
Chapter 6
Modelling and Integration Concepts
of Multibody Systems on Lie Groups

Andreas Müller and Zdravko Terze

Abstract Lie group integration schemes formultibody systems (MBS) are attractive
as they provide a coordinate-free and thus singularity-free approach to MBS mod-
eling. The Lie group setting also allows for developing integration schemes that
preserve motion integrals and coadjoint orbits. Most of the recently proposed Lie
group integration schemes are based on variants of generalized alpha Newmark
schemes. In this chapter constrained MBS are modeled by a system of differential-
algebraic equations (DAE) on a configuration space being a subvariety of the Lie
group SE(3)n. This is transformed to an index 1 DAE system that is integrated with
Munthe-Kaas (MK) integration scheme. The chapter further addresses geometric
integration schemes that preserve integrals ofmotion. In this context, a non-canonical
Lie-group Störmer-Verlet integration scheme with direct SO(3) rotational update is
presented. The method is 2nd order accurate and it is angular momentum preserv-
ing for a free-spinning body. Moreover, although being fully explicit, the method
achieves excellent conservation of the angular momentum of a free rotational body
and the motion integrals of the Lagrangian top. A higher-order coadjoint-preserving
integration scheme on SO(3) is also presented. This method exactly preserves spatial
angular momentum of a free body and it is particularly numerically efficient.
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6.1 Introduction

Multibody systems (MBS) are commonly modeled by motion equations evolving
on the parameter manifold corresponding to a specific parameterization in terms of
angles and displacements. Since the motion of rigid bodies, and thus of a MBS,
evolves on a Lie group the kinematics and dynamics of a MBS can be modeled
coordinate-free as a dynamic system on a Lie group, which avoids the well-known
problem of parameterization singularities. This allows for application of Lie group
integration methods that are inherently coordinate-free. The original application of
Lie group integration schemes to rigid body dynamics was the dynamics of a rotating
body. To this end the Munthe-Kaas (MK) method based on a Runge-Kutta scheme
is used [9, 14, 22, 25–27, 29], and later an amended Newmark-Verlet scheme was
applied [15]. In this case the rotation groupSO(3) is readily identified as configuration
space (c-space). From aMBS perspective this corresponds to a ‘minimal coordinate’
or ‘relative coordinate’ formulation in the sense that the body is free to move on
SO(3). From a more general point of view, considering the rigid body as being
constrained by a spherical joint to rotate about a fixed point, SO(3) is the isotropy
group of the joint. Hence this is the Lie group of relative motions of two bodies
connected by a spherical joint. This ‘relative coordinate’ approach applies to general
tree-topology MBS where all joints describe motion subgroups of SE(3). Along this
line theMKschemewas applied to the dynamics of unconstrained serialmanipulators
in [30]. Instead of resorting to the motion (isotropy) groups of joints, the motion of
individual bodies can be modeled on SE(3) and a general MBS with topological
loops be modeled by imposing corresponding constraints. This is equivalent to the
‘absolute coordinate’ formulation. That is, the configuration of an MBS comprising
n rigid bodies is a subvariety of SE(3)n. Following the common MBS modeling
approach, rigid body configurations are frequently assumed to belong to the Lie
group SO(3) × R

3, however. Therewith in [33, 34] the MBS motion equations are
formulated as an index 1 differential-algebraic equations (DAE) and solved with a
MK scheme. In [4, 5, 19] a generalized alpha/Newmark scheme is used to integrate
themotion equations of constrainedMBS formulated on SO(3)×R

3. Since Lie group
integrators exploit the geometry of the c-space, replacing SE(3) by SO(3) × R

3 has
consequences for the performance. This issue is addressed in [23], and it is shown
that in specific cases, SE(3) achieves perfect constraint satisfaction whereas in the
general case both c-spaces lead to equivalent results. In the first part of this chapter
a DAE index 1 MBS model on SE(3) is introduced and its integration with a MK
scheme described.

Besides a coordinate-free description the modeling of MBS on a Lie group pro-
vides a setting for structure preserving integration schemes. A non-canonical Lie-
group Störmer-Verlet integration scheme on SO(3) is presented in the second part
of this chapter. The method is 2nd order accurate, it is angular momentum preserv-
ing, and it does not introduce an energy drift. It is shown that, although being fully
explicit, the method conserves the angular momentum of a freely rotating body and
the motion integrals of the Lagrangian top better than established conserving algo-
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rithms. Finally higher-order integration scheme is presented that preserves coadjoint
orbits. The method exactly preserves spatial angular momentum of a free body and
is numerically efficient since the rotation and momentum update use the same incre-
mental rotation vector.

6.2 Lie Group Integration Schemes for Multibody Systems

6.2.1 Lie Group Modeling of Multibody Systems

Themotion equations of a holonomically constrainedmultibody system (MBS) com-
prising n rigid bodies in terms of non-holonomic velocities attain the form

M(q)V̇ + JT λ = Q (q, V, t) (6.1a)

q̇ = q · V (6.1b)

g(q) = 0. (6.1c)

Adopting the ‘absolute coordinate’ approach the configuration q = (C1, . . . , Cn) ∈
G of a MBS is given in terms of the ‘absolute’ configuration Ci ∈ SE(3) of the n
bodies, where G = SE(3)n is the 6-dimensional Lie group representing the rigid
body configuration. The MBS velocity V = (V1, . . . , Vn) ∈ g consists of the body-
fixed velocities Vi = (ωi, vi) , i = 1, . . . , n, where g = se (3)n is the Lie algebra
of G. The Eqs. (6.1a–6.1c) form a system of differential-algebraic equations (DAE)
on G × g with geometric constraints (6.1c). In the dynamic motion equations (6.1a)
λ are Lagrange multipliers and J is the constraint Jacobian. The system (6.1b),
relating the MBS velocity and motion, is called the kinematic reconstruction equa-
tions. Its solution is the motion q(t) of the MBS. Traditionally, describing the MBS
configuration in terms of position vectors ri and certain rotation parameters θi, the
kinematic reconstruction equations assume the decoupled form ωi = Bi (q) θ̇i and
vi = ṙi, i = 1, . . . , n. In the Lie group approach using SE(3) the geometry of rigid
body motions is respected. This is not the case when rotations and translations are
treated independently. It has been shown [23] that this leads to constraint violations.

Background on the Lie group modeling of rigid body motions can be found in the
books by Selig [31] and Murray et al. [28] for instance.

6.2.2 Configuration Space Lie Group

Body-fixed reference frames attached to the n rigid bodies represent the configuration
of the MBS. The configuration of body i with respect to a world-fixed inertial frame
(IFR) is described by the pair Ci = (Ri, ri), which can be represented as matrix
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Ci =
(

Ri ri

0 1

)
(6.2)

where ri ∈ R
3 is the position vector of its origin and Ri ∈ SO(3) is the absolute

rotation matrix. Therewith the combination of two successive rigid-body motions is
given by

C2C1 =
(

R2R1 r2 + R2r1
0 1

)
. (6.3)

Such rigid bodymotions constitute the 6-dimensional Lie group SE (3) = SO(3)�R
3

of isometric orientation preserving transformations of E3.
The ambient configuration space of an MBS consisting of n rigid bodies is the

6n-dimensional Lie group
G := SE(3)n (6.4)

where q = (C1, . . . , Cn) ∈ G represents the configuration of n bodies in a
coordinate-free way. Multiplication is componentwise q′ ·q′′ = (C′

1C′′
1, . . . , C′

nC′′
n),

inherited from SE(3). The inverse is q−1 = (C−1
1 , . . . , C−1

n ).
The Lie group SE(3) is generated from its Lie algebra se(3) via the exp mapping.

Since any rigid body motion is a screw motion the exp mapping gives a finite screw
motion corresponding to an instantaneous screw motion X (t). Explicitly this is

X = (ξ,η) �−→ exp X̂ =
(
exp ξ̂ 1

‖ξ‖2
(
I − exp ξ̂

)
(ξ × η) + hξ

0 1

)
(6.5)

where

exp ξ̂ = I + sin ‖ξ‖
‖ξ‖ ξ̂ + 1 − cos ‖ξ‖

‖ξ‖ ξ̂
2

(6.6)

is the exponential mapping on SO(3). X = (ξ,η) ∈ R
6 is the instantaneous screw

coordinate vector describing the motion of a rigid body. The six components serve
as independent local canonical coordinates on SE(3). It is important to observer
that they are not just the scaled rotation axis and translation vector. ξ is in fact the
Euler-Rodrigues vector but η is not the displacement vector.

Let the bodies of the MBS be subjected to a system of m scleronomic geometric
constraints

g (q) = 0 (6.7)

defined by the constraint mapping g: G → R
m. Then the configuration space

(c-space) of the MBS is the variety

V := {q ∈ G|g (q) = 0}. (6.8)
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6.2.3 State Space Lie Group

A rigid body motion is a curve C (t) in SE (3) The body-fixed velocity of body i,
expressed by the vector Vi = (ωi, vi)

T ∈ R
6 where ωi is the body-fixed angular

velocity and vi is the translation velocity vector expressed in the body-fixed RFR, is
defined as

V̂i := C−1
i Ċi =

(
ω̂i vi

0 0

)
∈ se(3) (6.9)

with se(3) being the Lie algebra of SE(3). ω̂i := RT
i Ṙi ∈ so (3) is the skew symmet-

ric (cross product) matrix associated to the vector ω. Hence to any twist coordinate
vector is assigned a se(3)-matrix via the ‘hat’ operator.

The right-translated differential of the expmapping, dexp : se(3)×se(3) → se(3),

can be introduced as dexpX̂
˙̂X = ĊC−1, withC = exp X̂. ReplacingX with−X leads

to the expression for the body-fixed twist:

V̂ = dexp−X̂
˙̂X. (6.10)

Hence the vector of body-fixed velocity is given in terms of the time derivative of
the screw coordinates X. These are the kinematic reconstruction equations (6.1b)
expressed in terms of screw coordinates, that must be solved in order to recover the
finite motion from the velocity field. They will be the basis for the Munthe-Kaas
method in Sect. 6.2.5.

The inverse of this mapping, which is subsequently needed, is in vector represen-
tation given by [31]

dexp−1
X̂

= I − 1

2
adX +

(
2

‖ξ‖2 + ‖ξ‖ + 3 sin ‖ξ‖
4 ‖ξ‖ (cos ‖ξ‖ − 1)

)
ad2

X

+
(

1

‖ξ‖4 + ‖ξ‖ + sin ‖ξ‖
4 ‖ξ‖3 (cos ‖ξ‖ − 1)

)
ad4

X (6.11)

with X = (ξ,η). An alternative form can be determined, as reported e.g. in [30] , is

dexp−1
X =

(
dexp−1

ξ 0
U dexp−1

ξ

)
(6.12)

with

U (X) = 1 − γ

‖ξ‖2
(
η̂ξ̂ + ξ̂η̂

) + hX

‖ξ‖3
(
1

β
+ γ − 2

)
ξ̂
2 − 1

2
η̂ (6.13)

β := 4
‖ξ‖2 sin

2 ‖ξ‖
2 , γ := 2

‖ξ‖ cot
‖ξ‖
2 , and the pitch h = ξ · η/ ‖ξ‖2. Notice that for

pure rotation, i.e. hX = 0, ( 6.13) simplifies. In (6.12) dexp−1
ξ is the inverse of the

differential of the exp mapping (6.6) on SO(3) for R = exp ξ̂ [6]
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dexp−1
ξ = I − 1

2
ξ̂ +

(
1 − ‖ξ‖

2
cot

‖ξ‖
2

)
ξ̂
2

‖ξ‖2 . (6.14)

Notice finally, that therewith the exp mapping (6.5) can be expressed as

X = (ξ,η) �−→ exp X̂=
(
exp ξ̂ dexpξη

0 1

)
. (6.15)

The velocities of the bodies of the MBS are collectively represented by V =
(V1, . . . , Vn) ∈ R

6n. Making use of the isomorphism of sen(3) and R
6n the body-

fixed velocities are determined as V̂ = q−1q̇, denoting V̂ = (V̂1, . . . , V̂n). This
allows to introduce the ambient state space of the MBS as

S := SE(3)n × R
6n, (6.16)

which is a 6 · 2 · n-dimensional Lie group. This is the left-trivialized tangent
bundle of G. The state of the MBS is then represented by X = (q, V) =
(C1, . . . , Cn, V1, . . . , Vn) ∈ S. The multiplication is understood componentwise:
X ′ · X ′′ = (

C′
1C′′

1, . . . , C′
nC′′

n, V′
1 + V′′

1, . . . , V′
n + V′′

n

)
.

The Lie algebra of the Lie group S is

s := se(3)n × R
6n, (6.17)

with elements x = (V1, . . . , Vn, A1, . . . , An) ∈ s, which is isomorphic to the tangent
space of S via left translation, i.e. Ẋ = X · x. Addition in s is also componentwise:
x′+x′′ = (V′

1+V′′
1, . . . , V′

n+V′′
n, A′

1+A′′
1, . . . , A′

n+A′′
n). The exponential mapping

on the ambient state space Lie group is

exp x = (expV1, . . . , expVn, A1, . . . , An) ∈ S (6.18)

with (6.5). Its right-translated differential dexp : s × s → s is

dexpx′x′′ = (dexpV′
1
V′′
1, . . . , dexpV′

n
V′′

n, A′′
1, . . . , A′′

n) (6.19)

where for the first n components dexp : se(3)× se(3) → se(3) is the right-translated
differential on SE(3).

Time differentiation of the geometric constraints (6.7) yields the corresponding
velocity constraints

J (q) V = 0 (6.20)

where J(q): R6n → R
m is the Jacobian of g in vector representation. Together with

the geometric constraints they define the MBS state space

S := {X = (q, V) ∈ S|g (q) = 0, J (q) V = 0}. (6.21)

The state space S being a Lie group admits to apply Lie group integration schemes.
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6.2.4 Motion Equations of Constrained MBS in Lie Group
Descriptor Form

The motion equations (6.1a–6.1c) form an index 3 system of differential-algebraic
equations (DAE) on the state space Lie group S. The latter factors into the vector
space R

6n and the the Lie group G. In particular the kinematic reconstruction equa-
tions ( 6.1b) form a system on G consisting of the n equations Ċi = CiV̂i. The
dynamic equations (6.1a) evolve on the vector space R

n.
A common approach in MBS modeling is to transform the system (6.1a) together

with (6.1c) to the index 1 system

(
M JT

J 0

)(
V̇
λ

)
=

(
Q
η

)
(6.22)

using the acceleration constraints J (q)·V̇ = η (q, V). For a given stateX = (q, V) ∈
S the system (6.22) and thus (6.1a) can be solved for V̇. If V̇ is a solution of (6.22),
then (6.1a, 6.1c) is equivalent to the ODE system

Ẋ = XF (t, X) (6.23)

on the state space S, where the mapping F: R × S → s is introduced as F (t, X) =
(V, V̇) with a solution V̇ of (6.22). The equivalence follows from XF (t, X) = (q ·
V, V̇). Evaluation of XF (t, X) thus amounts to solving (6.22) for V̇ and evaluating
(6.1b).

6.2.5 Munthe-Kaas Method for Constrained MBS Dynamics

As the dynamical system evolves on a Lie group its solution can be expressed in the
form X (t) = X0 exp�(t). Hence at the integration step i the original system (6.23)
can be replaced by the system

�̇(i) = dexp−1
−�(i)F(t, Xi−1 exp�(i)), t ∈ [ti−1, ti], with �(i) (ti−1) = 0 (6.24)

with initial condition Xi−1, and be solved with a numerical integration scheme. The
Munthe-Kaas (MK) method [12] uses a Runge-Kutta (RK) scheme to determine
a solution �(i) (ti) that leads to a numerical solution Xi := Xi−1 exp�(i) (ti) of
(6.23). The �(i) constitute local coordinates on the state space that are valid in a
neighborhood of Xi−1. An s-stage MK scheme at time step i follows immediately
from the RK method as
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Xi := Xi−1 exp�(i), �(i) := h
s∑

j=1

bjkj (6.25)

kj := dexp−1
−�j

F
(
ti−1 + cjh, Xi−1 exp�j

)
, �j := h

j−1∑
l=1

ajlkl, �1 = 0,

where ajl, bj, and cj are the Butcher coefficients of the s -stage RK method, and
kj, �j ∈ s. MKmethods can be applied to ODE on Lie groups. Using the formulation
(6.23) the MK can also be applied to the time integration of dynamics equations of
constrained MBS.

Remark 1 While it is clear that SE(3) is the c-space Lie group of a rigid body,
all original MBS formulations implicitly use the Lie group SO(3) × R

3 since it is
customary to use rotation angles and displacement vectors as parameters which are
clearly not screw parameters. This leads to an artificial decoupling of rotational and
translational motion. This is reflected by the dexp mapping which for SO(3) × R

3 is

dexpX(Y) = (dexpξη, v) (6.26)

for X = (ξ, u) and Y = (η, v). Even more, also the recently proposed Lie group
generalized alpha schemes [4, 5] andLie groupDAE formulation [33] use SO(3)×R

3

as c-space. As consequence the configuration update step in (6.25) does not respect
the screw motion that is encoded in the velocity V, which leads in particular to
constraint violations as shown in [23]. However, it is shown in [23] that the difference
of the two c-spaces becomes significant for the satisfaction of joint constraints only
when a rigid body is connected to the ground by lower-pair joints. In this case the
joint constraints are perfectly satisfied independently of the integration accuracy and
step size.

Remark 2 It is well-known that the numerical solution of the index 1 formulation
(6.23) may not stay in V . Nevertheless, the index 1 formulation (6.22) is convenient
for treating the dynamics of constrained MBS. For the classical vector space formu-
lation several constraint stabilization methods have been proposed to cope with the
drift phenomenon (an overview can be found in [2]). Within the Lie group formula-
tion these have to be amended as reported in [24, 34]. In [24] a constraint stabilization
method is presented that uses the local coordinates �(i) of the MK scheme. In [34]
stabilisation algorithm based on constrained least square minimization algorithm in
Lie groups state space is introduced.
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Fig. 6.1 Rigid body
constrained to rotate about
fixed point subject to an
applied spring force

1

3

2

IFR

Q

P

6.2.6 Examples

6.2.6.1 Heavy Top with External Force

The model of a heavy top (Fig. 6.1) consists of a rigid body pivoted to the ground
at point Q. A spring is attached between its COM and a space-fixed point P. The
spring force is Fs = c(p0 − r) + mg, with 10 N/mm, and gravity vector g =
(0, 0,−9.81)T , with p0 = (1, 0, 0.5)T m being the space-fixed position vector of
the spring suspension point P. The body-fixed force vector (6.30) is F = RT Fs.

The inertia of the body’s COM is�0 = diag (0.36, 0.306, 0.09) kgm2, and its mass
m = 21.6 kg. Denote with r0 = (−0.5, 0, 0)T m the position vector of the pivot point
measured in the body-fixed reference frame. The configuration of the reference frame
is represented by C = (R, r), with rotation matrix R and r denoting the position of
the COM expressed in the spatial inertial frame (IFR).

The geometric constraints imposed by the spherical joint (pivot) are

g(C) = r − Rr0 = 0. (6.27)

Time differentiation, and assuming (6.27), yields the velocity constraints (6.20)

(
r̂0 −I

) (
ω
v

)
= JV = 0 (6.28)

and the acceleration constraints

(
r̂0 −I

) (
ω̇
v̇

)
= ω̂ω̂r0 + ω̂v (6.29)

whereV = (ω, v) is the body-fixedvelocity. The body-fixedNewton-Euler equations
w.r.t. to the COM combined with (6.29) yield the overall index 1 DAE system
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Fig. 6.2 Error ε in the position constraints of the top

⎛
⎝�0 0 r̂T

0
0 mI −I
r̂0 −I 0

⎞
⎠

⎛
⎝ ω̇

v̇
λ

⎞
⎠ =

⎛
⎝ ω̂�0ω

F − mω̂v
ω̂ω̂r0 + ω̂v

⎞
⎠ . (6.30)

The motion equations (6.30) were integrated with an MK scheme based on RK4
method for 6 s starting from initial configuration C0 = (I, r0) and initial angu-
lar velocity ω0 = (0, 0, 0.5)T rad/s. The integration method shows 4th order con-
vergence as expected. It is further interesting to observe the exact satisfaction of
the position constraints independently of the step size. Figure 6.2 shows the error
of the position constraints ε (q) := ‖g (q)‖ for step sizes �t = 10−2, 10−3, 10−4 s.
The satisfaction of the constraints up to computation precision is due to the use of
the correct c-space Lie group, namely SE(3), that accounts for rigid body motions.
This is discussed in [23].

6.2.6.2 Planar 4-Bar Mechanism

A closed loop planar 4-bar mechanism is considered (Fig. 6.3) comprising three
revolute joints and one spherical joint. The geometry is chosen as indicated in the
Fig. 6.3 with L0 = 0.5m.

The initial configuration is shown in Fig. 6.3. Initially the input crank (body 1)
rotates with angular velocity ω0 = 10 π rad/s. The motion equations are integrated
numerically with the MK/RK4 method with step sizes �t = 10−2, 10−3, 10−4 s.
Figures 6.4 and 6.5 show the satisfaction of joint position constraints.Apparently they
are satisfied with computation accuracy for the two joints 1 and 4 that are connected
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Fig. 6.3 Planar 4-bar
mechanism: comprising two
revolute joints with parallel
axes and a spherical joint

1

2

3

Ground

⎯⎯

⎯⎯⎯

⎯⎯

to the ground. The orientation constraints of the revolute joints are exactly satisfied.
As mentioned above this phenomenon is due to the use of the correct c-space Lie
group as discussed in [23].

6.3 Geometric Schemes that Preserve Integrals of Motion

6.3.1 Coadjoint Modeling of Rotational Dynamics

In the geometric schemes presented in the previous chapters, the kinematic recon-
struction equations have been solved on the c-space Lie group while the dynamical
equations were discretised via ‘classical’ vector-space-based numerical methods.
Although pursued by several authors [4, 5, 23], this practice does not utilize the
geometrical properties of dynamics on the c-space that gives rise to integration algo-
rithms with additional useful properties, such as the preservation of the integrals of
motion. Therefore, in the sequel we describe the geometric schemes that extend the
coadjoint orbit preserving integration method for SO(3) [8, 16, 18]. Another possi-
bility of constructing the structure-preserving algorithms is to follow the variational
approach, see, for example [20, 36], and references cited there.

We start from the Euler equation of free rigid body rotation given as Lie-Poisson’s
system [21] in the form

ẏ = −ω̂y, (6.31)

where y ∈ R3 represents the angular momentum in the body attached frame and
ω̂ ∈ so(3) is the body angular velocity with so(3) being the Lie algebra of SO(3). By
following [13], y ∈ R3can be identified with y̆ ∈ so∗(3), where so∗(3) is the dual
space of the Lie algebra so(3). In a more formal form (6.31) can be expressed as the
coadjoint operator [14, 18] on the dual space of the Lie-algebra so∗(3) as

ẏ = ad∗
ω̂y = ŷω(y), (6.32)
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Fig. 6.4 Violation of position constraints of revolute joint 1 (a) and 2 (b)

where ‘ad∗’ is the dual of the ‘ad’ operator adâb = âb, which is the commutator

adâ(b̂) = âb̂ − b̂â = [â, b̂], for all â, b̂ ∈ so(3), (6.33)

in the Lie algebra so(3) identified here withR3. The solution of the angular momen-
tum equation in the Lie-Poisson form (6.31) can be expressed within each integration
step as an action of SO(3) onR3in the form

yn+1 = QT(t)yn, n = 0, 1, 2, . . . ,

Q ∈ SO(3), t ∈ [
tn, tn+1

]
, (6.34)
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Fig. 6.5 Violation of position constraints of revolute joint 3 (a) and spherical joint 4 (b)

which leads to solving of ODE on the Lie-group that reads

Q̇(t) = Q(t)ω̂ (y (t)) , t ≥ tn,

Q(tn) = I. (6.35)

More formally, the update step (6.34) can be written as coadjoint action [13], denoted
‘Ad∗’, of SO(3) on R3 in the form [8, 18]

yn+1 = Ad∗
Q(t)y

n, (6.36)
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where the relation Ad∗
Qy = QTy is valid and the coadjoint orbit is given as [13]

O = {Ad∗
Qy | Q ∈ SO(3)} ⊂ R3. (6.37)

The motivation of constructing the update of yn ∈ R3 in the form of (6.34)
[or (6.36)] is the exact preservation of themagnitude of free-body angularmomentum
in the body attached frame during the step. Indeed, since for the step initial condition
yn the coadjoint orbit OYn is a sphere of radius ‖yn‖, the magnitude of yn will
be exactly preserved, independently of the accuracy of the integration method for
determining Q in (6.35).

However, although coadjoint orbits will be preserved independently of the accu-
racy of determiningQ, the rotationmatrixQ has to be determined in order to complete
the integration step, i.e. the ODE (6.35) has to be solved. To this end, we will adopt
the Muthe-Kaas approach [12, 14, 25] and we seek a solution of (6.35) in the form

Q(t) = exp(ψ̂(t)), t ≥ tn, (6.38)

where the closed form of the exponential mapping on SO(3) is given by the Euler-
Rodrigues formula, and ψ(t) ∈ R3 is the instantaneous rotation vector. Moreover,
by following Magnus [12], a solution of (6.35) can be written in the form of (6.38)
if ψ̂(t) ∈ so(3) is a solution of the ODE system in the Lie-algebra

˙̂
ψ = dexp−1

−ψ̂
(ω̂(Q(t))), ψ̂0 = 0, (6.39)

and operator dexp−1
−ψ̂

is defined by

dexp−1
−ψ̂

(ω̂) = ω̂+ 1

2

[
ψ̂, ω̂

]
+ 1

12

[
ψ̂,

[
ψ̂, ω̂

]]
+· · · =

∞∑
j=0

Bj

j! (−adj

ψ̂
(ω̂)), (6.40)

where the adjoint operator ad
ψ̂
is given as Lie-bracket (6.33), and Bj are Bernoulli

numbers [12].

6.3.2 Modified Störmer-Verlet Integration Scheme on SO(3)

The algorithm for a free-spinning rigid body rotational dynamics with the direct
update on SO(3), inspired by the Störmer-Verlet integration scheme in a linear vector
space [11], can be written in the form [35]
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ωn+ 1
2 = ωn − h

2
(I−1ω̂

nIωn) (6.41a)

Rn+1 = RnQn = Rn exp(hω̂
n+ 1

2 ) (6.41b)

ωn+1 = ωn+ 1
2 − h

2
(I−1ω̂

n+1Iωn+1) (6.41c)

Here, by following [35], the first order approximation ψ̂ = hψ̂
n+ 1

2 = hω̂
n+ 1

2 is used
in (6.38) for the incremental rotation vector and inserted in (6.41b) [while the first
order approximation is also used for the discretisation in (6.39)]. The update expres-
sions in Lie algebra (6.41a) and (6.41c) are constructed on the basis of the velocity
field discretisation pattern of the original Störmer-Verlet algorithm. As discussed in
[35], in order to preserve the system coadjoint orbits, the Eqs. (6.41a) and (6.41c)
can be replaced by the expressions derived on the basis of the Eq. (6.34) [or (6.36)].
To this end, we obtain the modified Lie-Störmer-Verlet integration scheme for the
forced unconstrained rigid body rotation in the form

ωn+ 1
2 = I−1(exp(−h

2
ω̂

n
)(Iωn + h

2
Tn)), (6.42a)

Rn+1 = Rn exp(hω̂
n+ 1

2 ), (6.42b)

ωn+1 = I−1(exp(−h

2
ω̂

n+ 1
2 )(exp(−h

2
ω̂

n+ 1
2 )(Iωn (6.42c)

+ h

2
Tn) + h

2
exp(

h

2
ω̂

n+ 1
2 )Tn+1)),

where the forcing torque term T in (6.42c) is introduced at the both ends of the
integration interval in order to obtain better conservation properties of the algorithm
[35]. By inspection of (6.42), it is clear that for a free spinning body (T = 0)
the relation Rn+1Iωn+1 = RnIωn is valid. That is, the proposed algorithm exactly
preserves spatial angular momentum of a free body. This is confirmed in Fig. 6.6,
where it is visible that preservation of the spatial angular momentum Y = RIω of a
free-spinning body is satisfied and it is independent of the integration step-length.

Technically, Fig. 6.6 shows the convergence of the proposed formulation in the
norm

∥∥Y − Yconverged
∥∥
2, where the reference value Yconverged = Y(t = 1) has been

computed with a step size of h = 1e − 5. The norms of the error are evaluated at
step sizes 8, 4, 2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024,
1/2048 and 1/4096. The other integration algorithms, whose results are presented in
Fig. 6.6, are semi-explicit 2nd order Newmark method written in Lie-group setting
[15] (currently one of the best-performing 2nd order geometric algorithms for rigid
body rotational dynamics) and 4th order Runge-Kutta Munthe-Kaas method for the
ODE integration on Lie groups. The angular velocity initial condition is set to ω0 =[
0.45549 0.82623 0.03476

]T and the rigid body inertia tensor is given by matrix
I = diag(0.9144, 1.098, 1.66).

The Fig. 6.7 illustrates the convergence of the Lie-Störmer-Verlet scheme for
Lagrangian top in the norm of the error in the rotation matrix

∥∥R − Rconverged
∥∥
2
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Fig. 6.6 Convergence in the norm of the error in the spatial angular momentum of a free body
rotational motion
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Fig. 6.7 Convergence in the norm of the error in the rotation matrix (Lagrangian top)

for decreasing values of the integration step h(1/64, 1/128, 1/256, 1/512, 1/1024,
1/2048, 1/4096, 1/8192, 1/16384, 1/32768 and 1/65536). The reference solution
for the rotation matrix Rconverged = R(t = 1) is computed using the step size
h = 1e − 5. In this figure, one can see that the proposed formulation exhibits
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a second-order convergence (graph ‘Lie-Störmer’). Also, the proposed algorithm
clearly outperforms the Lie-Newmark and RATTLE algorithms (RATTLE algorithm
is 2nd order integration method for the rotational dynamics of a rigid body [17],
whose starting point is also Störmer-Verlet scheme), while the RK-MK4 integration
scheme, as a 4th order scheme, yields the best accuracy, as expected.

In this example, the configuration space of heavy top is SO(3) [21] and dynamical
model is formulated in the classical ODE form on the basis of Euler’s rota-
tional equation: dynamical equilibrium of the top rotation around the base point
is expressed in terms of ω̇, rotation tensor and gravity force. In the standard
units, the inertia tensor with respect to the fixed point has been set as IFP =
diag(15.234375, 0.46875, 15.234375), the body mass is set as 15 and the standard
gravity acceleration is applied at the local reference point at unity distance along the
axis. As it is shown in [35], the presented Lie-Störmer-Verlet method also preserves
other integrals of motion of Lagrangian top algorithm in a very satisfactorily manner.

6.3.3 Higher-Order Coadjoint-Preserving Integration Scheme
with the Simultaneous Kinematic Reconstruction on SO(3)

The modified Störmer-Verlet scheme in Lie group setting, described in the previ-
ous chapter, is a 2nd order integration method. In order to construct the coadjoint
orbit preserving integration scheme of a higher order of accuracy, the instantaneous
rotation vector ψ(t) ∈ R3 in (6.38) should be determined by solving ODE in the
Lie algebra (6.39) via higher order integration algorithm. Here, any classical vector
space higher order integration method can be used [8, 14].

Furthermore, in addition to an update step at the dynamical level on the basis of
(6.34) or (6.36), the same instantaneous rotation vectorψ(t) ∈ R3 [that is determined
for the step by solving (6.39)] can be also used for the step kinematic reconstruction
on SO(3). This stems from the fact that the SO(3) kinematic reconstruction equation

Ṙ(t) = R(t)ω̂(t), (6.43)

has the same mathematical structure as Lie-Poisson’s system given by (6.31) or
(6.32), meaning that it’s update can be written in the same form as (6.34) or (6.36).
Indeed, for the n-th step we can write

Rn+1 = RnQ(t) = Rn exp(ψ̂(t)), t ≥ tn, (6.44)

where ψ̂(t) ∈ so(3) is a solution of the ODE system in the Lie-algebra (6.39). This
means that for the n-th step, the ODE system (6.39) has to be solved only ones
and then both updates at the dynamical and kinematical level can be calculated in
a straightforward manner by using (6.34) and (6.44) respectively. This makes the
proposed scheme particularly efficient.
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Fig. 6.8 Convergence in the norm of the error in the spatial angular momentum of a free body
rotational motion

Since the update at the dynamical level is based on the coadjoint orbit preserving
update (6.34), the magnitude of the angular momentum of a free-body in the body-
attached frame will be ‘exactly’ conserved, no matter which integration method is
used for solving (6.39). Moreover, by closer inspection of the algorithm, it is clear
that for a free spinning body the relation Rn+1yn+1 = Rnyn is satisfied. That is,
the proposed algorithm exactly preserves spatial angular momentum of a free body
(similarly as the modified Störmer-Verlet scheme in the previous chapter).

For the integration purposes, in this chapterwehave used 4th and2ndorderRunge-
Kutta (RK) method i.e. the whole algorithm is based on the Munthe-Kaas method
[14, 25] that operates on the Lie-group and uses aforementioned RK algorithm for
solving the Lie algebra ODE equation (6.39).

The conservative character of the algorithm is shown in Fig. 6.8, where it is
visible that preservation of the spatial angular momentum of a free-spinning body is
independent of the integration step-length. Also, as it is expected since this integral
of motion is exactly preserved by the proposed method (see above), this is equally
true for the both order of the tested accuracies (RK-MK4 and RK-MK2).

The 4th and 2nd order of accuracy (which is dependent on the RK method that is
used for solving (6.39),which also, in turn, determines howmany termswill be used at
RHS in (6.40) for the dexp−1

−ψ̂
operator [12]) of the described algorithmare also visible

in Fig. 6.9. Here, the both versions are compared within the framework of integration
of the free rigid body rotation with the well-known 2nd order geometric algorithms
described in the Refs. [1, 3, 32]. Figures 6.8 and 6.9 show the convergence of the
proposed formulation in the norms

∥∥Y − Yconverged
∥∥
2, and

∥∥R − Rconverged
∥∥
2 for the
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Fig. 6.9 Convergence in the norm of the error in the rotation matrix

freely spinning body, where the spatial angular momentum Yconverged = Y(t = 10)
and the rotation matrix Rconverged = R(t = 10) have been computed with a step size
of h = 1e − 3. The norms of the error are evaluated at step sizes 8, 4, 2, 1, 1/2, 1/4,
1/8, 1/16, 1/32, 1/64, 1/128 and 1/256.

6.4 Conclusion

A formulation of the motion equations of the constrained MBS as index 1 DAE
system on a Lie group has been presented. It is shown that this system can be solved
numerically with the Lie group ODE integration methods following the established
MBSmethodology. In this chapter, the equations are treated with theMK integration
scheme and the Lie-group integration scheme that is based on the Störmer-Verlet
algorithm with the direct SO(3) upgrade. This gives rise to a coordinate-free, thus
singularity-free, modelling and integration of MBS motion equations.

The Lie-group-setting further provides a framework for the design of geometric
integration schemes that preserve coadjoint orbits and conserve integrals of motion.
To this end, the Lie-Störmer-Verlet integration scheme is presented. The method is
2ndorder accurate and it is angularmomentumpreserving (it exactly preserves spatial
angular momentum of a free body and magnitude of a free-body angular momentum
in the body attached frame). Although the method is fully explicit, it generally out-
performs two of the best-performing integral-conserving schemes of the 2nd order
of accuracy (the semi-explicit Lie-Newmark algorithm and the implicit RATTLE
algorithm). The method also performs better than the 4th order explicit RK-MK4
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integration algorithm in terms of the conservation of the rigid body motion inte-
grals (free body angular momentum and Lagrangian top motion integrals [35]). The
higher-order coadjoint-preserving integration scheme with the simultaneous kine-
matic reconstruction on SO(3) is discussed in the last part of the chapter. Like the
Lie-Störmer-Verlet scheme, this algorithm exactly preserves spatial angular momen-
tum of a free body. It attains a numerically efficient form that makes it easily to be
applied to MBS simulations.
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