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Preface

This volume presents a set of papers accompanying the lectures of the 14th
International School on Formal Methods for the Design of Computer, Commu-
nication and Software Systems (SFM). This series of schools addresses the use
of formal methods in computer science as a prominent approach to the rigorous
design of the above-mentioned systems. The main aim of the SFM series is to
offer a good spectrum of current research in foundations as well as applications
of formal methods, which can be of help for graduate students and young re-
searchers who intend to approach the field. SFM 2014 was devoted to executable
software models and covered topics such as variability models, automated analy-
sis techniques, deductive verification, and run-time assessment and testing. The
eight papers collected in the two parts of this volume represent the broad range
of topics of the school.

The first part is concerned with modeling and verification; it consists of five
papers. The paper by Bubel, Flores Montoya, and H&hnle focusses on ABS,
the Abstract Behavioral Modeling (ABS) language, and shows how resource
consumption analysis, deadlock detection, and functional verification work on
ABS models. Giachino and Laneve address recursive programs that admit dy-
namic resource creation and define a deadlock-detection algorithm based on
a generalization to mutations of the theory of permutations of names. The
paper by Abrahém, Becker, Dehnert, Jansen, Katoen, and Wimmer surveys
explicit and symbolic techniques for the computation and representation of
probabilistic counterexamples for discrete-time Markov chains and probabilis-
tic automata. Gmeiner, Konnov, Schmid, Veith, and Widder illustrate how to
integrate parametric data and counter abstraction, finite-state model checking,
and abstraction refinement in the setting of threshold-based fault-tolerant dis-
tributed algorithms. The paper by Amighi, Blom, Darabi, Huisman, Mostowski,
and Zaharieva-Stojanovski discusses the VerCors approach to concurrent soft-
ware verification, by showing the use of permission-based separation logic to
reason about multithreaded Java programs as well as kernel programs following
the Single Instruction Multiple Data paradigm.

The second part is on run-time assessment and testing; it contains three pa-
pers. De Boer and De Gouw present a method for preventing, isolating, and fixing
software bugs, which is based on automated run-time checking of a combination
of protocol- and data-oriented properties of object-oriented programs. The paper
by Albert, Arenas, Gémez-Zamalloa, and Rojas overviews white-box test-case
generation techniques relying on symbolic execution, with emphasis on an im-
plementation in constraint logic programming and an extension to actor-based
concurrent software. Finally Lochau, Peldszus, Kowal, and Schaefer describe the
activity of model-based testing for single systems and then review techniques
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specific to software product lines such as sample-based testing and variability-
aware product line testing.

We believe that this book offers a useful view of what has been done and what
is going on worldwide in the field of formal methods for executable software
models. This school was organized in collaboration with the EU FP7 project
Envisage, whose support we gratefully acknowledge. We wish to thank all the
speakers and all the participants for a lively and fruitful school. We also wish to
thank the entire staff of the University Residential Center of Bertinoro for the
organizational and administrative support.

June 2014 Marco Bernardo
Ferruccio Damiani

Reiner Hahnle

Einar Broch Johnsen

Ina Schaefer
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Analysis of Executable Software Models*

Richard Bubel, Antonio Flores Montoya, and Reiner Héhnle

TU Darmstadt, Dept. of Computer Science, Germany
{bubel,aeflores,hachnle}@cs.tu-darmstadt.de

Abstract. In this tutorial we focus on the Abstract Behavioral Model-
ing (ABS) language, a highly modular, executable modeling language
for concurrent systems. We show how three analyses for ABS models
are working: resource consumption, deadlock detection, and functional
verification. The acceptance of incomplete ABS models together with
the capability to analyse them makes ABS extremely useful as a precise
modeling language to be used in the design phases of software develop-
ment.

1 Introduction

Modern software is complex, often runs in a concurrent or distributed envi-
ronment, and undergoes frequent evolutionary changes driven by rapid changes
stemming from business and technological factors. Software is an essential and in-
tegral part of most contemporary consumer products, machinery, communication
systems, transport systems, etc. The growing ubiquity of software in commodi-
ties, but also in safety- and security-critical applications implies that software
defects more and more have direct consequences for end users and are of central
importance for the acceptance, quality, and safety of many products.

Recall the well-known cost increase for fixing defects during successive soft-
ware development phases [14]. IBM Systems Sciences Institute estimates that a
defect that costs one unit to fix in design, costs 15 units to fix in testing (sys-
tem/acceptance) and 100 units or more to fix in production (see Fig. 1), and
this cost estimation does not even consider the impact cost due to, for example,
delayed time to market, lost revenue, lost customers, and bad public relations.
Together with the ubiquity of software, the penalty for late discovery of defects
makes a very powerful case for software development methods and tools that
permit to analyze the consequences of design choices, and possibly erroneous
decisions, at an as early stage as possible.

Conventional, informal and semi-formal notations, such as the UML or fea-
ture diagrams, however, are not rich and formal enough to admit simulation,
automated analysis, or rapid prototyping. It is with this gap in mind that in the
past years there has been a lot of interest in executable modeling languages.

In this tutorial we focus on the Abstract Behavioral Specification (ABS) lan-
guage [25,1], a highly modular, executable modeling language for concurrent

* Partly funded by the EU project FP7-610582 ENVISAGE.

M. Bernardo et al. (Eds.): SFM 2014, LNCS 8483, pp. 1-25, 2014.
© Springer International Publishing Switzerland 2014
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Fig. 1. Relative costs to fix software defects for static infrastructure (source: IBM Sys-
tems Sciences Institute). The columns indicate the phase of the software development
at which the defect is found and fixed.

systems that exhibit a high degree of product variability. ABS is a rich, object-
oriented language with strong typing, strong encapsulation, abstract data types,
a simple, but powerful concurrency model. What sets it apart from mainstream
programming languages are three aspects: first, ABS comes with a formal, op-
erational semantics [17]; second, ABS has been carefully designed so as to make
automated analyses of various kinds feasible; third, ABS models can be par-
tially specified. Because of the first two features, it is possible to construct a
range of automatic and semi-automatic analysis tools for the full ABS language.
In the present tutorial we show how three analyses of particular importance
are working: resource consumption (Sect. 3.1), deadlock detection (Sect. 3.2),
and functional verification (Sect. 3.3). The acceptance of incomplete ABS mod-
els together with the capability to analyse them makes ABS extremely use-
ful as a precise modeling language to be used in the design phases of software
development.

To make this chapter self-contained, we include a very concise introduction
into the ABS language in Sect. 2, however, we strongly recommend to read the
tutorial [23] as a background. To make the content of this chapter manageable,
we focus on two analysis methods for ABS, but we stress that a whole range of
tools is available for ABS [34]. In the present volume, the interested reader can
find more information on an alternative approach to deadlock analysis in the
chapter by Laneve et al., on test generation in the chapter of Albert et al., and
on runtime assertion checking in the chapter of de Boer et al.

2 Setting the Context: Abstract Behavioral Modeling

2.1 The Abstract Behavioral Specification (ABS) Language

In this section we briefly introduce the Abstract Behavioral Specification (ABS)
language [25,1]. The text is based on the ABS introduction given in [35]. For
readers unfamiliar with ABS, we recommend the tutorial [23].



Analysis of Executable Software Models 3

ABS is an abstract, executable, object-oriented modeling language [25]. It has
been designed as a modeling language that is in particular well equipped for the
modeling needs of distributed systems with a high degree of variability.

Formal treatment of ABS models is possible, because the ABS modeling lan-
guage is properly defined in terms of a formal SOS-style semantics. In partic-
ular, all design decisions are carefully crafted to ensure that ABS models are
amenable to formal analyses. ABS is under active development and current re-
search targets modeling and analysis of cloud-based services with respect to
service contracts [16].

Fig. 2 shows the layered architecture of ABS. The base are functional abstrac-
tions around a standard notion of parametric algebraic data types (ADTSs). Next
we have an object-oriented imperative layer similar but much simpler than JAVA.
The concurrency model of ABS is two-tiered: at the lower level it is similar to that
of JCoBox [32] that generalizes the concurrency model of Creol [26] from single
concurrent objects to concurrent object groups (COGs). COGs encapsulate syn-
chronous, multi-threaded, shared state computation on a single processor. On
top of this is an actor-based model with asynchronous calls, message passing,
active waiting, and future types. An essential difference to thread-based con-
currency is that task scheduling is cooperative, i.e., switching between tasks of
the same object happens only at specific scheduling points during the execution,
which are explicit in the source code and can be syntactically identified. This
allows to write concurrent programs in a much less error-prone way than in a
thread-based model and makes ABS models suitable for static analysis. Specifi-
cally, the ABS concurrency model excludes race conditions on shared data.

Delta Modeling Language

Local Contracts, Assertions

Asynchronous Communication

Concurrent Object Groups (COGs)

Imperative Language

Object Model

Pure Functional Programs

Algebraic (Parametric) Data Types

Fig. 2. Layered Architecture of ABS

Local contracts and assertions allow to specify a wide variety of functional prop-
erties about ABS programs in a Design-by-Contract [28] style. The top layer Delta
Modeling Language (DML) adds delta-oriented programming [31] to ABS.
Although being a central feature in ABS, delta modeling and variability-aware
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analyses are out of scope for this paper. The contribution of Clarke et al. in this
volume contains more information on variability modeling.

2.2 ABS Example

In this tutorial we use a simple banking system as a running example. Fig. 3
shows some of its interfaces.

interface Account {
Int getAid();
Int deposit(Int x);
Int withdraw(Int x);
Bool transfer(Int amount, Account target);

}

interface DB {
Unit insertAccount (Account a);
Maybe<Account>getAccount (Int aid);

}
Fig. 3. Banking example: Interfaces

The interface Account models a bank account with the expected services such
as deposit and withdrawal of money. The interface DB models the bank database
used to manage accounts. In particular, it provides means to query for an account
using its unique account number.

class AccountImpl (Int aid, Int balance) implements Account {
Int getAid() { return aid; }

Int deposit(Int x) {
balance = balance + x;
return balance;

}

Int withdraw(Int x) {
if (balance - x >= 0) {
balance = balance - x;
}
return balance;

}

Bool transfer(Int amount, Account target) { ... }

}

Fig. 4. Banking example: Account implementation
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class DBImpl implements DB {
List<Account> as = Nil;
Account getAccount(Int aid) {
Account result = null;
Int n = length(as);
Int cnt = 0;
while (cnt < n) {
Account a = nth(as,cnt);
Fut<Int>idFut = a!getAid();
Int id=idFut.get;
if (aid == id) {
result = a;
}
cnt = cnt+l;
}
return result;

}

Fig. 5. Simplified example of bank database query

In Fig. 4 an implementing class of interface Account is shown. A major design
decision is that the balance of accounts must never be negative. Hence, in case
of a withdrawal it is checked, whether the account has a sufficient balance to
perform the withdrawal. Otherwise, no money is withdrawn and the method
returns the unchanged balance.

Fig. 5 shows how class DatabaseImpl implements the DB interface. The method
getAccount(Int) implements the lookup for a given account number aid as fol-
lows: it iterates through the list of all accounts managed by the database. For
each managed account it looks up the account number via an asynchronous
method call a'getAid(). In case of success, the found account is returned, oth-
erwise null is returned.

3 Analysis Methods

3.1 Resource Analysis

Automatic resource analysis attempts to infer safe upper bounds on the amount
of resources that might be consumed by a program or model during its exe-
cution as a function of its input variables. A resource can be any magnitude
that we are interested to measure for a given model execution. Time or memory
consumption are typical examples of resources. There is an extensive literature
on program resource analysis, both for the functional and imperative paradigm
[5,22,21,24,10,36,33,15]. However, most approaches are focused on sequential pro-
grams and do not treat concurrent programs. This is not a coincidence, given that
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concurrency adds both inherent and accidental complexity to a resource analy-
sis. Inherent complexity stems mainly from the increased non-determinism that
comes with concurrency. Accidental complexity is a consequence of the choice
of concurrency models that derive from low-level primitives that are prevalent
in current mainstream programming languages. Collaborative scheduling, as re-
alized in ABS, reduces the inherent complexity of the analysis as it reduces the
number of possible interleavings that might occur. On the other hand, the use of
future variables and synchronization on guards reduces its accidental complex-
ity. As a consequence, in contrast to languages such as JAVA or C/C++, it is
possible to automatically analyze concurrent ABS models and obtain resource
consumption upper bounds for many interesting and realistic examples.

Basic Approach. We introduce the basic approach to resource analysis of se-
quential programs [6,5] that we later adapt to concurrent ABS models. Before
analyzing a program we abstract away from all information that is not relevant
for resource consumption. An abstract representation that turns out to be useful
is based on cost equations. Cost equations are a specific kind of non-deterministic
recurrence relations enriched with a constraint ¢ that relates the variables that
appear in the cost equation and imposes applicability conditions on it. A cost
equation (c(Z) = e, ) represents a fragment of code (typically a method or
a loop) with integer variables Z, where e represents the cost of executing the
fragment of code as a function of Z and might contain references to other cost
equations.

Ezample 1. The (simplified) cost equations of the method getAccount from Fig. 5
are:

getAccount(as, aid) = 3 + length(as) + while(0, n, aid, as) n = as
while(ent, n, aid, as) = 4 4+ nth(as, ent) + getAid(a)+

if(ent, n, aid, a) + while(ent + 1, n, aid, as) cnt < n
while(ent, n, aid, as) = 0 cnt>n
if(ent, n, aid,a) = 1 a = aid
if(ent, n, aid,a) = 0 a # aid

The cost equations of length, nth and getAid have been omitted.

The cost expression e is obtained by applying a cost model to the ABS model.
Intuitively, a cost model maps each instruction to a cost. The choice of the cost
model determines the resources that we want to observe. For example, if our
cost model maps every instruction to a cost of 1, we will infer an upper bound
on the number of executed instructions. Or we could assign a different cost to
each new C instruction according to the type of object created (and 0 to any
other instruction) to measure the heap memory consumption.

Example 2. The cost model applied in our example counts the number of as-
signments. The cost equation

(getAccount(as, aid) = 3 + length(as) + while(0,n, aid,as), n=as) (1)
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contains the constant 3, because of the assignments Account result = null;,
Int n = length(as);, and Int cnt = 0; in getAccount.

To obtain the constraint ¢ of a cost equation, each variable is abstracted to its
“size” according to a chosen size measure and the instructions are substituted
by constraints that represent the effect of the instructions on the size of the
variables. The set of constraints obtained in this way for a code fragment are
then conjoined to a single predicate . A typical size measure for arrays and
lists is their length. The constraint ¢ can be enriched with invariants generated
using abstract interpretation techniques.

Ezample 3. The constraint of cost equation (1) reflects the use of size measures
and invariants. The list as has been abstracted to its length and through invari-
ant generation techniques we obtain that the result value n of length(as) is the
length of the list as, that is n = as.

There are multiple techniques to solve systems of cost equations [4,9,11]. In
general, the strongly connected components (SCCs) in a system of cost equations
are determined and incrementally solved. For each SCC, we look for a ranking
function that bounds the number of its possible iterations. Then, we approximate
the cost of each iteration as a function of the initial variables.

Ezample 4. We compute the cost of while following the approach of [4]. Assume
the cost of nth(as, cnt) is cnt and the cost of getAid(a) and if(ent, n, aid, a) are 0
and 1, respectively. The cost of one iteration of while is 4 + ¢nt + 1. The value of
cnt changes in each iteration, but we can use the invariant ecnt < n to infer that
cnt is bounded by n. Now we can approximate any iteration by 5+ n. Finally,
the function n — cnt is a valid ranking function of while, because it is always
non-negative and it decreases with each iteration. A valid upper bound of while
is, therefore, (n — cnt) * (5 + n).

Concurrency. ABS’s concurrency model poses additional challenges to resource
analysis [3]. During the execution of a task, other interleaving tasks can modify
the values of the shared variables (that is, object fields). This has to be taken
into account when generating a suitable abstraction of ABS models. A safe
approximation consists in “forgetting” all the information related to object fields
every time when an interleaving might occur (at await and suspend instructions).
This loss of information can reduce the precision of the analysis or even prevent
obtaining upper bounds.

Example 5. In Fig. 6 we consider a small modification of the code in Fig. 5. We
have removed the auxiliary variable n and we do not block the complete database
each time we want to obtain an account’s id. In the cost equation abstraction of
instruction await idFut?; we lose the information about the object’s fields. The
resulting cost expressions of while are:

while(cnt, n, aid, as) = 4 4 length(as) + nth(as, cnt) + getAid(a)+
+ if(ent, n, aid, a) + while(ent + 1, n, aid, as’) ent < as
while(ent, n, aid, as) = length(as) ent > as
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class DBImpl implements DB {
List<Account> as = Nil;
Account getAccount(Int aid) {
Account result = null;
Int cnt = 0;
while (cnt < length(as)) {
Account a = nth(as,cnt);
Fut<Int>idFut = a!getAid();
await idFut?;
Int id = idFut.get;
if (aid == id) {
result = a;
}
cnt = cnt + 1;
}
return result;

}

Fig. 6. Bank database query with concurrency

In these new cost equations we are not able to find a ranking function, because
as can vary at every iteration. Therefore, no upper bound is found.

This approximation can be improved using class invariants. A class invariant
in ABS is a predicate on the object fields that holds not only at the beginning
and end of each method, but also at every release point.

Ezample 6. If we can infer the class invariant as < aspqz, we can include this
invariant after each release point:

while(ent, n, aid, as) = 4 4 length(as) 4+ nth(as, cnt) 4+ getAid(a)+
if(ent, n, aid, a) + while(cnt + 1, n, aid, as’)

ent < as A as' < asmaz

With that invariant, we can find the ranking function as,,., — cnt and obtain
an upper bound.

A more advanced technique for proving termination and for inferring upper
bounds of loops with interleavings was presented in [8]. That technique follows
a rely-guarantee style of reasoning. Assume we have a loop whose termination
proof fails because of the information lost at the release points. First, we assume
that the shared variables are not modified at the release points, but we do not
assume any initial value. Given this assumption we try to prove termination again
using standard techniques. If we fail to prove termination, the interleavings were
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not the cause of the failure. If we succeed, we know that without interleavings
the loop terminates. We can also conclude that if the number of interleavings
that modify the fields involved in the termination proof is finite, then the loop
will also terminate. As we did not assume any initial value on the fields to
prove termination, after any modification, the loop is still terminating. If the
modifications are finite, the overall system will terminate.

In addition, one has to prove the assumption, that is, the number of times the
fields are modified during execution of the loop is finite. To this end, examine the
program points that modify fields. These points can be filtered through a May-
Happen-in-Parallel (MHP) analysis [7] (see also Sect. 3.2) to keep only those
points that can possibly be executed during the execution of the loop. Then
try to prove that the remaining program points are executed a finite number
of times by proving termination of all the loops that can reach these program
points. If we find a circular dependency, that is, the need to prove termination
of a loop to prove its own termination, the process terminates with a failure.

Cost Centers. Distributed systems are usually composed of multiple machines,
each with its own resources. But traditionally the output of a resource analysis
consists only of a single cost expression of the overall cost. This is not appropriate
for distributed systems. It is more interesting to obtain separate cost expressions
for each distributed component. This can be achieved with the notion of cost
centers [3].

A cost center is a part of a distributed system with resources whose con-
sumption we want to measure independently from other parts of the system.
For example, in ABS cost centers might correspond to COGs or single objects.
We can generate cost equations where each part of the cost is multiplied by a
constant that represents the cost center where that cost is incurred. For exam-
ple, the cost equation (C(Z) = 2 * ¢; + 3 x ca, ) represents code that consumes
2 resource units in cost center ¢; and 3 units in cost center c¢3. Once a set of
cost equations parameterized with cost centers cy,co, ..., ¢, is obtained, we can
compute the resources consumed by a cost center ¢;. We set ¢; = 1 and ¢; = 0
for every j # i and solve the cost equations as usual.

3.2 Deadlock Analysis

As explained in Sect. 2.1, ABS models use a high-level concurrency model that
does not deal explicitly with primitives such as locks or semaphores. This allows
us to implement static deadlock analyses that are both precise and efficient. In
general, deadlock situations are produced when a concurrent model reaches a
state in which one or more tasks are waiting for each others’ termination and
none of them can make any progress. The combination of blocking (get) and non-
blocking (await) operations in ABS can result in complex deadlock situations.

To realize a deadlock analysis we have to identify the elements that can con-
tribute to a deadlock situation and their mutual dependencies. In the case of
ABS, these elements can be tasks and COGs. There can be three kinds of de-
pendencies among tasks and COGs:
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1. task-task dependencies, when a task waits for the termination of another
task with a non-blocking operation (await);

2. COG-task dependencies, when a task waits for the termination of another
task but keeps the COG’s lock (using get);

3. task-COG dependencies that occur between each task and the COG they
belong to.

The set of these dependencies form a dependency graph, where the nodes of the
graph are the tasks and COGs involved. A deadlock can occur if, at some point
during the execution, there is circular dependency in the active dependencies at
that point. Given a concrete state, we can extract a dependency graph. If such
graph is cyclic, the state is a deadlock state.

Ezxample 7. Given the following code:

1 class AImp() implements A {

2 Unit syncMessage(A x,String m) {
3 Fut<Unit> f=x!recv(m);

4 f.get

5}

6

7 Unit AsyncMessage(A x,String m) {
8 Fut<Unit> f=x!recv(m);

9 await £7;

10 }

11

12 Unit recv(String m){ }

13 }

14

15 o

16 A al=new cog AImp();
17 A a2=new cog AImp();

18 all!syncMessage(a2,’’ping’’);
19 a2!AsyncMessage (a2,’’ping’’);
20 7}

The corresponding dependency graph is:

{ h

= |a17 AsyncMessage

? [main]

a]_’? recv 016 recv

|a16 syncMessage| 2\ - >

One possible approach for statically detecting deadlock situations is to infer a
safe, abstract dependency graph. That is, we want to infer a dependency graph
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such that any cycle in the dependency graph of any concrete execution can be
mapped to a cycle in the abstract dependency graph. If the abstract graph has
no cycles, no cycle will be possible in any concrete execution of the model.

We can approximate the dependency graphs with a points-to analysis, similar
to the one of [29]. A points-to analysis generates a set of abstract objects that
belong to abstract COGs forming an abstract configuration. Each object is ab-
stracted by a sequence of allocation points of a fixed length that determines the
precision of the analysis. For each abstract object o and method in that kind of
object m, we have an abstract task o.m. The points-to analysis also provides in-
formation on which objects may be pointed to by each reference at any program
point. Here, future variables are considered as special references that point to
abstract tasks. The dependency graph can be constructed as follows: The nodes
of the graph are the abstract COGs and the abstract tasks formed from the
method names and abstract objects. The edges can be obtained by examining
the points-to information of the future variables at the synchronization points
(the await and get instructions).

An important source of imprecision is the fact that we infer a single depen-
dency graph that “covers” all the possible concrete graphs. In the abstract graph
there might be dependencies that form a cycle but that cannot be active simulta-
neously in any concrete execution state. Such a situation would generate a false
positive. We can discard some of these unfeasible cycles with a May-Happen-in-
Parallel (MHP) analysis [7]. A MHP analysis tells us, given two program points,
whether there can be any concrete state in which those two points are being
executed in parallel. A dependency cycle is feasible if all the synchronization
points that generated its dependencies can happen in parallel.

This approach has shown to be efficient and precise enough for many practi-
cal cases. The major source of imprecision is the abstraction performed by the
points-to analysis which fixes the set of possible abstract objects beforehand. In
particular, all objects created inside a loop are abstracted to a single abstract
object. Whenever there are dependencies among these objects’ tasks, we will
get spurious deadlock alerts. The latter are handled better by contract-based
approaches, such as the one of Cosimo et al [19,20] (see also the Chapter by
Laneve at al. in this volume).

3.3 Deductive Verification

For real-world programming languages like JAVA, deductive verification of dis-
tributed and concurrent programs is hard. A major reason for this are concur-
rency models that are not well-defined, platform-dependent or too liberal. These
weaknesses cause a proliferation of the possible interleavings that have to be
checked for a given property. Hence, much research effort has been directed to-
wards techniques that allow to restrict the number of possible interleavings, for
example, symmetry reductions.

As explained in Sect. 2.1, the ABS language was designed around a concur-
rency model whose analysis stays manageable. Shared memory communication is
only possible within a concurrent object group (COG), for which ABS permits
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only cooperative scheduling. Hence, all interleaving points occur syntactically
explicit in an ABS program in form of an await statement which releases con-
trol. Communication between different COGs (which are executed in parallel on
distributed nodes) is restricted to message passing.

The limitations of the ABS concurrency model makes it possible to define a
compositional specification and verification method. This is essential for being
able to scale verification to non-trivial programs, because it is possible to specify
and verify each ABS method separately, without the need for a global invariant.
During formal verification of ABS, we do not model threads or process queues
explicitly, and hence, stay in an essentially sequential setting. This makes it
possible to largely reuse a well-understood specification approach for sequential,
imperative programs. We follow the Design-by-Contract [28] paradigm with an
emphasis on specification of interface and class invariants.

The ABS verification method instantiates a combination of the rely-guarantee
and assumption/commit paradigms [27,30]. The workflow is as follows: For each
interface and each implementing class appropriate invariants are specified:

Interface invariants express mostly restrictions on the control-flow, i.e., con-
straints on the order of asynchronous method calls.

Class invariants are mainly used to relate the state of an object to the local
history of the system. The history is a sequence of events such as method in-
vocations, method completions, or object creations. For instance, a method
invocation event is implicitly generated and recorded in the object-local his-
tory whenever a method is called asynchronously.

To verify an ABS model we prove that for each class an arbitrarily chosen
object preserves its interface and its class invariants. The compositionality of
our method then gives the guarantee that these invariants are preserved by all
objects of the system.

To specify history properties we use a formalisation of histories that was
developed in [18]. For the purpose of this tutorial, we restrict ourselves to the
four event types depicted in Fig. 7.

(1) Object s invokes asynchronously method m on object r . This asynchronous
invocation results in the creation of a future and is also recorded as an
inwocation event in the history of the caller object s.

(2) Once the method invocation is scheduled for execution in r, an invocation
reaction event is created and recorded in the history of the callee r.

(3) After the execution of method m completes and resolves the future, an ac-
companying completion event is created and recorded in the history of r.

(4) When the future gets finally queried for the return value (usually by the
invoking object) a completion reaction event is added to the history of the
caller s.

Specification and verification of ABS models is done in ABS dynamic logic
(ABS DL). ABS DL is a typed first-order logic with the addition of a box modal-
ity: Let ¢ denote an ABS DL formula, and p be a sequence of executable ABS
statements, then
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s:T1 r:T2

invocation (1) m( )
event \ (2) invocation
reaction event
3) completion
completion () ke mmmmmmmm T event
reaction event

Fig. 7. History events and when they occur

— [p]¢ (spoken: box p ¢) is an ABS DL formula with the (informal) meaning:
If p terminates then ¢ hold in its final state.

In addition, ABS DL uses updates (taken from [13]) to capture state changes.
An elementary update has the form x:=t where x is a program variable and ¢ a
term. Updates can be applied to formulas or terms: Let u be an update and & a
term (formula), then {u}¢ is a term (formula).

Example 8. Given a program variable i and the formula i > 0. Then evaluating
the formula

{i:=3}(i > 0)

in a program state s means that i > 0 is evaluated in a state s’ which coincides
with s on all program variables except for i, which has the value 3. The meaning
of an update is identical to the meaning of an assignment whose only side-effect
is the actual update of the value stored in the location on the left-hand side.
The above formula is this equivalent to

[i=3;](i > 0) .

To express properties of a system in terms of histories, ABS DL uses a dedi-
cated, globally defined program variable history, which contains the union of all
object-local histories as a sequence of events. The history events themselves are
elements of datatype Event, which defines for each event type a constructor func-
tion. For instance, an invocation event is represented as invocEv(s, r, fut, m, args)
where s is the caller, r the callee, fut the created future, m the asynchronously
called method and args the method arguments.

In addition to the history formalization as a sequence of events, there are a
number of auxiliary and convenience predicates that allow to express common
properties concerning histories. For example, predicates like wfHist(History),
beginsWith(History, Event), endsWith(History, Event), etc., are used to specify
wellformedness of histories, etc.
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To verify that an ABS program satisfies a specified property, a Gentzen-style
sequent calculus is used. A sequent is a data structure of the form:

¢17"'a¢7n:>w1a"'awn

which has the same meaning as the formula

N o= V .

ie{l...m} je{l...n}
A sequent rule
premise
~ -~ ~
S e Sn
name
S
~—

conclusion

(s,si,i € {1...n} are sequents) has a name, a premise consisting of a possibly
empty sequence of sequents and a conclusion. A sequent rule is called correct if
the validity of the premise implies the validity of the rule’s conclusion. An aziom
is a sequent rule without premise.

A sequent proof is a tree where each node is labelled with a sequent and there
exists a sequent rule r for each inner node such that the conclusion of r matches
the node’s sequent and the rule’s premises match the sequents of the node’s
children. A branch (of the proof tree) is called closed if the last rule application
was an axiom. A proof is called closed if and only if all its branches are closed.

The sequent calculus as realized in ABS DL essentially simulates a symbolic
interpreter for ABS. The assignment rule for a local program variable is:

I' = {v:=e} [rest]p, A

assign
I' = [v=e;rest|p, A

where v is a local program variable and e a pure (side effect free) expression.
The rule rewrites the formula by moving the assignment from the program into
an update. During symbolic execution the updates accumulate in front of the
modality containing the executed program. Once the program to be verified has
been completely executed and the modality is empty, these updates are applied to
the formula after the modality, resulting in a pure first-order formula (assuming
there are no nested modalities). An example for a rule that causes the proof tree
to split is

s I'ye = True = [p;rest]p, A I'ne = False = [q;rest]o, A

t
Pt I'=[if (&) {p} else { q } rest]p, A
where for each branch of the conditional statement a corresponding proof branch
is created. Each of the two branches has to be considered and closed to prove
that the property ¢ holds after the ABS program terminates.
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We conclude this section with the rules for asynchronous method invocation
and the await statement:

asyncMC
I' = o # null A wfHist(history), A
I' = {U}(futureUnused(frc,history) —
{fr := frc||history := append(history,invocEv(this, o, frc,m, e)) }[rest]¢)
{U}[r = o'm(args); rest|o

In case of an asynchronous method invocation the proof splits into two
branches: the first branch (displayed on top) ensures that the callee is not null
and that the history is wellformed. The second branch introduces a new constant
frc which represents the future (placeholder for the method’s return value). The
left side of the implication ensures that the future is new and it has not yet
been used (futureUnused) and updates the history by appending the invocation
event for the asynchronous method call. Afterwards, execution continues with
the remaining program rest. The sequent rule for the await statement is:

awaitComp
I' = Cinv(C)(heap, history,this), A
I' = {heap := newHeap ||
history := append(history, append(newHist, compREv(...)))}
(Cinv(C)(heap, history, this) A wfHist(history) — [rest]¢), A

I' = [await r?; rest|p, A

where newHist, newHeap are fresh Skolem constants; C is the class in which the
ABS code in the premise’s modality is executed.

The await statement releases control allowing other threads to take over. Once
the await guard is satisfied (here: the future is resolved), the waiting thread can
be rescheduled. As control of the COG is released by the currently executed
code, we must ensure that a state has been reached in which the invariant of
class C' is satisfied, because the continuing thread will rely on it. The fulfillment
of that class invariant is checked by the first branch.

The second branch assumes that the await condition is satisfied and continues
the execution in a state where the completion reaction event has been appended
to the extended history. This means that the value of the history variable before
execution of the await statement has been some event sequence (modeled with
the Skolem constant newHist), representing those events that occurred between
control release and control resume. In our rely-guarantee-based setting, we can
safely assume that upon resume of control, the class invariant has been estab-
lished by the previous thread and holds again. But the heap might have been
changed and all previously accumulated knowledge about it must be removed.
This is achieved by assigning to the heap an unknown value (modeled with the
Skolem constant newHeap).
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4 Application Examples

4.1 Resource Analysis

We explore the possibilities of the different cost models, size measure, and
cost center definitions. We will analyze the example from Fig. 8. The
resource and termination analysis is part of the SACO tool [2] available at
http://costa.ls.fi.upm.es/web/saco.php. Once the SACO plugin has been
installed, please create an ABS project with the code of our example. To ana-
lyze the program, we select the method getAccount in the Outline view. Then,
we select SACO->Analyze with SACO. A dialog will appear showing the different
analyses available in SACO. We check Resource Analysis and click on Analyze.
Unfortunately, the result we obtain contains the term c(maximize failed) which
indicates a failure in the maximization process. This is, because even if there are
no concurrent interleavings, we need an invariant for the initial value of the field
as. So we add an invariant at the beginning of the method:

[as <= max(as)]
Account getAccount(Int aid) {
Account result = null;

Once the invariant is added we obtain a valid upper bound. Instead of analyzing
directly, we can select SACO->Analyze with SACO, check Resource Analysis and
click on Configure+Analyze. Now we can select the parameters of the analysis.
Some of the options are:

Cost Model: indicates the type of resource that we are interested in measur-
ing. Some of the cost models are: Steps (counts the number of executed
instructions), Tasks (counts the number of asynchronous calls to methods),
Memory (measures the size of the created data structures).

Cost Centers: allows to decide whether we want to use cost centers or not. If
we decide to use cost centers, we can choose between class and object. The
option class associates a cost center to each class, whereas object associates
a cost center to each abstract object inferred in the points-to analysis.

Size Abstraction: allows choosing how data structures are abstracted into an
integer number. Two possibilities are provided: Size, which counts all nodes
in the structure, and Depth, which counts the length of the longest path.

Now we analyze the number of tasks that are created during the execution of
getAccount in total. We set the cost model to Tasks, no cost centers and size
abstraction Depth (Our main data structure is a list and Depth corresponds to
the length of the list). We obtain that the number of tasks is maz(as) which
corresponds to the number of calls to getAid.

Next we perform an analysis with cost centers. We select the option cost center
class and the cost model Steps. The result is:


http://costa.ls.fi.upm.es/web/saco.php
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12 4 6 x nat(max(as) — 1) + nat(max(as) — 1) * (20 + 9 * nat(max(as) — 2))
within cost-center ’DBImpl’
nat(max(as) — 1) within cost-center ’AccountImpl’

Here we can see how the cost in AccountImpl is linear but is quadratic in
DBImpl. This quadratic cost is due to the function nth that has linear cost and
is executed a linear number of times. Knowing that, we could try to improve the
method to avoid the quadratic cost.

Rely-Guarantee Termination. We try to prove termination of the example with
interleavings in Fig. 6. To apply the rely-guarantee method, we need a complete
model with a main block (termination depends on which other methods can be
executed in parallel). We add the the following main block:

{
Account a;
DB db = new cog DBImpl();
Int max = 10;
Int i = 1;
while(i <= max){
a = new cog AccountImpl(i,0);
Fut<Unit> aFut = db!insertAccount(a);
await aFut?;
i = i+1;
}
db!getAccount (3);
}

In this main block we create a database, then add 10 new accounts with
account ids ranging from 1 to 10, and finally we query the database with the
account 3.

To analyze the resulting program, we select the main block in the Outline
view, select SACO->Analyze with SACO, check Termination Analysis and click
on Analyze. The result is a list of strongly connected components (SCCs) and the
information whether they are terminating or not. In this case, all the SCCs turn
out to be terminating. The termination of getAccount depends on as. However,
when getAccount is executed, all the insertAccount calls must have termi-
nated. That is detected by the MHP analysis and thus termination is proven.

If we remove the instruction await aFut?;, this is not the case any more.
Several instances of insertAccount might execute in parallel with getAccount.
But we can prove termination of the loop in the main block, and this implies
that as can be modified in parallel only a finite number of times (10 times) and,
therefore, getAccount is still guaranteed to terminate.

4.2 Deadlock Analysis

We illustrate the behavior of the analysis with the example code of Fig. 8. The
example has a main method (line 44) that creates a server and a client. Then, it
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19 ...//Module and Interface declarations have been omitted
20

21 class ClientI(Server server) implements Client {
22 Config config = null;

23 Unit setConfig(Config co) {

24 config=co;

25 }

26 Unit syncSend(String m) {

27 //await config!=null;

28

29 Fut<Unit> f = server!recv(m);
30 f.get;

31 }

32 }

33 class ServerI implements Server{
34 Config co = null;
35 Unit ini(Client client) {

36 co = new ConfigI();

37 Fut<Unit> f = client!setConfig(co);
38 f.get;

39 }

10  Unit recv(String message) {

41 }

42 }

43

44 {

45 Server s = new cog ServerI();
146 Client c = new cog ClientI(s);
47 s'lini(c);

48 c!syncSend("hello");

49 }

50 }

Fig. 8. Client-server deadlock example

initializes the server with a reference to the client at line 47. The method ini ()
(line 35) creates a Config object and passes it to the client using the method
setConfig() (line 23). The server should not do anything until the client has
received the configuration so it waits holding the lock at line 38. Finally, the
main method calls syncSend() in line 48. Method syncSend() (line 26) sends
a message to the server by calling recv() (line 40) and blocks the client until
recv() is completed in line 30.

A deadlock can occur if syncSend() (line 26) starts before setConfig()
(line 23). The server will stay blocked at line 38 waiting for setConfig() to fin-
ish. At the same time the client will stay blocked at line 30 waiting for recv().
Neither setConfig() nor recv() is able to start as their COGs are blocked by
other methods.
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The deadlock analysis proceed as follows. First, is uses the points-to informa-
tion to identify the objects, COGs and tasks that can be created: ¢ (the client),
s (the server) and their respective tasks: c.setConfig, c.syncSend, s.ini, and

s.recv. Second, it identifies the synchronization points and extracts their de-

. . tine 30 line 30
pendencies: line 30 generates ¢ —— s.recv and c.syncSend—— s.recv;

line 38 generates s M c.setConfig and s.iniM c.setConfig; also

the dependencies from each task to its COG: s.recvw s, s.iniM s,

c.setConfigM ¢, and c.syncSendM c.

40
B OY:
| 381
RTINS \

Fig. 9. Deadlock dependency graph of example from Fig.8

In the thus constructed dependency graph (see Fig. 9), we look for cycles.

. line 30 line 40 line 38 . line 23
There is one cycle: ¢ —— s.recv S c. setConfig— c.

Finally, we check whether all program points involved in the cycle can happen
in parallel using the MHP analysis. In this case, all the involved points (line 30,
line 40, line 38 and line 23) can happen in parallel to each other and the tool
will report the deadlock cycle. If we uncomment line 27, setConfig() is forced
to finish before proceeding to line 30. Therefore, no deadlock is possible. The
dependency graph is the same, but the MHP analysis reports that line 30 and
line 23 now cannot happen in parallel and the cycle is discarded.

This deadlock analysis is part of the SACO tool (See Sec. 4.1). Lets use the
Eclipse plugin interface to analyze the example from Fig. 8. Once the SACO
plugin has been installed, we create a ABS project with the code of our example.
In order to analyze the program, we select the Main Block in the Outline view.
Then, we select SACO->Analyze with SACO. A dialog will appear showing the
different analyses of SACO. Check the option Deadlock Analysis and click
Analyze. Shortly after, a report of the possible deadlocks will appear in the
Eclipse console (See Fig. 10) and the synchronization instructions involved in the
deadlocks will appear highlighted. Again, if we uncomment line 27 and repeat
the analysis, we will see a new message in the console indicating that the program
has no deadlocks.
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cog ServerI(45,main) blocked in object ServerI(45,main) at ServerI.ini Line 38
|
(Waiting for)
\/
task ClientI.setConfig in object ClientI(46,main) in cog ClientI(46,main)
|
(MHP)
\/
cog ClientI(46,main) blocked in object ClientI(46,main) at ClientI.syncSend Line 30
|
(Waiting for)
\/

task ServerI.recv in object ServerI(45,main) in cog ServerI(45,main)

Fig. 10. Output of the deadlock analysis for the example of Fig. 8

4.3 Deductive Verification

We illustrate verification of ABS models along some examples. The account
types supported by the banking system example are not allowed to be in debt,
i.e., their balance must always be non-negative. To verify that our ABS model
implements this policy, we need to specify the property as an invariant of class
AccountImpl in Fig. 4. Invariants for interfaces and classes are specified in a
separate file whose suffix is .inv as follows:

\invariants (Seq historySV, Heap heapSV, ABSAnyInterface self) {
nonNegativeBalance : Account.AccountImpl {
int::select (heapSV, self, Account.AccountImpl::balance) >= 0
};
}

The keyword invariants opens a section wherein invariants can be specified. Its
parameters declare program variables that can be used to refer to the history
(historySV), the heap (heapSV), and the current object (self, similar as JAVA’s
this). These program variables can be used in the specification of class invariants.

The section declares an invariant with the name nonNegativeBalance for
class AccountImpl. The class invariant states that the value of field balance for
the current object must be non-negative. The built-in function int::select is
the standard heap selection function for return type Int.

Loading the problem in KeY-ABS opens the proof obligation selection dialog
shown in Fig. 11. On selection of the proof obligation Preserves Class Invari-
ant for method withdraw(Int) of class AccountImpl, a proof obligation of the
following (slightly simplified) form is generated:

{history := append(history,invocREv(...))}
((CInv(heap, history, self) A wfHist(history)) — [mb;]|Clnv(...))

where mb denotes the body of method withdraw(Int). In this example the proof
obligation can be proven automatically with a few steps.

The attempt to prove that the invariant is preserved as well by method
deposit(Int) fails with one open goal. Inspecting the goal reveals that the
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Fig. 11. Proof-Obligation selection dialog

method cannot be proven for negative arguments of deposit(Int). This is not
an issue for method withdraw which has an explicit check, but for deposit(Int)
negative arguments need to be excluded using either a precondition or an invari-
ant. An invariant is more appropriate, because it reflects the design decision that
accounts never run a negative balance. Moreover, an invariant lets one reuse the
restriction also in other contexts.

\invariants (Seq historySV, Heap heapSV, ABSAnyInterface self) {
amountOfDepositNonNegative : Account.AccountImpl {
\forall Event ev; (
\forall int i; ( i >= 0 & i < seqLen(historySVv) ->
( ev = Event: :seqGet (historySV, i) &
( isInvocationEv(ev) | isInvocationREv(ev)) &
getMethod (ev) = Account.Account::deposit#ABS.StdLib.Int ->
int::seqGet (getArguments(ev), 0) >= 0 ) ) )
};

This invariant ensures that method deposit(Int) is in any event history
always invoked with a non-negative argument by inspecting the associated invo-
cation (reaction) events. With this additional invariant we can close the proof
for deposit(Int), requiring to instantiate the second quantifier in the invariant
once by hand.

As a final example, we specify how the value of field balance of class Account
relates to the history: it always coincides with the value returned by the most
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recent call of the deposit(Int) or withdraw(Int) method. We specify this
property as follows:

\invariants (Seq historySV, Heap heapSV, ABSAnyInterface self) {

balanceConsistent
\forall Event ev;(
(ev = Event::seqGet(historySV, seqlLen(historySV) - 1) &
ev = compEv(self, getFuture(ev), getMethod(ev), getResult(ev)) &
( getMethod(ev) = Account.Account::withdraw#ABS.StdLib.Int |
getMethod(ev) = Account.Account::deposit#ABS.StdLib.Int ) )

Account.AccountImpl {

->
getResult (ev) = int::select (heapSV,self,
Account .AccountImpl: :balance) )

This invariant can be proven automatically for the methods deposit(Int)
and withdraw(Int). The proofs of all invariants combined require 954 proof
steps with only two user interactions for method deposit(Int) and 1700 proof
steps for method withdraw(Int) with no user interactions (see Fig. 12).

KeY 1.7
|7 | s (5] SR | | RIBTFTE]
Proofs < [Inner Node

I L
\then (invocREv(caller_@,
this,
future,
Account.Account: :withdraw#ABS.StdLib.Int,

Env. with model .@2:32:57 PM #1
' Preserves Invariant_Account.Accountimpl_deposit
Env. with model .@2:38:24 PM #1

RslPreserves Invariant_Account.Accountmpl_withdraw

I Goals  Proof Search Strategy | Rules |

989:0ne Step Simplification: 4 rules
990:true_left

991:shift_paren_or

992:0ne Step Simplification: 6 rules
993:castDel

994:castDel

995:0One Step Simplification: 4 rules
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997:cnf_rightDist
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1002:commute_or_2
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1004:shift_paren_or
1005:shift_paren_or
1006:swapQuantifiersAll

1008:castDel

seqSingleton(x_0_6)))
\else ((HistorylLabel)(seqGetOutside)))),
\forall int i;
\forall Historylabel ev;
Proof closed 2

Proved.
Statistics:
Nodes: 1700
Branches: 12

tory)

iments(ev), 0) >= 0

\zdepositi#ABS.StdLib.Int
~ legLenthistory))

ok ] IryLabel: :seqGet (history, 1))
1 = segLen(history))

T \then (invocREv(caller_@,
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=
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K" Strategy: Applied 688 rules (0.4 sec), closed 6 goals, 0 remaining

Fig. 12. Proof that method withdraw preserves the invariants

5 Conclusion and Future Perspectives

We discussed three complementary analyses techniques for the ABS modeling
language: deadlock detection, resource consumption, and deductive verification.
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None of the analyses in this tutorial would have been possible with the same
degree of automation and precision in implementation languages such as JAva
or C/C++. It is a crucial insight that ABS was developed from the start with
analyzability in mind. As the ABS examples demonstrate (and, even more so,
industrial case studies [34]), it is nevertheless possible to create rich and realistic
software models.

The three presented analyses differ in difficulty of usage and in precision:
easiest to use is the deadlock detection analysis, which is fully automatic and
does not require any configuration. If the analysis finds a problem, the call
chain leading to the potential deadlock is shown and the involved statements
are highlighted in the Eclipse IDE. The deadlock analysis is correct, i.e., when
no deadlocks are reported, the analyzed ABS program is deadlock-free. But, as a
consequence of abstraction and over-approximation, not all reported deadlocks
need actually occur, so one has to carefully check the analysis report to reject
false positives.

The resource consumption analysis requires that a cost model was specified or
at least an a priori specified cost model needs to be selected. The actual analysis
is again fully automatic and the derived costs for the ABS model are shown. The
analysis might, however, not always return with a result. If it returns with an
upper bound, then this is sound, that is, no concrete run of the ABS model will
exceed the computed worst case. It is, however, possible that no concrete run
reaches the upper bound, that is, the analysis might not be tight.

Deductive verification clearly is the most difficult to use analysis presented
in this paper. It requires to specify invariants of the system and the verification
process requires some amount of user interaction. Both activities require consid-
erable expertise with formal specification and verification. On the positive side,
the deductive verification is precise and highly expressive with respect to the
properties that can be specified. It allows to verify data dependent, functional
properties of ABS models. An in-depth discussion of the trade-offs of various
verification scenarios can be found in [12].
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Abstract. Deadlock detection in recursive programs that admit dy-
namic resource creation is extremely complex and solutions either give
imprecise answers or do not scale.

We define an algorithm for detecting deadlocks of linear recursive
programs of a basic model. The theory that underpins the algorithm
is a generalization of the theory of permutations of names to so-called
mutations, which transform tuples by introducing duplicates and fresh
names.

Our algorithm realizes the back-end of deadlock analyzers for object-
oriented programming languages, once the association programs/basic-
model-programs has been defined as front-end.

1 Introduction

Modern systems are designed to support a high degree of parallelism by en-
suring that as many system components as possible are operating concurrently.
Deadlock represents an insidious and recurring threat when such systems also
exhibit a high degree of resource and data sharing. In these systems, deadlocks
arise as a consequence of exclusive resource access and circular wait for accessing
resources. A standard example is when two processes are exclusively holding a
different resource and are requesting access to the resource held by the other. In
other words, the correct termination of each of the two process activities depends
on the termination of the other. Since there is a circular dependency, termination
is not possible.

The techniques for detecting deadlocks build graphs of dependencies (z,y)
between resources, meaning that the release of a resource referenced by x de-
pends on the release of the resource referenced by y. The absence of cycles in the
graphs entails deadlock freedom. The difficulties arise in the presence of infinite
(mutual) recursion: consider, for instance, systems that create an unbounded
number of processes such as server applications. In such systems, process inter-
action becomes complex and either hard to predict or hard to be detected during
testing and, even when possible, it can be difficult to reproduce deadlocks and
find their causes. In these cases, the existing deadlock detection tools, in order
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to ensure termination, typically lean on finite models that are extracted from
the dependency graphs.

The most powerful deadlock analyzer we are aware of is TYPICAL, a tool
developed for pi-calculus by Kobayashi [20,18,16,19]. This tool uses a clever
technique for deriving inter-channel dependency information and is able to deal
with several recursive behaviors and the creation of new channels without using
any pre-defined order of channel names. Nevertheless, since TYPICAL is based on
an inference system, there are recursive behaviors that escape its accuracy. For
instance, it returns false positives when recursion is mixed up with delegation. To
illustrate the issue we consider the following deadlock-free pi-calculus factorial
program

x*factorial?(n,(r,s)).
if n=0 then r?m. s!m else new t in
(r?m. t!'(m*n)) | factorial!(n-1,(t,s))

In this code, factorial returns the value (on the channel s) by delegating this
task to the recursive invocation, if any. In particular, the initial invocation of
factorial, which is r!1 | factorial! (m, (r,s)), performs a synchronization
between r!1 and the input r?m in the continuation of factorial?(n, (r,s)).
In turn, this may delegate the computation of the factorial to a subsequent
synchronization on a new channel t. TYPICAL signals a deadlock on the two
inputs r?m because it fails in connecting the output t! (m*n) with them.

The technique we develop in this paper allows us to demonstrate the deadlock
freedom of programs like the one above.

To ease program reasoning, our technique relies on an abstraction process
that extracts the dependency constraints in programs

— by dropping primitive data types and values;

— by highlighting dependencies between pi-calculus actions;

— by overapproximating statement behaviors, namely collecting the dependen-
cies and the invocations in the two branches of the conditional (the set union
operation is modeled by &).

This abstraction process is currently performed by a formal inference system that
does not target pi-calculus, but it is defined for a JAvA-like programming lan-
guage, called ABS [17], see Section 6. Here, pi-calculus has been considered for ex-
pository purposes. The ABS program corresponding to the pi-calculus factorial
may be downloaded from [15]; readers that are familiar with JAVA may find the
code in the Appendix A. As a consequence of the abstraction operation we get
the function

factorial(r,s) = (r,s)&(r,t)&factorial(t, s)
where (r, s) shows the dependency between the actions r?m and s'!'m and (r,t)
the one between r?m and t! (m*n). The semantics of the abstract factorial is
defined operationally by unfolding the recursive invocations. In particular, the
unfolding of factorial(r,s) yields the sequence of abstract states (free names
in the definition of factorial are replaced by fresh names in the unfoldings)
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- (r, 8)&(r, t)&factoriall(t, s)

- (r, $)&(r, t)&(t, $)&(t,u)&factorial(u, s)

= (1, 8)&(r, ) &(t, 8)&(t, u)&(u, 5)&(u, v)
&factorial(v, s)

—

factorial(r, s)

We demonstrate that the abstract factorial (and, therefore, the foregoing
pi-calculus code) never manifests a circularity by using a model checking tech-
nique. This despite the fact that the model of factorial has infinite states.
In particular, we are able to decide the deadlock freedom by analyzing finitely
many states — precisely three — of factorial.

Our Solution. We introduce a basic recursive model, called lam programs — lam
is an acronym for deadLock Analysis Model — that are collections of function
definitions and a main term to evaluate. For example,

(factorial(r,s) = (r,s)&(r,t)&factorial(t,s) , factorial(r,s) )
defines factorial and the main term factorial(r,s). Because lam programs
feature recursion and dynamic name creation — e.g. the free name ¢ in the defi-

nition of factorial — the model is not finite state (see Section 3).
In this work we address the

Question 1. Is it decidable whether the computations of a lam program will ever
produce a circularity?

and the main contribution is the positive answer when programs are linear re-
cursive.

To begin the description of our solution, we notice that, if lam programs are
non-recursive then detecting circularities is as simple as unfolding the invocations
in the main term. In general, as in case of factorial, the unfolding may not
terminate. Nevertheless, the following two conditions may ease our answer:

(i) the functions in the program are linear recursive, that is (mutual) recursions
have at most one recursive invocation — such as factorial;

(ii) function invocations do not show duplicate arguments and function defini-
tions do not have free names.

When (i) and (ii) hold, as in the program

(f(x’ Y, Z) = (.Z‘, y)&f(y’ 2, .’L‘), f(u’ v, w)) )
recursive functions may be considered as permutations of names — technically
we define a notion of associated (per)mutation — and the corresponding the-
ory [8] guarantees that, by repeatedly applying a same permutation to a tuple of
names, at some point, one obtains the initial tuple. This point, which is known
as the order of the permutation, allows one to define the following algorithm for
Question 1:

1. compute the order of the permutation associated to the function in the lam
and
2. correspondingly unfold the term to evaluate.
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For example, the permutation of £ has order 3. Therefore, it is possible to stop
the evaluation of f after the third unfolding (at the state (u, v)&(v, w)&(w, u)
& f(u,v,w)) because every dependency pair produced afterwards will belong to
the relation (u, v)&(v, w)&(w, u).

When the constraint (ii) is dropped, as in factorial, the answer to Question 1
is not simple anymore. However, the above analogy with permutations has been
a source of inspiration for us.

(g(zo, 1,22, 23,74, x5, 6) = (x5, 71)& (0, 78) & (s, ¥7)&g(T2, T0, T1, T3, Tg, T7, T5),
g(wo, 21,2, T3, T4, T5,76) )

g(xo, 21, X2, T3, Ta, Ts, Tg)

(w3, 21)&(w0, 28)&(w8,27) & g2, %0, 71,25, T6, T7, Ts)
(w5, 70)&(22, 210)& (210, T9) & g(w1, 2, w0, 27, T8, T9, T10)
(I7-,952)&(<T1,-le)&(ﬁz-,ﬂﬁn) & g(-To-,I1,$2,I97«T10,9€11,I12)
order:> s - = = .
(w9, x1)&(x0, 214)&(14, T13) & gz, 0,1, 11, T12, 13, T14)
(w11, 20)&(22, 216) & (716, T15) & g(w1, w2, To, T13, T14, T15, T16)

Fig.1. A lam program and its unfolding

Consider the main term factorial(r,s). Its evaluation will never display
factorial(r, s) twice, as well as any other invocation in the states, because
the first argument of the recursive invocation is free. Nevertheless, we notice
that, from the second state — namely (7, s)&(r,t)&factorial(t,s) — onwards,
the invocations of factorial are not identical, but may be identified by a map
that

— associates names created in the last evaluation step to past names,
— is the identity on other names.

The definition of this map, called flashback, requires that the transformation as-
sociated to a lam function, called mutation, also records the name creation.
In fact, the theory of mutations allows us to map factorial(t,s) back to
factorial(r, s) by recording that ¢ has been created after r, e.g. r<t.

We generalize the result about permutation orders (Section 2):

by repeatedly applying a same mutation to a tuple of names, at some
point we obtain a tuple that is identical, up-to a flashback, to a tuple in
the past.

As for permutations, this point is the order of the mutation, which (we prove)
it is possible to compute in similar ways.
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However, unfolding a function as many times as the order of the associated
mutation may not be sufficient for displaying circularities. This is unsurprising
because the arguments about mutations and flashbacks focus on function invo-
cations and do not account for dependencies. In the case of lams where (i) and
(ii) hold, these arguments were sufficient because permutations reproduce the
same dependencies of past invocations. In the case of mutations, this is not true
anymore as displayed by the function g in Figure 1. This function has order 3
and the first three unfoldings of g(xg,x1,x2,x3, x4, T5,2¢) are those above the
horizontal line. While there is a flashback from g(xg, x1, x2, g9, T10, T11, 12) tO
g(zo, x1, 22, 3, T4, 5, T ), the pairs produced up-to the third unfolding

(w3, 11)&(20, 28) &(78, T7)&(T5, T0) &(T2, T10) &(T10, T9)

&(x7,22)&(71, T12)&(T12, 711)
do not manifest any circularity. Yet, two additional unfoldings (displayed below
the horizontal line of Figure 1), show the circularity

(20, )& (8, T7)&(27, T2) & (22, T10) &(Z10, Z9)
&(xg, 1) & (1, x12)&(X12, T11)&(Z11, T0) -

L
order I::> |
. flashback
circularity
saturated state

= 2 order
@)

LA

@ flashback

order I::>

circularity

saturated state
= 2 order

(b)

Fig. 2. Flashbacks of circularities

In Section 4 we prove that a sufficient condition for deciding whether a lam
program as in Figure 1 will ever produce a circularity is to unfold the function g
up-to two times the order of the associated mutation — this state will be called
saturated. If no circularity is manifested in the saturated state then the lam is
“circularity-free”. This supplement of evaluation is due to the existence of two
alternative ways for creating circularities. A first way is when the circularity is
given by the dependencies produced by the unfoldings from the order to the
saturated state. Then, our theory guarantees that the circularity is also present
in the unfolding of g till the order — see Figure 2.a. A second way is when the
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dependencies of the circularity are produced by (1) the unfolding till the order
and by (2) the unfolding from the order till the saturated state — these are the
so-called crossover circularities — see Figure 2.b. Our theory allows us to map
dependencies of the evaluation (2) to those of the evaluation (1) and the flashback
may break the circularity — in this case, the evaluation till the saturated state
is necessary to collect enough informations. Other ways for creating circularities
are excluded. The intuition behind this fact is that the behavior of the function
(the dependencies) repeats itself following the same pattern every order-wise
unfolding. Thus it is not possible to reproduce a circularity that crosses more
than one order without having already a shorter one. The algorithm for detecting
circularities in linear recursive lam programs is detailed in Section 5, together
with a discussion about its computational cost.

We have prototyped our algorithm [15]. In particular, the prototype (1) uses
a (standard but not straightforward) inference system that we developed for
deriving behavioral types with dependency informations out of ABS programs [13]
and (2) has an add-on translationg these behavioral types into lams. We have
been able to verify an industrial case study developed by SDL Fredhoppper —
more than 2600 lines of code — in 31 seconds. Details about our prototype and a
comparison with other deadlock analysis tools can be found in Section 6. There
is no space in this contribution to discuss the inference system: the interested
readers are referred to [13].

2 Generalizing Permutations: Mutations and Flashbacks

Natural numbers are ranged over by a, b, i, j, m, n, ..., possibly indexed. Let V
be an infinite set of names, ranged over by x,y,z, . We will use partial order
relations on names — relations that are reflexive, antisymmetric, and transitive —,
ranged over by V, V' 1, . Let x € V if, for some y, either (z,y) € V or (y,z) € V.
Let also var(V) = {z | z € V}. For notational convenience, we write & when we
refer to a list of names x1,...,2,.

Let V@ Z<Z, with Z € V and Z ¢ V, be the least partial order containing the
set VU {(y,2) | v € T and (x,y) € V and z € Z}. That is, Z become mazimal
names in V@ Z<Z. For example,

Az, 2)} @r<z = {(z,2), (7,2), (2, 2) };

—if V= {(z,y), («',y')} (the reflexive pairs are omitted) then V@ y<z is the
reflexive and transitive closure of {(x,y), (', y"), (y, 2)};

—if V = {(z,9),(x,y')} (the reflexive pairs are omitted) then V@ x<z is the
reflexive and transitive closure of {(x,y), (x,y"), (v, 2), (¢, 2)}.

Let z <yeV be (z,y) € V.

Definition 1. A mutation of a tuple of names, denoted (a1, ,an ) where 1 <
a1, ,an <2 xn, transforms a pair <V, (21, ,xn)> nto <W’, (24, ,x'n)>
as follows. Let {b1, ,bx} ={a1, ,an}\{1,2, ,n} andletzp,, 2z, bek
pairwise different fresh names. [That is names not occurring either in x1, , Ty
orin V.| Then



32 E. Giachino and C. Laneve

- if 1 <a; <n then x} = x4, ;
- if a; > n then x}, = z4,;

!
-V =V®ux, s Tn<Ziq, ) Zi -

The mutation (a1, ,an) of {V,(x1, ,an)) is written {V,(z1, ,zn))

las, _gn) Vo (2, ,a)) and the label (a1, ,a,) is omitted when the mu-
tation is clear from the context. Given a mutation p = (a1, ,a,), we define

the application of u to an index i, 1 <i < n, as p(i) = a;.

Permutations are mutations (a1, , an ) where the elements are pairwise dif-
ferent and belong to the set {1,2, ,n} (e.g. (2,3,5,4,1)). In this case the par-
tial order V never changes and therefore it is useless. Actually, our terminology
and statements below are inspired by the corresponding ones for permutations. A
mutation differs from a permutation because it can exhibit repeated elements, or
even new elements (identified by n + 1 < a; < 2 x n, for some a;). For example,
by successively applying the mutation (2,3,6,1,1) to <V, (xl,xg,xg,x4,x5)>,
with V = {(z1,21), ,(x5,25)} and ¥ = x1, 22, x3, x4, x5, Wwe obtain

<V, ($1,$2,$3,$4,Z‘5)> - <V1,(x2,x3,y1,x1,x1)>
— Vo, (x3,Y1, Y2, T2, 22) )
- <V3,(y1,y2,y3,x3,x3)>
- (Va, (y2, Y3, yas y1,91) )
N

where V1 = V@ Z<y; and, for i > 1, V;41 = V; ® y;<y;+1. In this example, 6
identifies a new name to be added at each application of the mutation. The new
name created at each step is a maximal one for the partial order.

We observe that, by definition, (2,3,6,1,1) and (2,3,7,1,1) define a same
transformation of names. That is, the choice of the natural between 6 and
10 is irrelevant in the definition of the mutation. Similarly for the mutations
(2,3,6,1,6) and (2,3,7,1,7).

Definition 2. Let (a1, ,a,) =~ (d}, ,a,]) if there exists a bijective func-
tion f from [n +1..2 x n] to [n+1..2 x n] such that:

1. 1 < a; < n implies a) = a;;
2. n+1<a; <2 xn implies a) = f(a;).

We notice that (2,3,6,1,1) ~
However (2,3,6,1,6) # (2, 3,6,

transformations of names.

(2,3,7,1,1) and (2,3,6,1,6) ~ (2,3,7,1,7).
1,7); in fact these two mutations define different

Definition 3. Given a partial order V, a V-flashback is an injective renaming
p on names such that p(x) <z €V.

In the above sequence of mutations of (1, z2, 3,24, x5) there is a V4-flashback
from (y2,ys,ya,y1,y1) to (x2,23,y1,21,21). In the following, flashbacks will be

also applied to tuples: p(z1, , zy) o (p(z1), ,p(zn)).
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In case of mutations that are permutations, a flashback is the identity renam-
ing and the following statement is folklore. Let u be a mutation. We write pu™
for the application of  m times, namely <V, (21, ,xn)> Fo <W’, (1, ,yn)>
abbreviates (V, (z1, ,2,)) SV (v, )

~
m times

Proposition 1. Let p = (a1, ,a,) and
<va (xla al'n)> H_) <vla (xlla ,1’;1)>
e <W”, (yla ayn)>

SV )

If there is a V'-flashback p such that p(y1, ,yn) = (x1, ,xy,) then there
is a V" -flashback from (vy, ,y,) to (=}, ,zl).

Proof. Let p’ be the relation y; — af, for every i. Then

1) p’ is a mapping: y; = y; implies 2} = 2. In fact, y; = y’; means that either
(i) 1 < aj,a; < nor (i) a;,a; > n. In subcase (i) ya; = Ya,, by definition of
mutation. Therefore p(y.,) = p(ya;) that in turn implies x,, = x,,. From this
last equality we obtain z} = z. In subcase (ii), a; = a; and the implication
follows by the fact that (a1, ,a,) is a mutation.

2) p' is injective: x; = z implies y; = y}. If 2} € {z1, ,2,} then 1 <
a;,a; < n. Therefore, by the definition of mutation, z,, = z,; and, because p is
a flashback, ya, = ya,;. By this last equation y; = y;. If 2} ¢ {21, ,z,} then
a; > n and a; = a;. Therefore y; = y; by definition of mutation.

3) p' is a flashback: x} # y; implies x} < y; € V. If 1 < a; < n then y; = yq,
and xj = x4,. Therefore y,, # x4, and we conclude by the hypothesis about p
that p'(y,,) satisfies the constraint in the definition of flashback. If a; > n then
1, ,xn < € V. Since p(y;) = x;, by the hypothesis about p, z; < y; € V.
Therefore, by definition of mutation, z} < y; € V. We derive 2} < ¢, € V" by
transitivity because V¥ € V" and y; < y; € V”.

The following Theorem 1 generalizes the property that every permutation has
an order, which is the number of applications that return the initial tuple. In
the theory of permutations, the order is the least common multiple, in short
lem, of the lengths of the cycles of the permutation. This result is clearly false
for mutations because of the presence of duplications and of fresh names. The
generalization that holds in our setting uses flashbacks instead of identities. We
begin by extending the notion of cycle.

Definition 4 (Cycles and sinks). Let p = (a1, ,an) be a mutation and
let 1 < ayy, , ai, < n be pairwise different naturals. Then:

i. the term (ay, a;,) is a cycle of u whenever pu(a;;) = a;,,,, with 1 < j <
¢ 1, and p(a;,) = aq, (i-e., (as, a;,) s the ordinary permutation cycle);

it. the term [a;, i, 1]a;, i a bound sink of p whenever a;, ¢ {a1,  ,an},
plai;) = ai,,,, with 1 < j < 1, and a;, belongs to a cycle;
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iii. the term [a;, ai,]a; withn < a < 2 x n, is a free sink of u whenever
ai, ¢ {a1,  ,an} and plag,) = ai;,,, with1<j<{ 1 and p(a;,) = a.

The length of a cycle is the number of elements in the cycle; the length of a sink
1s the number of the elements in the square brackets.

For example the mutation (5,4,8,8,3,5,8,3,3) has cycle (3,8) and has bound
sinks [1,5]s, [6,5]s, [9]3, [2,4]s, and [7]s. The mutation (6,3,1,8,7,1,8) has
cycle (1,6), has bound sink [2,3]; and free sinks [4]s and [5, 7]s.

Cycles and sinks are an alternative description of a mutation. For instance
(3,8) means that the mutation moves the element in position 8 to the element in
position 3 and the one in position 3 to the position 8; the free sink [5, 7]s means
that the element in position 7 goes to the position 5, whilst a fresh name goes
in position 7.

Theorem 1. Let pu be a mutation, £ be the lem of the length of its cycles, £’ and

0" be the lengths of its longest bound sink and free sink, respectively. Let also

h
kY max{{+{', ¢"}. Then there exists 0 < h < k such that {V, (v1, ,z,)) '—

Lk h
Vo, )y = Y (21, ze)) and p(z1, L, z) = (Y1, 2Yn),s for
some V"-flashback p. The value k is called order of 1 and denoted by o,,.

Proof. Let u = (a1, ,an) be a mutation, and let A = {1,2,...,n}\{a1,
an}.

If A = @, then p is a permutation; hence, by the theory of permutations, the
theorem is immediately proved taking p as the identity and h = 0.

If A # @ then let a € A. By definition, a must be the first element of (i) a
bound sink or (i) a free sink of . We write either a € A(;) or a € Ay if a is
the first element of a bound or free sink, respectively.

In subcase (i), let £/, be the length of the bound sink with subscript o’ and

A
Ly be the length of the cycle of a/. We observe that in <W, (21, ,xn)> s

£
U, (2, L 2h)y " SIW, (2], a")) we have z, = 27,
In subcase (ii), let ¢7 be the length of the free sink. We observe that in
o
Vo (w1, an)) g U, (z}, ,a},)) we have z, < @/, € U, by definition of

mutation.
Let £, ¢/ and ¢” as defined in the theorem. Then, if £ + ¢’ > ¢” we have that

o [
M@, ma)) SV, ) S Yz L)y and p(z, o z)
= (y1, ,Yn), where p = [z1 — y1, ,2n — yn] is a V’-flashback. If ¢ +
e’ [
¢ < " then <va (xla al'n)> . i <v/, (yla ayn)> H_) <v”> (Zla azn)>

and P(Zla ,Zn) = (yla ay’n)a where p = [Zl = Y1, s Zn > y'n] is a V-
flashback.

For example, u = (6,3,1,8,7,1,8), has a cycle (1,6), bound sink [2,3]; and
free sinks [4]s and [5,7]s. Therefore £ = 2, ¢/ = 2 and ¢” = 2. In this case,
the values k and h of Theorem 1 are 4 and 2, respectively. In fact, if we apply
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the mutation p four times to the pair {V, (z1, 2, x5, 24, 5, T5, T7) ), where V =
{(zi,2;) |1 < i < 7} we obtain

=

T, T3, T1, Y1, T7, T1, Y1) )
T1,T1, 6, Y2, Y1, T6, Y2)
5 Vs, (w6, 76, 71, Y3, Y2, 71, Y3) )

5 (Vy, (%1, %1, %6, Ya, Y3, T6, Ya)
where Vi = V® x1, x9, T3, T4, %5, T, x7<y1 and, for i > 1, V,11 =V, @y; 1<y;.
We notice that there is a V4-flashback p from (21, 1, 6, Y4, Y3, 6, y4) (produced
by u*) to (w1, 21,26, Y2, Y1, T6,y2) (produced by p?).

<va ($1a$2ax3ax4aw5ax6ax7)> “ <v13
= <V2,

=

P

3 The Language of Lams

We use an infinite set of function names, ranged over £, £’, g, g',..., which
is disjoint from the set V of Section 2. A lam program is a tuple (£1(77) =
L1, ,f¢(27) = L¢, L) where £4(2;) = L; are function definitions and L is the
main lam. The syntax of L; and L is

L == 0 | (x,y) | £(@) | L& | L+L

Whenever parentheses are omitted, the operation “&” has precedence over
“+4+7. We will shorten L1 & &L, into &;e1..nLi. Moreover, we use T to range
over lams that do not contain function invocations.

Let var(L) be the set of names in L. In a function definition £(Z) = L, ¥ are
the formal parameters and the occurrences of names x € T in L are bound; the
names var(L)\Z are free.

In the syntax of L, the operations “&” and “ 4 7 are associative, commutative
with 0 being the identity. Additionally the following axioms hold (T does not
contain function invocations)

T&T =T T+T=T T&(L' + L") = T&L' + T&L”

and, in the rest of the paper, we will never distinguish equal lams. For instance,
£(T) + (z,y) and (z,y) + £(u) will be always identified. These axioms permit
to rewrite a lam without function invocations as a collection (operation + ) of
relations (elements of a relation are gathered by the operation &).

Proposition 2. For every T, there exist Ty, , T, that are dependencies com-
posed with &, such that T =Ty + + T,.

Remark 1. Lams are intended to be abstract models of programs that highlight
the resource dependencies in the reachable states. The lam T; + + T, of
Proposition 2 models a program whose possibly infinite set of states {S1,S2, }
is such that the resource dependencies in S; are a subset of those in some T;;, with
1 < j; < n. With this meaning, generic lams Ly + + L,, are abstractions of
transition systems (a standard model of programming languages), where transi-
tions are ignored and states record the resource dependencies and the function
invocations.
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Remark 2. The above axioms, such as T&(L' + L") = T&L' + T&L" are re-
stricted to terms T that do not contain function invocations. In fact, £(@)&((x, y)
+ (y,2)) # £(@)&(z,y)) + (£(W)&(y, z)) because the two terms have a differ-
ent number of occurrences of invocations of f, and this is crucial for linear
recursion — see Definition 6.

In the paper, we always assume lam programs (fl(ﬁ) =Ly, Lf(2y) =
Ly, L) to be well-defined, namely (1) all function names occurring in L; and L are
defined; (2) the arity of function invocations matches that of the corresponding
function definition.

Operational Semantics. Let a lam context, noted £[ |, be a term derived by the
following syntax:

] == 11 | r&Lf] | L+L[]
As usual £[L] is the lam where the hole of £[ ] is replaced by L. The operational
semantics of a program (fl(ﬁv\{) = Ly, , £o(Ty) = Ly, Lg+1) is a transition

system whose states are pairs <V, L> and the transition relation is the least one
satisfying the rule:
(RED)
£(Z) =L var(L)\ = Z W are fresh
L[w/z][%/z] =1/
v, Lf@)]) —<{Veu<w, LL])

By (RED), a lam L is evaluated by successively replacing function invocations
with the corresponding lam instances. Name creation is handled with a mecha-
nism similar to that of mutations. For example, if f(z) = (x,y)&£(y) and £(u)
occurs in the main lam, then f(u) is replaced by (u,v)&f(v), where v is a fresh
mazximal name in some partial order. The initial state of a program with main
lam L is (I, L), where I = {(z,2) | © € var(L)}.

To illustrate the semantics of the language of lams we discuss three examples:

L (f(z,y,2) = (2,9)&e(y,2) + (¥,2), 8u,v) = (u,v) + (v,u), £(z,y,2))
and [ = {(z, z), (y,v), (2, 2)}. Then
O, t(a,y,2)) =, xy&gy, 2) + (y.2))
— 0, ( 2) + (2,9)&(z2y) + (y,2))
The lam in the final state does not contain function invocations. This is
because the above program is not recursive. Additionally, the evaluation of
f(z,y,2) has not created names. This is because names in the bodies of
f(z,y, z) and g(u,v) are bound.
2. (£'(z) = (z,y)&F'(y) , £'(z)) and Vo = {(x0,20)}. Then
Vo, £'(x0))
— V1, (w0, z1)&E'(21))
— (Va, (20, 21)&(x1, 22)&E" (22))
i <Vn+2, (z0, 21)& &($n+1,$n+2)&f'(xn+2)>
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where V;11 = V; @ z;<x;+1. In this case, the states grow in the number of
dependencies as the evaluation progresses. This growth is due to the presence
of a free name in the definition of £’ that, as said, corresponds to generating
a fresh name at every recursive invocation.
3. (f"(z) = (z,2) + (z,2")&F"(2'), £"(20)) and Vg = {(x0,20)}. Then

<V0, f”(xo)>

— <W1, (.’1’,‘0,1‘1) + ($0,$1)&f”(1‘1)>

— <W2, (.Z‘o, .Z‘l) + (l‘o, JI1)&($1, .Z‘Q) + (l‘o, xl)&(xl, J,‘Q)&f”(l‘g)>

—" (Vnya, (x0,21) + + (20,21)&  &(Tpi1, Tni2)&E" (2ni2))
where V;.1 are as before. In this case, the states grow in the number of
“ 4+ 7-terms, which become larger and larger as the evaluation progresses.

The semantics of the language of lams is nondeterministic because of the
choice of the invocation to evaluate. However, lams enjoy a diamond property
up-to bijective renaming of (fresh) names.

Proposition 3. Let ¢ be a bijective renaming and 1(V) = {(+(z),2(y)) | (z,y) €
V}. Let also {V, L) — V', L'y and (u(V), L[{@)/3]> — V", L"), where
Z = var(V). Then

(i) either there exists a bijective renaming 1’ such that

V', L7y = V), L) /5],
where ' = var(V'),
(ii) or there exist " and a bijective renaming v such that V', L") — (V" L")

and V', LS — (I(V"), L’”[ZI(E)/gD, where Z = var(V").

The Informative Operational Semantics. In order to detect the circularity-
freedom, our technique computes a lam till every function therein has been
adequately unfolded (up-to twice the order of the associated mutation). This is
formalized by switching to an “informative” operational semantics where basic
terms (dependencies and function invocations) are labelled by so-called histories.

Let a history, ranged over by «,, , be a sequence of function names
f;, £, f£,,. We write £ € o if £ occurs in a. We also write o” for @ «.

W—/

n times
Let a < B if there is o’ such that aa’ = . The symbol ¢ denotes the empty
history.

The informative operational semantics is a transition system whose states are
tuples <W, bF, []_> where 9F is a set of function invocations with histories and L,
called informative lam, is a term as L, except that pairs and function invocations
are indexed by histories, i.e. *(z,y) and “f(u), respectively.

Let
a(xay) IfL= (l'ay)
def *f(T) if L =1£(2)
addh(a,L) =

addh(a, L )&addh(a, L") if L =L1'&L"

addh(a, L") + addh(a, L") if L=L1"+L"
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For example addh(£1, (x4, 12)&F (22, 23, 4, x5)) = (24, 12)& T £ (20, 23, 14, 5).
Let also "€[ ] be a lam context with histories (dependency pairs and function
invocations are labelled by histories, the definition is similar to £[ ]).
The informative transition relation is the least one such that
(RED+)
£(Z) =L var(L\Z = Z w are fresh
LI@/A[/z =/
V,OF, he[£(@)]) - (V@u<w, "F u {*£(0)}, "Lladdh(af,L’)])
When {V, "F, L) — (V/,9F, ') by applying (RED+) to “£(i), we say
that the term *£(@) is evaluated in the reduction. The initial informative state
of a program with main lam L is <|]L, &, addh(e, L)>
For example, the f1h-program

( f(xayvzvu) = (x,z)&l(u,y,z) )
1(x7 y7 Z) = (x7 y)&f(y7 Z7x7 u) b
h(z,y, z,u) (z,2)&n(2,y, 2, u)&E (2, y, 2,u)
(

h .Z‘l,.Z‘Q,.’L‘g,.’L‘4) )
has an (informative) evaluation

<[]L, a, Eh(x1,$2,$3,l’4)>

— <|]L, h[f'_, ﬂ_&hf(xl,$2,1’3,$4)>
— <|]L, h[Fl, L& hf(.’L‘l, .1‘3) & hfl(.’L‘4, To, .Z‘3)>
— {IL@®zs<zs, "Fa, L' & (24, w2) & (22, 23, 74, 75) ),
where
="(z3,21)&"h(z1, T2, T3, T4)

L = ﬂ_&hf($1,$3)

bF = {Eh(.’L‘l, X9, X3, .1‘4)}

hﬂ‘_l = b["_ v {hf($1,$2,$3,$4)}

hﬂ‘_g = bﬂ‘_l U {hfl(l‘4,$2,.’113)}.

There is a strict correspondence between the non-informative and informative
semantics that is crucial for the correctness of our algorithm in Section 5. Let
[ ] be an eraser map that takes an informative lam and removes the histories.
The formal definition is omitted because it is straightforward.

Proposition 4. 1. If <V,”[F, [L> — <W’,”[F’, []_’> then <W, [[[L]]> —
<VI, [[[LI]]>,'

2. If {V,[[L]) — {V',L") then there are °F, "F’, L’ such that [L'] = L’ and
VR, Ly — (V0F, L.

Clircularities. Lams record sets of relations on names. The following function
b( ), called flattening, makes explicit these relations

b(0) =0,  b((z,y)) = (z,y), ()=
H(LAL) = b(L)&(L),  b(L + L) = (L) + ()

For example, if L=£(z,y, 2) + (z,y)&g(y, 2)&E (u, y, 2) + g(u, v)&(u, v) + (v,u)
then b(L) = (z,y) + (u,v) + (v,u). That is, there are three relations in L: {(z, y)}
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and {(u,v)} and {(v,u)}. By Proposition 2, b(L) returns, up-to the lam axioms,
sequences of (pairwise different) &-compositions of dependencies. The operation
b( ) may be extended to informative lams L in the obvious way: b(*(x, y)) = *(z,y)
and b(“£(Z)) = 0.

Definition 5. A lam L has a circularity if
b(L) = (21, 22)&(x2,73)&  &(Tm,x1)&T + T”

for some x1, ,xpy. A state <W, L> has a circularity if L has a circularity.
Similarly for an informative lam L.

The final state of the fgh-program computation has a circularity; another func-
tion displaying a circularity is g in Section 1. None of the states in the examples
1, 2, 3 at the beginning of this section has a circularity.

4 Linear Recursive Lams and Saturated States

This section develops the theory that underpins the algorithm of Section 5.
In order to lightening the section, the technical details have been moved in
Appendix B.

We restrict our arguments to (mutually) recursive lam programs. In fact, cir-
cularity analysis in non-recursive programs is trivial: it is sufficient to evaluate
all the invocations till the final state and verify the presence of circularities
therein. A further restriction allows us to simplify the arguments without loos-
ing in generality (cf. the definition of saturation): we assume that every function
is (mutually) recursive. We may reduce to this case by expanding function invo-
cation of non-(mutually) recursive functions (and removing their definitions).

Linear Recursive Functions and Mutations. Our decision algorithm relies on
interpreting recursive functions as mutations. This interpretation is not always
possible: the recursive functions that have an associated mutation are the linear
recursive ones, as defined below.

The technique for dealing with the general case is briefly discussed in Section 8
and is detailed in Appendix C.

Definition 6. Let (fl(ﬁ) = L, JEo(Zy) = Lg,L) be a lam program. A se-
quence £;,£;,,  £;, is called a recursive history of £;, if (a) the function names
are pairwise different and (b) for every 0 < j < k, Ly, contains one invocation
of £i, 410, (the operation % is the remainder of the division,).

The lam program is linear recursive if (a) every function name has a unique
recursive history and (b) if £;,,£,,  £i, is a recursive history then, for every
0 <j <k, Li; contains exactly one invocation of £,

For example, the program

(fl(xay) = (x,y)&fl(y,z)&fg(y) + fQ(Z) an(y) = (y,Z)&fg(Z) , L )
is linear recursive. On the contrary
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(£(2) = (z,y)&g(@) , g(z) = (z,y)&E(x) + g(y) , L)
is not linear recursive because g has two recursive histories, namely g and gf.
Linearity allows us to associate a unique mutation to every function name.
To compute this mutation, let H range over sequences of function invocations.
We use the following two rules:

fjo EHE(T) £,(3) =L
var(L;)\%; = Z W are fresh
fio e £(3) =L L[£;()] = Li[9/21[%/z,]
a = £i(T5) o = HE(2)15()

Let e = £(x1, ,zn) £(z}, ,)) be the final judgment of the proof tree
with leaf faf |= €, where fa is the recursive history of £. Let also 2}, 2, \z1,
,Tn = 21, ,2k. Then the mutation of £, written ur = (a1, ,a,) is
defined by
j lf .’I,‘; = .Z‘j
a; =
n+j if af = z;

Let og, called order of the function £, be the order of us. For example, in the
flh-program, the recursive history of f is f1 and, applying the algorithm above
to f1f |= ¢, we get ¢ = f(z,y, z,u)1(u,y, 2)£(y, z,u,v). The mutation of f is
(2,3,4,5) and o = 4. Analogously we can compute 0; = 3 and o, = 1.

Saturation. In the remaining part of the section we assume a fixed linear recursive
program (fl(fﬁ) =Ly, JEo(Zy) = Lg,L) and let og,, ,0¢, be the orders of
the corresponding functions.

Definition 7. A history « is

f-complete
if a = 3°, where B is the recursive history of £. We say that a is complete
when it is £-complete, for some £.

f-saturating
ifa=p1  Bn 102, where B; < (0;)?, with o; complete, and au, £-complete.
We say that « is saturating when it is -saturating, for some £.

In the flh-program, o = 4, 03 = 3, and o0, = 1, and the recursive histories of
f, 1 and h are equal to £1, to 1f and to h, respectively. Then a = (£1)* is the
f-complete history and h?(£1)® and h(£1)® are f-saturating.

The following proposition is an important consequence of the theory of muta-
tions (Theorem 1) and the semantics of lams (and their axioms). In particular,
it states that, if a function invocation fo(ug) is unfolded up to the order of £
then (i) the last invocation f((?) may be mapped back to a previous invocation
by a flashback and (ii) the same flashback also maps back dependencies created
by the unfolding of £4(7).
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Proposition 5. Let § = fof; £, be fg-complete and let
(Y, OF, o[*5o(@0)]) =" (VL O, 0[P Pe %0 rto(unin)] D)

where "F' = OF U {“fo(1p), “fo £ (uy), 0 fn 1f,(@,)} and £,(d;) =L, and
addh(aty  £;,LL) = Y¢;[*f fif, 1 (u;s1)] (unfolding of the functions in the
complete history of £o). Then there is a ®f° fr 1£,(uy) € °F' and a V'-flashback
p such that

1. £o(p(@T1)) = £a(@) (hence fo = £1);
2. let £o(tUpt1) =L and b(L) =Ty + + T. and
b(OLo[P L[ YL.[*PEo(unt1)] 1) = T, + + OT/,. Then, for every
1 <1<k, there exists 1 < j < k' such that "T; = addh(afy £ 1,T¢)&"T§-’,
for some ”Tg.

The notion of f-saturating will be used to define a “saturated” state, i.e., a
state where the evaluation of programs may safely (as regards circularities) stop.

Definition 8. An informative lam <V, oF, [L> is saturated when, for every "£[ ]
and £(U) such that L = "£[*£(%)], a has a saturating prefiz.

It is easy to check that the following informative lam generated by the com-
putation of the f1h-program is saturated:
(Vz, F, h2h($1,$2,$3,$4) & &Ogigshf(lf?[($i+la$i+3)
& &ogissh(ﬂy (Tits, Tig1)
&P s (29, 10, 211, 12)
where V; 11 =V, @ x;44<x;45, and
F = {*h(z1, 22, 23, 24), (21, T2, 23, 24)}
PV £ (@341, iy, Tins, iga) |0 <0 < T}
U {hf(lf)zl(xi+4,.’ﬂi+2,.’£i+3) | 0 < ) < 7}
Every preliminary statement is in place for our key theorem that details the

mapping of circularities created by transitions of saturated states to past circu-
larities.

Theorem 2. Let <|]L, a, addh(e,L)> —* <W, bF, []_> and <V, b, []_> be a sat-
urated state. If <W, bF, [L> — <W’, bE’, [L’> then

1. {V,YF', ') is saturated;
2. if I’ has a circularity then L has already a circularity.

Proof. (Sketch) Ttem 1. directly follows from Proposition 5. However, this propo-
sition is not sufficient to guarantee that circularities created in saturated states
are mapped back to past ones. In particular, the interesting case is the one of
crossover circularities, as discussed in Section 1. Therefore, let

al(xla*xQ)a ,Dth, 1(xh 1,$h),ah’(l'h,l'h+1), aa"(xnaxl)
be a circularity in L’ such that *»(xp, zp+1), ,*(x,,x1) were already present
in L. Proposition 5 guarantees the existence of a flashback p that maps “* (z1, z2)
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& & oy 1an) t0 M (par). pla2)& & Hp(en 1), plan)). However, it
is possible that
“p(z1), p(w2))& & Y(p(xn 1), p(xn)) &Y (Th, Thy1)& &Y (Tp, 21)

is no more a circularity because, for example, p(z),) # x (assume that p(zq1) =
x1). Let us discuss this issue. The hypothesis of saturation guarantees that tran-

sitions produce histories a3, where a is complete. Additionally, o, ,ap 1
must be equal because they have been created by <W, bF, [L> — <W’, bE, []_’>.
For simplicity, let § = £ and o = fa'. Therefore, by Proposition 5, p maps

(@), 22)& & (wn 1,2n) to % (p(a1), p(22))& &% (p((xn 1), p(wn)) and,
p(xp) # xp, when xyp, is created by the computation evaluating functions in «'.

To overcome this problem, it is possible to demonstrate using a statement
similar to (but stronger than) Proposition 5 that p maps “*(zp,Zp41) &
8 (2, 1) t0 18 (p(n), plans1))&  &L%(p(en), ple1)) where [ai] are “Ker-
nels” of o; where every v* in o, with v a complete history and k > 2, is replaced
by . The proof terminates by demonstrating that the term

(plar), pla2))& & (p((xn 1), p(xn))
glenl(p(an), plznsa))& &l (p(an), pl1))

isin L (and it is a circularity).

5 The Decision Algorithm for Detecting Circularities
in Linear Recursive Lams

The algorithm for deciding the circularity-freedom problem in linear recursive
lam programs takes as input a lam program (fl(ﬁc\{) =Ly, f(Zy) = L[,L)
and performs the following steps:

STEP 1: find recursive histories. By parsing the lam program we create a graph
where nodes are function names and, for every invocation of g in the body of f,
there is an edge from f to g. Then a standard depth first search associates to
every node its recursive histories (the paths starting and ending at that node, if
any). The lam program is linear recursive if every node has at most one associated
recursive history.

STEP 2: computation of the orders. Given the recursive history « associated to
a function f, we compute the corresponding mutation by running a = £ (see
Section 4). A straightforward parse of the mutation returns the set of cycles and
sinks and, therefore, gives the order os.

STEP 3: evaluation process. The main lam is unfolded till the the saturated state.
That is, every function invocation £(Z) in the main lam is evaluated up-to twice
the order of the corresponding mutation. The function invocation of f in the
saturated state is erased and the process is repeated on every other function
invocation (which, therefore, does not belong to the recursive history of f), till
no function invocation is present in the state. At this stage we use the lam axioms
that yield a term T; + + T,.
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STEP 4: detection of circularities. Every T; in T; + + T,, may be represented
as a graph where nodes are names and edges correspond to dependency pairs. To
detect whether T; contains a circular dependency, we run Tarjan algorithm [31]
for connected components of graphs and we stop the algorithm when a circularity
is found.

Every preliminary notion is in place for stating our main result; we also make
few remarks about the correctness of the algorithm and its computational cost.

Theorem 3. The problem of the circularity-freedom of a lam program is decid-
able when the program is linear recursive.

The algorithm consists of the four steps described above. The critical step, as
far as correctness is concerned, is the third one, which follows by Theorem 2 and
by the diamond property in Proposition 3 (whatever other computation may be
completed in such a way the final state is equal up-to a bijection to a saturated
state).

As regards the computational complexity STEPS 1 and 2 are linear with re-
spect to the size of the lam program and STEP 4 is linear with respect to the
size of the term T; + + T,. STEP 3 evaluates the program till the saturated
state. Let

Omaz be the largest order of a function;
Mmae D€ the maximal number of function invocations in a body, apart the one
in the recursive history.

Without loss of generality, we assume that recursive histories have length 1 and
that the main lam consists of M,z invocations of the same function. Then an
upper bound to the length of the evaluation till the saturated state is

(2 X Omaz X mmaz) + (2 X Omaz X mmam)2 + + (2 X Omaz X mmaz)z

Let kyyqz be the maximal number of dependency pairs in a body. Then the size of
the saturated state is O(kmaz X (0maz X Mamaz)’), which is also the computational
complexity of our algorithm.

6 Assessments

The algorithm defined in Section 5 has been prototyped [15]. As anticipated in
Section 1, our analysis has been applied to a concurrent object-oriented language
called ABS [17], which is a JAvA-like language with futures and an asynchronous
concurrency model (ASP [6] is another language in the same family).

The prototype is part of a bigger framework for the deadlock analysis of ABS
programs called DF4ABS (Deadlock Framework for ABS). It is a modular frame-
work which includes two different approaches for analysing lams: DFAABS/model-
check (which is the one described in the current paper) and DF4ABS/fixpoint
(which is the one described in [13,14]).
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The technique underpinning the DF4ABS/fixpoint tool derives the depen-
dency graph(s) of lam programs by means of a standard fixpoint analysis. To
circumvent the issue of the infinite generation of new names, the fixpoint is
computed on models with a limited capacity of name creation. This
introduces overapproximations that in turn display false positives (for exam-
ple, DF4ABS/fixpoint returns a false positive for the lam of factorial). In the
present work, this limitation of finite models is overcome (for linear recursive
programs) by recognizing patterns of recursive behaviors, so that it is possible
to reduce the analysis to a finite portion of computation without losing precision
in the detection of deadlocks.

The derivation of lams from ABS programs is defined by an inference sys-
tem [13,14]. The inference system extracts behavioral types from ABS programs
and feeds them to the analyzer. These types display the resource dependencies
and the method invocations while discarding irrelevant (for the deadlock analy-
sis) details. There are two relevant differences between inferred types and lams:
(i) methods’ arguments have a record structure and (ii) behavioral types have
the union operator (for modeling the if-then-else statement). To bridge this gap
and have some initial assessments, we perform a basic automatic transformation
of types into lams.

We tested our prototype on a number of medium-size programs written for
benchmarking purposes by ABS programmers and on an industrial case study
based on the Fredhopper Access Server (FAS) developed by SDL Fredhopp-
per [9]. This Access Server provides search and merchandising IT services to
e-Commerce companies. The (leftmost three columns of the) following table re-
ports the experiments: for every program we display the number of lines, whether
the analysis has reported a deadlock (D) or not (v'), the time in seconds required
for the analysis. Concerning time, we only report the time of the analysis (and
not the one taken by the inference) when they run on a QuadCore 2.4GHz and
Gentoo (Kernel 3.4.9):

. DF4ABS/model-check DF4ABS/fixpoint DECO
program lines

result time result time result time
PingPong 61 v 0.311 v 0.046 v 1.30
MultiPingPong 88 D 0.209 D 0.109 D 143
BoundedBuffer 103 v 0.126 v 0.353 v 1.26
PeerToPeer 185 v 0.320 v’ 6.070 v 1.63
FAS Module 2645 v 3188 V' 39.78 v 4.38

The rightmost column of the above table reports the results of another tool that
have also been developed for the deadlock analysis of ABS programs: DECO [11].
The technique in [11] integrates a point-to analysis with an analysis returning (an
over-approximation of) program points that may be running in parallel. As for
other model checking techniques, the authors use a finite amount of (abstract)
object names to ensure termination of programs with object creations underneath
iteration or recursion. For example, DECO (as well as DFAABS/fixpoint) signals a
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"n(z,y) = (y,7)&n(z, z)

deadlock in programs containing methods whose lam is
that our technique correctly recognizes as deadlock-free.

As highlighted by the above table, the three tools return the same results as
regards deadlock analysis, but are different as regards performance. In particu-
lar DF4ABS/model-check and DF4ABS/fixpoint are comparable on small/mid-
size programs, DECO appears less performant (except for PeerToPeer, where
DF4ABS/fixpoint is quite slow because of the number of dependencies pro-
duced by the fixpoint algorithm). On the FAS module, DF4ABS/model-check
and DF4ABS/fixpoint are again comparable — their computational complexity
is exponential — DECO is more performant because its worst case complexity is cu-
bic in the dimension of the input. As we discuss above, this gain in performance
is payed by DECO in a loss of precision.

Our final remark is about the proportion between linear recursive functions
and nonlinear ones in programs. This is hard to assess and our answer is perhaps
not enough adequate. We have parsed the three case-studies developed in the
European project HATS [9]. The case studies are the FAS module, a Trading
System (TS) modeling a supermarket handling sales, and a Virtual Office of
the Future (VOF) where office workers are enabled to perform their office tasks
seamlessly independent of their current location. FAS has 2645 code-lines, TS
has 1238 code-lines, and VOF has 429 code-lines. In none of them we found a
nonlinear recursion, TS and VOF have respectively 2 and 3 linear recursions
(there are recursions in functions on data-type values that have nothing to do
with locks and control). This substantiates the usefulness of our technique in
these programs; the analysis of a wider range of programs is matter of future
work.

7 Related Works

The solutions in the literature for deadlock detection in infinite state programs
either give imprecise answers or do not scale when, for instance, programs also
admit dynamic resource creation. Two basic techniques are used: type-checking
and model-checking.

Type-based deadlock analysis has been extensively studied both for process
calculi [19,30,32] and for object-oriented programs [3,10,1]. In Section 1 we have
thoroughly discussed our position with respect to Kobayashi’s works; therefore
we omit here any additional comment. In the other contributions about deadlock
analysis, a type system computes a partial order of the deadlocks in a program
and a subject reduction theorem proves that tasks follow this order. On the
contrary, our technique does not compute any ordering of deadlocks, thus being
more flexible: a computation may acquire two deadlocks in different order at
different stages, thus being correct in our case, but incorrect with the other
techniques. A further difference with the above works is that we use behavioral
types, which are terms in some simple process algebras [21]. The use of simple

! The code of a corresponding ABS program is available at the DF4ABS tool website [15],
c.f. UglyChain.abs.
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process algebras to guarantee the correctness (= deadlock freedom) of interacting
parties is not new. This is the case of the exchange patterns in SSDL [27], which
are based on CSP [4] and pi-calculus [23], of session types [12], or of the terms
in [26] and [7], which use CCS [22]. In these proposals, the deadlock freedom
follows by checking either a dual-type relation or a behavioral equivalence, which
amounts to model checking deadlock freedom on the types.

As regards model checking techniques, in [5] circular dependencies among pro-
cesses are detected as erroneous configurations, but dynamic creation of names
is not treated. An alternative model checking technique is proposed in [2] for
multi-threaded asynchronous communication languages with futures (as ABS).
This technique is based on vector systems and addresses infinite-state programs
that admit thread creation but not dynamic resource creation.

The problem of verifying deadlocks in infinite state models has been stud-
ied in other contributions. For example, [28] compare a number of unfolding
algorithms for Petri Nets with techniques for safely cutting potentially infinite
unfoldings. Also in this work, dynamic resource creation is not addressed. The
techniques conceived for dealing with dynamic name creations are the so-called
nominal techniques, such as nominal automata [29,25] that recognize languages
over infinite alphabets and HD-automata [24], where names are explicit part
of the operational model. In contrast to our approach, the models underlying
these techniques are finite state. Additionally, the dependency relation between
names, which is crucial for deadlock detection, is not studied.

8 Conclusions and Future Work

We have defined an algorithm for the detection of deadlocks in infinite state pro-
grams, which is a decision procedure for linear recursive programs that feature
dynamic resource creation. This algorithm has been prototyped [15] and cur-
rently experimented on programs written in an object-oriented language with
futures [17]. The current prototype deals with nonlinear recursive programs by
using a source-to-source transformation into linear ones. This transformation
may introduce fake dependencies (which in turn may produce false positives in
terms of circularities). To briefly illustrate the technique, consider the program

(n(t) = (t, w)&(t, y)&h(z)&h(y) , h(u) ),

Our transformation returns the linear recursive one:

(h* (t,t) = (t,2)&(t, 2" )&(t, 2) &Y', 2') &h™ (z, 2")

h(u) =h"(u,u), h(u) )

To highlight the fake dependencies added by h*“*, we notice that, after two
unfoldings, h* (u, u) gives

(1, v)&(u, w)&(v, V") &(v, W) &(w, v') &(w, w') &0 " (v', w’)
while h(u) has a corresponding state (obtained after four steps)

(1, ) &(u, w)& (v, V") &(v, v") &(w, w') &(w, w")

&h(v')&h(v")&h(w')&h(w") ,
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and this state has no dependency between names created by different invocations.
It is worth to remark that these additional dependencies cannot be completely
eliminated because of a cardinality argument. The evaluation of a function in-
vocation (@) in a linear recursive program may produce at most one invocation
of £, while an invocation of £(%) in a nonlinear recursive program may produce
two or more. In turn, these invocations of £ may create names (which are ex-
ponentially many in a nonlinear program). When this happens, the creations
of different invocations must be contracted to names created by one invocation
and explicit dependencies must be added to account for dependencies of each
invocation. [Our source-to-source transformation is sound: if the transformed
linear recursive program is circularity-free then the original nonlinear one is also
circularity-free. So, for example, since our analysis lets us determine that the
saturated state of h®* is circularity-free, then we are able to infer the same
property for h.] We are exploring possible generalizations of our theory in Sec-
tion 4 to nonlinear recursive programs that replace the notion of mutation with
that of group of mutations. This research direction is currently at an early stage.

Another obvious research direction is to apply our technique to deadlocks
due to process synchronizations, as those in process calculi [23,19]. In this case,
one may take advantage of Kobayashi’s inference for deriving inter-channel de-
pendency informations and manage recursive behaviors by using our algorithm
(instead of the one in [20]).

There are several ways to develop the ideas here, both in terms of the lan-
guage features of lams and the analyses addressed. As regards the lam language,
[13] already contains an extension of lams with union types to deal with assign-
ments, data structures, and conditionals. However, the extension of the theory of
mutations and flashbacks to deal with these features is not trivial and may yield
a weakening of Theorem 2. Concerning the analyses, the theory of mutations
and flashbacks may be applied for verifying properties different than deadlocks,
such as state reachability or livelocks, possibly using different lam languages and
different notions of saturated state. Investigating the range of applications of our
theory and studying the related models (corresponding to lams) are two issues
that we intend to pursue.
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A Java Code of the Factorial Function

There are several JAVA programs implementing factorial in Section 1. However
our goal is to convey some intuition about the differences between TYP1CAL and
our technique, rather than to analyze the possible options. One option is the code

synchronized void fact(final int n,final int m,final Maths x)
throws InterruptedException {
if (n==0) x.retresult (m) ;
else {
final Maths y = new Maths() ;
Thread t = new Thread(new Runnable () {
public void run() {
try { y.fact(n-1,n*m,x) ;
} catch (InterruptedException e) { }

} B
t.start ();
t.join() ;

}

Since factorial is synchronized, the corresponding thread acquires the lock
of its object — let it be this — before execution and releases the lock upon ter-
mination. We notice that factorial, in case n>0, delegates the computation of
factorial to a separate thread on a new object of Maths, called y. This means
that no other synchronized thread on this may be scheduled until the recursive
invocation on y terminates. Said formally, the runtime Java configuration con-
tains an object dependency (this,y). Repeating this argument for the recursive
invocation, we get configurations with chains of dependencies (this, y), (y,2),
which are finite by the well-foundedness of naturals.

B Proof of Theorem 2

This section develops the technical details for proving Theorem 2.
Definition 9. A history « is

f-yielding
if a = ai“ﬁl aln B, such that, for every i, oy is a recursive history, 3; <
a;, and o = o/f; implies the program has the definition £,(%;) = £[£(1)],
for some . The kernel of «, denoted [«], is a?lﬁl ozZ’"ﬁn, where hl; =
min(h;, 1).

By definition, if « is f-saturating then it is also f-yielding. In this case, the
kernel [a] has a suffix that is f-complete. In the flh-program, o = 4, 03 = 3,
and oy = 1, and the recursive histories of £, 1 and h are equal to £1, to 1f and
to h, respectively. Then o = (£1)* is the f-complete history and o/ = h%f is
1-yielding, with [o/] = hf.
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We notice that every history of an informative lam (obtained by evaluating
(I, @, addh(e,L))) is a yielding sequence. We also notice that, for every £, ¢ is
f-yielding. In fact, € is the history of every function invocation in the initial lam,
which may concern every function name of the program. As regards the kernel,
in Lemma 1, we demonstrate that, if a = a'“ﬁ ahn B, is a f-yielding history
such that every h; > 2, then every term “f (%) may be mapped by a flashback p
to a term [*£(p(0)); similarly for dependencies. This is the basic property that
allows us to map circularities to past circularities (see Theorem 2).

Next we introduce an ordering relation over renamings, (in particular, flash-
backs) and the operation of renaming composition. The definitions are almost
standard:

— p <™ o if, for every x € dom(p), p(x) = p'(z).
— pop' be defined as follows:

o {151, 0

We notice that, if both

1. p and p’ are flashbacks and
2. for every x € dom(p), p'(z) =«

then p < pop’ holds. In the following, lams b(L) and b(L), being + of terms
that are dependencies composed with &, will be written Ty + + T,, and
b, + + bT,,, for some m, respectively, where T; and "T; contain dependen-
cies (z,y) and *(z,y). Let also p(&ier (@i, yi)) = &ier(p(w:), p(yi))-

With an abuse of notation, we will use the set operation “€” for L and "L. For
instance, we will write L’ € L when there is £[ ] such that L = £[L’]. Similarly,
we will write T € Ty + + T,, when there is T; such that T € T;.

A consequence of the axiom T&(L' + L") = T&L' + T&L” is the following
property of the informative operational semantics.

Proposition 6. Let <V1, oF, "20[ f1(u7)] > be a state of an mformative opera-
tional semantics. For every 1 < i < n, let £;(u;) = L, and addh(afy  £,;,L%) be
b [efr Tty ()] Finally, let

(O OLu[* Tfpga(Unr)] D ="Ti+ 4T,

b(O L, [ fnf, 1 (Un1)]) = T, + + 1, .

If °f1 (g y)&addh(a’,T) € T + + OT, then, for every 1 < j < v/,
"T,&addh(a’,T) € °T; + + 9T,

The next lemma allows us to map, through a flashback, terms in a saturated

state to terms that have been produced in the past. The correspondence is defined
by means of the (regular) structure of histories.

Lemma 1. Let <|]L7 a, addh(e,L)> —* <V, b, |]_> and <V, b, I]_> be saturated
and b(L) =T, + + 9T,,. Then

1. if 'Ba"“fglf(ﬂ) e L, where Ba™t2p' is f-yielding, then there are n + 1 V-

flashbacks pg)aﬁ,, ,pgn;?, such that:



52 E. Giachino and C. Laneve

Oé"+1 ’ 2 ~ .
(a) P2 P8 (o2 D (@)) € OF
(b) &jejaddh(ﬁak+lﬁj,T‘;) et + + 9T, where, for every j, B; < a,
implies &jejaddh(ﬁakﬁj,pgf;}g,(T;»)) ehT + + 9T,
(c) Bak+15'f(ﬂ) € "F implies Bakﬁlf(p(ﬁlf;g,(ﬂ)) e "F.
2. if a1, ,ap are £1-yielding, , Tr-yielding, respectively, then there are
flashbacks pa,,  ,pa, Such that
(a) if 1 £1(0U) € L or “1£,(U) € "F then [*11£(p,, (7)) € OF;
(b) if &1<J<kaddh(a]‘,T]‘) ehT, + + hTm then
&1<J<kaddh([aj]apaj (T)) € th + + bTm;
(c) if an < g then pa, <™ pa,-
(In particular, if a1 = Ba™ 28, with B’ < «a, and az = Ba™*3 then

Pay ﬁfb pOé2)‘
Proof. (Sketch) As regards item 1, let « = #'8” and let g"g" = ff; £,
(therefore the length of a is m 4 1). The evaluation (I, @, addh(e,L)) —*
<V, bF, [L> may be decomposed as follows

(I, @, addh(e, 1)y —* {V/, OF, 0L[B" "6 ¢ (u)])
—* {V,"F, L)

By definition of the operational semantics there is the alternative evaluation

VO de[ren g ()]
= (VL0 DO ()]
SE (VOO b he [ DL, [P Tt ()] 1))

[notice that fa"t13'£f; £, = Ba™T2p’]. Property (1.a) is an immediate con-
sequence of Proposition 5; let Q(ﬁrf;r;), be the flashback for the last state. The
property (1.b), when k = n, is also an immediate consequence of Propositions 5
and of 6. In the general case, we need to iterate the arguments on shorter his-
tories and the arguments are similar for (1.c). In order to conclude the proof
of item 1, we need an additional argument. By Proposition 3, there exists an
evaluation

(v DE beh /e[ he,, [Be T T (i) ]
¥ <W, b, []_ﬁ>

such that <W, bt []_ﬁ> and <W, b, []_> are identified by a bijective renaming, let

it be 5. We define the pgj?, corresponding to the evaluation <|]L, &, addh(e, L)>

—*{V,F, L) as pgf;?, def jo 9,%’7?;,,26’)’ o7 1. Similarly for the other pgc;rlﬂ), The
properties of item 1 for <V, oF, I]_> follow by the corresponding ones for

<V’”, h[F”l, bS[hSI[bih[ hsm[ﬁa"*ﬂ,@'ffl fmf(af/)] ]]]> .

We prove item 2. We observe that a term with history Bo(a})™ 81 B 1
(a!) B, in YF or in L may have no corresponding term (by a flashback) with
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history Bo(af)™ 81 (ab)">  Bn 1 (/)" B,. This is because the evaluation
to the saturated state may have not expanded some invocations. It is however
true that terms with histories [Bo(c)™ 81 Bn 1(c,)"3,] (kernels) are either
in F or in L and the item 2 is demonstrated by proving that a flashback to
terms with histories that are kernels does exist.

Let oy = Bo(af)™B1 Bn 1(c,)" B, be a f-yielding sequence. We proceed
by induction on n. When n = 1 there are two cases: h; < 1 and hy = 2. In the
first case there is nothing to prove because [a] = a. When hy > 2, since o fits

with the hypotheses of Item 1, there exist pg))a PRI pgzlg 5 Let 5 ,Bo N
. ; b
(2) 6(z+1) (i+1)

(1)
Pbosa fr and B Br = 'O,Bo,al,,@’l[x — x| xe€ dom(%oa B )]. We also let

Pay = 5[(3?))’04,1’& ° 052};,134,;31 and we observe that, by definition of renaming

composition, if a; < ag then p,, <™ p4,. In this case, the items 2.a and 2.b
follow by item 1, Proposition 6 and the diamond property of Proposition 3.
We assume the statement holds for a generic n and we prove the case n +

L. Let a1 = BBn(al, 1)+ Bns1 and hyi1 > 0 (because [Bn(ad 1) Bri1] =
Bnot, 1 Bnt1). We consider the map

def (2) (hnt1)
- pﬁoéﬁn,a',,,_,_l,ﬁn-u ° 65n,6¥'n+1’ﬁn+1

Pon

(4)

where 5,3 Brir? , 2 <1 < hyyq are defined as above. As before, the items 2.a
n,& 7L+17 n

(hnt1) :

and 2.b follow by item 1 for 667“%“’5“1 0657:,505’"4_1557:.+1 and by Proposi-

tion 6 and the diamond property of Proposition 3. Then we apply the inductive
hypothesis for ps. The property (2.c) a1 < ag implies po, <™ pa, is an imme-
diate consequence of the definition.

Every preliminary statement is in place for our key theorem that details the
mapping of circularities created by transitions of saturated states to past circu-
larities. For readability sake, we restate the theorem.

Theorem 2. Let <|]L, a, addh(E,L)> —* <V, b, I]_> and <V, bF, |]_> be a sat-
urated state. If <V, bF, |]_> — <W’, bE’, I]_’> then

1. <W’, bE’, [L’> is saturated;
2. if I’ has a circularity then L has already a circularity.

Proof. The item 1. is an immediate consequence of Proposition 5. We prove 2.
Let

- L=rglr@)

~ f(u) =1’

— L' ="Y¢[addh(af,L")];

— b(L) =bv("g[*£(@)]) =T, + + 97T,
(L)=1 + + T
(

-
- by =b17 +  + 0T
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— (3, 21)& &% (Tn,m0) € ITY + + 9T? (it is a circularity).

Without loss of generality, we may reduce to the following case (the general case
is demonstrated by iterating the arguments below).
Let af = B(a/)™*23" and let

ym+1pl g
(10(1»0,1,1)& &a"(.’ﬂn,.’ﬂo) = &Ongn’B(a) i BB (xjamijl)
&a7ll+1($n’+1a$n’+2)
& &a"(l'n,l'O)

with e < 8; < 8"/, where 5'8" = o/, and n’ < n (otherwise 2 is straightforward

because the circularity may be mapped to a previous circularity by pgrs,r?,, see

Lemma 1(1.b), or it is already contained in L). This is the case of crossover
circularities, as discussed in Section 1.
By Lemma 1,

m gt m+2 m+2
0 7252 a0, 4 )
o m+1 g/ , +2 +2
& Bla)y"tp's, (pg";’ﬁ,) (znr), pg’na’ﬁl) (Tnr41))

(1)

is in some YT7. There are two cases.
Case 1: for every n’ +1 <i < n, a; < B(a’)™ 3. Then, by Lemma 1(1), we

2 1 2
have pgyﬁ,) (z0) = pgm;ﬁ,) (zo) and pgyﬁ,) (Tpt1) = pgrij,@l,)(l‘nl+1) Therefore,

by Lemma 1(2),

0(’, m+1 m+1
()& 1 (o 5) (1), p(gvafﬁ')(‘””’”))
’ m-+1 m+1
& o &Mn (P(B,Jﬁf) (zn), pﬁ,o:rﬁ’) (z0))

with suitable af,,,, o, is a circularity in 9T/ + + hTZ. In particular,

whenever, for every ' + 1 < i < n, oy = B(a/)™3'5; with e < 8; < 8"/, the
flashback pgrgrﬁl,) maps dependencies % (x;, z;+1) to dependencies

\m 1o, +1 +1
Blal)™ BB (p(gf';,g?(wi), pS’LB) (Tit1))
if m > 0. It is the identity, if m = 0.

Case 2: there is n’ + 1 < i < n such that a; £ B(a’)™23". Let this i be
n’ + 1. For instance, 8 = B} (a”)™ B7 and a1 = B4 (a”)™ 187 (™)™ By with
m’ = 2 and m” > 2. In this case it is possible that there is no pair V(y,y’),
with v > B1(a”)™, to which map “~'+1 (2,41, Ty 42) by means of a flashback.
To overcome this issue, we consider the flashbacks pay,  ,pa,/sPa,,,, and we
observe that

2] (pag (€0), Pag (#1))& & Y(pa, , (@nr), pa,, (@nr41))
& [Oénl+1] (pa",+1 ($n/+1), pan,+1 ($n1+2))& (2)
& [a"] (poc" (mn)apan (1'1))

verifies
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(a) for every 0 < i <n, pa,(Tit1) = Paiyi (Tit1) and pa,, (To) = pa, (T0);
(b) the term (2) is a subterm of "T/ + + o717

As regards (a), the property derives by definition of the flashbacks p,, and pa, .,
in Lemma 1. As regards (b), it follows by Lemma 1(2.b) because “°(zg,21)& &
“n (g,,21) € T + + "TZ.

C Nonlinear Programs: Technical Aspects

When the lam program is not linear recursive, it is not possible to associate a
unique mutation to a function. In the general case, our technique for verifying
circularity-freedom consists of transforming a nonlinear recursive program into
a linear recursive one and then running the algorithm of the previous section. As
we will see, the transformation introduces inaccuracies, e.g. dependencies that
are not present in the nonlinear recursive program.

C.1 The Pseudo-linear Case

In nonlinear recursive programs, recursive histories are no more adequate to
capture the mutations defined by the functions. For example, in the nonlinear
recursive program (called f'g’-program)

(fl($a Y, Z) = (.’E, y)&gl(ya Z)a gl(xv y) = gl(xv z)&f'(z’ Y, y)a L)

the recursive history of £’ is £’g’. The sequence f'g’'g’ is not a recursive history
because it contains multiple occurrences of the function g’. However, if one com-
putes the sequences of invocations £'(z,y,2)  £'(Q), it is possible to derive the
two sequences f'(x,y, 2)g'(y, 2)f'(2', 2, z) and £'(x, y, 2)g’'(y, 2) &' (y, )£’ (v, u, u)
that define two different mutations (4,3,3) and (6,5,5) (see the definition of
mutation of a function).

Definition 10. A program (£1(21) = L1, ,£¢(&) = Ly, L) is pseudo-linear
recursive if, for every £;, the set of functions {f | closure(f) = closure(f;)} con-
tains at most one function with a number of recursive histories greater
than 1.

The f’g'-program above is pseudo-linear recursive, as well as the fibonacci
program in Section 1 and the following 1’-program
(1’(x,y,z) = (z,9)&Y(y,z,z) + (x,u)&1 (u, u,y), L) .
In these cases, functions have a unique recursive history but there are multiple
recursive invocations. On the contrary, the £”g”-program below
( £"(z,y) = (x,2)&L"(y,2) + &"(y,2) ,
g”(xa y) = (ya x)&f”(y, Z)&g”(zv x) ’
f”(l‘l s .Z‘Q)
is not pseudo-linear recursive.
Pseudo-linearity has been introduced because of the easiness of transforming
them into linear recursive programs. The transformation consists of the three
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Table 1. Pseudo-linear to linear transformation

rechis(f;) = {fifra, £:80, ,fifn} {head(Bo), ,head(Bn)}\fr # @
L; = L[fx(0)] var(Le)\Zx = Z w are fresh

( fi(fl) =1L;, 7L) l._)11 ( fz(fl) = E[Lk [7:5/3] [ﬁ/fz]]: 7L)

rechis(£;) = {f;a} £ = head ()
Li = L[t ()] [fr(wnr1)]  fr ¢ L

var(Le)\Zx = 2 Wo, ,Wnyt1 are fresh
LlLi[wo/z][Uo/z ]l [Lu[Wn+1/z][Un+1/z]] = Li
( f@) =1, 1) B ( f@)=1, .1
L; = £[f:(u0)]  [fi(Unt1)] f:¢ L Wo, ,Wnt1 are fresh
L = £{" (uo[Wo/z;], Uns1[Wn+1/5]) &(&jeo..n+1be; (L) [Wi/2;])
~ 11
( fl( l) = L, 7L) 3
( fi(@) = f?”(@', ,@)7 £ (Wo, ,Wpy1) =L{, L)
n+2\gmes
steps specified in Table 1, which we discuss below. Let (fl(ﬁv\{) =Li, fu(Zy) =

Ly, L) be a lam program, let rechis(f;) be the set of recursive histories of £;, and
let head(e) = € and head(fa) = £.

11
Transformation Fn 1: Removing multiple recursive histories. We repeatedly ap-

ply the rule defining P::L:H)ll. Every instance of the rule selects a function f; with
a number of recursive histories greater than one — the hypotheses rechis(f;) =
{fifra,£:00, ,fiBn} and {head(Bo), ,head(B,)}\fr # @ — and expands
the invocation of f, with £f; # f;. By definition of pseudo-linearity, the other
function names in rechis(£;) have one recursive history. At each application of
the rule the sum of the lengths of the recursive histories of f; decreases. Therefore
we eventually unfold the (mutual) recursive invocations of f; till the recursive
history of £; is unique. For example, the program

(f(z) = (z,y)&e() , g(z) = (z,y)&E(z) + g(y) , L)
is transformed into

(f(z) = (z,9)&e(x) , g(z) = (z,y)&(z, z)&g(z) + g(y) , L).

. pl—1 . . . . .
Transformation = o: Reducing the histories of pseudo-linear recursive func-

1—-1
tions. By = 1, we are reduced to functions that have one recursive history. Yet,
this is not enough for a program to be linear recursive, such as the 1’-program
or the following h”1”-program

(v"(z,y) = (z,2)&1"(y,2) + 1"(y,z)
1”2%?!) T (y,2)&0"(y, 2)&h0" (2, 7) ,
h” 1,22
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(the reason is that the bodies of functions may have different invocations of a

same function). Rule plle)lg expands the bodies of pseudo-linear recursive func-
tions till the histories of nonlinear recursive functions have length one. In this
rule (and in the following ), we use lam contexts with multiple holes, written
L[] []- We write f ¢ Lwhenever there is no invocation of f in £.

By the hypotheses of the rule, it applies to a function f; whose next element
in the recursive history is £, (by definition of the recursive history, £; # f;) and
whose body L; contains at least two invocations of fj. The rule transforms L; by
expanding every invocation of f. For example, the functions h” and 1” in the
h”1”-program are transformed into

W'(x,y) = (r,2)&1"(y, 2) + 1"(y, z) ,

V(z,y) = (y,2)&((y, 2)&1" (2, 2) +1"(2,y))
&((z,2")&1"(x, 2") + 1"(z, 2)).

1—1
The arguments about the termination of the transformation = o are straight-
forward.

1—-1
Tmnsformatzon B:>3 ReWLO’UZTLg nonlinear recursive invocations. By B:>2 we

are reduced to pseudo-linear recursive programs where the nonlinearity is due to
recursive, but not mutually-recursive functions (such as fibonacci). The trans-

. pl—1 . . . . . .
formation =3 removes multiple recursive invocations of nonlinear recursive
programs. This transformation is the one that introduces inaccuracies, e.g. pairs
that are not present in the nonlinear recursive program.

1—1
In the rule of = 5 we use the auxiliary operator b¢ (L) defined as follows:

b£(0) = 0, be((z,y)) = (z,y),
e (£(Z)) =0, e (g(2)) = g( ), if (£ # g),
be(L&L) = be(L)&s (L)),  be(L + L') = bg(L) + be (L)

The rule of Pll;)lg selects a function f; whose body contains multiple recursive
invocations and extracts all of them — the term b¢, (L;). This term is put in parallel
with an auxiliary function invocation — the function £{** — that collects the
arguments of each invocation f; (with names that have been properly renamed).
The resulting term, called L{"* is the body of the new function £ that is
invoked by £f; in the transformed program. For example, the function fibonacci

fibonacci(r, s) = (r, s)&(t, s)&fibonacci(r,t)&fibonacci(t, )

is transformed into

fibonacci(r, s) = fibonacci®*(r,s,r,s),
fibonacci®®(r,s,1’,s') = (r,$)&(r', s")

&fibonacci®™®(r t,t,s")

where different invocations (fibonacci(r, s) and fibonacci(r’,s’)) in the origi-
nal program are contracted into one auxiliary function invocation (fibonacci®*
(r,s,1",5")). As a consequence of this step, the creations of names performed by
different invocations are contracted to names created by one invocation. This
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leads to merging dependencies, which, in turn, reduces the precision of the anal-
ysis. (As discussed in Section 1, a cardinality argument prevents the inaccuracies

11
introduced by = 3 from being totally eliminated.)

As far as the correctness of the transformations in Table 1 is concerned, we
begin by defining a correspondence between states of a pseudo-linear program

1—1
and those of a linear one. We focus on '— 3 because the proofs of the correctness
of the other transformations are straightforward.

Definition 11. Let Lo be the linear program returned by the Transformation 3
of Table 1 applied to L1. A state <V1, L1> of L1 is linearized to a state <V2, L2>
of Lo, written <V1, L1> 1in <W2, L2>, if there exists a surjection o such that:
1. if(x,y) € Vy then (o(x),0(y)) € Va.
2. 4fb(Ly) =Ty + + T and b(Lg) = T} + + T, then for every 1 <
i < m, there exists 1 < j < n, such that o(T;) € T};
3. if £(Z1) € Ly then either (1) £(o(Z1)) in Lo or (2) there are £(Z2)  £(Ty)
inLy and £°%* (Y1,  ,Un) in Lo such that, for every 1 < k' < k there exists
h' with CT(i%/) = gh’ s
In the following lemma we use the notation £[L;]  [L,] defined in terms of
standard lam context by ( ((£[L1])[L2]) )[Ln]-

Lemma 2. Let <W1, L1> Diin <V2, L2>. Then, <W2, L2> — <V'2, L'2> mmplies
there exists (V1, L1y —* (Vi L)) such that {V{, L) D15 V4, L))

Proof. Base case. Initially L; = Lo because the main lam is not affected by the
transformation. Therefore the first step can only be an invocation of a standard
function belonging to both programs. We have two cases:

1. the function was linear already in the original program, thus it was not
modified by the transformation. In this case the two programs performs the
same reduction step and end up in the same state.

2. the function has been linearized by the transformation. In this case the invo-
cation at the linear side will reduce to an invocation of an auz-function and
it will not produce new pairs nor new names. The corresponding reduction
in <V1,L1> is a zero-step reduction. It is easy to verify that <V1,L1> D1in

(Vh, L5,

Inductive case. We consider only the case in which the selected function is an
auz-function. The other case is as in the base case. Let
Vel [E@OT)
Sua V7 SV [E @, )]
Without loss of generality we can assume that 2§") does not contain other invo-
cations to f and the “linearized to” relationship makes f£(01)8&  &f£(¥)) corre-
spond to £%%*(uy, ,Up).Then we have

<W;n)7 E;n) [f(wx(q’zh ’ah)]> N
V) @, <@, S [Lews [B/3][0 /g 5D
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where, £%*(§1,  ,¥n) = Lgouws, var(Lsew )\§1  §n = Z and @ are fresh names.
By construction,

Liow = f““m(y~'1[y~1/g], ,yl[ﬁ/g]) & &iel..k(bf(Lf)[yNi/ﬂ])

where £(7) = L:[£(s})]  [£(1)] = L¢ and £ ¢ £;.
The corresponding reduction steps of <W§n), Egn) [£(®)] [£(Dk)]) are the
following ones:

n n - ~ £(V1 £(
R LT TGN N
VY eu<t ®  @U<di, LLe[M/]  [Le[T/5])

and w; are the fresh names created by the invocation £(%;), 1 < ¢ < k. We need
to show that:

VP @v<itn ® @<y, SV [L[0/7]]  [Le[Ok/F]D
Di1in

VU em, un<d, &L
where
LE = £ R/ [T /]) &L and L™ = Baer k(02 (L) [B/3]) [7/2].
To this aim we observe that:

— for every 1 < k' < k there exists h' such that o(y) = Ups; moreover w =
o(wy) = = o(wy). This satisfies condition I of Definition 11;

—if (a,b) € La[Pi/z], with a,b € @, %, then (o(a),o(b)) € be(Le)[Be/z)[¥/3],
being o defined as in the previous item, therefore o(a), o (b) € w, ;. Notice
that, due to the &je1..x composition in the body of £***  two pairs sequen-
tially composed in Ly may end up in parallel (through o). The converse never
happens. Therefore condition 2 of Definition 11 is satisfied.

— if g(@) € L we can reason as in the previous item. We notice that function
invocations g(@) that have no counterpart (through o) in L¢ [m/g] may be
cointained in &qe1. 5 (be (Lf)[ﬁz/g])[@/g] We do not have to mind about them
because the lemma guarantees the converse containment. N

— in Lf[ﬁi/g] we have k new invocations of £(b;1) £(bi), where b;; =
v [Vj or [@j/3]. Therefore in the pseudolinear lam we have k? invocations
of £, while in the corresEonding linear lam we find just one invocation of
f‘““”(yw’1 [771’/17] [@/3], v [7?15/17] [@/3]). We notice that the surjection o is
such that (4[5 /5][%/3] = o(br;) = = o(bry), with 1 < j < k. This,
together with the previous item, satisfies condition & of Definition 11.

Lemma 3. Let <V1, L1> D1in <W2, L2> and <W1, L1> —* <V’1, L’1> Then there
are (Vi, L) —>* (V] L7) and (Va, Ly)y —* V4, Ly such that (VY, L}) D11n
(Vy, Ly)
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Proof. A straightforward induction on the length of <V1, L1> —* <W’1, L’1> In
the inductive step, we need to expand the recursive invocations “at a same level”
in order to mimic the behavior of functions f*%*,

Theorem 4. Let L1 be a pseudo-linear program and Lo be the result of the
transformations in Table 1. If a saturated state of Lo has no circularity then no
state of L1 has a circularity.

Proof. The transformations P:1:H>11 and Psle;Lg perform expansions and do not
introduce inaccuracies. By Lemma 2, for every <V2, L2> reached by evaluating
Lo, there is <W1, L1> that is reached by evaluating £; such that <W1, L1> I1in
<V2, L2>. This guarantees that every circularity in <V1, L1> is also present in
<V2, L2>. We conclude by Lemma 3 and Theorem 2.

We observe that, our analysis returns that the fibonacci program is circula-
rity-free.

C.2 The General Case

In non-pseudo-linear recursive programs, more than one mutual recursive func-

tion may have several recursive histories. The transformation nplle)pl in Table 2
takes a non-pseudo-linear recursive program and returns a program where the
“non-pseudo-linearity” is simpler. Repeatedly applying the transformation, at
the end, one obtains a pseudo-linear recursive program.

More precisely, let (fl(’ﬁ) = L1, JEo(Zy) = Lg,L) be a non-pseudo-linear
recursive program. Therefore, there are at least two functions with more than

one recursive history. One of this function is f;, which is the one that is be-
npl—pl
ing explored by the rule =="". Let also f; be another function such that

closure(£f;) = closure(f;) (this £, must exists otherwise the program would be
already pseudo-linear recursive). These constraints are those listed in the first
line of the premises of the rule. The idea of this transformation is to defer the
invocations of the functions in {head(a1£;), , head(an+1£;)}\f;,1.e., the func-
tions different from f; that can be invoked within f;’s body, to the body of the
function ;. The meaning of the second and third lines of the premises of the rule
is to identify the pjy different invocations of these m functions (k = m). Notice
that every aq, ,ap41 could be empty, meaning that £ is directly called. At
this point, what we need to do is (1) to store the arguments of each invocation of
£, , T, into those of an invocation of £; — actually, a suitable tuple of them,
thus the arity of £; is augmented correspondingly — and (2) to perform suitable
expansions in the body of £;. In order to augment the arguments of the invo-
cations of f; that occur in the other parts of the program, we use the auxiliary

fi,n . . . oy
rule = that extends every invocation of f; with n additional arguments that
are always fresh names. The fourth line of the premises calculates the number
n of additional arguments, based on the number of arguments of the functions
that are going to be moved into f;’s body. The last step, described in the last
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Table 2. Non-pseudo-linear to pseudo-linear transformation

f¢ L z1, , 2m are n-tuple of fresh names

ele(an)]  [E(@n)] 22 SlE(@, )] [, 7]

rechis(f;) = {f;f;a0,fja1, Jfjopgt} fefiap f(rechis(f)) > 1
N{fil, ’f,.iJjL} = {head(ozlfj), ,head(ah,+1fj)}\fi
Lj = E[fm (u1)] [fpk (k)] {fmv vf:nk} = {fhv s Eim } fiy, R, €L
~ ~ £i,m ~ ~
o=@ an) (L F L) S L = e (@] [, (@)
21, 2%k, sA5 s El, %k, are fresh
LY = £'[£;(2q, 41, 23, szp)] [Ea(2h, L2k, )]
~ ~ ~ — npli—spl
£1(21) = L1, £:(&0) =Li, ,£;(Z;) =1L;, ,fe(Te) =1L Leg1)
£1(21) =L, £(T, 2, L ZR) = Li&(&aer. ktpg (29),  ,E5(F5) =LY,  ,£e(Te) = Ly Liyq)

line of the premises of the rule, is to replace the invocations of the functions
£, ,£;,, with invocations of f;. Notice that, in each invocation, the position
of the actual arguments is different. In the body of f;, after the transformation,
the invocations of those functions will be performed passing the right arguments.
For example, the £”g”-program

(£"(z,y) = (,2)&8"(y,2) + &"(y, 7) ,
g'(z,y) = (y,2)&"(y, 2)&8" (2, 2) ,
f”(l‘l s .Z‘Q)
is rewritten into
(£"(z,y) = (z,2)&8"(@",y',y, 2) + &"(y, 2,2, 2")
g”(xa Y, u, ’U) = (ya .’b)&f”(y, Z)&g”(za z, .’bl, y,)&f”(ua ’U) ;
(21, x2)

The invocation £”(y, z) is moved into the body of g”. The function g” has
an augmented arity, so that its first two arguments refer to the arguments of
the invocations of g” in the original program, and the last two arguments refer
to the invocation of £”. Looking at the body of g”, the unchanged part (with
the augmented arity of g”) covers the first two arguments; whilst the last two
arguments are only used for a new invocation of £”.

1->pl
The correctness of = is demonstrated in a similar way to the proof of the

11
correctness of = 3. We begin by defining a correspondence between states of a
non-pseudo-linear program and those of a pseudo-linear one.

Definition 12. Let Lo be the pseudo-linear program returned by the transfor-
mation of Table 2 applied to L1. A state <W1, L1> of L1 is pseudo-linearized to
a state <W2, L2> of Lo, written <V1, L1> p1 <V2, L2>, if there exists a surjection
o such that:

1. if(x,y) € Vy then (o(x),o(y)) € Va.
2. 4fb(Ly) =Ty + + Ty and b(Lg) = T} + + T, then for every 1 <
i <m, there exists 1 < j < n, such that o(T;) € T};
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3. if £(Z) € Ly then either (1) £(o(T)) in Ly or (2) there is £(§1  Ux) in Lo
such that, for some 1 <i <k, o(T) = ¥;;

We use the same notational convention for contexts as in Lemma 2.

Lemma 4. Let <V1, L1> Sp1 <W2, L2>. Then, <W1, L1> — <V’1, L’1> implies
there exists (Vg, Loy —1 (V4 LYY such that {V{, L} ) Dp1 V5, LY

Proof. Base case. Ly is the main lam of the nonlinear program, and Ly its pseu-
dolinear transformation.

Li = G[f1(@)]  [£m(@)],

where £1 does not contain any other function invocations, and m < k, meaning
that some of the f;, 1 < i < m, can be invoked more than once on different
parameters.

After the transformation, Ly contains the same pairs as L; and the same
function invocations, but with possibly more arguments:

Ly = &4[£1(U1,21)] [Tk, Zk)]-

Notice that some of the Zj, 1 < j < k, may be empty if the corresponding
function has not been expanded during the transformation. Moreover V; and
V5 contains only the identity relations on the arguments, so we have V; € Vs.
Therefore, all conditions of definition 12 are trivially verified.

Inductive case. We have

Li = &[f1(U)]  [Em(Ur)],

where £; does not contain any other function invocations, and m < k, meaning
that some of the f;, 1 < i < m, can be invoked more than once on different
parameters.

We have

Ly = Lo[f1(U1,21)]  [Em (T, 2k)]-

where £9 may contain other function invocations, but by inductive hypothesis
we know that Definition 12 is verified. In particular condition & guarantees that
at least the invocations of fq, ..., f,,, with suitable arguments, are in Ls.

Now, let us consider the reduction

<V1, L1> e <Vl1a LI1>

Without loss of generality, we can assume the reduction step performed an in-
vocation of function f1 (7).
We have different cases:

1. the function’s lam L, has not been modified by the transformation. In this
case the result follows trivially.
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2. the function’s lam L¢, has been affected only in that some function invoca-
tions in it have an updated arity. Meaning that it was only trasformed by

:g:’l), for some g and [, as a side effect of other function expansions. It follows
that b(Lg,) = d(Lf, ), where L is the body of £; after the transoformation
has been applied. This satisfies condition 2 of Definition 12. Those function
invocations that have not been modified satisfy trivially the condition 8 of
Definition 12. Regarding the other function invocations we have, by con-
struction, that if g(T) € L¢, then g(Z,7) € L;, , where § are fresh names. This
satisfies condition & of Definition 12, as well. As for condition 1, we have

. ~ ~
1=V1® (U <),
where w are fresh names created in L¢,, and
1 W ~ ~ ~ ~ ~
2 = 2@(U172’1<whyla 7ys)a

where 41, ,¥s are the fresh names augmenting the function arities within
L: . We choose the same fresh names w; and condition 1 is satisfied.
3. the function’s lam Lg, has been subject of the expansion of a function. Let

Le, = L, [gl(al)] [gh(ﬁn)]v

where £¢, contains only pairs, then, assuming without loss of generality that
g1 was expanded:

Lf‘fl :Efl[gl(alag%a""gwl)] [gl(ﬁn7%/{7""2:)]7

where 7 is obtained by subtracting from the number of invocations n the
number of occurrences of invocations of g; in Lf .

Now, the psedulinear program has to perform the r invocations of g; that
were not present in the original program, since they have been replaced r in-
vocations of go gy, in order to reveal the actual invocations go g, that
has been delegated to g1 body. By construction, the arguments of the invo-
cations where preserved by the transformation, so that if go(Z) is produced
by reduction of the nonlinear program, then the pseudolinear program will
produce ga(Z, ), with § fresh and possibily empty. This satisfy condition 3
of Definition 12.

However the body of g; may have been transformed in a similar way by
expanding another method, let us say go. Then all the invocations of gy in
g1’s body that corresponds to the previously delegated function invocations
g2 g have to be invoked as well. This procedure has to be iterated until
all the corresponding invocations are encountered. Each step of reduction
will produce spurious pairs and function invocations, but all of these will be
on different new names.

Lemma 5. Let <W1, L1> Sp1 <W2, L2> and <W1, L1> —* <W’1, L’1> Then there
are <V'1, L’1> —* <W'1’, L’1’> and <V2, L2> —* <W’2, L’2> such that <W'1', L’1’> Dp1
(V5, Lh)
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Proof. A straightforward induction on the length of <V1, L1> —* <W’1, L’1>

Every preliminary result is in place for the correctness of the transformation
npl—pl
= .

Theorem 5. Let L1 be a non-pseudo-linear program and Lo be the result of the
transformations in Table 2. If Lo is circularity-free then L1 is circularity-free.

Proof. By Lemma 4, for every <V1, L1> reached by evaluating L£;, there is
<V2, L2> that is reached by evaluating Lo such that <W1, L1> Sp1 <W2, L2>.
This guarantees that every circularity in <V1, L1> is also present in <W2, L2>.
We conclude by Lemma 5.
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Abstract. This paper is an introductory survey of available methods
for the computation and representation of probabilistic counterexam-
ples for discrete-time Markov chains and probabilistic automata. In con-
trast to traditional model checking, probabilistic counterexamples are
sets of finite paths with a critical probability mass. Such counterex-
amples are not obtained as a by-product of model checking, but by
dedicated algorithms. We define what probabilistic counterexamples are
and present approaches how they can be generated. We discuss methods
based on path enumeration, the computation of critical subsystems, and
the generation of critical command sets, both, using explicit and symbolic
techniques.

1 Introduction

The importance of counterexamples. One of the main strengths of model check-
ing is its ability to automatically generate a counterexample in case a model re-
futes a given temporal logic formula [1]. Counterexamples are the most effective
feature to convince system engineers about the value of formal verification [2].
First and foremost, counterexamples provide essential diagnostic information for
debugging purposes. A counterexample-guided simulation of the model at hand
typically gives good insight into the reason of refutation. The same applies when
using counterexamples as witnesses showing the reason of fulfilling a property.
Counterexamples are effectively used in model-based testing [3]. In this setting,
models are used as blueprint for system implementations, i.e., the conformance
of an implementation is checked against a high-level model. Here, counterexam-
ples obtained by verifying the blueprint model act as test cases that, after an
adaptation, can be issued on the system-under-test. Counterexamples are at the
core of obtaining feasible schedules in planning applications. Here, the idea is
to verify the negation of the property of interest—it is never possible to reach
a given target state (typically the state in which all jobs have finished their
execution) within & steps—and use the counterexample as an example schedule
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illustrating that all jobs can complete within k steps. This principle is exploited in
e. g., task scheduling in timed model checking [4]. A more recent application is the
synthesis of attacks from counterexamples for showing how the confidentiality of
programs can be broken [5]. These so-called refinement attacks are important,
tricky, and are notorious in practice. Automatically generated counterexamples
act as attacks showing how multi-threaded programs under a given scheduler
can leak information. Last but not least, counterexamples play an important role
also in counterexample-guided abstraction refinement (CEGAR) [6], a successful
technique in software verification. Spurious counterexamples resulting from ver-
ifying abstract models are exploited to refine the (too coarse) abstraction. This
abstraction-refinement cycle is repeated until either a concrete counterexample
is found or the property can be proven.

Counterexample generation. For these reasons, counterexamples have received
considerable attention in the model checking community. Important issues have
been (and to some extent still are) how counterexamples can be generated effi-
ciently, preferably in an on-the-fly manner during model checking, how memory
consumption can be kept small, and how counterexamples themselves can be
kept succinct, and be represented at the model description level (rather than in
terms of the model itself). The shape of a counterexample depends on the prop-
erty specification language and the checked formula. The violation of linear-time
safety properties is indicated by finite paths that end in a “bad” state. Therefore,
for logics such as LTL, typically finite paths through the model suffice. Although
LTL model checking is based on (nested) depth-first search, LTL model check-
ers such as SPIN incorporate breadth-first search algorithms to generate shortest
counterexamples, i.e., paths of minimal length. The violation of liveness prop-
erties, instead, require infinite paths ending in a cyclic behavior under which
something “good” will never happen. These lassos are finitely represented by
concatenating the path until reaching the cycle with a single cycle traversal. For
branching-time logics such as CTL, such finite paths suffice as counterexamples
for a subclass of universally quantified formulas. To cover a broader spectrum
of formulas, though, more general shapes are necessary, such as tree-like coun-
terexamples [7]. As model-checking suffers from the combinatorial growth of the
number of states—the so-called state space explosion problem—various success-
ful techniques have been developed to combat this. Most of these techniques, in
particular symbolic model checking based on binary decision diagrams (BDDs,
for short), have been extended with symbolic counterexample generation algo-
rithms [8]. Prominent model checkers such as SPIN and NUSMV include powerful
facilities to generate counterexamples in various formats. Such counterexamples
are typically provided at the modeling level, like a diagram indicating how the
change of model variables yields a property violation, or a message sequence chart
illustrating the failing scenario. Substantial efforts have been made to generate
succinct counterexamples, often at the price of an increased time complexity.
A survey of practical and theoretical results on counterexample generation in
model checking can be found in [2].
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Probabilistic model checking. This paper surveys the state of the art in counterex-
ample generation in the setting of probabilistic model checking [9-11]. Probabilis-
tic model checking is a technique to verify system models in which transitions are
equipped with random information. Popular models are discrete- and continuous-
time Markov chains (DTMCs and CTMCs, respectively), and variants thereof
which exhibit non-determinism such as probabilistic automata (PA). Efficient
model-checking algorithms for these models have been developed, implemented
in a variety of software tools, and applied to case studies from various applica-
tion areas ranging from randomized distributed algorithms, computer systems
and security protocols to biological systems and quantum computing. The crux
of probabilistic model checking is to appropriately combine techniques from nu-
merical mathematics and operations research with standard reachability analysis
and model-checking techniques. In this way, properties such as “the (maximal)
probability to reach a set of bad states is at most 0.1” can be automatically
checked up to a user-defined precision. Markovian models comprising millions of
states can be checked rather fast by dedicated tools such as PRISM [12] and
MRMC [13]. These tools are currently being extended with counterexample gen-
eration facilities to enable the possibility to provide useful diagnostic feedback
in case a property is violated. More details on probabilistic model checking can
be found in, e.g., [9, 14, 15].

Counterexamples in a probabilistic setting. Let us consider a finite DTMC, i.e.,
a Kripke structure whose transitions are labeled with discrete probabilities. As-
sume that the property “the (maximal) probability to reach a set of bad states
is at most 0.1” is violated. That means that the accumulated probability of all
paths starting in the initial state sy and eventually reaching a bad state ex-
ceeds 10%. This can be witnessed by a set of finite paths all starting in s¢ and
ending in a bad state whose total probability exceeds 0.1. Counterexamples are
thus sets of finite paths, or viewed differently, a finite tree rooted at sy whose
leafs are all bad. Evidently, one can take all such paths (i.e, the complete tree)
as a counterexample, but typically succinct diagnostic information is called for.
There are basically two approaches to accomplish this: path enumeration and
critical subsystems. In contrast to standard model checking, these algorithmic
approaches are employed after the model-checking phase in which the refutation
of the property at hand has been established. Up to now, there is no algorithm
to generate probabilistic counterexamples during model checking.

Path enumeration. For DTMCs, a counterexample can be obtained by explic-
itly enumerating the paths comprising a counterexample. A typical strategy is
to start with the most probable paths and generate paths in order of descend-
ing probability. This procedure stops once the total probability of all generated
paths exceeds the given bound, ensuring minimality in terms of number of paths.
Algorithmically, this can be efficiently done by casting this problem as a k short-
est path problem [16, 17] where k is not fixed a priori but determined on the fly
during the computation. This method yields a smallest counterexample whose
probability mass is maximal—and thus most discriminative—among all minimal
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counterexamples. This approach can be extended to until properties, bounded
versions thereof, w-regular properties, and is applicable to non-strict upper and
lower bounds on the admissible probability. Whereas [16, 17] exploit existing
k shortest path algorithms with pseudo-polynomial complexity (in k), [18] uses
heuristic search to obtain most probable paths. Path enumeration techniques
have also been tackled with symbolic approaches like bounded model checking [19]
extended with satisfiability modulo theories (SMT) techniques [20], and using
BDD-techniques [21]. The work [22] proposes to compute and represent coun-
terexamples in a succinct way by regular ezpressions. Inspired by [23], these
regular expressions are computed using a state elimination approach from au-
tomata theory that is guided by a k shortest paths search. Another compaction
of counterexamples is based on the abstraction of strongly-connected components
(SCCs, for short) of a DTMC, resulting in an acyclic model in which counterex-
amples can be determined with reduced effort [24]. An approach to compute
counterexamples for non-deterministic models was proposed in [25].

Critical subsystems. Alternatively to generating paths, here a fragment of the
discrete-time Markov model at hand is determined such that in the resulting sub-
model a bad state is reached with a likelihood exceeding the threshold. Such a
fragment is called a critical subsystem, which is minimal if it is minimal in terms
of number of states or transitions, and smallest if it is minimal and has a maximal
probability to reach a bad state under all minimal critical subsystems. A critical
subsystem induces a counterexample by the set of its paths. Determining smallest
critical subsystems for probabilistic automata is an NP-complete problem [26],
which can be solved using mixed integer linear programming techniques [27, 28].
Another option is to exploit k shortest path [29] and heuristic search [30] methods
to obtain (not necessarily smallest or minimal) critical subsystems. Symbolic
approaches towards finding small critical subsystems have been developed in [31,
32]. The approach [24] has been pursued further by doing SCC reduction in a
hierarchical fashion yielding hierarchical counterezamples [29].

Modeling-language-based counterexamples. Typically, huge and complex Markov
models are described using a high-level modeling language. Having a human-
readable specification language, it seems natural that a user should be pointed
to the part of the high-level model description which causes the error, instead
of getting counterexamples at the state-space level. This has recently initiated
finding smallest critical command sets, i.e., the minimal fragment of a model
description such that the induced (not necessarily minimal) Markov model vi-
olates the property at hand, thereby maximizing the probability to reach bad
states. For PRISM, models are described in a stochastic version of Alur and
Henzinger’s reactive modules [33]. In this setting, a probabilistic automaton is
typically specified as a parallel composition of modules. The behavior of a single
module is described using a set of probabilistic guarded commands. Computing a
smallest critical command set amounts to determining a minimal set of guarded
commands that together induce a critical subsystem, with maximal probability
to reach bad states under all such minimal sets. This NP-complete problem has
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been tackled using mixed integer linear programming [34]. This approach is not
restricted to PRISM’s input language, but it is also applicable to other modeling
formalisms for probabilistic automata such as process algebras [35].

Tools and applications. DIPRO [36] and CoMmics [37] are the only publicly avail-
able tools supporting counterexample generation for Markov models.! DIPRO
applies directed path search to discrete- and continuous-time Markov models
to compute counterexamples for the violation of PCTL or CSL properties. Al-
though the search works on explicit model representations, the relevant model
parts are built on the fly, which makes DIPRO very efficient and highly scalable.
CoMICS computes hierarchically abstracted and refinable critical subsystems for
discrete-time Markov models. Strongly connected components are the basis for
the abstraction, whereas methods to compute k shortest paths are applied in dif-
ferent contexts to determine critical subsystems. Probabilistic counterexamples
have been used in different applications. Path-based counterexamples have been
applied to guide the refinement of too coarse abstractions in CEGAR~approaches
for probabilistic programs [38]. Tree-based counterexamples have been used for
a similar purpose in the setting of assume-guarantee reasoning on probabilistic
automata [39]. Other applications include the identification of failures in FMEA
analysis [40] and the safety analysis of an airbag system [41]. Using the notion
of causality, [42, 43] have developed techniques to guide the user to the most re-
sponsible causes in a counterexample once a DTMC violates a probabilistic CTL
formula, whereas [44] synthesizes fault trees from probabilistic counterexamples.

Organization of this paper. This paper surveys the existing techniques for gen-
erating and representing counterexamples for discrete-time Markov models. We
cover both explicit as well as symbolic techniques, and also treat the recent
development of generating counterexamples at the level of model descriptions,
rather than for models themselves. The focus is on a tutorial-like presentation
with various illustrative examples. For a full-fledged presentation of all technical
aspects as well as formal proofs we refer to the literature. Section 2 provides the
necessary background on discrete-time Markov models as well as their reacha-
bility analysis. Section 3 defines what counterexamples are. Section 4 is devoted
to path-based counterexamples and their applications, whereas Section 5 deals
with critical subsystems. Section 6 presents the generation of smallest critical
command sets in terms of the model description language. A brief description
and comparison of the available tools is given in Section 7. Finally, Section 8
concludes the survey.

2 Foundations

In this section we introduce discrete-time Markov models (Section 2.1) along with
probabilistic reachability properties for them (Section 2.2). For further reading
we refer to, e.g., [9, 14, 15, 45].

! DIPRO is available from http://www.inf.uni-konstanz.de/soft/dipro/ and
Cowmics from http://www-i2.informatik.rwth-aachen.de/i2/comics/
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2.1 Models

When modeling real systems using formal modeling languages, due to the com-
plexity of the real world, we usually need to abstract away certain details of the
real system. For example, Kripke structures specify a set of model states repre-
senting the states of the real-world system, and transitions between the model
states modeling the execution steps of the real system. However, the model states
do not store any specific information about the real system state that they rep-
resent (e.g., concrete variable values in a program). To be able to specify and
analyze properties that are dependent on information not included in the model,
we can define a set of atomic propositions and label each model state with the
set of those propositions that hold in the given state.

Ezxample 1. Assume a program declaring two Boolean variables b; and bs, both
with initial value false, and executing by := true and by := true in parallel. We
use S = {so, 51, S2, 3} as model state set with the following encoding;:

Model state Program variable values

S0 b1 = false by = false
S1 b1 = true  bs = false
So b1 = false by = true
S3 by = true by = true

We are interested in the equality of b; and bs. We define an atomic proposition
set AP = {a}, where a encodes the equality of b; and by, and a state labeling
function L : {sq, s1,52,53} — 21%} mapping the set {a} to so and s3 and the
empty set () to the other two states. |

In the following we fix a finite set AP of atomic propositions.

In systems that exhibit probabilistic behavior, the outcome of an executed
action is determined probabilistically. When modeling such systems, the transi-
tions must specify not only the successors but also the probabilities with which
they are chosen, formalized by probability distributions.

Definition 1 (Sub-distribution,distribution,support). A sub-distribution
over a countable set S is a function p : S — [0,1] such that 3 g u(s) < 1; p
is a (probability) distribution if Y .o pu(s) = 1. The set of all sub-distributions
over S is denoted by SDistr(S), the set of probability distributions by Distr(S).
By supp(p) = {s € S|u(s) > 0} we denote the support of a (sub-)distribution

1.

Example 2. Consider again the program from Example 1 and assume that in
the initial state sy the statement by := true is executed with probability 0.6
and by := true with probability 0.4. This is reflected by the distribution ug :
{s0, s1, 82,83} — [0,1] with uo(s1) = 0.6, po(s2) = 0.4, and uo(so) = u(sz) = 0.
The support of the distribution is supp(ug) = {s1, s2}.

After executing by := true, the system is in state s; and by := true will
be executed with probability 1. The corresponding distribution is specified by
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p1(s3) =1 and p1(so) = p1(s1) = p1(s2) = 0. Such a distribution, mapping the
whole probability 1 to a single state, is called a Dirac distribution.

For state so, the distribution ue equals up. Finally for sz, the Dirac distribu-
tion pg defines a self-loop on s3 with probability 1, modeling idling. |

Discrete-time Markov chains. Discrete-time Markov chains are a widely
used formalism to model probabilistic behavior in a discrete-time model. State
changes are modeled by discrete transitions whose probabilities are specified by
(sub-)distributions as follows.

Definition 2 (Discrete-time Markov chain). A discrete-time Markov chain
(DTMC) over atomic propositions AP is a tuple D = (S, Sinit, P, L) with S being
a countable set of states, sinix € S the initial state, P : S — SDistr(S) the
transition probability function, and L a labeling function with L : S — 2AF

We often see the transition probability function P : S — (S — [0, 1]) rather
as being of type P : (S x S) — [0,1] and write P(s, s") instead of P(s)(s’).

Example 3. The system from Example 2 can be modeled by the DTMC D =
(S, 80, P, L), where S and L are as in Example 1 and P assigns p; (defined in
Example 2) to s; for each i € {0,...,3}. This DTMC model can be graphically
depicted as follows:

Please note that in the above definition of DTMCs we generalize the standard
definition and allow sub-distributions. Usually, P(s) is required to be a proba-
bility distribution for all s € S. We can transform a DTMC D = (S, sinit, P, L)
with sub-distributions into a DTMC sy, (D) = (S, Sinit, P/, L") with distribu-
tions using the transformation o, with

— 8" =8U{s,} for a fresh sink state s, ¢ S,

P(s,s), for s,s' € S,
1->cgP(s,s"), forseSands =s,

— P'(s,s') = X €s for s — of — 8, and
0 otherwise (for s = s, and s’ € 5),

— L'(s) = L(s) f(;r s€Sand L'(sy) = 0.

According to the DTMC semantics below, the reachability probabilities in D
and as, (D) are equal for the states from S. The advantage of allowing sub-
stochastic distributions is that a subsystem of a DTMC, determined by a subset
of its states, is again a DTMC.
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Fig. 1. Completing sub-distributions of a DTMC (cf. Example 4)

Ezample 4. Consider again the DTMC from Example 3. If we are only inter-
ested in the behavior for executing the statement b; := true first, then the
transition from sg to s can be neglected. The DTMC model in this case has a
sub-distribution assigned to sg, as shown in Figure 1 on the left. We can trans-
form this DTMC with a sub-distribution into a reachability-equivalent DTMC
with distributions as shown in Figure 1 on the right. |

Assume in the following a DTMC D = (S, Sinit, P, L). We say that there is a
transition (s, s') from the source s € S to the successor s' € Siff s’ € supp(P(s)).
We say that the states in supp(P(s)) are the successors of s.

We sometimes refer to the underlying graph Gp = (S, Ep) of D, with nodes
S and edges Ep = {(s,8') € Sx S ’ s' € supp(P(s))}.

Example 5. The underlying graph of the DTMC from Example 3 on page 71 can

be visualized as follows:
(=) .

A path of D is a finite or infinite sequence m = sps; ... of states s; € S such
that s;4+1 € supp (P(sz)) for all ¢ > 0. We say that the transitions (s;,s;+1) are
contained in the path 7, written (s;, s;4+1) € m. Starting with ¢ = 0, we write 7[i]
for the (i + 1)* state s; on path 7. The length |7| of a finite path 7 = sq... s,
is the number n of its transitions. The last state of 7 is denoted by last(m)=s,,.

By Pathsilr)lf(s) we denote the set of all infinite paths of D starting in s €
S. Similarly, Paths} (s) contains all finite paths of D starting in s € S, and
Paths} (s,t) those starting in s € S and ending in t € S. For T C S we also
use the notation Pathsk, (s, T) for User Paths} (s,t). A state t € S is reachable

from another state s € S iff Pathsk, (s,t) # 0.
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Ezxample 6. The DTMC model D from Example 3 on page 71 has two infinite
paths starting in so, spemﬁed by Paths®;(so) = {s0s15%, 505255 }. The finite
paths starting in sg are Pathsﬁn(so) = {s0, S0s1, 30313;, 8052, 303233} The fi-
nite paths starting in sy and ending in s3 are Pathsgn(so, s3) = {303133 , S05253 }

To be able to talk about the probabilities of certain behaviors (i. e., path sets),
we follow the standard way [46] to define for each state s € S a probability space
(P FP, Pr ) on the infinite paths of the DTMC D starting in s. The sample
space QD is the set Paths”(s). The cylinder set of a finite path 7 = s¢. .. s, of
Dis deﬁned as Cyl(r) = {n’ € PathsZ;(so) |7 is a prefix of 7'}. The set FP of
events is the unique smallest o-algebra that contains the cylinder sets of all finite
paths in PathsﬁDn(s) and is closed under complement and countable union. The
unique probability measure Pr” (or short Pr) on FP specifies the probabilities
of the events recursively, for cylinder sets by

n—1

Pr(Cyl(so...sn)) = H P(si,5i11),

=0

for the complement IT of a set I € FP by Pr2(IT) = 1 — Pr2(IT), and for
the countable union IT = Ufil IT; of pairwise disjoint sets IT; € FP, i € N, by
Pry (IT) = 3372, Pr(11)).

For finite paths 7 we set Prg, () = Pr(Cyl()). For sets of finite paths R C
Pathsk (s) we define Prg,(R) = > rer Pran(m) with R" = {7 € R | Vn' ¢
R. 7’ is not a proper prefix of 7}.

Ezample 7. Consider again the DTMC from Example 3 on page 71. For the
initial state sg, the probability space (Qg,fslz,Pr ) is given by the following
components:

— The sample space is 28 = = Paths>;(s0) = {s0s15%, s0525%}.
— The event set F, D contalns the cylinder sets of all finite paths starting in sg
and the empty set ie.,

a=1{0
Cyl(so) = Paths2;(s0) = {s0515%, s0s25%},
Cyl(sps1) = Cyl(sosls3 ) = {sos15%},
Cyl(sps2) = Cyl(sos2s4) = {50525} }.

The empty set is added as the complement of Cyl(sg). The other cylinder
set complements and all countable unions over these elements are cylinder
sets themselves and therefore already included.
— The probability measure Prg is defined by
Pr2 (0) =0, Pr2(Cyl(so)) =1,

S0

Prg (Cyl(sps1)) = 0.6, Prg (Cyl(sos2)) = 0.4.
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Besides using explicit model representations enumerating states and transi-
tions, a DTMC can be represented symbolically using (ordered) binary decision
diagrams (BDDs) and multi-terminal BDDs (MTBDDs). For an introduction to
(MT)BDDs we refer to, e. g., [9]. In a symbolic representation, states are encoded
using a set of Boolean variables such that each state is uniquely represented by
an assignment to the Boolean variables. State sets, like the state space, the ini-
tial state or a set of states having a certain label of interest, are represented by
some BDDs such that the variable evaluations along the paths leading to the
leaf with label 1 encode those states that belong to the given set. Additionally,
an MTBDD P stores the transition probabilities. This MTBDD uses two copies
of the Boolean variables, one to encode the source states and one to encode the
successor states of transitions. The evaluation along a path encodes the source
and successor states, where the value of the leaf to which a path leads specifies
the transition probability. Operations on (MT)BDDs can be used to compute,
e. g., the successor set of a set of states or the probabilities to reach a certain set
of states in a given number of steps.

Ezample 8. The four system states of the DTMC D from Example 3 on page 71
can be encoded by two Boolean variables x and y:

S0 S1 S2 S3
z0 011
y0 101

The symbolic representation of D together with the state set T' = {s3} of special
interest would involve the following (MT)BDDs:

Sinit : e

»»

Though for this toy example the explicit representation seems to be more
convenient, for large models the symbolic representation can be smaller by orders
of magnitude. |

Markov Decision Processes and Probabilistic Automata. DTMCs be-
have deterministically, i. e., the choice of the next transition to be taken is purely
probabilistic. Enriching DTMCs by nondeterminism leads to Markov decision
processes and probabilistic automata.



Counterexample Generation for Discrete-Time Markov Models 75

Definition 3 (Probabilistic automaton [47]). A probabilistic automaton
(PA) is a tuple M = (S, Sinit, Act, p, L) where S is a finite set of states, Sinit € S
is the initial state, Act is a finite set of actions, P : § — (2ActxSDistz(5) \ ()
is a probabilistic transition relation such that P(s) is finite for all s € S, and
L: S — 24P s a labeling function.

M is a Markov decision process (MDP) if for all s € S and all & € Act
|{n € SDistr(S) | (a, p) € P(s)}| <1 holds.

Intuitively, the evolution of a probabilistic automaton is as follows. Starting
in the initial state sy, a pair (o, p) € P(sinit) is chosen nondeterministically.
Then, the successor state s’ € S is determined probabilistically according to the
distribution p. A deadlock occurs in state siniy with probability 1 — Zs'es u(s).
Repeating this process in s’ yields the next state and so on.

The actions Act, = {o € Act | 3u € SDistr(S). (a, ) € I:’(s)} are said to be
enabled at state s € S.

Note that DTMCs constitute a subclass of MDPs (apart from the fact that
the actions are not relevant for DTMC and are therefore typically omitted) and
MDPs build a subclass of PAs.

Ezxample 9. To illustrate the difference between the different model classes, con-
sider the following probabilistic models:

The involved distributions are

0.4, if s=s1, 0.2, if s=s9, 0.7, if s=sg,
u1(8) = 0.6, if s=so, pa(s)=<0.8, if s=s3, wus(s)=140.3, if s=sy,
0, else, 0, else, 0, else

and the Dirac distributions d;, i = 1,2, 3,4, assigning probability 1 to s; and 0
to all other states.

The model on the left is a PA. In state sg there are two enabled actions a and
b, where a appears in combination with two different distributions. Therefore,
this model is not an MDP.

In contrast, the model in the middle is an MDP, since in each state and for
each enabled action there is a single distribution available.

The model on the right is a DTMC, because a single distribution is mapped
to each state. |
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An infinite path in a PA M is an infinite sequence m = so(ap, fo)s1 (a1, 1) - - -
such that (v, 1) € P(s;) and s;41 € supp(u;) for all i > 0. A finite path in M
is a finite prefix m = so(ao, to)s1 (a1, ft1) - - - 85, of an infinite path in M with last
state by last(m) = s,,. Let 7[i] denote the (i + 1)'" state s; on path 7. The sets
of all infinite and finite paths in M starting in s € S are denoted by Pathsi\t(s)
and Paths; (s), respectively, whereas Paths? (s, t) is the set of all finite paths
starting in s and ending in ¢. For T'C S we also use the notation Pathsﬁ(s7 T)
for (J,er Pathsy/ (s,t).

Ezample 10. The sequence sq (a, 11) $1 ((a,d1) s1)“ is an infinite path in all three
models from Example 9 on page 75. (To be precise, the path of the DTMC does
not contain the action-distribution pairs.) ]

To define a suitable probability measure on PAs, the nondeterminism has to
be resolved by a scheduler first.

Definition 4 (Scheduler, deterministic, memoryless)
— A scheduler for a PA M = (S, sinit,Act,I:’,L) is a function
o: PathsﬁMn(sinit) — Distr(Act x SDistr(.5))

such that supp(o(m)) C I:’(last(w)) for each 7 € Pathsﬁ(sinit). The set of
all schedulers for M is denoted by Sched .

— A scheduler o for M is memoryless iff for all m,7’" € Pathsﬁj\/lrl (Sinit) with
last(7) = last(n’) we have that o(w) = o(7’).

— A scheduler o for M is deterministic iff for all m € PathsﬁMn(sinit) and
(a, p) € Act x SDistr(S) we have that o(m)((a, p)) € {0,1}.

Schedulers are also called policies or adversaries. Intuitively, a scheduler re-
solves the nondeterminism in a PA by assigning probabilities to the nondeter-
ministic choices available in the last state of a finite path. It therefore reduces
the nondeterministic model to a fully probabilistic one.

Example 11. Consider the PA depicted on the left-hand-side in Example 9 on
page 75. We define a scheduler oo by specifying for all = € Pathsﬁ (Sinit) and
for all (v, p1) € P(last(r))

0.25, if last(

0.5, if last(
oo(m)(a, u) =4 1, if last(w) € {s1, s3, 54},

09, ifr=7"(a/,p)s2and o/ =,

) = s and a = a,
) = s0 and o = b,

0.1, ifr=7"(a/,p)s2 and o/ # «,

and oo(7)(a, ) = 0 for all 7 € Pathsp! (sinit) and (a, p) € (Act x SDistr(S)) \

P(last(n)). The above scheduler o¢ is not memoryless, since the schedule for
paths with last state s5 depends on the last action on the path. This scheduler
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is also not deterministic, since it assigns also probabilities different from 0 and
1 to action-distribution pairs.
Let scheduler o; be defined for all © &€ Pathsﬁﬁ(sinit) and for all (a,p) €

P(last(r)) by

0.25, if last(m) = sp and @ = aq,
0.5, if last(m) = sp and a =,
(

1, if last(m) € {s1, $2, 83,84} and a = q,
0, else (if last(m) = s9 and o = b),

g1 (7T) (Oé, :U’) =

and oy () (a, ) = 0 for all 7 € Pathsp (sinit) and (o, 1) € (Act x SDistr(S)) \

P(last(m)). The scheduler o7 is memoryless but not deterministic.
Finally, the following scheduler oy is deterministic and memoryless:

1, if last(m) = so and («, p) = (a, 1),

1, if last(m) = s2 and («, u) = (b, dy),

1, if last(w) = s; and (o, p) = (a,d;) for i € {1,3,4},
0, else.

a2 (m)(a, p) =

Definition 5 (Induced DTMC). Let M = (S, sinit, Act, P, L) be a PA and
o a scheduler for M. We define the DTMC M? = (Pathsan (Sinit), Sinit, P, L)
with

Pl = {o(w)((a,u» us), i 7 =m(a,p)s,

0, otherwise ,

and L'(m) = L(last(m)) for all m, 7" € Pathsgn(Sinit). We call M? the DTMC
induced by M and o.

Ezample 12. The scheduler o9 from Example 11 (on page 76) for the PA depicted
on the left in Example 9 (on page 75) induces the following DTMC:

y[b‘o(a»m)m]—l{é'o(a:M1)81(@:d1)51]—' e

06
\[so(a, u1)52]—1>[30(a, p1)s2(b, dl)slj—l{so(a, p1)s2(b,di)si(a, d1)51]—> ce

Since the scheduler oy is memoryless, each pair of states m and 7’ with
last(7) = last(n’) are equivalent (bisimilar) in the sense that the set of all label
sequences (traces) along paths starting in those states are equal. (Note that the
labeling is not depicted in the above picture.) Since the logics we consider can
argue about the labelings only, such state pairs satisfy the same formulas. We
say that the observable behavior of our models is given by the their trace sets.

Based on this observation, we can build an abstraction of the above induced
DTMC by introducing abstract states s € S (the states of the inducing PA)
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representing all states m with last(n) = s of the induced DTMC. For the above
example, the scheduler is not only memoryless but also deterministic. For those
schedulers this abstraction defines a DTMC containing the states of the PA
and all distributions selected by the scheduler. For o9 the result is the DTMC
depicted on the right in Example 9 on page 75.

In the following, when talking about the DTMC induced by a PA and a
memoryless deterministic scheduler, we mean this abstraction. |

For the probability measure on paths of a PA M under a scheduler o for M,
we use the standard probability measure on paths of the induced DTMC M?, as
described previously. We denote this probability measure by Prﬁi/f‘f (or, briefly,
P9y,

2.2 Reachability Properties

As specification for both DTMCs and PAs we consider so-called reachability
properties. We are interested in a quantitative analysis such as:

“What is the probability to reach a certain set of states T starting in state s?”

Such a set of target states T might, e.g., model bad or safety-critical states,
for which the probability to visit them should be kept below a certain upper
bound. Formally, we identify target states by labeling them with some dedicated
label target € AP such that 7' = {s € S | target € L(s)}. Instead of depicting
target labels, in the following we illustrate target states in figures as double-
framed gray-colored nodes.

We formulate reachability properties like Py (Qtarget) for x € {<, <, >, >}
and A € [0,1] N Q. For simplicity, we will sometimes also write Py (0T"). Such
a property holds in a state s of a DTMC D iff the probability to reach a state
from T when starting in s in D satisfies the bound x A. The DTMC satisfies the
property iff it holds in its initial state. For a PA M we require the bound to be
satisfied under all schedulers.

Ezample 13. For instance, P<( 1(Qtarget) states that the probability of reach-
ing a state labeled with target is less or equal than 0.1, either for a DTMC or
under all schedulers for a PA. If the probability is larger in a state, this property
evaluates to false for this state. ]

In this paper we deal with reachability properties only. Deciding some other
logics like, e. g., probabilistic computation tree logic (PCTL) or w-regular prop-
erties can be reduced to the computation of reachability properties.

Furthermore, in the following we restrict ourselves to reachability properties
of the form P<,(Otarget). Formulas of the form P, (Otarget) can be handled
similarly. The cases > and > can be reduced to < and <, respectively, using
negation, e. g., P~ (Otarget) is equivalent to P<;_»(0—target).

At some places we will also mention bounded reachability properties of the
form P<)(OS"T) for a natural number h. The semantics of such formulas is
similar to the unbounded case P<(0T'), however, here the probability to reach
a state in T via paths of length at most h should satisfy the bound.
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Reachability for DTMCs. Assume a DTMC D = (S, Sinit, P, L), a label
target € AP and a target state set T = {t € S|target € L(t)}. We want
to determine whether D satisfies the property P<x(0T), written D = P<(0T).
This is the case iff the property holds in the initial state of D, denoted by
D, Sinit = P<a(OT).

Let s € S\ T. The set of paths contributing to the probability of reaching T'
from s is given by

OT(s) = {m € Paths](s) | Ji. target € L(n[i])}

inf

where we overload (7" to both denote a set of paths and a property, and also
write simply QT if s is clear from the context.
The above set OT'(s) equals the union of the cylinder sets of all paths from
Paths? (s, T):
OT(s) = U Cyl().

w€Paths? (s,7T)

fin

Note that Pathsgn(s, T') contains in general also prefixes of other contained paths
(if there are paths of length at least 1 from 7' to 7). When computing the
probability mass of ¢T(s), such extensions are not considered. We can remove
those extensions by restricting the finite paths to visit 7" only in their last state:

OT'(5) = Uneomyn(s) Cyl(m) with
OThin(s) = {7 € Pathsf (s,7) | V0 < i < |n|.7[i] ¢ T} .

As no path in the set (0Thn(s) is a prefix of another one, the probability of this
set can be computed by the sum of the probabilities of its elements:

P (0T (s)) = PrsD( U Cyl(ﬂ'))

WGOTf;n(S)
= Y PrP(Cyl(m))
WGOTf;n(S)
= Z P(s,s") - PrD (0T (s") + Z P(s,s).
s'€S\T s'eT

Therefore, we can compute for each state s € S the probability of reaching T
from s by solving the equation system consisting of a constraint

1, ifseT,
ps =40, if T is not reachable from s,

Zs’es P(s,s") - psr, otherwise

for each s € S. The unique solution v : {ps|s € S} — [0, 1] of this linear equation
system assigns to ps the probability of reaching T from s for each state s € S.
That means, D = P<»(0T) iff v(ps,,;,) < A

We can simplify the above equation system if we first remove all states from
the model from which T is not reachable.
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Fig. 2. An example DTMC (cf. Example 14)

Definition 6 (Relevant states of DTMCs). Let
ST = (5 € §|PathsE, (s, T) # 0}

Sgl(T) are called

and call its elements relevant for T (or for target). States s &
irrelevant for T (or for target).

The set of relevant states can be computed in linear time by a backward reach-
ability analysis on D [9, Algorithm 46].

If a model does not contain any irrelevant states, the above equation system
reduces to the constraints

_ )L if seT,
e ZS'ES P(s,s') - psr, otherwise

for each s € S.

Ezxample 14. Consider the DTMC illustrated in Figure 2 with target state set
T = {s3}. State sg is irrelevant for 7" and can be removed. The probabilities to
reach s3 can be computed by solving the following equation system:

Pso = 0.5- Ps, + 0.25 “Dsy + 0.25 - Dss  Dsy = 0.5 Py + 0.5- Dss

Psy = 0.5-ps, +0.5-pg, Dsg =1
Psy = 0.7- Psy +0.3- DPss Pss = 1 *Pse
Psg = 0.5 psy + 0.5 ps, Ds, = 0.25 - ps, +0.25 - pg,

The unique solution v defines v(ps,) = 11/12, v(ps,) = v(ps,) = V(psy) =
V(psy) =1, v(pss) = v(psg) = ?/3 and v(ps;) = /5. u
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Reachability for PAs. Assume a PA M = (S, sipnit, Act, P L), alabel target €
AP and a target state set T = {t es ’ target € L(t } Intuitively, a reacha-
bility property holds for M if it holds under all possible schedulers. Formally,
M = P<(0T) if for all schedulers o of M we have that M? |= P<,(0T).

It can be shown that there always exists a memoryless deterministic sched-
uler that maximizes the reachability probability for ¢" among all schedulers.
Therefore, to check whether M7 = P<»(0T) holds for all schedulers o, it suf-
fices to consider a memoryless deterministic scheduler ¢* which maximizes the
reachability probability for ¢I" under all memoryless deterministic schedulers,
and check the property for the induced DTMC M. For the computation of o*
we need the notion of relevant states.

Definition 7 (Relevant states of PAs). We define

ST = {s € §|30 € Sched . s € S5}

rel(T)

and call its elements relevant for T (or for target). States s € S, "’ are called

irrelevant for T (or for target).
Again, the set of relevant states can be computed in linear time by a backward

reachability analysis on M [9, Algorithm 46].

The maximal probabilities p; = Prﬁ/la ((}T(s)), s € S, can be characterized
by the following equation system:

1, if s €T,
ps =40, if s ¢ 55"
max{Y g u(s,8) s | (a,p) € ]5(3)}, otherwise

for each s € S. This equation system can be transformed into a linear optimiza-
tion problem that yields the maximal reachability probability together with an
optimal scheduler [9, Theorem 10.105].

Ezxample 15. Consider the left-hand-side PA model from Example 9 on page 75.
The probability to reach s; from sg is maximized by the deterministic memory-
less scheduler oo choosing (a, p1) in state sg, (b, d1) in state so, and (a, d;) in all
other states s; € {s1, $3,84}. [ |

3 Counterexamples

When a DTMC D violates a reachability property P<»(0T) for some T C S
and A € [0,1] N Q, an explanation for this violation can be given by a set of
paths, each of them leading from the initial state to some target states, such
that the probability mass of the path set is larger than A. Such path sets are
called counterezamples. For a PA M, a counterexample specifies a deterministic
memoryless scheduler ¢ and a counterexample for the induced DTMC M?.
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Counterexamples are valuable for different purposes, e.g., for the correction
of systems or for counterexample-guided abstraction refinement. However, coun-
terexamples may contain a very large or even infinite number of paths (note that
for a DTMC D the whole set Pathsk, (sinit, T) is the largest counterexample).
Therefore, it can increase the practical usefulness if we aim at the computation
of counterexamples satisfying certain properties. Some important aspects are:

The size of the counterexample, i.e., the number of paths in it.

The probability mass of the counterexample.

— The computational costs, i.e., the time and memory required to obtain a
counterexample.

— Counterexamples can be given using representations at different language

levels.

e At the level of paths, besides path enumeration, a counterexample can
be represented by, e. g., computation trees or regular expressions. Path-
based representations will be discussed in Section 4.

e At the model level, a part of the model can represent a counterexample
by all paths leading inside the given model part from sju;; to T'. Such
representations are the content of Section 5.

e At a higher level, a fragment of a probabilistic program, for which a
PA or a DTMC was generated as its semantics, can also represent a
counterexample. We discuss such counterexamples in Section 6.

Important in our considerations will be the size of the representation.

We first formalize counterexamples and measures regarding the first two
points, and will discuss representation issues and computational costs in the
following sections.

Definition 8 (DTMC evidence and counterexample, [17]). Assume a
DTMC D = (S, Sinit, P, L) violating a reachability property P<»(0T) with T C S
and A € [0,1]N Q.

An evidence (for D and P<x(0T)) is a finite path 7 € Pathsf?n(sinit,T). A
counterexample is a set C of evidences such that Pr?init (C) > A. A counterez-
ample C' is minimal if |C| < |C'| for all counterexzamples C'. It is a smallest
counterezample if it is minimal and Prs’imt(C’) > Prs’iuit (C") for all minimal
counterexamples C'.

Example 16. Consider the DTMC from Example 3 on page 71 and the reach-
ability property P<q.3 ((}{33}) The path sets II1 = {sos183, S0s18353}, [l2 =
{s0s183, sos283}, I3 = {sos183}, and II4 = {sps2s3} are all counterexamples
(with probability mass 0.6, 1, 0.6, and 0.4, respectively). Only IT3 and 14 are
minimal, where only I3 is a smallest counterexample. |

For reachability properties of the form P<(Qtarget) with a non-strict upper
bound on the admissible reachability property, a finite counterexample always ex-
ists, if the property is violated. For strict upper bounds P ({target), however,
an infinite number of paths can be required if the actual reachability probability
equals A [17].
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Example 17. Consider the following DTMC:

0.5

(@

The probability to reach s; is 1, i.e., the property P ((}{sl}) is violated.
However, a counterexample must contain all the infinite number of paths sgs1,
S0S081, S0S0SpS1 ete. |

Even if the counterexample is finite, the number of required paths can be very
large. Han et al. [17] determine for the case study of a probabilistic synchronous
leader election protocol that the number of evidences is double exponential in
the system parameters.

Definition 9 (PA counterexample). Assume a PA M = (S, sinit,Act,P,L)
violating a reachability property P<x(0T) with T C S and A € [0,1]N Q.

A counterexample (for M and P<x(0T)) is a pair (o,C) such that o is a
scheduler for M and C' is a counterezample for M?. A counterexample (o, C) is
minimal if |C| < |C'| for all counterexamples (o', C"). It is a smallest counterez-
ample if it is minimal and Pr?:m(C) > Prﬁi/fm (C") for all minimal counterezam-
ples (o/,C").

Example 18. Consider the left-hand-side PA model from Example 9 on page
75 and the reachability property IP’SO.g(O{sl}). A smallest counterexample is
(02, {s0S1, S0s251}) with o3 as defined in Example 11 on page 76. [ ]

4 Path-Based Counterexamples

After having introduced discrete-time probabilistic models and counterexamples
for reachability properties, in the following we discuss how we can compute such
counterexamples for the different model classes in different representations. We
start with methods that are based on the search for paths at the state-space
level.

4.1 Path-Based Counterexamples for DTMCs

Smallest Counterexamples. For DTMCs, Han, Katoen and Damman show
in [17] how the computation of a smallest counterexample can be reduced to
the computation of k shortest paths in a directed weighted graph for a suitable
ke N.

We need in the following the property that the DTMC D = (S, Sinit, P, L) we
consider has a single absorbing target state. If it is the case, we define D' = D.
Otherwise, the DTMC D is first transformed by adding a new, absorbing target
state t € S and redirecting all transitions starting in former target states to lead
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to the new one. This transformation yields the DTMC D’ = (5, Sinit, P’, L)
with $” = SU {t} and

P(s,s'), ifseS\Tand s €5,

P(s, )= 1, ?f seT and s =t, L (s)= {target}, if s= t',
1, if s=s" =t 0, otherwise.
0, otherwise,

Note that the probability to reach ¢ from s € S in D’ equals the probability to
reach T from s in D.

As the next step, a directed weighted graph Gp = (V, E,w) with nodes V,
edges E and edge weights w : E — R2? is obtained from D’ as follows: V = 5,
(s,s') € Eiff P'(s,s") > 0, and w(s,s’) = —logP'(s,s") (one could take any
basis, we take the natural logarithm with basis e).

We define the weight w(7) of a path 7 in Gp as the sum of the weights of the
transitions in 7. The relation between the weight of a finite path 7 = sg... s,
in Gp and the probability of the same path in D is as follows:

w(n) = S0 w(si, siv1) = ) —log P'(si, sit1)
= — S log P/ (s, si41) = —log [T0 P'(si, 8i11)
= —log Prg (m).

Note that we can also compute the probabilities from the weights by Prg (m) =
e~(™)_ Since the negative logarithm is monotonically decreasing in the interval
(0, 1], more probable paths in D’ have smaller weights in Gp, i.e., PrsD/ (m) >
Pr? (n') iff w(r) < w(n') for all states s € S and paths 7,7’ € Pathsk, (s).

That means, the problem to find a sufficient number of most probable paths
in D can be solved by finding a sufficient number of shortest paths in Gp. The
main advantage of this problem transformation, besides the lower complexity of
the addition operation compared to multiplication, is that we can apply shortest
path search algorithms without modification.

Definition 10 (k shortest path problem, [17]). Given a directed weighted
graph G = (V, E,w), nodes s,t € V, and k € N, the k shortest path problem
(KSP) is to find k different paths 71, ..., 7 from s tot in G (if they exist) such
that for all 1 <i < j <k, w(m) < w(n;) and for all paths © from s to t either
me{m,...,m} or w(m) > w(mg).

Theorem 1 ([17]). A smallest counterexample C for D contains |C| shortest
paths in Gp from sini to t.

Example 19. Consider the DTMC D from Example 14 on page 80, depicted in
Figure 2, which already has a single absorbing target state. The corresponding
directed weighted graph Gp is shown in Figure 3 (with rounded weights).
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Fig. 3. The directed weighted graph for the DTMC from Figure 2 (cf. Example 19)

We would like to compute a counterexample for P<g 4 (0{33}) Thus we search
for k shortest paths mi,...,m in Gp for an appropriate k£ such that
Zle e~(™) > 0.4. The four shortest paths in Gp, with their (rounded) weights
in Gp and probabilities in D are as follows:

Path Weight (rounded) Probability
T1 — S0S1S3 1.39 1/4
9 = S0S556S3 2.08 1/8
T3 = 80825153 2.77 1/16
T4 = S051525153 2.77 1/16

Since Yie 12 €™ = Liepraap "™ = Yt ts 4 e = 04375 > 04,
both path sets {m1, 2, 75} and {m1, w2, 74} are smallest counterexamples. [ ]

As the size of a smallest counterexample is not known in advance, we need k
shortest paths computation algorithms that can determine the value of k on the
fly. Examples of such algorithms are Eppstein’s algorithm [48], the algorithm
by Jiménez and Marzal [49], and the K* algorithm [50] by Aljazzar and Leue.
While the former two methods require the whole graph to be placed in memory
in advance, the K* algorithm (see also Section 4.2) expands the state space on
the fly and generates only those parts of the graph that are needed. Additionally,
it can apply directed search, i. e., it exploits heuristic estimates of the distance of
the current node to a target node in order to speed up the search. The heuristic
has thereby to be admissible, i. e., it must never over-estimate the distance.

For bounded reachability properties P< A(OS"T), a hop-constrained k shortest
paths problem (HKSP) can be used to determine a smallest counterexample.
In this case the additional constraint that each evidence may contain at most
h transitions must be imposed. In [17] an adaption of Jiménez and Marzal’s
algorithm to the HKSP problem is presented.
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Heuristic Approaches. Besides the above methods to compute smallest coun-
terexamples, heuristic approaches can be used to compute not necessarily small-
est or even minimal ones. Bounded model checking (BMC) [51] is applied by
Wimmer et al. in [19, 20] to generate evidences until the bound X is exceeded.
The basic idea of BMC is to formulate the existence of an evidence of length k
(or < k) for some natural number k as a satisfiability problem. In [19] purely
propositional formulas are used, which does not allow to take the actual prob-
ability of an evidence into account; in [20] this was extended to SMT formulas
over linear real arithmetic, which allows to enforce a minimal probability of evi-
dences. Using strategies like binary search, evidences with high probability (but
still bounded length) can be found first.

In both cases, the starting point is a symbolic representation of the DTMC
at hand as an MTBDD P for the transition probability matrix. For generating
propositional formulas, this MTBDD is abstracted into a BDD Pspb by mapping
each leaf labeled with a positive probability to 1. Hence, the BDD Pgpp stores
the edges of the underlying graph. The generation of propositional formulas
is done by applying Tseitin’s transformation [52] to this BDD, resulting in a
predicate trans such that trans(v, v’) is satisfied for an assignment of the variables
v and v’ if and only if the assignment corresponds to a transition with positive
probability in the DTMC. The same is done for the initial state, resulting in
a predicate init such that init(v) is satisfied if the assignment of v corresponds
to the initial state of the DTMC and a predicate target(v) for the set of target
states. With these predicates at hand, the BMC-formula is given as follows:

k—1
BMC(k) = init(vg) A /\ trans(v;, vi+1) A target(vg) . (1)
=0

This formula is satisfied by an assignment v iff v(v;) corresponds to a state s;
fori=1,...,k such that sgs; ... s is an evidence for the considered reachability
property.

Starting at k = 0, evidences are collected and excluded from further search
by adding new clauses to the current formula, until either the set of collected
paths forms a counterexample or the current formula becomes unsatisfiable. In
the latter case we increase k and continue the search.

During the BMC search, loops on found paths can be identified. A found path
containing a loop can be added to the collection of evidences with arbitrary un-
rollings of the loop. However, since loop unrollings lead to longer paths, attention
must be payed to exclude those paths when k reaches the length of previously
added paths with unrolled loops.

The propositional BMC approach yields a counterexample consisting of evi-
dences with a minimal number of transitions, but the drawback is that the ac-
tual probabilities of the evidences are ignored. This issue can be solved by using
a SAT-modulo-theories formula instead of a purely propositional formula [20].
Thereby the transition predicate trans is modified to take the probabilities into
account: trans(v;, p;, v;11) is satisfied by an assignment v iff v(v;) corresponds
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to state s;, v(vit1) to state s;11, P(S;,8i+1) > 0, and v(p;) = log P(s;, Si+1)-
By adding the constraint Zf;ol p; > logd for some constant § € (0, 1], we can
enforce that only paths with probability at least § are found.

Additionally, using an SMT formulation allows us to take rewards into ac-
count: we can extend the DTMC by a function p : S x S — R, which speci-
fies the reward of a transition. Rewards can—depending on the context—either
represent costs (e.g., energy consumption, computation time, etc.) or benefits
(number of packets transmitted, money earned, etc). Similar to constraints on
the probability of an evidence, we can enforce that the accumulated reward along
an evidence satisfies a linear constraint [20, 53].

Symbolic Methods. For a DTMC D = (S, sinit, P, L) together with a set of
target states T that are represented symbolically in the form of BDDs Iand T
for the initial state and the target states, respectively, and an MTBDD P for
the transition probability matrix, Gilinther, Schuster and Siegle [21] propose a
BDD-based algorithm for computing the k£ most probable paths of a DTMC.
They use an adaption of Dijkstra’s shortest path algorithm [54], called flooding
Dijkstra, to determine the most probable path. Then they transform the DTMC
such that the most probable path of the transformed system corresponds to
the second-most-probable path in the original DTMC. For this they create two
copies of the DTMC: The new initial state is the initial state of the first copy,
the new target states are the target states in the second copy. The transitions
of the second copy remain unchanged. In the first copy, all transitions on the
already found most probable path also remain unchanged. All other transitions
lead from the first copy to the corresponding state in the second copy. Thus, to
reach a target state from the initial state, at least one transition has to be taken
which is not contained in the most probable path. The corresponding function
has as input BDDs the symbolic representation of the DTMC as well as a BDD
SP representing the current most probable path. Returned is a new symbolic
DTMC:

(15, I, T) := Change(P,I,T,SP)
We illustrate this process using an example.

Ezxample 20. Consider again the DTMC in Figure 2 on page 80. The first appli-
cation of Dijkstra’s algorithm yields the most probable path sgsis3 with prob-
ability 1/2-1/2 = 1/4 from the initial state so to the target state s3. To obtain
the second-most-probable path, the DTMC in Figure 4 is constructed. In the
modified DTMC, the initial state is 3, the target state is si. The most probable
path from s§ to s} is s)sisisi with probability 1/a-1-1/2 = 1/s. This path cor-
responds to $gs556s3 in the original DTMC, which is the second-most probable
path there. |

To obtain the next path, the same transformation is applied again. After k
paths the underlying graph has increased exponentially in k. Each transforma-
tion step requires to introduce two new BDD-variables and typically increases
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Fig. 4. Exclusion of the most probable path (the states and transitions which are not
reachable from the initial state s have been colored grey to improve readability)

the size of the symbolic representation. Therefore this methods scales well to
large state spaces, but not for large values of k.

Compact Representations. Alone the mere number of evidences in a coun-
terexample can render the counterexample unusable for debugging purposes.
Therefore a number of approaches have been proposed to obtain smaller, better
understandable representations of counterexamples. Typically they exploit the
fact that many paths in a counterexample differ only in the number and order
of unrollings of loops.

Building upon ideas by Daws [55] for model checking parametric DTMCs,
Han, Katoen and Damman [17, 22] proposed the representation of counterexam-
ples as regular expressions: First the DTMC is turned into a deterministic finite
automaton (DFA), whose transitions are labeled with (state, probability) pairs:
Essentially, a transition from s to s’ with probability p = P(s,s’) > 0 in the

DTMC is turned into the transition s M) s’ of the DFA. State elimination is
used to turn the DFA into a regular expression. The state elimination removes
states iteratively, and for each removed state it connects its predecessors with its
successors by direct transitions. These new transitions are labeled with regular
expressions describing the inputs read on the possible path from a predecessor
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Fig. 5. Representing counterexamples as regular expressions (cf. Example 21)

via the removed state to a successor. In order to obtain a small regular expression
for a counterexample, the authors proposed to iterate the following steps:

1. Find a most probable path in the remaining automaton using Dijkstra’s
shortest path algorithm.

2. Eliminate all states (except the first and last one) on this path; the order of
elimination is determined according to a heuristics like [56], well known from
the literature on automata theory. This gives a regular expression describing
the considered most probable path.

3. Evaluate the set of regular expressions generated so far and check whether
the joint probability mass of the represented paths is already beyond the
given bound A. If this is the case, terminate and return the regular expres-
sions. Otherwise start a new iteration of the elimination loop.

Ezample 21. Consider the DTMC in Figure 5 (a) with target state s2. Its DFA
is depicted under (b). The first most probable path is sgs1 2, i.e., we eliminate
s1, resulting in the DFA (c). The probability value of the regular expression
generated for the found path is

Val((sl7 1)(sa2, 1/2)) = Val((sl, 1)) -val((sz7 1/2)) =1-1p=1/.

If this mass is not yet sufficient to violate the bound, we search for the most
probable path in (c), which is sgsgse. We eliminate sg resulting in the DFA (d).
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0.5

Fig. 6. The result of SCC abstraction applied to the DTMC in Figure 2 (cf. Exam-
ple 22)

The probability value of the regular expression for the second found path is

val((s1,1)(s3,1/2)  ((s1,/2)(s3,1/2))" (s1,1/2)(s2,1/2)) =
Val((Sh 1)(837 1/2)) . 17va1((81,11/2)(53’1/2)) . Val((Sh 1/2)(82’ 1/2)) N
1.1/2 . 4/3 . 1/2.1/2 =

/6.

Since there are no more paths from the initial state sg to so, the total proba-
bility to reach so from sq is the value 1/2 4+ 1/6 = 2/3 of the regular expression

(s1, 1) (s2,1/2) [ (51, 1) (83, 1/2) ((s1,1/2) (53, 1/2))" (51, 1/2) (52, 1/2).- u

The same can also be applied for bounded reachability properties P<,(O=ShT).
The only changes are the usage of a hop-constraint shortest path algorithm and
a different method for determining the probability of the represented path, such
that only the probability of those paths represented by the regular expressions
is counted whose length is at most h.

A different compaction of counterexamples is described by Andrés, D’Argenio
and van Rossum in [24]. As many paths only differ in the number and order of
unrollings of loops in the system, the non-trivial strongly connected components?
(8CCs) of the DTMC under consideration, i. e., those SCCs which contain more
than one state, are abstracted into direct edges from the input to the output
states of the SCC. Input states are states in the SCC which have an incoming
edge from outside the SCC, and output states are outside of the SCC, but
have an incoming edge from inside the SCC. The probability of these edges is
determined using model checking as the probabilities to reach the output states
from the input states. After this abstraction, counterexamples as sets of paths
can be easily determined in the resulting acyclic model.

Ezxample 22. In the DTMC from Figure 2 on page 80, there are two non-trivial
SCCs consisting of the states (i) {ss, ss, 7} with input state s5 and output states

2 A strongly connected component (SCC) is a maximal set of states such that for all
s and s in the SCC, s’ can be reached from s inside the SCC.
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s3 and sg, and (ii) {s1, s2, 84} with input states s; and sy and output state ss.
Eliminating these SCCs results in the DTMC shown in Figure 6. The wave-like
edges represent paths through SCCs that have been abstracted. |

4.2 Path-Based Counterexamples for PA

The simplest way to generate path-based counterexamples for a PA M [25, 38]
is to first generate a memoryless deterministic scheduler ¢* which mazimizes
the reachability probability. Such a scheduler can be obtained as a by-product
from model checking. This scheduler o* induces a DTMC M | such that

Prﬁ’lﬂt (OT) = maxeeScheda Prfi:;(OT) > A. In a second step, the methods
for counterexample generation described above are applied to M, resulting in
a counterexample C' for M? . Then (c*,C) is a counterexample for M.

However, as the computation of a maximizing scheduler requires to have the
whole state space of M residing in memory, the advantage of using an algorithm
like K* [50] which expands the state space on the fly when necessary, is lost.
Therefore, Aljazzar and Leue [25] proposed a method which allows to not only
compute the paths but also the scheduler on the fly as follows.

The problem when applying K* to a PA is that the generated paths are
in general not compatible to the same scheduler. Therefore all paths are kept
and clustered according to the scheduler choice made in each state. To do so an
AND/OR-tree is maintained, which is initially empty. The OR-nodes correspond
to the state nodes, in which the scheduler makes a decision. The AND-nodes
correspond to the probabilistic decisions after an action-distribution pair has
been chosen by the scheduler. Applying the K* algorithm to the PA M, the
next most probable path is determined. The new path 7 is inserted into the tree
by first determining the longest prefix which is already contained in the tree. The
remainder of the path becomes a new sub-tree, rooted at the node where the
longest prefix ends. By a bottom-up traversal, a counterexample and a (partial)
scheduler can be determined from the AND/OR-tree.

Example 23. Assume the MDP in Figure 7 left, which violates the reachability
property P<q.75 (0{34}). Assume furthermore that the path search gives us the
following paths in this order:

Path Path probability
T = 805154 0.5
o = S0S2854 0.4
T3 = 50825085154 0.25
T4 = 8081505154 0.2
5 = 8082505254 0.2
Te — S0S150S5254 0.16
7 = 8082508250S5154 0.125

] = S05815082505154 0.1
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Fig. 7. Example MDP (cf. Example 23)

The generated path tree is depicted in Figure 7 on the right-hand side. The
rectangular nodes are OR-nodes, the circles are AND-nodes. The value attached
to a leaf is the probability of the path from the root to the leaf. The value
attached to an inner AND-node is the sum of the values of its children, whereas
the value of an OR-node is the maximum of all children values. Thus the value
of the root specifies the maximal probability of found compatible paths, which
are possible under a common scheduler.

After having added the last path, the probability of the root is above 0.75;
the boldface subtree specifies a suitable scheduler to build a counterexample
with the path set {m1, 76, ms}. Note that this scheduler is deterministic but not
memoryless. |

4.3 Applications of Path-Based Counterexamples

Path-based counterexamples are mostly used in two main areas: Firstly, for ex-
tracting the actual causes why a system fails. This information can be used for
debugging an erroneous system [42-44]. Secondly, for counterexample-guided ab-
straction refinement of probabilistic automata [38]. We briefly sketch the main
ideas of these works.

The extraction of reasons why a system fails is based on the notion of causal-
ity [57]. The idea behind that is that an event A is critical for event B, if A had
not happened, then B would not have happened either. However, this simple
notion of criticality is sometimes too coarse to be applicable. Therefore Halpern
and Pearl [57] have refined it to take a side-condition into account: Essentially,
if the events in some set E did not have happened, then A would be critical for
the occurrence of B. In this case A is a cause of B.
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Ezxample 24 (taken from [57]). Assume Suzy and Billy are both throwing stones
at a bottle, and both throw perfectly, so each stone would shatter the bottle.
But Suzy throws a little harder such that her stone reaches the bottle first.
Clearly we would say that the cause of the shattering of the bottle is Suzy
throwing a stone. However, Suzy throwing is not critical, since if she did not
throw, the bottle would be shattered anyway (by Billy’s stone). But under the
side-condition that Billy does not throw, Suzy’s throw becomes critical.? |

For details on this notion of causality, its formal definition, and a series of ex-
amples we refer the reader to [57].

Chockler and Halpern [58] use a quantitative notion regarding causes, given
by the degree of responsibility dR(A) of a cause A: Essentially dR(A) =
where k is the size of the smallest side-condition needed to make A critical.

Debbi and Bourahla [42; 43] consider constrained reachability properties of
the form P<(¢1 Ups) where ¢; and @9 are arbitrary Boolean combinations of
atomic propositions from the set AP, and U is the temporal until operator. As
potential causes for the violation of the property they consider propositions of
certain states, i.e., pairs (s,a) for s € S and a € AP: If the value of such a
proposition is switched (under some side-condition), some paths in the consid-
ered counterexample no longer satisfy the formula 1 U s, and the probability
mass of the remaining paths is no longer above the bound A. They assign weights
to the causes as follows: The probability Pr(s,a) of a cause (s,a) is the sum of
the probabilities of all paths 7 in the counterexample which contain state s.
The weight w(s,a) of a cause (s, a) is given by w(s, a) = Pr(s,a) - dR(s, a). The
causes are presented to the user with decreasing weight.

A different approach, also based on the notion of causality of [57], is described
by Leitner-Fischer and Leue in [44, 59]. The authors proposed to extract fault
trees from path-based probabilistic counterexamples. For this they do not con-
sider just evidences of the underlying DTMC, but they rather keep track of the
events which caused the transitions along an evidence. Since the order of events
along the evidences can be crucial for the failure, they extend the notion of
causality to also take the event order into account. Hence, a cause is a sequence
of events together with restrictions on the order of the events. Additionally, the
joint probability of the evidences which correspond to such a cause is computed.
A fault tree is generated from the causes by using the undesired behavior as the
root, which has one subtree per cause. Each cause is turned into a tree by using
an AND gate over those events whose order does not matter, and an ordered-
AND gate if the order does matter. Additionally the subtree corresponding to a
cause is annotated by the probability of the corresponding evidences.

An interactive visualization technique is proposed by Aljazzar and Leue in
[60] to support the user-guided identification of causal factors in large counterex-
amples. The authors apply this visualization technique to debug an embedded
control system and a workstation cluster.

1
1+k

3 The precise formal definition encompasses more constraints in order to avoid Billy
throwing being a cause.
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Failure mode and effects analysis (FMEA) allows to analyze potential system
hazards resulting from system (component) failures. An extension of the original
FMEA method can also handle probabilistic systems. In this context, path-based
probabilistic counterexamples were used by Aljazzar et al. in [41] to facilitate
the redesign of a potentially unsafe airbag system.

A different application of path-based counterexamples is described by Hermanns,
Wachter and Zhang in [38] for counterezample-guided abstraction refinement
(CEGAR): The starting point is an abstraction of a PA, over-approximating
the behavior of a concrete PA model. If this abstraction is too coarse, it might
violate a property even if the concrete system satisfies it. In this case counterex-
amples are used to refine the abstraction.

A PA is abstracted by defining a finite partitioning of its state space and repre-
senting each block of the partition by an abstract state; all transitions targeting a
concrete state are redirected to its abstract state, and similarly all outgoing tran-
sitions of a concrete state start in the abstract state to which it belongs.

Starting with an initial abstraction, model checking is performed to check
whether the property at hand is satisfied. If this is the case, one can conclude
that it is also satisfied in the concrete model. However, if the property is violated
by the abstraction, the optimal scheduler, obtained from the model checking pro-
cess, is used to compute the induced DTMC. Therein a path-based counterexam-
ple is determined. Now two cases are possible: Either the counterexample of the
abstract system corresponds to a counterexample in the concrete model, in which
case the property is also violated by the concrete model. Or the counterexample
is spurious, i.e., it exists only in the abstraction due to the over-approximating
behavior, in which case the abstraction needs to be refined. This is done by pred-
icate abstraction, splitting the abstract states according to a predicate P into a
subset satisfying P and one violating it. The predicate P is obtained from the
counterexample evidences via interpolation.

Experimental results show that in some cases a definite statement about the
satisfaction of the property at hand can be made on a very coarse approximation.
This speeds up the model checking process and allows to handle much larger
systems than with conventional methods.

5 Critical Subsystems

Path-based representations of counterexamples, as discussed in the previous Sec-
tion 4, have some major drawbacks: The number of paths needed might be very
large (or even infinite), leading to high memory requirements. As a consequence,
the number of search iterations in terms of path-searches is equally high, lead-
ing to high computational costs. Finally, a counterexample consisting of a high
number of potentially long paths is hard to understand and analyze, therefore
its usefulness is restricted.

An alternative is to use critical subsystems, which are fractions of DTMC,
MDP or PA models violating a property, such that the behavior of the models
restricted to the critical subsystems already violates the property. It is often
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possible to generate critical subsystems whose size is smaller by orders of magni-
tude in comparison to the input system. Thereby, the critical part of the original
system leading to the violation is highlighted.

Definition 11 (Critical subsystems of DTMCs). Assume ¢« DTMC D =
(S, Sinit, P, L), a target state set T C S and some A € [0,1] N Q such that
D = P<A(OT).

A subsystem D’ of D, written D' C D, is a DTMC D' = (S, Sinit, P, L") such
that 8" C S, Sinit € S, P'(s,s") > 0 implies P'(s,s') = P(s,s’) for all s,s' € 5,
and L'(s) = L(s) for all s € S".

Given S" C S with sinis € S’, the subsystem Dgr = (S, Sinit, P', L) of D with
P'(s,s") = P(s,s") and L'(s) = L(s) for all s,s' € S is called the subsystem of
D induced by S’.

A subsystem D' of D is critical for P<x(0T) if TNS" # O and D' |~
]P’S)\ (O(T N S/))

Example 25. For the DTMC in Figure 2 on page 80 and the reachability property
P<o.s ((){53}), the following DTMC is a critical subsystem, since the probability

toreachs;;fromsois; ool =1s9.3:
1-1.1727 3

—
\_/ n

The above definition of critical subsystems of DTMCs is a special case of the
following definition generalized for PAs:

Definition 12 (Critical subsystems for PAs). Assume a PA M = (S, Sinit,
Act, P, L), a target state set T C S and some X € [0,1] N Q such that M
PoA(0T).

A subsystem M’ of M, written M’ C M, is a PA M’ = (5, Sinit, Act, P/, L)
such that S C S, st € S', L'(s) = L(s) for all s € S', and for each s € S’
there is an injective function f : P'(s) — P(s) such that for all (o/, ') € P'(s)
with f((o/, 1)) = (o, p) if it holds that o/ = o and p'(s') = p(s') for all
s" € supp(u').

A subsystem M’ of M s critical for P<x(0T) if TNS" # 0 and M’
]P’S)\ (O(T N S/)) .

To have well-understandable explanations for the property violation, for PAs
we are interested in their critical subsystems induced by deterministic memory-
less schedulers. Therefore, in the context of counterexamples in the following we
consider only DTMCs (as deterministic PAs) as critical subsystems.

The set of those paths of a critical subsystem D’ which are evidences for a
reachability property form a counterexample in the classical sense as in Defini-
tion 8§, i.e.,

C = Pathsg(sinit, T)
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is a counterexample. Therefore, a critical subsystem can be seen as a symbolic
representation of a counterexample.

We define minimality of critical subsystems in terms of their state space size:
A critical subsystem is minimal if it has a minimal set of states under all crit-
ical subsystems. Analogously to counterexamples, we can also define a smallest
critical subsystem to be a minimal critical subsystem in which the probability
to reach a target state is maximal under all minimal critical subsystems. Note
that even if a critical subsystem is smallest or minimal, this does not induce a
smallest or minimal counterexample in the sense of [17].

Critical subsystems can be generated in various ways. In this section, we first
discuss the generation of critical subsystems for DTMCs: We start by describing
how solver technologies can be used to compute smallest critical subsystems of
DTMCs. This powerful method is also applicable to arbitrary w-regular prop-
erties [27, 28, 61]. Afterward we describe heuristic algorithms which determine
a (small) critical subsystem by means of graph algorithms as presented by Al-
jazzar and Leue in [30] and by Jansen et al. in [29]. We also give the intuition
of an extension to symbolic graph representations [32]. The second part of this
section is devoted to the computation of smallest critical subsystems for MDPs
and PAs.

5.1 Critical Subsystems for DTMCs

Smallest Critical Subsystems. In [27, 28, 61] an approach to compute small-
est critical subsystems is proposed. The idea is to encode the problem of finding a
smallest critical subsystem as a mized integer linear programming (MILP) prob-
lem (see, e.g., [62]). It is also possible to give an SMT-formulation over linear
real arithmetic, but the experiments in [27] clearly show that the MILP formu-
lation is much more efficiently solvable. We therefore restrict our presentation
here to the MILP formulation.

Definition 13 (Mixed integer linear program). Let A € Qm™*", BcQm™**,
beQm, ceQn, and d € QF. A mixed integer linear program (MILP) consists
in computing min ¢’z + dTy such that Ax + By < b and x € R", y € ZF.

In the following let D = (S, Sinit, P, L) be a DTMC and P<(0T) a reachability
property that is violated by D. We assume that D does not contain any state
that is irrelevant for reaching T from sjpit.-

We want to determine a minimal set S’ C S of states such that Dgs is a
critical subsystem. To do so, we introduce for each state s € S a decision variable
zs € {0,1} C Z, which should have the value 1 iff s is contained in the selected
subsystem, i.e., if s € S’. Additionally we need for each s € S a variable p, €
[0,1] N @ which stores the probability to reach T from s within the selected
subsystem Dg:. The following MILP then yields a smallest critical subsystem of
D and PS)\(OT):

1
minimize  — - Pay, + YT (2a)
ses
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such that
VseT: ps=us (2b)
Vs e S\T: ps<ag (2¢)
Vse S\T: ps< Z P(s,s")  ps (2d)
s'Esupp(P(S))
Dsinie > A - (2¢)

If v is a satisfying assignment of this MILP, then Dg with S/ = {s €
S|v(zs) = 1} is a smallest critical subsystem. Constraint (2b) states that the
probability of a target state is 1 if it is contained in the subsystem, and 0 oth-
erwise. Constraint (2c) ensures that the probability contribution of states not
contained in the subsystem is 0. Constraint (2d) bounds the probability con-
tribution of each non-target state by the sum of the probabilities to go to a
successor state times the probability contribution of the successor state. Finally,
(2e) encodes that the subsystem is critical.

The objective function (2a) ensures (i) that the subsystem is minimal by
minimizing the number of z-variables with value 1 and (ii) that the subsystem
is smallest by minimizing —1/2 - ps, ., .

Example 26. Consider again the DTMC D in Figure 2 on page 80 and the vi-
olated reachability property P<o.3(0{s3}). Note that ss is irrelevant and can
therefore be ignored together with all its incident transitions. The constraints to
compute a smallest critical subsystem are as follows:

minimize —1/2 - pg, + Tsy + Ts, + Tsy + Tsg + Tsy + Tsy + Tsg + T,

such that
Ps; = Tsy
Dso < T, Dso < 0.59ps, +0.25p,, + 0.25ps,
Ps; < Tsy Ps; < 0.9ps, + 0.5ps,
Psy < T, Psy < 0.9ps, + 0.5ps,
Psy < Ty Psy < 0.7ps; + 0.3ps,
Dsy < Ty Dss < 1.0ps,
Dsg < Tsg DPsg < 0~5p33 + 0~5p37
Dsy < Ty Dsy < 0~25p35 + 0-25p86
Dsy > 0.3

Solving this MILP yields the following assignment:

Variable Zs, Dsy s, Ds; Tsy Psy Tsy Pss Tsy Psy Tss Dss Tsg Psg Tsy Psr
Value 1512212311331 1 0 0 0 0 0 0 0 O

This solution corresponds to the DTMC Dg: with S" = {so, $1, S2, $3}, shown in
Figure 11(b) on page 102. |

The solution of this MILP is rather costly (solving MILPs in general is NP-
complete). However, the solution process can be accelerated by adding redundant
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Fig. 8. Incremental generation of critical subsystems

constraints which exclude non-optimal solutions from the search space [27, 61].
For example, one can require that each state s ¢ T contained in the subsystem
has a successor state which is also contained in the subsystem:

Vse S\T: z,< Z Ty .

s’Esupp(P(s))

The described approach has been generalized to arbitrary w-regular proper-
ties [28, 61].

Heuristic Approaches. An alternative approach to determine critical subsys-
tems is to use the classical path search algorithms as presented in Section 4 to
search for evidences and use the states or transitions of these evidences to incre-
mentally build a subsystem until it becomes critical. Here we focus on building
critical subsystems using the states in evidences. Analogously, we could also use
the transitions to build a subsystem with a similar approach.

Assume in the following a DTMC D = (S, sinit, P, L), a set T C S of target
states and an upper probability bound A € [0,1] N Q of reaching target states
from T. We assume this probability to be exceeded in D.

The process of computing a critical subsystem is depicted in Figure 8. We
start with the smallest possible subsystem containing just the initial state (see
Definition 11 for the definition of Dg/). As long as the subsystem is not yet criti-
cal, we iteratively determine a new state set and extend the previous subsystem
with these states. Thereby the method that determines the state sets must assure
progress, i.e., that new states are added to the subsystem after a finite number
of iterations. Under this condition, the finiteness of the state space guarantees
termination.

Calling a model checker in every iteration is quite costly. Therefore, all ap-
proaches based on this framework use some heuristics to avoid this. For instance,
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one might think of performing model checking only after a certain number of
iterations or only start to check the system after a certain size of the subsystem
is reached.

We will now shortly discuss what approaches have been proposed to determine
the state sets to incrementally extend subsystems.

Extended best-first search. The first method to compute critical subsystems using
graph-search algorithms was given in [30] by Aljazzar and Leue. The authors
extend the best-first (BF') search method [63] to what they call eXtended Best-
First (XBF') search, implemented in [36]. Below we describe the XBF search,
without highlighting the differences to the BF search, which are discussed in [30].

For the XBF search, the system does not need to be given explicitly in the
beginning but is explored on the fly, which is a great advantage for very large
systems where a counterexample might be reasonably small. Instead, a symbolic
model representation can be used.

Starting from the initial state, new states are discovered by visiting the suc-
cessors of already discovered states. Two state lists open and closed store the
states discovered so far. The ordered list open contains discovered states whose
successors have not been expanded yet. In each step, one (with respect to the
ordering maximal) state s from open is chosen, its not yet discovered successors
are added to open, and s is moved from open to closed. To have all relevant
information about the explored part of the model, for all states in the above two
lists we also store all incoming transitions through which the state was visited.

The list open is ordered with respect to an evaluation function f : S — Q
which estimates for each discovered state s the probability of the most probable
path from the initial state to a target state through s. The estimation

f(s) =g(s) - h(s)

is composed by two factors: Firstly, g(s) estimates the probability of the most
probable path from sz to s by the probability of the most probable such path
found so far. Secondly, h(s) uses further knowledge about the system at hand
(if available) to estimate the probability of the most probable path from s to T'.
If the latter function is not constant, the search is called informed search.

Initially, g(sinit) = 1. When expanding the successor s’ of a state s, we define
g(s") to be g(s) - P(s,s’) if s’ is encountered the first time, and the maximum
of g(s) - P(s,s’) and the old g(s’) value else. When in the latter case g(s') is
updated to a larger value, if s’ was already in the closed set, it is moved back
to the open set to propagate the improvement.

The algorithm maintains an initially empty subsystem D’ of the already dis-
covered model part. Each time a state s is visited, such that s is either a target
state or it is included in D’, the subsystem D’ gets extended with the fragment
of the currently known model part that is backward reachable from s. The al-
gorithm terminates if this subsystem becomes critical ([30] calls it a diagnostic
subgraph).
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Init: Iteration 1: Iteration 2: Iteration 3:

Iteration 4:

0.125

Fig. 9. Tllustration of the XBF search (cf. Example 27)

Example 27. For the DTMC in Figure 2 on page 80 and the reachability property
P<os ((){53}), the computation of the XBF search is illustrated in Figure 9.
Rectangular nodes are stored in the closed list, circles in the open list. For
simplicity we assume h(s) = 1 for all states s € S. Thus the current estimate
values f(s) = g(s) - 1 (shown beside the states in gray color) equal the highest
known path probability from sy to s. The boldface fraction of the discovered
model part is the current subsystem, which is critical after the fifth iteration
(with probability 13/24 to reach s from sg). [ |

Search based on k shortest paths. In [29] two different graph search algorithms
are utilized. We distinguish the global search and local search approach.

The global search is an adaption of the k shortest paths search as described
in Section 4. However, paths are collected not until a counterexample as a list of
paths is formed, but until the subsystem Dg: induced by the states S’ on found
paths has enough probability mass, i.e., until it becomes critical.

Example 28. For the DTMC D in Figure 2 on page 80 and the violated property
Pcoa ((){53}), three most probable paths are:

Path Probability
T1 = 805183 0.25
T = 80555653 0.125
T3 = 80525183 0.0625
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(a) Subsystem for path m; (b) Subsystem for paths 71,72

(¢) Subsystem for paths 71, w2, w3

Fig. 10. Illustration of the global search approach (cf. Example 28)

Now, we subsequently add these paths to an initially empty subsystem, until
inside this system the probability to reach the state sz exceeds 0.4. We highlight
the latest paths by thick edges in the subsystem. Starting with 71, the initial
subsystem consists of the states of this path, see Figure 10(a), with the reach-
ability probability 0.25 < 0.4. In the next iteration, the subsystem is extended
by the states of path s, see Figure 10(b). The probability is now 0.375 which
is still not high enough. Adding path 73 in the next iteration effectively extends
the subsystem by state so as the other states are already part of the subsystem.
Note that we add to the subsystem not only the states and transitions along
found paths, but all transitions connecting them in the full model. The model
checking result is now 13/24 & 0.542, so the subsystem depicted in Figure 10(c)
is critical and the search terminates. ]

The local search also searches for most probable paths to form a subsystem,
however, not the most probable paths from the initial to target states, but the
most probable paths connecting fragments of already found paths. Intuitively,
every new path to be found has to be the most probable one that both starts
and ends in states that are already contained in the current subsystem while the
states in between are new.

Ezample 29. Reconsider the DTMC in Figure 2 on page 80 and the violated
property P<g.4(0s3) as in Example 28. Initially, we search for the most probable
path that connects the initial state and target states, i. e., again path m; = sps153
is found and added to the subsystem, depicted in Figure 11(a). The subsystem



102 E. Abrahém et al.

0.5

4}@ 0.5 @ 1 ] 0.5 s 0.5 @ L
: - Y ’

(a) Subsystem for path (b) Subsystem for paths 71,72

Fig. 11. Illustration of the local search approach (cf. Example 29)

has probability 0.25 of reaching s3. Now, we search for the most probable path
that both starts and ends in one of the states sg, s1, or s3, and find 75 = s15251
with probability 0.25. As adding state sy induces also the transition from sy to
s this already gives enough probability 5/12 ~ 0.416 for the subsystem depicted
in Figure 11(b) to be critical. [ ]

Symbolic Methods. In order to enable the generation of counterexamples for
very large input DTMCs, the computation of critical subsystems was adapted for
symbolic graph representations, in particular BDDs and MTBDDs, see Section 2.

The framework for the symbolic method is the same as depicted in Figure 8,
while special attention is required regarding certain properties of BDDs. As
methods to find new states to extend a subsystem, symbolic versions of the
global search and the local search were devised. This was done for both bounded
model checking and symbolic graph search algorithms; for an introduction to the
underlying concepts see Section 4. The adaptions were first proposed in [31] and
improved and extended in [32].

Recall, that a DTMC D = (S, Sinit, P, L) together with a set of target states
T C S is symbolically represented by a BDD I representing the initial state sinit,
a BDD T representing the target states T' and an MTBDD P representing the
transition probability matrix P. In the symbolic algorithms, an MTBDD SubSys
is maintained which stands for the current subsystem. The goal of all methods
given in the following is to compute a set of states that is used to extend the
current subsystem, saved in a BDD NewStates. The subsystem is verified by a
symbolic version of the standard DTMC model checking procedure, see [64, 65].
This is also used in PRISM [12].

Bounded Model Checking. Using the bounded model checking approach from [19]
for DTMCs in combination with the incremental generation of subsystems, this
directly yields a global search approach for symbolic graph structures. Recall
Formula 1 from Section 4.1, where from the (MT)BDDs I, 7" and P predicates
init, target and trans are created. In every iteration, the SAT solver computes a
path of the DTMC starting at I and ending in a state of T using transitions of
P. This is achieved by satisfaction of the corresponding predicates. NewStates is
assigned the states of this path and SubSys is extended accordingly. This goes on
until model checking reports that the subsystem has enough probability mass.
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In contrast to adapting the global search, for the local search, also referred
to as fragment search, we need predicates that are changed dynamically. This is
due to the fact that in each iteration a path starting at any state of the current
subsystem and ending in such a state is to be searched for. As SubSys is changed
all throughout the process, we need a predicate K that captures this changing set
of states. This is technically achieved by utilizing the assumption functionality
of the SAT solver in the sense that in every iteration the predicate K is satisfied
if the SAT solver assigns its variables such that a state of the current subsystem
corresponds to these variable values. The goal is now to find paths of arbitra