1) ** Perm(y, 1) ** holds(I, p);

//@ ensures Perm(x, 1) ** Perm(y, 1) ** holds(I, p);
34 /*@ safe @*/ void move() {

//@ unpack(this.I);
36 x--;

y++;
38 //@ pack(this.I);

}
40 }

Lst. 17. Modular verification
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while the technique guarantees that the unpacked token is implicitly held for all
other necessary class invariants.

Ownership-Based Types. The ownership type system forces all objects in
the heap to be organised in a structural way and it applies certain restrictions
to the operations applicable to each object reference. In particular, each object
is required to respect the concept of ownership topology, where objects are or-
ganised in a hierarchy. Each object has one owner, either the root of the tree,
or another object in the heap. Each ancestor of an object p in the tree is p’s
transitive owner. The developer decides the position of an object in the tree by
attaching an appropriate modifier from the set {rep, peer, rd } when the object
is created. This modifier becomes a part of the type of the object reference,
which shows the relation between the object and the this object. For example,
if a new Point object is created with the rep modifier,

/*@ rep @*/ Point point = new /*@ rep @*/ Point();

the type rep indicates that the new object is owned by this object. The type
peer is used when creating an object that should have the same owner as the this
object, while rd is used for any other object. The type is actually attached to the
object reference, because it shows the relation of the object in the context of the
this object. If another reference of the same Point object is used in a different
context, that reference would have another modifier, calculated appropriately
according to the new context. For example, if the object a owns b, while b owns
c, the type of a reference of c in the context of the object b is rep, while the type
of a reference of c in the context of a is rd.

Having all objects in the heap structurally organised, the ownership type
system imposes certain restrictions: writing to a field p.f or a call to a non-
pure method (a method with side-effects) with a receiver p is not allowed if
the ownership type of the reference p is rd. In this way, each object controls
all updates that happen in its transitively owned objects. This guarantees the
following rule:

RO If a field p.f is modified in a method m, for each transitive owner o of
p, the call stack contains a method invocation where o is a receiver.

Verification Technique via Ownership Types. To use the ownership-type
system for modular verification of class invariants, additionally, the definition of
a class invariant is restricted such that:

RCI A class invariant v.I may only express properties over fields of the
object v, or fields of object that is transitively owned by v.

From the rule RCI, we can observe the following: a location p.f may be
referred to by an invariant of the object p or of an object v that is a transitive
owner of p. Moreover, according to RO, the assignment of p.f is preceded by
a method call where v is a receiver. These two observations give the right to
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define the following: when assigning to a location p.f , it is enough to require the
unpacked token only for the invariants of the object p (p.I) that refer to p.f . If
any other invariant v.I refers to p.f , then v is a transitive owner of p and the
check that the actual thread holds the unpacked token for v.I is a requirement
of the method call where object v is a receiver.

More precisely, rule R2 listed above is replaced with the following two rules:

R2.1. A precondition for assigning a value to a field p.f requires a token
unpacked(p.I, π), π > 0, for each invariant I of the object p that refers to
p.f .
R2.2. A precondition for invoking a method m that assigns a field p.f re-
quires the token unpacked(this.I, π), π > 0, for each invariant I of the this
object that refers to p.f .

Example 6. In the example in Lst. 17 on page 200, each Line object line owns
the objects line.p1 and line.p2. This hierarchy allows the invariant I1 in the Line
class to express properties over fields in p1 and p2. The updates in the move
method in the Point class (line 34) might break the invariant I defined in the
class Point, as well as the invariant I1 in the Line class. Therefore, before these
updates happen, both I and I1 have to be in an unpacked state. The invariant
I is required to be unpacked in the method move, before the updates of x and
y (line 35), while I1 has to be unpacked before the call to the move method in
the Line class (line 21).

It is important to note that permissions for the updating fields, p1.x and
p1.y, must be obtained outside the unpacked segments of both invariants I and
I1. No locks are then acquired in the move method, and thus the method is
safe (line 34). If these permissions were obtained through a lock inside the move
method in the Point class (as in Lst. 14), the Line class could not be verified:
the unpacked segment in the moveP1 method would then contain a method call
to an unsafe method.

With this approach the verifier may perform both R2.1 and R2.2 having only
the knowledge of the context where the assignment happens. This makes the
approach modular. Although the method is applicable to ownership-based type
systems only, this is not considered as a serious restriction, because ownership
is a common and natural concept for organisation of objects in a program.

5 Reasoning about GPU Kernels

Above, we have considered how to reason about multithreaded Java programs,
running on one or multiple CPUs. However, to achieve an increase in perfor-
mance, modern hardware also uses different computing paradigms. GPUs, graph-
ical processing units, which were initially designed to support computer graphics,
are more and more used also for other programming tasks, leading to the devel-
opment of the area of GPGPU (General Purpose GPU) programming.
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kernel demo {
global int[gsize] a,b;
void main(){

a[tid]:=tid;
barrier(global);
b[tid]:=a[(tid+1) mod gsize];

}
}

Lst. 18. Basic example kernel

Until 2006 GPGPU programming was mainly done in CUDA [34], a pro-
prietary GPU programming language from NVIDIA. However, recently a new
platform-independent, low-level programming language standard for GPGPU
programming, OpenCL [47], emerged. As a result, GPUs are now used in many
different fields, including media processing [18], medical imaging [57] and eye-
tracking [45].

The main characteristic of GPU kernels is that each kernel constitutes a mas-
sive number of parallel threads. All threads execute the same instruction, but
each thread operates on its own share of memory. Barriers are used as the main
synchronisation primitive between threads in a kernel.

This section shows how permission-based separation logic also can be used to
reason about OpenCL kernels.

5.1 GPU Architecture

Before presenting our verification technique, we first briefly discuss the main
characteristics of the GPU architecture (for more details, see the OpenCL spec-
ification [35]).

A GPU runs hundreds of threads simultaneously. All threads within the same
kernel execute the same instruction, but on different data: the Single Instruction
Multiple Data (SIMD) execution model. GPU kernels are invoked by a host
program, typically running on a CPU. Threads are grouped into work groups.
GPUs have three different memory regions: global, local, and private memory.
Private memory is local to a single thread, local memory is shared between
threads within a work group, and global memory is accessible to all threads
in a kernel, and to the host program. Threads within a single work group can
synchronise by using a barrier : all threads block at the barrier until all other
threads have also reached this barrier. A barrier instruction comes with a flag
to indicate whether it synchronises global or local memory, or both. Notice that
threads within different work groups cannot synchronise.

Example 7. Lst. 18 shows the code of a kernel that initialises a global array b in
such a way that position i contains i + 1 modulo the length of the array. It does
so in a complicated way. Each thread first assign its thread id tid to position i
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of a temporary array a. Then all threads wait for each other (which means that
this code can only run for a single working group) and then position i of array
b is assigned by reading position i + 1 modulo the working group size of array
a. If the barrier would be removed, there would be a data race on a[i].

5.2 Verification of GPGPU Kernels

As mentioned, permission-based separation logic also is suitable to reason about
kernel programs. When reasoning about kernel programs, we can prove that
a kernel (i) does not have data races, and (ii) that it respects its functional
behaviour specification. Kernels can exhibit two kinds of data races: (i) parallel
threads within a work group can access the same location, either in global or
in local memory, and this access is not ordered by an appropriate barrier, and
(ii) parallel threads within different work groups can access the same locations
in global memory. With our logic, we can verify the absence of both kinds of
data races.

Concretely, for each kernel we specify all the permissions that are needed to ex-
ecute the kernel. Upon invocation of the kernel, these permissions are transferred
from the host code to the kernel. Within the kernel, the available permissions
are distributed over the threads. Every time a barrier is reached, a barrier speci-
fication specifies how the permissions are redistributed over the threads (similar
to the barrier specifications of Hobor et al. [29]). The barrier specification also
specifies functional pre- and postconditions for the barrier. Essentially this spec-
ifies how knowledge about the global state upon reaching the barrier is spread
over the different threads.

Traditionally, separation logic considers a single heap for the program. How-
ever, to reason about kernels, we make an explicit distinction between global
and local memory. To support our reasoning method, kernels, work groups and
threads are specified as follows:

– The kernel specification is a triple (Kres, Kpre, Kpost). The resource formula
Kres specifies all resources in global memory that are passed from the host
program to the kernel, while Kpre and Kpost specify the functional kernel
pre- and postcondition, respectively. Kpre and Kpost have to be framed by
Kres. An invocation of a kernel by a host program is correct if the host
program holds the necessary resources and fulfils the preconditions.

– The group specification is a triple (Gres, Gpre, Gpost), where Gres specifies the
resources in global memory that can be used by the threads in this group, and
Gpre and Gpost specify the functional pre- and postcondition, respectively,
again framed by Gres. Notice that locations defined in local memory are
only valid inside the work group and thus the work group always holds write
permissions for these locations.

– Permissions and conditions in the work group are distributed over the work
group’s threads by the thread specification (T res

pre , Tpre, T res
post, Tpost). Because

threads within a work group can exchange permissions, we allow the re-
sources before (T res

pre) and after execution (T res
post) to be different.
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The functional behaviour is specified by Tpre and Tpost, which must be framed
by T res

pre and T res
post, respectively.

– A barrier specification (Bres, Bpre, Bpost) specifies resources, and a pre- and
postcondition for each barrier in the kernel. Bres specifies how permissions
are redistributed over the threads (depending on the barrier flag, these can
be permissions on local memory only, on global memory only, or a combi-
nation of global and local memory). The barrier precondition Bpre specifies
the property that has to hold when a thread reaches the barrier. It must
be framed by the resources that were specified by the previous barrier (con-
sidering the thread start as an implicit barrier). The barrier postcondition
Bpost specifies the property that may be assumed to continue verification of
the thread. It must be framed by Bres.

Notice that it is sufficient to specify a single permission formula for a kernel
and a work group. Since work groups do not synchronise with each other, there
is no way to redistribute permissions over kernels or work groups. Within a work
group, permissions are redistributed over the threads only at a barrier, the code
between barriers always holds the same set of permissions.

Given a fully annotated kernel, verification of the kernel w.r.t. its specification
essentially boils down to verification of the following properties:

– Each thread is verified w.r.t. the thread specification, i.e., given the thread’s
code Tbody, the Hoare triple {Tres ** Tpre} Tbody{Tpost} is verified using the
permission-based separation logic rules defined in Sect. 5.4. Each barrier is
verified as a method call with precondition Rcur ** Bpre and postcondition
Bres ** Bpost, where Rcur specifies all current resources.

– The kernel resources are sufficient for the distribution over the work groups,
as specified by the group resources.

– The kernel precondition implies the work group’s preconditions.
– The group resources and accesses to local memory are sufficient for the dis-

tribution of resources over the threads.
– The work group precondition implies the thread’s preconditions.
– Each barrier redistributes only resources that are available in the work group.
– For each barrier the postcondition for each thread follows from the precondi-

tion in the thread, and the fenced conjuncts of the preconditions of all other
threads in the work group.

– The universal quantification over all threads’ postconditions implies the work
group’s postcondition.

– The universal quantification over all work groups’ postconditions implies the
kernel’s postcondition.

The first condition is checked by the Hoare logic rules discussed below; the
other conditions are encoded as additional checks in the VerCors tool set.

We will illustrate our approach on the kernel program discussed in Example 7.

Example 8. Consider the kernel in Lst. 18. For simplicity, it has a single work
group, so the kernel level and group level specification are the same.
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kernel demo {
global int[gsize] a;
global int[gsize] b;

requires Perm(a[tid],100) ** Perm(b[tid],100);
ensures Perm(b[tid],100) ** b[tid] = (tid+1) mod gsize;
void main(){

a[tid]:=tid;
barrier(global) {

requires a[tid]=tid;
ensures Perm(a[(tid+1) mod gsize],10) ** Perm(b[tid],100);
ensures a[(tid+1) mod gsize]=(tid+1) mod gsize; }

b[tid]:=a[(tid+1) mod gsize];
}

}

Lst. 19. VerCors tool annotated version of the code in Lst. 18

At the kernel level, the required resources Kres are write permissions on arrays
a and b. The kernel precondition Kpre states that the length of both arrays should
be the same as the number of threads (denoted as gsize for work group size). The
kernel postcondition expresses that afterwards, for any i in the range of the array,
b[i] = (i + 1)%gsize. Each thread i initially obtains a write permission at a[i].
When thread i reaches the barrier, the property a[i] = i holds; this is the barrier
precondition. After the barrier, each thread i obtains a write permission on b[i]
and a read permission on a[(i + 1)%gsize], and it continues its computation with
the barrier postcondition that a[(i + 1)%gsize] = (i + 1)%gsize. From this, each
thread i can establish the thread’s postcondition b[i] = (i + 1)%gsize, which is
sufficient to establish the kernel’s postcondition. See Lst. 19 for a tool-verified
annotated version.

Notice that the logic contains many levels of specification. However, typically
many of these specifications can be generated, satisfying the properties above
by construction. As discussed in Section 5.5 below, for the tool implementation
it is sufficient to provide the thread and the barrier specifications.

5.3 Kernel Programming Language

This section defines a simple kernel language. The next section defines the logic
over this simplified language, however we would like to emphasise that our tool
can verify real OpenCL kernels.

Our language is based on the Kernel Programming Language (KPL) of Betts
et al. [9]. However, the original version of KPL did not distinguish between
global and local memory, while we do. As kernel procedures cannot recursively
call themselves, we restrict the language to a single block of kernel code, without
loss of generality. Fig. 3 presents the syntax of our language. Each kernel is merely
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Reserved global identifiers (constant within a thread):
tid Thread identifier with respect to the kernel
gid Group identifier with respect to the kernel
lid Local thread identifier with respect to the work group
tcount The total number of threads in the kernel
gsize The number of threads per work group
Kernel language:
b ::= boolean expression over global constants and private variables
e ::= integer expression over global constants and private variables
S ::= v := e |v := rdloc(e) |v := rdglob(e) |wrloc(e1, e2) |wrglob(e1, e2)

| nop |S1; S2 |if b thenS1 elseS2 |while b doS |bid : barrier(F )
F ::= ∅ | {local} | {global} | {local, global}

Fig. 3. Syntax for Kernel Programming Language

a single statement, which is executed by all threads, where threads are divided
into one or more work groups. For simplicity, but without loss of generality,
global and local memory are assumed to be single shared arrays (similar to
the original KPL presentation [9]). There are 4 memory access operations: read
from location e1 in local memory (v := rdloc(e1)); write e2 to location e1 in
local memory (wrloc(e1, e2)); read from global memory (v := rdglob(e)); and
write to global memory (wrglob(e1, e2)). Finally, there is a barrier operation,
taking as argument a subset of the flags local and global, which describes which
of the two memories are fenced by the barrier. Each barrier is labelled with an
identifier bid .

5.4 Kernel Program Logic

This section formally defines the rules to reason about OpenCL kernels. As
explained above, we distinguish between two kinds of formulas: resource formu-
las (in permission-based separation logic), and property formulas (in first-order
logic).

Syntax of Resource Formulas. Before presenting the verification rules, we first
define the syntax of resource formulas. Section 2 on page 175 defined the syntax
of resource formulas. However, our kernel programming language uses a very
simple form of expressions only, and the syntax explicitly distinguishes between
access to global and local memory. Therefore, in our kernel specification language
we follow the same pattern, and we explicitly use different permission statements
for local and global memory.

As mentioned above, the behaviour of kernels, groups, threads and barriers is
defined as tuples (Kres, Kpre, Kpost), (Gres, Gpre, Gpost), (T res

pre , Tpre, T res
post, Tpost),

and (Bres, Bpre, Bpost), respectively, where the resource formulas are defined by
the following grammar:
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(assign)
{R, P [v := e]}v := e{R, P }

(read-local)
{R ** LPerm(e, π), P [v := L[e]]}v := rdloc(e){R ** LPerm(e, π), P}

(write-local)
{R ** LPerm(e1, rw), P [L[e1] := e2]}wrloc(e1, e2){R ** LPerm(e1, rw), P }

(barrier)
{Rcur, Bpre(bid)}bid : barrier(F ){Bres(bid), Bpost(bid)}

Fig. 4. Hoare logic rules

E ::= expressions over global constants, private variables, rdloc(E), rdglob(E)
R ::= true | LPerm(E, p) | GPerm(E, p) | E ==> R

| R1 ** R2 | (\forall* T v; E(v); R(v))

Resource formulas can frame first-order logic formulas. For this purpose, we
define the footprint of a resource formula as all global and local memory locations
that are accessed to evaluate the formula (see [11] for more details).

Hoare Triples for Kernels. Since in our logic we explicitly separate the resource
formulas and the first-order logic properties, we first have to redefine the meaning
of a Hoare triple in our setting, where the pre- and the postcondition consist of
a resource formula, and a first-order logic formula, such that the pair is properly
framed.

{R1, P1}S{R2, P2} =
∀R γ.(Γ 
 R; γ |= R1 ** P1) ∧ (S, (Rmg, Rml, γ),R) →∗ (ε, (σ, δ, γ′), F ) ⇒

∀R′.R′mg = σ ∧ R′ml = δ.Γ 
 R′; γ′ |= R2 ** P2

Fig. 4 summarises the most important Hoare logic rules to reason about ker-
nel threads; in addition there are the standard rules for sequential composi-
tional, conditionals, and loops. Rule (assign) applies for updates to local mem-
ory. Rules (read-local) and (write-local) specifies look-up and update of local
memory (where L[e] denotes the value stored at location e in the local memory
array, and substitution is as usually defined for arrays, cf. [3]):

L[e][L[e1] := e2] = (e = e1)?e2 : L[e]

Similar rules are defined for global memory (not given here, for space reasons).
The rule (barrier) reflects the functionality of the barrier from the point of

view of one thread. First, the resources before (Rcur) are replaced with the barrier
resources for the thread (Bres(bid)). Second, the barrier precondition (Bpre(tid))
is replaced by the post condition (Bpost(tid)). The requirement that the precon-
ditions within a group imply the postconditions is not enforced by this rule; it
must be checked separately.
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5.5 Example: Binomial Coefficient

Finally we discuss the verification of a more involved kernel, to illustrate the
power of our verification technique. The full example is available on-line and can
be tried in the on-line version of our tool set [58].

The kernel program in Lst. 20 computes the binomial coefficients
(

N − 1
0

)
· · ·

(
N − 1
N − 1

)

using N threads forming a single work group. Due to space restrictions, only the
critical parts of the specifications have been given. The actual verified version
has longer and more tedious specifications.

The intended output is the global array bin. The local array tmp is used for
exchanging data between threads. The algorithm proceeds in N − 1 iterations
and in each iteration bin contains a row from Pascal’s triangle as the first part,
and ones for the unused part.

On line 10 the entire bin array is initialised to 1. This satisfies the invariants
on line 11/12 that states that the array bin contains the N th row of Pascal’s
triangle, followed by ones. The loop body first copies the bin array to the tmp
array, then using a barrier that fences the local variable. These values are then
transmitted to the next thread and the write permission on tmp is exchanged
for a read permissions. Then, for the relevant subset of threads, the equation

(
N

k

)
=

(
N − 1
k − 1

)
+

(
N − 1

k

)

is used to update bin, and the second barrier returns write permission on tmp.
Note that the first barrier fences the local variables, which is necessary to

ensure that the next thread can see the values. The second barrier does not
fence any variables because it is only there to ensure that the value has been
read and processed, making it safe to write the next value in tmp.

6 Related Work

To conclude this paper, we briefly give some pointers to related work. We do
not intend this discussion to be complete; for this we refer to the related work
sections of our individual papers.

6.1 Tools for Verification of Java Programs

The examples in this paper are specified in a dialect of separation logic that
extends the JML [36] specification language with concurrent features. Many
different verification tools for JML already exist [13]. Also tools for separation
logic exist, such as VeriFast [33], SmallFoot [8], and jStar [21]. We also mention
Chalice [37] here. Strictly speaking this is not a separation logic tool, however its
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kernel binomial {
2 global int[gsize] bin;

local int[gsize] tmp;
4

requires gsize > 1 ** Perm(bin[tid],1) ** Perm(tmp[tid],100);
6 ensures Perm(bin[tid],100) ** bin[tid]=binom(gsize-1,tid);

void main(){
8 int temp;

int N:=1;
10 bin[tid]:=1;

invariant Perm(bin[tid],100) ** Perm(tmp[tid],100);
12 invariant tid<N ? bin[tid]=binom(N,tid) : bin[tid]=1;

while(N<gsize-1){
14 tmp[tid]:=bin[tid];

barrier(1,{local}){
16 ensures Perm(bin[tid],100) ** Perm(tmp[(tid-1) mod gsize],10);

ensures 0<tid & tid<=N -> tmp[(tid-1) mod gsize]=binom(N,tid-1);
18 }

N := N+1;
20 if(0<tid & tid<N){

temp:=tmp[(tid-1) mod gsize];
22 bin[tid]:=temp+bin[tid];

}
24 barrier(2,{}){

ensures Perm(bin[tid],100) ** Perm(tmp[tid],100);
26 }

}
28 }

}

Lst. 20. Kernel program for binomial coefficients

specification language (implicit dynamic frames [56]) is equivalent to separation
logic [51].

SmallFoot and jStar support basic separation logic, without fractional per-
missions. The Chalice specification language is quite similar to ours, but more
restricted. For example, it does not allow predicates with parameters and it does
not support the magic wand. Moreover, its programming language does not have
inheritance. The VeriFast tool supports both C and Java. The main difference
with the VerCors tool is that it uses a pure version of separation logic rather
than our free form.

One of the core components of a specification language for concurrent software
is the access permission model, which determines how flexible the specification
languages for access permissions is. Separation logic is not the only one available.
One of the simplest models is the permission model of the Spec# programming
system for C# [6]. This model organises access permissions as a forest of trees.
It is also used in the VCC verifier for C code [15].
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6.2 Synchronisers

As mentioned, our synchroniser specifications extend our earlier formalisation
of reentrant locks [26]. Several other built-in formalisations of locks and syn-
chronisation primitives exist. Chalice [37] formalises simple non-reentrant locks
built into the Chalice language. The work of Gotsman et al. [25] is similar to
our earlier formalisation, and we believe that our high-level approach could also
be easily applied there to treat a wider range of synchronisation primitives.

Similarly, the work of Hobor and Gherghina on formalising Pthread-style bar-
riers in Separation Logic [29] follows very similar principles. This work was the
basis for our barrier specifications for OpenCL kernels. However, since OpenCL
barriers are simpler, our barrier specifications for kernel programs also are much
simpler. We are currently working on specifying and verifying also a Java API
version of a cyclic barrier.

Finally, the VeriFast tool [33] adopts an approach similar to ours – locking is
also specified on the API level, but only for simple and non-reentrant locks, and
so-called higher-order abstract predicates are functionally similar to our class
level specification parameters.

6.3 Class Invariants

The early developed techniques for verification of class invariants in sequential
programs [43,41] support invariants with restricted definition only. This work is
unsound for more complex data structures, for example if an invariant captures
properties over different objects. Later, Poetzsch-Heffter [53] and Huizing et
al. [31] developed sound techniques that do not restrict the invariant definition
or the program itself; however, both approaches are not modular.

Müller et al. [44] propose two sound techniques for modular reasoning: the
ownership technique and the less restrictive visibility technique. Both concepts,
as well as Lu et al.’s modular technique [42], are designed for ownership-based
type systems. All these techniques are captured in Drossopoulou et al.’s abstract
unified framework [22].

Weiß models class invariants with a boolean model field inv [59]. Their validity
is checked only on demand. Specifications use inv explicitly where needed, while
this.inv is implicitly generated in each method pre- and postcondition.

Jacobs et al. [32] suggest a technique for verifying multithreaded programs
with class invariants, using the Boogie methodology [5] for sequential programs.
With this approach, a thread is allowed to break a class invariant of an object
only if it completely owns the object, i.e., no other thread can access any field of
this object. This is in contrast with the approach presented in this paper, where
breaking a class invariant is independent of permissions on heap memory.

A different approach for modular verification of object invariants in concurrent
programs is proposed by Cohen [16], implemented in VCC [15]. Each object is
assigned a two-state invariant expressing the required relation between any two
consecutive states of execution that has to be respected by every state update
in the program.
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6.4 GPUs

There already exists some work on the verification of GPU kernels. However,
these approaches mainly focus on the verification of data race freedom of the in-
terleaving of two arbitrary threads, whereas we verify an arbitrary single thread,
and also consider functional correctness.

Li and Gopalakrishnan [40] verify CUDA programs by symbolically encoding
thread interleavings. They focus on data race freedom, and were the first to ob-
serve that to ensure data race freedom it was sufficient to verify the interleavings
of two arbitrary threads.

Betts et al. [9] verify GPU programs by encoding their behaviour as a Boo-
giePL program. The GPUVerify tool is highly efficient at automatically verifying
data race freedom and absence of barrier divergence. However, it abstracts away
from all data and cannot easily prove functional correctness.

7 Summary and Directions for Future Work

This paper illustrated the VerCors approach to verification of concurrent soft-
ware. The approach uses permission-based separation logic as the underlying
logic to handle the concurrency-related features. However, compared to other
projects handling verification of concurrent software, the VerCors project focuses
on making verification practical. It achieves this by using an easily accessible
specification language, that reuses important aspects of the JML specification
language, and by concentrating on also verifying functional program properties.

We discussed some distinguishing features of the VerCors project in more
detail. First of all, we showed how different synchronisers can be specified uni-
formly in the specification language, and how these specifications are used to
verify other programs. Moreover, (simplified versions of) Java’s reference imple-
mentations of these synchronisers have been proven correct w.r.t. these specifi-
cations. This verification has not been discussed in detail in this paper, but it
is important to know that the specifications are indeed correct. Second, we also
discussed how an important class of functional correctness properties, namely
that of class invariants can be specified and verified in a modular way in a con-
current setting. Key ingredient of the approach is that the annotator explicitly
can control when the invariant may be broken, but that it has to be ensured
that the broken invariant is not visible to other threads (until it is reestablished
again). Last, we also showed how the approach can be used to verify other con-
currency paradigms, and in particular how it is used to verify vector programs,
following the Single Instruction Multiple Data paradigm. Concretely, we apply
this technique to prove data race freedom and functional correctness of OpenCL
kernel programs.

Future Work. The work described in this paper is part of an ongoing project
and much more work remains to be done. In particular, the tool support needs
to be improved and tested further, and on larger applications. At the moment,
a user has to add many proof hints and annotations by hand. To make the
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approach scale to larger applications and usable for other software developers, a
large effort is needed on generating annotations and proof hints automatically.

Additionally, we also plan to expand the application domain of the VerCors
tool set. We would like to study what effort is needed to extend the verification
techniques to other programming languages, e.g., C and Scala. We are also de-
veloping techniques to study more advanced functional properties; in particular
to be able to verify that an application eventually computes an expected result.

For the GPU verification, we plan to study parallellisation and optimisations
in more detail. When a sequential program is verified, and then parallellised to
a vector program by a parallellising compiler, how can we make sure that the
resulting vector program is also correct? And when the vector program is further
optimised, to increase performance, how can we make sure that correctness of
the optimised program is maintained?
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Abstract. According to a study in 2002 commisioned by a US Depart-
ment, software bugs annually costs the US economy an estimated $59
billion1. A more recent study in 2013 by Cambridge University estimated
that the global cost has risen to $312 billion globally2.

There exists various ways to prevent, isolate and fix software bugs,
ranging from lightweight methods that are (semi)-automatic, to heavy-
weight methods that require significant user interaction. Our own method
described in this tutorial is based on automated run-time checking of a
combination of protocol- and data-oriented properties of object-oriented
programs.

1 Run-Time Checking of Object-Oriented Programs

Given a program and a specification, a run-time verifier inserts checks in the
code that determine whether the specification is satisfied. The checks are trig-
gered during an actual execution of the program. In contrast to static verifi-
cation, where properties are checked with respect to all executions (possibly
there are infinitely many), run-time checkers only consider a single execution of
the program. There is a wide range of specification languages used in run-time
verification. They can be partitioned into two categories: languages that focus
on the control-flow (these approaches are also called “monitoring”), and those
focussing on data-flow.

As an example, one can use regular expressions to specify the order in which
functions or methods in a program should be called [18]. Such specifications
describe the control-flow of the program. Other formalisms for specifying control-
flow are temporal logics, various kinds of automata and context-free grammars.
For these formalisms, checking whether a given property holds of the current
execution involves parsing a word (where the word is some representation of the
trace of method calls in the current execution) in an automata. Generally only
formalisms are chosen with a decidable parsing problem (in particular, this is
the case for regular expressions, context-free grammars and most automata), so

1 http://web.archive.org/web/20090610052743/

http://www.nist.gov/public affairs/releases/n02-10.htm
2 http://www.prweb.com/releases/2013/1/prweb10298185.htm

M. Bernardo et al. (Eds.): SFM 2014, LNCS 8483, pp. 217–262, 2014.
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that everything can be automated. Specification languages for monitoring are
discussed in more detail in the next section.

Approaches that specify data-flow usually do so by annotating the source
code with assertions: logical formulas that must be true whenever control passes
them. The formulas constrain the values of the program variables. If assertions
are expressed in first-order logic with arithmetic, it is in general undecidable
due to unbounded quantification (i.e. ranging over an infinite number of val-
ues) whether the assertion is true, thus usually the assertions are restricted
in some way. For instance, Java contains an assert-statement which restricts
to quantifier-free formulas (i.e. Boolean expressions). Design by Contract [53]
provides a systematic way of using assertions to specify classes, interfaces and
methods with respectively class invariants and pre- and postconditions. It was
first used in the programming language Eiffel, and subsequently has also been
applied to many other programming languages. For example, JML [14] is one
of the most popular specification languages for Java and supports Design by
Contract. JML also supports unbounded quantification, though assertions con-
taining unbounded quantifiers are not checked by the JML run-time assertion
checker.

While type checking for the most used imperative languages is done fully auto-
matically at compile-time, run-time checking is done (also fully automatically)
during execution, and properties are only checked for the current execution.
This generally allows more expressive specifications compared to type checkers.
Static verification cannot be automated. In particular, even if one restricts pre-
and postconditions to just the formulas true and false, the resulting specifica-
tion language is still undecidable (such assertions suffice to express the halting
problem).

Our own proposal is a method for run-time checking of object-oriented
programs.We discuss below in more detail how run-time checking applies
to the specific context of object-oriented programming, focussing first on
single-threaded Java, and then describe an extension to concurrency.

Two of the basic features of object-oriented programming are data abstraction
and encapsulation. In the design of software, these features support the method-
ology of programming to interfaces [31]. This methodology allows the developer
of client code to abstract from irrelevant implementation details. Combined with
the design by contract principle [53], programming by interfaces is one of the
main approaches to mastering the complexity of software today.

One of the main formal behavioral interface specification languages for Java,
the Java Modeling Language (JML) [14], is inherently state-based ; i.e., JML
mainly provides support for the specification of classes in terms of their fields,
including so-called model fields that represent certain aspects of the data struc-
tures underlying the implementation. JML does not provide explicit support for
the specification of the interaction between objects, in contrast to other for-
malisms such as message sequence charts and UML sequence diagrams [23,41].
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On the other hand, the very semantic foundations of object-oriented program-
ming are defined in terms of sequences of messages. In [43], a fully abstract trace
semantics for a core Java-like language is given, where traces (or communication
histories) are (finite) sequences of messages. A fully abstract semantics in gen-
eral captures the observable behavior abstracting from implementation details.
Such an abstraction is required in for example a proper semantic definition of
behavioral subtyping as is illustrated by the fragile base class problem [54]: Ac-
cording to the initial/final state semantics the class B (Figure 1) and its revised
version in Figure 2 below are behaviorally equivalent.

class B {

int x = 0;

void m() {

x = x+1;

}

void n() {

x = x+1

}

}

Fig. 1. First version of a base class B

class B {

int x = 0;

void m() {

this.n();

}

void n() {

x = x+1;

}

}

Fig. 2. New version of a base class B

However the behavior of the subclass M defined in Figure 3 is clearly different
for the two versions of the base class. In particular, when using the revised
version of the base class, the definitions of the methods m and n in the subclass
M are mutually recursive, giving rise to a non-terminating loop.
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class M extends B {

void n() {

this.m();

}

}

Fig. 3. Subclass of the base class

It is worthwhile to observe the analogy between this anomaly with repect
to the substitutivity of (behaviorally) equivalent classes and the following ba-
sic counter-example to the compositionality of the initial/final state semantics
for multi-threaded programs. Both threads T 1 and T 2 of Figure 4 have the
same initial/final state semantics, however the initial/final state semantics of
the interleaving of T 1 and thread T clearly differs from that of T 2 and T, if
assignments are treated atomically.

thread T_1 { x=x+1; x=x+1 }

thread T_2 { x= x+2; }

thread T { x=0 }

Fig. 4. Multi-Threaded Programs

This counter-example shows that for a compositional semantics of multi-
threaded programs we need more specific information about the underlying im-
plementation, namely information about how the final state is generated from
the initial state. The minimal information needed is captured by a fully abstract
semantics (see [55] for a definition of the full abstraction problem). In general
fully abstract semantics of concurrent systems are based on some form of trace
semantics. Of interest here is that the above work on fully abstract semantics
for a core Java-like language shows that some form of trace semantics is needed
even for sequential (single threaded) programs. More specifically, [43] shows that
a form of trace semantics for object-oriented programs indeed guarantees sub-
stitutivity assuming encapsulation of the object state. Consequently, also the
fragile base class problem, as shown above, can only be resolved by some form of
trace semantics of behavioral subtyping. In this case, the sequences of internal
communication distinguishes the classes in Figure 1 and Figure 2. Fischer and
Wehrheim [28] further investigate behavioral subtyping based on histories for
object-oriented languages.

The following question arises: how to bridge the gap between the semantic
foundations of Java based on traces and the abstraction level of formal behavioral
interface specification state-based languages like JML? To this end we aim to
find a formalism and corresponding tool support which:
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1. Integrates properties of the control-flow and data-flow.
2. Is at the same abstraction level as the object-oriented programming model.
3. Is sufficiently expressive.
4. Is user-friendly, i.e., fairly close to the familiar surface syntax of the pro-

gramming language.
5. Supports automated run-time checking.
6. Adds as little overhead as possible.
7. Contains some form of error reporting.

1.1 Outline

Section 2 contains a survey of existing formalisms and tools for specifying object-
oriented programs.

Section 3 presents our own formalism for single-threaded object-oriented pro-
grams. The basic notions of a communication view, attribute grammars and
assertions in attribute grammars are introduced. The section concludes with a
motivation for the design choices that were taken during the development of the
specification language.

Section 4 describes the architecture of SAGA, a tool for run-time checking
the previously presented formalism. First, the components of a generic tool ar-
chitecture are identified. Second, each component is instantiated with different
tools which are then evaluated.

Section 5 contains two case studies. First we specify a small but very common
Java library: a Stack. Subsequently we consider a larger industrial case from the
e-commerce company Fredhopper. The section finishes with an evaluation based
on the two cases.

2 Specifying Object-Oriented Programs: Formalisms
and Tools

In this section we give an overview of existing specification languages for object-
oriented programs. The specification languages can be roughly partitioned into
those which focus on formalizing protocol-oriented properties (all but the last
three categories listed below), and those focussing on data. All specification lan-
guages for protocol properties are based on some form of histories (also known
as traces): sequences of method calls or returns. Languages focussing on data
restrict the values of variables and fields in a program by means of logical for-
mulas. We describe whether the specification languages are used in actual tools
for static verification or run-time checking.

Sequence Diagrams. A sequence diagram3 shows how multiple objects interact
with each other over time. The diagram depicts the messages exchanged between

3 See http://www.omg.org/spec/UML/ for the latest UML specification of sequence
diagrams.

http://www.omg.org/spec/UML/
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the objects, and the order in which they are sent. In the context of object-oriented
programs, the messages in a sequence diagram correspond to method calls. Since
sequence diagrams visualize a single interaction, one could select a set of sequence
diagrams as a specification of the behaviour of an object-oriented program, by
requiring that the methods in the program are executed in the order specified
by one of the sequence diagrams in the set. The resulting specification language
describes properties of the protocol of the program.

While sequence diagrams have been used in theoretical studies for verifica-
tion purposes [24,50], to the best of our knowledge, sequence diagrams as a
specification language have not been used in actual tools for static or run-time
verification. There are several reasons for this. First, any specification based on
visualization tends to become unclear and even infeasible for describing large
interactions. Second, the number of interactions exhibited in programs are of-
ten unbounded due to loops and recursion. Thus one would need an additional
language for characterizing infinite sets of sequence diagrams.

Regular Expressions. A regular expression [44] is a declarative notation for a
regular language. A language is a set of words. The words are usually (finite)
strings of characters, though more complex objects can be used as well. The
regular languages are those that can be obtained from a finite language by union,
concatenation and Kleene star (an infinite union of finite concatenations of a
language). If r1 and r2 are regular expressions, the notation for these three
operations is respectively r1 + r2 (union), r1r2 (concatenation) and r1∗ (Kleene
star). As an example, the regular expression (ab)∗ denote the language of all
words starting with “a” in which “a” and “b” alternate. The formal properties
of regular languages have been widely studied in the field of formal languages
and theory of computation, see for example the books [65,51].

As a specification language for object-oriented programs, regular expressions
can be used to denote valid histories [18]. In this setting, the alphabet symbols
correspond to method names, histories are represented as sequences of such
alphabet symbols, and the valid histories are the words of the regular language.
Note that in contrast to the previous sequence diagrams, regular expressions
support a convenient notation for an infinite set of histories with the Kleene
star.

There are various tools for run-time checking which support regular expres-
sions: JmSeq [58], Tracematches [2] and JavaMOP [17]. The run-time check cor-
responds to solving the word problem (or parsing problem): decide whether the
history is a word of the language denoted by a given regular expression. This can
be done efficiently. In particular, if a history is valid according to a given regular
expression, then parsing algorithms exist that decide in constant time whether
the history resulting from appending a single call is also valid according to the
regular expression (for the full history, this leads to parsing algorithms which
are linear in the size of the history), see [32]. Moreover one does not need to
store the full history, only the “state” of the parser for the previous history, and
the method call which is added to the previous history are needed to determine
validity of the new history.
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Context-Free Grammars. A context-free grammar G is a quadruple G =
〈V,Σ, P, S〉 where V is a set of non-terminals, Σ is a set of terminal symbols,
S is the start-symbol of the grammar (a non-terminal), and P is a set of pro-
duction rules. The production rules specify how each non-terminal (independent
of the context in which that non-terminal occurs, hence the name context-free)
is allowed to be rewritten into a sequence of terminals and non-terminals. The
grammar generates a context-free language, namely the set of all strings of ter-
minal symbols that can be obtained by repeatedly applying the production rules
of the grammar, starting from the start symbol of the grammar. For example,
the grammar below (the used notation for the grammar is BNF [4]) with the
non-terminal S as its start symbol, and “a” and “b” as terminal symbols gener-
ates all words of the form akbk, k ≥ 0 (in words: k a’s, followed by k b’s). The
symbol ε denotes the empty word.

S ::= a S b
| ε

Context-free grammars are strictly more expressive than regular expressions.
Using the so-called pumping lemma [65], one can prove that there is no regular
expression which denotes the same language as the grammar above. However it
is more complex to parse a string in a given context-free grammar, than in a
regular expression. The currently best known practical algorithms can parse a
string of length n in (worst case) O(n3) time.

When used as a specification language for object-oriented programs, the ter-
minal symbols are the method names, and the grammar specifies the valid or-
derings in which these methods are allowed to be called (in other words, the
context-free grammar generates the valid histories). The run-time check which
decides whether a history is valid consists of parsing the current history in the
given grammar. PQL [52] and JavaMOP [17] are examples of tools that support
run-time checking based on context-free grammars.

Automata. There are too many kinds of automata too list them here exhaus-
tively, but all of them contain at least two things: a notion of a state, and a
transition function between states. A finite automaton, one of the simplest au-
tomata, contains additionally a set of accepting states and a start state, with the
requirement that the set of states must be finite. Finite automata are equivalent
in expressive power to regular expressions. A push-down automaton is an exten-
sion of a finite automaton with a stack of infinite size. Push-down automata are
equivalent in expressive power to context-free grammars.

In general, automata can be seen as a representation of a formal language:
it takes a string as input, and accepts or rejects it based on an acceptance
condition (the specific acceptance condition varies greatly between the different
kinds of automata). However, unlike the above declarative formalisms of regular
expressions and context-free grammars, automata tend to have an imperative
flavor, focussing on how to parse a formal language, as opposed to directly
specifying the language itself.
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As a specification language for object-oriented programs, JavaMOP [17] sup-
ports finite automata. LARVA [22] supports a kind of automata called timed
automata with stopwatches.

Temporal Logics. Temporal logic [60] is a variant of Modal Logic [30]. As the
name indicates, the basis for temporal logics is a notion of time on which the
truth of a formula may depend. In particular, as the system described a temporal
logic formula evolves from one state to the next, the truth value of the formula
can change. There are many kinds of temporal logics, but they can roughly be
classified as being linear-time or branching-time. In linear-time logics, time is
viewed as a set of paths (the paths being sequences of “time instances”). LTL
[60] is a widely used linear-time logic. Branching-time logics represent time as
a tree in which the current time is the root, and the branches are considered as
“possible futures”. CTL [20] is the main branching-time logic.

Temporal logics have been used extensively in model checking [21], for ex-
ample in the tools (there are too many others to fully list here): BLAST [37]
Java Pathfinder [70] NuSMV [19] PRISM [48] SPIN [40] UPPAAL [9]. Temporal
logics have also been used in run-time checking, even for the functional language
Haskell [66]. Examples of run-time checkers of temporal logic formulas for Java
are JavaMOP [17] and Java Pathfinder [3].

Process Algebras. Process algebras [5,36] have been used to formally model con-
current systems. There exist a wide variety of process algebras (or process cal-
culi), but all approaches share some basic characteristics.

Each approach has a notion of a basic process from which larger processes are
built using various operators (for example, for parallel composition, sequential
composition and recursion). Message passing is used as the only way two dif-
ferent actors or processes can interact (instead of for example, shared variable
concurrency). Finally, all approaches come with a set of algebraic laws (hence
the name “process algebra”) which for example can be used to show that syntac-
tically different processes are semantically equal (i.e. have the same behavior).

For reference we list some of the most used process algebras here: CSP [39,1],
LOTOS [69], CCS [56], ACP [12] and the more recent π-calculus [57,64]. CSP has
been used in the tool Jass [6] for run-time checking object-oriented programs.

First-Order Logic. First-order logic is a formal system for specifying and rea-
soning about formulas about objects (or values) that range over some domain
of discourse. All variables and terms in a first-order formula range over objects
of the domain of discourse.

First-order logic can be used to specify programs by means of assertions: a
logical formula in which the free variables (i.e. all variables not bound by ∀
and ∃) are program variables. Assertions are written in the source code of the
program and must be true whenever control passes over them. Floyd describes
in [29] a method for proving properties using first-order assertions. His work was
extended by Hoare in [38]. First-order logic also forms the basis for dynamic
logic and second- and higher-order logic described below.
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The popular tool-suite for JML [14] supports first-order assertions for both
static verification and run-time checking of Java programs. The run-time checker
for JML only checks formulas involving bounded quantifiers: quantified variables
that range over a finite set of values. Validity of formulas involving unbounded
quantifiers is in general undecidable, as already noted in the previous section.

Dynamic Logic. Like temporal logic, Dynamic Logic (DL) [62,33] is a variant
of modal logic [30] which allows the direct expression of program equivalence
and weakest preconditions. DL extends full first-order logic with two additional
(mix-fix) relations: < . > . (diamond) and [ .] . (box). In both cases, the first
argument is a statement, whereas the second argument is another DL formula.
A formula < s > p is true if there exists a terminating execution of s after which
the formula p is true. A formula [s]p is true after all terminating executions
of s, the formula p is true. For example, the formula <x=x-1;> (x == 0) is
equivalent to x = 1. Dynamic logic has been used as a specification language in
the static verifiers KeY [8] and KIV [35].

Second- and Higher-Order Logic. Second-Order logic is a highly expressive for-
malism which allows quantification over predicates and functions over the values
of the underlying domain. This contrasts with first-order logic, in which only
quantification over values of the domain is allowed. The expressiveness comes at
a price: no sound and complete proof systems (with decidable proof rules and ax-
ioms) can exist for full second-order logic. Higher-Order logic is a generalization
of second-order and first-order logic which allows quantification over objects of
an arbitrary higher type (i.e. quantification over predicates of predicates, and so
on). There exist various theorem provers for programs that support higher-order
logic: Isabelle/HOL [45], Why3 [27], PVS [68] and Coq [13].

Another relatively recent approach is Separation Logic [63], which extensively
uses inductively defined predicates (i.e. second-order logic), but adds several
non-standard logical connectives to reason about heap properties, such as the
separating conjunction and the points-to predicate. These connectives support
modularity, though they complicate proof theory (they cannot be axiomatized
[15]). Tools that support separation logic for static verification of programs in-
clude: VeriFAST [42], jStar [26], Slayer [11] and Smallfoot [10].

3 Trace Specifications for Control- and Data-Flow

The formalisms described in the previous section for specifying object-oriented
programs can be categorized in roughly two categories: those focussing on the
control-flow of the program, and those focussing on the data-flow of the program.
Formalisms focussing on the control-flow specify the allowed orderings between
method calls, for example using regular expressions, context-free grammars or
temporal logics. Formalisms for describing the data-flow generally use assertions
to restrict the values of fields, parameters or local variables, possibly enhanced
by constructs such as pre-post conditions and class invariants for supporting
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design by contract. But none of described specification languages were developed
to combine the specification of the control-flow with the data-flow in a single
formalism. In contrast, the behavior of almost all Java programs depends on
both control-flow and data-flow: for example, the behavior of a stack is fully
characterized by the sequence of method calls to push and pop it receives (the
control-flow), together with the parameter and return values (the data-flow).
For Java programs that encapsulate their internal state4 an execution can be
represented by the global communication history of the program: the sequence
of messages corresponding to the invocation and completion of (possibly static)
methods, including actual parameters and return values. Similarly, the execution
of a single object can be represented by its local communication history, which
consists of all messages sent and received by that object. The behavior of a
program (or object) can then be defined as the set of its allowed histories. Jeffrey
and Rathke [43] develop a fully abstract semantics based on histories which
coincides with the standard operational semantics.

Let us call the orderings between method-calls and returns the control-flow
of a history, and the actual parameters and return values the data-flow of the
history. In this section we develop a single formalism which allows combining
data-oriented properties of the history with protocol-oriented properties. To be
of practical use, such a formalism should be user-friendly, amenable to (at least)
automated run-time verification and sufficiently expressive. Below we propose
attribute grammars extended with assertions and conditional productions for
the specification of histories, and compare several alternatives approaches with
respect to expressiveness, usability and automation.

Specifications can be used in two different ways: as a description of how an API
(in our case, a set of Java classes and interfaces) must be used by a client (this
can be seen as a kind of formalized user manual), or as an internal specification
for developers of a class to test the class which is being developed. In the first
case, only methods visible to clients can be used in the specification (i.e. public
methods and no self-calls, since the user has no control over private methods
and self-calls), in the second case for internal use we must also monitor self-calls
and calls to private methods.

3.1 Modeling Framework

The modeling framework consists of three basic ingredients: communication
views, grammars with conditional productions, and assertions. We use the in-
terface of the Java BufferedReader (Figure 5) as a running example to explain
these modeling concepts. In particular, we formalize the following property of
the BufferedReader:

4 Encapsulation means that objects do not have direct access to the fields of other
objects. If access to a field x is needed, the programmer instead adds two methods
T getx() and void setX(T val).
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The BufferedReadermay only be closed by the same object which cre-
ated it, and read actions may only occur between the creation and closing
of the BufferedReader.

Note that the above property constrains the clients that use the
BufferedReader; in other words, it is a kind of “user manual” for the reader, but
does not guarantee that the reader itself works properly (since this property does
not restrict the behavior of the reader itself). The property is a little unusual in
that the reader actually cannot even detect whether a client uses it according to
the above specification, since the reader has no way to detect whether the caller
of close is the same object that constructed it. This last part can be seen as a
form of dynamically checked ownership: the client which created the reader owns
it, and the above property can serve as a first step to ensure that no information
about the reader is leaked to other clients.

interface BufferedReader {

void close();

void mark(int readAheadLimit);

boolean markSupported();

int read();

int read(char[] cbuf, int off, int len);

String readLine();

boolean ready();

void reset();

long skip(long n);

}

Fig. 5. Methods of the BufferedReader Interface

As a naive first step one might be tempted to define the behavior of
BufferedReader objects simply in terms of ‘call-m(T )’ and ‘return-m(T )’ mes-
sages of all methods ‘m’ in its interface, where the parameter types T are in-
cluded to distinguish between overloaded methods (such as read). However,
interfaces in Java contain only signatures of provided methods: methods where
the BufferedReader is the callee. Calls to these methods correspond to mes-
sages received by the object. In general the behavior of objects also depends on
messages sent by that object (i.e. where the object is the caller), and on the par-
ticular constructor (with parameter values) that created the object. Moreover it
is often useful to select a particular subset of method calls or returns, instead
of using calls and returns to all methods (a partial or incomplete specification).
Finally in referring to messages it is cumbersome to explicitly list the parameter
types. A communication view addresses these issues.
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Communication View. A communication view is a partial mapping which
associates a name to each message. Partiality makes it possible to filter irrelevant
events and message names are convenient in referring to messages.

Suppose we wish to formally specify the property on page 227. This
is a property which must hold for the local history of all instances of
java.util.BufferedReader. The communication view in Figure 6 selects the
relevant messages and associates them with intuitive names: open, read and
close.

local view BReaderView specifies java.util.BufferedReader {

BufferedReader(Reader in) open,

BufferedReader(Reader in, int sz) open,

call void close() close,

call int read() read,

call int read(char[] cbuf, int off, int len) read

}

Fig. 6. Communication view of a BufferedReader

All return messages and call messages methods not listed in the view are fil-
tered. Note how the view identifies two different messages (calls to the overloaded
readmethods) by giving them the same name read. Though the above communi-
cation view contains only provided methods (those listed in the BufferedReader
interface), required methods (e.g. methods of other interfaces or classes) are also
supported. Since such messages are sent to objects of a different class (or inter-
face), one must include the appropriate type explicitly in the method signature.
For example consider the following message:

call void C.m() out

If we would additionally include the above message in the communication view,
all call-messages to the method m of class C sent by a BufferedReader would
be selected and named out. In general, incoming messages received by an ob-
ject correspond to calls of provided methods and returns of required methods.
Outgoing messages sent by an object correspond to calls of required methods
and returns of provided methods. Incoming call-messages of local histories never
involve static methods, as such methods do not have a callee.

Besides normal methods, communication views can contain signatures of con-
structors (i.e. the messages named open in our example view). As such, the set
of signatures that occur in a communication view is not necessarily a subset of
the signatures in the interface it specifies (since Java interfaces do not contain
constructors). In this case, the view selects all calls/returns to an object of a
class that implements that interface.

Incoming calls to provided constructors raise an interesting question: what
would happen if we select such a message in a local history? At the time
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of the call, the object has not even been created yet, so it is unclear which
BufferedReader object receives the message. We therefore only allow return-
messages of provided constructors (clearly constructors of other objects do not
pose the same problem, consequently we allow selecting both calls and returns to
required constructors), and for convenience omit return. Alternatively one could
treat constructors like static methods, disallowing incoming call-messages to con-
structors in local histories altogether. However this makes it impossible to express
certain properties (including the desired property of the BufferedReader) and
has no advantages over the approach we take.

Java programs can distinguish methods of the same name only if their parame-
ter types are different. Communication views are more fine-grained: methods can
be distinguished also based on their return type or their access modifiers (such
as public). For instance, consider a scenario with suggestively named classes
Base and three subclasses Sub1, Sub2 and Sub3, all of which provide a method
m. The return type of m in the Base, Sub1 and Sub2 classes is the class itself
(i.e. Sub1 for m provided by Sub1). In the Sub3 class the return type is Sub1.
To monitor calls to m only with return type Sub1, simply include the following
event in the view:

call Sub1 C.m() messagename

One may ask: why allow private methods to appear in specifications? After all,
private methods cannot be used by an outside client of the class. The same ques-
tion arises when considering whether to monitor self-calls or not. By allowing
to monitor private methods and self-calls, the modeling framework and corre-
sponding tool support can also be used by developers of the class, to test the
current implementation of the class in development. Communication views in-
clude an optional excludeSelfCalls keyword which indicates per event whether
self-calls must be tracked (for self-calls, the caller and the callee are the same).
While typically developers do not want to exclude self-calls for the purpose of
internal tests, this keyword is especially useful in public specifications for other
clients, that describe how the class must be used by the client.

Local communication views, such as 6, selects messages sent and re-
ceived by a single object of a particular class, indicated by ‘specifies
java.util.BufferedReader’. In contrast, global communication views select
messages sent and received by any object during the execution of the Java pro-
gram. This is useful to specify global properties of a program. In addition to in-
stance methods, calls and returns of static methods can also be selected in global
views. Figure 7 shows a global view which selects all returns of the method m of
a class or interface (or any of its subclasses) called Ping, and all calls to m on a
subtype of a class or interface called Pong. Note that communication views do
not distinguish instances of the same class (e.g. calls to ‘Ping’ on two different
objects of class ‘Ping’ both get mapped to the same terminal ‘ping’). Differ-
ent instances can be distinguished in the grammar using the built-in attributes
‘caller’ or ‘callee’, see the next two sections.
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global view PingPong {

return void Ping.m() ping,

call void Pong.m() pong

}

Fig. 7. Global communication view

In contrast to interfaces of the programming language, communication views
can contain constructors, required methods, static methods (in global views)
and can distinguish methods based on return type or method modifiers such as
‘static’, or ‘public’. See table 1 for a list of supported features which require
special care. For example, to support dynamic binding, the actual run-time type
of the callee must be used, instead of the static type of the variable or field
in which the callee is stored. This means that the correspondence between the
messages named in the communication view, and actual method calls in the
program source code must be made at run-time. The other features listed in
the table have been discussed above.

Table 1. Supported Java features that require special care

Constructors

Inheritance

Dynamic Binding

Overloading

Static Methods

Required Methods

Access Modifiers

Context-Free Grammars. Now that we have identified the basic messages
using the communication view, the question arises how we can specify the valid
orderings between these messages: the protocol. More specifically, we want to find
a notation for the set of the valid histories (where a history is a finite sequence of
messages). While the histories in this set will be finite (since at any point during
execution, the then current history is finite), the set itself usually contains an
infinite number of histories due to recursion or loops, so we cannot simply write
it down explicitly. We can consider the set to be a language in which each history
is a word, and each message is an alphabet symbol. This suggests we can use
existing formalisms for defining languages, in particular the ones surveyed in
Section 2. We use context-free grammars to specify the protocol behavior of
histories.
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Definition 1. A history is valid with respect to a given context-free grammar if
and only if all prefixes of the history (including the history itself) are generated
by the grammar.

The discussion in Section 3.3 provides a motivation for choosing grammars over
the other formalisms, and a justification for our definition of a valid history.

The grammar below specifies the valid histories of the BufferedReader:

S ::= open C
| ε

C ::= read C
| close S
| ε

Fig. 8. Context-Free Grammar which specifies that ‘read’ may only be called in be-
tween ‘open’ and ‘close’

This grammar describes the prefix closure of sequences of the terminals ‘open’,
‘read’ and ‘close’ as given by the regular expression ((open read ∗ close)∗). In
general, the message names given by a communication view form the terminal
symbols of the grammar, whereas the non-terminal symbols specify the structure
of valid sequences of messages (in particular, the start symbol S generates the
valid histories).

3.2 Attribute Grammars and Assertions

While context-free grammars provide a convenient way to specify the protocol
structure of the valid histories, they do not take data such as parameters and
return values of method calls and returns into account. Thus the question arises
how to specify the data-flow of the valid histories. To that end, we first extend
the above context-free grammars with so-called attributes.

Definition 2. Terminal Attributes. Given a terminal T , an attribute of T as-
signs a value to each instance5 of T (i.e. to each token of T).

For example, consider a terminal INT LITERAL, and suppose the string
“33” is an instance of INT LITERAL. One could define an attribute val for
INT LITERAL, which assigns the number 33 to the string “33”. Note that ter-
minal attributes can assign different values to different instances of the same
terminal.

In the previous section we saw that (instances of) terminals correspond to
call or return messages. The question arises: what are sensible attributes for
such terminals? Several objects are involved in the sending of the messages: the

5 A token is a string of symbols. A terminal can be seen as a token type, whose tokens
are considered to be syntactically “similar”.
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caller, the callee, and the actual data being sent in the form of actual parameters
or a return value result. We define built-in attributes (named callee, caller, and
so on) to capture precisely those objects involved in the message. In summary,
attributes of terminals are determined (i.e., built-in) from the method signatures
given in the communication view.

Next we define attributes for non-terminals. Unlike attributes for terminals,
they are defined by the user in the grammar. Given a context-free grammar G
and a non-terminal V , let us denote by L(V ) the language generated from the
non-terminal V by using the productions of G.

Definition 3. Non-terminal Attributes. Given a set of values D and a context-
free grammar with a non-terminal V , an attribute for V is a function
f : L(V ) → D.

Intuitively the above definition states that a non-terminal attribute assigns
values to all of the words generated by that non-terminal. The value of non-
terminal attributes is user-defined: the user must associate with each production,
source code that computes the attribute values of all non-terminals involved in
the production. There are two kinds of non-terminal attributes: synthesized at-
tributes and inherited attributes. In each production the user defines the value
of the synthesized attributes of the non-terminal on the left-hand side of the pro-
duction, and the values of the inherited attributes of the non-terminals appearing
on the right-hand side of the production. In general this does not rule out circular
attribute definitions The seminal paper [47] in which Knuth first introduced at-
tribute grammars contains an algorithm which detects circular definitions. Using
actual source code for the attribute definitions ensures that all attribute values
of non-terminals are computable. Of course this source code may not terminate,
we rely on the user to make sure that it does.

In our setting, the grammar non-terminals generate sequences of call/return
messages. Hence, a non-terminal attribute can be seen as a property of the data-
flow of that sequence and hence, as an important special case, the attributes of
the start symbol of the grammar can be considered as properties of the data-flow
of the history. We are now ready to define attribute grammars:

Definition 4. An attribute grammar is a pair (G,F ), where G is a context-free
grammar, and F is a set of attributes for G.

Note that the attributes themselves do not alter the language generated by the
attribute grammar, they only define properties of data-flow of the history. We
extend the attribute grammar with assertions to specify properties of attributes.
For example, in the attribute grammar in Figure 9 a user-defined synthesized
attribute ‘c’ for the non-terminal ‘C’ is defined to store the identity of the object
which closed the BufferedReader (and is null if the reader was not closed
yet). Synthesized attributes define the attribute values of the non-terminals on
the left-hand side of each grammar production, thus the ‘c’ attribute is not
set in the productions of the start symbol ‘S’. The extension of context-free
grammars to attribute grammars with assertions and conditional productions
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(next called “extended attribute grammars”) naturally gives rise to the following
modification in the definition of a valid history.

Definition 5. A history is valid with respect to a given extended attribute-
grammar if and only if all prefixes of the history (including the history itself)
are generated by the grammar, and all assertions in the grammar were true for
every prefix of the history.

The assertion in the attribute grammar of the BufferedReader allows only
those histories in which the object that opened (created) the reader is also the
object that closed it. Throughout the paper the start symbol in any grammar
is named ‘S’. For clarity, attribute definitions are written between parentheses
‘(’ and ‘)’ whereas assertions over these attributes are surrounded by braces ‘{’
and ‘}’.

S ::= open C1 {assert (open.caller == null ||
open.caller ==C1.c ||
C1.c == null);}

| ε
C ::= read C1 (C.c =C1.c;)

| close S (C.c = close.caller;)
| ε (C.c = null;)

Fig. 9. Attribute Grammar which specifies that ‘read’ may only be called in between
‘open’ and ‘close’, and the reader may only be closed by the object which opened it

Assertions can be placed at any position in a production rule and are evalu-
ated at the position they were written. Note that assertions appearing directly
before a terminal can be seen as a precondition of the terminal, whereas post-
conditions are placed directly after the terminal. This is in fact a generalization
of traditional pre- and post-conditions for methods as used in design-by-contract:
a single terminal ‘call-m’ can appear in multiple productions, each of which is fol-
lowed by a different assertion. Hence different preconditions (or post-conditions)
can be used for the same method, depending on the context (grammar pro-
duction) in which the event corresponding to the method call/return appears.
Traditional pre- and post-conditions are still useful if in every context, the same
assertion must be used: in that case, the assertions in the grammar would be
duplicated at every occurence of the appropriate terminal. In Section 5.1 we
show an example which uses traditional pre- and post-conditions.

It is important to note that for a meaningful semantics we have to restrict the
attribute grammars to those grammars which are side-effect free (with respect
to the heap) so that they don’t affect the flow of control of the tested program,
and which do not involve dereferencing of the built-in attributes of the grammar
terminal (the formal parameters of the corresponding methods as specified by
the communication view) because these refer to the current heap (and not to the
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past one corresponding to the occurrence of the message). This latter restriction
is a fairly natural requirement as the method call which generated the grammar
terminal only passed the the object identities of the actual parameters, but
not the values of the fields of these objects. Note also that this requirement is
automatically satisfied by using encapsulation.

Attribute grammars in combination with assertions cannot express protocol
that depend on data. To express such protocols we consider attribute grammars
enriched by conditional productions [59]. In such grammars, a production is
chosen only when the given condition (a boolean expression over the inherited
attributes) for that production is true. Hence conditions are evaluated before
any of the symbols in the production are parsed, before synthesized attributes
of the non-terminals appearing in the production are set and before assertions
are evaluated. In contrast to assertions, conditions in productions affect the
parsing process. The Worker grammar in Figure 30 in the case study contains a
conditional production for the ‘T’ non-terminal.

In summary, a communication view selects and names the relevant messages.
Selection allows to focus just on the relevant messages while names allow the
identification of different messages, and enable the user to refer to the messages in
a user-friendly manner. Context-free grammars specify the allowed orderings of
the messages. The terminals of the grammars are the names as introduced by the
communication view. These names are not just simple strings, but also contain
various attributes such as the sender, receiver and the data sent in the message.
The non-terminals are user-defined and generate sets of sequences of messages
(i.e. histories), as given by the grammar productions. The start symbol of the
grammar generates the valid histories. A context-free grammar can thus be seen
as specifying a kind of invariant of the control-flow. Attribute grammars allow
defining data properties of sequences of terminals, and in particular of the whole
history. To this end, the user defines attributes of the grammar non-terminals
in terms of the attributes of the grammar terminals. The values of non-terminal
attributes are defined by Java code, which ensures that the attribute definitions
are computable. The extension of attribute grammars with assertions makes it
possible to specify data-oriented properties of the history, by constraining the
value of the non-terminal attributes.

Finally, conditional productions can be used for protocols that depend on
data. In general, it is possible to specify a single interface or class with mul-
tiple communication views (and corresponding grammars). This increases ex-
pressiveness: it makes it possible to specify the intersection of two context-free
languages (if the user specifies two grammars, the history must satisfy both),
and context-free languages are not closed under intersection. Furthermore mul-
tiple communication views and grammars can be used as partial specifications
for the class or interface, to focussing on a particular behavioral aspect. If it
is possible to decompose a single complete specification into multiple partial
specifications, the resulting specifications are often simpler. This stems from the
fact that a complete specification formalizes various properties, and care must
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be taken to avoid unwanted interference between these properties. In contrast,
partial specifications can be used to formalize each property individually.

3.3 Discussion

We now briefly motivate our choice of attribute grammars extended by assertions
as specifications and discuss its advantages over alternative formalisms.

Instead of context-free grammars, we could have selected push-down automata
to specify protocol properties (formally these have the same expressive power).
Unfortunately push-down automata cannot handle attributes. An extension of
push-down automata with attributes results in a kind of Turing machine. From a
user perspective, the declarative nature and higher abstraction level of grammars
(compared to the imperative and low-level nature of automata) makes them
much more suitable than automata as a specification language. In fact, a push-
down automaton which recognizes the same language as a given grammar is an
implementation of a parser for that grammar.

Both the BufferedReader above and the case study use only regular grammars.
Since regular grammars simplify parsing compared to context-free grammars, the
question arises if we can reasonably restrict to regular grammars. Unfortunately
this rules out many real-life use cases. For instance, the following grammar in
EBNF6 specifies the valid protocol behavior of a stack:

S ::= (push S pop ?)*

It is well-known that the language generated by the above grammar is not regu-
lar (apply the pumping lemma for regular languages [65]), so regular grammars
(without attributes) cannot be used to enforce the safe use of a stack. It is pos-
sible to specify the stack using an attribute which counts the number of pushes
and pops:

S ::= S1 push (S.cnt = S_1.cnt+1;)
| S1 pop (S.cnt = S_1.cnt-1;)

{assert S.cnt >=0;}
| ε (S.cnt = 0;)

The resulting grammar is clearly less elegant and less readable: essentially it
encodes (instead of directly expresses, as in the grammar above) a protocol-
oriented property as a data-oriented one. The same problem arises when us-
ing regular grammars to specify programs with recursive methods. Thus, al-
though theoretically possible, we do not restrict to regular grammars for practical
purposes.

6 EBNF is an extension of the usual BNF notation for context-free grammars which
allows using the operators on regular expressions (such as the Kleene star ‘*’ and the
‘?’ operator standing for an optional occurrence, i.e., ‘r?’ stands for ‘r + ε’) directly
inside grammars.
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Ultimately the goal of run-time checking safety properties is to prevent un-
safe ongoing behavior. To do so, errors must be detected as soon as they occur;
this is known as fail-fast, and the monitor must immediately terminate the sys-
tem: it cannot wait until the program ends to detect errors. In other words, the
monitor must decide after every event whether the current history is still valid.
The simplest notion of a valid history (one which should not generate any er-
ror) is that of a word generated by the grammar. One way of fulfilling the above
requirement, assuming this notion of validity, is to restrict to prefix-closed gram-
mars. Unfortunately it’s not possible to decide whether a context-free grammar
is prefix-closed. The following lemmas formalize this result:

Lemma 1. Let LM be the set of all accepting computation histories7 of a Turing
Machine M. Then the complement LM is a context-free language.

Proof. See [65].

Lemma 2. It is undecidable whether a context-free language is prefix-closed.

Proof. We show how the halting problem for M (which is undecidable) can be
reduced to deciding prefix-closure of LM . To that end, we distinguish two cases:

1. M does not halt. Then LM is empty so LM is universal and hence prefix-
closed.

2. M halts. Then there is an accepting history h ∈ LM (and h /∈ LM ). Extend
h with an illegal move (one not permitted by M) to the configuration C,
resulting in the history h#C. Clearly h#C is not a valid accepting history,
so h#C ∈ LM . But since h /∈ LM , LM is not prefix-closed.

Summarizing, M halts if and only if LM is not prefix-closed. Thus if we could
decide prefix-closure of the context-free language (lemma 1) LM , we could decide
whether M halts.

Since prefix-closure is not a decidable property of grammars (not even if they
don’t contain attributes) we propose the following alternative definition for the
valid histories. A communication history is valid if and only if all its prefixes
are generated by the grammar. Note that this new definition naturally fulfills
the above requirement of detecing errors after every event. And furthermore this
notion of validity is decidable assuming the assertions used in the grammar are
decidable. As an example of this new notion of validity, consider the following
modification of the above grammar:

T ::= S {assert S.cnt >=0;}
S ::= S1 push (S.cnt = S_1.cnt+1;)
| S1 pop (S.cnt = S_1.cnt-1;)
| ε (S.cnt = 0;)

7 A computation history of a Turing Machine is a sequence C0#C1#C2# . . . of con-
figurations Ci. Each configuration is a triple consisting of the current tape contents,
state and position of the read/write head. Due to a technicality, the configurations
with an odd index must actually be encoded in reverse.
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Note that the history push pop is a word generated by this grammar, but not its
prefix pop, which as such will generate an error (as required). Note that thus in
general invalid histories are guaranteed to generate errors. On the other hand,
if a history generates an error all its extensions are therefore also invalid.

Observe that our approach monitors only safety properties (‘prevent bad be-
havior’), not liveness (‘something good eventually happens’). This restriction is
not specific to our approach: liveness properties in general cannot be rejected
on any finite prefix of an execution, and monitoring only checks finite prefixes
for violations of the specification. Most liveness properties fall in the class of
the non-monitorable properties [61,7]. However it is possible to ensure liveness
properties for terminating programs: they can then be reformulated as safety
properties. For instance, suppose we want to guarantee that a method void m()

is called before the program ends. Introduce the following global view

global view livenessM {

call void C.m() m,

return static void C.main(String[]) main

}

The occurence of the ‘main’ event (i.e. a return of the main method of the
program) signifies the program is about to terminate. Define the EBNF grammar
S ::= ε
| m
| m+ main

(where ’+’ stands for one or more repetitions). This grammar achieves the desired
effect since the only terminating executions allowed are those containing m. In
local views a similar effect is obtained by including the method finalize (which
is called once the object will be detroyed) instead of main.

4 Implementation

Given a Java interface specified with an attribute grammar, we would like to test
whether an object implementing the interface satisfies the properties defined in
the grammar at every point in its lifetime. In this section we first describe the
generic architecture of our tool SAGA [25] which achieves this. Four different
components are combined: a state-based assertion checker, a parser generator,
a debugger and a general tool for meta-programming. Traditionally these tools
are used for very diverse purposes and don’t need to interact with each other.
We therefore investigate requirements needed to achieve a seamless integration of
these components, motivated by describing the workflow of the run-time checker.
In the next section we instantiate the four components with concrete state-of-
the-art tools.

Suppose that during execution of a Java program, a method of a class (sub-
sequently referred to as CUT, the ‘class under test’) which implements an inter-
face specified by an attribute grammar is called. The new history of the object
on which the method was called should be updated to reflect the addition of
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Fig. 10. Generic Tool Architecture

the method call. To represent the history of an object of CUT, the Meta-
Programming tool generates for each method m in CUT two classes call-m

and return-m. These classes contain the following fields: the object identitity
of the callee, the identity of the caller and the actual parameters. Additionally
return-m contains a field result containing the return value. A Java List con-
taining instances of call-m and return-m then stores the history of an object
of CUT.

The meta-programming tool further generates code for a wrapper class which
replaces the original main class. We will refer to this class as the “history class”.
This history class contains a field H, a Java map containing pairs (id, h) of an
object identity id and its local history h. Moreover it stores the current values
of the synthesized attributes of the start symbol, these can be used in assertion
languages supporting design by contract (See Section 5.1 for an example of this
usage). The history class executes the original program inside the Debugger.
The Debugger is responsible for monitoring execution of the program. It must be
capable of temporarily ‘pausing’ the program whenever a call or return occurs,
and execute user-defined code to update H appropriately . Moreover the Debugger
must be able to read the identity of the callee, caller and parameters/return-
value.

After the history is updated the run-time checker must decide whether it still
satisfies the specification (the attribute grammar). Observe that a communica-
tion history can be seen as a sequence of tokens (in our setting: communication
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events). Since the attribute grammar together with the assertions generate the
language of all valid histories, checking whether a history satisfies the specifica-
tion reduces to deciding whether the history can be parsed by a parser for the
attribute grammar, where moreover during parsing the assertions must evaluate
to true. Therefore the Parser Generator creates a parser for the given attribute
grammar. Since the history is a heterogenous list of call-m and return-m ob-
jects, the parser must support parsing streams of tokens with user-defined types.
Assertions in general describe properties of Java objects, and the grammar con-
tains assertions over attributes, the attributes must be normal Java variables.
Consequently the parser generator must allow arbitrary user-defined java code
(to set the attribute value) in rule actions. The use of Java code ensures the at-
tribute values are computable. Since assertions are allowed in-between any two
(non)-terminals, the parser generator should support user-defined actions be-
tween arbitrary grammar symbols. At run-time, the parser is triggered whenever
the history of an object is updated. The result is either a parse error, which indi-
cates that the current communication history has violated the protocol structure
specified by the attribute grammar, or a parse tree with new attribute values.
During parsing, the Assertion Checker evaluates the assertions in the gram-
mar on the newly computed attribute values. To avoid parsing the whole history
of a given object each time a new call or return is appended, ideally the parser
should support incremental parsing [34]. An incremental parser computes a parse
tree for the new history based on the parse trees for prefixes of the history. In
our setting, the attribute grammar specifies invariant properties of the ongoing
behavior. Hence the parser constructs a new parse tree after each call/return,
consequently parse trees for all prefixes of the current history can be exploited
for incremental parsing.

To illustrate how the tools described above interact with each other at run-
time, the UML sequence diagram in Figure 11 shows the run-time environment of
a successful method invocation of a (single-threaded) Java program, containing
a class Class Under Test (CUT) whose local history is specififed by an attribute
grammar. The actors in the sequence diagrams are:

– ‘User Prog’: A client class that instantiates and uses CUT.
– ‘Debugger’: Java debugger that intercepts all method calls and corresponding

returns from ‘User Prog’ to CUT.
– ‘History (instance)’: an instance of the history class. This class stores the

local history of each object of CUT.
– ‘Parser’: an instance of a parser for the given attribute grammar. The source

code of the Parser was generated by the Parser Generator.
– ‘Assertion Checker’: provides facilities to check assertions at run-time.
– ‘Class Under Test (CUT)’: The class which was specified using an attribute

grammar.
– ‘stderr’: the standard error stream of the system. Error reports (such as an

assertion failure or protocol violation) can be sent to this stream.
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Fig. 11. Run-time environment of successfull method invocation

Figure 12 shows a scenario in which a method return causes the updated
history to violate the grammar rules. In this case, the parser detects a parse
error and outputs a protocol violation to ‘stderr’. The scenario in which parsing
is successfull, but the assertions cause an error, is not shown but very similar.

4.1 Instantiating the Tool Architecture

The previous section introduced the generic tool architecture, which was based
on four different components: meta-programming, debugger, parser generator
and state-based run-time assertion checker. Here we instantiate these four com-
ponents with particular (state of the art) tools, and report our experiences to
what extent the requirements stated in the previous section are satisfied by these
current tools. The main overhead of the run-time checker is caused by the parser,
hence we discuss performance (both theoretical and in practice) in the paragraph
on parser generators.

Meta-Programming. Rascal [46] is a tool-supported domain specific language for
meta programming. We use its parsing, source code analysis, source-to-source
transformation and source code generation features. A ± 1000 line Rascal pro-
gram8 takes care of:

– parsing and analyzing the Java method signatures in the communication
view.

– generating Java source for a debugger. The debugger should intercept any
method call and return, and inform the History class that an event occured.

8 Excluding the grammar for Java.
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Fig. 12. Run-time environment of successfull method invocation

– generating the token classes call-m and return-m for each call and return
event in the view.

– generating the History class, which specifically accepts new events from the
provided methods in the interface and acts as a token stream for the gener-
ated parser.

The full source code which Rascal generates for the above tasks contains about
50 times the number of events + 100 lines of code, in other words, the size of the
generated code depends mainly on the number of events in the communication
view.

Note that we require general meta programming features for several input
languages, not just Java. This application of Rascal has three languages as in-
put (ANTLR grammars, View declarations and Java), and one output language
(Java). Rascal runs on a JVM, such that it integrates into any Java environment.

In the following Rascal snippet we generate update methods in the history
class which are called whenever a method returns.

return "

<for (‘<mods > <return > <id > (<formals >)‘ <- methods) {

r = "return_<id >";>

public void update(return_<id > e) {

<if (r in tokens ){>

e.setType(<grammarName >Lexer.<tokens[r] >);

addAndParse(e);<}>

}

<}>";

This return statement contains three levels. The Rascal language level (in bold-
face) provides the return statement, the string, and embedded in the string
expressions marked by <...> angular brackets. The string that is generated rep-
resent an (unparsed) Java fragment. The fragments embedded in back ticks (‘)
represent parsed Java fragments from the input interface. Inside those fragments
Rascal expressions occur again between angular brackets.
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The string template language of Rascal allows us to instantiate a number of
methods called update using a for loop and an if statement. The data that is
used in the for loop is extracted directly from the parse trees of the methods in a
Java interface file. The concrete Java source pattern between the back ticks (‘)
matches the declaration of a method in the interface, extracting the name of the
method (<id>). Note that this snippet uses variables declared earlier, such as
tokens which is a map from method names to token names taken from the view
declaration in the interface and grammarName which was also extracted from the
view earlier. Albeit complex code due to the many levels required for this task,
the code is short and easy to adapt to other kinds of analysis and generation
patterns.

The main disadvantages of Rascal are that it is still in an alpha stage, it
is not fully backwards compatible and we discovered numerous bugs in Rascal
during development of the Rascal program. However overall our experience was
quite positive. The identified bugs were fixed quickly by the Rascal team, and its
powerful parsing, pattern matching and transforming concrete syntax features
proved indispensable.

Debugger. We evaluated Sun’s implementation of the Java Debugging Interface
for the debugger component. It is part of the standard Java Development Kit,
hence maintenance of the debugger is practically guaranteed. The Sun debugger
starts the original user program in separate a virtual machine which is moni-
tored for occurences of MethodEntryEvent (method calls) and MethodExitEvent

(method returns). It allows defining event handlers which are executed whenever
such events occur. It also allows retrieving the caller, callee, parameters values
and return value of events using StackFrames. No actual Java source code for
the class under test is needed for the debugging. The approach is safe in that
no source code nor bytecode is modified for the monitoring. The Sun debugger
meets all requirements for the debugger stated above. As the main disadvantage,
we found that the current implementation of the debugger is very slow. In fact it
was responsible for the majority of the overhead of the run-time checker. This is
not necessarily problematic: as testing is done during development, the debugger
will typically not be present in performance critical production code. Moreover,
one usually wants to test only up to a certain bound (for instance, in time, or
in the number of events), and report on results once the bound is exceeded.
Nonetheless, for testing up to huge bounds, a different implementation for the
debugger is needed.

As an alternative we have also tested AspectJ, a Java compiler which sup-
ports aspect-oriented programming. Aspect-oriented programming is tailored for
monitoring. AspectJ can intercept method calls and returns conveniently with
pointcuts, and weave in user-defined code (advices) which is executed before
or after the intercepted call. In our case the pointcuts correspond to the calls
and returns of the messages listed in the communication view. The advice con-
sists of code which updates the history. The code for the aspect is generated
from the communication view automatically by the Rascal meta-program. Ad-
vice can either be woven into Java source code, byte code or at class load-time
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fully automatically by AspectJ. Note that in contrast to the above Java Debug-
ger approach this step involves changing the source or bytecode, which may be
deemed as less safe. We use the inter-type declarations of AspectJ to store the lo-
cal history of an object as a field in the object itself. This ensures that whenever
the object goes out of scope, so does its history and consequently reduces mem-
ory usage. Clearly the same does not hold for global histories, which are stored
inside a separate Aspect class. Figure 13 shows a generated aspect. The second
and third line specify the relevant method, in this case BufferedReader.read.
The fourth line binds variables (‘clr’, ‘cle’, ...) to the appropriate objects. Note
that to support dynamic binding, it is not possible to statically match method
calls to in the Java source to the below pointcut: the dynamic type of the callee,
which is determined at run-time, determines whether the pointcut matches. The
fifth line ensures that the aspect is applied only when Java assertions are turned
on. Assertions can be turned on or off for each communication view individu-
ally. The fifth line contains the advice that updates the history. Note that since
the event came was defined in a local view, the history is treated as a field of
the callee and will not persist in the program indefinitely but rather is garbage
collected as soon as callee object itself is.

/* call int read(char[] cbuf, int off, int len); */

before(Object clr, BufferedReader cle,

char[] cbuf, int off, in len):

(call( int *.read(char[], int, int))

&& this(clr) && target(cle) && args(cbuf, off, len)

&& if(BReaderHistoryAspect.class.desiredAssertionStatus() ))

{

cle.h.update(new call_push(clr, cle, cbuf, off, len));

}

Fig. 13. Aspect for the event ‘call int read(char[] cbuf, int off, int len)’

As a third alternative, we also tested the meta-programming tool Rascal to
generate code which intercepts the method calls and returns appropriately. This
can be done by defining a transformation on the actual Java source code of the
class under test, which requires a full Java grammar (which must be kept in sync
with the latest updates to Java). To capture the identity of the callee, parameter
values and return value of a method, one only needs to transform that particular
method (i.e. locally). But inside the method there is no way to access the identity
of the caller. Java does offer facilities to inspect stack frames, but these frames
contain only static entities, such as the name of the method which called the
currently executing method, or the type of the caller, but not the caller itself.
To capture the caller, a global transformation at all call-sites is needed (and in
particular one needs to have access to the source code of all clients which call
the method). The same problem arises in monitoring calls to required methods.
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Finally it proved to quickly get very complex to handle all Java features listed
in Table 1. We wrote an initial version of a weaver in Rascal which already took
over 150 lines (over half of the full checker at the time) without supporting
method calls appearing inside expressions, inheritance, dynamic binding, con-
structors and overloading. Moreover the meta-programming approach is also
unsuitable if the Java source code is not available (which happens frequently for
libraries) ing where only byte code is available, limiting the applicability of the
tool. In summary, while it is possible to implement monitoring by defining a code
transformation in Rascal, this rules out bytecode only libraries, and quickly gets
complex due to the need for a full (up to date) Java grammar and the complexity
of the full Java language.

Parser Generator. For the the parser generator component we tested ANTLR
v3, a state of the art parser generator. It generates fast recursive descent parsers
for Java and allows grammar actions and custom token streams. It even sup-
ports conditional productions: productions which are only chosen during parsing
whenever an associated Boolean expression (the condition) is true and allow for
a degree of context-senstitiveness. Attribute grammars with conditional produc-
tions express protocols that depend on data which are typically not context-free.
ANTLR also supports EBNF, a notation grammars which extends context-free
grammars with the operations from regular expressions, for example the Kleene
star. Though EBNF does not strictly increase expressiveness (the language gen-
erated by such grammars is still context-free), it is convenient for practical
purposes: sometimes a regular expression is simpler and more natural than a
full-fledged grammar.

Due to the power of general context-free grammars extended with attributes
(as introduced in the seminal paper [47] by Knuth), they can be quite expen-
sive to parse. In particular, the currently best known algorithm [67] to parse
context-free grammars has a time complexity of O(n2.38) (with very huge con-
stants), where n is the number of terminals to parse. The current best practical
algorithms (with reasonably sized constants) require cubic time. Clearly parsing
n tokens cannot be done in less than O(n) steps, since the entire input must
be read. Besides this trivial linear lower bound, no non-trivial lower bounds are
known [32], though Lee [49] showed that multiplication of two square Boolean
matrices can be reduced at a certain cost to parsing context-free grammars. In
particular, she showed that if parsing n tokens can be done in O(n3−ε) steps,
then we can multiple two n by n Boolean matrices in O(n3−(ε/3)) steps, with
small constants. This means that any practical (i.e. small constants) sub-cubic
parsing algorithm also can be used as a practical sub-cubic matrix multiplica-
tion algorithm. However no such fast practical algorithm is known for matrix
multiplication.

ANTLR avoids the cubic-time parsing inefficiency by only supporting LL(*)
grammars9. Due to the restriction, the parsing algorithm used by ANTLR is for
most grammars linear, and quadratic in the worst case. A major disadvantage of

9 A strict subset of the context-free grammars. Left-recursive grammars are not LL(*).
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ANTLR is that it lacks support for incremental parsing: each time the history
is updated (i.e. a single terminal is added), the full history has to be reparsed.
Additionally the full history has to be saved. Support for incremental parsing
is planned by the ANTLR developers. We have not been able to find any Java
parser generator which supports incremental parsing of attribute grammars.

Assertion Checker. We tested two state-based assertion languages: standard
Java assertions and the Java Modeling Language (JML). Both languages suf-
fice for our purposes. A Java assertions is a statement assert b; where b is a
standard boolean expressions. As a consequence, note that Java assertions can
contain calls to methods that return a boolean. Though Java assertions can
not contain quantifiers, it is to some degree possible to simulate those using a
method containing a loop. Java does not enforce assertions to be side-effect free:
one needs to check manually that only ‘pure’ assertions are used.

JML is far more expressive than the standard Java assertions. It allows un-
bounded quantification, in general any first-order formula can be expressed in
JML, and supports Design by Contract (see also Section 5.1). JML also ensures
that assertions are side-effect free. Unfortunately the JML tool support is not
ready yet for industrial usage. In particular, the last stable version of the JML
run-time assertion checker dates back over 8 years, when for instance gener-
ics were not supported yet. The main reason is that JML’s run-time assertion
checker only works with a proprietary implementation of the Java compiler, and
unsurprisingly it is costly to update the proprietary compiler each time the stan-
dard compiler is updated. This problem is recognized by the JML developers [16].
OpenJML, a new alpha version of the JML run-time assertion checker integrates
into the standard Java compiler, and initial tests with it provided many valuable
input for real industrial size applications. See the Sourceforge tracker of Open-
JML at http://sourceforge.net/tracker/?group_id=65346&atid=510629

for the kind of issues we have encountered when using OpenJML.

5 Case Studies

In this section we use the formalism described in Section 3 and the extension
to design by contract described in Section 4 to specify a Java library, and an
industrial-sized case from the e-commerce company Fredhopper. The Java library
we consider is a (last-in-first-out) Stack. The Stack example illustrates how the
Design by Contract methodology as supported by JML can be used to specify
the push and pop-methods purely in terms of histories in an elegant manner. In
particular, this example shows how synthesized attributes of the start-symbol
can be used conveniently inside method pre- and postconditions. Based on the
case study, we discuss our experiences with SAGA.

5.1 Design by Contract: Stack

A Stack is an abstract data type which has only two operations push and pop.
The operation push adds an object to the stack, while pop returns and removes

http://sourceforge.net/tracker/?group_id=65346&atid=510629
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public interface Stack {

void push(Object item);

Object pop();

}

Fig. 14. Stack Interface

the last element from the stack which was pushed but not yet removed. The
operation pop is not allowed on an empty Stack. Figure 14 shows an interface
for the Stack in Java.

Our task is to find a specification for the Stack which ensures that pop is
never called by the user on an empty stack, and moreover that pop returns
the right object when called on a non-empty stack. The communication view
in Figure 15 selects three events. The returns of push are needed to keep track of
the elements which have been pushed onto the Stack. Note that it would incorrect
be to consider the calls to push instead: suppose some strange implementation
of push would itself call pop as its first action, before restoring the removed
element and adding the element which was passed to push. Then calling push

on an empty stack would fail (since that results in calling pop on an empty
stack), but the history would be ‘PUSH POP’ (which seemingly looks valid for
a Stack). Selecting returns of push avoids this problem. The calls to pop, which
are referred to by the terminal ‘POP’, are needed to ensure that pop is never
called on an empty Stack. In this case it would not suffice to track only returns
of pop, since whenever pop is executed on an empty stack, the run-time checker
would only detect the failure after executing of pop (which fails), and thus does
not prevent unsafe behavior.

The protocol behavior of this view can be defined in terms of sequences of
the terminals ’PUSH’ and ’POP’ generated by the context-free grammar given
in Figure 16, where ‘s’ is the start symbol.

The non-terminal ‘s’ generates the prefix closure of the standard grammar
for balanced sequences of ‘PUSH’ and ‘POP’ (which are generated by the non-
terminal ‘b’). This ensures that pop is never called on an empty stack.

In order to specify the relation between the actual parameters of
calls to the push method and the return values of the pop method,
we introduce a synthesized attribute ‘stack’ of type JMLListValueNode

for the non-terminal ‘s’. JMLListValueNode is a JML class for a
singly-linked list with side-effect free implementations of the methods
JMLListValueNode append(Object item) , which appends an item to the list,
and JMLListValueNode concat(JMLListValueNode ls2) which concatenates
two lists. The intended value of the ‘stack’ attribute is a list of the elements
which are pushed but have not yet been popped. Since balanced Stacks are
empty, associating the ‘stack’ attribute also to the b-non-terminal would be re-
dundant. Figure 17 shows how ‘stack’ is updated in each production of the
non-terminal s. Intuitively the value of ‘stack’ at the root of the parse-tree
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local view StackHistory specifies Stack {

return push PUSH;

call pop POP;

}

Fig. 15. Communication View of a Stack

s ::= PUSH s
| s s
| b

b ::= PUSH b POP
| ε
| b b

Fig. 16. Abstract Stack Behavior

s ::= PUSH s1 (stack =s1.stack.append(PUSH.item);)
| s1 s2 (stack =s1.stack.append(s2.Stack);)
| b (stack = stack.clear();)

b ::= PUSH b POP
| ε
| b b

Fig. 17. Attribute Grammar Stack Behavior

(i.e. an occurence of the start-symbol s) is a list containing the current contents
of the Stack. Figure 18 shows the parse tree for the history resulting from the
program s.push(5); s.push(7); s.pop();. Note that this does not mean that
an actual implementation of the stack interface works correctly: the attribute
grammar can be considered as a ‘reference implementation’ of the stack, but we
still need to ensure that an actual implementation of the Stack matches (in the
sense that calling pop returns the right value) this reference implementation.

In order to specify the method contracts for the Stack, the JML implemen-
tation of SAGA (described in Section 4.1) allows referring to the synthesized
attributes of the root of the parse tree. Since the start symbol in the parse tree
generates the whole history, intuitively the synthesized attributes of the start
symbol can be thought of as a property of the entire history. In order to use
the attribute ‘stack’ of this grammar in assertions for specifying the contracts of
the push and pop methods of the ‘Stack’ interface (Figure 14) in terms of com-
munication histories, the modeling framework provides a class StackHistory

which corresponds to the communication view of Figure 15. This class contains
a ’getter’ method JMLListValueNode stack() which retrieves the value of the
attribute ‘stack’ of the root of the parse tree of the current history.

Figure 19 illustrates how the StackHistory class can be used to specify
the desired contracts. The JML keyword model indicates that history (of
type StackHistory) can be used only in specifications. The keyword instance
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Fig. 18. Parse tree annotated with attribute values for the history push(5) push(7)
pop() in the grammar of Figure 17 (irrelevant attributes ommitted)

interface Stack {

//@ public model instance StackHistory history;

//@ ensures history.stack(). equals(

//@ \old(history.stack ()). append(item ));

void push(Object item );

//@ ensures history.stack(). equals(

//@ \old(history.stack ()). tail ());

//@ ensures \result == \old(history.stack ()). head ();

Object pop ();

}

Fig. 19. JML Specification Stack Interface

specifies that history will be added as a (non-static) field to any class that
implements the Stack interface. The ensures and requires clauses specify the
method contracts in terms of the ‘stack’ attribute (whose value is defined in the
attribute grammar). Summarizingly, the property that pop may not be called
on an empty stack is ensured by the productions of the grammar (the grammar
productions can be considered to be an interface invariant for the protocol be-
havior), and the property that pop returns the right object is guaranteed by the
method contracts and the definition of the attribute ‘stack’.

Note that alternatively we could have avoided the method contracts by in-
stead adding appropriate assertions in the attribute grammar before and after
every occurence of ‘PUSH’ and ‘POP’ in the grammar. This leads to duplication
since ‘PUSH’ occurs multiple times in the grammar. Moreover, for this alter-
native solution, we should also have added to the communication view that we
intend to capture returns of pop: otherwise there would be no way to check that
pop returned the right value. For the above example, we favour the above
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design-by-contract solution over the assertions-in-grammar, since it avoids du-
plication of specifications and additionally avoids adding the extra terminal for
returns of pop. This increases readability of the grammar, and results in less
overhead for the run-time check since the sequence of tokens to parse is shorter.

5.2 Fredhopper Case-Study

Fredhopper10 is a search, merchandising and personalization solution provider,
whose products are tailored to the needs of online businesses. Fredhopper oper-
ates behind the scenes of more than 100 of the largest online shops11. It provides
the Fredhopper Access Server (FAS), which is a distributed concurrent object-
oriented system that provides search and merchandising services to eCommerce
companies. Briefly, FAS provides to its clients structured search capabilities
within the client’s data. Each FAS installation is deployed to a customer ac-
cording to the FAS deployment architecture (See Figure 20).

Live
Environment

Live
Environment

Data and Config
Updates

Configurations
changes

Staging
Environment

Data
Manager

Internet

...

Client-side
Web App

Client-side
Web App

Client-side
Web App

Data updates Live
Environment... Load

balancer

Fig. 20. An example FAS deployment

FAS consists of a set of live environments and a single staging environment. A
live environment processes queries from client web applications via web services.
FAS aims at providing a constant query capacity to client-side web applications.
A staging environment is responsible for receiving data updates in XML for-
mat, indexing the XML, and distributing the resulting indices across all live
environments according to the Replication Protocol. The Replication Protocol is
implemented by the Replication System. The Replication System consists of a

10 http://www.sdl.com/products/fredhopper/
11 http://www.sdl.com/campaign/wcm/gartner-maqic-quadrant-wcm-2013.html?

campaignid=70160000000fSXu

http://www.sdl.com/products/fredhopper/
http://www.sdl.com/campaign/wcm/gartner-maqic-quadrant-wcm-2013.html?campaignid=70160000000fSXu
http://www.sdl.com/campaign/wcm/gartner-maqic-quadrant-wcm-2013.html?campaignid=70160000000fSXu
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Fig. 21. Replication interaction

SyncServer at the staging environment and one SyncClient for each live envi-
ronment. The SyncServer determines the schedule of replication, as well as its
content, while SyncClient receives data and configuration updates according to
the schedule.

Replication Protocol. The SyncServer communicates to SyncClients by cre-
ating Worker objects. Workers serve as the interface to the server-side of the
Replication Protocol. On the other hand, SyncClients schedule and create Clien-
tJob objects to handle communications to the client-side of the Replication Pro-
tocol. When transferring data between the staging and the live environments, it
is important that the data remains immutable. To ensure immutability without
interfering the read and write accesses of the staging environment’s underly-
ing file system, the SyncServer creates a Snapshot object that encapsulates a
snapshot of the necessary part of the staging environment’s file system, and pe-
riodically refreshes it against the file system. This ensures that data remains
immutable until it is deemed safe to modify it. The SyncServer uses a Coordina-
tor object to determine the safe state in which the Snapshot can be refreshed.
Figure 21 shows a UML sequence diagram concerning parts of the replication
protocol with the interaction between a SyncClient, a ClientJob, a Worker, a
SyncServer, a Coordinator and a Snapshot. the diagram also shows a Util class
that provides static methods for writing to and reading from Stream. The figure
assumes that SyncClient has already established connection with a SyncServer
and shows how a ClientJob from the SyncClient and a Worker from a SyncServer
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interface Snapshot {

void refresh();

void clear();

List<Item> items(String sn);

}

interface Worker {

void establish(String sn);

List<Item> reg(String sn);

void transfer(Item item);

SyncServer server();

}

Fig. 22. SnapShot and Worker interfaces of Replication System

interface SyncServer {

Snapshot snapshot();

}

interface Coordinator {

void start(Worker t);

void finish(Worker t);

}

class Util {

static void write(String s) { .. }

}

Fig. 23. SyncServer and Coordinator interfaces of Replication System

are instantiated for interaction. For the purpose of this paper we consider this
part of the Replication Protocol as a replication session.

In this section we show how to modularly decompose object interaction behav-
ior depicted by the UML sequence diagram in Figure 21 using SAGA. Figures 22
and 23 shows the corresponding interfaces and classes, note that we do not con-
sider SyncClient as our interest is in object interactions of a replication session,
that is after ClientJob.start() has been invoked.

The protocol descriptions and specifications considered in this case study
have been obtained by manually examining the behavior of the existing imple-
mentation, by formalizing available informal documentations, and by consulting
existing developers on intended behavior. Here we first provide such informal
descriptions of the relevant object interactions:
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local view SnapshotHistory

grammar Snapshot.g

specifies Snapshot {

call void refresh() rf,

call void clear() cl

}

Fig. 24. Snapshot Communication View

local view CoordinatorHistory

grammar Coordinator.g

specifies Coordinator {

call void start(Worker t) st,

call void finish(Worker t) fn

}

Fig. 25. Coordinator Communication View

– Snapshot: at the initialization of the Replication System, refresh should be
called first to refresh the snapshot. Subsequently the invocations of methods
refresh and clear should alternate.

– Coordinator: neither of methods start and finish may be invoked twice in
a row with the same argument, and method start must be invoked before
finish with the same argument can be invoked.

– Worker: establish must be called first. Furthermore reg may be called if
the input argument of establish is not “LIST” but the name of a specific
replication schedule, and that reg must take that name as an input argu-
ment. When the reg method is invoked and before the method returns, the
Worker must obtain the replication items for that specific replication sched-
ule via method items of the Snapshot object. The Snapshot object must be
obtained via method snapshot of its SyncServer, which must be obtained
via the method server. It must notify the name of each replication item to
its interacting SyncClient. This notification behavior is implemented by the
static method write of the class Util. The method reg also checks for the
validity of each replication item and so the method must return a subset of
the items provided by the method items. Finally transfer may be invoked
after reg, one or more times, each time with a unique replication item, of
type Item, from the list of replication items, of type List<Item>, returned
from reg.

Figures 24 to 27 specifies communication views. They provide partial map-
pings from message types (method calls and returns) that are local to individ-
ual objects to grammar terminal symbols. Note that the specification of the
Worker’s behavior is modularly captured by two views: WorkerHistory and
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local view WorkerHistory grammar Worker.g

specifies Worker {

call void establish(String sn) et,

call List<Item> reg(String sn) rg,

return List<Item> reg(String sn) is,

call void transfer(Item item) tr

}

Fig. 26. Worker Communication View

local view WorkerRegHistory grammar WorkerReg.g

specifies Worker {

call List<Item> reg(String sn) rg,

return List<Item> reg(String sn) is,

return Snapshot SyncServer.snapshot() sp,

call List<Item> Snapshot.items(String sn) ls,

return List<Item Snapshot.items(String sn) li,

call static void Util.write(String s) wr

}

Fig. 27. WorkerReg Communication View

WorkerRegHistory. The view WorkerHistory exposes methods establish, reg
and transfer. Using this view we would like to capture the overall valid inter-
action in which Worker is the callee of methods, and at the same time the view
helps abstracting away the implementation detail of individual methods. The
view WorkerRegHistory, on the other hand, captures the behavior inside reg.
According to the informal description above, the view projects incoming method
calls and returns of reg, outgoing method calls to server and items, and as
well as the outgoing static method calls to write.

We now define the abstract behavior of the communication views, that
is, the set of allowable sequences of interactions of objects restricted to
those method calls and returns mapped in the views. Each local view also
defines the file containing the attribute grammar, whoses terminal sym-
bols the view maps method invocations and returns to. Specifically, Fig-
ures 28 to 31 shows the attribute grammars Snapshot.g, Coordinator.g,

S ::= ε | rf T
T ::= ε | cl S

Fig. 28. Snapshot Attribute Grammar
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S ::= T (T.ts = new HashSet();)
T ::= ε | st {assert ! T.ts.contains(st.t);}

(T.ts.add(st.t);) T1 (T1.ts = T.ts;)
| fn {assert T.ts.contains(fn.t);}
(T.ts.remove(fn.t);) T1 (T1.ts = T.ts;)

Fig. 29. Coordinator Attribute Grammar

S ::= ε | et T (T.d = et.sn;)
T ::= ε | {!"LIST".equals(T.d);}?

rg {assert rg.sn.equals(T.d);} U
U ::= ε | is V (V .m = new ArrayDeque(is.result);)
V ::= ε | tr {assert V .m.peek().equals(tr.item);}

(V .m.pop();) V1 (V1.m = V .m;)

Fig. 30. Worker Attribute Grammar

Worker.g and WorkerReg.g for views SnapshotHistory, CoordinatorHistory,
WorkerHistory and WorkerRegHistory respectively.

The simplest grammar Snapshot.g specifies the interaction protocol of Snap-
shot. It focuses on invocations of methods refresh and clear per Snapshot
object. The grammar essentially specifies the (prefix-closure of the) regular ex-
pression (refresh clear)∗.

The grammar Coordinator.g specifies the interaction protocol of Coordina-
tor. It focuses on invocations of methods start and finish, both of which take
a Worker object as the input parameter. These method calls are mapped to ter-
minal symbols st and fn, while their inherited attribute is a HashSet, recording
the input parameters, thereby enforcing that for each unique Worker object as
an input parameter only the set of sequences of method invocations defined by
the reqular expression (start finish)∗ is allowed.

The grammar Worker.g specifies the interaction protocol of Worker It focuses
on invocations and returns of methods establish, reg and transfer. The gram-
mar specifies that for each Worker object, establishmust be first invoked, then
followed by reg and then zero or more transfer, that is, the regular expression
(establish reg transfer∗). We use the attribute definition of the grammar
to ensure the following:

– The input argument of establish and reg must be the same;
– reg can only be invoked if the input argument of establish is not “LIST”;
– The return value of reg is a list of Item objects such that transfer is invoked

with each of Item in that list from position 0 to the size of that list.

The grammar WorkerReg.g specifies the behavior of the method reg

of Worker. It focuses on the invocations and returns of method reg of
Worker as well as the outgoing method calls and returns of Util.write and
SyncServer.snapshot and Snapshot.items. At the protocol level the grammar
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/*S accepts call to Worker.reg() and, records */

/*the input schedule name, also S allows */

/*arbitary calls to SyncServer.snapshot() */

/*and Util.write() */

S ::= ε | wr S | sp S | rg T (T.d = et.sn;)

/*T accepts and stores the return */

/*snapshot object from SyncServer.snapshot() */

T ::= ε | sp V (V .d = T.d; U.s = sp.result;)

/*U ensures call items() is called on the same */

/*snapshot object, and the replication items */

/*for the correct schedule are retrieved */

U ::= ε | ls {assert ls.callee.equals(U.s);

assert ls.sn.equals(U.d);}
V (V .s = U.s;)

/*V records replication items and their name */

/*returned from item() */

V ::= ε | li W (W.is = new HashSet(li.result);
W.ns = new HashSet();

for (Item i :W.is) {

W.ns.add(i.name()); })

/*W ensures all replication */

/*items are processed */

W ::= ε | wr (W.ns.remove(wr.s);)
W1 (W1.ns =W.ns; W1.is =W.is;)

| is {assert W.is.containsAll(is.result);
assert W.ns.isEmpty();}

X

X ::= ε | sp X | rg X

Fig. 31. WorkerReg Attribute Grammar

specifies the regular expression (snapshot items write∗) inside the invocation
method reg. We use attribute definition to ensure the following:

– Snapshot.items must be called with the input argument of reg and it must
be called on the Snapshot object that is identical to the return value of
SyncServer.snapshot;

– The static method Util.writemust be invoked with the value of Item.name
for each Item object in the Collection returned from Snapshot.items;
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– The returned list of Item objects from reg must be a subset of that returned
from Snapshot.items.

Notice that methods Util.write and SyncServer.snapshot may be invoked
outside of the method reg. However, this particular behavioral property does
not specify the protocol for those invocations. The grammar therefore abstracts
from these invocations by allowing any number of calls to Util.write and
SyncServer.snapshot before and after reg.

5.3 Experiment

We applied SAGA to the Replication System. The current Java implementation
of FAS has over 150,000 lines of code, and the Replication System has approxi-
mately 6400 lines of code, 44 classes and 5 interfaces.

We have successfully integrated SAGA into the quality assurance process at
Fredhopper. The quality assurance process includes automated testing that in-
cludes automated unit, integration and system tests as well as manual acceptance
tests. In particular system tests are executed twice a day on instances of FAS
on a server farm. Two types of system tests are scenario and functional testing.
Scenario testing executes a set of programs that emulate a user and interact
with the system in predefined sequences of steps (scenarios). At each step they
perform a configuration change or a query to FAS, make assertions about the
response from the query, etc. Functional testing executes sequences of queries,
where each query-response pair is used to decide on the next query and the
assertion to make about the response. Both types of tests require a running
FAS instance and as a result we may leverage SAGA by augmenting these two
automated test facilities with runtime assertion checking using SAGA.

Fig. 32. Violating histories

To integrate of SAGA with the system tests, we employ Apache Maven tool12,
an open source Java based tool for managing dependencies between applications
and for building dependency artifacts. Maven consists of a project object model
(POM), a set of standards, a project lifecycle, and an extensible dependency

12 maven.apache.org

maven.apache.org
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class WKImpl extends Thread

implements Worker {

final Coordinator c;

WKImpl(Coordinator c) {

this.c = c; }

public void run() {

try { .. c.start(this); ..

} finally {

c.finish(this); .. }}}

Fig. 33. Incorrect behavior of WKImpl

management and build system via plug-ins. We use its build system to auto-
matically generate and package the parser/lexer of attribute grammars as well
as aspects from views and grammars. We expose the packaged aspects, parser
and lexer to FAS instance on the server farm and employ Aspectj using load-
time weaver for monitoring method calls/returns during the execution of FAS
instances on the server farm. Table 2 shows the number of join point matches
during the execution of 766 replication sessions over live client data. Figure 34
shows the exection time of the 766 replication sessions with and without the
integration of SAGA in milliseconds. At some points (for example, around 261
events), the figure seemingly indicates that the system runs faster with SAGA
than without. In reality this is not the case: the dependence of the case study
on user input (i.e., to start replication sessions) means that it is impossible to
replicate an execution exactly (with the only difference being SAGA turned on
and off respectively) and leads to small errors in the measurements. However,
despite the fact that we cannot control the exact flow of control of the replication
sessions (due to this dependence on user input), the graph clearly shows that the
integration of SAGA has minimal performance impact on the execution time.

During this session we have found an assertion error at join point call finish

due to the condition T.ts.contains(fn.t) not being satisfied at non-terminal
T of the grammar Coordinator.g. Specifically, the implementation of Worker
(WKImpl) that invoke finish before start. Figure 32 shows the sequence dia-
gram of an invalid history causing the error, fully automatically generated from
the output of SAGA. Figure 33 shows part of the implementation of WKImpl. It
turns out that in the run method of WKImpl, the method start is invoked inside
a try block while the method finish is invoked in the corresponding finally

block. As a result when there is an exception being thrown by the execution
preceding the invocation of start inside the try block, for example a network
disruption, finish would be invoked without start being invoked.
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Table 2. Join point matches in 766 replication sessions

Join point Terminal Match

call static write wr 247446
return snapshot sp 3061
call transferItem tr 1101
return reg (WorkerHistory) is 765
return reg (WorkerRegHistory) is 765
call establish et 766
call reg (WorkerHistory) rg 765
call reg (WorkerRegHistory) rg 765
return items li 765
call start st 766
call finish fn 766
call items ls 765
call refresh rf 766
call clear cl 766
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Abstract. The focus of this tutorial is white-box test case generation
(TCG) based on symbolic execution. Symbolic execution consists in ex-
ecuting a program with the contents of its input arguments being sym-
bolic variables rather than concrete values. A symbolic execution tree
characterizes the set of execution paths explored during the symbolic
execution of a program. Test cases can be then obtained from the suc-
cessful branches of the tree. The tutorial is split into three parts: (1) The
first part overviews the basic techniques used in TCG to ensure termina-
tion, handling heap-manipulating programs, achieving compositionality
in the process and guiding TCG towards interesting test cases. (2) In the
second part, we focus on a particular implementation of the TCG frame-
work in constraint logic programming (CLP). In essense, the imperative
object-oriented program under test is automatically transformed into
an equivalent executable CLP-translated program. The main advantage
of CLP-based TCG is that the standard mechanism of CLP performs
symbolic execution for free. The PET system is an open-source software
that implements this approach. (3) Finally, in the last part, we study the
extension of TCG to actor-based concurrent programs.

1 Introduction

A lot of research has been devoted in the last years to the problem of gener-
ating test cases automatically. A recent survey [6] describes some of the most
prominent approaches to TCG, namely model-based TCG, combinatorial TCG,
(adaptive) random TCG, search-based TCG and structural (white-box) TCG.
This tutorial focuses on structural (white-box) TCG, an approach in which the
availability of the code of the program under test is assumed and test cases
are obtained from the concrete program (e.g., using its control flow graph) in
contrast to black-box testing, where they are deduced from a specification of
the program. Also, our focus is on static testing, since we assume no knowledge
about the input data, in contrast to dynamic approaches [17, 24] which execute
the program under test using concrete input values.

Symbolic execution [11, 13, 15, 23, 31, 35, 36, 46] is arguably the most widely
used enabling technique for structural white-box TCG. It has received a renewed
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interest in recent years, thanks in part to the increased availability of computa-
tional power and decision procedures [9]. Structural white-box TCG is among
the most studied applications of symbolic execution, with several tools avail-
able [10]. Symbolic execution consists in executing a program with the contents
of its input arguments being symbolic variables rather than concrete values. A
symbolic execution tree characterizes the set of execution paths explored during
the symbolic execution of a program. Test cases are obtained from the successful
branches of the tree. The set of obtained test cases forms a test suite.

The first part of the tutorial is devoted to review the basic concepts of TCG
by symbolic execution. We start by explaining the challenges to efficiently han-
dle heap-manipulating programs [38] in symbolic execution. The presence of
dynamic memory operations such as object creation and read/write field ac-
cesses requires special treatment during symbolic execution. Moreover, in order
to ensure reliability, symbolic execution must consider all possible shapes these
dynamic data structures can take. We proceed next to see how one can go to
symbolic execution to the actual production of test cases. An important issue
that is discussed afterwards is the compositionality of the TCG process. Finally,
we overview a practical issue to efficiently generate more relevant test cases. In
particular, guided TCG is a methodology that aims at steering symbolic execu-
tion towards specific program paths in order to generate relevant test cases and
filter out less interesting ones.

The second part of the tutorial introduces CLP-based Test Case Generation.
CLP-based TCG advocates the use of CLP technology to perform test case gen-
eration of imperative object-oriented programs. The process has two phases.
In the first phase, the imperative object-oriented program under test is auto-
matically transformed into an equivalent executable CLP-translated program.
Instructions that manipulate heap-allocated data are represented by means of
calls to specific heap operations. In the second phase, the CLP-translated pro-
gram is symbolically executed using the standard CLP execution and constraint
solving mechanisms. The above-mentioned heap operations are also implemented
in standard CLP, in a suitable way in order to support symbolic execution. We
will see the advantages of the CLP-based framework and, in particular, why it
is very relevant to implement guided TCG and an efficient heap solver. In this
context, we present the PET system, a system that implements the CLP-based
TCG framework described in this part and which is available online.

The last part of the tutorial is focused on TCG of actor-based concurrent
programs. It is known that writing correct concurrent programs is harder than
writing sequential ones, because with concurrency come additional hazards not
present in sequential programs such as race conditions, data races, deadlocks,
and livelocks. However, due to the non-deterministic interleavings of processes,
traditional testing for concurrent programs is not as effective as for sequential
programs. Systematic and exhaustive exploration of all interleavings is typically
too time-consuming and often computationally intractable (see, e.g., [45] and
its references). Furthermore, the fact that different scheduling policies can be
implemented affects the order in which tasks are selected for execution and, thus,
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the initial state when resuming a task can be different by adopting one policy
or another. As a result, computation is often non-deterministic and multiple
(possibly different) solutions can be produced depending on the interleaved tasks
and the scheduler.

The adoption of actor systems has some advantages in the regard. Very briefly,
actors [1,25] constitute a model of concurrent programming that has been gain-
ing popularity and that it is being used in many systems (such as ActorFoundry,
Asynchronous Agents, Charm++, E, ABS, Erlang, and Scala). Actor programs
consist of computing entities called actors or objects, each with its own local
state and thread of control, that communicate by exchanging messages asyn-
chronously. An object configuration consists of the local state of the objects and
a set of pending messages (or tasks). In response to receiving a message, an ob-
ject can update its local state, send messages, or create new objects. At each step
in the computation of an object system, an object from the system is scheduled
to process one of its pending messages. The advantage of using actor-systems in
testing is that, as objects do not share their states, one can assume [41] that the
evaluation of all statements of a task takes place serially (without interleaving
with any other task) until it releases the processor (gets to a return instruc-
tion). This assumption alleviates already a lot the scalability issues mentioned
above. We will discuss a basic algorithm and the main challenges in TCG of
actor systems.

2 Test Case Generation by Symbolic Execution

This section provides a general overview of TCG by symbolic execution and the
main challenges that currently the method poses.

2.1 Basic Concepts in Symbolic Execution

A symbolic execution tree characterizes the set of execution paths explored
during the symbolic execution of a program. During the course of symbolic
execution, the values of the program’s variables are represented as symbolic
expressions over the input symbolic values and a path condition is maintained.
Such a path condition is updated whenever a branch instruction is executed.
For instance, for each conditional statement in the program, symbolic execution
explores both the “then” and the “else” branch, refining the path condition ac-
cordingly. The satisfiability of each of these branches is checked and symbolic
execution stops exploring any path whose path condition becomes unsatisfiable,
hence only feasible paths are followed. Test cases are obtained from the successful
branches of the tree. The set of obtained test cases forms a test suite.

In this context, the quality of a test suite is usually assessed by using code
coverage criteria. A coverage criterion aims at measuring how well the program
under test is exercised by a test suite. Some popular coverage criteria are: state-
ment coverage which requires that every statement of the code is executed;
branch coverage which requires all conditional statements in the program to be
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evaluated both to true and false; and path coverage which requires that every
possible trace through a given part of the code is executed. These criteria are
however not finitely applicable [49]. That is, they can not always be satisfied by
a finite test suite, due to infinite paths and infeasible statements in the program
under test (i.e., dead code). An alternative to path coverage, which is finitely
applicable is the loop-k coverage criterion, which requires traversing all paths in
the program except those with more than k iterations on any loop.

Observe that by construction symbolic execution achieves the path coverage
criterion above described. However, since the symbolic execution tree is in gen-
eral infinite, a termination criterion must be imposed to ensure its finiteness.
Such a termination criterion can be expressed in different forms. For instance, a
computation time budget can be established, or an explicit bound on the depth
of the symbolic execution tree can be imposed. We adopt a more code-oriented
termination criterion. Concretely, we impose an upper bound k on the number of
times each loop is iterated. By doing so, the finitely applicable (feasible) version
of the path coverage criterion, i.e., the loop-k coverage, is achieved.

1 int intExp(int a,int n) {
2 if (n < 0)
3 throw new ArithmeticException();
4 else {
5 int out = 1;
6 while (n > 0) {
7 out = out*a;
8 n--;
9 }

10 return out;
11 }
12 }

Fig. 1. Java source code

Example 1. Figure 1 shows the Java source code for method intExp which takes
two integer input arguments a and n and computes an by successive multiplica-
tions. If the value of the input argument n is less than 0, an arithmetic exception
is thrown. For simplicity, we assume that the method cannot receive values 0
for both of its arguments (undefined 00). Figure 2 shows the symbolic execution
tree of method intExp for loop-1 termination criterion (loop-k with k=1 ). That
is to say, we require all paths that do not exercise the loop body (zero times)
and those that exercise the loop body one time. Nodes in the tree denote sym-
bolic states, and the edges are labeled with the line number of the instruction
that is executed. Observe that symbolic execution starts with the empty path
condition (PC:true). At each branching point, PC is updated with different condi-
tions over the input arguments. For instance, when the if statement is executed,
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both then (true) and else (false) alternatives are feasible, therefore symbolic
execution forks and the PC is updated accordingly in each of the resulting paths.

In the tree, solid squares denote intermediate symbolic states, solid double
squares denote successful (terminating) symbolic execution paths, and the only
dashed square denotes an unfinished path, i.e., a path that is about to enter the
loop body a second time and hence is pruned by the loop-1 criterion. �
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Fig. 2. Symbolic execution tree

2.2 Handling Heap-Manipulating Programs

One of the main challenges in symbolic execution is to efficiently handle heap-
manipulating programs [38]. As will be illustrated later through an intuitive
example, these kind of programs often create and use complex dynamically heap-
allocated data structures. The presence of dynamic memory operations such as
object creation and read/write field accesses requires special treatment during
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symbolic execution. Moreover, in order to ensure reliability, symbolic execution
must consider all possible shapes these dynamic data structures can take. In
trying to do so, however, scalability issues arise since high (often exponential)
numbers of shapes may be built due to the aliasing of references.

In practice, symbolic execution assumes no knowledge about the heap shape
(unless explicitly provided in advance via e.g., preconditions), in contrast to
standard execution, where a program runs on concrete and fully-known initial
heap (as part of the execution context). Let us motivate the importance of special
treatment for heap operations and aliasing of references on a simple example.

Example 2. Consider the following method mist. It receives as input arguments
two references r1 and r2 to objects of type C (contains a field f of integer type),
checks the value of r1.f and writes r2.f in the then branch or writes r1.f in
the else branch.

1 void mist(C r1, C r2) {
2 if (r1.f > 0)
3 r2.f = 1;
4 else
5 r1.f = 0;
6 }

Seemingly, the method contains only two feasible paths, each corresponding to
one branch of the if statement:

1. If r1.f>0, then write r2.f=1 (line 3).
2. If r1.f<=0, then write r1.f=0 (line 5). Nothing is learned about r2.

However, these cases fall short to cover all possible executions of method mist.
There are other unapparent execution paths that must also be explored. Namely:

3. If r1 points to null, then a null pointer exception is thrown at line 2.
4. If r1.f>0 and r2 points to null, then a null pointer exception is thrown at

line 3.
5. If r1 and r2 point to the same object o and o.f>0, then write o.f=1 (line 3).

We say that r1 and r2 are aliased.

Notice that only by exhaustive exploration of all possible heap configuration can
symbolic execution generate these “hidden” paths and hence reveal the presence
of potential runtime errors for this rather simple method. Furthermore, let this
example also serve to see the relevance of the loop-k coverage criterion. Observe
that the set of the first two cases above, while not being sufficient to exercise
the complete behavior of method mist, would still be enough to achieve 100%
branch and statement coverage, which may convey an illusory sense of confidence
on the correctness of a possibly buggy program. �

Lazy Initialization. Lazy initialization [30] is the de facto standard technique to
enable symbolic execution to systematically handle arbitrary input data struc-
tures, and to explore all possible heap shapes that can be generated during the
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process, including those produced due to aliasing of references. The main idea
is that symbolic execution starts with no knowledge about the program’s input
arguments and, as the program symbolically executes and accesses object fields,
the components of the program’s inputs are initialized on an “as-needed” basis.
The intuition is as follows. To symbolically execute method m of class C, a new
object o of class C with all its fields uninitialized is created (the this object in
Java). When an unknown field of primitive type is read, a fresh unconstrained
variable is created for that field. When an unknown reference field is accessed,
all possibilities are explored non-deterministically choosing among the following
values: (a) null; (b) any existing symbolic object whose type is compatible with
the field’s type and might alias with it; and (c) a fresh symbolic object. Such
non-deterministic choices are materialized into branches in the symbolic execu-
tion tree. As a result, the heap associated with any particular execution path is
built using only the constraints induced by the visited code.

The practicality and effectiveness of lazy initialization has been proved with its
use by existing symbolic execution engines such as PET and SPF. However, the
very nature of the technique, i.e., producing branching due to aliasing choices at
every heap operation point, hampers the overall efficiency of symbolic execution
and its applicability to real-world programs.

A Heap Solver. The observation that branching due to aliasing choices can
be made “more lazily” than in lazy initialization by delaying such choices as
much as possible lead to the development of a heap solver [4] which enables
a more efficient symbolic execution of heap-manipulating programs. The key
features of the heap solver are the treatment of reference aliasing by means of
disjunctive reasoning, and the use of advanced back-propagation of heap related
constraints. In addition, the heap solver supports the use of heap assumptions
to avoid aliasing of data that, though legal, should not be provided as input.

Let us further illustrate the benefits of the heap solver over lazy initialization
by symbolically executing method m from Figure 3 using both approaches. For
simplicity, let us assume that the executions of methods a and b do not modify
the heap. The symbolic execution tree computed using lazy initialization (as in,
e.g., PET and SPF) is shown in Figure 4a. Note that before a field is accessed, the
execution branches if it can alias with previously accessed fields. For example,
the second field access z.f branches in order to consider the possible aliasing
with the previously accessed x.f. Similarly, the write access to y.f must consider
all possible aliasing choices with the two previous accessed fields x.f and z.f.
This ensures that the effect of the field access is known within each branch. For
example, in the leftmost branch the statement y.f=x.f+1 assigns -4 to x.f, y.f
and z.f, since in that branch all these objects are aliased. The advantage of
this approach is that by the time we reach the if statement we know the result
of the test, since each variable is fixed. However, such early branching creates
a combinatorial explosion problem since, for example, method a is symbolically
executed in two branches and method b in five.
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1 void m(Ref x, Ref y, Ref z) {
2 x.f=1;
3 z.f=-5;
4 a();
5 y.f=x.f+1;
6 b();
7 if (x==z)
8 c(y.f);
9 else

10 d(y.f);
11 }

Fig. 3. Heap Solver: Motivating example

.
x.f=1

��.
x=z

�����
���

��� x �=z

�����
����

���

z.f=−5
��

z.f=−5
��

a()
��

a()
��.y=z

����
��
� y �=z

��	
		

		 .y=z

		








y �=z,y=x 

�
��

�� y �=z,y �=x

����
���

���
�

y.f=x.f+1
��
y.f=x.f+1

��
y.f=x.f+1

��
y.f=x.f+1

��
y.f=x.f+1
��

b()
��

b()
��

b()
��

b()
��

b()
��

x=z
��

x=z
��

x �=z
��

x �=z
��

x �=z
��

c(y.f)
��

c(y.f)
��

d(y.f)
��

d(y.f)
��

d(y.f)
��. . . . .

(a) Lazy Initialization

.
x.f=1

��

z.f=−5
��

a()
��

y.f=x.f+1
��

b()
��.

x=z

����
��
� x �=z

��	
		

		

c(y.f)
��

d(y.f)
��. .

(b) Heap Solver

Fig. 4. Symbolic Execution Trees: Lazy Initialization and Heap Solver

On the other hand, the heap solver enables symbolic execution to perform as
shown in Figure 4b, where branching only occurs due to explicit branching in the
program, rather than to aliasing. For this purpose, the heap solver handles non-
determinism due to aliasing of references by means of disjunctions. In particular,
at instruction 5 the solver will carry the following conditional information for
x.f’ (the current value of field f of x): x = z → x.f ′ = z.f ∧x �= z → x.f ′ = x.f
indicating that if x and z are aliased, then x.f’ will take its value from z.f
and, otherwise, from x.f. Once the conditional statement at line 7 is executed
and we learn that x and z are aliased (in the then branch), we need to look up
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backwards in the heap and propagate this unification so that instruction 5 can be
fully executed. This allows the symbolic execution of d(y.f) with a known value
for y.f. The heap solver works on a novel internal representation of the heap that
encodes the disjunctive information and easily allows looking up backwards in
the heap. In addition, it is possible to provide heap assumptions on non-aliasing,
non-sharing and acyclicity of heap-allocated data in the initial state. The heap
solver can take these assumptions into account to discard aliasing that is known
not to occur for some input data. Importantly, the heap solver can be used by
any symbolic execution tool for imperative languages through its interface heap
operations.

Backwards Propagation, Arrays, and Heap Assumptions. As described
in the previous section, the heap solver uses information about equality and dise-
quality of references to determine equality among the heap cells. This is done by
propagating such information forwards in the rules of attributes. A straightfor-
ward extension to the solver allows propagating information backwards as well.
In doing so, the heap solver is capable of further refining disjunctive information
and variables’ domains, which in turn can lead to promptly pruning unfeasible
symbolic execution branches.

Example 3. Consider the method m but with the condition of the if (in instruc-
tion 7) changed to “if (x.f == 1)” . Thanks to backwards propagation, the solver
can infer that in the if branch, variables x, y and z do not alias, and therefore
the call call_c is performed with a 2 value. �

Another straightforward extension to the heap solver allows to handle arrays
in a similar fashion to how object fields are handled, with the difference being
that array indices play the role of object references that point to the heap-
allocated data.

The last important feature of the heap solver is the support for heap assump-
tions. As we have seen so far, symbolic execution assumes feasible all possible
kinds of aliasing among heap-allocated (reference) input data of the same type.
However, it may be the case that while some of these aliasings might indeed oc-
cur, others might not (consider, for instance, aliased data structures that cannot
be constructed using the public methods in the Java class). In order to avoid gen-
erating such inputs, the heap solver provides support for heap assumptions, that
is, assertions describing reachability, aliasing, separation and sharing conditions
in the heap. Concretely, the following heap assumptions are supported:

– non-aliasing(a,b): specifies that memory locations a and b are not the same.
– non-sharing(a,b): specifies disjointness, i.e., that references a and b do not

share any common region in the heap.
– acyclic(a): specifies that a is an acyclic data structure.

2.3 From Symbolic Execution to TCG

The outcome of symbolic execution is a set of path conditions, one for each
symbolic execution path. Each path condition represents the conditions over the
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input variables that characterize the set of feasible concrete executions of the
program that take the same path. In a next step, off-the-shelf constraint solvers
can be used to solve such path conditions and generate concrete instantiations for
each of them. This last step provides actual test inputs for the program, amenable
to further validation by testing frameworks such as JUnit, which execute such
test inputs and check that the output is as expected.

Example 4. Let us look at the symbolic execution tree of Figure 2 again. Intu-
itively, the union of the three successful paths denoted with solid double squares
make up the symbolic test suite for method intExp that optimally satisfies the
loop-1 criterion:

# Input Output Path condition

1 A, N [exception] {N<0}
2 A, N 1 {N=0}
3 A, N Out {N>0,N’=N-1,Out=1*A,N’<=0}

The following are concrete test cases that can be derived from the above symbolic
ones.

# Input Output

1 -10, -10 [Exception]
2 -10, 0 1
3 -10, 1 10

And from these concrete test cases, the JUnit tests shown in Figure 5 can be
obtained.

It is important to note that imposing a larger k would allow to continue the
exploration through the unfinished, pruned path (dashed square) thus generating
test cases corresponding to further loop unrollings. �

2.4 Compositionality

Compositional reasoning is a general purpose methodology that has been suc-
cessfully applied in the past to scale up static analysis and software verification
techniques and that has also proved effective for scaling up symbolic execution
and TCG [5, 7, 19, 40]. The overall goal of compositionality is to alleviate the
inter-procedural path explosion problem. That is, in the context of symbolic
execution and TCG, the path explosion caused by repeatedly conjoining the
symbolic execution trees of methods when their invocations occur. The main
idea is that symbolic execution and TCG of large programs can be done more
effectively, and more efficiently, by first performing symbolic execution and TCG
of their individual components separately. In the context of object-oriented pro-
gramming, a method is the basic code component.

In symbolic execution for TCG, compositionality means that when a method
m invokes another method p, for which TCG has already been performed, the
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public void test_1(){
int input0 = -10;
int input1 = -10;
try{
int output = Test.intExp(input0,input1);

}
catch(Exception ex){
assertEquals("exception","java.lang.ArithmeticException",

ex.getClass().getName());
return;

}
fail("Fail");

}
public void test_2(){
int input0 = -10;
int input1 = 0;
int output = Test.intExp(input0,input1);
int expected = 1;
assertEquals("OK",expected,output);

}
public void test_3(){
int input0 = -10;
int input1 = 1;
int output = Test.intExp(input0,input1);
int expected = -10;
assertEquals("OK",expected,output);

}

Fig. 5. JUnit tests generated for introductory example

execution can compose the test cases available for p (also known as method sum-
mary for p) with the current execution state and continue the process, instead
of having to symbolically execute p again. By test cases (or method summary),
we refer to the set of path conditions obtained by symbolically executing p. As
a result of this composition step, a method summary for m is created. Then,
larger portions of the system under test (components, modules, libraries, etc.)
are incrementally executed, following a bottom-up traversal of its call graph,
composing previously computed components results (summaries) until finally
whole-program results can be computed. Let us recall that since the symbolic
execution tree is in general infinite, a termination criterion is essential to ensure
finiteness of the process. Then, a method summary is a finite set of summary
cases, one for each terminating path through the symbolic execution tree of the
method. Intuitively, a summary can be regarded as a complete specification of
the method for a certain termination criterion, but it is still a partial specification
of the method in general.

Intuitively, compositional TCG has several advantages over traditional non-
compositional TCG. First, it avoids repeatedly performing TCG of the same
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method. Second, components can be tested with higher precision when they are
chosen small enough. Third, since separate TCG is done on parts and not on the
whole program, total memory consumption may be reduced. Fourth, separate
TCG can be performed in parallel on independent computers and the global TCG
time can be reduced as well. Furthermore, having a compositional TCG approach
in turn provides a practical solution to handle native code, i.e., code which is
implemented in a different programming language and may be unavailable. This
is achieved by modeling the behavior of native code as a method summary which
can be composed with the current state during symbolic execution in the same
way as the test cases inferred automatically by the testing tool are. By treating
native code, we overcome one of the inherent limitations of symbolic execution
(see [38]).

Approaches to Compositional TCG. In order to perform compositional
TCG, two main approaches can be considered:

Context-sensitive. Starting from an entry method m (and possibly a set of pre-
conditions), TCG performs a top-down symbolic execution such that, when a
method call p is found, its code is executed from the actual state φ. In a context-
sensitive approach, once a method is executed, we store the summary computed
for p in the context φ. If we later reach another call to p within a (possibly
different) context φ′, we first check if the stored context is sufficiently general.
In such case, we can adapt the existing summary for p to the current context φ′.
At the end of each execution, it can be decided which of the computed (context-
sensitive) summaries are stored for future use.

Context-insensitive. Another possibility is to perform the TCG process in a
context-insensitive way. This strategy comprises the following steps. First, the
call graph for the entry method mP of the program under test is computed, which
gives us the set of methods that must be tested. Then, the strongly connected
components (SCCs for short) for such graph are computed. SCCs are traversed
in reverse topological order starting from those which do not depend on any
other. The idea is that each SCC is symbolically executed from its entry mscc

w.r.t. the most general context (i.e., true). If there are several entries to the
same SCC, the process is repeated for each of them. Hence, it is guaranteed that
the obtained summaries can always be adapted to more specific contexts.

In general terms, the advantages of the context-insensitive approach are that
composition can always be performed and that only one summary needs to be
stored per method. However, since no context information is assumed, summaries
can contain more test cases than necessary and can be thus more expensive to
obtain. In contrast, the context-sensitive approach ensures that only the required
information is computed, but it can happen that there are several invocations to
the same method that cannot reuse previous summaries (because the associated
contexts are not sufficiently general). In such case, it is more efficient to obtain
the summary without assuming any context. A context-insensitive approach is
used in what follows.



Test Case Generation by Symbolic Execution 275

Method Summaries. A method summary for m is a finite set of summary
cases, each of which mainly consists of the path condition for a particular sym-
bolic execution path of m. Each element in a summary is said to be a summary
case of the summary. Intuitively, a method summary can be seen as a com-
plete specification of the method for the considered coverage criterion, so that
each summary case corresponds to the path constraints associated to each fin-
ished path in the corresponding (finite) execution tree. Note that, though the
specification is complete for the criterion considered, it will be, in general, a
partial specification for the method, since the finite tree may contain incomplete
branches which, if further expanded, may result in (infinitely) many execution
paths.

When the method does not include any heap-related operation, the path con-
dition alone sufficiently characterizes the symbolic execution path (as in [7,19]).
However, in the presence of heap-manipulating methods, special mechanisms
must be employed. We adopt an intuitive alternative which consists in explic-
itly encoding the input and output heaps and store them along with the path
condition. Doing so, requires the implementation of two operations, a heap com-
patibility check and a heap composition operation.

Compatibility and Composition of Summaries. Let us assume that during
the symbolic execution of a method m, there is a method invocation to another
method p within a current state φ. The challenge is to define a composition
operation so that, instead of symbolically executing p, its previously computed
summary Sp can be reused. As a result, TCG for m should produce the same
results regardless of whether we use a summary for p or we inline symbolical
execution of p within TCG for m, in a non-compositional way. Roughly speaking,
the state φc stored in a summary case is compatible with the current state φ if: 1)
the path condition stored in the summary case can be conjoined to the current
path condition, and 2) the structure of the input heap in the summary case match
with the structure of the current heap. Note that compatibility of a summary
case is checked on the fly, so that if φ is not compatible with φc, the composition
will fail, the summary case will be discarded, and symbolic execution will proceed
to attempt to compose the next summary case in Sp.

Example 5. Table 1 shows the summary obtained by symbolically executing
method simplify using the loop-1 coverage criterion: The summary contains 5
cases, which correspond to the different execution paths induced by the calls to
methods gcd and abs. For the sake of clarity, we adopt a graphical representa-
tion for the input and output heaps. Heap locations are shown as arrows labeled
with their reference variable names. Split-circles represent objects of type R and
fields n and d are shown in the upper and lower part, respectively. Exceptions
are shown as starbursts, like in the special case of the fraction “0/0”, for which
an arithmetic exception (AE) is thrown due to a division by zero. In the method
summary examples of Tables 2 and 3, split-rectangles represent arrays, with the
length of the array in the upper part and its list of values in the lower one. As-
sume that method arraycopy is native. This means that its code is not available
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class Arithmetics {
static int abs(int a) {

if (a >= 0) return a;
else return -a;

}
static int gcd(int a,int b) {

int res;
while (b != 0) {

res = a%b; a = b; b = res;
}
return abs(a);

}
}
class Rational {

int n; int d;
void simplify() {

int gcd = Arithmetics.gcd(n,d);
n = n/gcd; d = d/gcd;

}
Rational[] simp(Rational[] rs) {

int length = rs.length;
Rational[] oldRs = new Rational[length

];
arraycopy(rs,oldRs,length);
for (int i = 0; i < length; i++)

rs[i].simplify();
return oldRs;

}
}

Fig. 6. Example for Compositional TCG.

Table 1. Summary of method simplify

Ain Aout Heapin Heapout EF Constraints

r(A)
F
0A M

0A ok F<0, N=-F, M=F/N

r(A)
F
0A 1

0A ok F>0

r(A)
0
0A 0

0A AEB exc(B)

r(A)
F
GA M

NA ok G<0, F mod G=0, K=-G, M=F/K, N=G/K

r(A)
F
GA M

1A ok G>0, F mod G=0, M=F/G
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Table 2. Summary of method arraycopy

Ain Aout Heapin Heapout EF Constraints

[X,Y,0] H H ok ∅

[r(A),null,Z] L [V|_]A L [V|_]A NPEB exc(B) Z>0, L>0

[null,Y,Z] H NPEA exc(A) Z>0

[X,Y,Z] H AEA exc(A) Z<0

[r(A),r(B),1] L1 [V|_]A L2 [V2|_]B L1 [V|_]A L2 [V|_]B ok L1>1, L2>0

Table 3. Summary of method simp

Ain Aout Heapin Heapout EF Constraints

r(A) r(B) 0 []A 0 []A 0 []B ok ∅

null X H NPEA exc(A) ∅

r(A) r(C) 1 [r(B)]A
F
0B 1 [r(B)]A

M
0B 1 [r(B)]C ok F<0, K=-F, M=F/K

r(A) r(C) 1 [r(B)]A
F
0B 1 [r(B)]A

1
0B 1 [r(B)]C ok F>0

r(A) X 1 [r(B)]A
0
0B 1 [r(B)]A

0
0B 1 [r(B)]C AED exc(D) ∅

r(A) r(C) 1 [r(B)]A
F
GB 1 [r(B)]A

M
NB 1 [r(B)]C ok G<0, F mod G=0, K=-G,

M=F/K, N=G/K

r(A) r(C) 1 [r(B)]A
F
GB 1 [r(B)]A

M
1B 1 [r(B)]C ok G>0, F mod G=0, M=F/G

r(A) X 1 [null]A 1 [null]A 1 [null]C NPEB exc(B) ∅

and we cannot symbolically execute it. A method summary for arraycopy can
be provided, as shown in Table 2, where we have (manually) specified five cases:
the first one for arrays of length zero, the second and third ones for null array
references, the fourth one for a negative length, and finally a normal execution
on non-null arrays. Now, by using our compositional reasoning, we can continue
symbolic execution for simp by composing the specified summary of arraycopy
and the one computed for simplify. The result of compositional symbolic exe-
cution is presented in Table 3, that is, the entire summary of method simp for
a loop-1 coverage criterion. �
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2.5 Guided TCG

A common limitation of symbolic execution in the context of TCG is that it
tends to produce an unnecessarily large number of test cases for all but tiny pro-
grams. This limitation not only hinders scalability but also complicates human
reasoning on the generated test cases. Guided TCG is a methodology that aims
at steering symbolic execution towards specific program paths in order to effi-
ciently generate more relevant test cases and filter out less interesting ones with
respect to a given structural selection criterion. The goal is thus to improve on
scalability and efficiency by achieving a high degree of control over the coverage
criterion and hence avoiding the exploration of unfeasible paths. This has po-
tential applicability for industrial software testing practices such as unit testing,
where units of code (e.g. methods) must be thoroughly tested in isolation, or
selective testing, in which only specific paths of a program must be tested.

Example 6. Let us consider the unit-testing for method simplify (see Figure 6).
A proper set of unit-tests should include one test to exercise the exceptional
behavior arising from the division by zero, and another test to exercise the
normal behavior. Ideally, no more tests should be provided since there is anything
else to be tested in method simplify. This methodology works well under the
assumption that called methods are tested on their own, in this case method
gcd. Standard TCG by symbolic execution would consider all possible paths
including those arising from the different executions of method gcd, in this case
5 paths. The challenge in Guided TCG is to generate only the two test-cases
above, avoiding as much as possible traversing the rest of the paths (which for
this criterion can be considered redundant). As another example, let us consider
selective testing for method simplify. E.g., one could be interested in generating
a test-case (if any) that makes method simplify produce an exception due to a
division by zero. The challenge in Guided TCG is again to generate such a test
avoiding traversing as much as possible the rest of the paths. �

The intuition of Guided TCG is as follows: (1) A heuristics-based trace-
generator generates possibly partial traces, i.e., partial descriptions of paths,
according to a given selection criterion. This can be done by relying on the
control-flow graph of the program. (2) Bounded symbolic execution is guided
by the obtained traces. The process is repeated until the selection criterion is
satisfied or until no more traces are generated. Section 3.6 presents a concrete
CLP-based methodology for guided TCG and formalizes a concrete guided TCG
scheme to support the criteria for unit testing considered in the above example.

3 CLP-Based TCG

We present a particular instance of TCG based on symbolic execution, and an
implementation, in which CLP is used as enabling technology.
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3.1 Constraint Logic Programming

We assume certain familiarity with Logic Programming (LP) [33] and Con-
straint Logic Programming (CLP) [27, 34]. Hence we only briefly overview both
paradigms.

Logic Programming. Logic Programming is a programming paradigm based
on the use of formal logic as a programming language. A logic program is a
finite set of predicates defining relationships between logical terms. An atom
(or call) A is a syntactic construct of the form p(t1, . . . , tn), with n ≥ 0, where
p/n is a predicate signature and t1, . . . , tn are terms. A clause is of the form
H : −B1, . . . , Bm. , with m ≥ 0, where its head H is an atom and its body
B1, . . . , Bm is a conjunction of m atoms (commas denote conjunctions). When
m = 0 the clause is called a fact and is written “H.”. The standard syntactic
convention is that names of predicates and atoms begin with a lowercase letter.
A goal is a conjunction of atoms. We denote by {X1 → t1, . . . , Xn → tn} the
substitution σ with σ(Xi) = ti for i = 1, . . . , n (with Xi �= Xj if i �= j),
and σ(X) = X for all other variables X . Given an atom A, θ(A) denotes the
application of substitution θ to A. Given two substitutions θ1 and θ2 , we denote
by θ1θ2 their composition. An atom A′ is an instance of A if there is a substitution
σ with A′ = σ(A).

SLD (Selective Linear Definite clause)-resolution is the standard operational
semantics of logic programs. It is based on the notion of derivations. A deriva-
tion step is defined as follows. Let G be A1, . . . , AR, . . . , Ak and C = H :
−B1, . . . , Bm. be a renamed apart clause in P (i.e., it has no common variables
with G). Let AR be the selected atom for its evaluation. As in Prolog, we assume
the simple leftmost selection rule. Then, G′ is derived from G if θ is a most general
unifier between AR and H , and G′ is the goal θ(A1, . . . , AR−1, B1, . . . , Bm, AR+1,
. . . , Ak).

As customary, given a program P and a goal G, an SLD derivation for P ∪{G}
consists of a possibly infinite sequence G = G0, G1, G2, . . . of goals, a sequence
C1, C2, . . . of properly renamed apart clauses of P (i.e. Ci has no common vari-
ables with any Gj nor Cj with j < i), and a sequence of computed answer
substitutions θ1, θ2, . . . (or most-general unifiers, mgus for short) such that each
Gi+1 is derived from Gi and Ci+1 using θi+1. Finally, we say that the SLD
derivation is composed of the subsequent goals G0, G1, G2, . . .

A derivation step can be non-deterministic when AR unifies with several
clauses in P , giving rise to several possible SLD derivations for a given goal.
Such SLD derivations can be organized in SLD trees. A finite derivation G =
G0, G1, G2, . . . , Gn is called successful if Gn is the empty goal, denoted ε. In that
case θ = θ1θ2 . . . θn is called the computed answer for goal G. Such a derivation
is called failing if it is not possible to perform a derivation step with Gn.

Executing a logic program P for a goal G consists in building an SLD tree
for P ∪ {G} and then extracting the computed answer substitutions from every
non-failing branch of the tree.
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Constraint Logic Programming. Constraint Logic Programming is a pro-
gramming paradigm that extends Logic programming with Constraint solving.
It augments the LP expressive power and application domain while maintaining
its semantic properties (e.g., existence of a fixpoint semantics).

In CLP, the bodies of clauses may contain constraints in addition to ordi-
nary literals. CLP integrates the use of a constraint solver to the operational
semantics of logic programs. As a consequence of this extension, whereas in LP
a computation state consists of a goal and a substitution, in CLP a computation
state also contains a constraint store. The special constraint literals are stored
in the constraint store instead of being solved according to SLD-resolution. The
satisfiability of the constraint store is checked by a constraint solver. Then, we
say that a CLP computation is successful if there is a derivation leading from the
initial state S0 = 〈G0 true〉 (initially the constraint store is empty, i.e., true)
to the final state Sn = 〈ε S〉 such that ε is the empty goal and S is satisfiable.

The CLP paradigm can be instantiated with many constraint domains. A
constraint domain defines the class of constraints that can be used in a CLP pro-
gram. Several constraint domains have been developed (e.g., for terms, strings,
booleans, reals). A particularly useful constraint domain is CLP(FD) (Constraint
Logic Programming over Finite Domains) [47]. CLP(FD) constraints are usually
intended to be arithmetic constraints over finite integer domain variables. It has
been applied to constraint satisfaction problems such as planning and schedul-
ing [14,34]. Some features of CLP(FD) that make it suitable for TCG of programs
working with integers are:

– It provides a mechanism to define the initial finite domain of variables as an
interval over the integers and operations to further refine this initial domain.

– It provides a built-in labeling mechanism, which can be applied on a list of
variables to find values for them such that the current constraint store is
satisfied.

As we will see in the next section, our CLP-based TCG framework will rely
on CLP(FD) to translate conditional statements over integer variables into CLP
constraints. Moreover, the labeling mechanism is essential to concretize the ob-
tained test cases in order to obtain concrete input data amenable to be used and
validated by testing tools.

3.2 CLP-Based Test Case Generation

CLP-based Test Case Generation advocates the use of CLP technology to per-
form test case generation of imperative object-oriented programs. The pro-
cess has two phases. In the first phase, the imperative object-oriented program
under test is automatically transformed into an equivalent executable CLP-
translated program. Instructions that manipulate heap-allocated data are rep-
resented by means of calls to specific heap operations. In the second phase, the
CLP-translated program is symbolically executed using the standard CLP exe-
cution and constraint solving mechanism. The above-mentioned heap operations
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Fig. 7. CLP-based Test Case Generation Framework

are also implemented in standard CLP, in a suitable way in order to support
symbolic execution. The next two sections overview these two phases, which are
also shown graphically in Figure 7.

The Imperative Object-Oriented Language. Although our approach is not tied
to any particular imperative object-oriented language, we consider as the source
language a subset of Java. For simplicity, we leave out of such subset features
like concurrency, bitwise operations, static fields, access control (i.e., the use of
public, protected and private modifiers) and primitive types besides integers and
booleans. Nevertheless, these features can be relatively easy to handle in practice
by our framework, except for concurrency, which is well-known to pose further
challenges to symbolic execution and its scalability.

CLP-Translated Programs. The translation of imperative object-oriented
programs into equivalent CLP-translated programs has been subject of previous
work (see, e.g., [2, 21]). Therefore, we will recap the features of the translated
programs without going into deep details of how the translation is done. The
translation is formally defined as follows:

Definition 1 (CLP-translated program). The CLP-translated program for
a given method m from the original imperative object-oriented program consists
of a finite, non-empty set of predicates m,m1, . . . ,mn. A predicate mi is de-
fined by a finite, non-empty set of mutually exclusive rules, each of the form
mk

i (In,Out , Hin, Hout,E ) : −[g, ]b1, . . . , bj., where:

1. In and Out are, resp., the (possibly empty) list of input and output argu-
ments.

2. Hin and Hout are, resp., the input and (possibly modified) output heaps.
3. E is an exception flag that indicates whether the execution of mk

i ends nor-
mally or with an uncaught exception.

4. If mi is defined by more than one rule, then g is the constraint that guards
the execution of mk

i , i.e., it must hold for the execution of mk
i to proceed.

5. b1, . . . , bj is a sequence of instructions including arithmetic operations, calls
to other predicates and built-ins to operate on the heap, etc., as defined in
Figure 8. As usual, an SSA transformation is performed [12].
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Clause ::=Pred(Argsin,Argsout,Hin,Hout,ExFlag) :- [G,]B1,B2,. . . ,Bn.
G ::=Num* ROp Num* | Ref∗1 \== Ref∗2 | type(H,Ref∗,T )
B ::=Var #= Num* AOp Num*

| Pred(Argsin,Argsout,Hin,Hout,ExFlag)
| new_object(Hin,C∗,Ref∗,Hout)
| new_array(Hin,T,Num∗,Ref∗,Hout) | length(Hin,Ref∗,Var)
| get_field(Hin,Ref∗,FSig,Var) | set_field(Hin,Ref∗,FSig,Data∗,Hout)
| get_array(Hin,Ref∗,Num∗,Var)
| set_array(Hin,Ref∗,Num∗,Data∗,Hout)

Pred ::=Block | MSig
Args ::= [ ] | [Data∗|Args]
Data ::=Num | Ref | ExFlag
Ref ::= null | r(Var)

ExFlag ::= ok | exc(Var)

ROp ::= #> | #< | #>= | #=< | #= | #\=
AOp ::= + | - | ∗ | / | mod

T ::= bool | int | C | array(T)
FSig ::=C:FN

H ::=Var

Fig. 8. Syntax of CLP-translated programs

Specifically, CLP-translated programs adhere to the grammar in Figure 8. As
customary, terminals start with lowercase (or special symbols) and non-terminals
start with uppercase; subscripts are provided just for clarity. Non-terminals
Block, Num, Var, FN, MSig, FSig and C denote, resp., the set of predicate
names, numbers, variables, field names, method signatures, field signatures and
class names. A clause indistinguishably defines either a method which appear in
the original source program (MSig), or an additional predicate which correspond
to an intermediate block in the control flow graph of original program (Block ).
A field signature FSig contains the class where the field is defined and the field
name FN . An asterisk on a non-terminal denotes that it can be either as defined
by the grammar or a (possibly constrained) variable (e.g., Num∗, denotes that
the term can be a number or a variable). Heap references are written as terms
of the form r(Ref ) or null. The operations that handle data in the heap are
translated into built-in heap-related predicates.

Let us observe the following:

– There exists a one-to-one correspondence between blocks in the control flow
graph of the original program and rules in the CLP-translated one.

– Mutual exclusion between the rules of a predicate is ensured either by means
of mutually exclusive guards, or by information made explicit on the heads
of rules, as usual in CLP. This makes the CLP-translated program deter-
ministic, as the original imperative one is (point 4 in Definition 1).

– The global memory (or heap) is explicitly represented by means of logic
variables. When a rule is invoked, the input heap Hin is received and, after
executing the body of the rule, the heap might be modified, resulting in Hout.
The operations that modify the heap will be shown later.

– Virtual method invocations are resolved at compile-time in the original
imperative object-oriented language by looking up all possible runtime
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new_object(H,C,Ref,H’) :- build_object(C,Ob), new_ref(Ref),
H’ = [(Ref,Ob)|H].

new_array(H,T,L,Ref,H’) :- build_array(T,L,Arr), new_ref(Ref),
H’ = [(Ref,Arr)|H].

type(H,Ref,T) :- get_cell(H,Ref,Cell), Cell = object(T,_).
length(H,Ref,L) :- get_cell(H,Ref,Cell), Cell = array(_,L,_).

get_field(H,Ref,FSig,V) :- get_cell(H,Ref,Ob), FSig = C:FN,
Ob = object(T,Fields), subclass(T,C),
member_det(field(FN,V),Fields).

get_array(H,Ref,I,V) :- get_cell(H,Ref,Arr), Arr = array(_,_,Xs),
nth0(I,Xs,V).

set_field(H,Ref,FSig,V,H’) :- get_cell(H,Ref,Ob), FSig = C:FN,
Ob = object(T,Fields), subclass(T,C),
replace_det(Fields,field(FN,_),field(FN,V),

Fields’),
set_cell(H,Ref,object(T,Fields’),H’).

set_array(H,Ref,I,V,H’) :- get_cell(H,Ref,Arr), Arr = array(T,L,Xs),
replace_nth0(Xs,I,V,Xs’),
set_cell(H,Ref,array(T,L,Xs’),H’).

get_cell([(Ref’,Cell’)|_],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.
get_cell([_|RH],Ref,Cell) :- get_cell(RH,Ref,Cell).

set_cell([(Ref’,_)|H],Ref,Cell,H’) :- Ref == Ref’, !,
H’ = [(Ref,Cell)|H].

set_cell([(Ref’,Cell’)|H’],Ref,Cell,H) :- H = [(Ref’,Cell’)|H”],
set_cell(H’,Ref,Cell,H”).

Fig. 9. Heap operations for ground execution [22]

instances of the method. In the CLP-translated program, such invocations
are translated into a choice of type instructions which check the actual ob-
ject type, followed by the corresponding method invocation for each runtime
instance.

– Exceptional behavior is handled explicitly in the CLP-translated program.

These observations will become more noticeable later on Example 7.
Note that the above definition proposes a translation to CLP as opposed to

a translation to pure logic (e.g. to predicate logic or even to propositional logic,
i.e., a logic that is not meant for “programming”). This is because we then want
to execute the resulting translated programs to perform TCG and this requires,
among other things, handling a constraint store and then generating actual data
from such constraints. CLP is a natural paradigm to perform this task.

Heap Operations. Figure 9 summarizes the CLP implementation of the oper-
ations to create heap-allocated data structures (new_object and new_array) and
to read and modify them (getfield , set_array, etc.) [22]. These operations rely on
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some auxiliary predicates (like deterministic versions of member member_det, of
replace replace_det, and nth0 and replace_nth0 for arrays) which are quite stan-
dard and hence their implementation is not shown. For instance, a new object
is created through a call to predicate new_object(Hin,Class,Ref,Hout), where Hin

is the current heap, Class is the new object’s type, Ref is a unique reference in
the heap for accessing the new object and Hout is the new heap after allocating
the object. Read-only operations do not produce any output heap. For example,
get_field(Hin,Ref,FSig,Var) retrieves from Hin the value of the field identified
by FSig from the object referenced by Ref , and returns its value in Var leav-
ing the heap unchanged. Instruction set_field(Hin,Ref,FSig,Data,Hout) sets the
field identified by FSig from the object referenced by Ref to the value Data,
and returns the modified heap Hout. The remaining operations are implemented
likewise.

The Heap term. Our CLP-translated programs manipulate the heap as a black-
box through its associated operations. The heaps generated and manipulated by
using these operations adhere to this grammar:

Heap ::= [ ] | [Loc|Heap]
Cell ::= object(C∗,Fields∗) | array(T∗,Num∗,Args∗)
Loc ::= (Num∗,Cell)

Fields ::= [ ] | [field(FN,Data∗)|Fields∗]

The heap is represented as a list of locations which are pairs formed by a unique
reference and a cell. Each cell can be an object or an array. An object contains
its type and its list of fields, each of which is made of its signature and data
content. An array contains its type, its length and its list of elements.

Example 7. Figure 10a shows the Java source code of class List, which imple-
ments a singly-linked list. The class contains one field first of type Node. As
customary, Node is a recursive class with two fields: data of type int and next
of type Node. Method remAll takes as argument an object l of type List, tra-
verses it (outer while loop) and for each of its elements, traverses the this object
and removes all their occurrences (inner loop). Figure 10b shows the equivalent
(simplified and pretty-printed) CLP-translated code for method remAll. Let us
observe some of the main features of the CLP-translated program. The if state-
ment in line 23 is translated into two mutually exclusive rules (predicate if1)
guarded by an arithmetic condition. Similarly, the if statement in line 25 is
translated into predicate if2, implemented by two rules whose mutual exclusion
is guaranteed by terms null and r(_) appearing in each rule head. Observe that
iteration in the original program (while constructions) is translated into recur-
sive predicates. For instance, the head of the inner while loop is translated into
predicate loop2, its condition is guarded by the rules of predicate cond2 (null
or r(_)), and recursive calls are made from predicates if1 (first rule) and if2
(both rules). Finally, exception handling is made explicit in the CLP-translated
program; the second rule of predicate block1 encodes the runtime null pointer
exception (’NPE’) that raises if the input argument l is null. �
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1 class Node {
2 int data;
3 Node next;
4 }
5 class List {
6 Node first;
7 void remAll(List l) {
8 // block1
9 Node lf = l.first;

10 // loop1
11 while (lf != null) {
12 // block2
13 Node prev = null;
14 Node p = null;
15 Node next = first;
16 // loop2
17 while (next != null) {
18 // block3
19 prev = p;
20 p = next;
21 next = next.next;
22 // if1
23 if (p.data == lf.data)
24 // if2
25 if (prev == null) {
26 first = next;
27 p = null;
28 } else {
29 prev.next = next;
30 p = prev;
31 }
32 }
33 // block4
34 lf = lf.next;
35 }
36 }
37 }

(a) Java source code

remAll([r(Th),L],[],Hi,Ho,E) :-
block1([Th,L],Hi,Ho,E).

block1([Th,r(L)],Hi,Ho,E) :-
get_field(Hi,L,first,LfR),
loop1([Th,L,LfR],Hi,Ho,E).

block1([Th,null],Hi,Ho,exc(E)) :-
create_object(Hi,’NPE’,E,Ho).

loop1([Th,L,null],H,H,ok).
loop1([Th,L,r(Lf)],Hi,Ho,E) :-
block2([Th,L,Lf],Hi,Ho,E).

block2([Th,L,Lf],Hi,Ho,E) :-
get_field(Hi,Th,first,FR),
loop2([Th,L,Lf,null,null,FR],Hi,Ho,E).

loop2([Th,L,Lf,Prev,P,null],Hi,Ho,E) :-
block4([Th,L,Lf],Hi,Ho,E).

loop2([Th,L,Lf,Prev,P,r(F)],Hi,Ho,E) :-
block3([Th,L,Lf,P,F],Hi,Ho,E).

block3([Th,L,Lf,P,F],Hi,Ho,E) :-
get_field(Hi,F,next,FRN),
get_field(Hi,F,data,A),
get_field(Hi,Lf,data,B),
if1([A,B,Th,L,Lf,P,F,FRN],Hi,Ho,E).

if1([A,B,Th,L,Lf,Prev,P,FRN],Hi,Ho,E) :-
#\=(A,B),
loop2([Th,L,Lf,Prev,P,FRN],Hi,Ho,E).

if1([A,A,Th,L,Lf,Prev,P,FRN],Hi,Ho,E) :-
if2([Th,L,Lf,Prev,P,FRN],Hi,Ho,E).

if2([Th,L,Lf,r(F),P,N],Hi,Ho,E) :-
set_field(Hi,F,next,N,H2),
loop2([Th,L,Lf,F,F,N],H2,Ho,E).

if2([Th,L,Lf,null,P,N],Hi,Ho,E) :-
set_field(Hi,Th,first,N,H2),
loop2([Th,L,Lf,null,null,N],H2,Ho,E).

block4([Th,L,Lf],Hi,Ho,E) :-
get_field(Hi,Lf,next,LfRN),
loop1([Th,L,LfRN],Hi,Ho,E).

(b) CLP-translation

Fig. 10. CLP-based TCG example

3.3 Semantics of CLP-Translated Programs

The standard CLP execution mechanism suffices to execute the CLP-translated
programs. Let us focus on the concrete execution of CLP-translated programs
by assuming that all input parameters of the predicate to be executed (i.e., In
and Hin) are fully instantiated in the initial input state.
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Let M be a method in the original imperative program,m be its corresponding
predicate in the CLP-translated program P , and P ′ be the union of P and the
predicates in Figure 9. As explained in the previous section, the operational
semantics of the CLP program P ′ can be defined in terms of derivations. A
derivation is a sequence of reductions between states S0 →p S1 →P . . . →P Sn,
also denoted S0 →P Sn, where a state 〈G θ〉 consists of a goalG and a constraint
store θ. The concrete execution of m with input θ is the derivation S0 → Sn,
where S0 = 〈m(In ,Out, Hin, Hout, ExF lag) θ〉 and θ initializes In and Hin to
be fully ground. If the derivation successfully terminates, then Sn = 〈ε θ′〉 and
θ′ is the output constraint store.

This definition of concrete execution relies on the correctness of the translation
algorithm, which must guarantee that the CLP-translated program captures the
same semantics of the original imperative one [2, 21].

Example 8. The following is a correct input state for predicate remAll/5:

〈remAll([r(1),null],Out,
[(1,object(’List’,[field(’Node’:first,null)]))],Hout,E) true〉

Observe that the list of input arguments and the input heap (both underlined)
are fully instantiated. Argument r(1) corresponds to the implicit reference to
the this object, which appears in the input heap term with its field first being
instantiated to null. Concrete execution on this input state yields a final state
in which:

Out = [ ]∧
Hout = [(1,object(’List’,[field(’Node’:first,null)])),

(2,object(’NPE’,[ ]))]∧
E = exc(2)

Notice that in this final state, a new object of type NPE (Null Pointer Excep-
tion) is created in the heap. The fact that the execution ends with an uncaught
exception is indicated in flag E. �

3.4 Symbolic Execution

When the source imperative language does not support dynamic memory, sym-
bolic execution of the CLP-translated programs is attained by simply using the
standard CLP execution mechanism to run the main goal (i.e., the predicate
name after the method under test) with all arguments being free variables. The
inherent constraint solving and backtracking mechanisms of CLP allow to keep
track of path conditions (or constraint stores), failing and backtracking when
unsatisfiable constraints are hit, hence discarding such execution paths; and suc-
ceeding when satisfiable constraints lead to a terminating state in the program,
which in the context of TCG implies that a new test case is generated.

However, in the case of heap-manipulating programs, the heap-related oper-
ations presented in Figure 9 fall short to generate arbitrary heap-allocated data
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structures and all possible heap shapes when accessing symbolic references. This
is a well-known problem in TCG by symbolic execution. A naive solution to
this problem could be to fully initialize all the reference parameters prior to
symbolic execution. However, this would require imposing bounds on the size
of input data structures, which is highly undesirable. Doing so would circum-
scribe the symbolic search space, hence jeopardizing the overall effectiveness of
the technique.

Lazy Initialization. A straightforward generalization of predicate get_cell in Fig-
ure 9 provides a simple and flexible solution to the problem of handling arbitrary
input data structures during symbolic execution, and constitutes a quite natural
implementation of the lazy initialization technique in our CLP-based framework.
Figure 11 shows the new implementation of the get_cell operations; observe that
we have added just two new rules to the implementation shown in Figure 9.

get_cell(H,Ref,Cell) :- var(H), !, H = [(Ref,Cell)|_].
get_cell([(Ref’,Cell’)|_],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.
get_cell([(Ref’,Cell’)|_],Ref,Cell) :- var(Ref), var(Ref’), Ref = Ref’,

Cell = Cell’.
get_cell([_|RH],Ref,Cell) :- get_cell(RH,Ref,Cell).

Fig. 11. Redefining get_cell operations for symbolic execution [22]

The intuitive idea is that the heap during symbolic execution contains two
parts: the known part, with the cells that have been explicitly created during
symbolic execution appearing at the beginning of the list, and the unknown part,
which is a logic variable (tail of the list) in which new data can be added. Im-
portantly, the definition of get_cell/3 distinguishes two situations when search-
ing for a reference: (i) It finds it in the known part (second clause), meaning
that the reference has already been accessed earlier (note the use of syntac-
tic equality rather than unification, since references at execution time can be
variables); or (ii) It reaches the unknown part of the heap (a logic variable),
and it allocates the reference (in this case a variable) there (first clause). The
third clause of get_cell/3 allows to consider all possible aliasing configurations
among references. In essence, get_cell/3 is therefore a CLP implementation of
lazy initialization.

Let us illustrate the use of lazy initialization in symbolic execution with an
example.

Example 9. Figure 12 shows the CLP-translated program for method mist from
Example 2. Let mist(In,Out,Hin,Hout,E) be the initial goal for symbolic
execution. Observe that the input heap Hin is a free variable (i.e., fully un-
known). Let us choose rule mist1. By doing so, the list of input arguments
In gets instantiated to [r(A),R2], which indicates that the first argument is
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a reference to an existing object in the heap, as opposed to the null refer-
ence in rule mist2. The execution of the get_field instruction imposes new con-
straints on the shape of the input heap. Namely, Hin is partially instantiated to
[(A,object(’C’,[field(f,F)|M]))|N]. Observe that there is still an unknown
part in the heap (variable N). Also, observe that the list of fields for object A is
also represented by an open list, meaning that there might be other fields in this
object, but nothing has been learned about them yet.

Now, let us assume that the execution proceeds with rules if1 and then1.
At this point, the second argument is also set to be a valid reference r(B). The
execution of the set_field will internally reach predicate get_cell (Figure 11),
leading to consider two possibilities:

– References R1=r(A) and R2=r(B) point to two different objects in the heap.
In this case, the resulting output heap is

Hout = [ (A,object(’C’,[field(f,D1)|M])),
(B,object(’C’,[field(f,1)|P]))|N],

and the constraint store is θ = {D1 > 0}.
– References R1=r(A) and R2=r(A) point to the same object in the heap, i.e.,

they are aliased. Here, the resulting output heap is
Hout=[(A,object(’C’,[field(f,D1)|M]))|N], with θ = {D1 > 0}. �

mist1([r(A),R2],[],Hin,Hout,E) :-
get_field(Hin,A,f,D1),
if([D1,A,R2],Hin,Hout,E).

mist2([null,R2],[],Hin,Hout,exc(Exc)) :-
create_object(Hin,’NPE’,Exc,Hout).

if1([D1,A,R2],Hin,Hout,E) :-
#>(D1,0),
then([R2],Hin,Hout,E).

if2([D1,A,R2],Hin,Hout,ok) :-
#<=(D1,0),
set_field(Hin,A,f,0,Hout),

then1([r(B)],Hin,Hout,ok) :-
set_field(Hin,B,f,1,Hout).

then2([null],Hin,Hout,exc(Exc)) :-
create_object(Hin,’NPE’,Exc,Hout).

Fig. 12. CLP-translated program for method mist (Example 2)

To conclude this section, let us now provide a definition for symbolic execution
in terms of the CLP derivation tree of the CLP-translated program extended
with built-in operations to handle dynamic memory:
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Definition 2 (Symbolic Execution). Let M be a method, m be its corre-
sponding predicate from its associated CLP-translated program P , and P ′ be the
union of P and the set of predicates in Figure 9. The symbolic execution of m is
the CLP derivation tree, denoted as Tm, with root m(In,Out,Hin, Hout, E) and
initial constraint store θ = {} obtained using P ′.

3.5 Test Case Generation

When handling realistic programs, it is well-known that the symbolic execution
tree to be explored is in general infinite. This is because iterative constructs such
as loops and recursion, whose number of iterations depend on input arguments,
usually induce an infinite number of execution paths when executed with sym-
bolic input values. It is therefore essential to establish a termination criterion.
Such a termination criterion can be expressed in different forms. For instance,
a computation time budget can be established, or an explicit bound on the
depth of the symbolic execution tree can be imposed (called depth-k criterion).
In this thesis, we adopt a more code-oriented termination criterion. Specifically,
we impose an upper bound k on the number of times each loop is iterated. As
a byproduct of imposing such a bound, the loop-k structural coverage criterion
below is satisfied.

Finite symbolic execution tree, test case, and TCG. Let us now establish
definitions for key concepts of our approach:

Definition 3 (Finite symbolic execution tree, test case, and TCG). Let
m be the corresponding predicate for a method M in a CLP-translated program
P , and let C be a termination criterion.

– T C
m is the finite and possibly incomplete symbolic execution tree of m with

root m(In,Out,Hin, Hout,EF ) w.r.t. C.
– Let b be a successful (terminating) path in T C

m. A test case for m w.r.t. C is
a 6-tuple of the form: 〈σ(In), σ(Out), σ(Hin), σ(Hout), σ(EF ), θ〉, where σ
and θ are, resp., the substitution and the constraint store associated to b.

– TCG is the process of generating the set of test cases obtained for all suc-
cessful (terminating) paths in T C

m.

In the remainder of this dissertation, we comply with the above abstract
(symbolic) definition of test case, hence adopting a non-standard use of the term
“test case”. Standard test cases are concrete, i.e., actual input values on which the
program under test can be run. In contrast, in this thesis a test case represents
the class of inputs that will follow the same execution path, characterized by
a path condition (and symbolic expressions for variables). A test suite is hence
a set of test cases that characterizes all symbolic execution paths explored by
symbolic execution using a particular termination criterion. Nevertheless, it is
possible to produce actual values from the obtained symbolic test cases. This can
be done in a straightforward subsequent stage in our framework. Namely, we can
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Table 4. Test cases for method remAll

N Input Heap Output Heap Constraint Store EF

1 this this ∅ ok
l.first = null l.first = null

2 this.first = null this.first = null ∅ ok
l.first ���� ���� �	A �� null l.first ���� ���� �	A �� null

3 this.first ���� ���� �	A �� null this.first ���� ���� �	A �� null {A �= B} ok
l.first ���� ���� �	B �� null l.first ���� ���� �	B �� null

4 this.first ���� ���� �	A �� null this.first = null ∅ ok
l.first ���� ���� �	A �� null l.first ���� ���� �	A �� null

5 this - ∅ exc
l �� null

6 this.first ���� ���� �	A �� null this.first = null ∅ ok
l = this l = this

7 this.first ���� ���� �	A �� null

l.first

�������
this.first = null ∅ ok
l.first ���� ���� �	A �� null

use the labeling mechanisms of standard clpfd domains to assign concrete values
to all variables which satisfy the path condition, thus solving it. As a result of
this last step, concrete and executable test cases are obtained.

Example 10. The test suite generated for method remAll for a loop-1 coverage
criterion is shown in Table 4. The first 5 cases are generated without considering
aliasing of references. By doing so, the last two cases are also generated. Let us
explain in detail three of the obtained test cases:

– Case 3. Corresponds to the path in which both the this list and the input
list l contain just one element. The constraint {A �= B} indicates that fields
this.first.data and l.first.datamust have different values. The output
heap is the same as the input heap, which means that the heap remains
unchanged at the end of the execution path represented by this test case
(although it may have suffered changes in intermediate derivations).

– Case 4. The input heap is the almost same as in case 3, but here, the
symbolic variables corresponding to this.first.data and l.first.data
are unified (variable A), meaning that their values are the same. In the
output heap, notice that the first node from the this list has been removed.

– Case 7. Reference fields this.first and l.first are aliased. That is, they
point to the same Node object in the heap. Removing element A from the
this list boils down to setting reference this.first to null, leaving the
object in the heap intact.
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Finally, as mentioned before, by solving the constraint system and applying
labeling on the variables involved, concrete inputs can be obtained. A con-
crete instantiation for this test case would consist of the following input heap
{this.first �� 1 �� null, l.first �� 2 �� null} where variables A and B have been
assigned concrete values 1 and 2, respectively, such that the constraint store
A �= B is satisfied. As the test case specifies, the heap in the concrete output
state remains unchanged. �

The PET System. PET (Partial Evaluation-based Test case generator) is
a system that implements the CLP-based TCG framework described in this
chapter. It is is fully implemented in SWI-Prolog [48] and uses the CLP(FD)
library [47] (Constraint Logic Programming over Finite Domains) as constraint
solver. Some of the important features of the PET system are:

– It is generic. Provided that appropriate CLP translations are available, PET
can work with other imperative object-oriented languages. That is, once the
CLP translation is done, the language features are abstracted away. That
is to say, the TCG phase of the approach implemented in PET is language
independent. In this way, we elude the difficulties of explicitly dealing with
features like recursion, procedure calls, dynamic memory allocation, excep-
tions, etc., whose treatment may differ from one language to another.

– It is flexible. Different termination (coverage) criteria can be easily incorpo-
rated to the PET system. These criteria are written in PET as predicates
which are permanently checked during TCG. Adding new criteria consists in
implementing such a predicate, which requires only basic knowledge of logic
programming.

– It is incremental. One of the artifacts that the PET system generates is a
test case generator. To the best of our knowledge, this is a unique feature
in a TCG tool nowadays. Namely, PET allows to extend test suites by ex-
ploring further in the symbolic execution tree in an on-demand fashion. In
other words, PET allows to incrementally relax the imposed termination cri-
terion to explore symbolic execution paths that were initially pruned by the
termination criterion.

The PET system is available for download as open-source software and for
online use through its web interface at http://costa.ls.fi.upm.es/pet. Fur-
thermore, an Eclipse plugin called jPET [3] is available. jPET supports full se-
quential Java and some of its interesting features are:

– Interactive test case visualization. jPET integrates a test case viewer to allow
an intuitive, interactive visualization of the information contained in test
cases. This includes objects and arrays involved in the input and output
heap terms.

– Trace highlighting. On selection of a particular test case, jPET highlights the
sequence of instructions in the original Java source code that the test case
exercises. Alternatively, a trace debugging feature allows for a step-by-step
highlighting of the source code, as in the traditional style of code debugging.

http://costa.ls.fi.upm.es/pet
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– Parsing of method preconditions written in JML [28]. jPET enables the spec-
ification of conditions on the input arguments of methods. These conditions
are written in a subset of JML (Java Modeling Language), the standard spec-
ification language within software verification of Java. Using preconditions
allows steering symbolic execution towards interesting parts of the program
under test, ignoring others that are less interesting.

– Generation of JUnit. JUnit is a Unit Testing Framework for Java, which
provides a set of classes to support writing, executing and reusing test
cases. jPET generates self-contained JUnit test cases, as shown in Exam-
ple 4. Whereas those unit tests therein are rather simple, the generation of
JUnit code for heap-manipulating programs is much more challenging, as it
often involves the need to synthesize the input and output heaps and com-
pare the output heap stored in the test case with the resulting heap after
the execution of the test.

3.6 Guided CLP-Based TCG

Whereas standard TCG by symbolic execution aims to cover all feasible paths of
the program under test w.r.t. a termination criterion, in guided TCG, the termi-
nation criterion is combined with a selection criterion. To that end, the concept
of coverage criterion is redefined to be a pair of two components 〈TC, SC〉. TC is
a termination criterion that, as discussed earlier, ensures finiteness of symbolic
execution. This can be done either based on execution steps or on loop itera-
tions. Again, let us adhere to loop-k , which limits to a threshold k the number
of allowed loop iterations and/or recursive calls (of each concrete loop or recur-
sive method). SC is a selection criterion that determines which test cases the
TCG must produce. In guided TCG this will steer symbolic execution towards
the paths that should be explored. In particular, we consider the following two
coverage criteria:

– all-local-paths: It requires that all local execution paths within the method
under test are exercised up to a loop-k limit. This has a potential interest in
the context of unit testing, where each method must be tested in isolation.

– program-points(P): Given a set of program points P, it requires that all of
them are exercised by at least one test case up to a loop-k limit. This criterion
is the most appropriate choice for bug-detection and reachability verification
purposes. A particular case of it is statement coverage (up to a limit), where
all statements in a program or method must be exercised.

This section develops a concrete methodology to incorporate selection cri-
teria into the CLP-based TCG framework. To that end, we could employ a
post-processing phase where only the test cases that are sufficient to satisfy the
selection criterion are selected by looking at their traces. This is however not
an appropriate solution in general due to the exponential explosion of the paths
that have to be explored in symbolic execution. Instead, we now aim at using the
selection criterion to drive the TCG process towards satisfying paths, stressing
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to avoid as much as possible the exploration of irrelevant and redundant ones.
The key idea that allows us to guide the TCG process is to pass trace terms
as input arguments to symbolic execution. These trace terms can be complete
or partial, which allows guiding completely or partially, the symbolic execution
towards specific paths.

First, let us define the notion of trace term and update Definition 1 to add
a trace term as an additional argument to each rule of the CLP-translated pro-
gram, which enables us to keep track of the sequence of rules that are sym-
bolically executed. Notice that trace terms are not cardinal components in the
translated program, but rather a supplementary argument with a central role in
this chapter.

Definition 4 (CLP-translated program with traces). Given the rule of
Definition 1, its CLP-translation with trace is: m(In,Out , Hin, Hout,EF , T ) : −
g, b′1, . . . , b

′
n.” where:

– In, Out, Hin, Hout and EF remain as in Definition 1.
– T is the trace term for m of the form m(k, P, 〈Tci , . . . , Tcm〉), where

• P is the (possibly empty) list of trace parameters, i.e., the subset of the
variables in rule mk on which the resource consumption depends.

• ci, . . . , cm is the (possibly empty) subsequence of method calls in b1, . . . , bn.
• Tcj is a free logic variable representing the trace term associated to the

call cj.
– Calls in the body of the rule are extended with their corresponding trace

terms, i.e., for all 1 ≤ j ≤ n, if bj ≡ p(Ip, Op, Hinp , Houtp), then b′j ≡
p(Ip, Op, Hinp , Houtp , Tcj); otherwise b′j ≡ bj.

Now, let us revisit the definition of test case and TCG (Definition 3) to in-
corporate the notion of trace as an input argument for symbolic execution.

Definition 5 (Test case with trace and TCG). Given a method m, a ter-
mination criterion C and a successful (terminating) path b in the symbolic execu-
tion tree T C

m with root m(In,Out,Hin, Hout,EF , T ), a test case with trace for m
w.r.t. C is a 6-tuple of the form: 〈σ(In), σ(Out), σ(Hin), σ(Hout), σ(EF ), σ(T ), θ〉,
where σ and θ are, resp., the set of bindings and the constraint store associated
to b. TCG generates the set of test cases with traces obtained for all successful
paths in T C

m .

Trace-Guided TCG. Given a method m, a coverage criterion C = 〈TC, SC〉,
and a (possibly partial) trace π, trace-guided TCG generates the set tgTCG of
test cases obtained for all successful branches of m using π as a guiding input
argument for symbolic execution. Observe that the TCG guided by one trace π
generates: (a) exactly one test case if π is complete and corresponds to a feasible
path; (b) none if π is unfeasible; or (c) possibly several test cases if π is partial.
In the latter case the traces of all test cases are instantiations of the partial trace.

For convenience, let us also define firstOf-tgTCG(m,TC, π) to be the unary set
containing the leftmost successful branch of the symbolic execution tree of m.
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Now, by relying on the existence of a trace generator TraceGen that generates,
on demand and one by one, (possibly partial) traces according to C, we define
in Algorithm 1 a generic scheme for guided TCG.

Algorithm 1. Generic scheme for guided TCG
Input: M, and 〈TC, SC〉
TestCases = {}
while TraceGen has more traces and TestCases does not satisfy SC

Ask TraceGen to generate a new trace in Trace
TestCases = TestCases ∪ firstOf-tgTCG(M,TC,Trace )

Output: TestCases

The intuition is as follows: the trace generator generates a trace, possibly using
for that SC, TC and the current TestCases. If the generated trace is feasible,
then the first solution of its trace-guided TCG is added to the set of test cases.
The process finishes either when SC is satisfied, or when the trace generator
has already generated all traces up to TC. If the trace generator is complete
(see below), this means that SC cannot be satisfied within the limit imposed
by TC. Observe that for some selection criteria, e.g., all-local-paths, the calls to
firstOf-tgTCG can be computed in parallel.

Example 11. Figure 13a shows a Java program made up of three methods: lcm
calculates the least common multiple of two integers, gcd calculates the greatest
common divisor of two integers, and abs returns the absolute value of an integer.
Figure 13b shows the equivalent CLP-translated program. Method lcm is trans-
lated into predicates lcm, cont, try and div. As per Section 3.2, the translation
preserves the control flow of the program and transforms iteration into recursion
(e.g. method gcd). Note that the example has been chosen deliberately small
and simple to ease comprehension. Let us consider the TCG for method lcm
with program-points for points μ and κ as selection criterion. Let us assume that
the trace generator starts generating the following two traces:

t1 : lcm(1,[cont(1,[G,check(1,[A,div(2,[])])])])
t2 : lcm(2,[cont(1,[G,check(1,[A,div(2,[])])])])

The first iteration does not add any test case since trace t1 is unfeasible. Trace
t2 is proved feasible and a test case is generated. The selection criterion is now
satisfied and therefore the process finishes. The following test case is obtained for
the program-points criterion for method lcm and program points μ© and κ©. This
particular case illustrates specially well how guided TCG can reduce the number
of produced test cases through adequate control of the selection criterion.

Constraint store Trace

{A=B=0,Out=-1} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),
try(1,[abs(1,[]),div(2,[])])])])

�
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int lcm(int a,int b) {
if (a < b) {
int aux = a;
a = b;
b = aux;

}
int d = gcd(a,b);
try {
return abs(a*b)/d;

} catch (Exception e) {
return -1; μ©

}
}

int gcd(int a,int b) {
int res;
while (b != 0) {
res = a%b;
a = b;
b = res;

};
return abs(a);

}

int abs(int a) {
if (a >= 0)
return a; κ©

else
return -a;

}

(a) Java source code

lcm([A,B],[R],_,_,E,lcm(1,[T])) :-
A #>= B,
cont([A,B],[R],_,_,E,T).

lcm([A,B],[R],_,_,E,lcm(2,[T])) :-
A #< B,
cont([B,A],[R],_,_,E,T).

cont([A,B],[R],_,_,E,cont(1,[T,V])) :-
gcd([A,B],[G],_,_,E,T),
try([A,B,G],[R],_,_,E,V).

try([A,B,G],[R],_,_,E,try(1,[T,V])) :-
M #= A*B,
abs([M],[S],_,_,E,T),
div([S,G],[R],_,_,E,V).

try([A,B,G],[R],_,_,exc,try(2,[])).
div([A,B],[R],_,_,ok,div(1,[])) :-

B #\= 0,
R #= A/B.

div([A,0],[-1],_,_,catch,div(2,[])). μ©
gcd([A,B],[D],_,_,E,gcd(1,[T])) :-

loop([A,B],[D],_,_,E,T).
loop([A,0],[F],_,_,E,loop(1,[T])) :-

abs([A],[F],_,_,E,T).
loop([A,B],[E],_,_,G,loop(2,[T])) :-

B #\= 0,
body([A,B],[E],_,_,G,T).

body([A,B],[R],_,_,E,body(1,[T])) :-
B #\= 0,
M #= A mod B,
loop([B,M],[R],_,_,E,T).

body([A,0],[R],_,_,exc,body(2,[])).
abs([A],[A],_,_,ok,abs(1,[])) :-

A #>= 0. κ©
abs([A],[-A],_,_,ok,abs(2,[])) :-

A #< 0.

(b) CLP-translation

Fig. 13. Guided TCG Example: Java (left) and CLP-translated (right) programs

There are two properties of high importance in guided TCG, completeness and
effectiveness. Intuitively, a concrete instantiation of the guided TCG scheme is
complete if it never reports that the coverage criterion is not satisfied when it is
indeed satisfiable. Effectiveness is related to the number of iterations the algo-
rithm performs. These two properties depend completely on the trace generator.
A trace generator is complete if it produces an over-approximation of the set of
traces satisfying the coverage criterion. Its effectiveness depends on the number
of redundant and/or unfeasible traces it generates: the larger the number, the
less effective the trace generator.
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Trace Generators for Structural Coverage Criteria. Let us now describe a
general approach to build complete and effective trace generators for structural
coverage criteria by means of program transformations. Then, we describe in
detail an instantiation for the all-local-paths coverage criteria.

The trace-abstraction of a program can be defined as follows. Given a CLP-
translated program with traces P , its trace-abstraction is obtained as follows:
for every rule of P , (1) remove all atoms in the body of the rule except those
corresponding to rule calls, and (2) remove all arguments from the head and
from the surviving atoms of (1) except the last one (i.e., the trace term).

Example 12. Figure 14 shows the trace-abstraction for the CLP-translated pro-
gram of Figure 13b. Observe that the trace-abstraction basically corresponds the
control-flow graph of the CLP-translated program. �

The trace-abstraction can be directly used as a trace generator as follows: (1)
Apply the termination criterion in order to ensure finiteness of the process.
(2) Select, in a post-processing, those traces that satisfy the selection criterion.
Such a trace generator produces on backtracking a superset of the set of traces
of the program satisfying the coverage criterion. Note that, this can be done as
long as the criteria are structural. The obtained trace generator is by definition
complete. However, it can be very ineffective and inefficient due to the large
number of unfeasible and/or unnecessary traces that it can generate.

In the following, we propose a concrete, and more effective, instantiation for
the all-local-paths coverage criteria. As we will see, this is done by taking advan-
tage of the notion of partial traces and the implicit information on the concrete
coverage criteria. A concrete instantiation for the program-points coverage crite-
ria is described at [39].

lcm(lcm(1,[T])) :- cont(T).
lcm(lcm(2,[T])) :- cont(T).
cont(cont(1,[T,V])) :- gcd(T), try(V).
try(try(1,[T,V])) :- abs(T), div(V).
try(try(2,[])).
div(div(1,[])).
div(div(2,[])).
gcd(gcd(1,[T])) :- loop(T).
loop(loop(1,[T])) :- abs(T).
loop(loop(2,[T])) :- body(T).
body(body(1,[T])) :- loop(T).
body(body(2,[])).
abs(abs(1,[])).
abs(abs(2,[])).

Fig. 14. Trace-abstraction
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An Instantiation for the all-local-paths Coverage Criterion. Let us start
from the trace-abstraction program and apply a syntactic program slicing which
removes from it the rules that do not belong to the considered method.

Definition 6 (slicing for all-local-paths coverage criterion). Given a trace-
abstraction program P and an entry method M :

1. Remove from P all rules that do not belong to method M .
2. In the bodies of remaining rules, remove all calls to rules which are not in

P .

The obtained sliced trace-abstraction, together with the termination criterion,
can be used as a trace generator for the all-local-paths criterion for a method. The
generated traces will have free variables in those trace arguments that correspond
to the execution of other methods, if any.

lcm(lcm(1,[T])) :- cont(T).
lcm(lcm(2,[T])) :- cont(T).
cont(cont(1,[G,T])) :- try(T).
try(try(1,[A,T])) :- div(T).
try(try(2,[])).
div(div(1,[])).
div(div(2,[])).

lcm(1,[cont(1,[G,try(1,[A,div(1,[])])])])
lcm(1,[cont(1,[G,try(1,[A,div(2,[])])])])
lcm(1,[cont(1,[G,try(2,[])])])
lcm(2,[cont(1,[G,try(1,[A,div(1,[])])])])
lcm(2,[cont(1,[G,try(1,[A,div(2,[])])])])
lcm(2,[cont(1,[G,try(2,[])])])

Fig. 15. Slicing of method lcm for all-local-paths criterion

Example 13. Figure 15 shows on the left the sliced trace-abstraction for method
lcm. On the right is the finite set of traces that is obtained from such trace-
abstraction for any loop-k termination criterion. Observe that the free variables
G, resp. A, correspond to the sliced away calls to methods gcd and abs. �

Let us define the predicates: computeSlicedProgram(M), that computes the
sliced trace-abstraction for method M as in Definition 6; generateTrace(M,TC,
Trace), that returns in its third argument, on backtracking, all partial traces
computed using such sliced trace-abstraction, limited by the termination cri-
terion TC; and traceGuidedTCG(M,TC,Trace,TestCase), which computes on
backtracking the set tgTCG (definition of Trace-guided TCG above), failing if
the set is empty, and instantiating on success TestCase and Trace (in case
it was partial). The guided TCG scheme in Algorithm 1, instantiated for the
all-local-paths criterion, can be implemented in Prolog as follows:

(1) guidedTCG(M,TC) :-
(2) computeSlicedProgram(M),
(3) generateTrace(M,TC,Trace),
(4) once(traceGuidedTCG(M,Trace,TC,TestCase)),
(5) assert(testCase(M,TestCase,Trace)),
(6) fail.
(7) guidedTCG(_,_).
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Intuitively, given a (possibly partial) trace generated in line (3), if the call in
line (4) fails, then the next trace is tried. Otherwise, the generated test case
is asserted with its corresponding trace which is now fully instantiated (in case
it was partial). The process finishes when generateTrace/3 has computed all
traces, in which case it fails, making the program exiting through line (7).

Example 14. The following test cases are obtained for the all-local-paths criterion
for method lcm:

Constraint store Trace
{A>=B} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

try(1,[abs(1,[]),div(1,[])])])])
{A=B=0,Out=-1} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

try(1,[abs(1,[]),div(2,[])])])])
{B>A} lcm(2,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

try(1,[abs(1,[]),div(1,[])])])])

This set of 3 test cases achieves full code and path coverage on method lcm and
is thus a perfect choice in the context of unit-testing. In contrast, the original,
non-guided, TCG scheme with loop-2 as termination criterion produces 9 test
cases. �

A thorough experimental evaluation was performed in [39] which demonstrates
the applicability and effectiveness of guided TCG.

4 TCG of Concurrent Programs

The focus of this section is on the development of automated techniques for
testing concurrent objects.

4.1 Concurrent Objects

The central concept of the concurrency model is that of concurrent object.
Concurrent objects live in a distributed environment with asynchronous and
unordered communication by means of asynchronous method calls, denoted
y ! m(z). Method calls may be seen as triggers of concurrent activity, spawning
new tasks (so-called processes) in the called object. After an asynchronous call
of the form x=y ! m(z), the caller may proceed with its execution without block-
ing on the call. Here x is a future variable which allows synchronizing with the
completion of task m(z̄). In particular, the instruction await x? allows checking
whether m has finished. In this case, execution of the current task proceeds and
x can be used for accessing the return value of m via the instruction x.get. Oth-
erwise, the current task releases the processor to allow another available task to
take it.

A synchronous call of the form x = y.m(z), is internally transformed into
the statement sequence w = y ! m(z); if (this == y) await w?; x = w .get,
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class A(Int n, Int ft) {
Int sumFacts(A ob) {
Fut<Int> f; Int res=0;
Int m = this.n;
await this.ft >= 0;
while (m > 0) {
f =ob ! fact(this.ft, this);
await f ?;
Int a = f.get;
res = res + a;
this.ft = this.ft + 1;
m = m - 1;

}
return res;

}

Int fact(Int k, A ob){
Fut <Int> f; Int res = 1;
if (k <= 0) res = 1;
else { f = ob ! fact(k - 1,this);

await f ?; res = f.get;
res = k * res;

}
return res;

}
Int setN(Int a) { this.n=a; return 0; }
Int setFt(Int b) { this.ft=b; return 0; }
Int set(Int a, Int b){
this.setN(a); this.setFt(b);
return 0;

}

Fig. 16. ABS running example

where w is a fresh future variable. This is because when the synchronous call is
executed on the same object this we do not want to block this object (this would
lead to a deadlock on the object this). Instead, we use an await instruction that
will allow that the execution of the synchronous call to m can start to execute.
The statement x = w.get blocks the execution of the current object until m(z)
on y returns a value. The if statement avoids a deadlock when the object y is
equal to this . For simplicity we assume that all methods return a value.

Example 15. Fig. 16 shows the implementation of class A, which contains two
integer fields and five methods. Method sumFacts computes

∑ft+(n−1 )
k=ft k! by

asynchronously invoking fact on object ob. The await instruction before en-
tering the loop allows releasing the processor if ft is negative. Once ft takes a
non-negative value, the task can resume its execution and enter the loop. For in-
stance, the asynchronous call f = ob ! fact(3, this); in sumFacts will add the task
fact(3, this) to the queue of ob. When this task starts executing, it will add the
task fact(2, ob) on the object this, which in turn will add fact(1, this) on ob and
so on, in such a way that the factorial is computed in a distributed way between
the two objects. Note that the calls are synchronized on future variables. This
means that until the recursive call fact(1, this) is not completed the other tasks
are suspended on their corresponding await conditions. �

Let us briefly present the semantics for the concurrency instructions. An object
is a term ob(o, t, h,Q) where o is the object identifier, t is the identifier of the
active task that holds the object’s lock or ⊥ if the object’s lock is free, h is its
local heap and Q is the set of tasks in the object. A task is a term tk(t,m, l, s)
where t is a unique task identifier, m is the method name executing in the task,
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(mstep) selectObject (S) = ob(o,⊥, h,Q),Q �= ∅, selectTask (Q) = t, S
o·t
�∗ S′

S
o·t−→ S′

(newob)
t=tk(t, m, l, x=new D(ȳ); s), fresh(o′), h′=newhp(D), l′=l[x→o′], class D(f̄)

ob(o, t, h,Q∪{t}) � ob(o, t, h,Q∪ {tk(t, m, l′, s)}) · ob(o′,⊥, h′[f̄ �→l(ȳ)], {})

(async)
t = tk(t,m, l, y=x ! m1(z); s), l(x)=o1, fresh(t1), l1=buildLocals(z̄,m1, l)

ob(o, t, h,Q∪ {t}) · ob(o1,_,_,Q′) �
ob(o, t, h,Q∪{tk(t,m, l[y �→t1], s)}) · ob(o1,_,_,Q′∪{tk(t1,m1, l1, body(m1))})

(await1)
t = tk(t,m, l, 〈await y?; s〉), l(y) = t1, tk(t1,_,_, s1) ∈ Objects, s1 = ε(v)

ob(o, t, h,Q ∪ {t}) � ob(o, t, h, {tk(t,m, l, s)} ∪ Q)

(await2)
t = tk(t,m, l, 〈await y?; s〉), l(y) = t1, tk(t1,_,_, s1) ∈ Objects, s1 �= ε(v)

ob(o, t, h,Q∪ {t}) � ob(o,⊥, h, {tk(t,m, l, 〈await y?; s〉)} ∪ Q)

(get)
t = tk(t,m, l, 〈x = get.y; s〉), l(y) = t1, tk(t1,_,_, s1) ∈ Objects, s1 = ε(v)

ob(o, t, h,Q∪ {t}) � ob(o, t, h, {tk(t,m, l[x �→ v], s)} ∪ Q)

(return)
t = tk(t,m, l, return x; s)

ob(o, t, h,Q ∪ {t}) � ob(o,⊥, h, {tk (t,_,_, ε(l(x)))} ∪ Q)

Fig. 17. Summarized Semantics for Distributed and Concurrent Execution

l is a mapping from local variables to their values, and s is the sequence of
instructions to be executed or ε if the task has terminated.

A state or configuration S has the form o0 ·o1 · · · · ·on, where oi ≡ ob(oi, ti, hi,
Qi). The execution of a program from a method m starts from an initial state
S0 = {ob(0, 0, ⊥, {tk(0,m, l, body(m))}. Here, l maps parameters to their initial
values (null in case of reference variables), body(m) is the sequence of instructions
in method m, and ⊥ stands for the empty heap.

Fig. 17 presents the semantics of the concurrent objects. As objects do not
share their states, the semantics can be presented as a macro-step semantics
[41] (defined by means of the transition “−→”) in which the evaluation of all
statements of a task takes place serially (without interleaving with any other
task) until it gets to a release point, i.e., a point in which the object’s processor
becomes idle ⊥ (due to an await or return instruction). In this case, we apply
rule mstep to select an available task from an object, namely we apply the
function selectObject(S) to select non-deterministically one object in the state
with a non-empty queue Q and selectTask (Q) to select non-deterministically one
task of Q.

The transition � defines the evaluation within a given object. We sometimes
label transitions with o · t, the name of the object o and task t selected (in rule
mstep) or evaluated in the step (in the transition �). The notation h[f̄ �→ l(ȳ)]
(resp. l[x �→ v]) stands for the result of storing l(ȳ) in the fields f̄ (resp. v in x).

The remaining sequential instructions are standard and thus omitted. In
newob, an active task t in object o creates an object o′ of class D which is
introduced to the state with a free lock. Here h′ stands for a default mapping on
the fields of class D initialized with the values of l(ȳ). async spawns a new task
(the initial state is created by buildLocals) with a fresh task identifier t1 which
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is associated to the corresponding future variable y in l. We have assumed that
o �= o1, but the case o = o1 is analogous, the new task t1 is simply added to Q
of o1.

The remaining rules define the concurrent execution within each distributed
object. In await1, the future variable we are awaiting for points to a finished
task and the await can be completed. The finished task t1 is looked up in all
objects in the current state (denoted Objects). Otherwise, await2 yields the
lock so that any other task of the same object can take it. get blocks the
object until the task is finished. When return is executed, the return value is
stored in v so that it can be obtained by the future variable that points to that
task. Besides, the lock is released and will never be taken again by that task.
Consequently, that task is finished (marked by adding the instruction ε(v)) but
it does not disappear from the state as its return value may be needed later on in
an await. In what follows, a derivation S0 −→ · · · −→ Sn from an initial state
S0 of an object system is a sequence of macro-steps (applications of rule mstep).
Since the execution is non-deterministic, multiple derivations are possible from
an initial state.

Example 16. For instance, let us consider the following code corresponding to
some method m of some class B.

(a) A x = new A(5,10);
(b) Fut<Int> f;
(c) f = x ! fact(2,x);
(d) await f?;
(e) z = f.get;

where class A is that in Ex. 15. We start from the initial state S0 = {ob(0, 0,⊥,
{tk(0,m, l0, (a) · · · (e)))}. By applying consecutively rules newob, async and
await2 to (a), (c) and (d) respectively we get:

S1 = {ob(0, 0,⊥, {tk(0,m, l0, (d) · (e))}), ob(1,⊥, h1, {tk(2, fact, l2, body(fact))})}

where l0(f) = 2, l2(k) = 2, l2(ob) = 1 and h1(n) = 5, h2(ft) = 10. We apply now
a macro step on object 1, by reducing task 2. In this case the macro step stops
when executing await f? of method fact, and the state is modified as follows:

S2 = { ob(0, 0,⊥, {tk(0,m, l0, (d) · (e))}),
ob(1, 2, h1, {tk(2, fact, l2, await f?; . . .), tk(3, fact, l3, body(fact))})}

where l2(f) = 3, l3(k) = 1, l3(ob) = 1. Similarly as done before, task with
identifier 3 is now reduced, stopping the derivation when we reach await f?:

S3 = { ob(0, 0,⊥, {tk(0,m, l0, (d) · (e))}),
ob(1, 2, h1, {tk(2, fact, l2, await f?; . . .),

tk(3, fact, l3, await f?; . . .), tk(4, fact, l4, body(fact))})}

where l3(f) = 4, l4(k) = 0, l4(ob) = 1. Now only task 4 can be reduced and
applying rule return we get:
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S4 = { ob(0, 0,⊥, {tk(0,m, l0, (d) · (e))}),
ob(1, 2, h1, {tk(2, fact, l2, await f?; . . .),

tk(3, fact, l3, await f?; . . .), tk(4,⊥, l4, ε(1))})}
Now, task 3 can be reduced by applying first await1 and after return:

S5 = { ob(0, 0,⊥, {tk(0,m, l0, (d) · (e))}),
ob(1, 2, h1, {tk(2, fact, l2, await f?; . . .),

tk(3,⊥, l3, ε(1)), tk(4,⊥, l4, ε(1))})}
Similarly we reduce task 2 and after task 0 from object 0 and we finally get:

S6 = { ob(0, 0,⊥, {tk(0,m, l0, ε)}),
ob(1, 2, h1, {tk(2,⊥, l2, ε(2)),

tk(3,⊥, l3, ε(1)), tk(4,⊥, l4, ε(1))})}

where l0(z) = 2. �

Given an initial state, a naïve exploration of the search space to reach all
possible system configurations does not scale. The challenge is then in avoiding
the exploration of redundant states which lead to the same configuration. Partial-
order reduction (POR) [16,20] is a general theory that helps mitigate the state-
space explosion problem by exploring the subset of all possible interleavings
which lead to a different configuration. A concrete algorithm (called DPOR) was
proposed by Flanagan and Godefroid [18] which maintains for each configuration
a backtrack set, which is updated during the execution of the program when it
realizes that a non-deterministic choice must be tried. Recently, TransDPOR [45]
extends DPOR to take advantage of the transitive dependency relations in actor
systems to explore fewer configurations than DPOR. As noticed in [32,45], their
effectiveness highly depend on the actor selection order.

In our semantics in Fig. 16, functions selectObject and selectTask can be
implemented with novel strategies and heuristics to further prune redundant
state exploration, and they can be easily integrated within the aforementioned
algorithms. For instance, selectObject could try to find a stable object, i.e., an
object to which no other actor will post messages. Basically, this means that
the object is autonomous since its execution does not depend on any other
actor and thus no backtracking is required from that point. Furthermore, when
temporal stability of any object cannot be proved, it is possible to look for
heuristics that assign a weight to the messages according to the error that the
object-selection strategy may make when proving stability w.r.t. them. Finally,
function selectTask can be defined to select independent tasks according to the
independence notion defined in [8], which basically establishes that two tasks are
independent if they access disjoint parts of the shared memory. Note that this
would avoid non determinism reordering among tasks.

4.2 Coverage and Termination Criteria for Concurrent Objects

As commented in Sec. 2.1, an important problem in symbolic execution is that,
since the input data is unknown, the execution tree to be traversed is in general
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infinite. Hence it is required to integrate a termination criterion which guar-
antees that the length of the paths traversed remains finite while at the same
time an interesting set of test cases is generated, i.e., certain code coverage is
achieved.

Task-Level Coverage and Termination Criteria. Given a task executing
on an object, we aim at ensuring its local termination by leveraging existing Cov-
erage Criteria (CC for short) developed in the sequential setting to the context
of concurrent objects. We focus on the loop-k coverage criteria [26] described in
Sec. 2.1, which limits the number of times we iterate on loops to a threshold
KI (other existing criteria would pose similar problems and solutions). However
applying the task-level CC to all tasks does not guarantee termination. This is
because we can switch from one task to another an infinite number of times. For
example, consider the symbolic execution of ob1 ! fact(n, ob2), where method fact
is defined in Ex. 15. We circularly switch from object ob1 to object ob2 an infi-
nite number of times because each asynchronous call in one object adds another
call on the other object (see Ex. 16). This is not detected by the task-level CC
because each method invocation is a new task. Intuitively, we get the following
situation, where we show in each state the value of the queues in both objects.
In each step the corresponding call to fibo is always selected.

{ob1, ob2}, Qob1={fact(n, ob2)}, Qob2 = {} −→
{ob1, ob2}, Qob1={await f?; . . .}, Qob2 = {fact(n1, ob1)}

n1=n−1−→
{ob1, ob2}, Qob1={fact(n2, ob2), await f?; . . .}, Qob2 = {await f?; . . .} n2=n1−1−→
. . . . . . −→ . . .

The same problem can happen even with a single object, e.g., in method
sumFacts when executing await (ft >= 0), there is an infinite branch in the
evaluation tree, corresponding to the case ft < 0 which can be re-tried forever.
I.e., we can apply infinitely the rule await2 in Fig. 17 on the task await (ft >= 0),
whose effect is to extract the task from the queue, to prove that the task does
not hold, and to put again the task in the queue.

Task-Switching Coverage and Termination Criteria. In both examples
above we can observe that the problem, in presence of concurrency relies, not
only on loops, but also on the number of task switches allowed per object. Thus,
the number of task switches can be limited by simply allowing a fixed and global
number of task switching. However, it might happen that, due to excessive task
switching in certain objects, others are not properly tested (i.e., their tasks
exercised) because the global number of allowed task switches has been exceeded.
For example, suppose that we add the instructions B ob2 = new B(); ob2 ! q();
before the return in method sumFacts, where B is a class that implements method
q but whose code is not relevant. Then, as the evaluation for the while loop
generates an infinite number of task switches (because of the await instruction
in the loop), the evaluation of the call ob2 ! p(); is not reached. Thus, in order to
have fairness in the process and guarantee proper coverage from the concurrency
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point of view, we propose to limit the number of task switches per object (i.e.,
per concurrency unit).

4.3 Task Interleavings in TCG

An important problem in TCG of concurrent languages is that, when a task t
suspends, there could be other tasks on the same object whose execution at this
point could interleave with t and modify the information stored in the heap. It
is essential to consider such task interleavings in order not to lose any important
path. For example, let us consider a class C with two fields int n, f, and a method p
in C defined as: int p(){n = 0; await (f > 0); if(n>=0) return 1; else return 2; }.
Suppose a call of the form x = o ! p(); await x?; y = x.get. The symbolic exe-
cution of p, will in principle consider just one path (the one that goes through
the if branch), giving as result always y = 1. There can be however another
task (suspended in the queue of the object o) which executes when p suspends
in await (f > 0) and writes a negative value on n. This would exercise the else
branch when p resumes, giving as result y = 2. For example, suppose that the
method void set(){n = −1; } belongs to class C and that set() is in the queue
when executing await (f > 0), and that is executed before f > 0 holds. Then
the execution of p() will try the else branch.

The questions that we solve in this section are: (a) is it possible to consider all
interleavings that affect the method’s coverage? (b) do we have means to discard
useless interleavings? (i.e., those which do not add new paths). As regards (a),
it is not enough to assume that there is one instance of each method call in the
queue as further coverage is possible by introducing multiple instances of the
same method. Even though termination is guaranteed by the limit imposed on
the number of task switches in Sec. 4.2 (i.e., the length of the queue is finite), it is
more appropriate to define an additional coverage criteria in this new dimension
by fixing the maximum length of a queue in order to achieve a more meaningful
coverage.

In order to answer question (b), we start by characterizing the notion of
useless interleaving. Starting from the set of all methods in the class of the
method under test, we propose a sequence of prunings which ensure that only
useless interleavings are eliminated. The objective is to over-approximate, for
each method m, the set related(m), which contains all methods whose interleaved
execution with m can lead to a solution not considered before. The remaining
ones are useless interleavings. Starting from the set of all methods in the class
of the method under test, we propose a sequence of prunings which ensure that
only useless interleavings are eliminated.

(Pruning 1). The first refinement is to discard methods which do not modify
the heap, i.e., pure methods. Purity can be syntactically proved by checking that
the method does not contain any instruction of the form this .f = x and that
methods (transitively) invoked from it are pure. Using this pruning on Ex. 15,
we get related(sumFacts) = {sumFacts, set, setN, setFt}.
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(Pruning 2). The second pruning amounts to considering only directly impure
methods (ignoring transitive calls), i.e., those which write directly on fields. Let
p be the method under test, m be a directly impure method and q a method that
invokes m. The intuition is that by considering m alone, we execute it from a
more general context, while its execution from q will be just more specific (since
q will have added additional constraints). Hence, it will not add additional local
traces for p. With this pruning, related(sumFacts) = {sumFacts, setN, setFt}.

(Pruning 3). The third pruning consists in considering only the interleavings
with those methods that write (directly) on fields which are used (read or writ-
ten) before an await , and read after an await. These sets are easily computed
by just looking for instructions this .f = x and x = this .f in the corresponding
program fragments. Given a field f, the intuition for this condition is that, if f
has not been accessed before the await then there is no information about the
field. Thus, related(sumFacts) = {sumFacts, setFt}.

4.4 Related Work on TCG of Thread-Based Concurrency

As it happens with actor-based systems, the main difficulties in TCG of thread-
based systems are related to the scalability when considering thread interleav-
ings. In thread-based systems, this problem is exacerbated. In [37], a symbolic
execution framework which combines symbolic execution with model checking is
presented to detect safety violations. Safety properties are represented by using
logical formalisms understood by the model checker or that can be inserted in
the code as annotations. The model checker, when doing symbolic execution,
is able to report counterexamples which violate the correctness safety criterion.
Furthermore, when generating test cases, the model checker generates the paths
that fulfill the safety property. To reduce the number of thread interleavings,
the model checker uses partial order reduction techniques [20] as we do. An
advantage on this technique is the possibility of handling native calls through
mixed concrete-symbolic solving. The main drawback of this framework is that
satisfiability of constraints is checked at the end of each branch of the symbolic
tree, what it might be unfeasible. Thus, they use preconditions on the symbolic
input values in order to avoid the exploration of branches which violate the pre-
condition. In contrast to [37], our CLP-approach is able to discard a branch in
the symbolic tree once the associated constraint are unsatisfiable.

Other approaches that use techniques different from ours are [29,43,44]. The
work [29] combines dynamic symbolic execution (concolic testing) with unfold-
ings. The unfolding approach allows constructing a compact representation of
the interleavings and thus the new testing algorithm may use this information
to guide the symbolic execution, avoiding irrelevant interleavings. This new ap-
proach achieves in some cases an exponential gain when compared with existing
dynamic partial-order reduction based approaches [18,45]. Basically, the point is
that in the previous approaches, the number of explored interleavings depends
on the order in which processes are executed, but in this new approach it does
not, since interleavings are computed a priory.
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In [43,44], a runtime algorithm to monitor executions for multithreaded Java
and possibly detect safety violations is presented. From a concrete execution,
they automatically extract a partial order causality from a sequence of read-
/write events on shared variables. Basically they extract, for a shared variable,
the sequence of write/reads/write to that variable in the execution. Thus any
permutation of these events can be considered an execution of the program if
and only if it does not contradict the partial order. The main drawbacks is the
state explosion since a large number of unreachable branches may be explored.

As an improvement of the previous work, in [42], a novel approach uses
concolic execution (a combination of symbolic and concrete execution) to test
shared-memory in multithreaded programs by using an algorithm based on race-
detection and flipping. From a concrete execution, they determine the partial or-
der relation or the exact race conditions between the processes in the execution
path. Afterwards, such processes involved in races are flipped by generating new
thread schedules and generating new test inputs. Hence, differently to the previ-
ous conservative approaches, in this work they explore one path from each partial
order, avoiding possible warnings that could never occur in a real execution.

5 Conclusions

This tutorial summarizes the basic principles used in TCG by symbolic exe-
cution. It first discusses the main challenges that TCG currently poses: the
efficient handling of heap-manipulating programs, compositionallity, and guid-
ing the process. It then overviews a particular instantiation of the generic TCG
framework that uses CLP as enabling technology. We will review the main fea-
tures, advantages and implementation of this CLP-approach. Finally, we discuss
the extension of the basic framework to handle concurrent actor systems.
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Abstract. Software more and more pervades our everyday lives. Hence,
we have high requirements towards the trustworthiness of the software.
Software testing greatly contributes to the quality assurance of mod-
ern software systems. However, as today’s software system get more and
more complex and exist in many different variants, we need rigorous and
systematic approaches towards software testing. In this tutorial, we, first,
present model-based testing as an approach for systematic test case gen-
eration, test execution and test result evaluation for single system testing.
The central idea of model-based testing is to base all testing activities
on an executable model-based test specification. Second, we consider
model-based testing for variant-rich software systems and review two
model-based software product line testing techniques. Sample-based test-
ing generates a set of representative variants for testing, and variability-
aware product line testing uses a family-based test model which contains
the model-based specification of all considered product variants.

1 Introduction

Software more and more pervades our everyday lives. It controls cars, trains and
planes. It manages our bank accounts and collects our personal information for
salary or tax purposes. It comes to our homes with smart home technology in our
fridges or washing machines which get increasingly connected with the Internet
and personal mobile devices. Because of the ubiquity and pervasiveness of mod-
ern software systems, we have high requirements towards their trustworthiness.

Software testing greatly contributes to the quality assurance of modern soft-
ware systems [55,41]. In general, testing is a partial verification technique as it
only checks a software system on a selected set of inputs, while formal meth-
ods, such as model checking or program verification, allow a complete verifica-
tion by considering all possible system runs. One major advantage of software
testing over formal methods, however, is that testing can be performed in the
actually runtime environment of the software, including all hardware and pe-
ripheral devices, while formal methods usually abstract from certain details.
However, today’s software system get more and more complex. They exist in
many different variants in order to satisfy changing environment conditions,
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such as user, technical or legal requirements. Hence, in order to ensure safety-
critical, business-critical or mission-critical requirements, we need rigorous and
systematic approaches for software testing.

In this tutorial, we, first, present model-based testing as an formal approach
for dynamic functional testing of single systems [54]. The central idea of model-
based testing is to base all testing activities on an executable formal test model
of the expected system behavior. The test model can be used for test case gen-
eration, for test case execution and and for test result evaluation. In main ad-
vantages of model-based testing over classical manual testing activities is that
test cases can be derived in a systematic and automatic fashion from the test
models with defined coverage metrics. Furthermore, model-based testing allows
the automation of test execution and test result evaluation by comparing the
actual test results with the expected results expressed in the test model. When
software evolves, the test models allow regression test selection by automatic
change impact analysis on the test models. After an introduction of the general
notions of model-based testing, we introduce the formal notions of model-based
input/output conformance testing.

Second, we consider model-based testing for variant-rich software systems [50],
in form of software product lines. Testing software product lines is particularly
complex because the number of possible product variants is exponential in the
number of product features. Hence, it is generally infeasible to test all product
variants exhaustively. We review two model-based software product line testing
techniques which can be used in combination to facilitate efficient testing of
variant-rich software systems. First, sample-based testing allows to automatically
generate a set of representative variants which should be tested instead of testing
all possible product variants. Second, we present variability-aware product line
testing which uses a family-based test model which contains the model-based
specification of all considered product variants and define the notion of product
line conformance testing.

This tutorial is structured as follows. In Sect. 2, we introduce the key notions
and concepts of (software) testing. In Sect. 3, the principles of model-based
testing techniques are described together with a formalization of model-based
input/output conformance testing following Tretmans [54]. In Sect. 4, we extend
the model-based testing principles to software product lines and describe two
recent techniques for variability-aware product line testing. Sect. 5 concludes
the tutorial.

2 Foundations of Software Testing

Generally speaking, (software) testing deals with the quality assurance of a (soft-
ware) product. The IEEE defines the purpose of testing as

[...] an activity performed for evaluating product quality, and for
improving it, by identifying defects and problems [17].
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Fig. 1. General Setting of Software Testing

It characterizes the testing activity itself as

[...] the process of operating a system or component under specified
conditions, observing or recording the results, and making an evaluation
of some aspects of the system or component [17].

Thus, the notion of testing comprises any kind of activity explicitly aiming at
ensuring quality requirements a software product must meet. This includes ar-
bitrary activities and properties somehow relevant for the product quality goals.
Hence, a wide range of testing approaches exists, differing in the methods ap-
plied and the test aims pursued. For instance, a testing method may be either
static, e.g., systematic code inspections, or dynamic by means of experimental
executions of the system under test (SUT).

The general setting for conducting (dynamic) tests on an SUT is illustrated in
Fig. 1. In each test case execution, the SUT is run by a Tester under controlled
environmental/platform conditions by stimulating accessible inputs I and ob-
serving the expected output behaviors O of the SUT. The Tester might be a
real person, a virtual process, e.g., a test script for test automation etc. The
category of dynamic testing is often further subdivided into active testing, i.e.,
real executions are enforced under experimental input sequences I and passive
testing, e.g., by just monitoring output behaviors of the system under operation.
According to Tretmans, the actual aspects to be observed as outputs during test
case execution depend on the charateristics under considertion.

(Software) testing is an activity for checking or measuring some qual-
ity characteristics of an executing object by performing experiments in
a controlled way w.r.t. a specification [54].

Therefore, the design principles for appropriate test cases depend on those as-
pects under consideration. In particular, characteristics to be investigated by
testing may be

– functional, i.e., related to some behavioral aspect expected from the system,
e.g., by means of (visible) actions,
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– extra-functional, i.e., concerning robustness, performance, reliability, avail-
ability etc. of (software) functions as well as

– non-functional, i.e., massively depending on the (hardware) platform, e.g.,
energy consumption, resource consumption etc.

We concentrate on test case design for finding functional errors. This may include
finding errors in all parts of the system potentially interacting with the software.
Test case executions perform determined sequences of input actions (stimuli)
together with sequences of output actions expected from the SUT as defined by
the system specification The resulting test verdict denotes whether the actual
product reaction conforms to this expected behavior. The following notions are
used in the literature for situations in which a test case execution fails [55].

– A failure is an undesired observable behavior of an SUT.
– A fault in an SUT causes a failure, e.g., by reaching a human/software error,

hardware defects etc., during test execution.
– A (software) error is a logical error in the implementation of a requirement

thus potentially leading to a fault.

A software is erroneous if it fails to satisfy its requirements. Hence, an imple-
mentation is tested against the requirements, which are either represented in an
informal, e.g., textual, or in a formal way, e.g., a formal specification such as a
test model [55].

Depending on the development phase in which test cases are applied onto an
implementation, test cases are to be defined according to the current represen-
tation of the implementation available. For instance, test cases may be applied
to an abstract implementation model, to implementation code fragments run-
ning on a hardware emulator, as well as to the final software fully deployed
onto the target platform. Summarizing, we use the following characterization of
(dynamic) software testing.

Definition 1 (Software Testing). Software testing consists of the dynamic
validation/verification of the behavior of a program on a finite set of test cases
suitably selected from the usually infinite input/execution domain against the
expected behavior.

This definition essentially reflects the notion proposed in [55]. Applying testing
as a verification technique is often considered as a counter part to formal ver-
ification techniques such as model checking. Both approaches can be opposed
as follows. Testing allows a partial, i.e., incomplete verification of the correct-
ness of an implementation with respect to a specification and thus constituting
a heuristic verification method. The implementation can be tested at any level
of abstraction as long as it is executable. In particular, tests can be applied
to the final system implementation including any factor potentially influencing
the software such as hardware components etc. Furthermore, testing can be per-
formed by engineers at any skill level in a totally informal and pragmatic way. In
contrast, formal verification permits a complete verification of the correctness of
an implementation with respect to a specification. The implementation must be
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represented by means of a formal abstraction of the real implementation. Hence,
the major challenges when applying formal methods like model checking are (1)
to ensure an implementation to be a valid refinement of the verified abstraction,
(2) scalability issues, and (3) ensuring correctness of the verification tools. Both
methods have advantages and disadvantages, thus complementing rather than
excluding each other.

The goal of software testing is to design and apply test suites for a software
product under test. Test suites contain a set of test case specifications. In practice,
the design of a test suite consists of selecting sample input data for the SUT,
where the concrete test derivation techniques and test case representation depend
on several factors, e.g., the test method, e.g., static, dynamic testing, the test
aim, e.g., functional, non-functional tests, the test scale, e.g., unit, component,
integration, system tests, and the information base, e.g., black box, white box,
gray box tests. The test scale corresponds to the level of abstraction considered
in particular development phases where the test cases are applied. In addition,
the actual testing technique heavily depends on the information base available
for the system under test, e.g., accessibility to the implementation source code
and platform details. Thus, black box tests comprise, e.g., combinatorial testing
strategies and model-based testing as both solely consider the I/O interface
of the system under test. In white box testing, the source code and further
implementation details are fully accessible, whereas in gray box testing only
some of those details, e.g., an architectural description, are available.

The quality of a test suite, e.g., with respect to the reliability of the verification
results obtainable from a test suite execution is estimated by means of adequacy
criteria. Those criteria define metrics not only to measure the suitability of a
test suite, but also to guide the test case selection process, e.g., by constitut-
ing test end criteria for test case generation algorithms. For instance, structural
coverage criteria constitute the most widespread notion for measuring test suite
adequacy. Those criteria require test cases of a test suite to sufficiently traverse
structural elements, i.e., test goals, either located in a (test) model representa-
tion, or in the code under test. Therefore, either an explicit coverage of control
flow constructs like statements, decision structures, loops, and entire paths, or
implicit coverage of data flows, e.g., by means of def-use coverage is enforced.
Closely related to structural coverage criteria are data coverage criteria requiring
appropriate coverage of the input data space, e.g., one-value, boundaries, equiva-
lence classes, random-value, and all-values. Furthermore, combinatorial coverage
criteria over input value domains are frequently used, e.g., pairwise, T -wise for
a constant T and N -wise coverage for a variable N . Further adequacy and test
selection criteria are based, e.g., on fault-models capturing well-known typical
implementation faults, on mappings of test cases to requirements and scenarios,
on explicit test case specification languages, and statistical methods for random
generation of test data.

For further details on principles and practices of (software testing), we re-
fer to interested reader, amongst others, to the classical text books on soft-
ware testing of Myers [41] and Beizer [6], to the Dagstuhl Tutorial on formal
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foundations of model-based testing by Broy et al. [9] and recent standardiza-
tions from industries [17,18,56]. Here, we limit our considerations to dynamic
testing of functional characteristics at component-level based on model-based
black-box knowledge in the following. This testing discipline is usually referred
to as model-based input/output conformance testing.

3 Model-Based Testing

In this section, we provide an introduction into the fundamental concepts of
model-based testing and review a formal approach to model-based input/output
conformance testing initially introduced by Tretmans [54].

3.1 Fundamentals and Concepts

In model-based testing, a test model serves as a specification of the implemen-
tation under test (cf. Fig. 1). Depending on the model-based testing practices
applied, test models may provide a comprehensive basis for any activity during
the testing processes including test case derivation, test coverage measurement,
test case execution, test result evaluation, and test reporting [55]. In combination
with appropriate test interfaces and tool support, model-based software testing
campaigns are executable in a more or less fully automated way once a (val-
idated) test model specification, as well as a well-defined testing interface are
available.

Definition 2 (Model-Based Testing [55]). Model-based testing is the au-
tomation of black box tests.

The implementation under test to constitutes a black box solely offering prede-
fined input/output interfaces for the tester to interact with the system during
testing. Beyond that, nothing is known about the internal implementation de-
tails and the computational states, data structures, hardware usage etc., during
(test) executions.

In model-based testing, the test model constitutes an explicit, but usually
highly abstracted representation of all behavioral aspects being relevant for
the system implementation to behave correctly. Therefore, formalisms used for
test modeling should offer natural notions and artifacts apparent in the testing
method, e.g., a concept for test case specifications that makes distinctions be-
tween input and output behaviors and that allows the identification of test goals
covered by test executions. Concerning functional testing, we are, in particular,
interested in capturing the dynamics of a system, i.e., in test models that define
the behavior of a system under test. Therefore, a test model should provide a
finite representation of the potentially infinite execution domain of a software
system under test, e.g., by means of high-level modeling languages such as state
machines and other behavioral models as, e.g., defined by the UML [55]. There-
upon, the modeling language under consideration must incorporate a rigorous,
accurate formalization together with a precise operational semantics that allows
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for a clear definition of behavioral conformance of experimental executions of an
SUT with respect to the expected behavior.

Testing in general constitutes a semi-formal, pragmatic approach for soft-
ware verification/validation. The representative executions performed on the
SUT may be designed ad hoc. In contrast, model-based conformance testing
relies on formal specifications by means of formalized test models. Hence, the
purpose of behavioral conformance testing is to compare the intended and the
actually implemented behaviors and to decide whether they differ only up to
some degree of confidence [55]. Recent literature on the formal foundations of
conformance testing provides corresponding conceptual frameworks to denote
testing principles by means of notions known from formal operational semantics
and behavioral equivalences [54]. In general, verifying the correctness of a (soft-
ware) system implementation i with respect to a formal behavioral specification
s requires to verify an implementation relation

i � s

to hold between both, where � denotes the particular equivalence relation under
consideration for behavioral conformance [16]. Intuitively, this notation denotes
the implementation i to be correct if it shows the same set of behaviors as permit-
ted by the specification s. The formal semantics ��� for characterizing those sets
of behaviors depends on the representation and comparability of the specifica-
tion s and the implementation i as well as the relation � under consideration. In
many cases, it is sufficient, or even only possible, to establish a preorder relation

i � s

to hold between an implementation and a specification, i.e., requiring the set of
behaviors of the implementation to be included in the set of specified behaviors.
In that sense, implementation i is correct if it shows at most the sets of (visible)
behaviors as specified in s. When applying model-based testing as a verification
technique, the specification s is given as a test model, e.g., represented as a state
machine model. Correspondingly, a conformance relation

i conforms s :� �i� � �s�

is established between the implementation and test model specification in the
context of model-based testing.

Considering model-based testing, i constitutes a black box, i.e., the internal
structure of the implementation under test is unknown to the tester. Thus, the
verification of the behavioral conformance requires to relate a black box, i.e., a
monolithic object solely offering an I/O interface that hides any internal details
of the system under test, with a formal test model represented by abstract mod-
eling entities, e.g., in terms of algebraic objects. In addition, even if an exhaustive
testing campaign has been successfully executed on the implementation under
test, no guaranteed statements about the correctness of the implementation can
be stated as test result confidence and reproducibility depends on the inter-
nal properties of the implementation, e.g., whether non-deterministic behaviors
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are potentially apparent. To overcome this mismatch, Bernot was the first to
propose i to represent an (imaginary) implementation model i to be assumed
for establishing a conformance relation conforms between a test model and a
black box SUT [7]. This way, both the implementation i and the specification
s share the same semantic domain defined by �i� and �s�, respectively. Based
on Bernot’s abstract framework, this idea was later adopted, amongst others,
by Tretmans for formalizing model-based testing frameworks with concrete test
modeling formalisms under consideration [54].

The definition of behavioral conformance by means of (implicit) behavioral
inclusion relation conforms between SUT i and specification s constitutes an
intentional characterization of model-based testing. In contrast, extensional de-
scriptions make use of the class U of all possible external observers (tester)
explicitly comparing particular observable behaviors of i with those of s, i.e.,

i conforms s :� �u � U : obs�u, i� 	 obs�u, s�.

We now give instantiations of both kinds of characterizations of behavioral con-
formance in terms of the ioco relation and a respective test case derivation
algorithm as proposed by Tretmans [54].

3.2 A Formal Approach to Model-Based Testing

Formal approaches to I/O conformance testing abstract from the concrete syn-
tax of (high-level) test modeling languages. Instead, labeled transition systems
(LTS) are used constituting a well-established semantic model for discrete, event-
driven reactive control systems. To serve as test model specification for I/O con-
formance testing, the special sub class of input/output labeled transition systems
is considered in the following [9]. A labeled transition system specifies system
behaviors by means of a transition relation 
� Q� act�Q defined over a set
Q of states and a label alphabet act of actions. In case of I/O labeled transition
systems, the set act � I 
 U 
 �τ� of actions is subdivided into disjoint subsets
of controllable input actions I, observable output actions U and internal actions
summarized under the special symbol τ � �I
U �.

Definition 3 (I/O Labeled Transition System). An I/O labeled transition
system is a tuple �Q, q0, I,U,�
�, where Q is a countable set of states, q0 � Q
is the initial state, I and U are disjoint sets of input actions and output actions,
respectively, and �
� Q� act�Q is a labeled transition relation.

By LT S�act� we denote the set of LTS defined over label alphabet act. Each
computation of a system specified by an LTS refers to some path

q0
μ1�
 s1

μ2�
 s2
μ3�
 � � �

μn�1���
 sn�1
μn��
 sn

of the state-transition graph starting from the initial state q0. Please note that
we often identify an LTS s with its initial state q0 in the following. The be-
havior of a computation is defined by the trace σ � μ1μ2 � � �μn � act �, i.e.,
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the respective sequence of actions occurring as transition labels in the computa-
tion. The following notations for LTS trace semantics are frequently used in the
literature [54].

Definition 4 (LTS Trace Semantics). Let s be an I/O LTS, μi � I
 U
 �τ�
and ai � I 
 U.

s
μ1���μn����
 s � :� �s0, . . . , sn : s � s0

μ1�
 s1
μ2�
 � � �

μn��
 sn � s�

s
μ1���μn����
 :� �s� : s

μ1���μn����
 s �

�s
μ1���μn����
 :� �s� : s

μ1���μn����
 s �

s
ε
�� s� :� s � s� or s

τ ���τ���
 s�

s
a
�� s� :� �s1, s2 : s

ε
�� s1

a�
 s2
ε
�� s�

s
a1���an�� s� :� �s0, . . . , sn : s � s0

a1�� s1
a2�� . . .

an�� sn � s�

s
σ
�� :� �s� : s

σ
�� s�

�s
σ
�� :� �s� : s

σ
�� s�

The set of traces of an LTS s is defined as

Tr�s� :� �σ � �I 
 U �� � �s� � Q : q0
σ
�� s��.

To illustrate the notions and concepts of I/O conformance testing based on LTS,
we consider as our running example a simple vending machine.

Example 1. The graphical representation of an LTS is illustrated in Fig. 2 denot-
ing different behavioral specifications of a vending machine for beverages, where
I � �1e, 2e� and U � �coffee, tea�. By convention, transition labels referring
to input actions are prefixed by “ ? ” and outputs actions by “ ! ”. Each vending
machine accepts different types of coins as inputs and (optionally) returns a cup
of coffee and/or tea. The trace semantics of the different specifications are given
as

– Tr�q1� � �?1e, ?1e�!coffee, ?1e�!tea�,
– Tr�q2� � �?1e, ?2e, ?1e�!coffee, ?1e�!tea, ?2e�!coffee, ?2e�!tea�,
– Tr�q3� � �?1e, ?2e, ?1e�!coffee, ?2e�!coffee�,
– Tr�q4� � �?1e, ?2e, ?1e�!coffee, ?2e�!tea�,
– Tr�q5� � �?1e, ?2e�,
– Tr�q6� � �?1e, ?1e�!coffee�,
– Tr�q7� � �?1e, ?1e�!coffee�,
– Tr�q8� � ��,

where � denotes concatenation as usual.

According to the test assumption formulated by Bernot [7], we require both
a test model specification s as well as an implementation i, i.e., the SUT, to
be represented by LTS models, i.e., s, i � LT S�act�. We further restrict our
considerations to LTS being image finite and with finite τ -sequences [54].
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Fig. 2. Sample LTS Vending Machine Specifications
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Fig. 3. Adapted Sample LTS Vending Machine Specifications

Due to the black-box setting of model-based testing, the internal structure
of LTS i is unknown. However, as the SUT is assumed to never reject any in-
puts from the environment/tester, we require i to be at least input-enabled thus
constituting a so-called I/O transition system as follows.

Definition 5 (I/O Transition System). An LTS is input-enabled iff for ev-
ery state s � Q with q0 ��� s and for all a � I it holds that s

a
��.

This property is usually referred to as weak input-enabledness as it only requires
a system s to eventually react on inputs a � I in every reachable state s� after
potentially performing arbitrary many internal τ -steps. By

IOT S�I,U � � LT S�I
U �

we denote the sub class if (weak) input-enabled LTS over alphabet act � �I
U �.

Example 2. None of the sample LTS shown in Fig. 2 is (weak) input enabled. A
canonical construction to achieve input-enabledness for a given specification is
illustrated in Fig. 3(a) adapting the sample LTS in Fig. 2(a).

For every input action a � I, additional transitions s
a�
 s are introduced for

states s � Q if �s� : s
a
�� s�. This way, every input is accepted in every possible

state without causing any additional behavior.

Based on LTS trace semantics, a simple conformance relation might be formu-
lated in terms of traces inclusion, i.e.,

i conforms s :� Tr�i� � Tr�s�.

However, this definition fails (1) to refuse trivial implementations showing no
behaviors (cf. Fig. 2(h) and Fig. 2(e)) and (2) to take the asymmetric nature of
LTS traces with input/output actions into account. Both aspects are explicitly
addressed by the concept of observational input/output conformance (ioco).
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The intentional characterization of observational conformance is based on
the notion of suspension traces [54]. For an implementation i to conform to a
specification s, the observable output behaviors of i after any possible sequence of
inputs must be permitted by s. For this to hold, the set out�P � of output actions
enabled in any possible state p � � P of i reachable via a sequence σ, denoted
P � p after σ, must be included in the corresponding set of s. To further rule out
trivial implementations i never showing any outputs, the concept of quiescence
by means of a special output action δ is introduced to explicitly permit the
absence (suspension) of any outputs after an input.

Definition 6. Let s be an LTS, p � Q, P � Q and σ � �I 
 U ��.

– init�p� :� �μ � �I 
 U � � p
μ
�
�,

– p is quiescent, denoted δ�p�, iff init�p� � I,
– p after σ :� �q � Q � p

σ
�� q�,

– out�P � :� �μ � U � �p � P : p
μ
�
�
 �δ � �p � P : δ�p��,

– Straces�p� :� �σ � � �IS 
 US 
 �δ��� � p
σ�

��� where q
δ�
 q iff δ�p�.

If not stated otherwise, we assume a given LTS to be implicitly enriched by tran-
sitions q

δ�
 q for all quiescent states q with δ�p�. Action δ may be interpreted
as observational quiescence, i.e., if δ is observed, then the system awaits some
input to proceed. We write actδ � �act � �τ�� 
�δ� as a short hand for the set of
visible actions including quiescence.

Example 3. By adding δ-transitions to quiescent states in the sample LTS spec-
ifications in Fig. 2, we are able to define the specified behaviors in terms of their
suspension traces. For instance, in Fig. 3(b) the resulting LTS for q1 is shown,
where we have

Straces�q1� � �δ, ?1e, δ�?1e, ?1e�!coffee, ?1e�!coffee � δ, . . .�.

This way, we are now able to further discriminate the behaviors of the different
specifications, e.g., ?1e�δ � Straces�q6�, whereas ?1e�δ � Straces�q7�

As described in Sect. 3.1, A behavioral conformance relation conforms to hold
between implementation i and specification s requires the inclusion of all ob-
servable behaviors of i in those of s. When applying a conformance relation
conforms the input/output conformance relation ior by means of suspension
trace inclusion, we obtain the following definition.

Definition 7 (I/O Conformance). Let s � LT S�I
U � and i � IOT S�I,U �.

i ior s :� �σ � act �δ : out�i after σ� � out�s after σ�.

Thus, input/output conformance i ior s ensures for every state reachable in i
via a trace σ to (1) show at most those outputs as permitted by respective states
in s reachable via σ and (2) to be quiescent iff a quiescent state is reachable in
s via σ. Note that in case of deterministic behaviors, p after σ contains at most
one element for all traces σ.

As a direct consequence of the definition of I/O conformance, we obtain a
preorder correspondence between i and s as follows.
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Lemma 1. Let s � LT S�I
U � and i � IOT S�I,U �. Then it holds that

i ior s � Straces�i� � Straces�s�.

Hence, input/output conformance requires that the reaction of i to every possible
environmental behavior σ is checked against those of s independent of the fact
whether a proper reaction to σ is actually specified in s. In practice, conformance
testing is usually limited to positive cases. I.e., only for those behaviors which
are explicitly specified in s, the corresponding reaction of i has to be checked for
behavioral input/output conformance (ioco).

Definition 8 (IOCO [54]). Let s � LT S�I
U � and i � IOT S�I,U �.

i ioco s :� �σ � Straces�s� : out�i after σ� � out�s after σ�.

Again, from i ioco s it follows that i shows at most the behaviors that are
specified in s. But, in contrast to ior, i may show arbitrary reactions for those
behaviors not specified in s. As a consequence, Lemma 1 does not hold for ioco
and we obtain the following correspondence.

Lemma 2. ior � ioco.

Example 4. Again, consider the sample LTS specifications in Fig. 2 assuming δ-
transitions to be added to quiescent states. Investigating the observable behavior
for the possible environmental stimuli σ �?1e and σ� �?2e, this leads to

– out�q1 after σ� � �coffee, tea�, out�q1 after σ�� � ��
– out�q2 after σ� � �coffee, tea�, out�q2 after σ�� � �coffee, tea�,
– out�q3 after σ� � �coffee�, out�q3 after σ�� � �coffee�,
– out�q4 after σ� � �coffee�, out�q4 after σ�� � �tea�
– out�q5 after σ� � �δ�, out�q5 after σ�� � �δ�
– out�q6 after σ� � �coffee�, out�q6 after σ�� � ��
– out�q7 after σ� � �coffee, δ�, out�q7 after σ�� � ��
– out�q8 after σ� � ��, out�q8 after σ�� � ��.

For instance, assume that q6 is adapted to be weak input-enabled, then it holds
that q6 ioco q7, but not vice versa due to the additional quiescent state of q7.
Similarly, we have q2 ioco q1 as no behavior for !2e in q2 is specified in q1, thus,
leaving open implementation freedom in q2. In contrast, q1 ioco q2 does not hold
as q1 shows quiescent behavior for !2e which is not permitted by q2.

Although the set of suspension traces which has to be verified on i for establishing
ioco to some s is now limited to Straces�s�, this set is, however, still potentially
infinite making input/output conformance verification impracticable. The set of
suspension traces under consideration is further restricted to (finite) sub sets
F � act �δ and the resulting restricted ioco-relation is denoted as

i iocoF s :� �σ � F : out�i after σ� � out�s after σ�,

where ior � iocoact�δ
and ioco � iocoStraces�s� holds.
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The notions considered so far constitute intentional characterizations of be-
havioral input/output conformance. In addition, an extensional characterization
of ioco is given by means of test cases t, i.e., observer processes derivable from
a specification s and applicable to SUT i such that

i passes t :� obs�i, t� 	 obs�s, t�.

In order to define the interaction of a test case t with SUT i during test case ex-
ecution in a formal way, test cases are also represented as I/O labeled transition
systems. In particular, considering a specification s � LT S�I,U � and a corre-
sponding SUT i � IOT S�I,U �, the domain T EST � LT S�U, I � contains those
test cases derived from s and applied to i for verifying input/output conformance
of i with respect to s. Due to the asymmetric nature of communication between
I/O-labeled LTS, the input and output alphabets are reversed in t � T EST
compared to those of s and i. In addition, the special input action Θ � U 
 I
represents the counterpart of δ, i.e., when observed during test case execution,
Θ denotes the occurrence of a quiescent state in i.

Definition 9 (Test Case). A test case t is an LTS such that

– t is deterministic and has a finite set of traces,
– Q contains terminal states pass and fail with init�pass� � init�fail� � �

and
– for each non-terminal state q � Q either (1) init�q� � �a� for a � I or (2)

init�q� � U
 �Θ�

holds.

Thus, each test case corresponds to a suspension trace of s such that in every
test step, i.e., a transition in t, either (1) one particular input is stimulated in
i, or (2) every possible output potentially emitted by i is accepted (including
quiescence). If an unexpected output is observed, termination state fail is im-
mediately entered and, otherwise, termination state pass is eventually reached
after a finite sequence of (alternating) test steps. An algorithm for deriving test
cases t from specifications s after a transformation into a respective suspension
automaton can be found in [54].

Example 5. Consider the test case in Fig. 4(a) derived from specification q1 in
Fig. 2(a). For an implementation i to pass this test case, it has to accept the
input !1e and then either to return a coffee, or a tea as output, whereas no
output, i.e., quiescence Θ, is an erroneous behavior. In contrast, the test case
in Fig. 4(b) is derived from q7 in Fig. 8(c) permitting coffee as well as nothing
as outputs after inserting 1e as input. Thus, this test case is, e.g., capable to
distinguish implementations complying q7 from those complying q6 for which no
quiescence is allowed after inserting 1e.

A test suite T � T EST is a finite set of test cases. The following properties have
been proven to hold for input/output conformance testing based test suites T
designed on the basis of suspension traces [54].
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Fig. 4. Sample Test Cases for the Vending Machine

Theorem 1. Let s � LT S�I 
 U �, i � IOT S�I 
 U � and F � Straces�s�.
Then it holds that

1. any derivable test case t � T EST is sound, i.e., i ioco o implies that i passes
t and

2. the set T EST of all derivable test cases is exhaustive, i.e., i ioco o if i
passes all t � T EST .

Based on this fundamental concept of formal input/output conformance, various
enhanced results, e.g., concerning compositionality properties of ioco [8], as
well as extensions to ioco concerning advanced system characteristics, e.g., real
time [52] and hybrid behaviors [43] have been proposed.

4 Model-Based Testing of Software Product Lines

Until now, we assumed an SUT to constitute a monolithic software system with
predefined and fixed amount of functionality. However, modern software sys-
tems usually expose various kinds of diversity, e.g., due to extensible config-
urability [50]. The corresponding software implementations comprise families of
similar, yet well-distinguished software product variants. Software product line
engineering [12] is a well-established paradigm for concisely engineering those
kinds of variant-rich software implementations including strategies for efficiently
testing families of similar product variants under test.

4.1 Software Product Line Engineering and Testing

A software product line constitutes a configurable software system built upon
a common core platform [12]. Product implementation variants are derivable
from those generic implementations in an automated way by selecting a set of
domain features, i.e., user-visible product characteristics, to be assembled into
a customized product variant. Software product line engineering defines a com-
prehensive process for building and maintaining a product line. During domain
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engineering, a product line is designed by (1) identifying the set of relevant do-
main features within the problem space and (2) by developing corresponding
engineering artifacts within the solution space associated with a feature (combi-
nation) for assembling implementation variants for feature selections. During do-
main engineering, logical dependencies between features further refine the valid
configuration space by restricting combinations of features. For instance, domain
feature models provide an intuitive, visual modeling language for specifying the
configuration space of a product line [27] (cf. Sect. 4.2).

Features not only correspond to configuration parameters within the problem
space of a product line, but also refer (to assemblies of) engineering artifacts
within the solution space at any level of abstraction. For instance, concerning the
behavioral specification of variable software systems at component level, mod-
eling approaches such as state machines are equipped with feature parameters
denoting well-defined variation points within a generic product line specification
including any possible model variant [11]. This way, explicit specifications of
common and variable parts among product variants within the solution space
allow for a systematic reuse of engineering artifacts among the members of a
product family.

Also testing is considered an integral part of software product line engineering.
Reusable test artifacts, e.g., variable test models and test cases designed during
domain engineering are applied to those SUT assembled for the respective prod-
uct variants under test during application engineering. McGregor was one of the
first to provide a systematic overview of how to adopt recent testing notions and
activities to product line engineering [37]. He identified different scopes under
consideration in SPL testing, namely the entire SPL, a particular product, as well
as individual assets, i.e., feature components and their integration. In order to
facilitate large-scale reuse of test artifacts among product variants when testing
an SPL, common test artifacts can be organized as SPL artifacts as well. In [38],
McGregor et al. further elaborate reuse potentials in SPL testing by proposing
SPL testing approaches explicitly taking variability among products under test
into account. A first survey on product family testing approaches is given by
Tevanlinna et al. [53]. The authors focus on the adoption of regression testing
principles for variability-aware testing collections of similar products. The ap-
plication of model-based testing principles to SPL testing was first mentioned
in [42] as well as in [49]. In [46], Oster et al. provide a survey on SPL testing
approaches focusing on model-based testing. Further comprehensive surveys on
recent SPL testing approaches can be found in [20] and in the mapping study
provided in [40].

The general setting for the (model-based) testing of a product line is illus-
trated in Fig. 5 extending the previous setting for single system testing in Fig.1.
Testing a product line implementation with n possible product variants against
a product line specification essentially requires to verify that

ik conforms sk, 1 � k � n,

holds, i.e., to test every individual product implementation variant ik against
its corresponding specification variant sk. As the number n of product variants
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Fig. 5. General Setting of Product Line Testing

grows exponentially with the number of features, this product-by-product
approach is, in general, infeasible. In addition, due to the high degree of similar-
ity and corresponding (specification and implementation) artifact reuse potentials
among the different variants, repetitive exhaustive test modeling, test suite deriva-
tion and test execution for every particular variant causes lots of redundant efforts.
To cope with those challenges, different product line testing strategies have been
proposed in the literature and are explained in the following.

Reusable Product Line Test Model. In contrast to (re-)modeling every product
variant test model specification anew from scratch, a reusable product line test
model is built that (virtually) comprises every possible model variant. Those
model elements that are common to all members of the product line become
part of every test model variant, whereas variable elements are only mapped
into those model variants for which they are relevant. One of the most common
approaches for reusable product line test modeling are so-called 150% specifica-
tions, where all common and variable elements are part of one model whose set
of elements constitutes a superset of the test model variants. The projection of
a particular test model variant from a 150% model is done, e.g., by adding ex-
plicit annotations to the variable elements by means of selection conditions over
feature parameters [14], or by defining implicit behavioral restrictions by means
of modal specifications combined with deontic logics [4,3,2]. Hence, a product
line test model comprises two parts, i.e., (1) a configuration model, e.g., given
by a domain feature model (cf. Sect. 4.2) defining the valid product space of the
product line under test and (2) a 150% test model, e.g., by means of a modal I/O
labeled transition system (cf. Sect.4.3). Based on a 150% test model, a product
line may be tested product-by-product without re-modeling every variant anew.
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However, to also reduce the efforts for test suite derivations and executions,
further strategies have been proposed.

Sample-based Product Line Testing. In this strategy, only a representative subset
of variants is considered for which product-specific test suites are generated,
whereas those variants that are unselected remain untested. Various coverage
criteria and subset selection heuristics have been proposed, e.g., inspired by
combinatorial testing [33,25,44,13,47,23,29,24].

Regression-based Product Line Testing. In this strategy, only those test cases are
generated anew for a variant under test that are not reusable from a previously
tested variant. The required test case reuse analysis is similar to change impact
analysis techniques known from regression testing [53,19,34]. Again, every single
variant has to be considered to guarantee a complete product line test coverage.

Family-based Product Line Testing. In this strategy, a test suite is derived from
a 150% test model rather than from the test model variants. This way, each
test case is connected to the subset of product variants for which it is valid. A
complete test coverage of a product line is achievable without considering any
particular product variant [11].

In this tutorial, we will focus on two approaches for model-based product line
testing. In Sect. 4.2, we present a technique for sample-based product line testing
using a domain feature model for selecting a representative product subset under
test, and in Sect. 4.3, a family-based approach for variability-aware product line
test modeling and test suite design is presented based on modal input/output
LTS specifications.

4.2 Sample-Based Software Product Line Testing

The domain model (sometimes referred to as variability model) plays a pivotal
role in software product line engineering plays, because it contains information
about the product features and its dependencies. A common representation for
the domain model are feature models (FM), which are usually created during
a (feature-oriented) domain analysis [15,27]. In Fig. 6, we show an exemplary
feature model of a vending machine where features refer to different drinks or
payment methods. A feature model is a hierarchical structure, where features
can be selected in a top-down manner. Different constraints can be modeled
for the contained features: First, each feature can be optional (denoted by the
white bullet, e.g. Tea) or mandatory (denoted by the black bullet, e.g. Coffee).
Second, features may be used for grouping (e.g. feature Beverage) and contain
no functionality themselves. Additionally, we can specify group constraints on
sibling features, like alternative and or groups. Alternative-features are mutually
exclusive and cannot be selected for the same variant, whereas or-features have
no upper bound. Finally, we can express dependencies between features using
cross-tree constraints, which are expressed by propositional formulas.
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Fig. 6. Domain Feature Model of Vending Machine SPL

In most cases, features are developed and tested separately by several teams.
But even if we assume that they work without errors for themselves, it is not
assured that they still work error-free after an integration of several features
into a larger system. Such erroneous and unexpected behavior is referred to as
feature interaction (FI). One of the most promising techniques to detect feature
interactions is sample-based combinatorial interaction testing (CIT), because is
uses the domain feature model to derive a small number of variants which have to
be tested. This set of product variants is supposed to cover relevant combinations
of features. The sample-based product line testing technique is subdivided into
three steps:

1. Create the feature model
2. Generate a subset of variants based on the FM, covering relevant combina-

tions of features
3. Apply single system testing to the selected variants

One method for CIT is pairwise testing, which tries to cover all combinations
of two features by the selected set of variants and is able find FIs between
two features. To this end, both features must be present, not present and only
one must be present in at least one tested variant to fulfill the pairwise testing
criterion. It is possible to cover combinations of one, three, four, five and six
features as well, but there exists a trade-off between computation time and test
coverage. The higher t (where t is the number of features), the higher is the test
coverage, but also the computation time to find a corresponding set of product
variants [30] and the resulting number of product variants to be tested. Pairwise
testing detects about 70% of all errors in a system (3-wise 95% error detection).

The selected set of products to be tested is also called covering array. Gen-
erating covering arrays is equivalent to the set covering problem which is a
NP-complete decision problem in combinatorics. We explain the problem in the
following by means of a small example. Given a set S with S � �a, b, c, d, e�. S is
divided into several subsets M � ��a, b, c� , �b, d� , �c, d� , �d, e��, which represent
valid product configurations. The challenge of the set covering problem is to
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find the minimal number of sets in M that cover the complete set of S. In our
example, the solution is L � ��a, b, c� , �d, e��.

However, this approach requires that all product variants are already known.
Since, the number possible solutions in a FM grows exponentially with the num-
ber of features, it is almost impossible to compute all valid variants before [25].
Even finding a single valid variant in a large feature model is equal to the NP-
complete Boolean Satisfiability Problem (SAT). Luckily, we are mostly dealing
with realistic FMs. Actual customers should be able to configure the FM of the
SPL in a decent amount of time. No company would introduce a FM, where a
customer needs thousands of years to select a valid variant. Mendonca et al. [39]
proved the efficient satisfiability of realistic FMs with additional cross-tree con-
straints.

Chvátal’s Algorithm (1979). One of the first heuristic greedy algorithms to solve
the set covering problem was developed in 1979 by Chvátal [10]. The algorithm
does not calculate the optimal solution. It is also not yet specialized for product
variant selection.

The algorithm is divided into four separate steps. The solution, i.e., the set
cover, is stored in the set L which is empty at the beginning. The set M contains
the set of possible subsets Mi. The algorithm selects the set M � with the highest
number of uncovered elements. This set is added to the solution L and removed
from all sets Mi. The algorithm terminates if there are no more elements to
select.

1. Step: Set L � �
2. Step: If Mi � �,� i, i � �1, 2, ..., n� Stop. Else find M �, where number of

uncovered elements is maximized
3. Step: Add M � to L and replace each Mi by Mi �M �

4. Step: Jump to Step 2

The worst case is if M only consists of subsets with different elements so that
the algorithm must add each subset to L and L �M holds at the end.

Adaptation of Chvátal’s Approach to FMs. Johansen et al. [25,26] have done an
extensive amount of research in adapting and improving the original algorithm
of Chvátal for product variant selection on the basis of FMs. In the following,
we explain their algorithm shown as Algorithm 1.

Initially, the algorithm needs an FM as input. All possible t-tuple combi-
nations of features are generated and written into the set S. This set includes
invalid tuples as well. For, e.g. t � 2, all combinations of two features are present
in S after the first step. After the creation of a new empty product configuration
k (line 3), the algorithm iterates through all tuples in S and tries to add the tuple
p � S to the configuration k. This is only possible, if the configuration stays valid
with the selected tuple with respect to the feature model. The validity check is
done by a standard SAT-Solver. As a result, the configuration grows, and the set
S shrinks, since covered tuples are removed from S. A configuration k is added
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input : arbitrary FM
output: t-wise covering array

1 S � all t-tuples
2 while S � � do
3 k � new and empty configuration
4 counter � 0
5 foreach tuple p in S do
6 if FM is satisfiable with k � p then
7 k � k � p
8 S � S� �p�
9 counter � counter � 1

10 end
11 end
12 if counter 	 0 then
13 L� L � (FM satisfy with �k�)
14 end
15 if counter < # of features in FM then
16 foreach tuple p in S do
17 if FM not satisfiable with p then
18 S � S� �p�
19 end
20 end
21 end
22 end

Algorithm 1. Adaptation of the algorithm for FMs

to the final solution L (line 13) in case that at least one tuple is contained. A
configuration is extended with other features, e.g., mandatory features, in order
to generate a valid product variant for the feature model based on the tuples in
k (cf. "FM is satisfiable with k").

The variable counter in the last loop makes sure that all invalid t-tuples
are removed from S at some point during computation. This point has been
identified by empirical studies. It would be inefficient, e.g., to remove the invalid
feature tuples at he beginning, because the SAT-Solver must check too many
valid tuples [25].

The vending machine example (see Fig.6) has exactly 12 valid configurations.
The covering array for t � 2 contains only six variants (see Table 1). Even in such
small FMs, we are able to save 50% time for tests with the help of sample-based
product line testing.

Improved algorithm ICPL. ICPL is one of the most advanced and efficient algo-
rithms for computing a t-wise covering array. It is based on the above algorithm
with several logical and technical improvements. The main goal is to find all
valid tuples to be covered by the t-wise covering array as fast as possible since
checking invalid tuples slow the whole process down. Single satisfiability checks
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Table 1. Covering array for the vending machine

Feature�Product 0 1 2 3 4 5

Coffee X X X X X X
Beverage X X X X X X
2e X X X X
Change X X
Tea X X X
Restock Cups X X X
1e X X X X X X
Coins X X X X X X
Vending Machine X X X X X X

for each tuple are not efficient to identify invalid tuples. ICPL takes advantage
of the property that a covering array of strength t is a subset of an array with
strength t � 1, which is proved in [26]. The algorithm calculates all t-wise cov-
ering arrays 1 � n � t, where n, t � N, at first. This step improves the overall
tuple covering process and provides an earlier identification of invalid tuples
(see [25] for more detailed information). In one iteration, one t-tuple is covered
after the other. ICPL uses the knowledge that an already covered tuple cannot
be added to the current configuration with another assignment of the features
which means that t-tuples with other assignments for the contained features can
be skipped instantly. The skipped tuples must not be deleted from the set, since
they may be valid in another configuration. Likewise, if all features of the FM
are already contained in the current configuration, it is not possible to add any
other tuple. All remaining tuples can be skipped for this iteration.

The parallelization of the algorithm allows shortening the computation time
significantly. With respect to the number of CPU cores, the original t-sets are
split up and equally divided over the cores. It is done in several points in ICPL,
e.g., for finding invalid t-tuples. The whole computation time of ICPL is almost
inversely proportional with the number of cores due to high parallelism.

To provide an impression of the computation time of ICPL and the size of
the computed covering array, Table 2 shows the results for four larges FMs in
terms of the number of features and the number of constraints. The largest FM
with nearly 7000 features is one version of the popular Linux kernel. Instead
of testing millions or billions of variants, we only need to test the 480 product
configurations, which are calculated by the ICPL algorithm for the Linux kernel.
The computation time with roughly nine hours is quite fast.

Further Improvements to Feature Interaction Coverage. The main goal of sample-
based software product line testing is to identify errors caused by feature
interactions. The standard CIT methods, as decried above, use all t-tuple com-
binations for features to ensure a 100% coverage of the FM. It is possible to
be more efficient at this point, since not all features interact with each other.
Feature interactions usually occur via shared resources or communication. These
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Table 2. ICPL Evaluation [25]

Feature Model Features Constraints 2-wise size 2-wise time (s)

2.6.28.6-icse11.dimacs 6,888 187,193 480 33,702
freebsd-icse11.dimacs 1,396 17,352 77 240
ecos-icse11.dimacs 1,244 2,768 63 185
Eshop-fm.xml 287 22 21 5

two interaction types are identified as the most crucial ones [35,21]. The infor-
mation about such interactions is present in development documents, such as
system specifications or architectural descriptions. Based on such specifications,
we can annotate FMs with the respective information about shared resources
and communication between features. Annotating the FM with this additional
information provides us with the advantage of reducing the t-tuple input set for
the CIT algorithm. We generate only the most important tuples, where interac-
tions are most likely to occur with regard to the specification. Less tuples have
to be covered, which results in a faster computation time and a smaller covering
array [29].

4.3 Variability-Aware Software Product Line Testing

Interface theories provide formal approaches for the definition of the observable
behaviors which a component implementation is allowed to show by abstract-
ing from the concrete implementation details [48,5]. Modal interface specifica-
tions further distinguish between optional and mandatory behaviors by means
of may/must modality in order to leave open implementation freedom up to a
certain degree. In a modal transition system (MTS) each transition is either a
may, or a must transition [32,48,5,36]. The set of valid implementations of a
modal specification correspond to the set of modal refinements of that specifica-
tion each comprising at least all must behaviors and at most all may behaviors.
In addition, a compatibility notion defines criteria for valid compositions of com-
ponents with respect to their modal specifications.

Various approaches for applying modal specifications as product line model-
ing formalism have been proposed [22,31,4]. By interpreting must behaviors as
commonality and may behaviors as variability among the product line variants,
each implementation corresponds to one particular product configuration. Hence,
modal refinement corresponds to component implementation variant derivation
within the solution space. Those sets of variants may be further restricted in
terms of compatibility to other components and/or the environment/user [31].
Recent approaches focus on family-based product line model checking based on
modal specifications [4,3,2]. In contrast, we consider MTS to denote variable test
model specifications as a basis for an intentional characterization of model-based
input/output conformance testing for a software product line implementations
under test.
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Fig. 7. Sample MTS Vending Machine Product Line Specifications

Formally, modal transition systems extend LTS by incorporating two transi-
tion relations to distinguish two different transition modalities, namely (possible)
may and (mandatory) must transitions.

Definition 10 (Modal I/O Transition System). A model I/O transition
system is a tuple �Q, q0, I,U,�
�,�
��, where Q is a countable set of states,
q0 � Q is the initial state, I and U are disjoint sets of input actions and output
actions, respectively, �
�� Q�act�Q is a may-transition relation, and �
��
Q� act�Q is a must-transition relation such that �
���
� holds.

Requiring �
���
� ensures an MTS to be syntactically consistent, i.e.,
mandatory behaviors are always also allowed. By MT S�act� we denote the set
of modal transition systems labeled over alphabet act. Again, we often use an
MTS m and its initial state q0 as synonyms in the subsequent definitions and
examples.

Example 6. The graphical representation of an MTS is illustrated in Fig. 7 spec-
ifying two modal versions of a vending machine extending the simple vend-
ing machines from Sect. 3. We now have I � �1e, 2e, coffee, tea, cups� and
U � �c1e, cup, error�, respectively. Transitions with may modality are denoted
by dashed arrows, whereas those with must modality are denoted by solid ar-
rows. Hence, a vending machine implementing specification m1 in Fig. 7(a) must
accept 1e coins as inputs and may optionally also accept 2e coins. As each bev-
erage costs 1e, the vending machine may further output 1e change (output
action c1e) if 2e have been thrown in. The machine offers coffee per default
but may also allow for choosing tea via inputs coffee and tea. A cup containing
the selected beverage is dispensed as long as cups are available within the ma-
chine. Otherwise, an (optional) error output may be given and new cups may
be inserted. The alternative specification m2 alters m1 in two ways: (1) pro-
viding change after inserting 2e must be implemented whereas omitting c1e is
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optionally allowed via the τ -transition and (2) whenever tea is selectable and
the machine is running out of cups, error handling must take place.

We adapt the notion of traces previously defined for LTS to MTS by taking the
modality γ � ��,�� of transitions s

μ
�
γ s� into account.

Definition 11 (MTS Trace Semantics). Let m be an MTS. The set of modal
traces is defined as

Trγ�m� :� �σ � �I 
 U �� � �s � Q : q0
σ
��γ s�.

From syntactical consistency, it follows that Tr��s� � Tr��s� holds. Thereupon,
an adaption of the further trace notations for LTS (cf. Def. 4) to MTS can be
done, correspondingly.

An MTS m constitutes a partial system specification in which those behav-
iors corresponding to may-traces are considered optional leaving open imple-
mentation freedom within well-defined bounds. Retrieving an implementation
variant from a modal specification by selecting/neglecting optional behaviors
corresponds to the concept of modal refinement. A modal specification m1 is a
refinement of a modal specification m2 if (1) the mandatory behaviors of m2 are
preserved by m1 and (2) the possible behaviors of m1 are permitted by m2.

Definition 12 (Modal Refinement). Let s, t be two MTS with act � acts �
actt. A relation R � Qs�Qt is a (weak) modal refinement iff whenever sRt and
a � act � �τ� it holds that

1. if t a�
� t� then �s� : s τ�

�� a�
� s� and �s�, t�� � R,

2. if s a�
� s� then �t� : t τ�

�� a�
� t� and �s�, t�� � R, and

3. if s τ�
� s� then �t� : t τ�

�� t� and �s�, t�� � R.

The largest (weak) modal refinement relation is denoted by �m and s is a (weak)
model refinement of t iff there is weak modal refinement containing �s0, t0�.

A modal refinement s is complete if �
���
� holds. A complete refinement
s of t is an implementation of t.

Example 7. Consider the complete refinements in Fig. 8 referring to the modal
vending machine specifications in Fig. 7. Please note that we assume an (implicit)
pruning of the state-transition removing those transitions becoming unreachable
after a modal refinement. We observe the following (complete) refinements.

– s1 �m m1 and s1 �m m2

– s2 �m m1 and s2 �m m2

– s3 �m m1 and s3 �m m2

– s4 �m m1 and s4 �m m2

– s5 �m m1 and s5 �m m2

– s6 �m m1 and s6 �m m2



Model-Based Testing 335

?   

 

 

 

 

 

 

!  

 

 

 

(a)

?   

 

 

  

 

 

(b)

?   

 

 

 

 

 

!  

(c)

?  

 

 

 

 

 

(d)

?  

 

 

 

(e)

?   

 

 

 

 

 

!  

 

 

(f)

Fig. 8. Sample MTS Vending Machine Implementations
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In [31], Larsen et al. proposed an approach for behavioral variability modeling
and formal verification of a product line based on modal transition systems.
A product line specification is given as modal LTS s comprising the set of all
product variants p of s by means of complete modal refinements p �m s. To
further tailor the set of valid product variants, the notion of compatibility defined
by a partial modal composition operator is used. This way, refinements of variable
product line components are implicitly restricted to those which are compatible
to other components and/or an environmental specification. Alternatively, the
product line modeling theory of Asirelli et al. uses deontic logics to restrict the
set of modal refinements [4,3,2].

Here, we limit our considerations to a modal product line test modeling theory
with unrestricted modal refinements for product variant derivations. According
to the model-based testing assumption of Bernot [7], we assume a product line
specification s �MT S�I
U � and a product line implementation i �MT S�I

U � which both correspond to a modal input/output labeled transition system.
By adopting the notion of input-enabledness to modal specifications, we obtain
the following definition.

Definition 13 (Modal I/O Transition System). An MTS is γ-input-enabled
iff for every state s � Q with q0 ���

γ s and for all a � I it holds that s a
��γ . By

IOMT Sγ�I,U � we denote the set of γ-input-enabled MTS labeled over act �
�I
U
 �τ�� and conclude that

IOMT S��I,U � � IOMT S��I,U � �MT S�I
U �

holds.

For instance, considering the sample MTS models in Fig. 7, both m1 and m2 are
neither may-input-enabled, nor must -input-enabled. Again, γ-input-enabledness
for a given MTS may be achieved by adding corresponding transitions s

a�
γ s

for every input action a � I to every reachable state s with �s� : s
a
��γ s�.

Similar to single system testing, we require a product line implementation i as
well as all derivable product implementation variants i� �m i to be input-enabled.
Unfortunately, γ-input-enabledness is not preserved under modal refinement. As
an example, consider some state s with q0 ���

γ s and s
a�
γ for every a � I.

– For γ � �, assume some transition s
a�
� s� which is removed such that

�s a�
� holds after refinement.
– For γ � �, assume some transition s

a�
� s� with �q0 ���� s� which is
refined to s

a�
� s� and s� to obstruct must -input-enabledness.

To solve this problem, we consider the following assumptions for applying modal
LTS as a basis for a product line testing theory.

– Product line implementations i under test are may-input-enabled, i.e., i �
IOMT S��I,U �, whereas for product line specification we only require s �
MT S�I
U � as usual.
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– Derivations of product implementation variants i� are restricted to those
preserving may-input-enabledness denoted i� ��

m i such that

��
m� IOMT S��I,U � � IOMT S��I,U � ��m .

As a result, it holds that i� � IOMT S��I,U � for every complete refinement i�

of i. Similar to the notions of traces and input-enabledness, also the auxiliary
definitions for defining input/output conformance relations on LTS are adaptable
to MTS as follows.

Definition 14. Let s be an MTS, p � Q, P � Q, σ � �I 
 U ��, and γ � ��,��.
1. initγ�p� :� �μ � �I 
 U � � p

μ
�
γ�,

2. p is may-quiescent, denoted by δ��p�, iff init��p� � I, p is must-quiescent,
denoted by δ��p�, iff init��p� � I,

3. p afterγ σ :� �q � Q � p
σ
��γ q�,

4. Outγ�P � :� �μ � U � �p � P : p
μ
�
γ� 
 �δγ � �p � P : δγ�p��, and

5. Stracesγ�p� :� �σ� � �I 
 U 
 �δ��� � p
σ�

��γ� where q
δ�
γ q iff δγ�p�.

Again, if not stated otherwise, we assume a given MTS to be implicitly enriched
by transitions q

δ�
γ q for γ-quiescent states q.

Example 8. Considering the sample MTS specifications in Fig. 7 and σ �?1e�?tea
it holds that

– Out��m1 after� σ� � �cup, error �
– Out��m2 after� σ� � �cup, error �
– Out��m1 after� σ� � ��
– Out��m2 after� σ� � �error �
– Out��m1 after� σ� � ��
– Out��m2 after� σ� � ��

whereas for σ� �?2e

– Out��m1 after� σ�� � �c1e, δ �
– Out��m2 after� σ�� � �c1e, δ �
– Out��m1 after� σ�� � �δ �
– Out��m2 after� σ�� � �c1e �
– Out��m1 after� σ�� � ��
– Out��m2 after� σ�� � ��

holds.

According to the intuition of modal consistency, we observe the following corre-
spondences.

Proposition 1. Let s be an MTS, p � Q, P � Q, σ � �I 
 U ��.

1. init��p� � init��p�,
2. δ� � δ�,
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3. p after� σ � p after� σ,
4. Out��P � � Out��P �, and
5. Straces��p� � Straces��p�.

Testing a modal implementation i � IOMT S��I,U � against a modal specifica-
tion s � MT S�I,U � aims at verifying that every derivable product implemen-
tation variant i� ��

m i conforms to a corresponding product specification variant
s� �m s. For this to hold, an intuitive notion of modal input/output conformance
should ensure that

– all possible behaviors of a product line implementation are allowed and that
– all mandatory behaviors of a product line implementation are required

by the respective product line specification. Hence, for a model I/O conformance
relation i mior s to hold, it requires trace inclusion of both may-suspension-
traces and must -suspension-traces, respectively.

However, if we interpret the set of must -behaviors specified by s as the product
line core behavior to be shown by all product variants, this notion of I/O con-
formance fails to fully capture this intuition. Similar to the non-modal version,
suspension trace inclusion solely ensures some behavior of the specified behav-
iors to be actually implemented (if any), but it does not differentiate within the
set of allowed behaviors between mandatory and optional ones. To overcome
this drawback, we consider an alternative definition for modal I/O conformance,
i mior� s, that is closer to the very essence of modal refinement requiring al-
ternating suspension trace inclusions as follows.

Definition 15 (Modal I/O Conformance). Let s � MT S�I,U � and i �
IOMT S��I,U �.
i mior s :�

1. �σ � act�δ : Out��i after� σ� � Out��s after� σ� and
2. �σ � act�δ : Out��i after� σ� � Out��s after� σ�.

i mior� s :�

1. �σ � act�δ : Out��i after� σ� � Out��s after� σ� and
2. �σ � act�δ : Out��s after� σ� � Out��i after� σ�.

Hence, the mior� relation requires a product line implementation i to show

– at least all mandatory behaviors and
– at most the allowed behaviors

of a product line specification s. The respective modal versions of the ioco
relation can be defined, accordingly.

Definition 16 (Modal IOCO). Let s �MT S�I,U � and i � IOMT S��I,U �.
i mioco s :�
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1. �σ � Straces��s� : Out��i after� σ� � Out��s after� σ� and
2. �σ � Straces��i� : Out��i after� σ� � Out��s after� σ�.

i mioco� s :�

1. �σ � Straces��s� : Out��i after� σ� � Out��s after� σ� and
2. �σ � Straces��i� : Out��s after� σ� � Out��i after� σ�.

Based on the previous observations, we conclude the following notion of sound-
ness for modal ioco.

Theorem 2 (Soundness). Let Let s � MT S�I,U �, i � IOMT S��I,U � and
i mioco� s. Then it holds that �i� ��

m i : i� mioco� s.

Hence, family-based product line conformance testing in terms of the presented
intentional characterization of modal I/O conformance ensures (1) safety as it
permits implementation variants to only show allowed behaviors and (2) liveness
as it enforces implementation variants to at least show all core behaviors. Further
results, e.g., concerning completeness and exhaustiveness notions, as well as an
extensional characterization of modal ioco is open for future work. Concerning
the latter, two main adaptations with respect single system testing are required.

1. The modality γ � ��,�� of an action a (including quiescence) occurring at
a transition s

a�
γ s� is observable, e.g., by defining two separate alphabets
act� � act� ��� and act� � act� ���, respectively.

2. The definition of a test case (cf. Fig. 4) is to be adopted for modal testing to
require every must-behavior to be observed before giving the verdict pass,
therefore, potentially requiring multiple test runs.

Clause 2. reflects that verifying the inclusion of all must -behaviors of the spec-
ification to be contained in the respective set of the implementation literally
requires the specification to be (implicitly) tested against the implementation.

5 Conclusion

In this tutorial, we have presented the foundations of model-based testing. We
have considered dynamic testing of functional characteristics at component-
level based on model-based black-box knowledge for single system testing. This
testing discipline is usually referred to as model-based input/output confor-
mance testing. Furthermore, we have presented model-based testing techniques
for variant-rich software systems, such as software product lines. We have
explained sample-based product line testing based on variant selection tech-
niques and a theory for variability-aware product line conformance testing.
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