
Towards the Norm-Aware Agent: Bridging the
Gap Between Deontic Specifications

and Practical Mechanisms for Norm Monitoring
and Norm-Aware Planning

Sofia Panagiotidi(B), Sergio Alvarez-Napagao, and Javier Vázquez-Salceda

Universitat Politècnica de Catalunya-BarcelonaTECH, Edifici Omega,
Despatx 206-207 C/ Jordi Girona Salgado 1-3, 08034 Barcelona, Spain

{panagiotidi,salvarez,jvazquez}@lsi.upc.edu

Abstract. In the agents’ literature, norms have been studied from mul-
tiple perspectives, but while formalisations tend to be disconnected from
possible implementations due to the lack of differentiation between
abstract norm and norm instantiation, on the other hand implemen-
tations tend to be weak groundings of deontic logics, tightly coupled to
one particular implementation domain. Furthermore, different formal-
isations are typically used for norm enforcement and norm reasoning.
In this paper we report on our attempt to bridge this gap by reducing
from deontic statements to structural operational semantics (for norm
monitoring) and to planning control rules (for practical normative rea-
soning). We hint at the feasibility of the translation of these semantics
to actual implementation languages (Clojure and Drools for norm mon-
itoring and TLPlan for norm-aware planning). Finally we discuss the
limitations of our approach and suggest some improvements and future
lines of research.

Keywords: Deontic logics · Normative systems · Planning · Monitoring

1 Introduction

In literature the concept of norms has been defined from several perspectives
[1]: as a rule or standard of behaviour shared by members of a social group, as
an authoritative rule or standard by which something is judged, approved or
disapproved, as standards of right and wrong, beauty and ugliness, and truth
and falsehood, or even as a model of what should exist or be followed, or an
average of what currently does exist in some context. Moreover, from the Arti-
ficial Intelligence community there has been a continuous effort on researching
how to formalise norms from a logic perspective, on one hand, and how to make
them feasibly computable, on the other hand.

In this work we will focus on the regulative aspects of sets of norms (that
we will call normative specifications), seen as a way to model the governance of

T. Balke et al. (Eds.): COIN 2013, LNAI 8386, pp. 346–363, 2014.
DOI: 10.1007/978-3-319-07314-9 19, c© Springer International Publishing Switzerland 2014

Towards the Norm-Aware Agent 347

distributed, agent-oriented systems by explicitly specifying the agents’ expected
behaviour.

The main advantage of normative specifications over other governance mech-
anisms is that norms make explicit the (social) expectation about what is
expected to happen, but not how the agents are supposed to bring it about.
Therefore normative specifications allow the design of complex social setups
while giving enough flexibility to give agents some level of autonomy to, e.g.,
react to unexpected states of the system.

In literature there is a lot of work on normative systems’ formalisation
(mainly focused in Deontic-like formalisms [2]) which is declarative in nature,
focused on the expressiveness of the norms [3], the definition of formal seman-
tics [4–7] and the verification of consistency of a given set [8,9]. There are some
works that focus on norm compliance and norm monitoring [6,7,9–12] with vary-
ing degrees of covered abstraction level and allowed flexibility. Also there is some
work on how agents might take norms into account when reasoning [5,13–16],
but few practical implementations exist that cover the full BDI cycle, as many
approaches do not include the means-ends reasoning step (that is, deciding how
to achieve what the agent is aiming for). However, we have found no work in
the literature that (1) formally connects the deontic aspects of norms with their
operationalisation, (2) properly distinguishes between abstract norms and their
(multiple) instantiations at run-time, (3) formalises the operational semantics
in a way that ensures flexibility in their translation to actual implementations
while ensuring unambiguous interpretations of the norms, and (4) covers both
institutional-level norm monitoring and individual agent norm-aware reasoning
to ensure that both are aligned.

In this paper, we present a proposal to bridge the gap between a single
norm formalisation and the actual mechanisms used for both (rule-based) norm
monitoring and norm-aware planning. Taking advantage of a recent trend in the
Planning community to use Linear Temporal Logic (LTL) formulas as strong and
soft constraints on plan trajectories (e.g., TLPlan [17] and PDDL 3.0 [18]), we
have chosen LTL as a bridge from the norm specification to its implementation
by reducing deontic-based norm definitions to temporal logic formulae which, in
turn, can be translated into both rule-based and planning operational semantics.

The paper is organised as follows: Sect. 2 introduces the formalism of tem-
poral logics to be used as basis in following sections. Section 3 focuses on the
concepts of norm instance and norm lifecycle, and discusses how norm opera-
tionalisation is usually handled in literature. In Sect. 4 we focus on the semantics
of norms and norm instances from the deontic statement level, while in Sect. 5
we focus on the operational semantics and how it can be used in practical imple-
mentations for monitoring and planning. Finally, in Sect. 6 we present some
conclusions and future lines of work.

2 Linear Temporal Logic

LTL [19] is built up from a finite set of predicates L , the logical operators ¬
and ∨ (logical operators ∧,→,↔, true, and false can be derived by the primitive

348 S. Panagiotidi et al.

ones), and the temporal modal operators X (next) and U (until). Formally, the
set of LTL formulas over L is inductively defined as follows:

– if p ∈ L then p is a LTL formula;
– if ψ and φ are LTL formulas then ¬ψ, φ ∨ ψ,Xψ and φUψ are LTL formulas.

We define a substitution (grounding) θ = {x1 ← t1, x2 ← t2, ..., xi ← ti} as
the substitution of the terms t1, t2, ..., ti for variables x1, x2, ..., xi in a formula
f ∈ L . Thus, θ(f(x1, x2, ..., xi)) ≡ f(t1, t2, ..., ti). A state of the world st is a
set of atomic predicates grounded by θ holding true at a specific moment. An
LTL model M = (S,	, θ) consists of a non empty set S of states, an accessibility
relation 	 (connecting a state to another) and an substitution θ for predicates. A
full path π in M is a sequence π =< s0, s1, s2, . . . > such that for every i ≥ 0, si

is an element of S and si	si+1, and if π is finite with sn its final state, then there
is no state sn+1 in S such that sn	sn+1. Additionally, let πi be the subpath of
π starting from the i’th state of π, i.e. πi =< si, si+1, . . . >. Validity of an LTL
formula φ on a model M = (S,	, θ) over a path π, written as M,π |= θ(φ), is
defined as:

– M, π |= θ(p) ⇔ θ(p) ∈ s0
– M, π |= ¬θ(φ) ⇔ not M, π |= θ(φ)
– M, π |= θ(φ) ∨ θ(ψ) ⇔ M, π |= θ(φ) or M, π |= θ(ψ)
– M, π |= Xθ(φ) ⇔ M, π1 |= θ(φ)
– M, π |= θ(φ)Uθ(ψ) ⇔ ∃n > 0 such that:

(1) M, πn |= θ(ψ) and
(2) ∀ i with 0 ≤ i < n : M, πi |= θ(φ)

Additional temporal operators are G for always (globally), F for eventually
(in the future), R for release and W for weakly until. Details about LTL can be
found at [19].

3 Norms and Norm Instances

Searle [20] distinguishes between two types of norms: regulative rules, which
describe ideal situations from an institutional perspective in terms of obligations,
prohibitions and permissions, and constitutive rules, which allow to construct
social reality by expliciting the relationship between brute facts and institutional
events. The main difference between both types of norms is that while constitu-
tive rules, by their very nature, are categorical, regulative rules are conditional, in
the sense that they specify every applicable condition of each particular norm [4].

Although there have been recent attempts to make regulative rules concrete
by the reduction to constitutive rules [21], in general regulative norms based
on deontic statements have been the most common way to represent normative
constraints in multi-agent systems. In such systems, thus, norms are expressed
as computer-readable specifications based on deontic logics.

Towards the Norm-Aware Agent 349

3.1 Norm Operationalisation and Levels of Abstraction

However, operationalisation of regulative norms1 is not straightforward. Deon-
tic statements express the existence of norms, rather than the consequences of
following (or not following) them [22]. In order to implement agents and insti-
tutional frameworks capable of reasoning about norms, we need to complement
deontic logics with semantics defining fulfilment and violation – among other
operational normative concepts. Examples of work on this direction are abun-
dant and for many different purposes, i.e., compliance [6,7,9,11,12,23], verifica-
tion [8,10,24,25], or agent behaviour [5,13–16].

While it is true that most of them define semantics to interpret norms,
there seems to be a disconnection between such semantics and either (1) the
deontic logics they are supposed to be based upon; or (2) the operational level
closer to the actual practical implementation. For instance, [9] defines a norm-
operationalisation language that can be connected with higher level abstractions,
but it is not clear whether it can be translated into generic rule-based languages.
[6] presents a rule-based language with constraints, with an implementation on
Prolog, on top of which other higher-level languages can be formalised, but with
no direct relationship to deontic logics. On this line of work, approaches such
as [7,13] define clear operational semantics by the use of syntax loosely inspired
by, but not directly related to, deontic statements.

An approach that is close to bridge this gap is presented in [26] by specifying
formal methods for the implementation of norm enforcement and the automatic
creation of protocols based on constraints specified by the norms. However, this
proposal focuses on norm modelling from an institutional point of view, not
covering the agent perspective (i.e., how norms influence the agent behaviour).
A second limitation is that it does not get to the implementation level and, in
fact, there does not seem to be a straightforward way to achieve it. Furthermore,
it includes no treatment of the consequences, i.e. norm reparation.

In summary, there are many approaches that tackle different parts of the
formalisation of norm operationalisation. One of the purposes of this paper is,
thus, to complement these approaches by filling the gaps that exist between
the deontic statements and both rule-based and planning operationalisation by
means of (1) additional predicates representing norm fulfilment and violation,
and (2) an intermediate representation based on temporal logics (see Sect. 4).

3.2 Identification of Norm Instances

A related issue that is somehow missing in general in the literature is a clear
separation between an abstract norm and a particular (contextual) instantiation
of the norm. This problem was already discussed by Abrahams and Bacon in [27]:
“since propositions about norms are derived from the norms themselves, invalid
or misleading inferences will result if we deal merely with the propositions rather
1 In the rest of the paper we will use the term norms or regulative norms to refer to

Searle’s regulative rules.

350 S. Panagiotidi et al.

than with the identified norms2 that make those propositions true or false”. This
issue is not banal, as it has implications on the operational level: in order to
properly check norm compliance, norm instantiations have to be tracked in an
individual manner, case by case.

Fig. 1. Norm lifecycle

We find useful, at this point, to stress the fact that the lifecycles of a norm,
and of a norm instance, should be differentiated because they are different in
essence. The lifecycle of a norm (see Fig. 1) deals with its validity in the norma-
tive system: a norm is in force when it can be fully activated, monitored, and
enforced; in transition when it is being removed and cannot be activated any-
more, but the effects of past activations have to be tracked until their end; and
deleted when the history of the norm is to be kept but it can have no further effect
on the normative system. Therefore, such lifecycle is related to the concepts of
promulgation, abrogation and derogation, out of the scope of this paper. On the
other hand, the lifecycle of a norm instance deals with the fulfilment/violation
of each particular instance.

The concept of norm instance life-cycle has been treated by different authors,
e.g. [7,27–29], but with no real consensus. Taking those interesting elements that
would allow to manage norms with the concepts of activation, maintenance,
fulfilment and reparation, a suitable norm life-cycle would be similar to the
one based on the automata depicted in Fig. 2. A norm instance gets activated
due to a certain activating condition and starts in an (A)ctive state, but if at
some point a certain maintenance condition is not fulfilled, the norm instance
gets into a (V)iolation state. If the norm instance is (A)ctive and a certain
deactivation (or fulfilment) condition is achieved, the norm gets (D)eactivated3.
Usually reparations are not treated explicitly, but in our proposal we add the
concept for completeness. If a norm instance is (V)iolated, fulfilling a reparation
condition can bring it back to the (A)ctive state, but if the deactivation condition
occurs while violated, only by fulfilling the same reparation condition (VD state)
the norm instance can be (D)eactivated. A (V)iolated norm instance could not
ever get repaired, so for safety we use a timeout condition4 to make sure the
norm instance is not alive forever and thus mark those permanent violations as
(F)ailures.
2 In this paper, we will denote such identified norms as norm instances.
3 Please note that we assume the deactivation condition to eventually happen.
4 The timeout condition is evaluated as starting at the point of time of violation.

Towards the Norm-Aware Agent 351

Fig. 2. Norm instance lifecycle with reparation and timeout handling

Once there is a norm life-cycle the question to answer is how to deal with it
from an operational perspective. Abrahams and Bacon [27] solve this problem
by means of occurrences of the predicates contained in the deontic operator,
but there are cases in which this can be insufficient, e.g., when the obligation
defines a deadline or its instantiation depends on contextual information. More
recently, some works have been advancing in the direction of tackling this issue.
For example, by treating instantiated deontic statements as first-class objects of
a rule-based language [23,30]. However, as these deontic statements are already
implicitly identifying the norm instance, there is no explicit tracking of which
elements of the domain are involved in fulfilling or violating. Other approaches
declare the norm only at the abstract level and the tracking of the norm instance,
and implicitly of the norm instance lifecycle, is purely done at the operational
level [7,11,12].

4 Formalisation

In this section, we present a proposal for a deontic logic for support for norm
instantiation via obligations parametrized by three states (conditions). For the
purpose of this formalisation, we assume the use of a predicate based proposi-
tional language L as in Sect. 2. We also adopt the notion of state from the same
section.

4.1 Norms

In this paper we define a norm following a modified version of the abstract norm
definition from [7], adding elements for tracking of reparation of violations:

Definition 1. We define a norm n as a tuple n = 〈α, fA
n , fM

n , fD
n , fR

n , timeout〉,
where:

352 S. Panagiotidi et al.

– α is the agent obliged to comply with the norm,
– fA

n is the activating condition of the norm,
– fM

n is the maintenance condition of the norm,
– fD

n is the deactivation condition of the norm,
– fR

n is the repair condition of the norm,
– timeout is a fully-grounded formula that represents the upper-bound waiting

condition for the reparation of a violation, taken into account of only after a
violation and not before, and

– fA
n , fM

n , fD
n , fR

n , timeout ∈ L .

If, for example, we wanted to model the following norm: “while Ag is driving,
he is obliged to not cross in red light, otherwise he will have to pay a fine with
cost 1005 before time is equal to 500”, the result would be:

n = 〈Ag,{driving(Ag)}, {¬crossed-red(Ag,L)},{¬driving(Ag)}, {fine-paid(100)}, time(500)〉

The interpretation of the tuple in Definition 1 is done by means of the deontic
formula:

Definition 2. The deontic interpretation of a norm n, is:

OfR
n ≤timeout([α stit : fM

n] fD
n | fA

n)

The syntax of the operator proposed is similar to the obligation operator from
other deontic logics, such as dyadic deontic logic and semantics of deadlines, but
with important differences. While the ≤ used for fR

n ≤ timeout corresponds to
the deadline semantics [3] (if timeout occurs, there is a permanent violation), the
 used in [α stit : fM

n] fD
n should rather be read as “[α stit : fM

n] should hold
at all times at least until fD

n ”. Also, the conditional notation | used in dyadic
deontic logic, which not always has clear semantics in terms of temporality, in the
case of the operator proposed O(A|B) should be read as “starting the moment
B happens, A should happen” rather than simply “given B, A should happen”6.

Therefore, the expression shown in Definition 2 is informally read as: if at
some point fA

n holds, agent α is obliged to see to it that fM
n is maintained until,

at least, fD
n holds; otherwise, α is obliged to see to it that fR

n before timeout.
Note that in this informal reading we are not dealing with norm instances yet.
How we address this issue, along with the semantics of this obligation operator,
will be explained in Subsect. 4.2. Following the example:

Ofine-paid(100)≤time(500)([Ag stit : ¬crossed-red(Ag, L)] � ¬driving(Ag) | driving(Ag))

informally read as: if at some point Ag is driving, Ag is obliged to see to it
that no red light is crossed until, at least, Ag is not driving anymore; otherwise,

5 Each time there is an infraction the fine has to be paid, still, for reasons of simplicity
we use a predicate that keeps no track of the different violations

6 In some works in the literature, this is interpreted as “given B and as long as B
happens, A should happen”, while in other works it is interpreted in a closer way to
our reading

Towards the Norm-Aware Agent 353

Ag has to pay a fine of 100 before the time is 500. The semantics of this operator
are presented in the rest of this section.

4.2 Norm Instances

As previously discussed in Sect. 3, we have to take into account the following
issues:

1. deontic statements do not express truth value related to a norm, but rather
the existence of a norm [22]; and

2. to check the compliance of a norm, its particular instances must be tracked
[27],

Therefore, we need to define the compliance of a norm based on the fulfilment
of each of its instantiations. That is, a norm has been complied up to a certain
time t if, and only if, each one of the instantiations triggered in times ti < t
have not been violated, where violated means that there has been ¬fM

n before
fD

n ever happening.
A norm is defined in an abstract manner, affecting all possible participants

enacting a given role. In order to work with instances, we need to define a norm
instantiation. We consider a substitution θ (we denote it as substitution instance
when referring to norms) as defined in Sect. 2. Whenever a norm is active, we will
say that there is a norm instance nθ for a particular norm n and a substitution
instance θ.

Definition 3. Given a norm n in force and a substitution set θ, we define a
norm instance nθ as nθ = 〈α, θ(fA

n), θ(fM
n), θ(fD

n), timeout〉, where:
– θ(fA

n), timeout are fully grounded, and
– θ(fM

n), θ(fD
n) may be fully or partially grounded.

The reason that θ(fM
n), θ(fD

n) may be partially grounded is that the substi-
tution instance that instantiates the norm – that is, θ such that θ(fA

n) holds –
is considered in our model to be the sufficient and necessary set of substitutions
needed to fully ground fA

n . It can be the case that the set of variables used in
fM

n and/or fD
n is larger than the arity of θ. Let us suppose, for example, that

the norm should be instantiated at all times while it is in force, regardless of any
contextual condition: in that case, fA

n = �. Therefore, we have to assume that
a substitution instance θ′ for fM

n or fD
n should fulfil: θ ⊆ θ′.

4.3 Norm Lifecycle

Although LTL as a formalism is suitable enough in terms of complexity for reduc-
tions to monitoring and planning scenarios, and therefore for practical reasoning
from an institutional or individual perspective, there are intrinsic constraints
that limit the expressiveness of the framework.

More concretely, the norm instance lifecycle proposed in Fig. 2 cannot be
expressed in LTL. As proved in [31], in order to reduce an automata to an LTL

354 S. Panagiotidi et al.

expression – and vice versa –, such automata has to be free of loops that involve
more than one state, i.e. only cycles that start and finish in the same state and
involve no second state are allowed.

This is an important constraint that prevents our model to have a loop
between the (A)ctive and the (V)iolated states. In other words, if we want to use
LTL, the lifecycle cannot have cycles that allow to go backwards. Therefore, for
the purpose of our formalisation, we propose to adopt the more straightforward
lifecycle shown in Fig. 3.

Fig. 3. Self-loop alternating automata-based norm instance lifecycle

The main difference with respect to the automata in Fig. 2 is the handling
of violations. As there is no way back to an (A)ctive state anymore, from a
(V)iolation state there are only two options: either to repair the norm instance
and subsequently (D)eactivate it, or mark it as a (F)ailure if it has not been
dealt with for a given amount of time. From an operational perspective, this
issue can be worked around by allowing the norm-aware system to create more
instances of the same norm if an instance is violated before a deactivation.

For an obligation to have a deontic effect, it is required that the activating
condition actually happens at some future point. Additionally, either of the
following three conditions should happen:

– The activating condition never occurs so the norm never gets activated.
– Always, between the activating and deactivation condition, the maintenance

holds (reached “deactivated” state).
– Maintenance condition holds up to a point where it becomes false and then a

violation is permanently raised. In addition, the repair condition occurs later
(reached “deactivated” state) before timeout is reached.

Towards the Norm-Aware Agent 355

In this way we approach most closely that the maintenance of θ(fM
n) causes

the ¬viol(nθ). Thus, the deontic effect of an obligation can be described by the
causal effect between the maintenance condition and a violation in Definition 4.

In order to give meaning to the fulfilment of a norm instance, we define a
specific operator O with similar syntax to the abstract norm operator O. Let
M = {S,	, θ} be an LTL model (using a predicate set L for the formation of
LTL formulas and with θ as described in Subsect. 4.2), π =< s0, s1, s2, . . . > a full
path in M , and viol(nθ) a predicate belonging to L representing the violation
of a norm instance nθ, we can establish the semantic relationship between the
lifecycle of a norm instance and the fulfilment/violation of a norm as:

Definition 4. Causal semantics for the operator O

M, π |=Oθ(fR
n)≤timeout([α stit : θ(fM

n)] � θ(fD
n) | θ(fA

n))

≡def

M, π |=G
(¬θ(fA

n) ∧ ¬viol(nθ)
)∨(

F
(
θ(fA

n) ∧ [∀θ′ : θ′(θ(fM
n))U∃θ′′ : θ′′(θ(fD

n))]
)

∧ G¬viol(nθ)
)
∨

F
(
θ(fA

n) ∧ [¬viol(nθ)U∃θ′ : ¬θ′(θ(fM
n))]∧

[
θ′(θ(fM

n))U
(¬θ′(θ(fM

n)) ∧ Gviol(nθ)∧ (¬timeoutU∃θ′′ : θ′′(θ(fR
n)))

)])

The first line of the temporal formula says that the activating condition
actually never happens and no violation is raised throughout the executional
path. This case does not cause any change in the state of the system. The second
line says that there exists some substitution for the activating condition in the
future, and that always until a substitution raises an instance of the deactivation
condition, the maintenance condition holds for all substitutions. No violation is
raised throughout the executional path. This case terminates the norm in a state
of deactivation (D). The rest of the lines in the formula imply that there exists
some substitution for the activating condition in the future, and that at some
later point a substitution makes the maintenance condition not hold, thus raising
a violation (which remains thereafter). In addition, another substitution makes
the repair condition happen at some future after the violation has occurred but
before timeout occurs. The norm terminates in a state of deactivation (D).

The failed state (F), in which the timeout has occurred without the norm
having realised the repair condition after a violation, is not described in the
formula, since it is an “unwanted” state and should be avoided.

The lifecycle defined in Fig. 3 can be seen as an transition automaton. Tran-
sition properties that define how the norm changes its status while events (world
changes that modify the predicates’ truthness) are occurring can be easily
extracted. We are interested in directly representing these transitions as it is use-
ful when dealing with monitoring of norms’ status (see Sect. 5.1). The
four states active (A), viol (V), deactivated (D), failed (F) are described in
Definition 5:

Definition 5. Norm lifecycle predicates

M, π |= Xactive(nθ) iff M, π |= (Xθ(fA
n) ∨ active(nθ)) ∧ X � ∃θ′ : θ′(θ(fD

n))

356 S. Panagiotidi et al.

M, π |= Xviol(nθ) iff M, π |= active(nθ) ∧ X � ∃θ′ : θ′(θ(fM
n))

M, π |= Xdeactivated(nθ) iff

(M, π |= active(nθ) ∧ X∃θ′ : θ′(θ(fD
n))) ∨ (M, π |= viol(nθ) ∧ X∃θ′ : θ′(θ(fR

n)))

M, s |= Xfailed(nθ) iff M, s |= viol(nθ) ∧ Xtimeout

The first says that the norm remains in active status until there is no instance
of deactivation condition occurring. The second says that the norm moves from
the active to the viol state if there is no instance of the maintenance condition.
The third says that the norm moves from the active to the deactivated state if
there is an instance of the deactivation condition occurring and that the norm
moves from the viol to the deactivated state if there is an instance of the repair
condition occurring. The last says that the norm moves from the viol to the
failed state if timeout occurs.

4.4 From Abstract Norm to Norm Instances

Now we have the apparatus needed to connect the fulfilment of an abstract norm
and the fulfilment of its instances, and give semantic meaning to the operator
proposed in Definition 2:

Definition 6. Fulfilment of a norm based on the fulfilment of its instances

M, π |=OfR
n ≤timeout([α stit : fM

n] � fD
n | fA

n) ≡def

∃θ : M, π |= F(θ(fA
n)) ⇔ M, π |= Oθ(fR

n)≤timeout([α stit : θ(fM
n)] � θ(fD

n) | θ(fA
n))

Informally: the abstract norm is fulfilled if, and only if, for each possible instan-
tiation of fA

n through time, the obligations of the norm instances activated by
fA

n are fulfilled.

5 Operational Semantics

In this section, we will show how the formalisation proposed in 4 can be reduced
to operational semantics that will allow for norm reasoning for two different
purposes: the monitoring of normative states from what occurred in the past,
from an institutional perspective (see Subsect. 5.1); and the planning of actions in
the future taking into account normative constraints, from an agent perspective
(see Subsect. 5.2).

5.1 Monitoring Norms

In terms of institutional normative compliance, the detection of normative
states is a passive procedure consisting in monitoring past events generated by
agents’ actions and checking them against a set of active norms. This type of

Towards the Norm-Aware Agent 357

reasoning can be covered by the declarative aspect of production systems.
Using a forward-chaining rule engine, events can automatically trigger normative
states – based on a given operational semantics – without requiring a design on
how to do it.

Having (1) a direct syntactic translation from norms to rules and (2) a logic
implemented in an engine consistent with the process we want to accomplish,
allows us to decouple normative state monitoring from the agent reasoning.
Our approach is based on creating an initial set of agent- and institutional-
independent rules, which the agents – such as manager agents – will be able
to transparently query the current normative state at any moment and reason
upon it.

In order to achieve this initial set rules, we need to establish a grounding
for our formalism. First of all, we will define the lifecycle of a norm instance
according to the LTL formalisations of the previous section. We will show how
to transform the paths into transition rules, translating the principles of change
in normative states into transition rules, effectively reducing our formalisation
to a rule-based operational semantics.

In order to track the normative state of an institution at any given point of
time, we assume the existence of a knowledge base, in which we will define four
sets representing each of the lifecycle states: an active set AS, a violated set
V S, a deactivated set DS, and a failed set FS, each of them containing norm
instances in the form of tuples: {〈ni, θj〉, 〈ni′ , θj′〉, ..., 〈ni′′ , θj′′〉}.

Definition 7. A Normative Monitor MN for a set of norms N is a tuple
MN = 〈N,AS, V S,DS, FS, S〉, where:
– s is the current state of the world, which corresponds to the current path

state.
– N is the set of norms,
– n ∈ N , 〈n, θ〉 ∈ AS ⇔ M, s |= active(nθ)
– n ∈ N , 〈n, θ〉 ∈ V S ⇔ M, s |= viol(nθ)
– n ∈ N , 〈n, θ〉 ∈ DS ⇔ M, s |= deactivated(nθ)
– n ∈ N , 〈n, θ〉 ∈ FS ⇔ M, s |= failed(nθ)

We denote ΓMN
as the set of all possible configurations of a Normative Mon-

itor MN .

Definition 8. The Transition System TSMN
for a Normative Monitor MN is

defined by TSMN
= 〈ΓMN

,�〉 where

– � is a transition relation such that � ⊆ ΓMN
× ΓMN

The inference rules for the transition relation � are described in Fig. 4, where
si stands for the current state and as, vs, ds, fs correspond to instances of the
AS, V S,DS, FS sets of the Normative Monitor tuple.

358 S. Panagiotidi et al.

Fig. 4. Inference rules for the transition relation �: (1) Norm instance activated, (2)
Norm instance violated, (3) Norm instance deactivated by fulfilment, (4) Norm instance
deactivated by reparation, and (5) Norm instance failed

By combining these transition rules with the semantics of production systems
[32], and additionally transforming the norm condition formulas – normalised in
DNF – into rules by means of automatic norm parsing, we obtain a rule-engine
which is semantically compliant with our formalism.

Details on the actual implementation have been already presented in [12]. The
system designed for this purpose is summarised in Fig. 5 (left). The prototype
has been implemented using a combination of XML for norm representation,
Java and Clojure for the parsing of the norms, and Drools for the rule engine.

5.2 Planning with Norms

Although the Definition 5 is sufficiently expressive while implementing a mon-
itoring framework, it cannot be applied in a planning system. This is because
most planners allow modelling the transitions between states (actions) in a way
such that there is exclusive dependency on the values of the previous state’s
properties. In this way, for example the active() status of a norm cannot be
easily expressed, since not only does it need to be aware of the activeness at
the previous state, but it also needs to be aware of whether at the current state
the deactivation condition occurs. The use of extra predicates such as previous()
and current that provide such functionality, allowing to check whether formulas
hold in current and previous states, is permitted in some planning frameworks
such as TLPlan [17] but it proves to be costly when extensively used.

An alternative, on which we base our implementation is the use of languages
that support the use of LTL formulas to restrict the plans produced. Such an
attempt is PDDL 3.0 [18]. PDDL 3.0 specification extends PDDL7 with strong
and soft constraints (expressed in LTL formulas) which are imposed on plan
7 http://planning.cis.strath.ac.uk/competition/

http://planning.cis.strath.ac.uk/competition/

Towards the Norm-Aware Agent 359

Fig. 5. Normative Monitor and Normative Planner

trajectories, as well as strong and soft problem goals, which are imposed on
a plan. TLPlan [17] on the other hand, applies LTL formulas (called control
rules) to a forward chaining search, reducing in this way the search path by
pruning paths that do not comply to the rules. TLPlan is based on (STRIPS-like)
semantics that can be easily reduced to PDDL. We choose TLPlan as it seems to
contain a complete, robust and rather fast implementation, also allowing extra
features such as existential and universal quantifiers. We explain below how the
norms are introduced into the planning mechanism.

In order to implement the normative planner, the Definition 4 needs to be
transformed into one of use to the planner. While the viol() predicate is useful
to indicate semantical relation between the norm and its breach, it adds nothing
when trying to apply it to a domain, since the violation is actually caused by the
progress of the activating, deactivation, and maintenance condition. Therefore,
we can eliminate the parts that contain it and create one that we can feed to
the planner. The lifecycle then can be represented in Definition 9.

Definition 9. Formula producing norms that reach the deactivated state

M,π|= G(¬θ(fA
n)) ∨

F(θ(fA
n) ∧ (∀θ′ : θ′(θ(fM

n))U∃θ′′ : θ′′(θ(fD
n)))) ∨

F(θ(fA
n) ∧ (∀θ′ : θ′(θ(fM

n))U(¬θ′(θ(fM
n))∧ (¬timeoutU∃θ′′′ : θ′′′(θ(fR

n))))))

Thanks to Definition 9 we can represent the norms as control rules within
the planning domain. This implies that, for every norm, we need to create such a
control rule. The conjunction of all those rules will be the final control rule. We
consider that since our norm conditions are defined in DNF form (see Sect. 4), it

360 S. Panagiotidi et al.

is easy to transform them to the appropriate LISP-like format for the planner.
For example, a condition (a(X) ∧ ¬b(X,Y)) ∨ c(Z) will be transformed into
(or (and (a ?X) (b ?X ?Y))(c ?Z)) Fig. 5 (right) depicts our implementation
of the normative planner. The problem file remains intact, while for the set of
norms the control rule is created and added to the domain file.

During the execution, the planner will only allow paths where a norm never
gets instantiated, or where a norm gets instantiated and never violated or where
a norm gets violated but repaired before the specified timeout is reached. Thus,
the planner will never allow for a plan that includes a norm instantiation to
be violated and never get repaired to be produced. That is, it discards the
ones that do not conform to the norm lifecycle. The system allows for multiple
instantiations to be checked throughout the executional paths.

TLPlan might take a formula as an input and use it to determine the best
plan that optimises it. We can then assign values to the actions that bring about
the different norm conditions. Consequently the planner will be able decide and
pick between alternative plans that conform to the norm lifecycle (e.g. one that
never violates and another that violates and repairs an instance of a norm)
while additionally bringing the most profitable outcome for the agent. We will
not enter into detail due to lack of space.

We have executed preliminary experiments with TLPlan [17] with up to
three norms within a domain. The experiments were run on Mac OSX with Intel
Core i7 2.9 Hz processor with 8 GB memory. The results seem promising as in
almost all cases, where the outcome was a plan of up to 20 actions and up to
15 instances of norms were created throughout execution, the running time did
not significantly increase and remained less than 1 second. This is due to the
fact that branches of possible paths get rejected during the forward chaining
search. On the other hand, small overhead could be added due to the check of
the validity of the control rule on every state, still we have not had any noticeable
change on the running time.

6 Conclusions

The resulting semantic framework presented in this paper directly tackles at the
same time three important problems related to the practical materialisation of
norm-aware systems: clear connection between the deontic level and the opera-
tional semantics, the formalisation of explicit norm instances, and the unambi-
guity of semantic interpretation across implementation domains. We have done
so by building, upon diverse previous work, a connection between deontic state-
ments and temporal logics, and between temporal logics to fluents and transition
rules. Previous work also shows [12,16] that from the latter representations the
translation to the implementation level is also clear. In our case this connection
between a single normative specification and two different practical implemen-
tations allows us to have a norm monitoring mechanism (used for institutional
enforcement) and a norm-aware planning mechanism (used for agent-oriented
practical reasoning) that share exactly the same norm semantics (including the

Towards the Norm-Aware Agent 361

norm lifecycle). This result is vital to ensure that, for instance, the norm enforce-
ment mechanism will state that there is a violation in a case the normative
planner found legal and viceversa.

However, this is ongoing research that still needs improvement in several
respects and we plan for immediate future work. First of all, we recognise that
the constraints on the expressiveness of the norm life-cycle automata from Fig. 3
are quite limiting. We are looking into formalisms that may allow us to work
with a version of the life-cycle closer to the one depicted in Fig. 2, probably in a
logic framework different from LTL or CTG.

Also, we need to establish the properties of our obligation operator and com-
pare them to the Standard Deontic Logics’ properties. Moreover, we are espe-
cially interested in defining prohibitions and permissions keeping the syntax of
Definition 1.

Section 3 states that there are already formalisations and/or languages that
cover some parts of the issues we mention in the Introduction. It is our intention
to connect our operational semantics with them.

Additionally, we have been testing our operational semantics with respect to
run-time change of norms and normative contexts, and we will extend the norm
lifecycle to include new states such as abrogation or derogation.

Finally, as mentioned in Sect. 3, Searle not only describes regulative rules
but also constitutive. We intend to explore the possible implications of adding
counts-as rules to our formalisation, following work from [21].

Acknowledgements. This work has been supported by the European funded projects
IT-ALIVE (PF-215890) and SUPER HUB (PF-289067). The content of this paper
however solely reflect the opinion of the authors, and does not necessarily represent
the views of the European Commission.

References

1. Vázquez-Salceda, J.: The role of norms and electronic institutions in multi-agent
systems applied to complex domains: the HarmonIA framework. Ph.D. Thesis, 218,
January 2003

2. von Wright, G.H.: Deontic logic. Mind, New Series 60(237), 1–15 (1951)
3. Dignum, F.P.M., Broersen, J., Dignum, V., Meyer, J.-J.: Meeting the deadline:

why, when and how. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff,
C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 30–40. Springer, Heidelberg
(2004)

4. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative mul-
tiagent systems. In: Proceedings of 10th International Conference on the Principles
of Knowledge Representation and Reasoning, KR’04, pp. 255–265 (2004)

5. Aldewereld, H., Grossi, D., Vázquez-Salceda, J., Dignum, F.P.M.: Designing
normative behaviour via landmarks. In: Boissier, O., Padget, J., Dignum, V.,
Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.)
ANIREM 2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 157–169. Springer,
Heidelberg (2006)

362 S. Panagiotidi et al.

6. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-A., Sierra, C., Vasconcelos, W.W.:
Norm-oriented programming of electronic institutions: a rule-based approach. In:
Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara,
N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 177–193. Springer,
Heidelberg (2007)

7. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.:
Towards a formalisation of electronic contracting environments. In: Hübner, J.F.,
Matson, E., Boissier, O., Dignum, V. (eds.) COIN@AAMAS 2008. LNCS, vol. 5428,
pp. 156–171. Springer, Heidelberg (2009)

8. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 682–688. Springer, Heidelberg (2009)

9. Governatori, G., Rotolo, A.: Norm compliance in business process modeling. In:
Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp.
194–209. Springer, Heidelberg (2010)

10. Ågotnes, T., van der Hoek, W., Wooldridge, M.: Robust normative systems and a
logic of norm compliance. Logic J. IGPL 18(1), 4–30 (2010)

11. Criado, N., Argente, E., Noriega, P.: Towards a normative BDI architecture for
norm compliance. COIN@ MALLOW2010 (2010)

12. Alvarez-Napagao, S., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Normative
monitoring: semantics and implementation. In: De Vos, M., Fornara, N., Pitt, J.V.,
Vouros, G. (eds.) COIN 2010. LNCS, vol. 6541, pp. 321–336. Springer, Heidelberg
(2011)

13. López y López, F., Luck, M., d’Inverno, M.: Normative agent reasoning in dynamic
societies. In: Third International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’04, Washington, DC, USA, vol. 2, pp. 732–739
(2004)

14. Kollingbaum, M.J.: Norm-governed practical reasoning agents. Ph.D. Dissertation
(2005)

15. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In:
Proceedings of The 8th International Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS ’09, vol. 1, pp. 177–184, Richland, SC. (International
Foundation for Autonomous Agents and Multiagent Systems) (2009)

16. Panagiotidi, S., Vázquez-Salceda, J.: Norm-aware planning: semantics and imple-
mentation. In: 2011 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT), pp. 33–36. IEEE,
August 2011

17. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowl-
edge for planning. Artif. Intell. 116(1–2), 123–191 (2000)

18. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3: the language
of the fifth international planning competition. Technical report R.T. 2005–08-07,
August 2005

19. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, New York (2004)

20. Searle, J.: The Construction of Social Reality. Free Press, New York (1995)
21. Aldewereld, H., Alvarez-Napagao, S., Dignum, F., Vázquez-Salceda, J.: Making

norms concrete. In: Proceedings of 9th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2010), pp. 807–814 (2010)

22. Walter, R.: Jörgensen’s dilemma and how to face it. Ratio Juris 9(2), 168–171
(1996)

Towards the Norm-Aware Agent 363

23. Cardoso, H.L., Oliveira, E.: A context-based institutional normative environment.
In: Hübner, J.F., Matson, E., Boissier, O., Dignum, V. (eds.) COIN@AAMAS 2008.
LNCS, vol. 5428, pp. 140–155. Springer, Heidelberg (2009)

24. Koo, J.: A Study on the model checking for deontic logic. In: Convergence and
Hybrid Information Technology, pp. 832–835 (2008)

25. Prisacariu, C., Schneider, G.: Abstract specification of legal contracts. In: Pro-
ceedings of the 12th International Conference on Artificial Intelligence and Law
(ICAIL), ACM Request Permissions, pp. 218–219 (2009)

26. Aldewereld, H.: Autonomy vs. conformity: an institutional perspective on norms
and protocols. Ph.D. Thesis, Utrecht University (2007)

27. Abrahams, A.S., Bacon, J.M.: The life and times of identified, situated, and con-
flicting norms. In: Sixth International Workshop on Deontic Logic in Computer,
Science (DEON), pp. 3–20 (2002)

28. Fornara, N., Colombetti, M.: Specifying and enforcing norms in artificial institu-
tions. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT
2008. LNCS (LNAI), vol. 5397, pp. 1–17. Springer, Heidelberg (2009)

29. Cardoso, H.L., Oliveira, E.: Directed deadline obligations in agent-based busi-
ness contracts. In: Padget, J., Artikis, A., Vasconcelos, W., Stathis, K., da Silva,
V.T., Matson, E., Polleres, A. (eds.) COIN@AAMAS 2009. LNCS, vol. 6069,
pp. 225–240. Springer, Heidelberg (2010)

30. Governatori, G.: Representing business contracts in RuleML. Int. J. Coop. Inf.
Syst. 14(2–3), 181–216 (2005)

31. Tauriainen, H.: automata and linear temporal logic: translations with transition-
based acceptance. Ph.D. Thesis, Helsinki University of Technology (2006)

32. Cirstea, H., Kirchner, C., Moossen, Michael, M., Moreau, P.E.: Production systems
and rete algorithm formalisation. Research report inria-00280938, PROTHEO -
INRIA Lorraine - LORIA (2004)

	Towards the Norm-Aware Agent: Bridging the Gap Between Deontic Specifications and Practical Mechanisms for Norm Monitoring and Norm-Aware Planning
	1 Introduction
	2 Linear Temporal Logic
	3 Norms and Norm Instances
	3.1 Norm Operationalisation and Levels of Abstraction
	3.2 Identification of Norm Instances

	4 Formalisation
	4.1 Norms
	4.2 Norm Instances
	4.3 Norm Lifecycle
	4.4 From Abstract Norm to Norm Instances

	5 Operational Semantics
	5.1 Monitoring Norms
	5.2 Planning with Norms

	6 Conclusions
	References

