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The research related to the analysis of living structures (Biomechanics) has been a source of
recent research in several distinct areas of science, for example, Mathematics, Mechanical
Engineering, Physics, Informatics, Medicine and Sport. However, for its successful
achievement, numerous research topics should be considered, such as image processing and
analysis, geometric and numerical modelling, biomechanics, experimental analysis,
mechanobiology and enhanced visualization, and their application to real cases must be
developed and more investigation is needed. Additionally, enhanced hardware solutions and
less invasive devices are demanded.

On the other hand, Image Analysis (Computational Vision) is used for the extraction of
high level information from static images or dynamic image sequences. Examples of
applications involving image analysis can be the study of motion of structures from image
sequences, shape reconstruction from images and medical diagnosis. As a multidisciplinary
area, Computational Vision considers techniques and methods from other disciplines, such
as Artificial Intelligence, Signal Processing, Mathematics, Physics and Informatics. Despite
the many research projects in this area, more robust and efficient methods of Computational
Imaging are still demanded in many application domains in Medicine, and their validation
in real scenarios is matter of urgency.

These two important and predominant branches of Science are increasingly considered
to be strongly connected and related. Hence, the main goal of the LNCV&B book series
consists of the provision of a comprehensive forum for discussion on the current state-of-
the-art in these fields by emphasizing their connection. The book series covers (but is not
limited to):

• Applications of Computational Vision and
Biomechanics

• Biometrics and Biomedical Pattern Analysis
• Cellular Imaging and Cellular Mechanics
• Clinical Biomechanics

• Computational Bioimaging and Visualization
• Computational Biology in Biomedical Imaging
• Development of Biomechanical Devices

• Device and Technique Development for Bio-
medical Imaging

• Digital Geometry Algorithms for Computa-
tional Vision and Visualization

• Experimental Biomechanics
• Gait & Posture Mechanics
• Multiscale Analysis in Biomechanics

• Neuromuscular Biomechanics
• Numerical Methods for Living Tissues
• Numerical Simulation

• Software Development on Computational
Vision and Biomechanics

• Grid and High Performance Computing for
Computational Vision and Biomechanics

• Image-based Geometric Modeling and Mesh
Generation

• Image Processing and Analysis

• Image Processing and Visualization in
Biofluids

• Image Understanding

• Material Models
• Mechanobiology
• Medical Image Analysis
• Molecular Mechanics

• Multi-Modal Image Systems
• Multiscale Biosensors in Biomedical Imaging
• Multiscale Devices and Biomems for Bio-

medical Imaging
• Musculoskeletal Biomechanics
• Sport Biomechanics

• Virtual Reality in Biomechanics
• Vision Systems
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Preface

The spine represents both a vital central axis for the musculoskeletal system and a
flexible protective shell surrounding the most important neural pathway in the
body, the spinal cord. Spine-related diseases or conditions are common and cause a
huge burden of morbidity and cost to society. Examples include degenerative disk
disease, spinal stenosis, scoliosis, osteoporosis, herniated disks, fracture/liga-
mentous injury, infection, tumor, and spondyloarthropathy. Treatment varies with
the disease entity and the clinical scenario can be nonspecific. As a result, imaging
is often required to help make the diagnosis. Frequently obtained studies include
plain radiographs, DXA, bone scans, CT, MR, ultrasound, and nuclear medicine.
Computational methods play a steadily increasing role in improving speed, con-
fidence, and accuracy in reaching a final diagnosis. Although there has been great
progress in the development of computational methods for spine imaging over the
recent years, there are a number of significant challenges in both methodology and
clinical applications.

The goal of this workshop on ‘‘Computational Methods and Clinical Applica-
tions for Spine Imaging’’ was to bring together clinicians, computer scientists, and
industrial vendors in the field of spine imaging, for reviewing the state-of-art
techniques, sharing the novel and emerging analysis and visualization techniques,
and discussing the clinical challenges and open problems in this rapidly growing
field. We invited papers on all major aspects of problems related to spine imaging,
including clinical applications of spine imaging, computer-aided diagnosis of
spine conditions, computer Aided Detection of spine-related diseases, emerging
computational imaging techniques for spinal diseases, fast 3D reconstruction of
spine, feature extraction, multiscale analysis, pattern recognition, image
enhancement of spine imaging, image-guided spine intervention and treatment,
multimodal image registration and fusion for spine imaging, novel visualization
techniques, segmentation techniques for spine imaging, statistical and geometric
modeling for spine and vertebra, spine and vertebra localization.

Although being the first MICCAI workshop on this particular topic, we
received many high quality submissions addressing many of the above-mentioned
issues. All papers underwent a thorough double-blinded review with each paper
being reviewed by three members of the program committee including workshop
chairs. The program committee consisted of researchers who had actively con-
tributed to the field of spine imaging in the past. From all submissions, we finally
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accepted 19 papers as oral presentations. The papers are organized into five parts
according to the topics. The parts are Segmentation I (CT), Computer Aided
Detection and Diagnosis, Quantitative Imaging, Segmentation II (MR) and Reg-
istration/Labeling.

In order to give deeper insights into the field and stimulate further ideas, we had
invited lectures held during the workshop. We are very thankful to Tokumi
Kanamura, Gabor Fichtinger, and Vipin Chaudhary for agreeing to give invited
talks on the topic of clinical indications, image guided intervention, and
commercialization.

We hope that with this workshop we have increased the attention toward this
important and interesting field of computational spine imaging and would like to
finally thank all contributors for their efforts in making this workshop possible. We
especially thank the following institutes for their sponsorship: Journal of Com-
puterized Medical Imaging and Graphics, GE Healthcare, Digital Imaging group
of London, Philips Research, and National Institutes of Health.

Jianhua Yao
Tobias Klinder

Aly A. Farag
Shuo Li
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Tomaž Vrtovec, Franjo Pernuš and Boštjan Likar

Eigenspine: Eigenvector Analysis of Spinal Deformities
in Idiopathic Scoliosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Daniel Forsberg, Claes Lundström, Mats Andersson and Hans Knutsson

Quantitative Monitoring of Syndesmophyte Growth in Ankylosing
Spondylitis Using Computed Tomography . . . . . . . . . . . . . . . . . . . . . 135
Sovira Tan, Jianhua Yao, Lawrence Yao and Michael M. Ward

A Semi-automatic Method for the Quantification of Spinal
Cord Atrophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Simon Pezold, Michael Amann, Katrin Weier, Ketut Fundana,
Ernst W. Radue, Till Sprenger and Philippe C. Cattin

Part IV Segmentation II (MR)

Multi-modal Vertebra Segmentation from MR Dixon for Hybrid
Whole-Body PET/MR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Christian Buerger, Jochen Peters, Irina Waechter-Stehle,
Frank M. Weber, Tobias Klinder and Steffen Renisch

Segmentation of Lumbar Intervertebral Discs from
High-Resolution 3D MR Images Using Multi-level Statistical
Shape Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Aleš Neubert, Jurgen Fripp, Craig Engstrom and Stuart Crozier

x Contents

http://dx.doi.org/10.1007/978-3-319-07269-2_8
http://dx.doi.org/10.1007/978-3-319-07269-2_8
http://dx.doi.org/10.1007/978-3-319-07269-2_9
http://dx.doi.org/10.1007/978-3-319-07269-2_9
http://dx.doi.org/10.1007/978-3-319-07269-2_10
http://dx.doi.org/10.1007/978-3-319-07269-2_10
http://dx.doi.org/10.1007/978-3-319-07269-2_11
http://dx.doi.org/10.1007/978-3-319-07269-2_11
http://dx.doi.org/10.1007/978-3-319-07269-2_12
http://dx.doi.org/10.1007/978-3-319-07269-2_12
http://dx.doi.org/10.1007/978-3-319-07269-2_13
http://dx.doi.org/10.1007/978-3-319-07269-2_13
http://dx.doi.org/10.1007/978-3-319-07269-2_14
http://dx.doi.org/10.1007/978-3-319-07269-2_14
http://dx.doi.org/10.1007/978-3-319-07269-2_15
http://dx.doi.org/10.1007/978-3-319-07269-2_15
http://dx.doi.org/10.1007/978-3-319-07269-2_15


A Supervised Approach Towards Segmentation of Clinical
MRI for Automatic Lumbar Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . 185
Subarna Ghosh, Manavender R. Malgireddy, Vipin Chaudhary
and Gurmeet Dhillon

Part V Registration/Labeling

Automatic Segmentation and Discrimination of Connected
Joint Bones from CT by Multi-atlas Registration . . . . . . . . . . . . . . . . 199
Tristan Whitmarsh, Graham M. Treece and Kenneth E. S. Poole

Registration of MR to Percutaneous Ultrasound of the Spine
for Image-Guided Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Lars Eirik Bø, Rafael Palomar, Tormod Selbekk and Ingerid Reinertsen

Vertebrae Detection and Labelling in Lumbar MR Images . . . . . . . . . 219
Meelis Lootus, Timor Kadir and Andrew Zisserman

Contents xi

http://dx.doi.org/10.1007/978-3-319-07269-2_16
http://dx.doi.org/10.1007/978-3-319-07269-2_16
http://dx.doi.org/10.1007/978-3-319-07269-2_17
http://dx.doi.org/10.1007/978-3-319-07269-2_17
http://dx.doi.org/10.1007/978-3-319-07269-2_18
http://dx.doi.org/10.1007/978-3-319-07269-2_18
http://dx.doi.org/10.1007/978-3-319-07269-2_19


Part I
Segmentation I (CT)



Segmentation of Vertebrae from 3D Spine
Images by Applying Concepts from
Transportation and Game Theories

Bulat Ibragimov, Boštjan Likar, Franjo Pernuš and Tomaž Vrtovec

Abstract We describe a landmark-based three-dimensional (3D) segmentation
framework, in which the shape representation of the object of interest is based on
concepts from transportation theory. Landmark-based shape representation relies on
a premise that considering spatial relationships for every pair of landmarks is redun-
dant, therefore landmarks are first separated into clusters. Landmarks within each
cluster form a complete graph of connections, while landmarks within any two clus-
ters are connected in a one-to-one manner by applying a concept from transportation
theory called the optimal assignment. The resulting optimal assignment-based shape
representation captures the most descriptive shape properties and therefore repre-
sents an adequate balance among rigidity, elasticity and computational complexity,
and is combined with a 3D landmark detection algorithm that is based on concepts
from game theory. The framework was applied to segment 50 lumbar vertebrae from
3D computed tomography images, and the resulting symmetric surface distance of
0.76 ± 0.10 mm and Dice coefficient of 93.5 ± 1.0 % indicate that accurate segmen-
tation can be obtained by the described framework. Moreover, when compared to the
complete graph, the computational time was reduced by a factor of approximately
nine in the case of optimal assignment-based shape representation.

B. Ibragimov (B) · B. Likar · F. Pernuš · T. Vrtovec
Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25,
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1 Introduction

Segmentation of vertebrae is among the most challenging segmentation problems, as
vertebrae are highly articulated structures, consisting of the vertebral body, pedicles
and processes. As a result, the application of unsupervised segmentation approaches
is limited, however, supervised segmentation approaches that require prior modeling
of vertebral structures were already successfully applied, especially in the case of
three-dimensional (3D) spine images [1–7]. For the segmentation of vertebral and
also other anatomical structures, shape modeling has been mostly driven by active
shape models (ASM) [8] and active appearance models (AAM) [9]. However, if
the distance between the initial model and the object of interest is too large, model
optimization may lead to an incorrect solution that is locally but not globally optimal.
Moreover, intensities and shapes are generally treated separately and independently.
To overcome these shortcomings, landmark-based segmentation methods, where
the object of interest is described by intensity and shape properties of landmarks
and connections among these landmarks, have been proposed [10–12]. However,
methods that were originally developed for two-dimensional (2D) images cannot be
directly applied to 3D images, because a considerably larger number of landmarks
is required to accurately capture the shape of the object of interest in 3D. If the
number of landmarks increases linearly, the number of connections among landmarks
exhibits a quadratic growth, which is reflected in the computational complexity. In
the case the shape is represented by a complete set of connections among landmarks
(i.e. a complete graph), the resulting shape representation is strong and prevents
non-plausible shape deformations in 2D, but may at the same time limit the shape
elasticity in 3D. A balance among computational complexity, rigidity and elasticity
may be obtained by reducing the complete set of connections [13], and the more
recent approaches combined statistical properties of individual connections, defining
local shape properties, and of the complete set of connections, defining global shape
properties [11, 14]. Despite considerable improvements, existing approaches often
result in a discriminative degree of connections for different landmarks, i.e. the
number of connections established for different landmarks varies. In practice, this
usually reflects in a high degree of connections for few landmarks and a low degree
for most landmarks, which may lead to errors in landmark detection and formation
of non-plausible shapes.

In this paper, we combine a non-discriminative landmark-based shape repre-
sentation [15] with a landmark-based segmentation framework [12] and extend its
application from 2D to 3D image segmentation (Fig. 1). The introduced 3D shape
representation is based on concepts from transportation theory [16], and is integrated
with a landmark-based detection in 3D that relies on concepts from game theory [17].
The resulting framework was validated for segmentation of lumbar vertebrae from
3D computed tomography (CT) spine images.
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Fig. 1 An overview of the proposed segmentation framework. The 3D shape representation of the
object of interest is determined by connections among landmarks that are established according to
the optimal assignment, a special case of transportation theory. The shape and intensity likelihood
maps are also computed for landmarks in images from the training set, and together with the shape
representation used to guide landmark detection in the target image, which is based on concepts
from game theory. The resulting landmarks in the target image are combined with an atlas-based
image registration that combines landmarks and pre-segmented surfaces of the object of interest
in the training set of images with landmarks in the target image to generate the final segmentation
results in 3D
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2 Methodology

2.1 Transportation Theory

Transportation theory [16], originally developed in the field of applied economy, is
focused on solving problems related to transporting goods and allocating resources
between sources and destinations, and provides globally optimal solutions for a vari-
ety of applications based on graph theory. In the field of image analysis, transporta-
tion theory has already been applied to solve various problems related to information
matching and comparison. In this paper, we apply transportation theory to determine
the optimal landmark-based shape representation of the object of interest. In the case
the object of interest is described by landmarks p ∈ P , its landmark-based shape
representation can be defined by connections among pairs of landmarks ∀p, q ∈ P;
p ∇= q. The most straightforward approach is to establish connections for every pair
of landmarks, which results in the complete graph of 1

2 |P| (|P| − 1) connections,
where |P| is the number of landmarks. As the complete graph-based shape repre-
sentation is relatively rigid, its application in segmentation will in general not result
in non-plausible shapes, but some shapes that are plausible may not be detected due
to its limited elasticity. Because a connection is established for every pair of land-
marks, the resulting shape representation is also relatively complex. Although these
limitations may not be of utmost importance in the case of 2D shapes, they may be
emphasized in the case of 3D shapes, where the number of landmarks and corre-
sponding connections can be considerably larger. To balance the rigidity, elasticity
and complexity of the shape representation, connections among landmarks can be
selectively established by various approaches [13]. However, existing approaches
may result in unequal degrees of connections among landmarks (Fig. 2a), which
may lead to non-plausible shapes. We therefore propose a novel non-discriminative
statistical shape representation, where we selectively establish connections and, at
the same time, enforce equal degrees of connections among landmarks. The process
of establishing optimal connections is guided by statistical properties of landmarks,
learned from the training set of images and then applied to the target image, and is
observed from the perspective of transportation theory. For our purpose, we exploit
a special case of allocating sources to destinations in a one-to-one manner called
the optimal assignment, because it has several computationally effective solutions,
e.g. the Hungarian algorithm [18].

2.2 Game Theory

Game theory [17] is a discipline that studies the behavior of decision makers, who
play a game by making decisions that impact one another. A game is a set of rules
for playing, and a play is a specific combination of these rules that occurs when each
player (i.e. the decision maker) chooses a strategy (i.e. a decision as an admissible
behavior of the decision maker) so that it maximizes his payoff (i.e. the benefit gained
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Fig. 2 a A shape representation consisting of 13 landmarks with unequal degrees of connections.
b Separation of landmarks into two clusters of 6 and 7 landmarks (note that the cardinality of clusters
is equalized by a pseudo-landmark). Intra-cluster connections are established as complete graphs.
c Optimal assignment-based shape representation, consisting of intra-cluster and also inter-cluster
connections (in green), established by optimal assignment among landmarks in the two clusters

according to the behavior of other players). In non-cooperative games, each player
acts independently and aims to maximize his payoff regardless of payoffs gained by
other players, while in cooperative games, players can join into coalitions (the grand
coalition joins all players) and aim to maximize their joint payoff. In this paper,
we apply game theory to detect the optimal position of landmarks that describe the
object of interest. Landmark detection is considered as a game where landmarks
are players, landmark candidate points are strategies, and likelihoods that each can-
didate point represents a landmark are payoffs [12]. As players (i.e. landmarks)
can simultaneously participate in maximizing their joint payoffs (i.e. cumulative
likelihoods) through the corresponding strategies (i.e. landmark candidate points),
landmark detection in the target image can be represented as a cooperative game
with the grand coalition and solved by maximizing the joint payoff ϑ∗:

ϑ∗ (P,S,W) = arg max
ω

⎛
⎝⎨

p∈P
wp

⎞
⎠ , (1)

where P and S = Sp ∪ Sq ∪ . . . are, respectively, sets of landmarks and landmark
candidate points, wp is the payoff for landmark p ∈ P , ω = {wp, wq, . . .} is an
admissible combination of payoffs, and W = {Wp,q; ∀p, q ∈ P, p ∇= q} is the payoff
matrix that consists of matrices Wp,q of partial payoffs for each pair of landmarks
p, q ∈ P . The element of Wp,q at location (sp, sq) represents the partial payoff of
landmark p if landmarks p and q are represented by, respectively, candidate points
sp ∈ Sp and sq ∈ Sq .

2.3 Optimal Assignment-Based 3D Shape Representation

Let the object of interest be in each image from the training set T annotated by corre-
sponding landmarks p ∈ P . The application of optimal assignment to all landmarks
would result in a weak shape representation, because every landmark would be con-
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nected to only one other landmark (i.e. the degree of connections would be equal to
one). To avoid such situation, we first divide landmarks into L clusters, each with the
same number of landmarks |C|, so that |P| ≈ L |C| (if the same cardinality cannot be
achieved for every cluster, it is equalized by introducing pseudo-landmarks). Land-
marks within each ith cluster are connected by a complete graph G∗

i , resulting in
intra-cluster connections (Fig. 2b). For all clusters, the total number of intra-cluster
connections is therefore 1

2 L |C| (|C| − 1). Moreover, each landmark from ith clus-
ter is connected to exactly one landmark from every other jth cluster, resulting in
inter-cluster connections (Fig. 2c). For all clusters, the total number of inter-cluster
connections is therefore 1

2 |P| (L − 1). The inter-cluster connections are defined by
the optimal assignment A∗

i,j that corresponds to the maximal total benefit of a shape
representation [18]:

A∗
i,j = arg max

a∈Ai,j

⎛
⎝⎨

p∈Ci
u

⎟
Dp,a(p), Φp,a(p), Θp,a(p)

)
⎞
⎠ ; i, j = 1, . . . , L;

i ∇= j,
(2)

where Ai,j is the set of all possible one-to-one assignments among landmarks
between ith and jth cluster in the form of bijections i→ j, a(p) is the landmark
from jth cluster that is assigned to landmark p from ith cluster by bijection a ∈ Ai,j ,
and u(·) is a linear function that is composed of probability distributions of distances
Dp,a(p), azimuth angles Φp,a(p) and polar angles Θp,a(p). These probability distri-
butions describe the 3D spatial relationships, observed in the spherical coordinate
system, between any two landmarks p, q ∈ P that occur in images from the training
set and are computed as:

Xp,q

⎟
xp,q, σX ,x

) =
⎨
n∈T

1

σX
exp

(
−

⎟
xp,q(n) − x

)2

2σ 2
X

⎡
, (3)

where xp,q(n) is the feature value for landmarks p and q in the nth image from the
training set T , x is an arbitrary feature value (0 ≤x≤xmax), and σX is a predefined
constant that tunes the sensitivity of the distribution to feature value variations. The
resulting distance, azimuth angle and polar angle distributions are therefore, respec-
tively, Dp,q(d)= Xp,q(dp,q, σD, d), Φp,q(ϕ)= Xp,q(ϕp,q, σΦ, ϕ) and Θp,q(θ)= Xp,q

(θp,q, σΘ, θ), where dp,q is the distance, ϕp,q is the azimuth angle, and θp,q is the polar
angle between landmarks p and q.

The resulting optimal assignment A∗
i,j between ith and jth cluster defines the

set {1p,q} of indicator functions for landmarks p from ith cluster and landmarks q
from jth cluster. Each indicator function 1p,q equals 1 if the inter-cluster connection
between landmarks p and q was established, and 0 otherwise. On the other hand, for
intra-cluster connections in ith cluster that result from G∗

i , the indicator function 1p,q
always equals 1, as the connections form a complete graph.
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2.4 Landmark-Based 3D Image Segmentation

Landmark-based image segmentation is the problem of finding landmarks that define
the object of interest in an unknown target image, and one of the options is to exploit
the statistical information of shape representations in the annotated training set of
images. We first extract the statistical information from the training set of images
in the form of intensity and shape likelihood maps, then use the intensity likelihood
maps to identify landmark candidate points, and finally use both intensity and shape
likelihood maps to detect the combination of optimal candidate points that represents
landmarks in the target image.

For each corresponding landmark p ∈ P we first compute the mean image inten-
sity μp at every point in its neighborhood across the images in the training set T .
At location v in the target image, which is a candidate for landmark p, the inten-
sity likelihood map fp(v) is computed as a cross-correlation between μp and image
intensities at every point in the neighborhood of v. The set Sp of M candidate points
for landmark p in the target image is obtained by selecting points at locations of
M largest maxima of fp (Fig. 3a). The shape likelihood map gp,q is defined as a lin-
ear combination of the distance (Dp,q), azimuth angle (Φp,q) and polar angle (Θp,q)
probability distributions (Eq. 3):

gp,q(d, ϕ, θ,Δ,Υ,Ω) = λ1 Dp,q(Δ · d) + λ2Φp,q(ϕ + Υ ) + λ3Θp,q(θ + Ω) (4)

and therefore represents the shape variations for landmarks p and q in images from
the training set T . The parameters R = {Δ,Υ,Ω} serve to additionally scale and
rotate the system of landmarks p and q, and therefore compensate for an eventual
global scaling and rotation of the object of interest. The parameters λi weight the
contribution of individual probability distributions;

⎢3
i=1 λi = 1, ∀i: λi ≥ 0.

The resulting intensity (fp) and shape (gp,q) likelihood maps, and the optimal
assignment-based shape representation (G∗ ∪ A∗) are combined with an existing
landmark-based image segmentation framework [12] that relies on concepts from
game theory [17]. The partial payoff (Eq. 1) of landmark p if landmarks p and q are
represented by, respectively, candidate points sp ∈ Sp and sq ∈ Sq is defined as:

Wp,q(sp, sq,R) = (1 − τ) fp(vsp) + τgp,q
⎟
dsp,sq , ϕsp,sq , θsp,sq ,R

)
, (5)

where vsp is the location of sp in the target image, dsp,sq , ϕsp,sq and θsp,sq are, respec-
tively, the distance, azimuth angle and polar angle between sp and sq in the target
image, R = {Δ,Υ,Ω} are the parameters that compensate for the global scaling
and rotation of the object of interest (Eq. 4), and τ weights the contribution of the
intensity and shape likelihood maps; 0 ≤ τ ≤ 1.

The cooperative game with the grand coalition is, in terms of combinatorial opti-
mization, a relatively complex problem. However, a locally optimal combination
of candidate points σ ∗ = {s∗

p , s∗
q , . . .} can be obtained by an iterative optimiza-
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Fig. 3 The proposed landmark-based segmentation of the L1 vertebra, shown in an axial CT cross-
section. a Candidate points for landmarks p and q form the corresponding sets Sp and Sq . b The
optimal candidate points s∗

p and s∗
q are found by the game-theoretic landmark detection. c The set of

optimal candidate points σ ∗ represents landmarks that define the boundary of the object of interest

tion algorithm [12]. According to Eqs. 1 and 5, and by considering the optimal
assignment-based shape representation, we define the total payoff ψ as:

ψ(q, sq,
k P,k S,W,R) =

⎨

i∈kP

⎨

j∈kP
j ∇=i

1i,jWi,j(si, sj,R) (6)

+
⎨

i∈kP
1i,qWi,q(si, sq,R)

+
⎨

j∈kP
1q,jWq,j(sq, sj,R),

where kP is an observed subset of landmarks without landmark q; kP ⊂ P\{q}, kS
is the combination of optimal candidate points that correspond to landmarks in kP
(each landmark is associated with exactly one optimal candidate point), 1p,q is the
indicator function obtained from the optimal assignment G∗ ∪ A∗, and k denotes
the current configuration of sets kP and kS that are associated with the iteration
of the optimization algorithm. By maximizing the above described total payoff ψ ,
the optimal combination of candidate points σ ∗ = {s∗

p , s∗
q , . . .} can be detected in

polynomial time.
The obtained combination of optimal candidate points σ ∗ = {s∗

p , s∗
q , . . .} repre-

sents landmarks in the target image that correspond to P = {p, q, . . .}. In the case the
object of interest is, in each image from the training set, segmented in the form of a
binary mask, its 3D segmentation in the target image can be achieved by atlasing these
binary masks from images in the training set to the target image. For each image in the
training set, landmarks are first non-rigidly registered to the obtained combination
of optimal candidate points σ ∗, and the resulting transformation is used to propagate
the corresponding binary mask to the target image. The propagated and transformed
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binary masks of all images in the training set are accumulated in the target image,
and voxels for which the overlap in accumulated binary masks exceeds a predefined
threshold are selected as the final 3D segmentation of the object of interest.

3 Experiments and Results

The proposed framework was applied to segment 50 vertebrae that were obtained
from 10 CT lumbar spine images with in-plane voxel size of 0.282–0.791 mm
and slice thickness of 0.725–1.530 mm. Vertebrae at each segment (i.e. L1 to L5)
were first manually segmented, and the resulting 10 binary masks were non-rigidly
registered [19] to obtain surface correspondences. The obtained transformation fields
were then used to propagate |P| = 300 landmarks, which were evenly distributed
on the surface of one binary mask, to the remaining nine binary masks, resulting
in sets of corresponding landmarks. By applying the k-means algorithm, landmarks
were divided into L = 18 clusters, each with |C| ≈ √|P| = 17 landmarks (pseudo-
landmarks were added to corresponding clusters to equalize the number of landmarks
in each cluster, therefore |P| → ⎣⎣P ′⎣⎣ = L |C| = 306). Within each cluster, connec-
tions were established as complete graphs, amounting to 1

2 L |C| (|C| − 1) = 2,448
intra-cluster connections. Between any pair of clusters, connections were established
by optimal assignment, amounting to 1

2

⎣⎣P ′⎣⎣ (L − 1) = 2,601 inter-cluster connec-
tions. The total number of connections in the resulting optimal assignment-based
representation was therefore 2,448 + 2601 = 5,049, which is approximately nine
times less than in the case of the complete graph-based shape representation with
1
2 |P| (|P| − 1) = 44,850 connections. The remaining parameters of the framework
were set to u(·) = 1

|T |
⎢

n∈T dp,q(n) (the linear function in Eq. 2), σD = 15 mm and
σΦ = σΘ = 15◦ (parameters of probability distributions in Eq. 3), M = 30 (the num-
ber of candidate points for each landmark, obtained on the basis of 11 ×11×11 mm
large neighborhoods), λ1 = 0.7, λ2 = 0.2 and λ3 = 0.1 (weights of the contribution
of probability distributions in Eq. 4), τ = 0.9 (weight of the contribution of the inten-
sity and shape likelihood map in Eq. 5), and 50 % threshold for the overlap in the
binary mask accumulation. These parameter values were determined experimentally
by observing their impact on the final segmentation, however, they may be further
tuned for a specific application.

The proposed framework was implemented in C++ without any code optimization,
and executed on a personal computer with Intel Core i7 processor at 2.8 GHz and 8 GB
of memory without any hardware-assisted acceleration. The segmentation perfor-
mance was validated by leave-one-out experiments, one for each vertebral segment,
i.e. the framework was iteratively trained on nine vertebrae and applied to segment
the remaining vertebra of the same segment. The results are for individual vertebral
segments presented in Table 1 in terms of symmetric surface distance δ and Dice
coefficient κ , measured against reference binary masks that were obtained by man-
ual segmentation, and in terms of computational time t. For all vertebral segments,
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Table 1 Lumbar vertebra segmentation results in terms of symmetric surface distance δ, Dice coef-
ficient κ and computational time t, reported as mean± standard deviation (generation of intensity
likelihood maps requires 4–6 min per vertebra and is not included)

Vertebral segment Optimal assignment-based Complete graph-based
shape representation shape representation
(5,049 connections) (44,850 connections)
δ (mm) κ (%) t (s) δ (mm) κ (%) t (s)

L1 0.71 ± 0.07 93.9 ± 0.6 81 ± 5 0.78 ± 0.11 93.5 ± 0.7 709 ± 28
L2 0.73 ± 0.07 94.1 ± 0.5 66 ± 4 0.75 ± 0.08 93.6 ± 0.5 596 ± 17
L3 0.76 ± 0.08 93.8 ± 0.5 68 ± 4 0.81 ± 0.10 93.2 ± 0.7 612 ± 18
L4 0.81 ± 0.15 92.8 ± 1.4 90 ± 2 0.86 ± 0.15 92.1 ± 1.4 804 ± 10
L5 0.78 ± 0.11 92.9 ± 1.6 92 ± 3 0.82 ± 0.16 91.9 ± 2.0 811 ± 12

Fig. 4 Segmentation results for two selected images of lumbar vertebrae (a, b), obtained by applying
the complete graph-based (left) and optimal assignment-based (right) shape representation (the
colormap encodes the symmetric surface distance δ against the corresponding reference binary
masks)

the mean values were δ = 0.76 ± 0.10 mm, κ = 93.5 ± 1.0 % and t = 79 ± 4 s
for the optimal assignment-based shape representation, and δ = 0.80 ± 0.12 mm,
κ = 92.9 ± 1.2 % and t = 706 ± 18 s for the complete graph-based shape repre-
sentation. The results show that accurate segmentation can be obtained both by the
optimal assignment-based and complete graph-based shape representation (Fig. 4).
However, as the number of connections was considerably lower in the case of the opti-
mal assignment-based shape representation, the computational time was reduced by
a factor of approximately nine, i.e. proportionally to the number of established con-
nections. At the same time, the segmentation accuracy was improved when compared
to the complete graph-based shape representation, which indicates that an adequate
balance among rigidity, elasticity and complexity was achieved by introducing the
optimal assignment-based shape representation.
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4 Discussion and Conclusion

In this paper, we presented a framework for landmark-based 3D image segmentation
that combines a landmark-based 3D shape representation with a reduced number of
connections among landmarks, determined by using concepts from transportation
theory, and a landmark detection algorithm, which relies on concepts from game
theory. The process of landmark detection results in a set of optimal candidate points
for landmarks that define the shape of the object of interest, and were obtained by
simultaneously considering the intensity likelihood maps of individual landmarks
and the shape likelihood maps of selected connections among landmarks with the
largest shape representativeness. The landmarks were divided into clusters, and for
every cluster, connections among landmarks were established in the form of com-
plete graphs, while for every pair of clusters, connections among landmarks were
established by optimally assigning landmarks between clusters in a one-to-one man-
ner. The resulting optimal assignment-based shape representation was a combination
of intra-cluster connections that captured the shape of local regions, and inter-cluster
connections that captured the global shape of the object of interest. By replacing the
complete graph-based shape representation with the optimal assignment-based shape
representation, segmentation became less prone to non-plausible deformations, the
elasticity of the shape was enabled, and the computational complexity was consider-
ably reduced. The proposed framework does not depend on any initialization and all
possible combinations of candidate points were simultaneously taken into account,
therefore it was more likely to converge to the globally optimal solution. The perfor-
mance of the framework was evaluated for segmentation of lumbar vertebrae from
CT images. The obtained mean symmetric surface distance of δ = 0.76 mm is equal
to the lowest value presented in the literature that can be found in the work of Klinder
et al. [3], while the obtained Dice coefficient of κ = 93.5 % is comparable to the
lowest value presented in the literature, which equals 92.5 % in the work of Kadoury
et al. [6, 7]. The performance of the proposed framework is therefore similar to
the existing approaches, however, they were validated on different databases and, as
such, segmentation results cannot be directly compared.

Nevertheless, for a thorough evaluation of the segmentation performance, the pro-
posed framework needs to be validated on a larger training set of images, which has
to include also images of diseased or pathological vertebrae, e.g. wedged vertebrae
that may occur in the case of scoliosis or fractured vertebrae that may occur due to
osteoporosis. On the other hand, the described framework is formulated in a general
form, and is therefore not limited to segmentation of vertebrae from CT images, but
may be easily adapted to other anatomical structures and imaging modalities. As
such, it can be applied to a variety of segmentation problems where it is possible to
effectively describe the shape of the object of interest by landmarks.

Acknowledgments This work has been supported by the Slovenian Research Agency under grants
P2-0232, J7-2264, L2-7381, and L2-2023.
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Automatic and Reliable Segmentation
of Spinal Canals in Low-Resolution,
Low-Contrast CT Images
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Abstract Accurate segmentation of spinal canals in Computed Tomography (CT)
images is an important task in many related studies. In this paper, we propose an
automatic segmentation method and apply it to our highly challenging 110 datasets
from the CT channel of PET-CT scans. We adapt the interactive random-walks (RW)
segmentation algorithm to be fully automatic which is initialized with robust vox-
elwise classification using Haar features and probabilistic boosting tree. One-shot
RW is able to estimate yet imperfect segmentation. We then refine the topology
of the segmented spinal canal leading to improved seeds or boundary conditions
of RW. Therefore, by iteratively optimizing the spinal canal topology and running
RW segmentation, satisfactory segmentation results can be acquired within only a
few iterations. Our experiments validate the capability of the proposed method with
promising segmentation performance, even though the resolution and the contrast of
our datasets are low.
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Fig. 1 Examples of datasets in our studies: a Sagittal view of restricted FOV near the chest area
only; b Coronal view of disease-affected spine; c Sagittal view of full-body scan. Two additional
transverse planes show that the spinal canal is not always contoured by bones

1 Introduction

To segment spinal canals is desirable in many studies because it facilitates analysis,
diagnosis, and therapy planning related to spines. Segmentation of spinal canal pro-
vides helpful references to parcellate other anatomical structures and contributes to
the understandings of full-body scans essentially [1]. Given spinal canal, it is much
easier to delineate spinal cord, which is vulnerable to dosage tolerance and crucial
for radiotherapy [2]. More previous works on spinal canal/cord focus on MR images,
partly due to the better capability of MRI in rendering soft tissues. However, in this
paper, we present an automatic method to segment spinal canals in low-resolution,
low-contrast CT images. In particular, our highly diverse datasets are acquired from
the CT channel in PET-CT and on pathological subjects. They are collected from
eight different sites and vary significantly in Field-of-View (FOV), resolution, SNR,
pathology, etc. Sagittal views of two typical datasets with different FOVs are shown
in Fig. 1a, c, respectively. The coronal plane of another patient, whose spine twists
due to diseases, is also provided in Fig. 1b. High variation and limited quality of the
datasets have incurred additional difficulty in segmenting spinal canals.

Most spinal canal segmentation methods in the literature are semi-automatic
[3–5], which require manual initializations or interactions. Archip et al. [2] present a
fully automatic pipeline by parsing objects in a recursive manner. Specifically, body
con-tour and bones are extracted first. Then region growing is employed to segment
spinal canal on each slice independently. When the boundary of spinal canal is rela-
tively weak as shown in top-right of Fig. 1c, this approach does not suffice and thus
Snakes [6] is used to incorporate segmentation results from neighboring slices. Fol-
lowing similar top-down parcellation strategy, [7] uses watershed and graph search
to segment spinal canals. However, this top-down parcellation depends on locating
the spine column first to provide rough but important spatial reference, which can be
nevertheless non-trivial.



Automatic and Reliable Segmentation of Spinal Canals 17

Interactive segmentation has also developed rapidly and drawn many successes in
past decades. By allowing users to define initial seeds, the interactive mechanism is
able to understand image content better and generate improved segmentation results
in the end. We refer readers to [8] for a comprehensive survey of interactive seg-
mentation methods. Among them, random walks (RW) [9] has been widely applied
in various studies. RW asks users to specify seeding voxels of different labels, and
then assigns labels to non-seeding voxels by embedding the image into a graph and
utilizing intensity similarity between voxels. Users can edit the placement of seeds
in order to acquire more satisfactory results.

In this paper, we adapt the idea of interactive segmentation to form a fully auto-
matic approach that segments spinal canals from CT images. Different from manually
editing seeds in the interactive mode, our method refines the topology of the spinal
canal and improves segmentation in the automatic and iterative manner. To start the
automatic pipeline, we identify voxels that are inside the spinal canal according to
their appearance features [10]. For convenience, we will denote the voxels inside
the spinal canal as foreground, and background otherwise. Then the detected seeds
are input to RW and produce the segmentation of foreground/background. Based on
the tentative segmentation, we extract and further refine the topology of the spinal
canal by considering both geometry and appearance constraints. Seeds are adjusted
accordingly and fed back to RW for better segmentation. By iteratively applying this
scheme, we are able to cascade several RW solvers and build a highly reliable method
to segment spinal canals from CT images, even under challenging conditions.

Our method and its bottom-up design, significantly different from the top-down
parcellation in other solutions, utilize both population-based appearance information
and subject-specific geometry model. With limited training subjects, we are able to
locate enough seeding voxels to initialize segmentation and iteratively improve the
results by learning spinal canal topologies that vary significantly across patients. We
will detail our method in Sect. 2, and show experimental results in Sect. 3.

2 Method

We treat segmenting spinal canal as a binary segmentation problem. Let px denote
the probability of the voxel x being foreground (inside spinal canal) after voxel clas-
sification and p̄x for background, respectively. In general, we have px + p̄x = 1 after
normalization. The binary segmentation can be acquired by applying a threshold to
px . Although shapes of spinal canals can vary significantly across the population,
they are tubular structures in general. We start from a small set of foreground voxels
with very high classification confidences. These voxels act as positive seeds in RW
to generate conservative segmentation with relatively low sensitivity but also low
false positives (FP). All foreground voxels are assumed to form a continuous and
smooth anatomic topology, which refines the seed points in order to better approxi-
mate the structure of the spinal canal. Hence the sensitivity of the RW segmentation
increases with the new seeds. By iteratively feeding the improved seeds to RW, we
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have successfully formed an automatic pipeline that yields satisfactory segmentation
of spinal canals.

2.1 Voxelwise Classification

In order to identify highly reliable foreground voxels as positive seeds, we turn to
voxelwise classification via supervised learning. We have manually annotated the
medial lines of spinal canals on 20 CT datasets. Voxels exactly along the medial
lines are sampled as foreground, while background candidates are obtained from
a constant distance away to the medial lines. We further use 3D Haar features as
voxel descriptors. With varying sizes of detection windows, an abundant collection
of Haar features is efficiently computed for each voxel. The probabilistic boosting
tree (PBT) classifiers are then trained with AdaBoost nodes [11]. We have cascaded
multiple PBT classifiers that work in coarse-to-fine resolutions. In this way, we not
only speed up the detection in early stage by reducing the number of samples, but also
exploit features benefiting from higher scales of Haar wavelets in coarse resolution.
Note that similar strategy is also successfully applied in other studies [10]. The well-
performing foreground voxel confidence map (as well as the measuring color map)
with respect to a training subject is displayed in Fig. 2a. However, when applied
to a new testing dataset (e.g., Fig. 2c–d), the classifiers may suffer from both false
negative (FN) and FP errors. For instance, an FP artifact is highlighted in Fig. 2b.
Figure 2c shows discontinuity of foreground confidence due to FN errors. Since the
purpose here is to preserve highly reliable foreground voxels only (i.e., Fig. 2d), we
have adopted a high confidence threshold (>0.9) empirically to suppress most FP
errors. The detection sensitivity will be subsequently improved as follows.

2.2 Random Walks

Similar to PBT-based classification, RW also produces voxelwise likelihoods of
being foreground/background [9]. After users have specified foreground/background
seeds, RW departs from a certain non-seeding voxel and calculates its probabilities
to reach foreground and background seeds, as px and p̄x , respectively. Usually the
non-seeding voxel x is assigned to foreground if px > p̄x . In the context of RW, the
image is embedded into a graph where vertices correspond to individual voxels and
edges link neighboring voxels. The weight wxy of the edge exy , which measures the
similarity between two neighboring voxels x and y, is defined as

wxy = exp(−β(Ix − Iy)
2), (1)

where Ix and Iy represent intensities at two locations; β a positive constant. Assum-
ing segmentation boundaries to be coincident with intensity changes, RW aims to
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Fig. 2 Panel a shows the confidence map output by voxelwise classification on a training subject;
panels b–d are for the voxelwise confidences of another testing dataset. Among them, FP errors and
FN errors are highlighted in b and c, respectively. We use a high confidence threshold to preserve
reliable foreground voxels only as in d

estimate px that satisfies to minimize the following energy term

E =
∑
∈exy

wxy(px − py)
2. (2)

To optimize the above is equivalent to solving a Dirichlet problem with boundary
conditions defined by the seeds. Specifically, px is set to 1 if x is a foreground seed,
and 0 for background. The calculated px incorporates spatial information of neigh-
boring voxels, which differs from the independent voxelwise classification (Sect.
2.1).

The probability of each voxel in RW is associated with the paths from the voxel
to seeds. Hence px is dependent not only on the weights of the edges forming the
path, but also the length of each path. This potentially undermines RW that is sen-
sitive to the seed locations. In the toy example of Fig. 3a, there are three vertical
stripes. The intensity of the middle stripe is slightly different and approximates the
spinal canal surrounded by other tissues in CT data. We highlight certain sections of
stripe boundaries in very high intensity to simulate the existence of vertebra, whose
presence can be discontinuous as in Fig. 1c. Foreground seeds and background seeds
are colored in red and green, respectively. The calculated probability px in RW and
the binary segmentation (px > 0.5) are shown. We observe from Fig. 3c that the
segmented foreground falls into two segments undesirably. Though increasing the
threshold on px and refining β to modify edge weights might improve the segmenta-
tion results, this becomes very ad-hoc. On the other hand, RW provides an interactive
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Fig. 3 With foreground seeds (in red) and background seeds (in green) a, the calculated proba-
bilities b and the corresponding binary segmentation c are not satisfactory. However, by manually
placing more seeds d, the segmentation results e–f are improved significantly

Fig. 4 Four sub-steps in refining the topology of the spinal canal include (1) estimating medial
points; (2) determining medial segments; (3) calculating virtual medial segments (in dotted curves);
and (4) placing more virtual medial points (in purple)

remedy by simply allowing users to place more seeds in proximity to the desired seg-
mentation boundaries. The few additional seeds in Fig. 3d yield better discrepancy
of foreground/background and lead to more satisfactory segmentation results (Fig.
3e–f).

2.3 Pipeline of Cascaded Random Walks

As mentioned above, we are able to identify seeds in voxel classification and feed
them to RW for estimating segmentation. The initial segmented spinal canal usually
breaks into several disconnected segments that imply high FN errors. This is because
the initial seeds with high confidences from voxelwise classification are usually not
sufficient to cover everywhere of the spinal canal.

Topology Refinement To refine and acquire complete segmentation, we introduce
the topology constraints of the spinal canal to segmentation. Specifically, we use the
medial line of the spinal canal to represent its topology. After calculating all segments
of the medial line given the tentative segmentation, we interleave them into a single
connected curve. Fig. 4 illustrates the four sub-steps to refine the topology of the
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spinal canal with regard to its medial line. Based on tentative segmentation (including
outputs from voxelwise classification), we calculate the medial point of foreground
voxels on each transverse slice in Fig. 4(1). The medial point is defined to have the
least sum of distances to all other foreground voxels on each slice. Assuming that
the medial line connects all medial points, we then connect the medial points into
several segments in Fig. 4(2). The medial line may break into several segments since
medial points can be missing. Also certain medial point would be rejected as outlier
if it incurs too high curvature to the medial line. With all computed segments, we
interleave them by filling gaps with smooth virtual segments (as dotted curves) in
Fig. 4(3). Each virtual segment c(s) minimizes

∫ ∀∇2c(s)∀2ds to keep smooth as
s ∗ [0, 1] for normalized arc-length. The stationary solution to the above holds when
∇4c(s) = 0, and the Cauchy boundary conditions are defined by both two ends of
the virtual segment as well as tangent directions at the ends. Though the numerical
solution is non-unique, we apply the cubic Bézier curve for fast estimation of the
virtual segment. For a certain virtual segment, we denote its ends as P0 and P3. An
additional control point P1 is placed so that the direction from P0 to P1 is identical
to the tangent direction at P0. Similarly, we can define P2 according to P3 and the
associated tangent direction. We further require that the four control points are equally
spaced. The virtual segment is c(s) = (1−s)3P0+3(1−s)2sP1+3(1−s)s2P2+s3P3.

After predicting the virtual segment in Fig. 4(3), we finally place more virtual
medial points along the virtual segment. Besides the subject-specific geometry con-
straints to keep the virtual segments smooth, we further incorporate appearance
criterion in Fig. 4(4). Upon all existing medial points (red dots), we calculate their
intensity mean and the standard deviation (STD). The univariate Gaussian intensity
model allows us to examine whether a new voxel is highly possible to be foreground
given its simple appearance value. In particular, we start from both two ends of each
virtual segment, and admit virtual medial point (purple dot) if its intensity is within
the single STD range of the intensity model. The process to admit virtual medial
points aborts when a disqualified candidate has been encountered.

Seed Sampling After the topology of the spinal canal has been refined, we are able to
provide better seeds for RW to use. All points along the refined medial line, including
the newly admitted virtual ones, will act as foreground seeds. Moreover, we qualify
more voxels as foreground seeds if (1) they have been classified as foreground in
previous segmentation; (2) their intensities are within the single STD range of the
appearance model introduced above; and (3) they are connected to the medial line
via other foreground seeds. In this way, we have inherited previous segmentation in
areas of high confidence, and saved computation since RW can simply treat them as
boundary conditions. Surrounding voxels with high intensities will be regarded as
bones and then counted as the background seeds.

Cascaded Random Walks By repeating the procedures above, we have cascaded
several RW solvers in order to generate the final segmentation. The pipeline will
terminate automatically when the topology of the spinal canal, or the length of the
medial line, has become stable. Remaining medial segments that are isolated from
others will then be excluded from the foreground, in that they usually reflect artifacts



22 Q. Wang et al.
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Fig. 5 Panels a–c show foreground probability on 4 consecutive slices of a certain subject output
after the first, second, and the final (fourth) iteration, respectively. The binary segmentation in d is
corresponding to the final probability in c

especially from legs. During the iterative refinement, we also allow the medial line
to grow at its both ends and thus admit more virtual medial points. The growth can
stop automatically at the tail and terminate in the head by limiting the maximal radial
size of the spinal canal. In Fig. 5a, we show the foreground probability on four slices
of a subject after the first iteration of our method. Improvement can be observed in
Fig. 5b that shows the output after the second iteration. The final probability after the
fourth iteration is shown in Fig. 5c, with the corresponding segmentation in Fig. 5d.
The results above demonstrate that our method can efficiently utilize the topology
of the spinal canal and generate satisfactory segmentation in the final.

3 Experimental Result

We have conducted a study on 110 individual images from eight medical sites, as
the largest scale reported in the literature, to verify the capability of our method. The
training data are not used for the sake of testing. Even though the image quality of our
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Fig. 6 Panels a–d show segmentation results (in sagittal views) on 4 randomly selected images.
Coronal views of the segmentation results on an extreme case, whose spine twists due to diseases,
are shown in e–g

data is low and the appearance variation is extremely high, we successfully generate
good segmentation results on all datasets by our method with a fixed configuration.
Sagittal views of segmentation results for 4 randomly selected subjects are shown
in Fig. 6a–d, respectively. In Fig. 6e–g, we also show the segmentation result in
3 coronal slices for the extreme case in Fig. 1b. This patient is under influences
from severe diseases, which cause an unusual twist to the spine. However, though
the topology of the spinal canal under consideration is abnormal, our method is
still capable to well segment the whole structure. All results above confirm that our
method is robust in dealing with the challenging data.

We have further manually annotated 20 datasets for quantitative evaluation. For
the manually delineated parts, the Dice overlapping ratio between the segmentation
of our method and the ground truth reaches 92.79 ± 1.55 %. By visual inspection,
robust and good segmentation results are achieved on all 110 datasets, especially
including many highly pathological cases. Note that to deal with image data with
severe pathologies is not addressed and validated in the previous literature [2–5, 7].
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Our method achieves final segmentation in 2–5 iterations for all datasets, and typi-
cally costs 20–60 s per volume depending on the image size. With more sophisticated
RW method that is better designed for editing seeds [12], the speed performance of
our method can be further improved.

4 Discussion

In this work, an automatic method to segment spinal canals from low-quality CT
images is proposed. With initial seeds provided by PBT-based classification, we
introduce topology constraints into segmentation via RW. Our iterative optimization
has successfully enhanced the capability of RW in dealing with tubular spinal canals,
in that the boundary conditions can be improved to guarantee better segmentation
results. Our large-scale evaluation shows that the proposed method is highly accurate
and robust even if the datasets are very diverse and challenging.
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A Robust Segmentation Framework
for Spine Trauma Diagnosis

Poay Hoon Lim, Ulas Bagci and Li Bai

Abstract Accurate three-dimensional (3D) image segmentation techniques have
become increasingly important for medical image analysis in general, and for spinal
vertebrae image analysis in particular. The complexity of vertebrae shapes, gaps
in the cortical bone and internal boundaries pose significant challenge for image
analysis. In this paper, we describe a level set image segmentation framework that
integrates prior shape knowledge and local geometrical features to segment both
normal and fractured spinal vertebrae. The prior shape knowledge is computed via
kernel density estimation whereas the local geometrical features is captured through
an edge-mounted Willmore energy. While the shape prior energy draws the level
set function towards possible shape boundaries, the Willmore energy helps to cap-
ture the detail shape and curvature information of the vertebrae. Experiment on CT
images of normal and fractured spinal vertebrae demonstrate promising results in
3D segmentation.

1 Introduction

Accurate 3D spinal vertebrae image segmentation techniques are important tools to
assist the diagnosis and treatment of spinal disorders such as spine trauma [10, 14].
Severe spine injury can result in life threatening and chronological problems unless
treated promptly and properly. In any spinal injury, the possibility of spinal frac-

P. H. Lim (B) · L. Bai
School of Computer Science, University of Nottingham, Nottingham, UK
e-mail: psapl@nottingham.ac.uk

L. Bai
e-mail: bai@cs.nott.ac.uk

U. Bagci
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
e-mail: ulas.bagci@nih.gov

J. Yao et al. (eds.), Computational Methods and Clinical Applications 25
for Spine Imaging, Lecture Notes in Computational Vision and Biomechanics 17,
DOI: 10.1007/978-3-319-07269-2_3, © Springer International Publishing Switzerland 2014



26 P. H. Lim et al.

ture must be examined immediately. Image segmentation of spinal vertebrae in 3D
allows detection, measurement, and monitoring of the fracture(s), and facilitates
biomechanics analysis of the spinal column.

Despite an increasing interest in spinal vertebrae segmentation in recent years,
accurate 3D segmentation methods for diseased or fractured vertebrae are still lack-
ing. There are some existing works in the literature for 2D or 3D segmentations,
however they often require user intervention or fall short in achieving high accu-
racy [4, 6–8, 11–13, 15]. Segmentation of diseased or fractured vertebrae has been
attempted recently [5, 19, 20], however, these are either in 2D or focused only on
vertebral body rather than the whole 3D spinal vertebrae.

Traumatic injury of the spine often correlates with morphometric features in
images. Segmentation of the whole vertebra in 3D would facilitate the detection
of fractured vertebra and the assessment of the severity of the fracture. For example,
the highlighted volumetric region of vertebrae could assist physicians in perform-
ing visual inspection of vertebral fractures, determining its stability and measuring
quantitatively the fractured vertebrae.

This work extends the spinal vertebrae segmentation method presented in [9] to
segment fractured vertebrae. In this case, high variability of fractured vertebral shape
is largely captured by the embedded Willmore flow, while prior shape energy comes
into action only when encountering inhomogeneous image intensity distribution.

2 Segmentation Framework

It is well-known that level set methods have advantages such as flexibility in dealing
with topological change, easy extension into higher dimensions, as well as easy
integration of prior knowledge and region statistic. The segmentation framework
presented here has made use of these properties. The framework combines the kernel
density estimation technique and Willmore flow to incorporate prior shape knowledge
and local geometrical features from images into the level set method. Whilst the prior
shape model provides much needed prior knowledge when information is missing
from the image, the edge-mounted Willmore flow helps to capture the local geometry
and smoothes the evolving level set surface.

The level set method embeds an interface in a higher dimensional function ϑ (the
signed distance function) as a level set ϑ = 0 [16]. The evolution of the level set
function ϑ(t) is governed by ωϑ

ωt + F |∈ϑ| = 0, where F is the speed function. Based
on the variational framework, an energy function E(ϑ) is defined in relation to the
the speed function. The minimization of such energy generates the Euler-Lagrange
equation, and the evolution of the equation is through calculus of variation:

ωϑ

ωt
= −ω E(ϑ)

ωϑ
.
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In this work, the fusion of energies whereby a shape prior distribution estimator Es

and an edge-mounted Willmore energy Ew0 is employed:

E(ϑ) = ΦEs + Ew0 ,

where Φ (0 < Φ ∀ 1) is the weight parameter, which is tuned to suit the segmentation
of normal and abnormal spinal vertebrae.

2.1 Computing Prior Shape Energy via Kernel Density Estimation

Kernel density estimation (KDE) is a nonparametric approach for estimating the
probability density function of a random variable. Without assuming the prior shapes
are Gaussian distributed, KDE presents advantage in estimating the shape distribution
even with a small number of training set, in addition to modeling shapes with high
complexity and structure. In this study, we adopted the prior shape energy formulation
discussed by Cremers et al. [2].

The density estimation is formulated as a sum of Gaussian of shape dissimilarity
measures d2(ϑ, ϑi ), i = 1, 2, . . . , N :

P(ϑ) ∇ 1

N

N∑
i=1

e− d2(ϑ,ϑi )

2Θ2 ,

where the shape dissimilarity measure d2(ϑ, ϑi ) is defined as

d2(ϑ, ϑi ) =
∫

σ

1

2
(H(ϑ) − H(ϑm))2 dx,

Θ 2 = 1

N

N∑
i=1

min
j ∗=i

d2(ϑi , ϑ j ),

and H(ϑ) is the Heaviside function. By maximizing the conditional probability

P(ϑ|I ) = P(I |ϑ)P(ϑ)

P(I )
,

and considering the shape energy as

Es(ϑ) = − log P(ϑ|I ),

the variational with respect to ϑ becomes
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ω Es

ωϑ
=

∑N
i=1 ϕi

ω
ωϑ

d2(ϑ, ϑi )

2Θ 2
∑N

i=1 ϕi

=
N∑

i=1

e− d2(ϑ,ϑi )

2Θ2

2Θ 2
∑N

i=1 ϕi

(
2θ(ϑ)

[
H(ϑ) − H(ϑi (x − μϑ))

]

+
∫ [

H(ϑ(Δ) − H(ϑi (Δ − μϑ))

]
θϑ(Δ)

(x − μϑ)T ∈ϑ(Δ)∫
Hϑdx

dΔ

)
,

where μϑ is the centroid of ϑ and ϕi = exp
(
− 1

2Θ 2 d2(ϑ, ϑi )
)

is the weight factor

for i = 1, 2, . . . , N .

2.2 Computing Local Geometry Energy via Willmore Flow

Willmore energy is a function of mean curvature, which is a quantitative measure of
how much a given surface deviates from a sphere. It is formulated as

Ew = 1

2

∫
M

h2d A,

where M is a d-dimensional surface embedded in R
d+1 and h the mean curvature on

M [18]. For image segmentation, the Willmore energy provides an internal energy
that gives a useful description of a region, where the effect of edge indicator is
not significant. In these regions, smoothness of the shape of the curve should be
maintained and extended, which can be regarded as a weak form of inpainting [3].

As a geometric functional, the Willmore energy is defined on the geometric rep-
resentation of a collection of level sets. Its gradient flow can be well represented by
defining a suitable metric, the Frobenius norm, on the space of the level sets. Frobe-
nius norm is a convenient choice as it is equivalent to the l2-norm of a matrix and more
importantly it is computationally attainable. As Frobenius norm is an inner-product
norm, the optimization in the variational method comes naturally.

Based on the formulation by Droske and Rumpf [3], the Willmore flow or the
variational form for the Willmore energy with respect to ϑ is

ω Ew

ωϑ
= −∪∈ϑ∪

(
ΥM h + h(t)

(
∪S(t)∪2

2 − 1

2
h(t)2

))
,

where ΥM h = Υh − h ωh
ωn − ω2h

ωn2 is the Laplacian Beltrami operator on h with

n = ∈ϑ
∪∈ϑ∪ , S = (I − n ≈ n)(∈ × ∈)ϑ is the shape operator on ϑ and ∪S∪2 is the

Frobenius norm of S.
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Table 1 Average DSC (%) and HD (mm) with standard deviation for segmentations of normal
lumbar vertebrae (L1 to L5) using Chan-Vese (CV), Chan-Vese with prior shape (CV + S), Caselles
(Ca), Caselles with prior shape (Ca + S), edge-mounted Willmore (W0), edge-mounted Willmore
with prior shape (W0 + S) energies, region growing (RG) and graph cut (GC) approach

Method DSC (%) HD (mm)

CV 37.68 ± 7.07 26.68 ± 2.18
CVS 45.09 ± 7.54 25.31 ± 2.38
Ca 55.75 ± 8.14 22.22 ± 1.57
CaS 71.12 ± 2.72 18.39 ± 1.15
W 75.82 ± 2.81 19.21 ± 1.51
WS 89.32±1.70 14.30 ± 1.40
RG 42.30 ± 11.43 25.20 ± 2.30
GC 13.23 ± 11.11 63.22 ± 14.82

In order to ensure the smoothing effect work successfully around the constructed
surface and not affecting the desired edge of vertebrae, the Willmore flow is coupled
with the edge indicator function g(I ) = 1

1+|∈GΘ →I |2 , where GΘ is the Gaussian filter
with standard deviation Θ :

ω Ew0

ωϑ
= g(I )

ω Ew

ωϑ
.

3 Experiments and Results

Experiments have been conducted on CT images of spinal vertebrae for 2D and 3D
segmentation. The dataset consists of 20 CT images of normal and 4 CT images of
fractured spinal vertebrae images of patients aged 18 to 66 years. The images were
acquired from various CT scanners such as a 32-detector row Siemens definition, 64-
detector row Philips Brilliance and 320-detector row Toshiba Aquilion. The in plane
resolutions for these sagittal images range from 0.88 to 1.14 mm, with consistent
slice thickness of 2 mm. Original images for these images have fixed sizes of 512 ×
512, with number of slices varying from 45 to 98. For 3D segmentation, a torus
is set manually surrounding the spinal canal as the initial contour. The level set
method is then implemented using a narrow band scheme [1] with a re-initialization
algorithm [17].

It has been reported that the 3D segmentations of spinal vertebrae clearly out-
perform the other methods such as region growing, graph cut, the classical level
set methods such as Chan-Vese and Caselles models as well as their combinations
with shape priors [9]. While some methods can perform relatively well in the 2D
segmentation of spinal vertebrae, the majority of them fail badly when extended to
the 3D segmentation of an individual vertebra due to the highly complex shape and
connected structure as well as the nonuniform image intensity distribution in the pos-
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Fig. 1 An example of patient CT image with fractures on lumbar vertebrae L2 and L3

terior column of vertebra. Table 1 summarized 3D segmentation results on normal
lumbar vertebrae using various approach, evaluated with ground truth. It is worth
noted the effectiveness of our segmentation framework, with an overall accuracy of
89.32±1.70 % and 14.03±1.40 mm based on Dice similarity coefficient and Haus-
dorff distance respectively, whilst the inter- and intra-observer variation agreements
were 92.11 ± 1.97 %, 94.94 ± 1.69 %, 3.32 ± 0.46 mm and 3.80 ± 0.56 mm. Seg-
mentation results depend highly on available dataset. The intra- and inter-observer
variation estimations were performed to verify the difficulty of manual delineation
in 3D using our dataset. We have shown that our results present no significant sta-
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Fig. 2 Different views of 3D segmentation for fractured lumbar vertebrae L2 and L3 as well as
their projections in 2D (red) compared with manual segmentation (yellow) on axial, sagittal and
coronal views

tistical differences (p > 0.05) when compared with these observer estimations.
The robustness of the proposed segmentation framework is demonstrated on the CT
image of a patient with fractures on lumbar vertebrae L2 and L3 as seen in Fig. 1. As
shown in Fig. 2, the segmentation framework manages to capture the 3D shape of
fractured vertebrae L2 and L3, despite the inhomogeneity, noise and missing edges
appeared on these fractured vertebra images. It enables individual segmentation of
vertebrae without leaking into the nearby connected vertebra. Segmentation results
on fractured vertebrae were evaluated via visual inspection by radiologist.

4 Discussion and Conclusion

An accurate level set segmentation framework for segmenting spinal vertebrae in 2D
and 3D is presented in this study. The robustness of the framework is demonstrated
on CT images of fractured vertebrae. The framework combines the kernel density
estimation technique and Willmore flow to incorporate prior shape knowledge and
local geometrical features from images into the level set method. It is worth noted
that fusion of these energies effectively translate the prior shape knowledge and local
geometrical feature of spinal vertebrae into the level set segmentation framework. The
Willmore flow driven level set segmentation demonstrates better regularization than
the widely used mean curvature flow in level set segmentation. Unlike minimizing
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surface area by mean curvature flow in regularization, Willmore flow minimizes
the bending energy when performing surface smoothing, which is more suitable for
object with complex shape and structure. The segmentation algorithm was performed
directly in a 3D volumetric manner instead of sequentially to the slices of a 3D
image. This allows the volumetric tissue connectivity be taken into consideration and
hence, enables more meaningful representation of 3D anatomical shape and structure.
Moreover, it forms a continuous, smooth 3D surface and without the post processing
redundancy posed by the slice by slice segmentation approach. More samples of
fractured vertebrae are needed to perform further evaluation on the segmentation
framework. Future work will integrate the algorithm into a pathological vertebrae
characterization framework to yield an efficient computer aided diagnosis platform
for quantitative analysis of spinal vertebrae fracture and related problems.
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Iaşi. Serie Nouă Ia 11B, 493–496 (1965)

19. Yao, J., Burns, J.E., Munoz, H., Summers, R.M.: Detection of vertebral body fractures based
on cortical shell unwrapping. In: MICCAI Part III, LNCS 7512 (2012)

20. Yao, J., Burns, J.E., Wiese, T., Summers, R.M.: Quantitative vertebral compression fracture
evaluation using a height compass. In: SPIE Medical Imaging (2012)



2D-PCA Based Tensor Level Set Framework
for Vertebral Body Segmentation

Ahmed Shalaby, Aly Farag and Melih Aslan

Abstract In this paper, a novel statistical shape modeling method is developed
for the vertebral body (VB) segmentation framework. Two-dimensional principal
component analysis (2D-PCA) technique is exploited to extract the shape prior. The
obtained shape model is then embedded into the image domain to develop a new
shape-based segmentation approach. Our framework consists of four main steps:
(1) shape model construction using 2D-PCA, (2) the detection of the VB region using
the Matched filter, (3) initial segmentation using a new region-based tensor level set
model, and (4) registration of the shape priors and initially segmented region to obtain
the final segmentation. The proposed method is validated on a Phantom as well as
clinical CT images with various Gaussian noise levels. The experimental results show
that the noise immunity and the segmentation accuracy of our framework are much
higher than scalar level sets approaches. Additionally, the construction of the shape
model using 2D-PCA is computationally more efficient than PCA.

1 Introduction

The vertebra consists of the vertebral body (VB), spinous (spinal) processes, pedicles,
and other anatomical regions (see Fig. 1). Spinous processes, pedicles, and ribs should
not be included in the bone mineral density (BMD) measurements since the BMD
measurements are restricted to the VBs. The VB segmentation is not an easy task since
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Fig. 1 The region of interest in our experiment: a A clinical CT slice of a human vertebra. b The
blue color shows the VB region

the ribs and spinal processes have similar gray level information. There are limited
publications for vertebrae segmentation. For instance, Kang et al. [11] proposed a
3D segmentation method for skeletal structures from CT data. Their method is a
multi-step method that starts with a three dimensional region growing step using
local adaptive thresholds, followed by a closing of boundary discontinuities and then
an anatomically-oriented boundary adjustment. Mastmeyer et al. [12] presented a
hierarchical segmentation approach only for the lumbar spine in order to measure
the bone mineral density. The detection of the vertebrae is carried out manually. The
authors reported that complete analysis of three vertebrae took 10 min in 2006 on a
“high standard PC system”. This timing is far from the real time required for clinical
applications but it is a huge improvement compared to the timing of 1–2 h reported
in [10]. Aslan et al. proposed various methods to segment VBs in [2–5, 7] which
can be considered as progressive VB segmentation studies. In [5], the shape model
was not used and it was assumed that the detection rate of VBs was very accurate
for cropping the pedicles automatically. In [3], a probabilistic shape model was
introduced in addition to the intensity and spatial interaction information to enhance
the results. However, the shape model was assumed to be registered to the object
of interest manually. In [2, 4, 7], the probabiistic shape model was automatically
embedded into image domain and they appeared to be more realistic experiments.
In [7], the scalar level sets model which needs manual initialization was used, and
was validated on a limited number of data sets. In [2], the shape prior is extracted
using PCA on signed distance functions (SDF) of all training images. Then shape
model was registered into the image domain using the gradient descent approach [1].
In this paper, a region-based tensor level set model is initially used for segmenting
the input CT image. This model introduces a three-order tensor to comprehensively
depict features of pixels, e.g., gray value and the local geometrical features, such as
orientation and gradient [14]. Additionally, we excerpt the shape model construction
method described in [13]. This method adopts the 2D-PCA approach to build the
shape prior instead of conventional PCA [15]. The rest of the paper is organized
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Fig. 2 An example of the initial labeling. a Original CT image, b detection of the VB region
using MF, c the initial labeling, f* using tensor level set segmentation and d the SDF of the initial
segmentation (f*) which is used in the registration phase. Red color shows the zero level contour

Fig. 3 Our proposed shape-based segmentation. Our framework consists of two main stages; the
training phase and the segmentation phase

as follows: Sect. 2 discusses the background of methods used in our experiment.
Section 3 explains the experiments, and compares our results with other alternatives.
Finally, conclusions are drawn in Sect. 4.

2 Methods

Intensity based model may not be enough to obtain the optimum segmentation.
Hence, we propose a new shape based segmentation method. This method has several
steps. As a pre-processing step, we extract the human spine area using the Matched
filter (MF) adopted in [6]. As shown in Fig. 2a, b, the MF is employed to detect the
VB automatically. This process helps to roughly remove the spinous processes and
pedicles. Additionally, it eliminates the user interaction. We tested the Matched filter
using 3,000 clinical CT images. The VB detection accuracy is 97.6 %. In the second
phase, we obtain initial labeling (f*) using the region-based tensor level set model,
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as described in [14]. Finally, we register the initial labeled image and the shape
priors to obtain the optimum labeling, as in [1]. To obtain the shape priors (p), we
use the 2D-PCA on all training images. Figure 3 summarizes the main components
of our framework. The following sections give more details about the shape model
construction and the segmentation method.

2.1 Shape Model Construction

In this work, we describe the shape representation using the SDF, as in [2]. The objec-
tive of this step is to obtain the most important information of training images using
2D-PCA. As op-posed to conventional PCA, 2D-PCA is based on 2D matrix rather
than 1D vector. This means that, the image does not need to be pre-transformed into a
vector. In addition, the image covariance matrix(G) can be directly constructed using
the original image matrices. As a result, 2D-PCA has two important advantages over
PCA. First, it is easier to evaluate G accurately since its size using 2D-PCA is much
smaller. Second, less time is required to determine the corresponding eigenvectors
[15]. 2D-PCA projects an image matrix X, which is an mn matrix onto a vector, b,
which is an n1 vector, by the linear transformation. The resultant projection coeffi-
cient vector y will be:

y=Xb. (1)

Suppose that there are M training images, the ith training image is denoted by
Xi , (i = 1, 2, . . . , M) and the average image of all training samples is denoted by
X= 1

M

⎛M
i=1 Xi . Then, let us define the image covariance matrix G, as in [15]:

G= 1

M

M⎝
i=1

(Xi − X)t ⎨
Xi − X

⎞
. (2)

It is clear that, the matrix G is n × n nonnegative definite matrix. Similar to PCA,
the goal of 2D-PCA is to find a projection axis that maximizes btGb. The optimal
K projection axes bk , where k =1, 2, …, K, that maximize the above criterion are the
eigenvectors of G corresponding to the largest K eigenvalues. For an image X, we
can use its reconstruction⎠X defined below to approximate it.

⎠X = X +
K⎟

k=1

ykbk
t, (3)

where yk = ⎨
X−X

⎞
bk is called the kth principal component vector of the sample

image X. The principal component vectors obtained are used to form an m × K
matrix Y = [y1,y2,…,yK ] and let B = [b1,b2,…,bK ], then we can rewrite Eq. 3 as:
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⎠X = X + YBt. (4)

However, one disadvantage of 2D-PCA (compared to PCA) is that more coef-
ficients are needed to represent an image. From Eq. 4, it is clear that dimension
of the 2D-PCA principal component matrix Y (m×K) is always much higher than
PCA. To reduce the dimension of matrix Y, the conventional PCA is used for further
dimensional reduction after 2D-PCA. More details will be discussed in the following
section.
Now, let the training set consists of M training images {I1,…, IM }; with SDFs
{ϑ1 , . . . , ϑM }. All images are binary, pre-aligned, and normalized to the same
resolution. As in [2], we obtain the mean level set function of the training shapes, ϑ,
as the average of these M signed distance functions. To extract the shape variabilities,
ϑ is subtracted from each of the training SDFs. The obtained mean-offset functions
can be represented as {ϑ̂1, . . . ,ϑ̂M }. These new functions are used to measure the
variabilities of the training images. We use 80 training VB images with 120 × 120
pixels in our experiment. According (2), the constructed matrix G will be:

G= 1

M

M=80⎝
i=1

ϑ̂ t
i ϑ̂i . (5)

Experimentally, we find that, the minimum suitable value is K = 10. Less than this
value, the accuracy of our segmentation algorithm falls drastically. After choosing the
eigenvectors corresponding to 10 largest eigenvalues, b1, b2, . . . , b10, we obtained
the principal component matrix Yi (m = 120× K = 10) for each SDF of our training
set (i = 1, 2, . . . , 80). For more dimensional reduction, the conventional PCA is

applied on the principal components {
ω

Y1,…,
ω

YM}. It should be noted that,
ω

Y is the
vector representation of Y. The reconstructed components (after retransforming to
matrix representation) will be:

⎠Y{l,h}=Ue{l,h}, (6)

where U is the matrix which contains L eigenvectors corresponding to L largest
eigenvalues Φl , (l = 1, 2, . . . , L), and e{l,h} is the set of model parameters which can
be described as

e{l,h} = h
√

Φl , (7)

where l = 1, . . . , L , h = {−, . . . , }, and is a constant which can be chosen arbitrarily
(in our experiments, we chose L = 4,= 3). The new principal components of
training SDFs are represented as {⎠Y1,…, ⎠YN} instead of {Y1,…, YM} where N is
the multiplication of L and standard deviation in eigenvalues (the number of elements
in h), i.e. N = L(2+1). Given the set {⎠Y1,…, ⎠YN},the new projected training SDFs
are obtained as follows:

⎠ϑ j=ϑ + ⎠Y j Bt, j = 1, 2, . . . , N. (8)
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Fig. 4 The tensor representation for each pixel in an image

Finally, the shape model is required to capture the variations in the training set. This
model is considered to be a weighted sum of the projected SDFs (Eq. 8) as follows:

ϑp =
N⎝

j=1

w j ⎠ϑ j . (9)

Let w= [w1, . . . ,wN ]t to be the weighting coefficient vector. By varying these
weights, ϑp can cover all values of the training distance functions and, hence, the
shape model changes according to all of the given images [13].

2.2 Segmentation Method

To estimate the initial labeling f*, we use the tensor level set method described in
[14]. An example of the initial labeling is shown in Fig. 2c. To segment an image
more accurately, more overall information in the image to be segmented should be
considered by the segmentation algorithms, and more suitable representation for
the information should be used to depict the image. As in [14], we build a tensor
representation for a pixel. This tensor representation contains more information (e.g.,
average gray value, gradient, and orientation) and is relatively overall. As illustrated
in Fig. 4, the construction of the unified tensor representation contains three steps:

1. To make our model more robust against noise, the initial image is smoothed by a
Gaussian filter bank, and then, the gray value of each pixel in the smoothed image
is included into the unified tensor representation as a matrix written as:

[T s,d,v=1
r,c ]S×D = 1√

SD

⎡
⎢⎣

GΘ1(ur,c) · · · GΘ1(ur,c)
...

. . .
...

GΘs (ur,c) · · · GΘs (ur,c)

⎤
⎥⎦

S×D

(10)

where T s,d,v=1
r,c is an element in the three-order tensor representation. s de notes the

scale, and its maximum number is S. d is the direction, and its maximum number
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is D (where S = 4 and D = 8 as in [14]). ur,c is the image to be segmented,
and GΘ1,...,Θs (.) is the output generated by using the Gaussian function having
different standard deviations convolving with the image.

2. The gray value of each pixel in the image to be segmented is embed into the
unified tensor representation, and the process is formulated as:

[T s,d,v=2
r,c ]S×D = 1√

SD

[
ur,c

]
S×D

(11)

3. The Gabor features are used to represent the gradient and orientation of images.
Having the Gabor functions defined by [14] convolved with the image to be
segmented, the Gabor-based image representation in Rm×n×4×8 is obtained. Thus,
a rule of correspondence between a pixel of the image and a matrix in R4×8 is
built as follows:

[T s,d,v=3
r,c ]S×D = [

Gabor (ur,c)
]

S×D (12)

where Gabor() is the outputs generated by convolving the Gabor functions with
the image [14].

Therefore, an image is projected on a five-order tensor in Rm×n×4×8×3. The first two
indexes give the pixel location, and the last three indexes give the three-order tensor
representation.
Now, assume that we have an evolving curve C in σ ∈ Rm×n× that divides the
field T into two regions, i.e., ϕ ∈ Rm×n×, ϕc ∈ Rm×n×, and C = θϕ. Then, we
assume that the field T is composed of these two homogenous regions and further
assume that the object to be detected in the field is with the similar value. The fitting
error between this piecewise constant representation and the field T is Ee. Adding a
regularizing term Eg , the energy functional is defined as

E (C) = Eg + Ee (13)

Eg denotes the geometrical feature of the evolving curve, i.e., the length of the curve.
Accompanied with the decreasing of this energy, the fitting term is minimized, and
the segmentation result is obtained. According to [14], the energy functional will be:

E
(
ϑ,cs,d,v

+ , cs,d,v
−

)
= Δ

⎟
σ

Υ(ϑ)|∇ϑ|dσ+ε+
⎟
σ

dist2
σ

(
T s,d,v
σ , cs,d,v

+
)

H(ϑ)dσ

+ ε−
⎟
σ

dist2
σ

(
T s,d,v
σ , cs,d,v

−
)
(1 − H (ϑ) )dσ (14)

where cs,d,v
+ , cs,d,v

− are the averages in tensor form of the regions inside and outside
the evolving curve C, respectively, Δ is the weight of the regularizing term. ε+ and
ε− are the weights of the fitting term, H() is the Heaviside step function, and Υ()
is the Dirac delta function. We use the same method described in [14] to minimize
this energy functional based on Euler–Lagrange equation for the unknown level set
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function ϑ. More details about the numerical solution can be found in [14]. As a
result of this optimization process, the initially segmented region is acquired and
is then used to obtain the SDF (ϑ f ∗). To use the shape prior in the segmentation
process, we need to register f* and the shape prior p. The objective of the shape
registration problem is to find the point-wise transformation between any two given
shapes λ and τ minimizing a certain energy function based on some dissimilarity
measure. In this paper, we follow the similar notation scheme in [2]. Let us define
the result by τ that is obtained by applying a transformation A (with scale, rotation,
and translation parameters) to a given contour/surface λ (It is clear that τ and λ

correspond to f* and p). The shape representation used in this work changes the
problem from the 2D/3D shape to the higher dimensional representation. Hence, we
will look for a transformation A that gives pixel-wise correspondences between the
two shape representations ϑλ and ϑτ .
For the 2D case, we assume that the transformation has scaling components, S =[

sx 0
0 sy

]
, rotation angles R =

[
cos(ψ) −sin(ψ)

sin(ψ) cos(ψ)

]
, and translations represented as

Tr = [
tx ty

]t . So, the transformation will be in the form A(X) = SRX+Tr. After
scaling the components of the ϑ f ∗ by A, the dissimilarity measure will be:

r = SRϑp − ϑ f ∗(A) (15)

and the squared magnitude of the above measure is summed over the image domain
σ to get an optimization energy function:

E
⎨
ϑp, ϑf∗

⎞ =
⎟

σ

Υε

⎨
ϑp, ϑf∗

⎞
rT rdσ , (16)

where Υε is an indicator function defined as:

Υε(ϑp, ϑf∗) =
{

0 i f min (|ϑp|, |ϑf∗ |) >ε

1 i f min (|ϑp|, |ϑf∗ |) ≤ ε
, (17)

Due to Υε, all pixels of a distance (measured from the nearest point on the boundary)
greater than ε are not considered in the energy optimization problem which reduces
the computational time of our problem (Narrow-banding effect). As in [13], after
applying the gradient descent method, it is clear that:

d

dt
si = 2

⎟

σ

Υε(ϑp, ϑf∗)rT [∇si Sϑp−∇ϑT
f∗∇si A]dσ,

d

dt
ψi = 2

⎟

σ

Υε

⎨
ϑp, ϑf∗

⎞
rT

[
∇ϑT

p ∇ψi A
]

dσ,
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d

dt
ti = 2

⎟

σ

Υε

⎨
ϑp, ϑf∗

⎞
rT

[
∇ϑT

f∗∇ti A
]

dσ, (18)

where si ∈ {sx , sy}, ψi ∈ {
ψx , ψy

}
and t i ∈ {Tx , Ty} of the transformation A. Regard-

ing to the weighting coefficients wn’s (9), and similar to [1], the energy function is a
quadratic function of this weights, which leads to a closed-form when the derivatives
with respect to the weights are zeros:

δ w = κ (19)

where κ is a column vector of size N and δ is and N × N matrix. Their elements
are calculated as follows:

κi =
⎟

σ

Υε(ϑp, ϑf∗)[Sϑf∗−ϑ(A)]T [⎠ϑi (A)−ϑ(A)]dσ, (20)

δi j =
⎟

σ

Υε(ϑp, ϑf∗))[⎠ϑ j (A)−ϑ (A) ]T [⎠ϑi (A)−ϑ (A)
]

dσ, (21)

∀(i, j) ∈ [1, N]×[1, N]. Using unique training shapes (with variabilities not identical)
guarantees that δ is a positive definite matrix avoiding singularity.

3 Experimental Results

In this paper, we apply the proposed framework on clinical CT spine bone images.
The clinical datasets were scanned at 120 kV and 3.0, 2.5, 1.33 mm, or 0.67 mm slice
thickness. We tested our algorithm on 1400 CT slices/72 VBs which are obtained
from 22 different patients. The goal is to segment the VB region correctly. The
segmentation accuracy and robustness of our framework are tested on the phantom
named as the European Spine Phantom (ESP) as well as the clinical datasets. All
algorithms are implemented using Matlab 7.1

To assess the proposed method under various challenges, we added a zero mean
Gaussian noise with different signal-to-noise ratios (SNR)—from 0 to 100 dB—to
our CT images. The segmentation accuracy is measured for each method using the
ground truths. It should be noted that the ground truths are manually segmented and
then validated by a radiologist. We calculate the percentage segmentation accuracy
(Acc) using Dice coefficient as follows:

Acc% = 100 × (
2T P

F P + 2T P + F N
), (22)

1 All algorithms are run on a PC with a 2 Ghz Core i7 Quad processor with 6 GB RAM.
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Fig. 5 Definitions of the
accuracy terminologies

where FP represents the false positive (i.e. the total number of the misclassified pixels
of the background), FN is the false negative (i.e. the total number of the misclassified
pixels of the object), and TP is the true positive (i.e. total number of the correctly
classified pixels). See Fig. 5.

We used a variety of methods to measure the accuracy of our framework. First,
we used the visual inspection to evaluate the segmentation quality of our approach.
Figure 6 compares the results of different examples for the initial segmentation step
using the scalar level sets method [8] and the tensor level set model [14] which is used
in our proposed framework. As shown in this figure, the scalar level sets method fails
to segment the whole vertebra in many cases. However, the tensor level sets approach
can segment them well. Additionally, the boundaries detected by scalar level sets are
not smooth, and some obvious boundaries are not detected. The tensor level sets
method segments the image accurately. Figure 7 shows various segmentation results
of three different methods applied on some clinical datasets. These methods are: (i)
The PCA based segmentation described in [2] (but using the tensor level set as initial
labeling instead of graph cuts), and (2) Our 2D-PCA based tensor level segmentation.
The segmentation accuracies of the 2D-PCA based results shown in row (ii) are:
94.3, and 91.2 % respectively. For PCA based results in row (i), the segmentation
accuracies are: 86.2, and 84.9 % respectively. It is clear that our method is more
accurate than the method in [2]. Figure 8 studies the effect of the initialization on our
proposed framework. Results indicate that the performance of our method is almost
constant with different initialization parameters. To quantitatively demonstrate the
accuracy of our approach, we calculate the average segmentation accuracy of our
segmentation method on 1400 CT images under various signal-to-noise ratios and
compare the results with the PCA based segmentation method in [2]. Again, as
mentioned before, our 2D-PCA based framework outperforms the conventional PCA
as shown in Fig. 9a. Additionally, Fig. 9b studies the effect of choosing the number
of the projected training shapes N (see Sect. 2) on the segmentation accuracy. From
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Fig. 6 Comparison between the intensity based segmentation (initial labeling) using: a Region of
interest (after matched filter), b Scalar level sets model [8], and c Tensor level sets model [14]

this figure, we can conclude that the performance of 2D-PCA is better than the
conventional PCA under the same number of training shapes. In another word, to get
the same accuracy of PCA framework, the 2D-PCA needs fewer training shapes.
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(a)

(b)

Fig. 7 Segmentation results of three different methods: (a) Method described in [2], and (b) Our
2D-PCA based segmentation

(a)

(b)

Fig. 8 Segmentation results with various shape initialization. (a) the initial shape prior, and (b) is
the final results. The red and yellow colors show the contour of the gold standards and segmented
regions
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Fig. 9 a The average segmentation accuracy of different segmentation methods on 1400 CT images
under various signal-to-noise ratios. b The effect of choosing the number of the projected training
shapes N on the segmentation accuracy

4 Conclusions and Future Work

In this paper, we propose a new shape based segmentation of VBs in clinical CT
images. Our method adopts the tensor level sets model for initial labeling and 2D-
PCA for the shape prior construction. Validity was analyzed using ground truths of
clinical datasets as well as the Europe-an Spine Phantom (ESP). The experimental
results show that the noise immunity and the segmen-tation accuracy of our approach
are much higher than conventional approaches. On the other hand, the tensor level
sets representation is still computationally inefficient compared to the scalar level
set. Future directions are geared towards speeding up our framework by adopting
modern graphics processing units (GPUs) in the segmentation step.
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Computer Aided Detection of Spinal
Degenerative Osteophytes on Sodium Fluoride
PET/CT

Jianhua Yao, Hector Munoz, Joseph E. Burns, Le Lu
and Ronald M. Summers

Abstract Osteophytes, a common degenerative change in the spine, are found in
90 % of the population over 60 years of age. We have developed an automated
system to detect and assess spinal osteophytes on 18F-sodium fluoride (18F-NaF)
PET/CT studies. We first segment the cortical shell of the vertebral body and unwrap
it to a 2D map. Multiple characteristic features derived from PET/CT images are
then projected onto the map. Finally, we adopt a three-tier learning based scheme
to compute a confidence map and detect osteophyte sites and clusters. The system
was tested on 20 studies (10 training and 10 testing) and achieved 84 % sensitivity
at 3.8 false positives per case for the training set, and 82 % sensitivity at a 4.7 false
positive rate for the testing set.

1 Introduction

Degenerative disc disease (DDD) develops with degeneration of the nucleus pulposus
of the intervertebral discs (IVD) of the spine. As the nucleus pulposus desiccates,
its volume, height, and elasticity are reduced and the IVD loses its ability to stably
support loads. Spinal osteophytes are abnormal bony outgrowths that form along
the disc margins in response to degenerative changes in the IVD and the associated
altered biomechanics between the vertebral bodies. This osteophyte development
occurs at the intervertebral interspaces and can inhibit normal spinal motion as well
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as progress to complete osseous bridging that fuses vertebrae. Osteophytes become
more prevalent in the spine with increasing age, and are found in 90 % of population
over 60 years old [1].

Investigations into computer-aided evaluation of spinal pathology and condition
have been limited. The main areas of focus to date have involved spine lesions,
scoliosis, fractures, and morphological change. There have been a few prior works
targeting degenerative change and spinal osseous excrescences. Tan et al. [2] sought
to quantitatively measure the status of ankylosing spondylitis via the segmentation
of individual vertebra with successive level sets, followed by the segmentation of
bony outgrowths (syndesmophytes) and quantification of their volume and height.
Another method [3] dealt directly with detection of osteophytosis in the spine using
radiographs of the cervical spine to detect and classify types of anterior osteophytes.
Herrmann et al. [4] tracked the time variation of vertebral morphology between
radiographs due to degenerative changes. While these methods focus on osseous
excrescences which can be secondary indicators of DDD, other methods have focused
directly on the IVD themselves. One method detected degenerating IVDs on MRI
using 2D methods that analyzed disc intensity, location, and spacing [5]. A more
recent approach segmented both the vertebral bodies and IVDs to detect degenerating
IVDs in asymptomatic patients [6].

Degenerative osteophytes present in a variety of sizes, shapes, and densities, some
examples of which are shown in Fig. 1, and can sometimes mimic the appearance
of other pathologic processes. Osteophytes can be differentiated,in part, from dense
regions of the spine of alternative etiology, by their spatial localization to the cortical
shell of vertebra. They often form oblique longitudinal patterns across many verte-
bral bodies, following the distribution of biomechanical load stressors as modified
by physiologic homeostatic processes. CT imaging is useful to detect these osteo-
phytes, diagnosed as marginal regions of dysmorphic cortical shell thickening of the
vertebral bodies, typically (but not universally) with a higher X-ray attenuation than
the adjacent cortex. Additionally, on physiologic imaging modalities, osteophytes
may manifest with increased activity due to processes such as active mineraliza-
tion, induced by mechanical stressors and associated progressive exostosis. Unfor-
tunately, actively mineralizing bone, which has preferential uptake in 18F-sodium
fluoride (18F-NaF) PET can be found in both osteophytes and metastases. Thus,
osteophytes and spine metastases can manifest with similar and overlapping appear-
ances on CT and 18F-NaF PET images. Our goal is to explore the set of multimodal
imaging features of osteophytes on PET and CT, characterizing both physiological
and morphological elements, to search for and incorporate synergistic combinations
of these features into a CAD system that can automatically detect spinal osteophytes
on 18F-NaF PET/CT.
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Fig. 1 Examples of osteophytes (arrows) on axial CT (left) and PET (right) images at two different
vertebral levels

2 Methods and Material

Data: With IRB approval, we collected 20 18F-NaF PET/CT scans from 20 patients.
The study population consisted of 15 males and 5 females, with a mean age of
64 ± 10. All patients were scanned on a Philips GEMINI TF scanner. Doses ranging
from 112×106 to 203×106 Bq/ml of 18F-NaF were administered intravenously to the
patients, followed by physiologic uptake periods ranging from 114 to 126 min prior
to image acquisition. The axial PET images were 144×144 or 169 ×169 pixels, at an
axial spatial resolution of 4 mm×4 mm per pixel and 4 mm slice spacing. Correspond-
ing low dose technique of CT scanning was also performed. The scanning parameters
for CT were: 5 mm slice thickness, 120 kVp, no intravenous contrast administra-
tion, and convolution kernel B. An experienced radiologist manually annotated the
location of osteophyte sites on each CT slice (shown in Fig. 4).

2.1 Method Overview

For a given PET/CT data set, the PET data is first resampled to have the same
resolution as the CT data. The spine is segmented on the CT images. The cortical
shell of vertebral body is then extracted and unwrapped to a 2D map. Morphological
and physiological features derived from both CT and PET are projected onto the
map. A three-tier classification scheme is then applied to detect spinal degenerative
osteophytes. The annotated location markers for the osteophytes are used as the
reference standard to train the classifiers at each stage.

2.2 Spinal Segmentation and Cortical Shell Unwrapping

Spine segmentation is accomplished through thresholding, fuzzy connectivity and
anatomical vertebral models. The spinal canal is first extracted using a directed graph
search. Then a vertebral template is fit along the spinal canal. Finally, the spinal col-
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(a)

(b) (d)(c)

Fig. 2 Spine and cortical shell segmentation. a Spine segmentation result. Red line: centerline of
spinal canal; b one cross section of the vertebra; c cortical shell segmentation at one cross section,
cyan: periosteal surface, red: endosteal surface. d 3D surface of the cortical shell segmentation

umn is partitioned into vertebrae by detecting the IVD on curved planar reformations
in sagittal and coronal directions. Details of the automated spinal column extraction
and partitioning can be found in [7]. Figure 2a shows the segmented spine.

Since degenerative osteophytes occur at the cortical shell of the vertebral body,
we apply a deformable dual-surface model to extract the periosteal and endosteal
surfaces of the cortical shell at each vertebral level. The initial model consists of two
concentric cylinders with their axes aligned with vertebral body axis and radii twice
the average radius of vertebral bodies. The surface is represented as r = S(z, ϕ)

in the cylindrical coordinate system, where z is the distance along the axis, ϕ is
the azimuth angle, and r is the radial distance. The vertices on the surface are then
denoted as (rcosϕ, rsinϕ, z). The periosteal and endosteal surfaces are represented
as r = Sp(z, ϕ) and r = Se(z, ϕ) respectively. The dual-surface is driven by the
synergy of internal force, image force and constraint between the two surfaces,
written as,

E(S) = wi D(S) + wp P(S) + wcC(Sp, Se) (1)

where the internal forces D(S) are spline forces derived from partial differential
geometry that keep the surface smooth and continuous. The potential forces P(S)
are derived from the directional gradient along the radial direction of the cylin-
drical coordinate system. The dual-surface constraint ensures thickness transitions
smoothly over the cortical shell, written as,
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(a) (c)(b) (d)

Fig. 3 Stacked feature maps of cortical shell for the entire spine. Each strip represents one vertebra.
a Mean CT density map; b SUV max map; c thickness map; and d radius map

C(Sp, Se) =
∫ (∣∣∣∣

∂(Sp(z, ϕ) − Se(z, ϕ))

∂z
+ ∂(Sp(z, ϕ) − Se(z, ϕ))

∂ϕ

∣∣∣∣
)

dzdϕ (2)

The weights for different forces (wi , wpandwc) in Eq. 1 are kept constant throughout
the evolution. Figure 2b-d shows the result of cortical shell segmentation.

The unwrapping of the cortical shell is based on the cylindrical coordinate system.
We map the 3D cortical shell between the two surfaces onto the 2D space of (z, ϕ),
written as,

R(Sp(z, ϕ), Se(z, ϕ)) → U (z, ϕ) (3)

where R( ) is the feature function to be projected. The mapping is one-to-one, i.e.,
every point on the cortical shell corresponds to one point on the map. The horizontal
axis is ϕ and the vertical axis is z. Axis ϕ starts from the center of the spinal canal
and spans 360◦, and axis z goes from the inferior to the superior endplates. We then
stack the map of each vertebra body to form the whole map for the entire spine
column. The individual vertebra maps are naturally aligned through the spinal canal.
Examples of the unwrapped spine maps are in Fig. 3. More information about the
cortical shell unwrapping can be found in [8].

2.3 Characteristic Feature Map Computation

Through the unwrapping operation, we effectively convert the complex 3D detection
problem into a 2D problem. Multiple features from CT and PET are projected to the
2D map to characterize the morphological, textural and physiological properties of
the cortical shell. The following feature maps are generated,
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1. Thickness: U1 (z, ϕ) = Sp(z, ϕ) − Se(z, ϕ)

2. Radius: U2 (z, ϕ) = Sp(z, ϕ)

3. Mean density: U3 (z, ϕ) = 1
U1(z,ϕ)

∫ Sp(z,ϕ)

Se(z,ϕ) I (z, ϕ, r)dr

4. Max density: U4 (z, ϕ) = max
Sp(z,ϕ)

r=Se(z,ϕ) (I (z, ϕ, r))

5. Interior density: U5 (z, ϕ) = 1
Se(z,ϕ)

∫ Se(z,ϕ)

0 I (z, ϕ, r)dr

6. Exterior density: U6 (z, ϕ) = 1
Se(z,ϕ)

∫ Sp(z,ϕ)+Se(z,ϕ)

Sp(z,ϕ) I (z, ϕ, r)dr

7. Mean SUV: U7 (z, ϕ) = 1
U1(z,ϕ)

∫ Sp(z,ϕ)

Se(z,ϕ) SU V (z, ϕ, r)dr

8. Max SUV: U8 (z, ϕ) = max
Sp(z,ϕ)

r=Se(z,ϕ) (SU V (z, ϕ, r))

9. Interior SUV: U9 (z, ϕ) = 1
Se(z,ϕ)

∫ Se(z,ϕ)

0 SU V (z, ϕ, r)dr

10. Exterior SUV: U10 (z, ϕ) = 1
Se(z,ϕ)

∫ Sp(z,ϕ)+Se(z,ϕ)

Sp(z,ϕ) SU V (z, ϕ, r)dr

Here I() is the CT value, and SUV() is the standardized uptake value from PET, which
is normalized for dose and body mass. Examples of feature maps are shown in Fig. 3.

2.4 Three-Tier Classification Scheme

The detection of potential osteophytes is conducted on the multi-channel feature map
of the cortical shell by a robust three-tier supervised learning system. First, a region
covariance descriptor is applied to compute the confidence map of the occurrence.
In the second stage, a multi-channel feature vector is computed for each point on
the cortical shell and employed to detect the osteophyte sites at each cross section.
In the third stage, the osteophyte sites are clustered and characteristic features are
computed for the final classification.

Confidence map generation using covariance descriptor: Region covariance
descriptor [9] is adopted to capture the statistical appearance correlations among
osteophyte regions, and to compute the confidence of osteophyte occurrence. The
operation is conducted on the mean density map (U3). The feature vector for each
point (z, ϕ) on the map is, F(z, ϕ) = {

z, ϕ, U3(z, ϕ), |∂zU3|, |∂ϕU3|, |∂2
z U3|,

|∂2
ϕU3|, |∂zU s

3 |, |∂ϕU s
3 |, |∂2

z U s
3 |, |∂2

ϕU s
3 |}here U s

3 is the Gaussian smoothed image
of U3. The resulting feature covariance matrix C is 11 × 11 and has 66 inde-
pendent parameters due to symmetry. From the manual markers (Fig. 4a), we
can obtain two sets of positive {C+} and negative {C−} samples for training.
Although the distance between any pair (C1, C2) is defined on a Riemannian mani-

foldas d(C1, C2) =
√∑11

i=1 ln2λi (C1, C2), we can formulate a new Mercer kernel
K (C1, C2) = exp(−d(C1, C2)/σ ) to train a support vector machine (SVM) because
d(C1, C2) is a metric. λi is the generalized eigenvalue of eig(C1, C2) and σ is cali-
brated as the mean of d(C1, C2) from {C+} and {C−}. In runtime, we evaluate each
N × N scanning window (N = 25) centered every 3 pixels in z and ϕ direction,
using the trained classifier. If classified as positive, every pixel inside the window
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(d)(a) (b) (c) (e)

Fig. 4 Three-tier classification. a Reference standard projected onto the stacked feature map (red
dots); b confidence map; c detected ostephyte sites, highlighted horizontal segments; and d final
detections projected back to 3D spine, red: reference standard„ blue: detections; e osteophyte cluster
detection on 2D and 3D display

gets one count so that the accumulated count map represents the overall confidence
level of prior detection. Fig. 4b shows an example of the confidence map.

Osteophyte site detection: An osteophyte site is defined as a span of osteophytes on
a cross-section of a vertebra, which appears as a horizontal segment on the feature
map. The detection process is as follows: (1) the initial seeds (zs, ϕs) are identified
at the local maximum in a 7×1 window on the mean density map (U3); (2) the seeds
are extended to horizontal segments; and (3) feature vectors are computed for each
segment and used for classification.

To extend a seed point (zs, ϕs) to a segment (L , R), where L = (zs, ϕL ) and
R = (zs, ϕR) are border points on each side, we first compute the background
density B(zs) at each cross section zs . The mean density of the lower 50 % is used
as the background. The border points are then located at the half maximum between
the seed point density and background density. That is, ϕL is the largest ϕ where
ϕ < ϕS and U3(zs, ϕ) < (U3(zs, ϕs) + B(zs))/2. Similarly, ϕR can be located.

The segments (L , R) are then treated as potential osteophyte sites. For a site,
a feature vector of (U1, U2, . . .U10, p) is computed, where Uk is the mean feature
value of map k for all points in the segment, and p is the mean confidence value from
the confidence map.

A SVM classifier is generated using the reference markers by radiologists. The
markers are first mapped to the cortical shell map (Fig. 4a). Then, the mapped markers
are extended to segments, and feature vectors are assigned. Other local maxima not
including the reference markers are treated as false samples for the classifier training.
The osteophyte sites passing the classifier are then sent to the next phase of further
classification.

Osteophyte clustering: One characteristic feature of degenerative change is that the
osteophytes often form oblique longitudinal patterns across many vertebral bodies.
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Fig. 5 FROC analysis

We capture this feature by clustering of osteophytesites based on their spatial con-
nectivity, with each cluster treated as one osteophyte detection. We then compute
the morphological, textural, physiological, and location features for each detection.
The morphological features include height, width, and thickness. The textural fea-
tures include mean and standard deviation of density, and the contrast between the
detection and its neighborhood (both circumferential and radial neighbors). Loca-
tion features include circumferential location, distance to pedicle, and distance to
IVD. One important feature is to count the detections within a limited range of cir-
cumferential locations (ϕ) about an osteophyte site, with more occurrences within
that range boosting the probability of the initial osteophyte site being a true osteo-
phyte. We then form another SVM classifier using the cluster features to get the final
detection (Fig. 4d, e).

3 Experimental Results

We divided our data into independent training and testing sets, with 10 studies in each
set. The numbers of osteophytes larger than 5mm were 100 and 97 in the training
and testing sets, respectively. The performance of our system was evaluated using
FROC analysis. If a reference marker was within the detections, it was treated as a
detected osteophyte; otherwise it was a false negative. If a detection covered at least
one reference marker, it was a true positive, otherwise a false positive. We conducted
the classification using all features, CT features only, and PET features only (Fig. 5).
In the training set, the sensitivities (FP rates) were 84 % (3.8), 80 % (7.3), and 80 %
(9.6) for all features, CT features, and PET features respectively. In the testing set,
the sensitivities (FP rates) were 82 % (4.7), 81 % (8.0), and 79 % (10.9) respectively.
The performance differences (false positive rate) between using all features and CT
or PET features alone were statistically significant (p<0.001, Fisher Exact test).
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(a) (b) (c) (e)(d)

Fig. 6 Examples of false negatives (a, b) and false positives (c, d, e)

Figure 6 shows examples of false negatives and false positives. The etiology of
missed osteophytes includes influences from other lesions on the same vertebra (a)
and image artifact (b). The etiology of common false positives includes costovertebral
junction (c), image artifact (d) and partial volume averaging of IVDs (e).

4 Discussion

Assessment of spine osteophytes has significant potential for clinical application. It
is a valuable indicator of spine degeneration and can be used to monitor the progress
of treatment or disease. Since our technique is automatic and efficient, it can run in
background to assess the osteophyte burden for every PET/CT or CT data set. This
is the first CAD system for spinal osteophytes with sufficient performance.

The low-dose low-resolution technique of CT scanning in PET/CT creates numer-
ous challenges to the segmentation of vertebrae and their cortical shell unwrap-
ping. We address this problem with a dual-surface deformable model constrained by
anatomical shape. The synergistic multi-modality feature integration of PET and CT
features captures the attributes of degenerative change that one modality alone can-
not. For instance, while both degenerative disease and metastases can demonstrate
increased 18F-NaF uptake on PET imaging, some manifestations of degenerative
osteophytosis are not as hyperdense as sclerotic metastatic disease on the CT. Com-
bining PET and CT, other morphological features can also differentiate these entities.
Future plans include further development of this system to assist in the differentiation
of degenerative osteophytes and metastatic bone lesions.

Acknowledgments This work was supported by the Intramural Research Program at National
Institutes of Health, Clinical Center.
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Novel Morphological and Appearance
Features for Predicting Physical Disability
from MR Images in Multiple Sclerosis Patients

Jeremy Kawahara, Chris McIntosh, Roger Tam and Ghassan Hamarneh

Abstract Physical disability in patients with multiple sclerosis is determined by
functional ability and quantified with numerical scores. In vivo studies using mag-
netic resonance imaging (MRI) have found that these scores correlate with spinal
cord atrophy (loss of tissue), where atrophy is commonly measured by spinal cord
volume or cross-sectional area. However, this correlation is generally weak to mod-
erate, and improved measures would strengthen the utility of imaging biomarkers.
We propose novel spinal cord morphological and MRI-based appearance features.
Select features are used to train regression models to predict patients’ physical dis-
ability scores. We validate our models using 30 MRI scans of different patients with
varying levels of disability. Our results suggest that regression models trained with
multiple spinal cord features predict clinical disability better than a model based on
the volume of the spinal cord alone.

1 Introduction

Multiple sclerosis (MS) studies have found that a patient’s physical disability cor-
relates with spinal cord atrophy [1, 7, 8, 12, 16]. Measuring spinal cord atrophy
is potentially useful for monitoring the progression of diseases or the effectiveness
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of therapies [12]. Spinal cord atrophy is defined as a loss of tissue and commonly
measured by cross-sectional area (CSA) or spinal cord volume [7, 8, 12]. To quan-
tify the CSA, user-guided computer software is often used to assist in delineating the
spinal cord from a 3D MRI (e.g. using one of several recently developed approaches
[4, 5, 10, 11, 15]). The segmented cord’s volume or averaged CSA is computed and
correlated with the patient’s clinical disability score.

To quantify the clinical disability of a patient with MS, clinicians commonly rely
on the Expanded Disability Status Scale (EDSS) [6] which assigns the patient a num-
ber between zero (a normal neurological exam) and ten (death from MS). Although
commonly used, the EDSS score suffers from reproducibility issues, focuses largely
on a patient’s ambulatory impairment, and is restricted to an ordinal scale. This
motivated the development of the Multiple Sclerosis Functional Composite (MSFC)
score [3], which we discuss in Sect. 2.5.

While the CSA of the spinal cord has been shown to correlate with clinical score,
this correlation is generally moderate with some studies failing to show the expected
reduction in CSA [9]. This may be because a reduction in cord size is only one global
aspect of atrophy, and few other features that capture more subtle aspects have been
explored. Schnabel et al. [13] explored local and global shape measurements across
scales and concluded that the spinal cord shape should be measured across a range of
scales. In conventional and diffusion tensor (DT) MRIs, Benedetti et al. [1] identified
the brain T2 lesion volume, CSA and the mean fractional anisotropy of the cervical
cord as features that independently influenced the EDSS score using a multivariate
regression model. Composite scores, obtained by combining these three features,
improved the correlation with clinical scores when compared to the correlations of
a single feature. However, DT-MRI is much less commonly acquired than structural
MRI. Valsasina et al. [16] explored the regional atrophy of the cervical cord by
applying voxel-wise statistics on registered spinal cord segmentations. They used
the determined regional atrophy in a multiple regression model, adjusted for age,
sex, and cord volume, and showed correlations with clinical scores and patterns of
atrophy.

Although a number of composite MRI biomarkers for MS have been proposed,
computing morphological features to capture atrophy and combining these features in
linear and non-linear regression models has not been well studied. As well, few works
have testing whether combining multiple spinal cord features into a single model will
provide a better indicator of disability than just using a single feature. Introducing new
atrophic features and methods to combine them may assist clinicians in diagnosis,
provide insights into disease progression, and serve as a useful composite biomarker.

We propose novel features extracted from MRI and the corresponding spinal cord
segmentation that are potentially more specific to the clinical status than pure area
or volume. Using these extracted features, we employ different regression models
ranging in complexity and intuitiveness, starting with simple linear regression mod-
els, then multiple linear regression models and finally, non-linear non-parametric
regression forests. To determine which of our proposed candidate features are useful
biomarkers, we explore our data for features that are consistently associated with
clinical state. Our results suggest that our proposed features and the more complex
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regression models are capable of outperforming the predictive abilities of a linear
regression model using only spinal cord volume as the explanatory variable.

2 Methods

In this section we describe our data and the regression problem, examine the new
candidate spinal cord features, outline the different types of regression models used,
describe our cross-validation set-up, and finally discuss how the clinical scores are
computed.

2.1 The Data and the Problem

We are given a set of n MRI scans I = {I1, . . . , In} where each 3D MRI scan Ii

has a corresponding real number clinical score yi ∈ Y, and a corresponding spinal
cord segmentation Si ∈ S. The dimensions of Ii and Si are the same. Each voxel in
Si has a value between 0 and 1, where 0 represents the background and 1 represents
the spinal cord. Voxels in Si that are on the boundary of the spinal cord are assigned
a fuzzy value between 0 and 1 that represents an estimated percentage of the voxel
that contains spinal cord (i.e., partial volume) [15].

Our objective is to create a model M , using the images I and segmentations S,

capable of predicting the patients’ clinical scores Y from novel MR images. We
extract a set of features X from I and S that are transformed by model M into values
Ŷ, such that these predicted values Ŷ = M(X) estimate the corresponding clinical
scores Y.

One approach is to set M as a simple linear regression model with the spinal cord
volume as the single explanatory variable X. This is similar to the existing literature
where a Pearson’s correlation coefficient is computed to measure the linear depen-
dency between the spinal cord volume and clinical score. However, as mentioned in
the introduction, this linear dependency using spinal cord volume does not always
reveal a strong clinical relationship. We improve on this by deriving new morpho-
logical and MRI-based appearance features X and examining ways to combine them
in more descriptive models M.

2.2 Candidate Features

We describe simple candidate morphological and appearance features X that are
potentially sensitive to spinal cord changes. This is not meant to be a comprehensive
set of features, but is sufficient to explore the potential of going beyond measuring
cord size to predict disability. We first define the commonly used spinal cord volume,
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Fig. 1 Illustrations of the proposed features. a The distances (dashed line) from the center-of-mass
(center box) to the boundary voxels (circles) make up perk . b The distances to the nearest boundary
point from the voxels inside the cord give distk (brighter implies farther). c An ellipse is fit to the
cord. d The normalized intensities of the cord are considered in intk

which is computed by summing all voxels, including the partial volumes Si ( j) ∈
[0, 1], in the segmentation, vol = ∑J

j=1 Si ( j), where J is the total number of voxels
in Si . While spinal cord volume captures a global measure of spinal cord atrophy,
we are also interested in features that vary at least partly independently from area or
volume, and that are sensitive to spinal cord changes at a local scale.

Our first proposed feature is designed to be more sensitive to local changes in
the spinal cord’s boundary. On each 2D axial slice of the segmentation Si , we find
voxels on the boundary between the spinal cord and background by considering
voxels in Si with a partial volume greater than 0.5 to be spinal cord. This results in
a 2D binary image that we use to extract the cord’s boundary voxels. For the kth
2D axial slice of the spinal cord, we take the Euclidean distance between the center-
of-mass ck of the cord’s kth cross section, and the spinal cord boundary/perimeter
voxels b computed as, perk = (d(ck, b1

k ), . . . , d(ck, bm(k)
k )), where bi

k represents
the i th boundary voxel on the kth slice, and d(c, b) computes the Euclidean distance
between the two coordinates (Fig. 1a). The number of boundary voxels m(k) can
change for each 2D slice. We find the minimum distance from the center-of-mass to
the boundary voxels in each 2D slice averaged over K 2D slices,

permin = 1

K

K∑
k=1

min(perk). (1)

In a similar way, to compute additional features we replace the “min” function from
(1) with the mean (permean), standard deviation (perstd), and the max (permax)
functions.

We define a related measure that focuses on local changes in 3D by calculating a
3D distance transform from the surface of the segmented spinal cord masked by (or
restricted to) the interior region of the cord. To compute the distance transform, we
calculate the Euclidean distance between voxels inside the spinal cord and the nearest
boundary voxel in 3D. To further differentiate this feature from the per features, we
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consider voxels that contain any partial volume to be spinal cord, which changes the
boundary voxels. The distance transform for slice k with q voxels inside the cord
is represented as distk = (t1

k , . . . , tq(k)
k ) where t i

k is the distance from the i th voxel
inside the cord on the kth slice to the nearest 3D boundary coordinate (Fig. 1b). The
number of voxels inside the cord, q(k), can change for each 2D slice. In a similar
fashion to (1), we replace perk with distk and the “min” function with the mean
(distmean), max (distmax), standard deviation (diststd) and the max divided by the
mean distance (distmax

mean) function averaged over the K 2D slices. For clarity we
formally define,

distmax
mean = 1

K

K∑
k=1

max(distk)

mean(distk)
, (2)

which averages the ratio of the furthest boundary distance by the mean distance.
To compute features that are more robust to local noise, such as small segmentation

errors, we fit an ellipse (Fig. 1c) to each 2D cross-sectional slice of the segmented
spinal cord and compute the eccentricity (ecc), minor axis (axmin), and major axis
(axmaj), averaged over the length the cord.

All the features proposed so far are dependent on the geometrical characteristics
of the cord, but we also include features based on the intensities found within the
MRI. As the intensity values can vary widely in different MRI scans, we normalize
a scan’s intensities by its overall 3D scan intensities to produce z-scores. We extract
the z-scores of those voxels that are labelled as spinal cord (partial volume > 0.5) and
take the mean (intmean) and standard deviation (intstd) of the spinal cord intensity
values averaged over the K 2D slices (Fig. 1d).

2.3 Regression Models

Linear regression employs a linear function to model the relationship between the
explanatory variable (e.g. spinal cord volume) and a response variable (clinical score).
The parameters of this model are the coefficients β of the explanatory variables and
the error term ε. These coefficients can be estimated from the data by applying a
least-squares fitting that minimizes the differences between the response variable
and the fitted explanatory variable. A model with only a single explanatory variable
x1, is known as simple linear regression, and is one of the simplest models to analyze.
Given a dataset with n observations, this produces a straight line, yi = β1xi1+εi , i =
1, . . . , n. Multiple linear regression builds on this by adding r explanatory variables
to the model, yi = β1xi1 + · · · + βr xir + εi .

While these models assume a linearity of the underlying relations, we also explore
a more flexible, non-linear, non-parametric model, known as a regression forest. A
regression forest significantly differs from the previously described models as it is
completely learned from the data and makes no assumptions about the underlying
distributions [2].



66 J. Kawahara et al.

2.4 Training and Testing the Models

The models in Sect. 2.3, are described in order of increasing complexity. With this
added complexity, we increase the potential to accurately model the underlying
function, but also increase the difficulty in intuitively understanding the model and
increase the likelihood of over-fitting the model to the training data. To reduce the
possibility of over-fitting, we divide our data into a training and testing set. Given
the relatively small size of our dataset, we use leave-one-out cross-validation. This is
repeated for all samples to give us an indication of the robustness and generalizability
of our regression model and chosen features.

2.5 Clinical Scores

As discussed in the introduction, the EDSS and the MSFC scores, which we aim to
predict from X, are commonly used to quantify clinical disability. We choose to focus
on the MSFC score rather than the EDSS score because the MSFC captures disability
to which the EDSS score is relatively insensitive, such as arm/hand function. In
addition, the EDSS scores tend to exhibit a poor distribution due to the non-linearity
of the scale, with many patients clustered between 4.5 and 6.5 (Fig. 2a).

The MSFC score tests for: upper extremity function, determined by a 9-hole
peg test (9-HPT); walking speed, measured by a timed 25-foot walk (T25W); and
cognitive function, evaluated by a paced auditory serial addition test (PASAT). These
three tests are shown to vary relatively independently, be sensitive to changes over
time, and capture aspects of MS that are not captured in the EDSS score [3]. These
components averaged together compose the MSFC score,

ZMSFC = (Z9-HPT − ZT25W + ZPASAT)/3 (3)

where the scores are normalized to produce z-scores using a reference population
that includes healthy controls [3].

While this composite score is used to give an overall indication of the progression
of multiple sclerosis, we do not expect the cognitive component, ZPASAT, to have
a strong causal relation with spinal cord atrophy as the spinal cord is not directly
related to cognitive function. We test this by computing the Pearson’s correlation
coefficient with the cognitive test ZPASAT and spinal cord volume vol, and do not
find a significant correlation (r = −0.016, p-value = 0.93). For this reason, we
remove ZPASAT and only include the physical disability tests to define a new clinical
measurement of physical disability,

Zphysical = (Z9-HPT − ZT25W)/2. (4)
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Fig. 2 The distributions of scores are shown. a The ZMSFC scores have a wider distributions
than EDSS scores. As expected, as EDSS decreases, there is a trend for ZMSFC to increase. b We
remove the cognitive component from ZMSFC to form Zphysical, slightly changing the distributions
(deviations from dashed line)

This combined physical score, Zphysical, is the clinical score we use as the response
variable for this work. The distribution of values and the changes in correlation
between ZMSFC and Zphysical are shown in Fig. 2b.

3 Results

We validate our proposed features and models using 30 3D T1-weighted MRIs
acquired with a spoiled gradient echo sequence and an MR field strength of either
1.5 T or 3.0 T. These scans were gathered from multiple centers and parameters
varied by site. Each scan is from a different patient (age ranged from 34 to 64) with
secondary progressive MS. For each 3D MRI, we have its corresponding clinical
score as described in Sect. 2.5 and a segmentation of the spinal cord. To ensure
reasonably accurate segmentations, we use a seeded semi-automatic method similar
to Tench et al. [15] where a user-guided region growing algorithm marks the spinal
cord voxels with a 1 and the background voxels with a 0. Due to the limited res-
olution of the MRIs and the small size of the cord, voxels on the boundary of the
spinal cord, composed both of spinal cord and background, make up approximately
25 % of the total voxels in the cross-sectional area [15]. To give an estimate of the
spinal cord area contribution these boundary voxels make, the boundary voxels are
assigned a fuzzy value between 0 and 1, computed as a function of the cord, boundary
and cerebrospinal fluid intensities, based on Eq. (2) in [15]. The original MRI voxel
resolutions were either 0.976 × 0.976 × 1 mm or 0.976 × 0.976 × 1.3 mm, but
are normalized via trilinear interpolation to 1 × 1 × 1 mm. When computing our
features X, we only consider the first 20 2D slices starting from and including the
C3 region and moving inferior, i.e. K = 20 in (1) and (2).
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Table 1 The model column contains the different type of models explored where linear represents a
linear model, multiple represents a multiple linear regression model, and RF represents a regression
forest model

Model Features MAE SAE RMSE r p-value

Linear vol 0.448 0.326 0.551 0.367 0.0460841
Linear permin 0.444 0.290 0.527 0.464 0.0097723
Multiple best7MR 0.379 0.253 0.453 0.667 0.0000565
Multiple sel5MR 0.414 0.233 0.473 0.617 0.0002851
RF permin 0.381 0.251 0.453 0.682 0.0000328
RF sel2RF 0.293 0.201 0.353 0.803 0.0000001

The features column contains the different features the model was trained on, where vol represents
the volume of the spinal cord, permin represents the minimal distance to the cord’s center-of-mass
from the cord’s boundary, best represents the combination of features that gives the lowest RMSE
error, and sel are the features consistently selected in our top 25 models. The error metrics we
report are the Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE), the Standard
deviation of Absolute Error (SAE), the Pearson’s correlation coefficient r and its corresponding
p-value before correction for multiple comparisons

3.1 Error Metrics

To quantify how closely the predictions Ŷ produced by our model are to the true
clinical scores Y , we use the following metrics. We compute the mean absolute
error (MAE) by taking the mean of the absolute difference between the predicted
score and the true clinical score, MAE = 1

n

∑n
i |ŷi − yi |, giving equal weight to all

errors. To get an indication of the variability in the error, we compute the standard
deviation of absolute error as, SAE = std(|Ŷ − Y |). To give a higher weight to

larger errors, we report the root mean square error, RMSE =
√

1
n

∑n
i (ŷi − yi )2.

MAE, SAE, and RMSE values closer to zero indicate a better model. To indicate the
consistency of our predictions, we also compute the Pearson’s correlation coefficient
and its corresponding p-value between the predicted clinical scores Ŷ and the true
clinical scores Y.

3.2 Simple Linear Regression with Spinal Cord Volume

To establish a baseline test on which we aim to improve, we use a simple linear
regression model with spinal cord volume as the explanatory variable similar to what
is done by Losseff et al. [8]. We compute the volume of the segmented cord (vol) and
use leave-out-one cross-validation to train our model and test on the omitted volume.
As expected from the existing literature [1, 7, 8, 12, 16], we detect a moderate yet
statistically significant correlation between volume and clinical score (vol: r = 0.473,
p = 0.00824). The predictive ability for a linear regression model using volume as
the explanatory variable is reported in Table 1 (row 1) and shown in Fig. 3a.
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Fig. 3 Actual versus predicted clinical scores are shown. a Spinal cord volume vol is used as
the explanatory variable in a simple linear regression model. b A regression forest trained on two
selected features, axmaj and permin, demonstrates an improved correlation. Deviations from the
dashed line are errors

3.3 Simple Linear Regression with Proposed Features

In our second test, we examine each proposed feature’s ability to act as the explanatory
variable in a linear model. For each proposed feature in Sect. 2.2, we compute
the Pearson’s correlation coefficient between the proposed feature and the clinical
scores. We find that axmin, permean, permin, distmean

max all provide a slight increase
in correlation when compared to vol. Of these features, permin shows the strongest
improvement in Pearson’s correlation (permin: r = 0.565, p = 0.00115; vs. volume
vol: r = 0.473, p = 0.00824) and the p-value of permin survives the Bonferroni
correction for multiple testing (0.00115 < 0.05

13 ).
We test if permin is a stronger explanatory variable than volume by performing

the same cross-validation procedure. We report our results in Table 1 (row 2), which
demonstrates that not only does permin correlate better than volume, but it gives a
more consistent score and is less susceptible to outliers. This is shown by the lower
MAE, SAE, and RMSE scores, and higher Pearson’s correlation when compared to a
model using volume. This suggests that permin may be a better indicator of physical
disability than spinal cord volume.

3.4 Multiple Linear Regression with Proposed Features

To explore the use of multiple explanatory variables in a linear regression model,
using the 13 candidate features described in Sect. 2.2, we form separate models
where each feature can either be included or excluded from the model, for a total of
213 = 8192 possible combinations. To get a sense of which variables generalize well,
we test each model using leave-one-out cross-validation. We correct for multiple
testing by applying the positive False Discovery Rate (pFDR) [14] to reduce the
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likelihood that a positive result is a Type I error. As our goal is to determine if
a multiple linear regression model can provide improvements over simple linear
regression, we compute how many models result in a RMSE that are less than the
RMSE reported using the linear model with the explanatory variable permin (i.e.
RMSE < 0.527). There are 292 such models and from this subset of models, we
find the maximum p-value to be 0.00684 with a corresponding q-value of 0.00017.
Out of all our tests, there are 749 tests with a p-value less than 0.00684, indicating
a low number (749 × 0.00017 < 1) of improved models that are potentially false
positives. The features selected from the model with the lowest RMSE are: best7MR
= {intmn, axmin, permean, permax, permin, distmax, distmean

max }, and the prediction
results are reported in Table 1 (row 3). We note that this model with multiple features
shows a significant reduction in prediction error when compared to the models using
a single explanatory variable.

However, as the issue of how best to correct for multiple testing is still an
open one, we further examine our models for a more conservative selection of
features. We examine what features were consistently selected in the top 25 mod-
els. As can been seen in Fig. 4, the same five features are selected in nearly every
model suggesting these features jointly are useful. Based on this trend, we form
a linear regression model using only the consistently selected features, sel5MR =
{intmean, permean, permax, distmax, distmean

max }, and report the cross-validated results
in Table 1 (row 4). While the predictive ability of this model is less than the best7MR
predicting model, this model has two less explanatory variables than the best7MR
model, which may be more generalizable in a novel dataset (even though we cross-
validated our dataset). These improvements over the models with a single explanatory
variable, suggests that it is useful to combine multiple spinal cord features within a
single model.

3.5 Non-linear Regression Forest with Proposed Features

In our final tests, we use a non-linear regression forest (RF) implemented with MAT-
LAB’s TreeBagger class (R2012a; The MathWorks Inc., Natick, MA). The minimum
number of observations per leaf is set to one. All other parameters are left to their
default settings except for the number of trees which we describe below. To see if a
non-linear model, trained on a single feature can outperform a linear model, we train
a RF with 250 trees on each proposed feature from Sect. 2.2. Out of our 13 proposed
features, we find that permin on its own returns superior results when compared to
the other models that use only a single feature, Table 1 (row 5). To consider multiple
features in our RF, as was done in Sect. 3.4, we try all possible combinations of
features (213) in a RF. However, to lower computational cost, we use 80 trees with
6-fold (instead of leave-one-out) cross validation when exploring all the feature com-
binations. We find those features used in the model that produces the lowest RMSE.
Correcting for multiple testing using pFRR (Sect. 3.4), returns less than 1 expected
number of false positives.
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Fig. 4 The number of times a features was selected in the top (lowest RMSE) 25 multiple linear
regression models is graphed. The y-axis shows the number of times the feature was selected and
the x-axis is the feature selected. We can see that two features were selected in all the top 25
models, permax, distmean

max , two were selected in 24 models, intmean, permean, and one was selected
in 23 models, distmax. These five features are consistently selected which suggests their general
importance in forming the model

Similar to Sect. 3.4, we also examine a more conservative selection of features by
choosing those features that are consistently in the 25 models with lowest RMSE. We
find that the features used in the lowest RMSE model and the features consistently
chosen in the 25 lowest RMSE models are the same. These selected features are the
axmaj (chosen in 24 out of 25 models) and the permin (chosen in 25 out of 25 models).
We train another RF with 250 trees on sel2RF = {axmaj, permin} and show leave-
one-out cross-validated results that outperform all our previous regression models,
reported in Table 1 (row 6) and shown in Fig. 3b. This demonstrates that select novel
morphological features, combined in a non-linear, non-parametric regression model
can potentially provide more accurate predictions of MS physical disability than a
linear model, and outperforms predictions based on spinal cord volume.

4 Conclusion

We proposed new morphological and appearance features to capture the subtle
changes in a patient’s spinal cord as it undergoes atrophy due to multiple sclero-
sis. These proposed features were combined in a regression model and our results
indicate that they are potentially useful imaging biomarkers for multiple sclerosis.
When only considering any one particular feature, the distance from the cord’s center-
of-mass to the cord’s boundary, permin, provided the strongest results and was an
improvement over spinal cord volume at clinical prediction.

Our results also suggest that combining the selected features in a regression model
improves the predictive ability over a simple linear regression model using any one
of the tested features, including volume, alone. As well, a non-linear regression
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forest, trained on select morphological features, appears to be a promising approach
to improve on the predictive ability of linear models. To ensure generalizability of
our results (i.e. that the proposed biomarkers and models are not specific to our
data and that our findings are not due to a Type I error), even though our data came
from multiple centers, future work must involve larger datasets representing a greater
variety in imaging, pathological, and clinical parameters.
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Classification of Spinal Deformities
Using a Parametric Torsion Estimator

Jesse Shen, Stefan Parent and Samuel Kadoury

Abstract Adolescent idiopathic scoliosis (AIS) is a 3D deformity of the spine.
However, the most widely accepted and used classification systems still rely on the
2D aspects of X-rays. Yet, a 3D classification of AIS remains elusive as there is no
widely accepted 3D parameter in the clinical practice. The goal of this work is to
propose a true 3D parameter that quantifies the torsion in thoracic AIS and auto-
matically classifies patients in appropriate 3D sub-groups based on their diagnostic
biplanar X-rays. First, an image-based approach anchored on prior statistical dis-
tributions is used to reconstruct the spine in 3D from biplanar X-rays. Geometric
torsion measuring the twisting effect of the spine is then estimated using a novel
technique that approximates local arc-lengths with parametric curve fitting at the
neutral vertebra in the thoracolumbar/lumbar segment. We evaluated the method
with a case series analysis of 255 patients with thoracic spine deformations recruited
at our institution. The torsion index was evaluated in the thoracolumbar/lumbar junc-
tion in 3 sub-groups stratified by their lumbar modifier. An improvement in torsion
estimation stability (mm−1) was observed in comparison to a previous approach.

Supported by the CHU Sainte-Justine Academic Research Chair in Spinal Deformities, the
Canada Research Chair in Medical Imaging and Assisted Interventions and the 3D committee
of the Scoliosis Research Society.

J. Shen
CHU Sainte-Justine Research Center, Montréal, Canada
e-mail: jesse.shen@gmail.com

S. Parent
CHU Sainte-Justine Research Center, Department of Surgery, Université de Montréal,
Montréal, Canada
e-mail: stefan.parent@umontreal.ca

S. Kadoury (B)

CHU Sainte-Justine Research Center, MEDICAL, École Polytechnique de Montréal,
Montréal, Canada
e-mail: samuel.kadoury@polymtl.ca

J. Yao et al. (eds.), Computational Methods and Clinical Applications 75
for Spine Imaging, Lecture Notes in Computational Vision and Biomechanics 17,
DOI: 10.1007/978-3-319-07269-2_7, © Springer International Publishing Switzerland 2014



76 J. Shen et al.

An automatic classification based on torsion indices identified two groups: one with
high torsion values (2.81 mm−1) and one with low torsion values (0.60 mm−1), show-
ing the existence of two sub-groups of 3D deformations stemming from the same 2D
class.

1 Introduction

Spinal deformity pathologies such as adolescent idiopathic scoliosis (AIS) are
complex three-dimensional (3D) deformations of the trunk, described as a lateral
deviation of the spine combined with asymmetric deformation of the vertebrae. Sur-
gical treatment usually involves correction of the scoliotic curves with preshaped
metal rods anchored in the vertebrae with screws and arthrodesis (bone fusion) of
the intervertebral articulations. The most widely used classification paradigms for
scoliosis are two-dimensional (2D) since they are based on spine X-rays in the sagit-
tal and coronal planes. The Lenke classification [1] is one of the most accepted and
widely used classification systems for AIS because it is easy to use and provides
treatment recommendations. It offers a global evaluation of the scoliotic spine and
offers better inter- as well as intra-observer reliability to previous systems [1–3].
However, it is still a 2D assessment of scoliosis that is based on the structurality and
magnitude of Cobb angles in the proximal thoracic (PT), main thoracic (MT) as well
as thoracolumbar/lumbar (TL/L) regions. Since 2D measurements and classification
systems do not completely describe this 3D deformity, response to treatment for
scoliosis can be at times difficult to accurately predict [4]. This is because 2D mea-
surements are often measured on a plane of view that does not capture the position
and orientation of the scoliosis curve in space. Consequently, two different scoliosis
deformities may have similar 2D measurements. Applying similar treatments strate-
gies based on similar 2D measurements may thus yield different surgical outcomes.
Hence, there is a growing need to study scoliosis in 3D and develop 3D descriptors
that will better characterize scoliosis and improve patient care.

Due to the 3D nature of AIS, the natural curvature properties of the spinal curve
were also exploited with the goal of defining better indices to characterize the third
dimension of scoliosis. Stokes et al. first introduced axial rotation (AR) as a local
measure evaluated in the transverse plane to assess the effect of derotation maneuvers
in surgical procedures [5]. Understanding how to classify and quantify 3D spinal
deformities remains a difficult challenge in scoliosis. Recently, the Scoliosis Research
Society (SRS) has recognized the need for 3D classification and mandated the 3D
Scoliosis Committee to continue their efforts towards developing a 3D scheme for
characterizing scoliosis. Duong et al. proposed an unsupervised fuzzy clustering
technique in order to classify the 3D spine based on global shape descriptors [6].
Sangole et al. investigated the presence of subgroups within Lenke type-1 curves
from 3D reconstructions of the spine, and proposed a new means to report 3D spinal
deformities based on planes of maximal curvature (PMC) [7]. Recently, a multivariate
analysis using manifold learning was able to identify four separate groups from the
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same cohort of thoracic deformities [8]. While these studies were able to identify
different clusters of deformation using a series of 3D parameters, they were primarily
qualitative and did not provide any quantifiable 3D measure to assess the severity of
the deformation.

By using curved 3D line that passes through the thoracic and lumbar vertebra
centroids to describe the general shape in the spine, several attempts have been made
to measure the geometric torsion of the scoliotic curve. Geometric torsion is a prop-
erty of a helicoidal line without specific relation to the rotation and deformation of
the vertebrae themselve. Previous models demonstrated several limitations such as
curve discontinuity caused by sequential modeling of the thoracic and lumbar seg-
ments or the inability to fit all types of scoliotic shapes. Therefore, geometric torsion
was seldomly used as a reliable 3D geometric descriptor of scoliosis. To overcome
this drawback, an approach was developed by Poncet et al. [9] to eliminate non-
representative torsion spikes while minimizing the original geometric model defor-
mity. This method was used to determine the amount of deviation (divergence) of the
curved line from the plane determined by the tangent and normal vectors. These were
then used to determine patterns of deformation based on torsion profiles. While the
concept of scoliosis deformity was simplified using geometrical torsion by propos-
ing a series of classification patterns, the method presented by Poncet et al. showed
some limitations with respect to high sensitivity of inaccuracies in the 3D recon-
struction, affecting the interpolated curvilinear shape of the spine. Furthermore, this
measurement can only provide a local index at the vertebral level without a global
measurement for an entire spinal segment. To circumvent these limitations, an alter-
native scheme for estimating curvature and torsion of planar and spatial curves was
proposed, based on weighted least-square fitting and local arc-length approximation
[10]. The method is simple enough to admit a convergence analysis that takes into
account the effect of noise or inaccuracies in the 3D modeling of the spine.

In this paper, we propose a framework that infers the true 3D torsion parameter in
AIS from biplanar X-rays images and automatically classifies patients in appropri-
ate 3D sub-groups based on their torsion values. The general approach is described
as follows. We first use a personalized 3D spine shape reconstructed from biplanar
X-rays to obtain a landmark-based representation of the patient’s thoracic and lum-
bar spine. The spine is divided into three anatomical regions based on the spinal
curve’s second derivatives. Geometric torsion measuring the twisting effect of the
spine is then estimated at the junction of the segmental curves, using a novel tech-
nique by approximating local arc-lengths at the neutral vertebra in the thoracolum-
bar/lumbar segment. The torsion indices are then sent to a c-means classifier to
identify the correct 3D sub-group. One of the applications is to help surgeons treat
complicated deformity cases by offering a reliable predictor of the 3D deformation
from the preoperative models and adapt the surgical strategy based on the defama-
tion class. Section 2 presents the method in terms of geometric modeling and torsion
estimator. Experiments are showed in Sect. 3, with a discussion in Sect. 4 and a
conclusion in Sect. 5.
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2 Methods

We now explain in more detail the components of the framework. First, we detail
the statistical and image-based biplanar reconstruction method, which is performed
on biplanar X-rays taken at baseline or follow-up prior to surgery. The model is
then used to estimate the parametric torsion index at the transition zones (e.g. at the
junction of the thoracic and lumbar segments). Finally, the torsion estimator is used
to classify patients and identify different subgroups from the studied population.

2.1 Training Data

The statistical model used for the initial 3D reconstruction is built from a dataset of
711 spine models, demonstrating several types of deformities. Each scoliotic spine
in the database was obtained from biplanar stereo-reconstructions. It is modeled
with 12 thoracic and 5 lumbar vertebrae (17 in total), represented by 6 landmarks
on each vertebra (4 pedicle extremities and 2 endplate center points), which were
annotated by a radiologist. Segmentation of the scoliotic vertebrae on the X-ray
images was performed by using generic vertebra priors obtained from serial CT-scan
reconstructions of a cadaver specimen. Models were segmented using a connecting
cube algorithm [11] with 1-mm-thick CT-scan slices taken at 1-mm steps throughout
the dry spine. The atlas is composed of 17 cadaver vertebrae (12 thoracic and 5
lumbar). The same 6 precise anatomical landmarks (4 pedicle tips and 2 on the
vertebral body) were annotated on each individual model.

2.2 Personalized 3D Spine Reconstruction

From calibrated coronal and sagittal X-ray images Ii={1,2} of the patient’s spine, a
personalized 3D model is obtained by means of a reconstruction method merging
statistical and image-based models based on our previous work [12], and summa-
rized in Fig. 1. The approximate 3D spine centerline ri (t), obtained from quadratic
curves extracted from the images is first embedded onto the 3D database of scoliotic
spines (M) to predict an initial spine, modeled by 17: (N) vertebrae (12 thoracic, 5
lumbar), 6 points per vertebra (4 pedicle tips and 2 endplate midpoints). To map the
high-dimensional 3D curve r assumed to lie on a non-linear manifold into a low-
dimensional subspace, we first determine the manifold reconstruction weights W
to reconstruct point i from it’s K neighbors, and then determine the global internal
coordinates of Y by solving ϑ(Y ) = ∑M

i=1 ∈Yi − ∑K
j=1 Wi j Y j∈2.

The projection point Ynew is used to generate an appropriately scaled model from
an analytical method based on nonlinear regression using a Radial Basis Function
kernel function f , with D is the dimensionality of the spine and X preop to perform
the inverse mapping such that Xpreop = [ f1(Ynew), ..., fD(Ynew)] with Xpreop =
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Fig. 1 Personalized spine 3D reconstruction from pre-operative biplanar X-rays [12]

(s1, s2, . . . , s17), where si is a vertebra model defined by si = (p1, p2, ..., p6), and
pi ∀ ∇3 is a 3D vertebral landmark.

This crude statistical 3D model is refined with an individual scoliotic vertebra
segmentation approach by extending 2D geodesic active regions in 3D, in order to
evolve prior deformable 3D surfaces by level sets optimization. An atlas of vertebral
meshes Si = {xi1, ..., xi N } with triangles x j are initially positioned and oriented from
their respective 6 precise landmarks pi . The surface evolution is then regulated by
the gradient map and image intensity distributions [13], where ERAG = ωECAG(S)+
(1 − ω)ER(S) is the energy function with the edge and region-based components
controlled by ω determined empirically, are defined as:

ECAG =
2∑

i=1

∮

Si

1

1 + |∗ Ii (ui )|ω dui ; ER = −
2∑

i=1

∫∫

Φi (Si )

log(pR(Ii (ui )))dui (1)

with Φi as the perspective projection parameters, and pR is a Gaussian distribution.
The projected silhouettes of the morphed 3D models would therefore match the 2D
information on the biplanar X-rays in the image domain u, replicating the specifics of
a particular scoliotic deformity. At the end of process, the 3D landmark coordinates
pi and corresponding polygonal vertebral meshes Si are optimal with regards to
statistical distribution and image correspondences.

2.3 Parametric Torsion Estimator

Torsion definition: Once the personalized 3D spine model is obtained, we use a tor-
sion estimation method based on weighted least-squares fitting of vertebra centroids,
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approximating the samples by a parametric curve that have one of its coordinate
functions given by a second (or third)-order polynomial [10]. The estimator has
been shown to converge under reasonable conditions over the sampling of the curve
and the amplitude of the noise. Here, the tangent vector for the parameterized
spinal curve r(s) is defined by T(s) = r∪(s). The normal vector is defined by
N(s) = r∪∪(s)/∈r∪∪(s)∈, and the bi-normal vector is given by the cross-product of
T(s) and N(s), i.e., B(s) = T(s) × N(s). Using these definitions, the torsion is de-
fined by the formula B∪(s) = Θ(s)N(s). When the curve r(t) is not parameterized by
the arc-length, the torsion is given by:

Θ(t) = − (r∪ × r∪∪) · r∪∪∪

∈r∪ × r∪∪∈2 (2)

Torsion estimator using weighted least-squares fitting: If we consider the land-
marks pi of the personalized 3D model, i.e., a finite sequence of sample points of
r, perturbed by a random noise (reconstruction errors), assuming the spinal curve to
be parameterized by the arc-length, the torsion estimation needs an approximation
of the first, second, and third derivatives of r(s).

Previous studies have shown that the torsion phenomena is predominantly present
at neutral vertebrae of the scoliotic spine, which represent the transition point be-
tween segmental regions at the thoracolumbar/lumbar junction [9]. If we consider
the point p0 to be a neutral vertebra, the estimation of the derivatives of r at p0 will be
performed from a window of 2q + 1 points around p0 : {p−q , p−q+1, · · · , pq}, such
that −q represents the upper apical vertebra, and +q is the lower apical vertebra.
These are determined automatically by analyzing the output model S and identifying
the anatomical regions where the spinal curve’s second derivatives are zero. Apical
vertebrae represent the most deviated vertebrae form the central sacral vertical line
for each of these regions.

The noise at a point pi is modelled by a random vector σi , normal to r at pi , and
the random variables σi are assumed to be independent and identically distributed
(i.i.d.), with zero mean and variance ϕ 2 as shown in Fig. 2a. Let si be the arc-
length corresponding to the sample pi . The estimates of r∪(0), r∪∪(0) and r∪∪∪(0) are
obtained by a weighted least-squares minimization. The weight wi of point pi must
be positive, relatively large for small ∈si∈ and relatively small for large ∈si∈. For
example, one can consider weights of the form wi = ω exp(−θs2

i )/sk
i , or simply

wi = 1. For spatial curves, the torsion estimator fits a cubic parametric curve to
the sample points. Assuming that p0 = r(0) = (0, 0, 0), x ∪

0, x ∪∪
0 and x ∪∪∪

0 should
minimize:

Ex (x ∪
0, x ∪∪

0 , x ∪∪∪
0 ) =

q∑
i=−q

wi

(
xi − (x ∪

0si + 1

2
x ∪∪

0 s2
i + 1

6
x ∪∪∪

0 s3
i )

)2
. (3)

Considering we can again use an approximation of si , the above equation
can be solved by matrix inversion [10]. A similar approach is used to compute
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Fig. 2 a Torsion estimator model using a sampled curve with noise. b Lenke type-1 examples with
lumbar modifiers (A, B, C) from the central sacral vertical line (CSVL)

y∪
0, y∪∪

0 , y∪∪∪
0 , z∪

0, z∪∪
0 and z∪∪∪

0 , using an independent coordinates method which estimates
the derivatives in each dimension. Using the above derivatives estimates, Eq. (2) gives
the parametric torsion.
Clustering algorithm: A fuzzy c-means clustering technique is then used in order to
group patients with similar torsion values together, while keeping the mean torsion
of each group as distinct as possible. This so f t clustering algorithm allows for
patient torsion values to be classified in multiple groups, while providing the different
degrees of confidence for belonging to the various group. This means that each patient
torsion value does not need to belong to a particular group, but may belong more
strongly to one group in particular.

2.4 Analysis Methodology

An inter- and intra-group statistical analysis was performed to assess torsion values
and how they relate to other 2D, as well as 3D spinal parameters such as the orientation
of the PMC in each regional curve, measuring the orientation of the plane where the
projected Cobb angle is maximum, to the sagittal plane. We also measure Cobb angles
in the MT and TL/L segments. Kyphosis, defined by the angle between T2 and T12
on the sagittal plane, as well as lordosis (angle between L1 and S1) were finally
evaluated to find differences in Lenke type-1A, Lenke type-1B and Lenke type-1C
(Fig. 2b). For each case, torsion was estimated with both the proposed method and
with the approach by Poncet et al. [9]. An ANOVA test with Bonferonni correction
was applied in order to evaluate differences between the cluster groups.
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3 Clinical Validation

3.1 Clinical Data

A cohort of 255 patients diagnosed with adolescent idiopathic scoliosis (AIS) re-
cruited at our institution was used for this preliminary study. The inclusion criteria
was patients classified as having a Lenke type-1 deformity [1]. A 3D spinal recon-
struction, generating vertebral landmarks pi on each vertebra, was obtained for each
case. The mean thoracic Cobb angle for this cohort was 51.4 ± 13.85≈ and lumbar
mean Cobb angle of 35.5 ± 13.21≈. The Lenke classification was confirmed by an
expert in scoliosis research at our institution, using the biplanar radiographs available
for each patient. Patients with any pathology other than AIS were excluded for the
study. All patients classified as having a Lenke type-1 deformity with rare conditions
such as left thoracic deformities were also excluded in this study. Each eligible pa-
tient was assigned a lumbar spine modifier (A, B, C). In all, this study includes 209
Lenke type-1A, 31 Lenke type-1B and 15 Lenke type-1C deformities were included.

3.2 Torsion Estimation in Scoliotic Spines

As it was shown in numerous studies, normal spines lies in a single plane (sagittal),
and thus, according to the definition, have no torsion. In reality, the ideal spine does
not exist, but values of parametric torsion in the control group of normal patients
(N = 5) were small. In all cases, the maximum absolute values of torsion were found
to be <0.08 mm−1. In the scoliotic group, maximum values of torsion ranged from
0.15 to 5.63 mm−1. Geometric torsion in normal spines is much less than that in
scoliotic spines.

The torsion values of the 209 patients with Lenke type 1A, 31 patients with
Lenke type 1B and 15 patients with Lenke type 1C were evaluated, which takes 0.8 s
on average per case to compute. Figure 3 presents these results in comparison to a
previous torsion estimation approach [9]. Using the proposed approach, a statistically
significant difference (p = 0.002) between the torsion values of Lenke type-1A and
Lenke type-1C cases was observed, while no statistically significant differences were
found between either groups using [9]. Furthermore, the parametric torsion estimator
offers more stable and reproducible values, demonstrating lower standard deviation
values compared to [9] which finds no pattern between groups 1A, 1B and 1C.

3.3 Automatic Classification Results

The fuzzy c-means clustering algorithm was performed on the 255 patients and
identified two groups of torsion values: one group with higher torsion value means
of 2.81 mm−1 (N = 48) and one group with lower torsion value means of 0.60
mm−1 (N = 207) respectively. Figures 4 and 5 illustrate sample cases for both
groups. Table 1 presents the characteristics for both groups. Results first show that
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Fig. 3 Mean and standard deviation torsion values with respect to lumbar modifier classes, in
comparison to a previous torsion estimation approach by [9]

Fig. 4 Sample low torsion cases, with resulting 3D reconstructed models and axial view with
corresponding PMCs. a Torsion value at TL/L junction of 0.46 mm−1. b Torsion value at TL/L
junction of 0.63 mm−1

Fig. 5 Sample high torsion cases, with resulting 3D reconstructed models and axial view with
corresponding PMCs. a Torsion value at TL/L junction of 2.83 mm−1. b Torsion value at TL/L
junction of 3.75 mm−1
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Table 1 Composition and characteristics (mean torsion, standard deviation) of the two torsion
clusters determined by the c-means classification

N % A % B % C Mean S.D. Maximum Minimum

Cluster 1 207 86.1 9.6 4.3 0.60 0.41 1.64 0.05
Cluster 2 48 64.6 22.9 12.5 2.81 0.77 5.06 1.70

while 1A deformations are predominant in both clusters due the larger sample size
(N = 207), the high torsion cluster is composed with a greater portion of cases with
1B and 1C modifiers. This indicates how higher torsion is linked to the curvature in
the lumbar region. This is confirmed with the difference in thoracolumbar/lumbar
PMC angulation between the high torsion group (56.4≈) and the low torsion group
(49.2≈), which is statistically significant (p = 0.030). Also, a statistically significant
difference (p = 0.014) in main thoracic PMC angulation was found between the
high torsion group (79.8≈) and the low torsion group (73.7≈).

4 Discussion

With the intent of determining optimal surgical strategies and treatments for pa-
tients with AIS, quantification and classification of spinal deformities such as AIS
in 3D remains challenging because of the difficulty of translating complex geomet-
rical concepts into clinically applicable paradigms. Recent studies have investigated
into pattern classification based on explicit parameters. Classification systems have
therefore emerged from patterns detected on these 3D geometrical descriptors to
discriminate various types of spine deformities.

Our results show an increase in torsion values as a function of the lumbar spine
modifier as Lenke type-1A were shown to have the lowest torsion value means and
type-1C the highest with type-1B in between. This contradicts the results obtained
with a previous torsion estimator based on a local derivative analysis of the curve,
which finds no link between torsion and lumbar modifiers. While both approaches
show high deviations due to the intra-group variability, this deviation is of lesser
extent in the case of the proposed method. Our results confirm the findings of [7]
that spinal curves in scoliosis have abnormal orientations in 3D space with respect
to the sagittal plane. The results shown can be expected since type-1A deformities
would represent no or little lumbar curve and would thus be more aligned with its
sagittal plane while the type-1C deformity would be the complete opposite. Thus, a
thoracic curve would thus have a greater change in the direction with Lenke type-1C
than Lenke type-1A and will thus have a higher torsion value.

The ability of torsion to differentiate new subgroups with Lenke type-1 deformities
is emphasized when clustering the entire cohort into two groups. The high torsion
group was found to have a greater percentage of Lenke 1B and 1C patients compared
to the low torsion group, which was primarily composed on Lenke 1A patients. This
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is confirmed with the orientation of the thoracolumbar/lumbar PMC plane, which
was more deviated towards the coronal plane in the high torsion group as shown in
Figs. 4 and 5. This effect was also observed in the thoracic PMC. Patients with high
torsion values tend to have two PMCs that are highly angulated with respect to each
other. Conceptually, this means that a deformity with highly angulated PMCs will
have a greater torsion values since the amplitude of the change of curve orientation
is greater in this situation.

The technique presented in this paper provides a mean to evaluate the flexibility of
the spine in the thoracolumbar region, which is critical to determine the optimal sur-
gical strategy and fusion levels. Populations of 3D scoliotic patients obtained from a
hybrid statistical and image-based approach from 2D projections can be analyzed and
subsequently classified in order to determine patterns in pathological cases. Hence
personalized 3D reconstructions of thoracic (T)/lumbar (L) spines obtained from a
cohort of Lenke Type-1 patients were analyzed with a torsion estimator algorithm by
approximating local arc-lengths at the neutral vertebra in the thoracolumbar/lumbar
segment.

5 Conclusion and Future Work

We presented a method for quantifying geometric torsion of 3D reconstructed spine
models from biplanar X-ray images. By taking a more global approach for torsion
estimation, using parametric curve fitting that minimizes the effects of noisy data,
the proposed methodology yields torsion values that are more reliable to the actual
twisting effect in the scoliotic spine. This allows for a quantitative analysis of the
spinal deformity based on the numerical values of geometric torsion that is more
representative of the true torsion phenomena. The results of our current study suggest
that a more stable estimation of the 3D torsion effect at transition zones in scoliosis is
within reach. The advantage of using numerical values to classify scoliosis is that it
simplifies the work needed for the observer and reduces the classification variability
between them. Thus, by proposing geometric torsion as a numerical 3D index for
a quantifiable analysis of scoliosis, this opens the possibility for a 3D classification
paradigm of scoliosis that will not only be more user friendly, but also more accurate
in describing this deformity. Future work will look at extending this analysis to other
types of classes, such as double thoracic and lumbar deformations.
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Lumbar Spine Disc Herniation Diagnosis
with a Joint Shape Model

Raja S. Alomari, Jason J. Corso, Vipin Chaudhary
and Gurmeet Dhillon

Abstract Lower Back Pain (LBP) is the second most common neurological ailment
in the United States after the headache. It costs over $100 billion annually in treatment
and related rehabilitation costs including worker compensation. In fact, it is the most
common reason for lost wages and missed work days. Degenerative Disc Disease
(DDD) is the major abnormality that causes LBP. Moreover, Magnetic Resonance
Imaging (MRI) test is the main clinically approved non-invasive imaging modality
for the diagnosis of DDD. However, there is over 50 % inter- and intra-observer vari-
ability in the MRI interpretation that urges the need for standardized mechanisms in
MRI interpretation. In this chapter, we propose a Computer Aided Diagnosis (CAD)
System for Disc Degenerative Disease detection from clinical Magnetic Resonance
Imaging (MRI). This CAD produces a reproducible and clinically accurate diagnosis
of the DDD for lumbar spine. We design a classifier to automatically detect degen-
erated disc (also clinically known as Herniation) using shape potentials. We extract
these shape potentials by jointly applying an active shape model (ASM) and a gradi-
ent vector flow snake model (GVF-snake). The ASM roughly segments the disc by
the detection of a certain point distribution around the disc. Then, we use this point
distribution to initialize a GVF-snake model to delineate the posterior disc segment.
We then extract the set of shape potentials for our Gibbs-based classifier. The whole
work flow is fully automated given the full clinical MRI. We validate our model on
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65 clinical MRI cases (6 discs each) and achieve an average of 93.9 % classification
accuracy. Our shape-based classifier is superior in classification accuracy compared
to the state-of-the-art work on this problem that reports 86 and 91 % on 34 and 33
cases, respectively.

1 Introduction

Low Back Pain has a major economic impact in the United States with over $100 bil-
lion annually in related treatment and rehabilitation costs [1]. It is the most common
reason why patients visit a physician office besides the common cold. In fact, it is
the most common reason patients visited the emergency room in the U.S. in 2008.
There were over 3.4 million emergency rooms visits, an average of 9400 visits a
day, specifically for Low Back Pain [2]. Low back Pain has high societal impact as
it disrupts individuals lives impacting over 80 % of people [3]. Moreover, it is the
most common reason behind job-related disability and is the second most common
neurological ailment after headache [3]. It is a prominent chronic disease that causes
major disruption in people’s lives.

Nevertheless, the diagnostic decision is highly subjective and relies on two major
factors: the radiologist’s diagnostic report and the neurological exam findings. The
most common current clinically approved standard for Low Back Pain diagnosis
is the Magnetic Resonance Imaging (MRI) procedure. However, individual radiol-
ogists interpreting clinical Magnetic Resonance Imaging (MRI) studies are highly
subjective with over 50 % inter-observer variation [4]. This high inter-radiologist
variation significantly influences therapeutic treatment, medical insurance decision
makers, and judiciary personnel decisions. On the other hand, the clinical diagnosis
is highly variable that nothing certain can be said regarding the clinical diagnosis
of Low Back Pain [5]. Providing a reproducible computerized MRI interpretation
may reduce the existing variability, and hence, standardize the diagnostic decisions
that lead to reduced costs on unnecessary treatment. Surprisingly, there is no CAD
system for the lumbar spine that yet has clinical applicability. We are building our
system motivated by the clinical practice of lumbar diagnosis. In this chapter, we
propose a reliable, robust, and accurate diagnosis for disc herniation which is the
main condition that causes failed low back syndrome. We, however, point out that
the nomenclature has been a controversial issue in spine diseases which is outside
the scope of this chapter. We target the problem of the leak of the nucleus pulposus
(as shown in Fig. 1) that causes pressure on the nerve root resulting in the pain and
numbness to the patient where the pain, most of the time, irritates to the knees causing
major disruption of the patients life. We use the nomenclature of Fardon et al. [7] that
has been endorsed by the major American and European radiologists associations
including ASSR, ASNR, AANS, CNS, ESNR, and many others. For the rest of this
chapter, we call this condition as Herniation.

Disc herniation always occurs in the posterior segment of the disc. The inner
gel-like material of the disc, nucleus pulposus, leaks out pressing on a nerve root
through a tear in the fibrous wall of the disc, annulus fibrosus [8], as illustrated in
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(a) (b) (c)

Fig. 1 a A right-sided disc herniation illustrative model [6]. b Axial view (bottom-up) MRI of a
right-sided disc herniation from our data. c Corresponding sagittal view of the herniated disc from
our dataset

Fig. 1, where we show an axial illustrative model and a corresponding clinical MRI
(from our dataset) for a right-sided disc herniation with both the axial and sagittal
views.

Shape of the posterior segment of the disc, from the sagittal view, is the primary
diagnostic tool for the radiologist. The axial view is used for confirmation and for
quantification. Working in the sagittal view, our method extracts information of the
posterior segment of the disc in a two-step process. First, we use an active shape
model to roughly localize a point distribution for the disc body. Then, we have a
GVF-snake to delineate the posterior segment of the disc using the outcome of the
ASM as its initialization. Because the ASM is a linear model and captures Gaussian
point distributions, we add the GVF-snake step to delineate the non-linear shape of
the disc posterior segment which is the main technical innovation in this chapter. We
validate our method on a clinical dataset of sixty-five cases and achieve over 93 %
average classification accuracy.

We also compare our results to the most recent work on disc herniation diagnosis
by Alomari et al. [9, 10] that jointly model shape and intensity and we substantially
outperform their results. Moreover, our shape-based classifier outperforms the recent
work of Michopoulou et al. [11] which is based on an intensity-based classifier. Both
recent works test on 33 and 34 cases with an average herniation detection accuracy
of 91 and 88 %, respectively. We validate our model on substantially variable dataset
of 65 cases and achieve better accuracy over 93 %. Many researchers have pro-
posed methods for the diagnosis of certain vertebral column abnormalities. Bounds
et al. [12] utilized a neural network for the diagnosis of back pain and sciatica. Sciat-
ica might be caused by lumbar disc Herniation as well as many other reasons. They
have three groups of doctors to perform diagnosis as their validation mechanism.
They claimed a better accuracy than the doctors in the diagnosis. However, the lack
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of data prohibited them from full validation of their system. Similarly, Vaughn [13]
conducted a research study on using neural network for assisting orthopedic surgeons
in the diagnosis of lower back pain. They classified LBP into three broad clinical cat-
egories: Simple Low Back Pain (SLBP), Root Pain (ROOTP), and Abnormal Illness
Behavior (AIB) and about 200 cases were collected over the period of 2 years with
diagnosis from radiologists. They used 25 features to train the Neural Network (NN)
including symptoms clinical assessment results. The NN achieved 99 % of training
accuracy and 78.5 % of testing accuracy. This clearly shows training data overfitting.

Tsai et al. [14] used geometrical features (shape, size and location) to diagnose
herniation from 3D MRI and CT axial (transverse sections) volumes of the discs. In
contrast, we do not presume the availability of the full volume axial view as it is not
a clinical standard. They patented their work as a visualization tool for educational
purposes. Recently, Michopoulou et al. [11] applied three variations of fuzzy c-means
(FCM) to perform atlas-based disc segmentation. Then, they used this segmentation
for classification of the disc as either a normal or degenerative disc. They used an
intensity-based Bayesian classifier and achieved 86–88 % classification accuracy on
34 cases (five discs each) based on their semi-automatic segmentation of the disc.
Similarly, Alomari et al. [9, 10] proposed utilizing a shape and an intensity-based
classifier that utilizes an active shape model to extract the shape potentials. However,
because the ASM cannot capture the non-linearly shaped posterior segment of the
herniated disc, they achieved about 91 % on 33 clinical cases. We extend both these
works and present our technical novelty by concentrating on the posterior segment of
the disc and capturing that with an additional GVF-snake model on top of the ASM.
Furthermore, we reduce the effect of intensity-based information due to the signal
intensity inhomogeneity with clinical MRI. We also significantly add variability in
the dataset by validating our joint model on 65 clinical cases as opposed to 33 and
34 cases. Furthermore, we achieved an average of 93 % accuracy which substantially
outperforms both state-of-the-art results given the dataset size difference.

2 Proposed Method

Our approach has four steps: Disc Localization, Disc Segmentation, Herniation
Delineation, and Herniation Classification. This section explains each step:

Disc Localization: The system automatically locates the middle sagittal slice from
the MRI volume by index. Then our automatic method starts by a localization step that
provides a point inside each disc using the two-level probabilistic model proposed
by Corso et al. [15, 16]. Their model labels the set of discs with high level labels
D = {d1, d2, . . . , d6} where each di = (xi , yi )

T is the coordinates of the disc point
(some point in the disc). They solve the optimization problem:

D∈ = arg max
D

∑
L

P(L,D|I) = arg max
D

∑
L

P(L|D,I)P(D) (1)
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Fig. 2 Labeling lumbar discs in a sagittal T2-weighted MRI [15, 16]

Fig. 3 Illustrative model (sagittal view) for a clinically normal disc b herniated disc showing the
point distribution (k1 − k9) as well as a contour (yellow) that delineates the edge map between
points k1 and k9. This figure shows the irregular shape of the normal disc

where L = {li , ∀i ∇ L} is a set of auxiliary variables, called disc-label variables that
are introduced to infer D from the sagittal image. Each disc-label variable can take a
value of {−1,+1} for non-disc or disc, respectively. The disc-labels make it plausible
to separate the disc variables from the image intensities, i.e., the disc-labelL variables
capture the local pixel-level intensity models while the disc variables D capture the
high-level geometric and contextual models of the full set of discs. The optimization
is solved with a generalized expectation minimization (gEM) algorithm [15, 16].
Figure 2 shows a lumbar sagittal view with labeled discs. Then we obtain a fixed
window of 60 × 120 pixels around each point. This sub-image size is enough to
provide the whole disc region for each of the discs connected to the five lumbar
vertebrae as shown in Fig. 2.
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Fig. 4 Feature image result of the range filter R for a Normal disc. b Herniated disc. The ASM
point distribution is shown according to the map in Fig. 3

Disc Segmentation: We use an active shape model [17] for roughly segmenting
the disc body boundary. This step finds the rough shape of the disc body regardless
of the herniated (posterior) part. To prepare the training data, we manually select
the image slice where herniation is most obvious. Then, we manually mark nine
landmark points according to the map shown in Fig. 3. Specifying these landmarks
locations is only based on our expertise in the disc segmentation. We name these
landmark points from k1 to k9. Similar to [17], we initially calculate the mean shape
x̄ = 1

N

∑N
1 x where N is the size of the training data. Then each disc shape xi ,

where i ∇ {1, . . . , N }, is recursively aligned to the mean shape x̄ using generalized
Procrustes Analysis to remove translational, rotational, and isotropic scaling from
the shape.

Then, we model the remaining variance around the mean shape with principal
components analysis (PCA) to extract the eigenvectors of the covariance matrix asso-
ciated with 98 % of the remaining point position variance according to the standard
method for deriving the ASM’s linear shape representation.

However, we do not use the original MRI image for training the ASM. Rather, we
utilize a feature image I that enhances the disc shape by emphasizing the boundaries
of the disc and the Thecal Sac (the extension of the spinal canal at the lumbar
level [8]). We produce I by applying a range filter R on the pixel-wise addition of
the normalized co-registered T1- and T2-weighted protocols of the sagittal images
I = R(T1 + T2) where T1 and T2 are the normalized T1- and T2-weighted MRI
images for the same case. These two images are manually co-registered during the
acquisition of the MRI in the clinical standard. R is the range filter operator where
the intensity levels in each 3×3 window are replaced by the range value (maximum -
minimum) in that window. This operator R has high values in abrupt-change regions
and small values in smooth regions. Figure 4 shows the features images I for a
normal- and a herniated-disc. The ASM landmark points are also shown in the figure
to clarify the ASM land-marking step.

To apply ASM for detection of the point distribution of the disc body boundary,
we apply the mean shape x̄ around the disc point produced by the localization step.
Then, we allow the ASM to converge and obtain the boundary.

We apply the GVF-snake by initializing its contour (to the line connecting the two
points k1 and k9). Figure 5 show two examples of the convergence of the GVF-snake
for both a normal disc (Fig. 5a) and a herniated one (Fig. 5b). The figure also shows
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Fig. 5 (Top-left) Shows the resulting GVF-contour for a normal b abnormal, on T2-weighted image.
(Top-right) The corresponding normalized GVF field showing the two initialization landmarks k1
and k9. (Bottom) A zoomed version of the GVF field to clearly show the vectors

the normalized gradient vector field for the sub-image as well as a zoomed GVF field
for the area of interest (posterior part of the disc).

Herniation Delineation: The ASM segmentation of the disc cannot capture the
inherent variations produced by the disc herniation at the posterior segment of the
disc. Furthermore, we seek for a single model for the disc regardless whether it is
herniated or not. Thus, we use an active contour to delineate the posterior segment
of the disc. We select the GVF-snake proposed by Xu and Prince [18] because it
has been proved to move toward desired image properties such as edges including
concavities. GVF-snake is the parametric curve that solves:

xt (s, t) = αx∗∗(s, t) − βx∗∗∗∗(s, t) + v (2)

where α and β are weighting parameters that control the contour’s tension and rigid-
ity, respectively. x ∗∗ and x ∗∗∗∗ are the second and fourth derivatives, respectively, of
x .v(x, y) is the gradient vector flow (GVF), s ∇ [0, 1], and t is time component to
make a dynamic snake curve from x(s) yielding x(s, t).

GVF-snake requires an edge map that is a binary image highlighting the desired
features (edges) of the image. Most researchers use Canny edge detector or Sobel
operator on the original image such as [19] for liver segmentation. We present the
GVF-snake with a canny edge map applied on our feature image I.

Herniation Classification: We design a binary Bayesian classifier:

n∈ = arg max
n

P(n|S) (3)

where n is a binary random variable stating whether it is a herniated or a normal
disc, S incorporates shape features extracted from both the GVF-snake and the ASM
convergence. We utilize a Gibbs distribution with two shape potentials:

P(n|S) = 1

Z [n] exp−[α1US1+α2US2] (4)
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where S represents the shape features extracted from both the ASM convergence
and the GVF-snake, Z [n] is the normalization factor of the Gibbs distribution, α1
and α2 are tuning parameters. We define two shape potentials: (1) US1 models the
GVF-snake delineation for the posterior segment of the disc. (2) US2 models the
major axis of the ASM converged disc shape.

We extract the first shape potential US1 from the GVF-snake delineation of the
posterior disc segment. The longer the contour, the more likely it delineates a herni-
ated segment as shown in Fig. 5 by the yellow line between the points k1 and k9. To
capture the length of the GVF-snake contour, we model the number of points that are
sampled by the final GVF-contour. The GVF-snake interpolates the pixels by having
a maximum of two pixels between each point. Thus, we define:

US1 =
(
e1 − μe1

)2

2σ 2
e1

(5)

where e1 is the number of interpolated points along the delineated GVF contour, μe1

σ 2
e1

are the expected and the variance of the interpolated points on the GVF-contour,
respectively. We estimate both μe1 and σ 2

e1
from the training data.

The secondary shape potential, US2, is motivated by the clinical observation that
the herniated disc collapses due to the leak of the nucleus pulposus causing average
lengthening in the major axis of the disc as shown in Fig. 1. We utilize this by
incorporating this second shape potential US2:

US2 =
(
e2 − μe2

)2

2σ 2
e2

(6)

where e2 is the disc major axis length, μe2 is the expected major axis length of the
disc, σ 2

e2
is the variance of the major axis length of the disc. We learn both μe2 and

σ 2
e2

from the training data. We define e2 by:

e2 = ∣∣k1 + k9

2
− k5

∣∣
2 (7)

wherek1,k5, andk9 are the location coordinates of points 1, 5, and 9, respectively, as
shown in Fig. 4. The distance e2 roughly measures the major disc axis length subtract-
ing the average location of the right end points k1 and k9 and the left end point k5.

3 Data and Results

Our clinical MRI dataset is captured by a Philips 3-Tesla scanner according to the
clinical standard. Each case contains manually co-registered two sagittal views (T1-
and T2-weighted) as well as six axial T1-weighted slices for each disc. We use the
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Table 1 Cross validation results: each row tests randomly selected 35 cases

Set L5-S1 L4-5 L3-4 L2-3 L1-2 T12-L1 Accuracy (%)

1 32 32 34 34 35 34 95.7
2 33 32 32 31 34 35 93.8
3 33 34 32 33 33 34 94.8
4 31 30 32 33 33 34 91.9
5 31 32 32 33 34 33 92.9
6 33 32 32 31 32 33 91.9
7 33 32 34 34 33 33 94.8
8 30 31 32 31 34 33 91.0
9 30 33 34 34 35 35 95.7
10 32 33 34 34 34 35 96.2
(%) 90.9 91.7 93.7 93.7 96.3 96.9 –
Average Accuracy 93.9

clinical diagnosis reports to obtain our diagnosis gold standard. We validate our
proposed method on 65 subjects with ages of 23–76 years old and with various
types of abnormalities. We perform a cross-validation experiment where we leave
35 cases for testing and use the remaining 30 for training. We perform 10 rounds
and each time, we randomly select the training and testing cases. We define the
accuracy in each round (row in the Table 1) as the sum of correctly classified discs
Accuracyi = (1 − 1

M

∑K
j=1 |gi j − ni j |) × 100 % where i is the lumbar disc level,

1 ∪ i ∪ 6, M is the testing set size in each round (35 cases).
Table 1 shows the classification results from the cross validation experiment. We

achieve an average of 93.9 % accuracy on disc diagnosis. Each row in the table
represents one round of the cross-validation. Thus, it represents 35 cases with 6
discs each case. We show the number of correctly classified discs at each disc level
(column) out of 35 discs. We further compute the overall specificity and sensitivity
where:

Speci f ici t y = T N

T N + F P
(8)

Sensi tivi t y = T P

T P + F N
(9)

where FP is the number of false positives (normal discs diagnosed as herniated),
TP is the number of true positives (correctly diagnosed herniated discs), FN is the
number of false negatives (misclassified herniated discs), and TN is the number
of true negatives (correctly classified normal discs). Table 2 shows another cross
validation experiment with 15 randomly selected cases for 10 rounds. This makes
15 × 6 (discs) × 10 (rounds) = 900 discs total (including repetitions). Within this
cross validation experiment, there is a total of 78 misclassified discs: 25 herniated
(false negatives) and 53 normal (false positives) as shown in Table 2. We archive an
overall specificity over 92 % and sensitivity over 87 %.
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Table 2 Calculation of specificity (96.6 %) and sensitivity (86.4 %)

Gold standard Normal
Herniated

Result Herniated 170 (TP) 53 (FP)
Normal 25 (FN) 652 (TN)

(a)

(b)

Fig. 6 Resulting ASM convergence and GVF-snake delineation for two normal cases and two
abnormal ones

Figure 6 shows four examples from our dataset. It shows the convergence of the
ASM point distribution (red dots and the linear connections) as well as the GVF-
snake delineation (yellow curve). On the other hand, we compare our classification
results to a Bayesian classifier that only models the disc appearance to show the
effectiveness of modeling the shape. We run the same experiment with the same
cases of Table 2 and obtain around 80 % average classification accuracy. We justify
that by the fact that despite Herniated discs produce lower intensity levels; in general,
the difference in intensity with the normal disc is not enough to classify herniated and
normal discs. However, a Bayesian intensity-based classifier can be useful for other
diseases such as disc desiccation [20]. Figure 6c shows a sample Herniated disc,
with high intensity value, that was misclassified by the intensity-based classifier but
correctly classified with our shape-based classifier.

4 Conclusion

We proposed a method for herniation diagnosis from lumbar area clinical MRI. We
utilize a coordinated active shape and a gradient vector flow active contour models
to extract shape features for detection of herniation. We use a Bayesian classifier and
utilize a Gibbs-based distribution with shape potentials. We validate our method on
a set of sixty five clinical MRI cases. We achieve an average of 93.9 % classification
accuracy with specificity 96.6 % and sensitivity of 86.4 %. We also compared our
results with the two state-of-the-art work and substantially outperform both of them
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due to our features that encompass the benefits of both works into a more robust
classification model.
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Abstract The widespread use of CT imaging and the critical importance of early
detection of epidural masses of the spinal canal generate a scenario ideal for the
implementation of a computer-aided detection (CAD) system. Epidural masses can
lead to paralysis, incontinence and loss of neurological function if not promptly
detected. We present, to our knowledge, the first CAD system to detect epidural
masses on CT. In this paper, global intensity and local spatial features are modeled as
spatially constrained Gaussian Mixture Model (CGMM) for epidural mass detection.
The Cross-validation on 23 patients with epidural masses on body CT showed that the
CGMM yielded a marked improvement of performance (69 % at 8.6 false positives
per patient) over an intensity based K-means method (46 % at 7.9 false-positives per
patient).
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Fig. 1 Masses encroaching on epidural space of the spinal canal. Mass results in spinal stenosis
and, atleast in (a, b), spinal cord compression. Epidural components of the masses are demarcated
with yellow dots. a, b Osteolytic lesions can extend into epidural space. c, d Neural foramina,
indicated by an arrow, can serve as another avenue for canal invasion

1 Introduction

Masses in the epidural space of the spinal canal can cause discomfort, pain and even
paralysis by compressing the spinal cord and nerve roots. Moreover, the presence of
an epidural mass within the spinal canal is a strong predictor of metastatic disease.
A retrospective study of 337 patients at the Mayo Clinic, for instance, revealed that
20 % of all cases of spinal epidural metastases presented as the initial manifestations
of malignancy [1]. Given the importance that early indicators of malignant cancers
hold in the radiology community, the absence of a body of work on computer aided
detection (CAD) of spinal canal lesions within the intradural and extradural space is
quite surprising.

A CAD system designed to detect epidural masses within the constraints of the
CT modality could prove invaluable. While confirmation of epidural tumors is almost
always made using magnetic resonance imaging (MRI), due to its higher anatomic
resolution and sensitivity to alterations of the central nervous system tissue, most
patients will have received an examination using CT images. CT imaging remains
the most prevalent radiologic modality as it is rapid (current generation can take
less than 1 min), cost-effective, and can image over a large body area, effectively
localizing many types of soft tissue tumors [2]. Automated detection of an epidural
mass is very challenging because of its low contrast to normal soft tissue in the
spinal canal. Even a radiologist may fail to detect an epidural mass in CT scan,
especially when the patient is being examined for unrelated complications. Figure 1
shows examples of masses that are far more subtle in the CT scan and detectable as
a slightly hyper-attenuating region when the image is viewed using an appropriate
soft-tissue window width and level. In fact, the patient cohort examined in this study
had an MRI confirming the presence of an epidural mass nearly a month after the
mass was detectable on a CT scan, a duration that could drastically affect patient
outcome when concerning progressive disease.

A vast majority of tumors that encroach on the epidural spaces originate from
the intravertebral foramina or the vertebral bodies surrounding the spinal canal [3].
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Fig. 2 Workflow

In other words, the masses always extend contiguously from the radiopaque bony
regions of the spine into the soft tissue and can be discriminated as an intermediate
tissue existing between bone and soft tissue. In this work, these spatial constraints
are incorporated into conventional intensity based Gaussian mixture model (GMM)
as a spatially-constrained Gaussian mixture model (CGMM) [4] for epidural mass
detection. A large number of Gaussians is used per tissue in the spinal canal to capture
the local spatial feature. The intensity of a tissue is considered a global feature and
is modeled by parameters linking all associated Gaussians.

2 Methods

Our method involves the segmentation of the spinal canal and vertebral components
of the spine, expansion and refinement of the spinal canal, a mass candidate detec-
tion phase, and feature computation and selection phase for support vector machine
(SVM) classification. Within the detection phase of the protocol, intensity based
K-means clustering is used for initial classification of tissues in the spinal canal,
including the epidural masses. Then a CGMM framework is implemented to refine
the tissue classification for accurate mass detection. Figure 2 shows the workflow of
our procedure.

2.1 Region of Interest Detection

Segmentation of the spinal canal proceeded first with whole spine segmentation,
using the watershed algorithm followed by a directed graph search [5]. A four-part
vertebra model was then used to locate the vertebral bodies, spinous processes, and
left/right transverse processes, with rib structures used to separate vertebral segments.
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Fig. 3 Epidural mass (a) is not included in initial segmentation of the spinal canal (b), but is
included in modified canal segmentation (c)

Curved planar reformations were then employed to segment the spinal canal, using
the centerline as a backbone [5]. One example of segmented spinal canal is shown
in Fig. 3b.

The segmentation of the spinal canal, however, suffers from the ambiguity in
discriminating between hyper-attenuating bony and spinal lesion regions within the
canal. As a result, many cases under-segment the region of interest within which we
expect to detect epidural masses. To contend with this complication, we modified
the initial segmentation of the spinal canal by dilating (by 7 mm), thresholding (by
250 HU), and performing connect component analysis to extend the segmentation so
that it encompasses the epidural masses. The expansion is demonstrated in Fig. 3c.
Expansion of the canal ensured hyperintense masses were included within our search
region as were the intravertebral foraminae, which often serves as a source point for
epidural masses [3].

2.2 K-Means Clustering for Initial Classification

Classification by clustering the intensities of the voxels within the region of interest
into k = 5 different classes, or K-Means clustering, makes full use of our prior under-
standing of the arrangements of constituent tissues of the spinal canal. Selecting four
different classes allowed us to delineate classes representative of normal intradural
soft tissue, hypo-attenuating fatty tissue and vasculature [3], epidural masses, and
the partial volume between the bone and soft tissue. An additional fifth class was
included to contain bony voxels that had not been successfully removed.

2.3 CGMM for Tissue Classification Refinement

The CGMM framework was modified from a method [4] employed to detect multiple
sclerosis lesions from MRI images of the brain. To accommodate the spatial feature,
we model an image as if its voxels were drawn independently from a mixture of
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many Gaussians:

f (x, I (x)) =
n∑

i=1

αi fi (x, I (x)|μi ,Σi ) (1)

where x is the 3D position information included in the spatial vector (spatial para-
meters), I (x) is the intensity vector (intensity parameters) associated with the voxel
in position x , n is the number of Gaussians components in the mixture model, μi and
Σi are the mean and the covariance of the i th Gaussian components fi , and αi is
the i th mixture coefficient. The spatial feature is incorporated into the probabilistic
model. Each Gaussian component in the CGMM represents a probabilistic model for
a specific small area in the CT image, therefore n ∈ k. Each Gaussian component
is linked to a single tissue class and all the Gaussian components related to the same
tissue class share the same intensity parameters. Assuming the intensity and spatial
features are uncorrelated, we have

μi =
(

μx
i

μI
π(i)

)
,Σi =

(
Σ x

i 0
0 Σ I

π(i)

)
(2)

π(i) is the tissue that is linked to the i th Gaussian component, μx
i and Σ x

i are the
spatial mean and covariance of the i th Gaussian component, and μI

π(i) and Σ I
π(i)

are intensity mean and variance of class π(1 ∀ π ∀ 5) to which the i th Gaussian
component belongs. Therefore, the Gaussian component fi can be writte as:

f (x, I (x)) =
n∑

i=1

αiN (x;μx
i ,Σ x

i ) × N (I (x);μI
π(i), Σ

I
π(i)) (3)

The main advantage of the CGMM is to combine local spatial features with
a global intensity feature, which makes the CGMM much more robust to noise
than intensity based methods. The five tissue classes generated from the K-Means
clustering served as the initialization for our CGMM framework. Small clusters(<20
voxels) were defined as under-representative of the associated tissue class. From the
remaining clusters, 1/20 voxels were selected as center of Gaussian components
in Eq. (1). Each voxel within the cluster was then linked to its nearest Gaussian
center. The component coefficient αi was then initialized as the number of voxels
in i th Gaussian component divided by the total number of voxels of all n Gaussian
components.

The spatial and intensity parameters were then recalculated using the Expectation-
Maximization (EM) algorithm. As explicated by Freifeld et al. [4], the parameters are
retrieved by iterating through an expectation step followed by a maximization step.
Within the expectation step, an initial prediction of the parameters (starting with
the initialization provided from the five tissue classes generated by the K-means
clustering) is made. The posterior probability of a voxel t [4], originating from the
i th Gaussian component, is given by
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p(i |xt , I (xt )) = αi fi (x, I (x)|μi ,Σi )∑n
j=1αi f j (x, I (x)|μ j ,Σ j )

i = 1:n, t = 1(number of voxels)

(4)
The posterior probability is then used to re-estimate the means, covariance matri-

ces, and component coefficients in the maximization step:

ni =
T∑

t=1

p(i |xt , I (xt )) i = 1:n, (5)

k j =
∑

i |π(i)= j

ni j = 1:5

αi = ni/(total number of voxels)

where ni and k j represent the expected number of voxels associated with the i th
mixture component and the kth tissue (1 ∀ k ∀ 5).

Means:

μx
i = 1

ni

T∑
t=1

p(i |xt , I (xt ))xt , (6)

μI
j = 1

k j

∑
i |π(i)= j

T∑
t=1

p(i |xt , I (xt ))I (xt )

Covariance Matrices:

Σ x
i = 1

ni

T∑
t=1

p(i |xt , I (xt ))(xt − μx
i )(xt − μx

i )
T
, (7)

Σ I
j = 1

k j

∑
i |π(i)= j

T∑
t=1

p(i |xt , I (xt ))(I (xt ) − μI
j )(I (xt ) − μI

j )
T

After applying EM for estimation of the spatial and intensity parameters of each
Gaussian, a Maximum-A-Posteriori (MAP) criterion was used to return label L for
each voxel t [4]:

Lt = arg max
j

∑
i |π(i)= j

αi fi (x, I (x)|μi ,Σi ) (8)

As a result, five new tissue classes are generated. Figure 4 shows the classifi-
cation by K-mean and CGMM. The detected epidural masses are used for feature
computation and false positive reduction.
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Fig. 4 Example of 5-tissue classification. a, d Epidural masses were confirmed on MRI and demar-
cated in CT images by radiologists. b, e K-Means clustering result (note 3 classes visible on images:
soft tissue in brown; fat in yellow; epidural mass in blue). c, f CGMM-refined tissue classes, empha-
sizing large spatially confined components such as epidural masses

2.4 Feature Extraction and SVM

A comprehensive collection of texture features from the mass detections were com-
puted in this work. Haralick Gray-Level Co-occurrence Matrix (GLCM) features
[6] are widely used for analyzing image texture. The co-occurrence matrix stores
the co-occurrence frequencies of the pairs of gray levels, which are configured by
different distances and directions. We calculated the co-occurrence matrices for 4
offset distances and 13 directions on multiple planes, yielding 52 matrices for each
mass detection. We then calculated 12 features from the matrix, including energy,
entropy, correlation, contrast, variance, sum of mean, inertia, cluster shade, clus-
ter tendency, homogeneity, maximal probability, and inverse variance. Thus, each
detected mass has 624 Haralick GLCM features.We also extracted the volume of the
masses, histograms of oriented gradients and local binary patterns features. Finally,
an SVM committee [7] is employed to reduce false-positive detections. The method
involved bootstrap aggregation of features into several SVM committees to improve
on selection of features and avoid overfitting.



106 S. Pattanaik et al.

Fig. 5 10-fold cross validation FROC of three methods

3 Results

The patient population consisted of patients who received a chest, abdomen, and
pelvis CT scan within 1 month before or after receiving an MRI confirming the
presence of an epidural mass. A cohort of 23 patients, with a total of 54 epidural
masses confirmed as visible in the CT images by radiologists, were examined in this
study. The inter-slice spacing was 5 mm, and the voxel spacing within an axial slice
was in the range 0.7–0.9 mm.The detected epidural mass was marked as true-positive
if constituent voxels were within 10 mm of the epidural mass centroids demarcated
as ground truth by a radiologist.

The detection performance was evaluated using ten-fold cross-validation. The
free response receiver operating characteristic (FROC) curves of the detection per-
formance are shown in Fig. 5. For example, we get a sensitivity of 46 % with 7.9
false positive per patient on average for K-means method. We achieve a sensitivity of
69 % with 8.6 false positives per patient on average for the CGMM method. The dif-
ference in the methods was statistically significant (p = 0.02) at the aforementioned
operating points as determined using Fischer’s exact test [8]. By contrast,the results
from an existing Hidden Markov Random Fields (HMRF) method [9], which also
incorporates spatial context information, is similar to the K-means method. Figure 6
shows examples of true and false positive, false negative detections. Of the three
masses that were missed in our study, two of them appeared near the sacrum, where
the spinal canal segmentation was arrested. The other was a large lytic lesion that
spanned much of the intervertebral surface and extended to the mediastinum, dis-
rupting the spine segmentation. A large number of false positive cases were located
around the dorsal surface of the spinal canal, in a hyperattenuating channel within
the vertebral body. This region contains the basivertebral vein [10], contributing to
erroneous detection in the CAD.
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Fig. 6 Examples of detections. a Result from CGMM of one patient (TP in blue; FP in red). Axial
slices of b TP, c FP, and d FN (arrow) from several patients

4 Discussion

Our study reveals that K-Means clustering coupled with refinement CGMM is a
viable preliminary approach to the detection of epidural masses in the CT imaging
modality. This work illustrates the importance of considering spatial context in spe-
cific CAD problems, especially when the context can be mapped onto anatomically
distinct tissues. We plan to explore how performance improves when using a much
more informed prior for the spatial distribution of tissues. The epidural masses con-
sidered in this study all extend from the boundary of the spinal canal, a fact that could
be used to improve the segmentation. Once segmentation of the masses is refined
shape context information (such as sphericity) may be extracted to improve the per-
formance of CAD. This could require implementation of curve-fitting algorithms
attuned to the unique challenges posed by the difficulty of distinguishing epidural
masses from soft tissue or bone. Lastly, stratification of CAD performance as it cor-
relates with type of mass (if confirmed by biopsy) or degree of invasion or stenosis
induced by the mass could lend unique insight into necessary modifications for a
generalization of the system.
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Comparison of Manual and Computerized
Measurements of Sagittal Vertebral
Inclination in MR Images

Tomaž Vrtovec, Franjo Pernuš and Boštjan Likar

Abstract In this study, sagittal vertebral inclination (SVI) was systematically
measured by three observers for 28 vertebrae (T4-L5) from one normal and one
scoliotic magnetic resonance (MR) spine image using six manual and two computer-
ized measurements. Manual measurements were performed by superior and inferior
tangents, anterior and posterior tangents, and mid-endplate and mid-wall lines. Com-
puterized measurements were performed by automatically evaluating the symmetry
of vertebral anatomy in sagittal cross-sections and volumetric images. The mid-wall
lines were the manual measurements with the lowest intra- and inter-observer vari-
ability (1.4◦and 1.9◦standard deviation, SD). The strongest inter-method agreement
was found between the mid-wall lines and posterior tangents (2.0◦SD). Computerized
measurements did not yield intra- and inter-observer variability (2.8◦and 3.8◦SD) as
low as the mid-wall lines, but were still comparable to the intra- and inter-observer
variability of the superior (2.6◦and 3.7◦SD) and inferior (3.2◦and 4.5◦SD) tangents.

1 Introduction

Spinal deformities are manifested in an altered orientation of vertebrae that can occur
in sagittal, coronal and/or axial plane. Sagittal vertebral inclination (SVI) is the rota-
tion of a vertebra projected onto the sagittal plane and is represented by kyphotic and
lordotic spinal curvatures. A number of methods were proposed for its measurement
in the form of sagittal spinal curvature, i.e. along multiple vertebrae [1–4], however,

T. Vrtovec (B) · F. Pernuš · B. Likar
Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25,
SI-1000 Ljubljana, Slovenia
e-mail: tomaz.vrtovec@fe.uni-lj.si

F. Pernuš
e-mail: franjo.pernus@fe.uni-lj.si

B. Likar
e-mail: bostjan.likar@fe.uni-lj.si

J. Yao et al. (eds.), Computational Methods and Clinical Applications 111
for Spine Imaging, Lecture Notes in Computational Vision and Biomechanics 17,
DOI: 10.1007/978-3-319-07269-2_10, © Springer International Publishing Switzerland 2014



112 T. Vrtovec et al.

not all of them can be used to measure the sagittal inclination in the form of segmen-
tal vertebral angulation, i.e. for a single vertebra [5–8]. The inclination of superior
and inferior vertebral endplates was proposed by Cobb [5] to measure the severity of
scoliosis in coronal radiographs, and later adapted to measure SVI in sagittal radi-
ographs. However, the “modified” Cobb angle measurements are strongly affected
by endplate architecture [9], vertebral body shape [10] and deformities in the coronal
plane [11]. Alternatively, measuring the inclination of vertebral body walls resulted
in posterior [7] and anterior [8] tangents. A number of systematic analyses were
performed to define reference SVI in normal spines [8, 12–14]. Stagnara et al. [12]
concluded that “normal” sagittal curves do not exist, as the range of SVI in normal
subjects was considerably large. Bernhardt and Bridwell [13] proposed to use ranges
of inclination instead of mean values. Korovessis et al. [14] showed that thoracic
kyphosis increases with age, whereas lumbar lordosis starts to decrease after the sev-
enth decade of life. Schuler et al. [8] compared manual and computer-assisted mea-
surements of SVI using seven different measurements on 10 radiographs of L4/L5
and L5/S1 segments. The manual and computer-assisted measurements proved to
be equivalent in terms of variability, the Cobb angle and posterior tangents were
the least variable, and the anterior tangents were the most reliable measurements.
Street et al. [15] evaluated the reliability of measuring kyphosis manually from dif-
ferent imaging modalities in the case of thoracolumbar fractures. For the Cobb angle
measurements, they concluded that plain radiographs were the most reliable mea-
surement modality, followed by computed tomography (CT) and finally by magnetic
resonance (MR) imaging.

In the above mentioned studies, the measurements were performed in two-
dimensional (2D) sagittal radiographs. Over the past years, MR has gained accep-
tance in spine imaging by providing high-quality three-dimensional (3D) images by
a correct selection of imaging parameters. When compared to plain radiography or
CT, MR is associated with higher costs and not suitable for imaging subjects with
metal implants as they cause distortions in the acquired images, however, it does not
deliver ionizing radiation to the patients. When MR is available or required, additional
imaging can be therefore avoided to contain costs and limit exposure to unnecessary
ionizing radiation. As a result, MR images of the spine were already used to measure
various vertebral parameters [15–22]. A number of methods were proposed to mea-
sure SVI in lateral radiographic projections, but the variability of SVI measurements
in MR images has not been investigated yet. The purpose of this study is therefore
to systematically analyze the variability of manual and computerized measurements
of SVI in MR images.

2 Methodology

2.1 Manual Measurements

The following six manual measurements were used to evaluate SVI (Fig. 1). The
superior and inferior tangents represent the Cobb method [5] at the superior and
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Fig. 1 The corners of the vertebral body (points A, B, C and D) in the sagittal view define the
manual measurements of sagittal vertebral inclination (SVI)

inferior vertebral endplate, respectively. The anterior [8] and posterior tangents [7]
represent the inclination of the anterior and posterior vertebral body wall, respec-
tively. The mid-endplate and mid-wall lines are defined between the central points
of the anterior and posterior vertebral body walls, and between the central points
of the superior and inferior vertebral endplates, respectively. Each MR image was
visualized by a specially developed computer program that allowed the observer
to manually identify the vertebral centroid in 3D, and the coronal and axial verte-
bral rotation to extract a 2D oblique sagittal cross-section from the 3D image. In
the oblique sagittal cross-section, the observer then manually identified the corners
of each vertebral body that were used to determine the angles ωx of SVI, measured
against reference horizontal or vertical lines that are parallel to the coordinate system
of the 3D image.

2.2 Computerized Measurements

Computerized measurements of SVI were performed by a method that determines
vertebral rotation in 3D [23]. The rotation of a vertebra in a 3D image can be repre-
sented by the angles ω = (ωx , ωy, ωz) of rotation of the local vertebral coordinate
system V (defined by Cartesian unit vectors eVx , eVy and eVz ) around the axes of
the global image coordinate system I (defined by Cartesian unit vectors eIx , eIy and
eIz ). Both V and I are right-hand Cartesian coordinate systems, representing left-to-
right (x-axis), anterior-to-posterior (y-axis) and cranial-to-caudal (z-axis) direction.
The angles ωx (i.e. SVI), ωy (i.e. coronal vertebral inclination) and ωz (i.e. axial
vertebral rotation) then represent the rotation of the vertebral coordinate system V
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Fig. 2 a Example of symmetrical anatomical correspondence in anterior/posterior direction (Sy),
shown for a symmetrical pair of points pAi and pBi inside VOI2. b The vertebral coordinate system
V and the observed volumes of interest (VOI1 encompasses the whole vertebra, VOI2 encompasses
the vertebral body)

around vectors eIx (pitch), eIy (roll) and eIz (yaw), respectively. If the origin of V
is located at the vertebral centroid and V is rotationally aligned with the vertebra
in I , anatomically corresponding symmetrical parts of the vertebra can be observed
within volumes of interest (VOIs) along positive/negative directions of each axis eVj ,
j = x, y, z. The angles ω of vertebral rotation can be therefore determined by finding
the planes of maximal symmetry, which divide the whole vertebra into symmetrical
left/right (±eVx ) halves, and the vertebral body into symmetrical anterior/posterior
(±eVy ) and cranial/caudal (±eVz ) halves. For each axis eVj , j = x, y, z, the sym-
metrical correspondences of the two halves (A and B) of a VOI are measured by
S j (VOI):

S j (VOI) =
∑N

i=1

∣∣vAi

∣∣ · ∣∣vBi

∣∣· f∑N
i=1

∣∣vAi

∣∣· ∑N
i=1

∣∣vBi

∣∣ ; f =
{

1; vAi ·vBi < 0
0; otherwise,

(1)

where f is the weighting function, and vAi and vBi are the projections of the inten-
sity gradient vectors gAi and gBi in the coordinate system I to the unit vector eVj ,
j = x, y, z, of the coordinate system V at symmetrical pair of points pAi and pBi ,
respectively, and N is the number of point pairs inside each VOI (Fig. 2a). By project-
ing the gradient vectors to eVj , j = x, y, z, and by applying the weighting function f ,
we retain the gradient components vAi and vBi that are relevant for defining the ver-
tebral symmetry in the direction of eVj . Two variations of the computerized method
were applied for each vertebra. The measurements in 3D automatically evaluated the
vertebral rotation in 3D images by maximizing symmetrical correspondences:

ω∗
x = arg

ωx

(
ω

); ω∗ = arg max
ω

(
Sx (VOI1) + Sy(VOI2) + Sz(VOI2)

)
, (2)
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Fig. 3 An illustration of the computerized search for the coronal (anterior/posterior) and axial
(cranial/caudal) planes of maximal symmetry, which define the sagittal vertebral inclination (SVI),
in a 2D oblique sagittal MR cross-section of the L1 vertebra

where the VOI that encompasses the whole vertebra is denoted by VOI1, and the VOI
that encompasses the vertebral body is denoted by VOI2 (Fig. 2b). On the other hand,
the measurements in 2D automatically evaluated SVI in the same 2D oblique sagittal
cross-sections that were used for manual measurements (Fig. 3) by considering only
VOI2 that encompasses the vertebral body and reducing its dimensionality to the
area of interest (AOI), and maximizing the remaining symmetrical correspondences:

ω∗
x = arg max

ω∗
x

(
Sy(AOI) + Sz(AOI)

)
. (3)

The planes of symmetry are first manually initialized so that they are parallel to the
3D axes of the MR image, centered in the vertebral centroid in 3D, and 50 mm in size
to encompass the whole vertebral body of thoracic and lumbar segments. By rotating
these planes in 3D, the rotation angles ω∗

x are obtained from the inclination of the
planes, and the current symmetrical correspondences are evaluated by mirroring the
edges of vertebral anatomical structures (obtained from image intensity gradients)
over each plane and comparing them to the edges on the opposite side of that plane
in an optimization procedure.

3 Experiments and Results

3.1 Images and Observers

A total of n = 28 vertebrae between segments T4 and L5 from one normal
(28-year male, 1◦ frontal Cobb angle) and one scoliotic (25-year male, 14◦ frontal
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Table 1 Intra-observer variability for observers 1, 2 and 3, and inter-observer variability for
observer pairs 1-2, 1-3 and 2-3 when performing or initializing sagittal vertebral inclination (SVI)
measurements, reported as standard deviations (SD, in degrees)

Method Intra-observer SD Inter-observer SD
1 2 3 Mean 1-2 1-3 2-3 Mean

Superior tangents 3.1 2.1 2.5 2.6 3.4 3.8 3.9 3.7
Inferior tangents 4.3 2.2 2.6 3.2 4.8 4.7 3.9 4.5
Anterior tangents 2.1 1.4 2.6 2.1 2.5 3.2 2.9 2.9
Posterior tangents 1.8 1.1 2.0 1.7 2.3 2.7 2.3 2.4
Mid-endplate lines 2.1 1.5 1.4 1.7 2.8 2.7 2.9 2.8
Mid-wall lines 1.3 1.0 1.8 1.4 1.7 2.1 2.0 1.9
Computerized (2D) 2.0 1.4 4.1 2.8 2.2 4.4 4.3 3.8
Computerized (3D) 3.4 4.1 1.1 3.1 5.8 5.5 4.2 5.2

Cobb angle) spine image were included in this study. The T2-weighted MR scans
(mean repetition and echo time TR = 4, 560 ms and TE = 102 ms, matrix size
512 × 512, field of view 200 × 200 mm2, slice thickness 3 mm) were acquired by
a spine array coil with a 1.5 T Signa Excite MR Scanner (GE Healthcare, Mil-
waukee, WI, USA). Three observers with different experience in medical imaging
and orthopedic surgery (observer 1: a postgraduate biomedical engineering student,
observer 2: a medical imaging researcher, observer 3: a spine surgeon) independently
performed two series of measurements that were 2 weeks apart.

3.2 Results

The intra-observer variability in terms of standard deviation (SD) of observers 1,
2 and 3 was 2.6◦, 1.6◦ and 2.2◦, respectively, for manual measurements, and 2.8◦,
3.1◦ and 3.0◦, respectively, for computerized measurements (Table 1). The overall
intra-observer variability was therefore estimated to 2.1◦for manual and 3.0◦for com-
puterized measurements. There were no statistically significant differences between
the first and second series of measurements for each observer (p > 0.49; independent-
samples t-test with the level of significance α = 0.05). The inter-observer variability
in terms of SD of observer pairs 1-2, 1-3 and 2-3 was 3.1◦, 3.3◦and 3.1◦, respectively,
for manual measurements, and 4.4◦, 5.0◦ and 4.3◦, respectively, for computerized
measurements (Table 1). The overall inter-observer variability was therefore esti-
mated to 3.2◦ for manual and 4.6◦ for computerized measurements. There were no
statistically significant differences between the measurements for each observer pair
(p > 0.63; independent-samples t-test with the level of significance α = 0.05). The
comparison of SVI measurements is, in terms of agreement and difference between
each pair of measurements, presented in Table 2, which also reports the obtained
statistically significant differences between the measurement methods.
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Table 2 Inter-method variability (lower-left in normal text) and difference (upper-right in bold text)
of sagittal vertebral inclination (SVI) measurements, reported respectively as standard deviations
(SD) and mean absolute differences (MAD) of the measured angles (in degrees)

Superior Inferior Anterior Posterior Mid-end- Mid-wall Computer- Computer-
tangents tangents tangents tangents plate lines lines ized (2D) ized (3D)

Superior
tangents

× 3.5 3.2† 2.0 1.8 2.2 3.8‡ 4.5

Inferior
tangents

5.9 × 4.1† 4.1 1.7 3.9† 4.2‡ 4.0

Anterior
tangents

3.4† 4.8† × 2.5 3.2† 1.3 2.9 3.5

Posterior
tangents

3.1 6.1 3.2 × 2.8 1.3 2.8† 4.1

Mid-
endplate
lines

3.5 3.7 2.9† 3.8 × 2.7† 3.7† 3.7

Mid-wall
lines

2.9 5.2† 2.1 2.0 3.0† × 2.6 3.4

Computer-
ized (2D)

4.7‡ 6.3‡ 4.7 4.5† 4.7† 4.4 × 3.9

Computer-
ized (3D)

6.3 7.3 6.0 5.9 6.1 5.8 5.8 ×

† p < 0.05; ‡ p < 0.001

4 Discussion

4.1 Manual Measurements

For manual SVI measurements, the intra-observer variability was in general higher
for observer 1 than for observers 2 and 3, while the inter-observer variability was in
general lower for observer pair 1-2 than for observer pairs 1-3 and 2-3. Such results
indicate that both clinical and imaging experience may be important for achieving
reproducible measurements, while imaging experience may be important for achiev-
ing reliable measurements. The mid-wall lines proved to be the most reproducible and
also the most reliable manual measurements (SD of 1.4◦and 1.9◦, respectively), fol-
lowed by the posterior tangents (SD of 1.7◦and 2.4◦, respectively) and mid-endplate
lines (SD of 1.7◦and 2.8◦, respectively). However, such results may be biased by the
fact that the mid-wall and mid-endplate lines are determined by all identified points
(i.e. the four corners of vertebral body). On the other hand, the relatively high repro-
ducibility and reliability of the posterior tangents indicate that the posterior corners
of the vertebral body may be identified more accurately than the anterior corners.
The least repeatable and reliable manual measurements were the superior tangents
(SD of 2.6◦and 3.7◦, respectively) and inferior tangents (SD of 3.2◦and 4.5◦, respec-
tively). It was already shown that endplate architecture [9], vertebral body shape [10]
and deformities in the coronal plane [11] can affect these measurements. In a recent
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evaluation of the same six manual measurements performed in CT images [24], it was
reported that the mid-wall lines are also the most reproducible (1.0◦SD) and reliable
(1.4◦ SD), while the superior and inferior tangents are also the least reproducible
(1.8◦and 1.5◦SD, respectively) and reliable (2.5◦and 2.0◦SD, respectively) manual
measurements. These findings indicate that, although the variability was lower for
CT images, the performance of a specific measurement is not considerably affected
if measurements are obtained from MR or CT images.

4.2 Computerized Measurements

For computerized SVI measurements, the intra-observer and inter-observer vari-
ability of the measurements in 2D (SD of 2.8◦ and 3.8◦, respectively) and of the
measurements in 3D (SD of 3.1◦ and 5.2◦, respectively) were in general as high as
for the least repeatable and reliable manual measurements. Although computerized
measurements in general provide more accurate and less variable results, the present
study shows that such properties were not achieved when measuring SVI in MR
images by the applied computerized method [23]. On the other hand, measurements
in CT images [24] resulted in relatively low intra-observer and inter-observer vari-
ability (0.9◦ and 1.6◦ SD, respectively, for the measurements in 2D), which may be
induced by the fact that the edges of bone structures can be extracted more accurately
from CT than from MR images. Higher variability of the computerized measurements
in 3D may originate from the fact that the measurements in 3D are more computa-
tionally demanding and error-prone than the measurements in 2D, as three rotation
angles are simultaneously evaluated in 3D compared to the evaluation of only one
rotation angle in 2D. However, the measurements in 2D had to be initialized in the
manually identified vertebral centroids in 3D with known coronal and axial verte-
bral rotation, while the initialization of the measurements in 3D required only the
vertebral centroids in 3D, which represents a considerable reduction in the effort of
the observers.

4.3 Comparison of Measurements

Among manual measurements, the highest agreement was found between the mid-
wall lines and posterior tangents (2.0◦SD and 1.3◦MAD), and between the mid-wall
lines and anterior tangents (2.1◦SD and 1.3◦MAD). Such findings are not surprising,
since the mid-wall lines represent a compromise between the anterior and posterior
tangents, however, the agreement between the latter was lower (3.2◦ SD and 2.5◦
MAD). Although mid-endplate lines represent a compromise between the superior
and inferior tangents, the agreement between the mid-endplate lines and superior tan-
gents (3.5◦SD and 1.8◦MAD), between the mid-endplate lines and inferior tangents
(3.7◦SD and 1.7◦MAD), and between the superior and inferior tangents (5.9◦SD and
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3.5◦MAD) was considerably lower, which confirms that vertebral endplates represent
unreliable anatomical references [9–11]. When comparing manual to computerized
measurements, the strongest agreement was observed between the computerized
measurements in 2D and mid-wall lines (4.4◦ SD and 2.6◦ MAD), and between the
computerized measurements in 2D and posterior tangents (4.5◦ SD and 2.8◦ MAD).
The agreement between manual measurements and the computerized measurements
in 3D was in general lower. Similar findings were obtained in the study of SVI in
CT images [24], where the computerized measurements were most consistent with
lines parallel to vertebral body walls (i.e. anterior tangents, posterior tangents and
mid-wall lines). However, manual and computerized measurements were based on
completely different principles (i.e. the location of distinctive anatomical points vs.
the symmetry of anatomical structures), and none can be assumed to represent the
reference SVI.

4.4 Statistical Evaluation

The main limitation of the performed study is that the number of vertebrae for which
SVI was evaluated is relatively low. Considering the obtained variabilities in the form
of SD, the sample size n = 28 and the level of significance α = 0.05 with the corre-
sponding standard score zα/2 = 1.96 that returns the probability P(z > 1.96)= α/2,
it can be assumed with 95 % confidence that the mean difference of the sample
is within ±E of the mean difference of the population, where E = SD · zα/2/

√
n.

By considering that the difference of E = ±1◦ is practically acceptable, the given
sample size results in the SD of 2.7◦. As is can be observed from Tables 1 and 2,
the obtained SDs are sometimes below, but in general above 2.7◦, meaning that a
larger sample size would be required for the desired mean difference of the sample.
However, the measurements were acquired as part of a larger study of vertebral rota-
tion in 3D, where besides SVI, also coronal vertebral inclination and axial vertebral
rotation were systematically evaluated in MR [21, 22] and CT [24, 25] images. As
manual measurements were relatively time-consuming, the number of vertebrae was
therefore limited so that the observers could perform each series of measurements
at once, i.e. without breaks that could bias their measurement strategy or judgment.
The current results may be therefore interpreted as a pilot study that is useful to
obtain an estimation of the SD of the measurements. Therefore, if the SD for SVI
measurement in MR images is around 5◦, the adequate sample size is around 100,
which can be regarded as a guideline for future work.

5 Conclusion

In conclusion, SVI was evaluated in MR images using six manual and two computer-
ized measurements. The mid-wall lines, defined by four distinct anatomical points,
proved to be the manual measurements with the lowest intra- and inter-observer
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variability. Posterior tangents yielded similar results and, as defined by only two
points, they may represent an easier alternative for the observers. In addition, the
lowest inter-method variability was found between the mid-wall lines and posterior
tangents. Computerized measurements, based on the evaluation of vertebral symme-
try in 2D and in 3D, did not yield variability as low as the mid-wall lines or posterior
tangents, but were still comparable to the superior and inferior tangents, i.e. to the
standard Cobb angle measurements. It can be therefore concluded that for manual
measurements, the evaluation of SVI in MR images should be based on the incli-
nation of vertebral body walls and not vertebral endplates, while for computerized
measurements, the evaluation of the symmetry of vertebral anatomical structures is
in its current application form not the best choice to evaluate SVI in MR images.

Acknowledgments This work has been supported by the Slovenian Research Agency under grants
P2-0232, J7-2264, L2-7381, and L2-2023. The authors thank R. Vengust (University Medical Cen-
tre Ljubljana, Slovenia) and D. Štern (University of Ljubljana, Slovenia) for performing manual
measurements.

References

1. Singer, K., Edmondston, S., Day, R., Breidahl, W.: Computer-assisted curvature assessment
and Cobb angle determination of the thoracic kyphosis: an in vivo and in vitro comparison.
Spine 19(12), 1381–1384 (1994)

2. Chernukha, K., Daffner, R., Reigel, D.: Lumbar lordosis measurement: a new method versus
Cobb technique. Spine 23(1), 74–79 (1998)

3. Harrison, D., Cailliet, R., Janik, T., Troyanovich, S., Harrison, D., Holland, B.: Elliptical mod-
eling of the sagittal lumbar lordosis and segmental rotation angles as a method to discriminate
between normal and low back pain subjects. J. Spinal Disord. 11(5), 430–439 (1998)

4. Chen, Y.L.: Vertebral centroid measurement of lumbar lordosis compared with the Cobb tech-
nique. Spine 24(17), 1786–1790 (1999)

5. Cobb, J.: Outline for the study of scoliosis. Am. Acad. Orthop. Surg. Instr. Course Lectur. 5,
261–275 (1948)

6. Gore, D., Sepic, S., Gardner, G.: Roentgenographic findings of the cervical spine in asymp-
tomatic people. Spine 11(6), 521–524 (1986)

7. Harrison, D., Janik, T., Troyanovich, S., Holland, B.: Comparisons of lordotic cervical spine
curvatures to a theoretical ideal model of the static sagittal cervical spine. Spine 21(6), 667–675
(1996)

8. Schuler, T., Subach, B., Branch, C., Foley, K., Burkus, J.: Lumbar spine study group: seg-
mental lumbar lordosis: manual versus computer-assisted measurement using seven different
techniques. J. Spinal Disord. Tech. 17(5), 372–379 (2004)

9. Polly, D., Kilkelly, F., McHale, K., Asplund, L., Mulligan, M., Chang, A.: Measurement of
lumbar lordosis: evaluation of intraobserver, interobserver, and technique variability. Spine
21(13), 1530–1535 (1996)

10. Goh, S., Price, R., Leedman, P., Singer, K.: A comparison of three methods for measuring
thoracic kyphosis: implications for clinical studies. Rheumatology 39(3), 310–315 (2000)

11. Mac-Thiong, J.M., Labelle, H., Charlebois, M., Huot, M.P., de Guise, J.: Sagittal plane analysis
of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type.
Spine 28(13), 1404–1409 (2003)



Comparison of Manual and Computerized Measurements 121

12. Stagnara, P., De Mauroy, J., Dran, G., Gonon, G., Costanzo, G., Dimnet, J., Pasquet, A.:
Reciprocal angulation of vertebral bodies in a sagittal plane: approach to references for the
evaluation of kyphosis and lordosis. Spine 7(4), 335–342 (1982)

13. Bernhardt, M., Bridwell, K.: Segmental analysis of the sagittal plane alignment of the normal
thoracic and lumbar spines and thoracolumbar junction. Spine 14(7), 717–721 (1989)

14. Korovessis, P., Stamatakis, M., Baikousis, A.: Reciprocal angulation of vertebral bodies in the
sagittal plane in an asymptomatic Greek population. Spine 23(6), 700–704 (1998)

15. Street, J., Lenehan, B., Albietz, J., Bishop, P., Dvorak, M., Fisher, C.: Spine Trauma Study
Group: Intraobserver and interobserver reliabilty of measures of kyphosis in thoracolumbar
fractures. Spine J. 9(6), 464–469 (2009)

16. Birchall, D., Hughes, D., Hindle, J., Robinson, L., Williamson, J.: Measurement of vertebral
rotation in adolescent idiopathic scoliosis using three-dimensional magnetic resonance imag-
ing. Spine 22(20), 2403–2407 (1997)

17. Haughton, V., Rogers, B., Meyerand, E., Resnick, D.: Measuring the axial rotation of lumbar
vertebrae in vivo with MR imaging. Am. J. Neuroradiol. 23(7), 1110–1116 (2002)

18. Rogers, B., Haughton, V., Arfanakis, K., Meyerand, M.: Application of image registration to
measurement of intervertebral rotation in the lumbar spine. Magn. Reson. Med. 48(6), 1072–
1075 (2002)

19. Birchall, D., Hughes, D., Gregson, B., Williamson, B.: Demonstration of vertebral and disc
mechanical torsion in adolescent idiopathic scoliosis using three-dimensional MR imaging.
Eur. Spine J. 14(2), 123–129 (2005)

20. Kouwenhoven, J.W., Bartels, L., Vincken, K., Viergever, M., Verbout, A., Delhaas, T., Castelein,
R.: The relation between organ anatomy and pre-existent vertebral rotation in the normal spine:
magnetic resonance imaging study in humans with situs inversus totalis. Spine 32(10), 1123–
1128 (2007)

21. Vrtovec, T., Pernuš, F., Likar, B.: Determination of axial vertebral rotation in MR images:
comparison of four manual and a computerized method. Eur. Spine J. 19(5), 774–781 (2010)

22. Vrtovec, T., Likar, B., Pernuš, F.: Manual and computerized measurement of coronal vertebral
inclination in MRI images: a pilot study. Clin. Radiol. 68(8), 807–814 (2013)

23. Vrtovec, T., Pernuš, F., Likar, B.: A symmetry-based method for the determination of vertebral
rotation in 3D Lecture Notes in Computer Science. Lecture Notes in Computer Science, pp.
942–950. Springer, Berlin (2008)

24. Vrtovec, T., Likar, B., Pernuš, F.: Manual and computerized measurement of sagittal vertebral
inclination in computed tomography images. Spine 36(13), E875–E881 (2011)

25. Vrtovec, T., Vengust, R., Likar, B., Pernuš, F.: Analysis of four manual and a computerized
method for measuring axial vertebral rotation in computed tomography images. Spine 35(12),
E535–E541 (2010)



Eigenspine: Eigenvector Analysis of Spinal
Deformities in Idiopathic Scoliosis

Daniel Forsberg, Claes Lundström, Mats Andersson and Hans Knutsson

Abstract In this paper, we propose the concept of eigenspine, a data analysis scheme
useful for quantifying the linear correlation between different measures relevant for
describing spinal deformities associated with spinal diseases, such as idiopathic sco-
liosis. The proposed concept builds upon the use of principal component analysis
(PCA) and canonical correlation analysis (CCA), where PCA is used to reduce the
number of dimensions in the measurement space, thereby providing a regulariza-
tion of the measurements, and where CCA is used to determine the linear depen-
dence between pair-wise combinations of the different measures. To demonstrate the
usefulness of the eigenspine concept, the measures describing position and rotation of
the lumbar and the thoracic vertebrae of 22 patients suffering from idiopathic scolio-
sis were analyzed. The analysis showed that the strongest linear relationship is found
between the anterior-posterior displacement and the sagittal rotation of the vertebrae,
and that a somewhat weaker but still strong correlation is found between the lateral
displacement and the frontal rotation of the vertebrae. These results are well in-line
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with the general understanding of idiopathic scoliosis. Noteworthy though is that
the obtained results from the analysis further proposes axial vertebral rotation as a
differentiating measure when characterizing idiopathic scoliosis. Apart from analyz-
ing pair-wise linear correlations between different measures, the method is believed
to be suitable for finding a maximally descriptive low-dimensional combination of
measures describing spinal deformities in idiopathic scoliosis.

1 Introduction

Idiopathic scoliosis is a disease affecting the spine by causing an excessive lateral
curvature, as observed in the frontal plane, and is estimated to have a prevalence rate
of 2–3 % for the age group 10–16 years old [13, 18]. The disease is typically cate-
gorized according to curvature type (C- or S-like), location of the primary curvature
(thoracic, lumbar or thoracolumbar) and age of onset (infantile, juvenile, adolescent
or adult). The choice of treatment, i.e. bracing or surgery, is dependent on a number
of factors, which include age of onset, gender, skeletal maturity, the Cobb angle
and the estimated progression rate. Especially the Cobb angle plays an important
role in deciding which treatment to use. The Cobb angle is defined as the angle
between two lines drawn parallel to the superior endplate of the superior end ver-
tebra and parallel to the inferior endplate of the inferior end vertebra as observed
in an anterior-posterior radiograph [1]. However, although an established measure,
the Cobb angle measures a 2D projection of what is actually a 3D deformity, and,
therefore, the relevance of using the Cobb angle alone for assessment of the spinal
deformity of a scoliotic curvature can be questioned. To this end, a number of other
methods for assessing spinal deformity have been developed, including both manual
and computerized methods. Examples include methods for axial vertebral rotation
measurements [11, 17], based on either 2D or 3D data, and methods for estimating
both the position and the rotation of each vertebra [2, 5, 16].

Apart from developing methods that can provide a more accurate 3D descrip-
tion of the spinal deformity of a scoliotic curvature, there is also a need to analyze
how different measures describing spinal deformities relate to each other and to the
clinical outcome [4, 6, 15]. This is important in order to classify various sub-types
of idiopathic scoliosis and to determine if different treatments are suitable for the
different sub-types of idiopathic scoliosis. Examples of this kind of work are found
in [3, 7, 14], where they apply clustering algorithms to the measures derived from
the EOS system [2], in order to identify various sub-types of idiopathic scoliosis.
However, there has been limited amount of work performed, aimed at analyzing
the relation between different measures relevant for assessing spinal deformities. To
this end, we present the concept of eigenspine, a data analysis scheme for analyz-
ing the linear correlation between different measures relevant for describing spinal
deformities.
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2 Eigenspine

The proposed data analysis scheme is based on a combination of principal component
analysis (PCA) and canonical correlation analysis (CCA), where PCA is used to
reduce the number of dimensions in the measurement space, i.e. a regularization,
and CCA is used to determine the linear dependence between pair-wise combinations
of the different measures. Although, in this work, the proposed scheme is primarily
employed to analyze the linear dependence between various measures, the long-term
goal of the analysis is to determine which measures, or combination of measures, that
are significant for describing and assessing a scoliotic curvature and, thus, providing
an approach for creating a classification scheme similar to the ones that are typically
used, e.g. King and Lenke [10, 12], but in this case relying on a 3D description of
the deformity, instead of merely using 2D projections of a 3D deformity.

2.1 PCA and CCA

PCA and CCA are two standard techniques for exploring data and is typically applied
in unsupervised learning. For the sake of completeness, we will briefly introduce the
two methods. Let X denote a data matrix

X = [
x1 x2 · · · xn

]
, (1)

where
xi = [

x1 x2 · · · x p
]T

, (2)

i.e. X contains n measurements of p variables. Compute the covariance matrix CX

as

CX ≈ 1

n − 1
(X − X̄)(X − X̄)T , (3)

Define similarly a data matrix Y.
For PCA, a linear transform W is estimated such that the variance of the com-

ponents of Z = WT X is maximized under the constraint that the components wi of
W are orthogonal, i.e. the components of Z are uncorrelated and CZ = WT CX W
is diagonal. In CCA, two linear transforms, WX and WY , are estimated such that
the correlation ρi between the reduced variables (canonical variates) of WT

X,i X and

WT
Y,i Y, have been maximized and that the different components of WT

X,i X and WT
Y,i Y

are uncorrelated with respect to each other. Note that for CCA, the data matrices X
and Y are not required to have the same number of variables, therefore the number
of canonical variates will correspond to the smallest number of variables provided
by either X or Y. Estimating the linear transforms W in PCA, and WX and WY in
CCA are done solving an eigenvector problem, hence, the term eigenspine.
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An interesting aspect of CCA is its relation with mutual information (MI). As
shown by [9], the mutual information between X and Y can be estimated as the
sum of the mutual information of the reduced variables, given that their statistical
dependence is limited to correlation. For normally distributed variables, this relation
is given as

MI(X, Y) = 1

2

∑
i

log2

(
1

(1 − ρ2
i )

)
. (4)

This follows from considering a continuous random variable x with the differential
entropy defined as

h(x) = −
∫

RN

p(x) log2 (p(x)) dx, (5)

where p(x) is the probability density function of x. Consider similarly a continuous
random variable y, then it can be shown that

MI(x, y) = h(x) + h(y) − h(x, y) =
∫

RM

∫

RN

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
dxdy. (6)

Further, consider a Gaussian distributed variable z, for which the differential entropy
is given as

h(z) = 1

2
log2

(
(2πe)N |C|

)
, (7)

where C is the covariance matrix of z. In the case of two N -dimensional variables,
then (6) becomes

MI(x, y) = 1

2
log2

( |Cxx ||Cyy |
C

)
, (8)

where

C =
[

Cxx Cxy

Cyx Cyy

]
. (9)

For two one-dimensional Gaussian distributed variables, (8) reduces to

MI(x, y) = 1

2
log2

(
σ 2

x σ 2
y

σ 2
x σ 2

y − σ 2
xy

)
= 1

2
log2

(
1

1 − ρ2
xy

)
, (10)

where σ 2
x and σ 2

y are the variances of x and y, σ 2
xy is the covariance of x and y

and ρxy is the correlation between x and y. Given that information is additive, for
statistically independent variables, and that the canonical variates are uncorrelated,
i.e. WT

X,i X and WT
Y,i Y, hence, the mutual information between X and Y is the sum

of the mutual information between the variates.
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Note that using the log-function with the base 2 provides an MI measure defined
in bits. This measure will be employed in the subsequent analysis for quantifying
the dependence between different measures.

3 Experiments

To demonstrate the use of the data analysis scheme, measurements of the position and
the orientation of the vertebrae for a number of patients were analyzed to determine
which of these measures that have the strongest linear dependence.

3.1 Image Data

Image data from 22 patients (19 female and three male) were retrospectively gathered
and extracted from the local picture archiving and communications system. The only
criteria for inclusion was that the patient suffered from idiopathic scoliosis and that
the CT data had a resolution higher than 1 × 1 × 1 mm3. The data sets depicted
all lumbar and thoracic vertebrae, i.e. 17 vertebrae per patient. The requirement on
the resolution was needed in order to be able to distinguish adjacent vertebrae in the
subsequently applied method for obtaining the position and rotation of each vertebra.
The patients had an average age of 16.0 ± 3.1 years at the time of their respective
examinations and an average Cobb angle of 60.4◦ ± 9.6 (standing position). Most
patients were classified has having a scoliosis of Lenke type 3C or 4C.

The images were captured as a part of the standard routine for pre-operational
planning and they were anonymized before being exported by clinical staff. Note
that for patients of similar age as included in this retrospective study, it is often
questionable whether a CT scan is appropriate or not, due to the exposure to radiation.
However, at the local hospital there is a protocol in place for acquiring low-dose CT
examinations with maintained image quality, targeted towards examinations of the
spine. With the use of this protocol, the radiation dose is approximately 0.4 mSv.
More on this can be found in [8].

3.2 Curvature Measures

Each data set was processed with the method presented in [5], which is based on the
following steps; extraction of the spinal canal centerline, disc detection, vertebra
centerpoint estimation and vertebra rotation estimation. A graphical overview of the
method is provided in Fig. 1. In [5], the method was shown to have a variability,
when compared with manual measurements, that is on par with the inter-observer
variability for measuring the axial vertebral rotation. This was supported by Bland-
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Patient data Disc detection

Final vertebral 
rotation estimation 

(centerpoint)

Initial vertebral 
rotation estimation 

(spinal canal)

Result

Spinal canal 
centerline 
extraction

Vertebra 
centerpoint 
estimation

Fig. 1 An overview of the method for automatic measurements of the pose of each vertebra in the
spine

Altman plots and high values of the intraclass correlation coefficient, thus, showing
that the method can be used as a replacement for manual measurements.

The method estimates, for each vertebra, the position [x, y, z] and the rotation
matrix R, from which the rotation angles [θX , θY , θZ ] can be derived. The rotation
angles were computed as the Euler angles (using a fixed world frame) of the rotation
matrix R. Note the order of the rotational angles, R = RZ (θZ )RY (θY )RX (θX ). θZ

corresponds to axial vertebral rotation, θY to frontal rotation and θX to sagittal rota-
tion. The standard DICOM patient coordinate system was employed to define the
orientation of [x, y, z], i.e. x increases from right to left, y from anterior to posterior
and z from inferior to superior.
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3.3 Curvature Analysis

In the data analysis, the curves of each measure, apart from the z-coordinates, for
the entire spine were analyzed. The estimated z-coordinates were neglected and
the vertebrae indexes were set to define the dimensions of the measurements per
curve, i.e. each measure was embedded into a 17 dimensional space. Note that
the z-coordinates were neglected, since the analysis is performed considering all
measurements for a specific measure and patient simultaneously. Furthermore, the
x- and y-coordinates of all vertebrae were translated in order to have the common
starting point (0, 0) for all L5 vertebrae. Each curve ensemble was then processed
with PCA to find its principal components. After the PCA, CCA was applied on the
measures projected onto the subspace spanned by the largest PCA eigenvectors of
each measure. The CCA was applied to analyze the dependence between all pair-wise
combinations of the different measures.

A reasonable question at this point is why CCA is not applied directly on the
estimated measures. The reason for this is two-fold. First, due to the large number of
variables (17 vertebrae) compared to the low number of observations (22 patients),
which can cause singularities in the computations of the CCA, a dimension reduction
was called for. Second, using CCA directly is likely to generate an overfitting, i.e. it
can find correlations related more to noise in the signal than to the relevant variations
in the signal, hence, smoothing or a regularization was called for. Both of these
requirements can be met by performing a PCA and projecting the data onto the
subspace spanned by the eigenvectors.

4 Results

In the conducted experiments, PCA was applied to each estimated measure, apart
from the z-coordinates, over all patients, followed by a CCA on each pair-wise
combination of the measures. From the estimated eigenvalues, the eigenvectors, cor-
responding to at least 99 % of the variance in the data, were extracted. This meant
for instance that the variance in x-coordinates could be reduced to four eigenvectors,
whereas the curves of θX required six eigenvectors. Figure 2 depicts the measure-
ments over all measures and patients, and Fig. 3 the extracted eigenvectors for each
measure. Figure 4 depicts the reconstruction error between the original curves and
the curves projected onto the subspace of the extracted eigenvectors.

The CCA was applied onto every pair-wise combination of the measures, where
the measures were projected onto the subspace spanned by the extracted eigenvectors
from the PCA. This was done to find dependencies between the different measures.
Table 1 provides the obtained canonical correlations of all pair-wise CCAs along with
corresponding MI estimates. Note the difference in number of canonical correlation
coefficients between the different pair-wise comparisons, which is due to the different
number of extracted eigenvectors per measure.
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Fig. 2 All estimated measurements for all measures and all patients are depicted
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Fig. 3 Eigenvectors belonging to the largest eigenvalues as estimated from the PCA, accounting
for at least 99 % of the variance in the data
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Fig. 4 Reconstruction error as given by the difference between the original curves and the curves
projected onto the subspace of the eigenvectors accounting for 99 % of the variance in the data

Table 1 Canonical correlations and MI as obtained from the pair-wise CCA, sorted according to
estimated MI

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 MI

y − θX 1.00 0.99 0.99 0.97 13.01
x − θY 1.00 0.99 0.99 0.80 10.69
θY − θZ 0.99 0.96 0.92 0.81 0.39 7.10
x − θZ 0.99 0.94 0.90 0.67 6.09
θX − θZ 0.90 0.87 0.72 0.70 0.49 0.15 3.46
θX − θY 0.86 0.78 0.75 0.60 0.35 2.67
y − θZ 0.88 0.70 0.53 0.36 1.88
x − θX 0.78 0.74 0.53 0.43 1.65
y − θY 0.82 0.72 0.48 0.13 1.55
x − y 0.71 0.49 0.45 0.16 0.90

Here ρi denotes the correlation between the canonical variates, e.g. between WT
X,i Xy and WT

Y,i YθX

and where ρi ≥ ρi+1. The MI-values are estimated in accordance with (4)

The results show that the strongest linear dependence exists between the
y-coordinates and θX . A somewhat weaker but still obvious dependence is found
between the x-coordinates and θY . A second group of linear relationships, however,
substantially weaker than the first two, is found between θY and θZ , and between
x and θZ . Or, as expressed in anatomical terms, the anterior-posterior displacement
of the vertebral body is highly correlated with the sagittal rotation of the same. In
addition, lateral displacement and frontal rotation of the vertebrae are highly cor-
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related. Substantially weaker but still obvious correlations are also found between
axial vertebral rotation and both frontal rotation and lateral displacement.

5 Discussion

This paper has presented the concept of eigenspine, a data analysis scheme for deter-
mining the relationship between different measures related to spinal deformity. The
potential usage of the method has been exemplified by analyzing the dependence
between different measures describing spinal deformities. The results of the com-
bined PCA and CCA analysis show, for example, that the strongest linear dependen-
cies are found between the anterior-posterior displacement and sagittal rotation of
the vertebral body and between the lateral displacement and frontal rotation of the
vertebrae. That there is a strong linear dependence between these measures is well
in-line with what would be expected and what is previously known. However, more
interesting conclusions can be drawn, once the different pair-wise linear dependen-
cies are compared, since this analysis can indicate which measures that are the most
relevant for describing a scoliotic curvature.

For instance, the fact that the strongest linear relationships exist between the
pair-wise measures y − θX and x − θY indicates that to describe a scoliotic curvature
it suffices to either measure the sagittal rotation θX and the frontal rotation θY or the
lateral and the anterior-posterior displacements x and y. Given that there is some
linear relationship between axial vertebral rotation θZ and both frontal rotation θY

and lateral displacement x , but that it is substantially weaker then the two primary
linear correlations, a tentative hypothesis would be that axial vertebral rotation θZ is
a differentiating factor when describing a scoliotic curvature. An understanding that
adds support to the recent interest in quantifying the axial vertebral rotation when
assessing idiopathic scoliosis. This further indicates that the classification systems by
King and by Lenke [10, 12], are insufficient to fully differentiate between different
types of scoliosis, since the axial vertebral rotation is not included in their respec-
tive classification systems. However, given the limited number of included patients,
further analysis including more patients is called for, before any conclusions can
be made.

It is important to point out that the obtained quantification of the linear depen-
dencies between all pair-wise combinations of measures via the computed MI, relies
on the assumption of normal distributions for all included variables. An assumption
that is questionable whether it holds, and, thus, needs further analysis.

Further, it can be noted that the data analysis scheme has been employed to mea-
sures based upon a method for estimating the pose of each vertebra as derived from
CT data. However, the eigenspine concept is not limited to these measures or the used
method, but could be readily applied to other measurements obtained with e.g. the
EOS system. An analysis based upon the data employed in [3, 7, 14] would be inter-
esting to pursue in order to further quantify the relation between different measures,
since the patient groups employed therein are rather large. Another interesting future
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aspect would be to include other measures, e.g. measures related to the deformation
that the vertebral bodies undergo during the progression of the scoliotic curvature.

In this work, only the linear correlation between pair-wise combinations of mea-
sures have been analyzed. However, using CCA we believe it would be possible
to extend this analysis further, but instead analyzing information content for any
number of combined measures by employing autocorrelation. This could be use-
ful to determine a maximally descriptive low-dimensional combination of measures
describing spinal deformities in idiopathic scoliosis, and thereby providing means to
better relate treatment and outcome of different types of idiopathic scoliosis, which
would be a significant clinical outcome.
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Quantitative Monitoring of Syndesmophyte
Growth in Ankylosing Spondylitis
Using Computed Tomography

Sovira Tan, Jianhua Yao, Lawrence Yao and Michael M. Ward

Abstract Ankylosing Spondylitis, an inflammatory disease affecting mainly the
spine, can be characterized by abnormal bone formation (syndesmophytes) along
the margins of the intervertebral disk. Monitoring syndesmophytes evolution is chal-
lenging because of their slow growth rate, a problem compounded by the use of
radiography and qualitative rating systems. To improve sensitivity to change, we
designed a computer algorithm that fully quantifies syndesmophyte volume using
the 3D imaging capabilities of computed tomography. The reliability of the algo-
rithm was assessed by comparing the results obtained from 2 scans performed on the
same day in 9 patients. A longitudinal study on 20 patients suggests that the method
will benefit longitudinal clinical studies of syndesmophyte development and growth.
After one year, the 3D algorithm showed an increase in syndesmophyte volume in
75 % of patients, while radiography showed an increase in only 15 % of patients.

1 Introduction

Ankylosing Spondylitis (AS) is an uncommon inflammatory arthritis affecting
primarily the spine. Progression of AS is characterized by abnormal bone (syndesmo-
phytes) formation along the margins of inter-vertebral disk spaces (IDS). Syndesmo-
phytes cause irreversible and progressive structural damage, and over decades, can
lead to spinal fusion [1]. Monitoring syndesmophyte evolution is essential for many
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Fig. 1 Example of syndesmophyte growth from baseline (BL) to year 1 (Y1) visible on CT refor-
mations but not on radiographs

clinical studies of AS. Newly available treatmentsneed to be tested to determine
if they slow rates of syndesmophyte growth [2]. Considerable research has been
aimed at understanding the molecular mechanisms of bone formation in AS, and
the correlation between syndesmophyte growth and specific gene expression [3, 4].
Unfortunately, such studies have been hampered by the fact the current standard for
assessing syndesmophyte growth, the visual examination of radiographs, has very
poor sensitivity to change. This low sensitivity to change is not only a reflection
of the slow growth rate of syndesmophytes. It is also caused by the limitations of
radiography, which projects 3D objects onto 2D images with attendant losses of spa-
tial information and ambiguities in density caused by superimposition. Moreover,
the use of coarse semi-quantitative reading systems also severely limits sensitivity
to change [5, 6]. Figure 1 shows an example of syndesmophyte growth visible on
reformatted CT but not radiography.

To overcome the limitations of radiographic methods, we designed a computer
algorithm that quantitatively measures syndesmophyte volumes in the 3D space of
CT scans [7, 8].

2 The Algorithm

The complete algorithm, summarized in Fig. 2, has of three main parts. First, ver-
tebral bodies are segmented using a 3D multi-stage level set method. Triangular
meshes representing the surfaces of the segmentations are made. The 3D surfaces
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Fig. 2 Overview of the complete algorithm

shown in Fig. 2 are triangular meshes obtained from our segmentation results. The
vertebral surfaces of corresponding vertebrae are then registered. The purpose of the
registration is to extract the syndesmophytes of both vertebrae using the same ref-
erence level. Syndesmophytes are cut from the vertebral body using the end plate’s
ridgeline as the reference level.
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2.1 Segmentation of the Vertebral Bodies

Many image processing segmentation techniques have previously been applied to
the extraction of vertebral bodies in CT [9–11]. For our algorithm, we chose to
use level sets for their flexibility [12]. Flexibility is essential in our application as
syndesmophytes can deform the normal vertebral structure in unexpected ways. Level
sets are evolving contours encoded as the zero level set of a distance function ψ (∈x, t).
Points that verify ψ (∈x, t) = 0 form the contour. The contour is made to evolve using
equations such as [13]:

dψ

dt
= αg (∈x) c |∀ψ | + βg (∈x) κ |∀ψ | + γ∀g (∈x)∀ψ. (1)

The three terms on the right-hand side of the equation respectively control the expan-
sion or contraction of the contour (velocity c), the smoothness of the contour using
the mean curvature κ and the adherence of the contour to the boundary of the object to
be segmented. The parameters α, β and γ allow the user to weight the importance of
each term. The spatial function g (∈x), often called speed function, is derived from the
images to be segmented and contains information about the objects’ boundaries. The
design of the speed function is crucial for the success of the segmentation. Depending
on the specific needs of the application, information on the object’s boundary can be
based on image gradient, Laplacian or any other relevant feature. Details about our
level set implementation have been fully described [7].

2.2 Segmentation of the Vertebral Body Ridgelines

The segmentation of vertebral body ridgelines is a preliminary step to both the reg-
istration stage (Sect. 2.3) and the syndesmophyte extraction stage (Sect. 2.4). The
vertebral body ridgelines provide the landmarks that aid the registration process and
the reference level from which syndesmophytes are cut. We extract the ridgelines
from the triangular meshes representing the surfaces of the vertebrae using the same
level set as Eq. 1, but transposed from the Cartesian domain of rectangular grids to
the domain of a surface mesh.The most important adjustment is to design a suitable
speed function. While in the usual image grids of CT scans the relevant features are
grey level gradients, on a surface mesh, the useful features are curvature measures
(the vertebral body surface is more curved at the ridgelines than on the end plates).
The curvature measure we used is curvedness (C) [14]:

C =
√

κ2
1 + κ2

2

2
(2)
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Fig. 3 End plate (red) and ridgeline (black) segmentation at baseline (left) and year 1 (right)

where κ1 and κ2 are the principal curvatures.The speed function ensures that the level
set contour expands in the center of the end plates and stops at the ridgelines. The
most complete description of the mesh level set can be found in [7].

Figure 3 shows an example of ridgeline segmentation at baseline and year 1.
Bone above the ridgeline will be labeled as syndesmophyte. Some small differences
between the 2 ridgelines are visible (arrow). Although the difference can seem minor,
it can lead to differences in syndesmophyte volume measurements. Such differences
would not be due to real syndesmophyte growth. Because real growth may be small,
it is important to reduce the error coming from ridgeline discrepancies. That is the
motivation behind the next step, registration, which aligns the 2 vertebral surfaces
so that only one of the ridgelines needs to be used as the reference level from which
to cut syndesmophytes.

2.3 Vertebral Body Registration

We used the iterative closest point (ICP) algorithm to register the surfaces of the
vertebrae segmented at baseline and year 1. Given 2 sets of points, the ICP algorithm
finds the rigid transformation that minimizes the mean square distance between
them [15].We added landmark matching to address the problem of entrapment in
local minima. Our ICP algorithm is performed successively on the ridgelines, end
plates and the complete surface, the result of each stage serving as the initialization
for the following stage [16]. An example of registration results is shown in Fig. 2
(middle). The registration step makes the algorithm robust to small errors in ridgeline
segmentation.
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2.4 Syndesmophyte Segmentation

Once corresponding pairs of vertebrae are registered, syndesmophytes can be cut
from the vertebral bodies using the ridgeline of either the baseline (our choice in the
present work) or year 1 vertebra. The algorithm identifies syndesmophytes in each
IDS unit. The cutting algorithm marks as syndesmophyte bone voxels lying between
the 2 end plates that bound each IDS. Because of the high precision required by our
application, we found it necessary to operate this cutting with subvoxel accuracy
[8]. Finally, a last step refines the segmentation of the syndesmophytes using the
Laplacian filter and gray level density. The output of the Laplacian filter allowed us
to pinpoint the boundary between bone and soft tissue. The interface between the
2 materials can be modeled as a smooth step function. Its Laplacian is positive on
one side of the step and negative on the other. Density derived from gray level value
allows us to take partial volume effect into account. At the boundary between bone
and soft tissue, we added mixed voxels assigning them volumes proportional to their
computed bone content [8].

3 Accuracy and Precision of the Algorithm

In a previous study [8], we evaluated the agreement between manually and auto-
matically segmented syndesmophytes using the overlap similarity index (OSI), also
known as the Dice similarity coefficient:

O SI = 2 (V1 ∇ V2)

V1 + V2
(3)

where V1 and V2 are the two volumes compared. OSI is always comprised between
0 and 1, with 1 indicating perfect overlap. For a random selection of 6 patients, the
mean (+/− std) OSI was 0.76 (+/− 0.06).

The precision of the algorithm was evaluated by comparing the results of 2 scans
performed on the same day in 9 patients. The protocol was approved by the institu-
tional review board and all subjects provided written informed consent. After the first
scan, patients stood up before lying down again for the second scan. This ensured that
they did not lie in exactly the same position and that the variation was in the range
expected for patients in a longitudinal study. That enabled us to include the variabil-
ity originating from CT artifacts such as beam hardening. Each patient was scanned
from the middle of the T10 vertebra to the middle of the L4 vertebra providing 4
IDSs for analysis. Syndesmophyte volumes from the 4 IDSs were added to form a
total per patient. The mean (+/− std) error, 18.3 (+/− 19.6) mm3, only represents
1.31 % of the total mean syndesmophyte volume, 1,396 (+/− 1,564) mm3 [17].
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Fig. 4 Two examples of syndesmophyte progression from 2 patients. From left to right: 3D surface
mesh (syndesmophytes in red and vertebral bodies in green), CT slice, radiograph.

Table 1 Change in syndesmophyte volume (CT) and mSASSS (radiography)

Mean (+/− std) at baseline Number of patients
with change >0

Mean (+/− std) change

CT 1070 (+/− 1,395) mm3 15 (75 %) 92.7 (+/− 196) mm3

Radiography 4.3 (+/− 6.3) 3 (15 %) 0.3 (+/− 0.73)

4 Results of the Longitudinal Study

For this study, we performed lumbar spine CT scans on 20 patients at baseline and one
year later. The same 4 IDSs as in the precision study were processed. Radiographs
of these 4 IDSs were also scored by a physician using the modified Stoke AS Spine
Score (mSASSS) [5]. Results from the 4 IDSs were added. Figure 4 shows two
examples of syndesmophyte progression detected by the algorithm but not visible
on radiographs.

The mean (+/− std) computed syndesmophyte volume change was 92.7 (+/−
196) mm3. 15 patients (75 %) had a volume increase while only 3 (15 %) had a
mSASSS increase (Table 1).
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5 Conclusion

To improve the low sensitivity to change associated radiographic reading, we have
designed a quantitative measurement of syndesmophytes in CT scans. The method
has very good reliability. In a 1 year longitudinal study, the algorithm could detect
syndesmophyte growth in 75 % of the patients compared to only 15 % for radi-
ographic reading. This method holds promise for longitudinal clinical studies that
need to track syndesmophyte growth.
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A Semi-automatic Method
for the Quantification of Spinal
Cord Atrophy

Simon Pezold, Michael Amann, Katrin Weier, Ketut Fundana,
Ernst W. Radue, Till Sprenger and Philippe C. Cattin

Abstract Due to its high flexibility, the spinal cord is a particularly challenging part
of the central nervous system for the quantification of nervous tissue changes. In this
paper, a novel semi-automatic method is presented that reconstructs the cord surface
from MR images and reformats it to slices that lie perpendicular to its centerline.
In this way, meaningful comparisons of cord cross-sectional areas are possible. Fur-
thermore, the method enables to quantify the complete upper cervical cord volume.
Our approach combines graph cut for presegmentation, edge detection in intensity
profiles for segmentation refinement, and the application of starbursts for reformat-
ting the cord surface. Only a minimum amount of user input and interaction time is
required. To quantify the limits and to demonstrate the robustness of our approach,
its accuracy is validated in a phantom study and its precision is shown in a volunteer
scan–rescan study. The method’s reproducibility is compared to similar published
quantification approaches. The application to clinical patient data is presented by
comparing the cord cross-sections of a group of multiple sclerosis patients with
those of a matched control group, and by correlating the upper cervical cord vol-
umes of a large MS patient cohort with the patients’ disability status. Finally, we
demonstrate that the geometric distortion correction of the MR scanner is crucial
when quantitatively evaluating spinal cord atrophy.

1 Introduction

Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous sys-
tem that causes both motor disability and cognitive impairment. So far, the diagnosis
and disease monitoring has been based on characteristic patterns of lesions in the
central nervous system that evolve during the disease progression. In recent years,
however, it has been shown that neurodegenerative processes play a central role in

S. Pezold (B) · M. Amann · K. Weier · K. Fundana · E. W. Radue · T. Sprenger · P. C. Cattin
University Hospital Basel, Basel, Switzerland
e-mail: simon.pezold@unibas.ch

J. Yao et al. (eds.), Computational Methods and Clinical Applications 143
for Spine Imaging, Lecture Notes in Computational Vision and Biomechanics 17,
DOI: 10.1007/978-3-319-07269-2_13, © Springer International Publishing Switzerland 2014



144 S. Pezold et al.

and may be a key to the development of disability [10]. A hallmark of neurodegen-
eration is atrophy; that is, the loss of nervous tissue. Atrophy can be investigated
on a macroscopic scale by using magnetic resonance imaging (MRI), and it has
been shown to correlate better with clinical disability than lesion patterns [10]. More
specifically, spinal cord (SC) atrophy has been suggested as a biomarker for disease
progression, due to the critical role of the SC in motor control [8].

During the last decade, several approaches have been proposed and applied to
measure SC cross-sectional areas (CSAs) and volume (e.g., see Miller et al. [9]
and Bakshi et al. [2] for methodological overviews), including manual tracing of
the SC border as well as semi-automated, intensity-based tracing and subsequent
measurement of the resulting CSAs. Common to all these approaches, however, is
their requirement for significant user input. A higher degree of automation is therefore
desirable to reduce the amount of user input and, with it, the amount of time needed
for the usually tedious tasks of manual measurements. More recently, two approaches
have been introduced that automatically reconstruct the surface of a manually selected
SC section and then successively straighten the result by reformatting it with respect
to the SC centerline [4, 6]. In this way, they make it possible to simultaneously assess
SC volume changes in a larger region compared to previous approaches.

In this publication, we present a semi-automatic technique that reconstructs the
cervical section of the SC surface and then either reformats it to slices perpendicular
to the SC centerline or measures the volume of a perpendicularly clipped SC segment.
Our method requires only little user input: two small sets of labeled voxels marking
both the SC and the background, and one user-provided anatomical landmark to
indicate a starting point for the reformatting process. We evaluate the accuracy of
our method via a phantom structure of known dimensions. Furthermore, its precision
is assessed by analyzing scan–rescan datasets of healthy volunteers. Finally, the
applicability to clinical data is shown by comparing the mean CSA of a group of MS
patients with an age-matched group of healthy subjects and by referring to a study
where our method was successfully applied to correlate upper cervical cord volume
with MS disability status. In contrast to the above mentioned methods [4, 6], we
put a special focus on how MRI-specific image distortions influence measurements
by showing that a distortion correction routine may improve the reproducibility of
measurements.

2 Materials

To assess the accuracy of our method, a cylindric perspex phantom filled with cop-
per sulfate–doped water was scanned on a 1.5T whole-body MR scanner (Avanto,
Siemens Medical, Germany) with a T1-weighted MPRAGE sequence (TR/TI/TE/

α = 2.1 s/1.1 s/3.1 ms/15∈); 192 slices in sagittal orientation were acquired with
an in-slice resolution of 0.98 mm × 0.98 mm and a slice thickness of 1 mm. The
phantom was scanned in 11 different z-positions relative to the magnetic field center
(−50 to 50 mm in increments of 10 mm). The manufacturer’s three-dimensional
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distortion correction routine was applied to the data to see the effects of image dis-
tortions induced by gradient non-linearity [7]. Both original and corrected datasets
were reconstructed.

To assess the scan–rescan reliability, 12 healthy volunteers (3 female, 9 male,
mean age 32.4 y, range 26–44 y) were scanned on a 3T whole-body MR scanner
(Verio, Siemens Medical, Germany) with a T1-weighted MPRAGE sequence (TR/
TI/TE/α = 2.0 s/1.0 s/3.4 ms/8∈); 192 slices in sagittal orientation parallel to the
interhemispheric fissure were acquired with an isotropic resolution of 1 mm3. Both
original and distortion-corrected datasets were reconstructed.

To show the applicability to clinical data, 12 relapsing-remitting MS patients
(8 female, 4 male, mean age 32.2 y, range 21–46 y; mean disease duration 8.2 y,
range 1–17 y, median EDSS 3.0, range 1–4) and 12 age-matched controls (6 female,
6 male, mean age 31.6 y, range 22–48 y) were scanned on a 3T whole-body MR
scanner (Verio, Siemens Medical, Germany) with a T1-weighted MPRAGE sequence
(TR/TI/TE/α = 1.6 s/0.9 s/2.7 ms/9∈); 192 slices in sagittal orientation parallel to
the interhemispheric fissure were acquired with an isotropic resolution of 1 mm3.
Distortion-corrected datasets were reconstructed.

3 Method

The proposed method can be broken down into four distinct steps, which we refer to
as presegmentation, segmentation refinement, surface reconstruction, and reformat-
ting. Of these steps, only presegmentation and reformatting need manual intervention
while the others run in a completely automated manner. In this way, the user inter-
action time lies in the order of two to five minutes per scan.

3.1 Presegmentation

The aim of the presegmentation step (see Fig. 1b) is to gain a binary voxel mask
that roughly separates the SC section of interest from the background; that is, from
the surrounding cerebrospinal fluid (CSF) and all non-cord tissue. While in principle
any kind of thresholding technique could be applied, we use graph cuts [3] because
of their flexibility and speed. To compensate for intensity differences caused by
field inhomogeneities, we apply a bias field correction [11] to the image volumes
beforehand. Furthermore, we normalize the image intensities to the [0, 1] interval.
We then build a six-connected graph from the voxels around the region of interest
(which the user may sketch in transverse, sagittal, and coronal projections of the
image volume).

The t-link weights are calculated based on a naive Bayes classifier via the intensity
distributions of a set of foreground and background seed points; that is, a selection of
voxels labeled by the user as definitely belonging either to the SC or its surroundings.
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(a) (c)

(b) (d)

Fig. 1 a Location of the cisterna pontis. b Presegmentation (blue region of interest, red background
seeds, green cord seeds, yellow result). c+d Refinement: c intensity profile locations, d single
intensity profile (solid) with smooth derivative estimate (dashed), both normalized for display

We model the foreground as a univariate normal distribution and the background as
a mixture of four Gaussians. More specifically, we calculate the weights wfg(x) and
wbg(x) for the t-links that connect voxel x to the foreground and background terminal,
respectively, as

wfg(x) =

⎛⎝⎨
⎝⎞

∀ if x ∇ F

0 if x ∇ B

1 − wbg(x) else

and wbg(x) =

⎛⎝⎝⎨
⎝⎝⎞

0 if x ∇ F

∀ if x ∇ B
pbg(I (x))

pbg(I (x))+pfg(I (x))
else

,

where F and B are the sets of foreground and background seed points, I (x) is the
intensity of voxel x , and pfg and pbg are the probability density functions that we
estimated from the foreground and background seed point intensities.

The n-link weights w(xa, xb) between neighboring voxels xa and xb are cal-
culated as w(xa, xb) = κ exp(−0.5ς−2(I (xa) − I (xb))

2), where I (xa) and I (xb)

are the respective voxel intensities, κ is a weighting factor, and ς determines the
spread of the Gaussian-shaped function (with smaller values for ς leading to a faster
decrease of w(xa, xb) for increasing differences I (xa)− I (xb)). The presegmentation
is concluded by connected-component labeling, assuring that only the region that
includes foreground seeds is retained.
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3.2 Segmentation Refinement

Let I : Ω ∗ R denote the preprocessed (i.e., bias field corrected) image, and let
x = (x1, x2, x3)

T ∇ Ω denote the voxel indices in the image domain Ω ∪ N
3. Fur-

thermore, let M ∪ Ω denote the set of foreground mask voxel indices from the pre-
segmentation step. To reduce noise in I , we apply the GradientAnisotropic-
DiffusionImageFilter of ITK1 with the conductance parameter fixed to 3.0,
the time step fixed to 0.05, and the number of iterations fixed to 20 and 5 for the
image used in the first and second pass, respectively. In this way, we yield the denoised
images Î1(x) and Î2(x).

In the first pass, for each transversal slice, we determine the mask boundary voxel
indices Bz as

Bz = Mz\(Mz ≈ S4), (1)

where ≈ denotes the morphological erosion operator, S4 is the two-dimensional
structuring element representing four-connectivity, and Mz = {(x1, x2, x3)

T ∇
M : x3 = z} is the subset of mask voxels for the z-th transversal slice.

We then fit a periodic smoothing B-spline [5] sz(τ ) of degree three through the
ordered voxel indices bz

i ∇ Bz . We distribute the spline’s knots ti ∇ [0, 1] (i =
1, . . . , |Bz |) according to

ti = t→i
t→|Bz |

with t→1 = 0 and t→i = t→i−1 + ≤bz
i − bz

i−1≤, (2)

and constrain the spline smoothness by a smoothing parameter s via

≤bz
i − sz(ti )≤2 ≥ s. (3)

The order of the boundary voxels bz
i is determined by calculating an estimate of their

centroid as ĉz = 1
|Bz |

⎠
i bz

i and then sorting them according to the angles formed
by the x1-axis and the vectors bz

i − ĉz . Once we have sz(τ ), we divide it into n1
sections of equal arc length, yielding n1 new vertices uz

j ∇ sz(τ ) ( j = 1, . . . , n1)
at the section endpoints. For each uz

j , we then extract a one-dimensional intensity
profile (see Fig. 1c+d) Pz

j (x) with x ∇ [0 . . . k1 − 1] as

Pz
j (x) = Î1

⎟
vz

j + δ(x)
)

with δ(x) = d1 ·
⎟

x − k1−1
2

)
nz

j and vz
j = uz

j − onz
j ,

(4)
where nz

j denotes the unit normal vector pointing inside the spline curve at uz
j ,

the resampling distance is given via d1 ∇ R, the number of profile samples via
k1 ∇ N, and o ∇ R is an offset to control the profile centering with respect to uz

j ,
yielding offset-corrected vertices vz

j . As our approach to calculate Bz systematically
underestimates the mask boundary by half a voxel, we set o = 0.5. To get the

1 http://www.itk.org/.

http://www.itk.org/
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intensity values at the resampling positions x , we use bilinear interpolation in the
zth transversal slice of Î1.

Given that the extracted profiles point to the inside of the spline curve and knowing
that in T1-weighted images the inside (i.e., the SC tissue) typically appears brighter
than its immediate surroundings (i.e., the CSF), we try to refine the vz

j by means of

edge detection in the profiles Pz
j . We thus calculate their derivatives as Pz⊂

j (x) =
G ⊂(σ ) → Pz

j (x), where G ⊂(σ ) is the spatial derivative of a Gaussian kernel with

standard deviation σ and zero mean. We then search for all local maxima xm, j in Pz⊂
j

and calculate the new boundary estimate wz
j as

wz
j = vz

j + δ(x̂m, j ) with x̂m, j = arg min
xm, j

≤δ(xm, j )≤. (5)

To be less susceptible to noise, we dismiss all xm, j with Pz⊂
j (xm, j ) < c · Pz⊂

j (xmax, j )

beforehand, where c ∇ [0, 1] serves as a threshold and xmax, j is the global maximum
position of Pz⊂

j . If no valid maxima are retained, which may be the case if the global
maximum value is negative, we set wz

j = vz
j .

A second pass of boundary estimation follows, similar to the first pass, starting
with the wz

j as initial estimate. The only differences are the following: first, to ensure
a homogeneous distribution of the boundary estimates, particularly with regard to the
surface reconstruction step (Sect. 3.3), the fitted spline is now resampled n2 times
at equal angular distances, using the spline center as point of reference, yielding
redistributed estimates yz

j ( j = 1, . . . , n2). Second, the new intensity profiles Qz
j (x)

with x ∇ [0...k2 − 1] are extracted as

Qz
j (x) = Î2

(
yz

j + d2 ·
⎟

x − k2−1
2

) √ Î z
2 (y1,y2)

≤√ Î z
2 (y1,y2)≤

⎡
with (y1, y2, z)T = yz

j ; (6)

that is, no offset is added and the normalized gradient vectors of the in-slice intensities
Î z
2 at yz

j replace the spline normal vector. The boundary re-estimation is calculated
analogous to Eq. (5), leading to the final boundary position zz

j .
As a result of the refinement procedure, we now have n2 vertices zz

j for all of those
transversal slices that contain foreground mask voxels. These vertices represent the
slice-wise SC contour at subvoxel precision, provided that the profile resampling
distances d1 and d2 were chosen sufficiently small.

3.3 Surface Reconstruction

We transform the zz
j to their locations az

j in the metric world coordinate system by
means of a transformation matrix determined from the image source’s meta data.
We then connect each az

j to az+1
j , az

j+1, and az+1
j+1, which results in strips of 2n2
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(a) (b) (c)

Fig. 2 a Reformatting (yellow centerline, green landmark and anchor point, blue simplified star-
burst and new contour). b Schematic reformatting steps: contour stacking, surface reconstruction,
reslicing. c Perpendicular volume clipping (gray original surface, blue clipped volume segment)

triangles between each pair of successive slices and thus in a complete SC surface
reconstruction S for the initially masked region of interest (see Fig. 2b).

3.4 Reformatting

To compare different image volumes, spatial correspondence has to be established
between them. In our setting we have to make sure that anatomically corresponding
SC locations are compared. This is not straightforward for two reasons: first, the SC
can be bent rather differently in the head and neck area between scans; and second,
the SC slides along the spinal canal during this bending, making landmarks such as
the vertebrae or intervertebral discs unsuitable.

We identified the cisterna pontis, a distinct indentation at the caudal pons, as a
landmark that may easily be spotted and manually marked (see Fig. 1a). Moreover,
the landmark is a structure that is part of the nervous tissue and, as such, stays in a
fixed position relative to the SC. This may be a benefit compared to other features
located on the intervertebral discs [6, 8] or on bone structures such as the foramen
magnum [4], which are more likely to be susceptible to relocation due to bending. To
the best of our knowledge, the cisterna pontis has not been described as a landmark
in the context of SC surface reconstructions.

Concerning the bending, we propose a similar approach as previously described
by Coulon et al. [4]. Let cz describe the centroid of the polygon formed by the vertices
az

j ; let z = 1, . . . , m here serve as an index variable that consecutively numbers all m
transversal slices containing parts of the surface reconstruction S. We then define the
centerline c(τ ) of S as a smoothing B-spline of degree three through the cz (Sect. 3.2).
Let p ∇ R

3 denote the position of the cisterna pontis landmark in world coordinates.
The anchor point c0 = c(τ0) for reformatting is then determined by the condition
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(p − c0) · c⊂
0 = 0, where c⊂

0 is a spline tangent vector in c0; in other words, c0 is an
orthogonal projection of p onto the spline curve. We extrapolate the superior spline
end if necessary to find a τ0 and c0 that satisfy the condition. Depending on whether
one intends to measure reformatted CSAs or the volume of a SC section, either the
reslicing steps or the volume measurement steps described below follow.

Reslicing. For measuring reformatted CSAs, a total of n3 reslicing positions ci =
c(τi ) (i = 1, . . . , n3) are determined by solving

τi⎢

τ0

≤ dc
dτ

≤ dτ = ω + (i − 1)d3 (7)

with respect to τi ; in other words, the ci are calculated at intervals of equal arc length
d3 along the spline curve, starting from c0, with an offset ω.

Based on the ci , we want to reformat the surface reconstruction S to slices that lie
perpendicular to the centerline c. Formally speaking, we thus require for each ci the
set of surface points Ci ∪ S that satisfy Ci = Ri ∩ S with Ri = {r: (r −ci ) ·c⊂

i = 0};
that is, we require the points that lie in the intersections of S with the planes Ri◦c
through the reslicing positions ci .

In practice, we calculate approximations of these intersections. For this, we build
n3 bundles of rays, hereafter referred to as ‘starbursts’. Each starburst (see Fig. 2a)
consists of n4 rays qi

j ( j = 1, . . . , n4) given by

qi
j (λ) = ci + λri

j with λ ≥ 0, ≤ri
j≤ = 1, and ri

j · c⊂
i = 0. (8)

The direction vectors ri
j are directed at equal angular intervals around ci ; that is,

∀ j : ri
j · ri

j+1 = cos( 2π
n4

). The actual reslicing procedure amounts to a series of

ray–triangle intersections of all qi
j with the triangles that form S. As a result, we

get a new set of n3 · n4 vertices bi
j ∇ Ci , which for each of the n3 positions may

be connected to a polygon serving as a contour representation for the respective
reformatted slice. These contours are finally suitable for CSA measurements that
make inter-scan comparisons possible.

Volume Measurement. For measuring the volume of an SC section of length l, the
surface reconstruction S is clipped by two planes that are located at arc lengths ω

and ω + l measured along the centerline (see Eq. 7) and that lie perpendicular to the
respective centerline tangent vectors. We then close the ends of the clipped section
and calculate the volume of the resulting closed surface (see Fig. 2c) based on the
divergence theorem [1].
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4 Results

To assess the performance of our proposed algorithm, we conducted experiments on
phantom, scan–rescan, and real patient data. For all these experiments, the following
parameter settings were applied: κ = 0.4, ς = 0.5, s = 3.0 voxels (splines in
the refinement step), s = 3.5 mm (centerline splines), n1, 2, 4 = 60, k1, 2 = 20,
d1 = 0.2 voxels, d2 = 0.1 voxels, c = 0.3, σ = 0.5 voxels, d3 = 0.25 mm. If not
stated differently, reslicing took place in superior–inferior direction over a length of
50 mm, resulting in n3 = 201 new slices.

Phantom Evaluation. Among other structures, the used phantom contains a solid
cylindric structure, surrounded by a liquid-filled cavity, of 60 mm length and 25 mm
diameter (corresponding to a CSA of 490.9 mm2), which was roughly aligned with
the scanner’s z-axis during the scans. As a substitute for the SC landmark, we placed
a marker at the most posterior point of the structure’s boundary in the most superior
slice where its CSA was still completely visible and set ω = 2 mm.

In the uncorrected scans, the mean CSA was 504.7±1.8 mm2, thus the true CSA
was overestimated by approximately 2.8 %. In the corrected scans, the mean CSA
was 503.0±1.3 mm2, thus the true CSA was overestimated by approximately 2.5 %.

Scan–Rescan Evaluation. For the scan–rescan evaluation, the twelve subjects were
scanned three times in a row (scans S1, S2, S3). Between S1 and S2 they were asked
not to move so that the SC location and bending would be as similar as possible
in both scans. Between S2 and S3 the subjects had to exit the scanner and were
repositioned afterwards. One subject was excluded because the cisterna pontis was
not visible in all scans. To measure the intra-observer reproducibility, the distortion-
corrected S1 scans were presegmented twice by one observer, with a period of more
than one month between associated presegmentations. To measure the inter-observer
reproducibility, the distortion-corrected S1 scans were presegmented independently
by a second observer.

We focused on two different aspects for interpreting the results: the effects of
the distortion correction routine, and the comparison to published SC segmentation
methods.

In a first experiment (E1), we set the reslicing offset to ω = 50 mm and measured
the CSAs in superior–inferior direction over a length of 15 mm (resulting in 61 new
slices), approximately covering the caudal end of the C2 vertebra. We then averaged
the CSA for the reformatted contours of each scan and calculated the coefficient of
variation (CV; i.e., the sample standard deviation over the mean) for comparisons of
S1 and S2, S1 and S3 (both in the corrected and the uncorrected scans), as well as for
the intra-observer and inter-observer comparisons. This setup was chosen in order
to compare our results with the method described by Losseff et al. [8], who measure
the average CSA of the caudal C2 end over five slices of 3 mm thickness that were
reformatted to lie perpendicular to the SC orientation.

In a second experiment (E2), in order to compare our results with the methods
described by Coulon et al. [4] and Horsfield et al. [6], we set the reslicing offset
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Table 1 Coefficients of variation, distortion-corrected versus uncorrected scans (%)

E1: C2 E2: C1–C3 E2: C1–C3 E3: C1–C3
Avg. CSA Avg. CSA Volume Slice-wise CSA
S1–S2 S1–S3 S1–S2 S1–S3 S1–S2 S1–S3 S1–S2 S1–S3

Uncorrected 0.42 1.55 0.36 1.90 0.35 1.89 1.16 2.48
Corrected 0.42 1.15 0.33 0.94 0.33 0.93 1.10 1.76

to ω = 25 mm and segmented over our default length of 50 mm. In this way, we
covered a wider region of the cervical SC, namely approximately the section between
the cranial end of the C1 and the caudal end of the C3 vertebra. For each scan, we
then calculated the mean CSA over the reformatted contours of the complete region
as well as the region’s perpendicularly clipped volume. The CVs were calculated for
the same combinations as described in the first experiment.

In a third experiment (E3), we wanted to see whether our method is applicable
to not only measure a mean CSA, but also to measure the CSA on specific levels
along the SC reliably. We thus swapped the order of averaging and CV calculation:
first, we calculated a CV for the contours on the same level (e.g., the CV for the first
reformatted contour in the S1–S2 comparison for subject one), then we averaged
over the CVs for each comparison.
Effects of the distortion correction routine. A comparison of the mean CVs over
all subjects for the distortion-corrected and uncorrected scans is shown in Table 1.
The results conform to our expectations. As the S1–S2 position change was min-
imal, the image distortions have little influence here. This is because they affect
both scan and rescan similarly, and thus the S1–S2 CVs are on the same level for
the corrected and uncorrected scans. After repositioning (i.e., S1–S3), however, the
uncorrected data CVs become distinctly worse than the corrected data CVs, show-
ing the benefit of the correction routine as soon as scan conditions are not perfectly
similar anymore. Furthermore, the S1–S3 corrected data CVs are also worse than
their S1–S2 equivalents, which suggests that the correction routine does not account
for all geometric distortions in the scans. Partial volume effects, for example, may
be another contributor to variations in the reconstructions and thus in the subsequent
measurements.
Comparison with published methods. For all experiments, the mean CVs over all
subjects are reported in Table 2, making use of the distortion-corrected scans for
our method. The results of Experiments 1 and 2 compare favorably with the values
reported by Losseff et al. [8], Coulon et al. [4], and Horsfield et al. [6]. The low
intra- and inter-observer CVs show the strength of our method in that the outcome is
very robust given different presegmentation inputs, whether produced by the same
observer or different observers.

The results of Experiment 3 indicate that even measurements on single-contour
level may produce reasonable outcomes with our method. To put these values into
perspective: given a realistic CSA of 75 mm2, changes of 0.91 mm2 (1.96 standard
deviations) on a specific slice should be detectable in distortion-corrected scans with
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Table 2 Coefficients of variation, comparison with published methods (%)

Scan–rescan Intra-observer Inter-observer
S1–S2 S1–S3

E1 Our method, C2 average CSA 0.42 1.15 0.15 0.14
Horsfield et al. [6], C2 average CSA – – 0.59 1.36
Losseff et al. [8], experienced observer – 0.79 0.73 –
Losseff et al. [8], inexperienced observer – 1.61 1.03 –

E2 Our method, C1–C3 average CSA 0.33 0.94 0.28 0.36
Horsfield et al. [6], C2–C5 average CSA – – 0.44 1.07
Coulon et al. [4], average CSA – 1.31 0.77 –

Our method, C1–C3 volume 0.33 0.93 0.26 0.35
Coulon et al. [4], volume – 1.35 1.36 –

E3 Our method, C1–C3 slice-wise CSA 1.10 1.76 0.62 0.70

95 % confidence by the same observer.2 Assuming a CSA of circular shape, this
corresponds to a change in radius of 0.03 mm.

Preliminary Evaluation on Patient Data. One distortion-corrected scan per sub-
ject was used for the cross-sectional clinical data evaluation. The SC surfaces were
reconstructed and resliced with an offset of ω = 25 mm, and the SC volume was mea-
sured over the default 50 mm section. One patient was excluded afterwards because
the reconstruction showed substantial spike artefacts in the inferior part caused by
some refinement line profiles erroneously capturing the edge of the surrounding
vertebra. The mean SC volume was 3,464 ± 592 mm3 for the patient group and
3,811 ± 444 mm3 for the control group. For both the patient group and the control
group, we also calculated the mean slice-wise CSAs. As can be seen in Fig. 3, the
patient CSA is smaller than that of the healthy controls throughout all slices. Com-
paring the mean slice-wise CSAs on each level in a paired-samples t-test showed a
statistically significant difference (p < 0.01) between the two groups.

Evaluation on a Large MS Patient Cohort. In a recent publication [12], we applied
our method to a cohort of 172 MS patients. Perpendicularly clipped SC volumes were
measured as described above, with an offset of ω = 20 mm. In a hierarchical mul-
tiple linear regression analysis including demographic factors as well as volumetric
measures and MS lesion load, the SC volume was shown to be one of the strongest
predictors (p < 0.001; β = −0.28) of the Expanded Disability Status Scale (EDSS)
score, which signifies the clinically determined degree of disability. In this way, both
similar results of other studies were confirmed (such as the ones mentioned in [10])
and the applicability of our method to clinical data was demonstrated.

2 Note that this is not the same value as the 0.67 mm2 reported by Horsfield et al. [6] in a similar
argument for the C2–C5 region, as they describe the CV of average CSAs, while we describe an
average CV over slice-wise CSAs here. If we do the same calculation for our method with the C1–
C3 average CSA (see Table 2, E2), assuming a CSA of 78 mm2 as reported in [6], the detectable
change even drops to 0.43 mm2.
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Fig. 3 Mean cross-sectional area along the spinal cord centerline for the MS patient and control
group, distances measured relative to the reformatting anchor point

5 Conclusion

We presented a novel semi-automatic method for the reconstruction and reformat-
ting of the spinal cord surface that enables reliable comparisons of both the complete
upper cervical cord area and the cord cross-sectional areas over the range of sev-
eral vertebrae, even if different degrees of spine bending occur between scans. The
accuracy of our method was demonstrated by measurements on phantom data. We
could also show that a minimum amount of interaction time (two to five minutes) and
user-provided input (two sets of labeled voxels and one anatomical landmark) are
sufficient to acquire highly reproducible results. These results reach a comparable if
not superior precision level with respect to similar approaches [4, 6] (coefficient of
variation values <1 % for mean CSAs and volumes, values in the 1–2 % range for
slice-wise CSAs). Furthermore, we showed that the application of a correction rou-
tine to account for geometric distortions induced by gradient non-linearity increases
the degree of reproducibility. The latter appears to us to be an important aspect that
nevertheless has been neglected (or has at least not been mentioned explicitly) by
similar cord reconstruction approaches (cf. [4, 6]), so far.

Finally, the method’s applicability to clinical data was demonstrated by a com-
parison of the slice-wise cross-sectional areas of a group of MS patients with an
age-matched control group. We could later confirm these preliminary results by
successfully correlating SC volumes with disability scores in a large cohort of MS
patients, thus showing the suitability of our approach for everyday use.
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Multi-modal Vertebra Segmentation
from MR Dixon for Hybrid Whole-Body
PET/MR

Christian Buerger, Jochen Peters, Irina Waechter-Stehle,
Frank M. Weber, Tobias Klinder and Steffen Renisch

Abstract In this paper, a novel model-based segmentation of the vertebrae is
introduced that uses multi-modal image features from Dixon MR images (i.e.
water/fat separated). Our primary application is the segmentation of the bony anatomy
for the generation of attenuation maps in hybrid PET/MR imaging systems. The focus
of this work is on the geometric accuracy of the segmentation from MR. From ground-
truth structure delineations on training data sets, image features for a model-based
segmentation are trained on both the water and fat images from the Dixon series.
For the actual segmentation, both features are used simultaneously to improve both
robustness and accuracy compared to single image segmentations. The method is
validated on 25 patients by comparing the results to semi-automatically generated
ground truth annotations. A mean surface distance error of 1.69 mm over all ver-
tebrae is achieved, leading to an improvement of up to 41 % compared to using a
single image alone.

1 Introduction

Recently emerging hybrid whole-body imaging systems where magnetic resonance
(MR) imaging is combined with positron emission tomography (PET) are highly
interesting for a variety of clinical indications, e.g. in oncology. While PET provides
functional information with high sensitivity, MR (i) provides superior soft tissue
contrast for excellent anatomical localization and (ii) can be used to generate maps
that correct PET for attenuation.

From an image acquisition point of view, MR Dixon sequences have recently been
investigated to generate such attenuation maps. Using Dixon techniques, soft tissue
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can easily be separated into its water and fat components; with moderate additional
effort attenuation maps with four compartments (background, lung tissue, muscle
and connective watery tissue, and fatty tissue) can be generated [1]. Cortical bone
tissue, such as the vertebrae, does not provide signal in standard MR sequences and
commonly ignored during attenuation correction (AC) which can lead to substantial
errors especially for metastases located close to bone [2]. Ultrashort echo time (UTE)
sequences have been proposed and successfully been combined with Dixon imaging
to include bone tissue in AC of the head [3]. However, UTE is still prone to imaging
artifacts and long scan times with respect to whole-body applications. Consequently,
extracting bone tissue such as the vertebrae from MR Dixon images using image
processing would allow accurate AC without the need of time-consuming UTE scans.

Various groups have investigated image processing techniques to segment the
vertebrae or intervertebral disks from MR images. Intensity based semi-automatic [4]
and automatic [5, 6] approaches have been presented. More advanced techniques that
are based on deformable models have been investigated [7, 8] and show potential to
be more robust against MR imaging artifacts (caused by medical implants, low spatial
resolution, or other image artifacts). All of these approaches, however, use a single
MR image for vertebra detection, most commonly a T1- or a T2-weighted MR image.
In PET/MR, Dixon MR images can also be used for segmentation. These images are
clinically well accepted for anatomical localization and (i) provide additional contrast
with intrinsically perfect registration, and (ii) avoid artifacts related to chemical
shift. However, image contrast varies between the water and fat image: in some
cases the image contrast around the vertebrae is better in the water image (and
would be favorable for segmentation), in other cases the contrast is better in the fat
image (and would be favorable for segmentation). In other words, a segmentation
is desired that takes advantage of both the water and fat contrast. While image
compounding methods have been proposed to fuse multiple images into a single
image with optimal contrast [9], segmentation from multiple images simultaneously
would avoid a potential insertion of compounding artifacts and a potential loss of
valuable information.

In this paper, we adapt a 3D model-based segmentation framework described
in [10] to automatically extract seventeen vertebrae (from sacrum to neck: lumbar
vertebra 1–5 as well as thoracic vertebra 1–12) from a Dixon MR acquisition (note
that our focus is on MR-based segmentation while the application to AC of PET is
subject to future work). The segmentation approach is based on adapting a single
mesh to multiple images, the water and fat image. During adaptation, each point on
the mesh surface is attracted by feature points that are once detected in the water
image and another time in the fat image. These multi-modal features used within
a single segmentation are the main novel contribution of this paper. We present
segmentation results from 25 patients and compare our results with segmentations
using only the water or the fat image alone. We validate our method using manually
corrected semi-automatic ground truth data and achieve a segmentation accuracy
(mesh surface distances) of 1.69 mm, an improvement of 41 and 24 % compared to
the water and fat segmentation, respectively.
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Fig. 1 Segmentation model and segmentation pipeline. a The model compartments being used for
model localization (based on the generalized Hough transform). b Parametric adaptation. Individual
affine transformations are assigned to the “anchoring structures” femur/pelvis/lungs. The vertebrae
are deactivated in this step (transparent) to avoid wrong mesh to image vertebra assignments. All
vertebrae are positioned according to the remaining components. c Deformable adaptation. In this
final step, the segmentation is refined using local mesh deformations. All vertebrae are consecutively
activated and adapted to the image (from sacrum to neck) to ensure correct vertebra labelings

2 Methods

The segmentation framework is based on adapting a surface model represented as
a triangulated mesh to a given input image. Section 2.1 describes the segmentation
pipeline, and Sect. 2.2 describes our main contribution of incorporating multi-modal
image features.

2.1 Segmentation

The surface model being used as shape prior for segmentation is shown in Fig. 1a.
Since a direct vertebra segmentation from whole-body images is prone to localization
errors, we choose a combined model that includes tissues that serve as “anchoring
strucures” for the vertebrae: (1) femur/pelvis and (2) lungs. Note that both femur and
pelvis were chosen as anchoring structures in the pelvic region because they showed
most reliable segmentation results due to clear image deliniations between bone and
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Fig. 2 Target point detection using multi-modal image features. For each mesh triangle, a search
profile is defined along the perpendicular triangle direction. Target points xwater and x f at are
detected as the one points that maximize a feature response (such as the maximum image gradient)
in the water (a) and in the fat image (b), respectively. During adaptation, the mesh triangle is
simultaneously attracted to xwater as well as to x f at

soft tissue. In other words, we first segment femur/pelvis/lungs to initially place the
vertebrae at their approximate position (i.e. within the capture range), before they
are locally adapted to the image. The segmentation pipeline consists of three steps
(see [10] for details):

Step 1. Model localization. In this first step, the model is located in the image at
the approximately correct position. The localizer is based on the generalized Hough
Transform (GHT) and attempts to align mesh triangles with image gradients. Step 2.
Parametric adaptation. Multiple rigid/affine transformations of the anchoring struc-
tures (different colors in Fig. 1b) allow registration of these structures with the image.
In this step all vertebrae are deactivated (transparent in Fig. 1b) to avoid wrong
anatomical correspondences between mesh and image vertebra. They are rather pas-
sively scaled and positioned at their approximate location in the image based on the
transformations of the anchoring structures. Step 3. Deformable adaptation. In this
final step, first all anchoring structures are simultaneously adapted to the image using
local deformations. The vertebrae are then successively activated (from sacrum to
neck) to ensure a correct localization of each individual vertebra: first the lumbar
vertebra 5 is activated and adapted to the image, then the next lumbar vertebra 4 is
activated and adapted, then lumbar vertebra 3, etc. (Fig. 1c). This iterative activation
and adaptation is repeated until the top thoracic vertebra 1 is reached.

2.2 Multi-modal Features

During parametric as well as during deformable adaptation, the mesh triangles
are attracted to image target points detected by the following algorithm (Fig. 2). For
each mesh triangle, we construct a search profile (perpendicular to the triangle) of
2l points xi with i ∈ [−l, l] and search for a target point that maximizes an image
feature response F(xi )
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x = arg max
{xi }

[F(xi )] . (1)

Each feature F(xi ) evaluates the image gradient strength and checks the local image
appearance such as trained intensity values. For instance, edges may be rejected if
the intensity values at the inner and outer side of a triangle do not match the trained
expectation. Note that these trained intensity values are modality-specific.

While commonly a single modality, or image, is being used for feature detection,
we use multiple modalities (here the Dixon water and fat images). Figure 2 illustrates
these multi-modal image features for a single triangle. First, the triangle attempts to
detect a target point xwater in the water image (Fig. 2a). Second, the same triangle
attempts to detect a target point x f at in the fat image (Fig. 2b). This approach is
repeated for all triangles on the mesh to derive a sequence of water target points
xwater

t as well as a sequence of fat target points x f at
t . During adaptation an external

energy term is minimized that simultaneously attracts the mesh triangles to all xwater
t

as well as to all x f at
t . A simplified energy formulation from [10] can be described

as:

Eext =
T∑

t=0

[
ct − xwater

t

]2 +
T∑

t=0

[
ct − x f at

t

]2
, (2)

where ct is the triangle center with index t , and T is the number of mesh triangles.
To allow target point detections as shown in Fig. 2, image features were trained (see

[11] for details) from ground truth annotations which were generated in a bootstrap-
like approach. An initial model (with ∼1000 triangles forming the mesh surface
of a each vertebra) was manually adapted to the images of the first subject. This
annotation was used for independent feature training on the water and fat image,
respectively. The resulting model was adapted to the images of the second subject
(using multi-modal image features as described above) and manually corrected if
required. This annotation was included in a new feature training and the resulting
model was applied to the images of the next subject. This process was repeated until
ground truth annotations from all patients were available.

Example images of a single patient, Pat1, and the resulting image features from
all trainings are shown in Fig. 3, for the water (Fig. 3a) and for the fat image (Fig.
3b). As can be observed, water and fat features vary for all vertebrae, and one cannot
always decide which feature is optimal. Segmenting both the water and the fat image
simultaneously is expected to provide more robust and accurate segmentation results
compared to using the water or fat features alone.
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Fig. 3 Trained image features. a Water image from a single patient, Pat1, and the water feature
quality in terms of simulated errors (see [11]) being trained on all patients. b Fat image from Pat1
and the fat feature quality being estimated from all patients. The color scale shows high quality
features (green) to low quality features (red). As can be observed, water features are better around the
lungs, femur, and pelvis. However, features around the vertebrae appear similar, and a simultaneous
segmentation on both the water and fat image is expected to provide most reliable results

3 Experiments

3.1 Materials

Dixon MR images from 25 patients were acquired on a 3T MR Scanner (Philips
Ingenuity TF PET/MR, Best, The Netherlands) using a quadrature body coil, with
TR / TE1 / TE2 = 3.2/1.11/2.0 ms and flip angle 10◦. Seven bed stations were acquired
(30 mm overlap) to cover a field of view (FOV) from head to thigh. Each station was
acquired with a FOV of 500 × 400 × 150 mm3 (right-left, anterior-posterior, feet-
head), reconstructed axial resolution 0.8 × 0.8 mm2, 3 mm slice thickness, scan
duration 17 s.

3.2 Segmentation

To separate the training set from the test set, a five fold cross approach was employed.
All 25 patients were randomly grouped in five subsets. Four of the five subsets (20
patients) were used for training, the remaining one subset (5 patients) was used for
segmentation. Segmentation accuracy was validated using mesh surface distances to
the ground truth annotations. For each vertebra, we computed the mean distances
over all triangles as well as the amount of triangles with errors of larger than 5 mm.
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The proposed multi-modal feature segmentation was also compared with single
image segmentations. Three experiments were performed: (i) segmentation of the
water image using water features, (ii) segmentation of the fat image using fat features,
and (iii) segmentation of both the water and the fat image simultaneously using the
proposed multi-modal image features. Note that for all experiments multi-modal
features were used for initial model placement (Step 1 and Step 2 from Sect. 2.1),
and the feature comparison was only performed in the last local adaptation step (Step
3. Deformable adaptation).

4 Results

The segmentation steps of our adaptation pipeline using the proposed multi-modal
image features are shown in Fig. 4 (overlaid onto both the water and fat image).
Figure 4a shows the model initialization, i.e. the initial placement of the mean model
according to the GHT. The segmentation is then refined in Fig. 4b using paramet-
ric transformations. After this step, all vertebrae are approximately at their correct
positions and within the capture range of the deformable adaptation. During the last
deformable adaptation (Fig. 4c), all mesh components including the vertebrae are
locally adapted to the image which completes the segmentation.

Figure 5 shows results from four other patients, showing vertebra segmentations
in sagittal view, again overlaid onto the water and the fat images. As can be observed,
our approach successfully segmented the vertebrae in all examples. Compared to the
ground truth annotations over all vertebrae, a maximum mean error of 1.81 mm
(6.40 % of the triangles showing an error of >5 mm) was observed for Pat4. Figure 6
shows a segmentation comparison when (i) using only water features, (ii) using only
fat features and (iii) using the proposed multi-modal (water and fat) features for
two other patiens, Pat7 and Pat8. For Pat7, segmentation using water features only
showed large errors of up 14.27 mm (thoracic vertebra 4, arrow in Fig. 6a). Image
contrast appears low in that region and the water model was not able to provide
accurate segmentation. Similarly, for Pat8, the segmentation using fat features only
showed large errors of up to 15.48 mm (thoracic vertebra 6, arrow in Fig. 6b).
For comparison, segmentation using multi-modal image features (Fig. 6c) provided
accurate results for both patients with maximum errors of 4.00 mm (thoracic vertebra
5) and 4.75 mm (thoracic vertebra 7), respectively.

Table 1 shows results for each vertebra in the mean over all 25 patients, from lum-
bar vertebra 5 (close to pelvis) to thoracic vertebra 1 (close to neck). Considering all
vertebrae and all patients, using the water and fat images alone led to a segmentation
error of 2.89 mm (15.90 % with >5 mm error) and 2.22 mm (9.43 %), respectively.
Our proposed multi-modal feature approach showed a clear reduction to 1.69 mm
(5.17 %). Note that for all feature cases, the top thoracic vertebra 1 showed the largest
error due to low image constrast in most images.
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Fat imageWater image(a)

(b)

(c)

Fig. 4 Segmentation steps from Pat2 using multi-modal features, overlaid onto the water (left)
and the fat image (right). a Model localization. The complete model is positioned in the image.
b Parametric adaptation. Multiple parametric transformations adapt the anchoring structures (red)
to the image, while all vertebrae (yellow) are deactivated and passivly transformed to avoid wrong
vertebra correspondences. c Deformable adaptation. The vertebrae are iteratively activated and
adapted to the image (from sacrum to neck). This last step finalizes the segmentation
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Fig. 5 Segmentation results from four patients, Pat3 to Pat6 (a–d), using the proposed multi-modal
image features. For each patient, segmentation results are overlaid onto the water (left) as well as
onto the fat image (right), in sagittal view only. All vertebrae were segmented correctly, with a
maximum error of 1.81 mm for Pat4. As can be observed„ our method is robust against patient size
(Pat3 vs. Pat4), spine shape (Pat4 vs. Pat5), and stitching artifacts (Pat6)

5 Discussion

In this paper we proposed a fully automatic model-based approach to segment the ver-
tebrae from Dixon MR images. Our experiments showed that using a single image
from the Dixon sequence alone (i.e. the water or fat image) might lead to large
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Pat8 : Fatfailure
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Fig. 6 Segmentation comparison for two patients, Pat7 (top) and Pat8 (bottom), using a water
features (overlaid onto the water image), b fat features (overlaid onto the fat image), c multi-modal
features (only overlaid onto the water image here). For Pat7, segmentation using only the water
image fails around the top thoracic vertebrae due to low image contrast (largest error of 14.27
mm in thoracic vertebra 4). For Pat8, segmentation using only the fat image again fails around
the top thoracic vertebrae (larest error of 15.48 mm in thoracic vertebra 6). Segmentation using
multi-modal features remains robust in both cases ((maximum error for Pat7: 4.00 mm (thoracic
vertebra 5) maximum error for Pat8: 4.75 mm (thoracic vertebra 7))

segmentation errors due to varying image contrasts: in some cases image contrast
between the vertebrae is better in the water image, in other cases contrast is better in
the fat image. Our multi-modal feature approach uses both the water and the fat image
simultaneously for segmentation. Considering all patients, the multi-modal features
reduced the segmentation error from 2.89 mm (water)/2.11 mm (fat) to 1.69 mm,
which is an improvement of up to 41 %. Our method provided accurate segmentation
results for all of the 25 patients. It is robust against variations in patient size (com-
paring slim Pat3 with big Pat4), against variations in the spine shape (comparing the
straigt spine shape in Pat4 with the curved shape in Pat5), as well as against stitching
artifacts when combining images from multiple bed positions (horizontal streaks in
Pat6).
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Table 1 Validation of vertebra segmentations from all 25 patients

Anatomical region Surface distances (mm)
Water features Fat features Multi-modal features

Thoracic vertebra 1 4.71 (36.32 %) 3.85 (25.58 %) 3.76 (24.87 %)
Thoracic vertebra 2 4.76 (29.06 %) 3.03 (18.21 %) 2.54 (11.44 %)
Thoracic vertebra 3 4.02 (28.33 %) 2.47 (12.60 %) 1.67 (4.55 %)
Thoracic vertebra 4 4.34 (31.33 %) 2.79 (14.01 %) 1.96 (6.85 %)
Thoracic vertebra 5 3.62 (25.86 %) 3.03 (15.05 %) 2.01 (8.29 %)
Thoracic vertebra 6 3.77 (25.05 %) 2.93 (13.23 %) 1.84 (6.79 %)
Thoracic vertebra 7 3.45 (23.99 %) 2.99 (14.21 %) 1.94 (7.81 %)
Thoracic vertebra 8 3.07 (17.03 %) 2.72 (13.19 %) 1.78 (6.31 %)
Thoracic vertebra 9 2.76 (12.56 %) 2.59 (13.69 %) 1.57 (4.24 %)
Thoracic vertebra 10 2.37 (8.87 %) 1.97 (8.10 %) 1.33 (1.12 %)
Thoracic vertebra 11 1.64 (4.23 %) 1.50 (3.27 %) 1.23 (0.19 %)
Thoracic vertebra 12 1.92 (5.28 %) 1.38 (1.35 %) 1.25 (0.77 %)
Lumbar vertebra 1 1.79 (4.83 %) 1.32 (1.52 %) 1.21 (1.35 %)
Lumbar vertebra 2 1.70 (4.39 %) 1.36 (2.73 %) 1.20 (1.80 %)
Lumbar vertebra 3 1.55 (4.12 %) 1.14 (0.31 %) 1.04 (0.32 %)
Lumbar vertebra 4 1.71 (4.04 %) 1.14 (0.41 %) 1.08 (0.25 %)
Lumbar vertebra 5 1.95 (4.93 %) 1.45 (2.86 %) 1.29 (0.87 %)
Whole spine 2.89 (15.90 %) 2.22 (9.43 %) 1.69 (5.17 %)

For each vertebra, mesh surface distances to the reference ground truth annotation as well as
the amount of triangles showing an error of larger than 5 mm were computed. We compared
segmentations using (a) water features, (b) fat features and (c) the proposed multi-modal (water
and fat) image features. As can be observed, segmentations using water and fat features showed
mean errors of 2.89 and 2.22 mm, respectively, while our multi-modal features achieved highest
segmentation accuracy with a clear reduction to a mean error 1.69 mm (over all 17 vertabrae and
all 25 patients), which is within the order of the image resolution (0.8 × 0.8 × 3 mm3)

In future work, the inclusion of more patients for training could improve the
model. Large segmentation errors such as of the last thoracic vertebra 1 could be
minimized, e.g. by including more prior shape knowledge into the segmentation
pipeline. In our current approach, a mesh triangle is simultaneously attracted to a
water and fat image target point, while both forces are equally weighted. Adaptive
forces that attract the triangle to a target point depending on the underlying feature
strength could further improve segmentation accuracy. Regarding computation times,
a segmentation currently requires approximately 5–6 min on a 4-core notebook,
Intel(R) Core(TM) CPUs at 2.6 GHz, 4 GB RAM memory. Hierarchical approaches
using multi-resolution meshes (start segmentation on low resolution meshes and
finalize on high resolution meshes) could be applied to minimize computation times.

Our current approach was used to derive a model-based segmentation from two
input images (water and fat image). However, our approach can also be applied
to more than two images. Alternative applications might be the segmentation of a
diffusion image series or a dynamic contrast enhances image series to maximize
image contrast and segmentation accuracy compared to only using a single image
from the series.
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The approach can be used in hybrid PET/MR imaging systems to include bone tis-
sue in PET attenuation correction (AC) without the need of additional MR sequences
for bone visualization, such as UTE. While the validation of this paper was focused
on the segmentation of the vertebrae, we plan to validate the segmentation accuracy
of the remaining model components. This will lead us to our overall goal of whole-
body AC with five compartments (background, lung tissue, watery tissue, and fatty
tissue, and bone tissue). Finally, the PET image could be included into the presented
Dixon segmentation allowing us to derive a single segmentation from anatomical
(Dixon MR) as well as functional (PET) contrasts.

6 Conclusion

In this paper we introduced a model-based sementation with multi-modal features to
extract the vertebrae from Dixon MR images. We showed that it improves robustness
and accuracy of segmentation. Our method can be considered for MR-based PET
attenuation correction (including bone tissue as additional attenuation compartment).
Further possible applications are computer-aided diagnosis of diseases such as spinal
disc degeneration, automated spine scan planning, or image-guided interventions
such as computer-assisted surgery.
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particular Prof. Osman Ratib, for providing us with the Dixon MR image data.

References

1. Martinez-Moeller, A., Souvatzoglou, M., Delso, G., Bundschuh, R.A., Chefd’hotel, C., Ziegler,
S.I., Navab, N., Schwaiger, M., Nekolla, S.G.: Tissue classification as a potential approach for
attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J. Nuc. Med.
50(4), 520–526 (2009)

2. Buerger, C., Tsoumpas, C., Aitken, A., King, A.P., Schleyer, P., Schulz, V., Marsden, P.K.,
Schaeffter, T.: Investigation of MR-Based attenuation correction and motion compensation for
hybrid PET/MR. IEEE Trans. Nuc. Sci. 59(5), 1967–1976 (2012)

3. Berker, Y., Franke, J., Salomon, A., Palmowski, M., Donker, H.C.W., Temur, Y., Mottaghy,
F.M., Kuhl, C., Izquierdo-Garcia, D., Fayad, Z.A., Kiessling, F., Schulz, V.: MRI-Based atten-
uation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using
a combined ultrashort-echo-time/Dixon MRI sequence. J. Nuc. Med. 53(5), 796–804 (2012)

4. Michopoulou, S., Costaridou, L., Panagiotopoulos, E., Speller, R., Panayiotakis, G., Todd-
Pokropek, A.: Atlas-based segmentation of degenerated lumbar intervertebral discs from MR
images of the spine. IEEE Trans. Biomed. Eng. 56(9), 2225–2231 (2009)

5. Carballido-Gamio, J., Belongie, S., Majumdar, S.: Normalized cuts in 3-d for spinal MRI
segmentation. IEEE Trans. Med. Imaging 23(1), 36–44 (2004)

6. Michael Kelm, B., Wels, M., Kevin Zhou, S., Seifert, S., Suehling, M., Zheng, Y., Comaniciu,
D.: Spine detection in CT and MR using iterated marginal space learning. Med. Image Anal.
(2012)



Multi-modal Vertebra Segmentation from MR Dixon in Hybrid Whole-Body PET/MR 171

7. Kadoury, S., Labelle, H., Paragios, N.: Spine segmentation in medical images using manifold
embeddings and higher-order MRFs (2013)

8. Zhan, Y., Maneesh, D., Harder, M., Zhou, X.S.: Robust MR spine detection using hierarchical
learning and local articulated model. In: Medical Image Computing and Computer-Assisted
Intervention, pp. 141–148. Springer (2012)

9. Hoad, C.L., Martel, A.L.: Segmentation of MR images for computer-assisted surgery of the
lumbar spine. Phys Med Biol 47(19), 3503 (2002)

10. Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M., Vembar, M.,
Olszewski, M., Subramanyan, K., Lavi, G., Weese, J.: Automatic model-based segmentation
of the heart in CT images. IEEE Trans. Med. Imaging 27(9), 1189–1201 (2008)

11. Peters, J., Ecabert, O., Meyer, C., Kneser, R., Weese, J.: Optimizing boundary detection via
simulated search with applications to multi-modal heart segmentation. Med. Image Anal. 14(1),
70–84 (2010)



Segmentation of Lumbar Intervertebral Discs
from High-Resolution 3D MR Images Using
Multi-level Statistical Shape Models

Aleš Neubert, Jurgen Fripp, Craig Engstrom and Stuart Crozier

Abstract Three-dimensional (3D) high resolution magnetic resonance (MR) scans
of the lumbar spine provide relevant diagnostic information for lumbar interverte-
bral disc related disorders. Automated segmentation algorithms, such as active shape
modelling, have the potential to facilitate the processing of the complex 3D MR data.
An active shape model employs prior anatomical information about the segmented
shapes that is typically described by standard principle component analysis. In this
study, performance of this traditional statistical shape model was compared to that of
a multi-level statistical shape model, incorporating the hierarchical structure of the
spine. The mean Dice score coefficient, mean absolute square distance and Haus-
dorff distance obtained with the multi-level model were significantly better than
those obtained with the traditional shape model. These initial results warrant further
investigation of potential benefits that the multi-level statistical shape models can
have in spine image analysis.
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1 Introduction

Magnetic resonance (MR) imaging provides an excellent diagnostic tool for assessing
common spine pathologies [3]. Traditional radiological spine exams consist of acqui-
sition of several multi-slice two-dimensional (2D) MR scans, usually in sagittal and
axial orientation. Recent advances in MR hardware, software and MR sequence
design introduce new possibilities in musculoskeletal radiology by acquiring high
resolution three-dimensional (3D) scans, for example using the SPACE MR sequence
(3D Sampling Perfection with Application optimised Contrasts using different flip
angle Evolution) [9]. These images enable more detailed 3D visualisation of the
intervertebral discs (IVDs) and have demonstrated an increased sensitivity to sev-
eral spine pathologies [10]. The high resolution and associated acquisition arte-
facts challenge post-processing procedures that are important to alleviate time- and
expertise-intensive assessment in the context of clinical and applied research environ-
ments (anatomy segmentation or delineation of a region-of-interest, morphological
assessment).

The capacity for MR imaging to provide high contrast scans of the IVDs is coun-
terweighted by the fact that most current studies are acquired with anisotropic res-
olution. Hence previous segmentation approaches have been based on 2D analyses,
typically based on images obtained in the sagittal plane. Several edge detecting tech-
niques have been exploited to find the precise IVD boundaries, such as Hough trans-
form [14]. Edge detectors are combined with a trained classifier based on statistical
textural features to distinguish clusters of the IVDs by Chevrefils et al. [1]. The Gen-
eralised Hough Transform is used in the segmentation pipeline of Seifert et al. [13],
followed by active contours driven active shape model (ASM) segmentation, pro-
gressing in neighbouring transversal slices. The segmentation results from all slices
are appended into final 3D volume. A combination of fuzzy c-means technique with
prior knowledge from a probabilistic disc atlas was presented by Michopoulou et al.
[11] to segment discs in a mid-sagittal slice.

To the best of our knowledge, all previous approaches have been segmenting the
IVDs from 2D slices, employing 2D segmentation techniques. In our recent work,
we presented an automated 3D segmentation of the IVDs from high-resolution MR
data, based on standard 3D active shape models and grey level profile modelling [12].
In the current study, we evaluate the multi-level statistical shape models (MSSM) of
Lecron et al. [7] in an automated segmentation of lumbar IVDs from high-resolution
MR scans. It was suggested by Lecron et al. [7] that these models are more suitable to
describe hierarchical structures (as the human spine), and were successfully applied
to reconstruction of vertebrae from bi-planar radiographs [8]. The segmentation of
IVDs from MR images presented in this work slightly adapts the MSSM that model
within-class and between-class variations in 3D shapes of lumbar IVDs and combines
them with a statistical shape models (SSM) of coarse global shape variation of the
lumbar spine. These models are used in a segmentation task to automatically delinate
the lumbar IVDs, and compared against a traditional SSM.The aim of this study is to
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test whether the performance of the automated segmentation can be improved with
the MSSM and to motivate its further use in automated 3D analysis of IVDs from
high resolution MR images.

2 Method

2.1 Image Database

MR scans of the lumbar spine of 12 subjects (9 male, 3 female) were acquired
using the 3D T2-weighted SPACE pulse sequence at 3T Siemens Trio MR system.
This protocol has good potential for clinical assessment and diagnosis [9, 10], has
the advantage of 3D volumetric acquisition and provides high-resolution images
with superior level of details (axial slice thickness 1–1.2 mm, in-plane resolution
0.34 × 0.34 mm). Two scans of each subject were acquired and stitched together to
cover all lumbar IVDs from T12/L1 to L4/L5. The acquisition time was 7 min 50 s
per block.

Although all 12 subjects were ‘asymptomatic’ healthy volunteers, disc degener-
ation was observed in 4 subject (6/60 lumbar IVDs) by a trained radiologist. Such
abnormal findings are common in the asymptomatic population and are in accordance
with numbers reported in previous clinical studies [5]. Other radiological findings
included vertebral haemangiomas in 2 cases and several Schmorl’s nodes (vertebral
endplate fracture) of varying dimensions.

All cases were manually segmented and used to generate the statistical shape
models and to quantitatively evaluate the segmentation algorithm.

The medical research ethics committee of the University of Queensland approved
the current study and written informed consent was obtained from all participants
involved.

2.2 Image Pre-processing

Two slightly overlapping serial blocks were acquired for each subject in this study and
stitched together using a customised algorithm explained in more details in [12]. The
pre-processing steps further included an intensity inhomogeneity correction based
on the N4 bias field correction algorithm [16], smoothing by gradient anisotropic
diffusion (15 iterations with time step 0.01 and conductivity 0.25) and signal intensity
value standardisation by atlas matching of the image histograms extracted from the
spinal column.
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2.3 Image Segmentation

The segmentation algorithm is based on the method of active shape models (ASM)
[2]. The ASM is initialised by a series of object recognition techniques as presented
in [12]. This method estimates the spine curve and detects centres of vertebral bod-
ies. The initial IVD models are placed half way between detected vertebral bodies
and oriented to follow the estimated spine curve. The algorithm was successful in
detecting 58/60 vertebral bodies. In 2 cases, the lower-most vertebral body L5 was
missed and annotated manually.

This section outlines the traditional and the multi-level statistical shape
models, presents the segmentation scheme and parameters, and explains the vali-
dation procedure.

2.3.1 Traditional Statistical Shape Models

After initial shape alignment (the generalised Procrustes alignment [6]), a point
distribution can be defined for the positions of spatially corresponding shape vertices
x j

i ∈ R
3 for i ∈ {1, . . . , N } shapes consisting of j ∈ {1, . . . , J } vertices. The mean

shape x̄ and covariance matrix C are computed. Each shape Si is represented as an
n-dimensional vector xi. The shape vectors can be represented in the form of:

xi = x̄ + Pbi = x̄ +
N⎛

m=1

pmbm
i

where P = {pm |m = 1, . . . , N } are the eigenvectors of the covariance matrix C
(with corresponding eigenvalues {λm |m = 1, . . . , N }) and bi = {bm

i |m = 1, . . . , N }
are the weights of each mode of variation (also called shape parameters) parameter-
ising the shape Si . The number of used modes of variation is usually reduced since
a smaller number of modes n < N can explain most variation in the dataset.

One statistical shape model from all lumbar discs was generated. The point cor-
respondences were obtained using SPHARM parameterisation and groupwise opti-
misation of the description length [4].

2.3.2 Multi-level Statistical Shape Model

The MSSM presented by Lecron et al. [7] applies principles of multi-level component
analysis [15] to describe variations in hierarchical structures. In the example of the
lumbar spine in this study, the structure of N = 60 intervertebral discs is divided
into K = 5 groups of disc levels (T12/L1 to L4/L5) where each groups consists of
12 discs of the same level of different subjects. The multi-level component analysis
finds independent components of within-class and between-class variation from a
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Fig. 1 Modes of variation of the multi-level statistical model. First mode of the within-class com-
ponent is shown in the left panel (posterior and lateral views). The mode primarily captures a relative
IVD narrowing (inferior–superior). The first mode of the between-class component is shown in the
right panel (posterior, superior and lateral views). The mode describes anterior–posterior wedging
and changes from a circular to a ‘bean’ like shape. These are typical differences between inferior
and superior lumbar IVDs

decomposition of each shape belonging to a group k as:

kxi = x̄ + (kx̄ − x̄) + (kxi − kx̄),

where kx̄ is the mean shape of class k. This decomposition defines two-level hierar-
chical model where the within-class variation (same IVD level) and between-class
variation are modelled independently.

A lumbar spine Xi = {kxi |k ∈ 1, . . . , K } can be reconstructed from the compo-
nents of within-class variation Pw and the between-class variation Pb:

Xi =
⎝
⎨⎞

1xi
...

K xi

⎠
⎟ =

⎝
⎨⎞

x̄
...

x̄

⎠
⎟ +

⎝
⎨⎞

bw
i
...

bw
i

⎠
⎟ Pw +

⎝
⎨⎞

1bb
i

...
K bb

i

⎠
⎟ Pb,

where bw
i and kbb

i , k ∈ {1, . . . , K } are respectively the within-class and between-
class shape parameters for the spine Xi . The within-class component describes global
anatomical differences between individual subjects, whereas the between-class com-
ponent describes changes between IVDs at different levels of the lumbar spine (from
T12/L1 to L4/L5). As such, both components are important for a successful segmen-
tation. The most important modes of variation are presented in Fig. 1.

In contrast to Lecron et al. [7], all shapes are initially aligned (the generalised
Procrustes alignment [6]) and the MSSM do not contain any information on relative
poses of the IVDs, allowing to model uniquely the variation in shape. We model
the coarse global variation in relative disc positions and their scale by a simplified
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Fig. 2 General model of coarse variation of the lumbar spine. The first mode (left) describes the
extension of the lumbar spine and some relative changes in the IVD size. The second mode (right)
describes primarily the extent of the lordosis. For visualisation purposes, the statistical mean shape
was inserted to the locations described by the coarse model and scaled accordingly

statistical model. A K × 4 matrix containing the centroid points of each IVD and its
scale (in each row) is constructed for every lumbar spine and the principle component
analysis is performed. This analysis is used as a rough control over the global shape
of the segmented spine and allows the MSSM to focus on changes between individual
shapes. The first two modes of the global lumbar spine variation are shown in Fig. 2.

2.3.3 Shape Deformation

The shape deformation procedure is an iterative process driven by grey level
profile matching. Initially, training profiles are extracted from the manually seg-
mented shapes in the database. At each iteration, grey level profiles p̂ j of lengths
2R + 1 > 2L + 1 (length of the training profiles) are extracted along the normals for
each vertex v j , j = 1, . . . , J of the positioned shape V . The spacing h is the same for
both the training and matching profiles and all profiles are normalised to zero mean
and unit variance. The displacement of each vertex is determined by first extracting
sub-profiles p̂ j,r , r = 1, . . . , 1+ R − L of length 2L +1 from p̂ j by moving the pro-
file centre point. All profiles are compared to all training profiles p j

i , i = 1, . . . , N of
the corresponding vertex v j by evaluating the normalised cross-correlation (NCC)
similarity metric to determine the optimal displacement along the vertex normal. The
new position is determined as the centre of the sub-profile p̂ j,rmax maximising the
NCC across all possible displacements from all corresponding profiles:

p̂ j,rmax ← arg max
i,r

NCC(p̂ j,r , p j
i )
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Table 1 Numerical values of
used parameters

Parameter Connotation Value

n Number of modes for the traditional
SSM

8

nb Number of between-class modes for
the MSSM

10

nw Number of within-class modes for the
MSSM

2

Number of iterations for both ASM 100
2L + 1 Points in training profiles 61
h Profile spacing (mm) 0.25
2R + 1 Points in matching profiles 81
bmax Shape constraint for all shape models 2.0

After every iteration, the overall shape deformation is restrained by the modes
of variation of the corresponding statistical shape model to preserve the anatomical
validity of the segmented shape.

2.4 Algorithm Setup and Parameters

Both active shape models were applied to segment lumbar IVDs from 12 subjects and
evaluated against the manual reference. The IVDs were segmented independently
(in parallel) when using the traditional SSM, whereas a simultaneous segmentation
of the whole set of lumbar IVDs is necessary for the MSSM, since the multi-level
component analysis is applied to the whole lumbar spine section composed of 5
IVDs. No further post-processing steps were performed.

The algorithm parameters are presented in Table 1. The number of modes used
in every shape model was chosen to comprise 90 % of the total variation and the
shape constraints were applied after every iteration. The segmentation was run for
100 iterations, however this number was not optimised. The global shape constraints
defining the relative positions and scale of the lumbar IVDs was applied every 5th
iteration during the first 50 iterations to increase the robustness to initialisation.

2.5 Evaluation

The Dice score coefficient (DSC), the mean absolute square distance (MASD) and
the Hausdorff distance were used as similarity measures. The accuracy metrics for the
traditional SSM were computed using the segmentation results from [12], evaluated
on the 12 cases used in this study. Student’s t-test for independent samples were used
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Table 2 Statistics of the
segmentation results (∗
significantly different)

Measure Traditional
SSM

Multi-level
SSM

DSC (mean ± StDev) 0.898 ± 0.027 0.911 ± 0.025∗
DSC (median) 0.902 0.915
DSC (minimum) 0.805 0.818
MASD (mean ± StDev) 0.56 ± 0.14 0.48 ± 0.16∗
MASD (median) 0.54 0.47
MASD (maximum) 1.00 1.02
Hausdorff (mean ± StDev) 3.64 ± 1.08 3.15 ± 1.12∗
Hausdorff (median) 3.58 2.83
Hausdorff (maximum) 7.20 6.91

to compare the mean values between segmentation results obtained with traditional
and multi-level SSM. The level of significance was set at p < 0.05.

3 Results

The performance of both active shape models in IVD segmentation can be viewed
in Table 2 and Fig. 3. The mean DSC obtained with the MSSM were significantly
higher than those obtained with the traditional SSM (0.911 ± 0.025 vs. 0.898 ± 0.027,
p = 0.007). Similarly, significantly better performance of the MSSM measured by
the MASD (0.48 ± 0.16 mm vs. 0.56 ± 0.14 mm, p = 0.005) and the Hausdorff
distance (3.15 ± 1.12 mm vs. 3.64 ± 1.08 mm, p = 0.017) was observed compared
to the traditional SSM. An example of the performance of both models is provided
in Fig. 4, highlighting some improvements delivered by the MSSM.

Two-dimensional segmentation of the IVDs in sagittal slices have been previously
achieved with DSC 0.85 for scoliotic spines [1], or DSC 0.92 and MASD 0.98 px =
0.613 mm [11]. Seifert et al. [13] combines the 2D IVD segmentation into volumes
achieving DSC between 0.84 and 0.98, MASD between 1.19 and 1.61 px translating
to 1.86–2.5 mm and Hausdorff distance between 2.00 and 4.24 px or 3.12–6.62 mm.
Lower MASD of our method is possible due to both the algorithm accuracy and the
high resolution database. To the best of our knowledge, there is no intrinsically 3D
approach enabling direct comparison. The comparison between 2D and 3D segmen-
tation techniques is challenging because of the different acquisition parameters and
nature of used images (with higher inter-slice gap).

The results suggest that the MSSM contains relevant information about the mor-
phology of the lumbar IVDs and that the multi-level spine modelling have the poten-
tial to improve segmentation accuracy. Extended validation is essential to confirm
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Fig. 3 Box plots presenting
the validation metrics. The
numerical statistics can be
found in Table 2
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this initial results and to test the ability of both models to segment IVDs with vari-
ous pathologies. Future work will also include evaluation of the robustness of both
models to initialisation, that is crucial for implementation in large scale studies.
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Fig. 4 Example cases with overlaid segmentations obtained with the traditional (middle) and multi-
level (right) shape model. The manual segmentation is shown in green, the automatic in red and
their overlay in yellow. Some areas where the MSSM improves the results are noted with arrows,
including two Schmorl’s nodes (bottom arrow in the upper image, arrow in the lower image)

4 Conclusion

Active shape models are well suited for segmentation of intervertebral discs from
high resolution MR images. The performance is dependant on the ability of the
underlying statistical shape model to capture and model natural variation of the
segmented anatomy. A traditional statistical shape model of lumbar intervertebral
discs was compared to a multi-level statistical shape model, describing hierarchical
structure of the lumbar spine, in automated MR segmentation. Significantly better
performance of the multi-level shape model warrants further investigation of its
potential application in spine image analysis.
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A Supervised Approach Towards
Segmentation of Clinical MRI
for Automatic Lumbar Diagnosis

Subarna Ghosh, Manavender R. Malgireddy,
Vipin Chaudhary and Gurmeet Dhillon

Abstract Lower back pain (LBP) is widely prevalent in people all over the world.
It is associated with chronic pain and change in posture which negatively affects
our quality of life. Automatic segmentation of intervertebral discs and the dural sac
along with labeling of the discs from clinical lumbar MRI is the first step towards
computer-aided diagnosis of lower back ailments like desiccation, herniation and
stenosis. In this paper we propose a supervised approach to simultaneously segment
the vertebra, intervertebral discs and the dural sac of clinical sagittal MRI using the
neighborhood information of each pixel. Experiments on 53 cases out of which 40
were used for training and the rest for testing, show encouraging Dice Similarity
Indices of 0.8483 and 0.8160 for the dural sac and intervertebral discs respectively.

1 Introduction

Lower back pain is the second most common neurological ailment in the United
States after headache [5] with more than $50 billion spent annually on rehabilitation
and healthcare. In the past decade there has been a severe shortage of radiologists [2]
and projections show that by the year 2020 there will be a significant boom in the
ratio of their demand and supply. This concern motivates us to automatically detect
and diagnose various lumbar abnormalities from clinical scans to reduce the average
time for diagnosis and help to curtail excessive burden on radiologists.
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Fig. 1 (Left) Sagittal view of a lumbar MRI showing an L5-S1 disc herniation and (Right) the
corresponding axial view of the lumbar MRI confirming a left sided herniation

CT and MRI are two popular modalities used to diagnose causes of lower back
pain. While on one hand MRI is more expensive, it is non-invasive and also much
better in terms of soft tissue detailing. Figure 1 illustrates intervertebral disc herni-
ation diagnosed via the sagittal and axial slices of lumbar MRI. Requirements for
CAD systems of the lumbar region are unique since we need to segment the dural
sac and/or localize, label and segment the lumbar intervertebral discs before we can
diagnose any abnormalities.

The lumbar vertebrae are the five vertebrae between the rib cage and the pelvis
which are designated L1–L5, starting at the top. The lumbar vertebrae help support
the weight of the body and permit movement. The intervertebral discs are fibrocar-
tilaginous cushions serving as the spine’s shock absorbing system, which protect
the vertebrae, brain, and other structures. They are named depending on the verte-
bral bodies above and below, e.g., the disc in between L1 and L2 is named L1-L2
and so on. Dural sac is the membranous sac that encases the spinal cord within the
bony structure of the vertebral column as shown in Fig. 2. The human spinal cord
extends from the foramen magnum and continues through to the conus medullaris
near the second lumbar vertebra, terminating in a fibrous extension known as the
filum terminale. The dural sac usually ends at the vertebral level of the second sacral
vertebra.

In general, MRI scans are very difficult to segment, since they suffer from partial
volume effects and bias fields which might blur the delineation between different
kinds of tissues. Moreover, localization of lumbar discs is a challenging problem
due to a wide range of variabilities in the size, shape, count and appearance of discs
and vertebrae. Similarly accurately segmenting the dural sac is also difficult due to
variations in grayscale values and distortion in shape due to various abnormalities
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Fig. 2 This figure illustrates a cross section of the lumbar vertebrae and spinal cord. The position
of the conus medullaris, cauda equina, termination of the dural sac and filum terminale are shown

like stenosis. To this end we propose an automatic method to simultaneously segment
the vertebra, intervertebral discs and the dural sac of clinical sgittal MRI using the
neighborhood information of each pixel. In the subsequent sections, we discuss in
detail previous research (Sect. 2), our approach (Sect. 3) and experimental results
(Sect. 4). Finally we draw our conclusion and discuss the scope for future work in
Sect. 5.

2 Related Work

There has been quite some research in the direction of automatic dural sac segmen-
tation [9–11], labeling and localization of intervertebral discs [1, 3, 8, 13, 14] and
diagnosis of abnormalities [7] from lumbar MRI.

Schmidt et al. [14] introduced a probabilistic inference method using a part-
based model that measures the possible locations of the intervertebral discs in full
back MRI. They achieve upto 97 % part detection rate on 30 cases. Bhole et al. [3]
presented a method for automatic detection of lumbar vertebrae and discs from
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clinical MRI by combining tissue property and geometric information from T1W
sagittal, T2W sagittal and T2W axial modalities. They achieve 98.8 % accuracy
for disc labeling on 67 sagittal images. Alomari et al. [1] proposed a two-level
probabilistic model that captures both pixel- and object-level features to localize
discs. The authors use generalized EM (Expectation Maximization) attaining an
accuracy of 89.1 % on 50 test cases. Oktay et al. [13] proposed another approach using
PHOG(pyramidal histogram of oriented gradients) based SVM and a probabilistic
graphical model and achieved 95 % accuracy on 40 cases. In all these works, the
authors have concentrated on localizing the vertebrae and/or intervertebral discs, i.e.
they provide a point within the structure. Ghosh et al. [8] presented another approach
using heuristics and machine learning methods to provide tight bounding boxes for
each disc achieving 99 % localization accuracy on 53 cases.

Koh et al. [10] presented an automatic method for the segmentation of the dural sac
using Gradient Vector Flow Field which achieved a similarity index of 0.7 on 52 cases.
Horsfield et al. [9] proposed a semi-automatic method for the segmentation of the
spinal cord from MRI utilizing an active surface model to assess multiple sclerosis.
Koh et al. [11] also proposed an unsupervised and fully automatic method based
on an attention model and an active contour model, achieving 0.71 Dice Similarity
Index on 60 cases.

3 Proposed Approach

In most of the previous work, segmentation of the dural sac and the intervertebral
discs have been handled separately which might lead to overlapping tissue regions.
Moreover, some techniques depend on shape models which might lead to errors in
case of high variability in appearance. Hence, in our proposed method, we adopt
a unified approach where we simultaneously label each pixel as belonging to one
of four class labels (vertebra, intervertebral disc, dural sac or background) using a
probabilistic atlas and two decision trees based on the neighborhood information of
each pixel.

3.1 Our Clinical Dataset

Clinical lumbar MRI used by our group is procured using a 3T Philips MRI scanner
at Proscan Imaging Inc. It consists of manually co-registered T2 and T1 weighted
sagittal views and T2 weighted axial views. We randomly pick 53 anonymized cases,
all of which have one or more lumbar disc abnormalities. According to the radiolo-
gist’s report there are a total of 65 herniated discs, 27 bulging discs, 26 desiccated
discs, 60 degenerated discs and 73 disc levels having mild to severe stenosis.

For our experiments we use the T2 weighted mid-sagittal slice, each image having
a resolution of 512 × 512. We use our own labeling tool for manual segmentation,
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Fig. 3 Probabilistic Atlas of the lumbar region: a, b and c shows the atlas for the dural sac, the
intervertebral discs and the vertebra respectively

which performs B-spline interplolation to interactively give a smooth outline of
segmented regions, as shown in Figs. 4b and 5b. We randomly select 40 cases for
training and the rest is kept aside for testing.

Let us denote X = {xi : i ∈ {1, 2, . . . , n}} as the set of pixel grayscale values in the
mid-sagittal image. Our approach treats the segmentation of lumbar MRI as a 4-class
problem where each pixel can belong to any one of the following categories:vertebra,
intervertebral disc, dural sac and background. The class labels are denoted by the set
L = {l: l ∈ {1, 2, 3, 4}} and the set of pixel labels Y = {yi : i ∈ {1, 2, . . . , n}, yi ∈
{L}} where yi is the output class label for the i th pixel.

3.2 Training Phase

The training phase consists of the following three steps.

3.2.1 Creation of a Probabilistic Atlas

We create a simple probabilistic atlas (probability map) by combining the label
information from manual segmentation of the 40 training images as illustrated in
Fig. 3. Since the vetebral column is centrally located in the 512 × 512 image, we
avoid a registration step which can be complicated due to high variability in intensities
and shapes of structures in the lumbar region. The atlas is thus a r × c × 4 matrix
where r and c are the total num of rows and columns respectively and n = r × c is
the total number of pixels. Thus the probabilistic atlas gives us : Patlasi ∝ P(yi =
l|rowi , coli ) where l is the class label assigned to the i th pixel and (rowi ,coli ) gives
the location of the i th pixel in the image.
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3.2.2 Training a HOG Tree

We train a classification tree [4] based on a pixel’s neighborhood HOG(Histogram
of Oriented Gradients) [6]. HOG are feature descriptors popularly used in computer
vision and image processing for the purpose of object detection. This technique
counts occurrences of gradient orientation in localized portions of an image. For our
experiments, given an h × w neighborhood around a pixel, we divide it into 3 × 3
= 9 sub-windows and fix the bin size to 9 resulting in a vector of length 81. We
empirically fix h = w = 27 and train the HOG tree using HOG feature vectors and
pixel class labels obtained from our 40 training images. The hog tree gives us :

PhogT reei ∝ P(yi = l|hognhoodi ),

where hognhoodi is the HOG calculated from the 27 × 27 image neighborhood
around the i th pixel.

3.2.3 Training a Label Tree

We train another classification tree [4] based on a pixel’s 27 × 27 neighborhood
class labels. Hence the feature length is 27 × 27 − 1 = 728. The label tree gives us :

PlabelT reei ∝ P(yi = l|labelnhoodi ),

where labelnhoodi is the class label information of the 27 × 27 neighborhood around
the ith pixel.

3.3 Testing Phase

We implement two methods to segment our 13 test images.

3.3.1 Method 1

In this maximum-likelihood method we assign a class label to each pixel according
to its location in the image (using the probabilistic atlas) and its neighborhood HOG
information (using the HOG Tree). Mathematically, given a new image we assign a
class label to each pixel as :

yi = argmax
l

P(yi = l|nhoodi ),

where P(yi = l|nhoodi ) ∝ PhogT reei ∗ Patlasi .
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3.3.2 Method 2

In this method we assign a class label to each pixel according to its location in the
image (using the probabilistic atlas), its neighborhood HOG information (using the
HOG tree) and its neighborhood label information (using the label tree). Given a new
image we randomly assign a class label to each pixel and then utilise Gibbs sampling
to sample a label for each pixel given its neighborhood HOG feature vector and all
the other pixel labels. The update equation used is as follows:

P(yi |nhoodi ,¬yi ) ∝ (PhogT reei ∗ Patlasi ∗ PlabelT reei ).

We run Gibbs sampling for 200 iterations and use the last 100 iterations to decide
the final class label, i.e. allow 100 iterations as burn in period.

3.3.3 Morphological Post-Processing

We finally apply binary morphological post-processing operations like closing, open-
ing and hole filling on the resulting label maps to generate smoother segmentations.

4 Experimental Results

We use the Dice Coefficient as a Similarity Index to evaluate the validity of the
automatic segmentation results. The Dice Coefficient D(G, M) is defined as the
ratio of twice the intersection over the sum of the two segmented results, the gold
standard G and our automated result M :

Dice(G, M) = 2 ∗ n{G ∩ M}
n{G} + n{M} ,

where n{G} is the number of elements in set G. This measure is derived from a
reliability measure known as the kappa (κ) statistic to evaluate the inter-observer
agreement in regard to categorical data. According to this D > 0.8 indicates near-
perfect agreement and 0.6 < D ≤ 0.8 represents substantial agreement and 0.4 <

D ≤ 0.6 moderate agreement [12].
Tables 1 and 2 tabulate the Dice Similarity Indices of our automatic segmentation

with respect to the expert manual segmentation. Table 1 lists the indices achieved by
the two methods before morphological post-processing and Table 2 shows the indices
after post-processing. We observe that the average results before post-processing fall
in the category of ‘substantial agreement’, while after morphological operations
the result indicates ‘near-perfect agreement’. While Method 1 depends on the post-
processing stage for its enhanced performance, before post-processing Method 2
(Gibbs Sampling) performs better than Method 1 since neighborhood label informa-
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Table 1 Results: dice similarity indices before morphological post-processing

Case num Method 1 Method 2 (Gibbs)
Dural sac Disc Vertebra Dural sac Disc Vertebra

1 0.8203 0.6490 0.5730 0.8375 0.7271 0.8046
2 0.7949 0.6754 0.6784 0.8291 0.7622 0.8302
3 0.8245 0.6960 0.6934 0.8597 0.7938 0.8494
4 0.6467 0.5465 0.6401 0.6494 0.6136 0.8041
5 0.6918 0.4535 0.5961 0.6735 0.4716 0.6962
6 0.8136 0.6971 0.7004 0.8523 0.7799 0.8052
7 0.8312 0.5691 0.5897 0.8419 0.6189 0.7880
8 0.7436 0.6051 0.5676 0.7856 0.6804 0.7673
9 0.7506 0.5950 0.6069 0.7033 0.6431 0.7968
10 0.7433 0.6695 0.6280 0.8025 0.7803 0.7944
11 0.7416 0.6945 0.6948 0.7463 0.7510 0.7431
12 0.7710 0.5896 0.5740 0.8170 0.6769 0.7378
13 0.7024 0.6990 0.6863 0.6810 0.7689 0.8181
Avg 0.7597 0.6261 0.6330 0.7753 0.6975 0.7873

Table 2 Results: dice similarity indices after morphological post-processing

Case num Method 1 Method 2 (Gibbs)
Dural sac Disc Vertebra Dural sac Disc Vertebra

1 0.8765 0.8324 0.6853 0.8765 0.8023 0.8350
2 0.8881 0.8608 0.8130 0.8907 0.8595 0.8713
3 0.9107 0.8672 0.8329 0.9088 0.8703 0.8892
4 0.7419 0.7112 0.8197 0.7070 0.6849 0.8621
5 0.7844 0.5972 0.7166 0.7371 0.5704 0.7446
6 0.8985 0.8663 0.8644 0.9028 0.8533 0.8894
7 0.8960 0.7811 0.7245 0.8824 0.7362 0.8324
8 0.8427 0.8091 0.7284 0.8411 0.7955 0.8161
9 0.8522 0.7912 0.7934 0.7671 0.7532 0.8571
10 0.8272 0.8844 0.8071 0.8530 0.8728 0.8490
11 0.8090 0.9006 0.8731 0.7829 0.8479 0.8295
12 0.8843 0.8310 0.7700 0.8848 0.8165 0.8108
13 0.8167 0.8762 0.8444 0.7545 0.8530 0.8797
Avg 0.8483 0.8160 0.7902 0.8299 0.7935 0.8435

tion is included within it. Hence, we could potentially improve its performance by
designing better neighborhood masks and by adding some shape information.

The segmentation results of two test cases are illustrated in Figs. 4 and 5. Figure 4
illustrates a relatively challenging case (Test case 5) which shows low similarity
indices in the automatic segmentation. Not only does the patient have anabnormal
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Fig. 4 Illustration of a challenging case showing low dice similarity indices (Test case 5): a shows
the original mid-sagittal MRI, b, c, d and e show the manual segmentation (ground truth), f, g and
h show the label maps for the dural sac, disc and vertebra respectively using Method 1, while i and
j show the dural sac and disc segmentation after morphological post processing. k, l and m show
the label maps generated at the end of iteration number 1, 6 and 200 respectively using Method
2 (Gibbs Sampling), while n and o show the dural sac and disc segmentation after morphological
post processing

intervertebral disc (L5-S1), the intensity variations make automatic segmentation
very difficult. Figure 5 illustrates another case (Test case 6) which shows good
automatic segmentation results (high dice similarity indices) inspite of having an
abnormal intervertebral disc (L5-S1).
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Fig. 5 Illustration of a case with high dice similarity indices (Test case 6): a shows the original
mid-sagittal MRI, b, c, d and e show the manual segmentation (ground truth), f, g and h show the
label maps for the dural sac, disc and vertebra respectively using Method 1, while i and j show the
dural sac and disc segmentation after morphological post processing. k, l and m show the label maps
generated at the end of iteration number 1, 6 and 200 respectively using Method 2 (Gibbs Sampling),
while n and o show the dural sac and disc segmentation after morphological post processing

5 Conclusion and Future Work

We have proposed a supervised and unified approach towards complete segmentation
of lumbar MRI. Using this approach we can simultaneously segment a sagittal slice
into 4 class labels:dural sac, intervertebral disc, vertebra and background. We have
also provided validation of our method using 53 clinical cases out of which 40 were
used for training and the rest for testing. On an average, we achieved greater than 0.8
Dice Similarity Indices for both the dural sac and the intervertebral dics. Keeping in
mind our encouraging results, we propose to experiment on larger datasets and also
enhance our approach by incorporating shape and better neighborhood information
into our model.
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Automatic Segmentation and Discrimination
of Connected Joint Bones from CT
by Multi-atlas Registration

Tristan Whitmarsh, Graham M. Treece and Kenneth E. S. Poole

Abstract Many applications require the automatic identification of bone structures
in CT scans. The segmentation of the bone at the joints, however, is a difficult task
to automate since the separation of the bones can be reduced by a degradation of the
articular cartilage. In addition, the bone boundary can become very thin at certain
locations due to osteoporosis, making it difficult to discriminate between the bone
and neighbouring soft tissue. In this work, therefore, a probabilistic method is pro-
posed to segment the bone structures by the registration of multiple atlases. Several
atlas combination strategies are evaluated with respect to the segmentation and dis-
crimination of the proximal femur and pelvic bone, and the L2 and L3 vertebrae, on
datasets of 30 subjects using a leave-one-out approach. The mean overlap is com-
puted and a false overlap measure is proposed to assess the correct discrimination
of the bone structures. In addition, the mean average surface distances and Haus-
dorff distances are computed on the surface meshes extracted from the label maps.
The results indicate that a generalized local-weighted voting approach is preferred,
which results in a mean overlap ≥ 0.97 for all bone structures, while being able to
accurately discriminate between neighbouring bone structures.
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1 Introduction

Segmenting bone structures is of particular importance for orthopaedic surgical plan-
ning as well as implant selection and can aid in the diagnosis of pathologies such as
osteoporosis, whereby the bone quality is examined, or osteoarthritis which requires
an evaluation of the cartilage degradation.

Various bone segmentation methods have already been proposed with applica-
tions to segmenting the hip [1, 2], as well as the vertebrae [3, 4]. Segmenting joint
bones, however, can become particularly difficult due to the thin cortex at certain
regions which is exacerbated by osteoporosis. Moreover, the close proximity of the
bone boundaries at the joints make it difficult to discriminate between adjacent bone
structures. This in turn is aggravated by the presence of osteoarthritis, which reduces
the cartilage and makes it difficult to determine where the bone ends and where
the next begins. It therefore becomes necessary to include some form of a priori
information into the bone segmentation method.

Statistical models have recently become popular in medical image segmentation
and have already been applied to the segmentation of the proximal femur [5], the
pelvic bone [6] and individual vertebrae [7]. These methods, however, often do not in
a straightforward manner guarantee the separation of neighbouring bones. Moreover,
the segmentation using statistical models is constrained to the main variations of the
dataset used for training the model, thus not allowing the accurate segmentation of
irregular pathological bones or outliers.

There has already been much research into segmenting brain structures in the field
of neuroimaging where the connected brain tissue structures have to be identified and
labelled to relate structural changes to neurological disorders. This is commonly done
by the deformable registration of an atlas which is particularly suited to segmenting
connected tissue structures as is the case with brain regions. Initially, a single-atlas
registration was proposed and was later improved by the registration of multiple
atlases [8], which can subsequently be merged through various combination strategies
[9]. This was shown to result in segmentation accuracies exceeding all others and
has rapidly become the standard in brain image segmentation.

Thus, in this work we apply the multi-atlas registration approach to the segmen-
tation of connected joint bone structures and evaluate this technique for its ability to
not only segment bone structures but also its ability to separate the connected bones.
The method is evaluated for the hip whereby the proximal femur and hemipelvis are
segmented and identified as well as the lumbar spine where the L2 and L3 vertebrae
are individually labelled. The atlases are constructed by manual delineations of the
bones and the segmentation method is evaluated in a leave-one-out analysis, giving
the overlap measures and surface distances as the segmentation and discrimination
accuracies.
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Fig. 1 Manual segmentations of the proximal femur and hemipelvis (left) and the vertebrae (right),
shown here by the surfaces extracted from the labelled tissue regions within the volumes, with the
region of interest for the registration process outlined in white

2 Materials and Methods

2.1 Data

A dataset of 30 CT scans of the pelvic area was collected which consists of only
female subjects with an average age of 43.9 ± 14.8 years and ranging between 20
and 78 years.1 A dataset of lumbar spine CT scans was also collected which consists
of 9 male and 21 female subjects with a mean age of 57.6 ± 9.6 years and ranging
between 12 and 71 years.2 The pelvic CT scans were performed using the Siemens
Sensation 64 Slice CT system (Siemens Healthcare, Erlangen, Germany) with a pixel
spacing of 0.7 × 0.7 mm and slice spacing of 0.5 mm and the spinal scans using the
GE LightSpeed 16 CT device (GE Healthcare, Madison, WI, USA) with a pixel
spacing of 0.7×0.7 mm and slice spacing of 1.5 mm. All participants gave informed
consent for the analysis of their hip, pelvic and vertebral imaging data.

For the pelvic volumes the right proximal femur was cropped below the lesser
trochanter and the hemipelvis below the anterior superior iliac spine. Both the pelvic
volumes and the spinal volumes were further cropped to contain only the bone struc-
tures of interest and the volumes were resampled to 1 mm cubic voxels. In the 30
pelvic CT scans the proximal femur and hemipelvis were manually labelled as well
as the L2 and L3 vertebrae in the spinal CT scans. Thus, the atlases consist of the
CT volumes with associated label maps, which delineate the bone regions (Fig. 1).

1
MRC-Ageing: LREC 06/Q0108/180 study previously published in Poole et al., J Bone Miner Res, 2010.

2
ACCT-1: LREC 04/Q0108/257 study previously published in McEniery et al., Hypertension, 2009.
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2.2 Automatic Segmentation

For the automatic segmentation, the set of atlases are registered onto the target volume
by means of an affine transformation followed by a multi-scale B-spline registration.
For the multi-scale B-spline registration we used a control point spacing of 32, 16 and
8 mm consecutively whereby the displacement of the control points are constrained
to 0.4 times the control point spacing to guarantee diffeomorphism [10]. The mutual
information (MI) similarity measure was used for the registrations and a mask of the
region of interest was defined by applying an appropriate threshold to the CT volume
followed by a dilation to include a boundary region around the bone (Fig. 1).

The resulting transformations are applied to the corresponding label volumes
using a nearest neighbour resampling, thereby propagating manual delineations from
the multiple atlases to the target subject. Thus, for each of the atlases the voxels in the
target volume are labelled as belonging to one of the bone structures or soft tissue.

Several common atlas combination strategies are evaluated to find one best suited
for bone structures: a simple majority voting scheme, a global-weighted combination
strategy, the statistical fusion method STAPLE [11] and generalized local-weighted
voting. While majority voting assigns the tissue structure to each voxel based on the
majority of the atlases, global weighted voting assigns a weight to each of the atlases
based on the similarity between the registered atlas and the target volume. Here, the
weights are determined by the mean squared error m within the region of interest,
magnified by a gain p as m p.

Generalized local-weighted voting computes the weights of the atlases at each
voxel separately by taking the mean squared error in a cubic neighbourhood region
of diameter d, which is again magnified by a gain p. Since local-weighted voting
can result in irregular and disconnected bone structures when incorporating a rela-
tively small region, in a post processing step a regularization is applied to the label
map. For each voxel, if a majority of neighbouring voxels is assigned to a different
tissue structure, the labelling is changed to this structure. A final multi-label con-
nected component filter is applied to fill holes in the labelled regions and remove
disconnected structures, which is also applied to the segmentations from the other
combination strategies, although these generally do not result in such artefacts.

2.3 Evaluation

The segmentation accuracy is evaluated by a leave-one-out method whereby for each
volume the remaining 29 atlases are used for the automatic segmentation, which is
then compared to the manual segmentation. The various atlas combination strategies
are evaluated, as well as the use of a single-atlas where each registered atlas is
considered as an individual automatic segmentation.

As a measure for the segmentation accuracy the Mean Overlap (MO) is computed:



Automatic Segmentation and Discrimination of Connected Joint Bones 203

MO = 2 |A ∩ B|
|A| + |B| (1)

where A denotes the automatic segmentation and B the manual segmentation of the
selected region. Although the Mean Overlap represents the segmentation accuracy of
the individual bone structures, we are also interested in how well connected bones can
be separated. Therefore, the overlap of the automatic segmentation with the manual
segmentation of the neighbouring bone structure is computed as such:

FO f emur−pelvis = ∣∣A f emur ∩ Bpelvis
∣∣ + ∣∣Apelvis ∩ B f emur

∣∣
FOL2−L3 = |AL2 ∩ BL3| + |AL3 ∩ BL2| (2)

This False Overlap (FO) measure thus evaluates how well the two bones are discrim-
inated from each other. A value of the gain for the global weighted voting is decided
upon by examining the response of these measurements to a range of values for p.
The accuracy of the local-weighted voting with respect to the MO and FO is assessed
for a range of combinations of the diameter d of the cubical neighbourhood region
and the gain p.

Finally, a surface mesh is extracted from the segmentations, which allows for the
computation of the mean absolute Surface Distance (SD) as well as the Hausdorff
distance (HD).

3 Results

For the global weighted voting a gain of p = −2 appeared to be a good compromise
with respect to the MO and FO segmentation errors for the various bone structures and
here this value is used for comparison with other combination strategies. In Table 1
the overlap measures and surface distances are given for all combination strate-
gies. These results indicate that all multi-atlas strategies outperform the single-atlas
segmentations method, while the generalized local-weighted voting combination
strategy results in the best segmentation and discrimination for all measurements.

The bar graphs of Fig. 2 indicate that local-weighted voting using a single voxel is
considerably less accurate with respect to the mean overlap of all bone structures and
the FO between the vertebrae than incorporating a region with a diameter of 3 voxels,
while using a greater region gradually decreases the segmentation and discrimination
accuracy. A gain of p = −1 results in the best MO for the proximal femur and pelvis.
However, although a gain of p = −2 results in a minimum decrease of the average
MO, it results in a greatly reduced FO between the femur and pelvis. Furthermore,
for the vertebrae a gain of p = −2 appears optimal. Thus, we propose the use of
a 3 voxel diameter neighbourhood region with a gain of p = −2, which results in
a MO of 0.988 ± 0.002 and 0.981 ± 0.005 for the proximal femur and hemipelvis
respectively with a FO of 40.6±48.1 and a MO of 0.967±0.008 and 0.968±0.007
for the L2 and L3 vertebrae with a FO between them of 40.2 ± 38.4.
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Table 1 The Mean Overlap (MO), False Overlap (FO, mm3), mean absolute Surface Distance
(SD, mm) and Hausdorff Distances (HD, mm) for several combination strategies and the single-
atlas approach

Single Majority weighted STAPLE Local
atlas voting voting weighted

voting

MO Femur 0.970 ± 0.023 0.984 ± 0.004 0.985 ± 0.004 0.982 ± 0.005 0.988 ± 0.002
Pelvis 0.958 ± 0.006 0.977 ± 0.004 0.978 ± 0.003 0.975 ± 0.005 0.981 ± 0.005
L2 0.930 ± 0.010 0.960 ± 0.007 0.959 ± 0.007 0.955 ± 0.010 0.967 ± 0.008
L3 0.929 ± 0.012 0.960 ± 0.007 0.960 ± 0.007 0.956 ± 0.010 0.968 ± 0.007

FO Femur-Pelvis 161.9 ± 219.4 63.3 ± 50.1 62.9 ± 49.2 68.3 ± 55.4 40.6 ± 48.1
L2-L3 178.7 ± 118.8 85.6 ± 64.4 82.2 ± 66.0 94.2 ± 60.4 40.2 ± 38.4

SD Femur 0.49 ± 0.33 0.29 ± 0.07 0.28 ± 0.06 0.32 ± 0.09 0.23 ± 0.04
Pelvis 0.46 ± 0.06 0.27 ± 0.04 0.27 ± 0.04 0.31 ± 0.06 0.24 ± 0.06
L2 0.57 ± 0.07 0.36 ± 0.06 0.36 ± 0.06 0.40 ± 0.08 0.30 ± 0.07
L3 0.59 ± 0.10 0.37 ± 0.05 0.37 ± 0.05 0.40 ± 0.08 0.30 ± 0.06

HD Femur 4.83 ± 3.17 2.99 ± 2.07 2.85 ± 2.03 2.92 ± 2.10 2.98 ± 0.99
Pelvis 6.02 ± 3.01 3.59 ± 2.33 3.58 ± 2.23 4.00 ± 2.71 2.98 ± 2.24
L2 6.01 ± 2.05 3.60 ± 1.03 3.71 ± 1.04 3.78 ± 1.14 2.97 ± 0.95
L3 6.48 ± 2.42 4.00 ± 1.22 3.93 ± 1.08 3.90 ± 1.32 3.06 ± 1.10

mean ± standard deviation
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Fig. 2 The bar graphs of the Mean Overlap of the proximal femur and hemipelvis and False Overlap
between the two for the various combinations of the cubical neighbourhood region diameter d and
gain p (top) and the same measurements for the L2 and L3 vertebrae (bottom)
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Fig. 3 Results of the automatic segmentations of the proximal femur and hemipelvis (top) and
the individual vertebrae (bottom) using the proposed multi-atlas registration technique with the
generalized local-weighted majority voting atlas combination strategy

In Fig. 3 the separation of the femoral head and the acetebulum are shown for one
subject, as well as the critical regions of the vertebral segmentation of the articular
processes as resulting from the local-weighted voting atlas combination strategy.

4 Discussion

In this work a multi-atlas based segmentation method for connected bone structures
was proposed while evaluating the most common atlas combination strategies. In
Table 1 we show that a local-weighted voting provides the best segmentation and
discrimination accuracy for these selected bone structures, which is supported by
Artaechevarria et al. [9] who state that a local method is preferred for high contrast
regions, as is the case with bone contours.

Although the work of Hanaoka et al. [3] shows good results with respect to the
vertebral bone segmentation with a mean surface error of 1.11 ± 0.40 mm and MO
of 0.87±0.04, this was improved by the use of a statistical model [7], which resulted
in a mean surface error of 0.939±0.410 mm and MO of 0.896±0.046. A Hausdorff
distance of 10.175 ± 3.184 mm was reported, which was ascribed to the errors at the
processes. In [12] the lumbar vertebrae were segmented with a MO and Hausdorff
distance of 0.893±0.017 and 14.03±1.40 mm respectively using a modified level set
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segmentation framework. In comparison, the multi-atlas approach results in a better
segmentation accuracy for all combination strategies. In particular, the relatively low
Hausdorff distances (2.97 ± 0.95 and 3.06 ± 1.10 mm for the L2 and L3 vertebrae
respectively) indicate that the vertebral processes are also correctly segmented using
a multi-atlas approach.

A mean surface distance for the pelvis and femur shapes of 1.20 mm was reported
in [13] which incorporates a combined statistical model of the pelvis and proximal
femur for the segmentation of diseased hips. In [5] a mean surface distance of 0.20±
0.063 mm and a MO of 0.992±0.006 is reported for the segmentation of 10 proximal
femurs using a shape-intensity prior model constructed from 12 CT scans. A similar,
although slightly worse, surface error of 0.23±0.04 mm and a MO of 0.988±0.002
is achieved by the multi-atlas approach using generalized local-weighted voting. A
direct comparison with previous work, however, is not appropriate due to the use of
different populations with different levels of osteoporosis and cartilage reduction, as
well as the use of a different evaluation method.

Although a localisation and initial alignment of the hip is straightforward, the
identification of the individual vertebrae is not. In this work the CT volumes are
cropped to contain the bones of interest resulting in an implicit initial alignment,
but can as well be automated (as others have done successfully [14]), to make the
process fully automatic.

The datasets used in this work consist of subjects with a wide range of ages of
which some can be assumed to already have some bone and cartilage degradation.
However, it does not specifically contain diseased bones. In particular osteoarthritis
can cause the bones to be difficult to separate because of excessive cartilage reduction
as well as unusual bone structures due to osteophytes. Considering that the method
presented in this work is particularly suited for the segmentation of these bones, we
aim to evaluate the multi-atlas segmentation method for these affected bones as well,
once such a dataset becomes available to us.

To conclude, we have presented an automatic segmentation method which effec-
tively segments and separates the individual bones within a complex joint structure,
thereby potentially improving surgical planning and bone quality assessment with
respect to diseases such as arthritis and osteoporosis.
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Registration of MR to Percutaneous Ultrasound
of the Spine for Image-Guided Surgery

Lars Eirik Bø, Rafael Palomar, Tormod Selbekk and Ingerid Reinertsen

Abstract One of the main limitations of today’s navigation systems for spine surgery
is that they often are not available until after the bone surface has been exposed. Also,
they lack the capability of soft tissue imaging, both preoperatively and intraopera-
tively. The use of ultrasound has been proposed to overcome these limitations. By
registering preoperative magnetic resonance (MR) images to intraoperative percu-
taneous ultrasound images, navigation can start even before incision. We therefore
present a method for registration of MR images to ultrasound images of the spine.
The method is feature-based and consists of two steps: segmentation of the bone
surfaces from both the ultrasound images and the MR images, followed by rigid
registration using a modified version of the Iterative Closest Point algorithm. The
method was tested on data from a healthy volunteer, and the data set was successfully
segmented and registered with an accuracy of 3.67 ± 0.38 mm.
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1 Introduction

In spinal surgery today, many procedures are performed with no or only minimal
image guidance. Preoperative computed tomography (CT) or magnetic resonance
(MR) images are used for diagnosis and planning, but during surgery, two-dimensional
C-arm fluoroscopy is widely used both for initial detection of the correct spinal level
and for intra-operative imaging. Navigation systems exist, but mainly for placement
of pedicle screws. These usually first come to use when the bone surface has been
exposed. Using a simple landmark or surface registration method the preoperative
CT image is then aligned with the patient and can be used for planning and guid-
ance of the screws. A number of groups have evaluated the use of navigation for
this purpose, and a review of the topic was presented by Tjardes et al. [12]. They
conclude that the benefits of image-guidance in terms of accurate placement of the
screws and reduced exposure to ionizing radiation have been proven, in particular
for the cervical and lumbar procedures. In other areas of spine surgery, navigation
and image guidance are still on the experimental stage.

One of the main limitations of today’s navigation systems for spine surgery is
that they often are not available until after the bone surface has been exposed. The
use of ultrasound has been proposed to overcome this limitation. By registering
preoperative images to intraoperative percutaneous ultrasound images, navigation
can start before incision and therefore be used for both level detection and planning
at an early stage of the procedure. Thus, the use of X-ray fluoroscopy can possibly
be reduced.

In order to make a navigation system based on intraoperative ultrasound clinically
useful, the greatest challenge is to achieve accurate and robust registration between
the preoperative images and the ultrasound images with minimal user interaction.
Registration of CT images of the spine to corresponding ultrasound images has been
investigated by several groups, and two main approaches have been explored: feature-
based registration and intensity-based registration. In the first case, corresponding
features are extracted from the two datasets to be registered prior to registration. In
the case of spine surgery, the feature of choice is the bone surface as this is the only
feature that can be reliably detected in the ultrasound images. Segmentation of the
bone surface from ultrasound images of the spine is still a challenging topic due to
noise, artifacts and difficulties in imaging surfaces parallel to the ultrasound beam. A
few methods have been described in the literature, ranging from simple ray tracing
techniques [15] to more advanced methods based on probability measures [4, 7, 9]
or phase symmetry [13]. Following surface extraction, the segmented bone surfaces
are registered using the Iterative Closest Point (ICP) algorithm [2] or the unscented
Kalman filter [9].

In intensity-based registration, a similarity metric based on the image intensities is
optimized to find the spatial transformation that best maps one image onto the other
[6, 8, 14, 15]. As MR/CT and ultrasound images present very different intensity and
noise characteristics, a common approach is to create simulated ultrasound images
from the pre-operative data and register the simulated image to the real ultrasound
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image. In these simulations, the direction of sound wave propagation, transmission,
reflection and noise can be modelled in order to obtain images that can be reliably
registered to real ultrasound images based on image intensities.

While these studies show a lot of promise, they focus almost exclusively on the
registration of preoperative CT images. However, many spinal procedures, such as the
treatment of disc herniations and intraspinal tumours, rely on the soft-tissue imaging
capabilities of MR. Thus, by combining ultrasound imaging with preoperative MR,
navigation could be extended to a variety of spinal procedures that do not benefit
from image guidance today. In these procedures, the ultrasound could also be used for
intraoperative imaging, reducing the use of fluoroscopy even further. As a first step
towards this end, we present a method for registration of preoperative MR images to
percutaneous ultrasound images of the spine, including a preliminary assessment of
its performance.

2 Methods and Experiments

Our registration method is feature-based and consists of two steps: First, the bone
surfaces are segmented from both the ultrasound images and the MR images, and
then the two surfaces are registered using a modified version of the ICP algorithm.

2.1 Ultrasound Acquisition and Segmentation

The ultrasound images were acquired using a Vivid E9 scanner with an 11 MHz
linear probe (GE Healthcare, Little Chalfont, UK). Some groups have used lower
frequencies, which enable good imaging of deeper structures such as the transverse
processes of the spine [6, 9, 13–15]. However, this makes imaging of superficial
structures, such as the spinous processes and the sacrum, challenging. As these
structures represent important features for the registration algorithm, we found that
a relatively high frequency gave a better compromise between depth penetration
and resolution. The ultrasound probe was tracked with the Polaris optical tracking
system (NDI, Waterloo, ON, Canada), and both images and corresponding tracking
data were recorded using the navigation system CustusX [1] with a digital interface to
both the ultrasound scanner and the tracking system. The two-dimensional ultrasound
images were also reconstructed to a three-dimensional volume using the Pixel Nearest
Neighbor (PNN) reconstruction algorithm [11].

While the reconstructed, three-dimensional ultrasound volume is useful for nav-
igation, the reconstruction process tends to introduce a certain blurring. The volume
usually also has a lower resolution than the original, two-dimensional ultrasound
images. We therefore used the latter as input to our segmentation method. In order
to extract the bone surfaces from these images, we used a combination of the bone
probability maps introduced by Jain et al. [7] and Foroughi et al. [4], and the back-
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ward scan line tracing presented by Yan et al. [15]. In ultrasound images, reflections
from bone surfaces are seen as bright ridges perpendicular to the ultrasound beam. To
calculate the probability of each pixel ai, j of the image A being part of such a ridge,
the image was smoothed with a Gaussian filter, before calculating the Laplacian of
Gaussian (LoG), i.e.

AG = {ai, j
G } = A ∗ G and ALoG = {ai, j

LoG} = AG ∗ L , (1)

where G and L are the convolution kernels of the Gaussian filter and the LoG filter
respectively. This is a common operation in blob detection and usually produces a
strong positive response for dark blobs and a strong negative response for bright
blobs. To enhance the bright reflections, the positive values were therefore set to
zero before taking the absolute value of the rest. The result was then added to the
smoothed version of the original image to produce an initial bone probability map
P1 = {pi, j

1 }, i.e.

pi, j
1 = ai, j

G + | max{ai, j
LoG, 0}|. (2)

The other feature to be considered was the intensity profile in the propagation
direction of the ultrasound. For a bone surface, this is typically characterized by a
sudden, sharp peak followed by a dark shadow. To calculate the probability of a
given pixel representing the maximum of such a profile, each scan line was con-
sidered separately. Assuming pm

1 is the mth pixel of the initial bone probability
map P1 along a given scan line, the secondary bone probability of this pixel was
found as

pm
2 = pm

1 − pm−δ
1 + pm+δ

1

2
− ω

λ

λ∑
n=1

pm+δ+n
1 , (3)

where 2δ is the width of a typical intensity peak and λ is the length of a typical bone
shadow, both given in pixels. In our case, these were set to δ = 24 and λ = 322,
which corresponds to 1.5 and 20 mm respectively. ω is a weight that can be adjusted
according to the overall noise level of the bone shadows in the image, and in our case
this was set to 10.

The first term in (3) is simply the intensity of the mth pixel. At a bone reflection,
this will be high and lead to a high bone probability. The second term combines the
intensities at the distance δ behind and in front of the mth pixel. At a sharp peak of
width 2δ, both of these will be low and have little impact on the bone probability. On
the other hand, if there is no such peak, at least one of these will be high and lead to
a reduced bone probability. The last term is the average intensity of the pixels in the
shadow region behind the peak. If there is a lot of signal in this area, this term will
be high and thus reducing the bone probability

Finally, we applied a variant of the backward scan line tracing to the resulting
probability map: For each scan line, starting at the bottom of the image, the first local
maximum above a certain threshold was deemed part of a bone surface. This was
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Fig. 1 An ultrasound image of a vertebra with the segmentation overlaid in red (left), the initial
bone probability map (centre) and the final bone probability map after applying the threshold (right)
(see colour figure online)

repeated for all the recorded images, and based on the corresponding tracking data,
all points were transformed into the three-dimensional reference space of the tracking
system. A typical example of both the probability maps and the final segmentation of
an image is shown in Fig. 1. The method was implemented in MATLAB (MathWorks,
Natick, MA, USA).

2.2 MR Acquisition and Segmentation

The MR images were acquired using an Achieva 3.0 T scanner (Philips Healthcare,
Amsterdam, Netherlands). In order to facilitate both the segmentation of the spine
and the subsequent navigation, we customized a full, three-dimensional MR protocol
which enhanced the contrast between the bone and the surrounding soft tissue. This
had a field of view of 80×560×560 voxels and a voxel size of 1×0.48×0.48 mm3.
The lumbar vertebrae were segmented using a semiautomatic method based on active
contours implemented in the segmentation software ITK-SNAP [16]. However, in the
area of the sacrum, the contrast between the bone and the surrounding soft tissue was
lower, and here active contours driven by robust statistics resulted in more accurate
segmentations. For this part, we therefore employed the Robust Statistics Segmen-
tation (RSS) module [5] included in the medical imaging analysis and visualization
software 3D Slicer [3].

The use of active contours for segmentation may lead to oversegmentation of cer-
tain anatomical structures, known as leaks. In MR images, such leaks are especially
prominent in areas with motion artifacts caused by the patient not lying completely
still during the image acquisition. This is often a problem, especially for patients in
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Fig. 2 The segmented ultrasound (blue) and MR (red) surfaces (left) and the same surfaces after
reducing the MR surface with ray tracing (right) (see colour figure online)

need of spine surgery. To compensate for this, minor corrections of the segmentation
results were performed manually for both the lumbar area and the sacrum.

The surface segmented from the MR volume represented the entire lumbar spine,
and consisted therefore of a large number of points. However, only the surfaces facing
the ultrasound probe were visible in the ultrasound images. Thus, a significant portion
of the surface points in the segmented MR were irrelevant to the registration, as there
were no corresponding points in the ultrasound images. To reduce the amount of
data, and thus the work load of the registration algorithm, we therefore used a simple
ray tracing method (posterior to anterior) to extract those points that were facing the
ultrasound probe. An example of the resulting reduced surface can be seen in Fig. 2.

2.3 Registration

Following segmentation, the segmented surfaces from ultrasound and MR were
imported into the navigation system for registration. Like all automatic registration
methods, the ICP algorithm requires an initialization or a reasonable starting point in
order to converge to the correct solution. This was provided by assuming that the two
volumes covered approximately the same volume, that the first recorded ultrasound
image was positioned at the sacrum and that the probe trajectory was from the sacrum
upwards. The two image volumes were then aligned by first rotating the MR volume
in order to align the x, y and z axes in the two volumes, and then translating the MR
volume in order to align the points corresponding to the voxels (nx/2, 0, 0) in both
volumes, where nx is the number of voxels in the x-direction (patient left-to-right).

After this initial alignment, we used the ICP algorithm to rigidly register the
reduced MR surface to the ultrasound surface. In order to reduce the influence of
possible outliers on the registration result, the algorithm was modified by incorpo-
rating the Least Trimmed Squares (LTS) robust estimator as described by Reinertsen
et al. [10].
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Fig. 3 The ultrasound (blue) and MR (red) surfaces after the initial alignment (left) and after the
final registration (right) (see colour figure online)

Fig. 4 A transverse slice (left) and a sagittal slice (right) from the ultrasound volume overlaid on
top of the corresponding slices from the registered MR volume. The ultrasound data is shown in
red and yellow and the MR data is shown in grey tones (see colour figure online)

2.4 Experiments

In order to evaluate our method, we acquired both ultrasound and MR images of
the spine of a healthy volunteer. The only structures that were clearly discernible in
both of these images were the top points of the spinous processes of three lowest
vertebrae (L3, L4 and L5). These were therefore selected as control points and
manually identified in both the original ultrasound volume and the MR volume.
The surfaces were then registered to each other using the method described above,
and the distances between the landmarks both after initial alignment and after final
registration were computed.
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Table 1 Distance between
the control points in mm

L3 L4 L5 Mean ± STD

After initial alignment 23.29 21.27 22.40 22.32 ± 1.01
After final registration 3.86 3.93 3.23 3.67 ± 0.38

3 Results

Through careful optimization of the acquisition protocols, both MR and ultrasound
images of high quality were achieved. The data sets were successfully segmented and
registered using the methods described above. Figure 3 shows the extracted surfaces
both after the initial alignment and after rigid registration. The match can also be
seen in Fig. 4, which shows transverse and sagittal views of corresponding ultrasound
and MR volumes after registration. Finally, the distances between the control points
before and after registration are given in Table 1.

4 Discussion

We have demonstrated that registration between MR and ultrasound images is feasi-
ble. The accuracy of 3.67 ± 0.38 mm is clinically relevant as it is sufficient to ensure
that we are on the correct level. It is also comparable to that of many of the studies
mentioned in the introduction. Still, this is a work in progress, and the results shown
here are only preliminary.

It has been pointed out that intensity-based registration has an advantage over
feature-based methods in that it makes use of all the information in the image, rather
than just that of the bone surfaces [6]. In the case of spine imaging, however, other
structures that are visible in the ultrasound images, such as muscle fibres and fat
layers, are not imaged very well by neither CT nor MR. Their contribution to the
registration procedure is therefore questionable.

The ultrasound images that we have acquired vary considerably in appearance
from subject to subject. At the moment, this means that the parameters of the seg-
mentation method, such as the width δ of the reflections, the length λ of the shadows
and the weight ω must be manually adjusted to the particular data set. In the future,
these adjustment should be done automatically, e.g. based on overall image statistics.

The MR segmentation methods that we presented here are only semiautomatic and
quite time consuming. However, the result of this was a complete segmentation of the
lumbar spine, and as we have already pointed out, only a small part of this information
was actually relevant to the registration. We are therefore investigating methods to
segment only the part of the anatomy that is most critical to the registration, i.e. the
sacrum and the spinous and transverse processes. The results are promising, and it
should be possible to perform this segmentation both quickly and with minimal user
interaction.
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The last component of the method is the registration. Here, we have shown that
a reasonable rigid registration can be achieved using the ICP algorithm. However,
the spine is flexible, and the change in curvature from the MR scanner, where the
patient is lying in a supine position, to the operating room, where the patient is placed
in a prone position, can be large. A group-wise rigid registration method, like the
one proposed e.g. by Gill et al. [6] where only the space between the vertebrae is
deformed, would be more appropriate.

Finally, our method needs more extensive testing, both with respect to robustness
to anatomical variations and with respect to accuracy. The distance measure that we
have used here, based on manual identification of landmarks, gives a good indication
of the registration accuracy, but we should include a measure of inter- and intra-
observer variability. Such measures could therefore be complimented with other
assessment methods, such as phantom studies where the exact geometry is known
and a reliable ground truth thus can be established. All of the above are currently
addressed in our research.

5 Conclusion

The presented method is capable of registering MR images to percutaneous ultra-
sound images of the spine. The registration accuracy is clinically relevant, and with
minor improvements the user interaction can be reduced to a minimum. This method
is thus an important step towards the realisation of a system for MR- and ultrasound-
guided spine surgery.
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Vertebrae Detection and Labelling in Lumbar
MR Images

Meelis Lootus, Timor Kadir and Andrew Zisserman

Abstract We describe a method to automatically detect and label the vertebrae in
human lumbar spine MRI scans. The method is based on detections in all slices
of sagittal MRI scans of arbitrary slice spacing. Our contribution is to show that
marrying two strong algorithms (the DPM object detector of Felzenszwalb et al. [1],
and inference using dynamic programming on chains) together with appropriate
modelling, results in a simple, computationally cheap procedure, that achieves state-
of-the-art performance. The training of the algorithm is principled, and heuristics are
not required. The method is evaluated quantitatively on a dataset of 371 MRI scans,
and it is shown that the method copes with pathologies such as scoliosis, joined
vertebrae, deformed vertebrae and disks, and imaging artifacts. We also demonstrate
that the same method is applicable (without retraining) to CT scans.

1 Introduction

The task dealt with in this paper is the following: given an MR scan of the lumbar
spine, localize and label all the vertebrae present in that image. The motivation for
this work is that spine appearance, shape and geometry measurements are necessary
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Fig. 1 The task. Given a 3D MR lumbar spine image comprising of a stack of sagittal 2D slices as
input (the mid-slice is shown on the left), localize and label in that 3D image all the vertebrae that
are present. The output (projected on the mid-slice on the right) consists of labelled tight bounding
boxes around the vertebrae. Note that all the 2D slices in the 3D slice stack are searched for vertebrae
candidates

for abnormality detection locally at each disk [2–7] and vertebrae [8, 9] (such as
herniation), as well as globally for the whole spine (such as spinal scoliosis).

In more detail, the input 3D image is a (sparsely spaced) stack of 2D sagittal
images, and the output consists of labelled tight bounding boxes with labels around all
the vertebrae in the image. Each bounding box is specified by its position, orientation,
and scale. An example of the detection and labelling for a typical normal scan is shown
in Fig. 1.

This detection task is challenging for a number of reasons, including: (1) the
repetitive nature of the vertebrae, (2) varying image resolution and imaging protocols;
artefacts, and (3) large anatomical and pathological variation, particularly in the
lumbar spine. Various examples of challenging cases in our dataset are highlighted
in Fig. 2. The anatomy and pathology variation can affect both the local vertebrae /
disks appearance (e.g. degraded disks—Fig. 2h), and the global layout of the spine
(e.g. scoliosis—Fig. 2c).

Contributions. Our method brings together two strong algorithms—the Deformable
Part Model of Felzenszwalb et al. [1] based on Histogram of Oriented Gradients
(HOG) image descriptors [10] and efficient inference on graphical models [11, 12]—
making the algorithm accurate, robust, and efficient on challenging spine datasets.
The algorithm is also tolerant to varying MR acquisition protocols, image resolutions,
patient position, and varying slice spacing unlike related solutions in the literature.
It localizes all the vertebrae present in a scan, and labels them correctly as long as
the sacrum is present in the scan. Importantly, the method is appliccable to standard
MRI protocols.

The method has two distinct stages. First, vertebrae candidates are detected by
using a sliding window detector searching over position, scale, and angle (Sect. 2.1).
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Fig. 2 Spine variation in our data. A collection of example images showing assorted image,
anatomical and pathological modes of global variation of the spine shape, and local variation of
the vertebrae, and the disks. Our algorithm is robust to all those variations. Abnormalities have
been highlighted by the red arrows. a Normal spine with a zoom on a normal vertebra. b A low-
resolution image. c A coronal view of a scoliotic spine, resulting in the spine not being cut by a
single sagittal slice. d Top a normal sacrum, with unambiguous L5, S1 labelling based on shape
and S1 and L5 orientation. Bottom a sacrum with ambiguous L5, S1 labelling based on their shape
and orientation. e Joined vertebrae. f–j Pathologically deformed vertebrae and disks. k Magnetic
susceptibility imaging artefacts

Second, a graphical model is fitted to the set of candidate detections to find the optimal
spine layout and labelling based on the unary SVM score of the detection for each
part, and a spatial cost between each pair of connected parts (Sect. 2.2). The HOG
descriptor captures the near rectangular shape of the vertebrae. We detect vertebrae
rather than disks since the vertebrae shape is more consistent than the disk shape as
the lumbar spine studies are more often aimed at targeting disk deformations, and
more suitable to be modelled with HOG. Disk locations can easily be found after
detecting vertebrae.

The closest previous work to ours is that of Oktay and Akgul [13]. They detect
disks and vertebrae in the lumbar spine using a Pyramid HOG descriptor; however,
they only detect six disks and vertebrae with their graphical model, require the
existence of both T1 and T2 scans to first detect the spinal cord, and they have a
separate HOG template for each vertebrae. In contrast, we demonstrate that just one
generic vertebrae detector suffices for all vertebrae, and only require the T2 scan.
Furthermore, they only use the mid-sagittal slices, making it only applicable to cases
where all the spine parts are in the mid-sagittal slice, whereas we sequentially search
for vertebrae in all the 2D images in the 3D stack (not restricted to the mid-sagittal
slice).

Ghosh et al. [14] also use HOG features [10], however they do not label the
vertebrae and make strong use of heuristics and information from complementary
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axial scans. They detect disks rather than vertebrae. Zhan et al. [15] present a robust
hierarchical algorithm to detect and label arbitrary numbers of vertebrae and disks in
nearly arbitrary field of view scans, as long as one of four ‘anchor’ vertebrae (C2, T1,
L1, S) are present. They first detect the ‘anchor’ vertebrae, and then other ‘bundle’
vertebrae connected to it graphically. Although the method works very well within
its domain, it requires isotropic 2.1 mm resolution scans which limits its applicability
severely. Our method is not limited to this domain and, in particular, does not require
the high isotropic resolution.

A further extensive body of literature on spine localization and labelling exists. In
almost all the papers, the algorithms work in two stages. First, some anatomical parts
characteristic of the spine are detected (vertebrae [16–18]/disks [14, 19–21]/both [13,
15]). Second, a spine layout model is fitted to the candidates to determine the best
hypothesis for the spine layout. The spatial configuration of the spine parts, and in
some cases also their individual characteristics [15, 18, 22], are taken into account
to both label the disks and/or vertebra, and localize the spine.

2 Method

We present a method to localize and label vertebrae in lumbar MR images using
two HOG-based detectors and a graphical model. First, given a stack of sagittal MR
slices, vertebrae and sacrum candidates are detected using latent SVM on HOG in
each slice as described in Sect. 2.1. Next, after local non-maxima suppression, the
vertebrae candidates corresponding to the spine are picked and labelled by fitting a
graphical model, as explained in Sect. 2.2.

2.1 Spine Part Detection

The spine part (vertebrae) detection is implemented using two detectors constituting
latents SVMs on Histogram of Oriented Gradients (HOG) descriptors [10] using
the Felzenszwalb VOC Challenge object detection framework [23]. We learn one
generic 2D detector for vertebrae bodies (VBs), trained on all VBs in all the training
images, and another more specific 2D detector for the sacrum, trained on the VBs of
the first two links of the sacrum. Both the models are visualized along with a set of
training samples in Fig. 3.
Training. Both the generic vertebrae body (VB) detector and the sacrum detector
are trained using the Felzenszwalb detection framework [23]. The positive training
examples for the VB detector are tight bounding boxes around the vertebral bodies
of T10...L5 vertebrae with the bounding box sides parallel to the vertebral facets as
shown in Fig. 3a. The positive training examples for the sacrum detector are tight
bounding boxes around the first two links of the sacrum, with one side parallel to the
posterior side of the sacrum as shown in Fig. 3b. The bounding boxes for both the VB
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Fig. 3 The appearance model. Some training examples and a learned HOG template are shown for
both the generic vertebrae body detector (a) and for the sacrum detector (b). The examples have
been hand-annotated with tight Ground Truth bounding boxes as shown above and explained in
Fig. 5

and the sacrum are defined by fitting a minimum bounding rectangle to landmarks on
them—four for the VB and eight for the sacrum. Each training sample is extracted
from the slice cutting through the middle of the respective vertebral body.

For the VB detector, four HOG templates are trained, each of them of a different
aspect ratio. The HOG templates are each 6 cells high, and 6, 7, 8, and 9 cells wide,
corresponding to aspect ratios between 1 and 1.5. The HOG cell size for the VB
model is 8 × 8 pixels. The HOG template for the sacrum detector is 9 cells high
by 5 cells wide, with 8 × 8 pixel HOG cell size. The HOG feature vectors are 31-
dimensional, with 18 contrast-sensitive, 9 contrast-insensitive direction bins; and 4
texture feature bins.

The HOG templates capture the rectangular shape of the vertebrae, with variations
due to deformation, and the trapezoid shape of the first two links of the sacrum. The
vertebrae show wide size and resolution variation and are all scaled and warped to
match one of the aspect ratios at training. The model is learned iteratively in several
steps, with new positive samples mined by running the detector on the positive
samples, collecting the strongest detections as new positives, and training a new
detector using the new positives.

The negative samples for the vertebrae detector are first picked randomly from
mid-slices with a hand-drawn black polygon covering all the vertebral bodies. Next,
an iterative learning procedure is employed to pick hard negatives as false positive
detections on the negative training images as detailed in [23].

Testing. During the candidate detection step at test time, a previously unseen sagittal
scan is taken as input, and tight bounding boxes around vertebrae candidates are
returned as output. The candidate search is performed sequentially in all slices of the
scan. The VB and sacrum detector are run on each slice of the scan, searching over
position, scale, and angle, with the scan rotated by −20◦ to 20◦ in 10◦ increments. A
feature pyramid is calculated for each angle, with HOG cells placed densely next to
each other. The feature pyramid has 10 levels per doubling of resolution (10 levels
per octave), with the image resized and resampled to 2× the original size to 0.5× the
original size from the finest to coarsest scale. All the detections at all positions, scales,
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Fig. 4 Vertebrae detection pipeline. a Input image. b All detections at all rotation angles and
scales. The green rectangles are generic vertebrae, and the red rectangles are sacrum candidates.
c All detections, with top detections shown in thick blue line, and the “+” mark the ground truth
vertebrae center locations. d Output detection bounding boxes along with the ground truths and
labels

orientations are collected and transformed onto the original test image coordinate
system as shown in Fig. 4.

A greedy non-maxima suppression algorithm is employed to remove most of the
false positive detections in each slice as follows. First, the top-scoring bounding box
is retained, and all bounding boxes overlapping it more than 50 % are discarded. Next,
the second-highest scoring remaining bounding box is retained, and the discarding
and retention process continues until all the remaining bounding boxes have at most
50 % overlap.

Next, the remaining bounding boxes from all the slices are collected and projected
onto a single slice, and the non-maxima suppression process is repeated to end up with
bounding boxes across all the slices that have at most 50 % overlap. These bounding
boxes are next passed as input to the Graphical Model as described in Sect. 2.2 in
order to eliminate any remaining false positives, and to label the vertebrae.

2.2 Graphical Model for Spine Layout

We train a parts-based graphical model [12] connecting the vertebrae in a chain. The
graphical model takes as input the detections after non-maxima suppression described
in the previous subsection, and gives as output the placement and labels of all verte-
brae in the image. The method deals with multiple slices by ignoring the slice index
in inference. The spine layout is given as a configuration L = (l1, l2, . . . , ln−1, ln)

where li are the vertebra locations, with l1 the C1 and ln = l25 the sacrum. The
optimal configuration L∗ of the graphical model is

L∗ = arg min
L

⎛
⎝

n⎨
i=1

mi (li ) +
⎨

vi, j ∈G

di j
⎞
li , l j

⎠
⎟
 (1)

where li and l j denote the vertebrae locations l = (xi , yi , heighti , widthi , θi )

given by their location (x, y), size (height, width), and orientation θi . The best
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model fit minimizes the sum of the unary appearance mismatch terms mi from the
part detectors output and the spatial deformation cost di j for connected pairs i j
of parts, laid at li and l j respectively. The last appearance term value m25 comes
from the sacrum detector, and the rest of the appearance term values come from the
universal vertebra detector. The spatial deformation cost is a sum of box functions
on x and y coordinates, the ratio of vertebrae areas Ai & A j , and the angle between
the vertebrae:

di j (li , l j ) = S(Ai/A j ) + T (xi − x j ) + U (yi − y j ) + V (θi − θ j ) (2)

Here S, T , U , and V are the box functions on area A, position x & y, and angle θ

that take a low constant value if their arguments are within favourable range of each
other and a higher constant value if their arguments are outside that range.

To speed up the fitting process, a Viterbi message passing scheme from [12] for
fast inference in O(nh2) time is employed where n is the number of parts and h
the number of candidates per part. Typically, there are around h = 100 candidate
positions per part, and the full inference takes around 0.1 s per MR volume. The full
detection process from input to output typically takes less than a minute.

Training. The edges for the box functions S, T , U , and V are found as the mini-
mum and maximum argument values of those functions on the training set (e.g. the
minimum and maximum x-distance between L1 and L2 for T , etc.).

Testing. At test time, the whole model is fitted to the retained states, with extra
“hidden” states with outside-FOV position for each part, with a penalty value for the
“hidden” state learnt at training time [24]. At each position in the scan, the highest-
scoring detection across all slices is retained for graphical model fitting as explained
in Sect. 2.1. All retained states can be in different slices.

3 Experiments

3.1 Data, Annotation and Evaluation

The dataset consists of 371 MRI T2-weighted lumbar scans, acquired under various
protocols. The scans contain normal and various abnormal cases as illustrated in
Fig. 2. The dataset is split into 80 training and 291 testing images. The scans have
isotropic in-slice resolution varying from 0.34 to 1.64 mm with mean at 0.78, median
at 0.84 mm; and varying slice spacing from 3 to 5 mm, with 4 mm in almost all scans.
The scans range in fields of view, containing 7–23 vertebrae starting from the sacrum,
with median at 10 per scan.

Annotation. The scans were hand-annotated with two types of ground truth as illus-
trated in Fig. 5: (i) All the vertebrae centres in all the scans are marked with a point
(“+” in Fig. 5), and labelled with the vertebrae name; and (ii) all the training scans
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Fig. 5 The ground truth annotation process. A1-A3 show the generic vertebral, and B1-B3 the
sacrum annotation process. There are two types of annotation: single point (the green “+” in the
figure—used for testing) and bounding box (the red rectangle—used for training). Given an input
(A1, B1), the points (“+” and “×”) are hand-placed (A2,B2). The bounding box annotation is found
as the minimal bounding rectangle to the “×” points around the vertebra/sacrum boundary. There
are four boundary points for vertebrae (a) and eight for the sacrum (b)

Fig. 6 Example results. Input and output are shown for six different scans a–f. The thick solid line
rectangles show the detections for each vertebrae, along with their anatomical labels. Note how the
algorithm is robust to varying field of view, resolution, and anatomy. Note that for visualization
purposes, only mid-sagittal slices are shown and all the bounding boxes projected on them, however
all the slices are searched for vertebrae candidates and the highest scoring ones retained
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Fig. 7 Localization error by vertebrae type. Boxplots representing detection errors are shown.
The error for a given vertebra type is calculated as the distance between the center of the detected
bounding box and the ground truth vertebra center, divided by the mean width of that vertebra. The
mean vertebrae widths are evaluated based on the bounding boxes on the training set. The horizontal
line in the middle of each box is the median error, and the bottom and top of each box are the 25
and 75 percentile errors respectively. The bottom and top error bar end are the 5 and 95 percentile
errors respectively, and the ‘+’ denote statistical outliers

plus some test scans are annotated with a tight bounding box around each vertebra
(Fig. 5A3, B3). The tight bounding boxes were defined by points (“×” in Fig. 5)
along the vertebrae boundaries as shown.

Evaluation protocol. The detections are evaluated against vertebrae-center and the
sacrum-center ground truth points. A positive detection for the sacrum is counted if
a detected sacrum bounding box contains the sacrum ground truth point and does
not contain any vertebrae center ground truth points. A positive detection for the
vertebrae is counted if a detected vertebra bounding box contains one and only
one ground truth point for a vertebral body, including the sacrum. This evaluation
protocol ensures that the cases where a detection is much larger than the vertebral
body, covering several vertebrae, are not counted as positive.

3.2 Results

The algorithm is evaluated on a set of 291 lumbar spine test images with variable
number of vertebrae visible. Given an input scan, both the sacrum and vertebrae
detectors are run on the scan, searching over position, scale, and angle. The position
search is dense, the scale varies from 0.25 to 2 of the original image size (scale = 1)
in small increments (so that there are 10 different scales per doubling of image size).
The angle search runs from −20◦ to 20◦ for vertebrae and −60◦ to 0◦ for the sacrum
in 10◦ increments.

Example outputs are shown in Fig. 6, and statistical results on localization error
over the test set are plotted in Fig. 7 and tabulated in Fig. 8 by vertebrae type.
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Fig. 8 Localization errors. The mean and standard deviation (std) of localization errors are shown
for all the correctly detected and labelled vertebrae (identication rate 84 % overall and 87 % for
lumbar). In adittion the “count”—the number of vertebrae detected of each type—is provided,
along with the mean width of each of the vertebrae in training set. By allowing the labelling to be
correct to +/−1 vertebrae, the identication rates become 93 and 95 % for all and lumbar vertebrae
respectively

Fig. 9 Detection on CT images with detectors trained on MR. Detectors trained on MR images can
also successfully localize vertebrae in CT scans, indicating the robustness of the method to varying
image appearance

We achieve 84.1 % correct identification rate overall, and 86.9 % for the lumbar
vertebrae. The mean detection error between the Ground Truth centre of the vertebrae
and the center of the detected bounding box is 3.3 mm, with standard deviation
3.2 mm. If the assigned labels are allowed to be shifted by +/− one, the errors are
92.9 and 94.7 % respectively.

Independent sacrum detection (without graphical model) with local non-maxima
supression shows 98.1 % recall at 48 % precision. Independent general vertebrae
detection (without graphical model) shows 97.1 % recall at 9.1 % precision.

Our method works well on very challenging examples with various anomalies
illustrated earlier in Fig. 2. The identification results compare favourably to other
approaches in the literature, although direct comparison is not possible since the
algorithms have been evaluated on different datasets. Glocker et al. [18] report median
identification error of 81 % with median localization error below 6mm on CT images.
Zhan et al. [15] detect disks and vertebrae in isotropic MRI scans with 97.7 %
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“perfect” labelling rate as assessed by a medic but do not report detection errors.
Pekar et al. [19] report 83 % correct labelling rate on 30 lumbar MRI scans. Our
method is able to correctly localize the centre of the vertebrae out of the mid-sagittal
slice in scoliotic cases such as image f in Fig. 6.

Application to CT images. Although the method has been principally designed for
MRI images, it is directly applicable to CT images as shown in Fig. 9. No retraining
is required for detection on CT due to the high generalization of HOG detectors.

4 Conclusion

We have presented a HOG-based algorithm to localize vertebrae in lumbar MRI
scans of the spine that is simple, accurate and efficient. We demonstrate robustness to
severe deformations due to diseases, image artefacts, and a wide range of resolution,
patient position, and acquisition protocols on a challenging clinical dataset. It is
straightforward to extend the method to completely general FOVs if required, by
taking other anatomical context into account [18].

Acknowledgments Acknowledgements for the dataset.

References

1. Felzenszwalb, P., Mcallester, D., Ramanan, D.: A discriminatively trained, multiscale, de-
formable part model. In: Proceedings of CVPR (2008)

2. Pfirmann, C.W.A., Metzdorf, A., Zanetti, M., Hodler, J., Boos, N.: Magnetic resonance classi-
fication of lumbar intervertebral disc degeneration. Spine 26(17), 1873–1878 (2001)

3. Fardon, D.F., Milette, P.C.: Nomenclature and classification of lumbar disc pathology. Spine
26(5), E93–E113 (2001)

4. Alomari, R.S., Corso, J.J., Chaudhary, V., Dhillon, G.: Desiccation diagnosis in lumbar discs
from clinical mri with a probabilistic model. In: IEEE International Symposium on Biomedical
Imaging: From Nano to Macro. ISBI ’09, pp. 546–549 (2009)

5. Alomari, R.S., Corso, J.J., Chaudhary, V., Dhillon, G.: Computer-aided diagnosis of lumbar disc
pathology from clinical lower spine MRI. Int. J. Comput. Assist. Radiol. Surg. 5(3), 287–293
(2010)

6. Ghosh, S., Alomari, R.S., Chaudhary, V., Dhillon, G.: Computer-aided diagnosis for lumbar mri
using heterogeneous classifiers. In: IEEE International Symposium on Biomedical Imaging:
From Nano to Macro (2011)

7. Michopoulou, S., Costaridou, L., Vlychou, M., Speller, R., Todd-Pokropek, A.: Texture-based
quantification of lumbar intervertebral disc degeneration from conventional t2-weighted MRI.
Acta Radiol. 52(1), 91–98 (2011)

8. Ghosh, S., Alomari, R.S., Chaudhary, V., Dhillon, G.: Automatic lumbar vertebra segmentation
from clinical ct for wedge compression fracture diagnosis. In: SPIE 7963, Medical Imaging
2011: Computer-Aided Diagnosis (2011)

9. Wels, M., Kelm, B.M., Tsymbal, A., Hammon, M., Soza, G., Sühling, M., Cavallaro, A.,
Comaniciu, D.: Multi-stage osteolytic spinal bone lesion detection from ct data with internal



230 M. Lootus et al.

sensitivity control. In: Proceedings of SPIE 8315, Medical Imaging 2012: Computer-Aided
Diagnosis (2012)

10. Dalal, N., Triggs, B.: Histogram of oriented gradients for human detection. In: Proceedings of
CVPR, vol. 2, pp. 886–893 (2005)

11. Fischler, M., Elschlager, R.: The representation and matching of pictorial structures. IEEE
Trans. Comput. c–22(1), 67–92 (1973)

12. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. IJCV 61(1),
55–79 (2005)

13. Oktay, A.B., Akgul, Y.S.: Simultaneous localization of lumbar vertebrae and intervertebral
discs with SVM based MRF. IEEE Trans. Med. Imaging 1179–1182 (2013)

14. Ghosh, S., Malgireddy, M.R., Chaudhary, V., Dhillon, G.: A new approach to automatic disc
localization in clinical lumbar MRI: Combining machine learning with heuristics. In: Interna-
tional Symposium on Biomedical Imaging (2012)

15. Zhan, Y., Maneesh, D., Harder, M., Zhou, X.S.: Robust MR spine detection using hierar-
chical learning and local articulated model. Med. Image Comput. Comput.-Assist. Interv.—
MICCAI—LNCS 7510, 141–148 (2012)

16. Chwialkowski, M.P., Shile, P.E., Pfeifer, D., Parkey, R.W., Peshock, R.M.: Automated local-
ization and identification of lower spinal anatomy in magnetic resonance images. Comput.
Biomed. Res. 24(2) (1989)

17. Aslan, M.S., Ali, A., Rara, H., Farag, A.A.: An automated vertebra identification and seg-
mentation in CT images. In: Proceedings of IEEE 17th International Conference on Image
Processing (2010)

18. Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic localization
and identification of vertebrae in arbitrary field-of-view ct scans. In: Medical Image Computing
and Computer-Assisted Intervention (2012)

19. Pekar, V., Bystrov, D., Heese, H.S., Dries, S.P.M., Schmidt, S., Grewer, R., Harder, C.J.D.,
Bergmans, R.C., Simonetti, A.W., Muiswinkel, A.M.V.: Automated planning of scan geome-
tries in spine mri scans. In: Medical Image Computing and Computer-Assisted Intervention,
vol. 10, pp. 601–608 (2007)

20. Alomari, R.S., Corso, J.J., Chaudhary, V.: Labeling of lumbar discs using both pixel- and
object-level features with a two-level probabilistic model. IEEE Trans. Med. Imaging 30(1),
1–10 (2011)

21. Kelm, B.M., Wels, M., Zhou, K.S., Seifert, S., Suehling, M., Zheng, Y., Comaniciu, D.: Spine
detection in ct and mr using iterated marginal space learning. Med. Image Anal (2012)

22. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based
vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 13(3),
471–482 (2009)

23. Felzenszwalb, P.F., Grishick, R.B., McAllester, D., Ramanan, D.: Object detection with dis-
criminatively trained part based models. IEEE PAMI 32(9), 1627–1645 (2010)

24. Potesil, V., Lootus, M., El-Labban, A., Kadir, T.: Landmark localization in images with variable
field of view. In: International Symposium on Biomedical Imaging (2013)


	Preface
	Workshop Organization
	Contents
	Part I Segmentation I (CT)
	1 Segmentation of Vertebrae from 3D Spine Images by Applying Concepts from Transportation and Game Theories
	1 Introduction
	2 Methodology
	2.1 Transportation Theory
	2.2 Game Theory
	2.3 Optimal Assignment-Based 3D Shape Representation
	2.4 Landmark-Based 3D Image Segmentation

	3 Experiments and Results
	4 Discussion and Conclusion
	References

	2 Automatic and Reliable Segmentation  of Spinal Canals in Low-Resolution, Low-Contrast CT Images
	1 Introduction
	2 Method
	2.1 Voxelwise Classification
	2.2 Random Walks
	2.3 Pipeline of Cascaded Random Walks

	3 Experimental Result
	4 Discussion
	References

	3 A Robust Segmentation Framework  for Spine Trauma Diagnosis
	1 Introduction
	2 Segmentation Framework
	2.1 Computing Prior Shape Energy via Kernel Density Estimation
	2.2 Computing Local Geometry Energy via Willmore Flow

	3 Experiments and Results
	4 Discussion and Conclusion
	References

	4 2D-PCA Based Tensor Level Set Framework  for Vertebral Body Segmentation
	1 Introduction
	2 Methods
	2.1 Shape Model Construction
	2.2 Segmentation Method

	3 Experimental Results
	4 Conclusions and Future Work
	References

	Part II Computer Aided Detectionand Diagnosis
	5 Computer Aided Detection of Spinal Degenerative Osteophytes on Sodium Fluoride PET/CT
	1 Introduction
	2 Methods and Material
	2.1 Method Overview
	2.2 Spinal Segmentation and Cortical Shell Unwrapping
	2.3 Characteristic Feature Map Computation
	2.4 Three-Tier Classification Scheme

	3 Experimental Results
	4 Discussion
	References

	6 Novel Morphological and Appearance  Features for Predicting Physical Disability  from MR Images in Multiple Sclerosis Patients
	1 Introduction
	2 Methods
	2.1 The Data and the Problem
	2.2 Candidate Features
	2.3 Regression Models
	2.4 Training and Testing the Models
	2.5 Clinical Scores

	3 Results
	3.1 Error Metrics
	3.2 Simple Linear Regression with Spinal Cord Volume
	3.3 Simple Linear Regression with Proposed Features
	3.4 Multiple Linear Regression with Proposed Features
	3.5 Non-linear Regression Forest with Proposed Features

	4 Conclusion
	References

	7 Classification of Spinal Deformities  Using a Parametric Torsion Estimator
	1 Introduction
	2 Methods
	2.1 Training Data
	2.2 Personalized 3D Spine Reconstruction
	2.3 Parametric Torsion Estimator
	2.4 Analysis Methodology

	3 Clinical Validation
	3.1 Clinical Data
	3.2 Torsion Estimation in Scoliotic Spines
	3.3 Automatic Classification Results

	4 Discussion
	5 Conclusion and Future Work
	References

	8 Lumbar Spine Disc Herniation Diagnosis  with a Joint Shape Model
	1 Introduction
	2 Proposed Method
	3 Data and Results
	4 Conclusion
	References

	9 Epidural Masses Detection on Computed Tomography Using Spatially-Constrained Gaussian Mixture Models
	1 Introduction
	2 Methods
	2.1 Region of Interest Detection
	2.2 K-Means Clustering for Initial Classification
	2.3 CGMM for Tissue Classification Refinement
	2.4 Feature Extraction and SVM

	3 Results
	4 Discussion
	References

	Part III Quantitative Imaging
	10 Comparison of Manual and Computerized Measurements of Sagittal Vertebral  Inclination in MR Images
	1 Introduction
	2 Methodology
	2.1 Manual Measurements
	2.2 Computerized Measurements

	3 Experiments and Results
	3.1 Images and Observers
	3.2 Results

	4 Discussion
	4.1 Manual Measurements
	4.2 Computerized Measurements
	4.3 Comparison of Measurements
	4.4 Statistical Evaluation

	5 Conclusion
	References

	11 Eigenspine: Eigenvector Analysis of Spinal Deformities in Idiopathic Scoliosis
	1 Introduction
	2 Eigenspine
	2.1 PCA and CCA

	3 Experiments
	3.1 Image Data
	3.2 Curvature Measures
	3.3 Curvature Analysis

	4 Results
	5 Discussion
	References

	12 Quantitative Monitoring of Syndesmophyte Growth in Ankylosing Spondylitis  Using Computed Tomography
	1 Introduction
	2 The Algorithm
	2.1 Segmentation of the Vertebral Bodies
	2.2 Segmentation of the Vertebral Body Ridgelines
	2.3 Vertebral Body Registration
	2.4 Syndesmophyte Segmentation

	3 Accuracy and Precision of the Algorithm
	4 Results of the Longitudinal Study
	5 Conclusion
	References

	13 A Semi-automatic Method  for the Quantification of Spinal  Cord Atrophy
	1 Introduction
	2 Materials
	3 Method
	3.1 Presegmentation
	3.2 Segmentation Refinement
	3.3 Surface Reconstruction
	3.4 Reformatting

	4 Results
	5 Conclusion
	References

	Part IV Segmentation II (MR)
	14 Multi-modal Vertebra Segmentation  from MR Dixon for Hybrid Whole-Body  PET/MR
	1 Introduction
	2 Methods
	2.1 Segmentation
	2.2 Multi-modal Features

	3 Experiments
	3.1 Materials
	3.2 Segmentation

	4 Results
	5 Discussion
	6 Conclusion
	References

	15 Segmentation of Lumbar Intervertebral Discs from High-Resolution 3D MR Images Using Multi-level Statistical Shape Models
	1 Introduction
	2 Method
	2.1 Image Database
	2.2 Image Pre-processing
	2.3 Image Segmentation
	2.4 Algorithm Setup and Parameters
	2.5 Evaluation

	3 Results
	4 Conclusion
	References

	16 A Supervised Approach Towards  Segmentation of Clinical MRI  for Automatic Lumbar Diagnosis
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Our Clinical Dataset
	3.2 Training Phase
	3.3 Testing Phase

	4 Experimental Results
	5 Conclusion and Future Work
	References

	Part V Registration/Labeling
	17 Automatic Segmentation and Discrimination  of Connected Joint Bones from CT  by Multi-atlas Registration
	1 Introduction
	2 Materials and Methods
	2.1 Data
	2.2 Automatic Segmentation
	2.3 Evaluation

	3 Results
	4 Discussion
	References

	18 Registration of MR to Percutaneous Ultrasound of the Spine for Image-Guided Surgery
	1 Introduction
	2 Methods and Experiments
	2.1 Ultrasound Acquisition and Segmentation
	2.2 MR Acquisition and Segmentation
	2.3 Registration
	2.4 Experiments

	3 Results
	4 Discussion
	5 Conclusion
	References

	19 Vertebrae Detection and Labelling in Lumbar MR Images
	1 Introduction
	2 Method
	2.1 Spine Part Detection
	2.2 Graphical Model for Spine Layout

	3 Experiments
	3.1 Data, Annotation and Evaluation
	3.2 Results

	4 Conclusion
	References




