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Abstract Accurate three-dimensional (3D) image segmentation techniques have
become increasingly important for medical image analysis in general, and for spinal
vertebrae image analysis in particular. The complexity of vertebrae shapes, gaps
in the cortical bone and internal boundaries pose significant challenge for image
analysis. In this paper, we describe a level set image segmentation framework that
integrates prior shape knowledge and local geometrical features to segment both
normal and fractured spinal vertebrae. The prior shape knowledge is computed via
kernel density estimation whereas the local geometrical features is captured through
an edge-mounted Willmore energy. While the shape prior energy draws the level
set function towards possible shape boundaries, the Willmore energy helps to cap-
ture the detail shape and curvature information of the vertebrae. Experiment on CT
images of normal and fractured spinal vertebrae demonstrate promising results in
3D segmentation.

1 Introduction

Accurate 3D spinal vertebrae image segmentation techniques are important tools to
assist the diagnosis and treatment of spinal disorders such as spine trauma [10, 14].
Severe spine injury can result in life threatening and chronological problems unless
treated promptly and properly. In any spinal injury, the possibility of spinal frac-
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ture must be examined immediately. Image segmentation of spinal vertebrae in 3D
allows detection, measurement, and monitoring of the fracture(s), and facilitates
biomechanics analysis of the spinal column.

Despite an increasing interest in spinal vertebrae segmentation in recent years,
accurate 3D segmentation methods for diseased or fractured vertebrae are still lack-
ing. There are some existing works in the literature for 2D or 3D segmentations,
however they often require user intervention or fall short in achieving high accu-
racy [4, 6–8, 11–13, 15]. Segmentation of diseased or fractured vertebrae has been
attempted recently [5, 19, 20], however, these are either in 2D or focused only on
vertebral body rather than the whole 3D spinal vertebrae.

Traumatic injury of the spine often correlates with morphometric features in
images. Segmentation of the whole vertebra in 3D would facilitate the detection
of fractured vertebra and the assessment of the severity of the fracture. For example,
the highlighted volumetric region of vertebrae could assist physicians in perform-
ing visual inspection of vertebral fractures, determining its stability and measuring
quantitatively the fractured vertebrae.

This work extends the spinal vertebrae segmentation method presented in [9] to
segment fractured vertebrae. In this case, high variability of fractured vertebral shape
is largely captured by the embedded Willmore flow, while prior shape energy comes
into action only when encountering inhomogeneous image intensity distribution.

2 Segmentation Framework

It is well-known that level set methods have advantages such as flexibility in dealing
with topological change, easy extension into higher dimensions, as well as easy
integration of prior knowledge and region statistic. The segmentation framework
presented here has made use of these properties. The framework combines the kernel
density estimation technique andWillmoreflow to incorporate prior shapeknowledge
and local geometrical features from images into the level set method.Whilst the prior
shape model provides much needed prior knowledge when information is missing
from the image, the edge-mountedWillmore flow helps to capture the local geometry
and smoothes the evolving level set surface.

The level set method embeds an interface in a higher dimensional function φ (the
signed distance function) as a level set φ = 0 [16]. The evolution of the level set
function φ(t) is governed by ∂φ

∂t + F |∇φ| = 0, where F is the speed function. Based
on the variational framework, an energy function E(φ) is defined in relation to the
the speed function. The minimization of such energy generates the Euler-Lagrange
equation, and the evolution of the equation is through calculus of variation:

∂φ

∂t
= −∂ E(φ)

∂φ
.
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In this work, the fusion of energies whereby a shape prior distribution estimator Es

and an edge-mounted Willmore energy Ew0 is employed:

E(φ) = λEs + Ew0 ,

where λ (0 < λ ≤ 1) is the weight parameter, which is tuned to suit the segmentation
of normal and abnormal spinal vertebrae.

2.1 Computing Prior Shape Energy via Kernel Density Estimation

Kernel density estimation (KDE) is a nonparametric approach for estimating the
probability density function of a random variable.Without assuming the prior shapes
areGaussian distributed,KDEpresents advantage in estimating the shape distribution
even with a small number of training set, in addition to modeling shapes with high
complexity and structure. In this study,we adopted the prior shape energy formulation
discussed by Cremers et al. [2].

The density estimation is formulated as a sum of Gaussian of shape dissimilarity
measures d2(φ, φi ), i = 1, 2, . . . , N :

P(φ) ∝ 1

N

N∑

i=1

e− d2(φ,φi )

2σ2 ,

where the shape dissimilarity measure d2(φ, φi ) is defined as

d2(φ, φi ) =
∫

�

1

2
(H(φ) − H(φm))2 dx,

σ 2 = 1

N

N∑

i=1

min
j �=i

d2(φi , φ j ),

and H(φ) is the Heaviside function. By maximizing the conditional probability

P(φ|I ) = P(I |φ)P(φ)

P(I )
,

and considering the shape energy as

Es(φ) = − log P(φ|I ),

the variational with respect to φ becomes
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∂ Es

∂φ
=

∑N
i=1 αi

∂
∂φ

d2(φ, φi )

2σ 2
∑N

i=1 αi

=
N∑

i=1

e− d2(φ,φi )

2σ2

2σ 2
∑N

i=1 αi

(
2δ(φ)

[
H(φ) − H(φi (x − μφ))

]

+
∫ [

H(φ(ξ) − H(φi (ξ − μφ))

]
δφ(ξ)

(x − μφ)T ∇φ(ξ)∫
Hφdx

dξ

)
,

where μφ is the centroid of φ and αi = exp
(
− 1

2σ 2 d2(φ, φi )
)
is the weight factor

for i = 1, 2, . . . , N .

2.2 Computing Local Geometry Energy via Willmore Flow

Willmore energy is a function of mean curvature, which is a quantitative measure of
how much a given surface deviates from a sphere. It is formulated as

Ew = 1

2

∫

M
h2d A,

where M is a d-dimensional surface embedded inRd+1 and h the mean curvature on
M [18]. For image segmentation, the Willmore energy provides an internal energy
that gives a useful description of a region, where the effect of edge indicator is
not significant. In these regions, smoothness of the shape of the curve should be
maintained and extended, which can be regarded as a weak form of inpainting [3].

As a geometric functional, the Willmore energy is defined on the geometric rep-
resentation of a collection of level sets. Its gradient flow can be well represented by
defining a suitable metric, the Frobenius norm, on the space of the level sets. Frobe-
nius norm is a convenient choice as it is equivalent to the l2-normof amatrix andmore
importantly it is computationally attainable. As Frobenius norm is an inner-product
norm, the optimization in the variational method comes naturally.

Based on the formulation by Droske and Rumpf [3], the Willmore flow or the
variational form for the Willmore energy with respect to φ is

∂ Ew

∂φ
= −‖∇φ‖

(

M h + h(t)

(
‖S(t)‖22 − 1

2
h(t)2

))
,

where 
M h = 
h − h ∂h
∂n − ∂2h

∂n2
is the Laplacian Beltrami operator on h with

n = ∇φ
‖∇φ‖ , S = (I − n ⊗ n)(∇ × ∇)φ is the shape operator on φ and ‖S‖2 is the

Frobenius norm of S.
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Table 1 Average DSC (%) and HD (mm) with standard deviation for segmentations of normal
lumbar vertebrae (L1 to L5) using Chan-Vese (CV), Chan-Vese with prior shape (CV+S), Caselles
(Ca), Caselles with prior shape (Ca+S), edge-mounted Willmore (W0), edge-mounted Willmore
with prior shape (W0 +S) energies, region growing (RG) and graph cut (GC) approach

Method DSC (%) HD (mm)

CV 37.68 ± 7.07 26.68 ± 2.18
CVS 45.09 ± 7.54 25.31 ± 2.38
Ca 55.75 ± 8.14 22.22 ± 1.57
CaS 71.12 ± 2.72 18.39 ± 1.15
W 75.82 ± 2.81 19.21 ± 1.51
WS 89.32±1.70 14.30 ± 1.40
RG 42.30 ± 11.43 25.20 ± 2.30
GC 13.23 ± 11.11 63.22 ± 14.82

In order to ensure the smoothing effect work successfully around the constructed
surface and not affecting the desired edge of vertebrae, the Willmore flow is coupled
with the edge indicator function g(I ) = 1

1+|∇Gσ ∗I |2 , where Gσ is the Gaussian filter
with standard deviation σ :

∂ Ew0

∂φ
= g(I )

∂ Ew

∂φ
.

3 Experiments and Results

Experiments have been conducted on CT images of spinal vertebrae for 2D and 3D
segmentation. The dataset consists of 20 CT images of normal and 4 CT images of
fractured spinal vertebrae images of patients aged 18 to 66 years. The images were
acquired from various CT scanners such as a 32-detector row Siemens definition, 64-
detector row Philips Brilliance and 320-detector row Toshiba Aquilion. The in plane
resolutions for these sagittal images range from 0.88 to 1.14mm, with consistent
slice thickness of 2 mm. Original images for these images have fixed sizes of 512×
512, with number of slices varying from 45 to 98. For 3D segmentation, a torus
is set manually surrounding the spinal canal as the initial contour. The level set
method is then implemented using a narrow band scheme [1] with a re-initialization
algorithm [17].

It has been reported that the 3D segmentations of spinal vertebrae clearly out-
perform the other methods such as region growing, graph cut, the classical level
set methods such as Chan-Vese and Caselles models as well as their combinations
with shape priors [9]. While some methods can perform relatively well in the 2D
segmentation of spinal vertebrae, the majority of them fail badly when extended to
the 3D segmentation of an individual vertebra due to the highly complex shape and
connected structure as well as the nonuniform image intensity distribution in the pos-
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Fig. 1 An example of patient CT image with fractures on lumbar vertebrae L2 and L3

terior column of vertebra. Table 1 summarized 3D segmentation results on normal
lumbar vertebrae using various approach, evaluated with ground truth. It is worth
noted the effectiveness of our segmentation framework, with an overall accuracy of
89.32±1.70% and 14.03±1.40 mm based on Dice similarity coefficient and Haus-
dorff distance respectively, whilst the inter- and intra-observer variation agreements
were 92.11 ± 1.97%, 94.94 ± 1.69%, 3.32 ± 0.46 mm and 3.80 ± 0.56 mm. Seg-
mentation results depend highly on available dataset. The intra- and inter-observer
variation estimations were performed to verify the difficulty of manual delineation
in 3D using our dataset. We have shown that our results present no significant sta-
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Fig. 2 Different views of 3D segmentation for fractured lumbar vertebrae L2 and L3 as well as
their projections in 2D (red) compared with manual segmentation (yellow) on axial, sagittal and
coronal views

tistical differences (p > 0.05) when compared with these observer estimations.
The robustness of the proposed segmentation framework is demonstrated on the CT
image of a patient with fractures on lumbar vertebrae L2 and L3 as seen in Fig. 1. As
shown in Fig. 2, the segmentation framework manages to capture the 3D shape of
fractured vertebrae L2 and L3, despite the inhomogeneity, noise and missing edges
appeared on these fractured vertebra images. It enables individual segmentation of
vertebrae without leaking into the nearby connected vertebra. Segmentation results
on fractured vertebrae were evaluated via visual inspection by radiologist.

4 Discussion and Conclusion

An accurate level set segmentation framework for segmenting spinal vertebrae in 2D
and 3D is presented in this study. The robustness of the framework is demonstrated
on CT images of fractured vertebrae. The framework combines the kernel density
estimation technique and Willmore flow to incorporate prior shape knowledge and
local geometrical features from images into the level set method. It is worth noted
that fusion of these energies effectively translate the prior shape knowledge and local
geometrical feature of spinal vertebrae into the level set segmentation framework.The
Willmore flow driven level set segmentation demonstrates better regularization than
the widely used mean curvature flow in level set segmentation. Unlike minimizing
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surface area by mean curvature flow in regularization, Willmore flow minimizes
the bending energy when performing surface smoothing, which is more suitable for
object with complex shape and structure. The segmentation algorithmwas performed
directly in a 3D volumetric manner instead of sequentially to the slices of a 3D
image. This allows the volumetric tissue connectivity be taken into consideration and
hence, enablesmoremeaningful representation of 3Danatomical shape and structure.
Moreover, it forms a continuous, smooth 3D surface and without the post processing
redundancy posed by the slice by slice segmentation approach. More samples of
fractured vertebrae are needed to perform further evaluation on the segmentation
framework. Future work will integrate the algorithm into a pathological vertebrae
characterization framework to yield an efficient computer aided diagnosis platform
for quantitative analysis of spinal vertebrae fracture and related problems.
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